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Preface

This is a book about Monte Carlo methods from the perspective of financial
engineering. Monte Carlo simulation has become an essential tool in the pric-
ing of derivative securities and in risk management; these applications have,
in turn, stimulated research into new Monte Carlo techniques and renewed
interest in some old techniques. This is also a book about financial engineer-
ing from the perspective of Monte Carlo methods. One of the best ways to
develop an understanding of a model of, say, the term structure of interest
rates is to implement a simulation of the model; and finding ways to improve
the efficiency of a simulation motivates a deeper investigation into properties
of a model.

My intended audience is a mix of graduate students in financial engi-
neering, researchers interested in the application of Monte Carlo methods in
finance, and practitioners implementing models in industry. This book has
grown out of lecture notes I have used over several years at Columbia, for
a semester at Princeton, and for a short course at Aarhus University. These
classes have been attended by masters and doctoral students in engineering,
the mathematical and physical sciences, and finance. The selection of topics
has also been influenced by my experiences in developing and delivering pro-
fessional training courses with Mark Broadie, often in collaboration with Leif
Andersen and Phelim Boyle. The opportunity to discuss the use of Monte
Carlo methods in the derivatives industry with practitioners and colleagues
has helped shaped my thinking about the methods and their application.

Students and practitioners come to the area of financial engineering from
diverse academic fields and with widely ranging levels of training in mathe-
matics, statistics, finance, and computing. This presents a challenge in set-
ting the appropriate level for discourse. The most important prerequisite for
reading this book is familiarity with the mathematical tools routinely used
to specify and analyze continuous-time models in finance. Prior exposure to
the basic principles of option pricing is useful but less essential. The tools
of mathematical finance include It6 calculus, stochastic differential equations,
and martingales. Perhaps the most advanced idea used in many places in
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;his book is the concept of a change of measure. This idea is so central both
;0 derivatives pricing and to Monte Carlo methods that there is simply no
woiding it. The prerequisites to understanding the statement of the Girsanov
;heorem should suffice for reading this book.

Whereas the language of mathematical finance is essential to our topic, its
;echnical subtleties are less so for purposes of computational work. My use of
nathematical tools is often informal: I may assume that a local martingale
s a martingale or that a stochastic differential equation has a solution, for
xxample, without calling attention to these assumptions. Where convenient,

take derivatives without first assuming differentiability and I take expecta-
ions without verifying integrability. My intent is to focus on the issues most
mportant to Monte Carlo methods and to avoid diverting the discussion to
pell out technical conditions. Where these conditions are not evident and
vhere they are essential to understanding the scope of a technique, I discuss
hem explicitly. In addition, an appendix gives precise statements of the most
mportant tools from stochastic calculus. '

This book divides roughly into three parts. The first part, Chapters 1-3,
levelops fundamentals of Monte Carlo methods. Chapter 1 summarizes the
heoretical foundations of derivatives pricing and Monte Carlo. It explains
he principles by which a pricing problem can be formulated as an integra-
ion problem to which Monte Carlo is then applicable. Chapter 2 discusses
andom number generation and methods for sampling from nonuniform dis-
ributions, tools fundamental to every application of Monte Carlo. Chapter 3
rovides an overview of some of the most important models used in financial
ngineering and discusses their implementation by simulation. I have included
aore discussion .of the models in Chapter 3 and the financial underpinnings
1 Chapter 1 than is strictly necessary to run a simulation. Students often
ome to a course in Monte Carlo with limited exposure to this material, and
he implementation of a simulation becomes more meaningful if accompanied
y an understanding of a model and its context. Moreover, it is precisely in
10del details that many of the most interesting simulation issues arise.

If the first three chapters deal with running a simulation, the next three
eal with ways of running it better. Chapter 4 presents methods for increas-
1g precision by reducing the variance of Monte Carlo estimates. Chapter 5
iscusses the application of deterministic quasi-Monte Carlo methods for nu-
1erical integration. Chapter 6 addresses the problem of discretization error
aat results from simulating discrete-time approximations to continuous-time
10dels.

The last three chapters address topics specific to the application of Monte
‘arlo methods in finance. Chapter 7 covers methods for estimating price sen-
tivities or “Greeks.” Chapter 8 deals with the pricing of American options,
‘hich entails solving an optimal stopping problem within a simulation. Chap-
or 9 is an introduction to the use of Monte Carlo methods in risk management.
. discusses the measurement of market risk and credit risk in financial port-
lios. The models and methods of this final chapter are rather different from
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those in the other chapters, which deal primarily with the pricing of derivative
securities.

Several people have influenced this book in various ways and it is my
pleasure to express my thanks to them here. I owe a particular debt to my
frequent collaborators and co-authors Mark Broadie, Phil Heidelberger, and
Perwez Shahabuddin. Working with them has influenced my thinking as well
as the book’s contents. With Mark Broadie I have had several occasions to
collaborate on teaching as well as research, and I have benefited from our many
discussions on most of the topics in this book. Mark, Phil Heidelberger, Steve
Kou, Pierre L’Ecuyer, Barry Nelson, Art Owen, Philip Protter, and Jeremy
Staum each commented on one or more draft chapters; I thank them for
their comments and apologize for the many good suggestions I was unable to
incorporate fully. I have also benefited from working with current and former
Columbia students Jingyi Li, Nicolas Merener, Jeremy Staum, Hui Wang, Bin
Yu, and Xiaoliang Zhao on some of the topics in this book. Several classes
of students helped uncover errors in the lecture notes from which this book

evolved.

Paul Glasserman
New York, 2003
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1

Foundations

This chapter’s two parts develop key ideas from two fields, the intersection of
which is the topic of this book. Section 1.1 develops principles underlying the
use and analysis of Monte Carlo methods. It begins with a general descrip-
tion and simple examples of Monte Carlo, and then develops a framework for
measuring the efficiency of Monte Carlo estimators. Section 1.2 reviews con-
cepts from the theory of derivatives pricing, including pricing by replication,
the absence of arbitrage, risk-neutral probabilities, and market completeness.
The most important idea for our purposes is the representation of derivative
prices as expectations, because this representation underlies the application
of Monte Carlo.

1.1 Principles of Monte Carlo

1.1.1 Introduction

Monte Carlo methods are based on the analogy between probability and vol-
ume. The mathematics of measure formalizes the intuitive notion of probabil-
ity, associating an event with a set of outcomes and defining the probability of
the event to be its volume or measure relative to that of a universe of possible
outcomes. Monte Carlo uses this identity in reverse, calculating the volume
of a set by interpreting the volume as a probability. In the simplest case, this
means sampling randomly from a universe of possible outcomes and taking
the fraction of random draws that fall in a given set as an estimate of the set’s
volume. The law of large numbers ensures that this estimate converges to the
correct value as the number of draws increases. The central limit theorem
provides information about the likely magnitude of the error in the estimate
after a finite number of draws.

A small step takes us from volumes to integrals. Consider, for example,
the problem of estimating the integral of a function f over the unit interval.

We may represent the integral
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a:/olf(a:)dx

as an expectation E[f(U)], with U uniformly distributed between 0 and 1.
Suppose we have a mechanism for drawing points U;, U, ... independently
and uniformly from [0,1]. Evaluating the function f at n of these random
points and averaging the results produces the Monte Carlo estimate

b= = 37 S0,
=1

If f is indeed integrable over [0, 1] then, by the strong law of large numbers,
&p — «  with probability 1 as n — oo.

If f is in fact square integrable and we set

2 = 1 z) —a)’dz
af—/0<f<> P de,

then the error &, — a in the Monte Carlo estimate is approximately normally
distributed with mean 0 and standard deviation o¢/+/n, the quality of this
approximation improving with increasing n. The parameter oy would typically
be unknown in a setting in which « is unknown, but it can be estimated using
the sample standard deviation

sf= 1Z<f(U¢>w@n)2-

-1
n i=1

Thus, from the function values f(U1),..., f(U,) we obtain not only an esti-
mate of the integral o but also a measure of the error in this estimate.

The form of the standard error o¢/+/n is a central feature of the Monte
Carlo method. Cutting this error in half requires increasing the number of
coints by a factor of four; adding one decimal place of precision requires
00 times as many points. These are tangible expressions of the square-root
sonvergence rate implied by the \/n in the denominator of the standard error.
n contrast, the error in the simple trapezoidal rule

n—1

_fO)+f1) 1 .
AN +g;f(z/”)

;s O(n™2), at least for twice continuously differentiable f. Monte Carlo is
enerally not a competitive method for calculating one-dimensional integrals.

The value of Monte Carlo as a computational tool lies in the fact that its
'(n"1/2) convergence rate is not restricted to integrals over the unit interval.
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Indeed, the steps outlined above extend to estimating an integral over [0, 1]¢
(and even R¢) for all dimensions d. Of course, when we change dimensions we
change f and when we change f we change o, but the standard error will still
have the form oy /+/n for a Monte Carlo estimate based on n draws from the
domain [0, 1}d- In particular, the O(n=%/ 2) convergence rate holds for all d. In
contrast, the error in a product trapezoidal rule in d dimensions is O(n~2/%) for
twice continuously differentiable integrands; this degradation in convergence
rate with increasing dimension is characteristic of all deterministic integration
methods. Thus, Monte Carlo methods are attractive in evaluating integrals in
high dimensions.

What does this have to do with financial engineering? A fundamental im-
plication of asset pricing theory is that under certain circumstances (reviewed
in Section 1.2.1), the price of a derivative security can be usefully represented
as an expected value. Valuing derivatives thus reduces to computing expecta-
tions. In many cases, if we were to write the relevant expectation as an integral,
we would find that its dimension is large or even infinite. This is precisely the
sort of setting in which Monte Carlo methods become attractive.

Valuing a derivative security by Monte Carlo typically involves simulating
paths of stochastic processes used to describe the evolution of underlying
asset prices, interest rates, model parameters, and other factors relevant to
the security in question. Rather than simply drawing points randomly from
[0,1] or [0,1]¢, we seek to sample from a space of paths. Depending on how
the problem and model are formulated, the dimension of the relevant space
may be large or even infinite. The dimension will ordinarily be at least as large
as the number of time steps in the simulation, and this could easily be large
enough to make the square-root convergence rate for Monte Carlo competitive
with alternative methods.

For the most part, there is nothing we can do to overcome the rather slow
rate of convergence characteristic of Monte Carlo. (The quasi-Monte Carlo
methods discussed in Chapter 5 are an exception — under appropriate con-
ditions they provide a faster convergence rate.) We can, however, look for
superior sampling methods that reduce the implicit constant in the conver-
gence rate. Much of this book is devoted to examples and general principles
for doing this.

The rest of this section further develops some essential ideas underly-
ing Monte Carlo methods and their application to financial engineering. Sec-
tion 1.1.2 illustrates the use of Monte Carlo with two simple types of option
contracts. Section 1.1.3 develops a framework for evaluating the efficiency of

simulation estimators.

1.1.2 First Examples

In discussing general principles of Monte Carlo, it is useful to have some simple
specific examples to which to refer. As a first illustration of a Monte Carlo
method, we consider the calculation of the expected present value of the payoff



4 1 Foundations

of a call option on a stock. We do not yet refer to this as the option price; the
connection between a price and an expected discounted payoff is developed in
Section 1.2.1.

Let S(t) denote the price of the stock at time ¢. Consider a call option
granting the holder the right to buy the stock at a fixed price K at a fixed
time 7" in the future; the current time is ¢ = 0. If at time 7" the stock price
S(T') exceeds the strike price K, the holder exercises the option for a profit
of S(T') — K if, on the other hand, S(T') < K, the option expires worthless.
(This is a European option, meaning that it can be exercised only at the fixed
date T'; an American option allows the holder to choose the time of exercise.)
The payoff to the option holder at time 7" is thus

(S(T) - K)* =max{0,S(T) - K}.
To get the present value of this payoff we multiply by a discount factor e™"7,
with r a continuously compounded interest rate. We denote the expected
present value by E[e="T(S(T) — K)¥)].

For this expectation to be meaningful, we need to specify the distribution
of the random variable S(7T'), the terminal stock price. In fact, rather than
simply specifying the distribution at a fixed time, we introduce a model for the
dynamics of the stock price. The Black-Scholes model describes the evolution
of the stock price through the stochastic differential equation (SDE)

as(t
—‘5—,—(%—)2 =rdt+odW(t), (1.1)
with W a standard Brownian motion. (For a brief review of stochastic cal-
culus, see Appendix B.) This equation may be interpreted as modeling the
percentage changes dS/S in the stock price as the increments of a Brownian
motion. The parameter o is the volatility of the stock price and the coefficient
on dt in (1.1) is the mean rate of return. In taking the rate of return to be
the same as the interest rate r, we are implicitly describing the risk-neutral
dynamics of the stock price, an idea reviewed in Section 1.2.1.
The solution of the stochastic differential equation (1.1) is

S(T) = S(0)exp ([r — 26T + oW (T)) . (1.2)

As S(0) is the current price of the stock, we may assume it is known. The
random variable W (T') is normally distributed with mean 0 and variance T}
this is also the distribution of /T Z if Z is a standard normal random variable
(mean 0, variance 1). We may therefore represent the terminal stock price as

S(T) = S(0) exp ([r — 1T + U\/TZ) . (1.3)

The logarithm of the stock price is thus normally distributed, and the stock
price itself has a lognormal distribution.
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The expectation E[e™"T(S(T) — K)*] is an integral with respect to the
lognormal density of S(T). This integral can be evaluated in terms of the
standard normal cumulative distribution function ® as BS(S(0),0,T,r, K)
with

BS(S,0,T,r,K) =

S0 (log(S/K);:/(j_T;wL %02)T> T <10g(S/K);:/(; - %02)T>' (1.4)

This is the Black-Scholes [50] formula for a call option.

In light of the availability of this formula, there is no need to use Monte
Carlo to compute E[e"T(S(T') — K)*]. Moreover, we noted earlier that Monte
Carlo is not a competitive method for computing one-dimensional integrals.
Nevertheless, we now use this example to illustrate the key steps in Monte
Carlo. From (1.3) we see that to draw samples of the terminal stock price S(T')
it suffices to have a mechanism for drawing samples from the standard normal
distribution. Methods for doing this are discussed in Section 2.3; for now we
simply assume the ability to produce a sequence Zi, Zs, ... of independent
standard normal random variables. Given a mechanism for generating the Z;,
we can estimate E[e™"T(S(T) — K)*] using the following algorithm:

fori=1,...,n
generate Z;
set S;(T) = S(0) exp (['r — +03T + a\/TZZ)
set C; = e "1(S(T) — K)*
set Cp, = (C1+---+Cp)/n
For any n > 1, the estimator C,, is unbiased, in the sense that its expec-
tation is the target quantity:
E[C.) = C =E[e™T(S(T) - K)*].
The estimator is strongly consistent, meaning that as n — oo,

C, — C with probability 1.

For ﬁnjte but at least moderately large n, we can supplement the point esti-
mate C,, with a confidence interval. Let

so ! Z(Ci —Cp)? (1.5)

denote the sample standard deviation of C1, ..., C,, and let z5 denote the 1—§
quantile of the standard normal distribution (i.e., ®(z5) = 1 — §). Then

A

Cn :‘22’5/2 (16)

sc
NG
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is an asymptotically (as n — oo) valid 1 — ¢ confidence interval for C. (For
a 95% confidence interval, 6 = .05 and z5/, =~ 1.96.) Alternatively, because
the standard deviation is estimated rather than known, we may prefer to
replace 25,2 with the corresponding quantile from the ¢ distribution with n—1
degrees of freedom, which results in a slightly wider interval. In either case,
the probability that the interval covers C' approaches 1 — § as n — oo. (These
ideas are reviewed in Appendix A.)

The problem of estimating E[e="7 (S(T') — K)*] by Monte Carlo is simple
enough to be illustrated in a spreadsheet. Commercial spreadsheet software
typically includes a method for sampling from the normal distribution and
the mathematical functions needed to transform normal samples to terminal
stock prices and then to discounted option payoffs. Figure 1.1 gives a schematic
illustration. The Z; are samples from the normal distribution; the comments
in the spreadsheet illustrate the formulas used to transform these to arrive
at the estimate C,. The spreadsheet layout in Figure 1.1 makes the method
transparent but has the drawback that it requires storing all n replication in
n rows of cells. It is usually possible to use additional spreadsheet commands
to recalculate cell values n times without storing intermediate values.

Replication | Normals | Stock Price | Option Payoff

1 Z 1 S 1 C 1

2| z2 s2 |\ c2

3] Z3 S 3 C.3

4 Z4 S_.4 = * -0 5% 2V *T+g* *

5| Z5 S5 S 1 E(O) exp((r-0.5*c"2)*T+o*sqrt(T)*Z_1)

6 Z6 S 6 C 6

71 27 S7 c7

8 78 S 8 C 8 ICw8=exp(-rT)*max(O,S_S-K)

9 zo9 S 9 C9

10, Z 10 S _10 C_10

11 Z 11 S 11 C_11

n| Z_n S n C_n | |
C, = AVERAGE(C_1,...,.C_n)
s_C=STDEV(C_1,...,C_n)

Fig. 1.1. A spreadsheet for estimating the expected present value of the payoff of
a call option.

This simple example illustrates a general feature of Monte Carlo methods
for valuing derivatives, which is that the simulation is built up in layers: each

of the transformations

exemplifies a typical layer. The first transformation constructs a path of under-
lying assets from random variables with simpler distributions and the second
calculates a discounted payoff from each path. In fact, we often have additional
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layers above and below these. At the lowest level, we typically start from in-
dependent random variables U; uniformly distributed between 0 and 1, so we
need a transformation taking the U; to Z;. The transformation taking the C;
to the sample mean C’n and sample standard deviation sc may be viewed as
another layer. We include another still higher level in, for example, valuing a
portfolio of instruments, each of which is valued by Monte Carlo. Randomness
(or apparent randomness) typically enters only at the lowest layer; the sub-
sequent transformations producing asset paths, payoffs, and estimators are
usually deterministic.

Path-Dependent Example

The payoff of a standard European call option is determined by the terminal
stock price S(7') and does not otherwise depend on the evolution of S(t)
between times 0 and 7. In estimating E[e™"T(S(T) — K)*], we were able to
jump directly from time 0 to time 7" using (1.3) to sample values of S(T').
Each simulated “path” of the underlying asset thus consists of just the two
points S(0) and S(T).

In valuing more complicated derivative securities using more complicated
models of the dynamics of the underlying assets, it is often necessary to sim-
ulate paths over multiple intermediate dates and not just at the initial and
terminal dates. Two considerations may make this necessary:

o the payoff of a derivative security may depend explicitly on the values of
underlying assets at multiple dates;

o we may not know how to sample transitions of the underlying assets exactly
and thus need to divide a time interval [0, T] into smaller subintervals to
obtain a more accurate approximation to sampling from the distribution

at time T'.

In many cases, both considerations apply.
Before turning to a detailed example of the first case, we briefly illustrate
the second. Consider a generalization of the basic model (1.1) in which the

dynamics of the underlying asset S(t) are given by
dS(t) =rS(t)dt + o(S(t))S(t) dW (¢). (1.7)

In other words, we now let the volatility o depend on the current level of S.
Except in very special cases, this equation does not admit an explicit solution
of the type in (1.2) and we do not have an exact mechanism for sampling from
the distribution of S(7"). In this setting, we might instead partition [0, 7] into
m subintervals of length At = T'/m and over each subinterval [t,t + At]
simulate a transition using a discrete (Euler) approximation to (1.7) of the
form

S(t+ At) = S(t) + rS(t)At + o(S(1)S(H) VAL Z,
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with Z a standard normal random variable. This relies on the fact that W (¢t +
At) — W (t) has mean 0 and standard deviation v/At. For each step, we would
use an independent draw from the normal distribution. Repeating this for
m steps produces a value of S(T") whose distribution approximates the exact
(unknown) distribution of S(T") implied by (1.7). We expect that as m becomes
larger (so that At becomes smaller) the approximating distribution of S(T')
draws closer to the exact distribution. In this example, intermediate times
are introduced into the simulation to reduce discretization error, the topic of
Chapter 6.

Even if we assume the dynamics in (1.1) of the Black-Scholes model, it
may be necessary to simulate paths of the underlying asset if the payoff of a
derivative security depends on the value of the underlying asset at interme-
diate dates and not just the terminal value. Asian options are arguably the
simplest path-dependent options for which Monte Carlo is a competitive com-
putational tool. These are options with payoffs that depend on the average
level of the underlying asset. This includes, for example, the payoff (§ — K)*

with
. 1 &
S = EZS(tj) (1.8)
j=1

for some fixed set of dates 0 =t < t1 < --- < t,, = T, with T the date at
which the payoff is received.

To calculate the expected discounted payoff E[e="7 (S — K)*], we need to
be able to generate samples of the average S. The simplest way to do this is
to simulate the path S(¢1),..., S(tm) and then compute the average along the
path. We saw in (1.3) how to simulate S(T") given S(0); simulating S(t;4+1)
from S(t;) works the same way:

S(tj+1) = S(t5) exp ([r — 30°)(tj+1 — ) + 0/tj11 — t5Zj41) (1.9)

where Z1,..., Z, are independent standard normal random variables. Given
a path of values, it is a simple matter to calculate S and then the discounted
payoff e =T (S — K)*.

The following algorithm illustrates the steps in simulating n paths of m
transitions each. To be explicit, we use Z;; to denote the jth draw from the
normal distribution along the ith path. The {Z;;} are mutually independent.

fori=1,...,n
forj=1,...,m
generate Z;;
set Si(t;) = Si(tj—1) exp ([7“ = 3070t — tj1) +o/(t; - tj—l)Zij)
set S = (S;(t1) + -+ Si(tm))/m
set C; =e "1(§ - K)*t
set Cpy = (CL + -+ Cy)/n
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Figure 1.2 gives a schematic illustration of a spreadsheet implementation
of this method. The spreadsheet has n rows of standard normal random vari-
ables Z;; with m variables in each row. These are mapped to n paths of the
underlying asset, each path consisting of m steps. From each path, the spread-
sheet calculates a value of the time average S; and a value of the discounted
payoff C;. The C; are averaged to produce the final estimate Cj,.

Path \ Step 1 2 3 m ‘

1 Z 11 Z 12 Z_13 Z im
2 Z 21 Z 22 Z 23 Z 2m
3 Z_31 Z 32 Z_33 Z_3m

: : : S_13=S12*exp((r-0.5*c"2)*(t_3-t_2)+o*sqrt(t_3-t 2)*Z 13)
n Z_n1 Z_n2 Z_n3 Z_nm
1 S 11 | S 12 | S 13 S_1m S, C,
2 S_21 S22 | 23 S 2m S, C, \\
3 S_31 S_32 S 33 S_3m S, C, Cz=exp(-rT)*max(O,§2-K) l
: §3 =AVERAGE(S_31,S_32,...,S_3m) I :
n S_n1 S_n2 S_n3 S_mm S, C, { ! |

C, = AVERAGE(C_1,...,.C_n)

Fig. 1.2. A spreadsheet for estimating the expected present value of the payoff of
an Asian call option.

1.1.3 Efficiency of Simulation Estimators

Much of this book is devoted to ways of improving Monte Carlo estimators.
To discuss improvements, we first need to explain our criteria for compar-
ing alternative estimators. Three considerations are particularly important:
computing time, bias, and variance.

We begin by considering unbiased estimates. The two cases considered in
Section 1.1.2 (the standard call and the Asian call) produced unbiased esti-
mates in the sense that in both cases E[C’n] = C, with C,, the corresponding
estimator and C' the quantity being estimated. Also, in both cases the esti-
mator C,, was the mean of n independent and identically distributed samples.
We proceed by continuing to consider estimators of this form because this
setting is both simple and practically relevant.

Suppose, then, that
. 1 <&
C’n - E Zl Cia
1=

with C; i.i.d., E[C;] = C and Var[C;] = 64 < co. The central limit theorem
asserts that as the number of replications n increases, the standardized esti-
mator (C,, — C)/(0¢c/+/n) converges in distribution to the standard normal,
a statement often abbreviated as
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C,-C

or, equivalently, as X
VnlC, — C] = N(0,03). (1.10)

Here, = denotes convergence in distribution and N (a,b?) denotes the normal
distribution with me% a and variance b2. The stated convergence in distrib-

ution means that —* X
lim P (gﬁ:—g < a:) = &(z)
n-—00 Uc/\/ﬁ

for all x, with ® the cumulative normal distribution. The same limit holds
if o¢ is replaced with the sample standard devation s¢ (as in (1.5)); this is
important because o¢ is rarely known in practice but s¢ is easily calculated
from the simulation output. The fact that we can replace o¢ with s¢ without
changing the limit in distribution follows from the fact that s¢/oc — 1 as
n — oo and general results on convergence in distribution (cf. Appendix A).

The central limit theorem justifies the confidence interval (1.6): as n —
00, the probability that this interval straddles the true value C' approaches
1 — 6. Put differently, the central limit theorem tells us something about the
distribution of the error in our simulation estimate:

Cn —C =~ N(0,0%/n),

meaning that the error on the left has approximately the distribution on the
right. This makes precise the intuitively obvious notion that, other things
being equal, in comparing two estimators of the same quantity we should
prefer the one with lower variance.

But what if other things are not equal? In particular, suppose we have a
choice between two unbiased estimators and that the one with smaller vari-
ance takes longer to compute. How should we balance variance reduction and
computational effort? An informal answer was suggested by Hammersley and
Handscomb [169]; Fox and Glynn [128] and Glynn and Whitt [160] develop
a general framework for analyzing this issue and we now review some of its
main conclusions.

Suppose that generating a replication C; takes a fixed amount of comput-
ing time 7. Our objective is to compare estimators based on relative compu-
tational effort, so the units in which we measure computing time are unim-
portant. Let s denote our computational budget, measured in the same units
as 7. Then the number of replications we can complete given the available
budget is |s/7], the integer part of s/7, and the resulting estimator is él_s /7]
Directly from (1.10), we get

V LS/T_I [é[s/ﬂ - C] = N(07U%)
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as the computational budget s increases to infinity. Noting that |s/7|/s —
1/7, it follows that \/s[C|s/-] — C] is also asymptotically normal but with an

asymptotic variance of o57T; i.e.,
\/E[C’LS/TJ B C] = N(Oa U%‘T) (1'11)

as s — oo. This limit normalizes the error in the estimator by the computing
time s rather than by the number of replications. It tells us that, given a
budget s, the error in our estimator will be approximately normally distributed
with variance 057/s.

This property provides a criterion for comparing alternative unbiased esti-
mators. Suppose, for example, that we have two unbiased estimators both of
which are averages of independent replications, as above. Suppose the variance
per replication o? of the first estimator is larger than the variance per repli-
cation o3 of the second estimator, but the computing times per replication 7,
i = 1,2, of the two estimators satisfy 7 < 72. How should we choose between
the faster, more variable estimator and the slower, {8 variable estimator?
The formulation of the central limit theorem in (1.11) suggests that asymp-
totically (as the computational budget grows), we should prefer the estimator
with the smaller value of o27;, because this is the one that will produce the
more precise estimate (and narrower confidence interval) from the budget s.

A feature of the product 0?7 (variance per replication times computer time
per replication) as a measure of efficiency is that it is insensitive to bundling
multiple replications into a single replication. Suppose, for example, that we
simply redefine a replication to be the average of two independent copies of
the original replications. This cuts the variance per replication in half but
doubles the computing time per replication and thus leaves the product of
the two unaltered. A purely semantic change in what we call a replication
does not affect our measure of efficiency.

The argument leading to the work-normalized central limit theorem (1.11)
requires that the computing time per replication be constant. This would be
almost exactly the case in, for example, the simulation of the Asian option con-
sidered in Section 1.1.2: all replications require simulating the same number
of -transitions, and the time per transition is nearly constant. This feature is
characteristic of many derivative pricing problems in which the time per repli-
cation is determined primarily by the number of time steps simulated. But
there are also cases in which computing time can vary substantially across
replications. In pricing a barrier option, for example (cf. Section 3.2.2), one
might terminate a path the first time a barrier is crossed; the number of tran-
sitions until this happens is typically random. Sampling through acceptance-
rejection (as discussed in Section 2.2.2) also introduces randomness in the
time per replication.

To generalize (1.11) to these cases, we replace the assumption of a fixed
computing time with the condition that (Cy, 1), (Ca,72), ... are independent
and identically distributed, with C; as before and 7; now denoting the com-
puter time required for the ith replication. The number of replications that
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can be completed with a computing budget s is

N(s):sup{nEO:ings}

=1

and is also random. Our estimator based on a budget s is C’N(s), the average
of the first N(s) replications. Our assumption of i.i.d. replications ensures
that N(s)/s — 1/E[r] with probability one (this is the elementary renewal
theorem) and then that (1.11) generalizes to (cf. Appendix A.1)

V3[Cn(sy — C] = N(0,0%E[7]). (1.12)

This limit provides a measure of asymptotic relative efficiency when the com-
puting time per replication is variable. It indicates that in comparing al-
ternative estimators, each of which is the average of unbiased independent
replications, we should,prefer the one for which the product

(variance per replication) x (expected computing time per replication)

is smallest. This principle (an early version of which may be found in Hammer-
sley and Handscomb [169], p.51) is a special case of a more general formulation
developed by Glynn and Whitt [160] for comparing the efficiency of simulation
estimators. Their results include a limit of the form in (1.12) that holds in far
greater generality than the case of i.i.d. replications we consider here.

Bias

The efficiency comparisons above, based on the central limit theorems in (1.10)
and (1.12), rely on the fact that the estimators to be compared are aver-
ages of unbiased replications. In the absence of bias, estimator variability and
computational effort are the most important considerations. However, reduc-
ing variability or computing time would be pointless if it merely accelerated
convergence to an incorrect value. While accepting bias in small samples is
sometimes necessary, we are interested only in estimators for which any bias
can be eliminated through increasing computational effort.

Some simulation estimators are biased for all finite sample sizes but be-
come asymptotically unbiased as the number of replications increases. This
is true of C’N(s), for example. When the 7; are random, E[C’N(s)] # C, but
the central limit theorem (1.12) shows that the bias in this case becomes
negligible as s increases. Glynn and Heidelberger [155] show that it can be en-
tirely eliminated by forcing completion of at least the first replication, because
E[Cmax{l,N(s)}] =C.

Another example is provided by the problem of estimating a ratio of ex-
pections E[X]/E[Y] from i.i.d. replications (X;,Y;), ¢ = 1,...,n, of the pair
(X,Y). The ratio of sample means X /Y is biased for all n because
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but X /Y clearly converges to E[X]/E[Y] with probability 1 as n — oco. More-
over, the normalized error

(45

is asymptotically normal, a point we return to in Section 4.3.3. Thus, the bias
becomes negligible as the number of replications increases, and the conver-
gence rate of the estimator is unaffected.

But not all types of bias vanish automatically in large samples — some
require special effort. Three examples should help illustrate typical sources
of non-negligible bias in financial engineering simulations. In each of these
examples the bias persists as the number of replications increases, but the
bias is nevertheless manageable in the sense that it can be made as small as
necessary through additional computational effort.

Example 1.1.1 Model discretization error. In Section 1.1.2 we illustrated the
use of Monte Carlo in estimating the expected present value of the payoff of a
standard call option and an Asian call option under Black-Scholes assumptions
on the dynamics of the underlying stock. We obtained unbiased estimates by
simulating the underlying stock using (1.3) and (1.9). Suppose that instead of
using (1.9) we divide the time horizon into small increments of length h and
approximate changes in the underlying stock using the recursion

S((j + 1)) = S(jh) + rS(jh)h + 0 S(Gh)VhZ; 1,

with Zy, Zs, ... independent standard normal random variables. The joint
distribution of the values of the stock price along a path simulated using
this rule will not be exactly the same as that implied by the Black-Scholes
dynamics in (1.1). As a consequence, the expected present value of an option
payoff estimated using this simulation rule will differ from the exact value —
the simulation estimator is biased. This is an example of discretization bias
because it results from time-discretization of the continuous-time dynamics of
the underlying model.

Of course, in this example, the bias can be eliminated by using the exact
method (1.9) to simulate values of the underlying stock at the relevant dates.
But for many models, exact sampling of the continuous-time dynamics is
infeasible and discretization error is inevitable. This is typically the case if,
for example, the volatility parameter o is a function of the stock price S,
as in (1.7). The resulting bias can be managed because it typically vanishes
as the time step h decreases. However, taking h smaller entails generating
more transitions per path (assuming a fixed time horizon) and thus a higher

computational burden. O
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Example 1.1.2 Payoff discretization error. Suppose that in the definition of
the Asian option in Section 1.1.2, we replace the discrete average in (1.8) with

a continuous average
_ 1 /T
5= /O S(u) du.

In this case, even if we use (1.9) to generate values of S(t;) at a discrete
set of dates t;, we cannot calculate S exactly — we need to use a discrete
approximation to the continuous average. A similar issue arises in estimating,
e.g.,
Ele™"T S(t)—-S(T
e (s S(8) — S(T)
the expected present value of the payoff of a lookback option. Even if we
simulate a path S(0), S(¢1),...,S(tm) exactly (i.e., using (1.9)), the estimator
—rT
ax S(t;) —S(T
e (max 5(t;) - S(T))

is biased; in particular, the maximum over the S(t;) can never exceed and will
almost surely underestimate the maximum of S(¢) over all ¢ between 0 and 7.
In both cases, the bias can be made arbitrarily small by using a sufficiently
small simulation time step, at the expense of increasing the computational
cost per path. Notice that this example differs from Example 1.1.1 in that
the source of discretization error is the form of the option payoff rather than
the underlying model; the S(¢;) themselves are sampled without discretization
error. This type of bias is less common in practice than the model discretiza-
tion error in Example 1.1.1 because option contracts are often sensitive to the
value of the underlying asset at only a finite set of dates. O

Example 1.1.3 Nonlinear functions of means. Consider an option expiring
at T to buy a call option expiring at 75 > T7i; this is an option on an
option, sometimes called a compound option. Let C®(z) denote the expected
discounted payoff of the option expiring at T» conditional on the underlying
stock price equaling x at time T;. More explicitly,

C®(z) = E[e™" 2" T(S(T2) — K2)|S(Th) = 4]

with K the strike price. If the compound option has a strike of K3, then the
expected present value of its payoff is

M = Ele ™ (CP(S(TY)) — K1)7).

If the dynamics of the underlying stock are described by the Black-Scholes
model (1.1), C® and C(") can be evaluated explicitly. But consider the
problem of estimating C¥) by simulation. To do this, we simulate n values
S1(Th),...,Sn(T1) of the stock at Ty and then k values Si1(T%),. .., Sik(T2)
of the stock at 75 from each S;(77), as illustrated in Figure 1.3. We estimate
the inner option value at S;(7}) using
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) 1<
Clgz)(si(Tl)) =% ZG_T(TZ_TI)(SU (T») — Ko)*

and then estimate C1) using

n

A 1 Ty A
CV = =3 e (P (S(Ty)) - Ka)*
=1

SI(T% Sil(Tz)
SAT) 54T2)

5(0) Si(T>)
Sn(Tl)

~ Fig. 1.3. Nested simulation used to estimate a function of a conditional expectation.

If we replaced the inner estimate C’,Ez) with its expectation, the result
would be an unbiased estimator of C(!). But because we estimate the inner
expectation, the overall estimator is biased high:

E[CY] = E[e™ ™ (CP (S:(T)) — K1)
— E[E[e " (CIP(Si(Th)) — K1) [S:(Th)]]
> Ele T (E[CLV (Si(T1)|Si(Th)] — K1) ]
= E[e™T(CP(Si(Th)) — K1) 7]
— o,

This follows from Jensen’s inequality and the convexity of the function y —
(y — K1)*™. As the number k of samples of S(T5) generated per sample of
S(T1) increases, the bias vanishes because CA’,(f)(Si (T1)) — CP(S,(Ty)) with
probability one. The bias can therefore be managed, but once again only at
the expense of increasing the computational cost per replication.

The source of bias in this example is the application of a nonlinear function
(in this case, the option payoff) to an estimate of an expectation. Closely
related biases arise in at least two important applications of Monte Carlo
in financial engineering. In measuring portfolio risk over a fixed horizon, the
value of the portfolio at the end of the horizon is a conditional expectation.
In valuing American options by simulation, the option payoff at each exercise
date must be compared with the conditionally expected discounted payoff
from waiting to exercise. These topics are discussed in Chapters 8 and 9. O
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Examples 1.1.1-1.1.3 share some important features. In each case, the
relevant estimator is an average of independent replications; each replication
is biased but the bias can be made arbitrarily small at the expense of increasing
the computational cost per replication. Given a fixed computing budget, we
therefore face a tradeoff in allocating the budget. Expending more effort per
replication lowers bias, but it also decreases the number of replications that
can be completed and thus tends to increase estimator variance.

We need a measure of estimator performance that balances bias and vari-
ance. A standard measure is mean square error, which equals the sum of bias
squared and variance. More explicitly, if & is an estimator of a quantity a,

then

MSE(&) = E[(& — @)?]
= (El4] - @)* + E[(a — E[a])*]
= Bias®(&) + Variance(&).

While exact calculation of mean square error is generally impractical, it is
often possible to compare estimators through their asymptotic MSE.

For simplicity, we restrict attention to estimators that are sample means
of i.i.d. replications. Extending the notation used in the unbiased case, we
write C(n, §) for the average of n independent replications with parameter 6.
This parameter determines the bias: we assume E[C(n,6)] = as and a5 — a
as 6 — 0, with a the quantity to be estimated. In Examples 1.1.1 and 1.1.2,
0 could be the simulation time increment along each path; in Example 1.1.3
we could take § = 1/k. We investigate the mean square error of C(n, §) as the
computational budget grows.

Under reasonable additional conditions (in particular, uniform integra-
bility), the central limit theorem in (1.12) for the asymptotically unbiased

estimator Cy () implies

sVar[C:’N(S)] — U%E[T];

31/2\/Var[CA'N(s)] — oCcV E[T]. (1.13)

The power of s on the left tells us the rate at which the standard error of
C’N(s) (the square root of its variance) decreases, and the limit on the right
tells us the constant associated with this asymptotic rate. We proceed to
derive similar information in the biased case, where the asymptotic rate of
decrease of the mean square error depends, in part, on how computational
effort is allocated to reducing bias and variance.

For this analysis, we need to make some assumptions about the estimator.
Let 75 be the computer time per replication at parameter §, which we assume
to be nonrandom. For the estimator bias and computing time, we assume
there are constants 7, 3 > 0, b, and ¢ > 0 such that, as § — 0,

equivalently,
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a5 — a = b6® 4 o(6P) (1.14)
s =cd T4+ 0(677). (1.15)

For Examples 1.1.1-1.1.3, it is reasonable to expect that (1.15) holds with
n = 1 because in all three examples the work per path is roughly linear in
1/6. The value of 8 can vary more from one problem to another, but typical
values are 1/2, 1, and 2. We will see in Chapter 6 that the value of  often
depends on how one chooses to approximate a continuous-time process.
Given a computational budget s, we can specify an allocation of this budget
to reducing bias and variance by specifying a rule s — 4&(s) for selecting the
parameter 0. The resulting number of replications is N(s) = |s/75(s)| and the
resulting estimator is C(s) = C(N(s), 8(s)); notice that the estimator is now
indexed by the single parameter s whereas it was originally indexed by both
the number of replications n and the bias parameter . We consider allocation

rules d(s) for which
5(s) =as "+ o(s77) (1.16)

for some constants a,y > 0. A larger « corresponds to a smaller §(s) and
thus greater effort allocated to reducing bias; through (1.15), smaller § also
implies greater computing time per replication, hence fewer replications and
less effort allocated to reducing variance. Our goal is to relate the choice of ~
to the rate at which the MSE of C(s) decreases as s increases.

For large s, we have N(s) =~ s/7s(s); (1.15) and (1.16) together imply that
Ts(s) is O(s7) and hence that N(s) is O(s'~7"). A minimal requirement on
the allocation rule d(s) is that the number of replications N(s) increase with
s. We therefore restrict v to be less than 1/7n so that 1 —vyn > 0.

As a step in our analysis of the MSE, we write the squared bias as

(as(s) —@)® = b28(s)* + 0(8(s)*)
= b2a?P 57207 4 o(s72P7) (1.17)
= O(s727) (1.18)

using (1.14) and (1.16).
Next we consider variance. Let o2 denote the variance per replication at
parameter . Then
2
T5(s)
Ls/7s(s)]

We assume that o2 approaches a finite limit 02 > 0 as § — 0. This is a natural
assumption in the examples of this section: in Examples 1.1.1 and 1.1.2, ¢2 is
the variance in the continuous-time limit; in Example 1.1.3, it is the variance
that remains from the first simulation step after the variance in the second
step is eliminated by letting & — oco. Under this assumption we have

Var[C(s)] =

(727'5(3)

Var[C(s)] = + o(75(s)/s).
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Combining this expression for the variance with (1.15) and (1.16), we get

Varl0(s)] = 2O 4 o3(0)71/)
= o2ca™ 5" 4 o(s717 1) (1.19)
= O(s77 ). (1.20)

The order of magnitude of the MSE is the sum of (1.18) and (1.20).
Consider the effect of different choices of v. If 28y > 1 — n then the
allocation rule drives the squared bias (1.18) to zero faster than the variance
(1.20), so the MSE is eventually dominated by the variance. Conversely, if
26y < 1 —n then for large s the MSE is dominated by the squared bias. An
optimal allocation rule selects v to balance the two terms. Setting 26y = 1—yn
means taking v = 1/(26 + n). Substituting this back into (1.17) and (1.19)

results in
MSE(C(s)) = (%a®® + o2ca™")s™28/(2B+m) 4 (5=28/(26+m)) (1.21)

and thus for the root mean square error we have

RMSE(C(s)) = 1/MSE(C(s)) = O(s™#/(28+m)y, (1.22)

The exponent of s in this approximation gives the convergence rate of the
RMSE and should be contrasted with the convergence rate of s~'/2 in (1.13).
By minimizing the coefficient in (1.21) we can also find the optimal parameter
a in the allocation rule (1.16),

CL* = ;
<2ﬁb2)

but this is of less immediate practical value than the convergence rate in
(1.22).

A large ( corresponds to a rapidly vanishing bias; as § — oo we have
B/(28 +n) — 1/2, recovering the convergence rate of the standard error in
the unbiased case. Similarly, when 7 is small it follows from (1.16) that the
computational cost of reducing bias is small; in the limit as n — 0 we again
get 3/(26 +n) — 1/2. But for any finite § and positive 7, (1.22) shows that
we must expect a slower convergence rate using an estimator that is unbiased
only asymptotically compared with one that is unbiased.

Under an allocation rule satisfying (1.16), taking v = 1/(28 + n) implies
that the bias parameter § should decrease rather slowly as the computational
budget increases. Consider, for instance, bias resulting from model discretiza-
tion error as in Example 1.1.1. In this setting, interpreting ¢ as the simulation
time increment, the values § = 1 = 1 would often apply, resulting in v = 1/3.
Through (1.16), this implies that the time increment should be cut in half
with an eight-fold increase in the computational budget.
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In applications of Monte Carlo to financial engineering, estimator vari-
ance is typically larger than (squared) bias. With a few notable exceptions
(including the pricing of American options), it is generally easier to imple-
ment a simulation with a comfortably small bias than with a comfortably
small standard error. (For example, it is often difficult to measure the reduc-
tion in discretization bias achieved using the methods of Chapter 6 because
the bias is overwhelmed by simulation variability.) This is consistent with the
rather slow decrease in d(s) recommended by the analysis above, but it may
also in part reflect the relative magnitudes of the constants b, ¢, and o. These
constants may be difficult to determine; the order of magnitude in (1.21) can
nevertheless provide useful insight, especially when very precise simulation
results are required, for which the limit s — oo is particularly relevant.

The argument above leading to (1.21) considers only the convergence of
the mean square error. Glynn and Whitt [160] analyze asymptotic efficiency
through the convergence rate of the limit in distribution of simulation estima-
tors. Under uniform integrability conditions, a convergence rate in distribution
implies a convergence rate for the MSE, but the limiting distribution also pro-
vides additional information, just as the central limit theorem (1.12) provides
information beyond (1.13).

1.2 Principles of Derivatives Pricing

The mathematical theory of derivatives pricing is both elegant and remarkably
practical. A proper development of the theory and of the tools needed even to
state precisely its main results requires a book-length treatment; we therefore
assume familiarity with at least the basic ideas of mathematical finance and
refer the reader to Bjork [48], Duffie [98], Hunt and Kennedy [191], Lamberton
and Lapeyre [218], and Musiela and Rutkowski [275] for further background.
We will, however, highlight some principles of the theory, especially those that
bear on the applicability of Monte Carlo to the calculation of prices. Three
ideas are particularly important:

1. If a derivative security can be perfectly replicated (equivalently, hedged)
through trading in other assets, then the price of the derivative security
is the cost of the replicating trading strategy.

2. Discounted (or deflated) asset prices are martingales under a probabil-
ity measure associated with the choice of discount factor (or numeraire).
Prices are expectations of discounted payoffs under such a martingale
measure.

3. In a complete market, any payoff (satisfying modest regularity conditions)
can be synthesized through a trading strategy, and the martingale measure
associated with a numeraire is unique. In an incomplete market there are
derivative securities that cannot be perfectly hedged; the price of such a
derivative is not completely determined by the prices of other assets.
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The rest of this chapter is devoted to explaining these principles and to
developing enough of the underlying theory to indicate why, leaving technical
issues aside, they ought to be true. A reader familiar with or uninterested in
this background may want to skip to the recipe in Figure 1.4, with a warning
that the overly simplified summary given there is at best a starting point for
applying Monte Carlo to pricing.

The first of the principles above is the foundation of an industry. Financial
intermediaries can sell options to their clients and then eliminate the risk from
the resulting short position in the option through trading in other assets.
They need to charge what it costs to implement the trading strategy, and
competition ensures that they cannot charge (much) more. Their clients could
in principle run the replicating trading strategy themselves instead of buying
options, but financial institutions are better equipped to do this and can do
it at lower cost. This role should be contrasted with that of the insurance
industry. Insurers bear risk; derivative dealers transfer it.

The second principle is the main link between pricing and Monte Carlo.
The first principle gives us a way of thinking about what the price of a deriv-
ative security ought to be, but it says little about how this price might be
evaluated — it leaves us with the task of finding a hedging strategy and then
determining the cost of implementing this strategy. But the second principle
gives us a powerful shortcut because it tells us how to represent prices as ex-
pectations. Expectations (and, more generally, integrals) lend themselves to
evaluation through Monte Carlo and other numerical methods. The subtlety
in this approach lies in the fact that we must describe the dynamics of asset
prices not as we observe them but as they would be under a risk-adjusted
probability measure.

The third principle may be viewed as describing conditions under which
the price of a derivative security is determined by the prices of other assets so
that the first and second principles apply. A complete market is one in which
all risks can be perfectly hedged. If all uncertainty in a market is generated
by independent Brownian motions, then completeness roughly corresponds to
the requirement that the number of traded assets be at least as large as the
number of driving Brownian motions. Jumps in asset prices will often render a
model incomplete because it may be impossible to hedge the effect of discon-
tinuous movements. In an incomplete market, prices can still be represented
as expectations in substantial generality, but the risk adjustment necessary
for this representation may not be uniquely determined. In this setting, we
need more economic information — an understanding of investor attitudes
towards risk — to determine prices, so the machinery of derivatives pricing
becomes less useful.

A derivative security introduced into a complete market is a redundant
asset. It does not expand investment opportunities; rather, it packages the
trading strategy (from the first principle above) investors could have used
anyway to synthesize the security. In this setting, pricing a derivative (using
the second principle) may be viewed as a complex form of interpolation: we
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use a model to determine the price of the derivative relative to the prices of
other assets. On this point, mathematical theory and industry practice are
remarkably well aligned. For a financial institution to create a new derivative
security, it must determine how it will hedge (or synthesize) the security by
trading in other, more liquid assets, and it must determine the cost of this
trading strategy from the prices of these other assets.

1.2.1 Pricing and Replication

To further develop these ideas, we consider an economy with d assets whose
prices S;(t), i = 1,...,d, are described by a system of SDEs
dS;(t)
Si(t)

= s (S(t), t) dt + 0;(S(t), 1) T dW°(t), (1.23)

with W° a k-dimensional Brownian motion, each o; taking values in ®*, and
each p; scalar-valued. We assume that the p; and o; are deterministic func-
tions of the current state S(t) = (Si(t),...,S4(t))" and time ¢, though the
general theory allows these coefficients to depend on past prices as well. (See
Appendix B for a brief review of stochastic differential equations and refer-
ences for further background.) Let

Eij :Uztro'j’ 7"] - 17~-~>d§ (124)

this may be interpreted as the covariance between the instantaneous returns
on assets ¢ and j.

A portfolio is characterized by a vector § € R¢ with ; representing the
number of units held of the 7th asset. Since each unit of the ith asset is worth
S;(t) at time t, the value of the portfolio at time ¢t is

015:1(t) + - + 0454(t),

which we may write as 87 S(¢). A trading strategy is characterized by a sto-
chastic process 6(t) of portfolio vectors. To be consistent with the intuitive
notion of a trading strategy, we need to restrict 6(¢) to depend only on infor-
mation available at ¢; this is made precise through a measurability condition
(for example, that € be predictable).

If we fix the portfolio holdings at 6(t) over the interval [¢,¢ 4 h], then the
change in value over this interval of the holdings in the ith asset is given by
0;(t)[Si(t + h) — S;(t)]; the change in the value of the portfolio is given by
0(t)T[S(t+h)— S(t)]. This suggests that in the continuous-time limit we may
describe the gains from trading over [0, ¢] through the stochastic integral

/O ()T dS(u),

subject to regularity conditions on S and 6. Notice that we allow trading of ar-
bitrarily large or small, positive or negative quantities of the underlying assets
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continuously in time; this is a convenient idealization that ignores constraints

on real trading.
A trading strategy is self-financing if it satisfies

0()TS(t) — 0(0) T S(0) = /O 0(u)T dS(u) (1.25)

for all ¢. The left side of this equation is the change in portfolio value from time
0 to time ¢ and the right side gives the gains from trading over this interval.
Thus, the self-financing condition states that changes in portfolio value equal
gains from trading: no gains are withdrawn from the portfolio and no funds

are added. By rewriting (1.25) as
6(t)T S(t) = 6(0)"T S(0) + / t O(u) " dS(u),
0

we can interpret it as stating that from an initial investment of V(0) =
6(0)TS(0) we can achieve a portfolio value of V(¢t) = ()T S(t) by follow-
ing the strategy 6 over [0, t].

Consider, now, a derivative security with a payoff of f(S(7")) at time T'; this
could be a standard European call or put on one of the d assets, for example,
but the payoff could also depend on several of the underlying assets. Suppose
that the value of this derivative at time ¢, 0 < ¢t < T, is given by some function
V(S(t),t). The fact that the dynamics in (1.23) depend only on (S(t),t) makes
it at least plausible that the same might be true of the derivative price. If we
further conjecture that V' is a sufficiently smooth function of its arguments,

It6’s formula (see Appendix B) gives

- i ¢ uy,u
V(S(t%t):V(S(O),OHZ/O QY—(g%M—)dsi(uH/O [Q‘ﬁ%%l’__)
: 2 u),u
+3 2 S8 0%(s w20 | g (129

with ¥ as in (1.24). If the value V(S(¢),t) can be achieved from an initial
wealth of V' (S5(0),0) through a self-financing trading strategy 6, then we also
have

d t
V(S(),t) = V(5(0),0) + > / 0;(w) dS;(w). (1.27)
i=1v0

Comparing terms in (1.26) and (1.27), we find that both equations hold if

_ 9V(S(u),w)

bi(u) = 5, . d, (1.28)

and
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d
0%V (S, u
"f—%‘ Z Eij(S, U)Stsj——é—gf—a—s,—g*) = 0. (129)

i,j=1

Since we also have V(S(t),t) = 67 (¢)S(t), (1.28) implies

oV (S, u)
ou

d
V(S t) = Z Q—%QSZ-. (1.30)

Finally, at ¢ = T" we must have
V(5,T) = f(S) (1.31)

if V is indeed to represent the value of the derivative security.

Equations (1.29) and (1.30), derived here following the approach in Hunt
and Kennedy [191], describe V through a partial differential equation (PDE)
with boundary condition (1.31). Suppose we could find a solution V(S,t). In
what sense would we be justified in calling this the price of the derivative
security?

By construction, V satisfies (1.29) and (1.30), and then (1.26) implies
that the (assumed) self-financing representation (1.27) indeed holds with the
trading strategy defined by (1.28). Thus, we may sell the derivative security for
V(S5(0),0) at time 0, use the proceeds to implement this self-financing trading
strategy, and deliver the promised payoff of f(S(T),T) = V(S(T),T) at time
T with no risk. If anyone were willing to pay more than V(5(0),0), we could
sell the derivative and be guaranteed a riskless profit from a net investment of
zero; if anyone were willing to sell the derivative for less than V(5(0),0), we
could buy it, implement the strategy —6(t), and again be ensured a riskless
profit without investment. Thus, V(5(0),0) is the only price that rules out
riskless profits from zero net investment.

From (1.30) we see that the trading strategy that replicates V' holds
oV (S,t)/0S; shares of the ith underlying asset at time ¢. This partial deriv-
ative is the delta of V' with respect to S; and the trading strategy is called
delta hedging.

Inspection of (1.29) and (1.30) reveals that the drift parameters p; in the
asset price dynamics (1.23) do not appear anywhere in the partial differen-
tial equation characterizing the derivative price V. This feature is sometimes
paraphrased through the statement that the price of a derivative does not
depend on the drifts of the underlying assets; it would be more accurate to
say that the effect of the drifts on the price of a derivative is already reflected
in the underlying asset prices S; themselves, because V' depends on the S;
and the S; are clearly affected by the pu;.

The drifts of the underlying asset prices reflect investor attitudes toward
risk. In a world of risk-averse investors, we may expect riskier assets to grow at
a higher rate of return, so larger values of o;; should be associated with larger
values of u;. In a world of risk-neutral investors, all assets should grow at the
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same rate — investors will not demand higher returns for riskier assets. The
fact that the p; do not appear in the equations for the derivative price V may
therefore be interpreted as indicating that we can price the derivative without
needing to know anything about investor attitudes toward risk. This relies
critically on the existence of a self-financing trading strategy that replicates
V: because we have assumed that V can be replicated by trading in the
underlying assets, risk preferences are irrelevant; the price of the derivative is
simply the minimal initial investment required to implement the replicating

strategy.

Black-Scholes Model

As an illustration of the general formulation in (1.29) and (1.30), we consider
the pricing of European options in the Black-Scholes model. The model con-
tains two assets. The first (often interpreted as a stock price) is risky and its
dynamics are represented through the scalar SDE

as(t) _
S(t)

with W° a one-dimensional Brownian motion. The second asset (often called
a savings account or a money market account) is riskless and grows deter-
ministically at a constant, continuously compounded rate r; its dynamics are

given by

dag(t

——@ = rdt.

8(t)
Clearly, 3(t) = 3(0)e™ and we may assume the normalization 8(0) = 1. We
are interested in pricing a derivative security with a payoff of f(S(T")) at time
T. For example, a standard call option pays (S(T) — K)*, with K a constant.

If we were to formulate this model in the notation of (1.23), ¥ would

be a 2 x 2 matrix with only one nonzero entry, o?. Making the appropriate
substitutions, (1.29) thus becomes

pdt+ o dWe(t)

S S 852 =0 (1.32)
Equation (1.30) becomes
6’ ov
V(S B,t) = =— - 1.
(5:6,1) = 555+ 55 (1.33)
These equations and the boundary condition V' (S, 5, T) = f(S) determine the

price V.
This formulation describes the price V' as a function of the three variables

S, B, and t. Because ( depends deterministically on ¢, we are interested in
values of V only at points (S, 5,t) with 3 = e"t. This allows us to eliminate
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one variable and write the price as V(S,t) = V(S,e™,t), as in Hunt and
Kennedy [191]. Making this substitution in (1.32) and (1.33), noting that

V.oV oV

o o5 ot
and simplifying yields
oV OV | 0V o
a1 +r5ﬁ+505——852 rV =0.

This is the Black-Scholes PDE characterizing the price of a European deriv-
ative security. For the special case of the boundary condition V(S,T) =
(S — K)*, the solution is given by V(S,t) = BS(S,0,T — t,r, K), the Black-

Scholes formula in (1.4).

1.2.2 Arbitrage and Risk-Neutral Pricing

The previous section outlined an argument showing how the existence of a
self-financing trading strategy that replicates a derivative security determines
the price of the derivative security. Under assumptions on the dynamics of
the underlying assets, this argument leads to a partial differential equation
characterizing the price of the derivative.

Several features may, however, limit the feasibility of calculating derivative
prices by solving PDEs. If the asset price dynamics are sufficiently complex, a
PDE characterizing the derivative price may be difficult to solve or may even
fail to exist. If the payoff of a derivative security depends on the paths of the
underlying assets and not simply their terminal values, the assumption that
the price can be represented as a function V(S,t) generally fails to hold. If
the number of underlying assets required by the replicating strategy is large
(greater than two or three), numerical solution of the PDE may be impractical.
These are precisely the settings in which Monte Carlo simulation is likely to
be most useful. However, to apply Monte Carlo we must first find a more
convenient representation of derivative prices. In particular, we would like
to represent derivative prices as expectations of random objects that we can
simulate. This section develops such representations.

Arbitrage and Stochastic Discount Factors

We return to the general setting described by the asset price dynamics in
(1.23), for emphasis writing P, for the probability measure under which these
dynamics are specified. (In particular, the process W° in (1.23) is a standard
Brownian motion under P,.) The measure P, is intended to describe objective
(“real-world”) probabilities and the system of SDEs in (1.23) thus describes
the empirical dynamics of asset prices.
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Recall the definition of a self-financing trading strategy 6(t) as given in
(1.25). A self-financing trading strategy 6(t) is called an arbitrage if either of
the following conditions holds for some fixed time t:

(i) 0(0)TS(0) < 0 and P,(8(t)TS(¢) > 0) = 1;
(i) #(0)TS(0) = 0, P,(6(t) T S(t) > 0) = 1, and P,(0(t)T S(t) > 0) > 0.

In (i), 6 turns a negative initial investment into nonnegative final wealth with
probability 1. In (ii), # turns an initial net investment of 0 into nonnegative fi-
nal wealth that is positive with positive probability. Each of these corresponds
to an opportunity to create something from nothing and is incompatible with
economic equilibrium. Precluding arbitrage is a basic consistency requirement
on the dynamics of the underlying assets in (1.23) and on the prices of any
derivative securities that can be synthesized from these assets through self-
financing trading strategies.

Call a process V(t) an attainable price process if V(t) = 6(t)'S(t) for
some self-financing trading strategy 6. Thus, a European derivative security
can be replicated by trading in the underlying assets precisely if its payoff at
expiration 7' coincides with the value V(T') of some attainable price process
at time T. Each of the underlying asset prices S;(t) in (1.23) is attainable
through the trivial strategy that sets §; = 1 and §; = 0 for all j # i.

We now introduce an object whose role may at first seem mysterious but
which is central to asset pricing theory. Call a strictly positive process Z(t) a
stochastic discount factor (or a deflator) if the ratio V' (t)/Z(t) is a martingale
for every attainable price process V(t); i.e., if

V() V(T)
70 =& | 7 (134

whenever ¢t < T'. Here, E, denotes expectation under P, and JF; represents
the history of the Brownian motion W up to time t. We require that Z(¢) be
adapted to F;, meaning that the value of Z(t) is determined by the history of
the Brownian motion up to time t. Rewriting (1.34) as

Z(t)

V(t)=E [V(T)Z(?)l]:tJ (1.35)

explains the term “stochastic discount factor”: the price V' (¢) is the expected
discounted value of the price V(T') if we discount using Z(t)/Z(T). (It is
more customary to refer to 1/Z(¢) rather than Z(t) as the stochastic discount
factor, deflator, or pricing kernel; our use of the terminology is nonstandard
but leads to greater symmetry when we discuss numeraire assets.) Notice
that any constant multiple of a stochastic discount factor is itself a stochastic
discount factor so we may adopt the normalization Z(0) = 1. Equation (1.35)
then specializes to

V(o) =, [%J . (1.36)
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Suppose, for example, that V(¢) represents the price at time t of a call
option on the ¢th underlying asset with strike price K and expiration T". Then
V(T) = (Si(T) — K)*; in particular, V' is a known function of S; at time
T. Equation (1.36) states that the terminal value V(T') determines the initial
value V(0) through stochastic discounting.

We may think of (1.36) as reflecting two ways in which the price V(0)
differs from the expected payoff E,[V(T')]. The first results from “the time
value of money”: the payoff V(T') will not be received until 7', and other
things being equal we assume investors prefer payoffs received sooner rather
than later. The second results from attitudes toward risk. In a world of risk-
averse investors, risky payoffs should be more heavily discounted in valuing
a security; this could not be accomplished through a deterministic discount
factor.

Most importantly for our purposes, the existence of a stochastic discount
factor rules out arbitrage. If @ is a self-financing trading strategy, then the
process 0(t) T S(t) is an attainable price process and the ratio 6(¢) " S(¢)/Z(t)
must be a martingale. In particular, then,

T 0(T)"S(T)
00)7 s =€, | 100,
as in (1.36). Compare this with conditions (i) and (ii) above for an arbitrage,
recalling that Z is nonnegative. If §(T)T.S(T) is almost surely positive, it is
impossible for #(0) T S(0) to be negative; if §(T') " S(T') is positive with positive
probability and almost surely nonnegative, then #(0)T.S(0) = 0 is impossible.
Thus, there can be no arbitrage if the attainable price processes admit a
stochastic discount factor.

It is less obvious that the converse also holds: under a variety of technical
conditions on asset price dynamics and trading strategies, it has been shown
that the absence of arbitrage implies the existence of a stochastic discount
factor (or the closely related concept of an equivalent martingale measure).
We return to this point in Section 1.2.4. The equivalence of no-arbitrage to
the existence of a stochastic discount factor is often termed the Fundamental
Theorem of Asset Pricing, though it is not a single theorem but rather a
body of results that apply under various sets of conditions. An essential early
reference is Harrison and Kreps [170]; for further background and results, see
Duffie [98] and Musiela and Rutkowski [275].

Risk-Neutral Pricing

Let us suppose that among the d assets described in (1.23) there is one that is
risk-free in the sense that its coeflicients o;; are identically zero. Let us further
assume that its drift, which may be interpreted as a riskless interest rate, is a
constant r. As in our discussion of the Black-Scholes model in Section 1.2.1,
we denote this asset by 5(¢) and refer to it as the money market account. Its



28 1 Foundations

dynamics are given by the equation d3(t)/B(t) = rdt, with solution 5(t) =
B3(0) exp(rt); we fix 5(0) at 1.

Clearly, ((t) is an attainable price process because it corresponds to the
trading strategy that makes an initial investment of 1 in the money market
account and continuously reinvests all gains in this single asset. Accordingly,
if the market admits a stochastic discount factor Z(t), the process 5(t)/Z(t)
is a martingale. This martingale is positive because both 3(¢t) and Z(t) are

positive, and it has an initial value of 3(0)/Z(0) = 1.
Any positive martingale with an initial value 1 defines a change of prob-

ability measure. For each fixed interval [0, 7], the process 3(t)/Z(t) defines a
new measure Pg through the Radon-Nikodym derivative (or likelihood ratio

process)
dPg\  B(t)
(dR))t__Z(t)’ 0<t<T. (1.37)

More explicitly, this means (cf. Appendix B.4) that for any event A € F;,

Pg(A) =E, {1,4 ' <§I;f>t:' =E, [1A : g—((tz))-}

where 14 denotes the indicator of the event A. Similarly, expectation under
the new measure is defined by

Es[X]=E, [X%} (1.38)

for any nonnegative X measurable with respect to F;. The measure FPg is
called the risk-neutral measure; it is equivalent to P, in the sense of measures,
meaning that Pg(A) = 0 if and only if P,(A) = 0. (Equivalent probability
measures agree about which events are impossible.) The risk-neutral measure
is a particular choice of equivalent martingale measure.

Consider, again, the pricing equation (1.36). In light of (1.38), we may
rewrite it as V()

— _ —rT
V(0) =Ep [—B—(T)—J =e "Eg[V(T)]. . (1.39)

This simple transformation is the cornerstone of derivative pricing by Monte
Carlo simulation. Equation (1.39) expresses the current price V(0) as the
expected present value of the terminal value V(T") discounted at the risk-free
rate r rather than through the stochastic discount factor Z. The expectation in
(1.39) is taken with respect to Pg rather than P,, so estimating the expectation
by Monte Carlo entails simulating under Pg rather than P,. These points are
crucial to the applicability of Monte Carlo because

o the dynamics of Z(t) are generally unknown and difficult to model (since
they embody time and risk preferences of investors);

o the dynamics of the underlying asset prices are more easily described under
the risk-neutral measure than under the objective probability measure.
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The second point requires further explanation. Equation (1.39) generalizes

B()
V(t) =Eg [V(T)B(T) |.7—'t} , t<T, (1.40)
with V(t) an attainable price process. In particular, then, since each S;(t) is
an attainable price process, each ratio S;(t)/B(t) is a martingale under Pg.
Specifying asset price dynamics under the risk-neutral measure thus entails
specifying dynamics that make the ratios S;(t)/3(t) martingales. If the dy-
namics of the asset prices in (1.23) could be expressed as

to

ds;(t)

S = oS0, 07 AW (o), (1.41)

with W a standard k-dimensional Brownian motion under Pg, then

(5) = (G ) esnmawe,

so S;(t)/B(t) would indeed be a martingale under Pg. Specifying a model of the
form (1.41) is simpler than specifying the original equation (1.23) because all
drifts in (1.41) are set equal to the risk-free rate r: the potentially complicated
drifts in (1.23) are irrelevant to the asset price dynamics under the risk-neutral
measure. Indeed, this explains the name “risk-neutral.” In a world of risk-
neutral investors, the rate of return on risky assets would be the same as the

risk-free rate.
Comparison of (1.41) and (1.23) indicates that the two are consistent if

AW (t) = dW°(t) + (1) dt
for some v satisfying u; =r+ov, i =1,...,d, (1.42)

because making this substitution in (1.41) yields

ds;(t)
S (t)

= rdt+o;(S(t),t)T [dW°(t) + v(t) di]

= (r 4 03(S(t),t) Tv(t)) dt + 0;(S(t),t) T dW(t)
= wi(S(t),t) dt + o;(S(t),t) " dW°(t),

as in (1.23). The condition in (1.42) states that the objective and risk-neutral
measures are related through a change of drift in the driving Brownian motion.
It follows from the Girsanov Theorem (see Appendix B) that any measure
equivalent to P, must be related to P, in this way. In particular, the diffusion
terms o35 in (1.41) and (1.23) must be the same. This is important because it
ensures that the coefficients required to describe the dynamics of asset prices
under the risk-neutral measure Pg can be estimated from data observed under

the real-world measure P,.
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We now briefly summarize the pricing of derivative securities through
the risk-neutral measure with Monte Carlo simulation. Consider a deriva-
tive security with a payoff at time T specified through a function f of the
prices of the underlying assets, as in the case of a standard call or put. To
price the derivative, we model the dynamics of the underlying assets under
the risk-neutral measure, ensuring that discounted asset prices are martin-
gales, typically through choice of the drift. The price of the derivative is then
given by Egle™"T f(S(T))]. To evaluate this expectation, we simulate paths
of the underlying assets over the time interval [0, T, simulating according to
their risk-neutral dynamics. On each path we calculate the discounted pay-
off e="T f(S(T)); the average across paths is our estimate of the derivative’s
price. Figure 1.4 gives a succinct statement of these steps, but it should be
clear that especially the first step in the figure is an oversimplification.

Monte Carlo Recipe for Cookbook Pricing

o replace drifts u; in (1.23) with risk-free interest rate and simulate paths;
o calculate payoff of derivative security on each path;

o discount payoffs at the risk-free rate;

o calculate average over paths.

Fig. 1.4. An overly simplified summary of risk-neutral pricing by Monte Carlo.

Black-Scholes Model

To illustrate these ideas, consider the pricing of a call option on a stock.
Suppose the real-world dynamics of the stock are given by

ds(t) -
S@)
with W° a standard one-dimensional Brownian motion under P, and o a

constant. Each unit invested in the money market account at time 0 grows to
a value of 5(t) = " at time ¢t. Under the risk-neutral measure Py, the stock

price dynamics are given by
ds(t)

with W a standard Brownian motion under Pg. This implies that

W(S(t),t) dt + o dW°(t),

S(T) — S(O)e(r—%o’2)T+0W(T)_

If the call option has strike K and expiration 7', its price at time 0 is given by
Egle T (S(T)— K)*]. Because W (T') is normally distributed, this expectation
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can be evaluated explicitly and results in the Black-Scholes formula (1.4).
In particular, pricing through the risk-neutral measure produces the same
result as pricing through the PDE formulation in Section 1.2.1, as it must
since in both cases the price is determined by the absence of arbitrage. This
also explains why we are justified in equating the expected discounted payoff
calculated in Section 1.1.2 with the price of the option.

Dividends

Thus far, we have implicitly assumed that the underlying assets .S; do not pay
dividends. This is implicit, for example, in our discussion of the self-financing
trading strategies. In the definition (1.25) of a self-financing strategy 6, we
interpret 6;(u)dS;(u) as the trading gains from the ith asset over the time
increment du. This, however, reflects only the capital gains resulting from
the change in price in the ith asset. If each share pays dividends at rate
dD;(u) over du, then the portfolio gains would also include terms of the form

In the presence of dividends, a simple strategy of holding a single share
of a single asset is no longer self-financing, because it entails withdrawal of
the dividends from the portfolio. In contrast, a strategy that continuously
reinvests all dividends from an asset back into that asset is self-financing in
the sense that it involves neither the withdrawal nor addition of funds from the
portfolio. When dividends are reinvested, the number of shares held changes
over time.

These observations suggest that we may accommodate dividends by re-
defining the original assets to include the reinvested dividends. Let S;(t) be
the ith asset price process with dividends reinvested, defined through the

requirement

d:S‘i(t) _ dS;(t) + dD;(t) (1.43)
Si (t) S’L (t)
The expression on the right is the instantaneous return on the ith original
asset, including both capital gains and dividends; the expression on the left
is the instantaneous return on the ith new asset in which all dividends are
reinvested. For S; to support this interpretation, the two sides must be equal.
The new assets S; pay no dividends so we may apply the ideas developed
above in the absence of dividends to these assets. In particular, we may rein-
terpret the asset price dynamics in (1.23) as applying to the S; rather than
to the original S;. One consequence of this is that the S; will have continuous
paths, so any discontinuities in the cumulative dividend process D; must be
offset by the original asset price S;. For example, a discrete dividend corre-
sponds to a positive jump in D; and this must be accompanied by an offsetting
negative jump in S;.
For purposes of derivative pricing, the most important point is that the
martingale property under the risk-neutral measure applies to S;(t)/5(¢)
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rather than S;(¢)/B(t). This affects how we model the dynamics of the S;
under Pg. Consider, for example, an asset paying a continuous dividend yield
at rate J, meaning that dD;(t) = 0S;(t) dt. For e "tS;(t) to be a martingale,
we require that the dt coefficient in dS;(t)/S;(t) be r. Equating dt terms on
the two sides of (1.43), we conclude that the coefficient on dt in the equation
for dS;(t)/S;(t) must be r — §. Thus, in modeling asset prices under the risk-
neutral measure, the effect of a continuous dividend yield is to change the

drift. The first step in Figure 1.4 is modified accordingly.
As a specific illustration, consider a version of the Black-Scholes model in

which the underlying asset has dividend yield §. The risk-neutral dynamics of
the asset are given by
dS(t)

50 = (r—96)dt +odW(t)

with solution )
S(t) — S(O)e(r—é——gaz)t-i-aW(t).

The price of a call option with strike K and expiration T is given by the
expectation Egle "7 (S(T) — K)™T], which evaluates to
log(S(0)/K — 54 )T
T S(0)0(d) — e TKB(d — ovT), d= ESOE)F(r =0+ 30T
ovT
(1.44)

with ® the cumulative normal distribution.

1.2.3 Change of Numeraire

The risk-neutral pricing formulas (1.39) and (1.40) continue to apply if the
constant risk-free rate r is replaced with a time-varying rate r(¢), in which
case the money market account becomes

B(t) = exp ( /0 ) du>

and the pricing formula becomes

T
V() = Es [exp (— /t r(u) du> V(T)]J’L‘t} .

The risk-neutral dynamics of the asset prices now take the form
ds;(t)
Si(t)

with W a standard k-dimensional Brownian motion under Pg. Subject only
to technical conditions, these formulas remain valid if the short rate 7(t) is a

stochastic process.

r(t) dt + 0;(S(t),t) " dW (),
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Indeed, our choice of 3(t) as the asset through which to define a new
probability measure in (1.38) was somewhat arbitrary. This choice resulted in
pricing formulas with the appealing feature that they discount payoffs at the
risk-free rate; it also resulted in a simple interpretation of the measure Pg as
risk-neutral in the sense that all assets grow at the risk-free rate under this
measure. Nevertheless, we could just as well have chosen a different asset as
numeraire, meaning the asset relative to which all others are valued. As we
explain next, all choices of numeraire result in analogous pricing formulas and
the flexibility to change the numeraire is a useful modeling and computational
tool.

Although we could start from the objective measure P, as we did in Sec-
tion 1.2.2, it may be simpler to start from the risk-neutral measure Pg, espe-
cially if we assume a constant risk-free rate r. Choosing asset Sq as numeraire
means defining a new probability measure Pg, through the likelihood ratio
process (Radon-Nikodym derivative)

< dPsd) _ Sa(t) / Sa(0)
dPs ), B@)/ B(0)
Recall that S4(t)/5(t) is a positive martingale under Pg; dividing it by its ini-

tial value produces a unit-mean positive martingale and thus defines a change
of measure. Expectation under Ps, is given by

Es,[X] = Ep [X (‘gf;)t] — Ep [X%%J

for nonnegative X € F;. The pricing formula (1.39) thus implies (recalling
that 5(0) = 1)

V(O) = Eg [%J = Sd(O)ESd [%:’ . (1.45)
Equation (1.40) similarly implies
V(t) = Sa(t)Es, {%l}}} . (1.46)

Thus, to price under Ps,, we discount the terminal value V(7T') by dividing
by the terminal value of the numeraire and multiplying by the current value

of the numeraire.
Some examples should help illustrate the potential utility of this trans-

formation. Consider, first, an option to exchange one asset for another, with
payoff (S1(T") — S2(T))™ at time T'. The price of the option is given by

e "TER[(S1(T) — S2(T)) ™)

but also by
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(51(T) = S5(T))*
S2(T)

The expression on the right looks like the price of a standard call option on
the ratio of the two assets with a strike of 1; it reveals that the price of the
exchange option is sensitive to the dynamics of the ratio but not otherwise to
the dynamics of the individual assets. In particular, if the ratio has a constant
volatility (a feature invariant under equivalent changes of measure), then the
option can be valued through a variant of the Black-Scholes formula due to
Margrabe [247].

Consider, next, a call option on a foreign stock whose payoff will be con-
verted to the domestic currency at the exchange rate prevailing at the expi-
ration date 7T'. Letting S; denote the stock price in the foreign currency and
letting S2 denote the exchange rate (expressed as number of domestic units per
foreign unit), the payoff (in domestic currency) becomes S2(T)(S1(T) — K)*
with price

S2(0)Es, = 55(0)Es, [([S1(T)/S2(T)] - 1)F].

e "M Eg[S2(T)(S1(T) — K)*].
Each unit of foreign currency earns interest at a risk-free rate r and this acts
like a continuous dividend yield. Choosing S2(t) = e"#%S5(¢) as numeraire, we
may express the price as

e_TfTSg(O)Eg2 [(S1(T) — K)*],

noting that S3(0) = S3(0). This expression involves the current exchange rate
S2(0) but not the unknown future rate Sa (7).

The flexibility to change numeraire can be particularly valuable in a model
with stochastic interest rates, so our last example applies to this setting.
Consider an interest rate derivative with a payoff of V(T') at time T'. Using
the risk-neutral measure, we can express its price as

V(0) =Eg {exp (—/0 r(u) du) V(T)

The forward measure for maturity Tr is the measure associated with taking
as numeraire a zero-coupon bond maturing at T'» with a face value of 1. We
denote the time-t value of the bond by B(¢,Tr) (so B(Tr,Tr) = 1) and the
associated measure by Pr,. Using this measure, we can write the price as

V(T) }
B(T,Tr)] "

V(0) = B0, Tr)Ex, [

With the specific choice Tr = T', we get
V(0) = B(0, T)E7[V(T))].

Observe that in this expression the discount factor (the initial bond price)
is deterministic even though the interest rate r(t) may be stochastic. This
feature often leads to useful simplifications in pricing interest rate derivatives.
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To use any of the price representations above derived through a change
of numeraire, we need to know the dynamics of the underlying asset prices
under the corresponding probability measure. For example, if in (1.45) the
terminal value V(T') is a function of the values S;(T") of the underlying assets,
then to estimate the rightmost expectation through Monte Carlo we need to
be able to simulate paths of the underlying assets according to their dynamics
under Ps,. We encountered the same issue in Section 1.2.2 in pricing under
the risk-neutral measure P3. There we noted that changing from the objective
measure P, to the risk-neutral measure had the effect of changing the drifts
of all prices to the risk-free rate; an analogous change of drift applies more
generally in changing numeraire.

Based on the dynamics in (1.41), we may write the asset price Sg(t) as

Su(t) = Sa(0) exp ( /0 rw) — Loa()?] dut /0

with W a standard Brownian motion under Ps. Here, we have implicitly
generalized the setting in (1.41) to allow the short rate to be time-varying
and even stochastic; we have also abbreviated 04(S(u), ) as o4(u) to lighten
notation. From this and the definition of Ps,, we therefore have

(%)t — exp </Ot ~Loa(w)|? du + /Ot ad(u)wa(u)> -

Through the Girsanov Theorem (see Appendix B), we find that changing
measure from Pg to Pg, has the effect of adding a drift to W. More precisely,
the process W¢ defined by

dW(t) = —oq(t) dt + dW (t) (1.48)

t

ad(u)TdW(u)) , (1.47)

is a standard Brownian motion under Pg,. Making this substitution in (1.41),
we find that
dSi(t)
Si(t)

= r(t)dt +os(t)" dW(t)
r(t)dt + oi(t) T [dWE(t) + o4(t) dt]
[r(t) + o3(t) Toa(t)] dt + oi(t) T dW(t)
[r(t) 4+ S (t)] dt 4 o5 (t) T dW(t) (1.49)

with $;4(t) = 04(t) T 04(t). Thus, when we change measures from P to Ps,,
an additional term appears in the drift of S; reflecting the instantaneous

covariance between S; and the numeraire asset Sy.

The distinguishing feature of this change of measure is that it makes the
ratios S;(t)/Sq(t) martingales. This is already implicit in (1.46) because each
S;(t) is an attainable price process and thus a candidate for V(). To make
the martingale property more explicit, we may use (1.47) for S; and Sy and
then simplify using (1.48) to write the ratio as
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Si(t)
Sa(t)

%exp (_% [ o) = catplPdu+ [ foutw) -cm(u)JTde(U)) -

This reveals that S;(¢)/S4(t) is an exponential martingale (see (B.21) in Ap-
pendix B) under Ps, because W is a standard Brownian motion under that
measure. This also provides a convenient way of thinking about asset price
dynamics under the measure Pg,: under this measure, the drifts of the asset

prices make the ratios S;(¢)/S4(t) martingales.

1.2.4 The Market Price of Risk

In this section we conclude our overview of the principles underlying deriv-
atives pricing by returning to the idea of a stochastic discount factor intro-
duced in Section 1.2.1 and further developing its connections with the absence
of arbitrage, market completeness, and dynamic hedging. Though not stricly
necessary for the application of Monte Carlo (which is based on the pricing
relations (1.39) and (1.45)), these ideas are important parts of the underlying
theory.

We proceed by considering the dynamics of a stochastic discount factor
Z(t) as defined in Section 1.2.1. Just as the likelihood ratio process (dPs/dP,):
defined in (1.37) is a positive martingale under P,, its reciprocal (dP,/dPs):
is a positive martingale under Pg; this is a general change of measure identity
and is not specific to this context. From (1.37) we find that (dP,/dPs); =
Z(t)/B(t) and thus that e " Z(t) is a positive martingale under Ps. (For
simplicity, we assume the short rate r is constant.) This suggests that Z(t)
should evolve according to an SDE of the form

%—Zé’;l =rdt+uv(t)" dW(t), (1.50)
for some process v, with W continuing to be a standard Brownian motion
under P3. Indeed, under appropriate conditions, the martingale representation
theorem (Appendix B) ensures that the dynamics of Z must have this form.

Equation (1.50) imposes a restriction on the dynamics of the underlying
assets S; under the objective probability measure P,. The dynamics of the S;
under the risk-neutral measure are given in (1.41). Switching from Ps back
to P, is formally equivalent to applying a change of numeraire from g(t) to
Z(t). The process Z(t) may not correspond to an asset price, but this has no
effect on the mechanics of the change of measure.

We saw in the previous section that switching from Pz to Ps, had the
effect of adding a drift to W; more precisely, the process W¢ defined in (1.48)
becomes a standard Brownian motion under Pg,. We saw in (1.49) that this
has the effect of adding a term to the drifts of the asset prices as viewed under
Pgs,. By following exactly the same steps, we recognize that the likelihood ratio
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<3§;>t = "Z(t) = exp ( /0 t —3llv(@)|? du + /0 t v(u)’ dW(u)>

implies (through the Girsanov Theorem) that
dW?® = —u(t)dt + dW (t)

defines a standard Brownian motion under P, and that the asset price dy-
namics can be expressed as

dsS;(t)

S0 rdt + o (t) T dW (t)

=rdt+o;(t)" [dW°(t) + v(t) di]
=[r+v(t) oi®)]dt +os(t) T dWO(t). (1.51)

Comparing this with our original specification in (1.23), we find that the
existence of a stochastic discount factor implies that the drifts must have the

form
pi(t) =r+vt) oi(t). (1.52)

This representation suggests an interpretation of v as a risk premium. The
components of v determine the amount by which the drift of a risky asset will
exceed the risk-free rate r. In the case of a scalar W° and v, from the equation
Wi = r +vo; we see that the excess return u; — r generated by a risky asset is
proportional to its volatility ¢;, with v the constant of proportionality. In this
sense, v is the market price of risk; it measures the excess return demanded by
investors per unit of risk. In the vector case, each component v; may similarly
be interpreted as the market price of risk associated with the jth risk factor
— the jth component of W°. It should also be clear that had we assumed
the drifts in (1.23) to have the form in (1.52) (for some v) from the outset,
we could have defined a stochastic discount factor Z from v and (1.50). Thus,
the existence of a stochastic discount factor and a market price of risk vector
are essentially equivalent.

An alternative line of argument (which we mention but do not develop)
derives the market price of risk in a more fundamental way as the aggregate
effect of the individual investment and consumption decisions of agents in an
economy. Throughout this section, we have taken the dynamics of the asset
prices to be specified exogenously. In a more general formulation, asset prices
result from balancing supply and demand among agents who trade to optimize
their lifetime investment and consumption; the market price of risk is then
determined through the risk aversion of the agents as reflected in their utility
for wealth and consumption. Thus, in a general equilibrium model of this type,
the market price of risk emerges as a consequence of investor preferences and
not just as a constraint to preclude arbitrage. For more on this approach, see

Chapter 10 of Duffie [98].
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Incomplete Markets

The economic foundation of the market price of risk and the closely related
concept of a stochastic discount factor is particularly important in an in-
complete market. A complete market is one in which all risks that affect asset
prices can be perfectly hedged. Any new asset (such as an option on one of the
existing assets) introduced into a complete market is redundant in the sense
that it can be replicated by trading in the other assets. Derivative prices are
thus determined by the absence of arbitrage. In an incomplete market, some
risks cannot be perfectly hedged and it is therefore possible to introduce gen-
uinely new assets that cannot be replicated by trading in existing assets. In
this case, the absence of arbitrage constrains the price of a derivative security
but may not determine it uniquely.

For example, market incompleteness may arise because there are fewer
traded assets than driving Brownian motions. In this case, there may be infi-
nitely many solutions to (1.52), and thus infinitely many choices of stochastic
discount factor Z(t) for which S;(¢)/Z(t) will be martingales, i = 1,...,d.
Similarly, there are infinitely many possible risk-neutral measures, meaning
measures equivalent to the original one under which e~"%S;(¢) are martin-
gales. As a consequence of these indeterminacies, the price of a new security
introduced into the market may not be uniquely determined by the prices of
existing assets. The machinery of derivatives pricing is largely inapplicable in
an incomplete market.

Market incompleteness can arise in various ways; a few examples should
serve to illustrate this. Some assets are not traded, making them inaccessible
for hedging. How would one eliminate the risk from an option on a privately
held business, a parcel of land, or a work of art? Some sources of risk may not
correspond to asset prices at all — think of hedging a weather derivative with
a payoff tied to rainfall or temperature. Jumps in asset prices and stochastic
volatility can often render a market model incomplete by introducing risks
that cannot be eliminated through trading in other assets. In such cases,
pricing derivatives usually entails making some assumptions, sometimes only
implicitly, about the market price for bearing unhedgeable risks.
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Generating Random Numbers and Random
Variables

This chapter deals with algorithms at the core of Monte Carlo simulation:
methods for generating uniformly distributed random variables and methods
for transforming those variables to other distributions. These algorithms may
be executed millions of times in the course of a simulation, making efficient
implementation especially important.

Uniform and nonuniform random variate generation have each spawned a
vast research literature; we do not attempt a comprehensive account of either
topic. The books by Bratley, Fox, and Schrage [59], Devroye [95], Fishman
[121], Gentle [136], Niederreiter [281], and others provide more extensive cov-
erage of these areas. We treat the case of the normal distribution in more
detail than is customary in books on simulation because of its importance in

financial engineering.

2.1 Random Number Generation

2.1.1 General Considerations

At the core of nearly all Monte Carlo simulations is a sequence of apparently
random numbers used to drive the simulation. In analyzing Monte Carlo meth-
ods, we will treat this driving sequence as though it were genuinely random.
This is a convenient fiction that allows us to apply tools from probability and
statistics to analyze Monte Carlo computations — convenient because modern
pseudorandom number generators are sufficiently good at mimicking genuine
randomness to make this analysis informative. Nevertheless, we should be
aware that the apparently random numbers at the heart of a simulation are
in fact produced by completely deterministic algorithms.

The objectives of this section are to discuss some of the primary consid-
erations in the design of random number generators, to present a few simple
generators that are good enough for practical use, and to discuss their imple-
mentation. We also provide references to a few more sophisticated (though
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not necessarily better) methods. Elegant theory has been applied to the prob-
lem of random number generation, but it is mostly unrelated to the tools we
use elsewhere in the book (with the exception of Chapter 5), so we do not
treat the topic in depth. The books of Bratley, Fox, and Schrage [59], Fishman
[121], Gentle [136], Knuth [212], and Niederreiter [281], and the survey article
of L’Ecuyer [223] provide detailed treatment and extensive references to the
literature.

Before discussing sequences that appear to be random but are not, we
should specify what we mean by a generator of genuinely random numbers:
we mean a mechanism for producing a sequence of random variables Uy, Us, . . .

with the property that

(i) each Uj; is uniformly distributed between 0 and 1;
(ii) the U; are mutually independent.

Property (i) is a convenient but arbitrary normalization; values uniformly
distributed between 0 and 1/2 would be just as useful, as would values from
nearly any other simple distribution. Uniform random variables on the unit
interval can be transformed into samples from essentially any other distribu-
tion using, for example, methods described in Section 2.2 and 2.3. Property
(ii) is the more important one. It implies, in particular, that all pairs of values
should be uncorrelated and, more generally, that the value of U; should not
be predictable from Usy,...,U;_;.

A random number generator (often called a pseudorandom number gener-
ator to emphasize that it only mimics randomness) produces a finite sequence
of numbers w1, us, ..., ux in the unit interval. Typically, the values generated
depend in part on input parameters specified by the user. Any such sequence
constitutes a set of possible outcomes of independent uniforms Uy, ..., Uk.
A good random number generator is one that satisfies the admittedly vague
requirement that small (relative to K') segments of the sequence ui, ..., ux
should be difficult to distinguish from a realization of independent uniforms.

An effective generator therefore produces values that appear consistent
with properties (i) and (ii) above. If the number of values K is large, the
fraction of values falling in any subinterval of the unit interval should be
approximately the length of the subinterval — this is uniformity. Independence
suggests that there should be no discernible pattern among the values. To put
this only slightly more precisely, statistical tests for independence should not
easily reject segments of the sequence uq,...,uk.

We can make these and other considerations more concrete through ex-
amples. A linear congruential generator is a recurrence of the following form:

Zi+1 = ax; mod m (2.1)

Uiyl = LL'H_l/m (22)

Here, the multiplier a and the modulus m are integer constants that determine
the values generated, given an initial value (seed) zo. The seed is an integer
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between 1 and m — 1 and is ordinarily specified by the user. The operation
y mod m returns the remainder of y (an integer) after division by m. In other

words,
y mod m =y — |y/m|m, (2.3)

where |z | denotes the greatest integer less than or equal to z. For example, 7
mod 5 is 2; 10 mod 5 is 0; 43 mod 5 is 3; and 3 mod 5 is 3. Because the result
of the mod m operation is always an integer between 0 and m — 1, the output
values u; produced by (2.1)—(2.2) are always between 0 and (m — 1)/m; in
particular, they lie in the unit interval. '

Because of their simplicity and potential for effectiveness, linear congruen-
tial generators are among the most widely used in practice. We discuss them
in detail in Section 2.1.2. At this point, we use them to illustrate some gen-
eral considerations in the design of random number generators. Notice that
the linear congruential generator has the form

Tiv1 = f(xi), wit1 = g(Tiq1), (2.4)

for some deterministic functions f and g. If we allow the x; to be vectors,
then virtually all random number generators fit this general form.

Consider the sequence of x; produced in (2.1) by a linear congruential
generator with a = 6 and m = 11. (In practice, m should be large; these
values are solely for illustration.) Starting from zp = 1, the next value is
6 mod 11 = 6, followed by (6 - 6) mod 11 = 3. The seed z¢ = 1 thus produces

the sequence
1,6,3,7, 9,10, 5, 8,4, 2, 1,6, ....

Once a value is repeated, the entire sequence repeats. Indeed, since a computer
can represent only a finite number of values, any recurrence of the form in
(2.4) will eventually return to a previous x; and then repeat all values that
followed that x;. Observe that in this example all ten distinct integers between
1 and m — 1 appeared in the sequence before a value was repeated. (If we were
to start the sequence at 0, all subsequent values would be zero, so we do not
allow zg = 0.) If we keep m = 11 but take a = 3, the seed z¢ = 1 yields

1,3,9 5 4, 1, ...,

whereas z¢ = 2 yields
2,6, 7,10, 8, 2, ....

Thus, in this case, the possible values {1, 2,...,10} split into two cycles. This
means that regardless of what xg is chosen, a multiplier of a = 3 produces just
five distinct numbers before it repeats, whereas a multiplier of a = 6 produces
all ten distinct values before repeating. A linear congruential generator that
produces all m — 1 distinct values before repeating is said to have full period.
In practice we would like to be able to generate (at least) tens of millions
of distinct values before repeating any. Simply choosing m to be very large
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does not ensure this property because of the possibility that a poor choice of
parameters a and m may result in short cycles among the values {1,2,...,m—
1}.

With these examples in mind, we discuss the following general considera-
tions in the construction of a random number generator:

o Period length. As already noted, any random number generator of the form
(2.4) will eventually repeat itself. Other things being equal, we prefer gen-
erators with longer periods — i.e., generators that produce more distinct
values before repeating. The longest possible period for a linear congruen-
tial generator with modulus m is m — 1. For a linear congruential generator
with full period, the gaps between the values u; produced are of width
1/m; hence, the larger m is the more closely the values can approximate a
uniform distribution.

o Reproducibility. One might be tempted to look to physical devices — a
computer’s clock or a specially designed electronic mechanism — to generate
true randomness. One drawback of a genuinely random sequence is that it
cannot be reproduced easily. It is often important to be able to rerun a
simulation using exactly the same inputs used previously, or to use the same
inputs in two or more different simulations. This is easily accomplished with
a linear congruential generator or any other procedure of the general form
(2.4) simply by using the same seed xg.

o Speed. Because a random number generator may be called thousands or even
millions of times in a single simulation, it must be fast. It is hard to imagine
an algorithm simpler or faster than the linear congruential generator; most
of the more involved methods to be touched on in Section 2.1.5 remain fast
in absolute terms, though they involve more operations per value generated.
The early literature on random number generation includes strategies for
saving computing time through convenient parameter choices. For example,
by choosing m to be a power of 2, the mod m operation can be implemented
by shifting bits, without explicit division. Given current computing speeds,
this incremental speed-up does not seem to justify choosing a generator
with poor distributional properties.

o Portability. An algorithm for generating random numbers should produce
the same sequence of values on all computing platforms. The quest for
speed and long periods occasionally leads to implementations that depend
on machine-specific representations of numbers. Some implementations of
linear congruential generators rely on the way overflow is handled on par-
ticular computers. We return to this issue in the next section.

o Randomness. The most important consideration is the hardest to define or
ensure. There are two broad aspects to constructing generators with appar-
ent randomness: theoretical properties and statistical tests. Much is known
about the structure of points produced by the most widely used generators
and this helps narrow the search for good parameter values. Generators with
good theoretical properties can then be subjected to statistical scrutiny to



2.1 Random Number Generation 43

test for evident departures from randomness. Fortunately, the field is suffi-
ciently well developed that for most applications one can comfortably use
one of many generators in the literature that have survived rigorous tests

and the test of time.

2.1.2 Linear Congruential Generators

The general linear congruential generator, first proposed by Lehmer [229)],
takes the form

Tit1 = (az; + ¢) mod m

Ui41 = xi+1/m

This is sometimes called a mizred linear congruential generator and the mul-
tiplicative case in the previous section a pure linear congruential generator.
Like a and m, the parameter ¢ must be an integer.

Quite a bit is known about the structure of the sets of values {u,...,ux}
produced by this type of algorithm. In particular, simple conditions are avail-
able ensuring that the generator has full period — i.e., that the number of
distinct values generated from any seed xg is m — 1. If ¢ # 0, the conditions
are (Knuth [212, p.17])

(a) ¢ and m are relatively prime (their only common divisor is 1);
(b) every prime number that divides m divides a — 1;
(c) a—1 is divisible by 4 if m is.

As a simple consequence, we observe that if m is a power of 2, the generator
has full period if ¢ is odd and a = 4n + 1 for some integer n.
If ¢ = 0 and m is prime, full period is achieved from any zy # 0 if

o a™~! — 1 is a multiple of m;
o @’ — 1 is not a multiple of m for j =1,...,m — 2.

A number a satisfying these two properties is called a primitive root of m.
Observe that when ¢ = 0 the sequence {z;} becomes

To, aZo, a’zg, a o, ... (mod m).

The sequence first returns to zg at the smallest & for which a*zo mod m = zg.
This is the smallest k for which a® mod m = 1; i.e., the smallest k for which
a® — 1 is a multiple of m. So, the definition of a primitive root corresponds
precisely to the requirement that the sequence not return to zg until a™!zq.
It can also be verified that when a is a primitive root of m, all x; are nonzero if
2o is nonzero. This is important because if some z; were 0, then all subsequent
values generated would be too.

Marsaglia [249] demonstrates that little additional generality is achieved
by taking ¢ # 0. Since a generator with a nonzero c is slower than one without,
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it is now customary to take ¢ = 0. In this case, it is convenient to take m to
be prime, since it is then possible to construct full-period generators simply
by finding primitive roots of m.

Table 2.1 displays moduli and multipliers for seven linear congruential
generators that have been recommended in the literature. In each case, the
modulus m is a large prime not exceeding 23! — 1. This is the largest inte-
ger that can be represented in a 32-bit word (assuming one bit is used to
determine the sign) and it also happens to be a prime — a Mersenne prime.
Each multiplier a in the table is a primitive root of the corresponding mod-
ulus, so all generators in the table have full period. The first generator listed
was dubbed the “minimal standard” by Park and Miller [294]; though widely
used, it appears to be inferior to the others listed. Among the remaining gen-
erators, those identified by Fishman and Moore [123] appear to have slightly
better uniformity while those from L’Ecuyer [222] offer a computational ad-
vantage resulting from having comparatively smaller values of a (in particular,
a < y/m). We discuss this computational advantage and the basis on which
these generators have been compared next.

Generators with far longer periods are discussed in Section 2.1.5. L’Ecuyer,
Simard, and Wegenkittl [228] reject all “small” generators like those in Ta-
ble 2.1 as obsolete. Section 2.1.5 explains how they remain useful as compo-
nents of combined generators.

Modulus Am Multiplier a Reference

231 1 16807 Lewis, Goodman, and Miller [234],
(= 2147483647) Park and Miller [294]

39373 L’Ecuyer [222]

742938285 Fishman and Moore [123]

950706376 Fishman and Moore [123]

1226874159 Fishman and Moore [123]
2147483399 40692 L’Ecuyer [222]
2147483563 40014 L’Ecuyer [222]

Table 2.1. Parameters for linear congruential generators. The generator in the first
row appears to be inferior to the rest.

2.1.3 Implementation of Linear Congruential Generators

Besides speed, avoiding overflow is the main consideration in implementing a
linear congruential generator. If the product ax; can be represented exactly
for every x; in the sequence, then no overflow occurs. If, for example, every
integer from 0 to a(m — 1) can be represented exactly in double precision,
then implementation in double precision is straightforward.

If the multiplier a is large, as in three of the generators of Table 2.1, even
double precision may not suffice for an exact representation of every product
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az;. In this case, the generator may be implemented by first representing the
multiplier as a = 2%a; + ag, with a1, a2 < 2%, and then using

az; mod m = (a1(2%z; mod m) + azx; mod m) mod m.

For example, with o = 16 and m = 23! — 1 this implementation never requires
an intermediate value as large as 247, even though ax; could be close to 262.

Integer arithmetic is sometimes faster than floating point arithmetic, in
which case an implementation in integer variables is more appealing than
one using double precision. Moreover, if variables y and m are represented as
integers in a computer, the integer operation y/m produces |y/m], so y mod m
can be implemented as y — (y/m) *m (see (2.3)). However, working in integer
variables restricts the magnitude of numbers that can be represented far more
than does working in double precision. To avoid overflow, a straightforward
implementation of a linear congruential generator in integer variables must
be restricted to an unacceptably small modulus — e.g., 2% — 1. If a is not
too large (say a < +/m, as in the first two and last two entries of Table 2.1),
Bratley, Fox, and Schrage [59] show that a faster implementation is possible
using only integer arithmetic, while still avoiding overflow.

Their method is based on the following observations. Let

qg=|m/al, r=mmoda

so that the modulus can be represented as m = ag + r. The calculation to be
carried out by the generator is

ax;
ax; mod m = ax; — m
m

az; — [&Jm:axi— [%J (ag +1)

e EI DR

= a(z; mod q) — [%J r

Making this substitution in (2.5) yields

az; mod m = a(z; mod q) — [”%J r+ qx—J - [“;J) m. (2.6)

q

To prevent overflow, we need to avoid calculation of the potentially large term
ax; on the right side of (2.6). In fact, we can entirely avoid calculation of
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(15)-15) &

if we can show that this expression takes only the values 0 and 1. For in this
case, the last term in (2.6) is either 0 or m, and since the final calculation
must result in a value in {0, 1,...,m — 1}, the last term in (2.6) is m precisely

when

a(z; mod q) — [%J r < 0.

Thus, the last term in (2.6) adds m to the first two terms precisely when not

doing so would result in a value outside of {0,1,...,m —1}.
It remains to verify that (2.7) takes only the values 0 and 1. This holds if

UM, (2.8)

q m

But z; never exceeds m — 1, and

m—1 am-1) 7(m-1)
q mo qm

Thus, (2.8) holds if r < g; a simple sufficient condition ensuring this is a <
vm.

The result of this argument is that (2.6) can be implemented so that every
intermediate calculation results in an integer between —(m — 1) and m — 1,
allowing calculation of az; mod m without overflow. In particular, explicit
calculation of (2.7) is avoided by checking indirectly whether the result of this
calculation would be 0 or 1. L’Ecuyer [222] gives a simple implementation of
this idea, which we illustrate in Figure 2.1.

(m,a integer constants

q, T precomputed integer constants,

with ¢ = |[m/al, r = m mod a

x integer variable holding the current z;)
k—z/q
z—ax(x—k*xq)—kx*xr
if(z<0)z—ax+m

Fig. 2.1. Implementation of ax mod m in integer arithmetic without overflow,
assuming 7 < ¢ (e.g., a < /m).

The final step in using a congruential generator — converting the z; €
{0,1,...,m—1} to a value in the unit interval — is not displayed in Figure 2.1.
This can be implemented by setting u <« = * h where h is a precomputed

constant equal to 1/m.
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Of the generators in Table 2.1, the first two and the last two satisfy a < \/m
and thus may be implemented using Figure 2.1. L’Ecuyer [222] finds that
the second, sixth, and seventh generators listed in the table have the best
distributional properties among all choices of multiplier a that are primitive
roots of m and satisfy a < /m, m < 23! — 1. Fishman [121] recommends
working in double precision in order to get the somewhat superior uniformity
of the large multipliers in Table 2.1. We will see in Section 2.1.5 that by
combining generators it is possible to maintain the computational advantage
of having a < y/m without sacrificing uniformity.

Skipping Ahead

It is occasionally useful to be able to split a random number stream into ap-
parently unrelated subsequences. This can be implemented by initializing the
same random number to two or more distinct seeds. Choosing the seeds arbi-
trarily leaves open the possibility that the ostensibly unrelated subsequences
will have substantial overlap. This can be avoided by choosing the seeds far
apart along the sequence produced by a random number generator.

With a linear congruential generator, it is easy to skip ahead along the
sequence without generating intermediate values. If z;; = ax; mod m, then

Titk = akxi mod m.
This in turn is equivalent to
Tiyr = ((a® mod m)z;) mod m.

Thus, one could compute the constant a® mod m just once and then easily
produce a sequence of values spaced k apart along the generator’s output. See
L’Ecuyer, Simard, Chen, and Kelton [227] for an implementation.

Splitting a random number stream carefully is essential if the subsequences
are to be assigned to parallel processors running simulations intended to be
independent of each other. Splitting a stream can also be useful when simu-
lation is used to compare results from a model at different parameter values.
In comparing results, it is generally preferable to use the same random num-
bers for both sets of simulations, and to use them for the same purpose in
both to the extent possible. For example, if the model involves simulating d
asset prices, one would ordinarily want to arrange matters so that the ran-
dom numbers used to simulate the ¢th asset at one parameter value are used
to simulate the same asset at other parameter values. Dedicating a separate
subsequence of the generator to each asset ensures this arrangement.

2.1.4 Lattice Structure

In discussing the generators of Table 2.1, we alluded to comparisons of their
distributional properties. We now provide a bit more detail on how these
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comparisons are made. See Knuth [212] and Neiderreiter [281] for far more
thorough treatments of the topic.

If the random variables Uy, U, ... are independent and uniformly distrib-
uted over the unit interval, then (U;,Us) is uniformly distributed over the
unit square, (U1, Us, Us) is uniformly distributed over the unit cube, and so
on. Hence, one way to evaluate a random number generator is to form points
in [0,1]¢ from consecutive output values and measure how uniformly these
points fill the space.

The left panel of Figure 2.2 plots consecutive overlapping pairs (u1, u2),
(ug,u3), ..., (u10,u11) produced by a linear congruential generator. The pa-
rameters of the generator are a = 6 and m = 11, a case considered in Sec-
tion 2.1.1. The graph immediately reveals a regular pattern: the ten distinct
points obtained from the full period of the generator lie on just two parallel
lines through the unit square.

This phenomenon is characteristic of all linear congruential generators
(and some other generators as well), though it is of course particularly pro-
nounced in this simple example. Marsaglia [248] showed that overlapping d-
tuples formed from consecutive outputs of a linear congruential generator with
modulus m lie on at most (d!m)l/ 4 hyperplanes in the d-dimensional unit
cube. For m = 23! — 1, this is approximately 108 with d = 3 and drops below
39 at d = 10. Thus, particularly in high dimensions, the lattice structure of
even the best possible linear congruential generators distinguishes them from
genuinely random numbers.

The right panel of Figure 2.2, based on a similar figure in L’Ecuyer [222],
shows the positions of points produced by the first generator in Table 2.1.
The figure magnifies the strip {(u1,u2) : u; < .001} and plots the first 10,005
points that fall in this strip starting from a seed of xyp = 8835. (These are all
the points that fall in the strip out of the first ten million points generated
by the sequence starting from that seed.) At this magnification, the lattice
structure becomes evident, even in this widely used method.

The lattice structure of linear congruential generators is often used to
compare their outputs and select parameters. There are many ways one might
try to quantify the degree of equidistribution of points on a lattice. The most
widely used in the analysis of random number generators is the spectral test,
originally proposed by Coveyou and Macpherson [88]. For each dimension
d and each set of parallel hyperplanes containing all points in the lattice,
consider the distance between adjacent hyperplanes. The spectral test takes
the maximum of these distances over all such sets of parallel hyperplanes.

To see why taking the maximum is appropriate, consider again the left
panel of Figure 2.2. The ten points in the graph lie on two positively sloped
lines. They also lie on five negatively sloped lines and ten vertical lines. De-
pending on which set of lines we choose, we get a different measure of distance
between adjacent lines. The maximum distance is achieved by the two posi-
tively sloped lines passing through the points, and this measure is clearly the
one that best captures the wide diagonal swath left empty by the generator.
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Uipl Uil

0 u;

a=6,m=11 a=16807, m=2>"-1

Fig. 2.2. Lattice structure of linear congruential generators.

Although the spectral test is an informative measure of uniformity, it does
not provide a strict ranking of generators because it produces a separate value
for each dimension d. It is possible for each of two generators to outperform
the other at some values of d. Fishman and Moore [123] and L’Ecuyer [222]
base their recommendations of the values in Table 2.1 on spectral tests up to
dimension d = 6; computing the spectral test becomes increasingly difficult in
higher dimensions. L'Ecuyer [222] combines results for d =2-6 into a worst-
case figure of merit in order to rank generators.

Niederreiter [281] analyzes the uniformity of point sets in the unit hy-
percube (including those produced by various random number generators)
through discrepancy measures, which have some appealing theoretical fea-
tures not shared by the spectral test. Discrepancy measures are particularly
important in the analysis of quasi-Monte Carlo methods.

It is also customary to subject random number generators to various statis-
tical tests of uniformity and independence. See, e.g., Bratley, Fox, and Schrage
[59] or Knuth [212] for a discussion of some of the tests often used.

Given the inevitable shortcomings of any practical random number gener-
ator, it is advisable to use only a small fraction of the period of a generator.
This again points to the advantage of generators with long periods — much

longer than 231.

2.1.5 Combined Generators and Other Methods

We now turn to a discussion of a few other methods for random number gener-
ation. Methods that combine linear congruential generators appear to be par-
ticularly promising because they preserve attractive computational features of
these generators while extending their period and, in some cases, attenuating
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their lattice structure. A combined generator proposed by L’Ecuyer [224] and
discussed below appears to meet the requirements for speed, uniformity, and
a long period of most current applications. We also note a few other directions

of work in the area.

Combining Generators

One way to move beyond the basic linear congruential generator combines
two or more of these generators through summation. Wichmann and Hill
[355] propose summing values in the unit interval (i.e., after dividing by the
modulus); L'Ecuyer [222] sums first and then divides.

To make this more explicit, consider J generators, the jth having parame-

ters a;, m;:
Tji+l = A5T5,4 mod ms, Uji+l = xj7i+1/mj, j = 1, ey J.

The Wichmann-Hill combination sets u;4+1 equal to the fractional part of
Ut,i+1 + U2,i+1 + - -+ + Uujit+1. L'Ecuyer’s combination takes the form

J
Tiy1 = Z(—l)(j—l)mj’i—|—l mod (my — 1) (2.9)
j=1
and /
P Rl VALY Ziy1 > 0;
o { (m1 - 1)/m17 Tijr1 = 0. (210)

This assumes that m; is the largest of the m;.

A combination of generators can have a much longer period than any
of its components. A long period can also be achieved in a single generator
by using a larger modulus, but a larger modulus complicates the problem
of avoiding overflow. In combining generators, it is possible to choose each
multiplier a; smaller than ,/mj; in order to use the integer implementation of
Figure 2.1 for each. The sum in (2.9) can then also be implemented in integer
arithmetic, whereas the Wichmann-Hill summation of u;; is a floating point
operation. L’Ecuyer [222] gives a portable implementation of (2.9)—(2.10). He
also examines a combination of the first and sixth generators of Table 2.1 and
finds that the combination has no apparent lattice structure at a magnification
at which each component generator has a very evident lattice structure. This
suggests that combined generators can have superior uniformity properties as
well as long periods and computational convenience.

Another way of extending the basic linear congruential generator uses a
higher-order recursion of the form

z; = (a1%i-1 + @2Ti—2 + * -+ axTi—) mod M, (2.11)

followed by u; = z;/m; this is called a multiple recursive generator, or MRG.
A seed for this generator consists of initial values zg_1,Zr_2,..., Zo.
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Each of the lagged values z;_; in (2.11) can take up to m distinct values,
so the vector (x;—1,...,%;—k) can take up to m* distinct values. The sequence
x; repeats once this vector returns to a previously visited value, and if the
vector ever reaches (0,...,0) all subsequent z; are identically 0. Thus, the
longest possible period for (2.11) is m* — 1. Knuth [212] gives conditions on
m and ai,...,ax under which this bound is achieved.

L’Ecuyer [224] combines MRGs using essentially the mechanism in (2.9)-
(2.10). He shows that the combined generator is, in a precise sense, a close
approximation to a single MRG with a modulus equal to the product of the
moduli of the component MRGs. Thus, the combined generator has the advan-
tages associated with a larger modulus while permitting an implementation
using smaller values. L’Ecuyer’s investigation further suggests that a combined
MRG has a less evident lattice structure than the large-modulus MRG it ap-
proximates, indicating a distributional advantage to the method in addition
to its computational advantages.

L’Ecuyer [224] analyzes and recommends a specific combination of two
MRGs: the first has modulus m = 23! — 1 = 2147483647 and coefficients
a1 = 0, az = 63308, a3 = —183326; the second has m = 2145483479 and
a; = 86098, az = 0, a3 = —539608. The combined generator has a period
close to 2185, Results of the spectral tests in L’Ecuyer [224] in dimensions 4-
20 indicate far superior uniformity for the combined generator than for either
of its components. Because none of the coefficients a; used in this method is
very large, an implementation in integer arithmetic is possible. L’Ecuyer [224]
gives an implementation in the C programming language which we reproduce
in Figure 2.3. We have modified the introduction of the constants for the gen-
erator, using #define statements rather than variable declarations for greater
speed, as recommended by L’Ecuyer [225]. The variables x10, . . .,x22 must
be initialized to an arbitrary seed before the first call to the routine.

Figure 2.4 reproduces an implementation from L’Ecuyer [225]. L’Ecuyer
[225] reports that this combined generator has a period of approximately 239
and good uniformity properties at least up to dimension 32. The variables
s10,...,s24 must be initialized to an arbitrary seed before the first call to
the routine. The multipliers in this generator are too large to permit a 32-bit
integer implementation using the method in Figure 2.3, so Figure 2.4 uses
floating point arithmetic. L’Ecuyer [225] finds that the relative speeds of the
two methods vary with the computing platform.

Other Methods

An alternative strategy for random number generation produces a stream of
bits that are concatenated to produce integers and then normalized to produce
points in the unit interval. Bits can be produced by linear recursions mod 2;

e.g.,
b; = (a1b;—1 + azb;_2 + - - agb;_x) mod 2,
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#define m1 2147483647
#define m2 2145483479
#define al2 63308

#define al3 —183326

#define a21 86098

#define a23 —539608

#define q12 33921

#define q13 11714

#define q21 24919

#define q23 3976

#define r12 12979

#define r13 2883

#define r21 7417

#define r23 2071

#define Invmpl 4.656612873077393e—10;
int x10, x11, x12, x20, x21, x22;

int Random()

int h, p12, p13, p21, p23;

/* Component 1 x/

h = x10/q13; p13 = —al3*(x10—h*ql13)—hx*rl3;

h = x11/q12; p12 = al2x(x11—hxql2)—hxrl2;

if(p13<0) p13 = pl13+ml; if(p12<0) pl2 = pl24ml;

x10 = x11; x11 = x12; x12 = p12—p13; if(x12<0) x12 = x12+ml;
/* Component 2 */

h = x20/q23; p23 = —a23%(x20—h*q23)—hx*r23;

h = x22/q21; p21 = a21%(x22—hxq21)—h=r21;

if(p23<0) p23 = p23+m2; if(p21<0) p2l = p21+m2;

/* Combination */

if (x12<x22) return (x12—x22+m1l); else return (x12—x22);

double Uniform01()

int Z;
Z=Random/(); if(Z==0) Z=m1; return (Z+«Invmpl);

Fig. 2.3. Implementation in C of a combined multiple recursive generator using
integer arithmetic. The generator and the implementation are from L’Ecuyer [224].

with all a; equal to 0 or 1. This method was proposed by Tausworthe [346]. It
can be implemented through a mechanism known as a feedback shift register.
The implementation and theoretical properties of these generators (and also
of generalized feedback shift register methods) have been studied extensively.
Matsumoto and Nishimura [258] develop a generator of this type with a period
of 219937 — 1 and apparently excellent uniformity properties. They provide C
code for its implementation.
Inversive congruential generators use recursions of the form

zit1 = (az; +¢) mod m,

where the (mod m)-inverse x~ of z is an integer in {1,...,m — 1} (unique
if it exists) satisfying zz— = 1 mod m. This is an example of a nonlinear
congruential generator. Inversive generators are free of the lattice structure
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double 510, s11, s12, s13, s14, s20, s21, 522, 523, s24;

##define norm 2.3283163396834613e-10
#define m1 4294949027.0

#define m2 4294934327.0

#define al2 1154721.0

##define al4 1739991.0

#define al5n 1108499.0

#define a21 1776413.0

#define a23 865203.0

#define a25n 1641052.0

double MRG32k5a ()

long k;

double pl, p2;

/* Component 1 */

pl = al2 % s13 — albn % sl0;

if (p1 > 0.0) pl —= al4 * ml;

pl += al4 % s11; k = pl / ml; pl —= k * ml;

if (p1 < 0.0) pl += ml;

s10 = s11; s11 = s12; s12 = s13; s13 = sl4; s14 = pl;
/* Component 2 %/

p2 = a2l *x s24 — a25n x s20;

if (p2 > 0.0) p2 —= a23 * m2;

p2 += a23 % s22; k = p2 / m2; p2 —= k * m2;

if (p2 < 0.0) p2 += m?2;

s20 = s21; s21 = s22; 522 = s23; s23 = s24; s24 = p2;
/* Combination */

if (p1 <= p2) return ((pl — p2 + ml) * norm);

else return ((pl — p2) * norm);

Fig. 2.4. Implementation in C of a combined multiple recursive generator using
floating point arithmetic. The generator and implementation are from L’Ecuyer

[225].

characteristic of linear congruential generators but they are much more com-
putationally demanding. They may be useful for comparing results in cases
where the deficiencies of a random number generator are cause for concern.
See Eichenauer-Herrmann, Herrmann, and Wegenkittl [110] for a survey of
this approach and additional references.

2.2 General Sampling Methods

With an introduction to random number generation behind us, we hence-
forth assume the availability of an ideal sequence of random numbers. More
precisely, we assume the availability of a sequence Ui, Us, ... of independent
random variables, each satisfying

0,u<O0
PU<u)=<u,0<u<l (2.12)
LLu>1
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i.e., each uniformly distributed between 0 and 1. A simulation algorithm trans-
forms these independent uniforms into sample paths of stochastic processes.
Most simulations entail sampling random variables or random vectors from
distributions other than the uniform. A typical simulation uses methods for
transforming samples from the uniform distribution to samples from other
distributions. There is a large literature on both general purpose methods
and specialized algorithms for specific cases. In this section, we present two of
the most widely used general techniques: the inverse transform method and

the acceptance-rejection method.

2.2.1 Inverse Transform Method

Suppose we want to sample from a cumulative distribution function F i.e.,
we want to generate a random variable X with the property that P(X < z) =
F(z) for all z. The inverse transform method sets

X =FYU), U~ Unif|0,1], (2.13)

where F'~! is the inverse of F' and Unif[0,1] denotes the uniform distribution
on [0, 1].

U,

X, 0 X,

Fig. 2.5. Inverse transform method.

This transformation is illustrated in Figure 2.5 for a hypothetical cumula-
tive distribution F'. In the figure, values of u between 0 and F'(0) are mapped
to negative values of x whereas values between F'(0) and 1 are mapped to
positive values. The left panel of Figure 2.6 depicts a cumulative distribution
function with a jump at zo; i.e.,

lim F(z) = F(z—) < F(z+) = lim F(z).

xzTxo rlxzo
Under the distribution F', the outcome z( has probability F'(z+)— F(z—). As
indicated in the figure, all values of u between u; = F(z—) and uy = F(z+)
are mapped to xg.
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The inverse of F' is well-defined if F' is strictly increasing; otherwise, we
need a rule to break ties. For example, we may set

F~Yu) = inf{z : F(z) > u}; (2.14)

if there are many values of = for which F'(x) = u, this rule chooses the smallest.

We need a rule like (2.14) in cases where the cumulative distribution F
has flat sections, because the inverse of F' is not well-defined at such points;
see, e.g., the right panel of Figure 2.6. Observe, however, that if F' is constant
over an interval [a, b] and if X has distribution F', then

Pla< X <b)=F(b) — F(a) =0,

so flat sections of F' correspond to intervals of zero probability for the random
variable. If ' has a continuous density, then F' is strictly increasing (and its
inverse is well-defined) anywhere the density is nonzero.

[
ul-_/

0 0
Xo a b

Fig. 2.6. Inverse transform for distributions with jumps (left) or flat sections (right).

To verify that the inverse transform (2.13) generates samples from F', we
check the distribution of the X it produces:

P(X <z)=P(F~'(U) <2
= P(U < F(z))
= F(x).

The second equality follows from the fact that, with F~! as we have defined
it, the events {F~1(u) < x} and {u < F(x)} coincide for all u and . The last
equality follows from (2.12).

One may interpret the input U to the inverse transform method as a
random percentile. If F' is continuous and X ~ F, then X is just as likely to
fall between, say, the 20th and 30th percentiles of F' as it is to fall between the
85th and 95th. In other words, the percentile at which X falls (namely F'(X))
is uniformly distributed. The inverse transform method chooses a percentile
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level uniformly and then maps it to a corresponding value of the random

variable.
We illustrate the method with examples. These examples also show that

a direct implementation of the inverse transform method can sometimes be
made more efficient through minor modifications.

Example 2.2.1 Ezponential distribution. The exponential distribution with
mean 6 has distribution

Flz)=1-¢"%? z>o0.

This is, for example, the distribution of the times between jumps of a Pois-
son process with rate 1/6. Inverting the exponential distribution yields the
algorithm X = —@log(1 — U). This can also be implemented as

X = —0log(U) (2.15)
because U and 1 — U have the same distribution. O

Example 2.2.2 Arcsine law. The time at which a standard Brownian motion
attains its maximum over the time interval [0, 1] has distribution

F(z) = %arcsin(\/_:E), 0<z<1.

The inverse transform method for sampling from this distribution is X =
sin?(Un/2), U ~ Unif[0,1]. Using the identity 2sin®(¢) = 1 — cos(2t) for 0 <
t < m/2, we can simplify the transformation to

X =3 —3cos(Ur), U ~ Unif[0, 1].

a

Example 2.2.3 Rayleigh distribution. If we condition a standard Brownian
motion starting at the origin to be at b at time 1, then its maximum over [0, 1]
has the Rayleigh distribution

F(z)=1—e 22@=0 £ >y,
Solving the equation F'(z) = u, u € (0, 1), results in a quadratic with roots

oo b " /b2 — 2log(1 —u)'

2 2
The inverse of F' is given by the larger of the two roots — in particular, we
must have £ > b since the maximum of the Brownian path must be at least
as large as the terminal value. Thus, replacing 1 — U with U as we did in
Example 2.2.1, we arrive at

b2 — 2log(U)

b
X=g+ ;
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Even if the inverse of F' is not known explicitly, the inverse transform
method is still applicable through numerical evaluation of F~!. Computing
F~1(u) is equivalent to finding a root z of the equation F(z) —u = 0. For a
distribution F' with density f, Newton’s method for finding roots produces a

sequence of iterates
F(z,) —u

Tntl = Tp =~
" " f(zn)
given a starting point zg. In the next example, root finding takes a special

form.

Example 2.2.4 Discrete distributions. In the case of a discrete distribution,
evaluation of F~! reduces to a table lookup. Consider, for example, a dis-
crete random variable whose possible values are ¢; < -+ < ¢,. Let p; be the
probability attached to ¢;, ¢ =1,...,n, and set go = 0,

1
G=)Y pj, i=1...,n
=1

These are the cumulative probabilities associated with the ¢;; that is, ¢; =
F(c;), i =1,...,n. To sample from this distribution,

(i) generate a uniform U;

(i) find K € {1,...,n} such that gx—1 < U < gk;

(iii) set X = ck.

The second step can be implemented through binary search. Bratley, Fox, and
Schrage [59], and Fishman [121] discuss potentially faster methods. O

Our final example illustrates a general feature of the inverse transform
method rather than a specific case.

Example 2.2.5 Conditional distributions. Suppose X has distribution F
and consider the problem of sampling X conditional on a < X < b, with
F(a) < F(b). Using the inverse transform method, this is no more difficult
than generating X unconditionally. If U ~ Unif]0,1], then the random variable

V' defined by
V =F(a)+ [F(b) — F(a)]U

is uniformly distributed between F'(a) and F(b), and F~1(V') has the desired
conditional distribution. To see this, observe that

P(F(a) + [F(b) - F(a)]lU < F(z))

= P(U < [F(z) — F(a)]/[F () F(a)])
[F(z) — F(a)]/[F(b) — F(a)],

and this is precisely the distribution of X given a < X < b. Either of the
endpoints a, b could be infinite in this example. O

P(F~H(V) < z)
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The inverse transform method is seldom the fastest method for sampling
from a distribution, but it has important features that make it attractive
nevertheless. One is its use in sampling from conditional distributions just il-
lustrated; we point out two others. First, the inverse transform method maps
the input U monotonically and — if F' is strictly increasing — continuously
to the output X. This can be useful in the implementation of variance re-
duction techniques and in sensitivity estimation, as we will see in Chapters 4
and 7. Second, the inverse transform method requires just one uniform ran-
dom variable for each sample generated. This is particularly important in
using quasi-Monte Carlo methods where the dimension of a problem is often
equal to the number of uniforms needed to generate one “path.” Methods that
require multiple uniforms per variable generated result in higher-dimensional
representations for which quasi-Monte Carlo may be much less effective.

2.2.2 Acceptance-Rejection Method

The acceptance-rejection method, introduced by Von Neumann [353], is
among the most widely applicable mechanisms for generating random samples.
This method generates samples from a target distribution by first generating
candidates from a more convenient distribution and then rejecting a random
subset of the generated candidates. The rejection mechanism is designed so
that the accepted samples are indeed distributed according to the target dis-
tribution. The technique is by no means restricted to univariate distributions.

Suppose, then, that we wish to generate samples from a density f defined
on some set X. This could be a subset of the real line, of ¢, or a more general
set. Let g be a density on X from which we know how to generate samples

and with the property that
f(z) <cg(x), forallzeX

for some constant c. In the acceptance-rejection method, we generate a sample
X from g and accept the sample with probability f(X)/cg(X); this can be
implemented by sampling U uniformly over (0,1) and accepting X if U <
f(X)/cg(X). If X is rejected, a new candidate is sampled from g and the
acceptance test applied again. The process repeats until the acceptance test is
passed; the accepted value is returned as a sample from f. Figure 2.7 illustrates

a generic implementation.
To verify the validity of the acceptance-rejection method, let Y be a sam-
ple returned by the algorithm and observe that Y has the distribution of X

conditional on U < f(X)/cg(X). Thus, for any A C X,
P(Y € 4) = P(X € AU < [(X)/cg(X))
_ P(X € AU < f(X)/cg(X))
PU < f(X)/eg(X))

Given X, the probability that U < f(X)/cg(X) is simply f(X)/cg(X) be-
cause U is uniform; hence, the denominator in (2.16) is given by

(2.16)
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1. generate X from distribution g
2. generate U from Unif|0,1]
3.1f U < £(X)/cg(X)
return X
otherwise
go to Step 1.

Fig. 2.7. The acceptance-rejection method for sampling from density f using can-
didates from density g.

PWU < f(X)/eg(x)) = | j;((”;))g@) dz =1/ (2.17)

(taking 0/0 = 1 if g(x) = 0 somewhere on X’). Making this substitution in
(2.16), we find that

PY€eA)=cP(Xe€AU< f(X)/cg(X))=c (z) g(z)dx = / f(z) dz.
A cg(z) A
Since A is arbitrary, this verifies that Y has density f.

In fact, this argument shows more: Equation (2.17) shows that the proba-
bility of acceptance on each attempt is 1/c. Because the attempts are mutually
independent, the number of candidates generated until one is accepted is geo-
metrically distributed with mean c. It is therefore preferable to have c close to
1 (it can never be less than 1 if f and g both integrate to 1). Tighter bounds
on the target density f result in fewer wasted samples from g. Of course, a
prerequisite for the method is the ability to sample from g; the speed of the
method depends on both ¢ and the effort involved in sampling from g.

We illustrate the method with examples.

Example 2.2.6 Beta distribution. The beta density on [0, 1] with parameters
a1, ay > 0 is given by

1

f(z) = mfﬂarl(l —z)*2l o<z <1,

with
I'(a1)I(az)

1
B , — ar—1 1 — as—1 dr =
(al 042) /0v z ( iL') Z F(Oél ’|‘012)

and I' the gamma function. Varying the parameters o, as results in a variety
of shapes, making this a versatile family of distributions with bounded sup-
port. Among many other applications, beta distributions are used to model
the random recovery rate (somewhere between 0 and 100%) upon default of a
bond subject to credit risk. The case a1 = ag = 1/2 is the arcsine distribution
considered in Example 2.2.2.
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If a1, a2 > 1 and at least one of the parameters exceeds 1, the beta density
is unimodal and achieves its maximum at (a3 —1)/(a; + a2 —2). Let ¢ be the
value of the density f at this point. Then f(z) < ¢ for all x, so we may choose
g to be the uniform density (g(z) = 1, 0 < = < 1), which is in fact the beta
density with parameters a; = ag = 1. In this case, the acceptance-rejection

method becomes

Generate Uy, Uy from Unif[0,1] until cUs < f(Uy)
Return U;

This is illustrated in Figure 2.8 for parameters a3 = 3, ay = 2.

As is clear from Figure 2.8, generating candidates from the uniform dis-
tribution results in many rejected samples and thus many evaluations of f.
(The expected number of candidates generated for each accepted sample is
¢ ~ 1.778 for the density in the figure.) Faster methods for sampling from
beta distributions — combining more carefully designed acceptance-rejection
schemes with the inverse transform and other methods — are detailed in De-
vroye [95], Fishman [121], Gentle [136], and Johnson, Kotz, and Balakrishnan

[202]. O

fWU) 4

Accept U if cU,in
this range

v
0 U, 1

Fig. 2.8. Illustration of the acceptance-rejection method using uniformly distributed
candidates.

Example 2.2.7 Normal from double exponential. Fishman [121, p.173] illus-
trates the use of the acceptance-rejection method by generating half-normal
samples from the exponential distribution. (A half-normal random variable
has the distribution of the absolute value of a normal random variable.) Fish-
man also notes that the method can be used to generate normal random
variables and we present the example in this form. Because of its importance
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in financial applications, we devote all of Section 2.3 to the normal distribu-
tion; we include this example here primarily to further illustrate acceptance-
rejection.

The double exponential density on (—o0,0) is g(z) = exp(—|z|)/2 and
the normal density is f(z) = exp(—22/2)/v/27. The ratio is

T T T

Thus, the normal density is dominated by the scaled double exponential den-
sity cg(x), as illustrated in Figure 2.9. A sample from the double exponential
density can be generated using (2.15) to draw a standard exponential random
variable and then randomizing the sign. The rejection test u > f(x)/cg(x)
can be implemented as

u > exp(—%x2 + |z| — %) = exp(—%—(lx] —1)%).

In light of the symmetry of both f and g, it suffices to generate positive
samples and determine the sign only if the sample is accepted; in this case,
the absolute value is unnecessary in the rejection test. The combined steps

are as follows:
1. generate Uy, Uz, Us from Unif]0,1]

2. X « —log(U)
3.if Uz > exp(—0.5(X — 1)?)

go to Step 1
4.if U3 < 0.5

X — X
5. return X

O

Example 2.2.8 Conditional distributions. Consider the problem of generat-
ing a random variable or vector X conditional on X € A, for some set A. In
the scalar case, this can be accomplished using the inverse transform method
if A is an interval; see Example 2.2.5. In more general settings it may be dif-
ficult to sample directly from the conditional distribution. However, so long
as it is possible to generate unconditional samples, one may always resort to
the following crude procedure:

Generate X until X € 4

return X )

This may be viewed as a degenerate form of acceptance-rejection. Let f
denote the conditional density and let g denote the unconditional density;

then
1/P(X €A),ze A

r@)/a) = { oA
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Fig. 2.9. Normal density and scaled double exponential.

Thus, ¢ = 1/P(X € A) is an upper bound on the ratio. Moreover, since the
ratio f(x)/cg(x) is either 0 or 1 at every z, it is unnecessary to randomize the
rejection decision: a candidate X is accepted precisely if X € A. O

Acceptance-rejection can often be accelerated through the squeeze method,
in which simpler tests are applied before the exact acceptance threshold
f(z)/cg(x) is evaluated. The simpler tests are based on functions that bound
f(z)/cg(z) from above and below. The effectiveness of this method depends
on the quality of the bounding functions and the speed with which they can
be evaluated. See Fishman [121] for a detailed discussion.

Although we have restricted attention to sampling from densities, it should
be clear that the acceptance-rejection method also applies when f and g are
replaced with the mass functions of discrete distributions.

The best methods for sampling from a specific distribution invariably rely
on special features of the distribution. Acceptance-rejection is frequently com-
bined with other techniques to exploit special features — it is perhaps more
a principle than a method.

At the end of Section 2.2.1 we noted that one attractive feature of the
inverse transform method is that it uses exactly one uniform random vari-
able per nonuniform random variable generated. When simulation problems
are formulated as numerical integration problems, the dimension of the in-
tegrand is typically the maximum number of uniform variables needed to
generate a simulation “path.” The effectiveness of quasi-Monte Carlo and re-
lated integration methods generally deteriorates as the dimension increases,
so in using those methods, we prefer representations that keep the dimen-
sion as small as possible. With an acceptance-rejection method, there is or-
dinarily no upper bound on the number of uniforms required to generate
even a single nonuniform variable; simulations that use acceptance-rejection
therefore correspond to infinite-dimensional integration problems. For this
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reason, acceptance-rejection methods are generally inapplicable with quasi-
Monte Carlo methods. A further potential drawback of acceptance-rejection
methods, compared with the inverse transform method, is that their outputs
are generally neither continuous nor monotone functions of the input uni-
forms. This can diminish the effectiveness of the antithetic variates method,

for example.

2.3 Normal Random Variables and Vectors

Normal random variables are the building blocks of many financial simula-
tion models, so we discuss methods for sampling from normal distributions in
detail. We begin with a brief review of basic properties of normal distributions.

2.3.1 Basic Properties

The standard univariate normal distribution has density

1
$(z) = ——=e" /2, —c0< T <00 (2.18)

and cumulative distribution function

P(z) = \/—12—7r /:c e~*/2 du. (2.19)

Standard indicates mean 0 and variance 1. More generally, the normal distri-
bution with mean p and variance 02, o > 0, has density

1 _e-w?
e 202

Pu,o(T) =

2o

and cumulative distribution
x —
D, ,(z) = ( - “) .

The notation X ~ N(u,c?) abbreviates the statement that the random vari-

able X is normally distributed with mean p and o2.
If Z ~ N(0,1) (i.e., Z has the standard normal distribution), then

p+0oZ ~ N(p,o0®).

Thus, given a method for generating samples Z1, Z3,... from the standard
normal distribution, we can generate samples X7, Xa,... from N(u,o?) by
setting X; = p + 0Z;. It therefore suffices to consider methods for sampling

from N(0,1).
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A d-dimensional normal distribution is characterized by a d-vector p and
a d x d covariance matrix ¥; we abbreviate it as N(u,X). To qualify as a
covariance matrix, ¥ must be symmetric (i.e., ¥ and its transpose T T are
equal) and positive semidefinite, meaning that

'Sz >0 (2.20)

for all z € R<. This is equivalent to the requirement that all eigenvalues of ¥ be
nonnegative. (As a symmetric matrix, ¥ automatically has real eigenvalues.)
If ¥ is positive definite (meaning that strict inequality holds in (2.20) for all
nonzero x € R or, equivalently, that all eigenvalues of ¥ are positive), then
the normal distribution N(u,X) has density

1

Pun(z) = iz &P (—3@—w)'= e -p), zeR? (221

with |Z| the determinant of ¥. The standard d-dimensional normal N (0, I),
with I, the d x d identity matrix, is the special case

1 1

(271'—)‘1/2_ exp (—§$TIL') .

If X ~ N(u,X) (i.e., the random vector X has a multivariate normal
distribution), then its ith component X; has distribution N(u;, 0?), with 0 =
3;i- The ith and jth components have covariance

Cov[Xi, X;] = E[(Xi — ) (X — p5)] = i,

which justifies calling 3 the covariance matrix. The correlation between X;

and X; is given by
Xij
0035 .

Pij =

In specifying a multivariate distribution, it is sometimes convenient to use this
definition in the opposite direction: specify the marginal standard deviations
05, 1 =1,...,d, and the correlations p;; from which the covariance matrix

Eij = 004045 (222)

is then determined.
If the d x d symmetric matrix X is positive semidefinite but not positive

definite then the rank of X is less than d, ¥ fails to be invertible, and there
is no normal density with covariance matrix 3. In this case, we can define
the normal distribution N(u,X) as the distribution of X = y + AZ with
Z ~ N(0,1;) for any d x d matrix A satisfying AAT = ¥. The resulting
"distribution is independent of which such A is chosen. The random vector
X does not have a density in R¢, but if ¥ has rank k then one can find k
components of X with a multivariate normal density in R*.
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Three further properties of the multivariate normal distribution merit spe-
cial mention:

Linear Transformation Property: Any linear transformation of a normal
vector is again normal:

X~ N, = AX ~ N(Ap, ASA "), (2.23)

for any d-vector p, and d x d matrix X, and any k x d matrix A, for any k.

Conditioning Formula: Suppose the partitioned vector (X}, X[g) (where
each X|;) may itself be a vector) is multivariate normal with

X[11> <<M[1J) <2[111 1z >)

~ N , , 2.24
<X 2] Hi2) Xp21] S22) (2.24)
and suppose X[z has full rank. Then

(X X = ) ~ N(upy + Sy g (@ — p))s Epay — Epg Bpg Sieny)- (2.25)

In (2.24), the dimensions of the pj;; and X are consistent with those of
the X[;;. Equation (2.25) then gives the distribution of Xp;; conditional on
X[g] = .

Moment Generating Function: If X ~ N(u,Y) with X d-dimensional,

then
Elexp(87 X)] = exp (16 + 167 50) (2.26)

for all 6 € R4,

2.3.2 Generating Univariate Normals

We now discuss algorithms for generating samples from univariate normal
distributions. As noted in the previous section, it suffices to consider sam-
pling from N(0,1). We assume the availability of a sequence Uy, Us,... of
independent random variables uniformly distributed on the unit interval [0, 1]
and consider methods for transforming these uniform random variables to
normally distributed random variables.

Box-Muller Method

Perhaps the simplest method to implement (though not the fastest or neces-
sarily the most convenient) is the Box-Muller [51] algorithm. This algorithm
generates a sample from the bivariate standard normal, each component of
which is thus a univariate standard normal. The algorithm is based on the
following two properties of the bivariate normal: if Z ~ N(0, I2), then
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(i) R= Z2+ Z2 is exponentially distributed with mean 2, i.e.,
PR<z)=1- e_w/2;

(ii) given R, the point (Z1, Z2) is uniformly distributed on the circle of radius
V'R centered at the origin.

Thus, to generate (71, Z2), we may first generate R and then choose a point
uniformly from the circle of radius v/R. To sample from the exponential dis-
tribution we may set R = —2log(U;), with U; ~ Unif]0,1], as in (2.15). To
generate a random point on a circle, we may generate a random angle uni-
formly between 0 and 27 and then map the angle to a point on the circle.
The random angle may be generated as V = 2nUs, Uz ~ Unif|0,1]; the cor-
responding point on the circle has coordinates (v Rcos(V), v Rsin(V)). The
complete algorithm is given in Figure 2.10.

generate Ui, Us independent Unif0,1]
R — —2log(U1)

V «— 27U,

Z1 «— vVRcos(V), Zo — v/ Rsin(V)
return 71, Zs.

Fig. 2.10. Box-Muller algorithm for generating normal random variables.

Marsaglia and Bray [250] developed a modification of the Box-Muller
method that reduces computing time by avoiding evaluation of the sine and co-
sine functions. The Marsaglia-Bray method instead uses acceptance-rejection
to sample points uniformly in the unit disc and then transforms these points
to normal variables.

The algorithm is illustrated in Figure 2.11. The transformation U; « 2U;—
1, ¢ = 1,2, makes (Ui, Us) uniformly distributed over the square [—1,1] x
[~1,1]. Accepting only those pairs for which X = U7 + UZ is less than or
equal to 1 produces points uniformly distributed over the disc of radius 1
centered at the origin. Conditional on acceptance, X is uniformly distributed
between 0 and 1, so the log X in Figure 2.11 has the same effect as the log U
in Figure 2.10. Dividing each accepted (Ui, Uz) by VX projects it from the
unit disc to the unit circle, on which it is uniformly distributed. Moreover,
(U1 /vVX,Uy/v/X) is independent of X conditional on X < 1. Hence, the
justification for the last step in Figure 2.11 is the same as that for the Box-
Muller method.

As is the case with most acceptance-rejection methods, there is no upper
bound on the number of uniforms the Marsaglia-Bray algorithm may use
to generate a single normal variable (or pair of variables). This renders the
method inapplicable with quasi-Monte Carlo simulation.
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while (X > 1)
generate Uy, Uz ~ Unif|0,1]
U1<——2*U1—~1, U2<—2*U2—1
X — U2 4+U2

end

Y « +/—2log X/X

Z1 <—U1Y, Zg(——UQY

return 71, Zs.

Fig. 2.11. Marsaglia-Bray algorithm for generating normal random variables.

Approximating the Inverse Normal

Applying the inverse transform method to the normal distribution entails
evaluation of ®~1. At first sight, this may seem infeasible. However, there is
really no reason to consider ®~! any less tractable than, e.g., a logarithm.
Neither can be computed exactly in general, but both can be approximated
with sufficient accuracy for applications. We discuss some specific methods

for evaluating ® 1.
Because of the symmetry of the normal distribution,

P11 —u)=-01(u), O<u<l;

it therefore suffices to approximate ®~! on the interval [0.5,1) (or the interval
(0,0.5]) and then to use the symmetry property to extend the approximation
to the rest of the unit interval. Beasley and Springer [43] provide a rational
approximation ,

_ 1\2n+41
Zn:03a'n (u 2) , (2.27)
1+ 50 _gbn(u—2)2
for 0.5 < u < 0.92, with constants a,,, b, given in Figure 2.12; for v > 0.92 they

use a rational function of y/log(1 — u). Moro [271] reports greater accuracy in
the tails by replacing the second part of the Beasley-Springer approximation

with a Chebyshev approximation

@'l(u) ~

8
M (u) ~ g(u) =Y caflog(—log(1—w)]", 0.92<u <1, (2.28)
n=0
with constants ¢, again given in Figure 2.12. Using the symmetry rule, this
gives
dMu)~ —g(1—u) 0<u<.08

With this modification, Moro [271] finds a maximum absolute error of 3 x 10~?
out to seven standard deviations (i.e., over the range ®(—7) < u < ®(7)). The
combined algorithm from Moro [271] is given in Figure 2.13.
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ag = 2.50662823884 by = -8.47351093090
a1 = -18.61500062529 b1 = 23.08336743743
ag = 41.39119773534 b2 = -21.06224101826
as = -25.44106049637 b3 = 3.13082909833

co = 0.3374754822726147  ¢5 = 0.0003951896511919
c1 = 0.9761690190917186  ces = 0.0000321767881768
c2 = 0.1607979714918209  c7 = 0.0000002888167364
c3 = 0.0276438810333863  cs = 0.0000003960315187
cs = 0.0038405729373609

Fig. 2.12. Constants for approximations to inverse normal.

Input: u between 0 and 1
Output: z, approximation to ®~!(u).
y«—u—0>5
if ]yl < 0.42
T y ES y
z+—y*(((az*xr+az)*xr+a1)*r+ao)/
((((bg ¢+ ba) x4+ b1)*xr +bo) *r+ 1)
else
T U
f(y>0)r—1—-u
r « log(— log(r))
ze—co+r*(ci+r*(ca+r*(ca+rx*(cat
rx(cs +1r*(ce + 1% (cr+1*cs)))))))
if (y<0)z— —x
return =

Fig. 2.13. Beasley-Springer-Moro algorithm for approximating the inverse normal.

The problem of computing ®*(u) can be posed as one of finding the root
x of the equation ®(z) = u and in principle addressed through any general
root-finding algorithm. Newton’s method, for example, produces the iterates

or, more explicitly,
Tnir = 2n + (u— ®(x,)) exp(—0.52y - 2n +¢), ¢ = log(v/2m).
Marsaglia, Zaman, and Marsaglia [251] recommend the starting point
zo = £+/| — 1.61og(1.0004 — (1 — 2u)2)|,

the sign depending on whether v > 0 or u < 0. This starting point gives a
surprisingly good approximation to ®~1(u). A root-finding procedure is use-
ful when extreme precision is more important than speed — for example, in
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tabulating “exact” values or evaluating approximations. Also, a small num-
ber of Newton steps can be appended to an approximation like the one in
Figure 2.13 to further improve accuracy. Adding just a single step to Moro’s
[271] algorithm appears to reduce the maximum error to the order of 1071°.

Approximating the Cumulative Normal

Of course, the application of Newton’s method presupposes the ability to
evaluate @ itself quickly and accurately. Evaluation of the cumulative normal
is necessary for many financial applications (including evaluation of the Black-
Scholes formula), so we include methods for approximating this function. We
present two methods; the first is faster and the second is more accurate, but
both are probably fast enough and accurate enough for most applications.

The first method, based on work of Hastings [171], is one of several included
in Abramowitz and Stegun [3]. For > 0, it takes the form

1
- 14px’

®(x) 1 — @(x)(brt + bat® + bat® + byt* + bst®), ¢

for constants b; and p. The approximation extends to negative arguments
through the identity ®(—z) = 1 — ®(z). The necessary constants and an
explicit algorithm for this approximation are given in Figure 2.14. According
to Hastings [171, p.169], this method has a maximum absolute error less than

7.5 x 1078.

by = 0.319381530  p = 0.2316419
by = —0.356563782 ¢ = log(v/2m) = 0.918938533204672
by = 1.781477937

by = —1.821255978

bs = 1.330274429

Input:

Output: y, approximation to ®(z)

a — |z|

t—1/(14+ax*p)

s ((((bs xt +ba)*xt+bg)*xt+by)xt+b1)xt
y — s*xexp(—0.5xx*xx — )
if(a:>0)y<—1—y

return y;

Fig. 2.14. Hastings’ [171] approximation to the cumulative normal distribution as
modified in Abramowitz and Stegun [3].

The second method we include is from Marsaglia et al. [251]. Like the
Hastings approximation above, this method is based on approximating the
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ratio (1—®(z))/é(z). According to Marsaglia et al. [251], as an approximation
to the tail probability 1 — ®(z) this method has a maximum relative error of
1071 for 0 < z < 6.23025 and 10~ 2 for larger . (Relative error is much more
stringent than absolute error in this setting; a small absolute error is easily
achieved for large x using the approximation 1—®(z) = 0.) This method takes
about three times as long as the Hastings approximation, but both methods
are very fast. The complete algorithm appears in Figure 2.15.

v1 = 1.253314137315500 vg = 0.1231319632579329
vy = 0.6556795424187985 vio = 0.1097872825783083
vz = 0.4213692292880545 vi1 = 0.09902859647173193
vg = 0.3045902987101033 vi2 = 0.09017567550106468
vs = 0.2366523829135607 v1s = 0.08276628650136917
ve = 0.1928081047153158 via = 0.0764757610162485
vr = 0.1623776608968675 vis = 0.07106958053885211
vs = 0.1401041834530502
¢ = log(v/2m) = 0.918938533204672

Input: z between -15 and 15
Output: y, approximation to ®(z).
j < |min(|z| + 0.5, 14) |

ze—j, h—|zr|—2z a—vj41
b—zxa—1, g1, s«—a+hx*b
fori=2,4,6,...,24—3
a—(a+zxb)/i
be—(b+zxa)/(i +1)
q—q*xhxh
54—5+q*(a+h*b)

end
y=sxexp(—05*xzxx —c)
f(z>0)y—1-y

return y

Fig. 2.15. Algorithm of Marsaglia et al. [251] to approximate the cumulative normal
distribution.

Marsaglia et al. [251] present a faster approximation achieving similar
accuracy but requiring 121 tabulated constants. Marsaglia et al. also detail
the use of accurate approximations to ® in constructing approximations to
®~! by tabulating “exact” values at a large number of strategically chosen
points. Their method entails the use of more than 2000 tabulated constants,
but the constants can be computed rather than tabulated, given an accurate
approximation to .

Other methods for approximating ® and ®~! found in the literature are
often based on the error function
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2 € 2
Erf(m) = ﬁ‘/o e_t dt

and its inverse. Observe that for z > 0,
Erf(z) = 20(zV2) — 1, ®(z) = L[Erf(z/V2) +1]

and
Brf " (u) = i@-l(“—g}-), &=1(u) = vIEcE L (2u — 1),

V2
so approximations to Erf and its inverse are easily converted into approxima-
tions to ® and its inverse. Hastings [171], in fact, approximates Erf, so the
constants in Figure 2.14 (as modified in [3]) differ from his, with p smaller
and the b; larger by a factor of /2.

Devroye [95] discusses several other methods for sampling from the nor-
mal distribution, including some that may be substantially faster than evalu-
ation of 1. Nevertheless, as discussed in Section 2.2.1, the inverse transform
method has some advantages — particularly in the application of variance re-
duction techniques and low-discrepancy methods — that will often justify the
additional computational effort. One advantage is that the inverse transform
method requires just one uniform input per normal output: a relevant notion
of the dimension of a Monte Carlo problem is often the maximum number
of uniforms required to generate one sample path, so methods requiring more
uniforms per normal sample implicitly result in higher dimensional represen-
tations. Another useful property of the inverse transform method is that the
mapping u — ®~1(u) is both continuous and monotone. These properties can
sometimes enhance the effectiveness of variance reduction techniques, as we

will see in later sections.

2.3.3 Generating Multivariate Normals

A multivariate normal distribution N (u, X)) is specified by its mean vector u
and covariance matrix ¥. The covariance matrix may be specified implicitly
through its diagonal entries o7 and correlations p;; using (2.22); in matrix

form,

o1 P11 P12 P1d o1
02 P12 P22 P2d 02
Y = .
oF] P1d P2d * " Pdd o4

From the Linear Transformation Property (2.23), we know that if Z ~
N(0,I) and X = pu+ AZ, then X ~ N(u, AAT). Using any of the methods
discussed in Section 2.3.2, we can generate independent standard normal ran-
dom variables Z1, ..., Z; and assemble them into a vector Z ~ N(0,I). Thus,
the problem of sampling X from the multivariate normal N(u, ¥) reduces to
finding a matrix A for which AAT = X.
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Cholesky Factorization

Among all such A, a lower triangular one is particularly convenient because
it reduces the calculation of u + AZ to the following:

Xi=m+AuZ:
Xo = pg + A1 Z1 + AxnZs

Xqg=pq+AnZy +AqxZs + -+ AgaZq.

A full multiplication of the vector Z by the matrix A would require approx-
imately twice as many multiplications and additions. A representation of X
as AAT with A lower triangular is a Cholesky factorization of ¥. If ¥ is pos-
itive definite (as opposed to merely positive semidefinite), it has a Cholesky
factorization and the matrix A is unique up to changes in sign.

Consider a 2 x 2 covariance matrix Y, represented as

2
> = ( 71 ”1022”) .
g1020 05

Assuming o; > 0 and o4 > 0, the Cholesky factor is

A= (0’1 0 )
- P2 \/1—p20'2 ’

as is easily verified by evaluating AAT. Thus, we can sample from a bivariate
normal distribution N(u, ) by setting

X1 =pm +0121
Xo = pp +09pZ1 + 021 — p222,

with Z1, Z5 independent standard normals.
For the case of a d x d covariance matrix X, we need to solve

A A1 Ao - A

Aoy Ago Agg -+ Aaz
. o = 3.

Agi Ag2 - Add Add

Traversing the 3;; by looping over j = 1,...,d and then 7 = j,...,d produces
the equations
Al =3y
Ax Ay = Yo
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AaAin = Ean (2.29)
ASy + AZy = T

AGi+ -+ ALy = Daa.

Exactly one new entry of the A matrix appears in each equation, making it
possible to solve for the individual entries sequentially.
More compactly, from the basic identity

J
2ij = ZAikAjka Jj <1,

k=1
we get
j—1
Ay = (Ez’j - ZAz‘kAjk> [Ajz,  J<i, (2.30)
k=1
and
i—1
Ai = | B — Y A% (2.31)
k=1

These expressions make possible a simple recursion to find the Cholesky factor.
Figure 2.16 displays an algorithm based on one in Golub and Van Loan [162].
Golub and Van Loan [162] give several other versions of the algorithm and

also discuss numerical stability.

Input: Symmetric positive definite matrix d X d matrix X
Output: Lower triangular A with AAT =%

A — 0 (d x d zero matrix)
forj=1,...,d
fori=3,...,d
Vi — Xij
fork=1,...,5—1
v — v — AjrAik
Aij<—'l)i/\/ﬁj—'

return A

Fig. 2.16. Cholesky factorization.
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The Semidefinite Case

If ¥ is positive definite, an induction argument verifies that the quantity
inside the square root in (2.31) is strictly positive so the A;; are nonzero. This
ensures that (2.30) does not entail division by zero and that the algorithm in
Figure 2.16 runs to completion.

If, however, ¥ is merely positive semidefinite, then it is rank deficient. It
follows that any matrix A satisfying AAT = ¥ must also be rank deficient; for
if A had full rank, then ¥ would too. If A is lower triangular and rank deficient,
at least one element of the diagonal of A must be zero. (The determinant of a
triangular matrix is the product of its diagonal elements, and the determinant
of A is zero if A is singular.) Thus, for semidefinite ¥, any attempt at Cholesky
factorization must produce some A;; = 0 and thus an error in (2.31) and the
algorithm in Figure 2.16.

From a purely mathematical perspective, the problem is easily solved by
making the jth column of A identically zero if A;; = 0. This can be deduced
from the system of equations (2.29): the first element of the jth column of A
encountered in this sequence of equations is the diagonal entry; if A;; = 0, all
subsequent equations for the jth column of ¥ may be solved with 4;; = 0. In
the factorization algorithm of Figure 2.16, this is accomplished by inserting
“if v; > 0” before the statement “A;; < v;/,/v;.” Thus, if v; = 0, the entry
A;j is left at its initial value of zero.

In practice, this solution may be problematic because it involves checking
whether an intermediate calculation (v;) is exactly zero, making the modified
algorithm extremely sensitive to round-off error.

Rather than blindly subjecting a singular covariance matrix to Cholesky
factorization, it is therefore preferable to use the structure of the covariance
matrix to reduce the problem to one of full rank. If X ~ N(0,) and the d x d
matrix ¥ has rank k£ < d, it is possible to express all d components of X as
linear combinations of just k of the components, these k components having a
covariance matrix of rank k. In other words, it is possible to find a subvector
X = (Xi,,...,X;,) and a d x k matrix D such that DX ~ N(0,%) and for
which the covariance matrix & of X has full rank k. Cholesky factorization
can then be applied to % to find A satisfying AAT = 5. The full vector X
can be sampled by setting X = DAZ, Z ~ N(0,1).

Singular covariance matrices often arise from factor models in which a
vector of length d is determined by k < d sources of uncertainty (factors).
In this case, the prescription above reduces to using knowledge of the factor

structure to generate X.

Eigenvector Factorization and Principal Components

The equation AAT = ¥ can also be solved by diagonalizing ¥. As a symmetric
d x d matrix, ¥ has d real eigenvalues Aq,..., A4, and because ¥ must be
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positive definite or semidefinite the A; are nonnegative. Furthermore, ¥ has an
associated orthonormal set of eigenvectors {v1,...,vq}; i.e., vectors satisfying

-
Vs

vi=1, vlvi=0, j#i, 4,j=1,...,4d

and

Z’Ui = )\1’(}7,
It follows that ¥ = VAV, where V is the orthogonal matrix (VVT = I)
with columns v1,...,v4 and A is the diagonal matrix with diagonal entries
A1, ..., Aq. Hence, if we choose

VAL

)
A=VA2=v Via ' : (2.32)

then

AAT =VAVT =%,
Methods for calculating V' and A are included in many mathematical software
libraries and discussed in detail in Golub and Van Loan [162].

Unlike the Cholesky factor, the matrix A in (2.32) has no particular struc-
ture providing a computational advantage in evaluating AZ, nor is this matrix
faster to compute than the Cholesky factorization. The eigenvectors and eigen-
values of a covariance matrix do however have a statistical interpretation that
is occasionally useful. We discuss this interpretation next.

If X ~ N(0,X) and Z ~ N(0,1), then generating X as AZ for any choice
of A means setting

X =a1Z1+axdy+ -+ aqZq

where a; is the jth column of A. We may interpret the Z; as independent
factors driving the components of X, with A;; the “factor loading” of Z; on
X;. If ¥ has rank 1, then X may be represented as a;Z; for some vector aq,
and in this case a single factor suffices to represent X. If ¥ has rank k, then

k factors Z, ..., Zy suffice.
If ¥ has full rank and AAT = ¥, then A must have full rank and X = AZ

implies Z = BX with B = A~!. Thus, the factors Z; are themselves linear
combinations of the X;. In the special case of A given in (2.32), we have

A"t =A"2yT (2.33)

because V'V = I (V is orthogonal). It follows that Z; is proportional to
vaX , where v; is the jth column of V and thus an eigenvector of X.

The factors Z; constructed proportional to the vaX are optimal in a
precise sense. Suppose we want to find the best single-factor approximation
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to X; i.e., the linear combination w' X that best captures the variability of
the components of X. A standard notion of optimality chooses w to maximize
the variance of w' X, which is given by w ' Xw. Since this variance can be
made arbitrarily large by multiplying any w by a constant, it makes sense to
impose a normalization through a constraint of the form w'w = 1. We are

thus led to the problem

max w' Yw.
wiw T w=1

If the eigenvalues of 3 are ordered so that
/\1 2/\2 ZZAda

then this optimization problem is solved by wv;, as is easily verified by ap-
pending the constraint with a Lagrange multiplier and differentiating. (This
optimality property of eigenvectors is sometimes called Rayleigh’s principle.)
The problem of finding the next best factor orthogonal to the first reduces to

solving

max w! Jw.
wiw Tw=1,wT v;=0

This optimization problem is solved by vs. More generally, the best k-factor
approximation chooses factors proportional to v{ X, vy X, ... ,v,;rX . Since

T o .

normalizing the vaX to construct unit-variance factors yields

1
va X,
VA
which coincides with (2.33). The transformation X = AZ recovering X from

the Z; is precisely the A in (2.32).
The optimality of this representation can be recast in the following way.

Z; =

Suppose that we are given X and that we want to find vectors aq,...,ax in
¢ and unit-variance random variables Zi, ..., Z in order to approximate X
by a1Z;1 + -+ + apZy. For any k = 1,...,d, the mean square approximation
error
k
E [uX - Zaizz-nz} . (2P =<Ta)
i=1

is minimized by taking the a; to be the columns of A in (2.32) and setting
Zi = UiT X / \/5\: .

In the statistical literature, the linear combinations v X are called the
principal components of X (see, e.g., Seber [325]). We may thus say that the
principal components provide an optimal lower-dimensional approximation to
a random vector. The variance ezxplained by the first k principal components

is the ratio
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ALt A
; 2.34
AL+t At A (2:34)

in particular, the first principal component is chosen to explain as much vari-
ance as possible. In simulation applications, generating X from its principal
components (i.e., using (2.32)) is sometimes useful in designing variance re-
duction techniques. In some cases, the principal components interpretation
suggests that variance reduction should focus first on Z;, then on Z5, and so
on. We will see examples of this in Chapter 4 and related ideas in Section 5.5.
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Generating Sample Paths

This chapter develops methods for simulating paths of a variety of stochastic
processes important in financial engineering. The emphasis in this chapter is
on methods for ezact simulation of continuous-time processes at a discrete
set of dates. The methods are exact in the sense that the joint distribution of
the simulated values coincides with the joint distribution of the continuous-
time process on the simulation time grid. Exact methods rely on special fea-
tures of a model and are generally available only for models that offer some
tractability. More complex models must ordinarily be simulated through, e.g.,
discretization of stochastic differential equations, as discussed in Chapter 6.

The examples covered in this chapter are arranged roughly in increasing or-
der of complexity. We begin with methods for simulating Brownian motion in
one dimension or multiple dimensions and extend these to geometric Brownian
motion. We then consider Gaussian interest rate models. Our first real break
from Gaussian processes comes in Section 3.4, where we treat square-root dif-
fusions. Section 3.5 considers processes with jumps as models of asset prices.
Sections 3.6 and 3.7 treat substantially more complex models than the rest of
the chapter; these are interest rate models that describe the term structure
through a curve or vector of forward rates. Exact simulation of these models is
generally infeasible; we have included them here because of their importance
in financial engineering and because they illustrate some of the complexities
of the use of simulation for derivatives pricing.

3.1 Brownian Motion

3.1.1 One Dimension

By a standard one-dimensional Brownian motion on [0, 7], we a mean a sto-
chastic process {W(t),0 < t < T'} with the following properties:

(i) W(0)=0;
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(i) the mapping t — W(t) is, with probability 1, a continuous function on
[0, T;

(iii) the increments {W(t1) — W (to), W(tz) — W(t1),...,W(tx) — W(tk-1)}
are independent for any k and any 0 <tp <t; <. <t <T;

(iv) W(t) —W(s) ~N(0,t —s) forany 0 <s <t <T.

In (iv) it would suffice to require that W (t) — W (s) have mean 0 and variance

t — s; that its distribution is in fact normal follows from the continuity of

sample paths in (ii) and the independent increments property (iii). We include

the condition of normality in (iv) because it is central to our discussion. A

consequence of (i) and (iv) is that
W (t) ~ N(0,1), (3.1)

for0<t<T.
For constants u and o > 0, we call a process X (¢) a Brownian motion with

drift 4 and diffusion coefficient 02 (abbreviated X ~ BM(u, 02)) if
X(t) —pt

o
is a standard Brownian motion. Thus, we may construct X from a standard

Brownian motion W by setting
X (t) = pt + oW(t).

It follows that X (t) ~ N(ut,o?t). Moreover, X solves the stochastic differen-
tial equation (SDE)
dX(t) = pdt+ o dW(t).

The assumption that X (0) = 0 is a natural normalization, but we may con-
struct a Brownian motion with parameters y and o2 and initial value z by
simply adding x to each X (t).

For deterministic but time-varying u(t) and o(t) > 0, we may define a
Brownian motion with drift x and diffusion coefficient 02 through the SDE

dX (t) = p(t) dt + o(t) dW(1);

i.e., through
t

X(t) = X(0) +/O w(s) ds+/0 o(s)dW (s),

vith X (0) an arbitrary constant. The process X has continuous sample paths
wnd independent increments. Each increment X (¢) — X (s) is normally distrib-
1ted with mean

ELX (1) — X(s)] = / () du

nd variance

Var[X (£) — X (s)] = Var [ / o(u) dW(u)J - / o2 (w) du
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Random Walk Construction

In discussing the simulation of Brownian motion, we mostly focus on simulat-
ing values (W(ty),...,W(t,)) or (X(t1),...,X(tn)) at a fixed set of points
0 <t; <. - <ty Because Brownian motion has independent normally dis-
tributed increments, simulating the W (¢;) or X (t;) from their increments is
straightforward. Let Z1, ..., Z, be independent standard normal random vari-
ables, generated using any of the methods in Section 2.3.2, for example. For
a standard Brownian motion set top = 0 and W (0) = 0. Subsequent values can
be generated as follows:

W(ti-}—l) = W(ti)—l— Vitie1 —tiZiv1, t=0,...,n—1, (32)
For X ~ BM(u,0?) with constant 4 and ¢ and given X (0), set
X(tig1) = X(t:) + p(tiz1r — ts) + o/tiy1 —tiZiy1, 1=0,...,n—1. (3.3)

With time-dependent coefficients, the recursion becomes

tit1 tit1
X(t¢+1)=X(ti)+/ M(S)d8+\// 02(u)duZz-+1, i=0,~..,n—1.
t; t;

(3.4)
The methods in (3.2)—(3.4) are exact in the sense that the joint distri-
bution of the simulated values (W (t1),...,W(t,)) or (X (t1),...,X(tn)) co-
incides with the joint distribution of the corresponding Brownian motion at
t1,...,tn. Of course, this says nothing about what happens between the ¢;.
One may extend the simulated values to other time points through, e.g., piece-
wise linear interpolation; but no deterministic interpolation method will give
the extended vector the correct joint distribution. The methods in (3.2)—(3.4)
are exact at the time points ¢q,...,%, but subject to discretization error, com-
pared to a true Brownian motion, if deterministically interpolated to other

time points. Replacing (3.4) with the Euler approximation

X(ti'f‘l) = X(t’b) + /J’(ti)(tH'] - tz) + O-(tl) tit1 — tiZH—l) 1= 07 cooyn— 1,

will in general introduce discretization error even at ti,...,t,, because the
increments will no longer have exactly the right mean and variance. We return
to the topic of discretization error in Chapter 6.

The vector (W(t1),...,W(t,)) is a linear transformation of the the vec-
tor of increments (W (t1), W(t2) — W(t1),...,W(tn) — W(tn-1)). Since these
increments are independent and normally distributed, it follows from the Lin-
ear Transformation Property (2.23) that (W (¢1),...,W(¢,)) has a multivari-
ate normal distribution. Simulating (W (¢1),..., W (t,)) is thus a special case
of the general problem, treated in Section 2.3.3, of generating multivariate
normal vectors. While the random walk construction suffices for most appli-
cations, it is interesting and sometimes useful to consider alternative sampling

methods.
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To apply any of the methods considered in Section 2.3.3, we first need
to find the mean vector and covariance matrix of (W (t¢1),...,W(t,)). For a
standard Brownian motion, we know from (3.1) that E[W(¢;)] = 0, so the
mean vector is identically 0. For the covariance matrix, consider first any
0 < s <t < T, using the independence of the increments we find that

Cov[W (s), W(¢t)] = Cov[W (s), W(s) + (W (t) — W(s))]
= Cov[W (s), W (s)] + Cov[W (s), W (t) — W(s)]
=s+0=s. (3.5)

Letting C denote the covariance matrix of (W (t1),..., W(t,)), we thus have

Cij = min(ti,tj). (36)

Cholesky Factorization

Having noted that the vector (W (t1), ..., W(t,)) has the distribution N (0, C),
with C asin (3.6), we may simulate this vector as AZ, where Z=(Z1,...,Z,)"
~ N(0,1I) and A satisfies AAT = C. The Cholesky method discussed in Sec-
sion 2.3.3 takes A to be lower triangular. For C in (3.6), the Cholesky factor

s given by
VE 0 0
\/Ev/t2~t1~-- 0

\/E\/t2—t1 \/tn—tn—l
s can be verified through calculation of AAT. In this case, generating
W(t1),...,W(tn)) as AZ is simply a matrix-vector representation of the
ecursion in (3.2). Put differently, the random walk construction (3.2) may be
iewed as an efficient implementation of the product AZ. Even exploiting the
>wer triangularity of A, evaluation of AZ is an O(n?) operation; the random
ralk construction reduces this to O(n) by implicitly exploiting the fact that
he nonzero entries of each column of A are identical.

For a BM(u,0?) process X, the mean vector of (X(t1),...,X(¢,)) has
;h component ut; and the covariance matrix is 02C. The Cholesky factor
i 0 A and we once again find that the Cholesky method coincides with the
icrement recursion (3.3).

srownian Bridge Construction

he recursion (3.2) generates the vector (W (t1),..., W(t,)) from left to right.
/e may however generate the W(¢;) in any order we choose, provided that
; each step we sample from the correct conditional distribution given the
lues already generated. For example, we may first generate the final value
’(tn), then sample W (t|,/2)) conditional on the value of W (t,), and proceed
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by progressively filling in intermediate values. This flexibility can be useful in
implementing variance reduction techniques and low-discrepancy methods. It
follows from the Conditioning Formula (2.24) that the conditional distribu-
tion needed at each step is itself normal and this makes conditional sampling
feasible.

Conditioning a Brownian motion on its endpoints produces a Brownian
bridge. Once we determine W (t,), filling in intermediate values amounts to
simulating a Brownian bridge from 0 = W(0) to W (t,). If we next sample
W (t|n/2)), then filling in values between times ¢|,/2) and ¢, amounts to sim-
ulating a Brownian bridge from W(t|,/5) to W(t,). This approach is thus
referred to as a Brownian bridge construction.

As a first step in developing this construction, suppose 0 < u < s < t
and consider the problem of generating W(s) conditional on W{u) = z and
W (t) = y. We use the Conditioning Formula (2.24) to find the conditional
distribution of W{s). We know from (3.5) that the unconditional distribution

is given by

W(s) | ~N|0,{uss
W(t) ust

The Conditioning Formula (2.24) gives the distribution of the second compo-
nent of a partitioned vector conditional on a value of the first component. We
want to apply this formula to find the distribution of W (s) conditional on the
value of (W (u), W(t)). We therefore first permute the entries of the vector to

get

W (s) SU S
W) | ~N [0, | vuu
W (t) sut

We now find from the Conditioning Formula that, given (W (u) = z, W(t) =
y), W (s) is normally distributed with mean

EW ()W (u) =z, W(t) = y] =
0_(u8)<uu>_l(:c):(t—s)m+(8~u)y, 57

Ut Y

and variance

() ()-SRt e

() = ().

In particular, the conditional mean (3.7) is obtained by linearly interpolating
between (u,z) and (t,y).

since
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Suppose, more generally, that the values W(s1) = z1, W(s2) = z2, ...,
W (sk) = xx of the Brownian path have been determined at the times s; <
s9 < -+ < 8 and that we wish to sample W (s) conditional on these values.
Suppose that s; < s < s;41. Then

(W)W (sj) =xj,j=1,...,k) = (W(s)|W(s;) = x4, W(si41) = Tit1),

in the sense that the two conditional distributions are the same. This can again
be derived from the Conditioning Formula (2.24) but is more immediate from
the Markov property of Brownian motion (a consequence of the independent
increments property): given W(s;), W(s) is independent of all W(t) with
t < si, and given W(s;41) it is independent of all W(t) with ¢t > s;41. Thus,
conditioning on all W(s;) is equivalent to conditioning on the values of the
Brownian path at the two times s; and s;+1 closest to s. Combining these
bservations with (3.7) and (3.8), we find that

(W(S),W(sl) = xl,W(SQ) = T2, -y W(Sk) = Q’,‘k) =

(Si41 = 8)Ti + (5 — 83)Tip1 (Sit1 — 8)(s — s;)
N < (8i+1 — 8i) T (841 — i) ) '

Chis is illustrated in Figure 3.1. The conditional mean of W (s) lies on the
ine segment connecting (s;, ;) and (s;11, Zs41); the actual value of W(s) is
wormally distributed about this mean with a variance that depends on (s—s;)
nd (s;+1 — s). To sample from this conditional distribution, we may set

Wi(s) = (31'+1 — 8)z; + (8 — 8;)Tit1 4 \/(siﬂ —s)(s — Si)Z,

(Sit1 — i) (8ix1 — 8i)

ith Z ~ N(0,1) independent of all W(sy),..., W(sg).

By repeatedly using these observations, we may indeed sample the com-
onents of the vector (W (t1),...,W(t,)) in any order. In particular, we may
art by sampling W (t,,) from N(0,t,) and proceed by conditionally sampling
termediate values, at each step conditioning on the two closest time points
ready sampled (possibly including W (0) = 0).

If n is a power of 2, the construction can be arranged so that each W (t;),
< n, is generated conditional on the values W (t;) and W (t,) with the
‘operty that ¢ is midway between ¢ and r. Figure 3.2 details this case. If, for
-ample, n = 16, the algorithm starts by sampling W (¢14); the first loop over
samples W (tg); the second samples W (ty) and W (ty2); the third samples
(t2), Wi(ts), W(t1), and W(t14); and the final loop fills in all W (t;) with
ld . If n is not a power of 2, the algorithm could still be applied to a subset

2™ < n of the t;, with the remaining points filled in at the end.

Our discussion of the Brownian bridge construction (and Figure 3.2 in
rticular) has considered only the case of a standard Brownian motion. How
vuld the construction be modified for a Brownian motion with drift 4? Only
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I+1 7

Si $ Si+1

Fig. 3.1. Brownian bridge construction of Brownian path. Conditional on W(s;) =
x; and W(si4+1) = zi+1, the value at s is normally distributed. The conditional mean
is obtained by linear interpolation between z; and z;41; the conditional variance is

obtained from (3.8).

Input: Time indices (t1,...,tam)
Output: Path (wy,...,wsm) with distribution of (W (t1),..., W (tam))

Generate (Z1,...,Zom) ~ N(0,1)
h <« 2™, Jmax < 1
Wh \/E;Zh
to<— 0, wo«0
fork=1,...,m
Tmin — h/2, % — Tmin
L—0, r<h
for j=1,..., jmax
@ ((tr = tawe + (b — tew,) /(£ — to)
b /(ti — te)(tr — t:)/(tr — to)
w; — a+ bZ;
t+—1i4+h; L<—L+h, re—r+h
end
Jmax < 2% Jmax;
h < imin;
end
return (wi, ..., wam)

Fig. 3.2. Implementation of Brownian bridge construction when the number of
time indices is a power of 2. The conditional standard deviations assigned to b could
be precomputed and stored in an array (bi,...,bem ) if multiple paths are to be
generated. The interpolation weights used in calculating the conditional mean a

could also be precomputed.
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the first step — sampling of the rightmost point — would change. Instead
of sampling W (t,,) from N (0, ¢,,), we would sample it from N (ut,,, tm). The
conditional distribution of W(t1),...,W(tn—1) given W(t,,) is the same for
all values of p. Put slightly differently, a Brownian bridge constructed from
a Brownian motion with drift has the same law as one constructed from a
standard Brownian motion. (For any finite set of points ¢, ...,t,_1 this can
be established from the Conditioning Formula (2.24).) Hence, to include a
drift p in the algorithm of Figure 3.2, it suffices to change just the third
line, adding utp to wy. For a Brownian motion with diffusion coefficient o2,
the conditional mean (3.7) is unchanged but the conditional variance (3.8)
is multiplied by 2. This could be implemented in Figure 3.2 by multiplying
each b by o (and setting wy, < utp + o+/tpZ, in the third line); alternatively,
the final vector (wy,...,wsm ) could simply be multiplied by o.

Why use a Brownian bridge construction? The algorithm in Figure 3.2 has
no computational advantage over the simple random walk recursion (3.2). Nor
loes the output of the algorithm have any statistical feature not shared by
she output of (3.2); indeed, the Brownian bridge construction is valid precisely
>ecause the distribution of the (W (1), ..., W(t,,)) it produces coincides with
‘hat resulting from (3.2). The potential advantage of the Brownian bridge
sonstruction arises when it is used with certain variance reduction techniques
wnd low-discrepancy methods. We will return to this point in Section 4.3 and
“hapter 5. Briefly, the Brownian bridge construction gives us greater control
wer the coarse structure of the simulated Brownian path. For example, it
iIses a single normal random variable to determine the endpoint of a path,
vhich may be the most important feature of the path; in contrast, the end-
oint obtained from (3.2) is the combined result of n independent normal
andom variables. The standard recursion (3.2) proceeds by evolving the path
>rward through time; in contrast, the Brownian bridge construction proceeds
v adding increasingly fine detail to the path at each step, as illustrated in
igure 3.3. This can be useful in focusing variance reduction techniques on
important” features of Brownian paths.

'rincipal Components Construction

s just noted, under the Brownian bridge construction a single normal random
wriable (say Z;) determines the endpoint of the path; conditional on the
wdpoint, a second normal random variable (say Z;) determines the midpoint
" the path, and so on. Thus, under this construction, much of the ultimate
1ape of the Brownian path is determined (or explained) by the values of just
e first few Z;. Is there a construction under which even more of the path
determined by the first few Z;? Is there a construction that maximizes the
wriability of the path explained by Z3,...,Z; forall k=1,...,n?

This optimality objective is achieved for any normal random vector by the
incipal components construction discussed in Section 2.3.3. We now discuss
s application to a discrete Brownian path W(t1),..., W(ty). It is useful to
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0 0
0 0

Fig. 3.3. Brownian bridge construction after 1, 2, 4, and 8 points have been sampled.
Each step refines the previous path.

visualize the construction in vector form as

W (t1) ai a2 a1n

W (t2) a21 a2 Q2n
) = . Z1 + ) Zy+ -+ ) - (3.9)

W(tn> an1 an2 Ann
Let a; = (ai;,...,an;)' and let A be the n x n matrix with columns
ai,...,a,. We know from Section 2.3.3 that this is a valid construction of

the discrete Brownian path if AAT is the covariance matrix C of W =
(W(t1),...,W(tn))T, given in (3.6). We also know from the discussion of
principal components in Section 2.3.3 that the approximation error

k
E [HW - Z aiZillz} (lz)* = ")

from using just the first k& terms in (3.9) is minimized for all k = 1,...,n
by using principal components. Specifically, a; = v Ajv;, ¢ = 1,...,n, where
A1 > Ay > - > Xy > 0 are the eigenvalues of C' and the v; are eigenvectors,

C’UZ'=)\¢’UZ', i=1,...,n,
normalized to have length ||v;|| = 1.

Consider, for example, a 32-step discrete Brownian path with equal time
increments ¢;41 — t; = 1/32. The corresponding covariance matrix has entries
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Zij = min(¢,5)/32, 1,7 = 1,...,32. The magnitudes of the eigenvalues of this
natrix drop off rapidly — the five largest are 13.380, 1.489, 0.538, 0.276, and
).168. The variability explained by Z1, ..., Z (in the sense of (2.34)) is 81%,
0%, 93%, 95%, and 96%, for k = 1,...,5; it exceeds 99% at k = 16. This
ndicates that although full construction of the 32-step path requires 32 normal
andom variables, most of the variability of the path can be determined using
ar fewer Z;.

Figure 3.4 plots the normalized eigenvectors vy, va, vs, and vs associated
7ith the four largest eigenvalues. (Each of these is a vector with 32 entries;
hey are plotted against the jA¢, j = 1,...,32, with At = 1/32.) The v;
ppear to be nearly sinusoidal, with frequencies that increase with 7. Indeed,
kesson and Lehoczky [8] show that for an n-step path with equal spacing
1 — bt = At,

) 2 , (21'—1.) 1
Ui = n T, =1...,n,
I Tl 1’ J

nd At 21— 1
1—17
A\ = —sin~? —
T (2n+12>’
r ¢ =1,...,n To contrast this with the Brownian bridge construction in

igure 3.3, note that in the principal components construction the v; are
ultiplied by v/A;Z; and then summed; thus, the discrete Brownian path
ay be viewed as a random linear combination of the vectors v;, with random
eficients v/\; Z;. The coefficient on v; has variance \; and we have seen that
e \; drop off quickly. Thus, the first few v; (and v/A\;Z;) determine most of
e shape of the Brownian path and the later v; add high-frequency detail to
e path. As in the Brownian bridge construction, these features can be useful
implementing variance reduction techniques by making it possible to focus
i the most important Z;. We return to this point in Sections 4.3.2 and 5.5.2.
Although the principal components construction is optimal with respect
explained variability, it has two drawbacks compared to the random walk
d Brownian bridge constructions. The first is that it requires O(n?) oper-
ions to construct W (ty),...,W(t,) from Zy,...,Z,, whereas the previous
nstructions require O(n) operations. The second (potential) drawback is
at with principal components none of the W(t;) is fully determined until
Z1, ..., 2y, have been processed — i.e., until all terms in (3.9) have been
mmed. In contrast, using either the random walk or Brownian bridge con-
uction, exactly k of the W(t1),...,W(t,) are fixed by the first k£ normal
adom variables, for all k = 1,...,n.
We conclude this discussion of the principal components construction with
rief digression into simulation of a continuous path {W(¢),0 <¢ < 1}. In
» discrete case, the eigenvalue-eigenvector condition Cv = Av is (recall (3.6))

Zmin(ti,tj)v(j) = Au(i).

m—

M R

[ o
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Fig. 3.4. First four eigenvectors of the covariance matrix of a 32-step Brownian
path, ordered according to the magnitude of the corresponding eigenvalue.

In the continuous limit, the analogous property for an eigenfunction 1 on
[0,1] is

/0 min(s, £)ib(s) ds = Ap(#).

The solutions to this equation and the corresponding eigenvalues are

e (24 Dt o 2\
wz(t)—\/ism <——2‘—“—>, )\1— (m) y ’1,——0,]_,2,....

Note in particular that the 1); are periodic with increasing frequencies and
that the A; decrease with ¢. The Karhounen-Loéve expansion of Brownian

motion is

W (t) = i Vi) Z:, 0<t< 1, (3.10)

with Zy, Z1,... independent N(0,1) random variables; see, e.g., Adler [5].
This infinite series is an exact representation of the continuous Brownian
path. It may be viewed as a continuous counterpart to (3.9). By taking just
the first £ terms in this series, we arrive at an approximation to the contin-
uous path {W(¢),0 < ¢ < 1} that is optimal (among all approximations that
use just k standard normals) in the sense of explained variability. This ap-
proximation does not however yield the exact joint distribution for any subset
{W(t1),...,W(tn)} except the trivial case {W(0)}.

The Brownian bridge construction also admits a continuous counterpart
through a series expansion using Schauder functions in place of the /A;
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in (3.10). Lévy [233, pp.17-20] used the limit of the Brownian bridge con-
struction to construct Brownian motion; the formulation as a series expan-
sion is discussed in Section 1.2 of McKean [260]. Truncating the series after
2™ terms produces the piecewise linear interpolation of a discrete Brownian
bridge construction of W(0), W(2=™),...,W(1). See Acworth et al. [4] for
further discussion with applications to Monte Carlo.

3.1.2 Multiple Dimensions

We call a process W (t) = (Wy(t),...,Wa(t))T, 0 <t < T, a standard Brown-
ian motion on R¢ if it has W(0) = 0, continuous sample paths, independent
increments, and

W (t) — W(s) ~ N0, (t — s)I),

for all 0 < s <t < T, with I the d X d identity matrix. It follows that each
of the coordinate processes W;(t), i = 1,...,d, is a standard one-dimensional
Brownian motion and that W; and W; are independent for ¢ # j.

Suppose 4 is a vector in R¢ and ¥ is a d x d matrix, positive definite
or semidefinite. We call a process X a Brownian motion with drift x and
covariance ¥ (abbreviated X ~ BM(u, X)) if X has continuous sample paths
and independent increments with

X(t) — X(s) ~ N((t —s)u, (t —s)X).

The initial value X (0) is an arbitrary constant assumed to be 0 unless oth-
erwise specified. If B is a d x k matrix satisfying BBT = ¥ and if W is a
standard Brownian motion on R*, then the process defined by

X (t) = ut + BW(t) (3.11)

is a BM(u, X). In particular, the law of X depends on B only through BB'.
The process in (3.11) solves the SDE

dX(t) = pdt + BdW (t).

We may extend the definition of a multidimensional Brownian motion to de-
terministic, time-varying p(t) and X(¢) through the solution to

dX(t) = p(t) dt + B(t) dW (2),

where B(t)B" (t) = X(t). This process has continuous sample paths, indepen-
lent increments, and

X(t)—X(S)NN(/St/,L(’U,)d'LL,/StZ(’U,)d’U,>.

A calculation similar to the one leading to (3.5) shows that if X ~
3M(u, X), then
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COV[XZ'(S), Xj (t)] = min(s, t)Ew (312)

In particular, given a set of times 0 < t; < t3 < --- < t,;, we can easily find
the covariance matrix of

(Xl(tl), - ,Xd(tl),Xl(tz), - ,Xd(tz), .. ,X1(tn), .. ,Xd(tn)) (3.13)

along with its mean and reduce the problem of generating a discrete path of
X to one of sampling this nd-dimensional normal vector. While there could
be cases in which this is advantageous, it will usually be more convenient to
use the fact that this nd-vector is the concatenation of d-vectors representing
the state of the process at n distinct times.

Random Walk Construction

Let Z1, Za, ... be independent N (0, I') random vectors in R4, We can construct

a standard d-dimensional Brownian motion at times 0 = tg < t1 < -+ < tp,
by setting W(0) = 0 and
W(ti+1) = W(tz) + Vti+1 _t'iZ'i-f-l) t=0,...,n—1. (314)

This is equivalent to applying the one-dimensional random walk construction
(3.2) separately to each coordinate of W.

To simulate X ~ BM(u, ), we first find a matrix B for which BBT = %
(see Section 2.3.3). If B is dx k, let Z1, Zs, ... be independent standard normal

random vectors in R**. Set X (0) = 0 and
X(ti+1) = X(tz) + N(ti-f-l - tz') +tiv1 —t;BZ;, 1=0,...,n—1. (315)
Thus, simulation of BM(u,Y) is straightforward once ¥ has been factored.

For the case of time-dependent coefficients, we may set

tit1
X(ti+1) :X(tz)—f—/ M(S)d8+B(ti,ti+1)ZZ‘, 1=0,...,n—1,
t;
with
T tit1
B(ts, tiv1)B(ti, tigr) = / Y (u) du,
t;

thus requiring n factorizations.

Brownian Bridge Construction

Application of a Brownian bridge construction to a standard d-dimensional
Brownian motion is straightforward: we may simply apply independent one-
dimensional constructions to each of the coordinates. To include a drift vector
(i.e., for BM(u, I) process), it suffices to add p;t, to W;(t,) at the first step
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of the construction of the ith coordinate, as explained in Section 3.1.1. The
rest of the construction is unaffected.

To construct X ~ BM(u,X), we may use the fact that X can be rep-
resented as X (t) = pt + BW(t) with B a d x k matrix, k& < d, satisfy-
ing BB" = X, and W a standard k-dimensional Brownian motion. We may
then apply a Brownian bridge construction to W(t1),..., W(t,) and recover
X(t1),...,X(tn) through a linear transformation.

Principal Components Construction

As with the Brownian bridge construction, one could apply a one-dimensional
principal components construction to each coordinate of a multidimensional
Brownian motion. Through a linear transformation this then extends to the
construction of BM(u, X). However, the optimality of principal components is
lost in this reduction; to recover it, we must work directly with the covariance
matrix of (3.13).

It follows from (3.12) that the covariance matrix of (3.13) can be repre-
sented as (C' ® X), where ® denotes the Kronecker product producing

Cn2 CpX -+ C1pX

(CRY)=
C’nlE CnZE e C(nnE
If C has eigenvectors vy,...,v, and eigenvalues A\; > --- > A,, and if ¥
has eigenvectors wsy,...,wy and eigenvalues 71 > --- > nq, then (C ® X)
has eigenvectors (v; ® w;) and eigenvalues A\;n;, ¢ =1,...,n, j = 1, x,d. This

special structure of the covariance matrix of (3.12) makes it possible to reduce
;he computational effort required to find all eigenvalues and eigenvectors from
she O((nd)?) typically required for an (nd x nd) matrix to O(n3 + d3).

If we rank the products of eigenvalues as

Mm@ = inj)@ = - (Ain) (nay.
hen for any k=1,...,n,
k
Z’r‘zl()‘inj)(r) < Zle )\z
Z:’Lil(/\i/r/j)(r) B Zz’:l Ai

n other words, the variability explained by the first k& factors is always smaller
r a d-dimensional Brownian motion than it would be for a scalar Brown-
wn motion over the same time points. This is to be expected since the d-
imensional process has greater total variability.
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3.2 Geometric Brownian Motion

A stochastic process S(t) is a geometric Brownian motion if log S(t) is a
Brownian motion with initial value logS(0); in other words, a geometric
Brownian motion is simply an exponentiated Brownian motion. Accordingly,
all methods for simulating Brownian motion become methods for simulating
geometric Brownian motion through exponentiation. This section therefore
focuses more on modeling than on algorithmic issues.

Geometric Brownian motion is the most fundamental model of the value
of a financial asset. In his pioneering thesis of 1900, Louis Bachelier developed
a model of stock prices that in retrospect we describe as ordinary Brownian
motion, though the mathematics of Brownian motion had not yet been de-
veloped. The use of geometric Brownian motion as a model in finance is due
primarily to work of Paul Samuelson in the 1960s. Whereas ordinary Brown-
ian motion can take negative values — an undesirable feature in a model of
the price of a stock or any other limited liability asset — geometric Brownian
motion is always positive because the exponential function takes only positive
values. More fundamentally, for geometric Brownian motion the percentage

changes

S(ta) — S(t1) S(ts) — S(tz) S(tn) — S(tn-1) (3.16)
Sit) 7 St 7 S(ta-1) '
are independent for t; < t3 < --- < t,, rather than the absolute changes
S(t;+1) — S(t;). These properties explain the centrality of geometric rather
than ordinary Brownian motion in modeling asset prices.

3.2.1 Basic Properties
Suppose W is a standard Brownian motion and X satisfies
dX(t) = pdt + o dW(t),

so that X ~ BM(u,c?). If we set S(t) = S(0)exp(X(t)) = f(X(¢)), then an
application of It6’s formula shows that

dS(t) = f/(X(t))dX (t) + 30° f"(X (1)) dt
= S(0) exp(X ())[udt + o AW (t)] + $5°5(0) exp(X (t)) dt
= S(t)(u+ Lo?) dt + S(t)o dW (¢). (3.17)

In contrast, a geometric Brownian motion process is often specified through

an SDE of the form a5 ()
—= =pdt +odW(t 3.18

an expression suggesting a Brownian model of the “instantaneous returns”
dS(t)/S(t). Comparison of (3.17) and (3.18) indicates that the models are
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inconsistent and reveals an ambiguity in the role of “x.” In (3.17), 1 is the
drift of the Brownian motion we exponentiated to define S(¢) — the drift of
log S(t). In (3.18), S(t) has drift xS(¢) and (3.18) implies

dlog S(t) = (u — 20°) dt + o dW (1), (3.19)

as can be verified through It&’s formula or comparison with (3.17).

We will use the notation S ~ GBM(u, 02) to indicate that S is a process of
the type in (3.18). We will refer to p in (3.18) as the drift parameter though
it is not the drift of either S(¢) or logS(t). We refer to o in (3.18) as the
volatility parameter of S(t); the diffusion coefficient of S(t) is 02S52(t).

From (3.19) we see that if S ~ GBM(u, 02) and if S has initial value S(0),
then

S(t) = S(0)exp ([u— 20?)t +oW(t)). (3.20)
A bit more generally, if u < t then
S(t) = S(u)exp ([,u — %02](t —u)+o(W(t) - W(u))) , (3.21)

from which the claimed independence of the returns in (3.16) becomes ev-
ident. Moreover, since the increments of W are independent and normally
distributed, this provides a simple recursive procedure for simulating values
of Sat 0=ty <t1 < -+ <tp:

S(ti+1) = S(t:) exp ([M — 20%(tiy1 — ti) + o/tig1 — tz'Z'H-l) , (3.22)
i=0,1,...n—1,

with Zy, Zs, ..., Z, independent standard normals. In fact, (3.22) is equivalent
to exponentiating both sides of (3.3) with u replaced by u— %02. This method
is ezact in the sense that the (S(¢1),...,S5(ty)) it produces has the joint dis-
tribution of the process S ~ GBM(u,0?) at t1,...,t, — the method involves
no discretization error. Time-dependent parameters can be incorporated by
exponentiating both sides of (3.4).

Lognormal Distribution

from (3.20) we see that if S ~ GBM(u,o?), then the marginal distribution
of S(t) is that of the exponential of a normal random variable, which is called
v lognormal distribution. We write Y ~ LN (u,0?) if the random variable Y
1as the distribution of exp(u + 0Z), Z ~ N(0,1). This distribution is thus
siven by

P(Y <y) = P(Z < [log(y) — u]/0)
- (log(y) —u)
— (_____

nd its density by



3.2 Geometric Brownian Motion 95

. ¢ (k-)—g—(w) : (3.23)

yo o
Moments of a lognormal random variable can be calculated using the basic
identity
1
E[e??] = €2
for the moment generating function of a standard normal. From this it follows
that Y ~ LN (u,0?) has

1 2
E[Y] = e*t2°, Var[Y] = e2uto’ (e" — 1) ;

in particular, the notation Y ~ LN (u,0?) does not imply that yu and o2 are
the mean and variance of Y. From

P(Y<et)=P(Z<0)=1

we see that e” is the median of Y. The mean of Y is thus larger than the
median, reflecting the positive skew of the lognormal distribution.

Applying these observations to (3.20), we find that if S ~ GBM(u,o?)
then (S(¢)/S(0)) ~ LN([u — 302]t,0%t) and

E[S(£)] = e#S(0), Var[S(t)] = e2152(0) (e"zt . 1) .

In fact, we have
E[S®)|S(7),0 <7 <u] =E[S®)|S(u)] = e*t¥S(w), u<t,  (3.24)

and an analogous expression for the conditional variance. The first equality
in (3.24) is the Markov property (which follows from the fact that S is a one-
to-one transformation of a Brownian motion, itself a Markov process) and the
second follows from (3.21).

Equation (3.24) indicates that u acts as an average growth rate for S, a
sort of average continuously compounded rate of return. Along a single sample
path of S the picture is different. For a standard Brownian motion W, we have
t~1W (t) — 0 with probability 1. For S ~ GBM(u, 02), we therefore find that

1
~log S(t) = p = 30,

with probability 1, so yu— %0'2 serves as the growth rate along each path. If this
expression is positive, S(t) — oo as t — oo; if it is negative, then S(t) — 0.
In a model with 4 > 0 > p — 302, we find from (3.24) that E[S(t)] grows
exponentially although S(t) converges to 0. This seemingly pathological be-
havior is explained by the increasing skew in the distribution of S(¢): although
S(t) — 0, rare but very large values of S(t) are sufficiently likely to produce
an increasing mean.



3.2.2 Path-Dependent Options

Our interest in simulating paths of geometric Brownian motion lies primarily
in pricing options, particularly those whose payoffs depend on the path of an
underlying asset S and not simply its value S(T') at a fixed exercise date 7.
Through the principles of option pricing developed in Chapter 1, the price of
an option may be represented as an expected discounted payoff. This price
is estimated through simulation by generating paths of the underlying asset,
evaluating the discounted payoff on each path, and averaging over paths.

Risk-Neutral Dynamics

The one subtlety in this framework is the probability measure with respect to
which the expectation is taken and the nearly equivalent question of how the
payoff should be discounted. This bears on how the paths of the underlying
asset ought to be generated and more specifically in the case of geometric
Brownian motion, how the drift parameter p should be chosen.

We start by assuming the existence of a constant continuously compounded
interest rate r for riskless borrowing and lending. A dollar invested at this rate

at time 0 grows to a value of

Bt) ="

at time t. Similarly, a contract paying one dollar at a future time ¢ (a zero-
coupon bond) has a value at time 0 of e~ ™. In pricing under the risk-neutral
measure, we discount a payoff to be received at time ¢ back to time 0 by
dividing by 8(¢); i.e., [ is the numeraire asset.
Suppose the asset S pays no dividends; then, under the risk-neutral mea-
sure, the discounted price process S(t)/8(t) is a martingale:
S g 150 s 0< 7 < u}} . (3.25)
Bw) AW |

Comparison with (3.24) shows that if S is a geometric Brownian motion under
the risk-neutral measure, then it must have u = r; i.e.,
%%%2 =rdt +odW(t). (3.26)
As discussed in Section 1.2.2, this equation helps explain the name “risk-
neutral.” In a world of risk-neutral investors, all assets would have the same
average rate of return — investors would not demand a higher rate of return
for holding risky assets. In a risk-neutral world, the drift parameter for S(t)
would therefore equal the risk-free rate r.
In the case of an asset that pays dividends, we know from Section 1.2.2 that
she martingale property (3.25) continues to hold but with S replaced by the
sum of S, any dividends paid by S, and any interest earned from investing the
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dividends at the risk-free rate r. Thus, let D(¢) be the value of any dividends
paid over [0, t] and interest earned on those dividends. Suppose the asset pays
a continuous dividend yield of §, meaning that it pays dividends at rate §5(t)
at time t. Then D grows at rate

dD(t

ab(t) = §5(t) + rD(t),

dt

the first term on the right reflecting the influx of new dividends and the
second term reflecting interest earned on dividends already accumulated. If
S ~ GBM(u, o), then the drift in (S(t) + D(t)) is

pS(t) + 6S(t) + rD(t).

The martingale property (3.25), now applied to the combined process (S(t) +
D(t)), requires that this drift equal r(S(t) + D(t)). We must therefore have
i+ =r;ie, u=r—4. The net effect of a dividend yield is to reduce the

growth rate by 6.
We discuss some specific settings in which this formulation is commonly

used:

o FEquity Indices. In pricing index options, the level of the index is often
modeled as geometric Brownian motion. An index is not an asset and it
does not pay dividends, but the individual stocks that make up an index
may pay dividends and this affects the level of the index. Because an index
may contain many stocks paying a wide range of dividends on different
dates, the combined effect is often approximated by a continuous dividend
yield 9.

o Ezchange Rates. In pricing currency options, the relevant underlying vari-
able is an exchange rate. We may think of an exchange rate S (quoted as
the number of units of domestic currency per unit of foreign currency) as
the price of the foreign currency. A unit of foreign currency earns interest at
some risk-free rate ry, and this interest may be viewed as a dividend stream.
Thus, in modeling an exchange rate using geometric Brownian motion, we
set u=r—ry.

o Commodities. A physical commodity like gold or oil may in some cases
behave like an asset that pays negative dividends because of the cost of
storing the commodity. This is easily accommodated in the setting above
by taking < 0. There may, however, be some value in holding a physical
commodity; for example, a party storing oil implicitly holds an option to sell
or consume the oil in case of a shortage. This type of benefit is sometimes
approximated through a hypothetical convenience yield that accrues from
physical storage. The net dividend yield in this case is the difference between
the convenience yield and the cost rate for storage.

o Futures Contracts. A futures contract commits the holder to buying an
underlying asset or commodity at a fixed price at a fixed date in the future.
The futures price is the price specifed in a futures contract at which both
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the buyer and the seller would willingly enter into the contract without
either party paying the other. A futures price is thus not the price of an
asset but rather a price agreed upon for a transaction in the future.

Let S(t) denote the price of the underlying asset (the spot price) and let
F(t,T) denote the futures prices at time ¢ for a contract to be settled at a
fixed time T in the future. Entering into a futures contract at time ¢ to buy
the underlying asset at time T > t is equivalent to committing to exchange
a known amount F(¢,T') for an uncertain amount S(T'). For this contract
to have zero value at the inception time ¢ entails

0= e "TVE[S(T) — F(t,T))|F], (3.27)

where F; is the history of market prices up to time t. At ¢ = T the spot
and futures prices must agree, so S(T') = F(T,T) and we may rewrite this

condition as

Thus, the futures price is a martingale (in its first argument) under the
risk-neutral measure. It follows that if we choose to model a futures price
(for fixed maturity T') using geometric Brownian motion, we should set its
drift parameter to zero:

dF(t,T)

Comparison of (3.27) and (3.25) reveals that
F(t,T) = er=9T=0g(¢),

with ¢ the net dividend yield for S. If either process is a geometric Brownian
motion under the risk-neutral measure then the other is as well and they
have the same volatility 0.

This discussion blurs the distinction between futures and forward contracts.
The argument leading to (3.27) applies more specifically to a forward price
because a forward contract involves no intermediate cashflows. The holder
of a futures contract typically makes or receives payments each day through
a margin account; the discussion above ignores these cashflows. In a world
with deterministic interest rates, futures and forward prices must be equal
to preclude arbitrage so the conclusion in (3.27) is valid for both. With
stochastic interest rates, it turns out that futures prices continue to be
martingales under the risk-neutral measure but forward prices do not. The
theoretical relation between futures and forward prices is investigated in
Cox, Ingersoll, and Ross [90]; it is also discussed in many texts on derivative

securities (e.g., Hull [189]).
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Path-Dependent Payoffs

We turn now to some examples of path-dependent payoffs frequently encoun-
tered in option pricing. We focus primarily on cases in which the payoff de-
pends on the values S(t1),...,S(t,) at a fixed set of dates t1,...,t,; for these
it is usually possible to produce an unbiased simulation estimate of the op-
tion price. An option payoff could in principle depend on the complete path
{S(t),0 <t < T} over an interval [0, T]; pricing such an option by simula-

tion will often entail some discretization bias. In the examples that follow,
we distinguish between discrete and continuous monitoring of the underlying

asset.

o Asian option: discrete monitoring. An Asian option is an option on a time
average of the underlying asset. Asian calls and puts have payoffs (S — K )t
and (K — S)* respectively, where the strike price K is a constant and

S = %XH:S(%) (3.28)

is the average price of the underlying asset over the discrete set of mon-
itoring dates t1,...,t,. Other examples have payoffs (S(T) — S)* and
(S — S(T))*. There are no exact formulas for the prices of these options,
largely because the distribution of S is intractable.

o Astan option: continuous monitoring. The continuous counterparts of the
discrete Asian options replace the discrete average above with the continu-

ous average
_ 1 t
5= / S(r)dr

t—u

over an interval [u,t]. Though more difficult to simulate, some instances
of continuous-average Asian options allow pricing through the transform
analysis of Geman and Yor [135] and the eigenfunction expansion of Linet-
sky [237].

o Geometric average option. Replacing the arithmetic average S in (3.28)

with 1n
(H S(ti))

produces an option on the geometric average of the underlying asset price.
Such options are seldom if ever found in practice, but they are useful as
test cases for computational procedures and as a basis for approximating
ordinary Asian options. They are mathematically convenient to work with
because the geometric average of (jointly) lognormal random variables is
itself lognormal. From (3.20) we find (with u replaced by r) that

n 1/n n n
(H S(M)) = S(0) exp ([r — 502]% Zti + %Z W(h)) ,
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From the Linear Transformation Property (2.23) and the covariance matrix
(3.6), we find that

i W(t;) ~ N (o, Zn:(% - 1)tn+1_i> .

It follows that the geometric average of S(t1),...,S(¢,) has the same dis-
tribution as the value at time T of a process GBM(r — §,52) with

2 n

1 n
T=—-Yt, °=—=% (2~ Db, 0= 30— 457
=1

ag°.

D=

An option on the geometric average may thus be valued using the Black-
Scholes formula (1.44) for an asset paying a continuous dividend yield. The

expression
t
exp </ log S(7) d’T‘)

is a continuously monitored version of the geometric average and is also
lognormally distributed. Options on a continuous geometric average can
similarly be priced in closed form.

Barrier options. A typical example of a barrier option is one that gets
“knocked out” if the underlying asset crosses a prespecified level. For in-
stance, a down-and-out call with barrier b, strike K, and expiration 7" has

payoff
H7(b) > THS(T) — K)7,

where
T(b) = inf{ti : S(tz) < b}

is the first time in {¢1,...,t,} the price of the underlying asset drops below
b (understood to be 0o if S(¢;) > b for all i) and 1{ } denotes the indicator of
the event in braces. A down-and-in call has payoff 1{7(b) < T}(S(T)—-K)*:
it gets “knocked in” only when the underlying asset crosses the barrier. Up-
and-out and up-and-in calls and puts are defined analogously. Some knock-
out options pay a rebate if the underlying asset crosses the barrier, with
the rebate possibly paid either at the time of the barrier crossing or at the
expiration of the option. ~
These examples of discretely monitored barrier options are easily priced
by simulation through sampling of S(t1),...,S(¢tsn), S(T). A continuously
monitored barrier option is knocked in or out the instant the underlying
asset crosses the barrier; in other words, it replaces 7(b) as defined above
with

7(b) = inf{t > 0:S(t) < b}.
Both discretely monitored and continuously monitored barrier options are
found in practice. Many continuously monitored barrier options can be
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priced in closed form; Merton [261] provides what is probably the first such
formula and many other cases can be found in, e.g., Briys et al. [62]. Dis-
cretely monitored barrier options generally do not admit pricing formulas
and hence require computational procedures.

o Lookback options. Like barrier options, lookback options depend on extremal
values of the underlying asset price. Lookback puts and calls expiring at ¢,
have payoffs

( max S(t;)—S(t,)) and (S(t,) — min S(t;))

i=1,...,m i=1,...,n
respectively. A lookback call, for example, may be viewed as the profit from
buying at the lowest price over t1,...,t, and selling at the final price S(¢,).
Continuously monitored versions of these options are defined by taking the
maximum or minimum over an interval rather than a finite set of points.

Incorporating a Term Structure

Thus far, we have assumed that the risk-free interest rate r is constant. This
implies that the time-t price of a zero-coupon bond maturing (and paying 1)

at time 7" >t is
B(t,T) = e (T, (3.29)

Suppose however that at time 0 we observe a collection of bond prices B(0,T),
indexed by maturity T, incompatible with (3.29). To price an option on an
underlying asset price S consistent with the observed term structure of bond
prices, we can introduce a deterministic but time-varying risk-free rate r(u)
by setting

0 log B(0,T)

r(u) = ~57

T=u

B(0,T) = exp (—/O r(u) du) .

With a deterministic, time-varying risk-free rate r(u), the dynamics of an
asset price S(t) under the risk-neutral measure (assuming no dividends) are

described by the SDE

Clearly, then,

45O _ iy dt + o aw(t)

S(t)

with solution
t
S(t) = S(0) exp </ r(u) du — %GZt + aW(t)) :
0

This process can be simulated over 0 = tg < t; < --- < t,, by setting
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tit1
S(ti_'_l) = S(tl) exp (/ r(u) du — %0'2(151_4.1 — ti) +o\/tiy1 — tiZi+1> ,
t;

with Zi, ..., Z, independent N (0, 1) random variables.

If in fact we are interested only in values of S(t) at ty, ..., t,, the simulation
can be simplified, making it unnecessary to introduce a short rate r(u) at all.
If we observe bond prices B(0,t1),...,B(0,t,) (either directly or through
interpolation from other observed prlces) then since

we may simulate S(t) using

S(ti_H) = S(tz)% Xp( (tz+1 —t; ) + o/ tiv1 — ZH-l) (3 30

Simulating Off a Forward Curve

For some types of underlying assets, particularly commodities, we may observe
not just a spot price S(0) but also a collection of forward prices F(0, 7). Here,
F(0,T) denotes the price specified in a contract at time 0 to be paid at time 7'
for the underlying asset. Under the risk-neutral measure, F(0,T) = E[S(T)];
in particular, the forward prices reflect the risk-free interest rate and any div-
idend yield (positive or negative) on the underlying asset. In pricing options,
we clearly want to simulate price paths of the underlying asset consistent with
the forward prices observed in the market.

The equality F'(0,7) = E[S(T)] implies

S(T) = F(0,T)exp (—30°T + oW (T)) .

Given forward prices F'(0,%1),-..,F(0,t,), we can simulate using
F(0,t;
S(ti—{—l) = S(tz)—lu(—,—(a—tj_—)l—) exp (-—%0’2(?57;_4_1 — ti) + U\/ti+1 - tiZi-i—l) .

This generalizes (3.30) because in the absence of dividends we have F(0,T) =
S(0)/B(0,T). Alternatively, we may define M(0) = 1,

M(tiy1) = M(t;) exp (—%02(ti+1 —t) + o/tig1 — tz'Zi-H) , t=0,...,n—1,
and set S(t;) = F(0,t;)M(t;), i=1,...,n

Deterministic Volatility Functions

Although geometric Brownian motion remains an important benchmark, it has
been widely observed across many markets that option prices are incompatible
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with a GBM model for the underlying asset. This has fueled research into
alternative specifications of the dynamics of asset prices.

Consider a market in which several options with various strikes and ma-
turities are traded simultaneously on the same underlying asset. Suppose the
market is sufficiently liquid that we may effectively observe prices of the op-
tions without error. If the assumptions underlying the Black-Scholes formula
held exactly, all of these option prices would result from using the same volatil-
ity parameter o in the formula. In practice, one usually finds that this implied
volatility actually varies with strike and maturity. It is therefore natural to
seek a minimal modification of the Black-Scholes model capable of reproduc-
ing market prices.

Consider the extreme case in which we observe the prices C(K,T) of call
options on a single underlying asset for a continuum of strikes K and matu-
rities T". Dupire [107] shows that, subject only to smoothness conditions on
C as a function of K and T, it is possible to find a function o(S,t) such that
the model

ds(t)

S OR dt + o (S(t), ) dW (t)

reproduces the given option prices, in the sense that
e "TE[(S(T) - K)*] = C(K.T)

for all K and T'. This is sometimes called a deterministic volatility function to
emphasize that it extends geometric Brownian motion by allowing o to be a
deterministic function of the current level of the underlying asset. This feature
is important because it ensures that options can still be hedged through a
position in the underlying asset, which would not be the case in a stochastic
volatility model.

In practice, we observe only a finite set of option prices and this leaves a
great deal of flexibility in specifying o(.S,t) while reproducing market prices.
We may, for example, impose smoothness constraints on the choice of volatility
function. This function will typically be the result of a numerical optimization
procedure and may never be given explicitly.

Once o(S,t) has been chosen to match a set of actively traded options,
simulation may still be necessary to compute the prices of less liquid path-
dependent options. In general, there is no exact simulation procedure for these
models and it is necessary to use an Euler scheme of the form

S(tisr) = S(t:) (1 Fr(tin — ) + o (S(t), ) Torn = tizm) ,
with Z1, Zs, ... independent standard normals, or

S(tiv1) =
S(t;) exp ([7‘ — 302(S(ta), )] (tir1 — ts) + o (S(t), ti) A/t — tiZH—l) :

which is equivalent to an Euler scheme for log S(t).
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3.2.3 Multiple Dimensions

A multidimensional geometric Brownian motion can be specified through a
system of SDEs of the form
dS;(t)
S (t)

:Midt+UidXi(t), 1= 1,...,d, (331)

where each X; is a standard one-dimensional Brownian motion and X;(t)
and X;(t) have correlation p;;. If we define a d x d matrix ¥ by setting
Y;j = 0i0;pij, then (01Xy,...,04Xq) ~ BM(0, X). In this case we abbreviate
the process S = (S1,...,5¢) as GBM(u, X) with g = (u1,...,uq). In a con-
venient abuse of terminology, we refer to y as the drift vector of S, to X as its
covariance matrix and to the matrix with entries p;; as its correlation matrix;
the actual drift vector is (u151(¢), ..., 1aSq4(t)) and the covariances are given
by
Cov[Si (1), 85(1)] = S:(0)S; (0)elre+#)* (ePa7eos — 1),

This follows from the representation
1
Si(t) = 8;(0)elri—2oNHeXe(d) 41 g

Recall that a Brownian motion BM(0,X) can be represented as AW (t)
with W a standard Brownian motion BM(0, ) and A any matrix for which
AAT = 3. We may apply this to (61X1,...,04X4) and rewrite (3.31) as

dSZ(t) _ .
S pidt +a; dW(t), i=1,...,d, (3.32)

with a; the ith row of A. A bit more explicitly, this is

dSi(t)
S; (t)

d
Z,U,idt—l-»ZAij de(t), t=1,...,d.

j=1

This representation leads to a simple algorithm for simulating GBM(u, X)
at times 0 =tp < t; < - < iy

Si(tk+1) _ Si(tk)e(ﬂi_%azz)(tk+l_tk)“‘\/tk—i—l"’tk ijl AijZk—l»l,j’ i=1,....d,
(3.33)
k = O,...,n — 1, where Zk = (Zkl,...,de) i N(O,I) and Z],ZQ,...,Zn
are independent. As usual, choosing A to be the Cholesky factor of ¥ can
‘educe the number of multiplications and additions required at each step.
Notice that (3.33) is essentially equivalent to exponentiating both sides of the
ecursion (3.15); indeed, all methods for simulating BM (1, ) provide methods
or simulating GBM(u, X) (after replacement of y1; by p; — 302).
The discussion of the choice of the drift parameter x in Section 3.2.2 applies
qually well to each y; in pricing options on multiple underlying assets. Often,
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w; = r — 6; where r is the risk-free interest rate and J; is the dividend yield
on the ith asset S;.

o

O

@)

We list a few examples of option payoffs depending on multiple assets:

Spread option. A call option on the spread between two assets S, So has
payoff

([S1(T) = S2(T)] — K)*
with K a strike price. For example, crack spread options traded on the New
York Mercantile Exchange are options on the spread between heating oil

and crude oil futures.
Basket option. A basket option is an option on a portfolio of underlying

assets and has a payoff of, e.g.,
([6151 (T) -+ CQSQ(T) + -4 Cde(T)] — K)+.

Typical examples would be options on a portfolio of related assets — bank

stocks or Asian currencies, for instance.
QOutperformance option. These are options on the maximum or minimum of

multiple assets and have payoffs of, e.g., the form
(max{c1S1(T),c2S2(T), -+, cqSq(T)} — K)*.
Barrier options. A two-asset barrier option may have a payoff of the form

1 min S(t;) < b}(K — 51(T))";

This is a down-and-in put on S; that knocks in when S; drops below a
barrier at b. Many variations on this basic structure are possible. In this
example, one may think of S; as an individual stock and S5 as the level
of an equity index: the put on the stock is knocked in only if the market
drops.

Quantos. Quantos are options sensitive both to a stock price and an ex-
change rate. For example, consider an option to buy a stock denominated
in a foreign currency with the strike price fixed in the foreign currency but
the payoff of the option to be made in the domestic currency. Let S de-
note the stock price and Sy the exchange rate, expressed as the quantity of
domestic currency required per unit of foreign currency. Then the payoff of
the option in the domestic currency is given by

So(T)(S1(T) — K)T. (3.34)
The payoff .
K
(SI(T) N 52(T)>

corresponds to a quanto in which the level of the strike is fixed in the do-
mestic currency and the payoff of the option is made in the foreign currency.
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Change of Numeraire

The pricing of an option on two or more underlying assets can sometimes
be transformed to a problem with one less underlying asset (and thus to a
lower-dimensional problem) by choosing one of the assets to be the numeraire.
Consider, for example, an option to exchange a basket of assets for another

asset with payoff
d—1 +
(Z ¢iSi(T) — cde(T)) ,
i=1

for some constants ¢;. The price of the option is given by

d—1 +
e "TE (Z ¢iSi(T) — cde(T)) , (3.35)

=1

the expectation taken under the risk-neutral measure. Recall that this is the
measure associated with the numeraire asset 3(t) = €™ and is characterized
by the property that the processes S;(t)/3(t), ¢ = 1,...,d, are martingales

under this measure.
As explained in Section 1.2.3, choosing a different asset as numeraire —

say Sy — means switching to a probability measure under which the processes
Si(t)/Sa(t), i =1,...,d—1, and B(¢)/S4(t) are martingales. More precisely,
if we let Pg denote the risk-neutral measure, the new measure Pg, is defined
by the likelihood ratio process (cf. Appendix B.4)

(Cigd)t _ Sa(t) (0) (3.36)

— B(t) S4(0)

Through this change of measure , the option price (3.35) can be expressed
as

d—1 + dP;
—rT Q. _
e "TEg, <§:czSZ(T) cdsd(T)> (dPS)T

=1

d—1 T
_ e—rTESd <Z ciSi(T) - Cde(T)> (%)

d—1 ' +
= Sd(O)ESd (Z Ci%% — Cd> ,

with Eg, denoting expectation under Pg,. From this representation it becomes
clear that only the d — 1 ratios S;(7')/S4(T") (and the constant Sy(0)) are
needed to price this option under the new measure. We thus need to determine
the dynamics of these ratios under the new measure.
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Using (3.32) and (3.36), we find that

dPsg
<Ep_ﬁd>t =exp (—305 +adW (1)) .

Girsanov’s Theorem (see Appendix B.4) now implies that the process
W) =W(t) —agt

is a standard Brownian motion under Ps,. Thus, the effect of changing nu-
meraire is to add a drift a” to W. The ratio S;(t)/S4(t) is given by

S;(t)  S;(0)

Sa(?) = 54(0) exp (—307t + 103t + (a; — aa) W (2))

_ gdﬁg)) exp (— 102t + Lot + (a; — ag)(We(t) +a]))
= Si(o) exp (—%(ai - ad)(ai - ad)T + ((lz’ - Gd)Wd(t)) 3

using the identities aja;.r = UJQ-, Jj=1,...,d, from the definition of the a; in
(3.32). Under Ps,, the scalar process (a; — aq)W?(t) is a Brownian motion
with drift 0 and diffusion coefficient (a; —aq)(a; —ag)". This verifies that the
ratios S;/Sq4 are martingales under Pg, and also that (S1/S4,...,S4-1/54)
remains a multivariate geometric Brownian motion under the new measure. It
is thus possible to price the option by simulating just this (d — 1)-dimensional
process of ratios rather than the original d-dimensional process of asset prices.

This device would not have been effective in the example above if the

payoff in (3.35) had instead been

d +
(Z CiSi (T) - K)

with K a constant. In this case, dividing through by S4(7") would have pro-
duced a term K/Sq(T') and would thus have required simulating this ratio as
well as S;/Sq4, i = 1,...,d — 1. What, then, is the scope of this method? If
the payoff of an option is given by ¢(S1(T),...,Sq4(T)), then the property we
need is that g be homogeneous of degree 1, meaning that

glaws,...,azq) = ag(ar, ..., x4)

for all scalars a and all z,...,x4. For in this case we have

Su(T),...,S4(T
@) ST _ o, (1) /(). ... Sar(T)/4(T), )
Sa(T)
and taking one of the underlying assets as numeraire does indeed reduce by
one the relevant number of underlying stochastic variables. See Jamshidian
[197] for a more general development of this observation.
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3.3 Gaussian Short Rate Models

This section and the next develop methods for simulating some simple but
important stochastic interest rate models. These models posit the dynamics
of an instantaneous continuously compounded short rate r(¢). An investment
in a money market account earning interest at rate r(u) at time u grows from
a value of 1 at time 0 to a value of

B(t) = exp ( /O ) du)

at time ¢t. Though this is now a stochastic quantity, it remains the numeraire
for risk-neutral pricing. The price at time 0 of a derivative security that pays

X at time T is the expectation of X/3(T), i.e.,

E [exp (— /OT r(u) du) XJ : (3.37)

the expectation taken with respect to the risk-neutral measure. In particular,
the time-0 price of a bond paying 1 at 7" is given by

B(0,T)=E {exp (—— /OT r(u) du)} : (3.38)

We focus primarily on the dynamics of the short rate under the risk-neutral

measure.
The Gaussian models treated in this section offer a high degree of tractabil-

ity. Many simple instruments can be priced in closed form in these models or
using deterministic numerical methods. Some extensions of the basic models
and some pricing applications do, however, require simulation for the calcu-
lation of expressions of the form (3.37). The tractability of the models offers
opportunities for increasing the accuracy of simulation.

3.3.1 Basic Models and Simulation

The classical model of Vasicek [352] describes the short rate through an
Ornstein-Uhlenbeck process (cf. Karatzas and Shreve [207], p.358)

dr(t) = a(b —r(t)) dt + o dW(t). (3.39)

Here, W is a standard Brownian motion and a, b, and o are positive constants.
Notice that the drift in (3.39) is positive if r(¢) < b and negative if r(t) > b;
thus, r(t) is pulled toward level b, a property generally referred to as mean
reversion. We may interpret b as a long-run interest rate level and « as the
speed at which r(t) is pulled toward b. The mean-reverting form of the drift is
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an essential feature of the Ornstein-Uhlenbeck process and thus of the Vasicek

model.
The continuous-time Ho-Lee model [185] has
dr(t) = g(t) dt + o dW (¢) (3.40)
with g a deterministic function of time. Both (3.39) and (3.40) define Gaussian
processes, meaning that the joint distribution of 7(¢1), ..., 7(t,) is multivariate
normal for any t,...,t,. Both define Markov processes and are special cases
of the general Gaussian Markov process specified by
dr(t) = [g(t) + h(t)r(t)] dt + o(t) AW (¢), (3.41)

with g, h, and o all deterministic functions of time. Natural extensions of
(3.39) and (3.40) thus allow o, b, and « to vary with time. Modeling with the
Vasicek model when b in particular is time-varying is discussed in Hull and

White [190].
The SDE (3.41) has solution

t t
r(t) = e ®r(0) + / eHO=H() g(5) ds +/ eHO=H() 5 (5) dW (s),
0 0

with

as can be verified through an application of It6’s formula. Because this pro-
duces a Gaussian process, simulation of 7(¢1),...,7(t,) is a special case of the
general problem of sampling from a multivariate normal distribution, treated
in Section 2.3. But it is a sufficiently interesting special case to merit consid-
eration. To balance tractability with generality, we will focus on the Vasicek
model (3.39) with time-varying b and on the Ho-Lee model (3.40). Similar
ideas apply to the general case (3.41).

Simulation

For the Vasicek model with time-varying b, the general solution above spe-
cializes to

t t '
r(t) = e *r(0) + a/ e~ (t=9)p(s) ds + 0/ e (=) g/ (s). (3.42)
0 0

Similarly, for any 0 < u < t,
t

r(t) = e "W (y) + a/ e~ (t=9)p(s) ds + a/ e~ (=9) dW (s).

u u

t

From this it follows that, given r(u), the value 7(¢) is normally distributed

with mean
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t
e~ Wp () + plu, t), plu,t) = a/ e~ (t=9)p(s) ds (3.43)
u

and variance

t 2
o2 (u,t) = 02/ e 2a(t=9) gg = —2(-7—~ (l - 6‘20‘“_“)) : (3.44)
u a

To simulate r at times 0 =ty < t; < --- < t,, we may therefore set
r(tiv1) = e = () 4 p(ty, tivr) + o (i tiv1) Zisn, (3.45)

with Zi,..., Z, independent draws from N (0, 1).

This algorithm is an exact simulation in the sense that the distribution
of the r(t1),...,7(tn) it produces is precisely that of the Vasicek process at
times t1,...,t, for the same value of r(0). In contrast, the slightly simpler

Euler scheme
r(tz’—{—l) = ’I”(ti) + Oé(b(tz) — T(ti))(ti+1 — ti) + U\/tH—l — tiZi+1

entails some discretization error. Exact simulation of the Ho-Lee process (3.40)
is a special case of the method in (3.4) for simulating a Brownian motion with

time-varying drift.
In the special case that b(t) = b, the algorithm in (3.45) simplifies to

r(tiy1) = e”o‘(t"“‘ti)r(ti)—l-b(l—e_o‘(ti“_ti))-{—a\/—2—1& (1 —e2altina—t)) Z; 4.

(3.46)
The Euler scheme is then equivalent to making the approximation e” ~ 1+ x
for the exponentials in this recursion.

Evaluation of the integral defining u(t;,¢;+1) and required in (3.45) may
seem burdensome. The effort involved in evaluating this integral clearly de-
pends on the form of the function b(¢) so it is worth discussing how this
function is likely to be specified in practice. Typically, the flexibility to make
b vary with time is used to make the dynamics of the short rate consistent
with an observed term structure of bond prices. The same is true of the func-
tion g in the Ho-Lee model (3.40). We return to this point in Section 3.3.2,
where we discuss bond prices in Gaussian models.

Stationary Version
Suppose b(t) = b and a > 0. Then from (3.43) we see that
E[r(®)] =e ®r(0)+ (1 —e"*)b—b ast— oo,

so the process r(t) has a limiting mean. It also has a limiting variance given
(via (3.44)) by
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lim V lim & ~2aty _ O

Jim ar[r(t)]—tir&%(l—e )2%.

In fact, r(t) converges in distribution to a normal distribution with this mean
and variance, in the sense that for any z € R

P(r(t) < z) — @ (;:;—:/—%) ,

with @ the standard normal distribution. The fact that r(¢) has a limiting
distribution is a reflection of the stabilizing effect of mean reversion in the drift
and contrasts with the long-run behavior of, for example, geometric Brownian
motion.

The limiting distribution of r(¢) is also a stationary distribution in the
sense that if r(0) is given this distribution then every r(t), ¢ > 0, has this
distribution as well. Because (3.46) provides an exact discretization of the
process, the N(b,02/2a) distribution is also stationary for the discretized
process. To simulate a stationary version of the process, it therefore suffices
to draw 7(0) from this normal distribution and then proceed as in (3.46).

3.3.2 Bond Prices

As already noted, time-dependent drift parameters are typically used to make
a short rate model consistent with an observed set of bond prices. Implemen-
tation of the simulation algorithm (3.45) is thus linked to the calibration of the
model through the choice of the function b(¢). The same applies to the func-
tion g(t) in the Ho-Lee model and as this case is slightly simpler we consider
it first. ,

Our starting point is the bond-pricing formula (3.38). The integral of r(u)
from 0 to T appearing in that formula is normally distributed because r(u)
is a Gaussian process. It follows that the bond price is the expectation of
the exponential of a normal random variable. For a normal random variable

X ~ N(m,v?), we have E[exp(X)] = exp(m + (v?/2)), so

cfon (- [ 0| oo (- 0] s [ 0]

(3.47)
To find the price of the bond we therefore need to find the mean and variance

of the integral of the short rate.
In the Ho-Lee model, the short rate is given by

r(t) =r(0) + /0 g(s)ds + oW (t)

and its integral by



T T [u T

/ r(u)du =r(0)T + / / g(8) dsdu + a/ W (u) du.
0 o Jo 0
This integral has mean
T ru
r(0)T + / / g(s)dsdu
o Jo
and variance

Var [0‘ /0 W du} — 207 /O : /0 " Cov [V (w), W(t)] du dt

T ot
= 202/ / ududt
o Jo

= %02T3. (3.48)

Substituting these expressions in (3.47), we get

T
B(0,T)=E [exp (——/0 r(u) du)J
= exp (—T(O)T - /0 /Ou g(s)dsdu + 0253) .

If we are given a set of bond prices B(0,7T") at time 0, our objective is to
choose the function g so that this equation holds.
To carry this out we can write

B(0,T) = exp (_ /OTf(o, 0 dt> ,

with f(0,t) the instantaneous forward rate for time ¢ as of time 0 (cf. Appen-
dix C). The initial forward curve f(0,T) captures the same information as
the initial bond prices. Equating the two expressions for B(0,7") and taking

logarithms, we find that

T u T
r(O)T+/O /0 g(s) ds du — "253 :/O £(0,t) dt.

Differentiating twice with respect to the maturity argument 7", we find that

+ o?t. (3.49)
T=t

o(t) = = F(0.7)

Thus, bond prices produced by the Ho-Lee model will match a given set of
bond prices B(0, T') if the function g is tied to the initial forward curve f(0,T")

in this way; i.e., if we specify
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0

dr(t) = (ﬁ (0,T)

+ 02t> dt + o dW (). (3.50)
T=t

A generic simulation of the Ho-Lee model with drift function g can be
written as

tit1

r(tiv1) = r(t;) +/ g(s)ds + o\/tit1 — tiZiq1,
iy

with Z1, Z,, ... independent N(0, 1) random variables. With g chosen as in

(3.49), this simplifies to

2
ag
r(tip1) = () + [£(0,tixa) — f(0, )] + ‘2—[t§+1 — 7] + oy/tir1 — tiZis1.

Thus, no integration of the drift function g is necessary; to put it another
way, whatever integration is necessary must already have been dealt with in
choosing the forward curve f(0,t) to match a set of bond prices.

The situation is even simpler if we require that our simulated short rate
be consistent only with bonds maturing at the simulation times ¢1,...,t,. To
satisfy this requirement we can weaken (3.49) to the condition that

tiea o2
/ g(s)ds = f(0,ti+1) — f(0,t;) + E[t?—f—l — t7].

ty
Except for this constraint, the choice of g is immaterial — we could take it to
be continuous and piecewise linear, for example. In fact, we never even need
to specify g because only its integral over the intervals (¢;, t;4+1) influence the
values of r on the time grid ¢1,...,t,.

Bonds in the Vasicek Model

A similar if less explicit solution applies to the Vasicek model. The integral
of the short rate is again normally distributed; we need to find the mean and
variance of this integral to find the price of a bond using (3.47). Using (3.42),
for the mean we get

E [ /O r(t) dt} _ /O Efr(t)] dt
= é(l — e T)r(0) + a/OT /Ote_o‘(t_s)b(s) dsdt.(3.51)

For the variance we have

T T [t
Var [/0 r(t) dt} :2/0 /0 Cov[r(t),r(u)] du dt. (3.52)
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From (3.42) we get, for u < t,

Cov[r(t),r(u)] = 02/ eat=s)gmalu=s) 4g
0

2
— U_ (ea(u—t) _ e—a(u-l—t)) ) (353)
2a

Integrating two more times as required for (3.52) gives
‘ g ! 0.2 1 —2aT 2 —aT 4
Var i r(t)dt| = — T+%(1—e )+a(e —1)|. (3.54)

By combining (3.51) and (3.54) as in (3.47), we arrive at an expression for the

bond price B(0,T).
Observe that (3.54) does not depend on 7(0) and (3.51) is a linear trans-

formation of r(0). If we set
(1 _ e—a(T—t))

A(t,T) =

Qlmr

and
T ru
Ct,T)= —a/ / e~2(U=9)p(s) ds du
t Jt
2

o 1 ——2a(T—~t)) 2 ( —a(T—1) )
-+ = (1- 2 ~1
* 2a2 [(T t+ 2a (1 c + a\° ’

then substituting (3.51) and (3.54) in (3.47) produces
B(0,T) = exp(—A(0,T)r(0) + C(0,T)).
In fact, the same calculations show that
B(t,T) = exp(—A(t,T)r(t) + C(t,T)). (3.55)

In particular, log B(t,T) is a linear transformation of r(t). This feature has
been generalized by Brown and Schaefer [71] and Duffie and Kan [101] to what
is generally referred to as the affine class of interest rate models.

As in our discussion of the Ho-Lee model, the function b(s) can be chosen
to match a set of prices B(0,7) indexed by T'. If we are concerned only with
matching a finite set of bond prices B(0,t1),...,B(0,t,), then only the values

of the integrals
tit1
f e~(t1=8)p(5) ds
t

need to be specified. These are precisely the terms u(t;,t;+1) needed in the
simulation algorithm (3.45). Thus, these integrals are by-products of fitting
the model to a term structure and not additional computations required solely

for the simulation.
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Joint Simulation with the Discount Factor

Most applications that call for simulation of a short rate process r(¢) also
require values of the discount factor

% — exp <— /Otr(u) du)

Y(t) = /O () du

Given values r(0),7(t1), ..., 7(t,) of the short rate, one can of course generate
approximate values of Y'(¢;) using

or, equivalently, of

i

> rti-0)lty —ti-1], to=0,

=1

or some other approximation to the time integral. But in a Gaussian model,
the pair (r(t), Y (t)) are jointly Gaussian and it is often possible to simulate
paths of the pair without discretization error. To carry this out we simply
need to find the means, variances, and covariance of the increments of r(t)

and Y (t).
We have already determined (see (3.45)) that, given r(¢;),

r(tiy1) ~ N (eﬁa(ti“‘ti)r(tz‘) + pltistive), o2 (ts, tz‘+1)> :

From the same calculations used in (3.51) and (3.54), we find that, given r(t;)

and Y (t;),
Y(tiz1) ~ N(Y (t;) + py (ti, tis1), 0% (ti, tig1)),

with
1 —a(tit1—ts) e —a(u—s)
,u,y(ti,tiﬂ)za(l—e o+ z)r(ti)m e b(s) ds du
t; t;

and

oy (tiy tiv1) =
0.2

1 2
o2 <(ti+l —ti) + 5 <1 - 6_20‘(“*1_“)) + = (e_a(t"“_t") - 1)) :

It only remains to determine the conditional covariance between r(¢;11)
and Y (t;41) given (r(t;),Y (¢;)). For this we proceed as follows:
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Cov [r(t), Y (1)) = /O Cov[r(t), r(u)] du

0.2 t
— 2_ ea(u—t) . e—a(u—{—t) du
@ Jo
02 —2at —at

The required covariance is thus given by

2
o
ory (ti, tiy1) = o [1 + e 2altira =t 26—a(“+1”t")} :
e
The corresponding correlation is

ory (i, tit1)
or(ti, tix1)oy (tiy tiv1)

pry (tis tig1) =

With this notation, the pair (r, Y) can be simulated at times ¢1, . .., t, without
discretization error using the following algorithm:

r(tipr) = e”*EH 79 (8) + ults, tigr) + or(ts, tiyr) Z1 (i + 1)
Y(tit1) =Y (t:) + py (i, tiv1) + oy (B, tig1) [pry (B, tig1) Z1 (3 + 1)
/1= 2y (b, 1) Za(i 4 1),

where (Z1(i), Z2(3)), i = 1,...,n, are independent standard bivariate normal

random vectors.

Change of Numeraire

Thus far, we have considered the dynamics of the short rate r(¢) only under
the risk-neutral measure. Recall that the numeraire asset associated with the
risk-neutral measure is () = exp( fot r(u) du) and the defining feature of this
probability measure is that it makes the discounted bond prices B(t,T")/8(t)
martingales. In fact, the dynamics of the bond prices under the Gaussian
models we have considered are of the form (for fixed T")

dB(t,T)

By =0 d - AW T)eaw () (3.56)

with A(t, T') deterministic; this follows from (3.55). The solution of this equa-

tion is
B(t,T) = B(0,T)exp ( /O () — 102 A%(u, T)] du — o /O CAu,T) dW(u)) ,

from which it is evident that
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B(t,T i t
BT _ B0, T) exp (-502/ A2(u, T) du—a/ Au, T) dW(u)>
B(t) 0 0
(3.57)
is an exponential martingale.

As discussed in Section 1.2.3, the forward measure for any date T is the
measure associated with taking the Tr-maturity bond B(t,Tr) as numeraire
asset. The defining feature of the forward measure is that it makes the ratios
B(t,T)/B(t, Tr) martingales for T' < Tp. It is defined by the likelihood ratio

process
(dPTF> _ B(taTF)ﬁ(O)
dPs J,  B(t)B(0,Tr)’

and this is given in (3.57) up to a factor of 1/B(0,TF). From Girsanov’s
Theorem, it follows that the process W7F defined by

dWTF (t) = dW (t) + o A(t, Tr) dt

is a standard Brownian motion under Pr,. Accordingly, the dynamics of the
Vasicek model become

dr(t) = a(b(t) — r(t)) dt + o dW (¢)
= a(b(t) — r(t)) dt + o (dWTF (t) — c A(t, Tr) dt)
= a(b(t) — o A(t, Tr) — r(t)) dt + o dWTF (t). (3.58)

Thus, under the forward measure, the short rate process remains a Vasicek
process but the reversion level b(t) becomes b(t) — o2 A(t, Tr).

The process in (3.58) can be simulated using (3.45) with b(t) replaced by
b(t) — 02 A(t,Tr). In particular, we simulate WTF the way we would simu-
late any other standard Brownian motion. The simulation algorithm does not
“know” that it is simulating a Brownian motion under the forward measure
rather than under the risk-neutral measure.

Suppose we want to price a derivative security making a payoff of g(r(T%))
at time Tr. Under the risk-neutral measure, we would price the security by
computing

E {e- Jo dug(r(TF))} |

In fact, g could be a function of the path of r(¢) rather than just its terminal
value. Switching to the forward measure, this becomes

— ‘/‘OTF r{u) du dP,@
Ers [e g(r(Tr)) iPr, ).

s (S8

= B(0,Tr)Er, [9(r(TF))],
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where Ep, denotes expectation under the forward measure. Thus, we may
price the derivative security by simulating r(¢) under the forward measure
Pr,., estimating the expectation of g(r(Tr)) and multiplying by B(0,TF).
Notice that discounting in this case is deterministic — we do not need to
simulate a discount factor. This apparent simplification results from inclusion
of the additional term —o2A(¢,Tr) in the drift of r(¢).

A consequence of working under the forward measure is that the simulation
prices the bond maturing at T exactly: pricing this bond corresponds to tak-
ing g(r(Tr)) = 1. Again, this apparent simplification is really a consequence
of the form of the drift of r(¢) under the forward measure.

3.3.3 Multifactor Models
A general class of Gaussian Markov processes in R¢ have the form
dX () =C(b— X(t))dt + DdW(t) (3.59)

where C' and D are d x d matrices, b and X (t) are in ¢, W is a standard
d-dimensional Brownian motion, and X (0) is Gaussian or constant. Such a
process remains Gaussian and Markovian if the coefficients C, b, and D are
made time-varying but deterministic. The solution of (3.59) is

¢ ¢
X(t) =e X (0) + / e Ct=9)pds + / e~ €= D dw (s),
0 0
from which it is possible to define an exact time-discretization similar to (3.45).

A model of the short rate process can be specified by setting r(t) = a ' X (t)
with a € R¢ (or with a deterministically time-varying). The elements of X (¢)
are then interpreted as “factors” driving the evolution of the short rate. Be-
cause each X (t) is normally distributed, r(¢) is normally distributed. However,
r(t) is not in general a Markov process: to make the future evolution of r in-
dependent of the past, we need to condition on the full state information X (%)
and not merely 7(t).

Recall from (3.55) that in the Vasicek model (with constant or time-varying
coefficients), bond prices are exponentials of affine functions of the short rate.
A similar representation applies if the short rate has the form r(t) = a ' X (¢)
and X (t) is as in (3.59); in particular, we have

B(t,T) = exp(—A(t, T) " X (t) + C(t,T))

for some R9-valued function A(t,T) and some scalar function C(t,T). In the
single-factor setting, differentiating (3.55) and then simplifying leads to
dB(t,T)
— 2 — p(t — A(t
B (0= AL T)oaw (1),
with o the diffusion parameter of 7(t). The instantaneous correlation between
the returns on bonds with maturities 7} and T3 is therefore
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A(t, Tl)O' : A(t, T‘Z)U .
VA2(t, T))o2\/A2(t, To)o?

In other words, all bonds are instantaneously perfectly correlated. In the mul-
tifactor setting, the bond price dynamics are given by

dB(t,T)
BET r(t)dt — A(t, T) T DdW(t).

The instantaneous correlation for maturities 77 and 75 is

A(t,Ty)"DDT A(t,T»)
I A(t, T2) T DI At, T2) T DI’

which can certainly take values other than 1. The flexibility to capture less
than perfect instantaneous correlation between bond returns is the primary
motivation for considering multifactor models.

Returning to the general formulation in (3.59), suppose that C' can be
diagonalized in the sense that VCV ~! = A for some matrix V and diagonal
matrix A with diagonal entries Ay, ..., Ay. Suppose further that C is nonsin-
gular and define Y (t) = VX (¢). Then

dY (t) = VdX(t)
= V[C(b— X(t)dt + D dW ()]
= (VCb— AY (t))dt + VD dW (¢)
= AA"'VCh - Y (1)) dt + VD dW (¢)
= A(Vb—Y(t))dt + VDdW (t)
= A(b =Y (t)dt +dW(¢)

with W a BM(0, ¥) process, ¥ = VDDV . It follows that the components
of (Y1,...,Yy) satisfy

dY;(t) = Aj(b; — Y3 () dt +dW;(t), j=1,...,d. (3.60)

In particular, each Yj; is itself a Markov process. The Y; remain coupled,
however, through the correlation across the components of W. They can be
simulated as in (3.46) by setting

Yj(tir1) =

eAj(t¢+1—t¢)yj(ti) + (eAj(ti+1—ti) — 1)53‘ + % (1 — 6_2/\j(t7;+1_ti))£j(i +1),
J

where £(1),£(2),... are independent N(0,Y) random vectors, £(i) = (&1(i),
..y €4(1)). Thus, when C is nonsingular and diagonalizable, simulation of
(3.59) can be reduced to a system of scalar simulations.
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As noted by Andersen and Andreasen [14], a similar reduction is possible
even if C' is not diagonalizable, but at the expense of making all coefficients
time-dependent. If V(t) is a deterministic d X d matrix-valued function of time

and we set Y (¢) = V(¢)X(t), then

dY (t) = V()X (t)dt + V(t)dX (t)
=[V()X(t)+ V()C(b— X(¢t)]dt+ V(t)DdW (),

where V(t) denotes the time derivative of V (t). If we choose V(t) = exp([C —

I)t), then '
V(t)=V(#)C -V(t)

and thus

dY (t) = [V(£)Cb — V(£) X (¢)] dt + V(1) D dW (t)
= (b(t) — Y (t)) dt + D(t) dW (¢), (3.61)

with b(t) = V(¢)Cb and D(t) = V(¢)D. Notice that the drift of each com-
ponent Y;(t) depends only on that Y;(¢). This transformation therefore de-
couples the drifts of the components of the state vector, making each Y; a
Markov process, though the components remain linked through the diffusion
term. We can recover the original state vector by setting X (t) = V(¢)~1Y (¢)
because V' (t) is always invertible. The seemingly special form of the dynamics
in (3.61) is thus no less general than the dynamics in (3.59) with time-varying

coefficients.

3.4 Square-Root Diffusions

Feller [118] studied a class of processes that includes the square-root diffusion

dr(t) = a(b — r(t)) dt + o/r(t) dW (t), (3.62)

with W a standard one-dimensional Brownian motion. We consider the case
in which « and b are positive. If 7(0) > 0, then r(¢) will never be negative; if
2ab > 02, then 7(t) remains strictly positive for all ¢, almost surely.

This process was proposed by Cox, Ingersoll, and Ross [91] as a model
of the short rate, generally referred to as the CIR model. They developed a
general equilibrium framework in which if the change in production opportu-
nities is assumed to follow a process of this form, then the short rate does as
well. As with the Vasicek model, the form of the drift in (3.62) suggests that
r(t) is pulled towards b at a speed controlled by «. In contrast to the Vasicek
model, in the CIR model the diffusion term o+/r(t) decreases to zero as r(t)
approaches the origin and this prevents r(¢) from taking negative values. This
eature of (3.62) is attractive in modeling interest rates.
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All of the coefficients in (3.62) could in principle be made time-dependent.
In practice, it can be particularly useful to replace the constant b with a
function of time and thus consider

dr(t) = a(b(t) — rt)) dt + o~/r(t) AW (t). (3.63)

As with the Vasicek model, this extension is frequently used to make the bond

price function
T
T—E [exp (—/ r(u) du)}
0

match a set of observed bond prices B(0,T).

Although we stress the application of (3.63) to interest rate modeling, it
should be noted that this process has other financial applications. For example,
Heston [179] proposed a stochastic volatility model in which the price of an

asset S(t) is governed by

%%t)—) — pdt + V@) dWi (1) (3.64)
AV () = a(b— V{E)) dt + o/VD) dWa(t), (3.65)

where (W1, Ws) is a two-dimensional Brownian motion. Thus, in Heston’s
model, the squared volatility V (¢) follows a square-root diffusion. In addition,
the process in (3.63) is sometimes used to model a stochastic intensity for a
jump process in, for example, modeling default.

A simple Euler discretization of (3.62) suggests simulating r(t) at times
t1,...,t, by setting

T(ti+1) = T(ti) + Oz(b - T(ﬁi))[ti_H — ti] + U\/T(ti)+\/t7;+1 —ti i1, (366)

with Zi,...,Z, independent N(0,1) random variables. Notice that we have
taken the positive part of r(t;) inside the square root; some modification of
this form is necessary because the values of r(¢;) produced by Euler discretiza-
tion may become negative. We will see, however, that this issue can be avoided
(along with any other discretization error) by sampling from the exact tran-
sition law of the process.

3.4.1 Transition Density

The SDE (3.62) is not explicitly solvable the way those considered in Sec-
tions 3.2 and 3.3 are; nevertheless, the transition density for the process is
known. Based on results of Feller [118], Cox et al. [91] noted that the distri-
bution of r(t) given r(u) for some u < t is, up to a scale factor, a noncentral
chi-square distribution. This property can be used to simulate the process
(3.62). We follow the approach suggested by Scott [324]. :
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A noncentral chi-square random variable x/?(\) with v degrees of freedom
and noncentrality parameter A has distribution

Pix?(N) <y) = Fyen ()
x 137 /41 Y ,

e M2Y " (%) /J+j> /o LW/DHIme=2/2 4, (3.67)
=0

20T+IT(%
for y > 0. The transition law of r(¢) in (3.62) can be expressed as

o2(1 — e—a(t—-u)) 4ae—a(t—u)
r(t) = ( 1o Xd <a2(1 _ e—a(t——u))r(u)> y >, (3.68)

where "
=22 (3.69)

This says that, given r(u), r(t) is distributed as 02(1 — e=*(t=%) /(4a) times
a noncentral chi-square random variable with d degrees of freedom and non-
centrality parameter

4ae—c(t—v)
= AT ety () (3.70)

A

equivalently,

P(r(t) < ylr(u)) = By (02(1 —4:~ya<t—“>)> ’

with d as in (3.69), A as in (3.70), and Fyr2() as in (3.67). Thus, we can
simulate the process (3.62) exactly on a discrete time grid provided we can
sample from the noncentral chi-square distribution.

Like the Vasicek model, the square-root diffusion (3.62) has a limiting
stationary distribution. If we let ¢ — oo in (3.68), we find that r(t) converges
in distribution to ¢%/4a times a noncentral chi-square random variable with
d degrees of freedom and noncentrality parameter 0 (making it an ordinary
chi-square random variable). This is a stationary distribution in the sense that
if r(0) is drawn from this distribution, then r(¢) has the same distribution for

all ¢.

Chi-Square and Noncentral Chi-Square

If v is a positive integer and Z, ..., Z, are independent N(0,1) random vari-
ables, then the distribution of

ZP+Z3+ -+ 22

is called the chi-square distribution with v degrees of freedom. The symbol x2
denotes a random variable with this distribution; the prime in x/2()\) empha-
sizes that this symbol refers to the noncentral case. The chi-square distribution

is given by
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1 )
P 2 < — —2z/2 (V/Z)—ld )
Xy <) AT (0 2) /O e/, 2, (3.71)
where I'(-) denotes the gamma function and I'(n) = (n — 1)! if n is a positive
integer. This expression defines a valid probability distribution for all v > 0
and thus extends the definition of x2 to non-integer v.

For integer v and constants a1, ..., a,, the distribution of
> (Zi+ a;)? (3.72)
i=1

is noncentral chi-square with v degrees of freedom and noncentrality para-
meter A = >_~_, a?. This representation explains the term “noncentral.” The
distribution in (3.67) extends the definition to non-integer v.

It follows from the representation in (3.72) that if v > 1 is an integer, then

X2(A) = X2 +x2_1,

meaning that the two sides have the same distribution when the random
variables on the right are independent of each other. As discussed in Johnson
et al. [202, p.436], this representation is valid even for non-integer v > 1. Thus,
to generate x/2(\), v > 1, it suffices to generate x2_; and an independent
N(0,1) random variable Z and to set

X2 = (Z + V)2 +x2_,. (3.73)

This reduces sampling of a noncentral chi-square to sampling of an ordinary
chi-square (and an independent normal) when v > 1.

For any v > 0, (3.67) indicates that a noncentral chi-square random vari-
able can be represented as an ordinary chi-square random variable with a
random degrees-of-freedom parameter. In more detail, if NV is a Poisson ran-

dom variable with mean A/2, then

J
P(N:j):e"\/z(—)l‘—)—, j=0,1,2,....

J

Consider now a random variable x>,y with N having this Poisson distribu-
tion. Conditional on N = j, the random variable has an ordinary chi-square

distribution with v + 25 degrees of freedom:

1 4 .
2 = 7)) = -2/2,(v/2)+j-1

The unconditional distribution is thus given by

S . NN a2 (A/2)
PO = POy <yl =) = Y e ML P2, <),
4=0 j=0 )



124 3 Generating Sample Paths

which is precisely the noncentral chi-square distribution in (3.67). We may
therefore sample x/2()\) by first generating a Poisson random variable N and
then, conditional on NN, sampling a chi-square random variable with v + 2N
degrees of freedom. This reduces sampling of a noncentral chi-square to sam-
pling of an ordinary chi-square and a Poisson random variable. We discuss
methods for sampling from these distributions below. Figure 3.5 summarizes
their use in simulating the square-root diffusion (3.62).

Simulation of dr(t) = a(b— r(t)) dt + o+/7(t) AW (1)
on time grid 0 =g <t1 <+ <t, withd = 4b04/a2
Case 1: d > 1
fori=0,...,n—1
¢ — o*(1 — e *tir174)) /(4q)
A r(t;) (et /¢
generate Z ~ N(0,1)
generate X ~ x5_,
r(tin) — cl(Z + VA)? + X]
end

Case 2: d<1

fori=0,...,n—1
c—o%(1— e—a(ti+1—t¢))/(4a)
N — r(ti)(e'a(ti+l‘“ti))/c
generate N ~ Poisson(\/2)
generate X ~ X¢21+2N
T‘(ti+1) — CX

end

Fig. 3.5. Simulation of square-root diffusion (3.62) by sampling from the transition
density.

Figure 3.6 compares the exact distribution of r(¢) with the distribution
produced by the Euler discretization (3.66) after a single time step. The com-
parison is based on o = 0.2, 0 = 0.1, b = 5%, and r(0) = 4%; the left panel
takes ¢ = 0.25 and the right panel takes ¢ = 1. These values for the model
parameters are sensible for an interest rate model if time is measured in years,
so the values of t should be interpreted as a quarter of a year and a full year,
respectively. The figures suggest that the Euler discretization produces too
many values close to or below 0 and a mode to the right of the true mode.
The effect if particularly pronounced over the rather large time step ¢t = 1.



3.4 Square-Root Diffusions 125

401

301

20

0 0.02 0.04 006 008 005 0 0.0 0.10 0.15

Fig. 3.6. Comparison of exact distribution (solid) and one-step Euler approximation
(dashed) for a square-root diffusion with o = 0.2, 0 = 0.1, b = 5%, and 7(0) = 4%.
The left panel compares distributions at ¢ = 0.25, the right panel at ¢ = 1.

3.4.2 Sampling Gamma and Poisson

The discussion leading to Figure 3.5 reduces the problem of simulating the
square-root diffusion (3.62) to one of sampling from a chi-square distribution
and possibly also the normal and Poisson distributions. We discussed sampling
from the normal distribution in Section 2.3; we now consider methods for
sampling from the chi-square and Poisson distributions.

Gamma Distribution

The gamma distribution with shape parameter a and scale parameter  has
density

f) = faply) = F(al)ﬂa y*leTv/P y > 0. (3.74)

It has mean af3 and variance a3?. Comparison with (3.71) reveals that the
chi-square distribution is the special case of scale parameter § = 2 and shape
parameter a = v/2. We therefore consider the more general problem of gen-
erating samples from gamma distributions.

Methods for sampling from the gamma distribution typically distinguish
the cases a < 1 and a > 1. For the application to the square-root diffusion
(3.62), the shape parameter a is given by d/2 with d as in (3.69). At least in
the case of an interest rate model, d would typically be larger than 2 so the
case a > 1 is most relevant. We include the case a < 1 for completeness and
other potential applications. There is no loss of generality in fixing the scale
parameter § at 1: if X has the gamma distribution with parameters (a, 1),
then BX has the gamma distribution with parameters (a, ).

Cheng and Feast [83] develop a method based on a general approach to
random variate generation known as the ratio-of-uniforms method. The ratio-

of-uniforms method is closely related to the acceptance-rejection method dis-
A i Qactinn 299 T+ avnlaite tha fallawrine nranertvy Siinnnee £ ig a,

ArrAAA
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nonnegative, integrable function on [0, 00); if (X,Y") is uniformly distributed
over the set A = {(z,y) : x < \/f(y/x)}, then the density of Y/X is propor-
tional to f. (See p.180 of Fishman [121] or p.59 of Gentle [136].) Suppose A
is contained in a bounded rectangle. Then to sample uniformly from A, we
can repeatedly sample pairs (X,Y) uniformly over the rectangle and keep the
first one that satisfies X < /f(Y/X). The ratio-of-uniforms method delivers
Y/X as a sample from the density proportional to f.
To sample from the gamma density with a > 1, define

a={@w 0o < wmrrevi).

This set is contained in the rectangle [0, Z] x [0, 7] with Z = [(a — 1)/e](®~1)/2
and 7 = [(a + 1)/e](@+1)/2, Sampling uniformly over this rectangle, the ex-
pected number of samples needed until one lands in A is given by the ratio of
the area of A to that of the rectangle. As shown in Fishman [121], this ratio
is O(y/a), so the time required to generate a sample using this method grows
with the shape parameter. Cheng and Feast [83] and Fishman [121] develop
modifications of this basic approach that accelerate sampling. In Figure 3.7,
which is Fishman’s Algorithm GKM1, the first acceptance test is a fast check
that reduces the number of logarithmic evaluations. When many samples are
to be generated using the same shape parameter (as would be the case in the
application to the square-root diffusion), the constants in the setup step in
Figure 3.8 should be computed just once and then passed as arguments to
the sampling routine. For large values of the shape parameter a, Algorithm
GKM2 in Fishman [121] is faster than the method in Figure 3.7.

Setup: a —a—1, b« (a—(1/(6a)))/a, m «— 2/a, d — m + 2
repeat
generate Uy, Uz ~ Unif]0,1]
V — bU2 /U,
if mUy —d+V +(1/V) <0, accept
elseif mlogU; —logV + V — 1 < 0, accept
until accept
return Z «— aV

Fig. 3.7. Algorithm GKM1 from Fishman [121], based on Cheng and Feast [83], for
sampling from the gamma distribution with parameters (a,1), a > 1.

Ahrens and Dieter [6] provide a fast acceptance-rejection algorithm for
the case a < 1. Their method generates candidates by sampling from distri-
butions concentrated on [0,1] and (1,00) with appropriate probabilities. In
more detail, let p =e/(a + €) (e = exp(1)) and define
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(2) = paz®~t, 0<2z2<1
FTE=V (1= ple~t! 2> 1.

This is a probability density; it is a mixture of the densities az®~! on [0, 1] and
e **! on (1, 00), with weights p and (1 —p), respectively. We can sample from
g by sampling from each of these densities with the corresponding probabili-
ties. Each of these two densities is easily sampled using the inverse transform
method : for the density 22! on [0, 1] we can use U'/%, U ~ Unif[0,1]; for the
density e”**! on (1,00) we can use 1 — log(U). Samples from g are suitable
candidates for acceptance-rejection because the ratio fq,1(2)/g(2z) with fo 1 a
gamma density as in (3.74) is bounded. Inspection of this ratio indicates that
a candidate Z in [0, 1] is accepted with probability e~# and a candidate in
(1, 00) is accepted with probability Z%~!. A global bound on the ratio is given

by N
a-+e
Fanr(2)/9(2) < s <139

recall from Section 2.2.2 that the upper bound on this ratio determines the
expected number of candidates generated per accepted sample.

Figure 3.8 displays the method of Ahrens and Dieter [6]. The figure is based
on Algorithm GS* in Fishman [121] but it makes the acceptance tests more
explicit, if perhaps slightly slower. Notice that if the condition Y < 1 fails to
hold, then Y is uniformly distributed over [1,b]; this means that (b —Y)/a
has the distribution of U/e, U ~ Unif[0,1] and thus —log((b —Y')/a) has the
distribution of 1 — log(U).

Setup: b« (a+¢€)/e
repeat
generate U1, Uy ~ Unif[0,1]; Y « bU:1
ify <1
7 Yl/a
if Uz < exp(—Z), accept
otherwise Z « —log((b—Y)/a)
if Uy < Z°71, accept
until accept
return 2

Fig. 3.8. Ahrens-Dieter method for sampling from the gamma distribution with
parameters (a, 1), a < 1.

Poisson Distribution

The Poisson distribution with mean € > 0 is given by
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k

P(N:k):e“g%, k=0,1,2,.... (3.75)
We abbreviate this by writing N ~ Poisson(#). This is the distribution of
the number of events in [0, 1] when the times between consecutive events are
independent and exponentially distributed with mean 1/6. Thus, a simple
method for generating Poisson samples is to generate exponential random
variables X; = —log(U;)/6 from independent uniforms U; and then take N to
be the largest integer for which X7+ --+ Xy < 1. This method is rather slow,
especially if 8 is large. In the intended application in Figure 3.5, the mean of
the Poisson random variable — equal to half the noncentrality parameter in
the transition density of the square-root diffusion — could be quite large for
plausible parameter values.

An alternative is to use the inverse transform method. For discrete dis-
tributions, this amounts to a sequential search for the smallest n at which
F(n) < U, where F' denotes the cumulative distribution function and U
is Unif[0,1]. In the case of a Poisson distribution, F(n) is calculated as
P(N = 0)+ .-+ P(N = n); rather than calculate each term in this sum
using (3.75), we can use the relation P(N = k + 1) = P(N = k)8/(k + 1).
Figure 3.9 illustrates the method.

p <« exp(—0), F < p
N <0
generate U ~ Unif[0,1]
while U > F
N~ N+1
p «— pf/N
Fe—F+p
return N

Fig. 3.9. Inverse transform method for sampling from Poisson(6), the Poisson dis-
tribution with mean 6.

3.4.3 Bond Prices

Cox, Ingersoll, and Ross [91] derived an expression for the price of a bond

T
B(t,T) = E [exp <— /t r(w) du) ]r(t)J

when the short rate evolves according to (3.62). The bond price has the ex-
ponential affine form
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B(t,T) = e~ AWT)r()+C(¢,T)

as in a Gaussian short rate model, but with

AT 2(e7(T=1) _ 1)
D AT aET -+ o

and

C(t,T) =

and v = vVa? + 202.

This expression for the bond price is a special case of a more general
result, given as Proposition 6.2.5 in Lamberton and Lapeyre [218]. This result
gives the bivariate Laplace transform of the short rate and its integral: for

nonnegative A, 6,

2O{b1 276(0“*"7)(7“”/2
i <(7 +a)(erT=1 — 1) + 27) ’

E l:exp (—)\T(T) — H/t r(u) du) |r(t)} = exp(—aby1 (T —t) —r(t)y2 (T —1t))
(3.76)
with

2 I~ (9)elat7(8))s/2
wl(s) = T3 log 2 (0)s ’Y( ) 9 )
o o2A(e0)s — 1) + 4 (0) — a + e Ds(y(0) + a)

and
_AMv(0) +a+ e (y(0) — @) 4 20(e7 @) — 1)

ba2(s) = 2N @s — 1)+ 7(0) — a + e7@s(~(0) + )

and v(0) = va? 4+ 2026. The bond pricing formula is the special case A = 0,
6 =1

The bivariate Laplace transform in (3.76) characterizes the joint distri-
bution of the short rate and its integral. This makes it possible, at least
in principle, to sample from the joint distribution of (r(ti+1), Y (ti+1) given
(r(ti), Y(tz)) with

As explained in Section 3.3.2, this would allow exact simulation of the short
rate and the discount factor on a discrete time grid. In the Gaussian setting,
the joint distribution of 7(¢) and Y (¢) is normal and therefore easy to sample;
in contrast, the joint distribution determined by (3.76) is not explicitly avail-
able. Scott [324] derives the Laplace transform of the conditional distribution
of Y(tiy1) — Y (t;) given r(t;) and r(t;y1), and explains how to use numerical
transform inversion to sample from the conditional distribution. Through this
method, he is able to simulate (r(¢;), Y (¢;)) without discretization error.
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Time-Dependent Coefficients

As noted earlier, the parameter b is often replaced with a deterministic func-
tion of time b(¢) in order to calibrate the model to an initial term structure,
resulting in the dynamics specified in (3.63). In this more general setting, a
result of the form in (3.76) continues to hold but with functions 1 and 12 de-
pending on both ¢ and T rather than merely on T'—t. Moreover, these functions
will not in general be available in closed form, but are instead characterized by
a system of ordinary differential equations. By solving these differential equa-
tions numerically, it then becomes possible to compute bond prices. Indeed,
bond prices continue to have the exponential affine form, though the functions
A(t,T) and C(t,T) in the exponent are no longer available explicitly but are
also determined through ordinary differential equations (see Duffie, Pan, Sin-
gleton [105] and Jamshidian [195]). This makes it possible to use a numerical
procedure to choose the function b(¢) to match an initial set of bond prices
B(0,T).

Once the constant b is replaced with a function of time, the transition
density of the short rate process ceases to admit the relatively tractable form
discussed in Section 3.4.1. One can of course simulate using an Euler scheme

of the form
r(tivr) = r(t:) + a(d(ti) — r(t:))[tiv1 — &) + ov/r(ti) T/ tir — tiZisa,

with independent Z; ~ N(0, 1). However, it seems preferable (at least from a
distributional perspective) to replace this normal approximation to the tran-
sition law with a noncentral chi-square approximation. For example, if we

let
_ 1 tit1
B(ts) = —— / b(s) ds
tit1 — T Jy,

denote the average level of b(t) over [t;,t;11] (assumed positive), then (3.68)
suggests simulating by setting

02(1 — emaltiri=t)y 4oe~(tirr—t)
r(tiy1) = 1o Xd (02(1 — e~a(ti+1—t1~))r

(ti)> ,  (3.77)

with d = 4ba/o?. We can sample from the indicated noncentral chi-square
distribution using the methods discussed in Section 3.4.1. However, it must be
stressed that whereas (3.68) is an exact representation in the case of constant
coeficients, (3.77) is only an approximate procedure. If it suffices to choose
the function b(t) to match only bonds maturing at the simulation grid dates
t1,...,tn, then it may be possible to choose b to be constant over each interval
[ti, ti+1], in which case (3.77) becomes exact.

Jamshidian [195] shows that if «, b, and o are all deterministic functions
of time, the transition density of 7(¢) can be represented through a noncen-
tral chi-square distribution provided «(t)b(t)/c?(t) is independent of ¢. From
(3.69) we see that this is equivalent to requiring that the degrees-of-freedom
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parameter d = 4ba/o? be constant. However, in this setting, the other para-
meters of the transition density are not given explicitly but rather as solutions
to ordinary differential equations.

Change of Numeraire

Recall from Sections 1.2.3 and 3.3.2 that the forward measure for any date T
is the measure associated with taking as numeraire asset the bond B(t,Tr)
maturing at Tp. We saw in Section 3.3.2 that if the short rate follows an
Ornstein-Uhlenbeck process under the risk-neutral measure, then it continues
to follow an OU process under a forward measure. An analogous property
holds if the short rate follows a square-root diffusion.

Most of the development leading to (3.58) results from the exponential
affine formula for bond prices and thus extends to the square-root model. In
this setting, the bond price dynamics become

BT _ ) dt — A(t, T)o /o8] WV (2):

B(t,T)
in particular, the coefficient o+/r(t) replaces the o of the Gaussian case. Pro-
ceeding as in (3.56)—(3.58) but with this substitution, we observe that Gir-
sanov’s Theorem implies that the process W7TF defined by

AWTF (t) = dW (t) + o+/T(1) A(t, Tr) dt

is a standard Brownian motion under the forward measure Py,.. The dynamics
of the short rate thus become

dr(t) = a(b(t) — r(t)) dt + o\/r(t) dW (t)
= a(b(t) —r(t )dt +a\/r(t dWTF —o+/r(t)A(t, Tr)dt]
a(b(t) — (1 + o2 A(t, Tr))r(t)] dt + 0\/— dWTF

This can be written as

b(t)
dr(t) = a(l + o2 A(L, T, —r(t) ] dt t) dWIr (¢
r(0) = ol + A, Te) (Tsagpr ey —70)) de+oV/F W™ (0,
which shows that under the forward measure the short rate is again a square-
root diffusion but one in which both the level to which the process reverts and
the speed with which it reverts are functions of time. The pricing of derivative
securities through simulation in the forward measure works the same way here

as in the Vasicek model.

3.4.4 Extensions

In this section we consider further properties and extensions of the square-root
diffusion. We discuss multifactor models, a connection with squared Gaussian
processes, and a connection with CEV (constant elasticity of variance) models.
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Multifactor Models

The simplest multifactor extension of the CIR interest rate model defines
independent processes

dXZ(LL) = az(b, — Xz(t)) dt + o/ Xz(t) sz(t), 1=1,...,d,

and takes the short rate to be r(t) = X;(t) + --- + X4(t). Much as in the
discussion of Section 3.3.3, this extension allows imperfect instantaneous cor-
relation among bonds of different maturities. Each X; can be simulated using
the method developed in the previous sections for a single-factor model.

It is possible to consider more general models in which the underlying
processes X1, ..., Xq are correlated. However, once one goes beyond the case
of independent square-root factors, it seems more natural to move directly to
the full generality of the affine models characterized by Duffie and Kan [101].
This class of models has a fair amount of tractability and computationally
attractive features, but we will not consider it further here.

Squared Gaussian Models

We next point out a connection between the (single-factor) square-root diffu-
sion and a Gaussian model of the type considered in Section 3.3. This connec-
tion is of intrinsic interest, it sheds further light on the simulation procedure
of Section 3.4.1, and it suggests a wider class of interest rate models. The
link between the CIR model and squared Gaussian models is noted in Rogers
[307]; related connections are developed in depth by Revuz and Yor [306] in
their discussion of Bessel processes.

Let X;(t),...,Xa4(t) be independent Ornstein-Uhlenbeck processes of the

form o -
dX;(t) = —§Xi(t) dt + Esz'(t), i=1,...,d,

for some constants «, o, and independent Brownian motions Wy, ..., Wy. Let
Y (t) = X{(t) + - + X3(t); then Itd’s formula gives

d
dY (t) = > (2Xi(t) dXi(t) + %2 dt)

=1

d d
_ Z(_axf(t) + %2) dt + O'ZXi(t) dW;(t)
: o2d 2 )

If we now define

(=3 X;fg) Wi (t),
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then W (t) is a standard Brownian motion because the vector (Xi(t),...,
t))/ /Y (t) multiplying (dW;(t),...,dWy(t)) T has norm 1 for all ¢. Hence,

2
dY (t) = « (4—5 -Y(t ) dt + /Y (t) dW (t
which has the form of (3.62) with b = o2d/4a.

Starting from (3.62) and reversing these steps, we find that we can con-
struct a square-root diffusion as a sum of squared independent Ornstein-
Uhlenbeck processes provided d = 4ba/c? is an integer. Observe that this is
precisely the degrees-of-freedom parameter in (3.69). In short, a square-root
diffusion with an integer degrees-of-freedom parameter is a sum of squared
Gaussian processes.

We can use this construction from Gaussian processes to simulate 7(¢) in
(3.62) if d is an integer. Writing r(¢;41) as Zj.l:l X7(tiy1) and using (3.45)
for the one-step evolution of the X;, we arrive at

d

2
¢+l Z ( a(tH-l —t; )\/—__+ \/ 1 — 6—a(t1+1 t; ))Z(J)) )

Jj=1

where ( Zi(l), cees Zz.(d) ) are standard normal d-vectors, independent for different
values of i. Comparison with (3.72) reveals that the expression on the right is a
scalar multiple of a noncentral chi-square random variable, so this construction
is really just a special case of the method in Section 3.4.1. It sheds some light
on the appearance of the noncentral chi-square distribution in the law of r(¢).

This construction also points to another strategy for constructing inter-
est rate models: rather than restricting ourselves to a sum of independent,
identical squared OU processes, we can consider other quadratic functions
of multivariate Gaussian processes. This idea has been developed in Beagle-
hole and Tenney [42] and Jamshidian [196]. The resulting models are closely
related to the affine family.

CEYV Process

We conclude this section with a digression away from interest rate models
to consider a class of asset price processes closely related to the square-root

diffusion.
Among the important alternatives to the lognormal model for an asset

price considered in Section 3.2 is the constant elasticity of variance (CEV)
process (see Cox and Ross [89], Schroder [322] and references there)

dS(t) = pS(t) dt + oS(t)?/? dW (t). (3.78)

This includes geometric Brownian motion as the special case § = 2; some
empirical studies have found that § < 2 gives a better fit to stock price data.
If we write the model as
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%5;%2 = pdt +aSt) P22 aw (1),

we see that the instantaneous volatility ¢S(t)(*=2)/2 depends on the current
level of the asset, and 8 < 2 implies a negative relation between the price level

and volatility.
If we set X (t) = S(t)>~P and apply It6’s formula, we find that

ax(0) = [T -0)1-8) + u2 - 5)X(t>] dt + o(2 — B) /X dW (2),

revealing that X (¢) is a square-root diffusion. For 4 > 0 and 1 < § < 2, we can
use the method of the Section 3.4.1 to simulate X (¢) on a discrete time grid
and then invert the transformation from S to X to get S(t) = X (¢)*/(?=#).
The case 3 < 1 presents special complications because of the behavior of S
near 0; simulation of this case is investigated in Andersen and Andreasen [13].

3.5 Processes with Jumps

Although the vast majority of models used in derivatives pricing assume that
the underlying assets have continuous sample paths, many studies have found
evidence of the importance of jumps in prices and have advocated the inclu-
sion of jumps in pricing models. Compared with a normal distribution, the
logarithm of a price process with jumps is often leptokurtotic, meaning that it
has a high peak and heavy tails, features typical of market data. In this sec-
tion we discuss a few relatively simple models with jumps, highlighting issues
that affect the implementation of Monte Carlo.

3.5.1 A Jump-Diffusion Model

Merton [263] introduced and analyzed one of the first models with both jump
and diffusion terms for the pricing of derivative securities. Merton applied this
model to options on stocks and interpreted the jumps as idiosyncratic shocks
affecting an individual company but not the market as a whole. Similar models
have subsequently been applied to indices, exchange rates, commodity prices,

and interest rates.
Merton’s jump-diffusion model can be specified through the SDE

dS(t
45(t) = pdt +odW(t) + dJ(t) (3.79)
S(t-)
where 1 and o are constants, W is a standard one-dimensional Brownian
motion, and J is a process independent of W with piecewise constant sample

paths. In particular, J is given by
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N(¢)
I =3 (% -1) (3.50)
j=1
where Y1,Y3,... are random variables and N(t) is a counting process. This

means that there are random arrival times

O0<Ti<Tp <~

and

N(t) =sup{n:m <t}
counts the number of arrivals in [0,¢]. The symbol dJ(t) in (3.79) stands for
the jump in J at time ¢. The size of this jump is ¥; — 1 if t = 'rJ and 0 if ¢
does not coincide with any of the 7;.

In the presence of jumps, a symbol like S(¢) is potentially ambiguous: if
it is possible for S to jump at ¢, we need to specify whether S(t) means the
value of S just before or just after the jump. We follow the usual convention
of assuming that our processes are continuous from the right, so

S(t) = 1lim S(u)
ult
includes the effect of any jump at t. To specify the value just before a potential
jump we write S(t—), which is the limit

S(t—) = lim S(u)

uft

from the left.
If we write (3.79) as

dS(t) = pS(t—) dt + oS(t—) dW (t) + S(t—) dJ(t),

we see that the increment dS(t) in S at ¢ depends on the value of S just before
a potential jump at ¢t and not on the value just after the jump. This is as it
should be. The jump in S at time ¢ is S(¢) — S(¢—). This is 0 unless J jumps
at t, which is to say unless ¢t = 7; for some j. The jump in S at 7; is

§(7j) = 8(1j=) = 8(7;=)[J (75) = I (=) = S(75-)(¥; = 1),

hence
S(75) = S(75-)Y;.
This reveals that the Y; are the ratios of the asset price before and after a
jump — the jumps are multiplicative. This also explains why we wrote Y; —1
rather than simply Y; in (3.80).
By restricting the Y; to be positive random variables, we ensure that S(¢)
can never become negative. In this case, we see that
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log S(1j) = log S(1;—) + log Y},

so the jumps are additive in the logarithm of the price. Additive jumps are a
natural extension of Brownian motion and multiplicative jumps (as in (3.79))
provide a more natural extension of geometric Brownian motion; see the dis-
cussion at the beginning of Section 3.2. The solution of (3.79) is given by

N(t)

1
S(t) = S(0)e 27+ Ty, (3.81)
j=1

which evidently generalizes the corresponding solution for geometric Brownian

motion.
Thus far, we have not imposed any distributional assumptions on the jump

process J(t). We now consider the simplest model — the one studied by
Merton [263] — which takes N(t) to be a Poisson process with rate A. This
makes the interarrival times 7,11 —7; independent with a common exponential

distribution,
P(rjg1—m <t)=1-e? t>0.
We further assume that the Y; are i.i.d. and independent of N (as well as W).
Under these assumptions, J is called a compound Poisson process.
As noted by Merton [263], the model is particularly tractable when the Y
are lognormally distributed, because a product of lognormal random variables
is itself lognormal. In more detail, if Y; ~ LN (a, b?) (so that logY; ~ N(a, b?))

then for any fixed n,
n
[1Y: ~ LN(an,bn).
j=1
It follows that, conditional on N(¢) = n, S(t) has the distribution of

1 2 r n
S(0)eH= 2o tHeW () H Y; ~ S(0)- LN((p — 0®)t,0°t) - LN (an,b°n)
j=1
= LN(log S(0) + (1 — 30°)t + an, ot + b*n),

using the independence of the Y; and W. If we let F}, ; denote this lognormal
distribution (cf. Section 3.2.1) and recall that N(¢) has a Poisson distribution
with mean A¢, then from the Poisson probabilities (3.75) we find that the

unconditional distribution of S(t) is

P(S(t)<z)=)_ e—“%fzvn,t(x),

a Poisson mixture of lognormal distributions. Merton [263] used this property
to express the price of an option on S as an infinite series, each term of which
is the product of a Poisson probability and a Black-Scholes formula.
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Recall that in the absence of jumps the drift x4 in (3.79) would be the
risk-free rate, assuming the asset pays no dividends and assuming the model
represents the dynamics under the risk-neutral measure. Suppose, for simplic-
ity, that the risk-free rate is a constant r; then the drift is determined by the
condition that S(¢)e~" be a martingale. Merton [263] extends this principle
to his jump-diffusion model under the assumption that jumps are specific to
a single stock and can be diversified away; that is, by assuming that the mar-
ket does not compensate investors for bearing the risk of jumps. We briefly
describe how this assumption determines the drift parameter p in (3.79).

A standard property of the Poisson process is that N (t)—At is a martingale.
A generalization of this property is that

N(t)

> h(Y;) = AE[R(Y)]t

is a martingale for i.i.d. Y, Y1, Y3 and any function h for which E[h(Y")] is finite.
Accordingly, the process

J(t) — Ami
is a martingale if m = E[Y;] — 1. The choice of drift parameter in (3.79) that
makes S(t)e™"t a martingale is therefore u = r — Am. In this case, if we rewrite

(3.79) as
ds(t
ds5(t) =rdt+odW(t)+ [dJ(t) — dImdt],
S(t-)
the last two terms on the right are martingales and the net growth rate in
S(t) is indeed 7.
With this notation and with log Y; ~ N(a, b*), Merton’s [263] option pric-
ing formula becomes

S e O e g7y - KN = )
n=0

e " TE[(S(T) - K)"] .

> (A"
Ze‘At( n') BS(S(O)vanaTa TTL?K)’
n=0 .

where X = A(1 +m), 02 = o2 +b?>n/T; r, = r — dm + nlog(l +m)/T, and
BS(-) denotes the Black-Scholes call option formula (1.4).

Simulating at Fixed Dates

We consider two approaches to simulating the jump-diffusion model (3.79),
each of which is an instance of a more general strategy for simulating a broader
class of jump-diffusion models. In the first method, we simulate the process
at a fixed set of dates 0 = tg < t; < -+ < t, without explicitly distinguishing
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the effects of the jump and diffusion terms. In the second method, we simulate
the jump times 71, 72, ... explicitly.

We continue to assume that NN is a Poisson process, that Y;,Ys,... are
i.i.d., and that N, W, and {Y1,Y5,...} are mutually independent. We do not
assume the Y; are lognormally distributed, though that will constitute an

interesting special case.

To simulate S(t) at time ¢y, ...,t,, we generalize (3.81) to
1, N(tiy1)
S(tiy1) = S(ti)e(“_aa Y(tig1—ti)+o (W (tip1)—W(t:))] H Y;,
j:N(t,‘)—i—l

with the usual convention that the product over j is equal to 1 if N(t;41) =
N(t;). We can simulate directly from this representation or else set X (t)

log S(t) and

I

N(tit1)

X (ti1) = X(t:) + (p—30%) (tayr —t) +o[W (tira) - W(t:)]+ > logVj;
j=N(t;)+1
(3.82)
this recursion replaces products with sums and is preferable, at least if sam-
pling logY; is no slower than sampling Y;. We can exponentiate simulated
values of the X (¢;) to produce samples of the S(¢;).
A general method for simulating (3.82) from ¢; to ¢;11 consists of the

following steps:
1. generate Z ~ N(0,1)
2. generate N ~ Poisson(A(t;+1 —t;)) (see Figure 3.9); if N =0, set M =0
and go to Step 4

3. generate logY1,...,log Yy from their common distribution and set M =
logY: +...4+1logYn
4. set

X(tz'_H) = X(tz) + (,u — %UQ)(ti_H — ti) +o\/tiv1 —t;Z + M.

This method relies on two properties of the Poisson process: the increment
N(ti+1) — N(t;) has a Poisson distribution with mean A(¢;+1 — ¢;), and it is
independent of increments of N over [0, ¢;].

Under further assumptions on the distribution of the Y}, this method can

sometimes be simplified. If the Y; have the lognormal distribution LN (a, b?),
then logY; ~ N(a,b?) and

Zlong ~ N(an,b*n) = an + by/nN(0,1).

j=1

In this case, we may therefore replace Step 3 with the following:
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3'. generate Zy ~ N(0,1); set M = aN + bv/NZ,

If the logY; have a gamma distribution with shape parameter a and scale
parameter (3 (see (3.74)), then

logY: +logYs +--- +logY,

has the gamma distribution with shape parameter an and scale parameter
(3. Consequently, in Step 3 above we may sample M directly from a gamma
distribution, conditional on the value of .

Kou [215] proposes and analyzes a model in which |logY;| has a gamma
distribution (in fact exponential) and the sign of logY; is positive with proba-
bility ¢, negative with probability 1—gq. In this case, conditional on the Poisson
random variable N taking the value n, the number of log Y; with positive sign
has a binomial distribution with parameters n and ¢. Step 3 can therefore be
replaced with the following:

3a’”. generate K ~ Binomial(N,q)
3b”. generate Ry ~ Gamma(Ka,) and Ry ~ Gamma((N — K)a,3) and set

M =Ry — Ry

In 3b”, interpret a gamma random variable with shape parameter zero as
the constant 0 in case K = 0 or K = N. In 3a”, conditional on N = n, the
binomial distribution of K is given by

P(K:k):qu(l—q)”'k k=01 n
kl(n — k)! ’ T
Samples from this distribution can be generated using essentially the same
method used for the Poisson distribution in Figure 3.9 by changing just the
first and sixth lines of that algorithm. In the first line, replace the mass at the
origin exp(—6) for the Poisson distribution with the corresponding value (1 —
q)" for the binomial distribution. Observe that the ratio P(K = k)/P(K =
k —1) is given by q¢(n + 1 — k)/k(1 — q), so the sixth line of the algorithm
becomes p < pg(n + 1 — N)/N(1 — q) (where N now refers to the binomial
random variable produced by the algorithm).

Simulating Jump Times

Simulation methods based on (3.82) produce values S(t;) = exp(X(t)),
i = 1,...,n, with the exact joint distribution of the target process (3.79)
at dates t,...,t,. Notice, however, that this approach does not identify the
times at which S(¢) jumps; rather, it generates the total number of jumps in
each interval (t;,t;+1], using the fact that the number of jumps has a Poisson
distribution.

An alternative approach to simulating (3.79) simulates the jump times

T1,T2,... explicitly. From one jump time to the next, S(t) evolves like an
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ordinary geometric Brownian motion because we have assumed that W and
J in (3.79) are independent of each other. It follows that, conditional on the

times 71, T2, ... of the jumps,

S(ryp1—) = S(r;)elt= 27T =m)+olW (ry42) =W (1)

and
S(1j+1) = S(Tj41-)Yj41.

Taking logarithms and combining these steps, we get
X (741) = X(15) + (0 = 50°)(Tj11 = 75) + o [W (75401) — W(7;)] + log V1.

A general scheme for simulating one step of this recursion now takes the
following form:

1. generate Rj41 from the exponential distribution with mean 1/A
2. generate Z; 11 ~ N(0,1)

3. generate log Yj 1

4. set Tj+1 = Tj + Rj+1 and

X(1j1) = X (15) + (0 — 30*)Rjs1 + 0y/Rjy1Zj11 +log Vir.

Recall from Section 2.2.1 that the exponential random variable R;,; can be
generated by setting R = —log(U)/A with U ~ Unif[0,1].

The two approaches to simulating S(¢) can be combined. For example,
suppose we fix a date ¢ in advance that we would like to include among the

simulated dates. Suppose it happens that 7; <t < 7,41 (i.e.,, N(t) = N(t—) =

j). Then
S(t) = S(r;)eB— 37— +olW (=W (7;)]

and
1
S(rj41) = S(t)e(u—502)(Tj+1~t)+U[W(Tj+1)—W(t)]y3+l_

Both approaches to simulating the basic jump-diffusion process (3.79) —
simulating the number of jumps in fixed subintervals and simulating the times
at which jumps occur — can be useful at least as approximations in simulating
more general jump-diffusion models. Exact simulation becomes difficult when
the times of the jumps and the evolution of the process between jumps are no
longer independent of each other.

Inhomogeneous Poisson Process

A simple extension of the jump-diffusion model (3.79) replaces the constant
jump intensity A of the Poisson process with a deterministic (nonnegative)
function of time A(¢). This means that

P(N(t + h) — N(t) = 1[N () = Mt)h + o(h)
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and N(t) is called an inhomogeneous Poisson process. Like an ordinary Pois-
son process it has independent increments and these increments are Poisson
distributed, but increments over different intervals of equal length can have
different means. In particular, the number of jumps in an interval (¢;,t;11]
has a Poisson distribution with mean A(t;11) — A(¢;), where

Provided this function can be evaluated, simulation based on (3.82) general-
izes easily to the inhomogeneous case: where we previously sampled from the
Poisson distribution with mean A(¢;+1 — ¢;), we now sample from the Poisson
distribution with mean A(#;41) — A(¢;).

It is also possible to simulate the interarrival times of the jumps. The key
property is

P(Tj_H — 75 < t'Tl,...,Tj) =1 —eXp(—[A('rj +t) - A(Tj)]), t > 0,

provided A(oo) = co. We can (at least in principle) sample from this distri-
bution using the inverse transform method discussed in Section 2.2.1. Given

7j, let

¢
X:inf{tzOzl—eXp<—/ A(u)du)zU}, U ~ Unif]0,1]

J

then X has the required interarrival time distribution and we may set 7;41 =
7; + X. This is equivalent to setting

X:inf{tZO:/f)\(u)du-——f} (3.83)

J

where £ is exponentially distributed with mean 1. We may therefore inter-
pret the time between jumps as the time required to consume an exponential
random variable if it is consumed at rate A(u) at time u.

If the time-varying intensity A(¢) is bounded by a constant A, the jumps of
the inhomogeneous Poisson process can be generated by thinning an ordinary
Poisson process N with rate ), as in Lewis and Shedler [235]. In this procedure,
the jump times of N become potential jump times of N; a potential jump at
time ¢ is accepted as an actual jump with probability A(¢)/A. A bit more
explicitly, we have the following steps:

1. generate jump times 7; of N (the interarrival times 7;,.; — 7; are indepen-
dent and exponentially distributed with mean 1/))

2. for each j generate U; ~ Unif[0,1]; if U;A < A(7;) then accept 7; as a
jump time of N.

Figure 3.10 illustrates this construction.
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Fig. 3.10. Construction of an inhomogeneous Poisson process from an ordinary
Poisson process by thinning. The horizontal coordinates of the open circles are the
jump times of a Poisson process with rate A; each circle is raised to a height uniformly
distributed between 0 and A. Circles below the curve A(t) are accepted as jumps of
the inhomogeneous Poisson process. The times of the accepted jumps are indicated

by the filled circles.

3.5.2 Pure-Jump Processes

If S(¢) is the jump-diffusion process in (3.79) with J(¢) a compound Poisson
process, then X (t) = log S(¢) is a process with independent increments. This
is evident from (3.82) and the fact that both W and J have independent
increments. Geometric Brownian motion also has the property that its loga-
rithm has independent increments. It is therefore natural to ask what other
potentially fruitful models of asset prices might arise from the representation

S(t) = S(0) exp(X (¢)) (3.84)

with X having independent increments. Notice that we have adopted the
normalization X (0) = 0.

The process X is a Lévy process if it has stationary, independent incre-
ments and satisfies the technical requirement that X (t) converges in dis-
tribution to X(s) as ¢ — s. Stationarity of the increments means that
X(t + s) — X(s) has the distribution of X (t). Every Lévy process can be
represented as the sum of a deterministic drift, a Brownian motion, and a
pure-jump process independent of the Brownian motion (see, e.g., Chapter 4
of Sato [317]). If the number of jumps in every finite interval is almost surely
finite, then the pure-jump component is a compound Poisson process. Hence,
in constructing processes of the form (3.84) with X a Lévy process, the only
way to move beyond the jump-diffusion process (3.79) is to consider processes
with an infinite number of jumps in finite intervals. We will in fact focus on
pure-jump processes of this type — that is, Lévy processes with no Brown-
ian component. Several processes of this type have been proposed as models
of asset prices, and we consider some of these examples. A more extensive
discussion of the simulation of Lévy process can be found in Asmussen [21].
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It should be evident that in considering processes with an infinite number
of jumps in finite intervals, only the first of the two approaches developed in
Section 3.5.1 is viable: we may be able to simulate the increments of such a
process, but we cannot hope to simulate from one jump to the next. To sim-
ulate a pure-jump Lévy process we should therefore consider the distribution
of its increments over a fixed time grid.

A random variable Y (more precisely, its distribution) is said to be in-
finitely divisible if for each n = 2,3,..., there are ii.d. random variables

Yl(n), cee Tgn) such that Yl(n) + -+ Y,f") has the distribution of Y. If X is

a Lévy process (X (0) = 0), then
X(t) = X(t/n) + [X(2t/n) = X(t/n)] + -+ [X(t) = X((n — 1)t/n)]

decomposes X () as the sum of n i.i.d. random variables and shows that X (¢)
has an infinitely divisible distribution. Conversely, for each infinitely divisible
distribution there is a Lévy process for which X (1) has that distribution.
Simulating a Lévy process on a fixed time grid is thus equivalent to sampling
from infinitely divisible distributions. »

A Lévy process with nondecreasing sample paths is called a subordinator.
A large class of Lévy processes (sometimes called processes of type G) can
be represented as W(G(t)) with W Brownian motion and G a subordinator
independent of W. Several of the examples we consider belong to this class.

Gamma Processes

If Y1,...,Y, are independent with distribution Gamma(a/n,3), then Y; +
-+ -+Y,, has distribution Gamma(a, 3); thus, gamma distributions are infinitely
divisible. For each choice of the parameters a and 3 there is a Lévy process
(called a gamma process) such that X (1) has distribution Gamma(a, 5). We
can simulate this process on a time grid ¢y, ..., ¢, by sampling the increments

X(tis1) — X(t;) ~ Gamma(a - (t;+1 — t;),3)

independently, using the methods of Sections 3.4.2.

A gamma random variable takes only positive values so a gamma process
is nondecreasing. This makes it unsuitable as a model of (the logarithm of) a
risky asset price. Madan and Seneta [243] propose a model based on (3.84) and
X(t) =U(t)—D(t), with U and D independent gamma processes representing
the up and down moves of X. They call this the variance gamma process.
Increments of X can be simulated through the increments of U and D.

If U(1) and D(1) have the same shape and scale parameters, then X admits
an alternative representation as W (G(t)) where W is a standard Brownian
motion and G is a gamma process. In other words, X can be viewed as the
result of applying a random time-change to an ordinary Brownian motion: the
deterministic time argument ¢ has been replaced by the random time G(t),
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which becomes the conditional variance of W(G(t)) given G(t). This explains
the name “variance gamma.”

Madan et al. [242] consider the more general case W (G(t)) where W now
has drift parameter p and variance parameter o2. They restrict the shape
parameter of G(1) to be the reciprocal of its scale parameter [ (so that
E[G(t)] = t) and show that this more general variance gamma process can
still be represented as the difference U(t) — D(t) of two independent gamma
processes. The shape and scale parameters of U(1) and D(1) should be chosen

to satisfy ay = ap = 1/8 and

2
BuBp = 12_@, Bu — Bp = upb.

The general variance gamma, process can therefore still be simulated as
the difference between two independent gamma processes. Alternatively, we
can use the representation X (t) = W(G(t)) for simulation. Conditional on the
increment G(t;+1)—G(t;), the increment W (G(t;4+1))—W (G(t;)) has a normal
distribution with mean u[G(t;+1) — G(t;)] and variance o2[G(t;+1) — G(t:)].
Hence, we can simulate X as follows:

1. generate Y ~ Gamma((t;+1 — t;)/3, 8) (this is the increment in G)
2. generate Z ~ N(0,1)
3. set X (tir1) = X(t;) +pY +oVY Z.

The relative merits of this method and simulation through the difference of U
and D depend on the implementation details of the methods used for sampling

from the gamma and normal distributions.
Figure 3.11 compares two variance gamma densities with a normal density;

all three have mean 0 and standard deviation 0.4. The figure illustrates the
much higher kurtosis that can be achieved within the variance gamma, family.
Although the examples in the figure are symmetric, positive and negative
skewness can be introduced through the parameter u.

Normal Inverse Gaussian Processes

This class of processes, described in Barndorff-Nielsen [36], has some similari-
ties to the variance gamma model. It is a Lévy process whose increments have
a normal inverse Gaussian distribution; it can also be represented through a
random time-change of Brownian motion.

The inverse Gaussian distribution with parameters d,y > 0 has density

5ed7
xTr) =
f1 G( ) \/2—7;
This is the density of the first passage time to level § of a Brownian motion

with drift 7. It has mean §/~ and variance § /3. The inverse Gaussian distrib-
ution is infinitely divisible: if X; and X5 are independent and have this density

73 2 exp (—1(6%271 +4%z)), z > 0. (3.85)



3.5 Processes with Jumps 145

0.8

0.6

0.41

0.2r

0
-2

Fig. 3.11. Examples of variance gamma densities. The most peaked curve has p = 0,
o0 =04, and § = 1 (and is in fact a double exponential density). The next most
peaked curve has p = 0, ¢ = 0.4, and 8 = 0.5. The dashed line is the normal density

with mean 0 and standard deviation 0.4.

with parameters (é1,) and (d2,7), then it is clear from the first passage time
interpretation that Xy 4+ X5 has this density with parameters (91 + d2,7). It
follows that there is a Lévy process Y (t) for which Y (1) has density (3.85).

The normal inverse Gaussian distribution NIG(«, 3, i, §) with parameters
a, B, u, 6 can be described as the distribution of

w4 BY (1) +/YM)Z, Z~N(0,1), (3.86)

with Y'(1) having density (3.85), a = 1/(? + 72, and Z independent of Y (1).
The mean and variance of this distribution are

+ o8 and d
H /1= (Bla)2 (ﬁ/a)z a(l _ (ﬁ/a)2)3/2a

respectively. The density is given in Barndorff-Nielsen [36] in terms of a mod-
ified Bessel function. Three examples are graphed in Figure 3.12; these illus-
trate the possibility of positive and negative skew and high kurtosis within

this family of distributions.
Independent normal inverse Gaussian random variables add in the follow-

ing way:
NIG(a,/Ba/*“)(Sl) +NIG(&,/B,’U/2,52) = NIG(aMB)Ml +,U;2,51 +52)

In particular, these distributions are infinitely divisible. Barndorfl-Nielsen [36]
studies Lévy processes with NIG increments. Such a process X (t) can be
represented as W (Y (¢)) with Y (¢) the Lévy process defined from (3.85) and
W a Brownian motion with drift £, unit variance, and initial value W(0) = pu.
At t = 1, this representation reduces to (3.86).
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0.6

Fig. 3.12. Examples of normal inverse (Gaussian densities. The parameters
(a, B, u, 8) are as follows: (1,—-0.75,2,1) for A, (1,0,0,1) for B, and (1,2, —0.75,1)
for C. The dashed line is the standard normal density and is included for comparison
with case B, which also has mean 0 and standard deviation 1.

Eberlein [109] discusses the use of the NIG Lévy processes (in fact, a more
general family called generalized hyperbolic Lévy processes) in modeling log
returns. Barndorff-Nielsen [36] proposes several mechanisms for constructing
models of price processes using NIG Lévy processes as a building block.

As with the variance gamma process of Madan and Seneta [243], there
are in principle two strategies for simulating X on a discrete time grid. We
can simulate the increments by sampling from the NIG distribution directly
or we can use the representation as a time-changed Brownian motion (as in
(3.86)). However, direct sampling from the NIG distribution does not appear
to be particularly convenient, so we consider only the second of these two
alternatives.

To simulate X (t) as W(Y'(t)) we need to be able to generate the incre-
ments of Y by sampling from the (ordinary) inverse Gaussian distribution. An
interesting method for doing this was developed by Michael, Schucany, and
Haas [264]. Their method uses the fact that if Y has the density in (3.85),

then )
(7Y - 9) 2.

Y ~ Xl?
we may therefore sample Y by first generating V ~ x2. Given a value of V,
the resulting equation for Y has two roots,
0 V 1

_ .Y L 53 2772
Y1 7+272 257\/45V/’7+5V/’Y

and
Y2 = 6% /7%y1.
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Michael et al. [264] show that the smaller root y; should be chosen with prob-
ability 6/(64+~y1) and the larger root y, with the complementary probability.
Figure 3.13 illustrates the implementation of the method. The x? random vari-
able required for this algorithm can be generated as either a Gamma(1/2,2)
or as the square of a standard normal.

Setup: a «— 1/y,b—a*d,b—bxbd

generate V ~ x}

E—axV

Y —ax(6+(6/2)+ /Ex 0+ /D)
p—6/(6+v+Y)

generate U ~ Unif[0,1]
ifU>pthenY «b/Y

return Y

Fig. 3.13. Algorithm for sampling from the inverse Gaussian distribution (3.85),
based on Michael et al. [264].

To simulate an increment of the NIG process X (t) = W(Y (¢)) from ¢; to
t;+1, we use the algorithm in Figure 3.13 to generate a sample Y from the
inverse Gaussian distribution with parameters §(¢;,+1 — ¢;) and ; we then set

X(tiyr) = X(t:) + BY +VY Z

with Z ~ N(0,1). (Recall that g is the drift of W in the NIG parameteriza-
tion.)

Despite the evident similarity between this construction and the one used
for the variance gamma process, a result of Asmussen and Rosinski [25] points
to an important distinction between the two processes: the cumulative effect of
small jumps can be well-approximated by Brownian motion in a NIG process
but not in a variance gamma process. Loosely speaking, even the small jumps
of the variance gamma process are too large or too infrequent to look like
Brownian motion. Asmussen and Rosiriski [25] discuss the use and applicabil-
ity of a Brownian approximation to small jumps in simulating Lévy processes.

Stable Paretian Processes

A distribution is called stable if for each n > 2 there are constants a,, > 0 and

b, such that
X1 +Xo 4+ X, :da'nX+bn7
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where X, X1,..., X, are independent random variables with that distribution.
(The symbol “=4” indicates equality in distribution.) If b, = 0 for all n, the
distribution is strictly stable. The best known example is the standard normal

distribution for which
X1+ Xo+ o+ X, =q n'/2X.

In fact, a,, must be of the form nt/® for some 0 < a < 2 called the index
of the stable distribution. This is Theorem VI.1.1 of Feller [119]; for broader
coverage of the topic see Samorodnitsky and Taqqu [316].

Stable random variables are infinitely divisible and thus define Lévy
processes. Like the other examples in this section, these Lévy processes have
no Brownian component (except in the case of Brownian motion itself) and
are thus pure-jump processes. They can often be constructed by applying a
random time change to an ordinary Brownian motion, the time change itself
having stable increments.

Only the normal distribution has stable index o = 2. Non-normal stable
distributions (those with a < 2) are often called stable Paretian. These are
heavy-tailed distributions: if X has stable index o < 2, then E[|X|P] is infinite
for p > a. In particular, all stable Paretian distributions have infinite variance
and those with o < 1 have E[|X|] = oco. Mandelbrot [246] proposed using sta-
ble Paretian distributions to model the high peaks and heavy tails (relative to
the normal distribution) of market returns. Infinite variance suggests that the
tails of these distributions may be too heavy for market data, but see Rachev
and Mittnik [302] for a comprehensive account of applications in finance.

Stable random variables have probability densities but these are rarely
available explicitly; stable distributions are usually described through their
characteristic functions. The density is known for the normal case o = 2; the
Cauchy (or t;) distribution, corresponding to o = 1 and density

11

f(37)=;~*——*1+w2, —00 < T < 00;

and the case o = 1/2 with density

~3/2 exp(—1/(2z)), = >0.

This last example may be viewed as a limiting case of the inverse Gaussian
distribution with vy = 0. Through a first passage time interpretation (see Feller
[119], Example VI.2(f)), the Cauchy distribution may be viewed as a limiting
case of the NIG distribution = § = u = 0. Both densities given above can be
generalized by introducing scale and location parameters (as in [316], p.10).
This follows from the simple observation that if X has a stable distribution
then so does p + 0 X, for any constants p,o.

As noted in Example 2.1.2, samples from the Cauchy distribution can be
generated using the inverse transform method. If Z ~ N(0, 1) then 1/Z2 has
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the stable density above with a = 1/2, so this case is also straightforward.
Perhaps surprisingly, it is also fairly easy to sample from other stable distribu-
tions even though their densities are unknown. An important tool in sampling
from stable distributions is the following representation: if V' is uniformly dis-
tributed over [-7/2,7/2] and W is exponentially distributed with mean 1,

then
sin(aV) (cos((l — oz)V)) (1=a)/a
(cos(V))1/e |44

has a symmetric a-stable distribution; see p.42 of Samorodnitsky and Taqqu
[316] for a proof. As noted there, this reduces to the Box-Muller method
(see Section 2.3.2) when o = 2. Chambers, Mallows, and Stuck [79] develop
simulation procedures based on this representation and additional transfor-
mations. Samorodnitsky and Taqqu [316], pp.46-49, provide computer code
for sampling from an arbitrary stable distribution, based on Chambers et al.
[79].

Feller [119], p.336, notes that the Lévy process generated by a symmet-
ric stable distribution can be constructed through a random time change of
Brownian motion. This also follows from the observation in Samorodnitsky
and Taqqu [316], p.21, that a symmetric stable random variable can be gener-
ated as the product of a normal random variable and a positive stable random
variable, a construction similar to (3.86).

3.6 Forward Rate Models: Continuous Rates

The distinguishing feature of the models considered in this section and the
next is that they explicitly describe the evolution of the full term structure of
interest rates. This contrasts with the approach in Sections 3.3 and 3.4 based
on modeling the dynamics of just the short rate r(¢). In a setting like the
Vasicek model or the Cox-Ingersoll-Ross model, the current value of the short
rate determines the current value of all other term structure quantities —
forward rates, bond prices, etc. In these models, the state of the world is com-
pletely summarized by the value of the short rate. In multifactor extensions,
like those described in Section 3.3.3, the state of the world is summarized by
the current values of a finite number (usually small) of underlying factors;
from the values of these factors all term structure quantities are determined,
at least in principle.

In the framework developed by Heath, Jarrow, and Morton [174] (HIM),
the state of the world is described by the full term structure and not necessarily
by a finite number of rates or factors. The key contribution of HJM lies in
identifying the restriction imposed by the absence of arbitrage on the evolution
of the term structure.

At any point in time the term structure of interest rates can be described
in various equivalent ways — through the prices or yields of zero-coupon
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bonds or par bonds, through forward rates, and through swap rates, to name
just a few examples. The HJM framework models the evolution of the term
structure through the dynamics of the forward rate curve. It could be argued
that forward rates provide the most primitive description of the term structure
(and thus the appropriate starting point for a model) because bond prices and
yields reflect averages of forward rates across maturities, but it seems difficult
to press this point too far.

From the perspective of simulation, this section represents a departure
from the previous topics of this chapter. Thus far, we have focused on models
that can be simulated exactly, at least at a finite set of dates. In the gener-
ality of the HJM setting, some discretization error is usually inevitable. HJM
simulation might therefore be viewed more properly as a topic for Chapter 6;
we include it here because of its importance and because of special simulation

issues it raises.

3.6.1 The HIM Framework

The HJM framework describes the dynamics of the forward rate curve
{ft,T),0 <t < T < T*} for some ultimate maturity 7* (e.g., 20 or 30
years from today). Think of this as a curve in the maturity argument 7" for
each value of the time argument ¢; the length of the curve shrinks as time ad-
vances because t < T < T™*. Recall that the forward rate f (¢, T) represents the
instantaneous continuously compounded rate contracted at time ¢ for riskless
borrowing or lending at time 7" > ¢. This is made precise by the relation

T
B(t,T) = exp (——/t ft,u) du)

between bond prices and forward rates, which implies

0
f@,T)= ~5T log B(t,T). (3.87)
The short rate is r(t) = f(t,t). Figure 3.14 illustrates this notation and the
evolution of the forward curve.
In the HJM setting, the evolution of the forward curve is modeled through

an SDE of the form
df(t,T) = u(t, T)dt + o(t, T) " dW (t). (3.88)

In this equation and throughout, the differential df is with respect to time ¢
and not maturity 7. The process W is a standard d-dimensional Brownian
motion; d is the number of factors, usually equal to 1, 2, or 3. Thus, while the
forward rate curve is in principle an infinite-dimensional object, it is driven by
a low-dimensional Brownian motion. The coeflicients 1 and o in (3.88) (scalar
and R?-valued, respectively) could be stochastic or could depend on current
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S, 1)
J(0,5)

f(oatl)

r(0)

Il i

0 f 4 T*
Fig. 3.14. Evolution of forward curve. At time 0, the forward curve f(0, -) is defined

for maturities in [0, 7] and the short rate is r(0) = f(0,0). At ¢t > 0, the forward
curve f(t,-) is defined for maturities in [¢, 7] and the short rate is 7(¢t) = f(¢,¢t).

and past levels of forward rates. We restrict attention to the case in which
and o are deterministic functions of ¢, T' > t, and the current forward curve
{f(t,u),t < u < T*}. Subject to technical conditions, this makes the evolution
of the curve Markovian. We could make this more explicit by writing, e.g.,
o(f,t,T), but to lighten notation we omit the argument f. See Heath, Jarrow,
and Morton [174] for the precise conditions needed for (3.88).

We interpret (3.88) as modeling the evolution of forward rates under the
risk-neutral measure (meaning, more precisely, that W is a standard Brownian
motion under that measure). We know that the absence of arbitrage imposes a
condition on the risk-neutral dynamics of asset prices: the price of a (dividend-
free) asset must be a martingale when divided by the numeraire

B(t) = exp ( /O ) du> .

Forward rates are not, however, asset prices, so it is not immediately clear
what restriction the absence of arbitrage imposes on the dynamics in (3.88).
To find this restriction we must start from the dynamics of asset prices, in
particular bonds. Our account is informal; see Heath, Jarrow, and Morton
[174] for a rigorous development.

To make the discounted bond prices B(t,T")/((t) positive martingales, we
posit dynamics of the form

B(t,T)

The bond volatilities v (¢, T)) may be functions of current bond prices (equiva-
lentlv of enrrent forward rates since (3.87) makes a one-to-one correspondence
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between the two). Through (3.87), the dynamics in (3.89) constrain the evo-
lution of forward rates. By It6’s formula,

dlog B(t,T) = [r(t) — 4v(t,T) T v(t,T)| dt + v(t,T) " dW (t).

If we now differentiate with respect to 7" and then interchange the order of
differentiation with respect to t and 7', from (3.87) we get

df (¢, T) = ——a%dlog B(t,T)

_9
aT

Comparing this with (3.88), we find that we must have

= [r(t) — sv(t,T) "v(t, T)] dt — %I/(t, T)TdW (t).

o(t,T) = —%V(t,T)

and

.
u(t, T) = —8%[7'(15) — Lu(t,T)Tu(t, T)] = <%u(t,T)) v(t, T).

To eliminate v(t,T) entirely, notice that
T
v(t,T) = —/ o(t,u) du + constant.
t
But because B(t,T') becomes identically 1 as ¢t approaches T (i.e., as the bond

matures), we must have v(7T,T) = 0 and thus the constant in this equation is
0. We can therefore rewrite the expression for u as

WET) = o(t.T)T /t " ot ) du: (3.90)

this is the risk-neutral drift imposed by the absence of arbitrage. Substituting
in (3.88), we get

df (t,T) = (o(t,T)T / ' o(t, ) du) dt +o(t,T)T dW (2). (3.91)

This equation characterizes the arbitrage-free dynamics of the forward curve
under the risk-neutral measure; it is the centerpiece of the HJM framework.
Using a subscript j = 1,..., d to indicate vector components, we can write

(3.91) as

d
df(t, T) = Z (Uj(t, T) /tT 0j (t, u) du> dt + ZO'J‘ (t, T) dWJ(t) (392)

j=1 Jj=1

TR




3.6 Forward Rate Models: Continuous Rates 153

This makes it evident that each factor contributes a term to the drift and that
the combined drift is the sum of the contributions of the individual factors.

In (3.91), the drift is determined once o is specified. This contrasts with the
dynamics of the short rate models in Sections 3.3 and 3.4 where parameters
of the drift could be specified independent of the diffusion coeflicient without
introducing arbitrage. Indeed, choosing parameters of the drift is essential in
calibrating short rate models to an observed set of bond prices. In contrast,
an HJIM model is automatically calibrated to an initial set of bond prices
B(0,T) if the initial forward curve f(0,T') is simply chosen consistent with
these bond prices through (3.87). Put slightly differently, calibrating an HJM
model to an observed set of bond prices is a matter of choosing an appropriate
initial condition rather than choosing a parameter of the model dynamics. The
effort in calibrating an HJM model lies in choosing ¢ to match market prices
of interest rate derivatives in addition to matching bond prices.

We illustrate the HIM framework with some simple examples.

Example 3.6.1 Constant o. Consider a single-factor (d = 1) model in which
o(t,T) = o for some constant o. The interpretation of such a model is that
each increment dW (¢) moves all points on the forward curve {f(t,u),t < u <
T*} by an equal amount odW(t); the diffusion term thus introduces only
parallel shifts in the forward curve. But a model in which the forward curve
makes only parallel shifts admits arbitrage opportunities: one can construct
a costless portfolio of bonds that will have positive value under every parallel
shift. From (3.90) we find that an HIM model with constant o has drift

,u(t,T)-——a‘/tTadu:ﬁ(T—t).

In particular, the drift will vary (slightly, because o2 is small) across maturi-
ties, keeping the forward curve from making exactly parallel movements. This
small adjustment to the dynamics of the forward curve is just enough to keep
the model arbitrage-free. In this case, we can solve (3.91) to find

t
£1) = 70.7)+ [ o*T ) du+oW(
0
= f(0,T) + L0?[T?% — (T — t)*] + oW (2).
In essentially any model, the identity r(¢) = f(¢,¢) implies

+ 2 pm)

T dt.
T=t

T=t

dr(t) = df (t,T)

In the case of constant o, we can write this explicitly as

dr(t) = o dW(t) + (%f(o,T)’ﬁ | —|—02t) dt.
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Comparing this with (3.50), we find that an HJM model with constant o
coincides with a Ho-Lee model with calibrated drift. O

Example 3.6.2 Ezponential 0. Another convenient parameterization takes
o(t,T) = oexp(—a(T — t)) for some constants o, > 0. In this case, the
diffusion term o(¢,T) dW (t) moves forward rates for short maturities more
than forward rates for long maturities. The drift is given by

,u(t, T) — 0_26—-04(T-t) /Te—a(T—u) du = 9(-1/._2 (6——2a(T—t) _ e—a(T—t)) ]
t
An argument similar to the one used in Example 3.6.1 shows that the short
rate in this case is described by the Vasicek model with time-varying drift
parameters.
This example and the one that precedes it may be misleading. It would be
incorrect to assume that the short rate process in an HJM setting will always
have a convenient description. Indeed, such examples are exceptional. O

Example 3.6.3 Proportional o. It is tempting to consider a specification of
the form o(¢t,T) = 6(¢,T)f(t,T) for some deterministic & depending only on
t and T'. This would make &(t,T) the volatility of the forward rate f(¢,T")
and would suggest that the distribution of f(¢,T") is approximately lognor-
mal. However, Heath et al. [174] note that this choice of ¢ is inadmissible: it
produces forward rates that grow to infinity in finite time with positive prob-
ability. The difficulty, speaking loosely, is that if o is proportional to the level
of rates, then the drift is proportional to the rates squared. This violates the
linear growth condition ordinarily required for the existence and uniqueness of
solutions to SDEs (see Appendix B.2). Market conventions often presuppose
the existence of a (proportional) volatility for forward rates, so the failure
of this example could be viewed as a shortcoming of the HJM framework.
We will see in Section 3.7 that the difficulty can be avoided by working with
simple rather than continuously compounded forward rates. O

Forward Measure

Although the HJM framework is usually applied under the risk-neutral mea-
sure, only a minor modification is necessary to work in a forward measure. Fix
a maturity Tr and recall that the forward measure associated with T corre-
sponds to taking the bond B(¢,Tr) as numeraire asset. The forward measure
Pr, can be defined relative to the risk-neutral measure Pg through

(dPTp> _ B(t,Tp)ﬁ(O)
dP,@ t ﬁ(t)B(OvTF)

From the bond dynamics in (3.89), we find that this ratio is given by

exp (-% /O o, Te) o, T) du + /O tz/(u,TF)TdW(u)>.
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By the Girsanov Theorem, the process W7 defined by
dWTF (t) = —v(t,Tr) " dt + dW ()

is therefore a standard Brownian motion under Pr,. Recalling that v(¢,T) is
the integral of —o(t,u) from u = ¢t to w = T, we find that the forward rate

dynamics (3.91) become

dft,T) = —o(t,T) " v(t,T)dt + o(t,T) [v(t, Tr)" dt + dWTF (t)]
=—o(t,T)"[v(t,T) — v(t,Tr)|dt + o(t, T)" dWTF (t)

= —o(t,T)" (/TTF o(t,u) du> dt+o(t, T)" dWTr (), (3.93)

for t < T < Tp. Thus, the HIM dynamics under the forward measure are

similar to the dynamics under the risk-neutral measure, but where we previ-
ously integrated o(t,u) from t to T, we now integrate —o(t,u) from 7" to Tp.
Notice that f(¢,Tr) is a martingale under Pr,, though none of the forward
rates is a martingale under the risk-neutral measure.

3.6.2 The Discrete Drift

Except under very special choices of o, exact simulation of (3.91) is infeasible.
Simulation of the general HJM forward rate dynamics requires introducing a
discrete approximation. In fact, each of the two arguments of f(¢,7) requires
discretization. For the first argument, fix a time grid 0 = t) < t; < --+ <
typr. Even at a fixed time ¢;, it is generally not possible to represent the full
forward curve f(¢;,T), t; < T < T*, so instead we fix a grid of maturities
and approximate the forward curve by its value for just these maturities. In
principle, the time grid and the maturity grid could be different; however,
assuming that the two sets of dates are the same greatly simplifies notation
with little loss of generality.

We use hats to distinguish discretized variables from their exact continuous-
time counterparts. Thus, f(t;,t;) denotes the discretized forward rate for ma-
turity t; as of time ¢;, j > ¢, and B(ti,tj) denotes the corresponding bond
price,

B(t;, t;) = exp (—if(ti,tg)[tu_l - td) : (3.94)
. l=1

To avoid introducing any more discretization error than necessary, we
would like the initial values of the discretized bonds B(0, ;) to coincide with
the exact values B(0,t;) for all maturities ¢; on the discrete grid. Comparing
(3.94) with the equation that precedes (3.87), we see that this holds if

j— ”
Z F(0,t0)[tos1 — te] = (0, u) du;

=0 0

—
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ie., if
tet+1

fot)=—— [ fOudy (3.95)
tov1 —te Jy,

forall £=0,1,..., M — 1. This indicates that we should initialize each f (0, te)

to the average level of the forward curve f(0,7) over the interval [ts,te41]

rather than, for example, initializing it to the value f(0, t;) at the left endpoint

of this interval. The discretization (3.95) is illustrated in Figure 3.15.

Fig. 3.15. Discretization of initial forward curve. Each discretized forward rate is
the average of the underlying forward curve over the discretization interval.

Once the initial curve has been specified, a generic simulation of a single-
factor model evolves like this: for i =1,..., M,

Fltity) = Ftior ty)+
ﬂ(ti—17 tj)[ti — ti——l] -+ &(ti_l,tj)\/ti —ti—1Zi, J=1,..., M, (396)

where Zy,...,Zp are independent N(0,1) random variables and f and &
denote discrete counterparts of the continuous-time coefficients in (3.91). We
allow ¢ to depend on the current vector f as well as on time and maturity,
though to lighten notation we do not include f as an explicit argument of .

In practice, 6 would typically be specified through a calibration procedure
designed to make the simulated model consistent with market prices of actively
traded derivative securities. (We discuss calibration of a closely related class
of models in Section 3.7.4.) In fact, the continuous-time limit o(¢,7) may
never be specified explicitly because only the discrete version & is used in the
simulation. But the situation for the drift is different. Recall that in deriving
(3.91) we chose the drift to make the model arbitrage-free; more precisely,
we chose it to make the discounted bond prices martingales. There are many
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ways one might consider choosing the discrete drift & in (3.96) to approximate
the continuous-time limit (3.90). From the many possible approximations, we
choose the one that preserves the martingale property for the discounted bond

prices.
Recalling that f(s,s) is the short rate at time s, we can express the

continuous-time condition as the requirement that

B(t,T) exp <~ /Otf(s, s) ds)

be a martingale in ¢ for each 7'. Similarly, in the discretized model we would

like -
B(t;, t;) exp < Z (ks tio) [tor1 — tk])

to be a martingale in ¢ for each j. Our objective is to find a £ for which this
holds. For simplicity, we start by assuming a single-factor model.
The martingale condition can be expressed as

R i—1
E [B(ti, tj)e_zk=0 f(tk;tk:)[tk-}—l—tk]lzl’ e Zi—l]
_ B(tz‘—l, t;)e” Z;_:QO f(tk,tk)[tk-f-l—tk].
Using (3.94) and canceling terms that appear on both sides, this reduces to

[ Z.? tl,te) [te+1— tZJ’Zl, o Zi—l} — e ZZ;; f(ti-l,te)[tg_’_l—tg].

Now we introduce f: on the left side of this equation we substitute for each
f(ti,ts) according to (3.96). This yields the condition

E {e_ ST NPt te) it ,te)[ti—ti_uw(tm,te>\/t‘FtZIZi)[te+l—teJ,Z1 L Zz’~1]

— e Z;;: Fltizate)[tes1—te] '

Canceling terms that appear on both sides and rearranging the remaining
terms brings this into the form

E [6_ Zz;j G(ti—1,te)/ti—ti—1[tesr1—1e] Z; ,Zly o Zi——l]

1.
:ezj f(te—1,te)[ts—ts—1][ter1— teJ

The conditional expectation on the left evaluates to

_— )
e%( Z:i U(ti~1»t6)[te+1—te]) lti—ti—1]
M)

so equality holds if
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j—1 j—1
3 (Z G(ti—1,te)[ter1 — te] ) Z ti—1,te)[ter1 — tel;

b= £=1i
ie., if

/L(tz 1,5 )[t.H-l ts } =
2

% (Z 5(ti~1, tg)[tg_H — tg]) - % (i 5‘(ti_1 , tg)[ig.,.l — te]) .(3.97)

=i =2

This is the discrete version of the HJM drift; it ensures that the discretized

discounted bond prices are martingales.
To see the connection between this expression and the continuous-time

drift (3.90), consider the case of an equally spaced grid, ¢; = i¢h for some
increment h > 0. Fix a date ¢ and maturity 7" and let i,j — oo and h — O
in such a way that jh = T and ih = t; each of the sums in (3.97) is then
approximated by an integral. Dividing both sides of (3.97) by ¢;+1 — t; = h,
we find that for small A the discrete drift is approximately

le (/tTa(t,u)du>2- (/tT—ho(t,u)du)2 R %5%: (/tTO(t,u)du)z,

which is r
o(t,T) / o(t, ) du.
t

This suggests that the discrete drift in (3.97) is indeed consistent with the

continuous-time limit in (3.90).
In the derivation leading to (3.97) we assumed a single-factor model. A
similar result holds with d factors. Let 65 denote the kth entry of the d-vector

o and

ik (tio1, t5) [t — 5] =

; 2 o1 2
5 (Z Ok (tio1,te)[ters — te]) -3 (Z Ok (tim1,te)[tes1 — te]) ;

£=i =i
for k =1,...,d. The combined drift is given by the sum

’L 1, Z#’k’(tl la

A generic multifactor simulation takes the form

f(ti’tj) f(t't 1’t)+/1’(2 ht)[ bi- 1]

+Z6k(ti_1,tj)«/ti —ti1Zig, j=1i,...,M, (3.98)
k=1
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where the Z; = (Z;1,...,Z4),1=1,..., M, are independent N (0, I) random
vectors.

We derived (3.97) by starting from the principle that the discretized dis-
counted bond prices should be martingales. But what are the practical impli-
cations of using some other approximation to the continuous drift instead of
this one? To appreciate the consequences, consider the following experiment.
Imagine simulating paths of f as in (3.96) or (3.98). From a path of f we may
extract a path

~ ~

#(to) = f(to,to), 7(t1) = f(t1,t1), ... #ltar) = Fltar, tar),

of the discretized short rate 7. From this we can calculate a discount factor

Jj—1

D(t;) = exp <* Z P(ti)[titr — tz]) (3.99)

1=0

for each maturity ¢;. Imagine repeating this over n independent paths and let
DM, ... ,D(")(tj) denote discount factors calculated over these n paths.
A consequence of the strong law of large numbers, the martingale property,
and the initialization in (3.95) is that, almost surely,

LS BO,) — D) = BO.4) = BO.1,)

This means that if we simulate using (3.97) and then use the simulation to
price a bond, the simulation price converges to the value to which the model
was ostensibly calibrated. With some other choice of discrete drift, the simu-
lation price would in general converge to something that differs from B(0,¢;),
even if only slightly. Thus, the martingale condition is not simply a theoretical
feature — it is a prerequisite for internal consistency of the simulated model.
Indeed, failure of this condition can create the illusion of arbitrage opportu-
nities. If E[DM(¢;)] # B(0,t;), the simulation would be telling us that the
market has mispriced the bond.

The errors (or apparent arbitrage opportunities) that may arise from using
a different approximation to the continuous-time drift may admittedly be
quite small. But given that we have a simple way of avoiding such errors and
given that the form of the drift is the central feature of the HIM framework,
we may as well restrict ourselves to (3.97). This form of the discrete drift
appears to be in widespread use in the industry; it is explicit in Andersen

[11].
Forward Measure

Through an argument similar to the one leading to (3.97), we can find the ap-
propriate form of the discrete drift under the forward measure. In continuous
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time, the forward measure for maturity T is characterized by the require-
ment that B(t,T)/B(t,Tr) be a martingale, because the bond maturing at
Tr is the numeraire asset associated with this measure. In the discrete ap-
proximation, if we take ty; = T, then we require that B(t;,t;)/B(ti, tar) be
a martingale in ¢ for each j. This ratio is given by

= M-1

B(t;, t;) A
———— = exp f(ti, te)lterr — td]
B(t’LatM) ;

The martingale condition leads to a discrete drift 4 with

ti1, )t —t5] =

M-1 2 M-1 2
2D et tltess —te) | — 3 [ D 6(tima, te)[tess — to] | . (3.100)
(=j+1 l=j

The relation between this and the risk-neutral discrete drift (3.97) is, not sur-
prisingly, similar to the relation between their continuous-time counterparts

in (3.91) and (3.93).

3.6.3 Implementation

Once we have identified the discrete form of the drift, the main consideration
in implementing an HJM simulation is keeping track of indices. The notation
f (t;,t;) is convenient in describing the discretized model — the first argument
shows the current time, the second argument shows the maturity to which
this forward rate applies. But in implementing the simulation we are not
interested in keeping track of an M x M matrix of rates as the notation
f (t;,t;) might suggest. At each time step, we need only the vector of current
rates. To implement an HJM simulation we need to adopt some conventions
regarding the indexing of this vector.

Recall that our time and maturity grid consists of a set of dates 0 =
to < t1 < --- < tpr. If we identify tp; with the ultimate maturity 7 in
the continuous-time model, then tj; is the maturity of the longest-maturity
bond represented in the model. In light of (3.94), this means that the last
forward rate relevant to the model applies to the interval [tpr—1,tas]; this is
the forward rate with maturity argument ¢ps—1. Thus, our initial vector of
forward rates consists of the M components f(0,0), f(0,t1),..., f(0, trm—1),
which is consistent with the initialization (3.95). At the start of the simulation
we will represent this vector as (f1,..., far). Thus, our first convention is to
use 1 rather than 0 as the lowest index value.

As the simulation evolves, the number of relevant rates decreases. At time
t;, only the rates f(t;,t;),..., f(t:,ta—1) are meaningful. We need to specify
how these M — i rates should be indexed, given that initially we had a vector
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of M rates: we can either pad the initial portion of the vector with irrelevant
data or we can shorten the length of the vector. We choose the latter and
represent the M — ¢ rates remaining at ¢; as the vector (f1,..., far—i). Thus,
our second convention is to index forward rates by relative maturity rather
than absolute maturity. At time t;, f; refers to the forward rate f(t, Litj—1)-
Under this convention f; always refers to the current level of the short rate
because 7(t;) = f(ti, ;).

Similar considerations apply to /i(t;,t;) and ok (ti,t;), & = 1,...,d, and
we adopt similar conventions for the variables representing these terms. For
values of i we use variables m; and for values of 6} we use variables s;(k);
in both cases the subscript indicates a relative maturity and in the case of
s;(k) the argument k = 1,...,d refers the factor index in a d-factor model.
We design the indexing so that the simulation step from t;_; to t; indicated
in (3.98) becomes

d
fj — fj+1 +mj[ti - ti—l] +28j(k)\/ti — ti_lzik, j = 1, .. .,M—-
k=1

Thus, in advancing from ¢;_; to t; we want
my = fiti-1,tivj-1),  55(k) = Ok(tim1,bitj-1)- (3.101)

In particular, recall that & may depend on the current vector of forward rates;
as implied by (3.101), the values of all s;(k) should be determined before the
forward rates are updated.

To avoid repeated calculation of the intervals between dates t;, we intro-

duce the notation
hi:ti_ti—l, ,’L'Zl,.‘.,M.

These values do not change in the course of a simulation so we use the vector
(h1,...,hn) to represent these same values at all steps of the simulation.

We now proceed to detail the steps in an HJM simulation. We separate
the algorithm into two parts, one calculating the discrete drift parameter at
a fixed time step, the other looping over time steps and updating the forward
curve at each step. Figure 3.16 illustrates the calculation of

f(tiz1,t5) =

d 2 4 /i
‘2";]:7‘ Z (Z O'k:(tz latf h[-{—l) Z <Z &k(ti_l,tg)hg+1)
J —

k=1 \{4=1%

2

in a way that avoids duplicate computation. In the notation of the algorithm,
this drift parameter is evaluated as

1

.~ Bnex - B rev)s
2(tj41 — tj)[ ¢~ Bpre
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and each Apext(k) records a quantity of the form

J
> Gkltio1,te)hess.
=i

Inputs: s;(k), 7=1,...,M —i, k=1,...,d as in (3.101)
and hi,...,hnm (he =to — te—1)

Aprev(k) — 0, k=1,....d
forj=1,...,M —1i
Brext <+ 0
fork=1,...,d
Anext(k) «— Aprev(k) + s; (k) * h’i—}—j
Bhrext < Bnext + Anext(k) * Anext(k)
Aprev (k) — Anext(k)
end
m; < (Bnext — Bprev)/(2hi+;)
Bprev — Bhext
end
return mi, ..., Mapm—;.

Fig. 3.16. Calculation of discrete drift parameters m; = fi(t;—1, ti+j—1) needed to
simulate transition from ¢;_1 to ¢;.

Figure 3.17 shows an algorithm for a single replication in an HJM simu-
lation; the steps in the figure would naturally be repeated over many inde-
pendent replications. This algorithm calls the one in Figure 3.16 to calculate
the discrete drift for all remaining maturities at each time step. The two algo-
rithms could obviously be combined, but keeping them separate should help
clarify the various steps. In addition, it helps stress the point that in propa-
gating the forward curve from t;_; to ¢;, we first evaluate the s;(k) and m;
using the forward rates at step ¢ — 1 and then update the rates to get their
values at step 1.

To make this point a bit more concrete, suppose we specified a single-factor
model with & (t;,t;) = &(i,4) f(t;, t;) for some fixed values (4, j). This makes
each 6(t;,t;) proportional to the corresponding forward rate. We noted in Ex-
ample 3.6.3 that this type of diffusion term is inadmissible in the continuous-
time limit, but it can be (and often is) used in practice so long as the incre-
ments h; are kept bounded away from zero. In this model it should be clear
that in updating f(t;_1,t;) to f(t;,t;) we need to evaluate & (i—1, ) f (ti_1, t;)
before we update the forward rate.

Since an HJM simulation is typically used to value interest rate derivatives,
we have included in Figure 3.17 a few additional generic steps illustrating how
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Inputs: initial curve (fi,..., fum) and intervals (hi,..., ha)

D«1, P«0,C«0.
fori=1,...,M —1
D — D xexp(—f1 * h;)
evaluate s;(k), j=1,.... M -4, k=1,...,d
(recall that s;(k) = Gk (ti—1,titj—1))
evaluate mi,...,my—; using Figure 3.16
generate Z1,...,Z4 ~ N(0,1)
forj=1,...,M —1
S0
fork=1,...,d S« S+ s;(k)* Zk
fi = fivr+m;xhi+SxVhs
end
P — cashflow at t; (depending on instrument)
C—C+DxP
end
return C.

Fig. 3.17. Algorithm to simulate evolution of forward curve over to,t1,...,tpm—1
and calculate cumulative discounted cashflows from an interest rate derivative.

a path of the forward curve is used both to compute and to discount the pay-
off of a derivative. The details of a particular instrument are subsumed in
the placeholder “cashflow at t;.” This cashflow is discounted through mul-
tiplication by D, which is easily seen to contain the simulated value of the
discount factor D(t;) as defined in (3.99). (When D is updated in Figure 3.17,
before the forward rates are updated, f; records the short rate for the interval
[ti—1,ti].) To make the pricing application more explicit, we consider a few
examples.

Example 3.6.4 Bonds. There is no reason to use an HJM simulation to price
bonds — if properly implemented, the simulation will simply return prices
that could have been computed from the initial forward curve. Nevertheless,
we consider this example to help fix ideas. We discussed the pricing of a zero-
coupon bond following (3.99); in Figure 3.17 this corresponds to setting P « 1
at the maturity of the bond and P « 0 at all other dates. For a coupon paying
bond with a face value of 100 and a coupon of ¢, we would set P « ¢ at the
coupon dates and P « 100 + ¢ at maturity. This assumes, of course, that the

coupon dates are among the t1,...,ty. O

Example 3.6.5 Caps. A caplet is an interest rate derivative providing pro-
tection against an increase in an interest rate for a single period; a cap is
a portfolio of caplets covering multiple periods. A caplet functions almost
like a call option on the short rate, which would have a payoff of the form
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(r(T) — K)* for some strike K and maturity T. In practice, a caplet differs
from this in some small but important ways. (For further background, see

Appendix C.)
In contrast to the instantaneous short rate 7(¢), the underlying rate in a

caplet typically applies over an interval and is based on discrete compound-
ing. For simplicity, suppose the interval is of the form [t;,¢;11]. At t;, the
continuously compounded rate for this interval is f (t;,t;); the corresponding
discretely compounded rate F satisfies

_ 1 — e—f(ti,ti)[ti+1—ti];
1+ F(t)[tiv1 — ti]

i.e.,

Plt) = — (efentottiri=td 1),
tiv1 — ¢

The payoff of the caplet would then be (F(t;) — K)* (or a constant multiple
of this). Moreover, this payment is ordinarily made at the end of the interval,
t;+1. To discount it properly we should therefore simulate to ¢; and set

— D04 — KOV .
1+ F(t)[tor1 — ta] (Bt = K (3.102)

in the notation of Figure 3.17, this is
1 +
P e il <—— (efther — 1) — K) .
hit1

Similar ideas apply if the caplet covers an interval longer than a single
simulation interval. Suppose the caplet applies to an interval [t;,?;1,]. Then
(3.102) still applies at t;, but with ¢,41 replaced by t,1, and F(t;) redefined

to be

3 1 —
F(t;) = tori — b (exp (Z [, tive)Liver1 — tz+€]> - 1) -
n+1

=

In the case of a cap consisting of caplets for, say, the periods [t,, t,], [tiy, tis],
.y [tie s tigy.], for some i3 < 4 < .-+ < iy, this calculation would be
repeated and a cashflow recorded at each t;,, j = 1,...,k. O

Example 3.6.6 Swaptions. Consider, next, an option to swap fixed-rate pay-
ments for floating-rate payments. (See Appendix C for background on swaps
and swaptions.) Suppose the underlying swap begins at ¢;, with payments to
be exchanged at dates t;,,...,t;.. If we denote the fixed rate in the swap by
R, then the fixed-rate payment at t;, is 100R[t;, —t;, _,], assuming a principal
or notional amount of 100. As explained in Section C.2 of Appendix C, the
value of the swap at t;, is
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n
V(tjo) = 100 <R B(tjo,tjg)[tjg — tje—l] —+ B(tjoatjn) — 1) .

=1

The bond prices B(t;,,t;,) can be computed from the forward rates at tj,
using (3.94).

The holder of an option to enter this swap will exercise the option if
V(tj,) > 0 and let it expire otherwise. (For simplicity, we are assuming
that the option expires at t;, though similar calculations apply for an op-
tion to enter into a forward swap, in which case the option expiration date
would be prior to tj,.) Thus, we may view the swaption as having a payoff of
max{0, V(t;,)} at t;,. In a simulation, we would therefore simulate the for-
ward curve to the option expiration date t;,; at that date, calculate the prices
of the bonds B(t;,,t;,) maturing at the payment dates of the swaps; from
the bond prices calculate the value of the swap V(tj,) and thus the swap-
tion payoff max{0, V(tjo)}; record this as the cashflow P in the algorithm of
Figure 3.17 and discount it as in the algorithm.

This example illustrates a general feature of the HIM framework that
contrasts with models based on the short rate as in Sections 3.3 and 3.4.
Consider valuing a 5-year option on a 20-year swap. This instrument involves
maturities as long as 25 years, so valuing it in a model of the short rate could
involve simulating paths over a 25-year horizon. In the HJM framework, if the
initial forward curve extends for 25 years, then we need to simulate only for
5 years; at the expiration of the option, the remaining forward rates contain
all the information necessary to value the underlying swap. Thus, although
the HJM setting involves updating many more variables at each time step, it
may also require far fewer time steps. O

3.7 Forward Rate Models: Simple Rates

The models considered in this section are closely related to the HJM frame-
work of the previous section in that they describe the arbitrage-free dynamics
of the term structure of interest rates through the evolution of forward rates.
But the models we turn to now are based on simple rather than continu-
ously compounded forward rates. This seemingly minor shift in focus has
surprisingly far-reaching practical and theoretical implications. This model-
ing approach has developed primarily through the work of Miltersen, Sand-
mann, and Sondermann [268], Brace, Gatarek, and Musiela [56], Musiela and
Rutkowski [274], and Jamshidian [197]; it has gained rapid acceptance in the
financial industry and stimulated a growing stream of research into what are

often called LIBOR market models.
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3.7.1 LIBOR Market Model Dynamics

The basic object of study in the HJM framework is the forward rate curve
{f(t,T),t <T <T*}. But the instantaneous, continuously compounded for-
ward rates f(¢,7) might well be considered mathematical idealizations —
they are not directly observable in the marketplace. Most market interest
rates are based on simple compounding over intervals of, e.g., three months
or six months. Even the instantaneous short rate r(¢) treated in the models
of Sections 3.3 and 3.4 is a bit of a mathematical fiction because short-term
rates used for pricing are typically based on periods of one to three months.
The term “market model” is often used to describe an approach to interest
rate modeling based on observable market rates, and this entails a departure
from instantaneous rates.

Among the most important benchmark interest rates are the London Inter-
Bank Offered Rates or LIBOR. LIBOR is calculated daily through an average
of rates offered by banks in London. Separate rates are quoted for different
maturities (e.g., three months and six months) and different currencies. Thus,
each day new values are calculated for three-month Yen LIBOR, six-month
US dollar LIBOR, and so on.

LIBOR rates are based on simple interest. If L denotes the rate for an
accrual period of length § (think of § as 1/4 or 1/2 for three months and six
months respectively, with time measured in years), then the interest earned
on one unit of currency over the accrual period is § L. For example, if three-
month LIBOR is 6%, the interest earned at the end of three months on a
principal of 100 is 0.25 - 0.06 - 100 = 1.50.

A forward LIBOR rate works similarly. Fix § and consider a maturity 7.
The forward rate L(0,T) is the rate set at time 0 for the interval [T, T + 4].
If we enter into a contract at time 0 to borrow 1 at time 7' and repay it
with interest at time 7" + §, the interest due will be 6L(0,T). As shown in
Appendix C (specifically equation (C.5)), a simple replication argument leads
to the following identity between forward LIBOR rates and bond prices:

B(0,T) — B(0,T + 6)

B0, T +0) (3.103)

L(0,T) =

This further implies the relation

T+6
L(0,T) = % (exp ( /T i £(0,u) du> -~ 1) (3.104)

between continuous and simple forwards, though it is not necessary to intro-
duce the continuous rates to build a model based on simple rates.

It should be noted that, as is customary in this literature, we treat the
forward LIBOR rates as though they were risk-free rates. LIBOR rates are
based on quotes by banks which could potentially default and this risk is pre-
sumably reflected in the rates. US Treasury bonds, in contrast, are generally
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considered to have a negligible chance of default. The argument leading to
(3.103) may not hold exactly if the bonds on one side and the forward rate
on the other reflect different levels of creditworthiness. We will not, however,
attempt to take account of these considerations.

Although (3.103) and (3.104) apply in principle to a continuum of matu-
rities 7', we consider a class of models in which a finite set of maturities or

tenor dates
O=To<Ti < - <Ty <Th41

are fixed in advance. As argued in Jamshidian [197], many derivative securities
tied to LIBOR and swap rates are sensitive only to a finite set of maturities
and it should not be necessary to introduce a continuum to price and hedge
these securities. Let

0 =Tjp1 —T;, 1=0,...,M,

denote the lengths of the intervals between tenor dates. Often, these would
all be equal to a nominally fixed interval of a quarter or half year; but even
in this case, day-count conventions would produce slightly different values for
the fractions 6;.

For each date T, we let B, (t) denote the time-t price of a bond maturing
at T, 0 <t < T,. In our usual notation this would be B(t,T,,), but writing
B, (t) and restricting n to {1,2,..., M + 1} emphasizes that we are working
with a finite set of bonds. Similarly, we write L,,(t) for the forward rate as of
time t for the accrual period [T},, T}, +1]; see Figure 3.18. This is given in terms
of the bond prices by

B, (t) — Bn11(t)
n t - ] S _<_ ) = (b A : 1
Ln(t) 5B () 0<t<T, n=01,...,M (3.105)

After T),, the forward rate L, becomes meaningless; it sometimes simplifies

notation to extend the definition of L, (¢) beyond T, by setting L,(t) =

L,(T,) for all t > T,,.
From (3.105) we know that bond prices determine the forward rates. At a

tenor date Tj;, the relation can be inverted to produce

n—1
1
B, (T;) = —_— =i+1,..., M+ 1. 1

However, at an arbitrary date ¢, the forward LIBOR rates do not determine
the bond prices because they do not determine the discount factor for intervals
shorter than the accrual periods. Suppose for example that T; < t < T;q and
we want to find the price By(t) for some n > ¢ 4 1. The factor

n—1 1

I 55w

=it
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L,,(0)
Ln (O) T
-Ll (OL ............. S
0 . T T, Tasi "
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L0
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t t | JT = { 1
0 T, t Tn-l T, Tt -

Fig. 3.18. Evolution of vector of forward rates. Each L, (t) is the forward rate for
the interval [Th,, Tr+1] as of time ¢ < T,.

discounts the bond’s payment at 7, back to time 7541, but the LIBOR rates

do not specify the discount factor from 754, to t.
Define a function 7 : [0, Tar+1) — {1,..., M + 1} by taking n(t) to be the

unique integer satisfying

T,

nt)—1 <t <Dy

thus, 7(t) gives the index of the next tenor date at time ¢. With this notation,

we have

n—1
1
d=n(t) 7

the factor B, (t) (the current price of the shortest maturity bond) is the
missing piece required to express the bond prices in terms of the forward

LIBOR rates.

Spot Measure

We seek a model in which the evolution of the forward LIBOR rates is de-
scribed by a system of SDEs of the form

dLLné?=un<t)dt+o—n<t>TdW(t), 0<t<Th n=1..,M (3.108)

with W a d-dimensional standard Brownian motion. The coefficients u, and
o, may depend on the current vector of rates (L1(t), ..., La(t)) as well as the
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current time ¢. Notice that in (3.108) oy, is the (proportional) volatility because
we have divided by L,, on the left, whereas in the HIM setting (3.91) we took
o(t,T) to be the absolute level of volatility. At this point, the distinction is
purely one of notation rather than scope because we allow o, (t) to depend
on the current level of rates.

Recall that in the HIM setting we derived the form of the drift of the
forward rates from the absence of arbitrage. More specifically, we derived the
drift from the condition that bond prices be martingales when divided by
the numeraire asset. The numeraire we used is the usual one associated with
the risk-neutral measure, 3(t) = exp( f(; r(u) du). But introducing a short-rate
process r(t) would undermine our objective of developing a model based on
the simple (and thus more realistic) rates L, (t). We therefore avoid the usual
risk-neutral measure and instead use a numeraire asset better suited to the
tenor dates T;.

A simply compounded counterpart of G(¢) works as follows. Start with 1
unit of account at time 0 and buy 1/B;(0) bonds maturing at 77. At time 77,
reinvest the funds in bonds maturing at time 7% and proceed this way, at each
T; putting all funds in bonds maturing at time 7;4;. This trading strategy
earns (simple) interest at rate L;(T;) over each interval [T3,7; 1], just as in
the continuously compounded case a savings account earns interest at rate
r(t) at time ¢. The initial investment of 1 at time 0 grows to a value of

n(t)—1
B*(t) = Byy(t) [] [1+6,L;(Ty)]
§=0

at time ¢. Following Jamshidian [197], we take this as numeraire asset and call
the associated measure the spot measure.

Suppose, then, that (3.108) holds under the spot measure, meaning that W
is a standard Brownian motion under that measure. The absence of arbitrage
restricts the dynamics of the forward LIBOR rates through the condition that
bond prices be martingales when deflated by the numeraire asset. (We use the
term “deflated” rather than “discounted” to emphasize that we are dividing
by the numeraire asset and not discounting at a continuously compounded
rate.) From (3.107) and the expression for B*, we find that the deflated bond

price Dy, (t) = By (t)/B*(t) is given by

n(t)—1 n—1
1 1
Do (t) = S . 0<t<T, (3.109
() U 1+6;L;(Ty) 1+6;L;(t) ( )
j=0 =n(t)

Notice that the spot measure numeraire B* cancels the factor B, ;)(t) used in
(3.107) to discount between tenor dates. We are thus left in (3.109) with an
expression defined purely in terms of the LIBOR rates. This would not have
been the case had we divided by the risk-neutral numeraire asset 3(t).

We require that the deflated bond prices D,, be positive martingales
and proceed to derive the restrictions this imposes on the LIBOR dynam-
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ics (3.108). If the deflated bonds are indeed positive martingales, we may

write
dDn 1 (t)

Dn+1(t)
for some R%-valued processes v, +1 which may depend on the current level of
(Do, ..., Dpr41) (equivalently, of (Ly, ..., Lyr)). By 1td’s formula,

dlog Dp11(t) = =3 ||vns1(t)| db + v,y () AW (2).

We may therefore express v, 1 by finding the coefficient of dW in

= U1 ()T dW(t), n=1,...,M,

dlog Dpy1(t) = — Y dlog(1+ 6;L;(2));
j=n(t)

notice that the first factor in (3.109) is constant between maturities 7;. Ap-
plying It6’s formula and (3.108), we find that

Vi (t) = —jzzn:(t) T%%aj (). (3.110)

We now proceed by induction to find the p, in (3.108). Setting D, (t) =
B;(0), we make D, constant and hence a martingale without restrictions on

any of the LIBOR rates. Suppose now that ui,...,u,—1 have been chosen
consistent with the martingale condition on D,,. From the identity D, (t) =

Dn+1 (1 + (SnLn(t)), we find that (SnLn(t)Dn_H(t) = Dn(t) — Dn+1(t), SO Dn+1
is a martingale if and only if L, D, is a martingale. Applying 1t6’s formula,

we get

d(LypDpyi1)
= Dyy1dLy + Ly dDpy1 + LpDyi1v, 100 dt
= (Dn+41ptnLn + LnDypi1v, 1100) dt + LpDny10, dW + Ly dDy1.

(We have suppressed the time argument to lighten the notation.) To be con-
sistent with the martingale restriction on D, 41 and L, D,,+1, the dt coefficient
must be zero, and thus

fin = =0 Uny1;
notice the similarity to the HIM drift (3.90). Combining this with (3.110), we
arrive at

° iLsg On TO’j
o (2) Zj__%) 5J L’f? 6ij o ) (3.111)

as the required drift parameter in (3.108), so

dLn(t) _ z": L 00®) 0i) 4y o )T aw(e), 0<t<T,, (3112

L) 2 1+8,L,(0)
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n=1,...,M, describes the arbitrage-free dynamics of forward LIBOR rates
under the spot measure. This formulation is from Jamshidian [197], which
should be consulted for a rigorous and more general development.

Forward Measure

As in Musiela and Rutkowski [274], we may alternatively formulate a LIBOR
market model under the forward measure Py for maturity Ths4; and take
the bond Bjs4; as numeraire asset. In this case, we redefine the deflated bond
prices to be the ratios D, (t) = B, (t)/Bp+1(t), which simplify to

M
Dn(t) = T (@ +06;L;(2)). (3.113)

j=n+1

Notice that the numeraire asset has once again canceled the factor B )(t),
leaving an expression that depends solely on the forward LIBOR rates.

We could derive the dynamics of the forward LIBOR rates under the for-
ward measure through the Girsanov Theorem and (3.112), much as we did
in the HIM setting to arrive at (3.93). Alternatively, we could start from the
requirement that the D,, in (3.113) be martingales and proceed by induction
(backwards from n = M) to derive restrictions on the evolution of the L.
Either way, we find that the arbitrage-free dynamics of the L,,,n =1,..., M,
under the forward measure P41 are given by

dLa(t) <~ Lo (®) oy () T M
T _Z 3 L) dt +o,(t) T dWMTL(), 0<t<T,,
Jj=n+1
(3.114)
with WM+1 a standard d-dimensional Brownian motion under Pps.;. The
relation between the drift in (3.114) and the drift in (3.112) is analogous to
the relation between the risk-neutral and forward-measure drifts in the HIM

setting; compare (3.90) and (3.93).
If we take n = M in (3.114), we find that

dLM(t)
La(t)

so that, subject only to regularity conditions on its volatility, Ly, is a mar-
tingale under the forward measure for maturity 7hs+;. Moreover, if o is
deterministic then L (t) has lognormal distribution LN (—52,(t)/2,52,(t))
with

= o (t) T dWMTL(R),

5M(t):\/%/o e ()2 du (3.115)

In fact, the choice of M is arbitrary: each L, is a martingale (lognormal if o,
is deterministic) under the forward measure P, associated with T}, 4.
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These observations raise the question of whether we may in fact take the
coefficients o, to be deterministic in (3.112) and (3.114). Recall from Exam-
ple 3.6.3 that this choice (deterministic proportional volatility) is inadmissible
in the HJM setting, essentially because it makes the HJM drift quadratic in
the current level of rates. To see what happens with simple compounding,
rewrite (3.112) as

- iLsg On TO’j
dLn(t) = j:%:(t) oLy (t>1L: (2 » g)) ®) 4 + L,(t)on ()T dW(t) (3.116)

and consider the case of deterministic o;. The numerators in the drift are
quadratic in the forward LIBOR rates, but they are stabilized by the terms
1+ 6;L;(t) in the denominators; indeed, because L;(t) > 0 implies

, d;L;(t)

I <,
1+®%UJ_

the drift is linearly bounded in L,(t), making deterministic o; admissible.
This feature is lost in the limit as the compounding period §; decreases to
zero. Thus, the distinction between continuous and simple forward rates turns
out to have important mathematical as well as practical implications.

3.7.2 Pricing Derivatives

We have noted two important features of LIBOR market models: they are
based on observable market rates, and (in contrast to the HJM framework)
they admit deterministic volatilities ;. A third important and closely related
feature arises in the pricing of interest rate caps.

Recall from Example 3.6.5 (or Appendix C.2) that a cap is a collection
of caplets and that each caplet may be viewed as a call option on a simple
forward rate. Consider, then, a caplet for the accrual period [T},, T),+1]. The
underlying rate is L,, and the value L, (T},) is fixed at T;,. With a strike of K,
the caplet’s payoff is 4, (L, (T,) — K)*; think of the caplet as refunding the
amount by which interest paid at rate L,(7},) exceeds interest paid at rate
K. This payoff is made at Ty 41.

Let Cp(t) denote the price of this caplet at time ¢; we know the terminal
value Cp(Thy1) = 0n(Ln(Tn) — K)T and we want to find the initial value
Cr(0). Under the spot measure, the deflated price C,(¢)/B*(t) must be a
martingale, so

Cn(O) — B*(O)E* 5n(Ln(Tn) — K)+] ’

B*(TnJrl)
where we have written E* for expectation under the spot measure. Through

B*(Ty+1), this expectation involves the joint distribution of Li(T%), ...,
L, (T,), making its value difficult to discern. In contrast, under the forward
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measure P, associated with maturity 7,41, the martingale property applies
to Cr(t)/Bn+1(t). We may therefore also write

6n(Ln(Ty) — K)+
Brnt1(Tnt1)

with E,4+1 denoting expectation under P, ;. Conveniently, Bpy1(Th+1) = 1,
so this expectation depends only on the marginal distribution of L, (T}). If
we take 0, to be deterministic, then L, (7,) has the lognormal distribution
LN(-=52%(Ty)/2,62(T},)), using the notation in (3.115). In this case, the caplet
price is given by the Black formula (after Black [49]),

Cn(0) = Bny1(0)Enta

Y

Cr(0) = BC(Ln(0),5,(Ty), Th, K, 0n,Bn+1(0)),
with

BC(F,0, T, K,b) =

) (Fq) (1og(F/i(\)/TJt UQT/2> ke (Iog(F/f\)/% JZT/2)> (3.117)

and ® the cumulative normal distribution. Thus, under the assumption of de-
terministic volatilities, caplets are priced in closed form by the Black formula.

This formula is frequently used in the reverse direction. Given the market
price of a caplet, one can solve for the “implied volatility” that makes the
formula match the market price. This is useful in calibrating a model to market
data, a point we return to in Section 3.7.4.

Consider, more generally, a derivative security making a payoff of g(L(T},))
at Tk, with L(Tn) = (Ll (Tl), ce >Ln—1(Tn—1>7Ln(Tn)a ceey LM(Tn)) and k >
n. The price of the derivative at time 0 is given by

')

(using the fact that B*(0) = 1), and also by

g(L(Tn))}

B, (0)E,, {——————Bm(Tk)

for every m > k. Which measure and numeraire are most convenient depends
on the payoff function g. However, in most cases, the expectation cannot be
evaluated explicitly and simulation is required.

As a further illustration, we consider the pricing of a swaption as described
in Example 3.6.6 and Appendix C.2. Suppose the underlying swap begins at
T, with fixed- and floating-rate payments exchanged at T}, +1,...,Tas+1. From
equation (C.7) in Appendix C, we find that the forward swap rate at time ¢
is given by
B"J(\Zl Burra () (3.118)
2 d;B;(t)

j=n+1

Sn(t) =



174 3 Generating Sample Paths

Using (3.107) and noting that B, ;)(t) cancels from the numerator and de-
nominator, this swap rate can be expressed purely in terms of forward LIBOR
rates.

Consider, now, an option expiring at time T} < T, to enter into the swap
over [T, Tar41] with fixed rate T'. The value of the option at expiration can

be expressed as (cf. equation (C.11))

M+1
> 6;Bi(Tk)(R — Su(Tk))*.

j=n+1

This can be written as a function g(L(T%)) of the LIBOR rates. The price
at time zero can therefore be expressed as an expectation using the general
expressions above.

By applying 1t6’s formula to the swap rate (3.118), it is not difficult to
conclude that if the forward LIBOR rates have deterministic volatilities, then
the forward swap rate cannot also have a deterministic volatility. In particu-
lar, then, the forward swap rate cannot be geometric Brownian motion under
any equivalent measure. Brace et al. [56] nevertheless use a lognormal ap-
proximation to the swap rate to develop a method for pricing swaptions; their
approximation appears to give excellent results. An alternative approach has
been developed by Jamshidian [197]. He develops a model in which the term
structure is described through a vector (Sy(t),...,San(t)) of forward swap
rates. He shows that one may choose the volatilities of the forward swap rates
to be deterministic, and that in this case swaption prices are given by a variant
of the Black formula. However, in this model, the LIBOR rates cannot also
have deterministic volatilities, so caplets are no longer priced by the Black
formula. One must therefore choose between the two pricing formulas.

3.7.3 Simulation

Pricing derivative securities in LIBOR market models typically requires sim-
ulation. As in the HJM setting, exact simulation is generally infeasible and
some discretization error is inevitable. Because the models of this section deal
with a finite set of maturities from the outset, we need only discretize the
time argument, whereas in the HJM setting both time and maturity required
discretization.

We fix a time grid 0 =ty < t1 < -+ - < t;, < typ+1 Over which to simulate. It
is sensible to include the tenor dates 11, .. ., Ths+1 among the simulation dates.
In practice, one would often even take t; = T; so that the simulation evolves
directly from one tenor date to the next. We do not impose any restrictions
on the volatilities o, though the deterministic case is the most widely used.
The only other specific case that has received much attention takes o, (t) to
be the product of a deterministic function of time and a function of L, (t) as
proposed in Andersen and Andreasen [13]. For example, one may take o, (t)
proportional to a power of L, (t), resulting in a CEV-type of volatility. In either
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this extension or in the case of deterministic volatilities, it often suffices to
restrict the dependence on time to piecewise constant functions that change
values only at the 7;. We return to this point in Section 3.7.4.

Simulation of forward LIBOR rates is a special case of the general prob-
lem of simulating a system of SDEs. One could apply an Euler scheme or a
higher-order method of the type discussed in Chapter 6. However, even if we
restrict ourselves to Euler schemes (as we do here), there are countless alter-
natives. We have many choices of variables to discretize and many choices of
probability measure under which to simulate. Several strategies are compared
both theoretically and numerically in Glasserman and Zhao [151], and the
discussion here draws on that investigation.

The most immediate application of the Euler scheme under the spot mea-
sure discretizes the SDE (3.116), producing

Ln(tiv1) = La(ti) + pn(L(ts), ts) Lo (t:)[ti1 — ti]
.+.

fzn(ti)\/tzq_l — tidn(ti)TZi_‘_l (3119)

R " 5L () o () oy (t:
pn(L(t:), ts) = Z 5JLJ(1ti{)-5n-g-)(t') -

J=n(t:)

with

and Zi, Zs, ... independent N(0,I) random vectors in R¢. Here, as in Sec-
tion 3.6.2, we use hats to identify discretized variables. We assume that we
are given an initial set of bond prices B1(0), ..., Ba+1(0) and initialize the
simulation by setting

Bn(0) = Bn11(0)

, n=1,..., M,
5an+1(0)

Ln(0) =

in accordance with (3.105).
An alternative to (3.119) approximates the LIBOR rates under the spot

measure using

Ln(tiv1) = Ln(t:)x
exp ([n(Lits), ) = Hlon(tIl?] [tirr = ti + V/Eirs = Gon(t:) Zira )
(3.120)

THhis is equivalent to applying an Euler scheme to log L,,; it may also be viewed
as approximating L,, by geometric Brownian motion over [t;, t;+1], with drift
and volatility parameters fixed at t;. This method seems particularly attractive
in the case of deterministic o,,, since then L,, is close to lognormal. A further
property of (3.120) is that it keeps all Ly, positive, whereas (3.119) can produce
negative rates.

For both of these algorithms it is important to note that our definition
of n makes 7 right-continuous. For the original continuous-time processes we
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could just as well have taken 1 to be left-continuous, but the distinction is
important in the discrete approximation. If ¢, = Ty, then n(¢;) = k+1 and the
sum in each pn(L(t;), ¢;) starts at k+1. Had we taken 7 to be left-continuous,
we would have n(T;) = k and thus an additional term in each pu,. It seems
intuitively more natural to omit this term as time advances beyond T} since
Ly, ceases to be meaningful after Tj. Glasserman and Zhao [151] and Sidenius
[330] both find that omitting it (i.e., taking 7 right-continuous) results in

smaller discretization error.
Both (3.119) and (3.120) have obvious counterparts for simulation under

the forward measure Ppsyq. The only modification necessary is to replace
,un(L(ti),ti) with

[ - L, i)0n iTO" i
pn(L(ti) 1) = = > 5JLJ§tié‘gv)(t-)J(t)'

j=n-+41

Notice that pps = 0. It follows that if the oas is deterministic and constant
between the t; (for example, constant between tenor dates), then the log Euler
scheme (3.120) with pp = 0 simulates Ly, without discretization error under
the forward measure Pps41. None of the L, is simulated without discretiza-
tion error under the spot measure, but we will see that the spot measure is
nevertheless generally preferable for simulation.

Martingale Discretization

In our discussion of simulation in the HJM setting, we devoted substantial at-
tention to the issue of choosing the discrete drift to keep the model arbitrage-
free even after discretization. It is therefore natural to examine whether an
analogous choice of drift can be made in the LIBOR rate dynamics. In the
HJM setting, we derived the discrete drift from the condition that the dis-
cretized discounted bond prices must be martingales. In the LIBOR market

model, the corresponding requirement is that

1

n—1
Dy (t;) = . (3.121)
jl____IO 1+ 5_7'Lj(ti A TJ)

be a martingale (in ¢) for each n under the spot measure; see (3.109). Under
the forward measure, the martingale condition applies to

M
Dafts) = T (1+6Ls(t)) 5 (3.122)

see (3.113).
Consider the spot measure first. We would like, as a special case of (3.121),

for 1/(1 4+ 61L1) to be a martingale. Using the Euler scheme (3.119), this
requires
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1 1
E i — _
L+51(L1(0)[1 +,u1t1+\/t101TZ1)]} 1+6:1L1(0)

the expectation taken with respect to Z; ~ N(0,I). However, because the
denominator inside the expectation has a normal distribution, the expecta-
tion is infinite no matter how we choose p;. There is no discrete drift that
preserves the martingale property. If, instead, we use the method in (3.120),
the condition becomes

1
1 + 51131(0)'

1
E -
{1 + 61(L1(0) exp([p1 — llon]|2/2]t1 + VEro] Z1))

In this case, there is a value of u; for which this equation holds, but there
is no explicit expression for it. The root of the difficulty lies in evaluating an

expression of the form

1
. [1 + exp(a + bZ)} 2~ NOD),

which is effectively intractable. In the HIM setting, calculation of the discrete

drift relies on evaluating far more convenient expressions of the form E[exp(a+

bZ)]; see the steps leading to (3.97).

Under the forward measure, it is feasible to choose p1 so that ﬁg in (3.122)
is a martingale using an Euler scheme for either L; or log L;. However, this
quickly becomes cumbersome for D,, with larger values of n. As a practical
matter, it does not seem feasible under any of these methods to adjust the
drift to make the deflated bond prices martingales. A consequence of this is
that if we price bonds in the simulation by averaging replications of (3.121)
or (3.122), the simulation price will not converge to the corresponding B,,(0)
as the number of replications increases.

An alternative strategy is to discretize and simulate the deflated bond
prices themselves, rather than the forward LIBOR rates. For example, under
the spot measure, the deflated bond prices satisfy

M — - 6J'Lj(7?) oF
Dnyi(t) j:;(t) (1 +5ij(t)> 5 (£)dW()

v (Djn®) 1) o7
_ 2t 1) o7 (1) aw (t). (3.123)
jz;(t) < Dj(2) )

An Euler scheme for log D,, 11 therefore evolves according to

A

Dyt1(tivr) =
Dny1(t;) exp <—%|lf/n+1(ti)||2[ti+1 —ti] + /tit1 — tz‘ﬁn+1(tz‘)TZi+1> (3.124)

with
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s (t) = ,_z(:‘) <%¢éf)—) - 1) o5 (k). (3.125)

In either case, the discretized deflated bond prices are automatically mar-
tingales; in (3.124) they are positive martingales and in this sense the dis-
cretization is arbitrage-free. From the simulated D, (t;) we can then define
the discretized forward LIBOR rates by setting

En(ti):i<D( )Hl();( )>,

for n = 1,..., M. Any other term structure variables (e.g., swap rates) re-
quired in the simulation can then be defined from the L.
Glasserman and Zhao [151] recommend replacing

(—b—f'—ﬂ@—l) with  min (22“—(@>+—1,0 . (3.126)
Dj(t:) Dj(t:)

This modification has no effect in the continuous-time limit because 0 <
J_H(t) < D,(t) (if L;j(¢t) > 0). But in the discretized process the ratio

Dji1/ D could potentially exceed 1.
Under the forward measure Pjs41, the deflated bond prices (3.113) satisfy

WDonlt) _ §o _BLO_; 7 gy

Dpia(t) = 1+0,L;(t)"
M
- j:‘,;q‘(l B %%) o (6)dWMT (). (3.127)

We can again apply an Euler discretization to the logarithm of these variables
to get (3.124), except that now

" .
Upy1(ts) = Z (1 - Dlz;—(lt(t;)) o;(ti),

Jj=n+1

possibly modified as in (3.126).
Glasserman and Zhao [151] consider several other choices of variables for

discretization, including (under the spot measure) the normalized differences

Dy (t) = Dnya(t)
B4 (0) ’

Vo(t) = n=1,...,M;

these are martingales because the deflated bond prices are martingales. They
satisfy
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+ o; | dW,
( Vii+--+ V=1 Z Viei+ - +V1*1
with the convention oar11 = 0. Forward rates are recovered using

Va(t)
Va1 (t) + -+ Vara ()

OnLn(t) =

Similarly, the variables

M
SnXn(t) = 0nLn(t) [ (1+65L;(2))

Jj=n+1

are differences of deflated bond prices under the forward measure Pysy; and
thus martingales under that measure. The X, satisfy

dXn, 5Xa

SEES
Xn iz n+11+5X+ —i—(SMXM

dWwM+1,

Forward rates are recovered using

L, = Xn
" 1t G Xng1 o+ O X

Euler discretizations of log V,, and log X,, preserve the martingale property
and thus keep the discretized model arbitrage-free.

Pricing Derivatives

The pricing of a derivative security in a simulation proceeds as follows. Using
any of the methods considered above, we simulate paths of the discretized
variables f/l, e ,f} M. Suppose we want to price a derivative with a payoff of
g(L(T},)) at time T,. Under the spot measure, we simulate to time T, and
then calculate the deflated payoff

R - 1
) J[Io L+ 6;L;(Ty)

Averaging over independent replications produces an estimate of the deriva-
tive’s price at time 0. If we simulate under the forward measure, the estimate

consists of independent replications of
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n—1

9(L(T0)) - Bau1(0) J] (1 + 6;L5(Ty)).

7j=1

Glasserman and Zhao [151] compare various simulation methods based, in
part, on their discretization error in pricing caplets. For the case of a caplet
over [T,,—1,T,], take g(z) = dp—1(z — K)™ in the expressions above. If the o;
are deterministic, the caplet price is given by the Black formula, as explained
in Section 3.7.2. However, because of the discretization error, the simulation
price will not in general converge exactly to the Black price as the number
of replications increase. The bias in pricing caplets serves as a convenient
indication of the magnitude of the discretization error.

Figure 3.19, reproduced from Glasserman and Zhao [151], graphs biases
in caplet pricing as a function of caplet maturity for various simulation meth-
ods. The horizontal line through the center of each panel corresponds to zero
bias. The error bars around each curve have halfwidths of one standard error,
indicating that the apparent biases are statistically significant. Details of the
parameters used for these experiments are reported in Glasserman and Zhao
[151] along with several other examples.

These and other experiments suggest the following observations. The
smallest biases are achieved by simulating the differences of deflated bond
prices (the V,, in the spot measure and the X, in the forward measure) using
an Euler scheme for the logarithms of these variables. (See Glasserman and
Zhao [151] for an explanation of the modified V;, method.) An Euler scheme
for log D,, is nearly indistinguishable from an Euler scheme for L,. Under the
forward measure Pjs1, the final caplet is priced without discretization error
by the Euler schemes for log X,, and log L,,; these share the feature that they
make the discretized rate Ly lognormal.

The graphs in Figure 3.19 compare discretization biases but say noth-
ing about the relative variances of the methods. Glasserman and Zhao [151]
find that simulating under the spot measure usually results in smaller vari-
ance than simulating under the forward measure, especially at high levels of
volatility. An explanation for this is suggested by the expressions (3.109) and
(3.113) for the deflated bond prices under the two measures: whereas (3.109)
always lies between 0 and 1, (3.113) can take arbitrarily large values. This
affects derivatives pricing through the discounting of payoffs.

3.7.4 Volatility Structure and Calibration

In our discussion of LIBOR market models we have taken the volatility factors
on(t) as inputs without indicating how they might be specified. In practice,
these coefficients are chosen to calibrate a model to market prices of actively
traded derivatives, especially caps and swaptions. (The model is automatically
calibrated to bond prices through the relations (3.105) and (3.106).) Once the
model has been calibrated to the market, it can be used to price less liquid
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Fig. 3.19. Comparison of biases in caplet pricing for various simulation methods.
Top panel uses spot measure; method A is an Euler scheme for L, and methods
B-E are Euler schemes for-log variables. Bottom panel uses the forward measure
Prri1; method A is an Euler scheme for L, and methods B—-D are Euler schemes

for log variables.

instruments for which market prices may not be readily available. Accurate
and efficient calibration is a major topic in its own right and we can only touch
on the key issues. For a more extensive treatment, see James and Webber [194]
and Rebonato [303]. Similar considerations apply in both the HJM framework
and in LIBOR market models; we discuss calibration in the LIBOR setting
because it is somewhat simpler. Indeed, convenience in calibration is one of
the main advantages of this class of models.

The variables o, (t) are the primary determinants of both the level of
volatility in forward rates and the correlations between forward rate. It is
often useful to distinguish these two aspects and we will consider the overall
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level of volatility first. Suppose we are given the market price of a caplet for
the interval [T}, Tn+1] and from this price we calculate an implied volatility
v, by inverting the Black formula (3.117). (We can assume that the other
parameters of the formula are known.) If we choose 0, to be any deterministic
R9-valued function satisfying

1 ™ 2 2
| eaora = a2

then we know from the discussion in Section 3.7.2 that the model is calibrated
to the market price of this caplet, because the model’s caplet price is given
by the Black formula with implied volatility equal to the square root of the
expression on the left. By imposing this constraint on all of the o, we ensure
that the model is calibrated to all caplet prices. (As a practical matter, it
may be necessary to infer the prices of individual caplets from the prices of
caps, which are portfolios of caplets. For simplicity, we assume caplet prices
are available.)

Because LIBOR market models do not specify interest rates over accrual
periods shorter than the intervals [T}, T;+1], it is natural and customary to
restrict attention to functions o, (¢) that are constant between tenor dates.
We take each o, to be right-continuous and thus denote by o0, (T;) its value
over the interval [T}, T;+1). Suppose, for a moment, that the model is driven
by a scalar Brownian motion, so d = 1 and each o, is scalar valued. In this
case, it is convenient to think of the volatility structure as specifed through a
lower-triangular matrix of the following form:

o1(To)
o2(To) o2(Th)

UMiTo),__UM&TO om(Trr-1)

The upper half of the matrix is empty (or irrelevant) because each L, (t) ceases
to be meaningful for ¢t > T,,. In this setting, we have

Tn
/ O’i(t) dt = (Ti(To)(So + 0’,,21(T1)(51 + -+ 0'72L(Tn—1)5n—1,
0

so caplet prices impose a constraint on the sums of squares along each row of

the matrix.

The volatility structure is stationary if o,(t) depends on n and ¢ only
through the difference T}, —t. For a stationary, single-factor, piecewise constant
volatility structure, the matrix above takes the form

o(1)
o(2) o1

o(M) o(M 1) - o (1)
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for some values o(1),...,0(M). (Think of o(4) as the volatility of a forward
rate ¢ periods away from maturity.) In this case, the number of variables just
equals the number of caplet maturities to which the model may be calibrated.
Calibrating to additional instruments requires introducing nonstationarity or
additional factors.

In a multifactor model (i.e., d > 2) we can think of replacing the entries
o.(T;) in the volatility matrix with the norms ||o,,(73)||, since the o,(T;) are
now vectors. With piecewise constant values, this gives

Tn
/0 lon(®)]1? dt = ||on(To) 1?60 + [|on(T1)]|?01 + - -+ + llon(Ta-1)||?6n—1,

so caplet implied volatilities continue to constrain the sums of squares along
each row. This also indicates that taking d > 2 does not provide additional
flexibility in matching these implied volatilities.

The potential value of a multifactor model lies in capturing correlations
between forward rates of different maturities. For example, from the Euler
approximation in (3.120), we see that over a short time interval the correlation
between the increments of log L;(t) and log L (t) is approximately

ox(t) " o;(t)
loe @ llo; ()

These correlations are often chosen to match market prices of swaptions
(which, unlike caps, are sensitive to rate correlations) or to match histori-
cal correlations.

In the stationary case, we can visualize the volatility factors by graphing
them as functions of time to maturity. This can be useful in interpreting the
correlations they induce. Figure 3.20 illustrates three hypothetical factors in
a model with M = 15. Because the volatility is assumed stationary, we may
write 0, (T;) = o(n — i) for some vectors o(1),...,0(M). In a three-factor
model, each o(¢) has three components. The three curves in Figure 3.20 are
graphs of the three components as functions of time to maturity. If we fix a
time to maturity on the horizontal axis, the total volatility at that point is
given by the sums of squares of the three components; the inner products of
these three-dimensional vectors at different times determine the correlations
between the forward rates.

Notice that the first factor in Figure 3.20 has the same sign for all matu-
rities; regardless of the sign of the increment of the driving Brownian motion,
this factor moves all forward rates in the same direction and functions approx-
imately as a parallel shift. The second factor has values of opposite signs at
short and long maturities and will thus have the effect of tilting the forward
curve (up if the increment in the second component of the driving Brownian
motion is positive and down if it is negative). The third factor bends the for-
ward curve by moving intermediate maturities in the opposite direction of long
and short maturities, the direction depending on the sign of the increment of
the third component of the driving Brownian motion.
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Fig. 3.20. Hypothetical volatility factors.

The hypothetical factors in Figure 3.20 are the first three principal com-
ponents of the matrix

0.122exp((—0.8+/]i — j])), 4,5=1,...,15.

More precisely, they are the first three eigenvectors of this matrix as ranked by
their eigenvalues, scaled to have length equal to their eigenvalues. It is common
in practice to use the principal components of either the covariance matrix
or the correlation matrix of changes in forward rates in choosing a factor
structure. Principal components analysis typically produces the qualitative
features of the hypothetical example in Figure 3.20; see, e.g., the examples in
James and Webber [194] or Rebonato [304].

An important feature of LIBOR market models is that a good deal of
calibration can be accomplished through closed form expressions or effective
approximations for the prices of caps and swaptions. This makes calibration
fast. In the absence of formulas or approximations, calibration is an iterative
procedure requiring repeated simulation at various parameter values until the
model price matches the market. Because each simulation can be quite time
consuming, calibration through simulation can be onerous.



4

Variance Reduction Techniques

This chapter develops methods for increasing the efficiency of Monte Carlo
simulation by reducing the variance of simulation estimates. These meth-
ods draw on two broad strategies for reducing variance: taking advantage of
tractable features of a model to adjust or correct simulation outputs, and
reducing the variability in simulation inputs. We discuss control variates,
antithetic variates, stratified sampling, Latin hypercube sampling, moment
matching methods, and importance sampling, and we illustrate these meth-
ods through examples. Two themes run through this chapter:

o The greatest gains in efficiency from variance reduction techniques result
from exploiting specific features of a problem, rather than from generic

applications of generic methods.
o Reducing simulation error is often at odds with convenient estimation of the

simulation error itself; in order to supplement a reduced-variance estimator
with a valid confidence interval, we sometimes need to sacrifice some of the

potential variance reduction.

The second point applies, in particular, to methods that introduce dependence
across replications in the course of reducing variance.

4.1 Control Variates

4.1.1 Method and Examples

The method of control variates is among the most effective and broadly ap-
plicable techniques for improving the efficiency of Monte Carlo simulation.
It exploits information about the errors in estimates of known quantities to
reduce the error in an estimate of an unknown quantity.

To describe the method, we let Y7,...,Y, be outputs from n replications
of a simulation. For example, Y; could be the discounted payoff of a derivative
security on the ith simulated path. Suppose that the Y; are independent and
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identically distributed and that our objective is to estimate E[Y;]. The usual
estimator is the sample mean Y = (Y1 +- - -+Y,)/n. This estimator is unbiased

and converges with probability 1 as n — oo.

Suppose, now, that on each replication we calculate another output X,
along with Y;. Suppose that the pairs (X;,Y;), ¢ = 1,...,n, are i.i.d. and that
the expectation E[X] of the X; is known. (We use (X , Y) to denote a generic
pair of random variables with the same distribution as each (X;,Y;).) Then
for any fixed b we can calculate

Yi(b) = Y; — b(X; — E[X])

from the ith replication and then compute the sample mean
_ _ _ 1 <
V() =7 - b(X ~E[X]) = = 3 (% —b(X; ~ E[X]).  (41)
i=1

This is a control variate estimator; the observed error X — E[X] serves as a

control in estimating E[Y].
As an estimator of E[Y], the control variate estimator (4.1) is unbiased

because B B ) B
EY(5)] = E [¥ — b(X — E[X))] = E[V] = E[Y]
and it is consistent because, with probability 1,

n

lm —ZY@ Jim = 5™ (¥~ b(X; ~ E[X])

—E[Y - b()I( ~ E[X))]
= E[Y].

Each Y;(b) has variance

VarlY;(b)] = Var[ ~ b(X; — E[X])]
= O'Y —2boxoypxy + b20§( = az(b), (4.2)

where 0% = Var[X], 02 = Var[Y], and pxy is the correlation between X and
Y. The control variate estimator Y (b) has variance o?(b) /n and the ordinary
sample mean Y (which corresponds to b = 0) has variance o2 /n. Hence, the
control variate estimator has smaller variance than the standard estimator if

b2O'X < 2b0’ypxy.
The optimal coefficient b* minimizes the variance (4.2) and is given by
oy Cov[X,Y]

b* = ;;PXY = W- (4.3)

Substituting this value in (4.2) and simplifying, we find that the ratio of
the variance of the optimally controlled estimator to that of the uncontrolled

estimator is
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Var[Y —\Zfé]— EX]] _ 1— py. (4.4)

A few observations follow from this expression:

o With the optimal coefficient b*, the effectiveness of a control variate, as mea-
sured by the variance reduction ratio (4.4), is determined by the strength of
the correlation between the quantity of interest Y and the control X. The
sign of the correlation is irrelevant because it is absorbed in b*.

o If the computational effort per replication is roughly the same with and
without a control variate, then (4.4) measures the computational speed-up
resulting from the use of a control. More precisely, the number of replications
of the Y; required to achieve the same variance as n replications of the
control variate estimator is n/(1 — p%y).

o The variance reduction factor 1/(1 — p%y-) increases very sharply as |pxy|
approaches 1 and, accordingly, it drops off quickly as |pxy | decreases away
from 1. For example, whereas a correlation of 0.95 produces a ten-fold speed-
up, a correlation of 0.90 yields only a five-fold speed-up; at |[pxy| = 0.70
the speed-up drops to about a factor of two. This suggests that a rather
high degree of correlation is needed for a control variate to yield substantial

benefits.

These remarks and equation (4.4) apply if the optimal coefficient b* is
known. In practice, if E[Y] is unknown it is unlikely that oy or pxy would
be known. However, we may still get most of the benefit of a control variate
using an estimate of b*. For example, replacing the population parameters in
(4.3) with their sample counterparts yields the estimate

Y (Xi = X)(Yi - Y)
Y (Xi—X)2

Dividing numerator and denominator by n and applying the strong law of
large numbers shows that b, — b* with probability 1. This suggests using
the estimator Y (b,), the sample mean of Y;(b,) = Y; — bn(X; — E[X]), i =
1,...,n. Replacing b* with by, introduces some bias; we return to this point
in Section 4.1.3.

The expression in (4.5) is the slope of the least-squares regression line
through the points (X;,Y;), ¢ = 1,...,n. The link between control variates
and regression is useful in the statistical analysis of control variate estimators
and also permits a graphical interpretation of the method. Figure 4.1 shows
a hypothetical scatter plot of simulation outputs (X;,Y;) and the estimated
regression line for these points, which passes through the point (X,Y). In the
figure, X < E[X], indicating that the n replications have underestimated E[X].
If the X; and Y, are positively correlated, this suggests that the simulation
estimate Y likely underestimates E[Y]. This further suggests that we should
adjust the estimator upward. The regression line determines the magnitude of
the adjustment; in particular, Y (b,) is the value fitted by the regression line
at the noint E[X]1.

(4.5)

by, =
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Fig. 4.1. Regression interpretation of control variate method. The regression line
through the points (X;,Y;) has slope bn, and passes through (X,Y). The control
variate estimator ¥ (b,) is the value fitted by the line at E[X]. In the figure, the
sample mean X underestimates E[X] and Y is adjusted upward accordingly.

Examples

To make the method of control variates more tangible, we now illustrate it
with several examples.

Example 4.1.1 Underlying assets. In derivative pricing simulations, under-
lying assets provide a virtually universal source of control variates. We know
from Section 1.2.1 that the absence of arbitrage is essentially equivalent to
the requirement that appropriately discounted asset prices be martingales.
Any martingale with a known initial value provides a potential control vari-
ate precisely because its expectation at any future time is its initial value. To
be concrete, suppose we are working in the risk-neutral measure and suppose
the interest rate is a constant r. If S(¢) is an asset price, then exp(—rt)S(t) is
a martingale and Elexp(—rT)S(T)] = S(0). Suppose we are pricing an option
on S with discounted payoff Y, some function of {S(¢),0 < ¢ < T'}. From
independent replications S;, i = 1,...,n, each a path of S over [0, T], we can
form the control variate estimator

;1; D% —blSi(T) = < TS (),

or the corresponding estimator with b replaced by b,,. If Y = e "T(S(T)-K)T,
so that we are pricing a standard call option, the correlation between Y and
S(T') and thus the effectiveness of the control variate depends on the strike
K. At K = 0 we would have perfect correlation; for an option that is deep
out-of-the-money (i.e., with large K), the correlation could be quite low. This
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is illustrated in Table 4.1 for the case of S ~ GBM(r,0?) with parameters
r = 5%, o = 30%, S(0) = 50, and T" = 0.25. This example shows that the
effectiveness of a control variate can vary widely with the parameters of a

problem. O

K 40 45 50 55 60 65 70
P 0.995 0.968 0.895 0.768 0.604  0.433 0.286
2| 0.99 0.94 0.80 0.59 0.36 0.19 0.08

Table 4.1. Estimated correlation jp between S(T) and (S(T') — K)* for various
values of K, with S(0) = 50, ¢ = 30%, r = 5%, and 7' = 0.25. The third row
measures the fraction of variance in the call option payoff eliminated by using the
underlying asset as a control variate.

Example 4.1.2 Tractable options. Simulation is sometimes used to price
complex options in a model in which simpler options can be priced in
closed form. For example, even under Black-Scholes assumptions, some path-
dependent options require simulation for pricing even though formulas are
available for simpler options. A tractable option can sometimes provide a
more effective control than the underlying asset.

A particularly effective example of this idea was suggested by Kemna and
Vorst [209] for the pricing of Asian options. Accurate pricing of an option on
the arithmetic average

_ 1 <
Sa=— ;5(@)

requires simulation, even if S is geometric Brownian motion. In contrast, calls
and puts on the geometric average

n 1/n
Sg = (H S(m))

can be priced in closed form, as explained in Section 3.2.2. Thus, options on
S can be used as control variates in pricing options on S4.

Figure 4.2 shows scatter plots of simulated values of (S4 — K)* against
the terminal value of the underlying asset S(7T'), a standard call payoff
(S(T)— K)™, and the geometric call payoff (Sg — K)T. The figures are based
on K = 50 and thirteen equally spaced averaging dates; all other parameters
are as in Example 4.1.1. The leftmost panel shows that the weak correlation
between S4 and S(T) is further weakened by applying the call option payoff
to S4, which projects negative values of S4 — K to zero; the resulting corre-
lation is approximately 0.79. The middle panel shows the effect of applying
the call ootion pavoff to S(T) as well: in this case the correlation increases
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to approximately 0.85. The rightmost panel illustrates the extremely strong
relation between the payoffs on the arithmetic and geometric average call op-
tions. The correlation in this case is greater then 0.99. A similar comparison
is made in Broadie and Glasserman [67]. O

6 Underlying asset 6 Standard call
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Fig. 4.2. Scatter plots of payoff of call option on arithmetic average against the

underlying asset, the payoff of a standard call, and the payoff of a call on the
geometric average.

Example 4.1.3 Bond prices. In a model with stochastic interest rates, bond
prices often provide a convenient source of control variates. As emphasized in
Sections 3.3-3.4 and Sections 3.6-3.7, an important consideration in imple-
menting an interest rate simulation is ensuring that the simulation correctly
prices bonds. While this is primarily important for consistent pricing, as a by-
product it makes bonds available as control variates. Bonds may be viewed as
the underlying assets of an interest rate model, so in a sense this example is
a special case of Example 4.1.1.

In a model of the short rate r(t), a bond maturing at time 7' has initial

price
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B(0,T)=E [exp (—/0 r(u) dU)J ;

the expectation taken with respect to the risk-neutral measure. Since we may
assume that B(0,7T") is known, the quantity inside the expectation provides
a potential control variate. But even if r is simulated without discretization
error at dates t1,...,t, = T, the difference

exp (—% ir(tﬁ) — B(0,T)

will not ordinarily have mean 0 because of the error in approximating the
integral. Using this difference in a control variate estimator could therefore
introduce some bias, though the bias can be made as small as necessary by
taking a sufficiently fine partition of [0,7]. In our discussion of the Vasicek
model in Section 3.3, we detailed the exact joint simulation of r(¢;) and its
time integral

t;
Y(t;) = / (1) du.
0
This provides a bias-free control variate because
E [exp(~Y ()] = B(0,T).

Similar considerations apply to the forward rate models of Sections 3.6
and 3.7. In our discussion of the Heath-Jarrow-Morton framework, we devoted
considerable attention to deriving the appropriate discrete drift condition.
Using this drift in a simulation produces unbiased bond price estimates and
thus makes bonds available as control variates. In our discussion of LIBOR
market models, we noted that discretizing the system of SDEs for the LIBOR
rates L,, would not produce unbiased bond estimates; in contrast, the methods
in Section 3.7 based on discretizing deflated bonds or their differences do
produce unbiased estimates and thus allow the use of bonds as control variates.

Comparison of this discussion with the one in Section 3.7.3 should make
clear that the question of whether or not asset prices can be used as control
variates is closely related to the question of whether a simulated model is

arbitrage-free. O

Example 4.1.4 Tractable dynamics. The examples discussed thus far are all
based on using one set of prices in a model as control variates for some other
price in the same model. Another strategy for developing effective control
variates uses prices in a simpler model. We give two illustrations of this idea.

Consider, first, the pricing of an option on an asset whose dynamics are

modeled by

%(5_) = rdt + o(t) dW (1),
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where o(t) may be function of S(t) or may be stochastic and described by a
second SDE. We might simulate S at dates ¢1,...,t, using an approximation

of the form
S(tiy1) = S(t;) exp ([?" — 20(t:)*)(tig1 — ti) + o () /tit1 — tz'Zz'+1> ,

where the Z, are independent N(0,1) variables. In a stochastic volatility
model, a second recursion would determine the evolution of o(t;). Suppose
the option we want to price would be tractable if the underlying asset were
geometric Brownian motion. Then along with S we could simulate

S’(ti—{—l) = S’(tl) €Xp ([T - %5’2](t¢+1 - ti) + 5'\/ti+1 — tiZi—i—l)

for some constant &, the same sequence Z;, and with initial condition S(0) =
S(0). If, for example, the option is a standard call with strike K and expiration
tn, we could form a controlled estimator using independent replications of

(S(tn) = K)* = b ((S(tn) = K)* — € [(3(ta) — K)*])

Except for a discount factor, the expectation on the right is given by the
Black-Scholes formula. For effective variance reduction, the constant & should

be chosen close to a typical value of o.
As a second illustration of this idea, recall that the dynamics of forward

LIBOR under the spot measure in Section 3.7 are given by

dLa(t) i o;(t) T on(t)d; L;(t) dt+on®)T AW (), n=1,...,M. (4.6)

L (t) _j:w) 1+ 6;L;(t)

Suppose the o, are deterministic functions of time. Along with the forward
LIBOR rates, we could simulate auxiliary processes
dS, (t)
Sn(t)

These form a multivariate geometric Brownian motion and lend themselves
to tractable pricing and thus to control variates. Alternatively, we could use

=0  ()dW(t), n=1,...,M. (4.7)

dLa(t) _ §~ 95(t) T on(t)8;L;(0) T

O Z TT5L.(0) dt + o, (t) " dW (2). (4.8)
J=n(t)

Notice that the drift in this expression is a function of the constants L;(0)
rather than the stochastic processes L;(t) appearing in the drift in (4.6).
Hence, L, is also a geometric Brownian motion though with time-varying
drift. Even if an option on the S, or L, cannot be valued in closed form, if
it can be valued quickly using a numerical procedure it may yield an effective

control variate.
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The evolution of L,, S,, and f/n is illustrated in Figure 4.3. This example
initializes all rates at 6%, takes d; = 0.5 (corresponding to semi-annual rates),
and assumes a stationary specification of the volatility functions in which
on(t) = o(n—n(t)+1) with o increasing linearly from 0.15 to 0.25. The figure
plots the evolution of L4g, S40, and f/40 using a log-Fuler approximation of
the type in (3.120). The figure indicates that Lo tracks Lyo quite closely and
that even Sy is highly correlated with Lgg.
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Fig. 4.3. A sample path of Lio using the true dynamics in (4.6), the geometric
Brownian motion approximation L4p with time-varying drift, and the driftless geo-

metric Brownian motion Sag.

It should be noted that simulating an auxiliary process as suggested here
may substantially increase the time required per replication — perhaps even
doubling it. As with any variance reduction technique, the benefit must be
weighed against the additional computing time required, using the principles
in Section 1.1.3. O

Example 4.1.5 Hedges as controls. There is a close link between the se-
lection of control variates and the selection of hedging instruments. If Y is
a discounted payoff and we are estimating E[Y], then any instrument that
serves_as an effective hedge for Y also serves as an effective control variate if
it can be easily priced. Indeed, the calculation of the optimal coefficient b* is
identical to the calculation of the optimal hedge ratio in minimum-variance
hedging (see, e.g., Section 2.9 of Hull [189]).

Whereas a static hedge (a fixed position in another asset) may provide
significant variance reduction, a dynamic hedge can, in principle, remove all
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variance — at least under the assumptions of a complete market and continu-
ous trading as discussed in Section 1.2.1. Using the notation of Section 1.2.1,
let V(t) denote the value at time t of a price process that can be replicated
through a self-financing trading strategy applied to a set of underlying assets
Sj, 7 =1,...,d. As in Section 1.2.1, under appropriate conditions we have

d
V(T) / ' VLY 45,0,

In other words, V is replicated through a delta-hedging strategy that holds
0V/0S; shares of asset S; at each instant. This suggests that V' (T') should be
highly correlated with

m d
330 i), - 5y 000) (19)

where 0 = tp < t; < --- < t,, = T; this is a discrete-time approximation
to the dynamic hedging strategy. Of course, in practice if V(¢) is unknown
then its derivatives are likely to be unknown. One may still obtain an effective
control variate by using a rough approximation to the 0V/90S;; for example,
one might calculate these deltas as though the underlying asset prices followed
geometric Brownian motions, even if their actual dynamics are more complex.
See Clewlow and Carverhill [87] for examples of this.

Using an expression like (4.9) as a control variate is somewhat similar to
using all the increments S;(¢;) — S;(t;—1) as controls or, more conveniently,
the increments of the discounted asset prices since these have mean zero. The
main difference is that the coefficients 9V/9S; in (4.9) will not in general be
constants but will depend on the S; themselves. We may therefore interpret
(4.9) as using the S;(t;) — Sj(ti—1) as nonlinear control variates. We discuss
nonlinear controls more generally in Section 4.1.4. O

Example 4.1.6 Primitive controls. In the examples above, we have stressed
the use of special features of derivative pricing models in identifying potential
control variates. Indeed, significant variance reduction is usually achieved only
by taking advantage of special properties of a model. It is nevertheless worth
mentioning that many generic (and thus typically not very effective) control
variates are almost always available in a simulation. For example, most of
the models discussed in Chapter 3 are simulated from a sequence Z1, Zs, ...
of independent standard normal random variables. We know that E[Z;] = 0
and Var[Z;] = 1, so the sample mean and sample variance of the Z; are
available control variates. At a still more primitive level, most simulations
start from a sequence Uy, Uy, ... of independent Unif]0,1] random variables.
Sample moments of the U; can also be used as controls. O

Later in this chapter we discuss other techniques for reducing variance. In
a sense, all of these can be viewed as strategies for selecting control variates.
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For suppose we want to estimate E[Y] and in addition to the usual sample
mean }7 we have available an alternative unbiased estimator Y. The difference
(Y —Y') has (known) expectation zero and can thus be used to form a control
variate estimate of the form

Y —b(Y -Y).

The special cases b = 0 and b = 1 correspond to using just one of the two
estimators; by optimizing b, we obtain a combined estimator that has lower
variance than either of the two.

Output Analysis

In analyzing variance reduction techniques, along with the effectiveness of a
technique it is important to consider how the technique affects the statisti-
cal interpretation of simulation outputs. So long as we deal with unbiased,
independent replications, computing confidence intervals for expectations is
a simple matter, as noted in Section 1.1 and explained in Appendix A. But
we will see that some variance reduction techniques complicate interval esti-
mation by introducing dependence across replications. This issue arises with
control variates if we use the estimated coefficient b, in (4.5). It turns out
that in the case of control variates the dependence can be ignored in large
samples; a more careful consideration of small-sample issues will be given in

Section 4.1.3. )
For any fixed b, the control variate estimator Y'(b) in (4.1) is the sample

mean of independent replications Y;(b), i = 1,...,n. Accordingly, an asymp-
totically valid 1 — ¢ confidence interval for E[Y] is provided by

- b

Y(b) £ 25/22(—)' (4.10)

vn’
where 25,9 is the 1 — 6/2 quantile from the normal distribution (®(z5/2) =

1 —6/2) and o(b) is the standard deviation per replication, as in (4.2).
In practice, o(b) is typically unknown but can be estimated using the

sample standard deviation

n

T 0 - T

s(b) =

The confidence interval (4.10) remains asymptotically valid if we replace o(b)
with s(b), as a consequence of the limit in distribution

M_] = N(0,1)

a(b)/v/n
and the fact that s(b)/o(b) — 1; see Appendix A.2. If we use the estimated
coefficient b.. in (4.5). then the estimator



196 4 Variance Reduction Techniques

A 1 & R
V(ba) =~ > (¥i— ba(X; — E[X]))
i=1
is not quite of the form Y (b) because we have replaced the constant b with

the random quantity b Nevertheless, because by, — b*, we have
V(Y (bn) = Y (5%)) = (bn — b*) - v/n(X — E[X]) = 0- N(0,0%) =0,

so Y (by) satisfies the same central limit theorem as ¥ (b*). This means that
Y (b,,) is asymptotically as precise as Y (b*). Moreover, the central limit theo-
rem applies in the form

= N(0,1),

with s(l;n) the sample standard deviation of the Yi(i)n), 1 =1,...,n, because
s(by)/o(b*) — 1. In particular, the confidence interval (4.10) remains asymp-
totically valid if we replace ¥ (b) and o (b) with ¥ (b, ) and s(by,), and confidence
intervals estimated using b, are asymptotically no wider than confidence in-
tervals estimated using the optimal coefficient b*.

We may summarize this discussion as follows. It is a simple matter to
estimate asymptotically valid confidence intervals for control variate estima-
tors. Moreover, for large n, we get all the benefit of the optimal coefficient
b* by using the estimate b,,. However, for finite n, there may still be costs to
using an estimated rather than a fixed coeflicient; we return to this point in

Section 4.1.3.

4.1.2 Multiple Controls

We now generalize the method of control variates to the case of multiple
controls. Examples 4.1.1-4.1.6 provide ample motivation for considering this

extension.

o If e7"*S(t) is a martingale, then e™ " S(t1),...,e "4 S(t,) all have expec-
tation S(0) and thus provide d controls on each path.
o If the simulation involves d underlying assets, the terminal values of all

assets may provide control variates.
o Rather than use a single option as a control variate, we may want to use

options with multiple strikes and maturities.
o In an interest rate simulation, we may choose to use d bonds of different

maturities as controls.

Suppose, then, that each replication ¢ of a simulation produces outputs
Y; and X; = (Xi(l), .. ,Xi(d))T and suppose the vector of expectations E[X]
is known. We assume that the pairs (X;,Y;), 1 = 1,...,n, are ii.d. with
covariance matrix
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( 2x 2§Y). (4.11)

R
Yxy Oy

Here, Xx is d X d, X xy is d x 1, and, as before the scalar af, is the variance
of the Y;. We assume that Xy is nonsingular; otherwise, some X ) is a linear
combination of the other X )s and may be removed from the set of controls.

Let X denote the vector of sample means of the controls. For fixed b € R¢,

the control variate estimator Y (b) is
Y(b) =Y —b" (X - E[X]).
Its variance per replication is
Var[¥; —bT(X; — E[X])] = 02 —2b" Sxy + b Zxxb. (4.12)

This is minimized at
b =53 Sxy. (4.13)
As in the case of a single control variate, this is also the slope (more precisely,

the vector of coefficients) in a regression of Y against X.
As is customary in regression analysis, define

R? = %1y S35 Sxy fo¥; (4.14)

this generalizes the squared correlation coefficient between scalar X and Y and
measures the strength of the linear relation between the two. Substituting b*
into the expression for the variance per replication and simplifying, we find
that the minimal variance (that is, the variance of Y;(b*)) is

0% — Ny E¥' xy = (1 - R*)o3. (4.15)

Thus, R? measures the fraction of the variance of Y that is removed in opti-

mally using X as a control.
In practice, the optimal vector of coefficients b* is unknown but may be

estimated. The standard estimator replaces X x and X xy in (4.13) with their
sample counterparts to get

l;n = S)—(lsxy, (4.16)

where Sx is the d X d matrix with jk entry

n—1

i=1

1 N oo
(Z xPx® _ nXO)X(k‘)) (4.17)
and Sxy is the d-vector with jth entry

1 [N o
— (ZXi(J)Yi—nX(J)Y).
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The number of controls d is ordinarily not very large so size is not an obstacle
in inverting Sx, but if linear combinations of some of the controls are highly
correlated this matrix may be nearly singular. This should be considered in
choosing multiple controls.

A simple estimate of the variance of Y (by,) is provided by s,/+/n where
sn is the sample standard deviation of the adjusted replications

Y;(bn) = Y; — b} (X; — E[X]).

The estimator s, ignores the fact that b, is itself estimated from the repli-
cations, but it is nevertheless a consistent estimator of oy (b*), the optimal
standard deviation in (4.15). An asymptotically valid 1—§ confidence interval

is thus provided by

—_ A

Y (by) £ 25/ (4.18)

Sn
T
The connection between control variates and regression analysis suggests an
alternative way of forming confidence intervals; under additional assumptions
about the joint distribution of the (X, Y;) the alternative is preferable, espe-
cially if n is not very large. We return to this point in Section 4.1.3.

Variance Decomposition

In looking for effective control variates, it is useful to understand what part of
the variance of an ordinary estimator is removed through the use of controls.
We now address this point.

Let (X,Y) be any random vector with Y scalar and X d-dimensional. Let
(X,Y) have the partitioned covariance matrix in (4.11). For any b, we can

write

Y =E[Y]+b" (X — E[X]) +e¢,

simply by defining € so that equality holds. If b = b* = 2}12 xv, then in fact
€ is uncorrelated with X; i.e., Y — b*T (X — E[X]) is uncorrelated with X so

Var[Y] = Var[b*" X] + Var[e] = Var[b*T X] + Var[Y — b*T X].

In this decomposition, the part of Var[Y] eliminated by using X as a control
is Var[b*T X] and the remaining variance is Var[e].

The optimal vector b* makes b*T (X — E[X]) the projection of Y — E[Y]
onto X — E[X]; the residual € may be interpreted as the part of Y — E[Y]
orthogonal to X — E[X], orthogonal here meaning uncorrelated. The smaller
this orthogonal component (as measured by its variance), the greater the
variance reduction achieved by using X as a control for Y. If, in particular,
Y is a linear combination of the components of X, then using X as a control
eliminates all variance. Of course, in this case E[Y] is a linear combination of
the (known) components of E[X], so simulation would be unnecessary.
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Consider, again, the examples with which we opened this section. If we
use multiple path values S(¢;) of an underlying asset as control variates, we
eliminate all variance in estimating the expected value of any instrument
whose payoff is a linear combination of the S(¢;). (In particular, each E[S(t;)]
is trivially estimated without error if we use S(¢;) as a control.) The variance
that remains in estimating an expected payoff while using the S(¢;) as controls
is attributable to the part of the payoff that is uncorrelated with the S(t;).
Similarly, if we use bond prices as control variates in pricing an interest rate
derivative, the remaining variance is due to the part of the derivative’s payoff
that is uncorrelated with any linear combination of bond prices.

Control Variates and Weighted Monte Carlo

In introducing the idea of a control variate in Section 4.1.1, we explained that
the observed error in estimating a known quantity could be used to adjust
an estimator of an unknown quantity. But the technique has an alternative
interpretation as a method for assigning weights to replications. This alterna-
tive perspective is sometimes useful, particularly in relating control variates

to other methods.
For simplicity, we start with the case of a single control; thus, Y; and X;
are scalars and the pairs (X, Y) are i.i.d. The control variate estimator with

estimated optimal coefficient by, is ¥ (b,) = ¥ — b, (X —E[X]). As in (4.5), the
estimated coefficient is given by

Z?=1(Xi — X)(sz - ?)
Z?:1(Xi - X)2

By substituting this expression into Y(Bn) and simplifying, we arrive at

Y(ba) =3 (1 + (Xz X())((X ;[X ) sz (4.19)

‘ n
=1

by, =

In other words, the control variate estimator is a weighted average of the
replications Y1, ...,Y,. The weights w; are completely determined by the ob-
servations X1, ..., X, of the control.

A similar representation applies with multiple controls. Using the esti-
mated vector of coefficients in (4.16), the sample covariance matrix Sx in

(4.17) and simplifying, we get

. “ /1 1 - _
Y(b,) = = X -X;)TS:4 (X —E[X)) ) Y;, 4.2
() =3 (5 g (X~ X078 (6 —Lx) ) (4.20)
which is again a weighted average of the Y;. Here, as before, X; denotes the
vector of controls (X ,L-(l), e X i(d))T from the ith replication, and X and E[X]

Arsvnta +ha davanla mmaan and avnantatinn Af the Y. reanectively
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The representation in (4.20) is a special case of a general feature of regres-
sion — namely, that a fitted value of Y is a weighted average of the observed
values of the Y; with weights determined by the X;. One consequence of this
representation is that if we want to estimate multiple quantities (e.g., prices
of various derivative securities) from the same set of simulated paths using
the same control variates, the weights can be calculated just once and then
applied to all the outputs. Hesterberg and Nelson [178] also show that (4.20)
is useful in applying control variates to quantile estimation. They indicate
that although it is possible for some of the weights in (4.19) and (4.20) to
be negative, the probability of negative weights is small in a sense they make

precise.

4.1.3 Small-Sample Issues

In our discussion (following (4.10)) of output analysis with the method of
control variates, we noted that because by, converges to b*, we obtain an
asymptotically valid confidence interval if we ignore the randomness of b,
and the dependence it introduces among Y}(lA)n), ¢t = 1,...,n. Moreover, we
noted that as n — o0, the variance reduction achieved using bn, approaches
the variance reduction that would be achieved if the optimal b* were known.

In this section, we supplement these large-sample properties with a dis-
cussion of statistical issues that arise in analyzing control variate estimators
based on a finite number of samples. We note that stronger distributional
assumptions on the simulation output lead to confidence intervals valid for
all n. Moreover, it becomes possible to quantify the loss in efficiency due to
estimating b*. This offers some guidance in deciding how many control vari-
ates to use in a simulation. This discussion is based on results of Lavenberg,
Moeller, and Welch [221] and Nelson [277].

For any fixed b, the control variate estimator Y () is unbiased. But using

~

bn, we have

— A

Bias(Y (b)) = E[V (b,)] - E[Y] = —E[b] (X — E[X])],

which need not be zero because b, and X are not independent. A simple way to
eliminate bias is to use n; replications to compute an estimate b,,, and to then
apply this coefficient with the remaining n — n; replications of (X;,Y;). This

makes the coefficient estimate independent of X and thus makes E[b, X] =
E[ZA);;]E[)_( |. In practice, the bias produced by estimating b* is usually small so
the cost of estimating coefficients through separate replications is unattractive.
Indeed, the bias is typically O(1/n), whereas the standard error is O(1/4/n).

Lavenberg, Moeller, and Welch [221] and Nelson [277] note that even if
by, is estimated from the same replications used to compute Y and X, the
control variate estimator is unbiased if the regression of Y on X is linear.

More precisely, if
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E[Y|X] = co+er XD+ 4, X4 for some constants cg, c1, .. ., Cd, (4.21)
then E[Y (b,)] = E[Y].

Under the additional assumption that Var[Y|X] does not depend on X,

Nelson [277] notes that an unbiased estimator of the variance of Y (by), n >
d — 1, is provided by

55 = (n—_}:—l D _[Yi = ¥(ba) = by (Xi E[XDP)

1 L 5 To-1/%
X (n + — 1(X— E[X]) Sy (X E[X])) :
The first factor in this expression is the sample variance of the regression
residuals, the denominator n — d — 1 reflecting the loss of d + 1 degrees of
freedom in estimating the regression coefficients in (4.21). The second factor
inflates the variance estimate when X is far from E[X].

As in Lavenberg et al. [221] and Nelson [277], we now add a final as-
sumption that (X,Y) has a multivariate normal distribution, from which two
important consequences follow. The first is that this provides an exact confi-
dence interval for E[Y] for all n: the interval

Y@n) itn—d—l,&/zgn (4.22)

covers E[Y] with probability 1 — §, where ¢,_g_; 5/o denotes the 1 — /2
quantile of the ¢ distribution with n —d—1 degrees of freedom. This confidence
interval may have better coverage than the crude interval (4.18), even if the
assumptions on which it is based do not hold exactly.

A second important conclusion that holds under the added assumption of
normality is an exact expression for the variance of Y (b,). With d controls
and n > d + 2 replications,

n—2 2

(1- R)ZX. (4.23)

VarlY (b)) = - =55 .

Here, as before, 0% = Var[Y] is the variance per replication without controls
and R? is the squared multiple correlation coefficient defined in (4.14). As
noted in (4.15), (1 — R?)o? is the variance per replication of the control
variate estimator with known optimal coefficient. We may thus write (4.23)

as
n—2

n—d—2
In light of this relation, Lavenberg et al. [221] call (n — 2)/(n — d — 2) the
loss factor measuring the loss in efficiency due to using the estimate b,, rather

than the exact value b*.
Both (4.22) and (4.24) penalize the use of too many controls — more
precisely, they penalize the use of control variates that do not provide a suf-

wravinnan Tn (4 99\ 4 Tavcnn A vamialda 3 o Taaa ~F

Var[Y (b,)] = Var[¥ (b*)]. (4.24)
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degrees of freedom, a larger multiplier ¢,,_g_1 /2, and thus a wider confidence
interval unless the increase in d is offset by a sufficient decrease in §,. In (4.24),
a larger d results in a larger loss factor and thus a greater efficiency cost from
using estimated coefficients. In both cases, the cost from using more controls
is eventually overwhelmed by increasing the sample size n; what constitutes
a reasonable number of control variates thus depends in part on the intended
number of replications.

The validity of the confidence interval (4.22) and the loss factor in (4.24)
depends on the distributional assumptions on (X, Y') introduced above leading
up to (4.22); in particular, these results depend on the assumed normality of
(X,Y). (Loh [239] provides extensions to more general distributions but these
seem difficult to use in practice.) In pricing applications, Y would often be the
discounted payoff of an option contract and thus highly skewed and distinctly
non-normal. In this case, application of (4.22) and (4.24) lacks theoretical
support.

Nelson [277] analyzes the use of various remedies for control variate estima-
tors when the distributional assumptions facilitating their statistical analysis
fail to hold. Among the methods he examines is batching. This method groups
the replications (X;,Y;), ¢ = 1,...,n, into k disjoint batches of n/k replica-
tions each. It then calculates sample means of the (X;,Y;) within each batch
and applies the usual control variate procedure to the k sample means of the
k batches. The appeal of this method lies in the fact that the batch means
should be more nearly normally distributed than the original (X;,Y;). The
cost of batching lies in the loss of degrees of freedom: it reduces the effective
sample size from n to k. Based on a combination of theoretical and exper-
imental results, Nelson [277] recommends forming 30 to 60 batches if up to
five controls are used. With a substantially larger number of controls, the cost
of replacing the number of replications n with k£ = 30-60 in (4.22) and (4.24)
would be more significant; this would argue in favor of using a larger number
of smaller batches.

Another strategy for potentially improving the performance of control vari-
ate estimators replaces the estimated covariance matrix Sx with its true value
3 x in estimating b*. This is feasible if ¥ x is known, which would be the case
in at least some of the examples introduced in Section 4.1.1. Nelson [277] and
Bauer, Venkatraman, and Wilson [40] analyze this alternative; perhaps sur-
prisingly, they find that it generally produces estimators inferior to the usual

method based on b,.

4.1.4 Nonlinear Controls

Our discussion of control variates has thus far focused exclusively on linear
controls, meaning estimators of the form

Y —b" (X - E[X]), (4.25)
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with the vector b either known or estimated. There are, however, other ways
one might use the discrepancy between X and E[X] to try to improve the
estimator Y in estimating E[Y]. For example, in the case of scalar X, the
estimator X

S ELX]
adjusts Y upward if 0 < X < E[X], downward if 0 < E[X] < X, and thus may
be attractive if X; and Y; are positively correlated. Similarly, the estimator
Y X /E[X]| may have merit if the X; and Y; are negatively correlated. Other
estimators of this type include

Yexp (X —E[X]) and y(X/EXD),

In each case, the convergence of X to E[X] ensures that the adjustment to
Y vanishes as the sample size increases, just as in (4.25). But for any finite
number of replications, the variance of the adjusted estimator could be larger
or smaller than that of Y.

These are examples of nonlinear control variate estimators. They are all
special cases of estimators of the form h(X,Y) for functions h satisfying

h(E[X],y) =y for all y.

The difference between the controlled estimator h(X,Y) and Y thus depends
on the deviation of X from E[X].

Although the introduction of nonlinear controls would appear to substan-
tially enlarge the class of candidate estimators, it turns out that in large
samples, a nonlinear control variate estimator based on a smooth h is equiv-
alent to an ordinary linear control variate estimator. This was demonstrated
in Glynn and Whitt [159], who note a related observation in Cheng and Feast
[84]. We present the analysis leading to this conclusion and then discuss its

implications.

Delta Method

The main tool for the large-sample analysis of nonlinear control variate esti-
mators is the delta method. This is a result providing a central limit theorem

for functions of sample means. To state it generally, we let &;, i = 1,2,... be
i.i.d. random vectors in $* with mean vector u and covariance matrix .. The
sample mean £ of &1, ..., &, satisfies the central limit theorem

\/ﬁ[g— N] = N(Oa 2)'

Now let h : ®% — R be continuously differentiable in a neighborhood of x and
suppose the partial derivatives of h at p are not all zero. For sufficiently large
n, a Taylor approximation gives

h(€) = h(p) + Vh(Ca)[E — pl,
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with Vh the gradient of h (a row vector) and (, a point on the line segment
joining p and €. As n — oo, £ — p and thus ¢, — p as well; continuity of the
gradient implies Vh(¢,) — Vh(u). Thus, for large n, the error h(€) — h(u)
is approximately the inner product of the constant vector Vh(u) and the
asymptotically normal vector £ — p, and is itself asymptotically normal. More
precisely,
Vn[h(€) — ()] = N(0, VA(1)EVA(1)"). (4.26)

See also Section 3.3 of Serfling [326], for example.

For the application to nonlinear controls, we replace & with (X;,Y;), u
with (E[X], E[Y]), and ¥ with
5 ( Xx ZXY>
Sxy 0% )’

the covariance matrix in (4.11). From the delta method, we know that the
nonlinear control variate estimator is asymptotically normal with

Vn[h(X,Y) - E[Y]] = N(0,07),

(recall that h(E[X], E[Y]) = E[Y]) and

oh\” oh
o2 = (-52—/) 0% +2 (8_y) VehExy + ViehEx Vh',
with V,h denoting the gradient of A with respect to the elements of X and
with all derivatives evaluated at (E[X], E[Y]). Because h(E[X],") is the iden-
tity, the partial derivative of A with respect to its last argument equals 1 at
(E[X],E[Y]), so

0;3 = 032/ + 2V hExy + VihExVih'.

But this is precisely the variance of
Y; —b' (X; - E[X])

with b = =V, h(E[X],E[Y]); see (4.12). Thus, the distribution of the nonlinear
control variate estimator using X is asymptotically the same as the distrib-
ution of an ordinary linear control variate estimator using X and a specific
vector of coefficients b. In particular, the limiting variance parameter cr,% can
be no smaller than the optimal variance that would be derived from using the
optimal vector b*.

A negative reading of this result leads to the conclusion that nonlinear con-
trols add nothing beyond what can be achieved using linear controls. A some-
what more positive and more accurate interpretation would be that whatever
advantages a nonlinear control variate estimator may have must be limited to
small samples. “Small” may well include all relevant sample sizes in specific
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applications. The delta method tells us that asymptotically only the linear
part of h matters, but if A is highly nonlinear a very large sample may be
required for this asymptotic conclusion to be relevant. For fixed n, each of the
examples with which we opened this section may perform rather differently
from a linear control.

It should also be noted that in the linear control variate estimator to which
any nonlinear control variate estimator is ultimately equivalent, the coefficient
b is implicitly determined by the function h. In particular, using a nonlinear
control does not entail estimating this coefficient. In some cases, a nonlinear
control may be effective because —V h is close to optimal but need not be

estimated.

4.2 Antithetic Variates

The method of antithetic variates attempts to reduce variance by introduc-
ing negative dependence between pairs of replications. The method can take
various forms; the most broadly applicable is based on the observation that
if U is uniformly distributed over [0, 1], then 1 — U is too. Hence, if we gen-
erate a path using as inputs Uz, ..., U,, we can generate a second path using
1—-U,...,1—U, without changing the law of the simulated process. The
variables U; and 1 — U; form an antithetic pair in the sense that a large value
of one is accompanied by a small value of the other. This suggests that an
unusually large or small output computed from the first path may be balanced
by the value computed from the antithetic path, resulting in a reduction in
variance.

These observations extend to other distributions through the inverse trans-
form method: F~1(U) and F~1(1 — U) both have distribution F but are an-
tithetic to each other because F~! is monotone. For a distribution symmetric
about the origin, F~1(1 — u) and F~!(u) have the same magnitudes but op-
posite signs. In particular, in a simulation driven by independent standard
normal random variables, antithetic variates can be implemented by pairing a,
sequence 4, Zs, ... of i.i.d. N(0, 1) variables with the sequence —Z;,—Z5, ...
of i.i.d. N(0,1) variables, whether or not they are sampled through the in-
verse transform method. If the Z; are used to simulate the increments of a
Brownian path, then the —Z; simulate the increments of the reflection of the
path about the origin. This again suggests that running a pair of simulations
using the original path and then its reflection may result in lower variance.

To analyze this approach more precisely, suppose our objective is to esti-
mate an expectation E[Y] and that using some implementation of antithetic
sampling produces a sequence of pairs of observations (Y1,Y7), (Y2, Y2), ...,
(Y, Y,). The key features of the antithetic variates method are the following:

o the pairs (Y1,Y1), (Ya,Ya),..., (Yo, Y,) are iid;

o for each 7, Y; and Y; have the same distribution, though ordinarily they are
not independent.
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We use Y generically to indicate a random variable with the common distri-

bution of the Y; and Y;.
The antithetic variates estimator is simply the average of all 2n observa-

tions,
R 1 n LI 1 n Y;'f‘i/z
YAV:%<ZYZ-+;Y¢>=EZ< : ) (4.27)

=1 :

=1

The rightmost representation in (4.27) makes it evident that Yy is the sample
mean of the n independent observations

Vi +Y; Y, + Vs Yn + Yy
R L 2

The central limit theorem therefore applies and gives

Yav — E[Y]

with

Vi +Y;
J,QW=Var{ ;’J

As usual, this limit in distribution continues to hold if we replace oay with
sav, the sample standard deviation of the n values in (4.28). This provides
asymptotic justification for a 1 — § confidence interval of the form

5 SAV
Yav = 25/27;?

where 1 — ®(z5/2) = 6/2.

Under what conditions is an antithetic variates estimator to be preferred
to an ordinary Monte Carlo estimator based on independent replications? To
make this comparison, we assume that the computational effort required to
generate a pair (Y, f’;) is approximately twice the effort required to generate
Y;. In other words, we ignore any potential computational savings from, for
example, flipping the signs of previously generated Z, Zs,... rather than
generating new normal variables. This is appropriate if the computational cost
of generating these inputs is a small fraction of the total cost of simulating Y;.
Under this assumption, the effort required to compute Yav is approximately
that required to compute the sample mean of 2n independent replications, and
it is therefore meaningful to compare the variances of these two estimators.
Using antithetics reduces variance if

Var [YA\/} < Var [517; i)@
i=1

)

ie., if
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Var [Yi + 572} < 2Var[Y;].
The variance on the left can be written as
Var [Y} + f’z} = Var[V;] + Var[f’i] + 2Cov[Y;, Y;]
= 2Var[Y;] + 2Cov]Y;, Yi],

using the fact that Y; and Y; have the same variance if they have the same
distribution. Thus, the condition for antithetic sampling to reduce variance

becomes )
Cov [YY] <0. (4.29)

Put succinctly, this condition requires that negative dependence in the
inputs (whether U and 1 — U or Z and —Z) produce negative correlation
between the outputs of paired replications. A simple sufficient condition en-
suring this is monotonicity of the mapping from inputs to outputs defined by
a simulation algorithm. To state this precisely and to give a general formu-
lation, suppose the inputs to a simulation are independent random variables
Xi,...,Xm. Suppose that Y is an increasing function of these inputs and Y
is a decreasing function of the inputs; then

E[YY] < E[Y]E[Y].

This is a special case of more general properties of associated random vari-
ables, in the sense of Esary, Proschan, and Walkup [113]. Observe that if
Y = f(Uy,...,Ug) or Y = f(Zy,...,2Z4) for some increasing function f, then
Y=f1-U1,...,1=Ug) and Y = f(—Z1,...,—Z,) are decreasing functions
of (U1,...,Uq) and (Z1, ..., Z4), respectively. The requirement that the sim-
ulation map inputs to outputs monotonically is rarely satisfied exactly, but
provides some qualitative insight into the scope of the method.

The antithetic pairs (U, 1 — U) with U ~ Unif[0,1] and (Z, —Z) with Z ~
N(0, 1) share an additional relevant property: in each case, the average of the
paired values is the population mean, because

1-— Z —Z
UrE=0) _yjy ana 232
2 2
It follows that if the output Y is a linear function of inputs (Uq,...,Uy) or
(Z1,...,Z4), then antithetic sampling results in a zero-variance estimator. Of

course, in the linear case simulation would be unnecessary, but this observation
suggests that antithetic variates will be very effective if the mapping from
inputs to outputs is close to linear.

Variance Decomposition

Antithetic variates eliminate the variance due to the antisymmetric part of an
integrand, in a sense we now develop. For simplicity, we restrict attention to
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the case of standard normal inputs, but our observations apply equally well
to any other distribution symmetric about the origin and apply with minor
modifications to uniformly distributed inputs.

Suppose, then, that Y = f(Z) with Z = (Z1,...,Z4) ~ N(0,I). Define
the symmetric and antisymmetric parts of f, respectively, by

fo(z):i@i#ﬁ and fl(z):i(_z):_zﬂ:fl_

Clearly, f = fo + f1; moreover, this gives an orthogonal decomposition of f
in the sense that fy(Z) and f,(Z) are uncorrelated:

Elfo(2)/1(2) = JEIF(Z) - F(~2)

=0
= E[fo(2)]E[f1(2)].

It follows that
Var[f(Z)] = Var[fo(Z)] + Var[f1(Z)]. (4.30)

The first term on the right is the variance of an estimate of E[f(Z)] based on
an antithetic pair (Z, —Z). Thus, antithetic sampling eliminates all variance
if f is antisymmetric (f = f1) and it eliminates no variance if f is symmetric
(f = fo)-

Fox [127] advocates the use of antithetic sampling as the first step of a more
elaborate framework, in order to eliminate the variance due to the linear (or,

more generally, the antisymmetric) part of f.

Systematic Sampling

Antithetic sampling pairs a standard normal vector Z = (Z1, ..., Z4) with its
reflection —Z = (—Z1,...,—Z4), but it is natural to consider other vectors
formed by changing the signs of the components of Z. Generalizing still further
leads us to consider transformations 7" : #¢ — R¢ (such as multiplication
by an orthogonal matrix) with the property that TZ ~ N(0,I) whenever
Z ~ N(0,I). This property implies that the iterated transformations 727,
T3Z,... will also have standard normal distributions. Suppose that T* is
the identity for some k. The usual antithetic transformation has k£ = 2, but
by considering other rotations and reflections of R¢, it is easy to construct
examples with larger values of k.
Define

k
foe) =T Yo0T2) and fi(E) = 1) - fole)

We clearly have E[fo(Z)] = E[f(Z)]. The estimator fo(Z) generalizes the an-
tithetic variates estimator; in the survey sampling literature, methods of this
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type are called systematic sampling because after the initial random drawing
of Z, the k — 1 subsequent points are obtained through deterministic trans-
formations of Z.

The representation f(Z) = fo(Z) + f1(Z) again gives an orthogonal de-
composition. To see this, first observe that

R 1 &
E[fo(2)*) = £ Y _E | F(T'2) ;C—Z [T
=1 Jj=1
k
= LELT2) (r'2)
= E[f(2)fo(Z)],

SO

Elfo(2)/1(2)] = E[fo(2)(£(2) - fo(2))] = 0.

Thus, (4.30) continues to hold under the new definitions of fo and f;. Assum-
ing the f(T%Z), i = 1,...,k, require approximately equal computing times,
the estimator fo(Z) beats ordinary Monte Carlo if

Var[fo(2)] < %Var[f(Z)].

The steps leading to (4.29) generalize to the requirement

k—1
Cov f(TiZ)] < 0.
=1

<.

This condition is usually at least as difficult to satisfy as the simple version

(4.29) for ordinary antithetic sampling.
For a more general formulation of antithetic sampling and for historical

remarks, see Hammersley and Handscomb [169]. Boyle [52] is an early ap-
plication in finance. Other work on antithetic variates includes Fishman and
Huang [122] and Rubinstein, Samorodnitsky, and Shaked [312].

4.3 Stratified Sampling

4.3.1 Method and Examples

Stratified sampling refers broadly to any sampling mechanism that constrains
the fraction of observations drawn from specific subsets (or strata) of the
sample space. Suppose, more specifically, that our goal is to estimate E[Y]
with Y real-valued, and let A;,..., Ax be disjoint subsets of the real line for

which P(Y € UiAi) = 1. Then
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K K
E[Y] =) P(Y € AE[Y|Y € Ai] = > pE[Y|Y € Aj] (4.31)

i=1

with p;, = P(Y € A;). In random sampling, we generate independent
Y1,...,Y, having the same distribution as Y. The fraction of these samples
falling in A; will not in general equal p;, though it would approach p; as the
sample size n increased. In stratified sampling, we decide in advance what
fraction of the samples should be drawn from each stratum A;; each observa-
tion drawn from A; is constrained to have the distribution of Y conditional
onY € A;.

The simplest case is proportional sampling, in which we ensure that the
fraction of observations drawn from stratum A; matches the theoretical prob-
ability p;, = P(Y € A;). If the total sample size is n, this entails generating
n; = np; samples from A;. (To simplify the discussion, we ignore rounding
and assume np; is an integer instead of writing |np;|.) Foreachi=1,..., K,
let Y;;, s =1,...,n; be independent draws from the conditional distribution
of Y given Y € A;. An unbiased estimator of E[Y|Y € A;] is provided by the
sample mean (Yj; + - -+ 4 Yin,)/n; of observations from the ith stratum. It
follows from (4.31) that an unbiased estimator of E[Y] is provided by

ng K ng

K
?=Zpi~ﬁleYij=%ZZK’j- (4.32)
i=1 ¢

j=1 i=1 j=1

This estimator should be contrasted with the usual sample mean ¥ = (Y1 +
-+ +Y,)/n of a random sample of size n. Compared with Y, the stratified
estimator Y eliminates sampling variability across strata without affecting
sampling variability within strata.

We generalize this formulation in two simple but important ways. First,
we allow the strata to be defined in terms of a second variable X . This stratifi-
cation variable could take values in an arbitrary set; to be concrete we assume
it is R¢-valued and thus take the strata A; to be disjoint subsets of R with
P(X € U;A;) = 1. The representation (4.31) generalizes to

K K
E[Y] =) P(X € AE[Y[X € Ai] =) pE[Y|X € Ay, (4.33)

1=1

where now p; = P(X € A;). In some applications, Y is a function of X (for
example, X may be a discrete path of asset prices and Y the discounted payoff
of a derivative security), but more generally they may be dependent without
either completely determining the other. To use (4.33) for stratified sampling,
we need to generate pairs (X;;,Yi;), j = 1,...,n;, having the conditional
distribution of (X,Y") given X € A;.

As a second extension of the method, we allow the stratum allocations
ni,...,nkg to be arbitrary (while summing to n) rather than proportional to
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p1,-.-,PK- In this case, the first representation in (4.32) remains valid but
the second does not. If we let ¢; = n;/n be the fraction of observations drawn
from stratum ¢, ¢ = 1,..., K, we can write

uz

) K 1 1 K D; ng
Y:Zpi-;\;ﬁjz—ﬁzle’m- (4.34)
i=1 vy i—1 di j=1

—1

By minimizing the variance of this estimator over the g¢;, we can find an
allocation rule that is at least as effective as a proportional allocation. We

return to this point later in this section.
From this introduction it should be clear that the use of stratified sampling

involves consideration of two issues:

o choosing the stratification variable X, the strata A, ..., Ak, and the allo-

cation ni,...,ng;
o generating samples from the distribution of (X,Y") conditional on X € A;.

In addressing the first issue we will see that stratified sampling is most effective
when the variability of Y within each stratum is small. Solutions to the second
issue are best illustrated through examples.

Example 4.3.1 Stratifying uniforms. Perhaps the simplest application of
stratified sampling stratifies the uniformly distributed random variables that
drive a simulation. Partition the unit interval (0,1) into the n strata

1 1 2 n—1
A1:<07’_:|aA2:<—7——}a"'7An:< 71>
n n'n n
Each of these intervals has probability 1/n under the uniform distribution, so
in a proportional allocation we should draw one sample from each stratum.

(The sample size n and the number of strata K are equal in this example.) Let
Ui, ...,U, be independent and uniformly distributed between 0 and 1 and let

-1 P
v = _‘_2 i=1,...,n. (4.35)

- ’

n n

Each V; is uniformly distributed between (i — 1)/n and i/n, which is to say
that V; has the conditional distribution of U given U € A; for U ~ Unif[0,1].
Thus, Vi, ..., V, constitute a stratified sample from the uniform distribution.
(In working with the unit interval and the subintervals A;, we are clearly free
to define these to be open or closed on the left or right; in each setting, we
adopt whatever convention is most convenient.)

Suppose Y = f(U) so that E[Y] is simply the integral of f over the unit
interval. Then the stratified estimator

V=23 W)
i=1
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is similar to the deterministic midpoint integration rule
I, (21
=2t
n “ 2n
i=1

based on the value of f at the midpoints of the A;. A feature of the random-
ization in the stratified estimator is that it makes ¥ unbiased.

This example easily generalizes to partitions of (0,1) into intervals of un-
equal lengths. If A; = (a;,b;], then the conditional distribution of U given
U € A; is uniform between a; and b;; we can sample from this conditional

distribution by setting V' =a; + U(b; —a;). O

Example 4.3.2 Stratifying nonuniform distributions. Let F' be a cumulative
distribution function on the real line and let

F~'u) =inf{z: F(z) < u}

denote its inverse as defined in Section 2.2.1. Given probabilities p1,...,px
summing to 1, define ag = —o0,
a;=F '), aa=F '(p1+p2), ..., ax = F '(p1+--- +pk) = F (1)

Define strata
A = (ao,al], Ay = (al,az], oo, Ag = (CLK—l,CLK]

or with Ax = (ax-1,ax) if ax = 0o. By construction, each stratum A; has
probability p; under F'; for if Y has distribution F', then

P(Y € Az) = F(az) — F(ai_l) =D;.

Thus, defining strata for I with specified probabilities is straightforward,
provided one can find the quantiles a;. Figure 4.4 displays ten equiprobable
(pi = 1/K) strata for the standard normal distribution.

To use the sets Ay,..., Ax for stratified sampling, we need to be able to
generate samples of Y conditional on ¥ € A;. As demonstrated in Exam-
ple 2.2.5, this is easy using the inverse transform method. If U ~ Unif]0,1],

then
V=a-1+U(a; —a;-1)

is uniformly distributed between a;—; and a; and then F~!(V') has the distri-
bution of Y conditional on Y € A;.

Figure 4.5 illustrates the difference between stratified and random sam-
pling from the standard normal distribution. The left panel is a histogram of
500 observations, five from each of 100 equiprobable strata; the right panel is
a histogram of 500 independent draws from the normal distribution. Stratifi-
cation clearly produces a better approximation to the underlying distribution.
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-4 -3 -2 -1 0 1 2 3 4

Fig. 4.4. A partition of the real line into ten intervals of equal probability under the
standard normal distribution. The area under the normal density over each interval

is 1/10.

How might we use stratified samples from the normal distribution in sim-
ulating paths of a stochastic process? It would not be legitimate to use one
value from each of 100 strata to generate 100 steps of a single Brownian path:
the increments of Brownian motion are independent but the stratified values
are not, and ignoring this dependence would produce nonsensical results. In
contrast, we could validly use the stratified values to generate the first incre-
ment of 100 replications of a single Brownian path (or the terminal values of
the paths, as explained in Section 4.3.2). In short, in using stratified sampling
or any other variance reduction technique, we are free to introduce dependence
across replications but not within replications. O

XTI 2 a0 o 1 2 3 4 e 0 1 2 3 4

Fig. 4.5. Comparison of stratified sample (left) and random sample (right). The
stratified sample uses 100 equiprobable strata with five samples from each stratum;
the random sample consists of 500 independent draws from the normal distribution.

Both histograms use 25 bins.
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Example 4.3.3 Stratification through acceptance-rejection. A crude but al-
most universally applicable method for generating samples conditional on a
stratum generates unconditional samples and keeps those that fall in the target
set. This is the method described in Example 2.2.8 for conditional sampling,
and may be viewed as a form of acceptance-rejection in which the acceptance
probability is always 0 or 1.

To describe this in more detail, we use the notation of (4.33). Our goal is
to generate samples of the pair (X,Y) using strata A;,..., Ag for X, with
n; samples to be generated conditional on X € A;, i = 1,...,K. Given
a mechanism for generating unconditional samples from the distribution of
(X,Y), we can repeatedly generate such samples until we have produced n;
samples with X € A; for eachi = 1,..., K; any extra samples generated from
a stratum are simply rejected.

The efficiency of this method depends on the computational cost of gen-
erating pairs (X,Y) and determining the stratum in which X falls. It also
depends on the stratum probabilities: if P(X € A;) is small, a large number
of candidates may be required to produce n; samples from A;. These com-
putational costs must be balanced against the reduction in variance achieved
through stratification. Glasserman, Heidelberger, and Shahabuddin [143] an-
alyze the overhead from rejected samples in this method based on a Poisson
approximation to the arrival of samples from each stratum. O

Example 4.3.4 Stratifying the unit hypercube. The methods described in Ex-
amples 4.3.1 and 4.3.2 extend, in principle, to multiple dimensions. Using the

inverse transform method, a vector (X3, ..., Xy) of independent random vari-
ables can be represented as (F; '(Uy), ..., Fy*(Us)) with F; the distribution
of X; and Uy, ..., Uy independent and uniform over [0, 1). In this sense, it suf-

fices to consider the uniform distribution over the d-dimensional hypercube
[0,1)¢. (In the case of dependent X7, ..., X4, replace F; with the conditional
distribution of X; given Xj,..., X;_;.) In stratifying the unit hypercube with
respect to the uniform distribution, it is convenient to take the strata to be
products of intervals because the probability of such a set is easily calculated
and because it is easy to sample uniformly from such a set by applying a
transformation like (4.35) to each coordinate.

Suppose, for example, that we stratify the jth coordinate of the hypercube
into K intervals of equal length. Each stratum of the hypercube has the form

¢ rii—1 i
Jj J .
H[KJ ,E>, ’LjE{l,...,Kj}

J=1

and has probability 1/(K; - -+ K4). To generate a vector V uniformly distrib-
uted over this set, generate Un,- .., Uy independently from Unif]0,1) and define

the jth coordinate of V to be
' ij — 14 U;

=1,...,d. .
7@ , ] ..., d (4.36)

I/;-:
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In this example, the total number of strata is K - - - K4. Generating at least
one point from each stratum therefore requires a sample size at least this large.
Unless the K; are quite small (in which case stratification may provide little
benefit), this is likely to be prohibitive for d larger than 5, say. In Section 4.4
and Chapter 5, we will see methods related to stratified sampling that are
better suited to higher dimensions. O

Output Analysis

We now turn to the problem of interval estimation for p 2 E[Y] using strat-
ified sampling. As in (4.33), let A;,..., Ax denote strata for a stratification
variable X and let Y;; have the distribution of Y conditional on X € A;. For
1=1,..., K, let

o2 = Var[V;;] = Var[Y|X € Aj]. (4.38)
Let p;, = P(X € A;), i =1,..., K, denote the stratum probabilities; we re-
quire these to be strictly positive and to sum to 1. Fix an allocation ny,...,ng
with all n; > 1 and ny + --- + ng = n. Let ¢; = n;/n denote the fraction of

samples allocated to the ith stratum. For any such allocation the estimator
Y in (4.33) is unbiased because

X K 1 ng K
EY]=> pi- - D EYyl =) pipi = p
i=1 tj=1 i=1

The variance of ¥ is given by

) K ) 1 4 K 202 Uz(q)
Var[Y] = Zpiva" ;ZY;J' = sz' 7—,;” =T
i=1 b =1 i=1 ¢

with
o*(g) =) —;af. (4.39)
For each stratum A;, the samples Y;1,Yio,... are i.i.d. with mean u,; and

variance o2 and thus satisfy

1 [ng:]
Y (¥ — ) = N(0,02),

vV [ngi) j=1

asn — oo with g1, ..., ¢k fixed. The centered and scaled estimator \/ﬁ(f’ — 1)
can be written as
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[ng:]

\/_( \/_sz QzJ Z ij ,uz
K i [ng:]
~ ; \/—; \/n—qz Z ij 'Ufz )

the approximation holding in the sense that the ratio of the two expressions
approaches 1 as n — oo. This shows that \/n(Y — p) is asymptotically a
linear combination (with coefficients p; / /@) of independent normal random
variables (with mean 0 and variances o2). It follows that

V(Y — p) = N(0,0°(q))

with 02(q) as defined in (4.39). This limit holds as the sample size n increases

with the number of strata K held fixed. R
A consequence of this central limit theorem for Y is the asymptotic validity

of @
o(q
Y + 4.40
52— \/ﬁ ( )
as a 1 — ¢ confidence interval for u, with 25/, = ®~1(1 — 6/2). In practice,
o%(q) is typically unknown but can be consistently estimated using

where s? is the sample standard deviation of Y1, ..., Yiy,,.

Alternatively, one can estimate o2(q) through independent replications of
Y. More precisely, suppose the sample size n can be expressed as mk with m
and k integers and m > 2. Suppose k; = ¢;k is an integer for all : =1,..., K
and note that n; = mk;. Then Y is the average of m independent stratified
estimators Y1, ..., Y, each of which allocates a fraction ¢; of observations to
stratum 4 and has a total sample size of k. Each Y; thus has variance 02(q) /k;
because Y is the average of the )71, e ,Ym, an asymptotically (as m — 00)
valid confidence interval for u is provided by

%\/—E . (4.41)

This reduces to (4.40), but ¢(q)/v/k can now be consistently estimated using
the sample standard deviation of Yl, . }A’ This is usually more convenient
than estimating all the stratum variances o2, i = 1,..., K.

In this formulation, each Y] may be thought of as a batch with sample size
k and the original estimator Y as the sample mean of m independent batches.
Given a total sample size n. is it preferable to have at least m nheervatinane

}A/ :hZ,S/Q
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from each stratum, as in this setting, or to increase the number of strata so
that only one observation is drawn from each? A larger m should improve our
estimate of o(g) and the accuracy of the normal approximation implicit in the
confidence intervals above. However, we will see below (cf. (4.46)) that taking
finer strata reduces variance. Thus, as is often the case, we face a tradeoff
between reducing variance and accurately measuring variance.

Optimal Allocation

In the case of a proportional allocation of samples to strata, ¢; = p; and the
variance parameter o2(q) simplifies to

&01-2 = Zpiaf. (4.42)
q i=1

i=1 1t

To compare this to the variance without stratification, observe that

K K
E[Y?] = ZPiE[Yle € A = Zpi(af +447),

=1

SO using p = Zfil Dilti we get

K K K 2
Var[Y] = E[Y?] = p® =) pio? + ) pipii — <ZP¢M¢> : (4.43)
=1 i1 i=1

By Jensen’s inequality,

K K 2
Y pind > (ZZHU@')
=1 =1

with strict inequality unless all u; are equal. Thus, comparing (4.42) and
(4.43), we conclude that stratified sampling with a proportional allocation can

only decrease variance.
Optimizing the allocation can produce further variance reduction. Mini-

mizing 02 (g) subject to the constraint that (g1, ..., gx) be a probability vector
yields the optimal allocation

_ bio;
T K
Zgzl DeOy

In other words, the optimal allocation for each stratum is proportional to the
product of the stratum probability and the stratum standard deviation. The

optimal variance is thus

q; i=1,...,K.
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K 02 K 2
@)=Y o= (Y pioi] .
=1 i i=1

Comparison with (4.42) indicates that the additional reduction in variance
from optimizing the allocation is greatest when the stratum standard devia-
tions vary widely.

In practice, the o; are rarely known so the optimal fractions ¢ are not
directly applicable. Nevertheless, it is often practical to use pilot runs to get
estimates of the o; and thus of the g7. The estimated optimal fractions can
then be used to allocate samples to strata in a second (typically larger) set of
runs.

In taking the optimal allocation to be the one that minimizes variance,
we are implicitly assuming that the computational effort required to generate
samples is the same across strata. But this assumption is not always appro-
priate. For example, in sampling from strata through acceptance-rejection as
described in Example 4.3.3, the expected time required to sample from A; is
proportional to 1/p;. A more complete analysis should therefore account for
differences in computational costs across strata.

Suppose, then, that 7; denotes the expected computing time required to
sample (X,Y) conditional on X € A; and let s denote the total computing
budget. Let Y'(s) denote the stratified estimator produced with a budget s,
assuming the fraction of samples allocated to stratum ¢ is g;. (This is asymp-
totically equivalent to assuming the fraction of the computational budget al-
located to stratum ¢ is proportional to ¢;7;.) Arguing much as in Section 1.1.3,

we find that

with

By minimizing this work-normalized variance parameter we find that the op-
timal allocation is
* p’LO-’L/\/”T’L

q' - )
D oo/ \/Te

which now accounts for differences in computational costs across strata. Like
the o;, the 7; can be estimated through pilot runs.

Variance Decomposition

The preceding discussion considers the allocation of samples to given strata.
In order to consider the question of how strata should be selected in the first
place, we now examine what part of the variance of Y is removed through

stratification of X.
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As before, let A;,..., Ax be strata for X. Let n = n(X) € {1,...,K}
denote the index of the stratum containing X, so that X € A,. We can
always write

Y =E[Y|n] +¢ (4.44)

simply by defining the residual € so that equality holds. It is immediate that
E[e|n] = 0 and that € is uncorrelated with E[Y|n] because

Ele (E[Y[n] — E[Y])] = 0,

as can be seen by first conditioning on 7. Because (4.44) decomposes Y into
the sum of uncorrelated terms, we have

Var[Y] = Var[E[Y|n]] + Var[e].

We will see that stratified sampling with proportional allocation eliminates
the first term on the right, leaving only the variance of the residual term and

thus guaranteeing a variance reduction.
The residual variance is E[e?] because E[e] = 0. Also,

E[e®|n] = E[(Y — E[Y|n])*|n] = Var[Y|n].
We thus arrive at the familiar decomposition
Var[Y] = Var[E[Y|n]] + E [Var[Y|n]] . (4.45)

The conditional expectation of Y given n = ¢ is u;, and the probability that
n =1 is p;. The first term on the right side of (4.45) is thus

K 2
Var[E[Y |n]] szuz <Zpim>.
=1

Comparing this with (4.43), we conclude from (4.44) and (4.45) that

Varle] = E [Var[Y|n]] sz o;,

which is precisely the variance parameter in (4.42) for stratified sampling
with proportional allocation. This confirms that the variance parameter of
the stratified estimator is the variance of the residual of Y after conditioning
on 7.

Consider now the effect of alternative choices of strata. The total variance
Var[Y] in (4.45) is constant, so making the residual variance small is equivalent
to making Var[E[Y'|n]] large — i.e., to making Var[u,] large. This indicates that
we should try to choose strata to achieve a high degree of variability across the
stratum means p1,...,ux and low variability within each stratum. Indeed,
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from (4.45) we find that stratification eliminates inter-stratum variability,
leaving only intra-stratum variability.

Another consequence of (4.45) is that further stratification results in fur-
ther variance reduction. More precisely, suppose the partition {/11, AR
refines the partition {A;,..., Ak}, in the sense that the stratum index 7 of
the new partition completely determines 7. Then E[Y|n] = E[E[Y|7]|n] and
Jensen’s inequality yields

Var[E[Y [1]] < Var[E[Y7], (4.46)

from which it follows that the residual variance from the refined strata cannot
exceed the residual variance from the original strata.

The decomposition (4.44) invites a comparison between stratified sampling
and control variates. Consider the case of real-valued X. Using the method of
Example 4.3.2, we can in principle stratify X using an arbitrarily large number
of equiprobable intervals. As we refine the stratification, it is reasonable to
expect that E[Y|n] will approach E[Y|X]. (For a specific result of this type
see Lemma 4.1 of Glasserman, Heidelberger, and Shahabuddin [139].) The

decomposition (4.44) becomes
Y =EY|X]+e=g(X)+e¢

with g(z) = E[Y|X = z]. If g is linear, then the variance removed through
(infinitely fine) stratification of X is precisely the same as the variance that
would be removed using X as a control variate. But in the general case, using
X as a control variate would remove only the variance associated with the
linear part of g near E[X]; see the discussion in Section 4.1.4. In contrast,
infinitely fine stratification of X removes all the variance of g(X) leaving only
the variance of the residual €. In this sense, using X as a stratification variable
is more effective than using it as a control variate. However, it should also be
noted that using X as a control requires knowledge only of E[X] and not the
full distribution of X; moreover, it is often easier to use X as a control than
to generate samples from the conditional law of (X,Y) given the stratum

containing X.

4.3.2 Applications

This section illustrates the application of stratified sampling in settings some-
what more complex than those in Examples 4.3.1-4.3.4. As noted in Exam-
ple 4.3.4, fully stratifying a random vector becomes infeasible in high dimen-
sions. We therefore focus primarily on methods that stratify a scalar projection
in a multidimensional setting. This can be effective in valuing a derivative se-
curity if its discounted payoff is highly variable along the selected projection.

Terminal Stratification

In the pricing of options, the most important feature of the path of an under-
lying asset is often its value at the option expiration: much of the variahilitv
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in the option’s payoff can potentially be eliminated by stratifying the termi-
nal value. As a step in this direction, we detail the stratification of Brownian
motion along its terminal value. In the special case of an asset described
by geometric Brownian motion with constant volatility, this is equivalent to
stratifying the terminal value of the asset price itself.
Suppose, then, that we need to generate a discrete Brownian path W (t),
.., W(tm) and that we want to stratify the terminal value W (t,,). We can
accomplish this through a variant of the Brownian bridge construction of
Brownian motion presented in Section 3.1. Using the inverse transform method
as in Example 4.3.2 we can stratify W (¢,,), and then conditional on each value
of W (tn,) we can generate the intermediate values W(t1),..., W(tm—1).
Consider, in particular, the case of K equiprobable strata and a propor-

tional allocation. Let Uy, ...,Ux be independent Unif[0,1] random variables
and set 1 U
Z — .
Vi = — =1,..., K.
I74 + 7 t=1,..., K

Then ®~1(V;),...,® (Vi) form a stratified sample from the standard nor-
mal distribution and /£, ®~'(V1), ..., vEn® 1(V;,) form a stratified sample
from N(0,t,,), the distribution of W (t,,). To fill in the path leading to each
W (tm), we recall from Section 3.1 that the conditional distribution of W (t;)

given W(tj—1) and W (t,,) is

tm — t t;—t;_ tm — ) (t; — t5_
N (————L W (tj—1) + 222 W (tm), U — 15)(0 — t 1)) :
tm *tj—l tm _tj—l tm ““tjﬁl
with to = 0 and W (0) = 0.
The following algorithm implements this idea to generate K Brownian
paths stratified along W (¢,,):

fori=1,..., K
generate U ~ Unif[0,1]
V—({i-1+U)/K
W(tm) — VIt @ (V)
forj=1,....m—1
generate Z ~ N(0,1)

W(t;) — t"i— LW (ti_1) + ti—ti—1 W(tm) + \/(tm—tj)(tj—tj—1)Z

tm—tj—1 tm—tj-1 tm—tj_1

Figure 4.6 illustrates the construction. Of the K = 10 paths generated by this
algorithm, exactly one terminates in each of the K = 10 strata defined for
W (), here with t,, = 1.

If the underlying asset price S(¢) is modeled by geometric Brownian mo-
tion, then driving the simulation of S with these Brownian paths stratifies the
terminal asset price S(¢y,); this is a consequence of the fact that S(t,,) is a
monotone transformation of W (t,,). In valuing an option on S, rather than
constructing equiprobable strata over all possible terminal values, we may
comhine all values of S(t..) that result in zero pavoff into a single stratum
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3

0 1
Fig. 4.6. Simulation of K Brownian paths using terminal stratification. One path

reaches each of the K strata. The strata are equiprobable under the distribution of
W (1).

and create a finer stratification of terminal values that potentially produce a
nonzero payoff. (The payoff will not be completely determined by S(t,,) if it

is path-dependent.)
As an example of how a similar construction can be used in a more complex

example, consider the dynamics of a forward LIBOR rate L, as in (4.6).
Consider a single-factor model (so that W is a scalar Brownian motion) with
deterministic but time-varying volatility ¢, = o. Without the drift term in
(4.6), the terminal value L (tn,) would be determined by

/Otm o(u)dW (u)

rather than W (¢,,), so we may prefer to stratify this integral instead. If o is
constant over each interval [¢;,¢;11), this integral simplifies to

m—1

W(tm)o(tm-1) + > W(t:)[o(ti1) — o(t:)]. (4.47)

i=1

Similarly, for some path-dependent options one may want to stratify the av-
erage

% f: W(t). (4.48)

In both cases, the stratification variable is a linear combination of the W (t;)
and is thus a special case of the general problem treated next.
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Stratifying a Linear Projection

Generating (W (t1), ..., W (tm)) stratified along W (t,,) or (4.47) or (4.48) are
all special cases of the problem of generating a multivariate normal random
vector stratified along some projection. We now turn to this general formula-

tion of the problem.
Suppose, then, that £ ~ N(u, ) in % and that we want to generate £ with

X = v '€ stratified for some fixed vector v € R?¢. Suppose the d x d matrix &
has full rank. We may take 4 to be the zero vector because stratifying v’ ¢ is
equivalent to stratifying v' (¢ — p) since vy is a constant. Also, stratifying
X is equivalent to stratifying any multiple of X; by scaling v if necessary, we
may therefore assume that v’ Yv = 1. Thus,

X =v"¢~N(0,v"Sv) = N(0,1),

so we know how to stratify X using the method in Example 4.3.1.
The next step is to generate £ conditional on the value of X . First observe

that & and X are jointly normal with

(%)~ (0 (Feutn))

Using the Conditioning Formula (2.25), we find that

v IVIIEDY LT
(¢ X =2)~N (mx,z - 5 ) =N (Zvz, - Zw ' %).

Observe that the conditional covariance matrix does not depend on x; this is
important because it means that only a single factorization is required for the
conditional sampling. Let A be any matrix for which AAT = % (such as the
one found by Cholesky factorization) and observe that

(A=XvvT A)(A—SvvT A)7T
=AAT —AAT WS —SwTAAT + S TS TS
=Y —Yw'x,

again using the fact that vT Yv = 1. Thus, we can use the matrix A — Svv' A
to sample from the conditional distribution of ¢ given X.
The following algorithm generates K samples from N (0, X) stratified along

the direction determined by v:

fori=1,...,K
generate U ~ Unif]0,1]
Ve—(@-14+U)/K
X — 7 1(V)
generate Z ~ N(0,1) in R¢
E—YoX +(A-ZwTA)Z
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By construction, of the K values of X generated by this algorithm, exactly one
will fall in each of K equiprobable strata for the standard normal distribution.
But observe that under this construction,

v E=0v"SvX v (A-Sw' A)Z = X.

Thus, of the K values of ¢ generated, exactly one has a projection v ¢ falling
into each of K equiprobable strata. In this sense, the algorithm generates
samples from N (0, X) stratified along the direction determined by v.

To apply this method to generate a Brownian path with the integral in
(4.47) stratified, take ¥ to be the covariance matrix of the Brownian path

(3i; = min(t;,t;), as in (3.6)) and
v (0(0) —o(1),0(1) — 0(2),...,0(m —=2) —o(m —1),0(m —1))7,

normalized so that v' v = 1. To generate the path with its average (4.48)
stratified, take v to be the vector with all entries equal to the square root of
the sum of the entries of ¥. Yet another strategy for choosing stratification
directions is to use the principal components of ¥ (cf. Section 2.3.3).

Further simplification is possible in stratifying a sample from the standard
multivariate normal distribution N (0, ). In this case, the construction above

becomes
E=vX+T-w")Z, X~N(0,1), Z~N(0,I),

with v now normalized so that v v = 1. Since X = v ¢, by stratifying X we
stratify the projection of & onto v. The special feature of this setting is that
the matrix-vector product (I —vv')Z can be evaluated as Z —v(v ' Z), which
requires O(d) operations rather than O(d?).

This construction extends easily to allow stratification along multiple di-
rections simultaneously. Let B denote a d x m matrix, m < d, whose columns
represent the stratification directions. Suppose B has been normalized so that
BTYB = I. If ¥ itself is the identity matrix, this says that the m columns of
B form a set of orthonormal vectors in #¢. Where we previously stratified the
scalar projection X = v'¢, we now stratify the m-vector X = BT¢, noting
that X ~ N(0,I). For this, we first stratify the m-dimensional hypercube as
in Example 4.3.4 and then set X; = ®~1(V;), i =1,...,m, with (Vi,..., Vi)
sampled from a stratum of the hypercube as in (4.36). This samples X from
the m-dimensional standard normal distribution with each of its components

stratified. We then set
¢ =%BX +(A-XBB'A)Z, Z~ N(0,I),

for any d x d matrix A satisfying AAT = 3. The projection B¢ of € onto
the columns of B returns X and is stratified by construction.
To illustrate this method, we apply it to the LIBOR market model dis-

cussed in Section 3.7, using the notation and terminology of that section. We



4.3 Stratified Sampling 225

use accrual intervals of length § = 1/2 and set all forward rates initially equal
to 6%. We consider a single-factor model (i.e., one driven by a scalar Brownian
motion) with a piecewise constant stationary volatility, meaning that o, (t)
depends on n and ¢ only through n — n(t), the number of maturity dates re-
maining until 7T,,. We consider a model in which volatility decreases linearly
from 0.20 to 0.10 over a 20-year horizon, and a model in which all forward
rate volatilities are 0.15.

Our simulation uses a time increment equal to §, throughout which volatil-
ities are constant. We therefore write

/ T () dW (t) = V5 zn:o-n(z;-_l)zi, (4.49)

with Z1,Za, ... independent N (0, 1) variables. This suggests using the vec-
tor (0,(0), on(T1), ..., on(Th—1)) as the stratification direction in sampling
(Z1,...,2Zy,) from the standard normal distribution in .

Table 4.2 reports estimated variance reduction ratios for pricing various
options in this model. Each entry in the table gives an estimate of the ratio
of the variance using ordinary Monte Carlo to the variance using a stratified
sample of equal size. The results are based on 40 strata (or simply 40 indepen-
dent samples for ordinary Monte Carlo); the estimated ratios are based 1000
replications, each replication using a sample size of 40. The 1000 replications
merely serve to make the ratio estimates reliable; the ratios themselves should
be interpreted as the variance reduction achieved by using 40 strata.

The results shown are for a caplet with a maturity of 20 years, a caplet with
a maturity of 5 years, bonds with maturities 20.5 and 5.5 years, and a swaption
maturing in 5 years to enter into a 5-year, fixed-for-floating interest rate swap.
The options are all at-the-money. The results are based on simulation in the
spot measure using the log-Euler scheme in (3.120), except for the last row
which applies to the forward measure for maturity 20.5. In each case, the
stratification direction is based on the relevant portion of the volatility vector
— forty components for a 20-year simulation, ten components for a 5-year
simulation. (Discounting a payment to be received at T},41 requires simulating
to T),.)

The results in the table indicate that the variance reduction achieved varies
widely but can be quite substantial. With notable exceptions, we generally see
greater variance reduction at shorter maturities, at least in part because of
the discount factor (see, e.g., (3.109)). The stratification direction we use is
tailored to a particular rate L, (through (4.49)), but not necessarily to the
discount factor. The discount factor becomes a constant under the forward
measure and, accordingly, we see a greater variance reduction in this case,
at the same maturity. Surprisingly, we find the greatest improvement in the
case of the swaption, even though the stratification direction is not specifically

tailored to the swap rate.
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Linear Constant
volatility volatility

Spot Measure

Caplet, T'= 20 2 8

Caplet, T =5 26 50

Swaption, T'= 5 38 79

Bond, T' = 20.5 12 4

Bond, T'=5.5 5 4
Forward Measure

Caplet, T = 20 11 11

Table 4.2. Variance reduction factors using one-dimensional stratified sampling
in a single-factor LIBOR market model. The stratification direction is determined
by the vector of volatilities. The results are based on 1000 replications of samples
(stratified or independent) of size 40. For each instrument, the value of T" indicates

the maturity.

Optimal Directions

In estimating E[f(£)] with € ~ N(u, X) and f a function from R¢ to R, it would
be convenient to know the stratification direction v for which stratifying v ¢
would produce the greatest reduction in variance. Finding this optimal v is
rarely possible; we give a few examples for which the optimal direction is
available explicitly.

With no essential loss of generality, we restrict attention to the case of
E[f(Z)] with Z ~ N(0,I). From the variance decomposition (4.45) and the
surrounding discussion, we know that the residual variance after stratifying
a linear combination v'Z is E[Var[f(Z)|n]], where 7 is the (random) index
of the stratum containing v’ Z. If we use equiprobable strata and let the
number of strata grow (with each new set of strata refining the previous set),
this residual variance converges to E[Var[f(Z)|v" Z]] (cf. Lemma, 4.1 of [139)).
We will therefore compare alternative choices of v through this limiting value.

In the linear case f(z) = b' z, it is evident that the optimal direction is
v = b. Next, let f(z) = 2" Az for some d x d matrix A. We may assume that
A is symmetric and thus that it has real eigenvalues \; > Ay > --- > Ag and
associated orthonormal eigenvectors vy, . .., v4. Minimizing E[Var[f(Z)|vT Z]]
over vectors v for which v T v = 1 is equivalent to maximizing Var[E[f(Z)[vT Z]]
over the same set because the two terms sum to Var[f(Z)] for any v. In the
quadratic case, some matrix algebra shows that v'v = 1 implies

Var[E[ZTAZ|v" Z]] = (v Av)2.

This is maximized by vy if A > A2 and by vg if A2 > A2, In other words,
the optimal stratification direction is an eigenvector of A associated with an
eigenvalue of largest absolute value. The effect of optimal stratification is to

reduce variance from Y _; A? to Y, A? — max; \?.
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As a final case, let f(z) = exp(52' Az). For f(Z) to have finite second
moment, we now require that A\; < 1/2. Theorem 4.1 of [139] shows that
the optimal stratification direction in this case is an eigenvector v;« where j*

satisfies ) )
)\j* /\z
(1—,\j*> _ii?f‘.x.,d<1—/\i) ’ (4.50)

As in the previous case, this criterion will always select either A; or Ag4, but
it will not necessarily select the one with largest absolute value.

Simulation is unnecessary for evaluation of E[f(Z)] in each of these exam-
ples. Nevertheless, a linear, quadratic, or exponential-quadratic function may
be useful as an approximation to a more general f and thus as a guide in
selecting stratification directions. Fox [127] uses quadratic approximations for
related purposes in implementing quasi-Monte Carlo methods. Glasserman,
Heidelberger, and Shahabuddin [139] use an exponential-quadratic approxi-
mation for stratified sampling in option pricing; in their application, A is the
Hessian of the logarithm of an option’s discounted payoff. We discuss this
method in Section 4.6.2.

Radial Stratification

The symmetry of the standard multivariate normal distribution makes it
possible to draw samples from this distribution with stratified norm. For
Z ~ N(0,1) in R4, let
X=2+--+2%

so that v/ X = || Z|| is the radius of the sphere on which Z falls. The distribution
of X is chi-square with d degrees of freedom (abbreviated x2) and is given
explicitly in (3.71). Section 3.4.2 discusses efficient methods for sampling from
X3, but for stratification it is more convenient to use the inverse transform
method as explained in Example 4.3.2. There is no closed-form expression for
the inverse of the x3 distribution, but the inverse can be evaluated numerically
and methods for doing this are available in many statistical software libraries
(see, e.g., the survey in Section 18.5 of [201]). Hence, by generating a stratified
sample from Unif[0,1] and then applying the inverse of the x? distribution,

we can generate stratified values of X.
The next step is to sample Z conditional on the value of the stratification

variable X . Because of the symmetry of the normal distribution, given X the
vector Z is uniformly distributed on the sphere of radius v/X. This is the basis
of the Box-Muller method (cf. Section 2.3) in dimension 2 but it holds for all
dimensions d. To sample uniformly from the sphere of radius R = v/ X in %9,
we can extend the Box-Muller construction as follows: sample Uy, ...,Ug_1
independently from Unif[0,1] and set

Zl = RCOS(27TU1)
Zs = Rsin(27U;) cos(2nwUs)
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Zg-1 = Rsin(2nUy) sin(27Us) - - - sin(2nUq_2) cos(2nU4—1)
Z4 = Rsin(2nU;) sin(2wUs) - - - sin(2nU4—2) sin(27U4—1).

Alternatively, given a method for generating standard normal random vari-
ables we can avoid the evaluation of sines and cosines. If &, . .., &4 are indepen-
dent N(0,1) random variables and ¢ = (£1,...,&4) ", then £/||€] is uniformly
distributed over the unit sphere and

_p &
7=

is uniformly distributed over the sphere of radius of R.

It should be noted that neither of these constructions extends easily to
stratified sampling from N (0, X3) for general ¥.. If { ~ N(0, %) and X = (X1,
then X ~ x2 and we can stratify X just as before; moreover, given X, ¢ is
uniformly distributed over the ellipsoid

Hx ={z € R 2T g =X}.

The difficulty lies in sampling uniformly from the ellipsoid. Extending the
Box-Muller construction entails replacing the sines and cosines with elliptic
functions. The second construction does not appear to generalize at all: if
¢ ~ N(0,%), the vector VX¢/1/ETE~1¢ lies on the ellipsoid Hx but is not

uniformly distributed over the ellipsoid.
The construction does, however, generalize beyond the standard normal

to the class of spherically contoured distributions. The random vector Y is
said to have a spherically contoured distribution if its conditional distribution
given ||Y|| is uniform over the sphere of radius ||Y||; see Fang, Kotz, and Ng
[114]. To stratify Y along its radius, we must therefore stratify X = ||V,
which will not be xﬁ except in the normal case. Given X, we can sample Y
uniformly from the sphere of radius ||.X || using either of the methods described
above for the normal distribution.

Radial stratification is proposed and applied in [142] as a method for re-
ducing variance in estimating the risk in a portfolio of options for which losses
result from large moves of the underlying assets in any direction.

Stratifying a Poisson Process

In this example, we generate a Poisson process on [0, 7] with the total number
of jumps in this interval stratified. Let A denote the arrival rate for the Poisson
process and N the number of jumps in [0,7]. Then N is a Poisson random

variable with distribution

AT)F
P(N:k):e_)‘T—Lk'—), k=0,1,2,....
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We can sample from this distribution using the inverse transform method, as in
Figure 3.9, and thus generate a stratified sample of values as in Example 4.3.2.

For each value of N in the stratified sample, we need to generate the
arrival times of the jumps in [0,7] conditional on the number of jumps N.
For this we use a standard property of the Poisson process: given N = k, the
arrival times of the jumps have the joint distribution of the order statistics of
k independent random variables uniformly distributed over [0,77]. Thus, we
may start from Unif[0,1] random variables Uy, ..., Uy, multiply them by 7'
to make them uniform over [0,77], and then sort them in ascending order to
obtain the arrival times.

An alternative to sorting, detailed in Fox [127], samples directly from the
joint distribution of the order statistics. Let Vi,...,V; and Uy,..., Uy denote
independent Unif]0,1] random variables. Then

ml/kV;/(k—n_“Vk, L V11/kV21/(1c—1), V11/k (4.51)

have the joint distribution of the ascending order statistics of Uy, ..., Uy. For
example,

P(max(Uy,...,Uy) <z)=PU, <z)---P(Uy <z)=2z" x€]0,1],

and the last term in (4.51) simply samples from this distribution by applying
its inverse to V4. An induction argument verifies correctness of the remaining
terms in (4.51). The products in (4.51) can be evaluated recursively from
right to left. (To reduce round-off error, Fox [127] recommends recursively
summing the logarithms of the Vil/ (k=+1) and then exponentiating.) The ith
arrival time, ¢ = 1,..., k, can then be generated as

=TV Py /Dyl (4.52)

i.e., by rescaling from [0, 1] to [0, T']. Because the terms in (4.51) are generated
from right to left, Fox [127] instead sets

=T (1- Vll/kV21/(k—1) o Vil/(lc—i—kl));

this has the same distribution as (4.52) and allows generation of the arrival
times in a single pass. (Subtracting the values in (4.51) from 1 maps the ith
largest value to the ith smallest.)

This method of stratification extends, in principle, to inhomogeneous Pois-
son processes. The number of arrivals in [0, 7] continues to be a Poisson ran-
dom variable in this case. Conditional on the number of arrivals, the times of
the arrivals continue to be distributed as order statistics, but now of random
variables with a density proportional to the arrival rate A(t), ¢t € [0, T, rather
than a uniform density.
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Terminal Stratification in a Binomial Lattice

A binomial lattice provides a discrete-time, discrete-space approximation to
the evolution of a diffusion process. Each node in the lattice (see Figure 4.7)
is associated with a level of the underlying asset (or rate) S; over a single time
step, the movement of the asset is restricted to two successor nodes, usually
corresponding to a move up and a move down. By varying the spacing of the
nodes and the transition probabilities, it is possible to vary the conditional
mean and variance of the change in the underlying asset over a single time
step, and thus to approximate virtually any diffusion processes.

Fig. 4.7. A four-step binomial lattice. Each node has an associated value S of the
underlying asset. Each node has two successor nodes, corresponding to a move up

and a move down.

Binomial lattices are widely used for numerical option pricing. A typical
algorithm proceeds by backward induction: an option contract determines the
payoffs at the terminal nodes (which correspond to the option expiration); the
option value at any other node is determined by discounting the values at its
two successor nodes.

Consider, for example, the pricing of a put with strike K. Each terminal
node corresponds to some level S of the underlying asset at expiration and
thus to an option value (K — S)*. A generic node in the lattice has an “up”
successor node and a “down” successor node; suppose the option values V,
and Vjy, respectively, at the two successor nodes have already been calculated.
If the probability of a move up is p, and if the discount factor over a single
step is 1/(1 + R), then the value at the current node is

V = m(pvu+(1 —p)Vd).



4.3 Stratified Sampling 231

In pricing an American put, the backward induction rule is

V:max< (qu+(1—p)Vd),K—S>.

1+ R

Binomial option pricing is ordinarily a deterministic calculation, but it can
be combined with Monte Carlo. Some path-dependent options, for example,
are more easily valued through simulation than through backward induction.
In some cases, there are advantages to sampling paths through the binomial
lattice rather than sampling paths of a diffusion. For example, in an interest
rate lattice, it is possible to compute bond prices at every node. The avail-
ability of these bond prices can be useful in pricing path-dependent options
on, e.g., bonds or swaps through simulation.

An ordinary simulation through a binomial lattice starts at the root node
and generates moves up or down using the appropriate probabilities for each
node. As a further illustration of stratified sampling, we show how to simulate
paths through a binomial lattice with the terminal value stratified.

Consider, first, the case of a binomial lattice for which the probability of
an up move has the same value p at all nodes. In this case, the total number
of up moves N through an m-step lattice has the binomial distribution

P(N =k)= (?)pk(l —p)™k  k=0,1,...,m.

Samples from this distribution can be generated using the inverse transform
method for discrete distributions, as in Example 2.2.4, much as in the case
of the Poisson distribution in Figure 3.9. As explained in Example 4.3.2, it is
a simple matter to generate stratified samples from a distribution using the
inverse transform method. Thus, we have a mechanism for stratifying the total
number of up moves through the lattice. Since the terminal node is determined
by the difference N — (m — N) = 2N —m between the number of up and down
moves, stratifying IV is equivalent to stratifying the terminal node.

The next step is to sample a path through the lattice conditional on the
terminal node — equivalently, conditional on the number of up moves N. The
key observation for this procedure is that, given N, all paths through the
lattice with N up moves (hence m — N down moves) are equally likely. Gen-
erating a path conditional on N is simply a matter of randomly distributing
N “ups” among m moves. At each step, the probability of a move up is the
ratio of the number of remaining up moves to the number of remaining steps.
The following algorithm implements this idea:

k «— N (total number of up moves to be made)
fort=0,....m-—1

if £k = 0 move down

if Kk > m — ¢ move up

if0<k<m-—i1
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generate U ~ Unif]0,1]
if (m—-9)U <k
k—k—-1
move up
else move down

The variable k records the number of remaining up moves and m — 7 is the
number of remaining steps. The condition (m — i)U < k is satisfied with
probability k/(m —4). This is the ratio of the number of remaining up moves
to the number of remaining steps, and is thus the conditional probability of an
up move on the next step. Repeating this algorithm for each of the stratified
values of N produces a set of paths through the lattice with stratified terminal
node.

This method extends to lattices in which the probability of an up move
varies from node to node, though this extension requires substantial addi-
tional computing. The first step is to compute the distribution of the termi-
nal node, which is no longer binomial. The probability of reaching a node can
be calculated using the lattice itself: this probability is the “price” (without
discounting) of a security that pays 1 in that node and 0 everywhere else.
Through forward induction, the probabilities of all terminal nodes can be
found in O(m?) operations. Once these are computed, it becomes possible to
use the discrete inverse transform method to generate stratified samples from
the terminal distribution.

The next step is to simulate paths through the lattice conditional on a
terminal node. For this, let p denote the unconditional probability of an up
move at the current node. Let h, denote the unconditional probability of
reaching the given terminal node from the up successor of the current node;
let hg denote the corresponding probability from the down successor. Then
the conditional probability of an up move at the current node (given the ter-
minal node) is phy, /(phy+(1—p)hg) and the conditional probability of a down
move is (1 —p)hq/(phy + (1 —p)hg). Once the h, and hq have been calculated
at every node, it is therefore a simple matter to simulate paths conditional
on a given terminal node by applying these conditional probabilities at each
step. Implementing this requires calculation of O(m) conditional probabili-
ties at every node, corresponding to the O(m) terminal nodes. These can be
calculated with a total effort of O(m?) using backward induction.

4.3.3 Poststratification

As should be evident from our discussion thus far, implementation of strat-
ified sampling requires knowledge of stratum probabilities and a mechanism
for conditional sampling from strata. Some of the examples discussed in Sec-
tion 4.3.2 suggest that conditional sampling may be difficult even when com-
puting stratum probabilities is not. Poststratification combines knowledge of
stratum probabilities with ordinary independent sampling to reduce variance,
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at least asymptotically. It can therefore provide an attractive alternative to
genuine stratification when conditional sampling is costly.

As before, suppose our objective is to estimate E[Y]. We have a mech-
anism for generating independent replications (X1, Y1),...,(Xn,Yn) of the
pair (X,Y); moreover, we know the probabilities p; = P(X € A;) for strata
A1,..., Ax. As usual, we require that these be positive and sum to 1. For
i=1,...,K, let

n
Ny =) "1{X; € A}
j=1
denote the number of samples that fall in stratum ¢ and note that this is now
a random variable. Let
n
Si=> 1{X; € A;}Y;
j=1
denote the sum of those Y; for which X; falls in stratum ¢, fori =1,..., K.
The usual sample mean Y = (Y; + - - 4 Y;,)/n can be written as

(3

po St Sk NS

203

=1

at least if all NV; are nonzero. By the strong law of large numbers, N;/n — p;
and S;/N; — u;, with probability 1, where p; = E[Y|X € A;] denotes the
stratum mean, as in (4.37). Poststratification replaces the random fraction
N;/n with its expectation p; to produce the estimator

K
Z }%‘ (4.53)

Whereas the sample mean Y assigns weight 1/n to every observation, the
poststratified estimator weights values falling in stratum ¢ by the ratio p; /N;.
Thus, values from undersampled strata (N; < np;) get more weight and values
from oversampled strata (IV; > np;) get less weight. To cover the possibility
that none of the n replications falls in the ith stratum, we replace S;/N; with
zero in (4.53) if N; = 0.

It is immediate from the almost sure convergence of S;/N; to p; that the
poststratified estimator Y is a consistent estimator of E[Y]. Less clear are its
merits relative to the ordinary sample mean or a genuinely stratified estimator.
We will see that, asymptotically as the sample size grows, poststratification
is as effective as stratified sampling in reducing variance. To establish this
result, we first consider properties of ratio estimators more generally.
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Ratio Estimators

We digress briefly to derive a central limit theorem for ratio estimators. For
this discussion, let (R;,@;), ¢ = 1,2,..., be independent and identically dis-
tributed pairs of random variables with

E[RZ] = UR, E[QZ] = K@ Var[Rz] = 0-1%27 Var[Qz] = 0'%, COV[RZ', QI] = ORQ,

and pug # 0. The sample means of the first n values are
h=1Y R Q=13
- n (3] - n P (N

By the strong law of large numbers, the ratio R/Q converges with probability

1 to pr/pg-
By applying the delta method introduced in Section 4.1.4 to the function

h(z,y) = x/y, we obtain a central limit theorem of the form
R g 2
vii(5 - 42) = Moo
Q ke 0.4°)

for the ratio estimator. The variance parameter o2 is given by the general
expression in (4.26) for the delta method and simplifies in this case to

— ER
2 _ lu’%% 2 2IU’R 012% __ Var[R HQ Q] 4.54
0" = —0R— —3ORrRQ+—5 = 5 : (4.54)
e ) HQ HQ

This parameter is consistently estimated by

n

=) (Ri— RQi/Q—)Z/n(Q)z,

i=1

from which we obtain an asymptotically valid 1 — é confidence interval

with 252 = —®7(6/2).
For fixed n, R/Q is a biased estimator of ur/ug. The bias has the form

R o2 /u3) — (o 2

E [T _ _,U_R} _ (bR Q//J’Q) ( RQ//J’Q) +O(1/n2);
QR rQ n

see, e.g., Fishman [121], p.109. Subtracting an estimate of the leading term

can reduce the bias to O(1/n?).
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Poststratification: Asymptotic Variance

We now apply this analysis of ratio estimators to derive a central limit theo-
rem for the poststratified estimator Y, which is a linear combination of ratio
estimators. A straightforward extension of the result for a single ratio gives

S Sk
\/T_Z<N: THL N —MK) = N(0,%),
with the limiting matrix ¥ again determined by the delta method. For the
diagonal entries of ¥, (4.54) gives
. Var[Yl{X € Az} — uzl{X € Az}] 0’2‘2

Y = = —,
* P? D;

with o2 the stratum variance defined in (4.38). A similar calculation for j # i

B . COV[(Y — MZ)I{X (S AZ}, (Y — Mj)l{X € AJ}] —0

Zij -
Dipy

because A; and A; are disjoint.
The poststratified estimator satisfies

. K S,
Y —p=> pi (-Z——Mi)
i=1 Ni

and therefore )
VnlY —u] = N(0,0%)

with

K K
o’ =) piSypj =) pioi-

i,j=1 i=1
This is precisely the asymptotic variance for the stratified estimator based on
proportional allocation of samples to strata; see (4.42). It can be estimated
consistently by replacing each o with the sample variance of the observations
falling in the ¢th stratum.

From this result we see that in the large-sample limit, we can extract all
the variance reduction of stratified sampling without having to sample condi-
tionally from the strata by instead weighting each observation according to its
stratum. How large the sample needs to be for the two methods to give similar
results depends in part on the number of strata and their probabilities. There
is no simple way to determine at what sample size this limit becomes rele-
vant without experimentation. But stratified sampling is generally preferable
and poststratification is best viewed as an alternative for settings in which
conditional sampling from the strata is difficult.
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4.4 Latin Hypercube Sampling

Latin hypercube sampling is an extension of stratification for sampling in
multiple dimensions. Recall from the discussion in Example 4.3.4 that strat-
ified sampling in high dimensions is possible in principle but often infeasible
in practice. The difficulty is apparent even in the simple case of sampling
from the d-dimensional hypercube [0,1)¢. Partitioning each coordinate into
K strata produces K¢ strata for the hypercube, thus requiring a sample size
of at least K¢ to ensure that each stratum is sampled. For even moderately
large d, this may be prohibitive unless K is small, in which case stratification
provides little benefit. For this reason, in Section 4.3.2 we focused on methods
for stratifying a small number of important directions in multidimensional
problems.

Latin hypercube sampling treats all coordinates equally and avoids the ex-
ponential growth in sample size resulting from full stratification by stratifying
only the one-dimensional marginals of a multidimensional joint distribution.
The method, introduced by McKay, Conover, and Beckman [259] and further
analyzed in Stein [337], is most easily described in the case of sampling from
the uniform distribution over the unit hypercube. Fix a dimension d and a
sample size K. For each coordinate ¢ = 1,...,d, independently generate a
stratified sample V;(l) ey Vi(m from the unit interval using K equiprobable

strata; each V;(j ) is uniformly distributed over [(j —1)/K, j/K). If we arrange
the d stratified samples in columns,

Vl(l) ‘/2(1) V'd(l)
Vl(2) ‘/2(2) ‘@(2)

.K .K 'K
yU0 0 Ly )

then each row gives the coordinates of a point in [0, 1)¢. The first row identifies
a point in [0,1/K)%, the second a point in [1/K,2/K )%, and so on, correspond-
ing to K points falling in subcubes along the diagonal of the unit hypercube.
Now randomly permute the entries in each column of the array. More precisely,
let m1,...,mq be permutations of {1,..., K}, drawn independently from the
distribution that makes all K'! such permutations equally likely. Let 7; (%) de-
note the value to which ¢ is mapped by the jth permutation. The rows of the

array
‘/iﬂ.l(l) ‘/271‘2(1) L. ‘/dﬂ‘d(l)

V7T1(2) V7T2(2) .. V?Td(Q)
! 2 ¢ (4.55)
‘/vlTl'l(K) ‘/Zﬂ'g(K) o Vdﬂ"d(K)

continue to identify points in [0,1)¢, but they are no longer restricted to
the diagonal. Indeed, each row is a point uniformly distributed over the unit
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hypercube. The K points determined by the K rows are not independent: if
we project the K points onto their ith coordinates, the resulting set of values
{1/;.7”(1), e Vi”"(K)} is the same as the set {V;(l), e Vi(K)}, and thus forms
a stratified sample from the unit interval.

The “marginal” stratification property of Latin hypercube sampling is il-
lustrated in Figure 4.8. The figure shows a sample of size K = 8 in dimension
d = 2. Projecting the points onto either of their two coordinates shows that
exactly one point falls in each of the eight bins into which each axis is par-
titioned. Stratified sampling would require drawing a point from each square
and thus a sample size of 64.

0
0 1

Fig. 4.8. A Latin hypercube sample of size K = 8 in dimension d = 2.

To generate a Latin hypercube sample of size K in dimension d, let Ui(j )
be independent Unif[0,1) random variables for i =1,...,d and j =1,..., K.

Let my,...,m4 be independent random permutations of {1,..., K} and set
) m()—1+UY
nmzﬂw)K+z Ci=1...d j=1,... K. (4.56)

The sample consists of the K points (Vl(J), ey Vd(J)), j=1,...,K. To gener-
ate a random permutation, first sample uniformly from {1, ..., K}, then sam-
ple uniformly from the remaining values, and continue until only one value
remains. In (4.56) we may choose one of the permutations (74, say) to be the
identity, m4(¢) = ¢ without affecting the joint distribution of the sample.

Using the inverse transform method, this construction easily extends to
nonuniform distributions. For example, to generate a Latin hypercube sample
of size K from N(0,I) in R¢, set

Z9 = YV, i=1,....d, j=1,....K
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with ® the cumulative normal and V;(j ) as in (4.56). The sample consists of

the vectors . _
720 = (z9, . Z9), j=1,... K; (4.57)
in R¢. Projecting these K points onto any axis produces a stratified sample of
size K from the standard univariate normal distribution. Even if the inverse
transform is inconvenient or if the marginals have different distributions, the
construction in (4.55) continues to apply, provided we have some mechanism
for stratifying the marginals: generate a stratified sample from each marginal
using K equiprobable strata for each, then randomly permute these d stratified
samples.

This construction does rely crucially on the assumption of independent
marginals, and transforming variables to introduce dependence can affect the
partial stratification properties of Latin hypercube samples in complicated
ways. This is evident in the case of a multivariate normal distribution N (0, X).
To sample from N(0,%), we set X = AZ with Z ~ N(0,I) and AAT = X.
Replacing independently generated Zs with the Latin hypercube sample (4.57)
produces points X) = AZU) 4 =1,... K; but the marginals of the X )
so constructed will not in general be stratified. Rather, the marginals of the
A~1X () are stratified.

Example 4.4.1 Brownian paths. As a specific illustration, consider the sim-
ulation of Brownian paths at times 0 = ¢y < ¢1--- < tq. As in (4.57), let
ZW ..., Z%) denote a Latin hypercube sample from N(0,I) in d dimen-
sions. From these K points in R¢, we generate K discrete Brownian paths

W, WE by setting
WO (t) =3 Vi~ tia2?, n=1,..,d
i=1

If we fix a time ¢,, n > 2, and examine the K values W) (t,),..., W) (t,),
these will not form a stratified sample from N(0,t,). It is rather the incre-
ments of the Brownian paths that would be stratified.

These K Brownian paths could be used to generate K paths of a process
driven by a single Brownian motion. It would not be appropriate to use
the K Brownian paths to generate a single path of a process driven by a
K-dimensional Brownian motion. Latin hypercube sampling introduces de-
pendence between elements of the sample, whereas the coordinates of a K-
dimensional (standard) Brownian motion are independent. Using (W), ...,
W)Y in place of a K-dimensional Brownian motion would thus change the
law of the simulated process and could introduce severe bias. In contrast, the
marginal law of each W) coincides with that of a scalar Brownian motion.
Put succinctly, in implementing a variance reduction technique we are free to
introduce dependence across paths but not within paths. O

Example 4.4.2 Paths through a lattice. To provide a rather different exam-
ple, we apply Latin hypercube sampling to the problem of simulating paths
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through a binomial lattice. (See Figure 4.7 and the surrounding discussion for
background.) Consider an m-step lattice with fixed probabilities p and 1 — p.
The “marginals” in this example correspond to the m time steps, so the di-
mension d equals m, and the sample size K is the number of paths. We encode
a move up as a 1 and a move down as a 0. For each 7 = 1, ..., m we generate
a stratified sample of 1s and Os: we “generate” |pK | 1s and |K —pK | Os, and
if pK is not an integer, the Kth value in the sample is 1 with probability p
and 0 with probability 1 — p. For example, with d = 4, K = 8, and p = 0.52,
we might get

1111

1111

1111

1111

0000

0000

0000

0100

the columns corresponding to the d = 4 stratified samples. Applying a random
permutation to each column produces, e.g.,

0101
0011
1101
1110
0100
1011
0010
1100

Each row now encodes a path through the lattice. For example, the last row
corresponds to two consecutive moves up followed by two consecutive moves
down. Notice that, for each time step 4, the fraction of paths on which the
ith step is a move up is very nearly p. This is the property enforced by Latin
hypercube sampling.

One could take this construction a step further to enforce the (nearly)
correct fraction of up moves at each node rather than just at each time step.
For simplicity, suppose Kp? is an integer. To the root node, assign Kp 1s and
K (1 — p) 0s. To the node reached from the root by taking £ steps up and k
steps down, £ + k < d, assign Kp‘*1(1 — p)* ones and Kp*(1 — p)**! zeros.
Randomly and independently permute the ones and zeros at all nodes. The
result encodes K paths through the lattice with the fraction of up moves out
of every node exactly equal to p.

Mintz [269] develops a simple way to implement essentially the same idea.
His implementation eliminates the need to precompute and permute the out-
comes at all nodes. Instead, it assigns to each node a counter that keeps track
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of the number of paths that have left that node by moving up. For example,
consider again a node reached from the root by taking ¢ steps up and k steps
down, {+k < d. Let K be the total number of paths to be generated and again
suppose for simplicity that Kp? is an integer. The number of paths reaching
the designated node is

Ko, = Kp'(1 - p)¥,

so the counter at that node counts from zero to pKyr, the number of paths
that exit that node by moving up. If a path reaches the node and finds the
counter at %, it moves down with probability i/pK s and moves up with the
complementary probability. If it moves up, the counter is incremented to ¢4 1.

O

Variance Reduction and Variance Decomposition

We now state some properties of Latin hypercube sampling that shed light
on its effectiveness. These properties are most easily stated in the context of
sampling from [0, 1)¢. Thus, suppose our goal is to estimate

af :/[0,1)d f(u)du

for some square-integrable f:[0,1)% — R. The standard Monte Carlo estima-
tor of this integral can be written as

=
ar =7 fWUjar1, Ujare, -, Ujara)
7=0
with Uy, Ua, . .. independent uniforms. The variance of this estimator is 02/ K

with o2 = Var[f(Uy,...,Uy)]- For V) ... V) a5in (4.56), define the esti-
mator

K
1 .
A ___E (4)

McKay et al. [259] show that

N o2 K-1

Var[ay] = I + %

which could be larger or smaller than the variance of the standard estimator

&, depending on the covariance between distinct points in the Latin hyper-

cube sample. By construction, V) and V*) avoid each other — for example,

their ¢th coordinates cannot fall in the same bin if j # k& — which suggests

that the covariance will often be negative. This holds, in particular, if f is

monotone in each coordinate, as shown by McKay et al. [259]. Proposition 3
of Owen [288] shows that for any (square-integrable) f and any K > 2,

Cov[f(V), F(V@)],
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0.2

Var|as] <
arfas] < =7,

so the variance produced by a Latin hypercube sample of size K is no larger
than the variance produced by an i.i.d. sample of size K — 1.

Stein [337] shows that as K — oo, Latin hypercube sampling eliminates
the variance due to the additive part of f, in a sense we now explain. For each
1=1,...,d, let

fz(u) - E[f(Ul, ceey Ui_l,u, UZ', ey Ud)],

for u € [0,1). Observe that each f;(U), U ~ Unif[0,1) has expectation ay.
The function

d
fada(u, - ua) = Y fi(ws) = (d = Doy
=1

also has expectation ay and is the best additive approximation to f in the
sense that

/[0 ya (f(u1>'“>ud) —fadd(ul>---,ud))2 dul--~dud
1

d 2
[0.1) i=1
for any univariate functions hy, ..., hqy. Moreover, the residual

€ = f(U],...,Ud) —fadd(Ul,...,Ud)

is uncorrelated with f(Ui,...,Uq) and this allows us to decompose the vari-
ance o2 of f(Uy,...,Uq) as 02 = o2y + 02 with o2;; the variance of
fada(Ui,...,Uy) and o2 the variance of the residual. Stein [337] showed that
o2

Var(dy] = -é +o(1/K). (4.58)
Up to terms of order 1/K, Latin hypercube sampling eliminates o2,, — the
variance due to the additive part of f — from the simulation variance. This
further indicates that Latin hypercube sampling is most effective with inte-
grands that nearly separate into a sum of one-dimensional functions.

Output Analysis

Under various additional conditions on f, Loh [238], Owen [285], and Stein
[337] establish a central limit theorem for Y of the form

\/_E[&f _af] = N(O,O'Ez),



242 4 Variance Reduction Techniques

which in principle provides the basis for a large-sample confidence interval for
ay based on Latin hypercube sampling. In practice, o2 is neither known nor
easily estimated, making this approach difficult to apply.

A simpler approach to interval estimation generates i.i.d. estimators
ar(1),...,4¢(n), each based on a Latin hypercube sample of size K. An
asymptotically (as n — oo) valid 1 — ¢ confidence interval for ay is provided

by

1 — §
1 Z Ao |+ &
(n =1 af(Z)) 25/2\/5’

with § the sample standard deviation of &¢(1),...,ar(n).

The only cost to this approach lies in foregoing the possibly greater vari-
ance reduction from generating a single Latin hypercube sample of size nK
rather than n independent samples of size K. Stein [337] states that this loss
is small if K/d is large.

A K x K array is called a Latin square if each of the symbols 1,..., K
appears exactly once in each row and column. This helps explain the name
“Latin hypercube sampling.” Latin squares are used in the design of exper-
iments, along with the more general concept of an orthogonal array. Owen
[286] extends Stein’s [337] approach to analyze the variance of Monte Carlo
estimates based on randomized orthogonal arrays. This method generalizes
Latin hypercube sampling by stratifying low-dimensional (but not just one-
dimensional) marginal distributions.

Numerical Illustration

We conclude this section with a numerical example. We apply Latin hypercube
sampling to the pricing of two types of path-dependent options — an Asian
option and a barrier option. The Asian option is a call on the arithmetic
average of the underlying asset over a finite set of dates; the barrier option
is a down-and-out call with a discretely monitored barrier. The underlying
asset is GBM(r, 0?) with r = 5%, 0 = 0.30, and an initial value of 50. The
barrier is fixed at 40. The option maturity is one year in all cases. We report
results for 8 and 32 equally spaced monitoring dates; the number of dates is
the dimension of the problem. With d monitoring dates, we may view each
discounted option payoff as a function of a standard normal random vector in
$¢ and apply Latin hypercube sampling to generate these vectors.

Table 4.3 reports estimated variance reduction factors. Each entry in the
table is an estimate of the ratio of the variance using independent sampling
to the variance using a Latin hypercube sample of the same size. Thus, larger
ratios indicate greater variance reduction. The sample sizes displayed are 50,
200, and 800. The ratios are estimated based on 1000 replications of samples
of the indicated sizes.

The most salient feature of the results in Table 4.3 is the effect of varying
the strike: in all cases, the variance ratio increases as the strike decreases. This
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is to be expected because at lower strikes the options are more nearly linear.
The variance ratios are nearly the same in dimensions 8 and 32 and show little
dependence on the sample size. We know that the variance of independent
replications (the numerators in these ratios) are inversely proportional to the
sample sizes. Because the ratios are roughly constant across sample sizes, we
may conclude that the variance using Latin hypercube sampling is nearly
inversely proportional to the sample size. This suggests that (at least in these
examples) the asymptotic result in (4.58) is relevant for sample sizes as small
as K = 50.

8 steps 32 steps
Strike 50 200 800 50 200 800
Asian 45 75 86 8.8 7.1 7.6 8.2
Option 50 3.9 44 46 3.7 36 4.0
55 24 26 28 23 2.1 25
Barrier 45 41 4.1 4.3 3.8 3.7 39
Option 50 3.2 32 34 3.0 29 31

55 25 26 2.7 24 22 24

Table 4.3. Variance reduction factors using Latin hypercube sampling for two path-
dependent options. Results are displayed for dimensions (number of monitoring
dates) 8 and 32 using samples of size 50, 200, and 800. Each entry in the table
is estimated from 1000 replications, each replication consisting of 50, 200, or 800

paths.

The improvements reported in Table 4.3 are mostly modest. Similar vari-
ance ratios could be obtained by using the underlying asset as a control vari-
ate; for the Asian option, far greater variance reduction could be obtained
by using a geometric average control variate as described in Example 4.1.2.
One potential advantage of Latin hypercube sampling is that it lends itself
to the use of a single set of paths to price many different types of options.
The marginal stratification feature of Latin hypercube sampling is beneficial
in pricing many different options, whereas control variates are ideally tailored
to a specific application.

4.5 Matching Underlying Assets

This section discusses a set of loosely related techniques with the common
objective of ensuring that certain sample means produced in a simulation ex-
actly coincide with their population values (i.e., with the values that would
be attained in the limit of infinitely many replications). Although these tech-
niques could be used in almost any application of Monte Carlo, they take on
special significance in financial engineering where matching sample and pop-
ulation means will often translate to ensuring exact finite-sample pricing of
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underlying assets. The goal of derivatives pricing is to determine the value of a
derivative security relative to its underlying assets. One could therefore argue
that correct pricing of these underlying assets is a prerequisite for accurate
valuation of derivatives.

The methods we discuss are closely related to control variates, which
should not be surprising since we noted (in Example 4.1.1) that underlying
assets often provide convenient controls. There is also a link with stratified
sampling: stratification with proportional allocation ensures that the sam-
ple means of the stratum indicator functions coincide with their population
means. We develop two types of methods: moment matching based on trans-
formations of simulated paths, and methods that weight (but do not trans-
form) paths in order to match moments. When compared with control variates
or with each other, these methods may produce rather different small-sample
properties while becoming equivalent as the number of samples grows. This
makes it difficult to compare estimators on theoretical grounds.

4.5.1 Moment Matching Through Path Adjustments

The idea of transforming paths to match moments is most easily introduced
in the setting of a single underlying asset S(¢) simulated under a risk-neutral
measure in a model with constant interest rate r. If the asset pays no divi-
dends, we know that E[S(t)] = e"*S(0). Suppose we simulate n independent
copies S1,...,S, of the process and define the sample mean process

_ 1 —
S(t) =~ > Si(t).
i=1
For finite n, the sample mean will not in general coincide with E[S(t)]; the
simulation could be said to misprice the underlying asset in the sense that
e "S(t) # S(0), (4.59)

the right side being the current price of the asset and the left side its simulation

estimate.
A possible remedy is to transform the simulated paths by setting

SN < () [
80 =805y i=Tem, (4.60)
. Si(t) = Si(t) + E[S(t)] = 8(t), i=1,...,n, (4.61)

and then using the S; rather than the S; to price derivatives. Using either the
multiplicative adjustment (4.60) or the additive adjustment (4.61) ensures
that the sample mean of S (t),...,S,(t) exactly equals E[S(t)].

These and related transformations are proposed and tested in Barraquand
[37], Boyle et al. [53], and Duan and Simonato [96]. Duan and Simonato call
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(4.60) empirical martingale simulation; Boyle et al. use the name moment
matching. In other application domains, Hall [164] analyzes a related cen-
tering technique for bootstrap simulation and Gentle [136] refers briefly to
constrained sampling. In many settings, making numerical adjustments to
samples seems unnatural — some discrepancy between the sample and popu-
lation mean is to be expected, after all. In the financial context, the error in
(4.59) could be viewed as exposing the user to arbitrage through mispricing
and this might justify attempts to remove the error completely.

A further consequence of matching the sample and population mean of
the underlying asset is a finite-sample form of put-call parity. The algebraic
identity

(a—b)t —(b—a)"=a—b

implies the constraint
e "TE[(S(T) — K)'] — e "TE[(K — S(T))*] = S(0) —e 'K

on the values of a call, a put, and the underlying asset. Any adjustment that
equates the sample mean of S1(T),...,Sy(T) to E[S(T)] ensures that

e_TT% SO(8(T) - K)*F - e—rT% SO(K - S(T)* = 5(0) — e TK.
i=1 i=1

This, too, may be viewed as a type of finite-sample no-arbitrage condition.
Of (4.60) and (4.61), the multiplicative adjustment (4.60) seems preferable

on the grounds that it preserves positivity whereas the additive adjustment

(4.61) can make some S; negative even if S)(t),...,S,(t), E[S(t)] are all pos-

itive. However, we get E[S;(t)] = E[S(t)] using (4.61) but not with (4.60).

Indeed, (4.61) even preserves the martingale property in the sense that

Ele "T=98,(T)|S:(u),0 < u < t] = S;(t).

Both (4.60) and (4.61) change the law of the simulated process (S;(t) and S;(t)
will not in general have the same distribution) and thus typically introduce
some bias in estimates computed from the adjusted paths. This bias vanishes
as the sample size n increases and is typically O(1/n).

Large-Sample Properties

There is some similarity between the transformations in (4.60) and (4.61) and
the nonlinear control variates discussed in Section 4.1.4. The current setting
does not quite fit the formulation in Section 4.1.4 because the adjustments
here affect individual observations and not just their means.

To extend the analysis in Section 4.1.4, we formulate the problem as one
of estimating E[h;(X)] with X taking values in ®?¢ and h; mapping R¢ into
R. For example, we might have X = S(T) and h1(z) = e "7 (z — K)* in the
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case of pricing a standard call option. The moment matching estimator has

the form .
1 _
nia

with X1, ..., Xp i.i.d. and X their sample mean. The function A is required to
satisfy h(z, ux) = hi(z) with px = E[X]. It is easy to see that an estimator
of the form

Y CI N

with S; as in (4.60) or (4.61), fits in this framework. Notice, also, that by
including in the vector X powers of other components of X, we make this
formulation sufficiently general to include matching higher-order moments as
well as the mean.

Suppose now that h(X;,-) is almost surely continuously differentiable in a
neighborhood of px. Then

i=1 =1

S R ) s S (X + 5 S V(X px) X -], (4.62)
=1

with V,h denoting the gradient of A with respect to its second argument.
Because X — px, this approximation becomes increasingly accurate as n
increases. This suggests that, asymptotically in n, the moment matching
estimator is equivalent to a control variate estimator with control X and

coefficient vector

BT = 13 Lk px) — E V(X ). (463)

=1

Some specific results in this direction are established in Duan, Gauthier, and
Simonato [97] and Hall [164]. However, even under conditions that make this
argument rigorous, the moment matching estimator may perform either better
or worse in small samples than the approximating control variate estimator.

The dependence among the observations h(X;, X),i = 1, ...,n, introduced
through use of a common sample mean X complicates output analysis. One
approach proceeds as though the approximation in (4.62) held exactly and
estimates a confidence interval the way one would with a linear control variate
(cf. Sections 4.1.1 and 4.1.3). An alternative is to generate k independent
batches, each of size m, and to apply moment matching separately to each
batch of m paths. A confidence interval can then be formed from the sample
mean and sample standard deviation of the k£ means computed from the k
batches. As with stratified sampling or Latin hypercube sampling, the cost of
batching lies in foregoing potentially greater variance reduction by applying
the method to all km paths.
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Examples

We turn now to some more specific examples of moment matching transfor-
mations.
Example 4.5.1 Brownian motion and geometric Brownian motion. In the
case of a standard one-dimensional Brownian motion W, the additive trans-
formation 3

Wi(t) = Wi(t) — W(¢)

seems the most natural way to match the sample and population means —
there is no reason to try to avoid negative values of W;, and the mean of a
normal distribution is a location parameter. The transformation

i Wi(t) — W (t)
Wit) = e RYNCE (4.64)

with s(t) the sample standard deviation of Wi(t),..., W, (t), matches both
first and second moments. But for this it seems preferable to scale the incre-
ments of the Brownian motion: with

k
=2 V6

and {Z;;} independent N(0,1) random variables, set

n
1 _
Z 5 '_n_IZ(Zij_Zj)2

1=1

BI*—*

and
~ k Z— 7
Wz(tk) = Z Vi —ti-1 i‘;—J
j=1 J

This transformation preserves the independence of increments whereas (4.64)

does not.
For geometric Brownian motion S ~ GBM(r, 02), the multiplicative trans-

formation (4.60) is more natural. It reduces to
neUW,;(t)
Yy e

This transformation does not lend itself as easily to matching higher moments.

As a simple illustration, we apply these transformations to the pricing of
a call option under Black-Scholes assumptions and compare results in Fig-
ure 4.9. An ordinary simulation generates replications of the terminal asset

price using
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S;(T) = S(0) exp ((r —2oH)T + aﬁZl-) , i=1,...,n.

Method Z1 replaces each Z; with Z; — Z and method Z2 uses (Z; — Z)/s,
with Z the sample mean and s the sample standard deviation of 7y, ..., Z,.
Methods SM and SA use the multiplicative and additive adjustments (4.60)
and (4.61). Method CV uses S as a control variate with the optimal coefficient
estimated as in (4.5).

Figure 4.9 compares estimates of the absolute bias and standard error for
these methods in small samples of size n = 16, 64, 256, and 1024. The model
parameters are S(0) = K = 50, » = 5%, o = 0.30, and the option expiration
is T'= 1. The results are based on 5000 replications of each sample size. The
graphs in Figure 4.9 are on log-log scales; the slopes in the top panel are
consistent with a O(1/n) bias for each method and those in the bottom panel
are consistent with O(1/4/n) standard errors. Also, the biases are about an
order of magnitude smaller than the standard errors.

In this example, the control variate estimator has the highest bias — recall
that bias in this method results from estimation of the optimal coefficient —
though the bias is quite small at n = 1024. Interestingly, the standard errors
for the CV and SM methods are virtually indistinguishable. This suggests
that the implicit coefficient (4.63) in the linear approximation to the multi-
pli