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Preface

Stability theory is one of the most interesting and important fields of applied
mathematics having numerous applications in natural sciences as well as
in aerospace, naval, mechanical, civil and electrical engineering. Stability
theory was always important for astronomy and celestial mechanics, and
during last decades it is applied to stability study of processes in chemistry,
biology, economics, and social sciences.

Every physical system contains parameters, and the main goal of the
present book is to study how a stable equilibrium state or steady motion
becomes unstable or vice versa with a change of problem parameters. Thus,
the parameter space is divided into stability and instability domains. It
turns out that the boundary between these domains consists of smooth
surfaces, but can have different kind of singularities. Qualitatively, typical
singularities for systems of ordinary differential equations were classified
and listed in [Arnold (1983a); Arnold (1992)]. One of the motivations
and challenges of the present book was to bring some qualitative results
of bifurcation and catastrophe theory to the space of problem parameters
making the theory also quantitative, i.e., applicable and practical. It is
shown in the book how the stability boundary and its singularities can be
described using information on the system.

Behavior of the eigenvalues near the stability boundary with a change
of parameters determines stability or instability of the system. Fig. 0.1
reproduced from [Thompson (1982)] shows interaction of eigenvalues for a
specific mechanical system, a pipe conveying fluid, depending on a single
parameter p. As we can see, the eigenvalues approach each other, collide
and diverge with exciting loops and pirouettes making the system stable
or unstable. Looking at this and similar figures several questions appear:
What are the rules for movements of eigenvalues on the complex plane de-
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ImA,

Fig. 0.1 Interaction of eigenvalues for a pipe conveying fluid.

pending on problem parameters? What kind of collisions are possible and
which of them are typical? Are there some special properties for behavior
of eigenvalues of mechanical systems with symmetry like gyroscopic or con-
servative systems? What is the relation between eigenvalues and properties
of the stability boundary in the parameter space?

In concluding remarks to his book [Bolotin (1963)] pointed out that non-
conservative stability problems are closely related to linear non-self adjoint
operators, and it is necessary to develop methods for studying dependence
of their eigenvalues on one or more parameters. He also mentioned that
general stability properties of linear systems with non-conservative posi-
tional (circulatory) forces were not fully investigated, and recalled that in
the classical results by [Thomson and Tait (1879)] on stability of mechani-
cal systems circulatory forces were not involved. Bolotin suggested to put
more attention to the unexpected effect of destabilization of a circulatory
system by small dissipative forces.

It is remarkable that [MacKay (1991)], who derived a formula for move-
ment of simple eigenvalues of a Hamiltonian matrix under non-Hamiltonian
perturbation, suggested to generalize the above result for the case of mul-
tiple eigenvalues and movement of Floquet multipliers as well as to apply
the results to some non-trivial problems.

In this book we present a new multi-parameter bifurcation theory of
eigenvalues answering the formulated questions and suggestions. Two
important cases of strong and weak interactions (collisions) are distin-
guished and geometrical interpretation of these interactions is given. First
publications on this subject were [Seyranian (1990a); Seyranian (1991a);

Re
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Preface vii

Seyranian (1993a)] and here we present an extended and advanced ver-
sion of the theory. The presence of several parameters and the absence of
differentiability of multiple eigenvalues constitute the main mathematical
difficulty of the analysis. We could overcome this difficulty studying bifur-
cations of eigenvalues along smooth curves in the parameter space emitted
from the singular points and then analyzing the obtained relations. For the
study of bifurcations the perturbation theory of eigenvalues developed in
[Vishik and Lyusternik (I960)] turned out to be very useful.

The presented multi-parameter bifurcation theory of eigenvalues is a
key point for stability and instability studies. With this theory we ana-
lyze singularities of stability boundaries and give a consistent description
and explanation for several interesting mechanical effects like gyroscopic
stabilization, flutter and divergence instabilities, transference of instabil-
ity between eigenvalue branches, destabilization and stabilization by small
damping, disappearance of flutter instability, parametric resonance in pe-
riodically excited systems etc.

A significant part of the book is devoted to difficult stability problems
of periodic systems dependent on multiple constant parameters. This sub-
ject has been a challenge for more than one hundred years since [Math-
ieu (1868); Floquet (1883); Hill (1886); Rayleigh (1887); Liapunov (1892);
Poincare (1899)]. From the very beginning these problems were multi-
parameter. For example, finding stable solutions to famous Mathieu-Hill
equation is a two-parameter problem. In the present book, with the bifurca-
tion theory of multipliers, geometrical description of the stability boundary
and its singularities for periodic systems is given. Then we formulate and
solve parametric resonance problems for one- and multiple degrees of free-
dom systems in three-parameter space of physical parameters: excitation
frequency Q, and amplitude 5, and viscous damping coefficient 7 under as-
sumption that the two last parameters are small. It is supposed that the
unperturbed system is conservative. The main result obtained here is that
we find the instability (parametric and combination resonance) domains as
half-cones in the three-parameter space with the use of eigenfrequencies and
eigenmodes of the corresponding conservative system, see Fig. 0.2. Finally,
stability boundaries for non-conservative systems under small periodic ex-
citation are investigated.

As applications of the presented theory, we consider a number of me-
chanical stability problems including pipes conveying fluid, beams and
columns under different loading conditions, rotating shafts and systems
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Fig. 0.2 Parametric resonance domain as a half-cone in three-dimensional space of
physical parameters.

of connected bodies, panels and wings in airflow etc. For these systems we
perform the detailed multi-parameter stability analysis showing how the
developed bifurcation and singularity theory works in specific problems.

Among previous studies on the stability theory and applications we
should mention the books [Liapunov (1892); Chetayev (1961); Bolotin
(1963); Bolotin (1964); Panovko and Gubanova (1965); Malkin (1966);
Ziegler (1968); Huseyin (1978); Thompson (1982); Huseyin (1986); Leipholz
(1987); Yakubovich and Starzhinskii (1987); Troger and Steindl (1991);
Kounadis and Kratzig (1995); Merkin (1997); Thomsen (1997); Rumyant-
sev and Karapetyan (1998)].

The book is based mostly on the authors' personal research, and the
relevant papers are given in the list of references. The main results of the
book were presented at numerous International Conferences and Symposia.
Basic results of the book are given as a one-year course on stability and
catastrophes of mechanical systems in Moscow State Lomonosov University
by A. P. Seyranian. For the first time this course was presented in Techni-
cal University of Denmark and Aalborg University (Denmark) in 1991, see
[Seyranian (1991b)]. This course was also given in Bauman Moscow State
Technical University in 1993-1994 and Dalian University of Technology
(China) in 1994. In 2001 A. P. Seyranian presented six lectures on bifur-
cations of eigenvalues and stability problems in mechanics at International
Centre for Mechanical Sciences in Udine (Italy) [Seyranian and Elishakoff
(2002)]. The course on singularities of stability boundaries was given by
A. A. Mailybaev in the Institute of Pure and Applied Mathematics IMPA
(Brazil) in 2001.

The book is divided into 12 Chapters. Chapter 1 presents an introduc-
tion to the stability theory. Chapter 2 is devoted to bifurcation analysis

0
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Preface ix

of eigenvalues depending on parameters. This important chapter is used in
all parts of the book. In Chapter 3 the stability boundary and its singular-
ities for general systems of ordinary differential equations smoothly depen-
dent on parameters are analyzed. It is shown how to describe singularities
in the parameter space using information on the system at the singular
point. Chapter 4 presents general bifurcation theory of roots of character-
istic polynomials dependent on parameters with application to analysis of
stability boundaries. In Chapter 5 we consider linear conservative systems.
Change of simple and multiple frequencies depending on several parame-
ters is studied. Multi-parameter stability analysis reveals an interesting
relation of singularities of stability boundaries to the so-called bimodal so-
lutions in structural optimization problems. Chapter 6 provides detailed
explanation of the effect of gyroscopic stabilization in terms of bifurca-
tion theory of eigenvalues. Chapter 7 studies linear Hamiltonian systems,
which are characterized by rich and sophisticated set of different kind of
singularities on the stability boundary. Chapter 8 investigates several inter-
esting mechanical phenomena and paradoxes associated with bifurcations
and singularities. In Chapter 9 we give an introduction to multi-parameter
stability theory of periodic systems. Results of this chapter are used in
Chapter 10 for analysis of stability boundaries of general periodic systems.
Chapter 11 studies systems with small damping under small periodic ex-
citation, and Chapter 12 considers non-conservative systems under small
parametric excitation.

The authors are much indebted to Professors V. I. Arnold,
T. M. Atanackovic, V. V. Beletsky, I. I. Blekhman, V. V. Bolotin, Cheng
Gengdong, F. L. Chernousko, G. G. Chernyi, S. S. Grigoryan, A. Yu. Ish-
linskii, W. Kliem, V. V. Kozlov, V. B. Lidskii, F. Niordson, N. 01-
hoff, M. L. Overton, M. P. Paidoussis, Ya. G. Panovko, P. Pedersen,
V. V. Rumyantsev, V. A. Sadovnichii, Y. Sugiyama, V. V. Svetlitskii,
H. Troger, M. I. Vishik for their interest, support, and fruitful discussions.
Effective collaboration with Pauli Pedersen, Frederic Solem, Wolfhard
Kliem, Samvel S. Grigoryan, and Alexander V. Sharanyuk is highly ap-
preciated and acknowledged. The authors express their gratitude to Oleg
N. Kirillov for reading and commenting on the manuscript of the book. The
second author is grateful to the Institute of Pure and Applied Mathematics
(IMPA) for the support of his visit to Brazil, during which a part of the
work on this book was done.

The book is addressed to graduate students and university professors
interested in the stability theory and applications, as well as to researchers
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and industrial engineers. We hope that the book will promote studies of
new problems, effects, and phenomena associated with instabilities and
catastrophes, and give a fresh view to classical problems.

Alexander P. Seyranian and Alexei A. Mailybaev

Moscow - Rio de Janeiro, February 2003
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Chapter 1

Introduction to Stability Theory

Concept of stability in common and engineering sense reflects necessity to
keep response of a disturbed system within acceptable limits. If deviations
describing response of the system from a given regime (e.g. state of equilib-
rium) lie within prescribed limits, the system is called stable. Otherwise,
the system is called unstable. Disturbances, response, and prescribed lim-
its can be specified in each case in different ways. In this book we mostly
deal with dynamical problems for multiple degrees of freedom systems, and
stability of motion is understood in the Liapunov sense.

1.1 Definition of stability

Consider a dynamical system described by ordinary differential equations
written in a vector form

y = f(y,t). (i.i)

Here it is assumed that y = (j/i,2/2> • • • >2/m)T is a real state vector, the
dot over a symbol means differentiation with respect to time t, and f =
(/1, • • • > fm)T is a real vector-function smoothly dependent on its variables
providing existence and uniqueness of a solution with the initial condition
y(*o) = yo on the semi-infinite interval of time t>t$.

When the vector-function f does not depend on time explicitly, the sys-
tem is called autonomous. Otherwise, the system is called non-autonomous
or non-stationary.

Considering a partial solution y(i) of equation (1.1) as undisturbed
motion and other solutions y(t) as disturbed motions, we observe evolution
of disturbances j/j(io) ~ Vi{to),i — l , . . . ,m , taken at the initial instant

1



2 Multiparameter Stability Theory with Mechanical Applications

t = t0, in time. For such solutions [Liapunov (1892)] introduced the well-
known definition of stability.

Definition 1.1 The undisturbed motion (solution) y(t) of system (1.1)
is called stable with respect to the variables yi, y2>. • •, ym if for any e > 0
there exists 6 > 0 such that for any solution y(t) of (1.1), satisfying the
condition ||y(£o) ~ y(*o)|| < <̂> the inequality

l ly(*) -y(*) l l<e (1-2)

takes place for all t > to-
If, in addition,

||y(i) - y(i)|| -> 0 as t-> +oo, (1.3)

then the solution y(t) is called asymptotically stable.

This definition means that small deviations of the initial conditions remain
bounded in time for stable motions (solutions) and tend to zero for asymp-
totically stable solutions. The restrictions of the Liapunov definition of
stability are that the disturbances are taken only at the initial instant of
time and they are small. Besides, the state vectors for undisturbed and dis-
turbed motions are compared at the same time, and stability is observed on
the infinite interval of time. Nevertheless, the given definition of stability
is very useful and practical for many physical problems.

Definition 1.2 The undisturbed motion (solution) y(t) of system (1.1)
is called unstable if there exists e > 0 such that for any 5 > 0 there exists
a solution y(t), satisfying the condition ||y(£o) ~ y(*o)|| < 5, that for some
i* > t0 the inequality

l|y(*.)-y(MII>e (1-4)

takes place.

1.2 Equations for disturbed motion

It is convenient to write equations for disturbed motion in the deviations

Mt) = yi{t) - m(t)- (1.5)
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Inserting (1.5) into (1.1) and expanding the right-hand side into Taylor
series, we obtain

m df-
Vi + Xi = fi(yi,--.,ym,t) + ^2^jL^j +r)i{xi,...,xm,t), (1.6)

where rji are the terms of order higher than one with respect to x\,..., xm.
Since for the undisturbed motion we have

Vi = fi{yi,---,ym,t), (1.7)

equation (1.6) yields

m

±i = ^2aij(t)xj +r)i(xi,...,xm,t), i = l,...,m, (1.8)

where the coefficients

°"(()=(i)5<1) ™
are evaluated at y = y(t). These are the equations for disturbed motion,
which can be given in a vector form as

x = A(t)x + r)(x,t) (1.10)

with the real vector r\ — {r\x,..., rjm)T and the matrix

( o-u • • • aim ^

: • , : . (1.11)

am\ ' • ' 0-mm )
The linear equation for the vector x

x = A(t)x (1.12)

is called the equation of first approximation or linearized equation for dis-
turbed motion.

Generally, differential equations for disturbed motion contain time t
explicitly. However, there are important cases, when these equations are
independent on time. This happens when stability of an equilibrium state
y(t) = yo of an autonomous system is studied. In this case all the functions
yi{t) are constant and the functions /j do not depend explicitly on time
t. That is why the equations for disturbed motion do not contain time
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explicitly and the coefficients â - are constant. Independence on time for
the equations of disturbed motion can also occur when stability of a specific
motion y(£) of an autonomous system is studied.

We will call the undisturbed motion y(t) steady if the corresponding
equation (1.10) does not contain time t explicitly. The case of steady motion
is one of the simplest for the stability study. Another rather simple case is
when the coefficients a^ in (1.8) are periodic functions of time t.

1.3 Linear autonomous system

In this section we consider linear autonomous systems of the form

x = Ax (1.13)

with a constant real m x m matrix A. Seeking solution to this problem as

x = uexpAt, (1-14)

we substitute (1.14) into (1-13) and come to the eigenvalue problem

Au=Au , (1.15)

where A is an eigenvalue and u is an eigenvector.
A non-trivial solution to (1.15) exists if and only if

det(A - AI) = 0, (1.16)

where I is the m x m identity matrix. This is the characteristic equation
for eigenvalues A, which can be represented in a polynomial form

Ara + am_iAm-1 + --- + a0 = 0 (1.17)

with the coefficients ao,ai, • • • ,am-i dependent on elements of the matrix
A. From equation (1.17) we find the eigenvalues Ai, A2,.. •, Am, which
are real or complex conjugate numbers. The eigenvalues can be simple or
multiple as the roots of characteristic equation (1.17). Assuming that all
the roots of equation (1-17) are simple with the corresponding eigenvectors
u i , . . . , um, a general solution to (1.13) takes the form

x(t) = C1U1 exp Ait H V cmumexpAm£, (1-18)

where ci,C2,...,cm are constant coefficients to be found from the initial
condition x(to) = x0.
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If we admit multiple eigenvalues as the roots of characteristic equation
(1.17), the number of linearly independent eigenvectors can be less than m.
The form of general solution (1-18) remains valid only for so-called semi-
simple eigenvalues, when in spite of multiplicity the number of linearly
independent eigenvectors is equal to m. But generally multiple eigenvalues
lead to secular terms proportional to t@ exp At in the general solution, where
the integer exponent j3 is less than the multiplicity of A as a root of the
characteristic equation.

Consider, for example, a multiple eigenvalue A with a Jordan chain of
vectors u 0 , . . . , u r _ i satisfying the equations

Au0 = Au0,

Aui = Aui + u0,
(1.19)

Au r _ i = Aur_i + u r _ 2 .

The vector uo is the eigenvector, and u i , . . . , u r _ i are called associated
vectors corresponding to A. Then the terms in the general solution corre-
sponding to A are the following, see [Lancaster (1966)]:

couo exp Xt + c\ (uot + Ui) exp Ai+

• • • + c ^ {(73i)i + j^—^y. +'" + U r - 1 ) e x p x t

The general solution may contain several terms of type (1.20) with different
Jordan chains corresponding to the same eigenvalue A. This happens when
there are several eigenvectors for the same A.

From (1.18) and (1.20) it is obvious that if real parts of all the eigen-
values are negative, Re A < 0, the norm of the general solution ||x(i)|| —>• 0
as t ->• +oo. This property means the asymptotic stability of the trivial
solution x(£) = 0. And if there exists at least one eigenvalue with a pos-
itive real part, Re A > 0, then there are infinitely growing solutions x(t)
for arbitrarily small initial conditions, which means instability of the triv-
ial solution. Notice that the terms in the general solution corresponding
to purely imaginary or zero eigenvalues (with Re A = 0) remain bounded
only for simple or semi-simple eigenvalues, otherwise due to the presence
of secular terms in (1.20) we get ||x(t)|| -t oo as t -» +oo. Now we can
formulate the statements for stability and instability of linear systems.

(1.20)
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Theorem 1.1 Linear system (1.13) is asymptotically stable if and only
if all the eigenvalues of the matrix A have negative real part Re A < 0.

System (1.13) is stable if and only if all the eigenvalues of the matrix A
have negative or zero real part Re A < 0 with all the purely imaginary and
zero eigenvalues being simple or semi-simple.

Finally, linear system (1.13) is unstable if and only if there exists an
eigenvalue of the matrix A with a positive real part Re A > 0, or an eigen-
value with zero real part Re A = 0, which is neither simple nor semi-simple.

1.4 Introduction of parameters

We assume now that elements of the matrix A smoothly depend on a
vector of real parameters p = (pi,P2,- • • ,Pn)- With a change of parameters
stability of system (1.13) can change to instability. This happens when one
or several eigenvalues A cross the imaginary axis, see Fig. 1.1.

ImA,

(T ReX

Fig. 1.1 How stability is changed to instability.

The case when a pair of complex conjugate eigenvalues crosses the imag-
inary axis with a frequency to = Im A ^ 0 is known in technical literature
as flutter instability, and the case when a real negative eigenvalue A crosses
zero and becomes positive is called divergence instability. Flutter and diver-
gence are dynamic and static forms of instability, respectively. According
to Theorem 1.1, the parameter space can be divided into the stability and
instability domains, see Fig. 1.2. The asymptotic stability domain is de-
termined by the condition Re A < 0 satisfied for all the eigenvalues, and
the instability domain is defined by the condition Re A > 0 for at least one
eigenvalue. The boundary between the stability and instability domains is
determined by the condition Re A = 0 satisfied for at least one eigenvalue
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/ ^\>s^ unstable

^ v / stable N \

Fig. 1.2 Stability and instability domains,

while for others the condition Re A < 0 is fulfilled.

1.5 Stability theorems based on first approximation

Let us consider an autonomous system (1.1) and assume an equilibrium
state or steady motion y. Equation for disturbed motion (1.10) takes the
form

X = AX + TJ(X), x = y - y . (1.21)

Liapunov formulated and proved two important theorems on stability of
an equilibrium state or steady motion y of an autonomous system, based
on linear approximation (1.13) of equation (1.21), see [Liapunov (1892);
Chetayev (1961)].

Theorem 1.2 If linearized system (1.13) is asymptotically stable, i.e., all
the eigenvalues of the matrix A have negative real part Re A < 0, then the
equilibrium state or steady motion y is asymptotically stable independently
of the nonlinear term 77 (x) in (1.21).

Theorem 1.3 If linearized system (1.13) has an eigenvalue with a pos-
itive real part Re A > 0, then the equilibrium state or steady motion y is
unstable independently of the nonlinear term f](x) in (1.21).

These are the main theorems for stability and instability of non-linear
systems based on the analysis of the first (linear) approximation. No-
tice that the case when some of the eigenvalues or all of them have
zero real part is not covered by these theorems. Those cases are
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called special cases of Liapunov, see [Liapunov (1892); Chetayev (1961);
Malkin (1966)]. Stability and instability of an equilibrium state or steady
motion in these special cases depend on the non-linear terms.

We assume now that the right-hand side of equation for disturbed
motion (1.21) smoothly depends on a vector of real parameters p =
(.Pi) • • • ,Pn)- Then the parameter space can be divided into the stability and
instability domains based on properties of eigenvalues of the matrix A(p).
The boundary between these domains is characterized by the conditions
Re A = 0 for some eigenvalues and Re A < 0 for the others. In Chapter 3 it
is shown that the boundary between the stability and instability domains
is a smooth surface, which can have different kind of singularities. We note
that generally nothing can be said about stability or instability of the solu-
tion y on the boundary between the stability and instability domains based
on Liapunov's Theorems 1.2 and 1.3. However, in many physical problems
this is not so important, since the boundary is a set of zero measure in the
parameter space.

Example 1.1 Let us consider a rigid body moving inertially about a fixed
point (the Euler case). Equations of motion are the following, see [Malkin
(1966)]:

A6JX + (C - B)UJVOJZ - 0,

Bwy + (A- C)LUZUX = 0, (1.22)

CLJZ + (B- A)ujxu)y = 0,

where UJX, uiy, and u>z are the projections of the vector of angular velocity
on the principal axes of inertia x, y, z of the body, and A, B, C are the
moments of inertia about those axes.

System (1.22) admits a partial solution

UJX = w0 = const, toy = LOZ — 0, (1-23)

which is rotation about the axis x with the constant angular velocity UIQ
(steady motion). There are also similar solutions describing rotations about
the axes y and z.

Let us study stability of motion (1.23). Introducing the variables

xi=ux-u0, x2=ujy, xs=uz (1.24)
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and substituting them into (1-22), we obtain the equations for disturbed
motion

B-C
Xl ~ -7 a;2a;3,

2:2 = — 5 — w 0 x 3 H —2:12:3, (1./5J

A-5 A-5
£3 = — 7 ; — u o x 2 H ——x ix 2 .

The characteristic equation for the linearized problem

/ - A 0 0 \

C - A
det 0 -A B UJ0 = o (1.26)

A-B
\ 0 g t̂ o -A /

gives the eigenvalues

Au = ^ < C - A f f - B > , AS=O. (1.27)

I f C < A < B o r C > A > 5 , i.e., if rotation takes place about the
axis corresponding to the intermediate moment of inertia, then eigenvalues
(1.27) are real, one of them being positive. Thus, according to Theorem 1.3
rotation about this axis is unstable.

However, stability of rotation about the axis corresponding to the ex-
tremal (smallest or largest) moment of inertia can not be established with
the use of Theorem 1.2 because in these cases two eigenvalues (1.27) are
purely imaginary and the third eigenvalue is zero. Stability of rotation in
those cases can be proven using integrals of motion, see [Malkin (1966)].

1.6 Mechanical systems

Consider a scleronomic mechanical system with holonomic constraints hav-
ing m degrees of freedom. This means that position of the system is spec-
ified by a vector of generalized coordinates q = (qi,..., qm)T, generalized
forces do not depend on time t explicitly, and constraints imposed on the
system depend only on generalized coordinates. Motion of the system is
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governed by the Lagrange equations

d fdT\ dT ,

In these equations, the kinetic energy T is a quadratic form with respect to
generalized velocities q\,... ,qm:

1 m 1
T = 2 £ m W = ̂ M q (!-29)

with the positive definite mass matrix M = [m -̂] > 0 dependent only on
the generalized coordinates qi,- • • ,qm; g = (<7i, • • • ,gm)T is the vector of
generalized forces.

Let q(i) = 0 be an equilibrium state of the system denned by the con-
dition g(0,0) = 0. Then the linear approximation of the generalized forces
near the equilibrium state yields

g=-Bq-Cq (1.30)

Generally, the matrices B and C are non-symmetric. They can be repre-
sented as the sum of symmetric and skew-symmetric matrices

B = D + G, C = P + N (1.31)

with

D = | (B + BT), G = | ( B - B T ) ,
(1.32)

P = | (C + CT), N = i ( C - C T ) .

The force — Pq with the symmetric matrix P is called potential or con-
servative, and the quadratic form

n(q) = ^qTPq (1.33)

is the potential energy. Potential forces are widely known in mechanics, e.g.
gravitational and elastic forces are conservative.

The quadratic form

R(q) = iqTDq (1.34)

with the symmetric positive semi-definite matrix D > 0 is called the
Rayleigh's dissipative function, and the force —Dq is called dissipative. In
case of positive definite matrix D > 0 dissipation is complete, and the case
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D > 0 corresponds to incomplete dissipation. Dissipative forces describe
viscous friction and resistance of medium appearing in physical systems.

The force —Gq with the skew-symmetric matrix G T = — G is called
gyroscopic. Power of a gyroscopic force (the work done by the force per
unit time) is zero. Indeed, we have

( - G q ) r q = - q T G T q = qTGq = O (1.35)

since the vector q is real and the matrix G is skew-symmetric. Gyroscopic
forces appear in rotating systems, Coriolis and Lorentz forces are gyroscopic
too.

The force —Nq is called non-conservative positional or circulatory. No-
tice that this force is orthogonal to the vector of generalized coordinates
q since qTNq = 0. Circulatory forces appear as components of aerody-
namic and follower forces (e.g. jet thrust). The presence of circulatory and
dissipative forces means that the system can gain energy from the environ-
ment or lose energy, depending upon the ratio between the forces and their
magnitudes for all the types of forces involved.

Using (1.29)-(1.32) in Lagrange equations (1.28), we obtain in a linear
approximation

Mq+(D + G)q+(P + N)q = 0. (1.36)

This is the linearized equation for disturbed motion near the equilibrium
state q = 0. Seeking solution to equation (1.36) in the form

q = uexpA£, (1-37)

we come to the eigenvalue problem

(A2M + A(D + G) + P + N ) u = 0. (1.38)

Here A is an eigenvalue and u is an eigenvector. The eigenvalues are found
from the characteristic equation

det (A2M + A(D + G) + P + N) = 0. (1.39)

This is an algebraic equation of 2mth order for A. There exist 2m roots
Ai,•. . , A2m (the eigenvalues), and corresponding eigenvectors should be
found from equation (1.38).

Equation (1.36) can be transformed to a system of first order differential
equations of double dimension:

x = Ax (1.40)
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with

M ( ° i \
x = , A = . (1.41)

\q/ V-M-^P + N) -M-^D + G)/
It is easy to see that the characteristic equation det(A — AI) = 0 for the
matrix A in (1.41) is equivalent to equation (1.39) implying that the eigen-
values in these two problems coincide.

If all the eigenvalues Ai,.. . , A2m of (1.39) are simple or semi-simple, the
general solution to equation (1.36) takes the form

q(i) = ciuj exp Ait -I (- c2mu2m exp X2mt. (1.42)

If the number of eigenvectors corresponding to a multiple eigenvalue A is
less than its multiplicity (as a root of the characteristic equation), secular
terms appear in the general solution. Using transformation (1.40), (1.41)
and the results of Section 1.3, we find that those terms are of the form

coUo exp At + Ci (uot + ui) exp Xt +

fuor-i U l t - x ^

where uo is the eigenvector, and u i , . . . , ur_i are associated vectors con-
stituting the Keldysh chain of length r, see [Keldysh (1951)] and Section
2.13:

(A2M + A(D + G) + P + N) ^ + (2AM + D + G)u;_i + MUi_2 = 0,

i = 0, . . . , r — 1 and u_i = u_2 = 0.
(1.44)

From (1.42), (1-43) it is obvious that system (1.36) is asymptotically stable
if all the eigenvalues have negative real part, and it is unstable if at least
one eigenvalue has positive real part.

Example 1.2 Let us consider vibrations of a pendulum with a linear
viscous damping described by the equation

mlCp + jlip + mg sin (p = 0, (1-45)

where <p is the angle of the pendulum measured from-the vertical axis; m,
I, and 7 are the mass, length, and damping coefficient of the pendulum,
respectively; and g is the acceleration of gravity, see Fig. 1.3.
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ir' 8

™ m

Fig. 1.3 Vibrating pendulum.

We introduce new variables j/i — ip, y2 — ¥>> a n d rewrite (1-45) as the
system of first order equations

2/i = 2/2,

. _ g sin yi jy2 (!-46)
/ m

To find stationary solutions we equate the right-hand sides of (1-46) zero
and obtain two solutions

V\ = 0 , y2 = 0; (1.47)

2/1 = 7T, 2/2 = 0. (1.48)

These solutions correspond to lower and upper equilibrium states, respec-
tively.

First, we consider equilibrium state (1-47). For this case the distur-
bances x\ and x2 coincide with the variables y\ and y2- Expanding the
right-hand sides of equation (1.46) in Taylor series and replacing the vari-
ables, we obtain

Xl = X2,

*a = - ^ - ^ + ^ + o ( * ? ) . (L49)
I m K>1

Thus, the matrix A of the linearized system is

/ 0 1 \
A = \g_ _ 1 \ . (1-50)

V I mJ
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The characteristic equation for this matrix

A2 + - A + f = 0 (1.51)
m l

yields the roots

\12 = -J-±JjL-lt (1.52)
2m V 4m2 I

which always have negative real part for 7 > 0. Thus, the lower equilibrium
state is asymptotically stable.

For the case of upper equilibrium state (1-48) we have

xi =2/i -7T, x2 - y2- (1.53)

Substituting relations (1.53) into (1-46) and expanding the right-hand sides,
we get the equations for disturbed motion as

±1 - x2,

gxx -yx2 gx\ 3 (L54)
I m 61

It is easy to see that the linearization of equation (1.54) gives the eigenvalues

^ = -2^/5+?' ^
one of them always having a positive real part. Thus, the upper vertical
equilibrium state is unstable.

1.7 Asymptotic stability criteria for mechanical systems

Let us investigate stability of a linear mechanical system

Mq + (D + G)q + (P + N)q = 0 (1.56)

with the corresponding eigenvalue problem

(A2M + A(D + G) + P + N)u = 0. (1.57)

System (1.56) is asymptotically stable if all the eigenvalues A of problem
(1.57) have negative real part.
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We pre-multiply equation (1-57) by the complex-conjugate transposed
eigenvector u* = uT and obtain the relation

MX2 + {D + iG)\ + P + iN = 0

with the coefficients

M - u*Mu, D - u*Du, P - u*Pu,

iG = u*Gu, iN = u*Nu,

(1.58)

(1.59)

where M, D, P, G, and N are real quantities. Additionally, we assume
that the eigenvector is normalized as

u*u = 1. (1.60)

Considering (1.58) as a quadratic equation for A with complex coeffi-
cients, we demand that both roots of equation (1.58) have negative real
part. Here we can use a theorem on stability properties of a polynomial
with complex coefficients, see [Bilharz (1944)]. Applied to equation (1.58),
the theorem states that both roots A have negative real part if and only if
the two determinants satisfy the relations

det

( M

0

0

i n

G

D

M

0

_p

N

G

D

0

0

-P

N

(1.61)

Since the matrix M is positive definite the quantity M > 0, and then (1.61)
is equivalent to two inequalities

D>0,

MN2 - GDN < D2P.

(1.62)

(1.63)

Metelitsyn was the first who derived inequality (1.63), assuming that
(1.62) is satisfied, as a criterion for asymptotic stability of system (1.56),
see [Metelitsyn (1952)].

Notice that an eigenvalue of (1.57) is one of the two roots of (1.58),
the other root does not need to be an eigenvalue of (1.57). This important
fact was pointed out in [Seyranian (1994b)]. Actually, it is more an excep-
tion than a rule that both roots of equation (1.58) are the eigenvalues of

det detc 0
M G

0 D
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(1.57). Metelitsyn made a mistake, also done in [Huseyin (1978)], believ-
ing that both roots are always eigenvalues of (1.57). This mistake led to
the conclusion that inequality (1.63) is a necessary and sufficient condition
for asymptotic stability. We emphasize that inequalities (1.62) and (1.63)
taken for all eigenvalues A are sufficient for asymptotic stability, but not
necessary.

Example 1.3 Let the system be described by equation (1.56) with the
2 x 2 matrices

(I 0 \ /5.8186 0 \ / 0 3.6667\
M = , D = , G =

\ 0 1 / \ 0 0.1814/ \-3.6667 0 /

/ -0 .5 0 \ / 0 2.25\
P = , N = . (1.64)

V 0 - 0 . 5 / \ -2.25 0 /
The eigenvalues are Alj2 = — 1 ± 0.5i and A3,4 = -2 ± 0.5i, and there-
fore the system is asymptotically stable. Computing the corresponding
eigenvectors u, coefficients (1.59) of quadratic equation (1.58) can be de-
termined. The roots of this equation (one equation for each eigenvalue) are,
of course, the four already found eigenvalues Ai,2 and As^, but additionally
also 0.0625 ± 0.875i and 0.1785 ± 0.2859i. Those roots have positive real
part and, therefore, in spite of the system is asymptotically stable, Metelit-
syn's inequality (1.63) is not satisfied since it demands that both roots of
equation (1.58) have negative real part.

If we want to investigate the asymptotic stability for a given system by
checking inequalities (1.62) and (1.63) as sufficient conditions, we face the
following problem. The eigenvectors u, which are used for finding coeffi-
cients (1.59) and for checking inequalities (1.62) and (1.63), are unknown.
They can only be determined by solving eigenvalue problem (1.57), but
then the stability analysis would be complete.

However, the statement known as the Thomson-Tait-Chetayev theorem,
see [Chetayev (1961)], follows directly from inequalities (1-62) and (1.63).

Theorem 1.4 If system (1.56) containing only potential forces is stable
(P > 0), then addition of arbitrary gyroscopic forces and dissipative forces
with complete dissipation (D > 0) makes the system asymptotically stable.

Indeed, the system possessing only potential forces with a positive def-
inite matrix P is stable since all the eigenvalues are purely imaginary and
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semi-simple, see [Gantmacher (1998); Merkin (1997)]. In case of P > 0,
D > 0, and N = 0, i.e., P > 0, D > 0, and N = 0, inequality (1.63)
reduces to D2P > 0, guaranteeing asymptotic stability.

We are interested in obtaining a practical sufficient stability condition,
which can be verified using extremal eigenvalues of the system matrices.
Hermitian matrices like M, D, and P (real symmetric in our case) have
only real eigenvalues. The corresponding quantities M, D, and P in (1.59),
known as Rayleigh quotients, are therefore limited by the minimal and
maximal eigenvalues of the matrices M, D, and P , respectively, see e.g.
[Lancaster and Tismenetsky (1985)]

Mm i n = Amin(M) < M < Amax(M) = Mm a x ,

Anin - Amin(D) < D < Amax(D) = £>max, (1-65)

p \ fp\ <̂  P <̂  \ fT>\ P
rmin — ^ra\a\r ) j ; •* 2: Am&x.\r) — •* max'

We emphasize that these limits depend only on the system matrices and
do not depend on the eigenvector u.

Since the matrices G and N are real skew-symmetric, the matrices z'G
and zN are Hermitian. Notice that spectrum of a real skew-symmetric ma-
trix consists of purely imaginary ±iu> and zero eigenvalues. Therefore, the
quantities G and N being real are limited by — Gmax and Gmax, and —Nm&x

and Nmax, respectively, where Gmax = Amax(iG) and iVmax = Amax(iN) are
the maximal eigenvalues of the corresponding matrices. So, we have

- G m a x < G < Gm a x, -7Vmax < N < iVmax- (1-66)

If we assume

M > 0, D > 0, P > 0, (1.67)

then it is easy to see with the help of (1.65) and (1.66) that (1.63), rewrit-
ten in the form D(DP + GN) - MN2 > 0, is satisfied for an arbitrary
eigenvector u if

Anin(AninPmin - GmaxA^max) - M m a x ^ a x > 0. (1.68)

Here we took the smallest values of the first and second terms and the
largest value of the third term of the inequality. Under assumption (1.67),
inequality (1.68) is a practical sufficient condition for asymptotic stability of
system (1.56), which can be checked knowing only the extreme eigenvalues
of the system matrices M, D, G, P , and N [Kliem et al. (1998)].

From (1.68) we deduce the following stability statement.
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Theorem 1.5 Any mechanical system (1.56) can be stabilized by suffi-
ciently large dissipative and/or potential forces (D > 0,P > 0).

Here "large forces" means that the minimal eigenvalues Dmm and/or Pm-m

of the corresponding matrices are large enough.
Proof of the theorem follows from the observation that inequality (1.68)

is satisfied by making the term £>^inPmin sufficiently large. This result
was first reported in [Seyranian (1994b)]. Another consequence of inequal-
ity (1.68) is that a stable conservative system with dissipative forces with
complete dissipation (assumption (1.67)) can not be destabilized by adding
rather small gyroscopic and/or positional non-conservative forces.

Example 1.4 The simplest model of a rotor consists of a massless shaft
of circular cross-section with an elastic coefficient k rotating with a constant
angular velocity Q, and carrying a single disk of mass m, see Fig. 1.4. Ex-
ternal and internal damping coefficients are denoted by de > 0 and d{ > 0,
respectively. With respect to an inertial frame, the equations of motion for
the center of mass of the disk moving in the plane perpendicular to the
shaft are given by (1.56) with the matrices [Bolotin (1963)]

(m 0\ fde+di 0 \
M= > D = , G = 0,

\0 mj \ 0 de+dij

(1.69)
(k 0\ / 0 diU\

P = , N =
\0 kj \-difl 0 /

Quantities (1.65) and (1.66) evaluated for system matrices (1.69) are

/ / / / / ^ sss/s i I

" o f g[

Fig. 1.4 Rotating shaft with a disk.
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equal to

Mmin = Mm a x = m, Dmm = £>max = de+di,
(1.70)

-*min — •* max — ™) ^ m a x — u , - iV m a x — Ctjit.

For system (1.56), (1.69) inequality (1.68) results in

tt2md2 <k(de + di)2. (1.71)

This inequality gives a lower bound for the critical angular velocity

Let us compare this estimate with the exact critical velocity. For this
purpose, we introduce the complex variable z — q\ — iq2 and rewrite equa-
tions (1.56), (1.69) in a complex form as

mi + (de + di)z + [k + idityz = 0. (1-73)

The corresponding characteristic equation

m\2 + (de +di)\ + (k + idin) = 0 (1.74)

is a quadratic equation for A with complex coefficients. Applying now
inequalities (1-62) and (1.63), we obtain that the stability condition is the
same as (1.71). Thus, estimate (1.72) is the exact critical velocity. This is
one of those rare cases when sufficient stability condition (1.68) yields the
exact stability boundary.

(1.72)





Chapter 2

Bifurcation Analysis of Eigenvalues

Behavior of simple and multiple eigenvalues with a change of parameters is
a problem of general interest for applied mathematics and natural sciences.
This problem has many important applications in aerospace, mechanical,
civil, and electrical engineering. One-parameter perturbation theory of
eigenvalues for nonsymmetric matrices and differential operators was de-
veloped in [Vishik and Lyusternik (I960)], and a constructive method for
determining leading terms in eigenvalue expansions was given by [Lidskii
(1965)]. These works study regular types of bifurcations, when perturba-
tion satisfies a specific nondegeneracy condition. For the analysis of some
non-regular cases see [Moro et al. (1997)]. The multi-parameter bifurcation
theory for eigenvalues of nonsymmetric matrices was developed in [Seyra-
nian (1990a); Seyranian (1991a); Seyranian (1993a); Seyranian (1994a);
Mailybaev and Seyranian (1999b); Mailybaev and Seyranian (2000a);
Seyranian and Kirillov (2001)], where perturbations along different direc-
tions or curves in the parameter space were studied. Recent achievements
of the theory of interaction of eigenvalues in multi-parameter problems are
given in [Kirillov and Seyranian (2002a); Seyranian and Mailybaev (2003)].

In this chapter we present general results on bifurcation theory of mul-
tiple eigenvalues for matrices dependent on several parameters. Strong and
weak interactions of eigenvalues on the complex plane are distinguished
and studied. Extensions to generalized eigenvalue problem and eigenvalue
problem corresponding to vibrational systems are presented. The results
of this chapter represent the main tool for the multi-parameter stability
analysis and are used in all parts of this book.

21
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2.1 Eigenvalue problem

Let us consider an eigenvalue problem

Au = Au, (2.1)

where A is an m x m real matrix, A is an eigenvalue, and u is a correspond-
ing eigenvector. The eigenvalues are determined from the characteristic
equation

det(A - AI) = 0, (2.2)

where I is the m xm identity matrix. Since det(A — AI) is a polynomial of
degree m with respect to A, there are m eigenvalues, counting multiplicities.
Since A is a real matrix, its eigenvalues and corresponding eigenvectors are
real or appear in complex conjugate pairs. Multiplicity of an eigenvalue as
a root of the characteristic equation is called algebraic multiplicity.

The eigenvalue A is called simple if its algebraic multiplicity is equal to
one. There is a single eigenvector, up to a scaling factor, corresponding to
a simple eigenvalue.

2.2 Multiple eigenvalues and the Jordan canonical form

A multiple eigenvalue A of algebraic multiplicity k can have one or several
corresponding eigenvectors. The maximal number of linearly independent
eigenvectors kg is called geometric multiplicity of the eigenvalue, which is
less or equal to the algebraic multiplicity:

k3 < k. (2.3)

If the algebraic and geometric multiplicities are equal (kg = k), then the
eigenvalue is called semi-simple. If there is a single eigenvector correspond-
ing to A (kg — 1), then the eigenvalue is called nonderogatory.

First, let us consider a nonderogatory eigenvalue A. There exist linearly
independent vectors u 0 , . . . , u^_i satisfying the equations

Au0 = Au0,

Aui = Aui + uo,
(2.4)

Aujfc_i = Aufc-i + ufc_2.
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The vectors uo,...,Ujt_i are called the Jordan chain of length k, where
UQ is the eigenvector and the vectors u j , . . . ,Ufc_i are associated vectors.
Equations (2.4) can be written in the matrix form as

AUA = UAJA(A;), (2.5)

where

UA = [u0,...)ufc_1] (2.6)

is an m x k matrix, which is real or complex depending on the eigenvalue
A, and

/A 1 \

J A ( * ) = A '• (2.7)

' • • • 1

V A/
is a k x k matrix called the Jordan block.

Let us consider an eigenvalue A having several linearly independent
eigenvectors (the derogatory eigenvalue), i.e., kg > 1. In this case there
are integers 1 < li < • • • < lkg such that

h + --- + ht = k, (2.8)

and linearly independent vectors 115 , . . . ,u\l'_1, i = l,...,kg, satisfying

the Jo rdan chain equations

A u j 0 = Ai4<} + u ^ ,
(2.9)

A U ^ 1 = AU|;L1 + U|;L2.

The numbers l\,..., lkg are unique and called partial multiplicities of the

eigenvalue A, and the vectors tig ,. • •, ujJ_j are called the Jordan chain of

length li. The vectors UQ , . . . ,u0 " are linearly independent eigenvectors
corresponding to A. Notice that l\ = • • • = l\ig — 1 for a semi-simple
eigenvalue, and l\ = k for a nonderogatory eigenvalue. Equations (2.9) can
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be written in the matrix form

/ J A ( * I ) \

AUA = UA ".. , (2.10)

where

TJ. _ ru(i) u(i) U(M „(*») l (o n)
U A — [ u o J • • • j L i ^ - i ) • • • i u o > • • • i u ; f c - i J l z - i J J

is an m x & matrix.
Computing Jordan chains for all the eigenvalues, we can form an m x m

matrix U satisfying the equation

AU = UJ, (2.12)

or, equivalently,

J = ir^AU, (2.13)

where J is a block-diagonal matrix with Jordan blocks on the diagonal.

Theorem 2.1 Let A be a real my. rn matrix. Then there is a nonsingular
m x m matrix U consisting of eigenvectors and associated vectors, which
transforms the matrix A to the form (2.13), where J is a block-diagonal
matrix with Jordan blocks on the diagonal. The matrix J is unique up to
the permutation of diagonal blocks and is called the Jordan canonical form
of the matrix A.

Proof of this classical theorem can be found in [Gantmacher (1998)].
Eigenvectors and Jordan chains (as well as the transformation matrix

U) are not uniquely determined. In particular, any nontrivial linear combi-
nation of eigenvectors corresponding to the eigenvalue A is an eigenvector.
If A is a nonderogatory eigenvalue and u 0 , . . . , Ufc_i is a corresponding Jor-
dan chain, then following (2.4) all the Jordan chains can be expressed in
the form

u'o = couo,

ui = coui + ciu0,
(2.14)

u'fc_! = C0Uyt_i + CiUfc-2 H h Cfc-iUo,

where Co,..., Ck-i are arbitrary numbers with CQ ̂  0.
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Example 2.1 Let us consider the matrix

/-5 -4 8\
A = 0 7 0 . (2.15)

V—12 - 4 15/

Characteristic equation (2.2) for this matrix takes the form

A3-17A2 + 91A-147 = 0. (2.16)

This equation has the simple root A = 3 and the double root A = 7. The
simple eigenvalue A = 3 has the eigenvector determined by equation (2.1)
and equal to

u = | o . (2.17)

The double eigenvalue A = 7 is semi-simple and has two linearly indepen-
dent eigenvectors

ui = f 1 I , u2 = j 1 ) . (2.18)

Any nontrivial linear combination of the vectors ui and U2 is an eigenvector
corresponding to the eigenvalue A = 7. Taking vectors (2.17) and (2.18) as
columns of the matrix

/I -1 1\
U = 0 1 1 , (2.19)

VI "I V

we find the Jordan canonical form

/ 3 0 0\
J = U ^ A U = 0 7 0 1. (2.20)

\ 0 0 7/

Example 2.2 Let us consider the matrix

/ - I 3 - 4 \
A= -2 4 -3 . (2.21)

V 1 - 1 3 /
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Its characteristic equation is

A3 -6A2 + 12A-8 = 0. (2.22)

This equation has the triple root A = 2. The eigenvalue A = 2 possesses
only one eigenvector

uo = 1 (2.23)

W
determined up to a nonzero scaling factor. Hence, this eigenvalue is non-
derogatory with algebraic multiplicity k = 3 and geometric multiplicity
kg — 1. There is a Jordan chain uo,ui,U2 of length 3 corresponding to
A = 2. Solving equations (2.4), we find the associated vectors

ui = f 1 J , u 2 = 1 . (2.24)

In general, the vectors CoUQ, COUI+CIUO, C0U2+C1U1+C2U0 with a nonzero
Co and arbitrary coefficients c\, c^ form another Jordan chain corresponding
to the eigenvalue A = 2. Taking vectors (2.23) and (2.24) as columns of the
matrix

/ I 2 - 1 \
U = 1 1 1 , (2.25)

\0 -1 1 /

we find the Jordan canonical form

/2 1 0\
J = U^AU = 0 2 1 . (2.26)

\0 0 2 /

2.3 Left eigenvectors and Jordan chains

Let us consider the eigenvalue problem for the transposed matrix

ATv = Av. (2.27)

Since

det(AT - AI) = det(A - AI), (2.28)
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the characteristic equations for the matrices A and AT coincide. The ma-
trix A T has the same Jordan canonical form as the matrix A, see [Gant-
macher (1998)]. Therefore, eigenvalues of the matrices A and A T are equal
together with their algebraic, geometric, and partial multiplicities.

The eigenvalue problem for the matrix AT after the transposition takes
the form

v T A = Avr, (2.29)

where v is called the left eigenvector corresponding to the eigenvalue A, in
contrast to the eigenvector u called the right eigenvector.

If an eigenvalue A is simple, then the left eigenvector is determined up to
a nonzero scaling factor. Assuming that the right eigenvector u is given, we
can define the left eigenvector of the simple eigenvalue uniquely by means
of the normalization condition

v T u = 1. (2.30)

Notice that if u' is a right eigenvector for an eigenvalue A', and v is a left
eigenvector for an eigenvalue A ^ A', then [Gantmacher (1998)]

vTu' = 0. (2.31)

Equations of the Jordan chain (2.4) for a nonderogatory eigenvalue A of
the matrix AT after transposition take the form

v^A = \v$,

vjrA = Avf +vjf,
(2.32)

v£_1A = A V ^ + V J ^ .

The vectors vo, • • •, ~Vk-i are called the left Jordan chain for the eigenvalue
A as opposed to the right Jordan chain u 0 , . . . , ujt_i. Right and left Jordan
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chains have the properties [Gantmacher (1998)]

v^u0 = 0,

vf u0 = v^m = 0,

vf_2u0 = v£_3ui = • • • = v^ufc_2 = 0,

Vj^Uo = V^_2Ui = • • • = V̂  Ufc_! ^ 0,

V^ lUl = V^_2U2 = • • • = vf Ufc_i,

which follow from equations (2.4), (2.32), and the relation

vfnj = vf (A - AI)ui+1 = v ^ u i + 1 (2.34)

valid for any 1 < i < k - 1 and 0 < j < k — 2. Assuming that the right
Jordan chain is given, we can define the unique left Jordan chain satisfying
the normalization conditions

v^ufc_i = 1, vf Ufc-x = • • • = vj!_1ufe_i = 0. (2.35)

Finally, let us consider a semi-simple eigenvalue A, which has k = kg

linearly independent right eigenvectors u j . , . . . , u^ and left eigenvectors
v i , . . . , Vfc. Any nontrivial linear combination of the left (or right) eigenvec-
tors is a left (or right) eigenvector. Assuming that the right eigenvectors
are given, we can define the left eigenvectors uniquely by means of the
normalization conditions

vfuj=6ij, i,j = l,...,k, (2.36)

where <5,j denotes the Kronecker delta.

Example 2.3 Let us consider matrix (2.15). The left eigenvector, corre-
sponding to the simple eigenvalue A = 3 and satisfying normalization con-
dition (2.30) for the right eigenvector given by expression (2.17), is equal
to

v=(_l)' (2'37)

(2.33)
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The left eigenvectors vi and V2, corresponding to the semi-simple double
eigenvalue A = 7 and satisfying normalization conditions (2.36) with the
right eigenvectors uj and u2 given by expressions (2.18), are

(2.38)

Example 2.4 Let us consider matrix (2.21). The left Jordan chain, cor-
responding to the triple nonderogatory eigenvalue A = 2 and satisfying
normalization conditions (2.35) with the right Jordan chain given by ex-
pressions (2.23), (2.24), is

(2.39)

2.4 Perturbation of simple eigenvalue

Let us assume that the matrix A smoothly depends on a vector of real pa-
rameters p = (pi, . . . ,pn). The function A(p) is called a multi-parameter
family of matrices. Eigenvalues of the matrix family are continuous func-
tions of the parameter vector. In this section we study behavior of a simple
eigenvalue of the matrix family A(p).

Let A(p) be a simple eigenvalue of the matrix A(p). Since A is a simple
root of characteristic equation (2.2), we have

^ d e t ( A ( P ) - A I ) ^ 0 . (2.40)

Using inequality (2.40) and the implicit function theorem applied to char-
acteristic equation (2.2), we find that the simple eigenvalue A(p) of the
matrix family A(p) smoothly depends on the parameter vector, and its
derivatives with respect to parameters are equal to

^ = - A d e t ( A ( P ) - A I ) / / ^ d e t ( A ( p ) - A I ) , z = l , . . . ,n . (2.41)

The eigenvector u(p) corresponding to A(p) is determined up to a nonzero
scaling factor. This eigenvector determines a one-dimensional null-subspace
of the matrix operator A(p) — A(p)I smoothly dependent on p. Hence, the
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eigenvector u(p) can be chosen as a smooth function of the parameter
vector.

Let us consider a point po in the parameter space and assume that Ao is
a simple eigenvalue of the matrix Ao = A(po). Taking the derivative with
respect to pi of both sides of eigenvalue problem (2.1), we find

dA A du dX , du . A .
— u o + A 0 — = —-u0 + Ao^- , 2.42)
dpi dpi dpi dpi

where u0 is the eigenvector corresponding to Ao and the derivatives are
taken at po- Equation (2.42) can be transformed to the form

Ao - A0I)^— = -~—I - — u0. (2.43)
dpi \dpi dpij ,

This is a linear algebraic system for the unknown derivatives dX/dpi and
du/dpi, where the matrix operator Ao - Aol is singular with rank(A0 —
Aol) = m — 1. It is known that solution of (2.43) exists if and only if

*(&-£)«="• <2-44)
where v0 is the left eigenvector corresponding to Ao. Expression (2.44) can
be obtained by means of pre-multiplying (2.43) by v^ and using equation
(2.29). Therefore, we find another expression for the first order derivatives
of the simple eigenvalue as follows

f r v ° T t ^ u o / ( v ° T u o ) > i=1'-'n- (2-45)
If the left and right eigenvectors satisfy normalization condition (2.30), then
the denominator in formula (2.45) equals one.

Under condition (2.45), equation (2.43) has a solution du/dpi, which is
determined up to an additive term cu0, where c is an arbitrary scalar. It
is convenient to impose the normalization condition

voru(p) = const (2-46)

for the perturbed eigenvector u(p), which yields

v o r ^ = 0, * = l , . . . ,n . (2.47)
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Multiplying equation (2.47) by complex conjugate left eigenvector vo from
the left and adding the result to equation (2.43), we obtain

_ du fd\T 8A\

dpi \dpi dpij

where

Go = Ao-AoI + vov^. (2.49)

In expression (2.49) the product VQVJ represents the mxm matrix, which
changes the singular operator Ao — Aol on its null-space. As a result, the
matrix Go becomes nonsingular, and we can find a solution of equation
(2.48) using the inverse matrix G^1 [Yakubovich and Starzhinskii (1987)].
Hence, we find the derivative of the eigenvector u(p) at po as

f̂  = G0-i(^I-^W (2.50)
dpi u \dpi dpij

Taking the partial derivative 82/dpidpj of both sides of eigenvalue prob-
lem (2.1), we find

<92u _ 82X 8X_8u_ 8X du
(Ao - W)dpidpj ~ dpidpjUo + dpi dpj + ̂  Qp.

(2.51)
g2 A _5A5u_aAau

dpidpj dpi dp, dpj dpi'

Again, the matrix Ao — Aol is singular, and equation (2.51) has a solution
if and only if the vector v^ multiplied by the right-hand side of (2.51) is
zero. Hence, we find the second order derivative of the simple eigenvalue

a2A _ r / d2A 5A_9u 8A du

dpidpj ° \dpidpj ° dpidpj dpj dpi
(2.52)

<9A 8u 8X 8u\ I T

-fadpj-djito)/™"0*-
Normalization condition (2.46) yields

v j ^ - = 0. (2.53)

Multiplying this relation by v0 from the left and adding the result to equa-
tion (2.51), we find the second order derivative of the eigenvector satisfying

(2.48)
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normalization condition (2.46) as follows

<92u _ ! f dX2 d±du_ dX du

dpidpj ° \dpidpj ° dpidpj dpj dpt

(2.54)
<92A dA 8u <9A du \

dpidpj dpi dpj dpj dpi J '

This procedure can be continued to get higher order derivatives of the
simple eigenvalue and the corresponding eigenvector. In order to give a
general expression for the derivatives, we introduce the notation

A(h) = / | h ' A t u ( h ) = / I h | u t A ( h ) = / | h | A ; ( 2 . 5 5 )

dphs • • • dpfr dp^ • • • dPt dp^ • • • dpi-

where h = (hi,..., hn) is a vector with integer nonnegative components
hi > 0 and |h| = hi + • • • + hn. Differentiating equation (2.1), we find

y _ ^ _ (A^)u(h=) - u(h2)A^)) = 0, (2.56)
h l ^ = h h l ! h 2 ! V J

where h! — h\\ • • • hn\ and the sum is taken over all the sets of the vectors
hi and h2 such that hi + h2 = h. The normalization condition (2.46) for
the derivative u^h^ yields

vjf u(h) = 0. (2.57)

Formulae for the derivatives A'h) and u^h\ found by solving equations (2.56)
and (2.57), are given in the following theorem.

Theorem 2.2 A simple eigenvalue A of the matrix A, smoothly depen-
dent on the parameter vector p, is a smooth function ofp and its derivatives
with respect to parameters at p = po are given by the expression

A<h> = ( v 0 T A ( h ) u

H-vg1 £ ^(A^^u^-u^A^))) /^^) ,
hi+h2=h

|h!|>0, |h2|>0

(2.58)
where the sum is taken over all the sets of nonzero vectors hi and h2 such
that hj + h^ — h. The corresponding eigenvector u can be chosen as a
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smooth function of p with the derivatives at p = po given by the expression

u(h)=G0-1 y -^-(n^X^-A^u^), (2.59)
*—' h.i!n2! \ /

hi+h2=h
|hi|>0

where the nonsingular matrix Go is given by (2.49). For the first and sec-
ond order derivatives expressions (2.58) and (2.59) yield formulae (2.45),
(2.50), (2.52), and (2.54).

Example 2.5 Let us consider the two-parameter matrix family

/ Pi - 5 p 2 - 4 8 \
A ( p ) = pi 7 P 2 \ , p = (pi,p2). (2.60)

\ P 2 - 1 2 P i - 4 15 /

At po = 0 the matrix A takes the form (2.15) and has the simple eigenvalue
Ao = 3. The right and left eigenvectors corresponding to Ao are given by
expressions (2.17) and (2.37), respectively. Then using Theorem 2.2, we find
derivatives of the simple eigenvalue Ao and the corresponding eigenvector
uo at po as follows

j?A_ i ^ _ _ ! ^ = 7 d*X _ 7 d*X _ 3

dpi ' dp2 ~ ' dp\ ~ ' 8pidp2 ~ 4' dp22 ~ 2'

/ 3/4 \ /-x/4\

a-(-).&-(-).s-R-
1 \ 31 /8 / V-21/16/ ^2 \ 0 /

2.5 Bifurcation of double eigenvalue with single eigenvector

Let us consider the one-parameter matrix family

A ( P ) = ( » J ) . (2.62)

(2.61)
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Its eigenvalues are

A = ±y/p, (2.63)

which are real for positive p, complex conjugate for negative p, and double
zero at p = 0. It is easy to see that at p = 0 the double eigenvalue A = 0 is
nonderogatory, i.e., it has a single eigenvector. Expression (2.63) shows that
the eigenvalues are not differentiable functions of the parameter at p — 0,
where the double eigenvalue appears; and derivatives of the eigenvalues tend
to infinity as p approaches zero. Therefore, perturbation of a nonderogatory
double eigenvalue is singular and needs special analysis.

Let us consider an arbitrary family of matrices A(p). Let po be a
point in the parameter space, where the matrix Ao = A(po) has a double
nonderogatory eigenvalue Ao- Let u0, Ui and vo, vi be, respectively, the
right and left Jordan chains of length 2 corresponding to Ao and satisfying
the equations

A o u o = Aouo, v;f Ao = Aovf,
TA X T T (2-64)

Aoui = Aoui + u0, v{ Ao = AoVj1 + v^ ,

and the normalization conditions

vjfii! = 1, vf U l = 0. (2.65)

Recall that these Jordan chains have the properties

v^uo = 0, vf u0 = vjfm = 1. (2.66)

The right Jordan chain is not unique. The vectors CoUo and coUi +
ciUo with arbitrary coefficients CQ ^ 0 arid C\ form a right Jordan chain,
which can be easily verified by the substitution into equations (2.64). If the
vectors uo and u^ are given, then the left Jordan chain vo, vi is uniquely
determined by normalization conditions (2.65).

Our aim is to study behavior of two eigenvalues A(p) that merge to Ao

at po- For this purpose, we consider a perturbation of the parameter vector
along a smooth curve

P = p(e). (2-67)

where e > 0 is a small real perturbation parameter and

p ( 0 ) = P o . (2.68)
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Curve (2.67) starts at po and has the initial direction e = (ei , . . . , en) in
the parameter space determined by the expression

e = J (,69)
with the derivative evaluated at e = 0; see Fig. 2.1. The second order
derivative of p(e) taken at e — 0 is denoted by

d = (du...,dn) = ^ . (2.70)

An example of such a curve is the ray

P = Po + ee (2.71)

starting at po with the direction e and zero second order derivative vector
d = 0.

Pi

POO

Po

py 7i

Fig. 2.1 Perturbation along a curve in the parameter space.

Along the curve p(e) we have a one-parameter matrix family A =
A(p(e)), which can be represented in the form of Taylor expansion

A(p(e)) = A0 + eA 1 +£ 2 A 2 + - " (2.72)

with the matrices

" dA A i A dA J i A a2 A . s

Ai = E ̂ ei' A2 = 2 g ^ rfi + 2 £ a ^ " e i e - (2-73)
where the derivatives are evaluated at po-

The perturbation theory of eigenvalues [Vishik and Lyusternik (I960)]
tells us that the double nonderogatory eigenvalue Ao generally splits into a
pair of simple eigenvalues A under perturbation of the matrix Ao. These
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eigenvalues A and the corresponding eigenvectors u can be represented in
the form of series in fractional powers of e (called Newton-Puiseux series):

A = Ao + e^Ai + e\2 + £3/2A3 + • • • ,
(2.74)

u = u0 + e1/2wi + ew2 + e3/2w3 H

Substituting expansions (2.72) and (2.74) into eigenvalue problem (2.1) and
comparing coefficients of equal powers of e, we find the chain of equations
for the unknowns Ai, A2,... and wi, w2, . . .

A0U0 = A0U0,

Aowi = Aowi + Aiu0,

A0w2 + AxUp = Aow2 + A1W1 + A2u0,
(2 75)

Aow3 + A1W1 = A0w3 + Aiw2 + A2wi + A3u0,

A0w4 + Aiw2 4- A2u0 = AQW4 + Aiw3 + A2W2 + A3W! + A4U0,

To determine the eigenvector u uniquely, it is convenient to choose the
normalization condition

vf u = 1, (2.76)

where vi is the left associated vector. Recall that vf u0 = 1 by equali-
ties (2.66). Substituting expansion (2.74) for the eigenvector into equation
(2.76), we find the chain of normalization conditions

v J w 4 = 0 , $ = 1,2,... (2.77)

Let us solve equations (2.75) and (2.77). The first equation in (2.75)
is satisfied, since uo is the eigenvector. Comparing the second equation in
(2.75) with the equation for the associated vector ui in (2.64) and using
normalization condition for the vector wi (2.77), we find

w i =Aiu 1 . (2.78)

Using (2.78), the third equation in (2.75) can be written in the form

(Ao - A0I)w2 = Afui + A2u0 - Aiu0. (2.79)

The matrix operator Ao - A0I is singular and its rank equals m — 1, since
Ao is a nonderogatory eigenvalue. System (2.79) has a solution w2 if and
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only if the right-hand side satisfies the orthogonality condition [Gantmacher
(1998)]

v^ (A?ui + A2u0 - Aiu0) = 0. (2.80)

This equation can be obtained multiplying (2.79) by v^ from the left and
using equalities (2.64). With properties (2.66) we find

Xl = vg; A U K , . (2.81)

Two values of Xi = ±T/VQAIUO determine leading terms in expansions for
two different eigenvalues A that bifurcate from the double eigenvalue Ao •

Let us assume that

v^Al U 0 ? 0, (2.82)

i.e., Ai 7̂  0. Multiplying equation (2.79) by the vector vf from the left and
using equations (2.64) and properties (2.65), (2.66), we find

vjw2 = A2 - vjAiu0. (2.83)

Multiplying the fourth equation in (2.75) by v^ from the left and using
expressions (2.64), (2.66), (2.78), (2.83) yields

2AiA2 = Aivjf Aim + Aivf Aiu0. (2.84)

Since Ai ^ 0, we have

vjfAxut+vfAnio
A2 = . (2.85)

Finally, adding normalization condition for w2 (2.77), multiplied by v0

from the left, to equation (2.79), we find the vector

w2 = A2ui +Gj"1(Aj!ui -Aiuo) , (2.86)

where Gi = Ao-AoI+vov^. The mxm matrix vovf redefines the singular
matrix operator Ao — Aol on its null-space such that the matrix Gi becomes
nonsingular [Yakubovich and Starzhinskii (1987)]. In derivation, we have
used the equality GiUi = u0 following from (2.64), (2.65).

Expansions (2.74) with the use of expressions (2.73), (2.78), (2.81),
(2.82), (2.85), and (2.86) yield

Theorem 2.3 Let Ao be a double nonderogatory eigenvalue of the ma-
trix Ao = A(po) with the right and left Jordan chains uo, u^ and VQ,
VI satisfying normalization conditions (2.65). Consider a perturbation of
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the parameter vector along curve (2.67) starting at po with the direction e
satisfying the condition

i j ( v ° T i H e ^ 0 - (2-8?)
Then, the double eigenvalue Ao bifurcates into two simple eigenvalues given
by the relation

A = Ao + £1/2Ai + eA2 + o(e) (2.88)

with the coefficients

(2.89)
The corresponding eigenvectors are given by the expansions

C n / pi \ \ \

A2u: + A^G^1^ - Gf l Yl ( 7T-Uo ) ei + 0 ( £ ) '
i=1 \OPi J J

(2.90)
where

d = Ao - A0I + vovf (2.91)

«s a nonsingular matrix.

Now, let us consider the degenerate case

vjfAmo = 0. (2.92)

Then Ai = 0, wi = 0, and the fifth equation in (2.75) takes the form

(Ao - A0I)w4 = A2w2 + A4u0 - AiW2 - A2u0 . (2.93)

Multiplying (2.93) by v j from the left and using equations (2.64), we find

vor(A2W2 + A4u0 - Aiw 2 - A2u0) = 0, (2.94)

which, using properties (2.66), yields

A2v0rw2 - v0 rAiw2 - v0 rA2u0 = 0. (2.95)
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Using expressions (2.83), (2.86), (2.91), and (2.92), we obtain the quadratic
equation for the unknown A2

\\ - (vjf AiU! + vf A!U0)A2 + v;f ( A i G ^ A i - A2)u0 = 0. (2.96)

Two roots of this equation describe bifurcation of the double eigenvalue Ao.
Expansions (2.74) with the use of expressions (2.73), .(2.78), (2.81),

(2.86), (2.92), and (2.96) yield

Theorem 2.4 Let Ao be a double nonderogatory eigenvalue of the matrix
Ao = A(po) with the right and left Jordan chains uo, ui and vo, vi sat-
isfying normalization conditions (2.65). Let us consider a perturbation of
the parameter vector along curve (2.67) starting at po with the direction e
satisfying the degeneration condition

E ( v o T ^ u o ) e i = 0. (2.97)

Then, bifurcation of the double eigenvalue Ao is given by the expansion

A = A0 + eA2+ o(e), (2.98)

where two values of A2 are determined by the quadratic equation

X\ + axX2 + a2 = 0 (2.99)

with the coefficients

•A / TdA TdA \

^—E^o^+v.-uoje,,

If/ T9A \ ,

The corresponding eigenvectors are given by the expansions

A z u i - G r 1 ^ ( — u o j e i ) +o(e), (2.101)

where Gi is the nonsingular matrix given by (2.91).

(2.100)
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Example 2.6 Let us consider the two-parameter matrix family

/ 4 Pi-5 p2-3\

A(p) = pi + l p2 + 2 pi - 1 , p = (pi,P2). (2-102)

\3Pl+2p2 p2-4 1 /

At po = 0 the matrix Ao has the double nonderogatory eigenvalue Ao = 3.
The corresponding right and left Jordan chains satisfying normalization
conditions (2.65) are

u o = I 1
- 2 ,

= | 1 I , v 0 = I - 1 I , V! = I 2 ] . (2.103)

Let us consider a perturbation of the parameter vector along the ray

P = e(ei,e2). (2.104)

By Theorem 2.3, we find that if

7ei - 2e2 ^ 0, (2.105)

then bifurcation of the double eigenvalue is described by the formula

A = 3 ± \/{l&\ - 2e2)e - (6ei + e2)e + o(e), (2.106)

and the corresponding eigenvectors take the form

- 1 ±

u = | 1±

- 2 :

- 2e2)e - (4ei + 5e2/2)e ^

ei - 2e2)e + 4(ei - e2)e

- 2e2)e - (12ei -Ue2/2)eJ

The degeneration condition yields

7ei - 2e2 = 0.

o(e). (2.107)

(2.108)

Using Theorem 2.4, we find perturbed eigenvalues and eigenvectors in the
degenerate case:

u =

A = 3 + A2e + o(e),

- 1 + (A2 -13e i /4 )e \

l + (A2-ei /2)e

-2-(A2+9ei/4)ey

(2.109)
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where two values of A2 are determined from quadratic equation (2.99) in
the form

A2 = f ex. (2.110)

In calculations we have used the relation e2 = 7ei/2 due to condition
(2.108).

2.6 Strong interaction of two eigenvalues

Let us consider matrix family (2.62). Its eigenvalues plotted in the three-
dimensional space (ReA,ImA,p) and the complex plane are shown in
Fig. 2.2, where the arrows indicate motion of the eigenvalues with an in-
crease of p. The interaction is described by two identical parabolae lying in
perpendicular planes. With an increase of p the eigenvalues approach along
the imaginary axis on the complex plane, collide, and then diverge along
the real axis in different directions. Such interaction is typical for a double
eigenvalue Ao with a single eigenvector. We call it strong interaction.

P

i\ J\ ImA,

ImAy/y /

Fig. 2.2 Strong interaction of eigenvalues for matrix family (2.62).

Let us consider an arbitrary matrix family A(p). Let Ao be a double
nonderogatory eigenvalue Ao of the matrix AQ = A(po) with corresponding
right and left Jordan chains u0, ui and v0, vx satisfying equations (2.64)
and normalization conditions (2.65). Our aim is to study behavior of two
eigenvalues A, which are coincident and equal to Ao at po, with a change
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of the vector of parameters p in the vicinity of the initial point po- For
this purpose we assume a variation p = p0 + ee, where e = (ei , . . . , en)
is a vector of variation, and e > 0 is a small parameter. As a result, the
eigenvalue Ao and the corresponding eigenvector u0 take increments given
by Theorem 2.3 (page 37). For the sake of convenience, we introduce the
notation

TdA
aj +ibj = v^— u0,

1 ( TdA TdA \ (2 111)

C^^ = 2 ( V ° ^ U 1 + V ^ U ° J '
Apj =Pj -p°j -eeh j = l,2,...,n,

where aj, bj, Cj, dj are real constants, and i is the imaginary unit. Then,
using expressions (2.88) and (2.89), we obtain

n n

A = Ao ± ^ (o , - + ibj)APj + J2(CJ + idj)^Pj + o(e). (2.112)

Equation (2.112) describes the increments of two eigenvalues A, when the
parameters pi,...,pn are changed under the assumption that s is small.
The inequality

||Ap|| = e | | e | | « l (2.113)

implies that all the increments Api, . . . , Apn are small for their absolute
values.

From expression (2.112) we see that when only one parameter, say the
parameter pi, is changed while the others remain unchanged (Apj = 0,
j = 2 , . . . , n), then the speed of interaction d\/dp\ is infinite at p\ = p\.
Indeed, following (2.112) we have

d A l / ^
dpi 2 y Pl - p°

Since ai + ibi is a complex number, which is generally nonzero, d\/dp1 ->•
oo as pi —¥ pi- We note that such behavior is typical for catastrophes,
see [Arnold (1992)].

(2.114)
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2.6.1 Real eigenvalue XQ

Let us consider the case of a real double eigenvalue Ao- In this case the
eigenvectors uo, vo and associated vectors ui, vi can be chosen real, and
in (2.112) we have bj = dj — 0, j = 1,. . . ,n. Let us fix the increments
Ap2,..., Apn and consider behavior of the interacting eigenvalues depend-
ing on the increment Api. Then, formula (2.112) can be written in the
form

A = Xo + X + iY + o(e), (2.115)

where

X + %Y = ±Jai (API + —) + ci (Api + — ) - — +/?. (2-116)

and a and f3 are small real numbers

n n

Q = ^ a j A P j ) /3 = ^ C i A P j . (2.117)
3=2 j=2

The real quantities X and F describe, respectively, the real and imaginary
parts of the leading terms in eigenvalue perturbation (2.112). If oi(Api +
a/ai) > 0, then equation (2.116) yields

X = ±Jai (API + -) + a (API + ^-)-^L+^ Y = 0. (2.118)
V V fli/ V ai J ai

If ai(Api + a/ai) < 0, then separating the real and imaginary parts in
equation (2.116), we get

V a l / Oi
(2.119)

Eliminating Api + a/a\ from equations (2.119), we obtain the parabola

X + —Y2 = p - °^ (2.120)
ai ax

in the plane (X, Y) symmetric with respect to the X-axis. Since a and
j3 are small numbers dependent on Apj, j = 2, . . . ,n , parabola (2.120)
gives trajectories of A on the complex plane with a change of the parameter
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Pi while the other parameters remain fixed. Notice tha t the constants a\

and c\ involved in equation (2.120) are taken at the initial point p 0 in the

parameter space.

First, let us assume tha t a\ > 0 and Ap2 = • • • = Apn = 0, which

implies a = p ~ 0. We deduce from equations (2.118)-(2.120) t ha t with

an increase of Api the eigenvalues come together along parabola (2.120),

merge to Ao at Api — 0, and then diverge along the real axis in opposite

directions. The general picture of strong interaction for a\ > 0 is shown

in Fig. 2.3a, where the arrows indicate motion of the eigenvalues as Api

increases. The case fli < 0 implies the change of direction of motion for the

eigenvalues.

a) b)
ImA, ^ ^ 1mA. ^ ^ -

< i > — » < i »

Fig. 2.3 Strong interaction of eigenvalues for real Ao-

If Ap2, • • •, Apn are nonzero and fixed, then the constants a and /3 are
generally nonzero. This means the shift of parabola (2.120) along the real
axis by £ = /3 - aci/oi; see Fig. 2.3b. We see that the double eigenvalue
does not disappear. It changes to Ao + £ + o(e) and appears at pi =
p\ -a/ai +o(e).

2.6.2 Complex eigenvalue Ao

Let us consider a complex eigenvalue Ao- In this case the vectors uo, ui,
v0, and vi are complex and, hence, the constants bj and dj in expression
(2.112) are generally nonzero. Keeping the term of order e1/2 in (2.112),
we obtain

A = Xo + X + iY + oie1^), (2.121)
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where

n

X + iY = ± Y,(ai + ibj)&Pj- (2-122)

Taking square of (2.122) and separating real and imaginary parts, we derive
the equations

X2-Y2 = J2ajAPj,
(2.123)

2XY = JTlbjApj.

Expressing the increment Api from one of equations (2.123) and substitut-
ing it into the other equation, we obtain

blX2-2alXY-b1Y2 =i, (2.124)

where 7 is a small real constant

n

j = Yl (aibi -aib^ APJ- (2-125)

In equation (2.124) we assume that a\ + b\ ^ 0, which is the nondegeneracy
condition for the complex eigenvalue Ao- Equation (2.124) describes trajec-
tories of the eigenvalues A, when only Api is changed and the increments
Ap2, • • •, A-Pn are fixed.

If Apj — 0, j = 2 , . . . , n, or if they are nonzero but satisfy the equality
7 = 0, then equation (2.124) yields two perpendicular lines

biX - (ai ± ̂ aj + bjj Y = 0, (2.126)

which intersect at the origin X = Y — 0 corresponding to A = Ao Two
eigenvalues X = Xo + X + iY + o(e1/2) approach along one of lines (2.126),
merge to Ao at Api = 0, and then diverge along another line (2.126), per-
pendicular to the line of approach; see Fig. 2.4, where the arrows show mo-
tion of A with increasing Api. Strong interaction in the three-dimensional
space (ReA^mA^x) is given by two identical parabolae lying in perpen-
dicular planes. Equations for these parabolae are obtained by substituting
expressions (2.126) into (2.123).
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Pl , - - ' " ' ' /• hnX ,

Y I \ ; R e A , / * ^
A !^5 /

/ ImA,

Fig. 2.4 Strong interaction of eigenvalues for complex Ao and 7 = 0.

y < 0 y > 0

ImX. // ImA, 1,

/ t'
Re A, I R e l

Fig. 2.5 Strong interaction of eigenvalues for complex Ao and 7 ^ 0 .

If j zfi. 0, then equation (2.124) defines two hyperbolae in the plane (X,Y)
with asymptotes (2.126). As Api increases, two eigenvalues come closer,
turn, and diverge; see Fig. 2.5. When 7 changes the sign, the quadrants
containing hyperbola branches are changed to the adjacent.

Example 2.7 As an example, we consider stability of vibrations of a rigid
panel of infinite span in airflow. It is assumed that the panel is maintained
on two elastic supports with the stiffness coefficients k\ and fc2 per unit
span. The panel has two degrees of freedom: a vertical displacement y and
a rotation angle tp, Fig. 2.6. It is supposed that the aerodynamic lift force
L is proportional to the angle of attack ip, the dynamic pressure of airflow,
and the width b of the panel:

2

L - cy^b<p. (2.127)
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Here, cy is the aerodynamic coefficient, p and v are the density and speed
of the flow, respectively. It is assumed that m is the mass of the panel per
unit surface. Damping forces are not involved in the model.

T 3Ab

y

" b *

Fig. 2.6 A panel on elastic supports vibrating in airflow.

Small vibrations of the panel in airflow are described by the differential
equations [Panovko and Gubanova (1965)]

y + any + au^0, ( 2 i 2 g )

<P + O.21V + a22<P = 0 ,

where

k\ +k2 hi — fa pv2

mb 2m y2m
(2.129)

6(*i - k2) 3(fei + hj) pv2
a21 = T5 1 a 2 2 — T &cy 7.—7 •

mb2 mb *2mb
We introduce the non-dimensional variables

ki-k2 Cypv2 „ y I hi + k2 /,-,-, On\

k=mTk7yq=2ik^yy=b>T = l-m^> (2-130)

where A; is a relative stiffness parameter changing in the interval - 1 / 2 <
k < 1/2, and q > 0 is a load parameter. Using these variables in equations
(2.128) and separating the time (y,y>)T = uexp(iwr), we arrive at the
eigenvalue problem (2.1) with

/ I k - q \
A = , A = w2. (2.131)

\12Jfe 3-3qJ
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The stability problem of motion of the panel depending on two parameters
p = (q, k) was studied in [Seyranian and Kirillov (2001)]. The characteris-
tic equation yields

A2 + (3g - 4)A + 12kq - 2>q - 12k2 + 3 = 0. (2.132)

Motion of the panel is stable if all the eigenvalues A are positive and simple.
Stability of the panel can be lost by divergence or by flutter, the boundaries
of which are given by A = 0 or double positive eigenvalues with single
eigenvectors, respectively. Setting the discriminant of (2.132) equal to zero,
we find

qf = l(l + 4k-2y/k(k + 2)y (2.133)

This is the boundary between flutter and stability domains; see Fig. 2.7,
where S and F denote the stability and flutter domains, respectively. It
follows from (2.133) that the flutter domain belongs to the half-plane k >
0. The other branch of the solution, with plus before the square root
in (2.133), corresponds to the boundary between flutter and divergence
domains [Seyranian and Kirillov (2001)], shown in Fig. 2.7 by dashed line.

S

s

F
2/3 ^

Fig. 2.7 The stability and flutter regions for the panel vibrating in airflow.

Let us take a point (k, g/) on the flutter boundary (2.133). For this point
we solve the characteristic equation (2.2) with (2.131), (2.133) and find the
double eigenvalue AQ = 2 — 3g//2 with the corresponding eigenvectors and
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associated vectors satisfying normalization conditions (2.65):

/ 2(g/ ~ k ) \ ( 0 \

uo= 3 * / ' 2 , u 1 = 2 ,

\ 1 / \2-3qf)

I 12k \ f 24fc A

Then, according to (2.111) we find the quantities

ai = - | (8* - 3g/ + 2), a2 = 12(2* - qf), a = - § , c2 = 0,
1 l (2.134)

&! = b2 = 0, di = d2 - 0,

and write approximate formula (2.112) for the eigenvalues in the form

A = 4 - 3g/ ± _b8k _ 3qf + 2)Ag + I2(2fc - qf)Ak - \/\q. (2.135)

This formula coincides with that of obtained from characteristic equation
(2.132) with first order Taylor expansion of the terms under and out of the
square root. Equation of parabola (2.120) takes the form

y 2 + (8ifc - 3qf + 2)X = 12(qf - 2k)Ak. (2.136)

Due to expressions (2.133) and (2.134) the constant a-y is negative for 0 <
k < 1/2. This means that for Ak — 0 with an increase of q in the vicinity of
the flutter boundary two positive eigenvalues A approach each other, merge
to Ao = 2 — 3g//2, become complex conjugate (nutter) and diverge along
parabola (2.136). If Ak ^ 0 is small and fixed, then there is a shift of the
double eigenvalue by £ = -aiC\ Akja\ = 12(g/ - 2k)Ak/(8k - 3g/ + 2) and
a shift of the parameter q at which the eigenvalue becomes double (flutter
boundary)

qf(k + Ak) w qf{k) - a2Ak/ai = qf(k) + ^ ^ ^ Afe. (2.137)

Notice that these shifts are negative or positive depending on the sign of
2k-qf, which is negative for 0 < k < 2/V3— 1 and positive for 2/V3— 1 <
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k < 1/2. At k = 2/V3 - 1 the function qf(k) takes the minimum, see
Fig. 2.7.

2.7 Bifurcation of nonderogatory eigenvalue of arbitrary
multiplicity

Let po be a point in the parameter space, where the matrix Ao = A(po) has
a nonderogatory eigenvalue of algebraic multiplicity k. The geometric mul-
tiplicity of this eigenvalue equals kg = 1 (there is a single eigenvector). The
corresponding right and left Jordan chains u 0 , . . . , Uk-i and v 0 , . . . , Vjt_i
satisfy equations (2.4), (2.32) and normalization conditions (2.35). Under
perturbation of the parameter vector along a curve p = p(s), p(0) = po,
the eigenvalue Ao and eigenvector u0 take increments that can be expressed
in the form of Newton-Puiseux series

A = Ao + ellk\x + e2'k\2 + e3/fcA3 + • • • ,
(2.138)

u = u0 + e1/*wi + £2/fcw2 + £3/fcw3 + • • •

These expansions are valid if the leading term Ai is nonzero (nondegenerate
case) [Vishik and Lyusternik (I960)]. To choose the eigenvector u uniquely,
it is convenient to impose the normalization condition as

V f c _ H i = l , (2.139)

which is satisfied at e = 0 due to conditions (2.33) and (2.35).
Substituting expansions (2.72) and (2.138) into eigenvalue problem (2.1)

and collecting coefficients of equal powers of s, we get the chain of equations

A o u o = Aouo,

Aowi = Aowi + Aiu0,

(2.140)
A0Wfc_i = Aowfc_i H h Ai;_2Wi + Afc_iuo,

A0Wfc + Aiu 0 = Aowfc H 1- Afc_iWi + Xku0,

Normalization condition (2.139) with expansion (2.138) for the eigenvector
yield

vf_1wi = 0, i = 1,2,... (2.141)
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First k equations in (2.140) can be solved using equations of the Jordan
chain (2.4) and relations (2.33), (2.35), (2.141). As a result, we find

wi = A].ui,

w2 = A^u2 + A2ui,
(2.142)

w A _ ! = A f " 1 u f c _ 1 + --- ,

where dots in the last expression denote a linear combination of the vectors
u&_2,... , u i . Substituting relations (2.142) into the (k + l)th equation of
(2.140), multiplying it by v^ from the left, and using relations (2.33) and
normalization conditions (2.35), we find

A* = vjf A l U o . (2.143)

With the use of expression (2.73) for the matrix Ai , we get

T h e o r e m 2.5 Let \Q be a nonderogatory eigenvalue of the matrix Ao
with multiplicity k. Then bifurcation of the eigenvalue Ao and correspond-
ing eigenvector u0 under perturbation of the parameter vector along curve
(2.67)- (2.69) is given by

A = A0+£1/feA1+o(£1/fe),
(2.144)

u = u0 + e1/*:AiUi + o(e1/fc),

where Xi takes k different complex values of the root

^ - ̂ |t(̂ -.)-- <2 »=>
R e m a r k 2.1 It is easy to see that expression (2.145) can be written in
the form

Ai = [ E (v°T|^u°) e ' / ( v fo- i ) . (2-146)

which is independent on the normalization condition for the left eigenvector

v0.
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In one-parameter case formulae (2.144), (2.145) yield

A = Ao + ( / ( v o T ^ » o ) Ap + o{Apl/k), (2.147)

where Ap = p — po- With a monotonous increase of the parameter p, k
eigenvalues collide at the point Ao on the complex plane at equal angles
2ir/k, and then diverge along bisectors of these angles; see Fig. 2.8. The
angles between adjacent directions of approach and divergence of the eigen-
values are equal to njk. Derivatives of the eigenvalues with respect to p
are of the order O(Ap(1~k^k) and tend to infinity as p -t p0.

imX I

ReT

Fig. 2.8 Bifurcation of a nonderogatory eigenvalue with multiplicity k.

If Ai is nonzero, we can continue solving equations (2.140) and (2.141)
to get higher order approximations of the eigenvalues and eigenvectors.

Example 2.8 Let Ao be a triple nonderogatory eigenvalue and assume
that the direction e in the parameter space satisfies the nondegeneracy
condition

E(v0T^uo)e^0. (2.148)

Then, the eigenvalue Ao splits into three simple eigenvalues under pertur-
bation along curve (2.67). These eigenvalues are given by the formula

A = Ao + e1/3A! + e2'3\2 + e\3 + o(e), (2.149)
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where Ai takes three different complex values of the cubic root

If we continue solving equations (2.140), (2.141), we find coefficients A2 and
A3 in the form [Mailybaev and Seyranian (1999b)]

1 A / T 9 A TdA \

Aa = 3Argr°^u i + V i^u oJe*'
(2.151)

l A / TdA TdA TdA \
A3 = - > v^ —-u2 + v:J — m + v^ —- u0 ej.

3 t=i ^ 5 p i 9 p i 5 p i '
If Ai = 0 (degenerate case), then expansions (2.138) are, in general,

invalid. In this case the eigenvalues are given by Newton-Puiseux series
in different fractional powers of e. Particular type of the series can be
determined by means of the Newton diagram applied to the characteristic
equation of the matrix A(p); see Section 4.5 for more details.

Example 2.9 Let Ao be a triple nonderogatory eigenvalue and assume
that the direction e in the parameter space satisfies the conditions

v^ Aiuo = 2 ^ vo -5— uo I e» = 0,

(2.152)
T rp S—^ ( rp OA rp 8 A \ , „

v^ AiUi + vf AiU0 = 2 ^ vo ^ ~ u i + v i "5— uo e» 7̂  0-

Then, expansion (2.149) is invalid, since Ax = 0 is standing in the denom-
inator of the coefficient A2 (2.151). In this case the triple eigenvalue Ao

splits into three simple eigenvalues such that two eigenvalues are given by
the expansions in powers of e1//2

A = Ao + £1/2fi! + e\±2 + £3 /Vs + • • • , (2.153)

and the third eigenvalue is represented by expansion in powers of e

A = Ao + evx + E2V2 -\ (2.154)

The corresponding eigenvectors are given by analogous expansions. Substi-
tuting these series into the eigenvalue problem, we get a chain of equations

(2.150)
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for the unknown coefficients. Solving these equations yields [Mailybaev and
Seyranian (2000a)]

_ V J T C A I G ^ A I - A 2 ) u 0

V ^ A I U I H-vf Aiu0

, nr. , T . (2.155)
fii = ± y v o A i u i + v i Aiuo, v '

M2 = ~(-^i +v^Aiu 2 + vf Aiui +v^Aiu0) ,

where G2 = Ao - Aol + vov^ is a nonsingular matrix.

2.8 Bifurcation of double semi-simple eigenvalue

Let us consider the two-parameter matrix family

A ( p ) = C f t P o ) ' P = (P1'P2)- (2'156)

Eigenvalues of the matrix A(p) are

\=Pl±^pl+pl. (2.157)

At po = 0 the matrix Ao = A(p0) has the semi-simple double zero eigen-
value. We see that eigenvalues (2.157) are not differentiate functions of the
parameters at po. Nevertheless, leaving a single parameter, for example,
setting p2 = 0, we get two differentiate functions for the eigenvalues

A = 0, A = 2pi. (2.158)

Thus, directional derivatives of the semi-simple eigenvalue exist.
Now let us consider an arbitrary family of matrices A(p). Let po be a

point in the parameter space, where the matrix Ao = A(p0) has a semi-
simple double eigenvalue Ao- There are two linearly independent eigenvec-
tors ui and u2 satisfying the equations

A0U], - Aoui, A0u2 = A0u2. (2.159)

Two left eigenvectors satisfy the equations

vf Ao = Aovf, v^Ao = Aov^, (2.160)
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and can be uniquely determined for given ui , 112 by the normalization
conditions

vf m = v^u2 = 1, vf u2 = vjui = 0. (2.161)

Assuming perturbation of the parameter vector along curve (2.67), we
can express perturbations of the eigenvalue Ao and corresponding eigenvec-
tors in the form of power series [Vishik and Lyusternik (I960)]

A = Ao +eAj +£2A2 + --- ,
(2.162)

u = w0 + ewi + £2w2 + • • •

Notice that any linear combination of the eigenvectors ui and u2 is also an
eigenvector. This means that the zero order term w0 in the expansion for
the eigenvector u (the limit value of the eigenvector u as e —> 0) is unknown
a priori. Substituting expansions (2.72) and (2.162) into eigenvalue problem
(2.1), we find

Aowo = Aowo,

A0W! + Aiw 0 = A0W! + A! w0, (2.163)

From the first equation in (2.163) we see that wo is an eigenvector corre-
sponding to Ao and, hence, it can be represented in the form

w0 = 71 ui + 72u2, (2.164)

where 71 and 72 are scalar coefficients. Multiplying the second equation in
(2.163) by Vj" and vj from the left, we find two equations

vf A l W o = A.vfwo, ^ i g 5 )

vfAiWo = Aivjwo,

where relations (2.160) were used. Substituting expression (2.164) into
(2.165), we find

/ v f A l U l v f A l U 2 W 7 l \ = / 7 l \ ( 2 i 6 6 )

yvl 'AiUj v ^ A i u 2 / V72/ V72/

A nontrivial solution 71, 72 of equation (2.166) exists if and only if Ai is an
eigenvalue of the 2 x 2 matrix standing in the left-hand side.
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The obtained results provide the following description of bifurcation of
a double semi-simple eigenvalue.

Theorem 2.6 Let Ao be a semi-simple double eigenvalue of the matrix
Ao = A(po). Then bifurcation of the eigenvalue Ao under perturbation of
the parameter vector along curve (2.67) is given by

A = A + eAi + o(e), (2.167)

where two values of Ai are the eigenvalues of the 2 x 2 matrix

/A ( TdA \ A / T8A \ \

(2,168)
^ / T<9A \ r-> / T 9A \
/ ^ V2 "H~ui e» Z^ V2 ^— U2 ej

Vtrv dpi ) fev ^ y y
TAe corresponding eigenvectors are found in the form

u = 7 iu i+7 2 u 2 + o(l), (2.169)

where (71,72)^ ore ifte eigenvectors of matrix (2.168) corresponding to X\.

If matrix (2.168) has two distinct eigenvalues, then the double Ao splits
into two simple eigenvalues under the perturbation. The eigenvalue Ao

may remain double, which implies that Ai is a double eigenvalue of matrix
(2.168). In the latter case, if the double Ai is nonderogatory (has a single
eigenvector (7i,72)T), then perturbed double eigenvalue (2.167) becomes
nonderogatory with single eigenvector (2.169). If the double eigenvalue Ai is
semi-simple (matrix (2.168) is equal to the 2 x 2 identity matrix multiplied
by Ai), then the perturbed eigenvalue (2.167) remains double and semi-
simple.
Example 2.10 Let us consider the two-parameter matrix family

/ P2 - 5 pi - 4 8 \
A ( p ) = \2Pl-p2 7 3j>2 , P = ( P I , P 2 ) . (2.170)

V pi - 12 p2 - 4 15 /

At po = 0 the matrix Ao has the semi-simple double eigenvalue Ao = 7
with the eigenvectors

(2.171)



Bifurcation Analysis of Eigenvalues 57

satisfying normalization conditions (2.161). Then, by Theorem 2.6, the
eigenvalue Ao takes increment (2.167), where two values of Xi are the eigen-
values of the matrix

( ~4e2 2 e i + 5 e 2 \
U 2 - 2 e i o ) • (2-172)

If matrix (2.172) has distinct eigenvalues, then the double Ao = 7 splits into
two simple eigenvalues

A = 7 + eAi +o(e), (2.173)

where

Ai = -2e2 ± ^ / l4e2-6e i e 2 -4e? . (2.174)

To keep the eigenvalue double under the perturbation, it is necessary that
matrix (2.172) has a double eigenvalue Ai. Equating the discriminant of
the characteristic equation for matrix (2.172) zero, we find

14ê  - 6e!e2 - 4e? = 0. (2.175)

This equation has two solutions

14e2 = (3±v/65)e1, (2.176)

which determine directions in the parameter space, along which the per-
turbed eigenvalue remains double. It can be checked that matrix (2.172)
has a double eigenvalue with a single eigenvector for directions (2.176).
Therefore, though the semi-simple eigenvalue Ao remains double under the
perturbation along directions (2.176), it becomes nonderogatory (only one
eigenvector remains).

2.9 Weak interaction of eigenvalues

In this section we study multi-parameter behavior of two eigenvalues that
merge and form a semi-simple double eigenvalue Ao at po. The eigenvalue Ao
has two right eigenvectors ui, u2 and two left eigenvectors vi, v2 satisfying
normalization conditions (2.161). Let us consider a perturbation of the
parameter vector p = po + Ap, where Ap = ee with a direction e in the
parameter space and a small perturbation parameter e. By Theorem 2.6,
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the eigenvalue Ao and corresponding eigenvector uo take increments, which
can be given in the form of expansions

A = Ao + eAi + e2A2 + • • • ,
(2.177)

u = w0 + ewi + e2w2 + • • • ,

where

w0 = 71U1 + 72u2, (2.178)

and the coefficients 71, 72 are determined from the equation

\v jA iUi v j A l U 2 / \ 7 2 / \ 7 2 /

The coefficient Aj is an eigenvalue of the 2 x 2 matrix standing in the
left-hand side. Two eigenvalues Aj of this matrix and the corresponding
eigenvectors (7i,72)T determine leading terms in expansions (2.177) for
two eigenvalues A and corresponding eigenvectors u, which appear due to
bifurcation of the double semi-simple eigenvalue Ao.

Introducing the notation

X + iY = e\lt (2.180)

where X and Y are, respectively, the real and imaginary parts of the term
e\\, expansion for the eigenvalue (2.177) can be written in the form

\ = \0 + X + iY + o(e). (2.181)

According to relations (2.73) and (2.179), X + %Y is an eigenvalue of the
2 x 2 matrix

n fell fl2\

j=l \Jj Jj /

where

/f=v^u/ (2.183)

with the derivative evaluated at p0. Solving the characteristic equation for
matrix (2.182), we find

n n

X + iY = YldJ^PJ ± , E hJkAPjAPk, (2-184)
} = X \J j,k=l

(2.182)

(2.179)

11

21 22 pj,

V VA1 A1u1 u2T T
1 11 1

1=

j j

j
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where

_ i}1+ff . ._ V}1 - fpui1 -/?), /f/fc2i+/f/r
9j — 5 ' ik ~ 4 ' o '

(2.185)
Notice that hjk = hkj for any j and A;. Expression (2.184) determines
approximation of eigenvalues (2.181) as the parameter vector p is changing
under the assumption that ||Ap|| is small. The coefficients gj and hjk in
this expression depend on the left and right eigenvectors, corresponding to
the eigenvalue Ao, and first order derivatives of the matrix A with respect
to the parameters taken at po-

2.9.1 Real eigenvalue Ao

Let us consider a real semi-simple eigenvalue Ao. In this case we can always
choose real eigenvectors ui, U2, vi, V2 and, hence, the coefficients fkl,
gj, and hjk in expressions (2.183), (2.185) can be chosen real. Expressing
the square root from equality (2.184) and taking square of the obtained
relation, we find two equations for the real and imaginary parts as follows

i n \ 2 n

(x-J^9j Aft- ) - Y2 = ^ hjk APj Apk,
^ j=i ' j,k=i

(2.186)

2(x-J29j^Pj)y = 0.
V 3 = 1 /

The second equation requires that X — Y^j=i 9j^Pj or F = 0. Therefore,
we get two independent systems

(
n \ 2 n

X - Y^dAPj) - £ hjkAPjApk, Y = 0 (2.187)
3=1 ' j,k=l

and
n n

X = YJ93^P3, Y2 = - E hikAPiAP« • (2-188)
3=1 j,k=l

Let us study behavior of eigenvalues depending on the parameter pi,
when other parameters p2,- • • ,pn are fixed. First, let us put the increments
Ap2 = • • • = Apn - 0. Then, equations (2.187) and (2.188) take the form

(X - 9lAPl)2 = huApl Y = 0, (2.189)

(2.187)



60 Multiparameter Stability Theory with Mechanical Applications

X = 9lAPu Y2 = -hu&p{. (2-190)

Assuming that /in ^ 0 (the nondegenerate case), only one of systems
(2.189) or (2.190) has nonzero solutions. If hu > 0, then system (2.190)
has only zero solution X = Y — Apx — 0, and system (2.189) yields

X = (g1±y/h^)Ap1, Y = 0. (2.191)

Expressions (2.191) describe two real eigenvalues (2.181), which cross each
other at the point Ao on the complex plane as Apx changes from negative
to positive values; see Fig. 2.9 (r'), where the arrows show motion of the
eigenvalues with increasing Api. If hu < 0, then system (2.189) has only
zero solution, and system (2.190) yields

X = 9lAPl, Y = ±v^nT1Ap1. (2.192)

These formulae describe two complex conjugate eigenvalues crossing at the
point Ao on the real axis with a change of Api; see Fig. 2.9 (r").

/ \
r"

° t l ; > " A
Fig. 2.9 Weak interaction of eigenvalues for Ap2 — • • • = A p n = 0.

From expressions (2.191) and (2.192) we see that the interaction occurs
at a plane in the three-dimensional space (ReA,Im A,pi), and the speed
of interaction dX/dpi remains finite, see Fig. 2.10. Such interaction of two
eigenvalues, caused by the appearance of a double semi-simple eigenvalue,
we call weak.

Now, let us consider the case when the increments Ap2,--.,Apn are
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Pi J^

Fig. 2.10 Weak interaction of eigenvalues in the space (Re A,Im A,pi).

small and fixed. Then, using the notation

n n

J2 9j&Pj = 9iApi + a, Y, hjkApjApk = hu {APl - 6)2 + V, (2.193)
3 = 1 j,k=l

where a, 6, and ip are small real constants dependent on Ap2, • • •, Apn

a = ^ ffjApj, (5 = - ^ }^~APj> ^ = Yl hjk&Pj&Pk - hnS2,
3=2 j=2 U j,k=2

(2.194)

equations (2.187) and (2.188) take the form

(X-a-g1APl)2-h11(Ap1-5)2=ij, Y = 0 (2.195)

and

Y2 + hn(APl-5)2 = -Tp, X = a + giAPl. (2.196)

Solutions of systems (2.195) and (2.196) depend qualitatively on the signs
of the constants hu and ip. Under the nondegeneracy conditions hu ^ 0
and if) ̂  0 there are four possibilities.

Case r'+ (hu > 0, ip > 0). System (2.195) determines two hyperbolae
in the plane (Api,X); system (2.196) has no solutions; see Fig. 2.11. Two
simple real eigenvalues approach, and then diverge as Api is changed; a
double eigenvalue does not appear; see Fig. 2.12.

Case r'_ (hu > 0, ip < 0). System (2.195) determines two hyperbolae in
the plane (Api,X); system (2.196) defines an ellipse in the plane (Api,Y);

Im

Re
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X Y

^ 0 APl 0 APl

X , Y

r'_ — — ^ — ^ ^ ( ^

X Y

Fig. 2.11 Weak interaction of eigenvalues for small Ap2, • • •, Apn.

see Fig. 2.11. The hyperbolae and ellipse have two common points

Apf = 6±\[^, X± = a + g1Ap±, Y* = 0. (2.197)
V «n

With increasing Api two simple real eigenvalues approach, interact strongly
at Apj~ = S — A/—ip/hn, become complex conjugate, interact strongly again
at Apf — 6+ yj—ip/hu, and then diverge along the real axis; see Fig. 2.12.
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IinX r: r'l r'J_

1 ^^7\A
Fig. 2.12 Weak interaction of eigenvalues on the complex plane for small Ap2, • • •, Apn.

Eliminating Api from equation (2.196), we obtain the ellipse on the complex
plane

Y* + h n ( X - a - ^ S ) 2 = -Tp (2.198)

shown in Fig. 2.12.
If we plot the eigenvalues in the (ReA,Im.A,pi) space, we observe a

small elliptic bubble appearing from the point (Ao,0,p°); see Fig. 2.13.
This bubble is placed in the plane perpendicular to the plane of the original
interaction.

At points (2.197) the double real eigenvalues

A± = Ao + X± + o(e) (2.199)

appear. It is easy to show that each of these eigenvalues has a single
eigenvector. Indeed, if eigenvalues (2.199) were semi-simple, then X± have
to be semi-simple eigenvalues of 2 x 2 matrix (2.182) at Api = Apt • Hence,
the matrix (2.182) becomes

/X±+ &(*&-Ap±) fl2(APl-Apf) \

{ f? (APl - Apf) X± + ft2 (Aft -Apt))'

Using this matrix with expressions (2.185) and (2.193), we find

n

hn(Api - S)2 + ip = J2 hijApjApk

j>k=1 (2.201)

= ( ( A l l~ / l 2 2 ) 2 + A12/:21) (Aft - Apt)2 = hn(APl - Apt)2

and, hence, ip = 0. But this is the contradiction to the assumption that
ip < 0. Therefore, two interactions at points (2.197) are strong and follow

(2.200)
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P\

Fig. 2.13 Weak interaction of eigenvalues for small Ap2, • • • > Apn in cases r'_ and r'!_.

the scenarios described in Section 2.6.
Case r'+ (fin < 0, ip > 0). System (2.195) determines an ellipse in

the plane (Ap\,X); system (2.196) defines two hyperbolae in the plane
(Api,Y); see Fig. 2.11. The hyperbolae and ellipse have two common
points (2.197), where double real eigenvalues (2.199) appear and cause
strong interactions of eigenvalues. Therefore, with a monotonous change
of Api two complex conjugate eigenvalues approach, interact strongly at
Api = 5 — \/—ip/hii, become real, interact again at Apf = 6+ \Z—ip/hn,
then become complex conjugate and diverge; see Fig. 2.12. For this case
equation (2.198) gives hyperbolae on the complex plane. The behavior
of eigenvalues in the three-dimensional space (ReA,Irn A,pi) is shown in
Fig. 2.13, where we can see a small elliptic bubble appearing in the plane
Im A = 0 perpendicular to the plane of the original interaction.

Case r'!_ [h\\ < 0, ip < 0). System (2.195) has no solutions; system
(2.196) determines two hyperbolae in the plane (Ap\,Y) symmetric with
respect to the Apj-axis; see Fig. 2.11. Two complex conjugate eigenvalues
approach, and then diverge with increasing Api; a double eigenvalue does
not appear; see Fig. 2.12. Notice that hyperbolae (2.198) change the vertical

Re

Im

Re

Im
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angles, where they appear, compared to the case r".
We see that variations of the parameters Ap2, • • •, Apn change a picture

of weak interaction in two ways: either the double semi-simple real eigen-
value Ao disappears and simple eigenvalues move along hyperbolae as Api
changes, or the double semi-simple eigenvalue Ao splits in two double eigen-
values with single eigenvectors, which leads to a couple of successive strong
interactions with appearance of a small bubble in the space (Re A, Im A, p\).

2.9.2 Complex eigenvalue Ao

Finally, we consider the case when a double semi-simple eigenvalue Ao is
complex. In this case the eigenvectors uj , u2, vi, v2 and the coefficients
fjl, gj, hjk are complex. If Ap2 = • • • = Apn = 0, then expression (2.184)
yields

X + iY = (gi± 0h7)Api, (2.202)

where g\ and hn are complex numbers. With a change of Api two eigen-
values (2.181) cross each other at the point Ao on the complex plane; see
Fig. 2.9 (c).

Assuming that the increments Ap2 ,•••, Apn are small and fixed, we find
from (2.184):

X + iY = a + 5i Api ± y/h^^/(APl - S)2 + ij/hn, (2.203)

where a, 8, and ip are small complex numbers denned by expressions (2.194).
If we assume that the second term under the square root in (2.203) is much
smaller than the first term, we deduce the formula

X + iY = a + g1S + g1 (APl - <5) ± v^iT ( W -6) + ——^ jr)
V 2hu(Api -b)J

= a + g!6 + (gx ± y/h^)(APl - S) + o{Ap1 - 5)
(2.204)

showing that the main directions of eigenvalues on the complex plane before
and after the weak interaction remain the same as for unperturbed case
(2.202).

The expression under the square root in (2.203)

z = (Api - 5)2 + ip/hu (2.205)

defines a parabola on the complex plane with the implicit parameter Api;
see Fig. 2.14 (in the case Im<5 = 0 the parabola degenerates to a ray).
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Computing points z\ and Z2 of the parabola belonging to the imaginary
axis, which is perpendicular to the axis of the parabola, we find

v = z1z2= 4(Im S)4 - 4(Im 5)2Re ^- - (Im -^) E R. (2.206)
"ii V "-li/

We assume that rj ^ 0, which is a nondegenerate case. This means that
z 7̂  0 for all Api and, hence, two values of X + iY given by expression
(2.203) are different. As a result, eigenvalues (2.181) are different and the
double eigenvalue disappears.

Imz

( 0 Rez_

Fig. 2.14 Image of the function z(Ap%) with monotonous change of Api.

Im A, Im X

7 f
ReX ~l ReX

Fig. 2.15 Weak interaction of eigenvalues for small Ap2, • • •, A p n .

If 77 > 0, then two purely imaginary points z\ and z?, lie at different
sides of the origin, i.e., the origin belongs to the interior of the parabola.
In this case z makes a turn around the origin as Apt changes. This means
that eigenvalues (2.181) approach, and then diverge without a change of
direction as shown in Fig. 2.15 (c+). If rj < 0, then the origin lies outside
the parabola (this condition remains valid, when the parabola does not
intersect the imaginary axis). As a result, eigenvalues (2.181) approach,
and then diverge with a change of direction as shown in Fig. 2.15 (c_).
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We see that variations of the parameters Ap2, • • •, Apn destroy a double
semi-simple complex eigenvalue. A picture of weak interaction can change
in two ways: either eigenvalues follow the same directions after passing the
neighborhood of Ao, or the eigenvalues interchange their directions. Behav-
ior of the eigenvalues in the neighborhood of Ao can be rather complicated
due to the square root of the complex expression in formula (2.203).

Example 2.11 Let us consider a linear conservative system

Mq + Pq = 0, (2.207)

where q € Em is a vector of generalized coordinates; M and P are sym-
metric positive definite real matrices of size m x m smoothly dependent
on a vector of two real parameters p = (j>i,P2)- Seeking a solution of this
system in the form q = uexp(iwt), we obtain the eigenvalue problem

Pu = w2Mu, (2.208)

where ui > 0 is a frequency and u is a mode of vibration. Denoting

A = M~1P, X = ui2, (2.209)

we can write equation (2.208) in standard form (2.1).
Let us consider a point p0 in the parameter space, where the matrix

Ao = M ^ P o has a double eigenvalue Ao = UJQ. Since the matrices Mo and
Po are symmetric, the multiple eigenvalue Ao is always semi-simple. Let ui
and U2 be the right eigenvectors (modes) corresponding to the eigenvalue
Ao. It is easy to see that the left eigenvectors are

vx = Moui, v2 = M0u2. (2.210)

Normalization conditions (2.161) take the form

uf Moui = u^M0u2 = 1, uf Mou2 = u^MoUi = 0. (2.211)

Using expressions (2.209) and (2.210) in formula (2.183), we get

tf^-O"- (2212)
where fj2 = f?1 due to the symmetry of the matrices M and P. With
expressions (2.185) we obtain

fl l i f22 Cf 11 f22\2

9\ — « ' n ~ 1 ^ Ui J > °- (2.213)
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Assuming that h\\ ^ 0, bifurcation of the double eigenvalue Ao is given
by expression (2.191) for the case Ap2 = 0. This bifurcation is of the
type r', see Fig. 2.9, where Ao splits into two real eigenvalues for small
increments Ap\. This agrees with the general theory, which says that all
the frequencies of the conservative system under consideration are real.

If Ap2 is nonzero and small, then from expression (2.194) we have

fii I ill

I fXX f22\(fll f 2 2 \ , A f l 2 f l 2

s = Jfi -A )(/a^-/a) + 4/1/a Ap2; ( 2 2 1 4 )

(ffU f22\fl2 (fll f22\fl2\2

V> = {{h ~ h ) h T {h ~ h )h ] (Ap2)2 > 0.
4/in

Hence, behavior of the eigenvalues with a change of Api is described by
two hyperbolae (2.195), see Fig. 2.11 and Fig. 2.12 (r'+). Two real eigen-
values approach, turn at some distance from each other, and diverge with
a monotonous change of Api.

The frequencies

w = y/X = Jul + X + iY + o(e) = OJO + X J~ % Y + o(e) (2.215)

have the same type of behavior in the neighborhood of wo- We see that
a small perturbation of the second parameter Ap2 destroys a picture of
weak interaction in such a way that the double frequency disappears. This
agrees with the results by [Wigner and von Neumann (1929)], who studied
crossing of energy levels in quantum mechanics.

2.10 Bifurcation of semi-simple eigenvalue of arbitrary
multiplicity

Let Ao be a semi-simple eigenvalue of the matrix Ao with multiplicity k.
There are k linearly independent right eigenvectors u i , . . . , u& and left
eigenvectors vi,...,Vfc. We assume that the left and right eigenvectors
satisfy the normalization conditions

v f U j = % i,j = l,...,k, (2.216)
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where Sij is the Kronecker delta. Under perturbation of the parameter vec-
tor along curve (2.67) the eigenvalue Ao bifurcates. The perturbed eigen-
values and corresponding eigenvectors can be represented in the form of
series

A = Ao + eAi + £2A2 + • • • ,
(2.217)

u = w0 -I- ewj + e2w2 + • • •

Since any linear combination of the eigenvectors u i , . . . , u& is also an eigen-
vector, we do not know a priori the vector wo, which is a limit value of the
eigenvector u as e ->• 0. Substituting expansions (2.72) and (2.217) into
the eigenvalue problem, we find the equations

Aowo = A0w0,

Aowi + Aiw 0 = AoWj + Aiw0, (2.218)

The first equation says that wo is an eigenvector corresponding to Ao, i.e.,

w o = 7 i U i + -'- + 7fcU* (2-219)

with some coefficients 7 1 , . . . , 7*. Multiplying the second equation of (2.218)
by vf from the left and using equation for the left eigenvector v;, we find

vf Aiw 0 = Aivfw0. (2.220)

Using expression (2.219) and normalization conditions (2.216) in equation
(2.220) for i = 1 , . . . , k, we obtain

F : = A j : , (2.221)

\ 7 * / \ 7 * /

where F = \f%j\ is a k x k matrix with the elements

A, = vf Axu, = £ (v?|£u,) e,. (2.222)

A nonzero solution (71, • • •, 7/t)T exists if and only if Ai is an eigenvalue of
the matrix F. Therefore, k eigenvalues of the matrix F determine expan-
sions for k eigenvalues (2.217) appearing due to bifurcation of the multiple
eigenvalue AQ.
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Theorem 2.7 Let Ao be a semi-simple eigenvalue of multiplicity k for
the matrix Ao = A(po). Then bifurcation of the eigenvalue Ao under per-
turbation of the parameter vector along curve (2.67) is given by

X- Ao+eAi +o(e), (2.223)

where k values of Ai are the eigenvalues of the kxk matrix F with elements
(2.222). The eigenvectors corresponding to eigenvalues (2.223) are

where (71 , . . . ,jk)T are the eigenvectors of the matrix F corresponding to
the eigenvalues Ai.

Remark 2.2 Bifurcation of the semi-simple eigenvalue Ao can be de-
scribed in the form independent on normalization conditions (2.216). In
this case, the coefficients X\ and 71 , . . . ,7* are found as the eigenvalues
and eigenvectors of the generalized eigenvalue problem

(2.225)

where F = [/y] and N = [ny] are k x k matrices with the elements (2.222)
and riij — v f u j .

2.11 Bifurcation of multiple eigenvalues with arbitrary Jor-
dan structure

Bifurcation of multiple eigenvalues and corresponding eigenvectors is more
complicated in the case of an arbitrary Jordan structure. It should be
noted that multiple eigenvalues that are neither nonderogatory nor semi-
simple are very rare in matrix families describing real-world systems. Per-
turbation theory for multiple eigenvalues of an arbitrary Jordan structure
in one-parameter case can be found in [Vishik and Lyusternik (1960);
Lidskii (1965); Moro et al. (1997)], which can be applied to the multi-
parameter case using the method of perturbation along smooth curves in
the parameter space. This theory is well developed for perturbations satis-
fying a specific nondegeneracy condition, which is not valid for all directions
in the multi-parameter space. The general consideration would require us-

(2.224)
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ing the Newton diagram applied to the characteristic polynomial of the
matrix A(p); see Section 4.5.

2.12 Generalized eigenvalue problem

In this section we consider a generalized eigenvalue problem

Bu = ACu, (2.226)

where B and C are real nonsymmetric mxm matrices smoothly dependent
on a vector of real parameters p = (pi,.. . ,pn); A is an eigenvalue and u is
an eigenvector. It is assumed that the matrix C is nonsingular. There are m
eigenvalues of the generalized eigenvalue problem, counting multiplicities,
which are roots of the characteristic equation

det(B - AC) = 0. (2.227)

Multiplying equation (2.226) by the matrix C"1 from the left, we get
the standard eigenvalue problem

Au = Au (2.228)

for the matrix

A = C~1B. (2.229)

Hence, eigenvalues and eigenvectors of the generalized eigenvalue problem
coincide with those of the eigenvalue problem for matrix (2.229).

The left eigenvector for the generalized eigenvalue problem is defined by
the equation

vTB = AvTC. (2.230)

Introducing the vector

v = CTv, (2.231)

we find

v r A = AvT. (2.232)

Therefore, expression (2.231) connects the left eigenvectors of the general-
ized and standard eigenvalue problems.
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2.12.1 Simple eigenvalue

Let us consider a simple eigenvalue Ao of the generalized eigenvalue prob-
lem at p = po with corresponding right and left eigenvectors u0 and v0

satisfying the equations

B o u o = AoCouo, V(fB0 = Aov^Co, (2.233)

where B o = B(p0) and Co = C(p0).

Theorem 2.8 A simple eigenvalue Ao of generalized eigenvalue problem
(2.226) is a smooth function of the parameter vector, and its derivative with
respect to parameter pi at p 0 is given by the expression

ls=v»(frA°iW^c°»°»' (2234)
where uo and v0 are the right and left eigenvectors determined by equations
(2.233). The corresponding eigenvector u(p) can be chosen as a smooth
function of p with the derivative given by the expression

dn r-i(d\ dC 0B\

Wi=G° teCo + A o ^ " ^ J U 0 ' (2-235)
where

Go = B o - AoC0 + vov^Co (2.236)

is a nonsingular matrix-

Theorem 2.8 is proven similarly to Theorem 2.2 (page 32). We differen-

tiate equation (2.226) with respect to the parameter p;:

(Bo - AoCo)|^ = f^-Couo - I ^ - A 0 ^ ) u0. (2.237)

Then expression (2.234) follows from (2.237) after multiplication by VQ"
from the left and use of (2.233). For determining the eigenvector u we
impose the normalization condition

v^Cou = const. (2.238)

Differentiating (2.238) with respect to pi, we obtain

v o T C o | j = 0 . (2.239)
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Then expression (2.235) is obtained when we add (2.239) multiplied by v0

from the left to equation (2.237).

Example 2.12 Let us consider the one-parameter generalized eigenvalue
problem (2.226) with the matrices

/ p - 2 1 6 \ / p + 1 2 3 \

B(p)= 2 p - 3 2 2 , C(p) = I 2 3 2 p + l . (2.240)

\ 2 p - l 1 3p/ \ 1 1 4p /

At po = 0 there is the simple eigenvalue Xo — i with the right and left
eigenvectors

U ° = l\ * ' v o = I - 3 - 3» I . (2.241)
\0j V 7 + 5* /

By Theorem 2.8, we find that the eigenvalue Ao and corresponding eigenvec-
tor uo depend smoothly on the parameter p, and their first order derivatives
are equal to

/ - 1 5 + 20A

%-*+*• 1 4 - » H - (2"42)

2.12.2 Semi-simple eigenvalue

Using Theorem 2.7 (page 70) with matrix (2.229) and left eigenvector
(2.231), we describe bifurcation of a semi-simple eigenvalue for the gen-
eralized eigenvalue problem.

Theorem 2.9 Let \Q be a semi-simple eigenvalue of multiplicity k for
generalized eigenvalue problem (2.226) at po- We assume that u i , . . . , ujt
and v i , . . . , Vfc are the right and left linearly independent eigenvectors, re-
spectively, satisfying the normalization conditions

v f C o u ; = % i,j = l,...,k. (2.243)

Then, bifurcation of the eigenvalue Ao under perturbation of the parameter
vector along curve (2.67) is given by

X = X0+eX1+o(e), (2.244)
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where k values of \\ are the eigenvalues of the k x k matrix F with the
elements

The eigenvectors corresponding to eigenvalues (2.244) a-re

u = 71ui + -"+7 f c u f c + o(l)) (2.246)

where (71, • • • ,jk)T are the eigenvectors of the matrix F corresponding to
the eigenvalues Ai.

2.12.3 Nonderogatory eigenvalue

Finally, we consider a nonderogatory eigenvalue Ao of multiplicity k for gen-
eralized eigenvalue problem (2.226) at po- The Jordan chain u o , . . . , Uk-i
corresponding to Ao is defined by the equations

B0U0 = A0C0U0,

B0U1 = A0C0U1 + C0U0,
(2.247)

BoUfc_i = AoCoufe_! + C0Ufc_2.

Multiplying these equations by the matrix C^"1 from the left, we find that
the vectors u 0 , . . . , Uk~i form the Jordan chain of the standard eigenvalue
problem for the matrix Ao = C^"1B0. The left Jordan chain v 0 , . . . ,Vk-i
for the generalized eigenvalue problem is denned by the equations

v ^ B 0 = Aov^Co,

vfB0 = A0vfCo+vJCo,
(2.248)

v£_1Bo = Aov£_1Co + v£_2Co.

It is easy to see that the vectors

Vi = C^Vi, i = 0 , . . . , k - 1, (2.249)

form the left Jordan chain corresponding to the eigenvalue Ao of the matrix

Ao.

(2.245)
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Equalities (2.33) for the vectors of right and left Jordan chains of the
matrix Ao yield the properties

vo rCouo = 0,

vf Couo - v^C o u i = 0,

v£_2CoUo = vf_ 3 C o ui = • • • = v^C0ufc_2 = 0,

vfljCoUo = v^_2C0ui = • • • = v^Coufc_i ^ 0,

Vfcl^oui = vf_ 2 C 0 u 2 = • • • = vf COUA._I,

v ^ 1 C o u f c _ 2 = v£_2Cou*_i.

Normalization conditions for Jordan chains (2.35) can be written in terms
of the generalized eigenvalue problem as follows

vg'CoUfc.i = 1, v^Cou*-! = 0, t = l , . . . , A : - l . (2.251)

These conditions define the left Jordan chain v o , . . . , vjt_i uniquely for a
given right Jordan chain uo,...,Ufc_].. Using Theorem 2.5 (page 51) for
matrix (2.229) with left Jordan chain (2.249), we describe bifurcation of a
nonderogatory eigenvalue.

T h e o r e m 2.10 Let XQ be a nonderogatory eigenvalue of generalized
eigenvalue problem (2.226) at po. Then bifurcation of the eigenvalue Ao
and corresponding eigenvector u0 under perturbation of the parameter vec-
tor along curve (2.67) is given by

(2.252)
U = U0+£1/fcAiUi +O(£1/*),

where Ai takes k different complex values of the root

Al - ^ g « f r A ° i W e - (2'253)
Other results on bifurcation of eigenvalues for a matrix family A(p) can

be written in terms of the generalized eigenvalue problem analogously.

(2.250)
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2.13 Eigenvalue problem for vibrational system

The eigenvalue problem for a linear vibrational system has the form

(A2M + AB + C)u = 0, (2.254)

where M, B, and C are real m x m matrices smoothly dependent on the
vector of parameters p; A is an eigenvalue and u is an eigenvector. The
matrix M is assumed to be nonsingular. Typically, M is a symmetric
positive definite matrix, but we will not use this property here. There are
2m eigenvalues, counting multiplicities, of problem (2.254) determined from
the characteristic equation

det(A2M + AB + C) = 0, (2.255)

where det(A2M + AB + C) is a polynomial of order 2m. Notice that the
eigenvectors corresponding to different eigenvalues are not necessarily lin-
early independent, since the dimension of eigenvectors equals m, which is
twice smaller than the number of eigenvalues. The left eigenvector v is
denned by the equation

vT(A2M + AB + C) = 0. (2.256)

Problem (2.254) can be reduced to the generalized eigenvalue problem

Bu = ACu, (2.257)

where u is the vector of double dimension 2m

a=t)< <2-258)
and the 2m x 2m block matrices B and C are

~ / 0 I \ ~ (I 0 \
B = , C = . (2.259)

\-C - B / \0 M/ V '

It is easy to see that the left eigenvector of generalized eigenvalue problem
(2.257) equals

/ (AM + B ) v \
v = . (2.260)

V v /
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2.13.1 Simple eigenvalue

For a simple eigenvalue of problem (2.254) we have

Theorem 2.11 A simple eigenvalue A of problem (2.254) *s a smooth
function of the parameter vector, and its derivative with respect to param-
eter pi is given by the expression

| i = V (*£* + AJ5 + 2°) »/(v'(!M + B)u), (2.261)
3pi V dPi dPi dPiJ /

where u ond v are ifte n'̂ Ai and ie/t eigenvectors determined by equations
(2.254) and (2.256). The corresponding eigenvector u(p) con 6e chosen as
a smooth function of p wiift the derivative given by the expression

^ - = -GQ" 1 A 2 — + A — + — + 2 A ^ M + — B u, 2.262
dpi V dPi dPi 9pi dpi dpi )

where Go = A2M + AB + C + vvT(2AM + ~B) is a nonsingular matrix.

To prove Theorem 2.11, we take derivative of both sides of equation
(2.254) with respect to p,:

dpi dpi \ dpi dpi dpij
(2.263)

Expression (2.261) follows from (2.263) after multiplication by the vector v T

from the left and using equation (2.256). Let us consider the normalization
condition

vT(2AM + B) -^ - = 0 (2.264)
OPi

for the derivative of the eigenvector u, which is equivalent to normalization
condition (2.239) for the generalized problem with matrices (2.259) and
eigenvectors (2.258), (2.260). Adding equation (2.264) multiplied by the
vector v from the left to equation (2.263), we obtain expression (2.262).

2.13.2 Semi-simple eigenvalue

Analogously, we describe bifurcation of a semi-simple eigenvalue for vibra-
tional problem (2.254).

Theorem 2.12 Let Ao be a semi-simple eigenvalue of multiplicity k for
problem (2.254) at Po • We assume that u i , . . . , uk and v j , . . . , v*, are the
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right and left linearly independent eigenvectors, respectively, satisfying the
normalization condition

v f ( 2 A 0 M 0 + B o ) u , = % , i,j = l,...,k, ( 2 . 2 6 5 )

where Mo = M(po) and Bo = B(po). Then bifurcation of the eigenvalue
Ao under perturbation of the parameter vector along curve (2.67) is given
by

A = A0 + eAi + o(e), (2.266)

where k values of Ai are the eigenvalues of the k x k matrix F with the
elements

h = - £ [vf ( A ^ + A 0 ^ + ^J u,j e, (2.267.)

The eigenvectors corresponding to eigenvalues (2.266) are

u = 7iUi + .--+7 f cuf c+o(l), (2.268)

where (71 , . . . ,rjk)T ore the eigenvectors of the matrix F corresponding to
the eigenvalues \y.

2.13.3 Nonderogatory eigenvalue

Finally, we consider a nonderogatory eigenvalue Ao of multiplicity k with
the Jordan chain uo , . . . , u*_ i satisfying equations (2.247) with matrices
(2.259) taken at po- Using explicit form of matrices (2.259), it can be
shown that the vectors of the Jordan chain have the form

u o = ( \ U ° ] , S * = L ^ ) , t = l , . . . , * - l . (2.269)
yAouoy yA0Uj + Uj_iy

The vectors u o , . . . , u^- i are called the Keldysh chain and satisfy the equa-
tions

Louo = 0,

L0U]. - -LxUo,

L0u2 = -L1U1 - L2u0, (2.270)

Loufc_i — -Liu f c_2 - L2Ufc_3.
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Here Lo, Li, and L2 are the matrix operators

Lo = A^M0 + A0B0 + Co, Li = 2A0M0 + Bo, L 2 = M 0 , (2.271)

where Mo = M(po), Bo = B(p0), and Co = C(p0). We note that Li
and L2 can be expressed via derivatives of the matrix-function L(A) =
A2M0 + AB0 + Co as

T - d L T ld"L (??7K
L l - 5 A ' L 2 = 2 5A^' ( 2 " 2 7 2 )

taken at A — Ao. Expression (2.269) for the linearly independent vec-
tors Uo,...,Ufc_i does not imply the linear independence of the vectors
u 0 , . . . , Ufc_i. The Keldysh chain ends up with the vector u^_i if we can-
not find the next vector u^ satisfying the Keldysh chain equations such
that the vector

nk = f U* ) (2.273)
\Xouk +uk-i J

is linearly independent on S o , . . . , 5&-1-
For the left Jordan chain v 0 , . . . , Vk-i, satisfying equations (2.248) with

matrices (2.259), we have

vo =
V v 0 ;

(2.274)
^ /(AoNtf + Bftvi + MgVA
Vj = , i = l,...,k- 1,

where the vectors v0 , . . . , v^-i form the left Keldysh chain satisfying the
equations

v%U = 0,

vfL0 = -v^L j ,

v^L0 = - v f Li - v%L2, (2.275)

The orthogonality properties for the right and left Keldysh chains can
be obtained by substitution of expressions (2.259), (2.269), and (2.274) into
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equations (2.250). In particular, the orthogonality property of eigenvectors
is the following

v^LjUo^O. (2.276)

This equation satisfied for the right eigenvector uo and an arbitrary left
eigenvector vo represents a criterion for the existence of the Keldysh chain
starting with uo-

Analogously, using equations (2.251), we get the normalization condi-
tions for the right and left Keldysh chains in the form

v^LiUfc-i +v^L2uft_2 = 1,
(2.277)

vf LiUfe_i + vf L2ufc_2 + vf_1L2ufc_1 =0 , i = 1,. . . , k - 1.

These conditions define the left Keldysh chain v0, . . . ,Vk-i uniquely for a
given right Keldysh chain u 0 , . . . , u^-i.

Using expressions (2.259), (2.269), and (2.274) in Theorem 2.10
(page 75), we describe bifurcation of the nonderogatory eigenvalue and
corresponding eigenvector in terms of the right and left Keldysh chains.

Theorem 2.13 Let XQ be a nonderogatory eigenvalue of multiplicity k for
problem (2.254) atp0- Then bifurcation of the eigenvalue Ao and eigenvec-
tor uo under perturbation of the parameter vector along curve (2.67) is
given by

A = A0+£1/fcAi+o(e1/ '=))

(2.278)
u = n0+e1/k\1ul+o(e1/k),

where Ai takes k different complex values of the root

Notice that though only the vectors u0, ui, and v0 are used in Theo-
rem 2.13, all the right Keldysh chain has to be found in order to satisfy
normalization conditions (2.277). Expression (2.279) written in the form
independent on normalization conditions (2.277) is

\ VQ'LIU^I +V^L2Ufc_2

(2.279)

(2.280)
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Example 2.13 Let us consider two-parameter eigenvalue problem
(2.254) with the matrices

(2.281)

fp2 - 3 0 \
C(p)= ^ , P = (P1,P2).

At po = (Vi, 0) there is the nonderogatory eigenvalue Ao = 0 of multiplicity
4 with the right and left Keldysh chains

U 0 = ^ i J ' U l = ( o J ' U 2 = U ' U 3 = l o )'

«w-(r)-(:)-«-(fl
(2.282)

satisfying normalization conditions (2.277). Though the vectors in the right
Keldysh chain are not linearly independent, one can easily check that the
vectors of corresponding Jordan chain (2.269) are linearly independent. By
Theorem 2.13, we find that the bifurcation of the quadruple zero eigenvalue
Ao and corresponding eigenvector along curve (2.67) is given by the relations

,=../<*,+*n -= ( -^ ;* I / 4 ) ) , (-S3,

where four different complex values of the coefficient Ai are given by the
expression

Ai = ^3ei + 12e2. (2.284)





Chapter 3

Stability Boundary of General System
Dependent on Parameters

A wide range of practical problems in mechanics and physics requires sta-
bility analysis of a linear system of ordinary differential equations, which
appear as a result of linearization of equations of motion near a stationary
solution or steady motion. Any physical system depends on parameters,
and values of the parameters at which the system is stable form the sta-
bility domain in the parameter space. It is clear that construction of the
stability domain is closely related to finding its boundary.

Analysis of the stability domain and its boundary is a problem of great
practical importance. A number of examples reveal complexity of the
stability boundary, which consists of smooth parts and can have differ-
ent singularities. The singularities are related to bifurcations of eigen-
values of the system operator. They reflect specific physical proper-
ties of the system and may lead to numerical difficulties of the analy-
sis. Classification of singularities of the stability boundary for two- and
three-parameter systems was done in [Arnold (1972); Arnold (1983a)], and
the extension to a more general case was given in [Levantovskii (1980a);
Levantovskii (1982)]. Quantitative methods of stability analysis near regu-
lar and singular points of the stability boundary were developed in [Seyra-
nian (1982); Pedersen and Seyranian (1983); Burke and Overton (1992);
Mailybaev (1998); Mailybaev and Seyranian (1998b); Mailybaev and Seyra-
nian (1999b); Mailybaev (1999)].

This chapter is devoted to stability analysis of a general linear system
of ordinary differential equations, whose coefficients are smooth functions
of parameters. First, we introduce the concept of general position. This
important notion coming from singularity theory allows selecting typical
(generic) structures and concentrating attention on the most practical and
observable situations. Then, we give qualitative description of the stability

83
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boundary in the parameter space, determine its regular part and classify
generic singularities (of codimension 2 and 3). Using results of Chapter 2 on
bifurcation of eigenvalues, we perform quantitative analysis of the stability
domain in the neighborhood of regular and singular points of the boundary.
As a result, we derive general and constructive formulae for local approxi-
mation of the stability domain using only information at the initial regular
or singular boundary points.

3.1 Stability and dynamics of linear system

Let us consider a linear system of ordinary differential equations

x = Ax, (3.1)

where x is an m-dimensional vector of phase variables, A is an m x m
nonsymmetric real matrix, and dot denotes the derivative with respect to
time t. Looking for a solution of (3.1) in the form

x(i) = uexpA£, (3.2)

we obtain the eigenvalue problem

Au = Au, (3.3)

where A is an eigenvalue and u is a corresponding eigenvector. There are m
eigenvalues Ai,.. . , Am of the matrix A, counting multiplicities, that satisfy
the characteristic equation

det(A - AI) = 0. (3.4)

Let A be a real eigenvalue. Then, the corresponding eigenvector u can
be chosen real, and (3.2) represents a real solution of system (3.1). In case
of complex A, the eigenvector u has to be complex with linearly independent
real and imaginary parts. Taking real and imaginary parts of expression
(3.2), we find two real linearly independent solutions of system (3.1) in the
form

xi (t) = exp at (Re u cos w i - I m u sin ut),
(3.5)

x2 (t) = exp at (Re u sin wt + Imu cos uit),

where A = a + iio. Notice that the couple of solutions (3.5) corresponds to
the complex conjugate pair of eigenvalues A = a ± ico.



Stability Boundary of General System Dependent on Parameters 85

If all the eigenvalues of the matrix A are simple or semi-simple, we have
m linearly independent solutions (3.2) and (3.5) taken for all eigenvalues.
A linear combination of these solutions forms a general solution of system
(3.1), where real coefficients of the linear combination are determined by
initial conditions.

If there are multiple eigenvalues with Jordan chains (a number of lin-
early independent eigenvectors is less than the algebraic multiplicity of the
eigenvalue), solutions (3.2) and (3.5) are not sufficient to construct a gen-
eral solution. Let A be a real eigenvalue, and uo,... ,u&_i be real vectors
of the corresponding Jordan chain. It is easy to see that

xo(i) = uoexpAi,

xi(t) = (ui +iuo)expAt,

: (3-6)

Xfc-i(t) = I ufc-i + tufc_2 -) + , , uo ) exp At

are k linearly independent solutions of system (3.1). The terms with powers
of time in these solutions are called secular terms. In case of a complex A,
real and imaginary parts of solutions (3.6) provide 2k linearly independent
real solutions corresponding to a complex conjugate pair of eigenvalues
A = a ± iu>. Taking these solutions for all the eigenvalues and Jordan
chains, we obtain a set of m linearly independent solutions, whose linear
combination is a general solution of system (3.1) for an arbitrary matrix
A.

We see that norms of solutions (3.2) and (3.6) grow (or decay) exponen-
tially for positive (or negative) real eigenvalue A. In case of a complex A,
these solutions oscillate with an amplitude growing (or decaying) in time if
Re A > 0 (or Re A < 0). In case of a purely imaginary or zero eigenvalue,
behavior of the solution depends on the corresponding Jordan structure. If
A is simple or semi-simple, then the solution remains bounded but does not
tend to zero as t —> +oo. But if a purely imaginary or zero eigenvalue has
Jordan chains (a number of linearly independent eigenvectors is less than
the algebraic multiplicity), then due to the presence of secular terms there
are unbounded solutions growing as a power of time.

Linear system (3.1) is stable if all the solutions of the system are
bounded as t —>• +00, while the asymptotic stability implies that any solu-
tion of the system tends to zero as t —> +00. Instability means that there
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are solutions of system (3.1) unbounded as t -> +00. The above construc-
tion of a general solution of system (3.1) provides the stability criterion in
terms of eigenvalues of the matrix A. Linear system (3.1) is stable if and
only if all the eigenvalues of the matrix A have negative or zero real part
Re A < 0 with all purely imaginary and zero eigenvalues being simple or
semi-simple. Linear system (3.1) is asymptotically stable if and only if all
the eigenvalues of the matrix A have negative real part Re A < 0. Finally,
linear system (3.1) is unstable if and only if there exists an eigenvalue of
the matrix A with a positive real part Re A > 0, or an eigenvalue with zero
real part Re A = 0 which is neither simple nor semi-simple. Fig. 3.1 shows
three examples for distribution of eigenvalues in the cases of asymptotic
stability, stability, and instability.

., , s simple or s

a) I m ^ b) I m ^ semi-simple c) I m ^

0 Re X 0 ReA. 0 ReA,
• > •

Fig. 3.1 Distribution of eigenvalues on the complex plane for a) asymptotic stability,
b) stability, and c) instability.

Stability of a linear system is closely related to stability of a stationary
solution for a nonlinear autonomous system of ordinary differential equa-
tions

y = f(y), (3.7)

where f(y) is a smooth function of the vector y £ Em. The stationary
solution

y(*) = y (3-8)

is determined by the condition

f (y) = 0. (3.9)

Let us introduce the matrix

(3.10)
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which is the Jacobian matrix of the function f(y) at y. According to
Theorem 1.2 (page 7), if linear system (3.1) with matrix (3.10) is asymp-
totically stable, i.e., all the eigenvalues of matrix (3.10) have negative real
part Re A < 0, then stationary solution (3.8) of nonlinear system (3.7) is
asymptotically stable. If matrix (3.10) has an eigenvalue with a positive
real part Re A > 0, then stationary solution (3.8) of nonlinear system (3.7)
is unstable.

Notice that in the case, when Re A < 0 for all the eigenvalues of the
matrix A and there are eigenvalues on the imaginary axis Re A = 0, stability
for the nonlinear system is determined by nonlinear terms neglected in the
linearization.

3.2 Stability domain and its boundary

Let us assume that the system matrix A depends smoothly on a vector
of real parameters p = (pi,.. . ,pn)- The function A(p) is called a multi-
parameter family of matrices. Then, values of the parameter vector such
that system (3.1) is asymptotically stable (Re A < 0 for all the eigenvalues)
form the stability domain in the parameter space. If p belongs to the
stability domain, then sufficiently small perturbations of the parameter
vector keep the system asymptotically stable (the eigenvalues stay in the
left half-plane). The instability domain in the parameter space consists of
the vectors p such that system (3.1) is unstable. A boundary of the stability
domain is represented by values of p such that the matrix A(p) has some
of eigenvalues on the imaginary axis Re A = 0, while the others belong to
the left half-plane Re A < 0.

Multi-parameter stability analysis of system (3.1) implies construction
of the stability domain in the parameter space, which requires finding a
boundary of the stability domain. Simple examples show that the bound-
ary of the stability domain (in short, the stability boundary) is a hyper-
surface with singularities. Singularities represent nonsmooth points on the
boundary, like edges, angles etc. These singularities have strong influence
on numerical and physical properties of the underlying system.

Let us consider a point p0 in the parameter space belonging to the sta-
bility boundary. This requires some of eigenvalues to be purely imaginary
or zero. Under perturbation of the parameter vector p = po + Ap these
eigenvalues change, some of them shift to the left part of the complex plane,
others to the right part, or stay on the imaginary axis. Perturbation that
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Pi fr ImA,

a^Po*V ^ •

S "c

p{ ( P Re A,

Fig. 3.2 Perturbation of the parameter vector and the eigenvalue on the stability bound
ary: a) stabilizing, b) destabilizing, c) along the stability boundary.

moves all the eigenvalues from the imaginary axis to the left is stabilizing
(the perturbed vector p belongs to the stability domain). If at least one of
the eigenvalues moves to the right, perturbation is destabilizing. The case,
when some eigenvalues stay on the imaginary axis while the others move
to the left, corresponds to perturbation along the stability boundary; see
Fig. 3.2 (the stability domain is denoted by the letter S).

3.3 Case of general position

There is a wide variety of stability boundary points, which differ by the
number of eigenvalues on the imaginary axis, their multiplicities and Jor-
dan structures. Nevertheless, not all of them are typical and occur in the
analysis of particular problems. Typical points of the stability boundary
are structurally stable. This means that the stability boundary point of
a certain type does not disappear if we take a small perturbation of the
matrix family A(p) -I- <$B(p), but may undergo a small shift in the param-
eter space. Such points are called generic. The case, when all the stability
boundary points are generic, is called the case of general position [Arnold
(1983a)]. In contrary, nongeneric boundary points may disappear under an
arbitrarily small variation of the matrix family.

To illustrate the introduced notion on a simple example, we consider a
family of 2 x 2 matrices

A /«,,(P) M P ) \
\O2i(p) a22(p)J

whose elements ay- (p) are smooth functions of the vector of two parameters
P = (pi,P2)- There are four possible types of a stability boundary point

(3.11)
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represented by a complex conjugate pair of purely imaginary eigenvalues
A = ±ioj, the simple zero eigenvalue, the double zero eigenvalue with the
Jordan chain of length 2, or the double semi-simple zero eigenvalue. Fol-
lowing [Arnold (1983a)] we introduce short notation

±iu, 0, 02, 00 (3.12)

for these types, respectively. Eigenvalues of matrix (3.11) can be found
explicitly by solving the characteristic equation

A2 - (an(p) + a22(p))A + an(p)a22(p) - ai2(p)a2i(p) = 0. (3.13)

Elementary analysis shows that cases (3.12) are realized at points p satis-
fying the following relations

±iu : aii(p) + a22(p) = 0, an(p)a22(p) - Oi2(p)a2i(p) > 0;

0: an(p)a2 2(p)-ai2(p)a2i(p) =0, an(p) + a22(p) < 0;

02 : au(p) + a22(p) = 0, an(p)o22(p) - o12(p)a2i(p) = 0, A(p) ^ 0;

00 : ou(p) = 012 (p) = 021 (p) = a22(p) = 0.
(3.14)

If the gradient of the function an(p) + a22(p) is nonzero then, by the
implicit function theorem, boundary points of type ±iui form a smooth
curve in the parameter plane. Therefore, boundary points of this type are
generic, and we can expect appearance of these points in two-parameter
families (3.11). Analogously, points of type 0 are generic and form a smooth
curve in the parameter plane provided that the gradient of the function
an(p)a22(p) — ai2(p)a2i(p) is nonzero. A point of type 02 is determined by
two equalities. Points of this type are isolated in the parameter plane if the
gradients of the functions an(p) + a22(p) and an(p)a22(p) -ai2(p)a2i(p)
are linearly independent at these points. Hence, points of type 02 are
generic too. Finally, points of type 00 are determined by four independent
equalities. Since there are only two parameters, these equalities have no
solutions in the case of general position. If a point of type 00 appears in a
particular family (3.11), it can be removed by an arbitrarily small change
of the functions a^ (p). Therefore, points of type 00 are nongeneric in two-
parameter families (3.11). Points of type 00 become generic only if we have
four of more parameters.

We observe that a stability boundary point is generic or nongeneric
depending on the type of a point and the number of parameters in the
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matrix family. Points of a given type are determined by several equalities
and, in the case of general position, form a smooth surface of codimen-
sion d (i.e., dimension n — d) equal to a number of these equalities. The
codimension d depends only on type of the point. If dimension of the pa-
rameter space is less than d, then a point of this type is nongeneric (it
can disappear under an arbitrarily small perturbation of the matrix fam-
ily) . If the number of parameters is equal to d, then points of this type
are isolated points. Finally, if the number of parameters is greater than d,
then stability boundary points of this type form a smooth surface of codi-
mension d. Codimensions for different types of stability boundary points
are determined using the versal deformation theory, see [Arnold (1971);
Arnold (1983a)], and depend only on the number of eigenvalues on the
imaginary axis and their Jordan structures.

Let us introduce short notation to distinguish different types of stability
boundary points. We denote the type symbolically by the product of de-
terminants of Jordan blocks for all purely imaginary and zero eigenvalues.
Notation (3.12) follows this rule, where 02 denotes the double nonderoga-
tory eigenvalue A = 0 (one Jordan block of size 2) and 00 denotes the
double semi-simple eigenvalue A = 0 (two Jordan blocks of size 1). As to
more complicated types, 02(±iw) corresponds to points p, where the ma-
trix A(p) has a double zero eigenvalue with Jordan chain of length 2 and a
complex conjugate pair of simple eigenvalues A = ±ioj; (±iwi)(±iw2) corre-
sponds to matrices having two different pairs of simple complex conjugate
eigenvalues on the imaginary axis.

Full list of types of stability boundary points for codimensions 1, 2, and
3 are as follows [Arnold (1983a)]

cod 1 : 0, ±iu>;

cod 2: 02, 0(±iui), (±iui){±iLj2);
(3.15)

cod 3 : 03, (±tw)2. 02(±iw),
0(±uui)(±uu2), (±iwi)(±icj2)(±io;3).

The number of different types increases with codimension. At the same
time, types of higher codimension are rare in matrix families and need
more parameters to be realized in structurally stable way.
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Example 3.1 Let us consider the matrix family

/ 0 1 0 \

A ( p ) = I 0 0 I I . (3.16)

\Pi Pi P3 j

The characteristic equation for this matrix is

X3 - p3\2 - p2X - Pl = 0 . (3.17)

The stability domain found using the Routh-Hurwitz condition has the form

Pl+P2P3>0, pi<0, P2<0, P3<0, (3.18)

shown in Fig. 3.3, where the stability domain is denoted by S. The bound-
ary of the stability domain contains two smooth surfaces, one surface
Pi + PiP3 — 0, P2 < 0, j>3 < 0, consists of points of type ±iu, and the
other surface p\ — 0, p2 < 0, p$ < 0, consists of points of type 0. There
are two edges of the stability boundary represented by the rays pi < 0,
p1 = p3 = 0 and p3 < 0, Pi = P2 — 0. These rays consist of points of types
0(±iw) and 02, respectively. Finally, there is an isolated point of type 03 at
the origin. Every part of the stability boundary has codimension as given
in list (3.15).

"P\
Ps

O(±zco) * \ o3

Fig. 3.3 Boundary of the stability domain and its types.

Notice that nongeneric points of the stability boundary can appear in
the analysis of specific problems. This usually indicates special degener-
acy or symmetry existing in the system under consideration. One of the
properties frequently leading to the appearance of nongeneric structures is
the conservation of energy, like it happens in Hamiltonian or gyroscopic
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systems. If we know the properties responsible for nongeneric structure, we
can study a restricted class of systems possessing such property. Then the
notion of general position specific for this class can be introduced. For linear
conservative and Hamiltonian systems this analysis is done in Chapters 5
and 7.

3.4 Stability boundary: qualitative analysis

Form of the stability boundary in the neighborhood of its point po depends
on the behavior of eigenvalues lying on the imaginary axis. As we showed
in Chapter 2, this behavior strongly depends on multiplicities and Jordan
structures of these eigenvalues. Stability domain is determined locally by
the points p = po + Ap such that all the eigenvalues are shifted to the left
from the imaginary axis (stabilizing perturbations).

3.4.1 Regular part

According to (3.15) the most common points of the stability boundary are
of types

0, ±iw. (3.19)

Let us assume that p0 is a stability boundary point of type 0. The stability
criterion in the neighborhood of po takes the form

A(p) < 0 (3.20)

for the simple real eigenvalue that vanishes at po. Since the simple eigen-
value A(p) is a smooth function of the parameter vector and its gradient is
nonzero in the case of general position, the stability boundary is a smooth
surface determined by the equation

A(p) = 0. (3.21)

All the points of the stability boundary are of type 0 in the neighborhood
of po- When the parameter vector passes from the stability domain into
the instability domain through po, the real simple eigenvalue A crosses the
imaginary axis from the left to the right through the origin; see Fig. 3.4a.
At the point p0 system (3.1) has the constant solution x(£) = u, where u is
the eigenvector corresponding to A = 0. At the point p inside the instability
domain there is a solution x = uexpAt, A > 0, that exponentially grows
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in time; see Fig. 3.5a. This type of instability is called static instability or
divergence.

a) ImA, 6) ImA.

0 Re A, 0 Re A.

Fig. 3.4 Motion of eigenvalues for loss of stability: a) divergence and b) flutter.

a) X . b) X

Fig. 3.5 Solution of the unstable system: a) divergence and b) flutter.

If po is a point of type ±iw, then the stability boundary is a smooth
surface in the neighborhood of po determined by the equation

ReA(p)=0, (3.22)

provided that the gradient of the function ReA(p) is nonzero. All the
points of the stability boundary near po are of type ±«w, where the fre-
quency u> depends smoothly on p. When the parameter vector passes from
the stability domain into the instability domain through p0, two simple
complex conjugate eigenvalues cross the imaginary axis from the left to
the right through the points ±iw; see Fig. 3.4b. At the point po sys-
tem (3.1) has the periodic solutions x(t) — Reucoswi - Imusinwi and
x(i) = Reusinwi + Imucoswi. For the point p inside the instability do-
main there is an oscillating solution with exponentially growing amplitude;
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see Fig. 3.5b. This type of instability is called dynamic instability or flutter.
Divergence and flutter boundaries are regular parts of the stability

boundary. All other types of points on the stability boundary have higher
codimensions and, hence, represent singularities on the stability boundary.
Since the stability boundary of a generic one-parameter system consists
only of points of codimension 1, we have

Theorem 3.1 In the case of general position one-parameter system (3.1)
loses stability either by flutter, represented by two complex conjugate simple
eigenvalues on the imaginary axis, or by divergence, characterized by a
simple zero eigenvalue.

3.4.2 Singularities of codimension 2

First, let us consider the most typical singularities (of lowest codimension)
of the stability boundary. These are the points of codimension 2 listed in
(3.15). A point of type 0(±ito) represents intersection of divergence and
flutter boundaries. This intersection forms an angle in the two-parameter
plane or an edge in the three-parameter space, where the stability domain
lies inside an angle (or an edge); see Figs. 3.6 and 3.7. Analogously, a
stability boundary point of type (±2Wi)(±iw2) lies in the intersection of
nutter boundaries corresponding to two different pairs of purely imaginary
eigenvalues and represents an angle or edge in the two- and three-parameter
spaces, respectively; see Figs. 3.6 and 3.7.

The remaining boundary point of type 02 is characterized by the double
eigenvalue A = 0 with a single eigenvector (Jordan chain of length 2).
Stability of the system in the neighborhood of such a point depends on
the behavior of this double eigenvalue. The system is asymptotically stable
if and only if both eigenvalues Ai and A2 appearing due to bifurcation
of A — 0 move to the left side of the complex plane. We know that a
double eigenvalue is a nonsmooth function of parameters. Nevertheless,
the combinations Ai + A2 and A1A2 are smooth functions of p, see [Kato
(1980)]. This means that the eigenvalues Ai and A2 are the roots of the
quadratic equation

A 2 -a 1 (p )A-a 2 ( P ) = 0, (3.23)

where ai(p) = Ai + A2 and 0,2 (p) = — A1A2 are smooth real functions of the
parameter vector such that a\ (p) = 02 (p) = 0 at the point of singularity.
Stability condition Re A < 0 for both roots of equation (3.23) takes the
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form

oi(p)<0, a 2 (p)<0. (3.24)

These inequalities determine an angle or edge in the two- and three-
parameter spaces, respectively; see Figs. 3.6 and 3.7. Notice that the gra-
dients of the functions a\ (p) and a2 (p) are linearly independent in the case
of general position and, hence, the size of angle (3.24) is nonzero. The
stability domain belongs to the interior of the angle. From equation (3.23)
we see that the equality ai(p) = 0 for a2(p) < 0 determines the flutter
boundary, while the equality a2(p) = 0 for ai(p) < 0 defines the diver-
gence boundary. Therefore, the points of type 02 lie in the intersection of
nutter and divergence boundaries. The nutter frequency to tends to zero as
we approach the singularity along the flutter boundary.

(i/COjXi/OD^
P\ A

Men/ \

<i S \
^^~- * 0(±na)

"1 ^~

Fig. 3.6 Stability boundary and its singularities for two-parameter systems.

Fig. 3.7 Edges of the stability boundary.

Fig.3.6 Stability boundary and its singularities for two-parameter systems

Fig. 3.7 Edges of the stability boundary.
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Since the stability boundary of a generic two-parameter family of ma-
trices consists of points of codimensions 1 and 2, we obtain

Theorem 3.2 In the case of general position, the stability boundary of
two-parameter system (3.1) consists of smooth curves corresponding to flut-
ter and divergence instability, whose only singularities are angles of types
0(±iui), (±iui)(±iw2), andO2; see Fig. 3.6.

Fig. 3.6 shows an example of the stability domain in the two-parameter
plane with the boundary possessing singularities of all generic types. Notice
that the stability domain always lies inside the angles (of size less than w).
This reflects the principle of fragility of all good things, see [Arnold (1992)].

3.4.3 Singularities of codimension 3

Now, let us consider stability boundary points of codimension 3 listed
in (3.15). The types 0(±icj1)(±ioj2), (±Uo>i)(±iw2)(±m>3), and 02(±iui)
are obtained from the types of codimension 2 by adding an extra pair
of purely imaginary simple eigenvalues. This additional pair represents
an extra stability condition and results in additional flutter boundary.
Therefore, in the three-parameter space the singularities 0(±iui)(±iu>2),
(±iu)i)(±ioj2)(±iuj3), and 02(±zw) are trihedral angles as shown in Fig. 3.8.
The stability domain lies inside the angles.

Fig. 3.8 Trihedral angles of the stability boundary.

The boundary point of type 03 is characterized by the triple eigenvalue
A = 0 with a single eigenvector (Jordan chain of length 3). In the neigh-
borhood of such a point the system is asymptotically stable if and only if
three eigenvalues Ai, A2, and A3, appearing due to bifurcation of A = 0,
move to the left side of the complex plane. The eigenvalues Ai, A2, and A3
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are the roots of the cubic equation

A3 - a3(p)A2 - a2(p)A - oi(p) = 0, (3.25)

where a\ (p), a2 (p), and a3 (p) are smooth real functions of the parame-
ter vector such that oi(p) = 02(p) = a3(p) = 0 at the singularity point,
see [Arnold (1983a)]. Notice that a similar equation was studied in Exam-
ple 3.1. Stability condition Re A < 0 for three roots of equation (3.25) takes
the form

ai(p) + a2(p)a3(p) > 0, ai(p) < 0, a2(p) < 0, os(p) < 0. (3.26)

In the space (01, a2, a3) the stability domain has the form shown in Fig. 3.9.
Its boundary has two edges of types 02 and 0(±iw) intersecting at the point
of type 03. Magnitudes of dihedral angles for both edges tend to zero as
we approach the point 03. As a result, two surfaces (flutter and divergence
boundaries) are tangent at the singularity. This singularity is called break
of an edge. The stability domain belongs to the interior of the singularity.
In the original parameter space p the stability boundary has the same form
up to a smooth change of parameters.

0(±HD) 03

Fig. 3.9 Singularity "break of an edge" of the stability boundary.

The boundary point of type (HOJ)2 is characterized by a pair of double
purely imaginary eigenvalues A = ±iu> with single eigenvectors (Jordan
chains of length 2). In the neighborhood of such a point the system is
asymptotically stable if and only if two eigenvalues Ai and A2 appearing
due to bifurcation of A = iu> belong to the left half of the complex plane
Re A < 0 (behavior of the double eigenvalue A = -ito on the complex plane
is symmetric with respect to the real axis). The eigenvalues Ai and A2

are the roots of the quadratic equation with complex coefficients smoothly
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dependent on p [Arnold (1983a)]. This equation can be given in the form

(A - Ol(p) - ih(p))2 - O2(p) - ib2(p) = 0, (3.27)

where a\ (p), a2 (p), b\ (p), and b2 (p) are smooth real functions of the pa-
rameter vector such that ai(p) = a2 (p) = b2 (p) = 0 and 61 (p) = w at
the singularity point. The stability condition Re A < 0 for both roots of
equation (3.27) takes the form

(62(p))2 + 4(ai(p))2 (02(P) - M p ) ) 2 ) < 0, ffll(p) < 0. (3.28)

We see that stability conditions (3.28) do not depend on b\ (p). In the
space (ai,O2>&2) the stability domain has the form shown in Fig. 3.10.
The stability boundary has one edge of type (±icoi)(±ioj2), whose angle
tends to zero as we approach the point (±iu)2. The edge ends abruptly at
the singularity point. This singularity is called deadlock of an edge. The
stability domain belongs to the interior of the singularity. In the original
parameter space p the stability boundary has the same form up to a smooth
change of parameters.

. (±/co)2

S \ ±1(0 ^S^

Fig. 3.10 Singularity "deadlock of an edge" of the stability boundary.

Since the stability boundary of a generic three-parameter family of ma-
trices consists of points of codimensions 1,2, and 3, we obtain

Theorem 3.3 In the case of general position, the stability boundary
of three-parameter system (3.1) consists of smooth surfaces correspond-
ing to flutter and divergence, whose only singularities are edges of types
0(±iu), (±zwi)(±iw2), and 02, trihedral angles of types 0(±iwi)(±iw2),
(±iwi)(±iu;2)(±iw3), and 02(±zw), "break of an edge" of type 03, and
"deadlock of an edge" of type (±iw)2; see Figs. 3.7-3.10.
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3.5 Quantitative analysis of divergence and flutter bound-
aries

Let us consider a point po of type 0 on the stability boundar y (divergence
instability). This point is characterize d by a simple eigenvalue Ao = 0,
while the other eigenvalues have negative real part s Re A < 0. The stability
condition in the neighborhoo d of po is represente d by the inequalit y

A(p) < 0, (3.29)

where A(p) is the simple eigenvalue vanishin g at the stability boundar y
A(po) = 0. Then, the stability boundar y is determined by the equation

A(p) = 0. (3.30)

By Theorem 2.2 (page 32), we know tha t A(p) is a smooth function of
the paramete r vector. Its gradien t at po is given by the formula

fo = VA= ^ ^ u o , . . . , v o ^ u o ) / ( v ^ u o ) , (3.31)

where u0 and v0 are the right and left eigenvectors correspondin g to Ao =0 .
If f"o is nonzero, then we find the first order approximatio n of the stability
domain

(fo,Ap)<0, (3.32)

where Ap = p - p0, and (f0, Ap) = /oiApi + • • • + fon^Pn denotes the
scalar product in W1. Hence, the stability boundar y is a smooth surfac e
with the tangen t plane

(fo,Ap) = 0 (3.33)

at the point p0, and f0 is the norma l vector to the stability boundar y at
Po directed into the instability (divergence) domain; see Fig. 3.11. Notice
tha t the vector fo is nonzero in the case of genera l position.

Using the second order derivatives of the eigenvalue A(p) with respect
to parameter s given by expression (2.52), we find the second order approx-
imation of the stability domain in the neighborhoo d of po as

(3.34)
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Pl f / \ Pl r~^^^ A

Fig. 3.11 Normal vectors to the divergence (D) and flutter (F) boundaries.

Theorem 3.4 Let p0 be a point of type 0 on the stability boundary (diver-
gence), and assume that the vector fo given by expression (3.31) is nonzero.
Then, the stability boundary is a smooth surface in the neighborhood of po,
and f0 is the normal vector to the stability boundary directed into the diver-
gence instability domain. The second order approximation of the stability
domain is given by (3.34).

Now, let us consider a point po of type ±iu on the stability boundary
(flutter instability). This point is characterized by a pair of complex conju-
gate simple eigenvalues ±iu, while the other eigenvalues have negative real
parts Re A < 0. The stability condition in the neighborhood of the point
Po takes the form

ReA(p)<0 (3.35)

for the eigenvalue that equals iu at p0 . Since eigenvalues responsible for
the loss of stability are complex conjugate, there is no need to check this
condition for the other eigenvalue that equals —iw at po-

Let us introduce the vector

fiu = ReVA

_ / T 3 A I T T8A I T \ (3-36)
= Re V5 ^— Uo / (VO U0), . . . , VQ -r— U 0 / (VQ UO) ,

\ Clpi I OPn I J

where uo and vo are the right and left eigenvectors corresponding to the
eigenvalue Ao — iui. By Theorem 2.2 (page 32), fiul is the gradient vector
of the real part of A(p) at po- If the vector fjw is nonzero, then the first
order approximation of the stability domain in the neighborhood of po is



Stability Boundary of General System Dependent on Parameters 101

given by

(f i w,Ap)<0. (3.37)

The stability boundary is a smooth surface, whose tangent plane at po is
represented by the equation

(fiW)Ap)=0. (3.38)

Therefore, the vector fjW is the normal vector to the stability boundary
directed into the flutter region; see Fig. 3.11.

The second order approximation of the stability domain in the neigh-
borhood of po is given by the inequality

| > J£ A" + 1 J : Re a ^ A * * f t < °' <3-39)
where second order derivatives of the eigenvalue A(p) at po are given by
expression (2.52).

Theorem 3.5 Let p0 be a point of type ±iu on the stability bound-
ary (flutter), and assume that the vector fjw given by expression (3.36)
is nonzero. Then, the stability boundary is a smooth surface in the neigh-
borhood of po, and fjw is the normal vector to the stability boundary directed
into the flutter instability domain. The second order approximation of the
stability domain is given by (3.39).

3.6 Quantitative analysis of singularities of codimension 2

Let us consider a point po of type 0(±zw) on the stability boundary. This
point lies in the intersection of the divergence and flutter boundaries. Sta-
bility condition in the neighborhood of p0 requires both zero and purely
imaginary eigenvalues to move to the left on the complex plane. Evaluating
the gradient vectors fo and fjW for the eigenvalues Ao = 0 and Ao = iu> by
formulae (3.31) and (3.36), respectively, we find the first order approxima-
tion of the stability domain in the form

(fo,Ap)<0, ( f i u ,A P )<0. (3.40)

If the vectors fo and f;w are linearly independent, then inequalities (3.40)
define a (dihedral) angle in the parameter space; see Figs. 3.12 and 3.13.
In the three-parameter space points po of type 0(±iw) form an edge of the
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Fig. 3.12 Angles on the stability boundary and their approximation in two-parameter
plane.

Fig. 3.13 Edges of the stability boundary and their approximation in three-parameter
space.

stability boundary, and the tangent vector to the edge can be found as the
cross product

e (=foxf i w . (3.41)

A singular point of the stability boundary po of type (±iwi)(±iw2)
belongs to the intersection of two flutter boundaries corresponding to dif-
ferent frequencies u>i and u>i. The first order approximation for the stability
domain is given by the inequalities

(fiU l ,Ap)<0, (fiU2,Ap)<0, (3.42)

where fiwi and f;W2 are gradients of real parts of the eigenvalues iu>i and
iui-2, respectively, evaluated by formula (3.36). If the vectors fjUl and fjW2

are linearly independent, inequalities (3.42) define a (dihedral) angle in the
parameter space; see Figs. 3.12 and 3.13. In the three-parameter space
points po of this type form an edge of the stability boundary, and the
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tangent vector to the edge is given by the formula

et =fiwi xfiW2. (3.43)

Finally, let us consider a singularity 02 of the stability boundary.
This point is characterized by the double eigenvalue Ao = 0 with a sin-
gle eigenvector. Let us introduce real vectors gi = (gn, • • • ,9in) and
g2 = (921, • • •, gin) with the components

TdA
9ij — vo fl~Tu°'

(3.44)
_ TdA T<5A-

where uo, ui and vo, vi are, respectively, the right and left Jordan chains
of the eigenvalue Ao = 0 satisfying normalization conditions (2.65), and
the derivatives are taken at po- We assume that the vectors gi and g2

are linearly independent. By Theorem 2.3 (page 37), perturbation of the
double nonderogatory eigenvalue Ao = 0 along the ray p = po + ee is given
by the expansion

1
A = ±y(gi ,Ap) H—(g2,Ap) + o(e), (3.45)

2
where Ap = p — po = ee denotes increment of the parameter vector. The
stability condition for small e requires ReA < 0 for both eigenvalues (3.45).
Since the square root is taken with both positive and negative signs, the
first term in the right-hand side of (3.45) is purely imaginary for stabilizing
perturbation Ap, which implies (gi, Ap) < 0. Then, the second term in the
right-hand side of expression (3.45) has to be negative to ensure stability.
Therefore, we get two inequalities

( g l , A P ) < 0 , ( g 2 , A P ) < 0 , (3.46)

which provide the first order approximation of the stability domain. Con-
ditions (3.46) determine a (dihedral) angle in the parameter space; see
Figs. 3.12 and 3.13. The tangent vector to the edge 02 of the stability
boundary in the three-parameter space can be found by the formula

et = gi x g2. (3.47)

Notice that the conditions (gi,Ap) < 0, (g2,Ap) = 0, determining one
side of the angle, correspond to a pair of purely imaginary eigenvalues
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(3.45) and, hence, approximate the flutter boundary. For the other side
of the angle (gi,Ap) = 0, (g2,Ap) < 0 expansion (3.45) is not valid,
since nondegeneracy condition (2.87) of Theorem 2.3 is violated. In this
case the double Ao = 0 splits into a pair of simple eigenvalues given by
Theorem 2.4 (page 39) with one eigenvalue being zero along the stability
boundary. Hence, this side of the angle is the divergence boundary; see
Figs. 3.12 and 3.13.

Theorem 3.6 Let po be a singular point of the stability boundary of one
of the following types 0(±iu>), (±iwi)(±iw2), orO2. Depending on the type,
we determine the vectors fo andf^, fjUl andfiU2, or gi <mdg2, respectively,
and assume that the vectors in a pair are linearly independent. Then, the
point po represents a (dihedral) angle singularity of the stability boundary.
The first order approximation of the stability domain in the neighborhood
of po is given by the inequalities

0(±iu) : (fo, Ap) < 0, (fiw, Ap) < 0;

(±»wi)(±»a/2) : (fiwi, Ap) < 0, (fiW2, Ap) < 0; (3.48)

02: ( g l , A p ) < 0 , ( g 2 ,Ap)<0.

Notice that the vector pairs in conditions (3.48) are linearly independent
in the case of general position. Moreover, linear independence of these vec-
tors provides a constructive criterion to recognize generic and nongeneric
cases. In the nongeneric case, when the vectors are linearly dependent, con-
ditions (3.48) are not valid, and we need to use higher order approximations
of eigenvalues to determine a local form of the stability domain. In each
particular case this task can be accomplished using bifurcation analysis of
eigenvalues given in Chapter 2.

Example 3.2 As an example, let us consider the stability problem of
equilibrium in a circuit consisting of a voltaic arc, resistor R, inductance
L, and shunting capacitor C connected in series. Linearized differential
equations near the equilibrium of the system have the form [Andronov
et al. (1966)]

d£ _ p£, v

Hi ~ ~T + V
(3.49)

¥ = ~C~R~C'
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where £(£), rj(t) are , respectively, the electric curren t and voltage in the
voltaic arc , and p is the resistanc e of the arc .

System (3.49) depends on four parameters : three positive quantitie s
L, C, R and the paramete r p, which can take both positive and negative
values. Assuming tha t the parameter s L and C are fixed, we consider the
stability problem on the plane of two parameters : pi = R and p2 = P- The
matrix A correspondin g to system (3.49) is

/_£. 1 \
L L

A = . (3.50)

\~C ~R~C>

The characteristi c equation of the system takes the form

At the point p0 = (Ro,po), where i?o = \fL/C and po = —y/L/C,
characteristi c equation (3.51) has the double root Ao = 0 with a Jorda n
chain of length 2. Hence, po is the point of type 02 representin g a vertex of
an angle on the stability boundary . Equation s for the right and left Jorda n
chain s (2.64) with normalizatio n conditions (2.65) yield at this point

u ° = U ^ J ' U i = U ) ' v o = ( V | v i = W ("2)
Using vectors (3.52) and the matrix A from (3.50), we calculat e the vectors
gi and g2 accordin g to formula e (3.44) as follows

Thus , we find the angle at the singularit y 02 of the stability boundar y given
by inequalitie s (3.48) at the point R — RQ, p = p0; see Fig. 3.14. This
angle is equal to vr/2. The obtained resul t is in accordanc e with [Andronov
et al. (1966)], where it was shown tha t the stability boundar y consists of
the segment p = —R,0<R< y/L/C, and the par t of hyperbola p —
-L/(RC), \fL/C < R; see Fig. 3.14. Notice tha t the stability boundar y
to the left of the singularit y correspond s to divergence instability, while the
right par t of the stability boundar y correspond s to flutter instability.

(3.51)

(3.53)
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P

Po gi/$^i2

Fig. 3.14 Stability domain of equilibrium in electric circuit.

3.7 Quantitative analysis of singularities of codimension 3

Let us consider a singular point po on the stability boundary corresponding
to one of the types

0(±iui)(±iu)2), (±iu>i)(±iLJ2){±iu>3), 02{±iu>). (3.54)

These types differ from those considered in the previous section by an ex-
tra pair of complex conjugate eigenvalues A = ±ioj. This additional pair
corresponds to the flutter boundary and leads to an extra condition of the
form (3.37). Therefore, first order approximations of the stability domain
in the neighborhood of the point po take the form

0(±«Ji)(±iw2) : (fo, Ap) < 0, {fiui, Ap) < 0, (fiW2,Ap) < 0;

(±twi)(±ia;2)(±ta;3) : (f^, Ap) < 0, (fiU2, Ap) < 0, ( f ^ A p ) < 0;

02(±zw) : (gi, Ap) < 0, (g2) Ap) < 0, (f&,, Ap) < 0;
(3.55)

where the vector fo is determined by formula (3.31) for the simple zero
eigenvalue, the vectors fjU, fjUl, fjW2, and fjU3 are given by formula (3.36)
for the eigenvalues ico, icoi, iu>2, and ico^, respectively, and the vectors gi
and g2 are determined by expressions (3.44) for the double zero eigenvalue.
Assuming that three vectors in each condition of (3.55) are linearly inde-
pendent, we find that stability boundary points of types (3.54) are trihedral
angle singularities whose sides are nutter or divergence boundaries, and the
edges are of the types studied in Section 3.6. Vectors in conditions (3.55)
are normal vectors to corresponding sides of the trihedral angle, directed
opposite to the stability domain; see Fig. 3.15.

Now, let us consider a singularity "deadlock of an edge" (±ioj)2 deter-
mined by a pair of nonderogatory double eigenvalues ±iuj. Let us introduce



Stability Boundary of General System Dependent on Parameters 107

0(±/co,)(±/co2) (±/co,)(±iCO2)(±;co3) O2(±;co)

to, * '0 f • g. Jf

Fig. 3.15 Trihedral angle singularities of the stability boundary and their approxima-
tions.

complex vectors gi and g2 of dimension n with the components determined
by expressions (3.44), where the right and left Jordan chains u0, ux and v0,
vi are taken for the eigenvalue Ao = iui. Stability condition requires that
four eigenvalues, which form two double eigenvalues on the imaginary axis
at po, move to the left half of the complex plane Re A < 0 under stabilizing
perturbation. Considering perturbations of the parameter vector along a
ray p = p0 + Ap, where Ap = ee, and using Theorem 2.3 (page 37), we
find bifurcation of the double eigenvalue Ao = iu in the form

A = tw± V(gi, Ap) + i(g2, Ap) + o(e), (3.56)

where (g;-,Ap) = (Regj, Ap) + i(Imgj, Ap), j = 1,2. Since both positive
and negative signs are taken before the square root, the second term in the
right-hand side of expansion (3.56) must be purely imaginary for stabilizing
perturbation. Hence, the expression under the square root must be real
and negative. This yields two independent relations (Regi,Ap) < 0 and
(Imgi, Ap) = 0. Under these conditions the stability is determined by the
third term in expansion (3.56), which yields (Reg2,Ap) < 0. Therefore,
we find three conditions

(±iu)2: (Re g l ,Ap)<0 , (Imgi,Ap) = 0, (Reg2,Ap)<0, (3.57)

which provide the first order approximation of the stability domain. The
real vectors Re gi, Im gi, and Re g2 are assumed to be linearly independent,
which is the case of general position.

In the three-parameter space conditions (3.57) define a plane angle. This
angle describes a specific form of the stability domain near the singularity
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(±?w)2, which is very narrow such that only a zero-measure set of directions
lead inside the stability domain; see Fig. 3.16. The singularity "deadlock
of an edge" appears at the tip of an edge (±iwi)(±iw2), when the size
of dihedral angle becomes zero. From expansion (3.56) we see that two
different purely imaginary eigenvalues iui\ and iw2 exist if

(Re g l ,Ap)<0 , (Imgi,Ap) = 0, (Reg2,Ap) = 0. (3.58)

Conditions (3.58) determine a ray with the direction et, which is tangent
to the edge (±iwi)(±zw2); see Fig. 3.16.

Fig. 3.16 Singularity "deadlock of an edge" of the stability boundary and its approxi-
mation.

Let us consider an arbitrary curve p = p(e) starting at p(0) = po with
the direction e. Then, bifurcation of the eigenvalue Ao = iui takes the
form (3.56) with the substitution of Ap by ee. Hence, any curve with the
direction e satisfying the conditions

(Re g l , e )<0 , (Imgi,e)=0, (Reg2,e)<0 (3.59)

belongs to the stability domain for small positive e. At the same time any
curve, whose direction does not satisfy the conditions

(Regi ,e)<0, ( Img l ,e)=O, (Reg2,e)<0 (3.60)

lies in the instability domain for small e > 0.
Finally, let us consider the singularity "break of an edge" 03 determined

by the nonderogatory triple eigenvalue Ao = 0 at po, while the other eigen-
values have negative real parts Re A < 0. For this purpose, we introduce
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real vectors hi, h2, and h3 of dimension n with the components

TdA
hl> = V° 5 ^ U 0 '

rpdA TdA
hV=^WU1+vT— u o > ( 3 6 1 )

TdA TdA TdA .
*** = v° a^ U 2 + V l WjUl + V2 Wjuo' J= '• • ' ' n >

where uo, uj, U2 and vo, vi, V2 are the right and left Jordan chains cor-
responding to the eigenvalue Ao = 0 and satisfying equations (2.4), (2.32)
with normalization conditions (2.35). Then, by Theorem 2.5 (page 51), the
triple eigenvalue Ao = 0 takes the increment

A = e 1 / 3 { / (h^y + o(e1/3) (3.62)

along a curve p = p(e) with the direction e. Since the cubic root in (3.62)
takes three different complex values, there is always one eigenvalue with a
positive real part unless

(hi,e) = 0. (3.63)

Hence, directions of curves lying in the stability domain satisfy degeneration
condition (3.63).

Directions e determined by (3.63) are degenerate in the sense that ex-
pansions of the eigenvalues along the curve p(e) are not given in powers of
e1/3. This case was studied in Example 2.9 (page 53), where it was shown
that splitting of the triple eigenvalue Ao = 0 is given by two eigenvalues

A = ±e^J(M + \ ( J K e ^ ~ ^ + (h3,e)) + o(e), (3.64)
2 V 4^2,e) /

and by the third eigenvalue

A = e ( H e e ) (h , , d ) + < ) ( e ) i

2(h2,e)

where d = d2p/cfe2 is evaluated at e = 0, and H = [/iy] is an n x n real
matrix with the components

/ ^ v ^ ^ G ^ - ^ ^ U o , G2 = A0 + v0v2T. (3.66)

pj

(3.65)

(3.61)



110 Multiparameter Stability Theory with Mechanical Applications

In formulae (3.64) and (3.65), (He, e) denotes the quadratic form

n

(He,e)=Y,hijeiej. (3.67)
•i,j=l

Expressions (3.64)-(3.66) are obtained from expansions (2.153)-(2.155) in
Example 2.9 using relations (2.73) and (3.61).

Since both negative and positive signs are taken before the square root
in expansion (3.64), the first term in the right-hand side of (3.64) must be
purely imaginary for stabilizing perturbation, which yields

(h 2 ) e )<0. (3.68)

Then, stability of the system is determined by the second term for eigen-
values (3.64) and the first term in expansion for the third eigenvalue (3.65).
These terms are negative for stabilizing perturbations. Using (3.68) and
assuming that (h2le) ^ 0, we find the stability condition for e > 0 as

(He.e) -2(h2,e)(h3,e) < (hi,d) < (He,e). (3.69)

Since (h2, e) < 0, solutions d of double inequality (3.69) exist if

(h 3 ) e )<0. (3.70)

Under this condition inequalities (3.69) provide a set of vectors d determin-
ing curvatures of the curves p(e) lying in the stability domain for positive
e. Therefore, we find the first order approximation of the stability domain
in the neighborhood of the singularity "break of an edge" as

03 : (hi, Ap) = 0, (h2) Ap) < 0, (h3, Ap) < 0. (3.71)

The vectors hi, h2, and h3 are linearly independent in the case of general
position.

In the three-parameter space conditions (3.71) define a plane angle. This
reflects a specific form of the stability boundary near the point p0, which is
very narrow such that there is only a zero-measure set of directions leading
to the stability domain; see Fig. 3.17. The singularity "break of an edge"
appears at the intersection of two edges 0(±iw) and 02, when the sizes of
dihedral angles for both edges become zero. Prom expansions (3.64) and
(3.65) we see that a pair of purely imaginary eigenvalues ±iui and simple
zero eigenvalue appear if

(hi,e) = 0, (h2)e) < 0, (h3)e) = 0, (3.72)
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which determine the vector ei tangent to the edge 0(±iu>). The other side
of the plane angle

( h ! , e ) = 0 , (h2 )e) = O, ( h 3 ; e ) < 0 (3.73)

determines the vector e2 tangent to the edge 02; see Fig. 3.17.

Fig. 3.17 Singularity "break of an edge" of the stability boundary and its approxima-
tion.

Unlike the "deadlock of an edge", in the case of the "break of an edge"
singularity not all the curves with directions

(hi, e) - 0, (h2, e) < 0, (h3, e) < 0 (3.74)

belong to the stability domain for e > 0. Stable curves are restricted by
condition on second order derivatives (3.69). Therefore, all the curves with
directions (3.74) and second order derivatives (3.69) belong to the stability
domain for small positive e. If the direction e does not belong to the set

( h l j e ) = 0 , (h 2 ) e )<0 , (h 3 ) e )<0, (3.75)

or the second order derivatives vector d does not satisfy the nonstrict in-
equalities

(He,e) -2(h2 le)(h3,e) < (h1;d) < (He,e), (3.76)

then the curve p(e) lies in the instability domain for small e > 0. The
curves such that

(hl!d) = (He,e)-2(h2,e)(h3,e) or (h1; d) = (He.e) (3.77)

approximate the stability boundary.

e1

e2

03

02

0

S
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Example 3.3 Let us consider a two degrees of freedom pendulum loaded
by a follower force, see Fig. 3.18. It is assumed that at the joints of the pen-
dulum visco-elastic restoring moments appear, and gravitational forces are
neglected. This system was studied in [Ziegler (1952)] and in the present
extended version with two different damping parameters in [Herrmann and
Jong (1965)]. A boundary surface of the stability domain was plotted and
studied in [Seyranian and Pedersen (1995)]. We consider this example from
the point of view of singularities of the stability boundary and show that
the effects known as destabilization due to damping [Ziegler (1952)] and
uncertainty of the critical load as damping parameters tend to zero [Seyra-
nian (1996)] are closely related to the "deadlock of an edge" singularity.
This singularity takes place at the point of the critical force of the system
with no damping. At lower values of the follower force we have the dihedral
angle singularity.

Fig. 3.18 Double pendulum with a follower force.

Linearized equations of motion of the pendulum in non-dimensional
variables are [Herrmann and Jong (1965)]

(3.78)

where 71 and 72 are independent nonnegative damping parameters, and p
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is magnitud e of the follower force. Introducin g the variable s </?3 = (pi an d
(fi = <p2, equation s (3.78) take the form

x = Ax, (3.79)

where

{<Pi\ I ° ° l ° \
x = H , A = 0 0 0 1

I V3 I '  p/2-3/2 l-p/2 -71/2-72 72
^ 4 '  \5/2-p/2 p/2-2 71/2 + 272 -272/

We investigate the stability domain of the system in the space of three
parameter s p = (71,72,2?)- The characteristi c equation of system (3.79),
(3.80) is

A4 + Ti+672 A 3 + 7 - 2 p + 7i72A2 + 7 L + ^ A + l ^  ( 3 8 1 )

Z JL Z 2*

At 71 = 72 — 0 (system without damping) we find

*" = s('-WH)'-2)- <3-82)
Hence, at 0 < p < 7/2 - \/2 we have two different pairs of purely imaginary
simple eigenvalues corresponding to the edge (±zwi)(±iw2) of the stability
boundary. At po = 7/2 — \/2 there exists a pair of double eigenvalues
A = ±iw with Jordan chains of length 2. Hence, this point corresponds
to the singularity "deadlock of an edge" (±iw)2. Therefore, the segment
71 = 72 = 0, 0 < p < po is an edge of the stability boundary with the
deadlock at the point p — po', see Fig. 3.19.

In the neighborhood of the point p = (0,0,p), 0 < p < po, on the
edge (±iwi)(±iw2) an approximation of the stability domain is given by
Theorem 3.6 (page 104) in the form

( f i w i , A p ) < 0 , ( f i W 2 ,Ap)<0, (3.83)

where the vectors fjWl and fjU2 are determined by expression (3.36) for two
different purely imaginary eigenvalues iw\ and iw2. Evaluating the vectors

(3.80)
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V
Fig. 3.19 Stability domain of the double pendulum.

fiWl and fiuJ2 for matrix (3.80), we find

/ 3 / 2 - p \ / p - 3 / 2 \

^ (p - 7/2)2 _ 2 ^/(p-7/2)2-2~

«*-! = £ 19-6^ , fL, = £ ^ Z i 9 6
v/(p-7/2)2-2 V(P-7 /2 ) 2 -2

V 0 / V ° /
(3.84)

The angle between the vectors fiUl and fjW2 (equal to the difference of -K
and the size of the dihedral angle) increases with an increase of p from
zero and tends to w as p -> PQ. But at p = po the vectors iiull and fiU2

become infinite, because denominators in (3.84) vanish. At this point the
frequencies OJ\ and 0J2 merge, and the edge (±iuii)(±iu)2) ends up with
appearance of the "deadlock of an edge" singularity (±zw)2; see Fig. 3.19.

The first order approximation of the stability domain near the point

7i = 72 = 0, p = po (3.85)

of the "deadlock of an edge" singularity has the form (3.57), where the real
vectors Regi, Imgi, and Reg2 are determined by expressions (3.44). For
matrix (3.80) these vectors, up to a positive scaling factor, take the form

R e g l = (0,0,1), Imgi = (1,-4-5-^2,0) , Reg2 = (-1,-6,0) . (3.86)

The approximation of the stability domain in the neighborhood of point
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(3.85) is represented by the plane angle

71 = (4 + 5\/2)72, 72 > 0, p < p0. (3.87)

Any curve p(e) starting at point (3.85) with the direction e = ((4 +
5\/2)Ci) Ci> ~C2)> where £i and £2 are arbitrary positive real numbers, be-
longs to the stability domains for small e > 0. A curve with the direction
e' = ((4 + 5-\/2), 1, 0) is tangent to the upper part of the stability boundary
surface, see Fig. 3.19.

At fixed values of the damping parameters ji, 72, a critical force
Per (71,72) is defined as the smallest value of p at which the system becomes
unstable. Let us consider damping in the form 71 = e\e, 72 = e2£, where e
is a small positive number. Since the segment 71 = 72 = 0, 0 < p < po is
the edge of the stability boundary, the limit of the critical load as damping
tends to zero,

pd = limpCI.(eie, e2e) (3.88)

for a fixed direction (e1;e2) is equal to the value of p at which the vector
e = (ei,e2,0) leaves the dihedral angle (±iwi)(±iw2) with an increase of
p from zero. In this case either the condition (f;Wl,e) = 0 or (fj^^e) = 0
is fulfilled. For example, considering 71 = e and 72 = 0, we have e =
(1,0,0), pd = 2, fiW2 = (0, -5/2,0), and (fia)2,e) = 0. From this argument
we conclude that the limit of the critical force pd is different for various
directions (ei, e^). For all (ei, e2) 7̂  C(4 + 5\/2,1), £ > 0, this limit is less
than PQ. At (ei, e<i) = £(4 + 5\/2,1) we have pd = po- This is related to the
fact that the direction e' = (4 + 5\/2,1,0) is tangent to the upper part of
the stability boundary; see Fig. 3.19.

Degeneration of a dihedral angle at a "deadlock of an edge" sin-
gular point geometrically illustrates the effects of destabilization of a
non-conservative system by small dissipative forces and uncertainty of
the critical load as damping parameters tend to zero [Ziegler (1952);
Seyranian and Pedersen (1995); Seyranian (1996)]. More detailed study
of the effect of dissipative forces on stability of non-conservative systems is
presented in Section 8.3.





Chapter 4

Bifurcation Analysis of Roots and
Stability of Characteristic Polynomial

Dependent on Parameters

In this chapter we consider a linear ordinary differential equation of mth
order, whose coefficients smoothly depend on parameters. Stability analy-
sis for such equation is reduced to the study of roots of the characteristic
polynomial. Asymptotic stability corresponds to polynomials, whose roots
have negative real parts. First, we describe general methods and results
of bifurcation analysis for roots of polynomials dependent on parameters.
Then, we analyze the stability domain in the parameter space, describe a
regular part of the stability boundary and derive local approximations of
the stability domain in the neighborhood of regular points of the boundary.
Using bifurcation analysis of the roots, we describe generic singularities
of the stability boundary (for codimensions 2 and 3). To study an ar-
bitrary singular point of the stability boundary we apply the Weierstrass
preparation theorem, which provides local multi-parameter factorization of
the characteristic polynomial. This technique is used for qualitative and
quantitative study of the stability domain near singularities. As a result,
stabilizing directions in the parameter space are found explicitly using only
values and derivatives of polynomial coefficients with respect to parameters
at the stability boundary point under consideration.

One-parameter perturbation theory for multiple roots of a polynomial
is based on the method of Newton diagrams, see [Newton (1860); Vainberg
and Trenogin (1974); Baumgartel (1984)]. Classification of singularities of
the stability boundary for families of polynomials was done in [Levantovskii
(1980b)]. Quantitative multi-parameter analysis of bifurcations of roots and
stability analysis of polynomials presented in this chapter follow the papers
by [Mailybaev and Seyranian (1999b); Mailybaev (2000a); Grigoryan and
Mailybaev (2001)].

117
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4.1 Stability of ordinary differential equation of mth order

Let us consider an ordinary differential equation of mth order

a m z ( m ) + am-ix{m~l) + • • • + aii + aox = 0, (4.1)

where a; is a real variable, ao,. ..,am are real time-independent coefficients,
and derivatives are taken with respect to time t. Looking for a solution of
this problem in the form

x(t)=exp\t, (4.2)

we obtain the characteristic equation

am\m + am-iA™-1 + • • • + aiA + a0 = 0. (4.3)

If am 7̂  0, then equation (4.3) has m roots A, counting multiplicities.
If A is a real root of multiplicity k, then

Xi (t) = exp \t,

X2(t) — t exp At,
(4.4)

Xk(t) = tk~l exp At

are linearly independent solutions of equation (4.1). For a pair of complex
conjugate roots A and A of multiplicity k, we find 2k linearly independent
real solutions taking real and imaginary parts of expressions (4.4). A linear
combination of these solutions, taken for all the roots, represents a general
solution of equation (4.1).

We say that the system is stable if any solution of equation (4.1) is
bounded as t -> +oo. If, in addition, x{t) ->• 0 as t -* +oo the system
is asymptotically stable. The form of solutions (4.4) yields the following
stability criterion.

Theorem 4.1 System (4-1) is asymptotically stable if and only if all the
roots of characteristic equation (4-3) have negative real parts Re A < 0.

System (4-1) is stable if and only if Re A < 0 for all the roots of char-
acteristic equation (4-3) and the roots with zero real parts are simple.

System (4-1) is unstable if and only if there exists a root with positive
real part Re A > 0 or a multiple root with zero real part Re A = 0.
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Checking condition of asymptotic stability Re A < 0 does not require
evaluating the roots of characteristic equation (4.3), but needs only signs
of their real part. This property is used in the well-known Routh-Hurwitz
conditions for the polynomial coefficients guaranteeing asymptotic stability
of the system, see for example [Chetayev (1961); Merkin (1997)]:

Theorem 4.2 Let us consider the polynomial

am\m+am-1\m-1+--- + a1\ + a0, am > 0, (4.5)

and introduce the Hurwitz matrix

(am-\ am-3 a-m-5 ••• 0 \

H = 0 a m _ i a m _ 3 ••• 0 . ( 4 . 6 )

\ 0 0 0 ••• aoj
Then, all the roots of polynomial (4-5) have negative real part if and only
if all principal minors of matrix (4-6) are positive:

Ai = am_x > 0,

. , / am_i am_3\
A2 = det > 0,

\ am flm-2 J

( O m - 1 O m - 3 O-m-5 \ , . -•>

am am-2 am_4 > 0,
0 aTO_i am-3J

Am = detH = a0Am_i > 0.

For example, in case of the characteristic polynomial of third order

o3A3 +a2\2 + a1X + a0, a3 > 0, (4.8)

asymptotic stability conditions take the form

02 > 0, aia2 — aoa3 > 0, a0 > 0. (4.9)
Routh-Hurwitz conditions (4.7) are useful for stability analysis of equation
(4.1) with fixed coefficients. But the use of these conditions for multi-
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parameter stability analysis of high order equation (4.1) would be difficult
due to the complicated way, in which the coefficients enter inequalities (4.7).

Introducing the vector of dimension m

I x \

x = X , (4.10)

we write equation (4.1) in the form of a system of m first order differential
equations

/ 0 1 0 ••• 0 \

0 0 1 ••• 0

x = Ax, A = . . . . . . . . . ••. . . . . (4.11)

0 0 0 ••• 1

\-aQ/am -ai/am -a2Jam ••• —am-i/am/

The m x m matrix A in (4.11) is called the companion matrix. The char-
acteristic equation of the companion matrix A coincides with (4.3) after
multiplication by (—l)mam.

It is easy to show that any eigenvalue A of the matrix A has a single
eigenvector

/ 1 \
A

u= . . (4.12)

V A ™ - 1 /

Hence, eigenvalues of the matrix A are simple or multiple nonderogatory.
This property connects stability Theorems 4.1 and 1.1 (page 6).

Let us consider a linear system of ordinary differential equations of rth
order

Arx<r> + A r - i x ^ " ^ + • • • + Aix + Aox = 0, (4.13)

where x is a real vector of dimension s, and Ao>-.- :Ar are real time-
independent s x s matrices. Looking for a solution of (4.13) in the form

x(t) = uexpAt, (4.14)
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we get the eigenvalue problem

(Ar Ar + • • • + AA], + A0)u = 0, (4.15)

where A is an eigenvalue and u is an eigenvector. Eigenvalues A can be
found from the characteristic equation

det(ArAr + • • • + AAj. + Ao) = 0, (4.16)

which is the polynomial equation of the form (4.3) with m = rs. Notice that
the coefficient am — det Ar of the leading term in characteristic equation
(4.16) is nonzero if the matrix Ar is nonsingular. An example of system
(4.13) is a linear vibrational system

Mx + Bx + Cx = 0, (4.17)

see Section 1.6.
If det Ar 7̂  0, system (4.13) can be transformed to a system of first order

differential equations x = Ax, if we introduce the vector x of dimension
m = rs and the m x m block matrix A as

/ x \

X

/ o i o ••• o \ (4-18)
0 0 I ••• 0

A = •• .

0 0 0 ••• I

V - A ^ A Q - A ^ A i - A - ^ a ••• - A - ' v J

where I and 0 denote the identity and zero s x s matrices, respectively.
Notice that an eigenvalue A of matrix (4.18) may have several corre-

sponding eigenvectors u and, therefore, in a solution of equation (4.13)
secular terms can appear.

Theorem 4.3 System (4-13) is asymptotically stable if and only if all the
roots of characteristic equation (4-16) have negative real parts Re A < 0.
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System (4-13) is stable if and only ifReX < 0 for all the roots of char-
acteristic equation (4-16) and the roots with zero real parts are simple or
semi-simple as eigenvalues of problem (4.15).

System (4-13) is unstable if and only if there exists a root with positive
real part Re A > 0 or a multiple root with zero real part Re A = 0 which is
neither simple nor semi-simple as eigenvalue of problem (4-15).

4.2 Stability domain for characteristic polynomial depen-
dent on parameters

Let us consider the characteristic polynomial

P(A,p) = am(p)Am + am_1(p)Am-1 + • • • + oi(p)A + ao(p), (4.19)

where the coefficients aj(p), i = 0,... , m, smoothly depend on a vector of
real parameters p = (pi,... ,pn)- For a given value of the parameter vector
p the polynomial P(A,p) has m roots provided that am(p) ^ 0. If the
leading coefficients vanish at p such that

flm(p) = f l m - i ( p ) = ••• = O M + I ( P ) = 0 , a M ( p ) ^ 0 , (4.20)

then there are only M roots of the polynomial P(A, p). In this case we say
that there is an infinite root A = oo of multiplicity rn-M. We assume that
the polynomial P(A,p) is not identically zero for any value of p. Taking
into account the infinite root, the polynomial P(A,p) has m roots, counting
multiplicities, at any point p. The infinite root corresponds to equation
(4.1) such that the coefficients of the highest order terms vanish and the
order of equation decreases.

The polynomial P(A,p) is called stable for a given p, if all the roots
of this polynomial are finite and have negative real parts Re A < 0, i.e.,
corresponding equation (4.1) is asymptotically stable. Notice that stable
polynomials are structurally stable, since small perturbation of their coef-
ficients keeps the stability property.

The stability domain for a multi-parameter family of polynomials
P(A, p) is defined as a set of values of the parameter vector p corresponding
to stable polynomials. A boundary of the stability domain is characterized
by the points p such that the polynomial P(A,p) has zero, purely imagi-
nary, or infinite roots, while the other roots have negative real parts. We
denote type of a stability boundary point as product of zero, purely imag-
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inary, and infinite roots in powers of their multiplicities

Oko(±iio1)kl •••(±iul)k'ook'», (4.21)

where k\ > • • • > fc; > 0 are multiplicities for different pairs of purely
imaginary roots, ko and koo = m — M are multiplicities of zero and infinite
roots, respectively. For example, (±iw)oo2 denotes a point p, where the
polynomial P(A,p) has a pair of purely imaginary simple roots A = ±iu>
and a double infinite root A = oo, while the other roots satisfy the condition
Re A < 0.

Example 4.1 Let us consider the polynomial

P(A,p) =p1X2 +X+p2 (4.22)

dependent on a vector of two parameters p = (pi, p2) • The stability domain
for this polynomial is given by the conditions

Pi > 0, p2 > 0. (4.23)

The stability boundary consists of the points of types 0, oo, and Ooo; see
Fig. 4.1.

Pi

oo

Ooo P\

Fig. 4.1 Stability boundary for the polynomial P(A,p) = p\\2 + X + P2-

4.3 Perturbation of simple roots

Let us consider a simple finite root A of the polynomial P(A,p). By the
implicit function theorem, this root is a smooth function of the parameter
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vector. Taking derivative of the equation

P(A(p),p)=0 (4.24)

with respect to pi, we find

££ + £-a (4.25)
oX dpi dpi

Since
dP
-^ = mam{p)Xm-1 + (m - l)am_!(p)Am-2 + • • • + ai(p) # 0 (4.26)

for a simple root, we obtain the first order derivative of the root A as follows

ox _ DP fdpy1

dp--~dp~\dx) • ( j

Taking the derivative d2/dpidpj of equation (4.24), we find the second order
derivative of the simple root in the form

d2X _ f d2P d2P dX 82P OX
dpidpj \dpidpj dXdpidpj dXdpj dpi

(4.28)

+ 9A2 dpidpj \dXj '

Analogously, higher order derivatives of a simple root with respect to pa-
rameters can be found.

If the root A equals zero at the point p under consideration, expressions
(4.27) and (4.28) take the form

**--!.?«>. (4 29)
dPi a, dPi' [ y j

d2X _ 1 d2a0 Ji(9ao^± d a o d a i \ _ 2a^da^da^
dpidpj d dpidpj a{ \ dpi dpi dp, dpi) a\ dpi dpj'

Now, let us consider a point p in the parameter space, where the poly-
nomial P(A,p) has a simple infinite root A = oo. At this point am(p) = 0
and om_i(p) 7̂  0. Introducing a new variable

H=j, (4.31)



Bifurcation Analysis of Roots and Stability of Characteristic Polynomial 125

the polynomial P(X, p) is transformed to

P(/i,p) = ao(p)/im + ai(p)//"-1 + • • • + am-i(p)/i + om(p), (4.32)

which is the polynomial with the same coefficients taken in reverse order.
The polynomials P(X, p) and P(/x, p) are related by

P(A,p) = % * (4.33)

The simple infinite root A = oo is transformed to the simple zero root fi = 0
of the polynomial P{fx, p). Hence, the root fi is a smooth real function of
the parameter vector with the derivatives

7^ = - —7T1. (4-34)
dpi aTO_i Spi

dpidpj am_i dpidpj c?m_x \ dpt dpj dpj dpi )
(4.35)

2am_2 dam dam

am-l dPi dPj '

By relation (4.31), the corresponding root A appears from infinity along the
real axis as the parameter vector is changing.

4.4 Bifurcation analysis of multiple roots (nondegenerate
case)

Let us consider a finite root Ao of the polynomial P(A,p) at a given point
p = po in the parameter space. We assume that the root Ao has multiplicity
k, which implies

dP dk~lP BkP

P = ! A = - = ^ = ° ' H*» <4-36>
at A = Ao and p = Po- A multiple root is a nonsmooth function of the
parameter vector. Under perturbation of parameters it generally splits into
k simple roots. Let us consider variation of the parameter vector along the
curve p(e) starting at p(0) = po and having a direction e = (ei , . . . , en) =
dp/de evaluated at po, e being a small positive parameter of the curve.
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Then, the polynomial P(A,p) takes the increment

" flP
P(X,p(e)) = P(X,p0) + e^2--ei

i=i °Pi

, x (4-37)
e2 /. " Q2p " gp \
2 y^^^Pj iridPi )

where derivatives are taken at Ao and po, and d = (di,...,dn) = d2p/de2

evaluated at po-
Under a nondegeneracy condition, that will be specified below, per-

turbation of the multiple root Ao can be represented in the form of the
Newton-Puiseux series

A = A0 + e1/'!A1+e2/'!A2 + — (4.38)

Using expressions (4.36)-(4.38) in the characteristic equation P(A,p) = 0
and requiring the coefficients of each power of e to be zero, we obtain a
chain of equations for the unknowns Ai, A2,... as follows

P(Ao,Po) = 0,

l * + 1 J \ * + i , l d k p ^ x + V d2p x -n ( 4 ' 3 9 )

(fc + i)!SA*+lAl + ( ^ I ) I a F A l M + ̂  dxdii ~ '
Solving the second equation in (4.39), we find

where k different complex values of the root in (4.40) determine k different
A appearing due to bifurcation of Ao. Assuming the condition

" BP
E^e^O, (4.41)

(4.39)

(4.40)
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we solve the third equation in (4.39) as follows

(Jfc-1)! (dkP\~l ( 1 dk+1P^k ^ 82P \ , , .„,

Aa= A p H ^ V {WTv-^Xl+l^dxdF>ej- (442)

This procedure can be continued to get the coefficients A3, A4,... in series
(4.38). Inequality (4.41) represents the nondegeneracy condition for a curve
direction e.

For zero root Ao = 0, expressions (4.40) and (4.42) take the form

*-f=t£«. ("3)

with the nondegeneracy condition as

gl^O. (4.45)

In case of the infinite root Ao = 00 we can study perturbation of a root
Ho — 1/AO = 0 of multiplicity k for the reverse polynomial P(fi,p) deter-
mined by expression (4.32). Formulae for perturbation of fx0 — 0 along
the curve p(e) can be obtained from (4.38), (4.43)-(4.45), if we substi-
tute ao,ai,...,am and A, Ao, Ai , . . . by a m , a m _ i , . . . ,a0 and fi, fj,0,fii,...,
respectively. As a result, we find the expansion

H = no + e ^ V i + £2/*>2 + • • • , (4.46)

where

* = { -—I) Tr*. (4-47)

1 v^ /'om-ft-i dam dam-i\
m = -, 7—0 >^ 5 a— e«> (4-48)

kam^-2 fr[ \ am-k dPi dPi )

(4.44)
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and the nondegeneracy condition is

4.5 Bifurcation analysis of multiple roots (degenerate case)

For perturbation along a curve p(e) with a direction e satisfying the de-
generation condition

71 ftPg-e^O (4.50)

expansion (4.38) is, in general, invalid. Expansions for bifurcating roots
are taken in fractional powers of e, but the fractions can be different for
different roots.

Let us consider a finite root Ao of multiplicity k of the polynomial
P(X, p) (the infinite root is studied analogously by means of the substi-
tution A = 1/fj,; see Section 4.3). Perturbation of parameters along a curve
p = p(e) starting at p(0) = po yields

P(A,p(e)) = cm(e)AAm + cm^(e)AXm-1 + ••• + Cl(e)AA + c*,(e), (4.51)

where A A = A - Ao and the coefficients are

1 diP
c*(£) = 7,-7^-, i = 0,...,m, (4.52)

with the derivatives taken at A = Ao and p = p(e). Let

Ci(e) = ci£ai + • • • , i = 0,...,m, (4.53)

where a* is the leading exponent of c%(e), i.e., Cj ̂  0 and no term of order
lower than ctj appears in the expansion of Ci(e).

The roots of (4.51) are given by expansions in fractional powers of e. The
leading exponents can be found by the following geometric construction: we
plot the points AQ — (m,ao), A\ = (m - l , a i ) , . . . , Am — (0,am) on a
plane (if Cj(e) = 0, the corresponding point A» is disregarded). Then we
draw the segments on the lower boundary of the convex hull of the plotted
points. These segments constitute the so-called Newton diagram associated
with polynomial (4.51); see Fig. 4.2. Slopes of the segments on the Newton
diagram are precisely the leading powers of the e-expansions for the roots

(4.49)
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AA = AA(e) of (4.51); see [Newton (1860); Vainberg and Trenogin (1974);
Moro et al. (1997)]. The number of roots corresponding to each slope
equals the length of the projection on the horizontal axis of the segment
with that particular slope.

0) : : : : b) ;

! i i i i : i^o
2 < \ i i 2 •; \ •; •>••••

i \A2 \AX IAQ i lA2 \X i
1 \ f + ±^.1 ! i: *""y*f£ I

AA l^Jr \ \ ^4 ''L2»^\ \ \

0 1 2 3 4 0 1 2 3 4

Fig. 4.2 Newton diagrams associated with the polynomials: a) A4 + A3 + e\2 + 2eA +
3e + E2, b) A4 + A3 + eA2 + 2E\ + e2.

By conditions (4.36), the point A^ = (m — k, 0), while the points
Ao, . . . , Ak-i lie over the horizontal axis. In the nondegenerate case (4.41)
the point Ao — (m, 1), which determines a segment A^AQ of slope 1/k and
horizontal projection of length k; see for example Fig. 4.2a, where Ao = 0
and k — 3. Therefore, there are k roots AA of polynomial (4.51) whose
expansions start with e1/*. These expansions determine bifurcation of the
multiple root Ao along the curve p(e) as described in the previous section.
In degenerate case (4.50) we have a0 > 1, i.e., the point Ao = (m,a0) is
push up and the form of the Newton diagram depends on the exponents
a 0 , . . . , ak-\; see Fig. 4.2b.

The underlying idea of the Newton diagram if the following. Let us
consider expansion of AA in fractional powers of e with the leading term

A A = m e p l + ••• , (4.54)

where \i\ and /?i are to be determined. Substituting expansions (4.53) and
(4.54) into (4.51), we find

c m < e a m + m / 3 1 + cm^™-le.a™-^m-x^ +••• + CiMi£ai+/31 + coea°

+ ••• = 0.
(4.55)

Every point Ai = (m — i, a.i) corresponds to the term £a<+J0i in equation
(4.55). If AA(e) is a root of (4.51), all the terms we obtain from (4.55) must
cancel each other. Hence, at least two terms of the lowest order in e must
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be present. This lowest order is clearly to be found among the exponents

am+mj3i, am_i + (m-l)Pu ..., ax + (3ua0. (4.56)

Consider the segment S of the Newton diagram with the slope s and choose
/?i — s in (4.54). All the points A; lying on S give rise to terms with the
same exponents since a* + is is constant on S. The fact that no point A;
lies below S implies that no other term of expansion (4.55) can be of lower
order in e.

The leading coefficients m are determined as the solutions of

J2 /*& = °> (4-57)
(m-i,ai)€S

where the sum is taken over all the points Ai = (m — i,a;) lying on the
segment S. A number of nonzero roots fj,\ of equation (4.57), counting
multiplicities, is equal to the length of the horizontal projection of the
segment 5. Taking one of these roots [L\, we can find the next term of the
expansion

AA = //ie/31 +yu2£/32 + --- , (4.58)

where /32 > /?i and \x% are to be determined by substitution into equation
(4.51) and comparison of coefficients for terms of the lowest order in s.

Starting with slopes /?! > 0, this procedure can be continued to find
k expansions describing bifurcation of the multiple root A = Ao of the
polynomial P(A,p) along the curve p(e).

Example 4.2 Let Ao be a triple root of the polynomial P(A,p). Con-
sider perturbation along a curve p(e) with degenerate direction (4.50) and
assume that

0 . ld2c0 1 A JPP I f 9P. , .

ai = l, ci = ̂  = E^Te^°> (4-59)

1 . dc2 l A d*P

a2 = 1' C2 = ̂  = 2 g 5 A ^ e ^ °
with di = d2pi/de2 evaluated at e = 0. Conditions (4.36), (4.50), and
(4.59) determine the points Ao = (m, 2), A\ = {m — 1, 1), A2 = (m - 2, 1),
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and A3 — (m - 3, 0); see Fig. 4.3. There are two segments on the Newton
diagram with positive slopes: Si = A3Ai with slope 1/2 and length 2 of
the horizontal projection, and 52 = AiA0 with slope 1 and length 1 of the
horizontal projection. Solving equation (4.57) for these two segments, we
find the expansions

A = A 0 + / / i£ 1 / 2 + . . . ,
(4.60)

A = Ao + v\e + ...,

where

Co 1 [ v^ d P , ^ dP J \ ( V^ d P \

*= - i r - 2 yc d^rj+5 ^dv (S ^:ev
(4.61)

and ^i takes two different values

I i I ! U o

| | +i~J£.....\

m-4 m—3 m—2 m—\ m

Fig. 4.3 Newton diagram for perturbation of parameters along degenerate direction.

Expressions (4.60)-(4.62) describe bifurcation of the triple root Ao. In
order to find the next term of the first expansion in (4.60), we substitute
AA = Hie1!2 -\- /u2e^2 + • • • into equation (4.51). Using conditions (4.59)
and (4.62), we find the lowest order terms

Ci(0)i4e2 + 3c3^M2£1+/32 + hlA^ + ci/U2£1+/32 + c0e2 = 0. (4.63)

Hence, the exponent /?2 = 1 and the first expansion in (4.60) is extended
as

A = Ao + Mi£1/2 + /i2e + • • •, (4.64)

(4.62)



132 Multiparameter Stability Theory with Mechanical Applications

where the coefficient ju2 is found from (4.63) with the use of expressions
(4.61) and (4.62) in the form

_ 1 (do , c4(0)ci c2\

= i(- , p y 2 f f i ^ d2p dZp dZp \ \
~ 2\Vl \d\3) ^ \2 dXA dXdpi d\3 d\2dPi) &i) '

(4.65)
In case of zero triple root Ao = 0, expressions (4.61), (4.62), and (4.65)

take the form

1 I ^ d &o . v ^ oa0 \ ^ ^ dai \

2 ^ 5pi3Pi ^ 5ft J \^{ dPi j

( i " a \ 1 / 2

^=2 ( - ^ + ^ g r ^ - a s^-J e i ) • (4-68)
If P(A,p) is the characteristic polynomial of the matrix family A(p)

and Ao is a triple nonderogatory eigenvalue of the matrix Ao = A(po),
degeneracy condition (4.50) takes the form of the first equation in (2.152).
Then expansions (4.60)-(4.62), (4.64), (4.65) can be written in terms of the
right and left Jordan chains of Ao and derivatives of the matrix A(p) with
respect to parameters; see Example 2.9 (page 53).

4.6 Regular part of stability boundary

Let us consider stability boundary points p of types

0, ±iu>, oo (4.69)

(4.66)

(4.67)
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represented by simple roots A = 0, A = ±iu>, and A = oo, respectively. In
each case we introduce the vectors

n • f - V a °
ai

, , . , . B Va m (w) m + • • • + Vaxiu + Va0

(±iui) : fiw = - R e TT-4 : —: , (4.70)

f _ Vam
am-i

where

V=(A. . . A ) (4.71)

is the gradient operator evaluated at the stability boundary point under
consideration. From expressions (4.27), (4.29), and (4.34) we see that the
vector f0 is the gradient of zero root A = 0, fiw is the gradient of the real
part of the root A = iui, and f̂  is the gradient of the inverse of infinite
root fj, = I/A = 0.

The local stability condition is given by the inequality

ReA(p)<0 (4.72)

for the zero or purely imaginary root, and by the inequality

MP) < 0 (4.73)

in case of the infinite root. Using instead of the functions Re A(p) and //(p)
their linear approximations with vectors (4.70), we formulate the following
statement.

Theorem 4.4 Let p be a stability boundary point of one of the types listed
in (4-69), and assume that corresponding vector (4-70) is nonzero. Then,
the stability boundary is a smooth surface in the neighborhood of the point
p with corresponding vector (4-70) being the normal vector to the stability
boundary directed into the instability domain; see Fig. 4-4- The stability
boundary of types 0 and oo corresponds to divergence instability, while the
type ±ioj corresponds to flutter instability.

Types listed in (4.69) represent a regular part of the stability bound-
ary. There are two types of stability boundary points corresponding to
divergence instability. For the first type 0, the development of instability
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D Y> / / A D/\ A

py F> py 7, py F

Fig. 4.4 Regular part of the stability boundary and its normal vectors.

is governed by a simple real root crossing the imaginary axis through the
origin as we cross the stability boundary. For the second type oo, a simple
real root tends to — oo as we approach the stability boundary, and then
comes from +oo after crossing the stability boundary. The type ±iu cor-
responds to nutter instability, when two complex conjugate roots cross the
imaginary axis.

Evaluating second order derivatives of the roots A = 0, A = iu>, and
fj, = 0 by formulae (4.28), (4.30), and (4.35), respectively, we find the
second order approximation of the stability domain and its boundary by
means of inequalities (4.72) and (4.73).

4.7 Singularities of stability boundary (codimension 2
and 3)

Bifurcation analysis of roots of the characteristic equation allows quantita-
tive study of the stability domain in the neighborhood of singular points of
its boundary. Expansions for simple, double, and triple roots have the form
analogous to those for simple, double, and triple nonderogatory eigenvalues
for the matrix family A(p). The principal difference between the polyno-
mial and matrix cases is the infinite root, which can appear at the stability
boundary point. Nevertheless, perturbation of the inverse variable fi — I/A
for the infinite root is similar to perturbation of simple or nonderogatory
zero eigenvalue of the same multiplicity.

In the case of general position, there are following types of singular
points of the stability boundary for codimensions 2 and 3 [Levantovskii
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(1980b)]:

cod2: 02, 0{±iu), Ooo, (±iwi)(±icj2), (±iw)oo, oo2;

cod3 : 0 2 ( ± J W ) , 02oo, Q{±iuji){±ibj-1), 0(±iw)oo,
(4.74)

(±iwi)(±iu;2)(±iw3), (±MJi)(±iw2)oo,

Ooo2, (±iw)oo2, (±iw)2, 03, oo3.

Considering zero, purely imaginary, and infinite roots of multiplicities 2
and 3, we introduce the vectors

n 2 Va0 a3Wa0 - a2Vai° g l = ^ ' g2 = ^ ;

/<92P\ ~x

g 2 - ^ 3 ^ v d\^d\)\d\*J '

o o 2 : gx = , g2 = 2 !
"m-2 am-2

n3 • v, - V a ° u _ Q4Vao - asVai (4.75)
U : H i — > " 2 — 2 '

a3 a3

(0305 - a|)Vao + a3a4Voi - afflaz
h 3 = -3 ;

a3

3 , , _ Vfflm , / _ Q-m—jVQm ~ flm-3Vam-l

a m - 3 <-3

, , (am-3flm-5 - a2n_4)Vam + am_3am_4 Va m _ih3 =

am-3

VQm-2

Vectors (4.75) determine expansions of double and triple roots along a curve
p(e); see Sections 4.4 and 4.5. In terms of vectors (4.75) these expansions
coincide with those for double and triple nonderogatory eigenvalues of ma-
trices; see Sections 3.6 and 3.7. Therefore, stability analysis in the neigh-
borhood of singularities of the stability boundary is carried out in the same
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way as in Sections 3.6 and 3.7. As a result, we find the following description
of singularities of the stability boundary for codimensions 2 and 3.

Theorem 4.5 In the case of general position the stability boundary of
a family of polynomials P(A,p) has singularities of codimension 2: 02,
0(±zw), Ooo, (±iu>i)(±iuj2), (±iw)oo, and oo2, which are (dihedral) an-
gles, and singularities of codimension 3: trihedral angles 02(±iw), 02oo,

(±iui)oo2, "deadlock of an edge" (±iuj)2, and "breaks of an edge" 03 and
oo3. First order approximations of the stability domain in the neighborhood
of singular points are given by the relations

0 2 : ( g l , A p ) < 0 , ( g 2 j Ap )<0 ;

• 0(±*w): (fo,Ap) <0 , (ffa,,Ap)<0;

Ooo: (fo ,Ap)<0, (fo o,Ap)<0;

(±iw!)(±tw2) : (f^, Ap) < 0, (fiW2, Ap) < 0;

(±«w)oo : (f ia , ,Ap)<0, (fo o,Ap)<0;

oo2: (g i ,Ap)<0 ) ( g 2 ,Ap)<0 ;

02(±iw): (g i ,Ap)<0 , ( g 2 ,Ap)<0 , (f i w,Ap)<0;

02oo : (gi, Ap) < 0, (g2, Ap) < 0, (foo, Ap) < 0;

0(±iui)(±iu)2) • (fo,Ap)<O, (fiwi, Ap) < 0, (fiW2,Ap)<0;

0(±iu)oo : (ft, Ap) < 0, (fiw> Ap) < 0, (foo, Ap) < 0;

{±iux)(±iu2)(±iw3) : (fiwi, Ap) < 0, (fiW2, Ap) < 0, (fiW3, Ap) < 0;

(±«wi)(±w2)oo : (fiwi, Ap) < 0, (fiW2, Ap) < 0, (foo, Ap) < 0;

Ooo2: ( f t ,Ap)<0, (g i ,Ap)<0, (g 2 ,Ap)<0;

(±icj)oo2 : (fiu, Ap) < 0, (gi.Ap) < 0, (g2,Ap) < 0;

(±iw)2 : (Re g l , Ap) < 0, (Im g l , Ap) = 0,

(Reg2,Ap) <0;

03 : (hi, Ap) = 0, (h2, Ap) < 0, (h3, Ap) < 0;

oo3 : (hi, Ap) = 0, (h2, Ap) < 0, (h3, Ap) < 0.
(4.76)
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Vectors for each approximation in (4-76) are linearly independent in the

case of general position.

Ooo

P] y ^ : ± ' c o ) c ° °°2 J ^ ^ ^

±/co »—• A •
(i/^Xi/fflj) 0(±/a>)

Fig. 4.5 Singularities of the stability boundary in the two-parameter space.

Fig. 4.6 Singularities of the stability boundary in the three-parameter space: a) dihedral
angle (edge), b) trihedral angle, c) deadlock of an edge, d) break of an edge.

Singularities appearing on the stability boundary in the two- and three-

parameter spaces are shown in Figs. 4.5 and 4.6. Notice that all the curves

with directions satisfying inequalities

(Regi ,A P )<0, (Imgi,Ap)=0, (Reg2,Ap)<0 (4.77)

a)

c)

b)

d)

S
S

S
S

p2

SS

0

02
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for the "deadlock of an edge" singularity (±iw)2 lie in the stability domain
for small e > 0. In case of the "break of an edge" singularity 03 or oo3 the
curves satisfying, respectively, the conditions

(h i ,Ap)=0, (h 2 ,Ap)<0, (h3 ,Ap)<0,
(4.78)

(He, e) - 2(h2, e)(h3, e) < (hi, d) < (He, e)

or

(h'1,Ap) = 0, (h2 ,Ap)<0, (h3 ,Ap)<0,
(4.79)

(H'e,e) - 2(h2,e)(h3,e) < (h'^d) < (H'e.e)

belong to the stability domain for small e > 0, where elements of the n x n
matrices H = [hij] and H' = [h1^] of quadratic forms are determined by
the expressions

_ 1 d2a0 _ 1 d2am
nu — — T . — „ — , it-a — Q—5—• (4.SUJ

If conditions (4.78) or (4.79), where all the inequalities are taken as non-
strict, are not satisfied, then the curve belongs to the instability domain
for small e > 0.

Example 4.3 Let us consider an automatic control system consisting of
an integrating, oscillatory, and two aperiodic elements connected as shown
in Fig. 4.7. The characteristic equation for this system takes the form [Feld-
baum and Butkovskii (1971)]

A(T0A2 + TiA + 1)(T2A + 1)(TA + 1) + kkxk2 = 0. (4.81)

Assuming that parameters of the aperiodic elements are fixed and equal to
T — T2 — 1, k = 2, k2 = 1, we study stability of the system depending

M ><a •Hi 1 *' 1 r ^ n *x*
1 M J L I \T°p2+T\p+l\ 1 T2p+i [

I -k I
Tp+\

Fig. 4.7 Automatic control system.
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on the vector of three parameters p = (To,Ti,ki) corresponding to the
oscillatory element:

P(A,p) = ToA5 + (2To+Ti)A4+(To+2T1 + l)A3+(T1+2)A2+A+2/Cl. (4.82)

Let us consider a point po = (0,0,1) in the parameters space, corre-
sponding to the system without the oscillatory element (a corresponding
transfer function is reduced to unity). At p = p0 we find

P(A,Po) = A3 + 2A2 + A + 2. (4.83)

Finite roots of this polynomial are simple and equal to X — ±i and A =
—2. In addition, there is the double infinite root, since the order of the
polynomial is decreased by two at po- Hence, the point po belongs to the
stability boundary of polynomial (4.82) and has the type (±iw)oo2, where
u> = 1. By Theorem 4.5, the first order approximation of the stability
domain in the neighborhood of p0 is given by

(f i w ,Ap)<0, (g i ,Ap)<0 , (g^,Ap)<0, (4.84)

where the vectors f̂ , gi, and g2 a r e given by formulae (4.70) and (4.75).
For polynomial (4.82) these vectors are equal to

fiw = i ( l , 2 , l ) , gi = (-1,0,0), g^ = (0,-1,0). (4.85)

Inequalities (4.84) determine a trihedral angle in the parameter space, see
Fig. 4.8a. For comparison, Fig. 4.8b shows the stability boundary found
numerically by solving the characteristic equation and checking the stability

a) I k\ b) k]

—03 °'2 ""O3 °'2

Fig. 4.8 Stability boundary for a control system found by means of a) first order ap-
proximation, b) numerical calculation.
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condition Re A < 0. Calculations confirm existence of the trihedral angle
at the point p0 with first order approximation (4.84), (4.85).

4.8 Reduction to polynomial of lower order by the Weier-
strass preparation theorem

Stability of a characteristic polynomial in the neighborhood of a stability
boundary point depends on behavior of zero, purely imaginary, and infinite
roots. Multiplicities of these roots are typically low, while the order of the
characteristic polynomial can be high in practical problems. The principle
difficulty of stability analysis is appearance of multiple roots, which are
non-smooth functions of parameters. The following theorem (called the
Weierstrass preparation theorem for analytic functions [Weierstrass (1895);
Chow and Hale (1982)] with extension to smooth functions called the Mal-
grange preparation theorem [Malgrange (1964)]) applied to the polynomial
case allows reduction of stability analysis in the presence of multiple roots
to study of a low order polynomial, whose coefficients smoothly depend on
the parameter vector.

Theorem 4.6 Let Ao be a root of multiplicity k for the polynomial P(A, p)
at the point p = p0 of the parameter space, i.e., conditions (4-36) are
satisfied at AQ and po- Then, in the neighborhood of po the polynomial
JP(A, p) can be represented in the form

P(X, p) = (AA<= + bfc_! (P)AA*-1 + ... + &i(p)AA + &0(p))Q(A,p), (4.86)

where AA = A - Ao and Q(X, p) is a polynomial of order m — k. The func-
tions &o(p), • • • j &fc-i(p) and coefficients of the polynomial Q(A,p) are real-
valued or complex-valued smooth functions o/p in case of a real or complex
Ao, respectively, such that &o(Po) = • • • = &fc-i(po) = 0 and Q(Ao,po) 7̂  0.

In case of the infinite root Ao = oo of multiplicity k we have

P(A,p) = (&o(P)A* + 6I(P)A A - 1 + ... + bk^(p)X + l)Q(A,p), (4.87)

where &o(p)i • • • J & * - I ( P ) an^ coefficients of the polynomial Q(A,p) are

smooth real functions of the parameter vector such that &o(Po) = ••• =

&*-i(po) = 0 and the coefficient of the leading term \m-k of the polyno-

mial Q(A,po) is nonzero.
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Therefore, all information on bifurcation of a multiple root Ao is given
by the polynomial

R(X,p) = AAfc + 6ft_1(p)AAfc-1 + . . . + 6i(p)AA + bo(p) (4.88)

of the lowest possible order k. The functions bo(p),... ,bk-i(p) can be
found in the form of Taylor series in the neighborhood of po- For this pur-
pose, we need to know their partial derivatives with respect to parameters.

Let us introduce the notation

__ i d^bi

i'b-iih\d\idPp---djfr' Qi'h~iw-d\*dp^---dpk' (4'89)

n
& p h = H ( P i - p o i ) h i , m = h 1 + - - - + h n , h \ = h 1 \ - - - h n \ ,

»=i
where derivatives are evaluated at Ao and po, and h = (hi,...,hn) is a
vector with nonnegative integer components. Notice that the zero order
derivative in the notation means that we do not take the derivative with
respect to a corresponding variable, for example,

_ldiP

Then, the functions &o(p), • • •, &it-i(p) are given by the Taylor series

&,(p) = 5 > > h A p h , (4.90)
h

where the sum is taken over all the vectors h with nonnegative integer
components. Recall that fe^o = &i(po) = 0, % — 0 , . . . , k - 1.

Analogously, perturbation of the infinite root Ao = oo is given by the
polynomial

R(X,p) = bo(p)Xk + 6i(P)A'=-1 + . . . + 6*_i(p)A + 1, (4.91)

whose coefficients foo(p), • • • ,&fc-i(p) can be taken in the form of Taylor
series (4.90) in the neighborhood of po.

Values of the coefficients fei,h in Taylor series (4.90) are found using the
following recurrent formulae given in [Grigoryan and Mailybaev (2001)].

(4.89)



 

Theorem 4.7 Let Ao be a finite root of multiplicity k of the polyno-
mial P(A,po). Then, values of fe^h and Qiih for the functions bi(p),
i — 0 , . . . , k — 1, and Q(A,p) in factorization (4.86) satisfy the following
recurrent formulae

i / 3 N

bith = J2ai-j(pJ,h-Y, 12 k,h'Qj-i,h"j, (4-92)
1=° / = 0 h'+h"=h 7

h'#O, h ' V

fc-1

Qi,h = Pk+i,h-12 12 hh'Qk+i-j\h", (4.93)
j=0 h'+h"=h

where the coefficients cti are

1 1 i~1

ao = ——, ai = -—'^2Pk+i-j,oaj, i = l , . . . , k - l . (4.94)
Fk,0 Pkfi ^

Proof of Theorem 4.7 is based on the differentiation of equation (4.86)
with respect to A and parameters, and solution of the obtained equations
for the unknowns 6j,h and Qith.

In case of the infinite root Ao = oo we can consider the reverse polyno-
mial P(/i, p) given by expression (4.32). The functions &o(p), • • •, &*-i(p)
in factorization (4.87) for Ao = oo are the same as in factorization (4.86)
for zero root /xo = 1/Ao = 0 of the reverse polynomial P(n,p). Hence,
values of fe^h can be found using formulae of Theorem 4.7 for zero root of
the polynomial P(/u,p).

Evaluating first order derivatives of the functions &»(p) by Theorem 4.7,
we obtain

Corollary 4.1 Gradient vectors of the functions &o(p)> • • •, bfc-i(p) in
factorization (4-86) for a finite root \$are

j=o J'

For the infinite root Ao = oo, we have

i

Vbi = J25i-iVa™-J> (4-96)
j=o

  

(4.95)
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where

ao = -^-- Sj = _ g ° m - * - y ( P o ) s i = 1;...;fc_L (4.97)

Example 4.4 Let us consider the two-parameter family of polynomials

P(\,p) = X4 + (-l+p2+p21)X3 + (-l+Plp2)X2 + (l-2Pl)X+p1+pl (4.98)

At po = 0 the polynomial P(A,po) has the double root Ao = 1. By Theo-
rem 4.6, polynomial (4.98) has the local representation

P(A,p) = (AA2 +b1(p)AA + b0(p))Q(A,p), (4.99)

where AA = A - 1 and <2(A,p) is a polynomial of order 2 such that
Q(l)Po) 7̂  0. Using Theorem 4.7, we find the functions

MP) = ^ * + 13p? + 4 ^ 2 + 7p2 + 0 ( | | A p | | 2 ) )

(4.100)

WP) = = ^ + 8 P ' + 3 ^ - 1 3 " ' + o(HAplP).

Bifurcation of the double root Ao = 1 in the neighborhood of po is given
by the formula

A = l + | (-61 (p) ± V ( M P ) ) 2 - 46O(P)) (4.101)

obtained from the equation i?(A,p) = AA2 + bi(p)AX + bo(p) — 0.

4.9 Approximation of stability domain near singularities
(general case)

Let us consider a point po on the stability boundary for the polynomial
P(A,p). At this point there are zero, purely imaginary, or infinite roots,
while the other roots have negative real parts. Let us consider zero root
Ao = 0 of multiplicity k. By Theorem 4.6, in the neighborhood of po the
polynomial P(A,p) can be represented in the form (4.86), where AA = A.
Hence, values of the parameter vector p, such that the polynomial P{\, p)
has zero root of multiplicity k, are determined by the equations

&o(p) = ••• = &*-! (p) = 0. (4.102)
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If the gradient vectors V&o, • • •, V6fc_! are linearly independent, then equa-
tions (4.102) determine a smooth surface of codimension k in the parameter
space. The linear independence condition is satisfied in the case of general
position. The same considerations hold in case of the infinite root Ao = oo
of multiplicity k. For a purely imaginary root Ao = iu of multiplicity k the
functions 60(p),... ,bk-i(p) are complex-valued. Hence, conditions (4.102)
determine 2k real equations. If we do not fix the frequency ui, then the
values of p, such that the polynomial P(A,p) has a pair of purely imag-
inary roots ±iw of multiplicity k, form a smooth surface of codimension
2k — 1 in the parameter space. The type of a stability boundary point is
determined by roots lying on the imaginary axis and their multiplicities.
To find codimension for a set of stability boundary points p of a certain
type, we take a sum of codimensions for each of the roots 0, ±iu, and oo.
As a result, we get

Theorem 4.8 In the case of general position, a set of stability boundary
points p of type

0ko{±iui1)kl • • • (±iui)k'oofc°° (4.103)

for the polynomial family P(A, p) is a smooth surface of codimension

k0 + (2Ai - 1) + • • • + (2fc, - 1) + fcoo (4.104)

in the parameter space.

For codimensions 2 and 3 all the types of stability boundary points
are listed in (4.74). Recall that the notion of general position means that
the property under consideration persists under a small variation of the
polynomial family P(A,p). In the case, when P(A,p) is the characteris-
tic polynomial of a matrix family A(p), not all variations of P(A,p) are
possible. For example, considering a matrix Ao = A(po) with semi-simple
double eigenvalue Ao = 0, the coefficient oo(p) of the characteristic poly-
nomial P(A,p) has the order O(||p — po||2) for any matrix family A(p).
Semi-simple as well as other derogatory eigenvalues (when there are sev-
eral eigenvectors corresponding to a multiple eigenvalue) make the main
difference between generic structures in the matrix and polynomial cases.
For nonderogatory eigenvalues of a matrix, consideration of the matrix and
polynomial families is essentially similar.

Let us consider the polynomial

A* + 6*-iA*-1 + .-. + 6iA + 6o- (4-105)
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For bo = • • • — bk-i = 0, polynomial (4.105) has zero root of multiplicity
k. Considering smooth perturbation of the coefficients

bo(e), ..., 6*_i(e), (4.106)

where e > 0 is a small real parameter and

6o(0) = --- = 6*_i(0) = 0, (4.107)

roots of the polynomial change. As a result, the polynomial is stabilized or
destabilized. The following propositions describe stabilizing one-parameter
perturbations.

Proposition 4.1 / / polynomial (4-105) with real coefficients (4-106),
(4-107) is stable for e > 0, i.e., all the roots satisfy the condition Re A < 0;

then

^ = ... = * P = 0, ^ > 0 , %*>(), (4.108)
de de ds ~ de ~

where derivatives are taken at e = 0. For any values of derivatives
dbi/ds, i — 0 , . . . , k — 1, satisfying conditions (4-108) there exist functions
bo(e),..., bk-i(e), such that polynomial (4-105) is stable for e > 0 [Levan-
tovskii (1980a)].

Proposition 4.2 If polynomial (4-105) with complex coefficients (4-106),
(4-107) is stable for e > 0, then

Re —— = • • • = Re —-— = 0,
de de

T ^ ° T dbk-3 T dbk-2 „ (. i n Q \
Im — = • • • = Im —•— = Im —-— = 0, (4.iuyj

de de de

Re^p>0, Re^i>0.
de ~ de ~

For any derivatives dbi/de, i = 0 , . . . , k — 1, satisfying conditions (4-109)
there exist functions bo{e),... ,bk-\{e) such that polynomial (4-105) is stable
for e > 0 [Levantovskii (1980a)].

Notice that the statement of Proposition 4.2 can be enforced as follows:
for an arbitrary smooth real function Im&jfe_i(e), such that Im6fc_i(0) =
0, and derivatives Redbo/de,..., Redbk-i/de, Imdbo/de, . . . , Im dbk-2/de,
satisfying conditions (4.109), there exist functions bo(e),... ,&fc_i(e) such
that polynomial (4.105) is stable for e > 0 [Mailybaev (2000a)].
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By the implicit function theorem, Propositions 4.1 and 4.2 can be ex-
tended to the case of polynomial (4.105) whose coefficients are smooth
functions of the parameter vector p. Then, perturbation of the coeffi-
cients bo(p(e)),..., 6jt_i(p(e)) along the curve p = p(e), such that e > 0,
p(0) = po, and &o(Po) = • • • = fefc-i(Po) = 0, is considered. In this case
conditions (4.108) for stability along the curve p(e) take the form

(V6o,e) = --- = (V6Jfc_3)e)=0, (V6fc_2,e)>0, (V6fc_i,e)>0, (4.110)

where V is the gradient operator at po, and e = dp/de is the direction of
the curve at po- Analogously, conditions (4.109) are written in the form

(Re V&o, e) = • • • = (Re Vbk-3, e) = 0,

(ImV&o.e) = • •• = (ImV6fc_3,e) = (ImV&fe_2,e) = 0, (4.111)

(ReV6*_2,e) > 0, (ReV6fc_i,e) > 0.

Let po be a point on the stability boundary for the polynomial P(A,p).
By the Weierstrass preparation theorem (Theorem 4.6, page 140), bifurca-
tion of a multiple root Ao of P(X, po) in the neighborhood of po is given by
polynomial (4.88) or (4.91) for a finite or infinite Ao, respectively. The poly-
nomial P(\, p) is stable in the neighborhood of p0, if all polynomials (4.88)
and (4.91) taken for zero, purely imaginary, and infinite roots are stable.
Using Propositions 4.1 and 4.2 with their extension to the multi-parameter
case given above, we obtain

Theorem 4.9 Let po be a point of type (4-103) on the stability boundary
for the polynomial P(A,p). // a curve p = p(e) starting at p(0) = po lies
in the stability domain for e > 0, then the direction e = dp/de of the curve
satisfies conditions (4-110) for zero (k = ho) and infinite (k = koo) roots
and conditions (4-111) for each purely imaginary root iui,... ,iu>i (k =
ki,..., hi), where the gradients V&o, • • •, V&fc_i are given by Corollary 4-1-
If vectors in these conditions (all together) are linearly independent, then
for any direction e satisfying the necessary conditions there exists a curve
p(e) lying in the stability domain for e > 0.

Theorem 4.9 provides a local description of the stability domain in the
neighborhood of an arbitrary boundary point in terms of stabilizing and
destabilizing perturbations of parameters along a curve. Notice that the
linear independence condition in Theorem 4.9 is satisfied in the case of
general position [Mailybaev (2000a)]. Nevertheless, this condition may be
violated if P(A,p) is a characteristic polynomial of the matrix family A(p)
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in the presence of derogatory eigenvalues on the imaginary axis. In any
case, Theorem 4.9 provides necessary conditions for stabilizing perturba-
tions p(e).

For regular points of the stability boundary and its singularities of codi-
mension 2 and 3 the results of Theorem 4.9 agree with first order approxi-
mations of the stability domain given in Theorems 4.4 and 4.5 (pages 133
and 136). Notice that the approximations in Theorem 4.5 contain strict
inequalities, showing that the stability domain is an open set in the param-
eter space. Inequalities in conditions of Theorem 4.9 are nonstrict, since
there are stabilizing perturbations p(e) along directions e tangent to the
stability boundary.





Chapter 5

Vibrations and Stability of
Conservative System

Analysis of vibrations and stability of a conservative system is a classical
question. It is of great importance due to many applications in physics
and mechanics. Determination of frequencies and modes of vibration is
a typical requirement in the design of buildings, bridges, and machines.
In many cases modification of frequencies and modes by changing design
parameters is necessary to avoid resonances and noise. Stability problems
for conservative systems appear in studying elastic structures under action
of potential forces like stationary loads, gravity forces etc. In many practical
problems there is a specific parameter F describing load of the system. The
minimal value of the load parameter, at which the system becomes unstable,
is called the critical load Fcr. Avoiding instability, required in the design of
structures, implies that the loads F must be less than Fcr. In the presence
of several parameters, graph of the critical load in the parameter space
represents a boundary of the stability domain. Analysis of the stability
boundary allows changing design parameters in order to modify (increase
or decrease) the critical load of the system.

Sensitivity analysis of simple and multiple frequencies with applica-
tion to stability optimization problems was done in [Bratus and Seyra-
nian (1984); Seyranian et al. (1994); Seyranian (1997)]. Multiple eigen-
values of multi-parameter symmetric and Hermitian matrices were studied
in [Wigner and von Neumann (1929); Arnold (1978)]. Stability domains
for conservative systems linearly dependent on parameters were investi-
gated in [Papkovich (1963); Huseyin (1978)]. A general method for multi-
parameter stability analysis of a linear conservative system was presented
in [Seyranian and Mailybaev (2001a)].

In this chapter, we consider a linear conservative system dependent on
parameters. Sensitivity analysis of simple and multiple frequencies of the

149
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system is given. It is shown that dependence of frequencies on param-
eters near a point with double frequency is described by a cone in the
frequency-parameter space. Then we investigate the stability boundary of
a conservative system including its regular part and singularities. First and
second order approximations of the stability domain near regular points of
the boundary are given. First order approximations of the stability domain
near singular points of the boundary are derived for all types of singulari-
ties. It is shown that the stability boundary of a two-parameter conservative
system has no singularities in the case of general position, while the only
generic singularity of the stability boundary for a three-parameter conser-
vative system is a cone. A simple model of elastic column loaded by an axial
force is considered. The cone singularity appears on the stability boundary
and determines optimal shape of the column corresponding to the maxi-
mal value of the critical force. A specific property of the optimal column
is bimodality, which means that there are two linearly independent modes
(eigenvectors) corresponding to the the same (double) buckling load. At
the end of the chapter, we analyze the effect of small dissipative forces on
eigenvalues and stability of a conservative system.

5.1 Vibrations and stability

Vibrations of a linear multiple degrees of freedom conservative system is
described by the equation

Mq + Pq = 0, (5.1)

where q G M.m is a vector of generalized coordinates, M is a positive definite
symmetric mass matrix, and P is a symmetric stiffness matrix. The kinetic
energy T and potential energy II of the system are denned as

T(q) = iq T M q i II(q) = iqTPq. (5.2)

The total energy of the system

£(q ,q )=T(q)+n(q) (5.3)

is a quadratic form with respect to the phase variables q and q. The total
energy i5(q, q) is conserved since

£; = T + n = qT(Mq + Pq) = 0. (5.4)
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Therefore, dynamical behavior of the system is restricted to a given energy
level E(q, q) = const in the phase space (q, q).

Looking for a solution of system (5.1) in the form

q(i) = uexp At, (5.5)

we come to the eigenvalue problem

(A2M + P)u = 0, (5.6)

where A is an eigenvalue and u is an eigenvector. Introducing a new variable

/z = -A2, (5.7)

we obtain the generalized eigenvalue problem

Pu = ^Mu. (5.8)

It is always possible to change the basis

q = Uy, (5.9)

where U is a nonsingular m x m real matrix, such that quadratic forms
(5.2) take the form

T(y) = ^yTy, n(y) = i y T D y , (5.10)

where D is a real diagonal matrix, see [Gantmacher (1998)]. Matrices of
quadratic forms (5.2) and (5.10) are related by

UTMU = I, UTPU = D. (5.11)

Using expressions (5.11) in (5.8), it is easy to show that diagonal elements
of the matrix

(^ \

D = _ (5.12)

\ Mm/

are eigenvalues of (5.8), and the columns of the matrix U are corresponding
eigenvectors. Therefore, all the eigenvalues of (5.8) are real and simple or
semi-simple, and corresponding eigenvectors can be chosen real.
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If [i > 0, then there are two solutions of system (5.1) of the form

qi(i) = ucosuit, (teit) = usinwi, (5.13)

where w = y/Jl. Solutions (5.13) describe harmonic motion with the fre-
quency us and mode of vibration u. If /x = 0, then there are two solutions

qi(*)=u, q2(t)=tu, (5.14)

where qi(t) is a constant and q2(£) is a linearly growing solution. For p, < 0
there are two solutions

qi(t) = uexpcrf, c^{t) = uexp(-crf), (5.15)

where a = y/—\i.- Solutions (5.15) grow and decay exponentially in time.
Since all the eigenvalues \i are simple or semi-simple, there are m linearly

independent eigenvectors u that give rise to 2m solutions (5.13)—(5.15).
These are particular solutions, and their linear combination represents a
general solution of equation (5.1). It is clear that system (5.1) is stable
(any solution remains bounded) if and only if all the eigenvalues \i are
positive. Condition /j, > 0 implies that the matrix D and, hence, the
matrix P are positive definite. Therefore, stability property is equivalent
to positive definiteness of the stiffness matrix P and does not depend on
the mass matrix M.

Theorem 5.1 Conservative system (5.1) is stable if and only if all the
eigenvalues \x of (5.8) are positive or, equivalently, the stiffness matrix P
is positive definite.

The energy E(q, q) of a stable system is a positive definite quadratic
form, and the energy level is a bounded surface in the phase space (precisely,
-̂ (Qi <i) — const is an ellipsoid with the center at the origin). A solution of
system (5.1) lies on this ellipsoid and is represented by a linear combination
of harmonic solutions (5.13). Therefore, system (5.1) with the positive
definite stiffness matrix P is stable, but not asymptotically stable.

Let us consider a nonlinear conservative system with.the kinetic energy
^ ( I J Q ) — |QTM(q)q and potential energy II (q), where the mass matrix
M(q) and potential energy II(q) smoothly depend on the vector of gen-
eralized coordinates q. Equations of motion are given by the Lagrange
equations

ddT dT 8U .
(5.16)
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The total energy of the system given by

£(q,q) = r(q.q) + n(q) (5.17)

is conserved, i.e., E(q, q) = const for any solution of system (5.16).
A point q = qo is the equilibrium state of the system if it is a critical

point of the potential energy

| ^ = 0 , i = l,...,m. (5.18)

The equations of motion linearized near the equilibrium take the form

M0Aq + PoAq = 0, (5.19)

where Aq = q - q0, Mo = M(q0), and Po = d2P/dq2 = [d2P/dqidqj]
is the matrix of second order derivatives evaluated at qo • Relation of sta-
bility properties for linear and nonlinear conservative systems can be seen
through the energy conservation criterion. Indeed, solution of stable lin-
earized system (5.19) is restricted to the ellipsoid

-AqTM0Aq + -AqTP0Aq = const (5.20)

surrounding the stationary point q = qo, q = 0. In the neighborhood of
the equilibrium total energy (5.17) is given by the expansion

£(q,q) = n(qo) + iAqTM0Aq+iAqTPoAq+o(||Aq||2 + ||Aq||2). (5.21)

For small ||Aq|| and ||Aq||, energy level surfaces E(q,q) = const are small
deformations of ellipsoids (5.20). Therefore, the energy level surfaces re-
main bounded, which preserves the stability property. This yields the fol-
lowing theorem.

Theorem 5.2 If linearized conservative system (5.19) is stable, then the
stationary solution q(£) = qo of nonlinear conservative system (5.16) is
stable.

Theorem 5.2 is a corollary of the Lagrange theorem saying that the
equilibrium q = qo of a conservative system is stable if the potential energy
II(q) has local minimum at q0, see [Arnold (1978); Merkin (1997)].
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5.2 Sensitivity of simple and multiple frequencies

Let us consider linear conservative system (5.1) with the matrices M and P
smoothly dependent on a vector of real parameters p. Perturbation theory
of eigenvalues and eigenvectors for generalized eigenvalue problem (5.8) is
given in Section 2.12. Let us fix a value of the parameter vector p = po
and consider a simple eigenvalue fi0 with the corresponding eigenvector u0

satisfying the equation

Pouo = yUoMouo, (5.22)

where Mo = M(p0) and Po = P(po)- Since the matrices Mo and Po

are symmetric, the right and left eigenvalue problems coincide. Therefore,
we can take the left eigenvector v0 = u0. By Theorem 2.8 (page 72), the
simple eigenvalue fi0 smoothly depends on parameters with the derivative

dii = u° W, ~ "Wi) u%u°M o u°)- <5-23)
If yuo > 0, then the frequency w0 = ^/JIo smoothly depends on parameters
with the derivative

6U 1 dfl 1 TfdP 2dM\ I, T A T X /r nAs
^ — = T^TT = ^—uo » wo «— u 0 / U^MQUO . 5.24

apj 2w0 opj 2u)0 \ opj dpj) I
For the derivative of the eigenvector (mode) uo we get

~ = (Po - /xoMo + uou^Mo)-1 ( / M 0 + M o ^ - | ^ ) u0. (5.25)
dpj \dpj dpj dpjj

Let us consider an eigenvalue fiQ of multiplicity k. Since Ho is semi-
simple, there are k linearly independent eigenvectors u i , . . . , u& correspond-
ing to fiQ. We assume that the eigenvectors satisfy the normalization con-
ditions

u f M 0 U j - 6 i j , i , j = l,...,k. (5.26)

Right and left eigenvalue problems coincide for symmetric matrices M and
P and, therefore, the left eigenvectors can be taken equal to the right
eigenvectors. Consider perturbation of the parameter vector along a curve
p = p(e) starting at p(0) = po with a direction e = dp/de. By Theorem 2.9
(page 73), the eigenvalue fi0 takes the increment

/i = /io+£Mi+o(e), (5.27)
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where k values of Hi are the eigenvalues of the k x k matrix F with the
elements

'«=£(-*(£-"•£»*• <528)
Introducing vectors of dimension n

( T(dV <9M\ T (dP dM\ \

f* = lurUrw5rr> u'{^.->"wJu')- (529)
expression (5.28) takes the form

fij = (fij,e). (5.30)

Since the matrices M and P are symmetric, f̂  = fj-j for any i and j . Hence,
the matrix F is symmetric. All the eigenvalues ji\ of the matrix F are real,
which is a natural consequence since eigenvalues fj, are real.

Let us consider a double positive eigenvalue ^o > 0. The corresponding
double frequency is u>0 — y/JM>- Using expression (5.27), we find perturba-
tion of the frequency UJQ along the ray p = po + ee as follows

U) = v ^ = Wo + ^ - £ + o(£). (5.31)

Two eigenvalues HI of the 2 x 2 matrix

F=f(f"'e) ( f i - n (5.32)
{(111,") (fe,e)/

are

Mi = | ( fn +fa2,e) ± |>/(fn -f22,e)2 +4(f12,e)2. (5.33)

Substituting (5.33) into (5.31) and neglecting a higher order term o(e), we
find the first order approximation for bifurcation of the double frequency

^ (fn + f22, Ap) ± ^(fu - f22, Ap)2 + 4(f12, ApF
4(Jo

where Ap = p - p0 = ee. Expressing the square root from equation (5.34)
and taking square of the obtained expression, we find

(4wo(w - w0) - (fn + f22, Ap))2 = (fn - f22, Ap)2 + 4(f12, Ap)2. (5.35)

In case of two parameters p = (pi,p2), equation (5.35) determines a cone in
the three-dimensional space (pi,p2,w); see Fig. 5.1. There are two simple

(5.34)
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frequencies u> at each value of the parameter vector p, except for the point
Po, where two frequencies merge and form a double semi-simple frequency
wo • Fixing the parameter pi and considering dependence of the frequencies
on the parameter p\, we obtain two intersecting lines or two hyperbolae
in the plane (pi, w) describing the weak interaction of two frequencies; see
also Example 2.11 in Section 2.9.

Fig. 5.1 Perturbation of a double frequency OJQ for a two-parameter conservative system.

5.3 Stability domain and its boundary

The stability domain of a multi-parameter conservative system consists
of points p in the parameter space, where the system is stable, i.e., the
stiffness matrix P(p) is positive definite. Recall that stability property
does not depend on the positive definite mass matrix M. Boundary of the
stability domain is represented by the points p, where the matrix P(p)
is singular and positive semi-definite, that is, the matrix P(p) has zero
eigenvalue while other eigenvalues are positive.

Let us consider a point p0 on the stability boundary. We assume that
the matrix Po = P(po) has a simple zero eigenvalue Ao = 0 with a corre-
sponding real eigenvector u0 satisfying the equation

Pouo = 0- (5.36)

The right and left eigenvalue problems for the symmetric matrix Po coin-
cide. The stability domain in the neighborhood of the point po is described
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by the condition

A(p) > 0 (5.37)

for the eigenvalue A(p) of the matrix P(p) vanishing at po- By Theorem 2.2
(page 32), we find that the simple eigenvalue A(p) is a smooth function of
p with the derivative

^ — T f «/(»«r-»- <5-38)
Introducing the gradient vector of A(p)

'—(£ £)•
we find the first order approximation of the stability domain as

(f ,Ap)>0, Ap = p - p o . (5.40)

If f ^ 0, then the stability boundary is a smooth surface with the tangent
plane

(f,Ap) = 0, (5.41)

where the vector f is a normal vector to the stability boundary.

Theorem 5.3 Let po be a point on the stability boundary for conservative
system (5.I), and assume that there is a simple zero eigenvalue of the matrix
Po = P(po). // the vector f determined by expressions (5.38), (5.39) is
nonzero, then the stability boundary is a smooth surface in the neighborhood
of po with the normal vector f directed into the stability domain; see Fig 5.2.

Fig. 5.2 Normal vector to the stability boundary of a conservative system.

(5.39)
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Points po considered in Theorem 5.3 form a regular part of the stability
boundary. Let us find the second order approximation of the stability do-
main in the neighborhood of a regular boundary point po. By Theorem 2.2
(page 32), the second order derivative of the eigenvalue A(p) equals

02X _ T ( d2P dP du dP du
7̂  7^ — UQ I 7T - Uo + 7: r h 7; —
OPiOPj \dpiOpj Opidpj OPj dpi

(5.42)
dX du dX du\ / T

- ^ ^ - % ^ J / ( U o U o ) '
where the derivative du/dpi is

Let us consider a curve p = p(e) starting at p(0) = p0 and tangent to
the stability boundary. The direction e = dp/de of the curve satisfies the
orthogonality condition

E ^ e i = (fJe) = 0. (5.44)

Increment of the eigenvalue A(p) along the curve takes the form

v ^ OX ez I sr^ dX , v -^ 92X \ . , , ,K A .

A - E ^ + y ( S ^ * + £ ^ ^ 6 i 7 +°( }> ( }
where dj = d2pi/de2 is evaluated at po. Using expressions (5.42)-(5.45) in
equation (5.37), we find

^ ( ( f , d ) + (Ge,e))+o(£2)>0, (5.46)

where G = [gij] is an n x n matrix with the elements

" ="° iiSi, -C(p°+ u o u f r ' ^ ) -/cf"•'• '547)
and (Ge, e) denotes the quadratic form

n

(Ge,e)= J2 9ij^i- (5-48)

(5.43)
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Equation (5.46) with the use of relation (5.44) can be written in the form

(f, Ap) + ^(GAp, Ap) + o(||Ap||2) > 0, (5.49)

where Ap = p(e) - p0 = ee + e2d/2 -\
Equation (5.49) represents the second order approximation of the sta-

bility domain. The stability domain is convex at po if the matrix G is
negative definite, and concave if G is positive definite. By Papkovich's
theorem [Papkovich (1963); Huseyin (1978)] the stability domain of a con-
servative system linearly dependent on parameters is convex. In this case
second order derivatives of the matrix P with respect to parameters are all
zeros and

G = — 4 - WT(P0 + uoitf r 1 W, W = l^-uo,..., ip-uo . (5.50)
u^u0 L<9pi dpn \

The matrices Po and uouj are positive semi-definite. Their sum Po

is a nonsingular matrix according to Theorem 2.2 (page 32) and, hence, it is
positive definite. Then the inverse matrix (PO+UOUQ")"1 is positive definite
too. Using this property, it is easy to check that the matrix G determined
by expression (5.50) is negative definite or negative semi-definite depending
on the matrix W. This implies convexity of the stability domain at po,
which confirms the Papkovich's theorem.

5.4 Singularities of stability boundary

Singular points of the stability boundary (points where the boundary sur-
face is nonsmooth) are determined by matrices P(p) having multiple zero
eigenvalues. In the case of general position a set of singular points associ-
ated with the zero eigenvalue of multiplicity k forms a smooth surface of
codimension k{k + l)/2 in the parameter space [Wigner and von Neumann
(1929); Arnold (1978)]. In particular, this means that in case of two pa-
rameters there are no singularities and the stability boundary is a smooth
curve; see Fig. 5.3.

The simplest singular point po corresponds to the double (k = 2) eigen-
value Ao = 0 and appears if we have k(k + l)/2 = 3 or more parameters.
The eigenvalue Ao = 0 is semi-simple and has two linearly independent real
eigenvectors ui and U2, which can be chosen satisfying the normalization
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Pi —-^^^

S N.

P\

Fig. 5.3 Stability boundary of a generic two-parameter conservative system is smooth.

conditions

u f u , - - ^ , M = 1,2. (5.51)

Let us consider perturbation of the parameter vector p = po + ee, where
e is small. By Theorem 2.6 (page 56), the semi-simple double eigenvalue
Ao = 0 of the matrix Po splits into two simple eigenvalues

A = eAi+o(e). (5.52)

Two different values of Ai are the eigenvalues of the matrix

F=(<f-e) M ) , (5.53)

l(6i,e) (W)7
where

*, - (uf £«,,...,.T|£.,). (5.54)
Due to the symmetry of the matrix P, we have fi2 = f2i- For stability we
need both perturbed eigenvalues A to be positive. This implies that the
2 x 2 matrix F is positive definite. Using Sylvester's conditions, we obtain

(fu + f2 2 ,Ap)>0, ( f 1 1 ,Ap)(f2 2 ,AP)-(f1 2 ,Ap)2>0, (5.55)

where Ap = p - p0 = ee. Inequalities (5.55) provide the first order ap-
proximation of the stability domain.

In case of three parameters inequalities (5.55) determine a cone in the
vicinity of the point po in the parameter space. Indeed, after introduction
of new variables

x = ^ ( f n - f 2 2 , A p ) , y = (f12,Ap), Z = i ( f n + f 2 2 , A p ) , (5.56)
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a) z b) Pl A(k~^r~^

Fig. 5.4 Cone singularity of the stability boundary: a) in the parameter space (x,y,z),
b) in the parameter space p (upper part of the cone for 7 > 0 or lower part for 7 < 0).

approximation of the stability domain (5.55) takes the form of a circular
cone (see Fig. 5.4a)

x2 + y2<z2, z>0. (5.57)

The conical surface x2 + y2 = z2, z > 0, can be parameterized as follows

x = z cos a, y — zsina, z>0, (5.58)

where 0 < a < 2?r. Using expressions (5.56) in (5.58), we get the equations

(fii - f22 - (fn + f22) cos a, Ap) = 0,

(2fi2 - (fn + f22) sin a, Ap) = 0, (5.59)

(f i i+f2 2 )Ap) > 0 .

Then the vector Ap can be found as the cross product

Ap = /3(fn - f22 - (fn + f22) cos a) x (2fi2 - (fn + f22) sin a)

= 0(2(fn - f22) x f12 - (fn - f22) x (fn + f22) sin a (5.60)

-2(fn +f22) x f12cosa),

where /3 is a real number. Using (5.60) in the third inequality of (5.59)
yields

2/5(fn + f22, (fn - f22) x f12) > 0. (5.61)

Hence, j3 > 0 or fi < 0 for positive or negative values of the quantity

7 = (fn + f22, (fn - f22) x fia), (5.62)
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respectively. This provides the following representation of the cone surface
in the parameter space

Ap = /?(a + bsina + ccosa), -y/3 > 0, 0 < a < 2w, (5.63)

where the vectors a, b, and c are defined by

a = 2(f1 1-f2 2)xf1 2 ,

b = ( f i i+ f 2 2 )x ( fn - f22) , (5.64)

c = 2f12 x (fu+f2 2) .

Vector (5.63) runs through the cone surface as (3 and a are changing, see
Fig. 5.4b, where depending on the sign of 7 its upper or lower part should
6e taken (stability domain is inside the corresponding cone part).

Finally, let us consider a general case, when po is a singular point of the
stability boundary represented by zero eigenvalue Ao = 0 of multiplicity k.
Recall that in the case of general position this singularity can appear if we
have k(k + l)/2 or more parameters. Let u i , . . . , u* be linearly independent
eigenvectors corresponding to Ao =0 :

P o U i = O, t = l,...,fc, (5.65)

and satisfying the normalization conditions

nfu^dij, i,j=l,...,k. (5.66)

Consider perturbation of the parameter vector in the form p = po +£e.
By Theorem 2.7 (page 70), the eigenvalue Ao = 0 takes increment (5.52),
where k values of Ai are the eigenvalues of the k x k matrix F = [fa] with
the elements

A j = ( ^ , e ) , i,j = l,...,k, (5.67)

and the vectors fy defined by (5.54). Since the matrix P is symmetric,
fij = fji for any i and j . Hence, the matrix F is symmetric. Stability
condition requires A > 0 for all perturbed eigenvalues. As a result, we
obtain a first order approximation of the stability domain in the form

/( fn .Ap) ••• ( fu ,Ap) \

: ••. : > 0 (positive definite). (5.68)

\(f*i,Ap) ••• (f**,Ap)/
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The condition of positive definiteness of matrix (5.68) can be written in
the form of inequalities called Sylvester's conditions, see [Korn and Korn
(1968)].

5.5 Buckling problem of column loaded by axial force

Let us consider a finite dimensional model of a column consisting of four
equal links of length I and loaded by an axial force F; see Fig. 5.5. A
bending moment in the ith node is proportional to a?#j, where a, is a
dimensionless cross-section area of the column at the ith node, and #j is
the angle between links in the zth node. Taking into account the boundary
conditions q0 = Qi = 0> the system possesses three degrees of freedom
determined by components of the vector of generalized coordinates q =
(<?i > 92> <lz)T', where qt is deflection of the ith node. The stiffness matrix
P of the system in non-dimensional coordinates takes the form [Choi and

F

Fig. 5.5 Simple model of column loaded by axial force.
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Haug (1981)]

/ al + 4a? + a\ - 2F -2a\ - 2a\ + F a\ \

P = -2a\-2a22 + F a\ + ka\ + a\ - 2F -2a\-2a\ + F ,

V a\ -2a\-2a\ + F a\ + 4a23 + a\ - 2F)
(5.69)

where F is the dimensionless axial force. We assume that the cross-section
areas at the ends of the column are equal and given by ao — a^ — \ /3 , and
the total volume is fixed by the condition a\ + a,2 + as — 7/2. Then the
stiffness matrix P depends on a vector of three parameters p — (a\, 03, F)
with the natural constraints a\ > 0, 03 > 0, and ai = 7/2 — a\ - a3 > 0.

Let us consider stability of the system in the vicinity of the point po =
(1,1, 7/2). At this point the matrix P(p) takes the form

/9 /4 - 3 9/4\

P o = - 3 4 - 3 . (5.70)

\9 /4 - 3 9/4/

The matrix P o possesses the double zero eigenvalue A = 0 and the simple
eigenvalue A = 17/2. Thus, at p = po we have the cone singularity.

0^ . ^\i ' 2 V / 4
1 2 3 4 \ /

Fig. 5.6 Symmetric and anti-symmetric buckling modes of the optimal column.

The eigenvectors corresponding to Ao = 0 and satisfying normalization
conditions (5.51) are

Eigenvectors (5.71) represent the symmetric and anti-symmetric buckling
modes of the column, see Fig. 5.6. The vectors fn, fi2, f22, a, b, c, and

(5.71)
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the constant 7 evaluated by formulae (5.54), (5.62), and (5.64) are

10 4
fn = — ( - 1 , - 1 , - 1 ) , fia = ^ = ( 1 , - 1 , 0 ) , f22 = (4,4,-2),

480\/2
7 = j= <0.

17V17
(5.72)

The first order approximation of the stability boundary in the neigh-
borhood of the singular point po is given by cone (5.63), where Ap =
(Aoi,Aa3,AF).

i

0 1 2 3 4

Fig. 5.7 Optimal design of the column.

For fixed parameters a\ and 03, the minimal positive value of the force
F, at which the system becomes unstable, is called the critical force Fcr.
The third component of the vector Ap in (5.63) is equal to

AF = p - ^ = ( 3 9 + 29 cos a), (5.73)
17-̂ /17

which is negative for all a and /? < 0. Hence, increment of the force AF
inside the stability domain is negative for all small perturbations of the ge-
ometric parameters Aai and Aa3. As a result, the critical force Fcr attains
the maximum at a\ = a3 = 1. The parameters a\ = a3 = 1, a2 = 3/2 yield
the optimal design of the column, see Fig. 5.7, which is called bimodal since
there are two linearly independent eigenvectors (modes) corresponding to
zero eigenvalue at Fcr [Seyranian et al. (1994)]. The stability boundary
calculated numerically is shown in Fig. 5.8. Numerical analysis confirms
existence of the cone singularity. The numerical results are in a good agree-
ment with first order approximation (5.63) of the stability boundary near
Po-
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F r J | I'"
3 . 5 ^ | ! I !"""•-••••.... I - J ?-...
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0 0

Fig. 5.8 Stability boundary for the column in the parameter space p = (01,03, F).

We note that the problem considered is a simplified version of the fa-
mous Lagrange problem on optimal column [Lagrange (1868); Seyranian
and Privalova (2003)]. It is interesting that the bimodal optimal design
shown in Fig. 5.7 qualitatively agrees with the solution of the problem in
continuous formulation.

5.6 Effect of small dissipative forces on eigenvalues and sta-
bility of conservative system

By Thomson-Tait-Chetayev theorem [Chetayev (1961)], addition of dissi-
pative forces to stable conservative system (5.1) makes the system asymp-
totically stable. Work done by dissipative forces is negative and decreases
the energy of the system. As a result, position of the system tends to the
equilibrium q = 0as£—>+oo.

Let us consider the system

Mq + eDq + Pq = 0, (5.74)
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where D is a symmetric positive definite matrix describing dissipative
forces, and e is a small positive parameter. The eigenvalue problem corre-
sponding to (5.74) takes the form

(A2M + AeD 4- P)u = 0. (5.75)

At e = 0 we have conservative system (5.1) with eigenvalue problem
(5.6). Assuming that the conservative system is stable and the frequen-
cies OJI, ... ,um are simple, the eigenvalues A are

X — ±iujj, j = l,...,m. (5.76)

By Theorem 2.11 (page 77), eigenvalues (5.76) smoothly depend on e, and
the derivative of the eigenvalue A = iu at e = 0 is equal to

d\_ u^Du

<fe~~2uTMu' ( 5 j

where u is the corresponding right eigenvector (mode of vibration). Recall
that the right and left eigenvectors coincide due to the symmetry of the
matrices M and P. By the assumption that the matrices M and D are
positive definite, derivative (5.77) is negative. Therefore, derivatives of
eigenvalues (5.76) are real and negative.

We see that addition of small dissipative forces eDq to conservative
system (5.1) pushes all simple eigenvalues off the imaginary axis to the left,
parallel to the real axis; see Fig. 5.9. This result can be easily extended to
the case of multiple eigenvalues. Thus, addition of small damping makes
the stable conservative system asymptotically stable.

ImA,

0 ReT

Fig. 5.9 Perturbation of eigenvalues of a conservative system due to dissipative forces.





Chapter 6

Gyroscopic Stabilization

The theory of gyroscopic systems has a history which is more than one
hundred years old. The possibility of stabilization of a statically unstable
conservative system by gyroscopic forces is well known in mechanics for
all kinds of rotating bodies such as tops, elastic shafts, satellites, space-
crafts etc. We also notice that for some boundary conditions Coriolis forces
appearing in elastic pipes conveying fluid are of gyroscopic nature.

We restrict ourselves to mentioning only a few of the numerous books
and papers on this subject. One of the first important contributions in
this field is [Thomson and Tait (1879)]. This topic has been also treated
in the books [Chetayev (1961); Lancaster (1966); Miiller (1977); Huseyin
(1978); Merkin (1997)] and articles [Hagedorn (1975); Lakhadanov (1975);
Barkwell and Lancaster (1992); Seyranian (1993b); Seyranian et al. (1995);
Kliem and Seyranian (1997); Mailybaev and Seyranian (1999a); Seyranian
and Kliem (2001)]. In this literature one can find more references.

In this chapter we study stability of linear gyroscopic systems, i.e., con-
servative systems with gyroscopic forces. We discuss general properties of
gyroscopic systems and behavior of eigenvalues with a change of parame-
ters. It is shown that strong interaction of eigenvalues is the mechanism of
gyroscopic stabilization as well as loss of stability. As mechanical examples
we consider stability problems for rotating shafts.

6.1 General properties of gyroscopic system

Let us consider a linear gyroscopic system

Mq + Gq + Pq = 0, (6.1)

169
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where M and P are mxm real symmetric mass and stiffness matrices with
M > 0, G is a real skew-symmetric matrix of the same size representing
gyroscopic forces, and q is a vector of generalized coordinates. Separating
the time with q = uexp Xt, we arrive at the eigenvalue problem

(A2M + AG + P) u = 0. (6.2)

Here A is an eigenvalue and u is a corresponding eigenvector. The eigen-
values are found from the characteristic equation

det (A2M + AG + P) = 0. (6.3)

Since the determinants of transposed matrices are equal and M T = M,
P T = P, GT = - G , it follows from (6.3) that

det (A2M + AG + P ) T = det (A2M - AG + P) = 0. (6.4)

Hence, —A is also a root of the characteristic equation, i.e., it is an eigen-

value. Moreover, since all the system matrices are real, the complex con-

jugate A is an eigenvalue of (6.2) too. Thus, if A is an eigenvalue, then

- A , A, and - A are also eigenvalues. This means tha t the eigenvalues of

gyroscopic system (6.2) are mirror symmetrical with respect to the real

and imaginary axes on the complex plane, see Fig. 6.1. This property in-

dicates tha t stability of the gyroscopic system can be achieved only when

all the eigenvalues A are purely imaginary and simple or semi-simple, and

the asymptotic stability can not take place.

-A.,

-V

ImA.

Re A.

Fig. 6.1 Mirror symmetry of eigenvalues.

6.2 Positive definite stiffness matrix

Consider now the case when the matrix of potential forces is positive definite
P > 0. Then it is easy to show that all the eigenvalues of (6.2) are purely
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imaginary. Indeed, pre-multiplying equation (6.2) by the vector u* = uT,
we obtain a quadratic equation for A

MX2 + iG\ + P = 0 (6.5)

with the coefficients

M = u*Mu, P = u*Pu, %G = u*Gu. (6.6)

Notice that M, P, and G are real numbers, and M > 0, P > 0 since M > 0,
P > 0. Solving quadratic equation (6.5), we find

. -iG ± V-G* - 4PM
X = 2M ' ( 6 - ? )

At least one of the roots (6.7) is the eigenvalue of (6.2) with the corre-
sponding eigenvector u. Due to the properties M > 0, P > 0 both roots
in (6.7) are purely imaginary. Thus, for a positive definite matrix P all the
eigenvalues of (6.2) are purely imaginary A = ±iw; w > 0 being vibration
frequencies.

Besides, we can prove that for P > 0 all the eigenvalues of (6.2) are
simple or semi-simple, i.e., the Keldysh chain can not appear, see Section
2.13. To prove this property we assume that the Keldysh chain exists and
will show that this can not take place. Let us consider the right eigenvector
u corresponding to an eigenvalue A with the Keldysh chain of order k > 2.
Then, the eigenvector u must satisfy the orthogonality condition

vT(2AM + G)u = 0 (6.8)

for any left eigenvector v, see Section 2.13. The operator L = A2M+AG+P
is Hermitian for A = iui. Indeed, in this case we have A = iu = —A and
then

L* = A2MT + AGT + P r = A2M + AG + P = L. (6.9)

Taking complex-conjugate transpose of equation vTL = 0 for the left eigen-
value problem, we have

(vTL)* = L*v = Lv = 0. (6.10)

So, we find the left eigenvector as v = u. Substituting the vector v into
equation (6.8) and multiplying it by A = iu>, we get

u*(2A2M + GA)u = 2MA2 + iGA = 0. (6.11)
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Using now equation (6.5), we obtain

2MA2 + iGX = MX2 - P = -Mw2 - P = 0, (6.12)

which contradicts to the properties M > 0 and P > 0.
Hence, for P > 0 the Keldysh chain can not appear, and all the eigenval-

ues A = ±iu> are simple or semi-simple. This implies stability of gyroscopic
system (6.1).

6.2.1 Sensitivity analysis of vibration frequencies

We assume now that the system matrices M, G, and P smoothly depend
on a vector of real parameters p = (pi,... ,pn). To find variation of a
simple eigenvalue AA due to a change of parameters Ap = (Api,. . . , Apn)
we use the results of Section 2.13 and obtain

with

*" = £!£**• 4G = J g 4 ^ ** = %%**• (••")
We multiply both the numerator and denominator of (6.13) by A and substi-
tute A = iu and v = u. Then, using (6.2) we get variation of the frequency
as

u*(-uiAM + ioj2AG + coAP)u .... ... lc n _.

A W = ^ u * M u + u*Pu + °<IIAP">- (6-15)

Notice that the numerator and denominator of this expression are real,
and the denominator is positive due to the properties M > 0 and P >
0. If variation of the vector of parameters Ap is such that AM > 0,
AP = AG = 0 (only the mass matrix is changed), then from (6.15) we
find Aw < 0 for rather small ||Ap||. And if the variation Ap is such that
AP > 0, AM = AG = 0 (only the stiffness matrix is changed), then from
(6.15) we obtain Aw > 0 for rather small ||Ap||. Thus, we have proven the
statement.

Theorem 6.1 Vibration frequencies of gyroscopic system (6.1) with a
positive definite stiffness matrix P increase with an increase of stiffness,
and decrease with an increase of mass.

(6.13)
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The increase of stiffness and mass are treated here in the sense AP > 0
and AM > 0, respectively. This theorem was formulated first in [Metelit-
syn (1963)] and was proven in [Zhuravlev (1976)]. It is generalization of
Rayleigh's theorem on the behavior of frequencies of a conservative system
to gyroscopic system. The case of multiple frequencies was considered in
[Seyranian and Sharanyuk (1987)].

We should point out that local relation (6.15) enables us to make not
only qualitative but also quantitative estimates for the sensitivity of vibra-
tion frequencies of gyroscopic systems dependent on parameters. For this
purpose, using (6.14) equation (6.15) can be written in the gradient form
as

Au, = (VW,Ap) + 0(||AP||), V w = ( | ^ , . . . , | £ ) , (6.16)

where

dpj \ dpj dPj dpjj I v '

This form of equation (6.15) is more practical for estimation of changes of
vibration frequencies with a change of system parameters.

Example 6.1 As an example, we consider small oscillations of an uniax-
ial gyrostabilizer with elastic compliance of the elements described by the
equations [Ishlinskii (1976)]

Aa + HP - K{ip - a) = 0,

Ap-Ha = 0,
(6.18)

* V + K(i/> - a ) - N{9 - ip) = 0,

00 + iV(0 -ip)=Q.

Here A, $, 0 are the moments of inertia of the system; K and N are the
stiffness parameters; H is the angular momentum of the gyroscope rotor;
a, /?, ip, and 9 are the angles describing disturbed motion of the system.
With the vector of generalized coordinates q = (a,/3,ip,9)T, the matrices

(6.17)
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M, G, and P according to equations (6.1) and (6.18) take the form

(A 0 0 0 \ / 0 H 0 0 \

0 A 0 0 - # 0 0 0
M = , G =

0 0 * 0 0 0 0 0

v0 0 0 0 / \ 0 0 0 0 /

(6.19)

/ K 0 -K 0 \

0 0 0 0
p =

- i f 0 i f + 7V -AT

\ 0 0 -AT AT y

Thus, gyroscopic system (6.18) has m = 4 degrees of freedom, and the
vector of parameters p = (A,^,Q,H,K,N) is of dimension n = 6. The
matrix M is positive definite for positive values of the parameters A, "J/, 0,
while the matrix P is positive semi-definite for positive values of K and N.

Calculations were performed for the following values of parameters
taken from [Ishlinskii (1976)]: H/A = 2msec-1, K/A = 104sec~2,
K/V = 1600sec-2, N/S = Q400sec~2, 0 / * = 0.2, and A = lOg • cm2.
System (6.18) possesses three nonzero vibration frequencies and one zero
frequency. The vibration frequencies ui, the corresponding eigenvectors u,
and the gradients Vw were evaluated using (6.2), (6.16), and (6.17). The
results of calculations are given below:

wi = 32.067,

Vwi = (-0.331, -0.199, -0.282,0.332 x 10"2,0.122 x lO"3,0.708 x lO"5);

w2 = 88.957,

Vw2 = (-0.053, -0.155, -2.78,0.443 x 10~3,0.114 x 10~4,0.536 x lO"3);

w3 = 224.36,

Vw3 = (-20, -0.0128, -0.271 x 10"3,0.0885,0.236 x 10"3,0.333 x 10~6).
(6.20)

Thus, for example, the first order increment of the third frequency is

Aw3 = -20A.4 - 0.0128A* - 0.271 x 1O"3A0 + 0.0885AF
(6.21)

+ 0.236 x 10-3Aii: + 0.333 x lO"6AAT.
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As is to be expected, increase of the mass characteristics A,^,Q corre-
sponds to decrease of the frequencies u>i, 0J2, and 103, while increase of the
stiffness parameters K and N corresponds to increase of those frequencies.
Notice that increase of the angular momentum H (for given values of the
parameters) corresponds to increase of all three frequencies. The frequency
L03 is mostly affected by the parameter A. The first frequency u>i is affected
by the parameters A, \P, and 0 in roughly the same order. As for u>2, it is
mostly affected by the parameter 0, while the angular momentum H has
an appreciable effect on the third frequency. The effect of the stiffness pa-
rameters K and N is relatively slight. The parameter N exerts the greatest
effect on w2 •

6.3 Loss of stability

In this section we consider the case when the positive definite matrix of
potential forces P loses this property with a change of parameters. As a
simple example, we consider the matrix P in the form

P = C - p B . (6.22)

The matrices C and B are assumed to be symmetric and positive definite,
and p > 0 is a single real parameter.

According to (6.17) for a simple eigenvalue A = iui we obtain

^ = ^ u * B u (62S)
dp w2u*Mu + u*(C-pB)u ' K '

As one might expect, when p increases from 0 all the frequencies decrease.
Then a pair of the eigenvalues A = ±iw, smallest for their absolute values,
merge to zero. Taking in equation (6.2) A = 0 and using (6.22), we get the
eigenvalue problem for p:

Cu = pBu. (6.24)

This problem with the symmetric positive definite matrices C and B pos-
sesses m real eigenvalues 0 < pi < . . . < pm-

Thus, the first meeting of the eigenvalues A = ±iui takes place at p =
pi. At this point relation (6.23) is not valid since the eigenvalues become
multiple zero.
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6.3.1 Strong interaction

If the first eigenvalue pi of problem (6.24) is simple (possessing one eigen-
vector), then the strong interaction takes place, see Section 2.6. As a result
of the strong interaction, the gyroscopic system loses stability for p > pi,
see Fig. 6.2. This is the static form of instability (divergence).

a) p y I
ImA. i

Fig. 6.2 Static loss of stability via strong interaction of eigenvalues.

To describe bifurcation of the double eigenvalue A = 0 at p = p\ in case
of the strong interaction we use the results of Section 2.13. For gyroscopic
system (6.2), (6.22) we obtain

A = ±Alv/Ap + O(Ap), Ap = p - p i , (6.25)

with the coefficient Ai given by the equality

A^=v0TBu0. (6.26)

The right eigenvector uo and associated vector ui corresponding to A = 0
are real and satisfy the equations

(C-p 1 B)u o = 0, (6.27)

(C-p 1 B)u 1 = -Gu 0 , (6.28)

and the left eigenvector vo satisfies the equation and normalization condi-
tion

v^(C - P lB) = 0, vjf (GUl + Mu0) = 1. (6.29)



Gyroscopic Stabilization 177

Due to the symmetry of the matrix C — pi~B, the vector vo is found as

v0 = T A / r U° Tr, . (6.30)

Using (6.28) and (6.30), we can write (6.26) in the form

A 2 _ " Q B U Q

A l ~ u jMu 0 + uf (C - P1B)U!' [ '

According to Rayleigh's principle

u f ( C - p i B ) u i > 0 , (6.32)

since pi is the first eigenvalue of self-adjoint problem (6.24) with the eigen-
vector UQ. Hence, the numerator and denominator in expression (6.31) are
positive, and \\ > 0. The strong interaction of eigenvalues at pi described
by (6.25), (6.31) is shown in Fig. 6.2.

In the three-dimensional space (ReA,ImA,p) the strong interaction of
eigenvalues is characterized by change of the plane of interaction, which
causes instability. The curves in Fig. 6.2b at p fa pi according to (6.25)
behave like parabolae with equal curvatures lying in the orthogonal planes.

Notice that at p equal to the other eigenvalues of (6.24) we have A = 0,
and the strong interaction can also take place. However, the denominator
in (6.31) is not necessarily positive because inequality (6.32) holds only for
the first eigenvalue p\. This means that the quantity Ai in (6.25) may
be purely imaginary. This case corresponds to approach of two real A
as p increases, merging to zero, and then diverging in opposite directions
along the imaginary axis. Thus, the strong interaction of eigenvalues is the
mechanism of losing as well as gaining stability of a gyroscopic system.

6.3.2 Weak interaction

This is the case when p\ is a double root of the characteristic equation
det(C - pB) = 0. Due to symmetry of the matrices B and C there are
two linearly independent real eigenvectors uj and u2. We assume that
the eigenvalue A = 0 of problem (6.2) at p = pi is semi-simple possessing
two linearly independent eigenvectors ux and u2. The corresponding left
eigenvectors vi and V2, satisfying the normalization conditions

= S i j , i , j = 1 , 2 , (6.33)
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are

vi = - i S — , V2 = - ^ £ — . (6.34)
u;j Gui Uj Gui

Here, the condition u^Gui ^ 0 is satisfied, since it is equivalent to the
absence of the Keldysh chain for A = 0.

Using vectors (6.34) in Theorem 2.12 (page 77), we get the perturbed
eigenvalues as

A = AiAp + o(Ap), (6.35)

where

\ i V u ' i 'Bun4 'Bu 2 - (ufBu2)T
Ai = ± y— . (b.6b)

ut, Gui

Notice that the expression under the square root in (6.36) is positive since
it represents the determinant of Gram matrix for two linearly independent
vectors ui and u2 with the scalar product defined by the positive definite
matrix B. Hence, Ai is purely imaginary.

Im I Im A, P

P<P\ " P>P\ ^ \ ^ ^

" S^ \!
0 ReX 0 ReA. ^ ^ ^

i ,

5" ImA.

Fig. 6.3 Weak interaction of eigenvalues.

The weak interaction of eigenvalues is shown in Fig. 6.3. The eigenvalues
pass zero along the imaginary axis, and the gyroscopic system does not lose
stability. The system remains stable also at the critical point pi, because
the double eigenvalue A = 0 is semi-simple.

This means that gyroscopic stabilization at p > p\ can be achieved by
an appropriate choice of the matrix P(p)-

6.3.3 Further increase of parameter p

With further increase of the parameter p > Pi, at p = p%,pz,...,pm, the
pairs of eigenvalues A = ±zw pass zero. At those points their interaction
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may be strong or weak. Nevertheless, we can show that for rather large
values of p system (6.1), (6.22) becomes unstable. To prove this statement
we use expression (6.7). The system is unstable if the inequality

-G2 - APM > 0 (6.37)

is valid. According to (6.6) and (6.22), P - C-pB with C = u*Cu > 0 and
B = u*Bu > 0. Using this expression in (6.37), we obtain the instability
condition as

G2 + ACM

P>Pc> P c = ABM • ( 6 ' 3 8 )

If this inequality holds for at least one eigenvector u, the system becomes
unstable.

Let us estimate the critical value pc. First of all, we have

G2+ACM C
V^-WM-^B^ ( 6 - 3 9 )

The last inequality holds due to Rayleigh's principle. Relation (6.39) pro-
vides the lower bound for pc.

We use the estimates of Section 1.7 to obtain the upper bound

_ G2 + ACM _ G2 C_
Pc ~ ABM ~ ABM + B

(6.40)
/~i2 ft (~i2

<T max , )± < "max , _
4 i5 m i n M m i n B 4 i f m i n M m i n

where Gmax is the maximal absolute value for the eigenvalues of the matrix
G; -Bmin and Mm[n are the minimal eigenvalues of the symmetric matrices
B and M, respectively; and pm is the maximal eigenvalue for the symmetric
problem (6.24).

Combining estimates (6.39) and (6.40), we obtain p\ < pc < P*- For all
p > p* system (6.1), (6.22) is unstable. The loss of stability can be static
(through multiple A = 0) or dynamic (through multiple A = ±iu, w / 0 ) .

Example 6.2 As an example we consider interaction of eigenvalues for
an elastic shaft of non-circular cross-section with a mounted disk rotating
with a constant angular velocity p, see Fig. 6.4.

The linearized equations of motion of the disk in the coordinate system,
rotating uniformly with the angular velocity p, are the following [Ziegler
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J\ = ^ ^ \ I \ 1\
77777' — 77777 \ \ \ \ ^̂r*"**"

Fig. 6.4 Rotating shaft with a disk.

(1968)]

q\-2pq2 + (—-pAqi =0,

(6.41)

In these equations mo is the mass of the disk, c\ and c2 are the elastic
constants, representing the stiffnesses of the shaft with respect to its two
principle axes, and we assume c\ < c2. Dissipative forces are neglected.

Finding solution to (6.41) in the form q\ = u\ exp \t, q2 = u2 exp Xt, we
obtain

( A2 + ̂ - - p2) Ul - 2p\u2 = 0,
V m0 J

(6.42)

2p\Ul + A2 + ̂ - - p2 I u2 = 0.
\ m0 )

Here A is an eigenvalue, and u = (•ui,U2)T is an eigenvector. A nontrivial
solution to equations (6.42) exists if A satisfies the characteristic equation

A4 + (*±* + 2p2) A2 + (SL _ A {^L _ pA = o. (6.43)

It is easy to see that the system is stable (A2 < 0) if the angular velocity
p satisfies the inequalities 0 < p < \fci/mQ or p > i /c2/mo, and it is
unstable if \Jc\ /m0 < p < i /c2/m0.

The double eigenvalue A = 0 appears at the critical values p\ = ^/ci/m0

and p2 = \Jc2lm0. It is characterized by a single eigenvector, which implies
the strong interaction. The eigenvalues A for the parameter p close to pi
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and p2 are given in the first approximation by the expressions

(6.44)

A = ±i>-%)Apa+O(||A^||), V = P > - ^ -
y Ci + 0C2 mo

The picture of the strong interaction of eigenvalues is presented in
Fig. 6.5. The interaction takes place in the planes Re A = 0 and ImA = 0.
As p increases from zero, two purely imaginary eigenvalues, minimal in the
absolute value, approach each other. Then, at p\ = ^/cj/mo, the strong
interaction occurs. The eigenvalues become real and diverge making the
system unstable. With further increase of p those eigenvalues begin to
come together. At p2 = \f02Jvn~Q the second strong interaction takes place.
The eigenvalues become purely imaginary and diverge, and the system at-
tains stability. As to the second pair of purely imaginary eigenvalues, with
an increase of p they grow monotonically in the absolute value without
affecting stability.

/ R e X

Fig. 6.5 Strong interaction of eigenvalues for rotating shaft.

In the case of c\ = c2 = c the double eigenvalue A = 0 appears at
p — y/c/mo- It is semi-simple and possesses two linearly independent
eigenvectors ui = (l,0)T and u2 = (0,l)T of problem (6.42). Hence, at
p = y'c/mo the interaction of eigenvalues is weak, and the system does not
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lose stability. Indeed, in this case according to (6.43) we have

/ rr~ \
X = ±i[J—±p). (6.45)

This formula means linear dependence of four eigenvalues A on the param-
eter p, see Fig. 6.6.

P

/ReX

Fig. 6.6 Weak interaction of eigenvalues for rotating shaft.

The interaction of the eigenvalues occurs in the plane Re A = 0. At
p — 0 the eigenvalues Ai = i^/c/m0 and A2 = -i^/c/mo are double and
semi-simple. With an increase of p they diverge along the imaginary axis.
Two eigenvalues, minimal in the absolute value, approach and become zero
at p = -y/c/mrj. Change of the plane of interaction does not occur (weak
interaction), and the system remains stable for all p > 0.

Example 6.3 We study stability of a massless shaft with a mounted disk
of mass m0 rotating with a constant angular velocity p, see Fig. 6.7. The
shaft is assumed to be rigid with two torsional springs with the stiffness
coefficients C\ and C2, and is subjected to a constant vertical compression
force F. The linearized equations of motion of the disk in a coordinate
system, rotating uniformly with the angular velocity p, are the following
[Huseyin (1978)]

<7i - 2p42 + (ci - T) - p2) gi = 0,
(6.46)

<h + 2p4i + (C2 - V ~ P2) <?2 = 0.

In these equations the constants c\ = Ci/(mo/2) and C2 = 6*2/(^0^) repre-
sent stiffnesses of the shaft, and rj — F/(mol) represents the vertical force.
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Fig. 6.7 Rotating shaft loaded by vertical force.

The characteristic equation of system (6.46) is

A4 + A2(Cl + c2 - 2r) + 2p2) + (d - rj -p2){c2 -v-p2)=0. (6.47)

The system is stable if the two roots A2 of the biquadratic equation (6.47)
are negative. This implies that the coefficients and discriminant of (6.47)
must be positive. Thus, we have the stability conditions

ci + c2 - 277 + 2p2 > 0,

(ci - V - P2)(c2 ~ V ~ P2) > 0, (6.48)

( c 1 - c 2 ) 2 + 8 ( c 1 + c 2 - 2 7 7 ) p 2 > 0 .

Let us study behavior of eigenvalues and stability of the system with a
change of the angular velocity p and fixed ci, c2, and r\. We assume that
0 < a < c2.

If 0 < T) < ci, then the system is stable for p = 0. The four eigenvalues
are purely imaginary and simple. With an increase of p the eigenvalues
A = ±iu>, lowest for their absolute values, approach, interact strongly at
the origin for pi — y/c\ - 77, and diverge along the real axis. The system
becomes unstable (divergence). With further increase of p these eigenval-
ues return to the origin, interact strongly at pi — ^/c2 — T], and enter the
imaginary axis. The system is stabilized. The stability region consists of
two intervals 0 < p < p\ and p > p2 • Behavior of eigenvalues is similar to
that of shown in Fig. 6.5.

If Ci < rj < (ci + c2)/2, then there is one real pair and one purely
imaginary pair of eigenvalues for p = 0 (the system is unstable). With an
increase of p the real eigenvalues approach, interact strongly at the origin for
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Vi = \/c2 ~ 'Hi a n d diverge along the imaginary axis. The system becomes
stable. The region of gyroscopic stabilization is p > p2-

If (ci + c-i)j2 < T] < [c.\ + 3c2)/4, then there is one real pair and one
purely imaginary pair of eigenvalues for p = 0 (the system is unstable).
With an increase of p the real eigenvalues approach, interact strongly at
the origin for P2 = \Jci — r/, and diverge along the imaginary axis. The sys-
tem is stabilized. With further increase of p, two pairs of purely imaginary
eigenvalues approach, interact strongly at pf = (C2 — c{)/^/8(2r] — c\ — c^),
and become complex A = ±a±zw. At the interaction point the double non-
derogatory eigenvalues A = ±iJa/2 + C2/2 — rf+pj appear. The system
becomes unstable (flutter). The region of gyroscopic stabilization in this
case is the finite interval pi < p < pf. Behavior of eigenvalues depending
on p is shown in Fig. 6.8.

I ' \ / / i \ ' ImX
! I / 0 !

Fig. 6.8 Behavior of eigenvalues for rotating shaft.

Finally, if rj > (ci + 3c2)/4, then the system is unstable for all values of
the angular velocity p.

Following [Inman (1988)] and [Inman (1989), page 84] we fix the values
of r\ and p, and ask for the stability regions in the plane (ci, C2). For 77 = 3
and p = 2, Fig. 6.9 shows the result of the investigation of conditions (6.48)
with the natural restrictions c\ > 0 and C2 > 0. 5, F, and D in Fig. 6.9
indicate stability, nutter, and divergence regions, respectively. The nutter
boundary is given by the parabola

(ci - c2)2 + 32(ci + c2) - 192 = 0. (6.49)
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Notice that the presented picture does not entirely agree with [Inman
(1988)] and is more complete than the picture given in [Inman (1989)].

o ^ *

Fig. 6.9 Stability map of rotating shaft for 77 = 3 and p = 2.

6.4 Gyroscopic stabilization problem

Let us consider gyroscopic system (6.1), in which the matrix P is symmetric
and negative definite, P = — C, C > 0; the gyroscopic forces pG are
proportional to a real parameter p > 0, and det G ^ 0. As a result, we get
the eigenvalue problem

(A2M + p A G - C ) u = 0. (6.50)

We are interested in the behavior of eigenvalues A with a change of the
parameter p. At p = 0 we obtain from (6.50)

Cu = A2Mu. (6.51)

Since M > 0 and C > 0, this problem has 2m real eigenvalues A = ±Qi,
i = 1, . . . , m, where 0 < a\ < ... < am. Thus, at p — 0 all the eigenvalues
lie on the real axis symmetrically with respect to zero, implying instability
of the system.

Along with (6.50) we consider the eigenvalue problem for the left eigen-
vector v:

vT (A2M + pAG - C) = 0. (6.52)
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By means of equations (6.50), (6.52) and the results of Section 2.13 we find
the first derivative of a simple eigenvalue A with respect to p:

dX AvrGu
dp 2XvTMu+pvTGu [ '

At p — 0 we have v = u. Since GT — — G and the eigenvector u is real,
u T G u = 0. Hence, according to (6.53), dX/dp = 0 at p = 0 for all the
simple eigenvalues A.

Consider now the case of an eigenvalue Ao with algebraic multiplicity
r at p = 0. Since problem (6.51) is symmetric, the eigenvalue Ao is semi-
simple (weak interaction). According to the results of Section 2.13, the
eigenvalue expansion for small p takes the form A = Ao + X\p + o(p), where
r coefficients Ai are found from the equation

det(A0[ufGui] + A 1 l ) = 0 , i,j = l,...,r, (6.54)

where the eigenvectors u i , . . . , u r corresponding to Ao are normalized as

2 X o u [ M u j = S i j , i , j = l , . . . , r . (6.55)

Since the r x r matrix [VL[GUJ] is skew-symmetric, all the roots Ai are
either purely imaginary or zero. For example, if r = 2 we get

X1 = ±iXou$Gu1. (6.56)

This means that for small p > 0 the eigenvalues become complex conjugate
and diverge in opposite directions parallel to the imaginary axis.

In [Lakhadanov (1975)] it is shown that C > 0 and det G ^ 0 are
sufficient conditions for stabilization of a gyroscopic system at rather large
values of p > p*, and the estimate for the critical value p* is given. As
we have already noted, along with A the quantities —A, A, —A are also the
eigenvalues. Thus, stabilization of the gyroscopic system means that all A
come to the imaginary axis. We notice that gyroscopic stabilization cannot
be achieved through A = 0 since C > 0.

Let us study evolution of eigenvalues A with a change of p. At p — 0 all A
are real. With an increase of p the simple eigenvalues A start moving along
the real axis, see Fig. 6.10. Simple eigenvalues cannot leave the real axis,
since otherwise the additional eigenvalues A appear, which is impossible.
Therefore, the eigenvalues can leave the real axis only at the points R, R',
where two of them collide and the strong interaction occurs, see Fig. 6.10.
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R'f \ R
V 0 I ReX

^•S'

Fig. 6.10 Mechanism of gyroscopic stabilization.

With further increase of p, transition of A to the imaginary axis occurs
when the pairs A, —A and —A, A meet at the points S, S', see Fig. 6.10,
the strong interaction takes place, and then the eigenvalues diverge along
the imaginary axis in opposite directions. Stabilization of the gyroscopic
system is attained when all A reach the imaginary axis.

Gyroscopic stabilization in the three-dimensional space is illustrated in
Fig. 6.11, where behavior of four eigenvalues with a change of p is presented.

I 'y/|0

/ina

Fig. 6.11 Gyroscopic stabilization in the three-dimensional space.
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So, we have proven the statement.

Theorem 6.2 Strong interaction of eigenvalues is the mechanism of gy-
roscopic stabilization.

Notice that according to one of the Thomson-Tait-Chetayev theorems,
see for example [Merkin (1997)], stabilization of a gyroscopic system is
possible only for even degrees of instability of the potential system (the
number of positive eigenvalues of the matrix C). Since in our case C > 0,
the number of degrees of freedom m must be even. This condition is satisfied
due to the assumption det G / 0 , because for an odd number m any skew-
symmetric matrix G has the property detG = 0.

Thus, we can treat the Thomson-Tait-Chetayev theorem in the follow-
ing way: gyroscopic stabilization is provided by the strong interaction of
pairs of eigenvalues, see Fig. 6.10. When m is an odd number, there is no
pair for one of X to interact with and leave the real axis.

If A is real, the corresponding eigenvector u is also real. Then, multi-
plying (6.50) by u T from the left and using u T Gu = 0, we get

A2 = ^ (6-57)
u r M u v '

Hence, squares of the real eigenvalues are bounded by a\ < A2 < a^, where
a\ and a^ are the minimum and maximum eigenvalues of problem (6.51).

Near the point p0 of the strong interaction R, R' or S, S' the following
bifurcation for the double eigenvalue AQ is valid:

A = X0±X1^Ap + O(Ap), Ap = p-p0, (6.58)

where the coefficient Ai is given by Theorem 2.13 (page 80) as

A2. = -AOV^GUQ. (6.59)

In this equation the eigenvectors u0 and v0 are determined by (6.50) and

(6.52), respectively. Besides, the left eigenvector v0 satisfies the normaliza-
tion condition

v^(2A0M + p0G)u! + v0TMu0 = 1, (6.60)

where the associated vector ui is found from the equation

(MA2, +poGAo - C) ux = -(2A0M +PoG)uo. (6.61)
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The eigenvectors uo and vo satisfy the orthogonality condition

V(f (2AoM+poG)uo = 0, (6.62)

see Section 2.13. Multiplying condition (6.62) by Ao and using (6.50), we
find

Aj^Muc, + v^Cu0 = 0. (6.63)

At the points S, S' in Fig. 6.10, where the eigenvalues A reach the
imaginary axis, we have Ao = ±ituo- I n this case the left eigenvector VQ
takes the form

V° ~ uS(2A0M + p 0 G ) u 1 + u S M u 0 ' [ ' }

Substituting (6.64) into (6.59), we find

A2 = ApugGup
1 uS(2AoM + poG)u 1 +u*Mu o ' V ' '

We can show that the numerator in expression (6.65) is nonzero. Indeed,
using (6.64) in orthogonality condition (6.62), we get

AouSGuo = 2 " ° U ° M U ° > 0. (6.66)
Pa

This means that Ai ̂  0 and, hence, the strong interaction does not degen-
erate at the points 5, 5'.

Let us estimate the frequency u>o at the points S and S'. Using expres-
sion (6.64) in condition (6.63), we have

Hence, a\ < UIQ < o?m, where a\ and o?m are the minimum and maximum
eigenvalues of problem (6.51).

When the eigenvalues A reach the imaginary axis at the points 5, 5',
they diverge along this axis in opposite directions, see Fig. 6.10. The deriva-
tive (6.53) of a simple eigenvalue A = ito with the use of equation (6.50)
and v = u yields

^ = -p(C-u,*M)> ( 6 ' 6 8 )

where C = u*Cu > 0 and M = u*Mu > 0. The derivative (6.68) can not
change the sign unless the denominator becomes zero, which is equivalent

(6.64)

(6.65)

(6.67)

(6.68)
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to the orthogonality condition (6.63). At this point two eigenvalues collide
with derivatives (6.68) tending to infinity. So, the strong interaction takes
place, and the system loses stability.

Consider the situation, when all the eigenvalues reach the imaginary axis
and for p > p* gyroscopic stabilization takes place [Lakhadanov (1975)].
Then with further increase of the parameter p half of the eigenvalues move
monotonically towards the origin, and the other half of the eigenvalues move
to infinity. The presented scenario agrees with the asymptotic behavior of
frequencies at large values of p given in [Merkin (1974)].

Example 6.4 As an example, we consider a gyroscopic system with two
degrees of freedom

xi + px2 - cixi = 0,
(6.69)

X2 — PXI - C2X2 = 0.

The constants c\ and c2 are assumed to be positive and c2 > c\. The
system is unstable when only potential forces are present (p = 0), and for
rather large values p > ps the system is stabilized by the gyroscopic forces.

The characteristic equation for this system is

A4 + (p2 - ci - c2)A2 + cxc2 = 0. (6.70)

At p = 0, Ai — ii/cT and A2 = i-y/cj. As p increases, the real eigenvalues
Ai and A2 approach, merge at PR = -Joi — -Jc[ to a double A = ±^/cic2,
and then leave the real axis. At ps = ^/ci + ^/cj, the eigenvalues become
double again, A = ±i^/cic2, the second strong interaction occurs, and for
p > ps the system gets stable, see Figs. 6.10 and 6.11. We note that when
p is within the limits •sfc2 — -Jc[ < p < ~sfc{ + ^/c^, all the eigenvalues A lie
on the circle of the radius ^/ci c2 •



Chapter 7

Linear Hamiltonian Systems

Hamiltonian systems model a number of important problems in theoretical
physics, celestial mechanics, fluid dynamics etc. The stability problems,
being significant for Hamiltonian systems, gave rise to sophisticated math-
ematical methods, see for example the books by [Guckenheimer and Holmes
(1983); Arnold et al. (1996); Arnold and Givental (2001)]. Properties of
Hamiltonian systems like conservation of energy (represented by a Hamil-
tonian function) and conservation of volume in the phase space lead to
specific dynamical features.

In this chapter we study multi-parameter linear Hamiltonian systems
with finite degrees of freedom. These systems are represented by Hamilto-
nian matrices, whose eigenvalues are situated on the complex plane sym-
metrically with respect to the real and imaginary axes. Due to this prop-
erty, the stability of a linear Hamiltonian system can be only marginal,
and the asymptotic stability can not take place. That is why the stabil-
ity analysis of an equilibrium for a linearized Hamiltonian system does not
guarantee the stability of a non-linear system. Nevertheless it provides the
necessary stability condition. Qualitative analysis of multi-parameter lin-
ear Hamiltonian systems was done in [Galin (1975); Patera et al. (1982);
Koc,ak (1984)]. Bifurcation theory of eigenvalues and methods of multi-
parameter stability analysis in case of linear Hamiltonian systems was given
in [Mailybaev and Seyranian (1998c); Mailybaev and Seyranian (1999a);
Seyranian and Mailybaev (1999)], and our presentation is mostly based on
these papers.

We start the chapter with the brief introduction to dynamics and sta-
bility of Hamiltonian systems and their relationship to gyroscopic systems.
Then bifurcation theory for multiple eigenvalues of Hamiltonian matrices
dependent on parameters is presented. The stability boundaries of linear

191
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Hamiltonian systems in the parameter space are described. Analysis of
singularities of the stability boundary is based on the bifurcation theory
of eigenvalues and versal deformations of Hamiltonian matrices. As exam-
ples, stability of two gyroscopic systems: an elastic simply supported pipe
conveying fluid and a multi-body rotating system are investigated.

7.1 Stability and dynamics of Hamiltonian system

Let us consider an autonomous Hamiltonian system with m degrees of free-
dom described by canonical variables: generalized coordinates qi,...,qm

and generalized impulses p i , . . . ,pm. Dynamics of the system is governed
by a scalar Hamiltonian function H = H(qi,..., qm,pi,-- • • ,pm) smoothly
dependent on the canonical variables. Equations of motion are given by
the Hamiltonian equations

dqj _ dH
at apj

(7.1)
dpi dH . n

Using equations (7.1), we find

dt ^Kdqj dt + dpj dt ) ^{dqjdpj dpjdqjj ^ { ' }

Therefore, the Hamiltonian function is constant for any solution of equa-
tions (7.1). In many physical systems the Hamiltonian function represents
the energy function, which is conserved in time.

7.1.1 Linearization near equilibrium

Let qj(t) = qj0, pj(t) = PJO, j = 1, • • • ,m, be a stationary solution of the
Hamiltonian system, that is,

wrwr^ j=1'--->m> (7-3)



Linear Hamiltonian Systems 193

at qj — cjjo, pj = pjo, j — 1 , . . . , m. Linearization of Hamiltonian equations
(7.1) near the stationary solution yields the linear Hamiltonian system

dAg,- ^ d2H A . , ^ d2H A ,

(7.4)

where Ag^ = qk - qk0 and Ap^ = pk ~ Pko • Introducing the vector x of
dimension 2m with the components

Xj = <H-, a;m+i = Apy, j = l,...,m, (7.5)

we can write linear Hamiltonian system (7.4) in the form

x = JAx, (7.6)

where A is the 2m x 2m symmetric block matrix

/. r Q2H i r 82H i \

r D2H i r a2g 1

consisting of second order derivatives evaluated at the stationary point, and
J is a 2m x 2m skew-symmetric block matrix of the form

J = ( - i o j - (7'8)

The matrix JA is called the Hamiltonian matrix. Notice that the matrix
J satisfies the conditions

J T = J - 1 = - J . (7.9)

7.1.2 Stability and instability

Seeking a solution of system (7.6) in the form x = uexpAi, we get the
eigenvalue problem

JAu = Au, (7.10)

(7.7)
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where A is an eigenvalue and u is an eigenvector. Multiplying both sides of
equation (7.10) by J"1 from the left and using conditions (7.9), we obtain
the generalized eigenvalue problem of the form

Au = -AJu, (7.11)

or, equivalently,

(A + AJ)u = 0. (7.12)

There are 2m eigenvalues A, counting multiplicities, determined by the
characteristic equation

det(A + AJ) = 0. (7.13)

ImA,

11

— > ii • —

0 ReA.

Fig. 7.1 Distribution of eigenvalues of a Hamiltonian matrix.

Since the matrix A is symmetric and the matrix J is skew-symmetric,
we have

det(A + AJ) = det(A + AJ)T = det(A - AJ) = 0. (7.14)

Therefore, if A is an eigenvalue then —A is an eigenvalue too, and character-
istic equation (7.13) contains A in even powers only. Since the matrices A
and J are real, A and —A are eigenvalues as well. We see that eigenvalues of
the Hamiltonian matrix JA are placed on the complex plane symmetrically
with respect to both real and imaginary axes, i.e., they appear in complex
quadruples ±a ± IOJ, real pairs ±a, purely imaginary pairs ±iuj, or zero
eigenvalue of even algebraic multiplicity, see Fig. 7.1. Jordan structure of
eigenvalues is the same in complex quadruples ±a ± iw, real pairs ±a, and
purely imaginary pairs ±iui, see [Arnold and Givental (2001)]. Notice that
the number of Jordan blocks of odd size corresponding to zero eigenvalue
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is even. Theorem 1.1 (page 6) applied to linear Hamiltonian system (7.6)
yields

Theorem 7.1 Linear Hamiltonian system (7.6) is stable if and only if all
the eigenvalues of the Hamiltonian matrix J A have zero real part Re A = 0
and are simple or semi-simple.

Stability of a linear Hamiltonian system is not asymptotic, since exis-
tence of the eigenvalue A with negative real part (Re A < 0) implies exis-
tence of the eigenvalue —A with positive real part, i.e., instability. There is
a complicated relation of stability for linearized and nonlinear Hamiltonian
systems. If the linearized system has an eigenvalue with positive real part,
then the nonlinear system is unstable. If the matrix A is positive definite,
then both the linearized and nonlinear systems are stable. In other cases
stability of the nonlinear system is influenced by nonlinear terms and does
not necessarily follow from the stability of the linearized system, see [Arnold
and Givental (2001)].

7.1.3 Relation to gyroscopic system

Let us consider a linear gyroscopic system

Mq + Gq + Pq = 0, (7.15)

where q 6 Em is a vector of generalized coordinates; M > 0 and P are
symmetric matrices and G is a skew-symmetric matrix; see Section 6.1.
Introducing the vector of dimension 2m

(7.16)

we can write equation (7.15) in the form of linear Hamiltonian equations
(7.6) with the matrix

{ / GM~72\
A = . (7.17)

\ -M-1G/2 M-1 J

Therefore, linear gyroscopic systems possess the properties of linear Hamil-
tonian systems. Notice that transformation (7.16), (7.17) represents the
Legendre transformation from the Lagrange to Hamiltonian equations for
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the case of linear systems, see for example [Arnold (1978)]. The Hamilto-
nian function

tf=ixTAx:=lqTMq+iqrPq (7.18)

represents the energy of the gyroscopic system.

7.2 Bifurcation of purely imaginary and zero eigenvalues of
Hamiltonian matrix

A stable Hamiltonian system is characterized by eigenvalues lying on the
imaginary axis. In this section we study a change of simple and double
purely imaginary and zero eigenvalues for a Hamiltonian matrix JA(p)
smoothly dependent on a vector of real parameters p € IK™.

Let Ao = iw be a purely imaginary eigenvalue of a Hamiltonian matrix
JA0 = JA(po) at a point po of the parameter space. The corresponding
right eigenvector UQ is denned by the eigenvalue problem

JAouo = ioju0, (7-19)

and the left eigenvector v0 is found from the equation

v^JAo = IOJVJ. (7.20)

Taking the complex conjugate transpose of (7.20) and pre-multiplying the
result by the matrix —J, we find

JA 0 Jv 0 = zwJv0. (7-21)

Comparing equations (7.19) and (7.21), we get

u0 = cJv0, (7.22)

where c is an arbitrary nonzero scalar, or equivalently

v0 = cJu0. (7.23)

Expression (7.23) relates the right and left eigenvectors of the purely imag-
inary eigenvalue Ao = iu. In the case of zero eigenvalue Ao = 0 relation
between the real eigenvectors UQ and VQ takes the form VQ = CJUQ.
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7.2.1 Simple eigenvalue

Let us consider a simple eigenvalue Ao = iu>. By Theorem 2.2 (page 32),
this eigenvalue is a smooth function of the parameter vector p with the
derivative

wr ° w^l^1^- (7-24)
Substituting expression (7.23) into (7.24) and using properties (7.9), we
find

| r ~ u ° l ; U o / ( u ° J u o ) < (7-25)
where uj denotes the complex conjugate transpose UQ\ Since A is a sym-
metric matrix and J is a skew-symmetric matrix, the numerator and de-
nominator in expression (7.25) are real and purely imaginary, respectively.
Hence, derivative (7.25) of the purely imaginary eigenvalue Ao = iui is
purely imaginary. Under perturbation of the parameter vector the simple
eigenvalue Ao = iui moves along the imaginary axis. A purely imaginary
eigenvalue cannot leave the imaginary axis unless it becomes multiple. Oth-
erwise, a pair of simple purely imaginary eigenvalues becomes a complex
quadruple, which is impossible since the total number of the eigenvalues is
fixed.

7.2.2 Double eigenvalue with single eigenvector

Now, let us consider a nonderogatory double eigenvalue Ao = iu (having
a single eigenvector). The eigenvector u0 and associated vector ui are
determined by the Jordan chain equations

JAouo = ico,
(7-26)

J AoUi = ICOllx + UQ.

The left eigenvector vo and associated vector vi are given by the equations

vg-JAo = iunrl

v£ JA0 = IOJ\{ + VQ* ,

and we imply the normalization conditions

v^U! = 1, vfm = 0. (7.28)

(7.27)
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Then using relation (7.23), we find the eigenvector vo satisfying the first
condition in (7.28) as

vo = - - ^ - (7-29)

The denominator in (7.29) can be transformed with the use of the second
equation in (7.26) as follows

UQJUX = u£(JA0 - iwI)*Jui = u*(A0 + iioJ)ux. (7.30)

Hence, we have

Vo = " U K A O + L J K 1 (7'31)

where the denominator u£(Ao + iuiJ)ui is a real number since the matrix
Ao + iio3 is Hermitian.

By Theorem 2.3 (page 37), bifurcation of the double eigenvalue Ao = iu
along a curve p = p(e), p(0) = po, is given by the relation

A = zw + Aie1/2 + o(e1/2), (7.32)

where two values of Ai are

Xl=±\t^ (Vp^U°) £j (7'33)
and ej = dpj/ds with the derivatives evaluated at p = po and e = 0.
Substituting expression (7.31) into (7.33) and using relations (7.9), we find

Ai = ±^%ej, (7.34)

where e = ( e i , . . . , en), and f = (/i, . . . , / „ ) is a real vector with the com-
ponents

/ ^ - ( u S ^ u o j / t u K A o + u ^ u i ) , j = l,...,n. (7.35)

The values of Ai are real or purely imaginary depending on the sign of the
scalar product (f, e). Therefore, under perturbation of the parameter vector
the double eigenvalue Ao = iu> splits into two purely imaginary eigenvalues
if (f, e) < 0 and into two complex eigenvalues with positive and negative
real parts if (f, e) > 0.



Linear Hamiltonian Systems 199

Let us consider the double eigenvalue Ao = 0 with the corresponding
real eigenvector uo and associated vector u i . Bifurcation of the eigenvalue
Ao = 0 along a curve p = p(e) is described by the expansion

A = A1e1/2 + o(£1/2), (7.36)

where two values of Ai are given by expressions (7.34) and (7.35). The
double eigenvalue Ao = 0 splits into a pair of purely imaginary eigenvalues
±iu> if (f, e) < 0 and into a pair of real eigenvalues ±a if (f, e) > 0.

7.2.3 Double semi-simple eigenvalue

Finally, let us consider a double semi-simple eigenvalue Ao = iw, w ^ 0,
with two linearly independent eigenvectors ui and u2. These eigenvectors
can be chosen such that the following orthogonality condition is satisfied

u£Ju2 = 0. (7.37)

This choice ensures that

u*J U l ^ 0, u*Ju2 TL 0. (7.38)

Otherwise, vj'ui = v^U2 = 0 or v^u2 = v;fu2 = 0 for the left eigenvectors
V! — ciJTii and v2 = C2Ju2, but this implies the existence of a Jordan
chain.

According to (7.23), the left eigenvectors vj and v2 can be taken in the
form

- = -^r' * = -;&• (739)
The scalar quantities in the denominators of (7.39) are chosen such that
the right and left eigenvectors satisfy the normalization conditions

v J u k = S j k , j , k = 1 , 2 . (7.40)

By Theorem 2.6 (page 56), bifurcation of the double semi-simple eigen-
value Ao = iu> along a curve p = p(e), p(0) = p 0 , is given by the expansion

A -iw + Aie + o(e), (7-41)
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where two values of Ai are the eigenvalues of the matrix

f^f  TldA  \ A/ TldA  \ \

3 J . (7.42)

Using relations (7.39), we write the characteristic equation for matrix (7.42)
in the form

where a\, 02, 03, CLA,  and 61, 62 a re real numbers determined by the expres-
sions

A/.9A \ f/,«A \

A / „ 5A \ (7.44)
a3 + iaA = 2 ^ Ui ^—u2 ej;

,•=1 V °Pj J

bi = -iu*3ui,  62 = -«U2Ju2.

The constants 61 and 62 are nonzero due to conditions (7.38). Solving the
characteristic equation, we find

i(q162 + Q261) ± \f^{a>\b-x  - a2&i)2 - 46162(̂ 3 + aj) , „ . . ,
Al _ _ _ . ( 7 . 4 5 )

Let us define real vectors gi, g2, and g3 of dimension n with the components

, / ,dA  \ , { ,dA  \

•̂ = 6 H U l ^ U l J " & 1 V U 2 ^ U 2 J '
(7.46)

/ /̂  A \
92j + W3j  = ZVlhfo]  [ u* ^— u2 ) , j - 1,. . . , n.

V °Pj J
Then, expression (7.45) takes the form

= i(a162 + q 2 f e l ) ± ^ ) (7>47)

2oio2

where the discriminant D is equal to

D = - (gi ,e)2 - sign(61fo2)((g2,e)2 + (g3)e)2). (7.48)

(7.43)
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Under perturbation of the parameter vector, the double semi-simple eigen-
value Ao = iu> splits into two purely imaginary eigenvalues if D < 0, and
into two complex eigenvalues with nonzero real part if D > 0. Notice that
D < 0 for any perturbation if 6162 > 0. In this case any perturbation of
the parameter vector leaves eigenvalues (7.41) on the imaginary axis.

In case of the double semi-simple eigenvalue Ao = 0, we can choose the
linearly independent real eigenvectors ui and U2 satisfying the relation

uf Ju2 = 1. (7.49)

Then the corresponding left eigenvectors satisfying normalization condi-
tions (7.40) are

v : = Ju2, v2 = - J u i , (7.50)

where the equalities u^Jui = u^Ju2 = 0 are valid for the skew-symmetric
matrix J and real vectors ui, u2. Substituting (7.50) into expression (7.42)
and solving the characteristic equation, we find

Ai = ±VD, (7.51)

where

D = (h 3 , e ) 2 - (h 1 , e ) (h 2 , e ) , (7.52)

and hi , h2, h.3 are real vectors of dimension n with the components

T<9A , TdA , T8A
hij = Ui ^ r U i > h2j = U2 ^ r U 2 > hj = Ui ^ r U 2 '

opj apj opj (7.53)
j - l,...,n.

Bifurcation of the double eigenvalue Ao = 0 along a curve p = p(£),
p(0) = po, is given by the expansion

X = ±VDe + o(e). (7.54)

The double semi-simple eigenvalue Ao = 0 splits into two purely imaginary
eigenvalues ±iui if D < 0 and into two real eigenvalues ±a if D > 0.

7.3 Versal deformation of Hamiltonian matrix

A change of coordinates

x = Sy, (7.55)
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where y £ E2m and S is a nonsingular real 2m x 2m matrix, transforms
equation (7.6) to the form

y = S^JASy. (7.56)

In order to keep the Hamiltonian form of equations, we require

STJS = J, (7.57)

or, equivalently,

S"1 = -JS r J . (7.58)

Under condition (7.58), equation (7.56) can be written as

y = JA'y, (7.59)

where A' is the symmetric matrix

A' = STAS. (7.60)

The matrix S satisfying condition (7.57) is called symplectic.
Let us consider a Hamiltonian matrix smoothly dependent on a vector

of parameters p 6 Rn in the neighborhood of a point p = po- Change of
coordinates (7.55) given by a symplectic matrix S(p) smoothly dependent
on p yields the Hamiltonian matrix

JA ' (p)=JS r (p)A( P )S(p) (7.61)

of the equivalent multi-parameter Hamiltonian system. In this way we
can transform the family of Hamiltonian matrices to a simple form in the
neighborhood of the point po- Such forms, called versal deformations, have
been studied in [Galin (1975); Patera et al. (1982); Kocak (1984)]. Versal
deformations depend only on the matrix JA0 = JA(p0) at the initial point

Po-
Versal deformations obtained in [Galin (1975)] provide decomposition of

Hamiltonian equations to a set of independent subsystems. Each subsystem
corresponds to a complex quadruple ±a±iui, real pair ±a, purely imaginary
pair ±iui, or zero eigenvalue of the matrix JAo- For example, subsystems
corresponding to quadruples or pairs of simple eigenvalues are given by the
Hamiltonian equations

z = JBz, (7.62)
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where the Hamiltonian matrices JB are

f-a + qi ui 0 0 \

-ui + g2 -OL 0 0
±a±ioj : JB(q) = ,q=(? i ,g2) ;

0 0 a - qi w - g2

\ 0 0 -u> a j

f-a + qi 0 \
±a: JB(q)= , q=(gi);

\ 0 a-qij

( 0 <™2\
±iw: JB(q)= , CT = ± 1 , q=(gi);

\-a-2qi 0 y
(7.63)

where q = q(p) is a smooth function of the parameter vector p determined
in the neighborhood of po such that q(po) = 0. In the case of general
position the Jacobian matrix [dq/dp] has maximal rank. Two different signs
a = ±1 in the matrix JB for a purely imaginary pair of simple eigenvalues
±icu determine different versal deformations that are not equivalent under
symplectic transformation (7.61). Eigenvalues of matrices (7.63) are

±a±iu>: A = ± ( a - y ) ±iduj2 -q2u- ^ ;

±a: A = ± ( a - f t ) ; ^

±iu> : A = i iwy ' l + 2uq\.

Expressions (7.64) show that the structure of a complex quadruple, real
pair, or purely imaginary pair of simple eigenvalues is kept under pertur-
bation of parameters. The matrices JB in (7.63) can be given through cor-
responding Hamiltonian functions H — |z2Bz, which take the form [Galin
(1975)]

±a ±iu> : H = -a(ziz3 + z2z4) - u(ziZi - Z2Z3)

+qiziz3 + q2ziZi, z G E4;

±a : H = -az\z2 + q\ZiZ2, z € K2;

±iu> : H -^-{zl + LO2ZI) + qiz\, a = ±1, z £ l 2 .
Li

For multiple eigenvalues of the matrix JAQ Hamiltonian functions

(7.65)
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H = |zTBz, determining subsystems in a versal deformation, take more
complicated form. Below we give a list of these functions for several par-
ticular cases important for the stability analysis [Galin (1975)]:

02 : E = ^-z\ +qiz\, z 6 E2, q £ i ;
It

00 : H - qxz\ + qizxz2 + q%z\, z £ B 2 , q G E3;

04 : H = i r ^ I ~ 2zizi) - z2z3 + q\z3z4 + q2zj,

zGM4, qe l 2 ;

06 : H — ±-(2ziZ5 - 2zxz3 - z\) - z2z4 — z3z5 + qiz4z6
z

+q2Z5z6+q3zl z e l 6 , q€lK3;

(±iw)2 : H = ±-( —z\ + z\ ) - LU2Z2Z3 + zxzA + q\z2z3 + q2z%,

z€l4, qe E2;

(±ioj)(±iw) : H = ± - {z\ +OJ2Z%) ± -{z\ +ui2zl) + qxz\ + q2zxz2

+q%z\ + qiz1z4, z£R 4 , q € E4;

{±iui)3 : H = ±-(z\- 2zxz3 + u?{z\ - 2zAz6)) - z2zA

~z3z5 + qiz\ + q2zxz3 + q3zxz5, z G I 6 , q £ I 3 ;

(±iw)4 : H = ±\ (zz2Z4 + ^zlZ3 - w2z2 - z(\

-OJ2(Z2Z5 + ZiZ7) + ziz6 + z3z8 + qiz2z5

+q2z4z5 + q3z\ + q4z5z7, z e l 8 , q e E4.
(7.66)

Here 0k and (±iio)k denote nonderogatory zero and purely imaginary eigen-
values of multiplicity k, while 00 and (±iw)(±iu>) denote semi-simple double
zero and purely imaginary eigenvalues. The vector q smoothly depends on
p. The function q(p) is determined by the family of Hamiltonian matrices
JA(p) under consideration. Different signs in (7.66) determine different
versal deformations, which are not equivalent under symplectic transfor-
mation (7.61).
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Using (7.66), we find the Hamiltonian matrices in the cases O2 and
{±iuj)2 as

/ 0 2qA

° 2 : J B W = U o j -
/ 0 -CJ2 + qi 2q2 0 \ >7 6 ? )

1 0 0 0
(±iou)2 : JB(q) =

-a/to2 0 0 - 1

\ 0 -<j LO2 - qi 0 J

where a = ±1. It is easy to see that the first matrix in (7.67) has the
double eigenvalue A = 0 if qi (p) = 0. Hence, in the case of general position
a set of points p, such that the matrix JA(p) has the double nonderogatory
eigenvalue A = 0, is a smooth hypersurface in the parameter space. The
second matrix in (7.67) has a pair of purely imaginary double eigenvalues
for 2̂ (p) = 0 and sufficiently small gi (p). In the case of general position
a set of points p, such that the matrix JA(p) has a purely imaginary
pair of double nonderogatory eigenvalues, is a smooth hypersurface in the
parameter space.

7.4 Stability domain and its boundary

Let us consider linear Hamiltonian system (7.6) with the symmetric matrix
A(p) smoothly dependent on a vector of real parameters p. The stabil-
ity domain is defined as a set of values of the parameter vector p such
that corresponding system (7.6) is stable. Recall that stability of a linear
Hamiltonian system is not asymptotic, and all the eigenvalues of the stable
system with the Hamiltonian matrix JA are simple or semi-simple and lie
on the imaginary axis.

Let us consider a point p0 in the parameter space such that all the
eigenvalues of the Hamiltonian matrix JA0 = JA(p0) are simple and
purely imaginary. As we showed in Section 7.2, simple purely imaginary
eigenvalues cannot leave the imaginary axis. The linear Hamiltonian sys-
tem remains stable for any small perturbation of the parameter vector
p = p0 + Ap. Therefore, the point p0 is an internal point of the sta-
bility domain. Stability can be lost only if multiple purely imaginary or
zero eigenvalues appear.
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Let us consider a point po in the parameter space such that the ma-
trix JAo has a double nonderogatory eigenvalue Ao = 0 (having a single
eigenvector), while other eigenvalues are simple and purely imaginary. We
say that such a point p0 is of type 02. Bifurcation of the double eigenvalue
Ao = 0 affects stability and instability of the system. Considering pertur-
bation of the parameter vector as p = p0 + ee, bifurcation of Ao = 0 is
described by formulae (7.34)-(7.36). Since Ap = p - p0 = ee, we have

A = ±x/(f,AP) + o(e1/2). (7.68)

The system is stable for small e if two eigenvalues (7.68) are simple and
purely imaginary, which yields the condition

( f ,Ap)<0 . (7.69)

Inequality (7.69) provides the first order approximation of the stability
domain. The stability boundary is a smooth surface in the neighborhood
of the point po with the tangent plane

(f,Ap) = 0, (7.70)

where f is the normal vector to the stability boundary at p0 directed into the
instability domain; see Fig. 7.2a. Expression (7.68) shows that two purely
imaginary eigenvalues ±iu> come closer, interact strongly at the origin, and
become real ± Q as we cross the stability boundary in any transversal direc-
tion from the stability to instability domain, see Fig. 7.3a. This mechanism
of loss of stability is called divergence.

a) P2 f / ^ ^ v b) Pi I v / f

L^^ /s ^\(±m)y

py Tx py ^

Fig. 7.2 Stability boundary and its normal vector: a) divergence, b) flutter.

Let us consider a point po of type (±iui)2 such that the Hamiltonian
matrix J Ao has a pair of double nonderogatory eigenvalues ±iw, while other
eigenvalues are simple and purely imaginary. From formulae (7.32), (7.34)
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a) ImX. b) \mk
\ i

1 r

4 2 >
OA ReX. 0 ReX

Fig. 7.3 Development of instability on the complex plane: a) divergence, b) flutter.

we know that bifurcation of double eigenvalues ±icu under perturbation of
the parameter vector p = po + ee is given by the expression

A = ±iu ± y/(f, Ap) + o(£1/2); (7.71)

where the real vector f is determined by expression (7.35) for the double
eigenvalue Ao = iu>. The system is stable for small e if four eigenvalues
(7.71) are purely imaginary. This condition provides the first order approx-
imation of the stability domain (7.69). The stability boundary is a smooth
surface with tangent plane (7.70), where f is the normal vector to the sta-
bility boundary at po directed into the instability domain; see Fig. 7.2b.
Behavior of eigenvalues as we cross the stability boundary in any direction
in the parameter space is shown in Fig. 7.3b: two pairs of purely imagi-
nary eigenvalues ±iu\ and ±«W2 interact strongly and become a complex
quadruple ±a ± iui. This mechanism of loss of stability is called flutter.

Points of types 02 and (jtito)2 form a regular part of the stability bound-
ary, which consists of smooth surfaces representing divergence and flutter
boundaries, respectively.

7.5 Singularities of stability boundary

Let us denote types of stability boundary points by product of multiple
eigenvalues in powers of sizes of the corresponding Jordan blocks. For ex-
ample, 04 denotes type of the point p at which the matrix JA(p) has
the nonderogatory eigenvalue A = 0 of multiplicity 4, while (±iw)(±iw)
corresponds to the point p at which there is a pair of semi-simple dou-
ble eigenvalues A = ±iui (other eigenvalues are assumed to be simple and
purely imaginary). Regular part of the stability boundary is represented
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by the points of types 02 and (±iu>)2. Types different from 02 and (±iu>)2

determine points, where the stability boundary is nonsmooth, i.e., has sin-
gularities. The codimension for a set of points of a particular type and a
local form of the stability domain can be determined by means of the versal
deformation theory described in Section 7.3.

Let us consider the singularity 04. Stability of the Hamiltonian system
in the neighborhood of the point po of type 04 depends on behavior of
the quadruple eigenvalue Ao = 0. Using normal forms (7.66), we find that
bifurcation of Ao = 0 is given by the matrix

/O - 1

0 0
JB(q) =

91

0 1 )

, - = ± 1 , (7-72)
0 a 0 0

where q(p) = (<7i(p),g2(p)) is a smooth function such that q(po) = 0; the
sign of a depends on the matrix JA0. Eigenvalues of matrix (7.72) are

A = ±\Jaqi ± A/20^- (7.73)

The eigenvalue Ao = 0 remains quadruple if and only if qi =52 — 0. In
the case of general position the Jacobian of the mapping q = (<7i(p),</2(p))
has maximal rank and, hence, a set of points of type 04 is a smooth surface
of codimension 2 in the parameter space. In the neighborhood of po the
system is stable if

aqi <0, 0 <2aq2 < q\. (7.74)

Under conditions (7.74) four eigenvalues (7.73) are purely imaginary and
simple. Stability domain (7.74) in the plane ((71,(72) is shown in Fig. 7.4
for a — 1. The stability boundary has a cusp singularity at the origin with
two sides being curves of types 02 and (±iw)2. Hence, the singularity 04

of the stability boundary represents a cusp or cuspidal edge in the two-
or three-parameter space, respectively. Geometry of the singularity in the
original parameter space p is determined by the mapping q = q(p).

Analogously, we can study singularities of other types finding corre-
sponding codimensions and local forms of the stability domain. As a result,
we find all the singularities of codimension 2 represented by the types

02(±iu,)2, (±iuj1)2(±icj2)2, 04, (±ioj)3, (7.75)
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\o2

s x.
( ± f e > ) 2 I 9\

Fig. 7.4 Singularity 04 of the stability boundary in the plane (gi,<?2)-

and singularities of codimension 3 given by the types

02(±iij1)2(±ico2)2, (±iuJl)2(±iu2)2(±ico3)2,

0i(±ico)2, (±iuj)302, (±iuj1)3{±ioj2)2, (7.76)

00, (±iu)(±iw), 06, (±ico)i.

Form of the stability domain in the neighborhood of singular boundary
points (7.75) and (7.76), up to a smooth change of parameters, is given by
the formulae

02(±zw)2, (±iwi)2(±iw2)2 : Pi > 0, p2 > 0;

04 : pi >0 , 0<P2<p? ;

(±iu>)3 : pi>0, pl<p\)

02(±iwi)2(±tW2)2,

(±iwi)2(±iw2)2(±iw3)2 : pi > 0, p2 > 0, p3 > 0;

04(±iw)2 : pi > 0, 0 < p2 < pf, Pa > 0;

(±iuj)302, (±itu1)3(±iuJ2)2 : Pl > 0, p\ < pi, p3 > 0;

00, (±icj)(±iw) : p\ +p\ < p\ and px = p2 = p3 = 0;
(7.77)

where the singularity point is po = 0. In case of the singularity 06, form
of the stability domain is given by the condition that all the roots of the
polynomial A3 + PiX2 +p2A + Pz are simple, real, and negative. Finally,
form of the stability domain in case of the singularity (±iw)4, up to a
smooth change of parameters, is given by the condition that all the roots
of the polynomial A4 + piA2 + p2A + p$ are simple and real. The stability
boundary in the latter case represents a part of the well-known singularity
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swallow tail, see [Arnold (1983a)]. In both cases, the singularity is formed
by one edge and two cuspidal edges starting at the singular point along the
same direction. Therefore, we call this singularity trihedral spire.

Theorem 7.2 In the case of general position, the stability boundary of
two-parameter Hamiltonian system (7.6) consists of smooth curves of types
02 and (±iu)2. Singularities of the stability boundary are angles 02(±icu)2,
(±iu>i)2(±iu)2)2 and cusps 04, (±iio)3; see Fig. 7.5.

(±fo>i)2(±*»£ (±/co)2 o2(±/ffi)2

(±/m)2\ S U1

(±K0)3 >\

o4

Fig. 7.5 Generic singularities of the stability boundary for two-parameter linear Hamil-
tonian system.

Theorem 7.3 In the case of general position, the stability bound-
ary of three-parameter Hamiltonian system (7.6) consists of smooth sur-
faces of types 02 and (±iw)2. Singularities of the stability boundary are
edges 02(±iu>)2, (±iu>i)2(±iu>2)2, cuspidal edges 04, (±iw)3, trihedral an-
gles 02(±iuii)2(±iw2)2> (±*wi)2(±iw2)2(i^3)2 ) truncated cuspidal edges
04(±iw)2, (±iw)302, (±IUJI)3(±ico2)2, cones 00, (±ito)(±ito), and trihedral
spires 06, (±iw)4; see Fig. 7.6.

Notice that the point of type (±iw)(±iw) does not necessarily determine
a cone singularity. There are different normal forms (7.66) corresponding
to a pair of double semi-simple eigenvalues ±iui. These forms differ by
signs of the first and second terms in the Hamiltonian function. The cone
singularity appears for different signs. If the signs are the same, the point
of type (±iw)(±iw) is an internal point of the stability domain.
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02(±/co,)2(±'co2)2

Fig. 7.6 Generic singularities of the stability boundary for three-parameter linear
Hamiltonian system.

7.6 Stability analysis near singularities associated with dou-
ble eigenvalues

In this section we study singularities of the stability boundary de-
termined by double zero or purely imaginary eigenvalues, i.e., (dihe-
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dral) angles 02(±«w)2, (±iu>i)2 (±iui2)2, trihedral angles 02(±iwi)2(±za;2)2,
(±iu)i)2(±iu>2)2(±iw3)2, and cones 00, (±icj)(±iu).

As we have shown in Section 7.4, bifurcation of a double nonderogatory
zero or purely imaginary eigenvalue into a pair of simple purely imaginary
eigenvalues yields the condition

( f ,Ap)<0 , (7.78)

where Ap = p — po = ee is a perturbation of the parameter vector, and
the real vector f is given by formula (7.35). To get stabilizing perturba-
tions Ap, we take condition (7.78) for each zero or purely imaginary pair of
double nonderogatory eigenvalues. As a result, we find first order approx-
imations of the stability domain near (dihedral) angle and trihedral angle
singularities of the stability boundary:

02(±zw)2 :(fo,Ap)<0, (f i w ,Ap)<0;

(±iu}l)2(±itu2)2 : (f;Wl, Ap) < 0, (fiW2, Ap) < 0;

02(±*wi)2(±*a;2)a : (f0, Ap) < 0, (fiwi, Ap) < 0, (fiW2, Ap) < 0;

(±iuJl)2(±iu2)2(±iuJ3)2 : (fiui, Ap) < 0, (fiW2, Ap) < 0, (f^, Ap) < 0.
(7.79)

Here, the subscript denotes the eigenvalue for which the vector f is eval-
uated. The vectors fo and fjw are normal vectors to the divergence and
flutter boundaries, respectively.

Now, let us consider the cone singularity 00 represented by the semi-
simple double eigenvalue Ao = 0. Bifurcation of zero eigenvalue under
perturbation of the parameter vector Ap = ee is described by formulae
(7.52)-(7.54). The system remains stable if Ao = 0 splits into a pair of
simple purely imaginary eigenvalues ±iw, which requires

00 : (h3, Ap)2 < (hi, Ap) (h2, Ap), (7.80)

where components of the vectors hi, h2, and h3 are determined by formu-
lae (7.53). Condition (7.80) provides the first order approximation of the
stability domain near the cone singularity 00. Introducing new variables

* = (h3,AP), y= ( ^ , A p ) , z= ( ^ , A p ) , (7.81)

we write equation (7.80) as

x2+y2<z2, (7.82)
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which shows that the stability domain corresponds to the interior part of
the cone. The cone surface can be given in the form

x — z cos a, y — zsina, (7.83)

where 0 < a < 2TT. Using relations (7.81) in (7.83), we obtain

(h3 - h l + h 2 cos a, Ap^j = 0 , (h 2 -h 1 - (h 1 +h 2 ) s ina ,Ap) = 0 . (7.84)

In the three-parameter space the vector Ap can be found in the form

Ap = /3 I I13 cos a I x (h2 — hi — (hi + h2) sin a)

\ 2 J (7.85)

= ^(a + bsina + ccosa), j3 € E, 0 < a < 2n,

where the vectors a, b, and c are given by the cross products

a = h3 x ( h 2 - h i ) ,

b = ( h ! + h 2 ) x h 3 , (7.86)

c = h2 x h ] .

Expression (7.85) provides the parameterization of the cone surface; see
Fig. 7.7.

Pl CCK~r^

PI/ C^3
Fig. 7.7 Parameterization of the cone singularity.

Finally, let us consider the cone singularity (±iw)(±iw) determined by a
purely imaginary pair of double semi-simple eigenvalues. Bifurcation of the
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eigenvalue Ao = iui is described by formulae (7.41), (7.47), (7.48). Nature
of the bifurcation depends on the sign of the product

foi&2 = - < J u i u ^ J u 2 , (7.87)

where ui and U2 are two linearly independent eigenvectors corresponding
to the double eigenvalue Ao = iu and satisfying orthogonality condition
(7.37).

If 61&2 > 0, then the eigenvalues remain purely imaginary for any small
perturbation of the parameter vector and, hence, the system remains stable
in the vicinity of the point po- Therefore, the cone singularity does not
appear if ftjfo > 0. Notice that the product &i&2 depends only on the
matrix JAo.

In case of 6162 < 0 the double eigenvalue Ao = iu splits into two purely
imaginary simple eigenvalues under perturbation of the parameter vector
Ap = ee if

(±iu>)(±icj) : (gi, Ap)2 > (g2, Ap)2 + (g3, Ap)2, (7.88)

where components of the vectors gi, g2, and g3 are defined by formulae
(7.46). Condition (7.88) provides the first order approximation of the sta-
bility domain near the point po- Analogously to (7.85), (7.86), we can give
the cone surface in the parameterized form by the expression

Ap = /3(a' + b ' s i n a + c 'cosa), /3 e R, 0 < a < 2ir, (7.89)

where the vectors a', b ' , and c' are the following

a' = g 2 x g 3 , b' = g i x g 2 , c' = g 3 x g i . (7.90)

Theorem 7.4 First order approximations of the stability domain in the
neighborhood of (dihedral) angle, trihedral angle, and cone singularities are
given by expressions (7.79), (7.80), and (7.88), where the cone singularity
(±icu)(±iu) appears only if b\bi < 0. The vectors in conditions (7.79),
(7.80), and (7.88) are linearly independent in the case of general position.

7.7 Stability analysis near singularities associated with
eigenvalues of multiplicity k > 2

In this section we study more complicated singularities: cusps (cusp-
idal edges) 04, (±iw)3, truncated cuspidal edges 04(±zw)2, (±iw)302,
(±iw1)3(±zo;2)2, and trihedral spires 06, (±ioj)i, see Figs. 7.5 and 7.6.
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Let us consider a purely imaginary eigenvalue Ao = iui of the matrix
JAo (in the case of zero eigenvalue to — 0). We assume that the eigenvalue
Ao is nonderogatory and has multiplicity k. The corresponding right Jordan
chain uo, . . . ,u&_i and the left Jordan chain vo, . . . ,Vfc_i are defined by
the equations

JA o u o = ium0, Vg'JAo = iwvgY

JA o ui = iuui + u0, vf JA 0 = iuvf + vjf,
(7.91)

JAoufc_i = •jwufc_i + ufc_2, \1_J_3AQ = «wvj_j + v^_2,

with the normalization conditions

v ^ - i = 1, vf ufc_i = • • • = vJLiUt-i = 0. (7.92)

Let us define vectors P = {f[,..., f ^ ) , j = 0 , . . . , k - 1, with the com-
ponents

. , .t_2 / r T ^ A r-rdA TT9A \

f°=~% {V°3dFsU2+VlJWsUl+V>JdisU0i' (7-93)

/ * - - ! 2 ^ v r J a - u k - l - n S = l , . . . , n ,

where derivatives are taken at p — po, and i is the imaginary unit. General
properties of these vectors are described in the following lemma.

L e m m a 7.1 The vectors f°,...,ih~x are real and do not depend on a

choice of the Jordan chains.

Proof. The general formula for the sth component of the vector P in
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(7.93) can be written in the form

fi = -t*-'trace f c f c _ i - ;V T j | ^ I j ) , (7.94)

where U = [uo,ui,..., u*_i] and V = [vk-i,..., vi, vo] aremxfc matrices,
and

/0 0 1 0 0\

o o o ••. o

Cj= 0 0 0 0 1 (7.95)

0 0 0 0 0

\0 0 0 0 0 /

is the kx k matrix with ones of the jth diagonal to the right from the main
diagonal and zeros elsewhere. Notice that the matrices Cj can be obtained
as powers of the matrix Ci = Jo(k), which is the Jordan block of size k
with zero eigenvalue:

C , = C i , j = O,...,k-l, (7.96)

where Co = I. Equations of Jordan chain (7.91) and normalization condi-
tions (7.92) can be written in a matrix form as

JA 0 U = UJiw(A;), VTJA0=Jiu{k)VT, V T U = I, (7.97)

where Jiul(k) is the Jordan block of size k with the eigenvalue Ao = iuj; see
Sections 2.2 and 2.3.

An arbitrary Jordan chain U = [uo,.. . , u*_i] is given in the form

U = UC, C = c0I + ciCi + --- + c*_iCjfe_i, (7.98)

where CQ, •. •, Ck-x are arbitrary numbers with CQ ^ 0; see Section 2.2. The
corresponding left Jordan chain V = [vk-i, • • •, vo] satisfying normalization
conditions (7.92) is

V = V ( C ~ 1 ) T . (7.99)

Using expressions (7.98) and (7.99), we write formula (7.94) for arbitrary
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Jordan chains as

fi = -ik-Hmce (cfc_i_iVrj|^u)

= -ik-Hmce (CmC^V^^Uc)
V dps J

(7.100)
- -t*-'trace fc*_1_,-CC-1VTJ^U>)

V dPs J
= -z^trace f Cfc_wVTj|^u) .

V J dps J

In (7.100) we used the permutability property of the matrices Cj and C,
which are polynomials of the matrix Ci, and the property

trace (AB) = trace (BA) (7.101)

of the trace function. Equation (7.100) proves the independence of the
vectors f ° , . . . , f*̂ 1 on the choice of Jordan chains.

Taking complex-conjugate transpose of equations (7.91) for the right
Jordan chain and multiplying the result by J from the right, we obtain

(-Juo)TJAo = iw(-Juo)T,

(Jui)TJA0 = iw(Ju1)T + (-Juo)T ,
(7.102)

((-l) f cJu,_!)TJA0 = tw((-l)*Jufc_1)T + ((-l) f c-1Ju,_2)T,

where the relations J T = J"1 = - J are used. Therefore, the vectors
Vj = (-1)J + 1 JUJ, j = 0, . . . , k — 1, form a left Jordan chain. Analogously,
the vectors Uj = (— l)k~33VJ, j = 0, . . . , k — 1, form a right Jordan chain. It
is straightforward to verify that the new Jordan chains satisfy normalization
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conditions (7.92). Using these Jordan chains in formulae (7.93), we derive

fi - -jk-j VvTT — n

h fa
= (-i)*-JX<^Jvj_r (7.103)

Equation (7.103) shows that all the components f3s are real. •

In case of zero eigenvalue Ao = 0, the Jordan chains can be chosen real.
Due to the coefficient ik~i the vectors V are zero for odd numbers k - j .
Since zero eigenvalue of a Hamiltonian matrix has even multiplicity, we
have f1 = f3 = • • • = f*"1 = 0.

In case of a double eigenvalue Ao = iu> (purely imaginary or zero), we
take the left eigenvector in the form (7.31). Then expression (7.93) for
components of the vector f° yields

/° = - (uSf^uo) / « ( A 0 +iwj)u!). (7.104)

Hence, in case of a double eigenvalue the vectors f and f° defined in (7.35)
and (7.93), respectively, coincide.

The following theorem describes stabilizing perturbations of the param-
eter vector and, thus, gives the orientation of singularities in the parameter
space.

Theo rem 7.5 First order approximations of the stability domain near
the singularities of types 04, {±ito)3, 04(±zw)2, (±iu)302, (±iu>i)3(±iuj2)2,
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06; and (±ioj)4 are given by the formulae

O4.:(fo°,Ap)=O, (fo2,Ap)<O;

(±iW)3:(C>Ap) = 0, (4 , ,Ap)<0 ;

O6 : (fo°, Ap) = 0, (f02, Ap) = 0, (f04, Ap) > 0;

(±iw)4 : (f£,,Ap) =0 , (f£,,Ap) =0, (f*,,Ap) <0; (7.105)

04(±iu)2 : (f°, Ap) = 0, (f2, Ap) < 0, (fioj, Ap) < 0;

(±ILO)302 : ( C Ap) = 0, (£,, Ap) < 0, (f0, Ap) < 0;

(±iuJl)3(±ioj2)2 : (f°Wl, Ap) = 0, ( 4 ^ Ap) < 0, (fL2,Ap) < 0;

where the subscript denotes the eigenvalue for which the corresponding vec-
tor is evaluated. The vectors appearing for each singularity in (7.105) are
linearly independent in the case of general position.

Proof. Let us transform the family of Hamiltonian matrices JA(p) to the
versal deformation; see Section 7.3. Expression for the versal deformation
(7.61) with the use of (7.58) takes the form

JA'(p) = S-1(p)JA(p)S(p), (7.106)

where S(p) is a nonsingular matrix smoothly dependent on the parameter
vector.

Let Ao = iui be a nonderogatory eigenvalue of multiplicity k for the ma-
trix JAo with the right and left Jordan chains U = [uo,..., Ufc_i] and V =
[vfc_i,...,vo]. Then the right and left Jordan chains U' = [u'o,..., u ^ J
and V = [vifc_i> • • • j vo] corresponding to the eigenvalue Ao for the matrix
JA0 are

U' = So XU, V = S£V, (7.107)

where So = S(p0).
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Using formulae (7.97), (7.106), and (7.107) in expression (7.94), we find

fi = -*fe-We (cfc_1_JV/rJ^U/)

C f e _ w V / T ^—JA 0 S 0 U'

OPs J

- * f c - n r a c e f C f c _ i _ J V / r S o 1 j | ^ S o U / > )
V OPs J

-t*-'trace (cfc_i_jV/rSo l3KQ^-V'\ (7.108)
\ VPs J

= -ifc-'tr«*(cfc_1_,,Vrjf^U>)
V J dp3 J

Cf e_wVT ( So^— + ^ - S ^ 1 J UJiw(fc)J

- -ifc^trace ( ' c f c _ 1 _ J V T j | ^u ' ) .

Here we have used relation (7.101) and the permutability property of the
matrices Ck-i-j and 3iu(k). Hence, we proved that the vectors f ° , . . . , f*̂ 1

evaluated for a purely imaginary or zero eigenvalue Ao = iu by formulae
(7.93) for the matrix families JA(p) and JA'(p) coincide.

Let us study the case of singularity 04 characterized by the eigenvalue
Ao = 0 of multiplicity k = 4. The vectors f° and f2 can be evaluated using
the versal deformation JA'(p) (recall that f1 = f3 = 0). Hamiltonian
equations corresponding to the versal deformation are decomposed into a
set of independent subsystems; see Section 7.3. Hence, we can evaluate
the vectors f° and f2 for the matrix JB(q), q = q(p), corresponding to
the subsystem associated with the eigenvalue AQ = 0 and given by formula
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(7.72). The right and left Jordan chains for the matrix JB 0 = JB(0) are

/0 a -a 0\

TT r i ° ° ° a

U = [u0 l U l >u2 )U3]^ Q Q i Q ,
\ 1 0 0 0 ,

(7.109)
/ 0 a 0 0 \

0 0 0 a
V = [v3jV2,v1)v0]= Q 1 1 .

\i o o o)

Using (7.109) in formulae (7.93), we obtain

f° = ~2aVq2, f2 = 2aS7q1, (7.110)

where

v=fA,.. A) (7.m)
V5pi dpnj

is the gradient operator at p = po-
Stability domain in the neighborhood of the singularity point p0 is given

by inequalities (7.74), see Section 7.5. Using linear approximations for the
functions

ft(p) = (Vgi,Ap) + o(||Ap||), Ap = p - p 0 , i = 1,2, (7.112)

and vectors (7.110), we find the first order approximation of the stability
domain in the form

(f°,Ap) = 0, ( f 2 ,A P )<0, (7.113)

which proves the first expression in (7.105).
For other types of singularities, expressions for first order approxima-

tions of the stability domain are found analogously. The main idea of the
stability analysis is the transformation of the matrix family JA(p) to the
versal deformation and evaluation of the gradients of the transformation
function q(p) using the vectors f ° , . . . , f*"1.

Finding higher order derivatives of the function q(p), we can obtain
higher order approximations of the stability domain near the singularity.
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For general theory of transformation to versal deformations we refer to [Mai-
lybaev (2001)]. D

7.8 Mechanical examples

7.8.1 Elastic simply supported pipe conveying fluid

Let us consider an elastic simply supported pipe conveying fluid, see
Fig. 7.8. Oscillations of the pipe are described by the partial differen-
tial equation for the deflection function w(x,t), 0 < x < I, see [Thompson
(1982)]:

.d2w n d2w ^Td4w 2d2w n . „ _ .
(m + mf)W + 2vfmf^l + EJ^ + msv)-^ = 0 (7.114)

with the boundary conditions

w{0,t) = (EJ^j _ = 0, w{l,t) = (EJ^j _ - 0. (7.115)

In these equations, m, EJ, and / are the mass per unit length, the bend-
ing stiffness, and the length of the pipe, respectively; mf and Vf are the
mass per unit length and the velocity of the fluid. The terms in equation
(7.114) describe inertial, Coriolis, stiffness, and centrifugal forces, respec-
tively. Dissipative forces are not taken into account.

\ ^ o x L^"^

Fig. 7.8 Elastic pipe conveying fluid.

For Vf = 0 equations (7.114), (7.115) describe transverse vibrations of
the pipe with immovable fluid. As the fluid velocity increases, the pipe can
lose stability in static (divergence) or dynamic way (flutter).

We find approximate solution to equation (7.114) using Galerkin's
method with two coordinate functions

w(x,t) — qi(t) sin — + q2(t)sin ——, (7.116)
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where qi(t) and q2(t) are unknown functions of time. As a result, we obtain
the linear gyroscopic system (7.15) with the matrices [Thompson (1982)]

M= , G = VaA , P =
\0 1/ \1 0 j \ 0 16-4AJ

(7.117)
where

A mfvV2 a - ( 1 Q Y mf ( 7 1 l 8 )

are the two dimensionless parameters. The parameter A > 0 describes the
fluid velocity, and the parameter a, characterizing mass ratio of the pipe
and fluid, changes in the interval 0 < a < (16/3?r)2 « 2.882. Using trans-
formation (7.16), (7.17), we obtain linear system (7.6) with the Hamiltonian
matrix

/ 0 v^A/2 1 0 \

-VaK/2 0 0 1
J A = i _

- l + A - a A / 4 0 0 \ /QA/2

\ 0 -16 + 4A-aA/4 -VaK/2 0 /
(7.119)

Let us consider the point po = (4, 3/4) in the parameter space p =
(A, a). At this point the matrix JAo possesses the nonderogatory eigen-
value Ao = 0 of multiplicity k = 4. Hence, at p0 we have the cusp singularity
04 on the stability boundary.

The right and left Jordan chains (7.91), (7.92) of the zero eigenvalue are

/ 0 -V3/3 0 -4V3/9\

1 0 1 0
U = [uo,ui,u2,u3] = ,

-V3/2 0 -5/(2>/3) 0

\ 0 1/2 0 1/3 /

/ 0 V^ 0 -3 \ /3 /2 \

5/2 0 -3/2 0
V = [v3,v2,vi,vo] =

V3 0 -y/% 0

v 0 4 0 - 3 )
(7.120)



224 Multiparameter Stability Theory with Mechanical Applications

Using matrix (7.119) and vectors (7.120) in formulae (7.93), we find

fo° = (12, 0), f02 = (17/4, -4). (7.121)

First order approximation of the stability domain (7.105) yields the ray

04 : A p = (AA.Aa), AA = 0, Aa > 0. (7.122)

This ray describes the orientation of the cusp singularity in the parameter
space, see Fig. 7.9.

3- II

f
1 •

4Po

0 1 2 3 4 A

Fig. 7.9 Cusp singularity of the stability boundary for the pipe conveying fluid.

The characteristic equation for matrix (7.119) takes the form

A4 + A2(17 - 5A + ah) + 4(1 - A)(4 - A) = 0. (7.123)

This is a biquadratic equation for A. Stability condition requires that the
roots A2 are real and negative. This implies that the coefficients and dis-
criminant of polynomial (7.123) must be positive:

17-5A + a A > 0 , 4(1 - A) (4 - A) > 0,
(7.124)

(17 - 5A + aA)2 > 16(1 - A)(4 - A).

These conditions determine the stability zones I and II in the parameter
space

I : 0 < A< 1,

17 /7 l W 4 \ ( 7-1 2 5 )

II: A>4, a>5-T+4^(x-l)(x-l),
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shown in Fig. 7.9. The boundary of the second zone has the cusp singularity
04 at the point po = (4, 3/4), where two curves of the stability boundary
are tangent to the same ray (7.122).

7.8.2 Gyroscopic stabilization of statically unbalanced
rotating system

Let us consider a mechanical system in the field of gravity consisting of a
disk of mass m and radius 21 connected by two massless rods with a vertical
shaft rotating with a constant angular velocity Cl, see Fig. 7.10. Lengths of
the rods are 21 and I, and the second rod is rigidly attached to the center
of the disk perpendicular to the disk plane. The rods are connected to the
rotor and to each other by elastic spherical hinges. Each hinge provides
three degrees of freedom between the connected bodies.

< = - s > Q

Fig. 7.10 Rotation of a disk on elastically connected rods.

The system has six degrees of freedom. As generalized coordinates we
choose the Krylov angles a*, Pi, i = 1,2, determining position of each rod
relative to the vertical axis in the reference frame rotating with the rotor,
and angles ji, i = 1,2, characterizing twist in the hinges. We study stability
of rotation of the system about the vertical axis with a.i = Pi = 7* = 0,
i = 1,2.

The Lagrange function of the system written up to second order terms
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takes the form [Mailybaev and Seyranian (1999a)]

L = y ( (d 2 -n /? 2 ) 2 + (/?2+fia2)2)

+ ^ ((2(di - n/3i) + (d2 - n/?2))2 + (20! + nai) + 02 + fta2))2)

+ | (n 2 ( l - a\ - Pl) + n(a2f32 - a2$2) + 722)

^((i-A-fy^-d-A))
-y(a 2 +/? 2 ) -^(a 2 -a 1 ) 2 + (/?2-/?i)2)

-f712-f(72-7i)2,
(7.126)

where A = ml2, B = 2m/2 are the principal moments of inertia of the disk;
Ci, C2 and C{, C2 are the bending and torsional stiffnesses of the hinges,
respectively; and g is the acceleration of gravity. Using function (7.126) in
the Lagrange equations, we find equations of motion of the system linearized
near the vertical equilibrium position CCJ = /3; = 7* = 0, % — 1,2.

Equations of motion separate into two independent systems. One sys-
tem depends only on 71,72 and has the form

C{ 7 i -C 2 (72 -7 i ) = 0,
(7.127)

#72+^(72-7!) =0.

After elementary transformations, we obtain

C2

71 ~ qTq7 2'
(7.128)

1 2 n

This system is stable for any positive elastic coefficients C[ and C2.
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The second system after introduction of dimensionless time r — fit takes
the form

Mq + Gq + P q - 0 , q = (a1;/?i, a2,/32)T, (7.129)

with the matrices

/ 4 0 2 0 \ / 0 - 8 0 - 4 \

0 4 0 2 8 0 4 0
M = , G =

2 0 2 0 0 - 4 0 - 2

^0 2 0 2 / \ 4 0 2 0 • /

/ c i + c 2 - 2 0 -c 2 0 \

1 0 ci + c2 - 2 0 - c 2
P = J - (7.130)

n2 - c 2 o C2-1 o

\ 0 - c 2 0 c 2 - l /

/ 4 0 2 0 \

0 4 0 2

2 0 0 0 '

\0 2 0 0/

where

CI = - ^ L , 02 = - % , n = n w - (7.i3i)
m^Z mgl y g

are the dimensionless parameters. System (7.129), (7.130) is gyroscopic.
Notice that the system is statically unbalanced, i.e., it is unstable in the
absence of rotation.

Using transformation (7.16), we obtain equations of motion in Hamilto-
nian form (7.6), (7.17). Let us consider the point p0 = (3/2, 2\/2-5/2, 2 -
\/2) in the parameter space p = (ci,c2,fi). At this point the Hamiltonian
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matrix takes the form

/ 0 - 4 0 - 2 - 2 0 2 0 \

4 0 2 0 0 - 2 0 2

0 0 0 0 2 0 - 4 0

1 0 0 0 0 0 2 0 - 4
J A 0 = - - , (7.132)

4 - 2 0 -K 0 0 - 4 0 0

0 - 2 0 -K 4 0 0 0

- K 0 -K 0 0 - 2 0 0

\ 0 -re 0 - K 2 0 0 0 /

where K — 1 + 2\/2- This matrix has two pairs of double nonderogatory
eigenvalues A = ±iu>i and A = ±1002 with

U1 = ^ , U , = H ^ . (7.133)

Hence, po is the point of type (±iw1)2(±«w2)2 on the edge of the stability
boundary; see Theorem 7.3 (page 210). Jordan chains corresponding to the
eigenvalues A = iuj\ and A = iu>2 are

A = iui : u0 = (1, i, -y/2, -iy/2, -*, 1, -is/2/2, v/2/2)T,

ux = (-2i, 2, 2i, - 2 , 2 - 3\/2, i(2 - 3^2), -2>/2, -i2\/2)T;

A = «w2: uo = (l , t , ^ - 2 , 1 ( ^ - 2 ) ,

- i ( V 2 - 1), ^ - 1 , -iV2/2,V2/2)T,

ui = (0, 0, i(2-2V2), 2>/2-2,

4 - v ^ , i (4-V2), v^, *\/2)T.
(7.134)

Using Jordan chains (7.134) in formula (7.35), we find the vectors

V = - ^ ^ ( 1 , 3 + 2^ ,2 ) ,

(7.135)

fiW2 = - ^ t ^ (3 + 2\/2, 9 + 4\/2, 6 - 4^2).
o

By Theorem 7.4 (page 214), approximation of the stability domain in the
neighborhood of the point po = (3/2, 2-\/2 - 5/2, 2 - \/2) is given by the
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dihedral angle

(fiwi, Ap) < 0, (fiW2, Ap) < 0, (7.136)

shown in Fig. 7.11 by bold lines. The magnitude of dihedral angle (7.136)
is equal to 0.883TT. The vector e r tangent to the edge, and the vectors ei ,
e2 tangent to the sides of the dihedral angle of the stability boundary are

e r = tiui x fiW2 = ^ ( - 5 8 - 41V2,24 + 17^2, - 4 1 - 29V5),

ei = f,Wl x e r = —(5712 + 4039v^, 1492 + 1055^2, -7204 - 5094v/2),

e2 = eT x fiU2 = ^ ( - 2 0 8 0 - 1471^2, 748 + 529\/2,3380 + 2390\/2).

(7.137)

X^tKO)4

^"*1^. 1 AQ 1,52

0 . 3 ^ T 4 1-44 L 4 8

1.36 lA

Fig. 7.11 Stability domain of rotation of the disk with singularities.

The obtained information is useful for construction of the stability
boundary. Moving along the edge (±iu\)2{±iu2)2 in direction e r , we ob-
serve that the frequencies UJI and u>2 come closer, and the size of the dihedral
angle increases. The edge ends up at the point p[, = (11/8, 3/8, 1/2), as
which the frequencies u>i and u>2 merge to u> — 1/2. The size of the dihedral
angle tends to 7r as we approach p'o.
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At the point p'o — (11/8, 3/8, 1/2) the Hamiltonian matrix JAQ =
JA(PQ) takes the form

/ 0 2 0 1 1 0 - 1 ON

- 2 0 - 1 0 0 1 0 - 1

0 0 0 0 - 1 0 2 0

1 0 0 0 0 0 - 1 0 2
JAo = - , (7.138)

° 2 2 0 3 0 0 2 0 0

0 2 0 3 - 2 0 0 0

3 0 3 0 0 1 0 0

\ 0 3 0 3 - 1 0 0 0 /
This matrix possesses a pair of quadruple nonderogatory eigenvalues A =
±iu), where w = 1/2. The right and left Jordan chains for the eigenvalue
Ao — iu) are found from equations (7.91), (7.92) in the form

u0 = (i, - 1 , -i, 1, 1, i, 1, i)T,

ui = (0, 0, 1, i, i, - 1 , 0, 0)T,

u2 = (0, 0, 0, 0, 2, 2i, 2, 2i)T,

u3 = (0, 0, 1, i, -i, 1, 0, 0)T,
(7.139)

v0 = (1, -i, 1, -i, i, 1, -i, - l ) T / 4 ,

vi = (*, 1, 0, 0, 0, 0, 1, -i)T/4,

v2 = (1, -i, 1, -i, -i, - 1 , t, l ) r / 4 ,

v3 = (-i, - 1 , 0, 0, 0, 0, 0, 0)T/2.

Using vectors (7.139) in formulae (7.93), we find the vectors

f° - (-2, - 8 , -1),

f1 = (0, - 8 , -4),
(7.140)

f2 = (-2, -10, -6),

f3 = (0, 0, 0).

By Theorem 7.3 (page 210), the stability boundary has the singularity
"trihedral spire" (±zw)4 at the point p'o = (11/8, 3/8, 1/2). First order
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approximation of the stability domain near p'o is given by Theorem 7.5
(page 218) as

(fo,Ap) = 0, (f1,Ap) = O, (f2 ,Ap)<0, (7.141)

which determines the ray

Ap = £e, e = (3, - 1 , 2), e > 0. (7.142)

All three edges (two cuspidal edges of type (±iw)3 and one edge of type
(±zwi)2(±iw2)2) start at p'o = (11/8, 3/8, 1/2) along the same direction e,
see Fig. 7.11. The stability boundary near the point p'o represents a part
of the singularity known as "swallow tail".

Checking stability condition numerically at the points of dense mesh in
the parameter space, we find the stability domain as shown in Fig. 7.11.
Numerical analysis confirms existence of singularities at the points po, Po
and their approximation given by (7.136), (7.142).

The stability domain determines the values of parameters, where gyro-
scopic stabilization takes place. We see that the stability domain enlarges
with an increase of the first stiffness coefficient c\ and decrease of the sec-
ond stiffness coefficient C2, and appears for the angular velocities (l higher
than 1/2. The stability domain appears to be very narrow, which is typi-
cal for gyroscopic stabilization domains with singularities. The presence of
singularities makes numerical analysis of the stability domain very difficult
without knowledge on geometry of singularities presented in this chapter.





Chapter 8

Mechanical Effects Associated with
Bifurcations and Singularities

In this chapter some mechanical effects associated with bifurcations of
eigenvalues and singularities of the stability boundaries are studied. First,
we analyze stability and catastrophes in one-parameter circulatory systems
(with non-conservative positional forces). It is proven that flutter and
divergence instabilities and transition of divergence to flutter are typical
catastrophes for one-parameter circulatory systems.

Then two other interesting mechanical phenomena are considered. The
first one is the phenomenon of transference of instability between eigen-
value branches. It turns out that a stable eigenvalue branch of a system
subjected to non-conservative loading suddenly becomes unstable and vice
versa with a change of problem parameters. The second phenomenon is
the destabilization of a circulatory system by infinitely small damping. It
turns out that the critical load parameter of the system with small damping
is typically smaller than the critical load of the system with no damping.
In this chapter, these two mechanical phenomena are explained from the
point of view of behavior of eigenvalue branches in the vicinity of a double
eigenvalue with a single eigenvector.

Finally, we discuss an exciting effect of disappearance of flutter insta-
bility in the problem of aeroelastic stability of an unswept wing braced by
struts of two types. This problem was first considered by [Keldysh (1938)].
In this chapter it is shown that for one type of the strut the flutter insta-
bility is replaced by the static form (divergence) and the critical speed has
a discontinuity, it jumps to a higher value. And for the second type of the
strut, the critical speed turns out to be finite and continuous, reaching the
maximum value that is almost four times greater than the critical speed of
the unbraced wing. We show that the effect of disappearance of flutter in-
stability can be explained from the point of view of convexity of the flutter

233
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domain in the two-parameter plane.
It should be noted that mechanical problems and effects are considered

almost in all chapters of the present book. However, here we present the
effects known in the literature and treat them from the point of view of
bifurcations and singularities.

8.1 Stability and catastrophes in one-parameter circulatory
systems

Stability problems for circulatory systems have been considered in several
books, see for example [Bolotin (1963); Panovko and Gubanova (1965);
Ziegler (1968); Huseyin (1978); Leipholz (1980); Thompson (1982); Merkin
(1997)], as well as in many papers. Most of these problems study the sta-
bility of circulatory systems dependent on a load parameter: magnitude of
a follower force, velocity or density of flow etc. In this sense these problems
are one-parametric.

Let us consider a linear autonomous system with non-conservative po-
sitional forces

Mq+Cq = 0, (8.1)

where M is a real symmetric positive definite mass matrix of size m x m,
C is a real non-symmetric matrix of the same size describing potential and
circulatory forces, and q is a vector of generalized coordinates of dimension
m. System (8.1) is usually termed as a circulatory system, see [Ziegler
(1968)]. Finding solution to this equation in the form q = uexpAi, we
obtain the eigenvalue problem

(A2M + C) u = 0. (8.2)

Here A is an eigenvalue, and u is a corresponding eigenvector. The eigen-
values are found from the characteristic equation

det (A2M + C) = 0. (8.3)

Since the matrices M and C are real it is easy to see that if A is a solution
to the characteristic equation, then the quantities —A, A, and —A are also
solutions to this equation. This means that system (8.1) is stable only when
all the eigenvalues A belong to the imaginary axis on the complex plane and
are simple or semi-simple.
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Using the notation

H=-\2, A = M-XC (8.4)

in (8.2), we obtain the standard eigenvalue problem

Au = (iu. (8.5)

The stability condition requires that all the eigenvalues \x are real and
positive.

We assume that the matrices M and C smoothly depend on one parame-
ter p g R . Then the matrix A(p) is smooth too. According to [Galin (1972);
Arnold (1983a)] generic (typical) one-parameter family of real matrices is
characterized by simple eigenvalues fi and, at some isolated values of the
parameter p = po, by a double real no with a Jordan chain of second order.
More complicated Jordan structures are not typical and can be destroyed
by infinitely small change in the family of matrices A(p).

It is easy to see that if yu is a simple real eigenvalue, it remains real with
a change of p. Indeed, in the other case the complex conjugate eigenvalue
Ji also appears, which means increase of the total number of the roots of
the characteristic equation. Therefore, with a change of p the eigenvalues
are able to leave the real axis only when they meet and become multiple.

Now we study bifurcation of eigenvalues for circulatory systems using
the theory presented in Chapter 2. Let at p = po the matrix AQ = A(po)
possess a double real eigenvalue no with a Jordan chain of second order.
This means that there are the right eigenvector u0 and associated vector
uj satisfying the equations

Aouo = Mouo, ( g 6 )

Aoui = ^oui + u0.

Along with (8.6), we consider the left Jordan chain with the eigenvector vo
and associated vector vi:

vjfAc) = MoVjf,
m rp rp \ )

\f Ao = fiov( + v^ .

The vectors uo, ui, vo, vi in equations (8.6) and (8.7) are related by the
conditions

v^u0 = 0, v^ux = vf u0 ^ 0, (8.8)
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and are chosen satisfying the normalization conditions

v^m = 1, vjui = 0. (8.9)

If we take an increment p = po+Ap, then the matrix A can be expressed
as

A = A0 + A i A p + . . . , (8.10)

where Ai = (dA/dp)p=Po. The matrices Ao and Ai are related to the
matrices C and M as

Ao = M^Co, Ai = M ^ C i - Mo-'MiMj'Co,

C0 = C(p0), Mo = M(po), ,O 1 1 .
(o.llj

fdC\ A/r fdM\
Ci = — , Mx = —

\dpjp=po \dpjp=po

Due to variation Ap the eigenvalues and eigenvectors of (8.5) also take
increments. In case of the Jordan chain of second order, the disturbed
eigenvalues are expressed as series in square roots of the small parameter
Ap, see Section 2.5:

H = Mo ± y/f&P + O(Ap) (8.12)

with the constant

f = v$A1u0. (8.13)

Due to the assumption that (io is real, the vectors uo, ui, vo, and v^ can
be chosen real. Hence, / is a real constant.

Bifurcation (8.12) is illustrated in Fig. 8.1. In Section 2.6 it is inter-
preted as strong interaction of two eigenvalues. The arrows in Fig. 8.1a
show the direction of motion of fi as p increases for / < 0: two real eigen-
values come together, merge and then diverge along a straight line parallel
to the imaginary axis. If / > 0, the direction of motion of fi changes to the
opposite: two complex conjugate fi approach each other, merge to a real
fio, and then diverge along the real axis in opposite directions.

Bifurcation (8.12) in the three-dimensional space (for / < 0) is shown
in Fig. 8.1b. At p « po the intersecting curves are quadratic parabolae of
the same curvature lying in the orthogonal planes Im/j, — 0 and Re/j, = /j,0.
Due to the fact that the matrix A is real, the interaction pictures in Fig. 8.1
are symmetric with respect to the axis (plane) Im û = 0.
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a) b) p \\ / ;

P° \\*L*
^ L^

°i y R^ o ^ r
Fig. 8.1 Bifurcation of a double nonderogatory eigenvalue in circulatory systems.

Let us return to problem (8.2). Because fi — —A2, positive eigenvalues fj. .
correspond to purely imaginary pairs A = ±i^/]l, and negative /x correspond
to real pairs A = i-y/f/If. Thus, a positive /io = -A2, in bifurcation (8.12)
means transition of stability of system (8.1) to dynamic instability (flutter),
or vice versa (depending on the sign of / ) , and a negative /io corresponds
to transition of aperiodic instability (divergence) to dynamic instability
(flutter), or vice versa.

Bifurcation (8.12) can be expressed through A = ±iy/ji. Substituting
p - po instead of Ap and using fio — -A2, ̂  0 , we obtain

\ = ±\0(l±y^^)+O(P-p0). (8.14)

Bifurcation (8.14) is illustrated in Fig. 8.2a,b for / < 0. Direction of the
arrows corresponds to the increase of p. If / > 0, then the arrows should
be reversed.

Besides catastrophes (8.12), (8.14), system (8.1) can lose stability stat-
ically, which means transition of positive eigenvalues \x to negative values
through simple no = 0 (divergence). Expansion for a simple eigenvalue in
the vicinity of /xo = 0 leads to the relation

/j = dAp + o(Ap), d = v o ^ l U ° , (8.15)
v0 u0

see Section 2.4. Here u0 and vo are the right and left eigenvectors corre-
sponding to /U0 = 0. In terms of A we obtain

A = ±iy/d(p - po) + O(p - po). (8.16)
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fl) T , V T 1 C ) T y

ImA, ImA, ImA,

<f R H M * 0 >\< ReX * O > , * R e A.

t i

Fig. 8.2 Catastrophes of eigenvalues A in circulatory systems: a) flutter, b) transition
of divergence to nutter, c) divergence.

For d < 0, the behavior of A with an increase of p is shown in Fig. 8:2c."If
d > 0, the direction of motion of A changes to the opposite. In the three-
dimensional space (ReA,ImA,p) the plots X(p) are described by parabolae
similar to that of shown in Fig. 8.1b.

According to (8.14) and (8.16), the derivative d\/dp tends to infinity
as p tends to the critical value. This means infinite velocity of growth
of the catastrophe, which is typical in the catastrophe theory, see [Arnold
(1992)]. Due to fast growth of the increment Re A proportional to -/P ~ Po,
we observe rapidly growing amplitude of vibrations ~ exp(iReA) as the
critical load po is passed. That is why it is often very difficult to damp the
flutter and divergence instabilities.

The main result of this section can be formulated as [Seyranian (1994c)]:

Theorem 8.1 One-parameter circulatory systems (8.1) in the case of
general position are subjected to catastrophes of three types: flutter, tran-
sition of divergence to flutter (or vice versa), and divergence, described by
relations (8.14), (8.16) and shown in Fig. 8.2a,b,c, respectively.

In many books and papers, see for instance [Bolotin (1963); Panovko
and Gubanova (1965); Ziegler (1968); Huseyin (1978); Leipholz (1987)], a
typical load-frequency pattern p(w), ui — y/Ji, reproduced in Fig. 8.3, is
plotted. We emphasize that at p > po the eigenvalues do not disappear,
they just become complex conjugate.

Example 8.1 As an example, we consider a flutter problem of an airfoil
in simplified formulation, see [Ziegler (1968)]. The airfoil is modeled by a
rigid rectangular panel with two degrees of freedom: a vertical displacement
z of the line passing through the point L and normal to the plane of the
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P

Po 7~\

I /
0 co

Fig. 8.3 A typical load-frequency curve.

figure, and a rotation angle 9 about this line, see Fig. 8.4.
It is assumed that the aerodynamic lift force p9, applied to the point

L, is proportional to the angle of attack 9 with the coefficient p. The point
O denotes the centroid of the section. The differential equations of motion
are [Ziegler (1968)]

mo'z — moao0 + c\z - p 9 — 0,
(8-17)

-moaoz + mo(io + al)9 + c29 = 0.

In these equations m0 is the mass of the panel per unit span, c\ and c2 are
the stiffness coefficients, p is the load parameter proportional to the square
of the flow velocity V, and io is the radius of gyration of the airfoil about
the normal vector to the plane of figure through the point 0. The radius
of gyration about the point L is i\ — i\ + a^.

Regarding all the parameters of the airfoil as fixed quantities, let us
analyze the stability of system (8.17) dependent on the parameter p. It is
easy to see that system (8.17) is circulatory. The characteristic equation

Fig. 8.4 Rigid airfoil vibrating in a flow.
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takes the form

&0A4 + b2X2 + b4 = 0 (8.18)

with b0 = mlil, b2 - c2m0 + C\m§i\ - pmoao, and &4 = cic2. The dis-
criminant of this equation D = b\ — 46064 is a quadratic polynomial with
respect to the parameter p. It is easy to see that it has two positive roots

_ ciag + ( y ^ - ipy/cl)2 = gal + {Jcj + i0y/^)2

and D < 0 for pi < p < p2- The coefficient 62(p) is a linear decaying
function of p with b2{p) — 0 at p — p3, where pi < P3 < p2- Hence, the
roots A2 of equation (8.18) are negative and different when 0 < p < pi,
complex conjugate when p\ < p < p2, and positive when p > p2.

InU \ I P \ I

Fig. 8.5 Behavior of eigenvalues A depending on p.

Behavior of the eigenvalues A depending on p is shown in Fig. 8.5. The
panel is stable for 0 < p < p\. The interval p\ < p < p2 is the flutter
domain, and when p becomes greater than p2 the nutter is changed to the
divergence instability.

8.2 Transfer of instability between eigenvalue branches

Instability transference is one of those interesting phenomena that occurs
very often in parametric studies of stability of non-conservative systems.
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It turns out that a stable eigenvalue branch of a system subjected to non-
conservative loading becomes unstable and vice versa with a change of prob-
lem parameters. Qualitatively, this effect is illustrated in Fig. 8.6, where
behavior of eigenvalues with a change of the first (principal) parameter u is
shown for different fixed values of the second parameter r/. We see that the
eigenvalue branch responsible for the loss of stability changes as r\ passes
the value rjo • The major point in understanding this behavior is related to
the existence of a double eigenvalue Ao = a0 +itj0 (a0 < 0 and w0 ^ 0) with
a single eigenvector. At this point, the strong interaction between complex
eigenvalues occurs, see Section 2.6.

a) ImA, b) ImA. c) ImA,

0 ReA. 0 ReA. 0 ReA.

Fig. 8.6 Transference of instability between eigenvalue branches: a) n < rio, b) v = 770,
c) 7) > vo-

Transference of instability between eigenvalue branches was discussed
in the papers by [Bun'kov (1969); Sugiyama and Noda (1981); Ryu et al.
(2002)]. In [Bishop and Fawzy (1976)] it was suggested calling this phe-
nomenon as "dynamic interference". Analytical description and explana-
tion of this effect was given in [Seyranian and Pedersen (1995)], and classi-
fication of different possibilities for the transference of instability between
eigenvalue branches was done in [Mailybaev (2000b)].

8.2.1 Pipe conveying fluid

In this section, we describe the transference effect in a specific mechanical
system of a pipe conveying fluid, see Fig. 8.7. The dynamic behavior of this
system has been studied in a number of papers, of which our main references
are [Benjamin (1961); Bishop and Fawzy (1976)]. Further references on this
and other models can be found in [Paidoussis and Li (1993); Paidoussis
(1998)].

The system has two degrees of freedom described by the angles ipi and
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Fig. 8.7 Two degrees of freedom model of a pipe conveying fluid.

<P2, and contains four non-dimensional parameters: a parameter describing
relative fluid mass

^ v ^ S ? ° - ? ? < i ' (8-20)
a relative concentrated mass

^ = ( d ^ ' ^ ° < (8-21)
a position of the concentrated mass

Z=ljf, 0 < £ < l , (8.22)

and a damping coefficient

7 = ,u \ m , 7>0- (8.23)
A/A;(m + rrif)l6

The quantities involved are: the mass per unit length m for the pipe and
m/ for the fluid, the concentrated mass M, the length of half the pipe /,
the distance to the concentrated mass IM, the stiffness coefficient in hinges
k, and the viscous damping coefficient c. The fluid speed U enters a non-
dimensional speed parameter u as

U = Ul\fl^> U - ° ' (8-24)
and non-dimensional time r is related to the absolute time t as

r = tj-. ^—r;, . (8.25)
y {m + mf)l3 v '
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The equations of small vibrations as stated in [Sugiyama and Noda
(1981)] are

1 / 8 + 6^ 3 + 6 M £ \ /</5i\ /r/u + 27 277U - 7 \ / <pi \

6 ^ 3 + 6/^ 2 + 6 ^ 2 / \Cp2) \ - 7 »?u + 7 / \ V » 2 /

<-: rxa-o-
(8.26)

The three matrices are: the symmetric positive definite mass matrix, the
matrix with gyroscopic and dissipative forces, and the matrix with potential
and circulatory forces. The characteristic equation for system (8.26) takes
the form

o4A4 + o3A3 + a2A2 +ai\ + a0 = 0, (8.27)

where the coefficients a0, . . . , 04 are

a0 = 1, ai — —u3ri + 5r)u + 27,

a2 = -^(u2 - 2)(£ + 1) + (TJU + j)2 + 3r)wy + fj, + 3 - 5u2/6,
(8.28)

a3 = nnu(£ - I)2 + 7 (2^ 2 + 2 ^ + n + 3) + 2J?U/3,

a4 = -rf + (48^2 + 12// + 7)/36.

8.2.2 Flutter instability

Let us find the critical fluid speed for the onset of flutter, represented
by a pair of complex conjugate eigenvalues crossing the imaginary axis.
Substituting X = iui into equation (8.27), we obtain two conditions for real
and imaginary parts:

CIAUJ4 - a2u)2 + a0 = 0,

— O3UT + Oi = 0.

Expressing to2 from the second equation and substituting it into the first
equation yields

H = aia2a3 - a^a\ — 00a2 = 0. (8.30)

As noted in [Benjamin (1961)], the left-hand side of (8.30) constitutes the
Hurwitz determinant, see Section 4.1. The function H = H(r],fj,,^,j,u) in

(8.29)
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condition (8.30) depends smoothly on five problem parameters.
In specific case of no concentrated mass /J, — 0 and no damping 7 = 0

we have
2 2

H = 9JL- ((13 - 24r/2)u4 + (I2O772 - 102)u2 + 169) = 0. (8.31)
ou

Solving (8.31) for u, we find the critical speed of flutter as

/51 - 6O772 - 2V/900T74 - 516772 + 101 ,0 OO,

««• = y I 3 T 2 i ^ • (8-32)
The second equation in (8.29) gives the flutter frequency

Wcr _ y _ . (8.33)

Fig. 8.8 shows the results as functions of the non-dimensional fluid mass

v2-

2 0 , ^ Z

0 5 0 0.2 0.4 0.6 0.8 2 10

Fig. 8.8 Critical non-dimensional fluid speed uCT and corresponding flutter frequency
ujcr as functions of non-dimensional fluid mass TJ2 .

8.2.3 Strong interaction of complex eigenvalues

Now, let us find a double nonderogatory eigenvalue Ao = a.Q + iuo- Since
Ao = a0 - ioJo is also a double eigenvalue, we know all four roots of the
characteristic equation

(A - ao - iwo)2(A - a0 + iw0)2

- A4 - 4a0A3 + 2(3a2 + wo2)A2 - 4ao(a20 + wo2)A + (o§ + w2)2 = 0.
(8.34)
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Considering the case (J, = 7 = 0, we multiply characteristic polynomial
(8.34) by a4 = 7/36 and compare its coefficients with (8.27), (8.28). As a
result, we find the single solution with positive u and 77 as

U0 = / ^ * L 8 6 8 ' * = / l 8 ( ( ^ - 4) * °-726' (8'35)

which gives the double eigenvalue Ao = ao + iui with

* = - ^ ^ * -UM- - - / ^ F - °957- <8-36»
Notice that a0 < 0 and, thus, the system with parameters (8.35) is stable.

Using Theorem 2.13 (page 80), we describe behavior of eigenvalues near
the point Ao by the approximate formula

A « Ao + X + %Y, (8.37)

where

X + iY = ±y/{a1 + ih)Au + (o2 + ib2)Ar] (8.38)

with the coefficients

ax = 6.88318, 61 = 0.278831, a2 = 1.33044, b2 = -6.78555. (8.39)

In formulae (8.37)-(8.39) the increments Au = u - u0 and A77 = 77-770
are assumed to be small. Expression (8.38) for changing Au and fixed A77
yields two hyperbolae given by the equation

(X - 49.3919r) (X + 0.02024y) = 168.837A7?. (8.40)

These hyperbolae describe local position of the eigenvalue branches near
Ao.

Behavior of eigenvalues with a change of u for A77 = ±0.01 is shown
in Fig. 8.9, where the bold dashed lines represent local approximations
given by hyperbolae (8.40). We see how the critical eigenvalue branch is
changing. For r\ < rjo the nutter instability corresponds to the second
branch (mode). For rj > r)0 the second branch gets stable, and the loss of
stability corresponds to the first branch. This transference of instability
between eigenvalue branches is the result of strong interaction of complex
eigenvalues at AQ.
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a) ImA,
w=0 b)

ImA.
w=0

0 ReA. 0 ReA

Fig. 8.9 Behavior of eigenvalue branches for pipe conveying fluid: a) Arj — —0.01, b)
AT? = 0.01.

8.3 Destabilization of non-conservative system by small
damping

Let us consider a non-conservative vibrational system with small dissipative
forces

Mq -I- 7 Dq + C(p)q = 0. (8.41)

Here, M and D are symmetric positive definite matrices representing
masses and dissipative forces, respectively; the non-symmetric matrix C(p)
depends smoothly on a real load parameter p and describes non-conservative
positional forces; q is a vector of generalized coordinates; and 7 is a
small positive damping parameter. Finding solution of (8.41) in the form
q = u exp Xt, we obtain the eigenvalue problem

(A2M + A7D + C(p)) u = 0, (8.42)

where A is an eigenvalue, and u is an eigenvector. The system depends
on two parameters p and 7. The stability problem for system (8.41) was
formulated and solved numerically for specific examples in [Bolotin and
Zhinzher (1969)].

The undamped system (7 = 0) is circulatory. As we have shown in Sec-
tion 8.1, this system loses stability through strong interaction of eigenvalues
on the imaginary axis. Let us consider the case of flutter, when with an
increase of p from zero two pairs of purely imaginary eigenvalues approach
and merge at p = p0. At this point, double eigenvalues A = ±iu>0 with
single eigenvectors appear. We are interested in the effect of dissipative



Mechanical Effects Associated with Bifurcations and Singularities 247

forces on behavior of eigenvalues and stability near this critical point.
Let u0 and ui be the Jordan chain corresponding to the double Ao = itoo:

Louo = 0, Loui = -Liuo, (8.43)

where the real matrix Lo and purely imaginary matrix Li are

Lo = -colM + C(po), L2 = 2iu0M, L2 = M. (8.44)

The left eigenvector v0 is defined by the equation and normalization con-
dition

v^L0 = 0, v<f Liii! + vjf L2u0 = 1. (8.45)

It. is easy to see that the vectors u0 and ui can be chosen real and purely
imaginary, respectively. Then the vector VQ is real.

Using results of Section 2.13, we find the following asymptotic expression
for bifurcation of the double Ao as

A « iujQ ± y/aAp + ibj, Ap = p-p0, (8.46)

where o and b are real numbers

a = - v ^ —-u0, 6 = - w o v ^ D u o . (8.47)

First, consider the case in which 7 = 0 (no damping) and assume that
a > 0. Then, with an increase of p two eigenvalues A come together along
the imaginary axis, merge at p = p0 to the double Ao = IUJQ, and then split
along the line perpendicular to the imaginary axis as shown in Fig. 8.10.
This means the onset of flutter with po being the critical value.

ImA.

•< •

0 Re\

Fig. 8.10 Behavior of eigenvalues in case of no damping.
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imX

45V

/
y xo=i®0

0 ReX

Fig. 8.11 Splitting of double eigenvalue with introduction of damping.

If p = po and 7 increases from zero, then the double eigenvalue Ao splits
along the 45 degrees line passing through the point Ao- The case in which b
is a positive number is shown in Fig. 8.11. In case of negative b, the double
root Ao splits along the line perpendicular to that of shown in Fig. 8.11.

Approximate expression (8.46) can be written in the form

A PS iojo + X + iY, (8.48)

where the real quantities X and Y satisfy the equations

X2 - Y2 = aAp, 2XY = bj. (8.49)

If one of the parameters p or 7 is fixed and the other one is changing, then
equations (8.49) define hyperbolae in the plane (X,Y).

For small fixed damping parameter 7 > 0 and increasing p we have the
picture of interaction shown in Fig. 8.12. The picture of interaction when p
is fixed and 7 is increasing from zero is shown in Fig. 8.13, where the cases
b < 0 and b > 0 are shown with solid and dashed lines, respectively.

Im^ ImX.

b<0 J b>Q \

0 ReA, 0 ReA.

Fig. 8.12 Behavior of eigenvalues with small fixed damping.
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ImA,

Ap<0

ImA,

Ap>0

0 ReA. 0 ReA.

Fig. 8.13 Behavior of eigenvalues with small fixed load change.

The described behavior of eigenvalues shows that the system is desta-
bilized if dissipative forces are introduced. As we see from Fig. 8.12, desta-
bilization has the catastrophic character: the critical force of the system
without damping p0 decreases abruptly when arbitrarily small damping
is introduced. This effect known as the destabilization paradox was in-
tensively discussed in the literature, see [Ziegler (1952); Bolotin (1963);
Herrmann and Jong (1965); Herrmann (1967); Bolotin and Zhinzher (1969);
Huseyin (1978); Seyranian (1990b); Seyranian and Pedersen (1995); Seyra-
nian (1996)].

8.3.1 Double pendulum with follower force

Let us illustrate the obtained theoretical results on a two degrees of freedom
pendulum loaded by a follower force, see Fig. 8.14. Recall that this system
was studied in Example 3.3 (page 112) from the point of view of singularities
of the stability boundary.

Fig. 8.14 Double pendulum with a follower force.
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The equations of motion for the system are given by [Herrmann and
Jong (1965)]

/3 l \ /<£i\ /71+72 -I2\fvi\

\1 1/ \<P2/ \ -72 72 / \ ^ 2 /
(8.50)

+f-vr) (:)•(:)
with the non-dimensional time r = t^k/{ml2) and non-dimensional pa-
rameters: the damping coefficients at the support and midpoint

7i = 7=>0, 72 = 7=^0 , (8.51)

and the follower force

P=y- (8-52)

The dimensional quantities are: the concentrated masses 2m and m, the
length of half the pendulum I, the stiffness coefficient at the hinges k, the
viscous damping coefficients at the hinges c\ and c2, and the magnitude of
the follower force P.

The characteristic equation for system (8.50) is

2A4 + (71 + 672)A3 + (7 - 2p + 7i72)A2 + (71 + 72)A + 1 = 0. (8.53)

If 7i = 72 = 0 (no damping), the critical load of the system is equal to

Po = l~V2, (8.54)

which is found by equating the discriminant of biquadratic polynomial
(8.53) with zero. If damping 71 > 0 and 72 > 0 is introduced, we obtain
the stability condition using the Routh-Hurwitz criterion (see Section 4.1)
as

(7i + 672)(7 - 2p + 717a)(71 + 72) - 2(71 + 7 2 ) 2 - (71 + 672)2 > 0. (8.55)

Inequality (8.55) yields the critical value of the follower force pcr for the
damped system [Herrmann and Jong (1965)]

47l2 + 337i7 2 + 47f 1
P" = 2(7l2 + 7 7 l 7 2 + 6 7 2 2 ) + 2 ™ ( 8 - 5 6 )
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Expression (8.56) determines the surface (stability boundary) in the
parameter space, see Fig. 8.15. It should be noted that pcr as a function of
two parameters is discontinuous at the point 71 = 72 = 0 , since there is no
limit of pcr as 71, 72 tend to zero.

02 0^5 01 0.05 0

Fig. 8.15 Stability boundary in the parameter space.

Let us fix the ratio of the damping coefficients d = 71/72, d > 0. In this
case there exists a limit of the critical force as damping tends to zero:

Pd = lirn pcr, 71 = dj, 72 = 7. (8.57)

This limit satisfies the inequality

Pd<Po, (8.58)

where po is the critical force of the system with no damping (8.54). For
example, considering the specific case of [Ziegler (1952)] 71 = 72 = 7, we
find from (8.56)

41 T2

P<r = ^ + \ . (8.59)

So, we have

41
Pd. = ™ « 1-46 < p o w 2.08. (8.60)

This constitutes what is termed as destabilization due to infinitely small
damping, see [Herrmann (1967)].
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8.3.2 Stabilization effect in case of two damping parame-
ters

Let us consider the damping parameters

7i = d-y, 72 = 7, (8.61)

where d > 0 is a fixed ratio, and 7 > 0 is a single damping parameter. At
p = po and 7 = 0 system (8.50) possesses a double nonderogatory eigenvalue
Ao = i2~1/4. Using formulae (8.46) and (8.47), we describe bifurcation of
the double eigenvalue as

A « i2 - J / 4 ± VaAp + 167, (8.62)

where

a=\, 6=|^(d-5x/2-4). (8.63)

The system is destabilized by small damping if b ̂  0, i.e.,

dy£do= 5^2 + 4. (8.64)

Now, let us consider the case d = do- In this case the limit of the critical
force with infinitely small damping pd equals the critical force of the system
with no damping po • Introduction of small damping with the ratio d0 leads
to stabilization, and the critical load of damped system pcr increases as

Pcr = l-V2+5-^Aj\ (8.65)

Solving the inequality pcr > p0 for expression (8.56), we find the region
of stabilization due to damping in the plane (71, 72). This region is shown
in Fig. 8.16 (hatched). Boundaries of the stabilization region are described
by the asymptotic curves

7i = doTS ± 722 \/50(133 + 94V2) + o(722). (8.66)

Comparing characteristic polynomial (8.53), divided by two, with poly-
nomial (8.34), we find

7 l=d0 7 , 72 = 7, p = p, = I - V 2 - 5 9 + 3 0 V V (8.67)
Z o
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Fig. 8.16 Region of stabilization.

Parameters (8.67) determine the system possessing a double eigenvalue
A* = a» + ito*, where

a, = _ ^ ± i 2 7 < 0 , „, = ^ - g ( S + */?),». (8.68)

This means that the double eigenvalue Ao = i2~lli is shifted to the left
half-plane when small damping with the specific ratio do = 5\/2 + 4 is
added.

At p = p* the strong interaction of eigenvalues takes place: with an
increase of p the eigenvalues approach in the stable half-plane Re A < 0,
merge to A» at p = p*, and then split perpendicular to the line of approach,
see Fig. 8.17. According to (8.54), (8.56), and (8.67) we have the relation

P» < Po < Per (8.69)

for 7 > 0.
One of important consequences of the present example is that destabi-

lization or stabilization of a non-conservative system due to small damping
depends on the way how the damping is introduced. In multi-parameter
case it may be possible to choose the damping parameters so that the system
is stabilized. The other interesting feature when two independent damping
parameters are considered is that the limit of pcr as 71 -> 0, 72 -> 0 does not
exist, while it exists for any fixed ratio between the damping coefficients.
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ImA,

< 1 •
P* Per

1 i

0 Re A.

Fig. 8.17 Illustration of stabilization due to damping for the specific damping ratio.

8.4 Disappearance of flutter instability in the Keldysh
problem

Keldysh was the first who considered the problem of aeroelastic stability
of an unswept high-aspect-ratio wing braced by the struts, see [Keldysh
(1938)]. The strut is supposed to be a rigid rod connecting the point P
of the wing with the fuselage, see Fig. 8.18, where I is the halfspan of the
wing, and h is the coordinate of the point P. The presence of the strut
implies that P is a fixed point, which imposes extra boundary conditions
on the functions describing vibration modes.

V

Fig. 8.18 Wing braced by a strut.

For particular case of a rectangular wing with a single strut attached to
the stiffness axis of the wing (the A-type strut), Keldysh made calculations
and came to the conclusion that "at about h = 0.47Z, the critical speed
becomes imaginary; consequently, vibrations of the wing with the strut
turn out to be impossible at h > 0.47/" [Keldysh (1938)]. Evidently, this
means that the wing becomes stable. Keldysh made a similar conclusion
for the B-type strut (two struts bracing the cross-section h of the wing and
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holding it fixed during vibrations): "at h/l > 0.8, the critical speed for the
wing with the B-type strut does not exist" [Keldysh (1938)].

These conclusions, which Keldysh made on the basis of the Bubnov-
Galerkin method with one-term approximation for bending and torsional
modes, appear to be incorrect. In this section, following the papers by [Mai-
lybaev and Seyranian (1996); Mailybaev and Seyranian (1998a)], the prob-
lem of aeroelastic stability of the wing is reduced to the study of behavior of
eigenvalues A for linearized equations of motion of the wing on the complex
plane as functions of the flow speed V and the coordinate h of the point,
the strut is attached to. In this way, the critical speeds for the vibrational
(flutter) and static (divergence) types of loss of stability are determined,
and the domains of stability, flutter, and divergence are plotted on the plane
(h, V). It is shown that in case of the A-type strut, the flutter instability
is replaced by the divergence, and at h — 0.47/ the critical speed has a
discontinuity: its value jumps from Vf = 55.7m/s to Va — 61.3m/s. In case
of the B-type strut, the critical speed turns out to be finite and continuous
and, at h = 0.76Z, reaches the maximum Vcr = 119m/s that is almost four
times greater than the critical speed of the unbraced wing Vcr — 30.3m/s.

Extension of this problem to the case of the strut attached to an arbi-
trary point of the wing and the optimization problem for the strut position
was investigated in [Mailybaev and Seyranian (1997)]. The performed cal-
culations show that the use of struts can effectively improve the aeroelastic
stability characteristics.

8.4.1 Aeroelastic stability problem

Let us consider vibrations of a thin high-aspect-ratio wing braced by an
A-type strut in airflow, see Fig. 8.18. The wing is modeled by an elastic
beam subjected to torsion and bending with a straight elastic axis Oy
(stiffness axis) perpendicular to the fuselage. Deformation of the wing
is described by the deflection function w(y,t) and the angle of rotation
O(y,t) about the elastic axis, where t is the time. The linearized equations
of motion of the wing in the flow have the form, see [Grossman (1937);
Fung (1955)]:

d2 f^Td2w\ d2w 829 T

ay1 \ ay1 I at1 otz

(8.70)
d (nido\ d2w d2e
oy \ oy J at1 at1
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In these equations El and G J are the bending and torsional stiffnesses of
the wing, m and Im are the specific (per unit length of the span) mass and
moment of inertia with respect to the elastic axis, and a is the distance
between the center of stiffness and the center of gravity of the cross-section
of the wing. The aerodynamic force La and moment Ma per unit span
are determined on the basis of the quasisteady hypothesis, see [Grossman
(1937); Fung (1955)]. The expressions for La and Ma have the form

x.-cr,v»(. + i(f-:?)£-l£).
(8.71)

"• = ovv(.+i(i-?-^)!-i£).
where b is the chord of the wing, XQ is the distance between the front edge
and elastic axis, V is the flow speed, p is the air density, and C™ and C£j
are the aerodynamic coefficients.

Assuming that the wing is a cantilever clamped at the fuselage, we write
the boundary conditions for the functions w and 9 at the clamped (y — 0)
and free (y — I) ends of the wing:

<y = 0 : w = ^ = d = 0,
dy

(8.72)

y = l: EI-—T = ir £ / T ? = G J V = °-dy2 dy \ dy2 J dy

We assume that the wing is braced by the strut at the point P lying on the
elastic axis. The continuity conditions for the deflection function, angle of
torsion, slope of the deflection function, and torsional and bending moments
in the /i-section yield [Keldysh (1938)]

, n a n (dw\ f 8w\
y = h: w-=w+=0, 6-=9+, — = — ,

\dyj_ \dy ) +

« ) . - « ) • • (»so.-(«so+-(8J3>
Here + and - denote the right and left limits as y tends to h, respectively.

The system of equations (8.70)-(8.73) represents a linear homogeneous
boundary value problem. We seek a solution of this system in the form

w(y, t) = f{y) exp At, % , t) = v{y) exp At, (8.74)

(8.73)
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where A is an eigenvalue, and f(y) and <p(y) are eigenfunctions. Substi-
tuting (8.74) into (8.70)-(8.73), we obtain a system of ordinary differential
equations for the functions f(y) and ip(y) as

("V'Uo, (,75,
\^21 L22 J \<P J

where Ltj are the linear differential operators dependent on A given by

L"=£*{Ei£i)+mx2+xvc>b>
L12 = -maX2 - CyVb - CfpXVb2 Q - y ) ,

L21 = -maX2 + C%p\Vb\ ( 8 . 7 6)

L" = -Ty(GJiy)+I~X2~C>V2h2

Boundary conditions for the functions / and ip are the same as (8.72) and
(8.73) for the functions w and 8, respectively.

Due to the fact that the problem is non-conservative (non-selfadjoint)
the eigenvalues are, in general, complex quantities X — a + ico. Depending
on the flow speed V, the amplitudes of solutions (8.74), as functions of
time, can decrease (Re A < 0, stability), be constant (Re A = 0, stability
boundary), or increase (Re A > 0, instability). The flutter critical speed V)
is defined by the relations Re A = 0 and ImA = w ^ 0 , where w is the flutter
frequency, and the divergence critical speed Va is defined by the equality
A = 0. The critical speed of the loss of stability of the system Vcr is equal
to the lowest of the speeds Vf and V^.

The divergence critical speed can be found directly from equations
(8.75), (8.76) with the boundary conditions (8.72) and (8.73) by setting
A = 0. As a result, we arrive at the following problem:

K G J D + W 2 6 V = O ' <877>
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* ( 0 ) = 0 ' (G J!)v-,=0 '
(8.78)

, = »= ™ «) . = «)t.
This is a self-adjoint eigenvalue problem with Vd2 as an eigenvalue. Hence,
the squared critical divergence speed is the minimum eigenvalue of problem
(8.77), (8.78). Using variational formulation, we find

where the trial function tp is continuously differentiable and satisfies the
first boundary condition in (8.78). The remaining boundary conditions are
natural for functional (8.79). Prom (8.79) it follows that V£ is independent
on the location of the strut h. This is a natural consequence since the
bracing point on the wing lies on the elastic axis and, hence, does not affect
the wing torsion.

To solve eigenvalue problem (8.75), (8.76) we use the Bubnov-Galerkin
method. With this aim, we choose two systems of linearly independent coor-
dinate functions f \ , . . . , fm and <pi,..., ipm that are smooth on the intervals
(0,h) and (h,l), and satisfy boundary conditions (8.72) and (8.73) of the
problem. According to the Bubnov-Galerkin method, the eigenfunctions /
and <p of system (8.75) may be represented in the form of linear combina-
tions of the coordinate functions with unknown coefficients a,j and bj:

m m

3 = 1 3 = 1

Substituting these expansions into equations (8.75), multiplying the left-
hand sides of these equations by /& and ipk, k = l,...,m, respectively,
and integrating with respect to y from 0 to I, we obtain 2m linear homoge-
neous equations for the coefficients Oj and bj, which constitute an algebraic
eigenvalue problem of the form

(A2M + AVB + Ci + V2C2)u = 0, (8.81)

where u = ( a i , . . . , am, &i, . . . , bm)T is a vector consisting of the unknown
coefficients, and M, B, Ci , C2 are square matrices of size Ira x 2m. A

(8.79)

(8.80)
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nontrivial solution to problem (8.81) exists only if

det(A2M + XVB + Cx + V2C2) = 0. (8.82)

This is the characteristic equation determining the eigenvalues A as func-
tions of the flow speed V.

8.4.2 Behavior of eigenvalue branches on the complex plane

Let us study stability of a rectangular wing braced with the A-type strut
depending on the parameters V and h. For this purpose, we use the method
described above with the input data given in [Keldysh (1938)]. From five to
seven functions were used in expansions (8.80) that were chosen among the
eigenfunctions of pure bending and torsional vibrations of the wing with a
bracing strut in the vacuum (for a = 0 and V — 0).

Fig. 8.19 shows the eigenvalue branches on the complex plane for dif-
ferent fixed values of h, when the speed V varies in the range from 0 to
155m/s. The arrows in Fig. 8.19 indicate the direction in which the speed
increases. As the matrices in equation (8.81) are real, the eigenvalues lie
symmetrically relative to the real axis on the complex plane. The modes
are numbered according to the eigenfrequencies of the conservative system
at V — 0. The branches corresponding to higher modes are located on the
left half of the complex plane for all h, i.e., they are stable. The numbers
to the right of the imaginary axis are the values of the critical speed for the
corresponding mode.

For small h, the loss of stability occurs for the first, second, and fourth
modes, Fig. 8.19a. The first mode is divergent: two complex conjugate
eigenvalues approach each other, collide, and then diverge in opposite direc-
tions along the real axis (strong interaction). At the speed Vd = 61.3m/s,
one of them crosses the imaginary axis through A = 0. The second and
fourth modes correspond to flutter: the appropriate eigenvalues cross the
imaginary axis at the points with ImA ^ 0 at Vf equal to 28 and 128m/s,
respectively. Thus, the second mode is a critical one. Fig. 8.19a shows that
the second mode branch crosses the imaginary axis twice. This means that,
starting with a certain value of the speed, this mode becomes stable again.

With an increase of h, the following changes are observed, see Fig. 8.19b:
the fourth mode becomes stable and the third unstable (Vf — 147m/s).
The second mode branch shifts to the left. The critical speed is still the
flutter speed of the second mode Vf = 25m/s. With further increase of
h, the second mode branch continues moving into the left half-plane, so
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a) lmX b) lmX

-/ r 128 ^ h = 0Al

h = 0M y*-~

f (^_ 147

, r \ - — 6i , f , 6i
vZZ_E~~5 R e^ V ' 0 ReA,

. ImA, j . ImA.
c) d)

/^~^ /S* A = 0.8/

A = 0.471/ / - - C?2

V 135 /

—+ C~% —Csi
\ ^ ReA. \ ^ ReA,

Fig. 8.19 Behavior of eigenvalue branches A(V) for different values of h.

that at h = 0.471Z (Fig. 8.19c) it only touches (but does not intersect)
the imaginary axis, and then it becomes straighter (Fig. 8.19d). On the
contrary, the branch corresponding to the third mode shifts to the right
with the value of Vj decreasing from 135m/s at h — 0.471/ to 72m/s at
h = 0.81. Starting with the value h — 0.471/, that corresponds to the
transition of the second mode branch into the region Re A < 0 (stability),
the divergence speed of the first mode Vj = 61.3m/s becomes the critical
one.

The results of calculations for the stability, flutter, and divergence do-
mains on the plane of the parameters V and h/l are presented in Fig. 8.20.
Here, the divergence instability corresponds to a system with only real
eigenvalues in the right half-plane ReA > 0, while flutter means existence
of at least one pair of complex conjugate eigenvalues A = a ± iui, a > 0.
The flutter and divergence domains are hatched with horizontal and vertical
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Fig. 8.20 Stability, flutter, and divergence domains for the bracing strut of type A.

lines, respectively. The numbers indicate the modes that become unstable
on transition through the corresponding boundary.

The flutter domain is convex at h < 0.471/ and has a vertical tangent
h — 0.471Z. At the intersection, the nutter and divergence domains form
a sharp angle 0 in the stability domain. This implies discontinuity of the
critical speed at h — 0.471/ and the existence of a small stability domain
at super-critical flow speeds V > Vcr within the small range 0.470? < h <
0.471/, see Fig. 8.20. The discontinuity takes place at the transition of the
second (critical) mode branch into the stable half-plane Re A < 0. The
discontinuity point corresponds to the critical mode branch touching the
imaginary axis at the critical flutter speed Vf = 55.7m/s for h — 0.471/,
Fig. 8.19c.

Comparing our results with those of [Keldysh (1938), Fig. 4], we con-
clude that they are in a good agreement for h < 0.471/. Whereas at
h — 0.471/ the critical speed has a discontinuity, and for h > 0.471/ be-
comes equal to the critical divergence speed rather than disappearing, as it
was stated in [Keldysh (1938)].

Keldysh did not study the divergence instability. If the strut is attached
to the elastic axis of the wing, the divergence critical speed does not depend
on h and, in case of a rectangular wing, can be found analytically

V« = Wl\[§fp=61-3m/S- (8-83)
We note that the nutter domain also exists at h > 0.471/ for super-critical
speeds, see Fig. 8.20.



262 Multiparameter Stability Theory with Mechanical Applications

8.4.3 Wing with B-type strut

Now, let us investigate stability of the wing braced with the B-type strut
that fixes the cross-section of the wing at y = h. In this case, the boundary
conditions take the form [Keldysh (1938)]

y = h: w- = w+ = 0, 9- = 6+ - 0,

(5).-(£)+- ("Sf).-(»S)+- (8'84)
The results of stability analysis for the specific rectangular wing are

presented in Fig. 8.21. It turns out that for any position of the strut
0 < h < I the wing loses stability by nutter: for 0 < h < 0.652 and
0.741 < h < I the second mode is critical, and for 0.65/ < h < 0.74/ the
stability is lost owing to the third mode. The transference of instability
between branches, as described in Section 8.2, takes place at h = 0.65/
and h — 0.74/. With an increase of h from zero, the flutter critical speed
increases reaching the maximum at h — 0.76/, and then monotonically
decreases. The maximum of the critical speed is equal to Vj = 119m/s,
which is about four times greater than the critical speed of the unbraced
wing.

J; pirns'' / '".J

0 0.5 Ml 1

Pig. 8.21 Stability and flutter domains for the bracing strut of type B.

Comparison with [Keldysh (1938), Fig. 8] shows that the results are
in satisfactory agreement for 0 < h < 0.7/, but for h > 0.71 the results
disagree. So, the conclusion that "the wing becomes nonvibratory at h >
0.81" [Keldysh (1938)] is not confirmed. The results obtained evidence that
the use of the struts, especially of the type B, can effectively improve the
aeroelastic stability characteristics of the wing.
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8.4.4 Generalization

In this subsection, we give a general description and explanation of the
effect of flutter disappearance with a jump of the critical speed presented
above. For this purpose, we consider an eigenvalue problem for a real non-
symmetric matrix A smoothly dependent on two real parameters h and V:

Au = Au. (8.85)

Let us consider behavior of an eigenvalue branch A( V) on the complex plane
with a change of the parameter h, as shown in Fig. 8.22. Arrows indicate
motion of the eigenvalue A with an increase of V. We assume that at the
point h ~ ho, V = Vo in the parameter space we have a simple purely
imaginary eigenvalue \Q = iui, and the following conditions are satisfied

„ , <9ReA n <92ReA n dReX n

ReA0 = 0, - ^ = 0, ~WT-<0, -gjr<0. (8.86)

ImA ImA ImA

h<hQ \ h = h0 \ h>ho\

0 ReA 0 ReA 0 ReA

Fig. 8.22 Behavior of the eigenvalue branch A(V) near the critical point.

The first three conditions mean that at h = ho the eigenvalue branch
touches the imaginary axis from the left side, and the last condition implies
that the flutter instability disappears at h > ho, see Fig. 8.22. Since Ao is a
simple eigenvalue, it is a smooth function of h and V. Hence, we can write
the Taylor expansion

X = Xo + MAh+wAV

( 8 . 8 7 )
1 9 2 A , A n 2 <92A A L A T 7 1 0 2 A / A T , . 2

+ 2dh^k) +dhdVAhAV+2Wl{AV) +->

where Ah — h — ho and AV = V — VQ. If we take the real part of both
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sides of (8.87), then at the stability boundary Re A = 0 we obtain

„ ( d \ x , 1 < 9 2 A / A L , 2 <92A A L A T r l < 9 2 A / A T r , 2 \

R e U M + 2 ^ ( A / l ) +dh8VAhAV+2Wl{AV) 2 + - - J = 0 '
(8.88)

where conditions (8.86) have been used.
Formula (8.88) is an approximate equation for the stability boundary

in the vicinity of the point h = h0, V — VQ. Assuming that A/i - a ( A y ) *
with a and k being unknown constants, we immediately find from (8.88)
up to the terms of second order

A/i = a(AV)2, (8.89)

132ReA/SReA
a-~2-dV^/~dh-- ( 8 ' 9 0 )

Relation (8.89) determines the parabola on the plane (h,V). Due to
assumptions (8.86) the coefficient a is negative. It is easy to see from
(8.87) and (8.88) that in the vicinity of the point (ho,Vo) the correspond-
ing flutter domain Re A > 0 is given approximately by the inequality
h < ho + a(V - Vo)2. This means convexity of the nutter domain with
a vertical tangent at the boundary point (ho, Vo), see Fig. 8.23a. This also
shows that at this point a jump in the critical flutter speed can happen due
to the presence of other eigenvalue branches.

Notice that if we assume that at the point (ho,Vo) the derivative
<9Re X/dh > 0, then a > 0 and the flutter domain is given by the inequality
h > ho + a(V - Vo)2, Fig. 8.23b.

i i
i i

o I • o I •
hQ h hQ h

Fig. 8.23 Convexity of flutter domain with vertical tangent leading to discontinuity of
the critical speed.
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The only concern now is how to calculate the constant a. According
to (8.90) we need the first and second derivatives of the eigenvalue A with
respect to the parameters taken at the point (ho,Vo). These derivatives
were derived in Section 2.4. To calculate them we have to find the left and
right eigenvectors uo and vo corresponding to Ao, as well as the first and
second derivatives of the matrix A with respect to the parameters.

Note that the effect of discontinuity of the critical flutter load was
revealed in different non-conservative stability problems, see for exam-
ple [Claudon (1975); Hanaoka and Washizu (1980); Kounadis and Kat-
sikadelis (1980); Kirillov and Seyranian (2002b)].





Chapter 9

Stability of Periodic Systems
Dependent on Parameters

A large number of important stability problems are modeled by multi-
parameter linear differential equations with periodic coefficients. As direct
applications we may mention mechanical systems with periodically vary-
ing stiffness, mass, and load (parametric excitation). Other problems are
from frequency modulation, warble tone room testing in acoustics, plasma
physics etc. Finally, we mention the applications, which originated the
study of periodic differential equations, including mean motion of the lunar
perigee and wave propagation in stratified media.

The stability analysis for solutions to differential equations with peri-
odic coefficients has been a challenge for more than hundred years. From
a historical point of view, the important early studies are [Mathieu (1868);
Floquet (1883); Hill (1886); Rayleigh (1887); Liapunov (1892); Poincare
(1899)]. For further development we refer to the books [Malkin (1966);
Schmidt (1975); Yakubovich and Starzhinskii (1975); Yakubovich and
Starzhinskii (1987); Nayfeh and Balachandran (1995)].

Different methods for analysis of stability are available: the classi-
cal Floquet method [Floquet (1883); Cesari (1971)], the method of infi-
nite determinants [Bolotin (1964)], the perturbation method [Hsu (1963);
Nayfeh and Mook (1979)], and the Galerkin method [Pedersen (1985)].
Few of these methods can from a practical point of view be extended
to multiple degrees of freedom systems. For such extension we refer
to [Lindh and Likins (1970); Fu and Nemat-Nasser (1972); Hansen (1985);
Wu et al. (1995); Turhan (1998)]. It is concluded that the Floquet method
is a general and practical method for systems with multiple degrees of free-
dom. Even with increasing computer power the large number of numerical
integrations required in this method put limits to our possibilities. Re-
search with the goal of carrying out these integrations in the most effective

267
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way has been performed in [Sinha and Wu (1991)].
The other challenge for stability problems of periodic systems is con-

nected with multiple parameters. It should be noted that influence of pa-
rameters on the stability of periodic systems was studied from the very
beginning. For example, the famous Mathieu-Hill equation contains two
parameters: the frequency and amplitude of excitation. Probably, [Lia-
punov (1892)] was the first who introduced multiple parameters to a gen-
eral system of linear differential equations with periodic coefficients. Meth-
ods for sensitivity analysis of stability characteristics of periodic systems
with respect to parameters were developed in [Seyranian et al. (1999);
Seyranian et al. (2000); Mailybaev and Seyranian (2000a)], and these re-
sults are used in this chapter.

We start, this chapter with the introduction to the stability theory for
periodic systems based on the Floquet method, where the decision on stabil-
ity or instability is given upon the calculation of the Floquet matrix and its
eigenvalues (multipliers). Considering multi-parameter periodic systems,
we derive derivatives of the Floquet matrix with respect to parameters.
Then formulae for derivatives of simple multipliers are given, and bifurca-
tion of multiple multipliers is studied. This information allows studying
stability of periodic systems depending on parameters in effective and con-
structive way.

To make clear the large amount of information included in the sensi-
tivity analysis, we provide a number of analytical and numerical examples.
Stability diagrams are studied analytically for the Mathieu and Meissner
equations. As numerical applications, we consider the problem of optimal
design of a beam loaded by a periodic axial force with constraints on stabil-
ity requirements, stabilization of a system described by the Carson-Cambi
equation, and numerical analysis of motion of multipliers on the complex
plane in the cases of parametric and combination resonances.

9.1 Stability of periodic solution

Let us consider a periodic system described by a nonlinear system of ordi-
nary differential equations

y = g(y,t), (9.1)
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where y is a real vector of dimension m, and g(y, t) is a periodic function
of time t with a period T > 0, that is,

g(y,*) = g(y,* + T) (9.2)

for any y and t. We assume that g(y,i) is a smooth function of y and
continuous function of t, ensuring existence and uniqueness of a solution
with the initial condition y0 = y(*o) on the semi-infinite interval of time
t > to- A solution y(i) of system (9.1) is called periodic if

y(t)=y(t + T) (9.3)

for any value of time t. It is sufficient to check condition (9.3) at a particular
time value t — to. By uniqueness of the solution y(t) and periodicity of the
function g(y, £), if y(*o) = y(*o + T) then equality (9.3) is valid for any t.
A periodic solution can be stable, asymptotically stable, or unstable; see
Section 1.1 for definitions.

fwtzi_
yx/A) T 1

Fig. 9.1 Poincar^ map of a periodic system.

Let us consider a map f (y), which transfers a point y = y(0) in the state
space to the point f(y) = y(T), where y(i) is a solution of system (9.1).
The map f(y) is called the Poincare map. The Poincare map describes
dynamics of the system over the period T; see Fig. 9.1. Successive action
of the Poincare map on a point y yields

f*(y) - f(f(---f(y)---)) = y(kT), (9.4)

k times

which is the value of the solution y(t) at t — kT. A point yo is called
stationary for the map f (y) if

f (yo) = yo- (9.5)
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Relation of the Poincare map to periodic system (9.1) is given by the fol-
lowing statement.

Theorem 9.1 A point yo is stationary for the Poincare map f (y) if and
only if the solution y(t) of system (9.1) with the initial condition y(0) = yo
is periodic with the period T.

The Poincare map determines the discrete dynamical system

y = f°(y) -+ f*(y) -+ f2(y) - • • • • - • ffc(y) -+ • • • , (9.6)

where k represents the discrete (integer) time. The stationary point y0

remains unchanged under the action of the Poincare map. Points y, which
are close to yo, can approach or move off the stationary point under multiple
action of the map f(y). Such behavior determines stability properties of
the stationary point yo for discrete dynamical system (9.6).

Definition 9.1 The stationary point y0 of the map f(y) is called stable if
for any e > 0 there exists 8 > 0 such that for any y, satisfying the condition
||y - yo|| < 8, the inequality

l |f f c(y)-f*(yo)| |<e (9.7)

takes place for any integer k > 0. If, in addition, ||f*(y) - fft(yo)|| -> 0 as
k -} +oo, then the stationary point is called asymptotically stable.

Though the Poincare map f (y) contains only a part of information on
system (9.1) (we can not predict a state of the system in time t ^ kT
using this map), it is sufficient to make a decision on stability of a periodic
solution of system (9.1).

Theorem 9.2 A periodic solution y(t) of system (9.1) is stable (asymp-
totically stable) if and only if the stationary point y0 = y(0) of the Poincare
map f (y) is stable (asymptotically stable).

Let y(t) be a periodic solution of system (9.1). Introducing the vector

x(«) - y(*) - y(«) (9.8)

describing deviation from the periodic solution and using equation (9.1),
we obtain

x = y - y = g(y(t) + x,t) - g(y(t),t). (9.9)

Assuming that ||x|| is small and neglecting higher order terms, we find

x = G(t)x, (9.10)
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where

G ( ( ) = ( ! L <9-n)
is the mxm Jacobian matrix of the function g(y, t) evaluated at y = y(i).
Since the functions g(y, t) and y(t) are periodic in time with the period T,
the matrix G(t) is periodic with the same period. Linear periodic system
(9.10) represents the linearization of system (9.1) near the periodic solution

y(*)-
Analogously, we perform the linearization of the Poincare map y -> f (y)

near the stationary point yo = y(0) as follows

x -» Fx, (9.12)

where x = y - yo and

' = ( £ ) „ (913)
is the mxm Jacobian matrix of the mapping f (y) evaluated at the sta-
tionary point y = yo-

9.2 Floquet theory

Let us consider a linear periodic system of ordinary differential equations

x = G(i)x, x e Rm, (9.14)

where G(i) is an m x m real matrix periodically dependent on time t with
a period T > 0, i.e.,

G(t) = G(i + T). (9.15)

Since system (9.14) is linear, a sum of its particular solutions is the solution.
Let us define m linearly independent solutions xj(i),... ,xm(f) satisfying
the initial conditions

xi(0) = e1, t = l , . . . ,m, (9.16)
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where e, is the ith column of the m x m identity matrix I. Then a solution

of system (9.14) satisfying the initial condition

: (9.17)

can be found in the form
m

X W = ^£otXt(£) . (9.18)
*=i

Taking the vector-functions xi (t),..., xm (t) as columns of the m x m real
matrix X(i) = [xi(£),..., xm(i)], we represent solution (9.18) as

x(t) = X(*)x0. (9.19)

The matrix X(i) satisfies the equation

X = G(t)X (9.20)

with the initial condition

X(0) = I, (9.21)

and is called the principal fundamental matrix or matriciant of system
(9.14). The matriciant X(i) taken at the period t = T provides the matrix

F = X(T) (9.22)

called the Floquet matrix or monodromy matrix. It is clear that Fx(0) =
x(T) for any solution x(t) of system (9.14). Therefore, the matrix operator
F represents the Poincare map x -> Fx for periodic system (9.14).

Let us consider the eigenvalue problem for the Floquet matrix

Fu = pu, (9.23)

where p is an eigenvalue and u is an eigenvector. Since columns of the
Floquet matrix are linearly independent, detF ^ 0 and, hence, p ^ 0.
Equation (9.23) yields a particular solution of the discrete dynamical system
denned by the Floquet matrix

x(kT) = F*u = pku, k = 0,1,2,... (9.24)

After each period, solution (9.24) is multiplied by p. Due to this property,
eigenvalues p of the Floquet matrix are called (Floquet) multipliers. The
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norm of solution (9.24) exponentially increases or decreases with an increase
of k if \p\ > 1 or \p\ < 1, respectively. If \p\ = 1, then the norm of solution
(9.24) does not change with an increase of k.

Let us consider a multiplier p possessing a Jordan chain of length I > 1:

Fu0 = pu0,

Fm=pu1+u0, ( 9 2 5 )

Fu/_i = pui-i +VLI-2-

Then we find I linearly independent solutions of the discrete system

x1(fcr)=F&u0 = / u 0 !

x2{kT) = FfcUl = pkux + kpk-lu0,

min(M-l) (9-26)

5EI(fcT)=F*u/-i= £ Ci^u , - , - ! , ^ = ^—yy.

A: = 0 ,1 ,2 , . . .

We see that the norms of all solutions (9.26) decrease for big k if and only
if |/o| < 1. If |/j| = 1 or |/)| > 1, then we observe infinite growth of the norms
of solutions (9.26) for big k, respectively.

General solution of the discrete system defined by the Floquet matrix
can be constructed taking a linear combination of solutions (9.24) and (9.26)
for all the multipliers p and corresponding Jordan chains. As a result, we
find the stability criterion for the discrete system. Using Theorem 9.2, we
obtain the Floquet theorem for stability of linear periodic system (9.14):

Theo rem 9.3 Linear periodic system (9.14) is asymptotically stable
(\\x(t)\\ —» 0 as t —̂  +oo for any solution x(t)) if and only if \p\ < 1
for all the multipliers of the Floquet matrix-

Linear periodic system (9.14) is stable (all the solutions x(t) are bounded
as t —> +00,) if and only if \p\ < 1 for all the multipliers of the Floquet
matrix, and the multipliers with the unit absolute value \p\ = 1 are simple
or semi-simple.

Linear periodic system (9.14) is unstable (there is a solution x(t) un-
bounded as t -> +00,) if and only if there is a multiplier of the Floquet
matrix such that \p\ > 1, or a multiplier with the unit absolute value \p\ = 1
which is neither simple nor semi-simple.
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Theorem 9.3 says that stability of a linear periodic system depends on
distribution of its multipliers with respect to the unit circle on the complex
plane; see Fig. 9.2.

simple or
, ,, semi-simple •,

®ReA. I \ ReX f *A ReA,

1 I "o )\ I 0 il
Fig. 9.2 Distribution of multipliers for a) asymptotically stable, b) stable, and c) un-
stable linear periodic system.

Let us denote

A = ^ m p . (9.27)

The quantities A are called characteristic exponents. The characteristic
exponents are determined up to additive terms 2Trki/T, k £ Z, where i is
the imaginary unit. Since ReA = ln|p|/T and, hence, |p| = exp(TReA),
the stability criterion of Theorem 9.3 yields

Corollary 9.1 Linear periodic system (9.14) is asymptotically stable if
and only i/ReA < 0 for all the characteristic exponents. //ReA > 0 for
at least one characteristic exponent, then linear periodic system (9.14) is
unstable.

Corollary 9.1 is similar to the stability criterion for a linear autonomous
system, where A are eigenvalues of the system operator. This similarity is
supported by the following relationship between periodic and autonomous
linear systems.

Let us introduce the matrix

A=ilnF; (9.28)

see [Korn and Korn (1968)] for definition of the logarithm function for
square matrices. Eigenvalues of the matrix A are the characteristic expo-
nents A. The change of coordinates

x = X(i) exp(-At)z, (9.29)
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where X(£) is the matriciant, in equation (9-14) yields

x = G(t)X(t) exp(-At)z - X(i) exp(-At)Az + X(t) exp(-At)z (9.30)

for the left-hand side and

Gx = G(i)X(i) exp(-Ai)z (9.31)

for the right-hand side. Using (9.30) and (9.31) in equation (9.14) and
pre-multiplying by (X(t)exp(-At))"1, we find

z = Az. (9.32)

Using relations X(t + T) = X(t)F and F = exp(AT), we obtain

X(i+T)exp(-A(i+T)) = X(i)FF-xexp(-At) = X(t)exp(-At). (9.33)

Hence, change of coordinates (9.29) is periodic and transforms linear peri-
odic system (9.14) into linear autonomous system (9.32). Therefore, Corol-
lary 9.1 can be obtained directly from the stability analysis of autonomous
system (9.32). This statement is known as the Liapunov reduction theorem:

T h e o r e m 9.4 Periodic change of coordinates in the state space (9.29)
transforms linear periodic system (9.14) into linear autonomous system
(9.32), where the matrix A is given by expression (9.28).

Remark 9.1 Notice that the matrix A is complex unless all the multi-
pliers are real and positive. In general, it is possible to find a real periodic
change of coordinates with the double period 2T transforming a linear peri-
odic system to a linear autonomous system, see [Yakubovich and Starzhin-
skii (1975)].

General form of solution of linear autonomous system (9.32) is described
in Section 3.1. Using Theorem 9.4, linear independent solutions of periodic
system (9.14) corresponding to a real multiplier p with Jordan chain of
length I can be expressed in the form

4P\t)=v1(t)exppt,

4P)W = (^2(t)+tVi(t))exp/Jt,
(9.34)

x , ( p ) (*) = (<Pi (<) + fPi-i (*) + ••• + JfT±yVi ( * ) ) e x p (*>
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where <fi(t),... ,<fi{t) are linearly independent periodic vector-functions.
For a complex multiplier p real and imaginary parts of solutions (9.34) give
21 linearly independent solutions. A general solution is given by a linear
combination of these solutions taken for all multipliers and Jordan chains.

Finally, we return to the analysis of stability of a periodic solution y(i)
for nonlinear system (9.1). Let (9.14) be the linearization of system (9.1)
near the periodic solution y{t), where the periodic matrix G(t) is given by
formula (9.11). The corresponding Floquet matrix F determines the lin-
earization of the Poincare map f(y) near the stationary point y0 = y(0).
In many practical cases stability of the periodic solution y(£) can be deter-
mined from the analysis of the linearized system using the following theorem
by [Liapunov (1892)].

Theorem 9.5 If linearized periodic system (9.14) is asymptotically stable
(\p\ < 1 for all the multipliers), then the periodic solution y(t) of nonlinear
periodic system (9.1) is asymptotically stable.

If linearized periodic system (9.14) is unstable and there is a multiplier
lying outside the unit circle, \p\ > 1, then the periodic solution y(t) of
nonlinear periodic system (9.1) is unstable.

The case when \p\ < 1 for all the multipliers with some multipliers lying
on the unit circle |p| = 1 is not covered by Theorem 9.5. In this case
the stability property can be affected by nonlinear terms, and stability or
instability of the linearized system does not necessarily lead to the same
property for the nonlinear system.

Example 9.1 As an example, let us consider the Meissner equation

x + (a + qh(t))x = 0, x € E, (9.35)

where a and q are non-negative parameters and h{t) is the 2?r-periodic
piecewise-constant function

(1 , 0<t<n,
h(t) = i , h(t + 2w) = h(t). (9.36)

[ - 1 , 7T<t<27T,

System (9.35), (9.36) can be transformed to the first order differential equa-
tion as follows

x = G(t)x, x = r ) , G(t)=( ° M . (9.37)
\xj \-a-qh(t) Oj
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System (9.37) is autonomous in the intervals 0 < t < n and ix < t < 2ir
and, therefore, can be integrated analytically. Finding solutions xi(i) and
X2(£) with the initial conditions

x 1 ( 0 ) = r j , x 2 ( O ) = r j , (9.38)

we determine the matriciant X(£) = [xi(i),x2(i)]. As a result, we get the
Floquet matrix F = X(27r) in the form

( cos TTUJ2 — s i n 7TW2 \ [ cos TTWI — s i n wui \
W2 wi (9.39)

—W2.sin7ra;2 COSTTW2 / \ — UJI simruii COSTTLOI I
for a > q;

( cosh 7rw2 — sinh 7rw2 \ I cos TTWI — sin TTWI ]
w2 wi (9.40)

W2 sinh nui2 cosh TTW2 J \ — wi sin 7rcJi cos TTWI /

for a < q; and

/ \ / ! \
/ I 7T \ / COS 7TO;i Sill TTWi 1

F = I 1 "! (9.41)
\ / \ — wisinTrwi COSTTWI /

for a = q, where wi = ^a + q and w2 = y/\a - q\.
Evaluating determinants of matrices (9.39)-(9.41), we find

detF = l. (9.42)

Hence, papb — 1, where pa and pb are the multipliers and stability of the
system requires both the multipliers to be complex conjugate and lie on the
unit circle ]pa| = \pb\ — 1. If the multipliers pa and ph are real and different,
then one of them lies outside of the unit circle (instability). Transference
from stability to instability is possible only if the multipliers merge to 1 or
- 1 and become double. Therefore, the boundary between the stability and
instability domains in the parameter space (a, q) is given by the condition

\pa+pb\ = (trace F| = 2. (9.43)

(9.41)
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This condition takes the form

1 I sinTrwi sin7ra>2 = 2 (9.44)

for a> q,

(' LJ\ U)2 \
2cos7ro;i cosh?ra;2 — sinTrwi sinh7ro;2 = 2 (9.45)

for a < q, and

|2 cos 7rwi - TTWi sin 7TW11 = 2 (9.46)

for a = q.
Stability diagram in the space (a, q) found numerically using conditions

(9.44)-(9.46) is shown in Fig. 9.3, where the instability domain is hatched.
The instability domain consists of tongues touching the a-axis at the points
a = k2/4, k = 1 ,2 , . . .

0 0.5 1 1.5 2 a

Fig. 9.3 Stability diagram for the Meissner equation.

9.3 Derivatives of Floquet matrix with respect to
parameters

Let us consider a linear periodic system

x=G(t,p)x, (9.47)

where the matrix operator G smoothly depends on a vector of real param-
eters peU™. First, we assume that the period of the system T does not
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depend on parameters, i.e., G(t + T, p) = G(f,p) for any t and p. Equation
for the matriciant X(£) takes the form

X = G(t,p)X (9.48)

with the initial condition

X(0) = I. (9.49)

Stability of system (9.47) for a given value of the parameter vector p is
determined by multipliers of the Floquet matrix F = X(T). Both the ma-
triciant and Floquet matrix are smooth functions of the parameter vector.

Let us introduce the m x m real matrix satisfying the adjoint equation

Y = -GT( i ,p)Y (9.50)

with the initial condition

Y(0) = I. (9.51)

Differentiating the product YTX with respect to time and using equations
(9.48) and (9.50), we find

(YTX)- = YTX + YTX = -YTG(t, p)X + YTG(t, p)X = 0. (9.52)

Together with initial conditions (9.49) and (9.51) equation (9.52) yields the
relation

YT(t)=:X-1(i) . (9.53)

Taking the derivative of both sides of equation (9.48) with respect to
the parameter pi, we find

dpi dpi dpi

Pre-multiplying (9.54) by the matrix YT(t) and integrating over the time
interval [0, t], we get

/V|^dr= /V^Xdr+ /Vc^dr. (9.55)
JO dPi JO dPi JO dPi

(9.54)
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Using integration by parts and equations (9.49), (9.50), we represent the
left-hand side of (9.55) as

Jo opt dpi 0 Jo dpi
(9.56)

_ Y T ( t ) «M + /V G M ( r .
dpi Jo dpi

Substitution of relation (9.56) into equation (9.55) yields

y r M&p) f'YreGxdr

OPi Jo Opi

Using relation (9.53), we find the derivative of the matriciant with respect
to the parameter pi in the form

| ^ = X(t) /V^Xdr. (9.58)
dpi Jo dpi

Since F = X(T), we find the first order derivative of the Floquet matrix as

» F/V»°X*. (9.59)
dpi Jo dpi

We observe that derivatives of the Floquet matrix are determined by the
matriciant X(i), its inverse YT(t) = X " 1 ^ ) , and derivatives of the system
matrix G(t, p) with respect to parameters.

Taking the second order derivative of equation (9.48) with respect to
parameters and performing analogous transformations with the use of ex-
pression (9.58), we find

dpidpj \Jo dpidpj

Jo dPj \Jo dPi ) )

Taking expression (9.60) at t — T, we find the second order derivative of

(9.57)

(9.60)
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the Floquet matrix with respect to parameters as

dpidpj yJo opidpj

Jo dPi Wo 9pj J v ;

Jo dPj Wo 9pi J J

In the same way, higher order derivatives of the matriciant and Floquet
matrix with respect to parameters can be found. In order to give a general
expression for the derivatives, we introduce the notation

G ( h ) = _ ^ l G _ (h) = flWX fM _ flWF

dp*1 • • • dphn» ' dp^ • • • dpt ' dp^ • • • Opt '
(9.62)

where h = (hi,..., hn) is a vector with integer non-negative components
hi >0 and |h| = hi H h hn. We denote

/ Y T G ^ X \Hh(t) = [ ^ J , (9.63)

where h! = h\\ • • • hn\.

Theorem 9.6 Derivative of the matriciant X(i, p) with respect to pa-
rameters for linear periodic system (9.47) has the form

X^(t)=h\X(t) £ f Hhl(T!) rHh2(r2)-.-
./o Jo

hiH hhs=h

«=i,...,|h|, |hi|>o (9.64)

••• / H h s ( r s )dr s •••dr2dri,

where the sum is taken over all the sets of nonzero vectors h x , . . . , hs such
that hi -t- • • • + h8 = h. / / the period T does not depend on parameters, the
derivative of the Floquet matrix F(p) = X(T, p) with respect to parameters
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is

F ( h ) = h ! F £ / Hhl(n) /TlHh2(r2)---
Jo Jo

hH hha=h
s=l,...,|h|, |h;|>0 (9.65)

rTs-i

•I Hhs(rs)drs •••dr2dr1.
Jo

If the period T — T(p) smoothly depends on parameters, then deriva-
tives of the Floquet matrix F(p) = X(T(p),p) can be obtained by differen-
tiating the matrix X(T(p),p) as a composite function. For the first order
derivative we. find

OF _ fdX\ /<9X\ dT

(9.66)

= F [TYT^Xdr + G(0,P)F^)
Jo dPi dPi

where equation (9.48) and expressions (9.15), (9.58) were used. Another
way to treat the case of a parameter-dependent period is to make the change
of time

t=^t, (9.67)

where To is a positive constant. Then system (9.47) takes the form

x = G(i',p)x, (9.68)

where the dot denotes differentiation with respect to new time t, and

•̂p) = f G ( ? l p ) (9-69)
is a periodic matrix with the period To independent on parameters. The
Floquet matrix evaluated for system (9.68), (9.69) coincides with that for
system (9.47), and its derivatives can be found by Theorem 9.6 applied to
system (9.68), (9.69).
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9.4 Stability analysis of the Mathieu equation

Let us consider the Mathieu equation

x + (a + qcost)x = 0, x€R, (9.70)

dependent on two parameters: the non-negative parameter a denoting the
squared eigenfrequency of the unexcited system and the excitation ampli-
tude q. Transforming equation (9.70) to the first order form, we obtain

x = G(i)x, x = r ) , G ( i ) = ( ° M , (9.71)
\x J \— a — qcost 0/

where the matrix G(t) is periodic in time with the period T = 2?r. Deriva-
tives of the matrix G with respect to parameters are used to find derivatives
of the Floquet matrix. From (9.71) we find

3 G _ / 0 0 \ dG ( 0 0 \

" ^ " U o)' ^ = { - c o S t o j - (972)
Higher order derivatives of the matrix G with respect to parameters are all
equal to zero.

The determinant of the matriciant X(i) for system (9.71) does not de-
pend on time. Indeed,

-de tX(i ) = jt(xn(t)x22(t) - x12(t)x21(t))

(9 73)
= x2i(t)x22(t) - xn(t)(a + qcost)xi2(t) K

-x22(t)x21(t) +a;i2(£)(a + qcost)xn(t) = 0,

where Xij(t) are the elements of the matrix X(i). This equality reflects the
property of the system to preserve volume in the state space as the time is
changing. As a result, we find the determinant of the Floquet matrix as

det F = det X(2TT) = det X(0) = 1. (9.74)

By condition (9.74), the product of the multipliers pa and pb of the Floquet
matrix F equals one. Hence,

Pa = J,- (9-75)

The multipliers can be real and lie in different sides with respect to the
unit circle on the complex plane (instability), or complex conjugate and
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lie on the unit circle (stability). The transference between stability and
instability corresponds to the case of a double multiplier pa = pb = ±1
(stability boundary).

The multipliers pa and pb can be found in the form

„ /11+/22 (/(A"l-/22)2 . . .
P = g + V 4 + /12/21.

(9-76)

b /ll + J22 . /(/ll ~/22)2 , r f

P = 2 V 4~ •" 712/21,

where /^ are the elements of the Floquet matrix F. We remind that ac-
cording to (9.74) detF = /u / 2 2 - /12/21 = 1. If

( / u ~ / 2 2 ) 2 + /12/21 > 0, (9.77)

the multipliers are real and lie in different sides with respect to the unit
circle (the system is unstable). In the case

( / l 1 ~ / 2 2 ) 2 + /12/21 < 0 (9.78)

the multipliers are complex conjugate and lie on the unit circle (the system
is stable). Finally, the equality

( A l ~ / 2 2 ) 2 + /12/21 = 0 (9.79)

implies that the multipliers are multiple and equal to pa — pb = ±1, which
corresponds to the stability boundary.

If the excitation amplitude q is set zero, equation (9.71) is a linear
autonomous system of ordinary differential equations, which can be solved
analytically. The matriciant for system (9.71) when a > 0 and q = 0 is

X( i )=( C 0 S ( ^ } ^ ^ ^ V (9.80)
y-Vosin^-ya) cos (ti/a) J

The matrix Y(i) for the adjoint system (9.50), (9.51) is

( cos(iv/a) <yas'm(ty/a)\

1 • t, ̂  ur\ I' (9-81)

Va )

(9.81)
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Notice that YT(i)X(i) = I as expected. As the period of the system equals
T = 2TT, the Floquet matrix is

F = X(27r)=( C ° S ( 2 7 r ^ ^ ^ ^ ^ V (9.82)

\—\fasin{2-K^fa) cos{2ity/a) /

In case of a = 0 and q = 0 we have

/ I A / 1 0\ (I 2TT\

X ( 1 ) = U & Y ( i ) = U i j - F = U i j - (M3)
The multipliers of the Floquet matrix are

pa = cos(27T\/a) + isin(27rx/a), p6 = cos(27T\/a) - ism(2ir*Ja). (9.84)

Thus, the multipliers are situated on the unit circle in the complex plane
when a > 0 and q — 0.

Due to condition (9.75), simple multipliers can not leave the unit circle.
Hence, development of instability is possible only near the points, where
two multipliers coincide. From (9.84) it is seen that this happens when

sm{2ns/a) = 0 (9.85)

or, equivalently,

k2
a=—, k = 0,1,2,... (9.86)

At points (9.86) multipliers (9.84) are double and equal to

pa=pb = (-l)k. (9.87)

Points (9.86) are called the resonance points.
Using matrices (9.72), (9.80)-(9.83) in formulae (9.59) and (9.61), we

find first and second order derivatives of the Floquet matrix at resonance
points (9.86). General formulae for these derivatives and their values for
the first three resonance points are given in Tables 9.1 and 9.2, where, for
example, f 12,aq denotes the second order derivative of the element /12 of
the Floquet matrix with respect to a and q.

We know that the stability diagram for the Mathieu equation in the
parameter space (a, q) is symmetric with respect to the a-axis. This sym-
metry reflects the phase shift t -* t + w, which changes q to —q in equation
(9.70). Thus, one might suspect that F(a, 5) = F(a, -q). But this is not
the case which is seen from the fact that the first order derivative of F with

(9.84)
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Table 9.1 First order derivatives of elements of the Floquet
matrix at the resonance points.

a 0 1/4 1

/ U j O = -^s in(2 7 r x /S) -2vr2 0 0

}\2,a = %cos(2w^a) - 5^7j s in^x /a ) -f^3 ~ 4 T T TT

/2l,a = — 7r cos(27Ti/a) — 2^?j sin(2?r\/a) — 2ir TT —TT

/22,o = - ^ s i n ( 2 7 r x / a ) -2TT 2 0 0

/ i i , 9 = 0 0 0 0

/ l 2 , ? = ( l - 4 a ) v ^ S i n ( 2 7 r ^ ) 4 W , 2 W °

/2i,9 = r^s i n(2T%/S) 0 |7r 0

/22,9 = 0 0 0 0

respect to q is nonzero. We observe that the derivatives of the element fu
with respect to a and q are equal to the corresponding derivatives of the
element /22- As a result, the first term in conditions (9.77)-(9.79) vanishes.

Using the derivatives of F, we can approximate the Floquet matrix for
small values of q and Aa, where Aa = a — k^/4 is the distance from the
resonant value. As both the first and second order derivatives of F are
known, we expand the Floquet matrix into the Taylor series

, , fk2 \ 3 F , <9F

(9.88)
1 <92F . 2 <92F . 1 <92F 2

+ 2^Aa+^dqAaq+2Wq+'-''

where all the derivatives are taken at a = k2/4. and q = 0. Using expansion
(9.88), we determine the Floquet matrix for small Aa and q and, thus,
find the boundaries between the stability and instability domains in the
parameter space.

Let us study the first three resonance points. According to (9.86) these
points are a = 0, a = \, and a = 1. The stability boundaries are given by
equation (9.79). This equation can be solved approximately using expansion
(9.88) as shown below.
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Table 9.2 Second order derivatives of elements of the Floquet matrix at the reso-
nance points.

a 0 1/4 1

fu,aa = - £ cos(2ir^E) + ^ sin(27rv^) | T 4 4TT 2 - T T 2

/l2,aa = - ^ c o s ( 2 7 r V ^ ) + ^ ^ s i n ( 2 7 r ^ ) ^7T5 24TT -§TT

hi.aa = -^COS{2-K^O) + l + ^ s,in(2ity/o) §7r3 2TT -ATT

/22,0a = - 2 ^ c o s ( 2 7 r x / a ) + 5 ^ 7 7 5 sm(27r%/a) | T 4 4TT2 -TT2

/ l l , a , = 0 0 0 0

/l2,"« = (T^co<2*^) - (i-AaM^^^ '16TT - |ir3 -6*- - f i r "

/21,a9 = T ^ C O s ( 2 7 r v ^ ) + ( T ^ t 4 a _ s i n ( 2 7 r v ^ ) 4TT T̂T -17T

/22,a, = 0 0 0 0

/i i ,gg= (4a-'ri)v^ sin(27rv^) -2TT2 -TT2 0

/l2,99 = (l-4a)a COs(27Tv )̂

1-16a + 24a; .j..* ^ Un - ^ -« fr

/21.9? = -(Tr4^)C 0 S(2 7 rv^)

- 2 ( 1 - a ^ 1 8 - a 4 a ) ^ S i n ( 2 7 r ^ ) ~ ^ ^ ^

/22-99 = (4 a-7 r i )^ S in(27r\/a) - 2 7 r 2 - T 2 °

The first resonance point is a = 0. Using the results given in Tables 9.1
and 9.2, we write equation (9.79) in the form

(2TT - |7r3Aa + Aitq + ±n5(Aa)2

+ (167T - §7T3) Aaq + ( f 7T - §7T3) Q2 + • • • ) (9.89)

x ( - 2irAa + |7T3(Aa)2 + 4?rAa q - irq2 + • • •) = 0,

which implies that

Aa = -l-q2 + o{q2). (9.90)
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Instability condition (9.77) is satisfied up to second order terms for

A a < ~ g 2 . (9.91)

The second resonance point is at a = \. Using the results of Tables 9.1
and 9.2 in equation (9-79), we get

( - 4TTAa + 2-nq + 127r(Aa)2 - 6TT Aaq - \-nq2 + • • •)

, ' (9-92)

x I TTAa + \irq + n{Aa)2 + ^TTAO q + |?rg2 + • • • J = 0 ,

and thus

Aa = ±±q-±q2+o{q2). (9.93)

Instability condition (9.77) is satisfied up to the second order terms for
1 1 2 A 1 1 2

--^Q-^1 <Aa<-q--q when q > 0,

(9.94)
1 1 2 . 1 1 2

-q--qz <Aa<--q--q* when q < 0.

The third resonance point is at a = 1. Using Tables 9.1 and 9.2 in the
stability boundary equation (9.79), we get

(ITAa - f ?r(Aa)2 - §?rAa q + j^irq2 H )
( (9.95)

x ( - ?rAa - \-K{AO)2 - ^nAaq + j^-irq2 H j = 0 ,

and thus

Aa=(j;±^q2+o(q2). (9.96)

The instability domain is given by the relation

-±q2<Aa<^q2. (9.97)

Approximations of the instability domains (9.91), (9.94), and (9.97) are
shown in Fig. 9.4, where the approximate boundaries are indicated by bold
lines, and the exact instability domains found numerically are hatched.
Note that the third resonance zone has a sharp tongue (cusp) touching the
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a-axis. Evaluating higher order derivatives of the Floquet matrix, approx-
imations of the instability domains can be obtained near other resonance
points.

• • I F '
02 I \ / r

Jill f . I
-0.5 0 0.5 1 a

Fig. 9.4 Instability domains for the Mathieu equation and their approximations.

9.5 Sensitivity analysis of simple multipliers

Let us consider an eigenvalue problem

Fu = pu (9.98)

for the Floquet matrix F(p) corresponding to multi-parameter periodic
system (9.47). Let p be a simple eigenvalue (multiplier). Since F(p) is a
smooth function of parameters, the multiplier p(p) smoothly depends on
p. The left eigenvector corresponding to the multiplier p is defined by the
equation

vTF = pwT. (9.99)

First and second order derivatives of the simple multiplier p with respect
to parameters are given by Theorem 2.2 (page 32) in the form

l = v T S V ( v T u ) ' i = i -• (9ioo)
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d2p T ( d2F dF du dF du
dpidpj \dpidpj dpidpj dpj dpi

(9.101)
dp 8u dp du\ I T . .

dpidpj dpjdpij I

where the first order derivative of the eigenvector is given by

f̂ CF-pI + vvW^I-fHu. (9.102)
dpi \dpi dpij

Using formula (9.66) for the first order derivative of the Floquet matrix and
equations (9.98), (9.99), we obtain

^ • ^ ( Z T Y T i x * + o ^ < ) " / ^ o ) - i=1 -
(9.103)

Using expression (9.103), we can find derivatives of the absolute value
of the multiplier p — a + ito as

d\p[ _ dy/a2 + to2

dpi ~ dpi

_ 1 f da doj\

" V^+^{adJi+UJdFi)
(9.104)

= l(RepRe|^+Im,Im|^)
\P\ V dPi dPiJ

\p\ V dpij

Having derivatives of the multipliers, we know how the multipliers
change with a variation of parameters. Since multipliers determine sta-
bility properties of a periodic system, their derivatives can be used for
multi-parameter stability analysis and optimization problems under stabil-
ity criteria.

Notice that it is convenient to choose the eigenvectors satisfying the
following normalization condition

v T u = l . (9.105)

Then the denominators in formulae (9.100), (9.101), and (9.103) are equal
to 1.
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9.6 Numerical applications

In this section, numerical examples involving the expressions for first and
second order derivatives of the Floquet matrix are presented. First, a prob-
lem of optimizing the thickness distribution of an axially loaded beam,
where the axial load is a periodic function of time, is considered. The ob-
jective of optimization is to make the beam more stable by changing the
thickness distribution under the constant volume constraint. Transverse
vibrations of the beam are described by a partial differential equation with
boundary conditions. This equation is approximated by a finite degrees of
freedom system using the finite difference method. As another numerical
example, a problem of stabilization of a system described by the Carson-
Cambi equation by changing problem parameters is studied.

9.6.1 Axially loaded beam

Consider a straight beam of length L, see Fig. 9.5. The beam is loaded
by a periodic axial force p cos cut. We assume that the beam is externally
damped, and c is the external damping coefficient. Deflection of the beam
at position x is w{x, t). Then, the equation for transverse vibrations of the
beam is

„ d2w 3w d2 f^Td2w\ 82w n

pAW + clH+8^{EIw)+pcos"ta^ = °> (9'106)

where E is Young's modulus, I{x) is the cross-sectional moment of inertia, p
is the density, and A(x) is the cross-sectional area of the beam. We assume
that the beam has a circular cross-section with the area and cross-sectional
moment of inertia

A(x) = ixr2(x), I(x) = TL^.f (9.107)

w •

//////

Fig. 9.5 Beam loaded by axial periodic force.
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where r(x) denotes the radius of the beam. As the beam is simply supported
at both ends, the boundary conditions are

f) in
x = 0, L : w = 0, El-r-r = 0. (9.108)

ox1

Let

V= / A(x)dx (9.109)
Jo

be the volume of the beam. The critical buckling force and the first natural
frequency of a simply supported uniform beam of circular cross-section are

_nEV2 _ IT [EV^
Pc, uniform — . _ 4 > ^ c , uniform — iyr2\ j ' [y.llXi)

The dimensionless excitation amplitude q and excitation frequency fi are
given by

q=-^—, ti = - ^ — . (9.111)
Pc, uniform w c , uniform

The following dimensionless quantities are introduced

x w PKL 2 C L 4 / nV / n i i r ) A

T = urt, C= Z , " = £ , R = ^T> 1=^\]^E> (9-112)

describing the time, beam coordinate, deflection, radius, and damping, re-
spectively. Using expressions (9.110)-(9.112) in equation (9.106), we obtain

RWpL+¥l%. + L* (#*g\ + 4 c o s r ^ = o. (9.113)
dr2 or n4 d(2 \ d(2) -K2 dC?

Boundary conditions (9.108) become

C = 0, 1: z/ = 0, ^ 4 0 = O . (9.114)

Partial differential equation (9.113) with boundary conditions (9.114)
describes transverse vibrations of the axially loaded beam in dimension-
less coordinates. This equation can be reduced to a system of ordinary
differential equations using the finite difference method [Iwatsubo et al.
(1973)]. For this purpose, we consider a beam consisting of m elements of
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equal length, each element having a constant radius Ri, i = 1, . . . , m. As a
result, we obtain the finite degrees of freedom vibrational system

Mq + Bq + Cq = 0, (9.115)

where M and B are constant m x m matrices, and the matrix C(r) is the
periodic function of time with the period T = 2?r. Equation (9.115) can be
written in the first order form

x = G(r)x, (9.116)

where

M ( ° l \
x = , G = , G(T + T) = G(T) . (9.117)

\qj V-M"lc -M^B/
In this way the theory described in the previous sections can be applied

to system (9.115). In the expressions for first and second order derivatives
of the Floquet matrix, first and second order derivatives of the matrix G
with respect to parameters are used. Prom equation (9.117) we see that this
information can be obtained using corresponding derivatives of the matrix
C. Once derivatives of the Floquet matrix are found, we compute first and
second order derivatives of simple multipliers.

9.6.2 Optimization problem

Fig. 9.6 shows the instability domains for the first two modes of the uniform
beam, where the external damping coefficient is 7 = 0.2. At the boundaries
of the instability domains one of multipliers is equal to pc = — 1. The
instability domain for the first mode occurs in the neighborhood of twice
the first natural frequency of the beam, while the instability domain for
the second mode occurs in the neighborhood of twice the second natural
frequency of the beam. Due to the damping the instability domain starts
at some positive value q = qc, which is the minimal value of the excitation
amplitude at which the system can be destabilized by the periodic axial
force (minimum critical load level). The objective of optimization is to
maximize the excitation amplitude qc by changing the thickness distribution
of the beam under the constraint of constant volume.

Let $ denote the objective function in the optimization problem. That
is, $ is equal to the minimum value of the excitation amplitude on the
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9m\\\\\\m » fff j f
I Model J \ Mode 2 /

\J.O 1 I I

\ ' w
0.4 . V V

o ' 1 . 1 .

2 4 6 8 Q

Fig. 9.6 Stability diagram for the uniform beam.

stability boundary

* = &. (9.118)

Objective function (9.118) makes sense only if the system is damped, be-
cause $ = 0 for the undamped system independently of the design pa-
rameters. The design is called optimal if $ is maximized. Notice that the
maximal $ can be attained not only at one, but at two or more modes.

The objective function $ is maximized by using the sequential linear
programming and simplex method. In the optimization process, the sen-
sitivities of the objective function $ with respect to the design variables
R\,..., Rm are used. Let Q, — Q,c be the boundary frequency at q — qc- At
the point (fl,q) — (Clc,Qc) the multiplier pc satisfies the relations

*--'• th0' w<a (9119)
The multiplier pc depends on the excitation frequency fi, the excitation
amplitude q, and the design variables Ri,...,Rm. A general variation of
the multiplier takes the form

This equation is valid due to differentiability of the simple multiplier at
(fl,<?) = (nc,<7c). Let 5Rj = 0 for all j rfz %. Using conditions (9.119) and

(9.120)
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6pc = 0 at (^lc,Qc), equation (9.120) yields

^•Sqc + ^-SRi = 0 at (Sl,q) = (flc,qc). (9.121)
oq OHi

From equation (9.121) we find the sensitivity of the minimum critical load
level with respect to the design parameter Ri as

dqc _ (dpc/dRA

Let F be the Floquet matrix. Using expressions for derivatives of a
simple multiplier, we have

w = v V / ( v u ) i mrw w^l^ (9-123)
where u and v are the right and left eigenvectors of the matrix F corre-
sponding to the multiplier pc = — 1. By substitution of expressions (9.123)
into equation (9.122), the sensitivity of the minimum critical load level
becomes

dqL__ f^(dF/dRi)n\

The sensitivity of the objective function is

— - dQc f9 12^
8Ri - dR~' ( 9 ' 1 2 5 j

where the sensitivities of the minimum critical load level are given by for-
mula (9.124). If the design variables Ri are changed by amounts ARi, the
linear increment Aqc of the minimum critical load level qc is equal to

^ = £ 1 ! ^ . (9.126)
i=l OKi

The volume of the beam is kept constant during the optimization. This
volume constraint becomes

m

X > ? = ™. (9-127)
where m is the number of beam elements.

The problem of maximizing the objective function $ is reduced to a
sequence of linear optimal redesign problems, which are solved by using the
simplex method. In each of the linear optimal redesign problems, the value

(9.122)

(9.124)
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of the objective function $ is evaluated. This value can be determined
by utilizing the fact that, at the point (O,,q) = (Qc,qc), the multiplier pc

satisfies

Po = -1, §^=0. (9.128)

To find the minimal critical excitation amplitude qc, the Newton-Raphson
method is applied, which uses first and second order derivatives of the
multiplier pc with respect to q and ft. In order to compute these derivatives,
first and second derivatives of the Floquet matrix are evaluated. In the
optimization process, first order derivatives of the objective function with
respect to the design variables Rlt... ,Rm are used, see equation (9.124).

9.6.3 Results of optimization

The results presented here are obtained for the beam divided into m = 25
elements. The design variables are constrained by

Ri> 0.5, i = l,...,m, (9.129)

and the uniform beam is taken as the initial design.
First, the beam is optimized with respect to the instability domain of

the first mode (see Fig. 9.6) and the optimal design in Fig. 9.7 is obtained.
Constraints (9.129) are active for the left and right elements of the beam.
In Table 9.3 the values flc and qc for the instability domains for the first two
modes of the beam in Fig. 9.7 are compared with those of the uniform beam.
The objective function $ m o d e : is 8.4% higher for the beam in Fig. 9.7 than
for the uniform beam. When $ m o d e 1 is maximized, the value of $ m o d e 2

decreases below the value 'for the uniform beam; see Table 9.3.
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Fig. 9.7 Optimal design for the beam, where the objective function $ is related to the
instability domain for the first mode.
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Table 9.3 Values of Clc and qc for the instability domains of the first and
second modes, when the beam is optimized with respect to the instability
domain of the first mode.

Desiffn n m D ^ e * Qmode 1 _ ^mode 1 Qrnode 2 Qmode 2 _ ^mode 2

Uniform 1.9826 0.3998 7.9542 0.4000

Optimal 2.1803 0.4332 7.9582 0.3850

Table 9.4 Values of fic and qc for the instability domains of the first and
second modes, when the beam is optimized with respect to the instability
domain of the second mode.

Opsicn cymode 1 (jjmode 1 _ QVnode 1 r\mode 2 fhmode 2 _ ^mode 2

Uniform 1.9826 0.3998 7.9542 0.4000

Optimal 1.6877 0.3339 8.7200 0.4331

If the beam is optimized with respect to the instability domain for the
second mode, the optimal design in Fig. 9.8 is obtained. Constraints (9.129)
are active for the middle element of the beam. According to Table 9.4, the
objective function $mode 2 is 8.3% higher for the beam in Fig. 9.8 than
for the uniform beam. When §mode 2 is maximized, the value of $mode 1

decreases below the value for the uniform beam; see Table 9.4.
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Fig. 9.8 Optimal design for the beam, where the objective function $ is related to the
instability domain for the second mode.

If the beam is optimized with respect to both the instability domains
for the first and second modes, the optimal design in Fig. 9.9 is obtained.
None of constraints (9.129) is active for the beam in Fig 9.9. According to
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Fig. 9.9 Optimal design for the beam, where the objective function $ is related to both
the instability domains for the first and second modes.

Table 9.5 Values of fic and qc for the instability domains of the first and
second modes, when the beam is optimized with respect to both the instability
domains of the first and second modes.

Design n m o t ^ e * Qmode 1 _ Q-mode 1 Qmode 2 Qvnode 2 _ ^mode 2

Uniform 1.9826 0.3998 7.9542 0.4000

Optimal 2.0771 0.4177 8.4030 0.4177

Table 9.5, the objective functions §mode 1 and $mode 2 are raised by 4.5%
and 4.4%, respectively, relative to the values for the uniform beam.

The optimal designs in Figs. 9.7 and 9.9 look similar to the optimal
designs obtained in [Pedersen (1982-83)], where the volume of the beam
is minimized while the first and two first natural frequencies of the beam,
respectively, are kept constant. The optimal design in Fig. 9.8 looks similar
to the optimal designs obtained in [Pedersen (1982-83)], where the sec-
ond natural frequency is maximized while keeping the volume of the beam
constant.

9.6.4 Stabilization of unstable system: Carson-Cambi
equation

Sensitivity analysis of multipliers can be used for stabilization of an unstable
periodic system by changing values of parameters. As an example, we
consider the Carson-Cambi equation [Pedersen (1980)]

(l+Plcost)-^+p2y = 0, \pi\<l, (9.130)
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with pi and P2 as the problem parameters. If the system is unstable, then at
least one multiplier is situated outside the unit circle, \p\ > 1. To stabilize
the system, all the multipliers outside the unit circle must be brought onto
or inside the unit circle.

Let p be a multiplier situated outside the unit circle. The value of
\p\ smoothly depends on the parameter vector p = (pi,P2)- If parameter
variations Spi are chosen as

6Pi = - a ^ , * = 1,2, (9.131)

where a is a real positive constant, then we get

Thus, by choosing the change of parameters according to (9.131), the vari-
ation of \p\ is smaller or equal to zero, and the multiplier moves towards
the origin. As a result, the system becomes "more" stable.

The necessary formulae for calculating the sensitivities are given by
expressions (9.103), (9.104). The stability diagram of equation (9.130) is
shown in Fig. 9.10, where the instability domain is hatched. Taking a =
0.001, expression (9.131) is used to stabilize the system by changing the
parameters starting at two different initial points p = (0.70,0.19) and p =
(0.70,0.23). The paths shown in Fig. 9.10 follow the steepest descent of
\p\. We emphasize that for systems with many degrees of freedom and

•Hi I
0.4 • \ I

0.2 • \ I
\ f

0 I . . . 1 J6 .
0 0.1 0.2 0.3 p2

Fig. 9.10 Stability diagram for the Carson-Cambi equation, and the paths from the
instability to stability domain for two initial points.

(9.132)
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having multiple parameters the stabilization procedure will be the same as
illustrated here.

9.7 Bifurcation of multipliers

Derivatives of the Floquet matrix with respect to parameters obtained in
Section 9.3 allow using the bifurcation theory of Chapter 2 for analysis
of multiple multipliers. In this section, we present the results for bifurca-
tion of nonderogatory double and triple multipliers and semi-simple double
multipliers.

9.7.1 Nonderogatory double multiplier

We assume that at p = po the Floquet matrix Fo = F(po) possesses
a double multiplier po with a single eigenvector uo. The corresponding
Jordan chain has length 2 and consists of the eigenvector uo and associated
vector ui satisfying the equations

Fouo = poUo,
(9.133)

Foui = poui +u 0 .

Vectors of the corresponding left Jordan chain vo and vi satisfy the equa-
tions

v( F o = pov( + VQ*

and normalization conditions

v^ui = 1, vf uj = 0. (9.135)

Normalization conditions (9.135) determine the vectors VQ and vj uniquely
for a given Jordan chain u0 and ui.

Let us consider perturbation of the parameter vector along a curve p =
p(e), where e > 0 is a small real perturbation parameter. The curve p =
p(e) starts at po = p(0) and has the initial direction e = dp/de evaluated at
£ = 0. By Theorem 2.3 (page 37), bifurcation of the double nonderogatory
eigenvalue po along the curve p = p(e) is described by the expansion

p = po+ e1/2pi + ep2 + • • • , (9.136)

(9.134)
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where the coefficients p\ and p2 are given by the formulae

N i = 1 (9.137)
1 A / T OF TdF \^ = 5giV°^U l + V l^U oJe i -

Here e, denotes the ith component of the direction vector e. Recall that
the second expression in (9.137) for p2 is valid only if p\ ^ 0.

Using expression (9.66) for first order derivatives of the Floquet matrix
and equations (9.133), (9.134) in (9.137), we find

/Ji = ± V ( g i , e ) , pt = -{g2,e), (9-138)

where gi = (<?i, • • •, 9i) and g2 = (g\, • • •, g%) are vectors with the compo-
nents

g[ = PoV(fWiUO,
(9.139)

g\ = v^WiU0 + p o ( v ^ W i U l + vfWiiio),

and Wj is the m x m real matrix

The scalar product in (9.138) is given by (gj,e) = g\ei-\ h3™en, i = 1,2.
The vectors gi and g2 are real if the multiplier p0 is real.

9.7.2 Nonderogatory triple multiplier

Let us consider a triple multiplier po of the matrix Fo with the right and
left Jordan chains satisfying the equations

F o u o = /90u0, v ^ F 0 = povjf,

Foui = poui +u0, vjF0 - po^l + vj, (9.141)

F 0 u 2 = pou2 + u i , v ^ F 0 = povj + v f

with the normalization conditions

v^u 2 = 1, vf u2 = v^u2 = 0. (9.142)

(9.140)
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We consider perturbation of the parameter vector along the curve p = p(e)
satisfying conditions po = p(0) and e = dp/de at e = 0. Bifurcation of a
nonderogatory triple eigenvalue was studied in Examples 2.8 and 2.9 (pages
52 and 53). Additionally, we use equations (9.141) and formula (9.66) for
first order derivatives of the Floquet matrix.

Let us define the vectors hj = (hj,...,/i"), j — 1,2,3, with the compo-
nents

h\ = vjfWiiio + po(v^WiUl + vfWiUo),

h\ = V^WiU! + vf WiU0 + /9o(v^WiU2 + vfWjU! + V^WiUo),
(9.143)

where the matrix W» is given by (9.140). The vectors hi, I12, and h3 are real
if po is real. Then, for the direction vector e satisfying the nondegeneracy
condition

(h i , e )#0 , (9.144)

bifurcation of the triple multiplier into three simple multipliers is given by
the expansion

p = po + e1/3pi + e2/3p2 + ep3 + o(e), (9.145)

where

p ^ V ^ i ) , P2=~(h2,e), p3 = ^(h3,e)) (9.146)
dpi 6

and pi takes three different complex values of the cubic root.
If the direction vector e satisfies the degeneracy conditions

(hi,e) = 0, (h 2 ) e )#0 , (9.147)

then bifurcation of the triple multiplier is given by the expansion

p = po + e1/2ni + efi2 + o(e) (9.148)

for the first two multipliers and the expansion

p = po + evx + o(e) (9.149)
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for the third multiplier, where

vx = 7T r v ^ F j G ^ F i -F2)u0,

(9.150)

and the matrices Fi, F2, and G2 are

„ A 3F ^ 1 A 9F , 1 A 52F

^ 9 K 2 ^ % 2ij^1dP*dPi (9.151)

G2 = F 0 - p o l + vov^;

di,... ,dn are components of the second order derivative vector d =
cPp/cfc2 taken at e = 0.

9.7.3 Semi-simple double multiplier

Finally, let us consider a double multiplier po, which has two linearly inde-
pendent eigenvectors Ui and u2 satisfying the equations

F o u i = p o u i , F 0 u 2 = p 0 u 2 . (9.152)

The left eigenvectors Vi and V2 are uniquely determined by the equations

vf Fo = povf, v^Fo = Powl (9.153)

and the normalization conditions

wjnj=5ij, t , j = l , 2 . (9.154)

Consider perturbation of the parameters along the curve p = p(e) start-
ing at po = p(0) with the initial direction e = dp/de. By Theorem 2.6
(page 56), bifurcation of a semi-simple double multiplier po is described by
the expansion

p = po + e p i + e 2 p 2 + '-- , (9.155)

where two values of the coefficient p\ are eigenvalues of the matrix

» ZvfWiUi v f W i U 2 \
Po}[ Ui , (9.156)

and the matrix W; is given by expression (9.140).
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9.8 Numerical examples on interaction of multipliers

Let us consider the system of the form [Hansen (1985)]

(9.157)

Stability diagram for this system in the frequency-amplitude parameter
space (u),q) can be found numerically by evaluation of the Floquet matrix
and checking the stability condition for its multipliers. The calculations
were carried out for the ranges of parameters 2.5 < w < 5.5 and 0 < q < 0.8,
where stability was checked at 200 x 200 = 40000 points.

Fig. 9.11 shows the stability diagram when the system is undamped, that
is, c = 0. The instability domain shown in Fig. 9.11 (hatched) contains three
parts marked 1, 2, and 3. For small values of q, these three regions can be
clearly distinguished. For larger values of the excitation amplitude q, they
unite to one large instability domain. Fig. 9.12 shows the stability diagram
when the damping with the coefficient c = 0.1 is included. The length of
each unstable frequency interval goes to zero as the amplitude parameter q
attains some positive value. Now we will show how the multipliers move on
the complex plane when the boundaries between the stability and instability
domains are crossed.

1̂11 1 II 1 1 1 I I I I
0.6

0.4 - \ , /
X 1 /^ f

o.2 • x y
> *x /X i

| f\ (
, \ 3 y

\ /

i \ f

3 4 5 CD

Fig. 9.11 Stability diagram on frequency-amplitude plane for undamped system.
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Fig. 9.12 Stability diagram on frequency-amplitude plane for system with damping.

9.8.1 Parametric resonance

By keeping the excitation amplitude fixed, q = 0.4, and varying the exci-
tation frequency w from 2.5 to 3.0, the left boundary of the first instability
domain is crossed. In Figs. 9.13 and 9.14 the traces of four multipliers are
plotted in the complex plane. In Fig. 9.13 the system is undamped. In
Fig. 9.14 the damping is included.

•' Imp
1

r \ ReP
— « 1—> •

- l l o n

Fig. 9.13 Traces of multipliers for undamped system in case of parametric resonance.

In case of no damping, multipliers of the stable system lie on the unit
circle. In Fig. 9.13 two complex conjugate multipliers situated on the unit
circle collide at the point p = - 1 . This happens on the stability boundary.
At this point there exists a double multiplier with a single eigenvector. Two
multipliers interact strongly and leave the unit circle along the real axis, see
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Fig. 9.14 Traces of multipliers for system with damping in case of parametric resonance.

Section 2.6. When the stability boundary is crossed, one multiplier becomes
greater than —1 and another multiplier gets smaller than — 1. Two other
multipliers stay on the unit circle.

When the first part of the instability domain is left by crossing the
right stability boundary, the change from instability to stability occurs.
This change is caused by the return of two real multipliers to the point
p = — 1. The multipliers collide at p = — 1, interact strongly, and branch
out entering the unit circle. By passing the third part of the instability
domain, the same process is observed.

If the double multiplier p = - 1 is semi-simple (there are two linearly
independent eigenvectors), two multipliers just pass each other and stay on
the unit circle. Hence, the system is stable at both sides of the interaction
point. This is termed as weak interaction, see Section 2.9. Weak interaction
happens when the tip of the stability domain is passed with q = 0, see
Fig. 9.11.

When damping is included, the multipliers move as shown in Fig. 9.14.
Now multipliers of a stable system are situated inside the unit circle. Two
multipliers interact strongly, but the interaction occurs inside the unit cir-
cle. The change from stability to instability occurs by passing of a simple
real multiplier through the point p = - 1 .

The type of instability described by Figs. 9.13 and 9.14 is called the
parametric resonance. In Figs. 9.13 and 9.14 the parametric resonance is
related to the multiplier p — — 1 and called the subharmonic parametric
resonance. The parametric resonance can also be related to the multiplier
p = 1. Then it is called the harmonic parametric resonance.
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9.8.2 Combination resonance

By keeping the excitation amplitude fixed, q = 0.4, and varying the excita-
tion frequency u> from 3.8 to 3.9, the left boundary of the second instability
domain is crossed. In Figs. 9.15 and 9.16 the traces of four multipliers are
plotted on the complex plane. Fig. 9.15 corresponds to no damping. In
Fig. 9.16 the damping is included.

' • Imp

Rep

Fig. 9.15 Traces of multipliers for undamped system in case of combination resonance.

" Imp

Fig. 9.16 Traces of multipliers for system with damping in case of combination reso-
nance.

In Fig. 9.15 two complex conjugate pairs of multipliers situated on the
unit circle coincide at the points p and p. This happens on the boundary of
the second instability domain. At this point, a complex conjugate pair of



308 Multiparameter Stability Theory with Mechanical Applications

double multipliers with Jordan chains of second order appears. Then the
multipliers branch out and leave the unit circle (strong interaction). In the
instability domain two complex multipliers lie outside the unit circle and
two other multipliers lie inside the unit circle. As the instability domain is
left by crossing the right boundary, the multipliers collide, interact strongly,
and branch out entering the unit circle again.

If the double complex conjugate multipliers are semi-simple, the multi-
pliers pass each other and stay on the unit circle (weak interaction). This
happens when the tip of the second instability domain is passed at q = 0,
see Fig. 9.11.

When damping is included, the multipliers move as shown in Fig. 9.16.
The multipliers interact as in the case of no damping. But now the strong
interaction occurs inside the unit circle. The change from stability to insta-
bility occurs by passing of a complex conjugate pair of simple multipliers
through the unit circle. The type of instability described by Figs. 9.15 and
9.16 is called the combination resonance.



Chapter 10

Stability Boundary of General
Periodic System

Finding the stability and instability domains in the parameter space is
the main problem for the stability theory of periodic systems. Usually this
problem is solved by constructing the stability boundary and specifying the
type of instability for each part of the boundary. We know that the stability
boundary in the parameter space consists of smooth surfaces, but may
have singularities. The simplest singularities are angles appearing in two-
dimensional parameter space, but more complicated singularities can occur
in multi-parameter spaces. These singularities reflect physical properties
of the underlying system, and their study requires special treatment based
on the bifurcation theory approach. Naturally, we are mostly interested in
analyzing generic (typical) singularities of the stability boundary.

In this chapter, following [Mailybaev and Seyranian (2000a); Mailybaev
and Seyranian (2000b)] we describe the stability boundary for a general
linear system of ordinary differential equations with periodic coefficients
dependent on real parameters. Regular part of the stability boundary cor-
responding to parametric and combination resonances is described, and
its first and second order approximations are derived using derivatives of
simple multipliers. Classification of generic singularities of the stability
boundary for two- and three-parameter periodic systems is given, and the
formulae for first order approximations of the stability domain near the
singularities are derived. These formulae have a constructive form and re-
quire the information only at the singularity point: values of multipliers,
eigenvectors, matriciants, and derivatives of the system matrix with respect
to parameters. The suggested approach is useful for numerical construc-
tion and analysis of the stability boundary, and helps avoiding numerical
difficulties associated with singularities.

As numerical application, we consider the stability problem for vibra-

309
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tions of two elastically attached pipes conveying pulsating flow. In the
three-parameter space (mean velocity of the flow, amplitude and frequency
of pulsations) we analyze the stability boundary, find and approximate the
dihedral angle singularity.

10.1 Stability boundary of periodic system

Let us consider a linear periodic system of ordinary differential equations

x = G(i)x, (10.1)

where x 6 K.m is a state vector, G(i) is a nonsymmetric m x m matrix,
whose components are continuous periodic functions of time t with a period
T, G(t + T) = G(t). According to the Floquet theory, we introduce the
m x m matrix (the matriciant) X(t) as a solution of the equation

X = G(*)X (10.2)

with the initial condition

X(0) = I. (10.3)

The Floquet matrix F is defined as

F = X(T). (10.4)

Stability of system (10.1) is determined by the multipliers (eigenvalues)
pi,..., pm of the Floquet matrix. If all the multipliers are inside the unit
circle on the complex plane, \p\ < 1, system (10.1) is asymptotically stable.
If at least one multiplier lies outside the unit circle, \p\ > 1, then the system
is unstable. The transition from stability to instability occurs, when one or
several multipliers cross the unit circle, \p\ = 1, while others remain inside
the unit circle.

Let us consider multi-parameter system (10.1), where the matrix G =
G(£,p) and the period T = T(p) are smooth functions of the vector of pa-
rameters p € En. In this case the Floquet matrix F = F(p) corresponding
to this system smoothly depends on the parameters. The stability crite-
rion divides the parameter space into the stability and instability domains.
We define the stability domain as a set of points p such that the corre-
sponding system is asymptotically stable (|p| < 1 for all the multipliers of
F(p)). Therefore, the boundary of the stability domain is represented by
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the points p for which the matrix F(p) has multipliers on the unit circle,
|p| = 1, while other multipliers are inside the unit circle.

There are two basic ways how a general periodic system can lose stabil-
ity. The first way, called the parametric resonance, corresponds to a simple
real multiplier leaving the unit circle. This multiplier can cross the unit cir-
cle at the points p = 1 or p = - 1 . These cases correspond to the harmonic
and subharmonic parametric resonances, respectively, see Fig. 10.1a,b. The
second way, called the combination resonance, corresponds to a complex
conjugate pair of simple multipliers crossing the unit circle at the points
p = exp(±iw), 0 < w < 7f, see Fig. 10.1c. The parametric and combination
resonances represent regular parts of the stability boundary. Other ways for
losing stability of the system, for example, when the multipliers on the unit
circle are multiple, correspond to singular points of the stability boundary.

a) Im^l b) Im X\ c) ImAJ A

I \ Re A, / XRSX I \ ReX

Fig. 10.1 Loss of stability for a general periodic system: a) harmonic parametric reso-
nance, b) subharmonic parametric resonance, and c) combination resonance.

Let po be a regular point of the stability boundary, and p(jp) be a
simple multiplier crossing the unit circle at p = po. Since the multipliers
are complex conjugate, in case of combination resonance we consider only
the multiplier having positive imaginary part. The stability boundary in
the neighborhood of the point po is given by the equation

\p(p)\ = 1, (10.5)

and the stability domain is determined by the inequality

|P(P)I < I- (10.6)

Since a simple multiplier smoothly depends on parameters, equation (10.5)
defines a smooth hypersurface in the parameter space, provided that the
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real gradient vector

fdjp\ d\p\\
'-Upi'- 'flpJ ( }

evaluated at p 0 is nonzero. Using results of Section 9.5, we find components
of the gradient vector f = (/i , . . . , / „ ) in the form

' ^ • i X O - '-1 - (lM)
where p0 — p(po) and the derivatives are evaluated at po- In case of
parametric resonance formulae (10.8) become

— * = £•
dp ( 1 ° - 9 )

and in case of combination resonance we have

po=expiu: fj — Re-—cosw + ImT^—sinw. (10.10)
dpj dpj

Derivatives of the multiplier p(p) at p0 are given by the formula

where u and v are the right and left eigenvectors of the matrix Fo = F(po)
corresponding to the multiplier po, X(i) is the matriciant evaluated at po,
and Y(i) = (X^1(i))T is the matrix satisfying adjoint equations (9.50),
(9.51). The first order approximation of stability condition (10.6) is

( f ,Ap)<0 , Ap = p - P o , (10.12)

which shows that the vector f is normal to the stability boundary and
directed into the instability domain, see Fig. 10.2 (the stability domain is
denoted by 5).

(10.11)
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Fig. 10.2 Regular part of the stability boundary and its normal vector f.

Second order derivatives of \p\ can be obtained as follows

^ L = &_^{Rep)2 + ( I m )2

dpjdpk dpjdpk v

1 /_ d2p ~~dp dp_\ 1 /_ dp \ (_ dp \

~ W\ \PodPjdPk + dPj dpj " WFR e {Podp-JRe V°Wk)'
(10.13)

where first and second order derivatives of the multiplier p(p) at po are
given by formulae (9.100)-(9.102). Using expressions (10.8) and (10.13),
we obtain the second order approximation for the absolute value of the
multiplier as

i>(p)i = i + E | ^Ap , + \ _ E ^ A « A » + ° ( H A p i i 2 ) ' (10-14)

where Ap = (Api,. . . , Apn) = p - p o - Substituting expansion (10.14) into
conditions (10.5) and (10.6), we obtain the second order approximations
of the stability boundary and stability domain in the neighborhood of the
point p0.

Theorem 10.1 Let po be a regular point of the stability boundary of peri-
odic system (10.1). If the vector? given by expressions (10.9) or (10.10) is
nonzero, then the stability boundary is a smooth surface in the neighborhood
of po, and f is the normal vector to the stability boundary directed into the
instability domain. The second order approximation of the stability domain
is given by (10.6), (10.14).
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10.2 Singularities of stability boundary

Singular points of the stability boundary differ by multipliers lying on the
unit circle and their multiplicities (Jordan structures). We denote type of a
point on the stability boundary by a product of multipliers lying on the unit
circle in powers equal to sizes of corresponding Jordan blocks. For example,
the type lexp(±iw1) exp(±iw2) corresponds to a point p associated with
the simple multipliers p = 1, p = exp(±iu>i), and p = exp(±«W2) (0 < wi <
u)2 < TT); the type (-1) I2 corresponds to a point p associated with the
simple multiplier p — — 1 and the double nonderogatory multiplier p — 1
(with the Jordan chain of length 2). Other multipliers are assumed to be
inside the unit circle.

The number of different types for singular points of the stability bound-
ary, which can appear for a particular multi-parameter system, is very large.
Among them, structurally stable types are the most important. Points of
these types appear in the case of general position and cannot be removed
by small changes of the system. Selection of generic (structurally stable)
cases is a complicated task in case of periodic systems, since these systems
are represented by periodic matrix-functions G(i,p). In order to avoid
mathematical difficulties related to consideration of functional spaces, we
consider a multi-parameter Floquet matrix F(p) corresponding to a peri-
odic system. Then, we relate the notion of general position to the matrix
family F(p) rather than to the family of periodic matrix-functions G(i,p).

For convenience, we introduce short notation for several specific types

Bx[l], B2[-l], B3[exp(±uj)], (10.15)

d[ l 2 ] , C2[(-l)2], (10.16)

A[l3], D2[(-l)% D3[(exp(±iuj))2}, (10.17)

and their combinations

B12[l(-1)], Bi3[lexp(±iw)],
(10.18)

-B23K-I) exp(±iw)], B33[exp(±iw!) exp(±iw2)],
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Bi23[l(-l)exp(±iw)],

JBi33[l exp(d=iwi) exp(±iw2)], #233[(-l) exp(±iwi) exp(±iw2)],
(10.19)

^333[exp(±jwi)exp(±2w2)exp(±iw3)], CiB2[l2(-l)],

C1B3[l2exp(±ioj)}, C2Bi[(-l)2l], C2B3[(-1)2 exp(±tw)].

Here, for example, C1-B3 denotes existence of the double nonderogatory
multiplier p = 1 (with a Jordan chain of length 2) and a pair of simple
multipliers p = exp(±iu>) on the unit circle.

A set of points of the same type forms a smooth surface in the pa-
rameter space. In the case of general position, the codimension of this
surface (dimension of the parameter space n minus dimension of the sur-
face) depends only on the type. General formulae for these codimensions
are given in [Arnold (1972); Galin (1972)]. It is clear that points of the
stability boundary for a generic n-parameter system have only the types
of codimension n or lower. The types B\, B2, and B3 listed in (10.15)
have codimension 1 and describe the regular part of the stability bound-
ary (harmonic and subharmonic parametric resonances and combination
resonance, respectively). Types of codimension 2 are listed in (10.16) and
(10.18), while types of codimension 3 are given in (10.17) and (10.19).

Qualitative analysis of singularities of the stability boundary can be per-
formed using the versal deformation theory developed in [Arnold (1983a)].
According to this theory, the stability domain in the neighborhood of a
singular boundary point po can be determined by the analysis of a specific
low-size matrix F'(a), which depends only on type of the point p0. The rela-
tion between the stability domains for the matrices F(p) and F'(a) is given
by a smooth change of parameters a = (a\ (p), . . . , an> (p)), a(p0) = 0. The
Jacobian matrix [da/dp] has maximal rank in the case of general position.
Depending on type of the point po, the matrix F'(a) takes the form

fli : (l + oi), B2: ( - I + 01),
(10.20)

B3 : (exp(oi +ioj)),

C1: t1 * ) , C2: (^ ] ) , (10.21)
ya2 1 + ai 1 y a2 —1 + aiJ
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/I 1 0 N /-I 1 0 X

Di : 0 1 1 , D2 : 0 - 1 1

\a3 a2 1 + a i / \a3 a2 - l + o i / (10.22)

fexp(ai+iu>) 1 \
- ^ 3 : . . . . •

y (12+10,3 exp(ai+zw)y

Matrices corresponding to types (10.18) and (10.19) have the block-diagonal
form composed by matrices (10.20), (10.21), where the blocks contain inde-
pendent parameters. For example, the matrix F'(a) corresponding to the
type C1B3 (combination of the types C\ and B3) takes the form

/I 1 ON

\a2 l + o i 0 . (10.23)

\ 0 0 exp(a3 + iuj))

Stability analysis for the matrices F'(a) in cases (10.16)—(10.19) can be
done analytically. As a result, we determine a local form of the stability
domain and stability boundary (up to a smooth change of parameters) for
singular boundary points of codimensions 2 and 3.

For illustration, let us consider the type C\. Multipliers (eigenvalues)
of the corresponding matrix F'(a) (10.21) are

,9=1 + ^ ^ 0 2 + ^ . (10.24)

The maximal squared absolute value of multipliers (10.24) is equal to

{ 1 + ai - a-2, 0,2 + af/4 < 0,

/ , N2 (10.25)
( l + ai/2+ \Ja2 +al/4t\ , a2 + a{/4 > 0.

The stability domain, determined by the inequality \p\ < 1, in the neigh-
borhood of a = 0 takes the form a\ < a2, a2 < 0 shown in Fig. 10.3. The
stability boundary has the angle singularity at the origin in the parameter
space (ai, a2). The boundary consists of two lines of types B\ and B3 (the
parametric and combination resonance boundaries) intersecting transver-
sally. Other types of singularities of the stability boundary can be studied
analogously. The results are stated in the following theorems.

(10.25)
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s /

Fig. 10.3 Singularity C\ of the stability boundary.

Theorem 10.2 In the case of general position, the stability boundary of
one-parameter periodic system (10.1) consists of isolated points of types
JE?I[1], i?2[~ 1] (parametric resonance) and i?3[exp(±ia;)] (combination res-
onance).

Theorem 10.3 In the case of general position, the stability boundary of
two-parameter periodic system (10.1) consists of smooth curves correspond-
ing to parametric and combination resonances, whose only singularities are
angles of types (10.16) and (10.18); see Fig. 10.4- The stability domain
always lies inside the angles of size less than TT.

\ B3X S 1
" \ \ B\ JBX

Fig. 10.4 Generic singularities of the stability boundary for two-parameter periodic
system.

Theorem 10.4 In the case of general position, the stability boundary of
three-parameter periodic system (10.1) consists of smooth surfaces corre-
sponding to parametric and combination resonances, whose only singulari-
ties are dihedral angles (edges) of types (10.16) and (10.18), trihedral angles
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of types (10.19), "breaks of an edge" of types D\[l3] and D 2 [ ( - l ) 3 ] , and
"deadlock of an edge" of type £>3[(exp(±iw))2]; see Fig. 10.5.

£23/^\ B32j/\ ClBl C 5 " QB3

CiBx Tr ciB3 ^ ^ ^ i ^^z^Cy

ft-^' %S T^\ .

D- B7

Fig. 10.5 Generic singularities of the stability boundary for three-parameter periodic
system.

Figs. 10.4 and 10.5 show the qualitative form of the singularities (up to
a smooth change of parameters), where the stability domain is denoted by
the letter S.
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Remark 10.1 In the case D3 (the "deadlock of an edge" singularity)
the stability boundary, up to a smooth change of parameters, is given by
the equation xy2 = z2, x > 0, y > 0, determining a part of the so-called
Whitney-Cayley umbrella. In the cases D\ and D2 (the "break of an edge"
singularities) the form of the stability boundary is described qualitatively by
the equation x2y2 = z2, x > 0, y > 0.

Remark 10.2 Generic singularities of the stability boundary for periodic
system (10.1) dependent on two and three parameters are the same as for
autonomous systems, see Section 3.4, though the stability criteria and types
of stability boundary points are different. We note that the types B\2, Bi23,
C1B2, and C2B\ for periodic systems are essentially different compared to
autonomous systems. If we use the transformation of a periodic system
to an autonomous one by Theorem 9.4 (page 275), the multipliers p = 1
and p = -1 become zero eigenvalues for the autonomous system with two
Jordan blocks. But this is not the case of general position for two- and
three-parameter autonomous systems.

10.3 Quantitative analysis of singularities

Quantitative analysis of singularities of the stability boundary for multi-
parameter periodic systems is essentially similar to the case of autonomous
systems. It uses the bifurcation theory for multipliers and formulae for
derivatives of the Floquet matrix with respect to parameters. The main
distinctive feature of this analysis is that the stability is characterized by
absolute values of multipliers, \p\ < 1, while in the autonomous case we
consider real parts of eigenvalues, Re A < 0.

Let p = po be a singular point of the stability boundary. Under pertur-
bation of the parameter vector p = po + Ap the multipliers lying on the
unit circle change. If all these multipliers move inside the unit circle, the
perturbation is stabilizing. If at least one of the multipliers moves outside
of the unit circle, the perturbation is destabilizing. Depending on the type
of singularity, we have different sets of multipliers on the unit circle, whose
behavior depends on their values (real or complex) and multiplicities.

First, let us consider the singularities associated with simple multipliers.
These are Bi2, B13, B23, B33, B123, -8133, -6233, -B333. Each of the multipli-
ers smoothly depends on the parameters together with its absolute value.
The first order approximation of the absolute value of a simple multiplier
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p lying on the unit circle takes the form

\P(P)\ = l + (f,Ap) + o(\\AP\\), (10.26)

where components of the real vector f are given by expressions (10.9) and
(10.10). The first order approximation of the stability condition for this
multiplier is

| p ( p ) | « l + ( f , A p ) < l , (10.27)

or, simply,

( f , A p ) < 0 . (10.28)

Taking condition (10.28) for all the multipliers lying on the unit circle, we
obtain first order approximations of the stability domain in the neighbor-
hood of the singular point po • Depending on the type these approximations
are the following:

B12 : (fi.Ap) < 0 , ( f_ i ,Ap)<0;

B13 : (fi, Ap) < 0, (fexp iu, Ap) < 0;

B23 : (f_i, Ap) < 0, (fexpiw, Ap) < 0;

B33 = (fexp iun, Ap) < 0, (fexp iul2 , Ap) < 0;
(10.29)

B123 : (fi, Ap) < 0, (f_i, Ap) < 0, (fexpiw, Ap) < 0;

BU3 : (fi, Ap) < 0, (fexpiw!, Ap) < 0, (fexpiW2,Ap) < 0;

B233 : (f_i, Ap) < 0, (fexP iUl, Ap) < 0, (fexP i^, Ap) < 0;

•B333 : (fexpion, Ap) < 0, (fexPiW2, Ap) < 0, (fexpiW3,Ap) < 0;

where the subscripts denote the multipliers, for which the vector f is eval-
uated. We see that for the (dihedral) angle singularities B12, Bx3, B23,
B33 approximations (10.29) provide two inequalities, while the approxima-
tions for the trihedral angle singularities B\23, Bi33, B233, B333 are given
by three inequalities. The vectors f in these inequalities are the normal
vectors to corresponding sides of the stability boundary looking in opposite
direction to the stability domain.

Now let us consider a double nonderogatory multiplier po lying on the
unit circle at p — po- Using results of Subsection 9.7.1, we find that
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bifurcation of this multiplier is given by the expansion

p = po ± \/(gi, Ap) + \(g2, Ap) +o(e), (10.30)

where Ap = ee, and components of the vectors gi and g2 are determined
by formulae (9.139), (9.140). Keeping two lowest order terms in (10.30),
we find

H 2 = l±2Rey/(p02g1,Ap) + o(e1/2). (10.31)

Since the second term in the right-hand side is taken with both signs, the
stability condition \p\ < 1 requires it to be zero. This happens when the
expression under the square root is real and negative, i.e.,

(Re (p02gi), Ap) < 0, (Im (p02gl), Ap) = 0. (10.32)

Using condition (10.32) in expansion (10.30), we obtain

\p\2 = 1 + (Re (poS2 - p02gl), Ap) + o(e). (10.33)

Prom (10.33) we find the third stability condition as

(Re (p0g2 - p 2 g l ) , Ap) < 0. (10.34)

In case of real multipliers po — ±1 and complex multiplier po — expiu
stability conditions (10.32), (10.34) become

Po = 1 : (gi, Ap) < 0, (g2 - gi, Ap) < 0;

Po = -l- (gi,Ap) <0, (gi+g2,Ap) >0;

po = expiw: (Regi cos2w + Imgi sin2w, Ap) < 0, , .

(Im gi cos 2LO - Re gi sin 2w, Ap) = 0,

(Re g2 cos w + Im g2 sin w

-Re gi cos 2ui - Im gi sin 2w, Ap) < 0.

Using conditions (10.35), we obtain first order approximations of the sta-
bility domain for the (dihedral) angle singularities C\, C2 and the "deadlock
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of an edge" singularity D3 as follows

Ci : (gi.Ap) <0, (ga-gi .Ap) < 0;

C2: (gi.Ap) <0, ( g l + g 2 , A p ) > 0 ;

D3 : (Reg1cos2w + Img1sin2w,Ap) < 0,

(Im gi cos 2w - Re gi sin 2OJ, Ap) = 0,

(Re g2 cos w + Im g2 sin w

-Re gi cos 2LO - Im gx sin 2w, Ap) < 0.

The vectors gi and g2 are evaluated for the double multiplier lying on the
unit circle.

Stabilizing perturbations for the singularity "deadlock of an edge" D3 in
the first approximation form a plane angle in the three-dimensional space.
This reflects a very narrow form of the stability domain near the singular
point. Notice that all the smooth curves p(e) starting at p(0) = po, whose
initial direction e = dp/de satisfies conditions (10.36) (being substituted
instead of Ap), lie inside the stability domain for small positive e. The
initial direction e of the edge £33 for the singularity "deadlock of an edge"
D3, see Fig. 10.5, is given by

(Re g! cos 2u + Im gj sin 2w, e) < 0,

(Im gx cos 2LO - Re gi sin 2to, e) = 0,
(10.37)

(Re g2 cos w + Img2 sin u

—Re gi cos 2ui — Im gj sin 2w, e) = 0.

Analogously, for the trihedral angle singularities Ci-B2, C\Bz, C2Bi,
C2B3 we get local approximations of the stability domain as

dB2: ( g l , A p ) < 0 , ( g 2 - g i , A p ) < 0 , (f_i,Ap)<0;

C1B3: (g i ,A P )<0 , ( g 2 - g i , A p ) <0, (fexpia,,Ap) <0;
(10.38)

C2B1 : ( g l , A p ) < 0 , ( g 1 +g 2 ,Ap)>0 , (fi ,Ap)<0;

C2B3 : (gl, Ap) < 0, (gi +g 2 , Ap) > 0, (fexPiU,Ap) < 0.

Finally, let us consider the triple nonderogatory multiplier p0 = 1. Let
p = p(e), e > 0, be a smooth curve in the parameter space starting at
p(0) = po and having the initial direction e = dp/de evaluated at e = 0.

(10.36)
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Using results of Subsection 9.7.2, we find that bifurcation of this multiplier
along the curve p(e) is given by the expansion

p = l + £1/3{/(hr7e) + o(e1/3), (10.39)

where components of the real vector h! are evaluated by formulae (9.140),
(9.143). Since the cubic root in (10.39) takes three different complex values,
there is always a multiplier lying outside the unit circle unless

(hi,e) = 0. (10.40)

Hence, directions of the curves lying in the stability domain satisfy equation
(10.40).

Directions e determined by (10.40) are degenerate in the sense that
expansions of the multipliers along the curve p(e) are not given in powers
of e1/3. In this case splitting of the triple multiplier po — 1 is described by
two multipliers

P = l±e^^J^) + U(ll3,e)-^-^) + 0 ( e ) , (10.41)
2 V 2(h2,e) /

and by the third multiplier

2(h2)e)

where the vector d = d2p/de2 is evaluated at e = 0, the components of the
real vectors h2 and I13 are given by formulae (9.140), (9.143), and H = [hy]
is the n x n real matrix with the elements

^ = v o ^ ( F o - A . I + vov2) _ - — j u , , , M = l , . . . , n ,

(10.43)
determining the quadratic form

n

(He,e)= Yl hHeier (10'44)

In expression (10.43), u0 is the real right eigenvector, v0 and v2 are the
real eigenvector and second associated vector of the left Jordan chain corre-
sponding to po — 1, see equations (9.141) and (9.142). Expressions (10.41)-
(10.43) are obtained using formulae (9.148)-(9.151) of Subsection 9.7.2.

For the absolute values of multipliers (10.41) we find

\p\2 = l±e1'22B&y/Q^)+o{e1/2). (10.45)

(10.42)



324 Multiparameter Stability Theory with Mechanical Applications

Since both negative and positive signs are taken before the square root, the
second term in the right-hand side of (10.45) must vanish for stabilizing
perturbation, which yields

(h 2 ,e)<0. (10.46)

Using condition (10.46) in expansion (10.41), we find

IPI2 = l + e ((hs - h2,e) - ( H e ' e / " ^ ' d ) ) + o(e). (10.47)
V 2(h2,e) )

Stabilizing perturbations are determined by the second term in the right-
hand side of expression (10.47), which must be negative. Using (10.46), we
obtain the inequality

(h 1 , d )> (He , e ) -2 (h 3 -h 2 , e ) (h 2 , e ) . (10.48)

Expansion for the third eigenvalue (10.42) with the use of inequality
(10.46) yields one more stability condition

(h1 )d)<(He,e) . (10.49)

Since (h2)e) < 0, solutions d of two inequalities (10.48) and (10.49) exist
if

( h 3 - h 2 , e ) < 0 . (10.50)

Using conditions (10.40), (10.46), and (10.50), we find the first order
approximation of the stability domain in the neighborhood of the singularity
"break of an edge" D\ as

Dx: (h1)Ap) = 0, (h2 ,Ap)<0, ( h 3 - h 2 , A p ) < 0 . (10.51)

This approximation represents a plane angle in the three-parameter space,
which reflects a narrow form of the stability domain near the singular point.
Under conditions (10.51) taken for the direction vector e, the double in-
equality

(He,e) - 2(h3 -h 2 ) e) (h 2 ,e) < (hi,d) < (He,e) (10.52)

provides a set of second order derivative vectors d determining curvatures
of the curves p(e) lying in the stability domain for positive e. Tangent
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vectors to the edges C\ and Bi3 at the point p0 are given by

edge Ci : (hi,e) = 0, (h2le) = 0, (h3 - h2>e) < 0;
(10.53)

edge £ i 3 : (h1(e) = 0, (h 2 j e )<0 , ( h 3 - h 2 , e ) = O .

The singularity "break of an edge" D2 associated with the triple non-
derogatory multiplier p0 = - 1 is studied analogously. As a result, we get
the first order approximation of the stability domain

D2: (h i ,Ap)=0, (h2,Ap) < 0, (h2+h3 ,Ap) > 0. (10.54)

Under conditions (10.54) taken for the direction vector e, the double in-
equality

(He,e) <(h 1 ) d) < (He,e) - 2(h2 + h3)e)(h2!e) (10.55)

provides a set of second order derivative vectors d for the curves p(e), e > 0,
lying in the stability domain. Tangent vectors to the edges C2 and B23 at
the point of singularity are given by

edge<?2: (h 1 ) e )=0 , (h 2 l e )=0 , ( h 2 + h 3 , e ) > 0 ;
(10.56)

edgeB23: (h1)e) = 0, (h 2 ,e)<0, ( h 2 + h 3 , e ) = 0 .

The cases considered cover all generic types of singularities having codi-
mensions 2 and 3.

Theorem 10.5 For singularities of the stability boundary of codimen-
sions 2 and 3, local first order approximations of the stability domain are
given by (10.29), (10.36), (10.38), (10.51), and (10.54). In the case of
general position, the vectors determining the approximations are linearly
independent.

The approximations obtained in this section allow determining a local
form of the stability domain near the singular point for a multi-parameter
periodic system using only information at this point: multipliers, right and
left eigenvectors and associated vectors, matriciants, and derivatives of the
system matrix with respect to parameters. These approximations are very
useful for constructing the stability boundary near singularities, and for
stabilization and stability optimization problems.
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10.4 Stability of two elastically attached pipes conveying
pulsating flow

Let us consider in-plane vibrations of a pipe conveying flow, see Fig. 10.6.
The pipe consists of two rigid parts of lengths h and h, which are connected
by means of hinges having elastic coefficients c\ and C2. The right end
of the pipe is free. The pipe conveys flow with a mass per unit length
m and pulsating velocity u(t) — U(l + v sin fit). The mass of the pipe
per unit length is equal to M. The system has two degrees of freedom.
As generalized coordinates we choose the angles <p and ip, which describe
deflection of the parts of the pipe from the horizontal axis.

The linearized equations of motion of the system in non-dimensional
form are [Szabo et al. (1996)]

Mq + Bq + C q = 0 , q = K J . (10-57)

with the matrices

/A3 + 3A2 1.5A\ (\2 2A\
M = , B = V(T)

I 1.5A 1 ) W I 0 1
(10.58)

c = /<7 + i - A / ( r ) - l + A/(r)\

The dimensionless variables in matrices (10.58) are

. ,, , . , , , V2(T) h a 3m
T = at, M=V(T) + — , \=j-t *=-, v=—t-,

(10.59)

V(T) = y(l + SsinujT), V = ^ , w = - ,
ah a

Fig. 10.6 Pipe conveying pulsating flow.
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where a — \J 11C2/{ml\). The dots in equation (10.57) denote derivatives
with respect to dimensionless time r.

Let us write equation (10.57) in the first order form

* = GMx, x = Q , G W = ( _ M ° _ , C _ J . , B J , (10.60)
where the matrix operator G(r) is periodic with the period T — 2ir/u) and
smoothly depends on the dimensionless parameters A, a, fi, UJ, S, and V.

Let us fix the parameters X = a — /J, — 1, which correspond to equal
lengths of the parts of the pipe, equal elastic coefficients in the hinges, and
the fluid mass per unit length equal to half the pipe mass per unit length.
We study stability of the system in the three-dimensional parameter space
p = (LO,S,V), where the parameters u and 6 describe the frequency and
amplitude of pulsation, and V characterizes the mean velocity of the flow.
At 6 — 0 we have V(T) = V — const, i.e., the system is autonomous. In
this case the critical velocity of the flow (the minimal velocity, when the
system loses stability) is equal to Vcr — y 6.2 - 0.4\/29 RS 2.0115 [Szabo
et al. (1996)].

Let us analyze the stabilizing effect of pulsation at super-critical veloc-
ities of the flow V > Vcr. We take the velocity V — 2.8 and the pulsation
frequency u = 8. The pulsation amplitude 5 corresponding to a point on
the stability boundary can be found numerically. For this purpose, we check
stability of the system by evaluating the Floquet matrix and its multipliers
with 5 increasing from zero. The Floquet matrix F is found by integra-
tion of equation (10.2) with initial condition (10.3) in the time interval
0 < r < T using the Runge-Kutta method. As a result, we find the value
6 = 0.7366 for the pulsation amplitude at which the system becomes stable.
At the point po = (8, 0.7366, 2.8) in the parameter space all the multipliers
are simple and equal to

exp(±0.8807f), 0.5350, 0.1514. (10.61)

Since the multipliers p = exp(±0.8807z) lying on the unit circle are simple,
the point po is a regular point of the stability boundary (the combination
resonance). The stability boundary is a smooth surface in the neighborhood
of po.

Let us find approximation of the stability domain in the neighborhood
of p0. For this purpose, we calculate the matriciant X(i) by equation (10.2)
with initial condition (10.3), and determine the right and left eigenvectors
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u0 and v0 corresponding to the multiplier p0 = exp0.8807« of the Floquet
matrix F = X(T). Using this information, we evaluate components of the
vector f by formulae (10.10) and (10.11). As a result, we get

f = (0.0316, -2.0464, 0.5114). (10.62)

The vector f is a normal vector to the stability boundary directed into the
instability domain, see Theorem 10.1.

Now let us find the second order approximation of the stability bound-
ary. First, we make the change of time f = wr in system (10.60) in order
to obtain a periodic system with the period T = 2?r independent on param-
eters. Then, second order derivatives of the Floquet matrix are evaluated
by formula (9.61) for the obtained system, see Section 9.3. Second order
derivatives of the multiplier po = exp0.8807i are determined by formu-
lae (9.100)-(9.102), see Section 9.5. Using this data in expression (10.13),
we find second order derivatives of the absolute value of the multiplier
po = exp0.8807i. As a result, expansion (10.14) takes the form

\p(p)\ = 1 + 0.0316Aw - 2.0464AJ + 0.5114AV

-0.0102(Aw)2 + 0.4011AwA<5 + 0.2529(A<5)2 (10.63)

-2.1832A<5AF + 0.1221(Ay)2 - 0.0638AwAV + o(||Ap||2),

where Ap = p - p0 = (Aw, A<5, AV). Substituting (10.63) into equation
|p(p)| = 1, we find the local second order approximation of the stability
boundary as

0.0316Aw - 2.0464AJ + 0.5114AV

-0.0102(Aw)2 + OAOUAcuAS + 0.2529(A£)2 (10.64)

-2.1832A<5AV + 0.1221(Ay)2 - 0.0638AwA7 = 0.

Approximation (10.64) and vector (10.62) are shown in Fig. 10.7, where
the normal vector f is scaled in order to fit the figure size. We see that the
system is stabilized by pulsation of the flow (the mean critical velocity of
the flow V grows rapidly with an increase of the pulsation amplitude 5).

For comparison, the exact stability boundary found numerically is
shown in Fig. 10.7 by dashed lines. Fig. 10.7 demonstrates very good agree-
ment of the second order approximation and the exact stability boundary.
Notice that the approximation was evaluated using only the information at
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the point p0: the matriciants, multipliers, right and left eigenvectors, and
derivatives of the system matrix G(i, p) with respect to parameters.

9 0.3 0.5 0.7

Fig. 10.7 Regular part of the stability boundary for the pipe conveying pulsating flow
(second order approximation and normal vector f).

Approximation of the stability boundary can be used for construction of
the stability domain and its boundary, stabilization, and stability optimiza-
tion. The variation of parameters 5p — — ai, where a is a small positive
number, changes the absolute value of the multiplier as

S\p\ = -a||f||2 < 0, (10.65)

which means that the system is stabilized. Approximation of the stability
boundary determines the best variations of the pulsation frequency and
amplitude increasing the critical mean velocity. It can be used in gradi-
ent methods for motion along the stability boundary. Doing the multi-
parameter analysis, we can expect to arrive at a singularity of the stability
boundary, for example, at an edge. Then, the results of Section 10.3 should
be used for the stability analysis.

Let us consider the point po = (3.643, 0.5555, 2.6) in the parameter
space, where the Floquet matrix Fo = F(po) has the simple multipliers
p = 0.225, p = 0.026 and the double multiplier p = - 1 . The double
multiplier p — - 1 has a single eigenvector. The corresponding right and
left Jordan chains (eigenvectors and associated vectors) satisfying equations
(9.133)-(9.135) are

u0 = (0.92, 0.7, -0.59, 2.49)T, ui = (0.11, -0.35, 0.12, 1)T,
(10.66)

v0 = (3.34, -2.27, 1.21, -0.3)T, vj = (-0.57, 1.11, 0.4, 0.4)T.
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The point po is of type C2 and represents the dihedral angle singularity
(edge) of the stability boundary, see Theorem 10.4.

Let us find the local approximation of the stability domain near po
using Theorem 10.5. For this purpose, we evaluate the matriciant X(i)
by equation (10.2) with initial condition (10.3) and use it, together with
vectors (10.66), in formulae (9.139) and (9.140). This yields the vectors

gi = (-5.15, 45.2, -7.77), g2 = (4.49, -31.1, 3.16), (10.67)

which determine the first order approximation of the stability domain

(gi ,Ap)<0, (g1 + g 2 , A p ) > 0 . (10.68)

The vectors gi and -(gi + g2) are the normal vectors to the sides of the
stability boundary looking at the directions opposite to the stability do-
main. The vector tangent to the edge of the stability boundary at po can
be found as the cross product

er = (gi + g2) x gi = (98.8, 18.6, 42.7). (10.69)

3.0-

Fig. 10.8 Edge Ci of stability boundary for pipe conveying pulsating flow.

Fig. 10.8 (bold solid lines) shows approximation of the stability bound-
ary (10.67), (10.68). For comparison, the exact stability boundary found
numerically is given by dashed lines. It confirms existence of the singu-
larity and shows good agreement with the approximation. We note that
finding the approximation of the stability domain requires only a single in-
tegration of equation (10.2) for finding the matriciant and taking integrals
(9.140) for each of the parameters. The obtained information can be used
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for construction of the stability boundary and motion along the stability
boundary with the purpose of optimization under stability criteria. For
example, the fastest increase of the critical mean velocity of the flow cor-
responds to variation of the parameters along the edge, whose direction is
given by expression (10.69).





Chapter 11

Instability Domains of Oscillatory
System with Small Parametric

Excitation and Damping

In this chapter we consider linear oscillatory systems with periodic coeffi-
cients dependent on three physical parameters: frequency 0 and amplitude
S of periodic excitation, and coefficient of dissipative forces 7. The param-
eters d and 7 are assumed to be small. It is supposed that the unexcited
system without dissipative forces (5 — 0 and 7 = 0) is autonomous and
conservative.

Systems of this type are subjected to the instability phenomenon called
parametric resonance, which is of great significance for problems of mechan-
ics and physics. Parametric resonance takes place in oscillatory systems
with periodically varying parameters. In mechanical systems parametric
excitation is realized in the form of periodically changing stiffnesses, masses,
and geometric characteristics. It turns out that introduction of weak para-
metric excitation can destabilize the system if the value of the excitation
frequency belongs to certain intervals, which are related in a specific way
to natural frequencies of the system. Two types of parametric resonance
are distinguished: simple resonance, when the excitation frequency is close
to specific fractions of a natural frequency of the system, and combination
resonance represented by combination of two different natural frequencies.

Dissipative forces are of great importance in the theory of parametric
resonance. Generally, dissipative forces decrease critical intervals of the
excitation frequency, making the parametric resonance impossible at suf-
ficiently large level of dissipation. At the same time, better performance
of mechanical and physical systems often requires dissipative forces to be
small. In this case critical intervals of the excitation frequency are highly
sensitive to the relation between the excitation amplitude and damping
parameter. The strongest form of this dependence is realized in the phe-
nomenon of destabilization of the system by infinitely small dissipative

333
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forces in case of combination resonance. A number of works are devoted
to the study of influence of small periodic excitation and dissipative forces
on stability of a conservative system, see the books by [Bolotin (1964);
Yakubovich and Starzhinskii (1975); Schmidt (1975); Nayfeh and Mook
(1979); Yakubovich and Starzhinskii (1987)] and many references therein.
In this chapter we mostly follow the papers by [Seyranian (2001); Mailybaev
and Seyranian (2001)].

The chapter starts with investigation of a one degree of freedom system
described by the Hill equation with damping. Then, we present a general
theory of parametric resonance for a multiple degrees of freedom system.
The study is based on bifurcation theory of multipliers developed in Chap-
ter 9 and provides universal approach to solution of parametric resonance
problems. We emphasize that the important feature of this study is the
formulation of the instability (parametric resonance) problem in the three-
dimensional space of independent physical parameters.

11.1 Instability domains for the Hill equation with damping

Let us consider the Hill equation with damping

y + jy + (w2 + 6ip(t))y = 0, (11.1)

where cp(t) is a piecewise continuous periodic function of time t with the
period T = 2TT, S is a constant describing the amplitude of parametric exci-
tation, 7 > 0 is a damping coefficient, and w > 0 is a natural frequency of
the system without damping and parametric excitation. The Hill equation
depends on a vector of three parameters p = (cu,5,7). We are going to
study the instability domain of the trivial solution y{t) = 0 for the sys-
tem under the assumption that 7 and 5 are small, which means that the
dissipative forces and the amplitude of parametric excitation are small.

Equation (11.1) can be written in the first order form as

* = G(*)x, x = r ) , G ( i ) = ( ° / N ) • (11.2)
\yj \-u2-5ip{t) -7/

Let us fix the value of the frequency w = LOQ and consider the system
without damping and periodic excitation (7 = 0 and S — 0). In this case
the matrix G is independent on time, and equation (11.2) can be solved
analytically. As a result, we find the matriciants X(i) and Y(t) satisfying
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equations (9.48)-(9.51) as

( sinwoi \
COS OJnt \

w0 ,

-wo sin wo t cos w01 /
(11.3)

/ cosw0i wo sin woM
Y W = sinwoi

I cosw0i /
\ wo /

It is easy to verify the property Yr(i)X(£) = I. The Floquet matrix takes
the form

(
sin 2TTW0 \

COS ZTTWn —• \

wo . (11.4)
—wo sin 27rwo cos 2TTWO /

Solving the characteristic equation for the Floquet matrix, we get two

eigenvalues (multipliers)
pa'b = COS2TTW0 ±is in27rw0- (H-5)

If w0 7̂  k/2 for any integer k — 1 ,2 , . . . , then the multipliers pa and pb are

simple, complex conjugate, and lie on the unit circle in the complex plane.

At the values

w o = ^ , k = l , 2 , . . . , (11.6)

the multipliers are double and equal to

pa = pb = (-l)k. (11.7)

The corresponding Floquet matrix is F o = (—l)fcI, which implies that dou-
ble multiplier (11.7) is semi-simple (has two linearly independent eigenvec-
tors). Values (11.6) are called the resonance (critical) values of the natural
frequency.

Using the matrix G from (11.2), matriciants (11.3), and Floquet matrix
(11.4) in formula for first order derivatives of the Floquet matrix (9.59), see
Section 9.3, we find at po = (wo, 0, 0)

( 4?rwo - sin 4TTWO \
1 - cos 4TTW0 \

, (11.8)
IA , • A \ A 1 /

—WO(4TTWO + sin47rwo,) cos4?rwo — 1 /

    

(11.3)

(11.4)

(11.8)
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„ / • n . 1 - COS 2uOt \
dF 1 f27r / s m 2^o* — \
— = — F o / ^o <p(t)dt, (11.9)
06 ZUJO Jo \ _ W o ( 1 + c o s 2 w o i ) _s in2w o t /

( . . . 1 - cos A-KUQ \
Sin 47TW0 - 47TW0 \

wo . (11.10)
OJQ (1 — cos 4L7TU>O) — sin 47ro;o — ATTUIQ )

Using formulae (11.8)—(11.10), the Floquet matrix can be found approxi-
mately in the neighborhood of the point p 0 = (wo,0,0) as

F(p) - F o + ^ A u ; + ^6 + ^ 7 + °( | |Ap| |) , (11.11)

where Aw = w - LJ0 and Ap = (Au,S, 7). The system is asymptotically
stable if and only if all the multipliers (eigenvalues) p of the Floquet matrix
lie inside the unit circle, \p\ < 1. If at least one eigenvalue lies outside the
unit circle, \p\ > 1, the system is unstable, see Theorem 9.3 (page 273).

First, let us consider a non-critical value of the frequency UJ0 ^ k/2,
k = 1,2,. . . Simple multipliers of the undamped system (7 — 0) satisfy
the relation pa — l/pb, which can be shown by analogy with equations
(9.73)-(9.75), see Section 9.4. Hence, simple multipliers can not leave the
unit circle for small values of 6 (the system remains stable). If damping is
added then, using (11.8)—(11.11), we find

de tF(p) = l - 2 j r 7 + o(| |Ap||). (11.12)

Since the multipliers pa and pb are complex conjugate, we have

|p<f = \pb\2 = / / = detF(p). (11.13)

Therefore, addition of damping forces (7 > 0) pushes the multipliers inside
the unit circle. As a result, the system becomes asymptotically stable.
Notice that if 7 < 0 (negative damping), then the multipliers move outside
the unit circle, which leads to instability.

Now, let us consider the critical frequency w0 = k/2. In this case there
is the double semi-simple multiplier pa — pb = (—l)fc. Using matrices
(11.8)—(11.10) in expansion (11.11) and neglecting higher order terms, we
find approximate values of the multipliers as

pa'b = ( - l ) f c ( l -7T7)±7r /D, (11-14)

(11.10)
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where

£ = ^ 2 - 4 ( A W + | < 5 ) 2 , rk = ^al + bl (11.15)

with Co and ak, bk being the mean value and real Fourier coefficients of the
periodic function <p(t):

1 f2n

C° = 2TT / V^dt>
(11.16)

ak = — / ip(t) cos ktdt, bk = — ip(t) sin ktdt.
K Jo K Jo

The system is unstable if the absolute value of at least one multiplier pa

or pb is bigger than one. If D < 0, then the first order instability condition,
when two complex conjugate multipliers leave the unit circle, takes the form
7 < 0. This condition turns out to be exact, since the multipliers lie on
the unit circle at 7 = 0. Recall that in our problem the parameter 7 is
assumed to be positive. Therefore, the system can lose stability when a
real multiplier leaves the unit circle. In this case D > 0 and the instability
condition takes the form D > 72. Using (11.15), this condition yields

4 ( A U , + ! < 5 ) 2 + 7 2 < J<5 2 . (11.17)

Inequality (11.17) determines interior of a half-cone in the three-parameter
space, see Fig. 11.1. This half-cone represents the first order approximation
of the instability domain in the neighborhood of the point p0 = (k/2,0,0).

a, * S!g
5 / 2 *

MSMW

2 // CO

/ '"2
Fig. 11.1 Instability domain for the Hill equation with damping.
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The cone is inclined if the mean value of the parametric excitation is
nonzero, CQ 7̂  0. If CQ — 0, then the cone is symmetric with respect to the
plane 6 = 0. We see that if k increases (higher order resonances are con-
sidered), then the coefficients of 5 and 82 in (11.17) decrease (the constant
T\ decreases as a sum of squared Fourier coefficients). This means that the
cone axis approaches the vertical position, i.e., it tends to become parallel
to the (5-axis, and the cone becomes narrower.

If the function ip(t) is given by a finite Fourier series like, for example,
(p(i) = cost (the Mathieu equation), then the coefficient r^ = 0 for k > ho,
where ko is the number of the last nonzero harmonic in the Fourier series.
In this case half-cone (11.17) degenerates to a single straight line Aw =
—CoS/k, 7 = 0. This line provides the first order approximation of the
instability domain, which means that the instability domain is very narrow
near the resonance point, and destabilization of the system is only possible if
the parameters are changed along a curve tangent to this line. The detailed
analysis of these degenerate cases for the undamped Mathieu-Hill equation
is given in [Arnold (1983b)].

Theorem 11.1 First order approximation of the instability domains for
the Hill equation with damping (11.1) in the neighborhood of the resonance
points 6 = 7 = 0, u> = k/2, k = 1,2,..., is given by half-cones (11.17).

Cross-sections of half-cone (11.17) by the plane 6 = const provide half-
ellipses, see Fig. 11.2. Centers of these ellipses belong to the line Aw =
-co5/k. At 7 = 0 the width of the instability range of the frequency
u> is equal to r^/k. With an increase of the damping parameter 7, the
width of the instability range of the frequency w decreases and becomes
zero at 7 = r^/k. This means that the system can not be destabilized
by the parametric excitation Sip(t) if the damping coefficient is higher than
7 > rk5/k.

Cross-sections of half-cone (11.17) by the plane 7 = const > 0 yield
the instability domains in the frequency-amplitude plane confined by two
hyperbolae, see Fig. 11.3. Asymptotes of the hyperbolae are given by the
equations

A w = ( - c o ± ^ ) | . (11.18)

The minimal absolute value of the excitation amplitude, such that the sys-
tem can be destabilized, is equal to \5\ = Ary/Vfc. The corresponding fre-
quencies are shifted from UJQ = k/2 to the values w = k/2 q= coj/rk-
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Fig. 11.2 Instability domain for the Hill equation with fixed excitation amplitude 6.

Ill/,

0 1 N )

"" IP*
Fig. 11.3 Instability domain for the Hill equation with fixed damping coefficient 7 > 0.

Finally, let us consider the case of no damping, 7 = 0, when the multipli-
ers satisfy the condition pa = 1/p6. Using approximate expression (11.14),
we find that the multipliers are complex conjugate and lie on the unit circle
if D < 0, which means that the system is stable but not asymptotically
stable. If D > 0, then the multipliers are real and lie in opposite sides of
the unit circle (the system is unstable). This yields the instability condition

D > 0 (11.19)

or, using (11.15),

co r* Aw co rk

J~2k<^<~J+2k' [U-M)

Instability domain given by inequalities (11.20) coincides with the limit
of the instability domain (11.17) as the damping parameter tends to zero,
7 -> 0. Notice that in case of the undamped Mathieu equation (tp{t) = cos t,
7 = 0) inequalities (11.20) yield the first order approximation (1 - 5)/2 <
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u> < (1 + 5) 12 for the instability domain near the first critical frequency
wo = 1/2. This result agrees with that of given in Section 9.4, where q = 5
and a = OJ2.

Example 11.1 Let us consider a pendulum with a vertically vibrating
hanging point, see Fig. 11.4. The equation of motion for the pendulum
linearized near the low equilibrium state is [Merkin (1997)]

where 9 is the angle between the pendulum and vertical axis, m and I are
the mass and length of the pendulum, respectively, g is the acceleration of
gravity, and z = z(t) is the vertical coordinate of the hanging point. The
function z(t) is given by

z = a(f>(nt), (11.22)

where a and Q are the amplitude and frequency of parametric excitation,
respectively, and </>(r) is a 27r-periodic function.

:: <t)

/J g

™ m

Fig. 11.4 Pendulum with vibrating support.

We study stability of the low equilibrium of the pendulum for small
excitation amplitude a and damping coefficient j3. Introducing the dimen-
sionless time r = fit in equation (11.21), we obtain the Hill equation

0+7^ + (^2+W = 0, (11.23)

(11.21)
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where the dimensionless coefficients to, 5, 7, and 27r-periodic function f(r)
are given by

» = Hi/f ' = ? • * = » * > = - & <"•">
By assumption, the quantities 6 and 7 are small. The instability occurs
near the values u — k/2, which yields the critical excitation frequencies

ft/t = f\/f' fe=1'2'-" (1L25)
Using expressions (11.24) in condition (11.17), we find

\ nk+ m ) + 49m* K kn>' [ b)

where the coefficients CQ and r^ are determined by formulae (11.15), (11.16)
for the function <p{r). Condition (11.26) determines a half-cone in the space
of parameters p = (fl,a,/?), which is the first order approximation of the
instability domain in the neighborhood of the point po = (fijb,0,0). From
(11.26) one can see how fast the cone becomes vertical and narrow with an
increase of k. Expression (11.26) is simplified if the excitation function has
zero mean value CQ — 0.

11.2 Oscillatory systems with m degrees of freedom: simple
and combination resonance points

Let us consider a linear oscillatory system with periodic coefficients

Mq + 7Dq+(P + <5B(fii))q = 0, (11.27)

where q = (q\,... ,qm)T is a vector of generalized coordinates; M, D,
and P are symmetric positive definite m x m matrices describing inertial,
damping, and potential forces, respectively; B(r) is a piecewise continuous
27r-periodic matrix function of parametric excitation. The system depends
on the vector of three parameters p = (Cl,S, 7), where Q, and 6 are the
frequency and amplitude of parametric excitation, respectively, and 7 de-
scribes the magnitude of damping forces. We study stability of the system
under assumption that the quantities 5 and 7 are small. This means that
system (11.27) is close to an autonomous conservative system. The param-
eters Q and 7 satisfy the natural restrictions Q, > 0 and 7 > 0.



342 Multiparameter Stability Theory with Mechanical Applications

We write equation (11.27) in the first order form

x = G(*)x, (11.28)

where

/q\ / 0 I \
x = , G(t) = . (11.29)

\q/ V-M-^P + JB^t)) -7M-1D/
The matrix G(t) is of size 2m x 2m and depends periodically on time t with
the period T = 2ir/£l. Matriciant of system (11.28) is the 2m x 2m matrix
X(£) satisfying the equation and initial condition

X = G(t)X, X(0) = I, (11.30)

where I is the identity matrix. The value of the matriciant at t — T is the
Floquet matrix

F = X(T). (11.31)

System (11.28) is asymptotically stable if and only if all the multipliers
(eigenvalues) p of the Floquet matrix lie inside the unit circle, \p\ < 1. If
at least one multiplier lies outside the unit circle, \p\ > 1, then the system
is unstable, see Theorem 9.3 (page 273).

Consider the case S = 0, 7 = 0, when there is no parametric excitation
and damping. In this case system (11.27) is autonomous and conservative:

Mq + Pq = 0. (11.32)

Seeking solution to system (11.32) in the form q = uexpitot, we get the
eigenvalue problem

Pu = w2Mu, u r M u = l, (11.33)

where the second equality represents the normalization condition. Equa-
tions (11.33) determine real eigenfrequencies us and corresponding eigen-
modes u. We assume that all the eigenfrequencies are simple and ordered
as 0 < wi < u>2 < • • • < ojm. The corresponding eigenmodes are denoted
b y Mj, j - l,...,m.

The matriciant and Floquet matrix for the case 5 = 7 = 0 are found
from equations (11.30) and (11.31) as

( 0 n
X(t) = expG0£, Fo = expG0T, Go = . (11.34)

V-JVT1? 0 /
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Eigenvalues A of the matrix Go with corresponding right and left eigenvec-
tors w and v are determined by the equations

G o w = Aw, v T G 0 = AvT, v T w = 1, (11.35)

where the last equation represents the normalization condition. From equa-
tions (11.33)—(11.35) it follows that the eigenvalues of the matrix Go are

Xj, \j — ±iojj, j = l,...,m. (11.36)

The right and left eigenvectors corresponding to the eigenvalue Xj take the
form

( * \ ( ^ J )
V) = . , v,- = . (11.37)

\lUJiniJ l-i-Mu,-
\ 2iujj J /

From the matrix theory, see [Gantmacher (1998)], we know that the eigen-
values of the monodromy matrix F o = exp G0T are

Pj, Pj = exp (±KJ ; -T ) = exp ( ± » ^ J , j = l,...,m. (11.38)

The right and left eigenvectors are the same as for the matrix Go- There-
fore, the vectors v/j and Vj given by expressions (11.37) are the eigenvectors
corresponding to the multiplier pj = exp icojT and satisfy the equations

Fowj=Pjwj, vjFo-ftvJ, vjwj = l. (11.39)

The complex conjugate multiplier ]5j — exp(—iojjT) has the complex con-
jugate right and left eigenvectors Wj and Vj, respectively.

The multipliers pj, ~pj from (11.38) lie on the unit circle \p\ = 1. In the
case of general position all the multipliers are simple. Multiple multipliers
appear at the resonance (critical) values of the excitation frequency

fi = ! T ' 3 = h---,m; k = l,2,...; ( 1 1 . 4 0 )

fi=^j^, j , l = l,...,m; j>l; fe = l , 2 , . . . ; ( 1 1 . 4 1 )

" = ^ T ^ ' 3 , l = l , - - - , m ; j > l ; k = l , 2 , . . . (11.42)



344 Multiparameter Stability Theory with Mechanical Applications

The cases (11.40), (11.41), and (11.42) are called the simple, summed com-
bination, and difference combination resonances, respectively. In the case
(11.40) there is the double real multiplier

Pi = Pi = (-1)*. (11-43)

the case (11.41) corresponds to the pair of double complex conjugate mul-
tipliers

f.2nku}j\ _ / .2nkojj\ ,-,-, AAS

* = f t = ^ V V P ^ J ' p'=pi=exp(-tziTZi)> (1L44)
and, finally, the case (11.42) corresponds to the pair of double complex
conjugate multipliers

(. 2nkuij \ / . 2Trkcjj \
p = p , = exp It f-\, p- = p, = exp(- t f-\. 11.45

Double multipliers (11.43)—(11.45) are semi-simple. The eigenvectors cor-
responding to multiplier (11.43) are w3- and Wj. In the cases (11.44) and
(11.45) the eigenvectors corresponding to the first multiplier are Wj, w/
and Wj, w;, respectively.

As we will show below, instability of the system may occur if the exci-
tation frequency is close to critical values (11.40)—(11.42). Therefore, reso-
nance frequencies are of special interest. Multipliers of higher multiplicities
appear only if there are rational relations among the quantities uij ± u>i,
j,l — 1,. . . , m, j > I (j ^ / in the case uij — u{). In the case of general
position such relations do not appear. We will not study those nongeneric
cases here, though they can be investigated analogously.

11.3 Behavior of simple multipliers

Let us consider a simple multiplier pj = expio^To, To = 27r/fio, corre-
sponding to the Floquet matrix Fo at 5 = 7 = 0 and some value of the
excitation frequency ft = fio- The case of the complex conjugate multiplier
'pj = exp(-iu)jT0) is studied analogously. The simple multiplier pj depends
smoothly on the vector of parameters p = (Cl,8,j). Its first order deriva-
tives at po = (fio,0,0) with the use of normalization condition (11.39) are
given by the formula

I a = v^wj> (11.46)
dpk 3 dpk
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where derivatives of the Floquet matrix are determined by

| £ = F o / T " Y r | G x d r + G o F o |T
dpk Jo dpk dpk

with YT(t) = X"1^) = exp(-Goi), see Theorem 2.2 (page 32) and equa-
tion (9.66) in Section 9.3. Using expression (11.29) for the matrix G, right
and left eigenvectors (11.37), and the relations

X(t)w, = exp(G0£)wj = exp(iu)jt)wj,
(11.48)

vJYT(t) = vJexp(-Got) = exp(-iLUjt)vj,

we find the derivatives of pj with respect to parameters at the point po =
(fto,0,0) in the form

dpj i2iruij

an = ''''Iff'

t = <"Sf- ^ - s j f^ B ( r ^* ' (IL49)
dpj _ TTlljDuy

Then, in the neighborhood of po the multiplier Pj(p) is represented as

Pj(P) = P;(po) + ̂ ( n - n0) + %s + ^ + °(HP - Poll)

= f l - ^ ( f t - n o ) + ^ . - ^ 7 N ) e x p ^ T o + o(||p-Po||).

(11.50)
Expansion (11.50) yields the following expression for the absolute value of
the multiplier

|p;(p)| = 1 - ^ ^ 7 + o(||p - Po||). (11.51)

Prom the assumption that D is a positive definite matrix it follows that the
factor of 7 in (11.51) is negative. Therefore, with addition of dissipative
forces (7 > 0) the multiplier pj moves inside the unit circle.

Let us put 7 = 0 and consider the case, when B(r) = BT(r) or
B(r0 + T) = B(TO — T), where TQ is a real number. Then system (11.27) is

(11.47)
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Hamiltonian or reversible, respectively. Multipliers of such a system pos-
sess the following property: if p is a multiplier, then 1/p is a multiplier too,
see [Yakubovich and Starzhinskii (1987)]. This property implies that the
simple multiplier pj stays exactly on the unit circle \p\ = 1 for the parame-
ter vector p belonging to the plane 7 = 0 in the neighborhood of the point

Po-
We see that introduction of small dissipative forces leads to the shift

of all the simple multipliers inside the unit circle. This means that small
dissipative forces stabilize the system with small parametric excitation if
the excitation frequency fto is different from (11.40)-(11.42), i.e., stays away
from the resonance frequencies. In the resonant cases the double multiplier
splits up, and one of the multipliers can move outside the unit circle. Hence,
only multiple multipliers need to be considered when studying stability of
the system near the resonance frequencies.

11.4 Local approximation of stability domain for simple and
combination resonances

Instability can occur if the excitation frequency is close to the critical values
given by (11.40)-(11.42). At those values double multipliers (11.43)-(11.45)
appear on the unit circle. Let us consider the excitation frequency fi = fi0

satisfying the relation

"o = ^ , j>l, (11-52)

for some eigenfrequencies LUJ and wj of conservative system (11.32) and a
positive integer k. Condition (11.52) includes the case of simple resonance
(11.40) for j = I and the case of summed combination resonance (11.41)
for j > I. Critical excitation frequencies (11.42) corresponding to difference
combination resonance will be considered below analogously.

Condition (11.52) implies that two multipliers coincide

2TT
pj -Pt= expiujTo, To = — . (11.53)

For convenience, we denote po — pj —~Pi- If j = I (simple resonance) we
have po = (-l) f c , an<A m t n e c a s e 3 > I (combination resonance) po is a
complex multiplier. In the second case there is also a complex conjugate
double multiplier p0. But due to the symmetry of multipliers with respect
to the real axis on the complex plane, it is enough to study behavior of
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the multiplier po- The double multiplier po is semi-simple, since it has two
linearly independent eigenvectors Wj and w;, as well as two left eigenvectors
Vj and v; given by expressions (11.37).

Under perturbation of parameters the double multiplier p0 splits into
two simple multipliers. Let us consider perturbation of the parameter vector
in the form p = p0 + ee, e > 0, where p0 = (fio, 0,0) and e is the direction
vector in the parameter space. Then bifurcation of the multiplier po is given
by the expression

p = Po(l+£M + o(£)). (11.54)

Two values of the quantity p, are found from the quadratic equation

det - T J -TJ- = °' (1L55)

where

dF(Po + ee) SF 0F SF

Fi = — j e — = mei + w"e2 + ^e3 (1L56)

with the derivatives taken at e = 0 and p = p0, see Theorem 2.6 (page 56).
Equation (11.55) can be written in the form

p? + (zi + ix2)fi + 2/1 + M/2 = 0, (11.57)

where

vfFjWj +vfF iw ;

a;i + 1X2 = >

_ (11.58)
vjFiw,- vfFiWi - v^FiWj v,TFiw,-

2/1 + i|/a = — 2—^ •

Using (11.54), inequality \p\ < 1 can be written in the form

\p\ = \po{l + ep, + o(e))\ = l+£Re/x + o(e) < 1. (11.59)

Hence, the asymptotic stability condition in the first order approximation
is reduced to the inequality

R e ^ < 0 (11.60)
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for both roots of equation (11.57). This condition can be written in terms
of the polynomial coefficients x\, x2, j/i, yi as (see Section 1.7)

zi > 0, (x^i + x2y2)x\ — 2/i > 0. (11.61)

We substitute expressions (11.58) into inequalities (11.61). After el-
ementary transformations using explicit expressions for the eigenvectors
(11.37), derivatives of the Floquet matrix (11.47), and equations (11.29),
(11.34), (11.35), (11.39), (11.48), (11.52), we obtain

•£-(Vj+m)e3 >0,

^4 [el(Vj + m)2 \T)im4 ~ 6e2 + k2 (ex + ^ ? ± ) J (H.62)

-(^el + k(fh-m)(ei + ^-)e3yj > 0.

The real quantities rjj, rji, fi, £2, and <J+ are given by the expressions

f +if -<£*% a _ uA + uidJ
?1 + K2 — , CT+ — , (-[1 P,r>\

UjU[ 2iUjLOi {11.06)

1 f2*
°lk = 5 - / U[B{T)UJ exp(ikr)dT,

Z 7T JO

where c^ is a complex Fourier coefficient of the scalar 27r-periodic function
U;TB(T)UJ. Notice that the constants rjj and rji are positive due to the
assumption of positive definiteness of the matrix D. Expressing the vector
e from the relation p = po + se, we find

e = (e1>c2,e3) = H ^ P o = ^ M l ) > An = fi - n0. (11.64)

Substituting (11.64) into inequalities (11.62) and cancelling positive fac-
tors, we find the first order approximation of the stability domain in the
neighborhood of the point p0 as follows

7 > 0, (11.65)
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72fe + mf Una2 - 6^2 + *2 Un + s-^±) *)
^ ' (11.66)

- (k<52 + fcfo,- - m) (AQ + ^ ) T ) > 0.

The first condition (11.65) implies existence of dissipative forces. The sec-
ond condition (11.66) determines the local form of the stability domain in
the space of parameters p = (fi,<5,7).

Finally, we consider the critical excitation frequency

fio = ^ - p , j>l, (11.67)

(difference combination resonance). In this case there is a double complex
multiplier po = pj = pi, which has two linearly independent eigenvectors
Wj and w; given by (11.37). Stability analysis in this case is performed
analogously using substitution of wj by -w; in all the equations. As a
result, we find the first order approximation of the stability domain in the
neighborhood of the point p 0 = (fi0,0,0) as follows

7 > 0 , (11.68)

72fe + m)2 Lva2 + bs2 + k2 Un + S-^-)*\
^ ' (11.69)

- [i^2 - HVJ - Vl) (̂ An + ̂ j 7 ) > 0,

where the real quantities rij, rji, ^1, £2 are determined in (11.63), and the
real constant u_ is equal to

a_ = uA-"4\ (1L70)
ZLOjLUl

T h e o r e m 11.2 First order approximations of the stability domain of sys-
tem (11.27) near the critical points p 0 = (fto,O,O) ore given by inequalities
(11.65), (11.66) for simple and summed combination resonances (11.52),
and by inequalities (11.68), (11.69) for difference combination resonances
(11.67).
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11.5 Special cases of parametric excitation

In this section we analyze geometry of the instability domain for two most
typical cases of parametric excitation appearing in applications.

11.5.1 Symmetric matrix of parametric excitation

Let us consider the case, when the matrix of parametric excitation is sym-
metric, B(fii) = Br(fU). Then the quantities c f̂c and c^ are complex
conjugate. Hence, $2=0 and the constant £i in (11.63) takes the form

£1 = ^£<L = 1 _ ^ L ^ _ > 0 ) (11.71)
ujjU>i AuijUii

where a3k and bJk are real Fourier coefficients of the 27r-periodic function
u;rB(r)uj defined by

1 f2iT

a{1 = - / ujB(r)u( cos(fcr)dr,
ft Jo

(11.72)

tig = - f uTB(r)u/sin(fcr)dr.
"" Jo

In case of simple and summed combination resonances (11.40), (11.41),
stability condition (11.66) after cancelling a positive factor and changing
the inequality sign yields the instability domain as

The quantities r/j, 77; > 0 and $1 > 0. Assuming that $1 7̂  0, condition
(11.73) defines the interior of a half-cone in the space of three parameters
p = (fi,(5,7), where 7 > 0, see Fig 11.5. The cone axis formed by centers
of the cone cross-sections (ellipses) by the planes 5 — const is given by the
formulae

7 = 0, ^ = ^ 0 - ^ - (11.74)

In case of parametric excitation with zero mean values

/ ujB(r)Ujdr = 0, / uj B(r)u,dr = 0 (11.75)
Jo Jo

(11.73)
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we have ctf = c" = a+ = 0 and, hence, the cone axis is vertical (parallel
to the 5-axis). The stability domain corresponds to the exterior of the
half-cone.

8 (P1[I1]JII]]II^'

Fig. 11.5 Half-cone of the instability domain in the space of parameters.

Explicit form of instability domain (11.73) with coefficients given by
(11.63), (11.71), (11.72) clearly shows how instability of the system depends
on the frequency and amplitude of parametric excitation, dissipative forces,
eigenfrequencies Uj, OJI, and number of resonance k.

Fixing the eigenfrequencies uij, U>I and increasing the number of reso-
nance k, the coefficient £i decreases as a sum of squared Fourier coefficients,
see (11.71). As a result, with an increase of k the cone narrows down and
its axis (11.74) tends to the vertical line. The factor k2 in (11.73) forces
the cone to be flattened in the direction of fi-axis as the resonance number
k increases. Absolute values of the quantities £i and cr+ usually decrease
with an increase of j and I (for bigger Uj and UJ{). As a result, the instabil-
ity cone narrows down and its axis tends to the vertical line for resonances
corresponding to higher eigenfrequencies.

If the matrix function B(r) is represented by a Fourier series with finite
number of terms, then starting with some k the coefficient £i vanishes.
This means degeneration of the first order approximation for the instability
domain (11.73) to straight line (11.74). Hence, destabilization of the system
is possible only if we perturb the parameter vector along the curve p = p(e)
tangent to line (11.74). The instability domain in the degenerate case either
does not exist or consists of narrow wedges tangent to line (11.74) at po =
(fio,0,0). Further analysis of the instability domain requires construction
of higher order approximations. Degeneration of this type is well-known
for systems without damping, where the instability domain has cusps of
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different order in the frequency-amplitude plane, see [Arnold (1983b)]. The
results presented above show that such degeneration also takes place in the
three-parameter space in the presence of damping forces.

In case of difference combination resonance (11.42) using stability condi-
tion (11.69), we find the first order approximation of the instability domain
as

Notice that inequalities (11.73) and (11.76) differ only by the sign of the
second term and the coefficients <r+ and a-. Hence, if £i 7̂  0 (nondegen-
erate case) only one of the inequalities defines a cone of instability, and
the other inequality yields a single point Aft = <5 = 7 = 0 (no instability
domain). Since according to (11.71) £1 is positive, the instability domain
for difference combination resonance does not exist. Notice that a simi-
lar effect, the absence of the instability domain for difference combination
resonance, is known for Hamiltonian systems (without dissipative forces),
see [Yakubovich and Starzhinskii (1987)].

Theorem 11.3 System (11.27) with a symmetric matrix B(flt) —
3T(Clt) undergoes only simple resonances (11-40) and summed combina-
tion resonances (11.41)- First order approximations of the instability do-
main near the resonance points in the space of parameters p = (n,<5,7) are
described by half-cone (11.73).

11.5.2 Matrix of parametric excitation &(flt) — ip(£lt)~B0

Let us consider the matrix of parametric excitation in the form

B(fi*) = <p(ilt)B0, (11.77)

where Bo is an arbitrary constant matrix and <p{r) *s a 2?r-periodic scalar
function. In this case the product c^kcl£ in expressions (11.63) is real.
Hence, £2 = 0 and the coefficient £1 takes the form.

£1 = Cjia^+ * , Cji = ujBou, ufBoUj, (11.78)

where

1 r2" 1 f2n
ak = - (p(r) cos(fcr)dr, bk = - ipM sin(fcr)dr (11.79)

7T Jo X JO

(11.76)
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are real Fourier coefficients of the function y(r ) .
Stability condition (11.66) in case of simple resonance (11.40) and

summed combination resonance (11.41) yields the first order approxima-
tion of the instability domain (11.73). In case of difference combination
resonance (11.42), the first order approximation of the instability domain
takes the form (11.76). In the nondegenerate case £i ^ 0, the sign of £i co-
incides with the sign of Cji. For simple resonance j = I we have CJJ > 0 and,
hence, the instability domain exists and is described by half-cone (11.73).
Existence of the instability domain for combination resonances depends on
the sign of Cji: if Cji > 0 then there is only the instability domain for
summed combination resonance, while if Cji < 0 then there is only the
instability domain for difference combination resonance. Form of the in-
stability domain depends on the eigenfrequencies wj, w; and the number of
resonance k in the same way as described above for the case of symmet-
ric matrix B (r). If £i = 0 then the instability domain is either absent or
degenerate (the first order approximation gives a line).

Theorem 11.4 System (11.27) with the excitation matrix B(fi£) =
<£>(fii)Bo, where B o is a constant matrix and </J(T) is a 2TT-periodic scalar
function, undergoes simple resonances (11.40) and either summed combi-
nation resonances (11-41) for Cji > 0 or difference combination resonances
(11.42) for Cji < 0. First order approximations of the instability domain in
the space of parameters p = (Q,, S, 7) near the resonance points are described
by half-cone (11.73) for simple and summed combination resonances, and
by half-cone (11.76) for difference combination resonances.

11.6 One degree of freedom system

Consider one degree of freedom system (11.27) with M = D = 1, P = u>l,
and B(fii) = (p(Slt):

y + jy + {col + 6ip(Slt))y = 0. (11.80)

Since there is a single eigenfrequency wn, only simple resonances

0 - 2w° u- 1 2 ("11 811
1 &O — —^— 1 fv — 1 , / , . . . , t l l . o l )

k

exist. The instability domain described by cone (11.73) takes the form

72 k 2kS2 + k2 ( Afi - -5— ) < 0, c0 = — / <p{r)dT, (11.82)
4w0 \ kuj0 J 2ir Jo
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where a^ and bk are the real Fourier coefficients, and CQ is the mean value
of the function <p(r).

Equation (11.80) can be transformed to the form of the Hill equation
(11.1) by means of introduction of the new time and parameters

r = nt, ~1=1, 6 = ±, C = £ . (11.83)

It can be checked that approximation of the instability domain (11.82) is
equivalent, up to higher order terms, to the expression obtained in Sec-
tion 11.1.

11.7 Influence of dissipative forces on instability domain

In this section we study the instability domain in the frequency-amplitude
parameter plane with the damping parameter being fixed. We consider
the case when the condition £2 = 0 is fulfilled, which corresponds to the
types of parametric excitation studied in Section 11.5. In this case, the first
order approximation of the instability domain is given by formula (11.73)
for simple and summed combination resonances, and by formula (11.76) for
difference combination resonances.

11.7.1 Small dissipative forces

Let us consider the instability domain for fixed 7 > 0. Depending on the
sign of £1 the instability domain either does not exist or lies inside two
hyperbolae (cone cross-sections by the plane 7 = const) in the plane of
parameters (ft, 5), see Fig. 11.6. Asymptotes of these hyperbolae are given
by the equations

^ \ S ± 2k^™L I Aft + ?f) = 0, (11.84)

where the subscript s denotes + or - for the resonances (11.40), (11.41)
or (11.42), respectively. Recall that cr+ = cr_ = 0 if the parametric excita-
tion matrix has zero mean values (11.75). If we increase the parameter 7
determining the magnitude of dissipative forces, the instability zone in the
parameter plane (ft,<5) gets smaller. Using inequality (11.73) or (11.76),
depending on the type of resonance, we find the first order approximation
for the minimal (critical) amplitudes of parametric excitation, at which the
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system can be destabilized, as

5± = ±lxf^\. (11.85)

The values 5± correspond to the excitation frequencies

n± = % - ~ ^ , (H.86)

where QQ is the critical frequency, see Fig. 11.6.

Ill/

51 ^ l l f /
"> / Q Q

0 ^vl"

Fig. 11.6 Instability domains in the frequency-amplitude plane for a fixed value of the
dissipation parameter 7 > 0.

Theo rem 11.5 First order approximation of the stability boundary of
system (11.27) for a small fixed value of the dissipation parameter 7 > 0 in
the case £ 2 = 0 is described by hyperbolae (11.73) corresponding to simple
and summed combination resonances fa > 0), and by hyperbolae (11.76)
corresponding to difference combination resonances fa < 0). The minimal
(critical) values of the parametric excitation amplitude and corresponding
excitation frequencies are determined by formulae (11.85) and (11.86).

Using relations (11.73) and (11.76), we can find the limit of the insta-
bility domain as 7 -} +0, i.e., for the infinitely small damping. The first
order approximation of this domain in case of simple resonance takes the
form

^52 > k2 (AQ + 6-^±) . (11.87)

Inequality (11.87) defines two vertical angles in the plane (Cl,5), which
do not depend on the way the damping is introduced to the system. In
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case of summed combination resonance (s = +) or difference combination
resonance (s = —) the limit instability domain is given by

s^>^7^LT2Un + ^ ) \ (11.88)

Inequality (11.88) defines two vertical angles in the plane (Q,5), which de-
pend on the relation r)j/rji of magnitudes of dissipative forces corresponding
to the jth and Ith. eigenmodes of the unexcited system. If rjj = r]i then the
limit instability domain is minimal, while if rjj <C r)i or rjj » rji then the
limit instability domain is maximal and is represented by two vertical angles
approaching TT as r)j/rji -} 0 or rjj/rji -»• oo, see Fig. 11.7.

§ TI,= TI2

Fig. 11.7 Instability domains in the frequency-amplitude plane as 7 -> +0 in case of
combination resonance.

11.7.2 Instability domain for system without dissipation

Let us put 7 = 0 (no damping) and consider the case, when B(r) = B T ( r )
or B(r0 + T) = B(r0 - r) for some number To. Then system (11.27) is
Hamiltonian or reversible, respectively. Multipliers of such a system possess
the following property: if p is a multiplier, then 1/p is a multiplier too,
see [Yakubovich and Starzhinskii (1987)]. In this case the system is stable
(but not asymptotically) if and only if all the multipliers are simple or
semi-simple and lie on the unit circle |p| = 1.

Using equations (11.54) and (11.57), we find the stability condition in
the form

Re/x = 0 & xx - 0, 2/2=0, x\ + Ayx > 0. (11.89)

Substituting the values of x\, X2, 3/1, and j/2 from (11.58), using relations



Instability Domains of Oscillatory System 357

(11.29), (11.34)-(11.39), (11.47), (11.48) and the assumption £2 = 0, we
find the first order approximation of the instability domain

s^S2 > k2 Un + ^jpj , (11.90)

where s — + and s = — for resonances (11.40), (11.41) and (11.42), respec-
tively. Inequality (11.90) determines two vertical angles in the frequency-
amplitude plane.

11.7.3 Effect of destabilization by infinitely small dissipa-
tive forces

Comparing inequalities (11.87) and (11.90), we see that the instability do-
mains of the system with infinitely small damping (7 —> +0) and the
system without damping (7 = 0) coincide in case of simple resonance.
In case of combination resonances, the instability domains (11.88) and
(11.90) coincide only if r\j = r\i- In the case rjj 7̂  r\i the instability do-
main of the system with infinitely small damping is always larger. This
effect of abrupt increase of the instability domain by introducing infinitely
small damping has been detected in different periodic mechanical sys-
tems, see [Iwatsubo et al. (1974); Yakubovich and Starzhinskii (1987);
Bolotin (1999)].

Let us try to understand the nature of the destabilization phenomenon.
At 7 = 0 (no dissipation) all the multipliers of a stable system lie on the
unit circle \p\ — 1, while an unstable system is characterized by a multiplier
lying outside the unit circle |p| > 1. An unstable system is structurally sta-
ble, i.e., it remains unstable under small perturbation, in particular, if small
damping is introduced. Considering a stable system, we have a different
situation. Since all the multipliers belong to the unit circle, an arbitrar-
ily small perturbation may destabilize the system if at least one multiplier
moves outside the unit circle, or may leave it stable if all the multipliers
move on or inside the unit circle. Hence, the stability domain may decrease
discontinuously if infinitely small damping is introduced. Respectively, the
instability domain abruptly increases. This phenomenon is similar to the
effect of destabilization of a non-conservative (circulatory) system by in-
finitely small dissipative forces, see Section 8.3.

Now, let us analyze the difference between simple and combination reso-
nances. Following calculations of Section 11.4 in case of simple and summed
combination resonances (11.52), we find that the dissipative term enters
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matrix (11.55) as

/ T 3 F TdF_ \

e3=Po£Ll h . (11.91)
V, — W j V, W; /

V ' 5 7 3 l d-i I

In case of simple resonance we have j = I and, hence, r]j = rji. As a re-
sult, introduction of small dissipative forces shifts both multipliers (11.54)
towards the origin, see Fig. 11.8a, where two multipliers are different due
to variation of the parameters fi and 5. That is why the destabilization
phenomenon does not happen for simple resonances. In case of summed
combination resonance the values of TJJ and rji are generally different. The
mean value of two multipliers (11.54) is still shifted inside the unit circle,
but the multipliers can turn around the mean value. This kind of behavior
generates the destabilization phenomenon: though one multiplier always
moves inside the unit circle, the other multiplier can leave the unit circle
causing instability, see Fig. 11.8b. Only in the specific case r]j — rji, when
the dissipative forces applied to the jth and Ith modes are equal, the mul-
tipliers do not turn about the mean value (matrix (11.91) is proportional
to the identity matrix). In this case destabilization by infinitely small dis-
sipative forces does not occur. Similar conclusions are valid for the case of
difference combination resonance.

a) T . b) imX
Im X A. Po

Pof_ \ReX f \RSX

''' Po

Fig. 11.8 Behavior of multipliers under introduction of small dissipative forces: a) near
simple resonance, b) near combination resonance.
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11.8 Applications

11.8.1 Beam loaded by periodic bending moments (Bolotin's
problem)

Let us consider the stability problem of a plane form of a slender elastic
beam loaded at the ends by bending moments acting in the plane on max-
imal stiffness, see Fig. 11.9. Magnitudes of the moments M(Clt) = 6ip(flt)
are periodic in time with the frequency Q, and amplitude 6, where </>(T) is a
2-Tr-periodic piecewise continuous function. Bending-torsional out-of-plane
vibrations of the beam are described by the equations [Bolotin (1995)]

d2w , dw 34u; . ,n,d26 n

(11.92)
2d2e 2 j de . tn B2W ^Td2e n

mr2^ + imr2d2- + SV{(lt)-^ - GI-, = 0,

where x is the longitudinal coordinate of the beam; w(x,t) and 9(x,t)
are the out-of-plane deflection and twist angle of the beam cross-section,
respectively; EJ and GI are the bending and torsional stiffnesses; m is the
mass of the beam per unit length; r is the radius of inertia of the beam
cross-section; 7 is the parameter of dissipative forces (viscous friction); di
and (̂ 2 are fixed constants determining the magnitudes of friction forces
with respect to bending and torsion. Assuming that the beam is simply
supported, we write the boundary conditions as

x = 0, I: w = 0, | j r = O, 6> = 0, (11.93)

where I is the beam length.
Solution of equations (11.92), (11.93) can be found in the form of the

M(Qt) ^ J M(Qt)

Fig. 11.9 Slender elastic beam loaded by periodic moments.
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series [Bolotin (1995)]

OO OO

w(x,t) = J2wn(t) sin1^, e(x,t) = *£Qn(t)Sm~, (11.94)

where Wn(t) and Qn(t) are unknown functions of time. Substituting (11.94)
into equations (11.92), we obtain a system of ordinary differential equations
of the form (11.27) for the unknowns Wn(t) and Qn(t), where

\0 \j' \0 d2)' \0 u&j'

i «v\ (1L95)

»(«> = **> ^ ~"» . , - ( £ " ) •
\ r2Z2m /

Here wni and wn2 are, respectively, the bending and torsional eigenfrequen-
cies of free vibrations of the undamped beam equal to

n27r2 [EJ TI-K [GI

The eigenvectors corresponding to the eigenfrequencies uni and wn2 are
equal to uni = (l,0)T and un2 = (0,1)T.

Let us study stability of system (11.27), (11.95) assuming that the pe-
riodic moments and damping forces are small. Since B(fit) = </j(fi£)B0,
where BQ is a constant matrix, the system is of the type studied in Sub-
section 11.5.2. The quantities Cji evaluated by formula (11.78) take the
form

C l l = c 2 2 = 0, C l2 = I ^ > 0 . (11.97)

Hence, there are no instability domains corresponding to difference com-
bination resonances, and the instability domains for simple resonances are
degenerate (analysis of these domains requires finding higher order approxi-
mations). According to (11.73), we find the instability domains for summed
combination resonances

did , _ cu(al + bi)52 + 4k2^>{Q _ no)2 < Oj (11.98)

4wniwn2 (fli + d2y

(11.95)

(11.96)

M D P

n = 1,2,...
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corresponding to the excitation frequencies fi close to the critical values

n u>ni+wn2 k = i x . . . (11-99)

k

Note that ak and bk in (11.98) are the real Fourier coefficients of the function

(p(T), see (11.79).

/ n0 y/0.4 Y

0-TK- , T 7 , £ 0.8
2.4 2.8 3.2 3.6 4.0

Q

Fig. 11.10 Approximate and exact boundaries of the instability domain for the first
summed combination resonance of the beam.

Let us compare the analytical results with numerical calculations. For
this purpose, we consider the case n = 1, the excitation law tp(r) = COST,

and the beam parameters dx = d2 = 1, wni = 1, w«2 = v5, I m - n /4,
r2 = 4/VE. In Fig. 11.10 solid lines show the boundary of the instability
domain for the first summed combination resonance (k = 1) found using
first order approximation (11.98). Dotted lines denote the boundary of the
instability domain found numerically by evaluation of the Floquet matrix
for different values of the parameters Q, 5, and 7 . Fig. 11.10 shows good
agreement of the exact (computed numerically) and approximate bound-
aries of the instability domain for the excitation amplitudes up to <* « 0.8.

11.8.2 Beam of variable cross-section loaded by periodic ax-

ial force

Consider an elastic beam of variable cross-section loaded by a periodic axial
force P - Po + 6<p(nt), where fi and S are the frequency and amplitude of
parametric excitation, and Po is a fixed value of the force lower than the
critical Euler force PE. Equation for small vibrations of the beam takes the



362 Multiparameter Stability Theory with Mechanical Applications

form [Bolotin (1999)]

"W + v% + <«+ ̂ » § S + £ (EJ^) - ° <"100>
In this equation x is the longitudinal coordinate of the beam; w(x, t) is the
beam deflection; EJ(x), m(x), and s(x) are the bending stiffness, mass per
unit length, and thickness of the beam, respectively; and 7 is the coefficient
of viscous friction. As the boundary conditions, we consider the case of a
beam elastically clamped at both ends:

w(0,t) =w(l,t) = 0,

/ dw r,Td2w\ ( dw 'Td2w\ (11.101)

where c\ > 0 and c2 > 0 are the elastic coefficients of supports, and / is
the length of the beam. The limit cases c\ — C2 = 0 and cj"1 = c^"1 = 0
correspond to simply supported and clamped-clamped beams, respectively.

Solution of system (11.100), (11.101) can be found in the form of the
series

00

w(x, t) = 2 wn(t)un{x), (11.102)
n=l

where wn(t) are unknown functions of time, and un(x) are the modes of
free vibrations of the undamped beam loaded by the constant axial force
P = Po. The modes un(x) are determined from the eigenvalue problem

p ( w ^ ) + f t ^ - * - = * (1L103)

un(0) = un(J)=0,

( - t+^L^t^L-" . (1L1M)
where uin are the frequencies of free vibrations. The modes satisfy the
following normalization condition

fl
/ muiUjdx — Sij, (11.105)

Jo

where 5ij is the Kronecker delta.
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Substituting (11.102) into equations (11.100) and using (11.103), we
find

E d^Wn dwn tfUn 2

\m—^-un + js——un + dip{ilt)wn—Y +uj^mwnun =0 .
(11.106)

We multiply equation (11.106) by Uj(x), j = 1,2,..., and integrate with
respect to x from 0 to /. After integration by parts with the use of con-
ditions (11.104) and (11.105), we obtain a system of ordinary differential
equations of the form (11.27) for the unknown functions wi(t),W2(t),. • •
The corresponding matrices M and P are diagonal, and the matrices D
and B(f2i) are symmetric:

- M = [6ij], P = M % ] , D = [dy], B = ip(nt)[bij]>

A f H H F ****>„ (11'107)
dii — I suiUjdx, bu = - / — j^-dx.

Jo Jo dx dx
Notice that the diagonal elements djj are positive, while bjj are negative.

Let us study stability of the beam for small values of 6 and 7. According
to Theorem 11.3, only simple and summed combination resonances are
possible. The eigenvector Uj corresponding to the frequency Wj has all zero
components except for the ith component, which is equal to one. Using
matrices (11.107) in the first order approximation of the instability domain
(11.73) for simple and summed combination resonances f̂ o = {tOj +ui)/k,
we obtain

, , ^{al+bl)
djjdin ~ 4 ^ 6

(11.108)

+4k\ djjd\9 f A n _ ^ M + ^ l b j j ) \ 2 <
(djj + du)2 V 2kuijU)[ j

where a^ and && are the real Fourier coefficients of the function f(r), see
(11.79), and CQ = -^ Jo T ip(r)dT is the mean value of y(r) . Critical values of
the excitation amplitude (11.85) and corresponding excitation frequencies
(11.86) for a fixed value of the damping parameter 7 > 0 are found as

IiujjUJidjJd^ _ n cpjujbu + uibjj) n i inert
o± = ±7W .2 / 2 1 1.21' " ± — " 0 H 7T7 °±- (11-1U9)

For the case of a uniform simply supported or clamped-clamped beam
and the axial force P = 5 cos fit, equations (11.108), (11.109) yield the
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formulae for the first resonance zones (k = 1) found earlier in [Iwatsubo
et al. (1974)].



Chapter 12

Stability Domains of
Non-Conservative System under

Small Parametric Excitation

In this chapter we continue the study of stability of systems under small
parametric excitation. This time the non-excited system is assumed to be
autonomous and essentially non-conservative. That is why it is subjected to
the divergence and flutter instabilities. We are interested in knowing how
stability characteristics and critical values of parameters change depending
on the form and frequency of the parametric excitation.

A number of important mechanical problems, where non-conservative
loading is essential, are modeled by non-selfadjoint differential equations.
As examples we mention systems with fluid-structure interaction (pipes
conveying fluid, structures moving in fluid or gas), systems under action of
follower forces (e.g. jet thrust) etc. Parametric excitation is realized in the
form of periodic variation of system parameters like pulsation of the flow
velocity, periodic change of loading forces, geometric or elastic characteris-
tics. Stability analysis of a non-conservative system includes determining
critical values of the parameters (velocities, loads etc.), at which the system
becomes unstable. Effect of small parametric excitation strongly depends
on the type of instability of the corresponding non-excited system.

Analysis of the stability domain and its boundary in the multi-
parameter space is carried out under assumption that periodic terms are
small. For this purpose, we use the perturbation theory for a simple multi-
plier, when considering a smooth stability boundary, and the versal defor-
mation theory for the analysis of singularities. It turns out that the stability
boundary is smooth if the corresponding autonomous system is subjected
to the divergence instability. But in the case when the autonomous system
undergoes flutter instability, the stability boundary can have singularities.
This happens when the frequency of parametric excitation is in a certain
relation to the flutter frequency. Both qualitative and quantitative analy-

365
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sis is carried out, and local approximations of the stability domain of high
order are obtained.

As an application, the stability problem for an elastic cantilever pipe
conveying pulsating fluid is considered. Approximations of the stability
domain in the regular and singular cases are derived. Comparison of the
approximations with the stability domains found numerically confirms ef-
ficiency of the suggested approach. It is shown that singularities of the
stability boundary provide geometric description of typical stability dia-
grams on the amplitude-frequency plane.

The material of this chapter is based on the paper by [Mailybaev (2002)].
For related stability studies of non-conservative systems of more specific
form see [Fu and Nemat-Nasser (1972); Fu and Nemat-Nasser (1975);
Ariaratnam and Sri Namachchivaya (1986)].

12.1 Stability of non-conservative periodic system

Motion of a linear multiple degrees of freedom non-conservative system is
governed by the equation

Mq + Bq + Cq = 0, (12.1)

where q = (qi,. . . , qm')T is a real vector of generalized coordinates; M is
a positive definite mass matrix; the matrix B determines dissipative and
gyroscopic forces; and the matrix C describes conservative and circulatory
(non-conservative positional) forces, see Section 1.6. Transforming equation
(12.1) to the system of first order, we obtain

M ( o i \
x = Gx, x = , G = , , (12.2)

\q) \-M-xC -M-lBj' K '
where the real vector x and the square real matrix G have dimension m —
2m'.

Let us consider autonomous system (12.2) determined by a time-
independent matrix G = Go. The corresponding eigenvalue problem takes
the form

Gou = Au, (12.3)

where A is an eigenvalue and u is an eigenvector. System (12.2) is asymp-
totically stable if and only if all the eigenvalues A have negative real parts
(ReA<0).
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Let us consider an n-parameter periodic system of the form

x = G(t,p)x, G(*,po) = G0. (12.4)

where p = (pi,... ,pn) is the vector of real parameters. Equation (12.4)
represents a non-autonomous linear system, which is autonomous at po =
(pj , . . . ,p°). It is assumed that the matrix G(£,p) is a smooth function of
the parameter vector p and periodic piecewise continuous function of time,
G(t + T,p) = G(i,p), where the period T - T(p) > 0 smoothly depends
on p. Our aim is to study stability of system (12.4) in the neighborhood of
the point po, where periodic terms are small (small parametric excitation).

If the autonomous system at po is asymptotically stable, then periodic
system (12.4) is stable for the parameter vectors p taken from some neigh-
borhood of the point po- If the autonomous system is unstable and has
an eigenvalue with a positive real part, Re A > 0, then perturbed system
(12.4) remains unstable for p sufficiently close to po- These properties
follow from the continuity of eigenvalues (multipliers) as functions of the
parameters. Hence, the interesting cases, when small periodic terms can
affect stability properties, correspond to the matrix Go having eigenval-
ues on the imaginary axis. There are two basic cases to be considered: a
simple zero eigenvalue or a pair of complex conjugate simple eigenvalues
A = ±iu, w 7̂  0, lying on the imaginary axis. These critical cases de-
scribe autonomous systems subjected to the static instability (divergence)
or dynamic instability (flutter), respectively.

Let us fix the parameter vector p. A matriciant of system (12.4) is the
m x m matrix function X(£) satisfying the differential equation and initial
condition

X = G(t,p)X, X(0) = I. (12.5)

Equation (12.5) is equivalent to m equations (12.4) for the columns of X(£)
with initial conditions being the columns of I. The value of the matriciant
at the period T gives the Floquet matrix

F = X(T). (12.6)

The eigenvalue problem for the Floquet matrix is

Fu = pu, (12.7)

where p is a multiplier and u is an eigenvector. System (12.4) is asymptot-
ically stable if and only if all the multipliers lie inside the unit circle on the
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complex plane, \p\ < 1. If for some multiplier \p\ > 1, then system (12.4) is
unstable, see Theorem 9.3 (page 273).

The Floquet matrix F(p) is a smooth function of the parameter vector.
Derivatives of the Floquet matrix calculated at po can be found using the
matriciant and derivatives of the functions G(t,p) and T(p) at p0. Explicit
formulae for these derivatives were obtained in Section 9.3. In particular,
the first order derivative has the form

^Ffxf«tG,F" (12.8)
dpi Jo dpi dpi

Notice that though system (12.4) is autonomous at po, derivatives of the
matrix G(t,p) at po are time-dependent periodic functions.

The stability criterion defines the stability and instability domains in
the parameter space. A boundary of the stability domain consists of points
p such that the Floquet matrix F(p) has multipliers lying on the unit circle,
|p| = 1, while for other multipliers the inequality \p\ < 1 holds.

Since system (12.4) is autonomous at po, the matriciant and the Floquet
matrix calculated at p0 have the form

X(t,po) = exp(Got), F(p0) = exp(G0T0), (12.9)

where To = T(po). From the second expression of (12.9) it follows that the
multipliers p of the matrix F(po) and the eigenvalues A of the matrix Go
are connected by the relation

/9 = expAT0 (12.10)

and the corresponding eigenvectors are equal. For two types of the matrix
Go under consideration, the Floquet matrix Fo = F(po) has a simple
multiplier p = 1 or a pair of multipliers p = exp(±zw7b) on the unit circle,
while other multipliers lie inside the unit circle, \p\ — exp(ReAT0) < 1.
Hence p0 is a point on the stability boundary and system (12.4) can be
stable or unstable for different points p in the neighborhood of p0.

12.2 Approximation of the stability domain in regular case

Let us consider the first case, when the matrix Go has the simple zero
eigenvalue Ao = 0 and the other eigenvalues have negative real parts. In
this case, the corresponding autonomous system is subjected to the static
instability (divergence). There are the right and left real eigenvectors UQ
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and v0 corresponding to Ao = 0 and satisfying the equations

Gouo = 0, v^G0 = 0, v^u0 = 1, (12.11)

where the last equality represents the normalization condition.
From relation (12.10) it follows that the Floquet matrix Fo has the sim-

ple multiplier ô — 1 on the unit circle, while other multipliers lie inside the
unit circle. Stability of system (12.4) depends on behavior of the multiplier
po = 1 under perturbation of the parameter vector p. The simple multiplier
p(p) depends smoothly on p and can be approximated in the neighborhood
of po by the Taylor series

i=l r i,j=l J

(12.12)
Derivatives of the multiplier p(p) at po can be calculated using explicit
formulae of Theorem 2.2 (page 32). For this purpose, only the eigenvec-
tors uo, v0 and the derivatives of the matrix F(p) at po are needed. For
example, the first order derivative of p(p) takes the form

where the first order derivative of F(p) is determined by equation (12.8).
Stability of the system in the neighborhood of po is determined by the

inequality |p(p)| < 1 for multiplier (12.12). Since p(p) is real and positive
in the neighborhood of po, the stability condition can be written with the
use of expansion (12.12) in the form

»=i *,j=i

Calculating derivatives of p(p) at po, we obtain approximation (12.14) of
the stability domain with the accuracy up to the terms of any order. Tak-
ing the equality sign in (12.14), we get an approximation of the stability
boundary.

According to (12.13), (12.14), the first order approximation of the sta-
bility domain has the form

(fo,Ap)<O, A p - p - p o , (12.15)

(12.13)

(12.14)
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where (f0, Ap) is the scalar product in En, and the vector f0 is

( 9F <9F \

v ^ u o " - " v ° T ^ : U o J - (12-16)
If fo 7̂  0, then the stability boundary is a smooth surface in the neighbor-
hood of po, and fo is the normal vector to the stability boundary directed
into the instability domain. Notice that formula (12.16) for the normal
vector coincides with that of obtained in Section 10.1 for general periodic
systems. The stability boundary is associated with the simple multiplier
p = 1 and, according to the traditional terminology, represents the har-
monic parametric resonance boundary.

Let us consider the second case, when the matrix Go possesses a pair of
simple purely imaginary eigenvalues Ao, Ao = ±iw, w^O, while for other
eigenvalues the inequality Re A < 0 holds. This means that the autonomous
system is subjected to the dynamic instability (flutter). There are the right
and left complex eigenvectors uo and vo corresponding to Ao and satisfying
the equations

Gouo = Aouo, vjfGo = AovJ, vjfu0 = 1, (12.17)
where the last equality represents the normalization condition. From
(12.10) it follows that the Floquet matrix Fo has the multipliers p0, p0 =
exp(dziwTo) lying on the unit circle, and for other multipliers \p\ < 1. In
this section we assume that UJT0 ^ irk for any integer k (the regular case),
which means that the multipliers p0 and ~p0 are simple and complex.

The simple multipliers po, ~P~Q are smooth functions of the parameters
in the neighborhood of the point po. Stability of the system depends on
absolute values of these multipliers. Since they are complex conjugate, it
is sufficient to study behavior of only one multiplier po. Then the stability
condition takes the form

i*p)i = h + t ^ A p i + s £ £kApi^+• • • I < L <12-18>
Calculating derivatives of p(p) at po up to order s, we find approximation
of the stability domain (12.18) up to small terms of order s. The stability
boundary in this case is the combination resonance boundary associated
with a pair of complex conjugate multipliers p, ~p lying on the unit circle.

Using expression (12.13) for the first order derivative of p(p) and the
relations \p(p)\ = \pQp(p)\, po = coswT0 +ismu>T0, in the stability condi-
tion (12.18), we find the first order approximation of the stability domain
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in the form

(f i o j ,Ap)<0, (12.19)

where components of the real vector fjw = ( / i , . . . , fn) are given by the
expression

(12.20)

= cos(wT0)Re (vjf — u0 ) + sin(u/ro)Im ( v ^ — u 0 ) .

If fjW ^ 0, then the stability boundary.is a smooth surface in the vicinity of
the point po, and f̂  is a normal vector to the stability boundary directed
into the instability domain. Note that formula (12.20) for the normal vector
fjW coincides with that of derived in Section 10.1 for the case of. a general
periodic system.

12.3 Local analysis of the stability domain in singular case

In the previous section we considered the smooth stability boundary in
the neighborhood of po- In this section a singular case, when the stability
boundary is not smooth at po, is investigated.

Let us consider the matrix Go having a pair of complex conjugate sim-
ple eigenvalues on the imaginary axis Ao, Ao = ±iu>, w / 0 , while for other
eigenvalues Re A < 0. We assume that the frequency of vibrations of the
autonomous system (flutter frequency) ui is related to the period of para-
metric excitation by the equality

UJT0 = nk (12.21)

for some integer k. Let u0 and v0 be the right and left complex eigen-
vectors corresponding to Ao (12.17). Then the right and left eigenvectors
corresponding to the complex conjugate eigenvalue Ao are u0 and v0, re-
spectively. From (12.10) it follows that the Floquet matrix Fo has a double
multiplier po = (—1)*. Both uo and uo are the eigenvectors corresponding
to po- This means that the multiplier po is semi-simple (there are two lin-
early independent eigenvectors). Since po is real, we can choose two real
eigenvectors as follows

ui=Reu0, u2=Imu0 (12.22)
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and define the m x 2 matrix Uo = [ui,u2]. Two left real eigenvectors vi
and v2 can be taken in the form

V0 = [v1,v2] = [ Rev 0 ) Imv 0 ] f^ V ^ J ^ V ' (12.23)

Expression (12.23) gives the left eigenvectors satisfying the following nor-
malization condition

V^Uo = I, (12.24)

where I is the 2 x 2 identity matrix.
For the vectors p in the vicinity of po the double multiplier po splits

into two simple multipliers pi (p) and p2 (p) • Stability of periodic system
(12.4) depends on the absolute values |pi,2(p)|. The multipliers pi,2(p) are
generally nonsmooth functions of the vector p at po • In this case we can
apply the bifurcation theory for a double semi-simple eigenvalue described
in Sections 2.8 and 2.9. But being interested in high order approximations
of the stability domain, we will use another approach based on the versal
deformation theory. The main idea of this approach is to consider the
matrix operator F(p) restricted to the invariant subspace of the multipliers
pi ) 2(p). Therefore, instead of analyzing the nonsmooth multipliers pi^ip)
of the m x m matrix F(p) we introduce a 2 x 2 matrix F'(p). This matrix
is a smooth function of p and its eigenvalues are pi,2(p)-

12.3.1 Method of versal deformations

According to the versal deformation theory, there exists a smooth 2 x 2
matrix-function F'(p) determined in the neighborhood of po by the equa-
tions

F(p)U(p) = U(p)F'(p) , F ' (p 0 )=/ool , U(po) = Uo, (12.25)

where U(p) is an m x 2 matrix smoothly dependent on p [Galin (1972);
Arnold (1978)]. The matrix F'(p) represents a block of the so-called versal
deformation. Notice that the matrix-functions F'(p) and U(p) are not
uniquely determined.

Eigenvalues of the matrix F'(p) are equal to the multipliers pi,2(p) of
the matrix F(p). In the neighborhood of po the matrix-function F'(p) can



Stability Domains of Non-Conservative System 373

be approximated by the Taylor series

n f)V" 1 n B^F1

*'(p) = *>*+£ ^ + 2 £ s r a : A f t A « + • • • (12-26)

To find derivatives of the matrices F'(p) and U(p), we take the deriva-
tive of the first equation in (12.25), which yields

dF <9U dU dF'
^Uo + F o ^ ^ ^ p o + Uo^. (12.27)
dpi dpi dpi dpi

Multiplying this equation by V^ from the left and using the equations
VjfFo = PQVQ , VQ'UO = I, we obtain the first order derivative of F'(p) in

the form

3 F ' _ T 9 F

^ - V ° % U ° - (12-28)

To find derivatives of the matrix U(p), we impose the normalization con-
dition

V0TU(p) = I, (12.29)

which for the first order derivatives yields

Vfg-O. (12.30)

Pre-multiplying (12.30) by the matrix Vo and adding the result to equation
(12.27), we obtain

w g ^ w «UD), (12.31)

dpi u V dPi dpi J

where the matrix

Go - Fo - pol + VoVj (12.32)

is nonsingular. Procedure for computing higher order derivatives of F'(p)
and U(p) is the same as for a simple multiplier, since the corresponding
equations are formally identical (if u, vo, and A are substituted by U,
Vo, and F', respectively), see Section 2.4. The general expressions for
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derivatives of F'(p) and U(p) at p = p0 take the form

F/(h) = v^F<h)U0

+ V0T £ - ^ - ( F ^ J U ^ - U ^ F ' ^ ) ) , (12.33)

|hi|>0,|h2|>0

U<h) = G0-1 Y, j^(u(h 2 )F ' ( h l>-F(h l>U(h 2>) . (12.34)
hi+h2=h

|hi|>0

In these expressions we use the notation

... <9lhlF ,U\ <9lhlF' , u 9lhlu

dp1? • • • Opt' dp1? • • • dpt' dph^ • • • dpfr '
(12.35)

where h = {hi,..., hn) is a vector with integer nonnegative components
hi > 0; |h | = hi + • • • + hn and h! = hx\ • • • hn\

12.3.2 Approximation of the stability domain

The stability domain in the neighborhood of po is determined by the con-
dition |pi,2(p)| < 1 f°r both eigenvalues of F'(p). To write this condition
in more convenient form, we can take the 2 x 2 matrix H(p) = ln(p0F'(p)),
where the logarithm of a matrix is defined as

ln(I + D) = ^ ^ — { D \ (12.36)
i=i l

Since p0 = {-l)k and poF'(po) = I, we have H(p0) = 0. The inequality
li°i,2(p)| < 1 is equivalent to the condition Re/Lii)2(p) < 0 for the eigenval-
ues Mi,2(p) = ln(poPi,2(p)) °^ *^e m a t r i x H(p). Using the Routh-Hurwitz
conditions for the characteristic polynomial of the matrix H(p) (see Sec-
tion 4.1), the stability criterion Re/ i i^p) < 0 for both eigenvalues of H(p)
can be written in the from

U l l ( p ) + /l22(p)<0,

\/ll2(p)/l2l(p) -/lll(p)/l22(p) <0,
(12.37)
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where fty(p) are elements of the matrix H(p). Using Taylor expansions
(12.26) and (12.36) for the matrix F'(p) and the logarithm function, we
find the Taylor series for the matrix H(p) as follows

H ( P ) = U < P > kMJ=Hl"F{p>)

A 5 F ' . po A [ d2F' SF'dF'l A

rri dPi 2 ,7^, [dpidpj dpi dpjj
% 1 ZyJ J.

(12.38)
where any number of terms in the series can be found explicitly using
symbolic computation software. Thus, evaluating derivatives of F'(p) at p0

by formulae (12.33), (12.34) and substituting them into expression (12.38),
we find the approximation of the stability domain (12.37) up to small terms
of arbitrary order.

For the first order approximation of the stability domain expressions
(12.37) yield

| ( h 1 1 + h 2 2 , A p ) < 0 ,

\ ( Q A p , A P ) < 0 ,

where the vectors h^ are gradients of the functions h^ (p) at po; the sym-
metric n x n matrix Q = [qij] has the form

Q = i ( Q + QT), Q = hf2h2 1-hf1h2 2 ; (12.40)

and (QAp, Ap) denotes the quadratic form

n
(QAp,Ap) = ^ qijApiApj. (12.41)

Using expressions (12.28), (12.38), the vectors hy are given as

/ <9F <9F \
h t f=A,(v?1^ruJ >. . . ,vf^-uJj . (12.42)

We have found approximation of the stability domain (12.37), (12.38).
Since the stability condition consists of two equations, the stability bound-
ary is generally nonsmooth at po- In the following subsections we will
analyze geometry of the stability boundary and classify its singularities
using first order approximation (12.39).

(12.39)
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12.3.3 Two-parameter case

The first inequality in (12.39) defines a half-plane in the parameter space
P = (Pi,P2)- The second inequality in (12.39) gives different solutions for
Ap depending on the type of the matrix Q. In the case Q > 0 (positive
definite) the second inequality in (12.39) is not satisfied for all Ap. If Q < 0
(negative definite), then the second inequality in (12.39) is satisfied for all
Ap. Finally, in case of indefinite matrix Q (det Q < 0) this inequality
gives two domains lying between two intersecting lines (QAp, Ap) = 0.
Equation for these lines can be written in the form

guApi + (qi2 ± y/9i22-fti922)Ap2 = 0, (12.43)

where qtj are elements of the matrix Q. Expression (12.43) is found by
solving the quadratic equation (QAp, Ap) = 0 with respect to Api.

The first order approximation of the stability boundary is the intersec-
tion of the domains defined by two inequalities (12:39). For the case of
indefinite matrix Q geometry of the stability domain depends on the mu-
tual position of those domains. There are two typical cases: when the line
(hn +h22, Ap) = 0 lies inside or outside the domain (QAp, Ap) < 0. This
corresponds to the inequalities (Qt, t) < 0 or (Qt,t) > 0, respectively,
where t is a nonzero vector satisfying the equation (hn + h22,t) = 0.

The general result can be formulated as follows. The stability domain
in the neighborhood of the point p0 has four typical forms corresponding
to the cases: a) Q < 0, b) Q > 0, c) Q is indefinite, (Qt,t) > 0, and d) Q
is indefinite, (Qt,t) < 0. In the case a) the stability boundary is a smooth
curve; in the case b) the system is unstable for all p near po; in the cases c)
and d) the stability domain consists of one and two angles, respectively, with
the vertices at po; see Fig. 12.1. In Fig. 12.1 the curves /ii2(p)/i2i(p) -
/in(p)/i22(p) = (QAp, Ap) + o(||Ap||2) = 0 are denoted by a, and the
curve /in(p)+/i22(p) = (hn+h22, Ap) + o(||Ap||) = 0 is denoted by /?; the
stability domain is denoted by 5. Since the multipliers p\$ — Ajexp/zi,2,
where ^1>2 are eigenvalues of H(p), the lines a represent the parametric
resonance boundary (corresponding to the multiplier p = (—l)fe), while the
lines /3 are the combination resonance boundaries (determined' by a pair of
complex conjugate multipliers on the unit circle).

Other (degenerate) cases occur, when the matrix Q is singular, or
hn + h22 = 0, or (Qt,t) = 0 (if Q is indefinite). Then higher order
approximations for the functions hij(p) should be used to determine the
form of the stability domain.
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Fig. 12.1 Singularities of the stability domain in the two-parameter space.

12.3.4 Three-parameter case

In this case Q and hy- are the real matrix and real vectors of dimension
3, respectively. It is easy to show that the matrix Q is always indefinite.
Indeed, there exists a nonzero vector e satisfying the equations (hn,e) =
(h12,e) = 0 such that (Qe,e) = (hi2,e)(h2i,e) - (hn,e)(h22,e) = 0.
Therefore, for the nonsingular matrix Q equation (QAp, Ap) = 0 defines
a cone surface [Korn and Korn (1968)]. Depending on the sign of detQ
the stability domain (QAp, Ap) < 0 is placed inside or outside the cone
(inside for det Q < 0). There exists a 3 x 3 nonsingular real matrix W =
[wj, w2, W3] transforming Q to the diagonal form [Korn and Korn (1968)]

Q = WDWT, (12.44)

where D = diag(-l, -1,1) or D — diag(l, 1, -1). Then, the equation for
the cone surface (QAp, Ap) = 0 can be written in the form

(wi, Ap)2 + (w2, Ap)2 = (w3,Ap)2. (12.45)

The cone (12.45) can be written in the parameterized form as

Ap = s(a +bcosa + csina), s € K, 0 < a < 2?r,
(12.46)

a = wi x w2, b = w3 x wi, c = w2 x w3,
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where the vectors a, b, and c describe geometry of the cone as shown in
Fig. 12.2. Expression (12.46) can be checked by substitution into (12.45).

pi Ap

Fig. 12.2 Parameterization of the cone surface.

The form of the stability domain is determined by the mutual position
of the cone (QAp, Ap) < 0 and the half-space (h n + h22, Ap) < 0. There
are two typical cases: when the plane (hn + h22, Ap) = 0 intersects the
cone and when the only joint point of the cone and the plane is Ap = 0, i.e.,
p = p0. The first case occurs if there exists a nonzero vector Ap, satisfying
both equations (QAp, Ap) = 0 and (hn + h22, Ap) = 0. Substituting Ap
from (12.46), which is the solution of the first equation, into the second
one, we obtain

(hn 4- h22, a + b cos a + c sin a) = 0,

(hn + h22,b)cosa + (hn + h22,c)sina = - ( h n + h22,a),

sin(a + ip0) = £, (12.47)

where

£ = - ( h n +h22,a)/V(hn +h 2 2 ,b) 2 + (hn +h2 2 lc)2 ,
(12.48)

tany?0 = (hn +h2 2 ,b)/(hi i +h2 2 lc) .

Thus, two cases, corresponding to the plane (hn +h22, Ap) = 0 intersecting
or not intersecting the cone, are determined by the inequalities |£| < 1 and
|£| > 1, respectively. If |£| < 1, then two different roots a of (12.47) after
substitution into (12.46) give the tangents to the edges of the stability
boundary.



Stability Domains of Non-Conservative System 379

The general result for the three-parameter case can be formulated as
follows: the form of the stability domain in the neighborhood of p0 has four
typical forms. These forms are determined by the conditions: a) det Q < 0,
|£| > 1, b) detQ > 0, |£| > 1, c) detQ < 0, |£| < 1, and d) detQ > 0,
|£| < 1, and shown in Fig. 12.3 (the stability domain is denoted by S). A
part of the stability boundary corresponding to the cone is the parametric
resonance boundary (harmonic or subharmonic depending on the sign of
po — (-l)k), while the other part represents the combination resonance
boundary.

P \ °̂ \

P7V P7V s

\yt-

Fig. 12.3 Singularities of the stability domain in the three-parameter space.

Notice that in all the cases a) - d) the instability domain consists of two
parts, where one part is the combination resonance domain (determined by
complex multipliers lying outside the unit circle) and another part is the
parametric resonance domain (determined by real multipliers with \p\ > 1).
The boundary between those domains is characterized by existence of a
double multiplier pi(p) = P2(p)- This happens, when ^i(p) — /42(p)>
which means that the discriminant of the characteristic equation for H(p)
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is equal to zero:

(ftn(p) - M P ) ) 2 + 4 M P ) M P ) =
(hn - h 2 2 , Ap)2 +4(hi3) Ap)(h21,Ap) + o(||Ap||2) = 0.

Equation (12.49) defines a cone surface in the first order approximation,
except the degenerate case when the 3x3 matrix (hn -h22)T(hn -h 2 2 ) +
4h^2h2i is singular. A part of this surface belonging to the instability
domain divides the combination and parametric resonance domains.

To determine the form of the stability domain in the degenerate cases
detQ = 0 or |£| = 1, we need to use higher order approximations of the
functions /iy(p) in formulae (12.37).

12.3.5 General case n > 4

Let us consider the case of four or more parameters. If the vectors hy,
i, j — 1,2 (gradients of the functions hij(p) at po) are linearly independent,
then the stability domain (12.37), after a nonsingular smooth change of the
parameters p ' = p'(p), p'(po) = 0, in the vicinity of po, takes the form

(p'i+P2 <0,

<PsPi-PiP2<0, (12.50)

U'5,...XeE,
where p[ = hu(p), p'2 = h22(p), p'3 = h12(p), p'i = h21(p), and other
functions p\ — p'i(p), i = 5 . . . ,n , are chosen such that the Jacobian matrix
[dp'/dp] at p = po is nonsingular. Thus, in case n > 4 there is one possible
form (12.50) of the stability domain. The case, when the vectors h^ are
linearly dependent, can be studied using higher order approximations of
the functions hij(p).

12.4 Stability of pipe conveying pulsating fluid

As an application of the presented theory, we consider a uniform flexible
cantilever pipe of length L, mass per unit length m, and bending stiffness
El, conveying incompressible fluid. Let the mass of the fluid per unit
length be M and the flow velocity be U(t). The pipe hangs down vertically
and the undeformed pipe axis coincides with the a;-axis; see Fig. 12.4. We
consider small lateral motions of the pipe y(x,t) in the plane (x,y).

(12.49)
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• \ V
g

L • L -

1 x

Fig. 12.4 Elastic pipe conveying pulsating fluid.

The dimensionless equation for small vibrations of the pipe has the form
[Paidoussis and Issid (1974)]

(12.51)

and the boundary conditions are

7 7 = § i = 0 at =̂0; 0 = 0 = O a t * = 1 - (12-52)
The dimensionless variables and parameters are given by

x _ y t ( El V'2 _E*f I \1/2

^~ V V~ V T~ H\M + m) ' a~L2\E(M + m)J '

TTT{M\1/2 o M M + mT3

U = UL{EI) 'P-WT^' ^-ET^9'
(12.53)

where E* is the coefficient of internal dissipation and g is the acceleration
of gravity. The external viscous damping coefficient is assumed to be zero
(the parameter x — 0 in [Paidoussis and Issid (1974)]).

Let us study the case of pulsating flow velocity u(t) — UQ(1 + fx cos fir),
where u0 = (M/EI)^2U0L, n, and ft = [(M + m)/EI]1/2nL2 are dimen-
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sionless parameters; UQ, fi, and fl are the flow mean velocity, the amplitude,
and the frequency of pulsation, respectively.

12.4.1 Discretization by Galerkin's method

For the numerical analysis of system (12.51), (12.52) we use Galerkin's
method. For this purpose, the solution TJ(£,T) is expressed as a linear com-
bination of ml normalized coordinate functions ipj (£) with the coefficients
Qj (r) i where the functions <pj (£) are the free-vibration eigenfunctions of a
uniform cantilever beam. Application of Galerkin's method to equation
(12.51) gives [Paidoussis and Issid (1974)]

q + B(r )q+C(r)q = 0, (12.54)

where q = (qi,...,qm>)T and the nonsymmetric ml x ml matrices B and
C are

B(r) = a A + 2UA/5K,
(12.55)

C(T) = A + {u2 + iiyft - 7)L + (7 - u^)N + 7K,

The elements Asr, ksr, lsr, and nsr of the m' x ml matrices A, K, L, and
N are defined by the expressions

Xsr = / ysipf>d£,, ksr = / (ps<p'rd£,
Jo Jo

(12.56)

lsr = / ips<p"dt, nsr = / Z<psip"d£.
Jo Jo

The values of integrals (12.56) are given in [Paidoussis and Issid (1974)].
Equation (12.54) can be transformed to the form

M ( o i \
x = G(r)x, x = , G(r) = . (12.57)

The matrix G(r) of dimension m = 2m' is periodic with the period
T = 2n/fl. Introducing new time r' = fir, system (12.57) is transformed
to the form dx/dr' - G'(r')x, where G'(r') = G(T'/Q)/Q is a periodic
matrix with the constant period T" = 2TT. This form is more convenient for
computation of derivatives of the Floquet matrix. In what follows, ml = 6
functions in Galerkin's method are used. Hence, the matrix G has dimen-
sion m = 12.



Stability Domains of Non-Conservative System 383

12.4.2 Flow with constant velocity

Let us consider the pipe with the parameters 7 = 10, /? = 1/2, fi = a = 0.
This means that the mass of the fluid in the pipe is equal to the mass
of the pipe, and there are no pulsations and internal dissipation. Then
system (12.57) is autonomous. Increasing the dimensionless flow velocity UQ
starting from zero and checking numerically the stability condition Re A < 0
for all the eigenvalues of the matrix G, we find the critical velocity of the
fluid UQ = 9.84. At this velocity the autonomous system is subjected to the
dynamic instability (flutter) associated with the third mode. The flutter
frequency is equal to w = 28.11 and the matrix Go at UQ = ug has simple
eigenvalues A = ±iw on the imaginary axis.

12.4.3 Stability domain in regular case

Let us study a change of the critical flow velocity in the presence of small
pulsation with the frequency fi = 21 and small internal damping a > 0. For
this purpose, we need to find the stability boundary in the three-parameter
space p = (fj,,a,uo) in the neighborhood of the point po = (0,0, UQ). In
this case UJTQ = 2TTCO/CI = 2.6777T ^ irk for any integer k. Using results of
Section 12.2, we conclude that the stability boundary is a smooth surface
being the boundary of combination resonance domain.

Computing derivatives of the Floquet matrix F(p) and of the simple
multiplier p(p), we find approximation (12.18) of the stability boundary up
to small terms of any order. Accuracy of the approximation can be esti-
mated numerically by comparison of approximations of different orders. In
Fig. 12.5 the third and fifth order approximations of the stability boundary
are shown. It can be concluded from Fig. 12.5 that pulsations stabilize
the system (increase the critical mean velocity of the flow), while the in-
ternal damping has destabilizing effect, which becomes stronger for higher
amplitudes of pulsation.

The dashed line in Fig. 12.5 shows the exact stability boundary. It was
found by the calculation of the Floquet matrix at different values of the
parameters, where differential equation (12.5) was solved using the Runge-
Kutta method. It can be seen that the fifth order approximation of the
stability boundary is almost identical to the exact one for the range of
parameters under consideration; see Fig. 12.5b. Notice that the time spent
for calculation of the third and fifth order approximations and the exact
form of the stability domain relates as 1 : 6 : 360. This shows the efficiency
of the developed method for numerical analysis.
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axlO

4 0 0.05
axKT1 ^

Fig. 12.5 Third (a) and fifth (b) order approximations of the stability boundary.

12.4.4 Stability domain in singular case

Let us study influence of pulsations with different amplitudes (i and fre-
quencies fi on stability of the pipe. We consider the point po = (2w, 0, ug)
in the parameter space p = (fi, /x,UQ). In this case To = 2TT/£IQ — vr/w and
UJTQ = kn, k = 1. Hence, this is the case when the stability boundary has
a singularity.

The Floquet matrix F(po) = exp(GoTb) possesses a semi-simple double
multiplier po = — 1. The first order approximation of the stability domain
in the neighborhood of po is given by equation (12.39), where the vectors
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ij and the matrix Q calculated by expressions (12.8), (12.40), (12.42) are

h n = (0,1.63,0.74), h12 = (-0.056,0.24,0.27),

h2i = (0.056,0.24,-0.27), h22 = (0,-1.63,0.74),

'-0.0031 0 0.015^ ( 1 2 ' 5 8 )

Q = | 0 2.72 0

0.015 0 -0.62,

Using (12.58), the first inequality in (12.39) takes the form

uo<uco. (12.59)

Since det Q = 0.0047 > 0, the second inequality in (12.39) defines the
external part of cone (12.46) as

Ap = s(a+ bcosa + csina), s € E, 0 < a < 2TT,
(12.60)

a = (0,-0.042,0), b = (0.0021,0,-0.087), c = (-1.3,0,0.031).

Intersection of the half-space (12.59) with the external part of the cone
(12.60) gives the first order approximation of the stability domain; see
Fig. 12.6. In Fig. 12.6 only the half-space \x > 0 is shown (the other part
fi < 0 is symmetric with respect to the plane fj, = 0). The stability boundary
has a singularity at po of the type d); see Fig. 12.3d. The instability
domain consists of the subharmonic parametric resonance and combination
resonance domains separated by the boundary (12.49) shown in Fig. 12.6
by dotted lines.

Calculating higher order derivatives of the matrices F(p) and F'(p) at
po, we can find higher order terms in the Taylor series of the functions
hij(p) (12.38). As a result, we obtain higher order approximations of the
stability domain (12.37). In Fig. 12.7 the fourth order approximation of the
stability boundary is shown. For comparison, the dashed lines in Fig. 12.7
denote the exact stability boundary calculated numerically. The computa-
tion of the first and fourth order approximations took 4 and 150 seconds,
respectively, while numerical calculation of the stability boundary by the
Floquet method needed 5-6 hours (the calculations were carried out on PC
using a standard MATLAB package). Notice that even the first order ap-
proximation provides a good qualitative and quantitative description of the
stability domain.
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Fig. 12.6 First order approximation of the stability (S), subharmonic parametric reso-
nance (SPR), and combination resonance (CR) domains.

50
6 5 60 5 5

Fig. 12.7 Fourth order approximation of the stability domain.

It can be seen from Figs. 12.6 and 12.7 that small pulsations can desta-
bilize or stabilize the system. For example, pulsations with the amplitude
fj, = 0.2 and the frequency Q, — 2u> change the critical mean velocity of the
flow by UQ - UQ = -0.54, which leads to about 5.5% decrease of the criti-
cal velocity compared with the autonomous system. Therefore, pulsations
with the frequency flw2ui are dangerous for stability of the system. Notice
that the relation ft = 2ui is similar to the condition of simple parametric
resonance well known in the stability theory of oscillatory periodic systems,
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where w is a natural frequency of a conservative autonomous system, see
Chapter 11. Recall that in our problem w is the flutter frequency of the
non-conservative autonomous system.

12.4.5 Stability diagrams on the amplitude-frequency plane

In the papers devoted to the stability analysis of pipes conveying pul-
sating fluid the stability domains (stability diagrams) are plotted on the
amplitude-frequency plane (fj,,Cl) for fixed values of the flow velocity u0,
see [Paidoussis and Issid (1974); Paidoussis and Sundararajan (1975)]. An-
alyzing singularities of the stability boundary in the three-parameter space
p = (Q,fj,,uo), we can give qualitative description of typical stability dia-
grams.

a

Fig. 12.8 Singularities of stability boundary and stability diagrams.

It is shown that singularities of the stability boundary arise at the points
p = (no,0,u§) with fio = 2u/k, where w is the flutter frequency of the
autonomous system. The stability domain is symmetric with respect to
the n = 0 plane; the upper part of this plane (fj, = 0, u0 > ug) belongs
to the instability domain, while the lower part belongs to the stability
domain. Using these properties we conclude that all the singularities of the
stability boundary are of the fourth type, see Fig. 12.3d, where the cone
axis is parallel to the ^i-axis, and the surface determining the combination
resonance boundary is tangent to the u0 — UQ plane, see Figs. 12.6 and
12.8. Hence, stability diagrams on the plane (fj.,Cl) for u0 < ug typically
consist of several convex parametric resonance zones at the frequencies
fi m 2co/k, being cross-sections of the cones, corresponding to different
singular points, by the UQ = const plane, see Fig. 12.8. With a decrease
of UQ those domains appear for higher values of the pulsation amplitude
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//. Notice that for the pipe under consideration similar singularities appear
at the super-critical value of the flow velocity UQ = 16.9, when the second
mode becomes unstable (the corresponding frequency is ui = 59.5). These
singularities lie inside the instability domain, but they also give rise to
convex parametric resonance zones on the plane (/x, fi) at uo < uo- Since
instability of the autonomous system is associated with the third and second
modes, there are no parametric resonance zones corresponding to the first
mode. For uo > ug t n e plane (fi, Cl) consists mostly of the instability domain
including both parametric and combination resonance zones.



Concluding Remarks

In this book we have studied linear multi-parameter stability problems for
multiple degrees of freedom systems, which can be treated as linearized
equations near an equilibrium state or given motion. This study allows one
to construct stability and instability domains in the space of multiple pa-
rameters. As further development of the analysis, we suggest to investigate
stability problems for distributed parameter (continuous) systems described
by partial differential equations. It would be interesting to investigate how
the eigenvalues of those systems depend on several parameters, including
possible changes from discrete to continuous spectrum. As another perspec-
tive direction of research, we suggest multi-parameter analysis of nonlinear
effects and bifurcations, in particular, influence of nonlinearities on stability
domains of marginally stable systems. We think that investigation of bifur-
cations and post-critical behavior of nonlinear systems near singularities of
the stability boundaries will lead to discoveries of new physical effects.

It would be interesting to apply the theory and methods presented in
this book to the study of complicated stability problems in different areas of
natural sciences, e.g. quantum physics. One could expect new phenomena
and effects associated with singularities and bifurcations in economics and
social sciences.

We live in the world full of instabilities and catastrophes dependent on
many parameters and circumstances. We hope that the book will help to
find stable solutions providing safe operation of machines and devices in
engineering, stable and expectable development of processes in natural and
social sciences.
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