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Preface 

MOTIVATION FOR THE BOOK 

Statisticians often use linear models for data analysis and for developing new 
statistical methods. Success in either endeavor requires a solid understanding of 
the underlying theory. Historically, univariate, multivariate, and mixed linear 
models have been discussed separately. In contrast, we give a unified treatment in 
order to make clear the distinctions among the three classes of models. No single 
model class proves uniformly best. Therefore choosing the best approach requires 
a detailed knowledge of the differences and similarities. 

A student needs to acquire four sets of skills. (1) Using all three classes of 
linear models correctly in practice requires knowing enough theory, especially a 
deep understanding of assumptions and their possible violations. However, we 
leave detailed discussion of diagnostics to others. (2) Correct use also requires 
knowing when to choose one type over another. (3) Understanding the theory 
helps guide when not to use any of the models. (4) Finally, developing new 
methods requires a detailed knowledge of known work. 

TOPICS COVERED 

We focus on linear models of interval scale responses with finite second 
moments, especially models with correlated observations and Gaussian errors. 
Such correlations always create additional complexity. In contrast to most 
"multivariate" books, most classical techniques, including cluster analysis, factor 
analysis, discriminant analysis, and canonical correlation, receive little attention. 

Meeting our goals in a book appropriate for a one-semester course required 
omitting many worthwhile topics. Even so, the book includes more material than 
usually covered entirely in a four-credit class. On the other hand, it may seem 
wasteful to include separate and overlapping treatments of univariate, multivariate, 
and mixed models. However, our students have adamantly preferred the current 
organization. We accept some duplication for the sake of clarity. 

NOTATION 

We sought a precise but accessible presentation of the theory underlying 
practice, illustrated with examples. Fairness to our students and readers required 

X Ill 
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creating compatible univariate, multivariate, and mixed model notation. Many 
authors describe a univariate model in terms of a single observation. Others 
describe univariate and multivariate models in matrix notation for all observations 
and all independent sampling units. In contrast, mixed model discussions typically 
describe the observations for only one independent sampling unit. Table 6.5 
serves as a Rosetta stone by allowing translations between models and 
publications. Discussing all three forms of all models clarifies differences and 
helps avoid many sources of confusion. 

PREREQUISITES 

We developed the book for a four-hour class required of our doctoral students. 
Most have the equivalent of a Master's Degree in Biostatistics, including two 
semesters of probability and inference, at the level of Wackerly, Mendenhall, and 
Scheaffer (1996). Students also need a solid background in applied univariate 
linear models from a matrix perspective, as in Muller and Fetterman (2002). 

Most explanations and proofs use matrix algebra. Rank, basis space, 
eigenanalysis, the singular value decomposition, and generalized inverses play 
central roles. Although we summarize key matrix results in Chapter 1, the reader 
without sufficient background should invest time in studying one of the many good 
matrix theory books, such as Schott (2005). Section 1.15 merits special and 
repeated attention in understanding and proving many results in estimation and 
inference. Prerequisite material in sections 1.11-1.14 also may require study. 

We use the most basic properties of complex arithmetic to allow simplifying 
some proofs by using characteristic functions. Measure theoretic and contour 
integration methods are mentioned only occasionally, and not required. 

ACKNOWLEDGMENTS 

We owe a great debt to the authors of many earlier books about linear models. 
We give explicit citations for particular results and also for conceptual approaches. 
We wrote the book while the first author was a Professor in the Department of 
Biostatistics at the University ofNorth Carolina Hill. 

Many colleagues helped us along the way. We especially thank Ronald W. 
Helms, Lloyd J. Edwards, and Christopher S. Coffey for their guidance and 
friendship. Teaching assistants Stacey Major, William K. Pan, Hae-Young Kim, 
and J. (Chris) Slaughter, as well as a number of graders, helped shape the 
organization and choice of topics by providing a student's perspective. Our hard­
working and enthusiastic students motivated us to start the book and kept us going 
to the finish. As in all such endeavors, the book would not exist without the love, 
support, and forbearance of our families, especially our wives, Sally and Dawn. 



CHAPTER I 

Matrix Algebra for Linear Models 

1.1 NOTATION 

Graybill ( 1969), Searle (1982), Harville (1996), and Schott (2005) provided 
thorough introductions to matrix algebra for statistics. We summarize only key 
results here. Substantial omissions include the deletion of nearly all proofs, as well 
as consideration of more general forms not commonly used in statistics. Also, 
many issues of numerical accuracy have been ignored. Some of the formulas 
described here, although very useful for understanding concepts, prove 
numerically unstable with typical computer precision. 

Braces, { }, indicate sets and brackets, [], indicate matrices or vectors (arrays). 
In a distinct use of the same symbols, mathematical expressions will be grouped by 
using the nesting sequence { [ ()]}, which may be iterated as { [ ( {[ ()]} )]} . 

Definition 1.1 (a) A matrix is a rectangular, two-dimensional array of 
elements. Writing A= {a;j} says A is the matrix with element a;j at row i 
and column j. Here i is the row index, while j is the column index, which 
are always written in row-column order. 

(b) A vector is any matrix with exactly one column, such as v = [ ~] . 
(c) A scalar, such as s = 6, can be expressed as a vector with one row or as 
a matrix with one row and one column, written s = s = S. 

We restrict attention to real numbers and finite dimensions. 
columns, A is r x c (r by c): 

With r rows, c 

[

au a12 · · · a~c l 
a21 : A= . . . . . . 
ar! arc 

(1.1) 

In tum, (A/;J = a;j indicates element i, j has been extracted from A. 

Although not all authors do so, we are scrupulous about the distinction between 

a matrix of one row, such as A = [ a 1 a2], and a vector, b = [ ~~]. The vector b 

1 



2 MATRIX ALGEBRA FOR LINEAR MODELS 

can also be written in terms of a transpose (defined in the next section), b =A'. 
Doing so not only avoids notational ambiguity, but also builds in many consistency 
checks by requiring dimensions and symbol types (a or A) to align. 

As an aid to working with matrices, we always use bold typeface in word 
processing software, as in the present book. Most, but not all, statistical journals 
require the convention. With the convention, a represents a scalar, a represents a 
vector, and A represents a matrix. When handwriting expressions, we highly 
recommend always putting a tilde or dash under any matrix or vector to indicate 
boldface. It is extremely helpful to write the dimensions of each matrix in an 
equation underneath the equation. Using the transpose, matrix multiplication, and 
inverse operators (introduced later in the chapter) illustrates the idea, with 

(1.2) 

being much less informative than 

j3 = (X'X)-1X'y. (1.3) 
pxl [(pxn)(nxp)](pxn)(nxl) 

The practice saves a great deal of time (otherwise spent being confused). More 
bluntly, if one does not know the dimensions, one cannot understand the equation. 

We reserve superscripts for operators and use subscripts for descriptors, such as 
in x, x2, x2. Often, functional notation, such as x( c, a), provides a better 
alternative than a long and elaborate subscript descriptor. 

1.2 SOME OPERATORS AND SPECIAL TYPES OF MATRICES 

Definition 1.2 (a) A square matrix has the same number ofrows as columns. 
(b) For A (r x c), the (main) diagonal of A is {an, a22, ... , ace}. 
(c) A square matrix is diagonal if all elements off the main diagonal are zero; 
if i -1- j, then aij = 0, while aii can be anything. 

Definition 1.3 Writing Dg(v) = Dg({vj}) indicates creating a square 
diagonal matrix from a vector or elements of a set, as in 

(1.4) 

Definition 1.4 A prime indicates transpose. If A = { a;j} is r x c, then 
A' = { aj;} is c x r. The transpose operation causes rows to become 
columns and columns to become rows. 

Definition 1.5 A symmetric matrix is a square matrix such that aij = afi· 

Equivalently, A' = A. 
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As mentioned earlier, we use the term "vector" only for n x 1 arrays and never 
for 1 x n arrays. A 1 x n array will always be written as a matrix, such as 
A= [ 1 2 3], or as a transposed vector, b' = [ 1 2 3]. Here A= b' and A'= b. 

Definition 1.6 An identity matrix, I or In, is a square matrix with all 1's on 
the main diagonal, and all O's off-diagonal. Equivalently, a;j = 0 if i -=f. j 
and aij = 1 if i = j. 

Definition 1.7 A zero matrix, 0, has a;.i = 0 and may be written 
Dr to indicate a vector or Drxc to indicate a matrix for clarity. 

Similarly an n x 1 vector with all elements 1 is written 1 or 
ln = [ 1 1 · · · 1 ]'. Also, 1"1;, is ann x n matrix of all1's. 

Definition 1.8 An upper triangular matrix has a;j = 0 for i > j, such as 

u = [~ ~ ~] 
0 0 3 

(1.5) 

A lower triangular matrix has a;1 = 0 for i < j: 

L=[~~~l 
8 9 3 

( 1.6) 

Definition 1.9 A partitioned matrix (supermatrix) has elements grouped 
meaningfully by combinations of vertical and horizontal slicing, indicated 
A= { A.id· Necessarily A 1k and Ajk' have the same number ofrows, while 
Aik and AJ'k have the same number of columns. 

Definition 1.10 A block diagonal matrix is a partitioned matrix with all 
partitions zero except possibly { Aij}. 

Two examples are the block diagonal matrix 

1 2 0 0 
3 4 0 0 

A= (1.7) 
0 0 5 6 
0 0 7 8 

and the general partitioned matrix 
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B= [
1 : 0 0] 1 : 0 0 
2 : 0 0 ° 

3 0 0 

(1.8) 

Conformation of shapes requires consistent partitioning. If 

A= [BCD] 
EFG (1.9) 

then B, C, and D have the same number ofrows, while Band E have the same 
number of columns, etc. However, complete uniformity of dimensions is not 
required (the number of rows of B need not equal the number of rows of E). It 
would be hard to overemphasize the value of partitioned matrices in deriving 
algebraic and statistical properties for linear models. Expressions can often be 
greatly simplified by taking advantage of special properties of partitioned matrices 
for basic operations (matrix summation, multiplication, etc.) and more complicated 
operations (determinants, inverses, etc.). 

Definition 1.11 For r x c A, writing colk(A) = ak indicates extracting r x 1 
column j from A. Writing Aj = rowj(A) indicates extracting a particular 
1 x crow. 

As an important example of partitioning, r x c A can be expressed in terms of 
its c column vectors, { aj}, with aj of dimension r x 1, or its r rows, { Ak}, with 
Ak of dimension c x 1. In summary, 

(1.1 0) 

Definition 1.12 (a) Writing A= [ a 1 a 2 · · · ac ], which requires { aj} to be 
r x 1, indicates { aj} have been horizontally concatenated. 

(b) W•iting A ~ [ t] , which requi<e' { Ak) to be o x I, indioat"' {At J 

have been vertically concatenated. 

Definition 1.13 Writing vee( ) indicates all elements of a matrix have been 
stacked by column, as in b1 = vec(A), because it creates an (rc) x 1 vector 
from an r x c matrix. Equivalently, the columns have been vertically 
concatenated. 
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If A = [ a 1 a2 · · · ac ] then 

(1.11) 

In tum, b2 = vec(A') also creates an (rc) x 1 vector which differs from b1 only by 
permutation of the rows. Creating vec(A') stacks the matrix by rows: 

( 1.12) 

If r = c and A= A' then only r(r + 1)/2 elements are distinct. The r 2 

elements are not functionally independent. The vech() operator extracts the 
distinct elements into a vector: 

a 
b 
c 
d (1.13) 

e 
f 

Definition 1.14 The trace of ann x n (square) matrix is tr(A) = L:~=laii· 

Definition 1.15 Matrices conform for an operation if their sizes allow the 
result of the operation to exist. Matrices do not conform for an operation if 
their dimensions do not allow the desired operation. 

Definition 1.16 Matrix addition yields A+ B = { aij + bij} while matrix 
subtraction yields A- B = { aij- bij}· Either result exists only if A and 
Bare the same size (and thereby conform for the operation). 

1.3 FIVE KINDS OF MULTIPLICATION 

Definition 1.17 Scalar multiplication of a matrix gives Ab = bA = {ba;j}. 

Definition 1.18 If A and B are both r x c, then elementwise 
multiplication gives A#B = {aijbij} = C, with C also r x c. 
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Definition 1.19 (a) Matrix multiplication of A (r x c) and B (c x d) gives 
AB = C = {cjk} for Cjk = I:':r,= 1akmbmb with C T X d. 
(b) If A is r x r, the matrix power of A is Ak = A 1A 2· · ·Ab with Aj =A. 

Definition 1.20 (a) The cross product ofr x 1 a and b is a'b = I:~=l akbk. 
(b) The dot product of r x 1 a and b is a•b = cos(B)V a'ab'b, with B the 
angle between the two vectors. Necessarily a'b = 0 if and only ifB = 90°. 
(c) If a is r x 1, then a' a= 2"::~= 1 a~ is the inner product of the vector. 
(d) If a is r x 1, then aa' = { aiaj} is the outer product of the vector. 

Matrix multiplication can be expressed as a collection of cross products. 
Multiplying row j of A with column j of B yields Cjk = {rowj(A)colk(B)}: 

row 

]1 column. 

Lemma 1.1 (a) Premultiplying by a (square) diagonal matrix scales the rows, and 
postmultiplying by a (square) diagonal matrix scales the columns. 
(b) The result generalizes to partitioned matrices with conforming partitions. 

In particular, for conforming matrices IA =A and AI= A. For a 2 x 3 
matrix, A, multiplication by diagonal matrices gives 

= GAI = [ 91 0 ][a b f l [ ~ 
0 n 91b 91C] (1.1 4) GA 1 _ [ 91a 

0 92 d e 0 
- 92d 92e 92! 

AH~IAH~[' 0
][" b "l[~ 0 ~] ~ [ ah, bh2 ch3] (1.15) h2 01 def 

0 0 h3 dh1 eh2 fh3 . 

Definition 1.21 The horizontal direct product creates a new matrix by 
elementwise multiplication of pairs of columns from two matrices with the 
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same number of rows: 

[ ~ ~]8 [: ~ !] 
e f x y z 

[ ~: ex 

as at br 
cv cw du 
ey ez fx 

bs btl 
dv dw . 
fy fz 

7 

(1.16) 

To operate on rows (1) transpose each operand, (2) compute the product, and 
(3) transpose the result, as with (A' 8 B')'. The operator could be called the 
vertical or column direct product. 

Definition 1.22 The direct (or Kronecker) product is 

A0B = {aijB} 

(1.17) 

With r x c A and s x d B, the result has dimension 
(rs) x (cd) =(rows x columns). Some authors choose to define {Abij} as the 
direct product, which produces a different matrix. 

1.4 THE DIRECT SUM 

Definition 1.23 The direct sum operator creates a block diagonal matrix 
from any set of square matrices: 

J 

EfJA1 = A 1 EB A2 EB · · · EB AJ 
j=l 

0 l 0 : 

·~· 1J . (1.18) 
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Lemma 1.2 In general tr(A1 E9 A 2) = tr(A1 ) + tr(A2). If Aj and Bj are both 
nj x nj, then 

Any direct product of the form I 0 B is a special case of the direct sum: 

J 

I.1 0B = EfJB. 
j~l 

( 1.19) 

(1.20) 

( 1.21) 

Direct products including an identity matrix, A 0 I or I 0 B, occur often in 
expressions for covariance matrices of data in clusters of fixed size. A common 
form occurs in describing the covariance matrix of data observed in N clusters of 
constant size, with homogeneity of covariance between clusters: 

(1.22) 

If the dimension or elements of:Ei vary with i, then S cannot be written as a direct 
product. The direct sum allows writing 

N 

g = EfJ:Ei 
i~l 

~[1 
0 

lJ :E2 0 
0 

0 

(1.23) 

1.5 RULES OF OPERATIONS 

Unless otherwise specified, we assume A and B conform for the operations in 
question. Without additional knowledge of the matrices involved, the following 
are true. 
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Theorem 1.1 Some operations obey commutative laws: 

A+B=B+A 
A-B=B-A 
A#B=B#A 

aB=Ba. 

9 

(1.24) 
(1.25) 
(1.26) 
(1.27) 

It is important to recognize that AB -1- BA and A 0 B -1- B 0 A, except in 
special cases. 

Theorem 1.2 Some operations obey associative laws: 

(A+B) +C =A+ (B+C) 
(AB)C = A(BC) 

(A0B) 0C = A0 (B0C) 
(aB) 0 (cD) = ac(B 0 D) 

a 0 B = B 0 a = aB. 

Theorem 1.3 Some operations obey distributive laws: 

A(B +C) = AB + AC 
A(B- C) = AB- AC 
(B+C)D =BD+CD 
(B- C)D = BD- CD 
a(B +C) = aB + aC = (B + C)a 
(B- C) = aB- aC = (B- C)a 
(A+ B)' =A'+ B' 
(A- B)' =A'- B'. 

Theorem 1.4 The transpose has some special operational properties: 

( 1.28) 
(1.29) 
( 1.30) 
(1.31) 
( 1.32) 

( 1.33) 
(1.34) 

(1.35) 
( 1.36) 
(1.37) 
(1.38) 
(1.39) 
(1.40) 

(aB)' = aB' = B'a (1.41) 
(ABC .. ·)'= ... c'B'A' (1.42) 

(A 0 B 0 C 0 .. ·)'=A' 0 B' 0 C' 0 .. · (1.43) 

ab' =a 0 b' = b' 0 a. (1.44) 

Theorem 1.5 For conforming matrices, 

vec(AB) =(I 0 A)vec(B) = (B' 0 I)vec(A) (1.45) 

vec(ABC) = (C' 0 A)vec(B) (1.46) 
vec(ABCD) =(I 0 A)(I 0 B)(I 0 C)vec(D). (1.47) 
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Theorem 1.6 (a) For any matrix pair, tr(A Q9 B) = tr(A)tr(B). 
(b) For conforming matrices, tr(AB) = tr(BA). 

1.6 OTHER SPECIAL TYPES OF MATRICES 

Definition 1.24 A matrix of the form A' A is an inner product and AA' is an 
outer product. 

If A = [ a1 · · · ac] is r x c, then AA' = L:j~1 ajaj is r x r and equals the sum 

[
A

1

] [b~ l of the c outer products of the c columns of A. If A = lr ~~ = B' is 

r x c, then A' A = L:~=l bkbk is the sum of router products of the columns of B, 
which are the rows of A. Both inner and outer products are always symmetric. 
Using concepts introduced later in the chapter, inner and outer products are always 
either positive definite (all eigenvalues real and positive) or positive semidefinite 
(all real eigenvalues, with some positive and some zero). Inner and outer products 
always have the same rank, which equals the rank of A. They also have the same 
eigenvalues, except for some zeros if A is not square. 

Definition 1.25 A matrix is (colurnnwise) orthogonal if A' A (the inner 
product) is diagonal, and a matrix is (rowwise) orthogonal if AA' (the outer 
product) is diagonal. A matrix is (columnwise) orthonormal if A' A =I, 
and a matrix is (rowwise) orthonormal if AA' =I. Two matrices are 
biorthogonal if AB = 0. 

In the preceding definition, neither A nor B need be square. 

Definition 1.26 Any square matrix is described as idempotent if A = A 2• 

Lemma 1.3 If A is idempotent, then I - A is also idempotent and 
A(I- A)= 0. 

Idempotent matrices play important roles in discovering properties of quadratic 
forms, especially independence. 

1.7 QUADRATIC AND BILINEAR FORMS 

Definition 1.27 (a) For square A= A' and conforming x, the expression 
q = x' Ax is a quadratic form in x. 
(b) The expression b = x~ Bx2, forB not necessarily symmetric or square is 
a bilinear form in conforming vectors x 1 and x2, 



Linear Model Theory 11 

If x (2 x 1) is free to vary and q0 > 0 is constant, then q0 = x 1 Ax is the 
equation of an ellipse. The result generalizes to higher dimensions. A quadratic 
form lies at the heart of the density of a vector Gaussian and consequently leads to 
ellipsoidal probability contours. 

Lemma 1.4 If q = x 1 Ax, then without loss of generality A may be assumed to be 
symmetric. 

Proof. IfO =(A+ A1)/2 then C = 0 1 and 

x 1Cx = x 1[(A + A1)/2]x 
= [x1Ax + (x1Ax) 1]/2 
=x1Ax. 

(1.48) 
0 

Lemma 1.5 Without loss of generality, any bilinear form, x1Bx2, may be 

expressed as a quadratic form, y 1 Dy, with y 1 
= [ x; x2] and D = [ ~~ ~] /2. 

Proof. Here D = D 1 and 

Y
1 

Dy = [ :~ r ( ~ [ ~~ ~]) [ :~] 
= [ x; x2] [ :~:~] /2 
= (x~Bx2 + x;B1x 1)/2 
= x~Bx2. 

1.8 VECTOR SPACES AND RANK 

(1.49) 
0 

Definition 1.28 A set of n x 1 vectors { x 1 , .•• , Xp} is linearly dependent if a 
set of scalar coefficients { a 1, ... , ap}, not all zero, exist such that 

p 

l.:aiXi = a1X1 + a2X2 + · · · + apXp = 0. 
i~I 

(1.50) 

If no such set of ai exists then the set of Xi is linearly independent. The 
single equation about n x 1 vectors defines a set of n scalar equations. 

Definition 1.29 (a) Any finite set of n x 1 vectors generates a vector 
space, namely the (usually infinite) collection of all possible vectors created 
by any combination of multiplications of one vector by a constant, or the 
addition of two vectors. 
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(b) Any set of vectors which generate the particular set of vectors spans the 
vector space, and provides a basis for the space. 

Definition 1.30 (a) The rank of the vector space equals the smallest possible 
number of linearly independent vectors which span the space. The rank of a 
set equals zero if and only if the only member of the set is xi = 0. The rank 
of a set of p vectors, necessarily an integer, ranges from zero to p. 
(b) A set with rank pis full rank, while a set with rank strictly less than pis 
less than full rank. 

Any two distinct vectors x 1 and x 2 are orthogonal if and only if x; x 2 = 0. An 
orthogonal basis provides the most convenient form and has xjxj' = 0 if j -1- j'. 
Spectral (eigenvalue) decomposition provides an orthonormal basis for any square 
and symmetric matrix, and some nonsymmetric square matrices. The singular 
value decomposition provides a convenient way for any matrix, symmetric or not, 
square or not. Both are discussed later in the chapter. 

An r x c matrix, A, can be thought of as a collection of c vectors, the columns, 
each r x 1. Alternately, considering the columns of A' allows describing the 
matrix as a collection of r vectors, the transposed rows, each c x 1. The rank of a 
matrix may be found by decomposing it into its columns and treating them as a set 
of vectors: 

A~ [! i n 
= [ a1 a2 a3] 
<(:::} 

{a,.~.a,) ~ { m · [iH~l} · 
( 1.51) 

(1.52) 

Transposing the matrix allows applying the same process to the rows. The 
resulting row rank always equals the column rank, which leads to the following. 

Definition 1.31 The rank of a matrix equals the maximum number of linearly 
independent rows or columns, indicated rank( A). An r x c matrix is full 
rank if rank( A)= min(r, c) and less than foll rank otherwise. The only 
matrix of rank zero is a matrix of all zeros, Dnxm· 

It would be hard to overemphasize the importance of the concepts of vector 
space, span, basis, and orthogonal basis in the study of linear models. The 
concepts lie at the heart of many theorems, proofs and computational methods. 
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The same ideas provide crucial tools in understanding the logic of hypothesis tests, 
constrained models, and equivalence between models and parameterizations. 

1.9 FINDING RANK 

One method to find rank uses only elementary row operations or only 
elementary column operations to produce a canonical form, which is necessarily of 
equivalent rank. In particular, using (only) elementary row operations allows 
transforming a matrix to a triangular one (triangularize the matrix). The three 
elementary row (column) operations are: (1) multiplying a row (column) by a 
nonzero constant, (2) adding one row (column) to another, and (3) exchanging two 
rows (columns). 

A second approach to finding rank uses the spectral or singular value 
decompositions described later in the chapter. The rank of any square symmetric 
matrix equals the number of nonzero eigenvalues (although the relationship may 
not hold for square but not symmetric matrices). However, any matrix has a 
singular value decomposition, with the number of nonzero singular values equal to 
the rank of the matrix. 

The concepts of similarity and congruence (defined in Section 1.12) can be used 
to simplify the task. The following lemmas also prove useful. 

Lemma 1.6 In general 

0::; rank(A)::; min(r,c) 
rank(AB) ::; min[rank(A), rank( B)] 

rank(A +B) ::; rank( A)+ rank(B). 

(1.53) 
( 1.54) 
(1.55) 

Lemma 1.7 (a) The rank of a diagonal matrix equals the number of nonzero 
diagonal elements. 
(b) If b -1- 0, then 

rank(A) = rank(bA). 

The case of b = -1 provides an example: rank( A)= rank( -A). 
(c) For any matrix 

rank( A) =rank( A') =rank( A' A) = rank(AA'). 

(1.56) 

(1.57) 

Lemma 1.8 Multiplying by a square full-rank matrix does not change rank. If A is 
r x r of rank r, B is r x c with 0 ::; rank(B) ::; min(r, c), and C is c x c of 
rank c, then 

rank(ABO) = rank(AB) = rank(BO) = rank(B). (1.58) 
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Lemma 1.9 If A is r x c of rank c and B is c x d with rank( B) = c, then 

rank(AB) = rank(A) . 

Lemma 1.10 For any A and B 

rank( A® B) = rank(A)rank(B) 

and for any square A and any square B 

rank( A E9 B) =rank( A)+ rank( B). 

1.10 DETERMINANTS 

(1.59) 

(1.60) 

(1.61) 

Definition 1.32 The determinant, a scalar, is indicated IAI and is defined only 
for a square matrix. Also lA' I = !AI. 

For any 2 x 2 matrix 

I [ ~ ~] I = ad - be . (1.62) 

The determinant of a diagonal or triangular matrix equals the product of the 
diagonal values. For 3 x 3 matrices 

[

a 0 0] 
0 b 0 = 

0 0 c 

For any general3 x 3 matrix 

[ ~: ;] =aei+bfg+chd-ceg-afh-bdi. 
g h i 

( 1.63) 

(1.64) 

In general the determinant equals the sum of products with alternating sign of 
elements of the matrix. The determinant equals the product of the eigenvalues 
(discussed later in the present chapter), which provides the most useful 
interpretation of the determinant for statistical analysis. Determinants have many 
useful properties related to rank. 

Lemma 1.11 For A (n x n), 

IAI = 0 <(:::} rank(A) < n 
<(:::} A less than full rank 

<(:::} A -l does not exist, 
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while 

[A[ -1- 0 <(:::} rank(A) = n 
<(:::} A full rank 

<(:::} A-1 exists, 

<(:::} all columns (rows) of A linearly independent. 
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Definition 1.33 A less-than-full-rank square matrix may be described as 
singular and a full-rank square matrix as nonsingular. 

Lemma 1.12 (a) [A[= [A'[. 
(b) If A ism x m and B is n x n then [A E9 B[ = [A[[B[ and 
(c) [A 0 B[ = [A[m[B[n. 
(d) Ifm = n, then [AB[ = [A[[B[ = [BA[. 

1.11 THE INVERSE AND GENERALIZED INVERSE 

Theorem 1.7 (a) An n x n matrix A of full rank has rank(A) = n, and there 
exists a unique matrix A - 1, called the inverse of A, such that 

(1.65) 

(b) Ifn = 1, then A is a scalar, and A - 1 = 1/ a exists if and only if a -1- 0. 
(c) The inverse of a full-rank diagonal matrix equals the diagonal matrix of 
reciprocals of the diagonal elements. 

Lemma 1.13 For square, conforming (same-size) and full-rank matrices 

More generally, for any finite set of full-rank (and same size) matrices 

(ABCD···)- 1 = ···D-1C-1B-1A-1 • 

(1.66) 

(1.67) 

The inverse has some symmetries. Not surprisingly, a symmetric matrix has a 
symmetric inverse. When they exist, the inverse of the transpose equals the 
transpose of the inverse and hence may be written unequivocally as A-t: 

A-t= (A'r1 =(A-I)'. (1.68) 

Furthermore, if A-1 exists, then [A-1 [ = ([A[)-1. 

Lemma 1.14 (a) If V = R + ZGZ' and V, R, and G are all square and full 
rank, then v-1 = R-1(R- ZBZ')R- 1 , with B = (G-1 + Z'R-1z)-1 = 
G(G-1 - Z'V- 1 Z)G. 
(b) If V = R + gZZ' and V, R, and g are all square and full rank, then 
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(R+ gZZ')- 1 = R-1(R- bZZ')R-1, with b = (g- 1 + Z'R- 1Zt 1 • 

(c) For A (r x c) and B (c x r), if rank(I + AB) = r, then (I+ AB)-1 = 
I- A(I + BA)-1 B. 
(d) Applying (c) recursively gives (Ir- 0)-1 =I+ '£"; 1Ci (when it exists). 

Theorem 1.8 For any matrix A, square or not, a nonunique generalized inverse 
A- always exists such that 

(1.69) 

One particularly inconvenient property of the one-condition generalized inverse 
is that A- need not be symmetric even though A is symmetric. 

Theorem 1.9 For any matrix A, square or not, the unique Moore-Penrose 
(generalized) inverse A+ always exists and satisfies four conditions: 

1. AA+A=A (I. 70) 
2. A+AA+ =A+ (1.71) 
3. (A+ A)'= A+ A (1.72) 
4. (AA+)' = AA+. (1.73) 

If A is symmetric, then A+ is always symmetric. Matrices meeting only 
subsets of conditions, such as 1 and 2, (a two-condition inverse), or conditions 1, 
2, and 3 (a three-condition inverse) have also been studied. Although a few proofs 
in linear models require a two- or three-condition inverse, we nearly always restrict 
attention to either one- or four-condition inverses. 

Both the Moore-Penrose (four-condition) and any one-condition generalized 
inverse always coincide with the regular inverse for a square and full-rank matrix. 
Furthermore any one-condition inverse always coincides with the four-condition 
inverses for a nonsquare and full-rank matrix. 

For a wide variety of linear models with a less-than-full-rank design matrix X, 
the form (X'X)- occurs often in expressions for estimators and distribution 
parameters. Very conveniently, Theorem 1.15 in the next section eliminates the 
need to distinguish between (X' X)- and (X' X)+ in a wide range of linear model 
applications. 

Theorem 1.10 (a) The Moore-Penrose inverse of a less-than-full-rank diagonal 
matrix is the diagonal matrix with reciprocals of the nonzero elements on the 
diagonal in the same locations as the nonzero elements and zero elsewhere. 
(b) The Moore-Penrose inverse of the transpose equals the transpose of the 
generalized inverse and hence may be written unequivocally as A +t: 

(1.74) 
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(c) If r x c A has rank( A) = r :::; c, then A+ has dimensions c x r and 

A+= A'(AA')-1
. 

(d) Ifr x c A has r ~ c =rank( A), then A+ has dimensions c x rand 

A+= (A'A)- 1A'. 
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( 1. 75) 

(1. 76) 

In contrast to the regular inverse, ( AB) + may or may not equal B+ A+. The 
next lemma lists two side conditions which suffice to ensure that the result holds. 

Lemma 1.15 (a) If A is r x c, Pis r x r, and Q is c x c, with P'P = Ir and 
Q'Q = Ic, then 

(b) If A is r x c of rank c and B is c x d of rank c, then 

(AB)+ = B+ A+. 

(1. 77) 

(1. 78) 

Definition 1.34 For known A (r x c) and known b (r x 1), system Ax= b is 
consistent whenever any linear relationships existing among the rows of A 
also exist among the corresponding rows of b (r x 1). Equivalently c' A = 0 
=? c'b = 0, <(:::} the system has one or more solutions, x 0 . 

By the definition, a system of equations is consistent if at least one solution set 
exists. More than one or even infinitely many solutions may exist. With A and b 
known constants and x unknown, the equation Ax = b defines a system of 
equations (one per row of A and b). 

Lemma 1.16 For known A (r x c) and known b (r x 1), if the system Ax= b is 
consistent, then the following all hold. 
(a) If r = c and rank( A) = r, then the system has a unique solution given by 
X =A-1b. 
(b) If r -=f. cor rank(A) -=f. r or both and A- is any generalized inverse of A (i.e., 
AA-A= A), then x = A-b is one solution of infinitely many. 

Proof of (b). AA-A= A =? (AA- A)x = b 
=? AA-b =b. 

Lemma 1.17 If A (r x c) has (A-) 1 as a particular one-condition generalized 
inverse and B is c x r, then 

(1.79) 

is also a one-condition generalized inverse for A. 
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Corollary 1.17 For A (r x c) and any A- (c x r), Band C exist such that 

A- =A++B-A+ABAA+ 
A+ = A- + C - A-ACAA- . 

Lemma 1.18 If A- 1 exists, then 

rank(A-1
) = rank(A). 

For A of any dimension and any rank 

(1.80) 
( 1.81) 

(1.82) 

rank(A+) = rank(AA+) = rank(A+ A)= rank(A) (1.83) 

and 

rank(A-) ?': rank(AA-) = rank(A-A)= rank(A). (1.84) 

Lemma 1.19 If A is r x c, then A-A is c x c, AA- is r x r, and both are 
idempotent. The same properties hold if A+ replaces A-. 

Lemma 1.20 For any A and B 

(A0B)-=A-0B­

(A0B)+=A+0B+, 

and for any square A and square B 

(A EB B)- = A- EB B­

(A EBB)+= A+ EBB+. 

If square A and square B are both full rank, then 

(A EB B)-1 =A-I EB B-1 

(A 0 B)-1 =A-I 0 B-1 . 

1.12 EIGENANALYSIS (SPECTRAL DECOMPOSITION) 

(1.85) 
(1.86) 

( 1.87) 
(1.88) 

(1.89) 
(1.90) 

Eigenanalysis is only defined for square A. Nearly all interest in decomposing 
matrices in statistics lies with symmetric matrices. The symmetry (in statistical 
applications) arises because the matrices of interest are inner products or outer 
products. However, for the moment, we consider any square matrix, n x n, 
symmetric or not. 
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Definition 1.35 A right eigenvector of A is an n x 1 vector, x -1- 0, such that 

Ax= .Ax, (1.91) 

with A the eigenvalue corresponding to x. A left eigenvector is an n x 1 
vector y such that y' A = .Ay'. A left eigenvector of A is a right eigenvector 
of A': A'y = .Ay. The set of eigenvalues is sometimes referred to as the 
spectrum of the matrix. 
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Eigen means "characteristic" in German, which leads to the alternative 
descriptions as characteristic values and characteristic vectors. The eigenvector x 
has the special property of projecting A back into itself (x) times a constant. The 
self-replicating feature leads to thinking of eigenvectors as matrix DNA. 

Statisticians most often apply eigenanalysis to symmetric matrices. Right and 
left eigenvectors coincide for a symmetric matrix but usually do not for a 
nonsymmetric matrix and may not even exist. One important exception occurs in 
multivariate linear models for which the test statistics and associated contrasts 
correspond to eigenvalues and eigenvectors of a nonsymmetric matrix. For 
computational purposes, although not for scientific interpretation, the task can be 
expressed in terms of a symmetric matrix. 

Theorem 1.11 (a) The roots of the characteristic equation, lA- .Ail = 0, equal 
the eigenvalues (characteristic values). 
(b) Also 

Ax=.Ax (1.92) 
{'} 

(A- .AI)x = 0 (1.93) 
{'} 

lA- .Ail= 0. (1.94) 

(c) The characteristic equation of an n x n matrix equals a polynomial in .A of 
order n. 

For a 2 x 2 

(1.95) 

implies 

O=l[~ ~]-[~ ~JI=Ia~A d~.Al 
= (a - A) ( d - .A) - be 

= .A 2 
- .A (a + d) + ad - be . (1.96) 

Of course the quadratic formula allows solving for .A here and gives two values. 
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The properties of eigenvalues and eigenvectors vary substantially, with many 
awkward possibilities. As for the roots of any polynomial in real numbers, the 
eigenvalues of a real matrix may be imaginary. Furthermore, even though an 
n x n matrix always has n eigenvalues, not all n x n matrices have a complete set 
of n distinct eigenvectors. The number of distinct eigenvalues ranges from 1 to n. 

Although distinct eigenvalues are unique, eigenvectors (when they exist) are not 
completely unique. If xis an eigenvector of A, then ex is also, fore =J 0, because 
Ax = >.x implies Axe = >.xe. By strong convention, x is usually scaled such 
that x'x = 1, described as normalized to unit length. However, a normalized 
eigenvector is still not unique because both x and -x are normalized eigenvectors 
for A. Geometrically, reversing the sign of the vector corresponds to a reflection 
about an axis. Although the sign ambiguity affects some computations, the 
subtlety can usually be ignored in discussing "the" (normalized) eigenvectors. 

Definition 1.36 (a) Algebraic multiplicity is the number of times a particular 
distinct eigenvalue, >.1, occurs as a root of the characteristic equation. 
(b) The geometric multiplicity of >.1 equals the number of distinct 
eigenvectors associated with >.1. 

(c) A simple matrix has geometric multiplicity equal to algebraic multiplicity. 

It follows from the definitions that geometric multiplicity must be less than or 
equal to algebraic multiplicity. The definitions have the important implication that 
any simple matrix (necessarily square but not necessarily symmetric) has a 
decomposition in terms of the diagonal matrix of eigenvalues. 

Theorem 1.12 (a) All symmetric matrices are simple. 
(b) A real and symmetric matrix has real eigenvalues and eigenvectors. 
(c) Any real and symmetric matrix (n x n) has a spectral decomposition, 

A= VDg(.A)V', (1.97) 

with V a set of orthogonal eigenvectors and ,\ the corresponding eigenvalues in 
the same order (usually sorted from largest to smallest). 
(d) By convention, and without loss of generality, V'V = VV' = In, giving 
orthonormal V and eigenvectors (vjv1 = 1, vjvk = 0 for j =J k). 
(e) If D (n x n) is a diagonal matrix with diagonal elements freely chosen from 
{ + 1, -1}, without loss of generality V may be taken to be V D. 

The columns of V = [ v1 v2 • • • Vn] are "the" normalized eigenvectors of A, 
corresponding to the eigenvalues. The fact that DD =I gives 
DDg(,\)D = Dg(,\) and A= (V D)Dg(.A)(V D)'. Eigenvalues and 
eigenvectors must be in a corresponding order. Also V always has full rank and 
v-1 = V' (true for square, orthonormal matrices). Without loss of generality, but 
for convenience and by strong convention, V is scaled to unit length (vjv1 = 1). 

A simple example is 
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A= [ 1.5 -0.5] 
-0.5 1.5 

= VDg(>.)V' 

= ([~ -n;J2) [~ ~J ([~ -~J;V2), 
with>.= [21]', V =[vi v2]. 
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( 1.98) 

Despite the many awkward possibilities, statistical applications of eigenanalysis 
nearly always involve well behaved matrices such as X' X or X X'. Such inner 
and outer products are always symmetric and therefore simple with real 
eigenvalues. Furthermore, they never have negative eigenvalues (all eigenvalues 
are positive or zero; nonnegative definite). Sums of squares, covariance, and 
correlation matrices can all be expressed as inner or outer products. In the study of 
linear models, the few computations requiring eigenanalysis of nonsymmetric 
matrices can be expressed in terms of closely related symmetric matrices. 

Definition 1.37 (a) If A, B, and Taren x n with T full rank, then A and B 
are said to be similar if and only if B = TAT-I. 
(b) Matrices A and B are congruent if and only if B = TAT'. 

Lemma 1.21 (a) Similar matrices have all the same eigenvalues. 
(b) Any matrix similar to a diagonal matrix has rank equal to the number of 
nonzero eigenvalues. 
(c) Every symmetric matrix is similar to a diagonal matrix, namely a diagonal 
matrix of the eigenvalues of A, and always has rank equal to the number of 
nonzero eigenvalues. 
(d) Geometrically, the eigenvectors corresponding to the nonzero eigenvalues of 
a simple matrix (including all symmetric matrices) span and provide an 
orthogonal basis for the full rank subspace spanned by A. 
(e) Sylvester's law of inertia (Lancaster, 1969, p90) guarantees that congruent 
matrices have the same number of positive, negative and zero eigenvalues (but 
not necessarily the same values). 

In contrast to the nice properties in the last lemma, the rank of a square and 
nonsymmetric matrix may not equal the number of nonzero eigenvalues. Although 

the matrix A = [ ~ ~] has rank 1, both eigenvalues are zero. 

Lemma 1.22 For any square matrix, the trace and determinant equal functions of 
the eigenvalues: 

n 

tr(A) = 2:>-j (1.99) 
j=I 
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and 

n 

[A[= II>-j· (1.100) 
j=1 

Lemma 1.23 (a) [A[ = 0 <(:::} at least one eigenvalue equals zero <(:::} A is less 
than full rank; [A[ -1- 0 <(:::} no eigenvalue equals zero <(:::} A is full rank. 
(b) The eigenvalues of a (square) diagonal or triangular matrix are the diagonal 
elements. 
(c) For square and full-rank B and square A of the same dimension, the 
eigenvalues of BAB-1 are the eigenvalues of A. 
(d) The eigenvalues of a (square) orthonormal matrix are ± 1. 

Definition 1.38 (a) Square A is positive definite if x' Ax > 0 for any 
conforming finite x. 
(b) Square A is positive semidefinite if x' Ax ~ 0 and x' Ax = 0 for at least 
one x -1- 0. 
(c) Square A is negative definite if x' Ax < 0. 
(d) Square A is negative semidefinite if x' Ax ::; 0 and x' Ax= 0 for at 
least one x -1- 0. 
(e) A nonnegative definite matrix is either positive definite or positive 
semidefinite. 
(f) A nonpositive definite matrix is either negative definite or negative 
semidefinite. 

A symmetric matrix A with eigenvalues {Aj} and min(>.j) > 0 is always 
positive definite. Ifmin(>.j) = 0, then A is positive semidefinite. Similarly, A is 
negative definite if max(>.j) < 0 <(:::} x'Ax < 0 and negative semidefinite if 
max(>.j) = 0. Positive definite and negative definite matrices are full rank. 

Inner and outer products, such as X' X and X X', are symmetric and therefore 
simple with a spectral decomposition. They are also necessarily positive definite 
or positive semidefinite (nonnegative definite). 

Lemma 1.24 (a) For symmetric A= VDg(>.)V' of full rank 

A-1 = VDg(>.)- 1V'. 

(b) For symmetric A of any rank 

A+= V[Dg(>.)]+V'. 

(c) For symmetric A= VDg(>.)V' of any rank and finite integer p > 0 

AP = V[Dg(>.)JPV' 0 

(d) For symmetric A= VDg(>.)V' of full rank and finite integer p > 0 

(1.101) 

(1.102) 

(1.103) 
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(e) For symmetric A= VDg(>.)V' of any rank and finite integer p > 0 

(A+l =(APt= V{[Dg(>.)]P}+V'. 
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(1.1 04) 

(1.105) 

The lemma illustrates the extent to which the spectral decomposition 
characterizes the matrix. Merely computing the reciprocals of the eigenvalues 
allows computing the inverse or generalized inverse of a symmetric matrix. 
Although we do not pursue the idea here, the concept of a matrix function of a 
symmetric matrix is well defined. If a function f(>..j) has a valid Taylor series 
expansion for the eigenvalues of A= A', namely {>..j}, then 
f(A) = V[Dg( {f(>..J)} )]V' is a well-defined matrix. 

Lemma 1.25 (a) For V = [ Vj · · · Vn] with V'V = VV' = In, the n x n and 
symmetric matrix A with rank(A) = n 1 :::; n has n 1 nonzero eigenvalues and 
spectral decomposition A= VDg(>.)V'. 
(b) The corresponding constituent matrix decomposition is 

n n1 

A= LAJVjvj = LAJVjVj. (1.106) 
j=l j=l 

(c) Constituent matrix Gj = vjvj is symmetric and idempotent, which gives 

rank( Vjvj) = tr( Vjvj) = tr( vjvj) = 1. 
(d) Aggregating the eigenvalues and corresponding eigenvectors into two 
mutually exclusive and together exhaustive groups of sizes n 1 and n0 , with 
n = n 1 + n0 , allows writing 

A=[V, Vr][Dg(>.I) 0 ][V{] 1 0 0 Dg(>.o) Vd 

= VjDg(>.I)V{ + VoDg(>.o)Vd. (1.107) 

(e) If >.1 contains the n 1 nonzero eigenvalues then >.0 = 0 and A= 
VjDg(>.I)Vi', with Vi n x n1 (Vi'Vi = In1 ), while Dg(>.1) is n1 x n1 of full 
rank. 
(f) The decomposition in part (d), in terms of two groups of eigenvalues and 
vectors, generalizes to three or more groups. 

Lemma 1.26 Any n x n symmetric and idempotent matrix A of rank n 1 :::; n has 
(a) n 1 eigenvalues of 1, (b) all remaining n- n 1 eigenvalues of 0, and 
(c) rank( A) = tr( A). (d) The eigenvectors V = [ Vj Vo ] may be arranged and 
scaled such that Vi' Vi = In 1 , Vo'Vo = In-n 1 , V{Vo = 0, and 

A = [ Vi Vo ] [ I01 O O ] [ ~;] = Vi Vi' . 
n-ni 0 

(1.108) 
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Lemma 1.27 (a) If m x 1 a contains them eigenvalues of m x m A, while n x 1 
b contains then eigenvalues of n x n B, then the eigenvalues of C =A E8 B 
are the m + n elements of c = [ a' b' ]'. 
(b) The eigenvalues of D =A 0 Bare the mn elements of d =a 0 b. 
Neither c nord is necessarily sorted by size. 

Many regression diagnostics methods implicitly focus on finding and avoiding 
small eigenvalues of X' X. The spectral decomposition of the sums of squares 
and cross products matrix (SSCP, Definition 1.44) is 

X' X= VDg(d)V'. (1.1 09) 

If X has full rank, then (X'X)- 1 = V[Dg(d)r 1V' exists and 

(1.11 0) 

As min(dk) ! 0 the determinant of the inverse I oo. If X is less than full rank, 
then (X' X)+= V[Dg(d)]+V' and d includes some zeros. Equivalently 
(X' X)+ = VDg( d- 1 , 0) V'. The condition of the numerical properties of the 
matrix may be judged in terms of condition values, such as J max( d) /min( d). 

1.13 SOME FACTORS OF SYMMETRIC MATRICES 

For a real and nonnegative number, such as a= 25, one can find its square root, 
Ja, such that ( ja)( ja) =a. A diagonal matrix of nonnegative numbers 

D = Dg( { d1 , ••• , dp}) allows defining D 112 = Dg( { d~/2 , ••. , d~/2 } ), with 
D 112 D 112 =D. The concept extends to square and symmetric matrices in a 
variety of ways. 

Definition 1.39 For p x p and symmetric A, a p1 x p factor with p1 :::; p is 
any F such that A= F F'. 

The definition does not suffice to guarantee a unique factor, even with full rank 
A. Depending on the side conditions desired, more than one factoring exists. In 
some analytic or computational settings any choice will serve, while other settings 
demand a particular choice. Full rank A does always imply any factor is full rank, 
necessarily p x p, andA-1 = p-tp-l_ More generally, rank(F) = rank(A), but 
it may not have the same dimensions when A is not full rank. 

Theorem 1.13 Any p x p and symmetric A can be factored in three ways. 
(a) The square root, or Cholesky, factor adds the side condition of lower 
triangular factor: 
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A=LL', (1.111) 

with L p x p, lower triangular, with nonnegative diagonal elements. If 
rank( A) = p, then Lis also full rank with strictly positive diagonal elements. 
(b) The spectral decomposition, A= VDg(>.)V', implies a distinct factoring. If 

F = VDg(>.) 112
, (1.112) 

then A= FF', with Dg(>.) 112 = Dg({Ay2
}) and VV' = V'V = Ip (without 

loss of generality). Like A, the factor F is p x p and rank( F) = rank( A). 
(c) If rank( A) = p 1 :S p and >. 1 indicates the vector of p1 nonzero eigenvalues, 
then without loss of generality we may choose F = [ Vo- Vo ]Dg(>.I, O)I/2, which 
is p x p and rank p1. In contrast, the matrix 

(1.113) 

is p x p1 and rank PI. In tum 

A =F1F{ 
= ViDg(>.r)V{. (1.114) 

(d) Except in special cases, L, F and F 1 are not symmetric. In some situations a 
symmetric factor may be preferred. If so, then choosing 

Fs = VDg(>.)If 2V' (1.115) 

ensures Fs = F; and F 8 F; = F;Fs = F 8 F 8 =A, with Fs p X p and 
rank(Fs) =PI· 
(e) An alternative symmetric factor is given by 

with F,+ p x p and rank( Fs+) = PI. 
(f) If A has any negative eigenvalues, complex variables will occur in the factor. 

We use the theorem most often to factor a covariance matrix. The spectral 
factor becomes particularly convenient in proofs with less-than-full-rank 
covariance. The nice properties of diagonal and orthonormal matrices lead to 
simple expressions for useful generalized inverses, including 
(F1)+ = Dg(>.r)-I/2Vi'· In contrast, for computational purposes the Cholesky 
factor and related QR decomposition should always be used. 

1.14 SINGULAR VALUE DECOMPOSITION 

Theorem 1.14 (a) Any m x n matrix A has a singular value decomposition, 
A = U SV', with orthonormal m x m U of rank m, orthonormal n x n V of 
rank n, and s jk = 0 except for the main diagonal elements, { s jj}, which are 
nonnegative. If m ~ n ~ n 1 =rank( A), then s has ni strictly positive values. 
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Ifm ~ n ~ n 1, then 

A=USV' 
U'U = UU' =Im 
V'V=VV'=In 

S = [Dg(8) ] 
O(m-n)xn ' 

If m < n, then a similar construction applies to A'. 

(1.117) 

(1.118) 

(1.119) 

(1.120) 

(b) The vector 8 contains the singular values, some or all of which may be zero. 
Necessarily Dg( 8? = Dg( { s;}). Singular values equal the positive square roots 
of the eigenvalues of n x n A' A, which coincide, except perhaps for some zeros, 
with the eigenvalues of m x m AA'. 
(c) Without loss of generality, elements of 8 may be assumed to be sorted from 
largest to smallest. If so, and m ~ n ~ n 1 =rank( A), then 8

1 = [ 8~ 0~-n,] 

with 81 then! X 1 vector of strictly positive elements. In turn u = [ ul Uo l 
with U1 m x n1, U{Ui =In,, V =[Vi Vo] with Vi n x n1, V{Vi = In 1 and 

A= [U1 Uo] [Dg~81 ) ~][0] 

= [ U1Dg(81) Dmx(n-n!)] [ 0] 
= U1Dg(8r)V{ + Dmxn 
= U1Dg(81)Vj'. 

(d) Without loss of generality, V and U may be chosen such that 

A' A= VDg(8) 2V' = ViDg(8I) 2Vj' 

and 

(1.121) 

(1.122) 

(1.123) 

In practice, the particular choices for U and V are intertwined due to the fact 
that an eigenvector remains an eigenvector if it is multiplied by -1. In order to 
account for the signs, having chosen Vi requires choosing U1 = AViDg(81)-1. 
Alternately, having chosen U1 requires choosing Vj' = Dg(81)-1U{A. If needed, 
the definitions of U and V may be completed by adding the eigenvectors which 
correspond to zero eigenvalues of AA' and A' A. 

Lemma 1.28 For any m x n matrix A, then x m Moore-Penrose (four-condition, 
unique) generalized inverse is 
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A+= vs+u' 
=V[[Dg(8)]+ Dnx(rn-n)]U' 

= Vi[Dg(8l)r 1u{. 

Of course [Dg(8W = Dg({s;:- 1
, ... , s;:- 1, 0, ... , 0}). 
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(1.124) 

The singular value and spectral decomposition can be chosen to coincide for 
square, symmetric, positive definite and semidefinite matrices (such as inner and 
outer product matrices). 

1.15 PROJECTIONS AND OTHER FUNCTIONS OF A DESIGN MATRIX 

Design matrices play a central role in the study of linear models. A design 
matrix, X, for N observations and q variables is of dimension N x q with N 2 q 

and rank(X) = r :S q. Many times throughout the book we shall take advantage 
of various properties of the singular value decomposition (SVD) of X, as well as 
the closely related spectral decompositions of X'X and XX'. The following 
lemma summarizes the properties in an integrated presentation. 

Lemma 1.29 (a) For N x q matrix X, with N 2: q and rank(X) = r :S q, the 
SVD gives 

X = L [ Dg~ 8 )] R' 

= [L1 Lo][Dg6
81

) ~][~] 
= L1Dg(81)R~. ( 1.125) 

The first product has dimensions (N x N)(N x q)(q x q), and the last product 
has dimensions (N x r)(r x r)(r x q). Without loss of generality, singular 
values are sorted from largest to smallest, 8 = [ 8~ Dn-n1 ], 81 is n 1 x 1 with all 
strictly positive values. Also R = [ R1 Ro ], R' R = RR' = Iq with R 1 q x n 1. 
Similarly L = [ £1 L 0 ] with L 1 n x n 1 and L' L = LL' = IN. 
(b) Here R 1 and Ro are sets of orthonormal eigenvectors (unique, up to 
reflections) corresponding to nonzero (R1) and zero (Ro) eigenvalues of X' X. 
Specifically, without loss of generality, SVD properties correspond to assuming 

X' X= RDg(8) 2 R' 

= R 1Dg(8 1)
2 Ri. (1.126) 

(c) Similarly, L 1 and £ 0 are (nonunique) sets of orthonormal eigenvectors 
corresponding to nonzero (£1) and zero (La) eigenvalues of XX'. Specifically, 
without loss of generality, SVD properties correspond to assuming 
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XX'=L[Dg(s~,0)2 ~]L' 

= L1Dg(si) 2 £'1. 

(d) Given R 1 and s 1, necessarily 

L 1 = XR1Dg(si)-1 . 

Alternately, given R 1 and s 1, necessarily 

R1 = Dg(s 1 )- 1L~X. 

(1.127) 

(1.128) 

(1.129) 

However, only one of £ 1 and R 1 can be chosen freely, due to the need to 
account for the sign ambiguity of eigenvectors (as detailed in Theorem 1.12). 
(e) Furthermore 

(X'X)+ = R[Dg(s) 2tR' 

= R1Dg(s1)-2 R~. 

(1.130) 

Proof. The results follow from the SVD definition, based on properties of 
orthonormal matrices, inverses, and eigenanalysis of symmetric matrices. 

Many functions of design matrices, especially ones involving (X' X)-, must be 
understood to develop the theory of linear models. The value of the results lies in 
guaranteeing uniqueness, symmetry, and the ability to simplify expressions in 
estimators. Even though (X'X) is always symmetric, (X'X)- need not be 
symmetric. Furthermore a less-than-full-rank X leads to infinitely many choices 
for (X' X)-, while (X' X)+ is unique. The theorem gives many equalities useful 
for simplification and many invariance properties guaranteeing uniqueness. The 
corollary summarizes many special properties associated with the matrix 
H = X(X'X)-X', which plays a key role in linear models estimation and 
distribution theory. 

Definition 1.40 (a) The matrix H = X(X' X)- X' is a projection matrix. 
(b) Matrix X(X'Xr X'Y is the projection ofY into the space spanned by 
the columns of X. 

Theorem 1.15 For any matrix X, the following all hold. 
(a) [(X'XrJ' is also a generalized inverse of (X' X). 
(b) X(X'X)-X' X= X; hence (X' X)-X' is a generalized inverse of X. 
(c) X(X'X)-X' is invariant to (X' X)-. 
(d) X(X'X)-X' is always symmetric, even if(X'X)- is not symmetric. 
(e) X[(X' xn' X' X= X. 
(f)X'X(X'X)-X'= X'. 
(g)X'X[(X'Xn'X' =X'. 
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(h) X[(X'XrJ'X' = X(X'X)-X'. 
(i) X[(X' X) -r X' is always symmetric even if [(X' X) -r is not symmetric. 
U) H = X(X'X)-X'= X(X'X)+ X'. 
(k) All of the matrices mentioned in the theorem have rank r =rank( X). 

Proof. Searle (1971) stated and proved parts (a}-( d) as his Theorem 7 and parts 
( e )-(i) as a corollary. Part (j) follows from uniqueness of the four-condition 
inverse. Part (k) follows from four- and one- condition inverse properties, as well 
as Lemma 1.29. 0 

Corollary 1.15 For any N x q matrix X with rank(X) = r :S q :S N the 
projection matrix, H = X(X'X)-X', is (a) unique, (b) symmetric, 
(c) idempotent and (d) rank r, with (e) r eigenvalues of one and N- r of zero. 
Furthermore, I- H is (f) unique, (g) symmetric, (h) idempotent and (i) rank 
N- r, with U) N- r eigenvalues of one and r of zero. (k) Also, 
H(I- H) = 0. (I) With exactly the notation of Lemma 1.29, 

and 

H = L[Ir 0 ]L' 
0 ON-r 

= [ L1 La ] [ ~ ~ N -r ][ ~t ] 
=L1L~ (1.131) 

(1.132) 

Here L' L = LL' = IN, while L~ L 1 = Ir and L~L0 = IN -r· (m) Finally, L 
contains orthonormal eigenvectors corresponding to nonzero (Lr) and zero (Lo) 
eigenvalues of XX': 

XX'= L[Dg(s~,0)2 ~]L' 

= L 1Dg( si)2 L~ . (1.133) 

Proof. Results follow from combining forms in the theorem and Lemma 1.29. 
Writing H 2 = (L 1LD(L1LD = L1 L~ demonstrates that His idempotent. 0 

The matrix H = X(X'X)-X'= X(X'X)+ X' earned the nickname "hat 
matrix" in the linear model y = XfJ + e because fj = Hy. Uniqueness of H 
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implies uniqueness of many functions of H, including fj, as well as 
e =(I- H)y and &2 

= e'ej(N- r). 

Lemma 1.30 If A (n x n) is a constant matrix and F (n x n) is nonsingular with 
B = F F', then F' AF is idempotent <(:::} AB is idempotent. 

Proof. F F' = B implies AF F' = AB. Premultiplying by F' and 
postmultiplying by p-t gives F'AF = F'ABF-1. Hence (F'AF)2 = 
F'ABABF-t. If (F'AF)2 = F'AF then (AB) 2 = AB, which implies 
(F' AF)2 

= (F' AF). 0 

Definition 1.41 Matrix P (N x N) is a permutation matrix if it is obtained by 
permuting the rows (only) of IN. 

Given the definition, premultiplying by a conforming permutation matrix 
exchanges rows. Postmultiplying by a conforming transposed permutation matrix 
exchanges columns. A permutation matrix is always orthonormal and full rank, 
which implies p-l = P'. A permutation matrix may always be found which, 
when multiplied times a conforming matrix, permutes the rows (or columns) to any 
new order desired. 

1.16 SPECIAL PROPERTIES OF PATTERNED MATRICES 

A partitioned matrix may be thought of as a supermatrix, a matrix containing 
matrices. Most importantly, if the partitions conform for addition and matrix 
multiplication then the results can be expressed in terms of the partitions, without 
considering particular elements. It is crucial to verifY conformation of each pair of 
partitions as well as the total matrices. When the partitions do conform, the rules 
of matrix multiplication apply to create what might be thought of as "super" or 
"meta" multiplication or addition. Examples include the following (when the 
matrices conform for the operations): 

A[B1 B2] = [AB1 AB2] 

[B1 B2] [ g~] = B1Ci + B2C2 

[ B1 B2] [ B1 B2 ]' = B1B~ + B2B; 

[ ] '[ J [B~B1 B~B2] B1 B2 B1 B2 = B~B1 B;B2 . 

(1.134) 

(1.135) 

(I .136) 

(1.137) 

Not only multiplication and addition, but also determinants and inverses often can 
be expressed compactly and conveniently in terms of partitions. 

Theorem 1.16 If p x pAis positive definite and symmetric, B = A-1, and A 
and Bare partitioned with corresponding submatrices of the same sizes, 
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(1.138) 

(1.139) 

then (given the indicated operations are valid) 

Bn = (An - A12A22
1 A2!)-1 

= A]i1 +AI/ A12B22A21AI1
1 (1.140) 

B12 = -A]1
1 A12B22 (1.141) 

B21 = -A2l A21Bn (1.142) 

B22 = (A22- A21AI/ A12)- 1 
= A22

1 + A22
1 
A21BnA12A22

1
. (1.1 43) 

The subscript pattern gives a mnemonic device for remembering the formulas. 

Theorem 1.17 For any p x p A partitioned as 

(1.144) 

(a) if either A 12 = 0 or A21 = 0, then IAI = IAniiA22I· 
(b) For any (conforming) {A11 ,A12,A2I}, if A22 is full rank, then 

IAI = IA22IIAu- A12A221A21I· 
(c) For any A 12 or A 21 , if A 11 is full rank, then 

IAI = IAniiAn- A21A1/A12I· 

Theorem 1.18 (a) If A and Bare the same size then 

(A+ B) 0 C =(A 0 C)+ (B 0 C) (1.145) 

and 

C 0 (A + B) = ( C 0 A) + ( C 0 B) . (1.146) 

(b) If A, B, C, and Dare m x h, p x k, h x nand k x q, respectively, then 

(A 0 B)(C 0 D)= (AC) 0 (BD). (1.147) 

1.17 FUNCTION OPTIMIZATION AND MATRIX DERIVATIVES 

Deriving properties of linear models often leads to the need to maximize or 
minimize a smooth function. In addition, side conditions may be desired which 
impose constraints on the optimization. The most convenient approach usually 
involves creating a system of equations to be solved by determining derivatives of 
the function. In tum, the introduction of Lagrangian multipliers often satisfies the 
need to impose side conditions. 
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Given the focus of the book, we assume the reader has substantial knowledge of 
the theory and practical use of derivatives for the analysis of scalar functions. In 
the few instances in the book when we need to know specific vector and matrix 
forms of derivatives we present the required results without comment. A 
defensible description of even the basic rules of matrix derivatives requires 
attention to concepts in real analysis rather far from the topic at hand. We 
recommend the reader seeking the motivation for the derivatives used here consult 
the excellent book by Magnus and Neudecker (1988) for a definitive treatment. 
Schott (2005) provided a more brief but carefully constructed introduction. 

1.18 STATISTICAL NOTATION INVOLVING MATRICES 

A common notation for the study of probability uses Greek letters for 
parameters, uppercase Roman letters for random variables, and lowercase Roman 
letters for realizations of random variables (particular sample values). The 
convention conflicts with matrix notation distinctions between scalars, vectors, and 
matrices. The importance of matrix expressions throughout the book means that 
matrix notation must dominate. Consequently the reader must often distinguish 
fixed from random, known from unknown, observed from unobserved, and 
observable from unobservable via the context of the discussion. When in doubt 
about a particular item, simply search backwards in the text to discover where the 
variable was introduced. 

Expressions involving random variables use the portion of conventional 
notation that does not conflict with the matrix notation introduced in Section 1.1. 
Roman letters towards the beginning of the alphabet, such as { c, c, 0}, will 
usually represent constants (either known or unspecified). In contrast, Roman 
letters towards the end of the alphabet, such as {y, y, Y}, will usually represent 
random variables (which may take on infinitely many values). In tum, 
{y.,y.,Y.} will represent an arbitrary possible value, such as a variable of 
integration, while {y0 ,y0 , Yo} will represent a single but unspecified particular 
value. For two jointly absolutely continuous random variables, { x, y} the rules 
lead to the expression E(x[y =Yo) = J x.fx,y(x., Yo)dx •. Greek letters, such as 
{,6, /3, B}, will represent parameters (fixed and unknown population properties). 
Corresponding (random) estimators will be indicated {,6, /3, B} or {,6, {J, B}. 

1.19 STATISTICAL FORMULAS 

With N » p, matrix Y = [ y 1 Y2 · · · Yp] contains a collection of scores on p 
variables. Rows are independent sampling units and columns are variables. 
Although discussed in more detail in Chapter 7, the concepts of mean and variance 
for a vector are useful here. 
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Definition 1.42 (a) For y = {y1} a vector of random variables with a well­
defined joint distribution E(y) = {E(yj)} defines the population mean, 
when E(yj) exists 'Vj. 
(b) Similarly, E(Y) = {E(Yjk)} when it exists. 
(c) For y = {yj} a vector of random variables with a well-defined joint 
distribution and E(y) = 1-£, V(y) = {E[(y1 - J-lJ)(Yk- J-lk)]} defines the 
population covariance matrix, when E[(Yj- J-lj)(Yk - J-lk)] exists V (j, k). 
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The concept of V(Y) is not well defined. It is customary and fully satisfactory 
to consider either V[vec(Y)] or V[vec(Y')], which are well defined. They differ 
only by a permutation of rows, which can be achieved by multiplication with a 
permutation matrix. The following definition and lemma are repeated and 
discussed in Chapter 7. They are presented here to allow a precise description of 
principal components analysis of random data. 

Definition 1.43 (a) A random vector y (p x 1) with finite second moments 
has an associated covariance matrix 

(1.148) 

(b) If all a jj = (:E) jj are such that 0 < a jj < oo, then y has correlation 
matrix 

p = Dg( {an, ... ' app} )-l/2:EDg( {au, ... ' app} )-1/2 

= {pjk}. (1.149) 

Lemma 1.31 Finite second moments for a random vector y (p x 1) guarantee the 
existence of finite covariance and correlation matrices for the population. 
(a) The population covariance matrix can be expressed as 

V(y) = {E(YjYk)}- {E(yj)E(yk)} 

= {E(YJYk)} - {JLJJ-ld 
= E(yy') - 1-t!-t' 

= E(yy')- E(y)[E(y)]' 

=:E. (1.150) 

It is symmetric and nonnegative definite (positive definite or positive 
semidefinite). The covariance matrix contains centered, average cross products, 
with diagonal element a jJ the variance of y1. 

(b) If aJJ > 0 'Vj, then the population correlation matrix P is well defined and 
nonnegative definite, with Pjk = ajk/ JajjO"kk· The correlation matrix contains 

centered and scaled average cross products. 
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Definition 1.44 (a) A set of N observations of a p x 1 random vector 
arranged in an N x p matrix, with each observation forming a row, provides 
a data matrix, such as Y. 
(b) With N x 1 vector 1N = [ 11 · · · 1 ]',the p x 1 sample mean vector is 

(1.151) 

(c) The p x p sample SSCP matrix Y'Y contains sums of squares and cross 
products. 
(d) The p x p sample covariance matrix is 

8 = (Y -1Ny')'(Y -1Ny')jN 

= Y'[IN -1(1'1)- 11']Y/N 

= Y'YjN -yy'. 

(e) If Sjj > 0, then the p x p sample correlation matrix is 

R = Dg( { su, ... , Spp})-
1
/
2 SDg( { s 11 , ... , sPP})-

112
, 

with Tjk = Sjk/ ,;s;;skk· 

(1.152) 

(1.153) 

Lemma 1.32 (a) If data matrix Y has independent rows with E[row;(Y)] = ~-t' 
and V[row;(Y)] = :E, then 

f = SNj(N -1) ( 1.154) 

and E(f) = :E. More generally, in fitting multivariate linear models, 
f = S N j ( N - r), in which r equals the rank of the design matrix, provides an 
unbiased estimator when N > r. 
(b) If the sample correlation matrix estimates the population matrix, R = P, then 

E(P) -j. P, except when P = IP (which implies Pjk = 0 if j -j. k). If P -j. IP, 
then no constant c can be found to make cP unbiased. 

Ifr_jj indicates diagonal element j of R-1
, then RJ = (r-jj -1)/ T-jj is the 

squared multiple correlation between variable j and the remaining p - 1 variables. 

Partitioning the variables into two sets, with Y = [ Yj Y2 ], gives p1 variable in 
Yj and P2 variables in Y2. A corresponding partitioning of the covariance matrix 
gives 

(1.155) 

The sample covariance for Yj IY2 equals 

SYdY2 = Sn - si2Bii1 
821 ' (1.156) 

with corresponding unbiased estimator 8y11y,N j(N- P2- 1). If DY!IY2 indicates 
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the diagonal matrix containing the diagonal elements of SY!IY
2

, the corresponding 
correlation matrix equals 

(1.157) 

Elements of RY! IY, equal full partial correlations among the variables in Yi 
because any two variables in Yj have both been adjusted for variables in }2. 
Muller and Fetterman (2002, Chapter 6) gave a brief overview of various sorts of 
partial correlations in the context of univariate linear models regression. 

1.20 PRINCIPAL COMPONENTS 

Given a set of observations on a group of variables, it may be helpful to 
describe a simple model for the structure of the corresponding cross products, 
covariance, or correlation matrix. Three distinct applications may motivate the 
process: (1) analytic decomposition of population variables in a proof, 
(2) numerical analysis of observed values on a set of variables, and (3) data 
analysis for exploratory or confirmatory purposes. In the present section and the 
remainder of the book, we focus on the first application. Muller and Fetterman 
(2002, Chapter 8) provided a brief introduction to using principal components 
analysis for regression diagnostics. Timm (2002, Chapter 8) detailed the basic 
methods of principal components in the context of factor analysis models. Both 
texts also include useful additional references. Jackson (1991), and Jolliffe (2002) 
provided entire books about component analysis, while Basilevsky (1994) 
discussed component analysis within the more general context of factor analysis. 

We strongly prefer factor analysis methods and related covariance structure 
models over principal components analysis for building and evaluating covariance 
models. One important reason arises from the concept of robustness to overfitting. 
A principal components analysis (PCA) model defines a special case of a factor 
analysis (FA) model. If the PCA model holds but the data analyst uses the FA 
model, then no harm should result. An adequate sample and analysis strategy 
should lead to reducing the model appropriately. In contrast, fitting a PCA model 
when the FA model holds always leads to bias and an invalid model, no matter 
how large the sample size. A parallel conclusion holds in seeking the best model 
for the response mean in a multiple regression. Overfitting only costs a bit of 
sensitivity, while underfitting creates bias and invalid models. Widaman (2004; 
also 1993) provided an extensive discussion of the question. 

The discussion of principal components analysis will be cast primarily in terms 
of decomposing a population covariance matrix :E. The underlying data are N x p 
Y = [ Y1 Y2 · · · Yp], with N ~ p, a collection of scores on p variables. Here rows 
of Y are independent, with common covariance V[rowi(Y)] =:E. Most often, 
analysis involves Y or Yd = [IN-1(1'1)- 11']Y = Y -ly' = {yiJ-Yj}, the 
mean-centered transformation ofY. With the impact of the means (first moments) 
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suppressed, the focus lies on modeling the second moments, which are variances 
and covariances. 

Definition 1.45 (a) The first principal component equals the linear 
combination of a set of variables which has maximum variance, among all 
such combinations with unit-length coefficient vectors. 
(b) Such a linear combination of a set of variables defines a new variable, 
which will be called a variate. 

Any covariance matrix has many special properties. A population or sample 
covariance matrix is always symmetric and can be expressed as an inner product. 
It always has a spectral decomposition with only positive or zero eigenvalues, 
which are the variances of the principal component variables. Each corresponding 
eigenvector holds a set of regression weights for the original variables which 
define the principal variables. The principal component variables are uncorrelated, 
with successively maximum variances (the eigenvalues). 

The principal components have corresponding principal component scores, 
¥,", = [ Yc,I Yc,2 · · · Yc,p ], an N x p matrix. The scores have many special 
properties. (1) Each column of¥,", equals a linear combination ofYd: ¥,", = YdT. 
(2) V[rowi(Y;,)] = Dg(>.). (3) The first set of N scores, Yc,I, has maximum 
variance among all linear combinations (subject to the unit-length constraint 
v]v1 = 1), the second set of scores, Yc, 2, has maximum variance among all linear 
combinations given Yc,l, etc. (4) The weight matrix T = [ v1 v2 · · · vP] must be 
the (orthonormal and full-rank) eigenvectors of the covariance matrix, :E = 

TDg(>.)T' with T'T = TT' = IP. (5) For k =1- k', the covariance and 
correlation between Yc,k and Yc,k' are zero. 

.........._ .........._ .........._ _.., 
Spectral decomposition of a sample estimator gives :E = TDg(>.)T. For the 

particular set of sample values in hand, Yo, which corresponds to :Eo = 
~ ~ -"! 

T 0Dg(>.0)T0 , sample estimates attain optimal numerical properties in parallel to 

population properties. The component score estimator is Yc = YdT, with 
corresponding estimate Yoc = YodTo. Each (p x 1) column of T0 serves as the 
estimate of a set of p regression coefficients. 

Here Yoc (N x p) is a matrix with each column a set of component score 

estimates. Also Yod = 0 implies floc = Tofiod = 0. The covariance matrix 
observed among the component score estimates is 

Soc= (Y~cYoc/N- YocY~JN /(N- 1) 
= Y~cYoc/(N- 1) 

~t ~ 

= T0Y~dYodTof(N- 1) 
~t ~ ~ 

= T 0:EoTo 

= Dg();o). (1.158) 

Consequently the estimated component scores Yoc = YodTo are uncorrelated. 
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Also, the variance of the first component is :\0,1, the largest eigenvalue of :E0 , the 
variance of the second component is :\0,2, the second largest eigenvalue of :E0, etc. 
The p x p factor (matrix) for :E, based on a spectral decomposition, equals 

~0 = ToDg(Xo) 112
, with :Eo= ~O~· The elements of ~o = {¢o.jd do not 

equal covariances between variable i and component j. The factor matrix is 
distinct from the eigenvectors (coefficients) and from the component scores. 

1.21 SPECIAL COVARIANCE PATTERNS 

Any p x p symmetric and nonnegative definite matrix provides a valid 
covariance matrix with up to p(p + 1) distinct elements. Some special sampling 
schemes generate patterned covariance matrices, with elements expressible as a 
function of a small number of parameters. In the simplest case, complete 
independence (and finite second moments) gives :E = a 2 IP. The study of time 
series leads to considering models such as autoregressive and moving average 
covariance patterns (Box, Jenkins, and Reinsel, 1994). The study of spatial 
statistics has also led to the development of a large range of covariance models 
(Cressie, 1991 ). The following definitions will be used throughout the book. 

Definition 1.46 A set of jointly Gaussian variables with :E = a 2 IP have a 
spherical distribution in that equal-probability regions centered at the mean 
vector are circles for p = 2, spheres for p = 3, and hyperspheres for p > 3. 
In some contexts, sphericity is present when the weaker condition 
:E = V(a 2 Ip)V' holds. 

Definition 1.47 Any square, symmetric and nonnegative definite matrix with 
finite elements describes an unstructured covariance matrix. 

Definition 1.48 A p x p compound symmetric 
expressed as :E = a 2 

[ lPl~p + Ip( 1 - p)], 

- 1 1 (P - 1) < P < 1. 

covariance matrix may be 
with 0 < a 2 < oo and 

Lemma 1.33 A p x p compound symmetric covariance matrix may be written 

:E = a 2 [lPl~p + Ip(1- p)] 

= VDg(>.)V' 

= [ Vo Vt 1 [ ~ ASp_J [ ~~] . 
The p x p matrix Dg(>.) = Dg(A1, A2 lp_ 1) has 

A1 = a 2 [1 + (p- 1)p] 
A2 = a 2 (1 - p) . 

(1.159) 

(1.160) 
(1.161) 
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-11 (p - 1) < P < 1 

0 < a 2 < oo 

(1.162) 
(1.163) 

guarantee 0 < Aj < oo and therefore :E will be positive definite. The first 
eigenvector, corresponding to >. 1, is v 0 = 1Pjp112 (normalized to unit length). 

The first eigenvector may be described as spanning (1) the sum when scaled lP' 

(2) the average when scaled lp/P, or (3) the zero-order polynomial trend when 

scaled lp/p112. The remaining p- 1 eigenvectors correspond to >.2 , which has 
multiplicity p - 1. The p x (p - 1) matrix Vt may be taken to contain first­
(linear) through (p- 1 )-order orthogonal polynomial trend coefficients (scaled to 
unit length and hence orthonormal). Although v 0 is unique (up to scaling), Vt is 
not. Any other p x (p - 1) orthonormal matrix which is orthogonal to v 0 will 
also suffice. In any case, the eigenvectors can always be expressed as a known 
and constant matrix, no matter what the unknown parameters (p, a 2). 

Proof. Left as an exercise. Hints: verify directly that the eigenvectors 
reproduce themselves; eigenvalues must be positive, finite and nonzero. 

A compound symmetric covariance matrix may be described as having one 
eigenvalue, >. 1, of multiplicity 1 with corresponding normalized eigenvector v 0 , 

and a second eigenvalue, >.2, of multiplicity p- 1 with corresponding normalized 
eigenvectors Vt. Any p x (p- 1) and columnwise orthonormal matrix also 
orthogonal to u 0 could be chosen in lieu of the trends. 

Definition 1.49 An AR( 1 ), autoregressive, order 1, covariance matrix is a 2 P, 
with P = {pjk}, with Pik = piJ-kl, for 0 :::::_ p < 1 and 0 < a 2 < oo. 



CHAPTER2 

The General Linear Univariate Model 

2.1 MOTIVATION 

Chapter 2 centers on providing a careful statement of assumptions most often 
used with the general linear univariate model. A number of specific examples 
illustrate the basic ideas. Chapters 3, 4, and 5 have the same structure for the 
multivariate model, multivariate generalizations, and mixed models. Together, 
applications and properties of the models in Chapters 2-5 will illustrate the need 
for and uses of the theory in the remainder of the book. Later chapters contain 
explicit proofs of nearly all basic results in Chapters 2-5. Most others can be 
deduced with only modest effort from the ones provided. 

2.2 MODEL CONCEPTS 

Both in the title of and purpose for the book, the univariate, multivariate, and 
mixed linear models share equal billing. However, the univariate model likely has 
more pages devoted to it than the multivariate model, which likely has more pages 
devoted to it than the mixed model. The unevenness reflects the fact that a solid 
understanding of univariate models allows quickly generalizing many results to 
multivariate and mixed models. In tum, multivariate theory helps develop mixed 
model results. The principle holds most often for estimation, while hypothesis 
testing and inference usually differ in basic ways. 

Figure 2.1 illustrates the four aspects of any model: scientific meaning of the 
model, estimation of parameters, inference about parameters, and numerical 

methods. In Chapters 2-5 we look at the practical interpretations of linear models 
and focus on scientific meaning. Subsequent groups of chapters center on 
distribution theory, estimation, inference, and sample size. Although rarely 
discussed here, accurate numerical methods must be used to ensure the validity of 
any data analysis. 

39 
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Figure 2.1 Four aspects of a statistical model. 

2.3 THE GENERAL LINEAR UNIVARIATE LINEAR MODEL 

Definition 2.1 A general linear univariate model will be indicated by 
GLMN,q(Yii Xi{3, a 2

), with primary parameters {,8, a 2
}, and includes the 

following assumptions. 

1. The elements of the N x 1 random vector y = {yi} are mutually 
independent. 
2. With Xi= rowi(X), the Nxq design matrix, X has 
rank( X) = r:::; q :::; N, and is fixed and known without appreciable error, 
conditional on knowing the sampling units, for data analysis. Power analysis 
requires knowing the predictor distribution in the population. 
3. Elements of ,8 (q x 1) are fixed and unknown and typically regression 
coefficients or means. 
4. The mean ofy is E(y) =X ,B. 
5. Response Yi has finite variance a 2 2': 0, which is fixed and unknown. 

Writing GLMN,q(Yii Xi,BIR,B = a, a 2 ) specifies explicit restrictions on 
parameters in ,8 through the fixed and known constants R and a. 

The model is described as full rank (FR) if r = rank( [X' R '] ') = q and 
otherwise as less than full rank (L TFR) if r < q. Clarity may require writing 
GLMN,qFR() or GLMN,qLTFR(). 

The definition of a GLM describes the "least squares" assumptions because they 
guarantee estimates for the primary parameters ,8 and a 2 exist which satisfy the 
least squares criterion. It is very important to recognize that no particular 
distribution has been specified for any random variable. The rather modest 
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requirement of finite second (and implicitly first) moments is made. Much more 
importantly, the requirements of independent and homogeneous observations place 
strong restrictions on the range of models. The model definition specifies three 
components: the response for the independent sampling unit, the mean of the 
response, and the variance of the response. 

A number of implications of the GLM definition (least squares assumptions) 
may be deduced easily. First, response vector y has finite covariance V(y) = a 2 I. 
Independence makes the off-diagonal elements zero (independence implies zero 
covariance and correlation), while the homogeneity assumption provides the 
diagonal elements. Second, the response vector may be separated into purely fixed 
and purely random vectors by centering the responses to define 

e = y- E(y) = y- X/3, 

with E(e) = 0 and V(e) = a 2 I. Third, 

y=Xf3+e. 

(2.1) 

(2.2) 

The N x 1 constant vector X/3 describes (models) the first moment of the 
responses, the mean vector. The N x 1 random vector e describes (models) the 
second and higher moments. 

Choosing estimators for the primary parameters, f3 and a2 , which satisfy a 
variety of optimal properties which are exact, even in small samples, does not 
require any particular choice of distribution function for the responses. In contrast, 
the desire to test hypotheses leads to describing distributions of test statistics. 
Finding exact distributions for small samples usually requires explicit and 
particular specification of the distribution of the data. 

Data analysts often assume the data have a Gaussian distribution. As detailed in 
Chapter 8, y 1 "'Nr,(JL1 , :EI) indicates the vector y 1 (n x 1) has a Gaussian 
distribution, with finite mean Ill, finite and positive definite covariance matrix :E1, 

and density !I(YI) = (2n)-n12 I:Ell-112exp[-(YJ-JL!)':E;-1(yi-JLJ)/2]. In tum, 
constant T, m x n with m > n, makes Y2 = Ty1 "'SNm(JL2, :E2), singular 
Gaussian, for JL2 = TJLI and :E2 = T:E 1T'. The deficient rank of :E2 disallows 
the existence of a density (the distribution function remains well defined). Writing 
(S)Nm(JL2, :E2) indicates the distribution may or may not be singular. 

Definition 2.2 Writing GLMN,q(y;; Xi/3, a 2) with Gaussian errors indicates 
Yi "'NJ[rowi(X)/3, a 2]. 

Following Kleinbaum, Kupper, Muller, and Nizam (1998) and Muller and 
Fetterman (2002) the GLM assumptions may be summarized with the mnemonic 
HILE Gauss: homogeneity [V(yi) = V(yi') = a 2], independence (Yi Jl Yi' if 
i "I- i'), linearity [E(y) = X/3], existence of finite second moments, and, 
optionally, Gaussian observations. The mnemonic groups the least squares 
assumptions together and separates the distribution assumption. 
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Adding the assumption of Gaussian errors allows deducing additional 
properties. With HILE Gauss, essentially all of the assumptions are captured by 
the statement y '""NN(X(3, cr2 I) . Obviously the parameters of the Gaussian 
distribution coincide with the parameters of the GLM. First and second moments 
fully characterize both. Also, e '""NN(O, cr2 I). 

The theory of the GLM applies for two apparently disparate classes of 
applications: regression models and Analysis-of-Variance (ANOVA) models. 
ANOV A models were developed to test the effects of one or more categorical 
predictors on a Gaussian response with independent and homogenous errors. 
Regression models were developed to express a continuous response as a function 
of one or more continuous predictors. Models with both categorical and 
continuous predictors fall in between and are best thought of simply as linear 
models. The underlying theory, for data analysis if not always for power analysis, 
coincides for all ofthem. 

Example 2.1 Benignus, Muller, Smith, Pieper. and Prah (1990) exposed 74 
participants to one of five profiles of carbon monoxide (CO) in the air breathed 

during the study: Air. Low. Medium. High, or Slow. Accuracy of eye-hand 
coordination was measured before exposure and four times during exposure. 
Experience in a series of similar studies. coupled with knowledge of the underlying 
physical process and measurements, convinced the investigators that the logarithm 
of an accuracy measure follows a Gaussian distribution. The primary planned 
analysis compared the five groups on mean change from ba~eline to time 4. 

A GLM for the study may be written in many ways. Muller and Fetterman 
(2002, Chapter 12) reviewed coding schemes for design matrices. Group sizes 
were {1-1, 15, 15 15, 15} for Air. Low. Medium, High, and Slow. A classical 
L TFR A NOVA coding scheme for the 74 responses, { rl;}. with d; = Yil - y;0 (Yil 
is the hour 4 response, y10 is the hour 0 response, the baseline). may be wrinen. 
with all elements of the design (super-) matrix being confom1ing vectors, 

[1,100001 JL 

1 15 0 1 0 0 0 
0 '1\ 

d = 1 1!\ 0 0 1 0 0 
O'L + e . (2.3) 

1 1:1 0 0 0 1 0 
O'M 

l ];; 0 0 0 0 1 0'1! 

O'S 

The parameters are not well defined without adding a constraint. Traditionally, it 
is assumed, with Or; E { ni\, os, (l:M! cJ-u ! tts }, that :Lnr1 = 0. Choosing 
R = [ 0 1~] and a. = 0 specifies the constraints in the context of a restricted model, 
with restrictions R (3 = a . 

Example 2.2 Deleting the first column of the design matrix in equation (2.3) 
creates a cell mean coding and a full rank-design matrix. No constraints are 
needed . 
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Example 2.3 Deleting any one of columns 2--6 in the design matrix for the first 
example creates a reference cell coding, also full rank, with the deleted column 
indicating the reference cell. Chapters 12 and 13 in Muller and Fetterman (2002) 
describe coding schemes and practical aspects of one-way ANOV A. 

Example 2.4 An alternative analysis would use a more general model. the full 
model in every cell. With YO.j indicating the vector of time 0 (baseline) responses 
and y 1 the 7..t x I vector ofresponses at time 4. the model is 

fJuA 
fJoL 

1 1~ 0 0 0 0 Yo.A 0 0 0 0 .BoM 
0 l l [• 0 0 0 0 Yn,L 0 0 0 .Bou 

Y i= 0 0 11;; 0 0 0 0 Mo.M O 0 I fJus + e. (2.4) 
f1t A 

0 0 0 115 0 0 0 0 YO.H 0 f3tL 
0 0 0 0 1 ts 0 0 0 0 Yo.s fiJ M 

/Jw 
f3ts 

Chapter 16 in Muller and Fetterman (2002) provides details ofpractical aspects of 
coding schemes, estimation, and testing for the full model in every cell. Special 
cases include ANCOV A and difference scores. 

Example 2.5 An Analysis of Covariance (ANCOV A) model may be coded 

114 = 

1 14 0 0 0 0 1/IJ.A I 
0 1 1:; 0 0 0 1/U.L 
0 0 11r; 0 0 1/n.M 
0 0 0 1 15 0 1/0,tl 

0 0 0 0 11 ~ Yu.s 

Flo A 

/loL 
l1oM 
.BuH 
t3os 
PI 

+e. (2.5) 

The model assumes equal slopes and is a special case of the full model in every 
cell. In tum. analysis of difl'ere.nce scores {as discussed earlier) is a special case of 
an ANCOVA model because it assumes the common slope is 1.0. 

2.4 THE UNIVARIATE GENERAL LINEAR HYPOTHESIS 

Definition 2.3 In the GLMN,q(Yi; Xi/3, a 2), functions of the primary 
parameters are secondary parameters. 
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Three important examples deserve specific mention because they lie at the heart 
of the general linear hypothesis (GLH). For C an a x q matrix of known 
constants and 00 an a x 1 vector of known constants, a x 1 vectors 0 = C fJ and 
0 - 00 are secondary parameters. Furthermore, the covariance matrix of the 

estimators, namely V(O) = V(O- 00), is also a secondary parameter. 

The general linear (null) hypothesis may be stated in two equivalent ways: 

Ha:CfJ=Oo 
Ho : 0 = Oo. 

(2.6) 

If a > 1, then the alternative hypothesis necessarily is HA : 0 -1- 00 . If a= 1 (and 
e is a scalar, such as a mean difference), then a one-sided alternative may 
occasionally be preferred. The notation of a Boolean algebra (as in the following 
definition) greatly simplifies discussions of inference about hypotheses. 

Definition 2.4 (a) A Boolean algebra (Weisstein, 2003) is the partial order on 
subsets (of a collection of sets) which is closed under finite union (OR, V ), 
intersection (AND, 1\) and complementation (NOT,'). 
(b) Each element defines a Boolean function, Iffi( {} ). 
(c) By convention, a two-valued Boolean algebra has values TRUE or 
FALSE, with lffi( {}) = 1 (TRUE) or lffi( {}) = 0 (FALSE). 

Definition 2.5 (a) The null hypothesis may be written H 0 = Iffi(O = 00 ). 

(b) The alternative hypothesis may be written HA = Iffi(O -1- 00 ). 

For linear models, the secondary parameter noncentrality characterizes the 
changes in distributions due to changing hypotheses. As discussed later in the 
chapter, the test statistic is essentially a noncentrality estimator. 

Definition 2.6 (a) For a GLMN,q(y;; X;/3, a 2 ) with X fixed and known, the 
shift parameter is 

8 = (0- Oo)'M-1(0- Oo) 

= (0- Oo)'[O(X'X)-OT1(0- Oo). (2.7) 

(b) The noncentrality parameter is 

The parameters w and 8 play central roles in the distribution theory of 
hypothesis tests. The parameter w is scale free in the sense that multiplying y by a 
nonzero constant does not change it. Neither 8 nor w vary under a full-rank 
transformation of the rows of both C and Oo, of the form Cr = TC and 
Oar= T00, with T (ax a) of rank a. The null hypothesis is 0 = Oo, which 
implies 8 = (0)' M- 1(0) = 0 and therefore w = 0. The alternative hypothesis has 
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0 =1- 00 , which guarantees 8 > 0 and therefore w > 0. The reader should be 
cautioned that some authors include a factor of 1/2 in the definition of w. The 
presence or absence of the factor must always be checked in any discussion. 

Example 2.6 An independent groups f test with equal sample sizes may be 
conducted with the following cell mean coding model: 

y = X f3 + e 

= [lN/2 0 ] [1-11] +e. 
0 l N/2 /l2 

Testing Hn : p 1 = j t-1 leads to using C = [ 1 - l J and Bo = 0. In turn, 

M = C (X 'X )- C ' 

and 

=[ I - I. I[(N/ 2)I 2r 1[ 1 - 11' 
= 4/ N. 

8 - Bo = C f3 - Ou 

=[ 1- l J[J'I] - Q 
Jl2 

= Jl l - Jl.'l • 

6 = (0 -- Oo)'M - 1(0 - Bu) 

= (111 - Jiz) 1
(4/ N )- 1(JLJ - 112) 

2 
= (pi - JI:.!) (N / 4), 

(2.9) 

(2.10) 

(2.11) 

(2. 12) 

(2. 13) 

The final form illustrates the principle that noncentrality in the linear model with 
fixed predictors depends only on sample size. mean differences, and error variance. 

A GLH describes a set of linear constraints on {3, namely C {3 = 80 , through the 
fixed and known constants C and 80 • Relative to the unconstrained model, 
GLMN,q(Yi;Xi{3,a2

), writing GLMN,q(Yi;Xif31Cf3 = Bo,o-6) specifies a 
constrained model. Hence every GLH corresponds to comparing a full and 
constrained model. Any C matrix with all rows selected from a q-dimensional 
identity matrix leads to an easily understood constrained model. In such a case, the 
constrained model may be produced from the full model simply by deleting 
appropriate columns of X and corresponding rows of {3. Also, the hypothesis 
compares the original (full) and the reduced models. The parameter 8 has a simple 
form in the context of comparing the full and constrained models, 

(2.14) 
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2.5 TESTS ABOUT VARIANCES 

The general linear hypothesis makes a statement about expected value 
parameters, elements of /3. It is less common, although perfectly reasonable, to 
consider hypotheses about variances, such as a 2• Exact forms for a confidence 
interval for a 2 and exact tests of H 0 : a 2 = a6 as well as H 0 : ai = a~ = · · · = a~ 
are known (with fully independent and Gaussian data). 

Tests of variance equality should not be used to check the assumption of 
homogeneity in a linear model. A number of authors have provided analytic and 
simulation results to support the claim. Instead, robust tests, such as the 
Satterthwaite approach for the t test, should be used. Similar conclusions apply to 
testing hypotheses about variances. O'Brien (1979) reviewed available methods 
and made helpful recommendations. 

2.6 THE ROLE OF THE INTERCEPT 

The design matrix for the great majority, but not all, linear models either 
directly includes a column with all l's, or has columns that span a column of l's. 
The following definition formalizes the concept. 

Definition 2.7 (a) If constant t 0 (q x 1) exists such that Xt0 = lN for N x q 

design matrix X, then the design matrix, and also the associated linear 
model, spans an intercept. 
(b) If such a t 0 exists and Ct0 = 0, then the hypothesis Ho : C fJ = Oo 
excludes the intercept. 

In the great majority of cases, scientific considerations alone dictate that the 
model should include an intercept. Most often, but not always, the mean response 
contains an arbitrary (location) constant and therefore requires the model to span 
an intercept. Temperature measured in degrees centigrade uses the arbitrary zero 
point of the temperature at which water freezes. A clinical trial comparing two 
treatments to reduce fever could compare mean body temperature, with 

Ho : f..Ll = J..L2 {'} 
Ho : (J..LI - f..L2) = 0. 

The parameter e = (p1 - p 2 ) does not vary due to adding a constant to the data. 
Including an intercept allows conducting a location-invariant test. Just as most 
models span an intercept, most hypotheses exclude the intercept, for the same 
reasons of scientific irrelevance and lack of meaning. 

In some cases, it makes sense to compare the model with and without an 
intercept. The data for an astronomical study of the temperature of a comet 
orbiting far from the sun may use values recorded in degrees Kelvin, for which the 
value zero has meaning. If so, then either excluding an intercept or including one 
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and testing whether it equals zero may be reasonable. Alternately, Casella (1983) 
argued that comparing the models with and without an intercept provides a natural 
way to characterize and understand the statistical value of the intercept. 

The preceding brief comments have a number of implications for discussions of 
the theory of linear models. (1) Most applications will involve models that span an 
intercept and tests that exclude the intercept. Such tests have location invariance. 
(2) Completely general results must allow for tests involving the intercept. 
(3) Completely general results must allow for models (and tests) which do not span 
an intercept, which corresponds to assuming the intercept equals zero. We urge 
the reader to always remember the complexities that can occur. Muller and 

Fetterman (2002, Chapters 4-6) included extensive discussion of the role of the 
intercept in univariate linear models, tests, and correlation. 

2.7 POPULATION CORRELATION AND 
STRENGTH OF RELATIONSHIP 

Data analysts often wish to consider the entire collection of predictors in order 
to evaluate how well the model fits. Most often, such tests exclude the intercept 
(for scientific reasons). In the following, {30 represents the intercept of a GLM, 
and the intercept may be constrained to be zero, which corresponds to excluding 
the intercept. In such a model, the special case of a test of all parameters other 
than the intercept equal to zero compares the original model, 
GLMN,q(y;; X;/3, a 2

), to GLMN,l (Yii 1 · /3o, a6) or to GLMN,l (y;; 0, a6). 

Definition 2.8 For the GLMN,q(y;; Xi/3, a 2), the population value of the 
coefficient of determination, the proportion of variance accounted for by the 
model equals 

2 Na6- Na2 

Pu = (Na6- Na2 ) + Na 2 
(2.15) 

For a model spanning an intercept, 

p2 = V(y;)- V(YiiXi) = 1 _ V(YiiXi) 
V(y;) V(yi) ' 

(2.16) 

with p the multiple correlation coefficient. In contrast, without an intercept, the 
general form reduces to 

(2.17) 

and Pu equals an "uncorrected" (for the intercept) or "generalized" multiple 
correlation. The parameters p2 and p~ may be interpreted as the proportion of 
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response variance controlled by the predictors (predictable by the model). Both 
have scale in variance (do not change if the response or any predictors are 
multiplied by nonzero constants) and p2 also has location invariance (does not 
change if constants are added to the response or predictors). Kvalseth (1985), 
Willett and Singer (1988), and Scott and Wild (1991) provided additional useful 
guidance. 

More generally, interest may center on the strength of the relationship between 
the response variable and some linear combination of predictors, such as a subset, 
corresponding to a general linear hypothesis, H 0 : C fJ = 80 . The resulting 
parameter equals a squared semipartial multiple correlation. It measures the 
strength of the relationship between the response and the variables included in the 
hypothesis, with the predictors in the hypothesis adjusted for predictors not 
included in the hypothesis. Muller and Fetterman (2002, Chapter 6) discussed 
correlations in univariate linear models in detail. In the population, the proportion 
of the response variance controlled by the predictors underlying the general linear 
hypothesis H 0 : C fJ = 80 may be expressed as 

Furthermore 

2 8 
Pb = 8 + Na2 

w 

w+N 

2 2 
w = Pb = N _!!.L_ 

(1-p~)fN 1-pr 

(2.18) 

(2.19) 

Consequently, testing the general linear hypothesis H 0 : C fJ = 80 is equivalent to 
testing H 0 : p~ = 0, or H 0 : Pb = 0, or H 0 : w = 0, with w = 8/ a 2

. In general, the 
coefficient of determination and the noncentrality for the hypothesis are one-to-one 
functions of each other. The coefficient of determination population value does 
not vary with sample size (while the estimator does). The value falls in the unit 
interval 0 S p~ S 1, with p~ = 0 [which implies V(y;) = V(e;) = a 2 > 0] 
occurring only under the null hypothesis and PB = 1 indicating perfect 
predictability [and V(y;) > V( e;) = a 2 = 0]. The squared multiple correlation for 
the entire model arises as a special case by choosing an appropriate C matrix. 

2.8 STATISTICAL ESTIMATES 

A less-than-full-rank model has r = rank(X) < q, and estimation relies on a 
nonunique generalized inverse (X' X)-. The unique inverse (X'X)-1 exists only 
when X has full rank, rank( X) = q. With less than full rank, 

{3 =(X' X)-X'y (2.20) 

provides a proper, although biased, estimator of /3, which varies with the choice of 
generalized inverse. In contrast, a full-rank model defines fJ differently and 
thereby creates a unique and unbiased estimator, namely 
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(2.21) 

Hence a full-rank design defines fJ in such a way as to guarantee it is estimable, in 
the sense that a known linear function of the data provides an unbiased estimator. 
The loose definition of "estimable" will be refined in Chapter 11. The obvious 
estimator of(} may be written 

8 = c{3. (2.22) 

We delay the discussion as to how to determine whether 0 is a good estimator, 
along with the proofs of all estimation properties, to Chapter 11. 

Definition 2.9 For the GLMN,q(Yii Xi/3, a 2), (a) predicted values are 

fi = x{3 
= X(X' X)-X' y = H y. (2.23) 

(b) In tum, the estimated errors, the residuals, are 

e=y-X{3 
= [I-X(X'X)-X']y= (I-H)y. (2.24) 

The projection matrix, H = X(X'X)-X', earned the nickname "hat matrix" 
because fj = Hy. Very conveniently, His unique (Corollary 1.15) even though 
(X' X)- is not, which ensures the predicted values and residuals also are unique. 

Definition 2.10 For the GLMN,q(Yii Xi/3, a 2 ) and the general linear 
hypothesis H0 : C fJ = 80 , the error sum of squares is SSE = e'e and the 
hypothesis sum of squares is SSH = 8 = (0- 80 )' M-1(0- 80 ). 

With r =rank( X) in a univariate model, 

&2 = e'ej(N- r) 
= y'[I- X(X'X)-X']yj(N- r) 

= y'(I- H)yj(N- r) 

is unique and also can be proven to be an unbiased estimator of a 2. 

The obvious estimator of noncentrality is 

CJ = 8 /&2 

(0- Oo)'M-1(0- 80 ) 

SSH 

~2 a 

SSEj(N- r). 

(2.25) 

(2.26) 
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In tum, the usual F statistic is simply F = w /a, which can be characterized as the 
average amount of noncentrality per degree of freedom. 

The various correlation parameter estimators may be computed in various ways. 
A general approach may be inferred from 

~2 SSH 
Pb = SSH +SSE. (2.27) 

The special case of the usual squared correlation for a model including an 
intercept (a special case of spanning an intercept) can be computed in the terms of 
a test of all slopes equal zero. Alternately, for any model spanning an intercept, 

~2 _ 
1 

_ y'[I- X(X'X)-X']y 
p - y'[I -1(1'1)-11']y 

(2.28) 

The "uncorrected" (for the intercept) or "generalized" multiple correlation 
estimator assumes X does not include or span 1N. It takes the form 

~2 y'[I-x(x'xrx'Jy 
Pu = 1- · y'y 

(2.29) 

2.9 TESTING THE GENERAL LINEAR HYPOTHESIS 

Throughout, we assume F '"" F ( v1 , v2 , w) indicates the random variable F 
follows a noncentral F distribution with v1 numerator degrees of freedom, v2 

denominator degrees of freedom, and noncentrality w, as detailed in Chapter 9. A 
central case has w = 0 and is indicated F '"" F( v1 , v2). 

As detailed in Chapter 15, well-defined tests of testable hypotheses require, 
with M = C (X' X)-C' of dimensions a x a, 

rank(M) =a, (2.30) 

which means M is full rank and invertible, as well as 

C = C(X'X)-(X'X). (2.31) 

Only less-than-full-rank models require checking the second condition, which can 
be replaced by a variety of equivalent conditions (which are usually less 
computationally convenient). Here we restrict attention to such testable 
hypotheses. The first condition implicitly requires C has full (row) rank of a, 
which provides a sufficient condition to ensure testability for full-rank models but 
not for less-than-full-rank models. 
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Definition 2.11 (a) The test of hypothesis H 0 is a Boolean function, and also a 
random variable, ¢(y) = llll(y ERR), and is defined by 
(b) rejection region (critical region) RR = {y: t > t 0 } for 
(c) test statistic t, a function of the data, y, and an 
(d) appropriate critical value, t0 . 

(e) Here ¢(y) = 1 ift > t0 and ¢(y) = 0 ift :S: t0 . 

(f) The complement of RR is the acceptance region, AR. 
(g) The size of the test is a= Pr{y E RRIHo = 1} (the null is true). 
(h) Power is 1 - {3 = Pr{y E RRIHA = 1} (the alternative is true). 
More generally, the power function is Pr{y E RRIH}. 
(i) The probability of making a type I error (false positive) is a. 
U) The probability of making a type II error (false negative) is {3. 

The generality of the power function allows disccussing both null and 
alternative hypotheses. If the size of the test (size of RR) is a, then 
Pr{y E RRIH = H 0 } =a. Furthermore, Pr{y E RRIH = HA} = 1 - {3. 

A general linear hypothesis may be tested with the statistic 

F = (o- Oo)' M-1(0- Oo)/a 
~2 a 

SSHja ~ 
SSEj(N- r) = wja 

'""F(a, N- r,w). (2.32) 

Under the null, w = 0 <(:::} PZ = 0 <(:::} 8 = 0 <(:::} (J = 80 . Except for the simple 
constant factor of a, the hypothesis degrees of freedom, the usual test statistic 
merely estimates the noncentrality parameter, w. The population value (w) may be 

interpreted as a times the F statistic which would occur ifO = (J and a2 = a 2 . 

The test has many optimal properties. It provides the likelihood ratio test and 
the union-intersection principle test. It always has scale invariance and also has 
location invariance if the model spans an intercept while the test excludes the 
intercept. The test has uniformly most power among all similarly invariant tests of 
size a. Finally, it always has exact size a. 

Estimators from GLMN,q(Yi; Xi,B, a 2
), and GLMN,q(Yii X;,BIC,B = Oo, a6) 

allow writing an alternate form 

In tum, 

and 

~2 8 
Po=8+(N-r)a2 

aF 

aF + (N- r) 

w+(N-r) 

SSH 

SSH+SSE' 

(2.33) 

(2.34) 
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~2 ~2 

(1-p~)f(N- r) = (N- r) 1 ~15p~ · (2.35) 

Also, the test statistic may be written as 

~2/ 
F = P15 a . 

(1 -p~)/(N- r) 
(2.36) 

The forms for parameters and estimators just given prove useful in both developing 
and understanding discussions of scale and location in variance properties. 

2.10 CONFIDENCE REGIONS FOR(} 

Confidence intervals, and more general confidence regions, convey useful 
information about the location of a parameter by combining precision and location 
properties of parameter estimators. Hypothesis tests also combine information 
about location and precision. Although tests provide apparently distinct 
information to that provided by confidence regions, an invertible one-to-one 
relationship exists between confidence regions and hypothesis tests. Confidence 
regions can be obtained by inverting hypothesis tests, and a confidence region can 
be inverted to yield a hypothesis test. In Section 15.6 we explain how the 
inversions are performed and prove that confidence regions exist only for 
parameters that are estimable and testable. 

Definition 2.12 (a) If data vector y depends on a primary or secondary 
parameter vector (} (a x 1) with an unknown true value in parameter space 
S, then R(y) E S with Pr{O E R(y)} = c(a) E [0, 1] and boundaries 
defined by a vector-valued function g(y; a) is a confidence region for 8. 
(b) Here c( a) is a confidence coefficient. 
(c) An exact confidence region has c(a) = 1- a. 
(d) An approximate confidence region has c(a) ;::::J 1- a. 
(e) A conservative confidence region has c(a) ~ 1- a. 

At least in linear models, g(y, a) usually has a closed-form representation. 
Consequently, computing confidence intervals for parameters of linears models 
typically proves quite simple. 
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2.11 SUFFICIENT STATISTICS FOR THE UNIVARIATE MODEL 

If the univariate linear model GLMN,q(Yi; X;/3, a 2
) with Gaussian distribution 

is correct, then the SSCP matrix 

[X' X X'y] [X'] S = y'X y'y = y' [Xy] (2.37) 

contains all of the complete sufficient statistics. If X contains an intercept, then, 
without loss of generality, X may be arranged with the intercept in column 1, with 
X= [ 1N X 1 ], for X 1 of dimension N x (q- 1). In tum, the SSCP matrix 

[ 

1'1 1'XI 1'y l [ 1' l s = x~ 1 x; x1 X'y = x~ [ 1 x1 y l 
y'1 y'X1 y'y y' 

(2.38) 

contains all of the complete sufficient statistics for estimation of all parameters of 
the regression model identified by the relationship 

E(yiX). (2.39) 

Here [ 1 X 1 y] is N x (q + 1) so S is (q + 1) x (q + 1). All parameter 
estimators and general linear hypothesis tests depend on the data only through the 
elements of S. Very conveniently, the raw data are not needed for parameter 
estimation or testing the general linear hypothesis. 

EXERCISES 

2.1 Provide an explicit interpretation of each parameter in Example 2.5. 

2.2 Provide a reference-cell-style coding design matrix for Example 2.5. 
Include clear specifications of all dimensions. Provide an explicit interpretation of 
each parameter. 

2.3 Provide an effect style coding design matrix for Example 2.6. Include clear 
specifications of all dimensions. Provide an explicit interpretation of each 
parameter. 

2.4 Explicitly describe the vector of constants t which demonstrates that the 
design matrix for Example 2.2 spans an intercept. 

2.5 Explicitly describe the vector of constants t which demonstrates that the 
design matrix for Example 2.4 spans an intercept. 

2.6 For a GLM, briefly explain why multiplying the response values by a 
nonzero constant automatically implies that fJ and e have also been multiplied by 
the same nonzero constant for the model to remain valid. 

2.7 Prove explicitly that multiplying the model equation by a nonzero constant 
does not change w. 
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2.8 Prove explicitly that multiplying the observed response values by a nonzero 
constant does not change w or the observed statistic. 

2.9 Give four words or short phrases which highlight the four aspects of a 
statistical model. 

2.10 By default in an ANOV A model, SAS version 8 PROC GLM with the 
CLASS statement creates a less-than-full-rank design matrix. It creates the design 
matrix in the following steps: (1) include a column of 1 's for the intercept; (2) if a 
factor has G levels, generate G columns in the design matrix, with each column an 
indicator variable for one of the levels of the factor. The algorithm (a sweep 
method; Goodnight, 1979) leads to a "bottom right" reference cell coding scheme, 
based on the sort order of the formatted values in the class variables (not the sort 
order of the data in the file being analyzed). If factor A has levels { 1, 2, 3} and 
factor B has levels { x, y, z }, the reference cell for a complete two-way design 
would be 3, z. Additional detail is provided in SAS documentation. 

Assume that factor C has four levels { 1, 2, 3, 4 }, and it is the only factor in the 
design (and the class statement). Also let n;, i E {1,2,3,4}, be the number of 

participants at factor level i and N = L:i=I n; be the total number of observations. 
2.10.1 Explicitly describe the design matrix originally created by SAS GLM and 
an associated parameter matrix (give all dimensions and provide brief 
interpretations). Allow for an unbalanced design (but no missing cells). 
2.10.2 Explicitly specify the design matrix and associated parameters implicitly 
used after the sweep algorithm has been applied. 
2.1 0.3 Explicitly specify constraint matrices and a constrained version of the 
original model which corresponds to choosing parameters in the reference cell 
model created by the sweep algorithm. 

2.11 Give an example of a nonlinear model which is inherently linear. 

2.12 Give an example of a nonlinear model which is not inherently linear. 



CHAPTER3 

The General Linear Multivariate 
Model 

3.1 MOTIVATION 

The multivariate linear model generalizes the univariate linear model by 
allowing two or more responses to be measured on each independent sampling 
unit. Implicitly the model requires that the same design matrix apply to every 
response and every independent sampling unit have the same set of responses 
variables. The material in the present chapter summarizes some basic theory 
needed to fit such models and test hypotheses about predictors and responses. 

The multivariate model allows generalizing univariate results for estimation to 
the multivariate model with very little complication. In contrast, measures of 
association and hypothesis testing become far more complicated to derive and 
discuss. The complexity arises from the fact that various criteria for tests lead to a 
total of nine (yes, nine) commonly used different test methods. Unavoidably, 
responsible analysis of a multivariate model requires an a priori choice of test 
method to avoid bias introduced by post hoc p value shopping. 

Not surprisingly, the relative appeal of the many tests varies with the nature of 
the data and the scientific goals of the analysis. Therefore the chapter begins with 
some suggestions for characterizing dependent responses. 

Example 3.1 Example l.l contained a classical (LTFR) ANOVA coding for 
data from Benignus, Muller, Smith, Pieper, and Prah (1990). They exposed 74 
human participants to one of five profil es of carbon monoxide (CO) in the air 
breathed during the study: Air. Low, Medium, High, or Slow. The planned 
primary analysis compared the five group mean changes from baseline to time 4. 

An alternate analysis used four responses, the hour 1-4 differences from 
bt1seline. Group sizes were { 14, 15, 15, 1 ti 15} for Air, Low, Medium. High, and 
Slow. The design matrix remains the same as for the univariate model. A 
multivariate general linear model requires the same design matrix for all responses. 
L TFR ANOV A coding for the 7 4 sets of 4 responses, { d; 1, d;1• d;1, d;4 }, may be 
written, with all elements of the design (super-) matrix being confonning vectors. 

55 
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1 ].] 1 0 0 0 0 
Jll Jlt). J.l;l jl~ 

1 15 0 1 0 0 0 
0'1\ ,1 O'A.:.! (\A.:J <l'A.I 

! d l d 2 d :l d .!] = 1 1~. 0 0 1 0 0 ffL,l OL.:.! Ct L.:J O'LI + .E . (3.1) 
HM .l n'M,2 Cifi.U O'M.-1 

1 15 0 0 0 1 0 
115 0 0 0 0 1 ft!I.J ll'U.2 (fll,:j l.t]L-l 

ns.1 (\:5,2 ns.3 as, I 

Here [ d 1 d 2 d:1 d.1 J is 74 X 4. with columns corresponding to hour and rows to 

participants. The error matrix has the same dimensions and pattern. Each column 
in B contains parameters for a particular hour. The parameters are not well­
defined without adding a constraint. For (tg,r E {a A, o·s , O'M, 0'11 , o·s}. it was 
traditionally assumed L!

1
n 9.1 = 0 holds separately for each value of 

t. E { 1, 2, 3 , 4}. Choosing R ,, = [ 0 1~ ], R y = / 4 , and A = 0 1 x 4 implements the 
constraints in a restricted model with restrictions R .. B Ry = A . 

3.2 DEFINITION OF THE MULTIVARIATE MODEL 

Definition 3.1 A general linear multivariate model will be indicated by 
GLMN,p,q(l'i;XiB,E), with primary parameters {B,E}, and includes the 
following assumptions. 

I. The rows of the N x p random matrix Yare mutually independent, with 
J'i = rowi(Y) = [Yit Yi2 · · · Yiv]· 
2. With Xi= rowi(X), the Nxq design matrix X has 
rank(X)=r::;q::;N, and is fixed and known without appreciable error, 
conditional on knowing the sampling units, for data analysis. Power analysis 
requires knowing the predictor distribution in the population. 
3. Elements of B (q x p) are fixed and unknown and often regression 
coefficients or means. 
4. The mean ofY is E(Y) = XB. 
5. Response matrix l'i has finite covariance matrix E = E', which is fixed, 
unknown, and positive definite or positive semidefinite. 

Writing GLMN,v,ll'i; x.B!RxBRy = A, E) specifies explicit restrictions 
on parameters in B through the fixed and known constants Rx. Ry, and A. 

The model is described as full rank (FR) if r = rank( [X' Rx '] ') = q and 
otherwise as less than full rank (LTFR) if r < q. Clarity may require writing 
GLMN,p,qFR() or GLMN,p,qLTFR(). 

The definition of a GLM describes the "least squares" assumptions because they 
guarantee estimates for the primary parameters B and E exist which satisfy the 
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least squares criterion. It is very important to recognize that no particular 
distribution has been specified for any random variable. The rather modest 
requirement of finite second (and implicitly first) moments is made. Much more 
importantly, the requirements of independent rows of Y with common covariance 
and a common design matrix for every column place strong restrictions on the 
range of models. The model definition specifies three components: the response 
matrix for the independent sampling unit, the mean of the response matrix, and the 
covariance of the response matrix. 

A number of implications of the multivariate GLM definition (least squares 
assumptions) may be deduced easily. The first implication is that elements of 
response matrix Y have a finite covariance matrix following a simple pattern. The 
result may be expressed in terms of either vec(Y') or vec(Y), which are both 
N p x 1 vectors and are merely permutations of each other. The responses may be 
decomposed by row or column: 

(3.2) 

Each row of Y contains the p responses for a single independent sampling unit, 
while each column contains the N responses for a single variable. 

With p x N Y', stacking the N transposed rows (each p x 1) creates an 
N p x 1 vector, 

(3.3) 

which has N p x N p covariance matrix 

(3.4) 

The last matrix contains N 2 submatrices, each of them p x p, with a value of either 
:E or 0. Independence between the N rows of Y makes the off diagonal matrices 
0 (independence implies zero covariance and correlation). The homogeneity 
assumption provides the diagonal matrices. 

In contrast, stacking the columns presents exactly the same values in a permuted 
form. The N p x 1 vector 
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[ ~y:_p~ l = vec(Y) (3.5) 

has N p x N p covariance matrix 

(3.6) 

In the last equation there are p2 submatrices, each of them N x N, with the i, j 
submatrix having the value ai,jiN. We allow heterogeneity and correlation across 
columns, but not rows ofY. 

A second implication is that the response matrix may be separated into purely 
fixed and purely random matrices by centering the responses to define 

E = Y -E(Y) 
=Y-XB. (3.7) 

with E(E) = 0 and V[vec(E')] = V[vec(Y')] =IN 0 :E. A closely related third 
implication of the assumptions is that 

Y=XB+E. (3.8) 

The N x p constant matrix XB describes (models) the first moment of the 
responses, the mean matrix. The N x p random matrix E describes (models) the 
second and higher moments. 

Finding estimators for B and :E which satisfy a variety of optimal properties in 
small samples does not require any particular distribution function for the data. In 
contrast, the desire to test hypotheses leads to describing distributions of test 
statistics as a function of explicit specification of the data distribution. 

Data analysts often assume the errors follow a Gaussian distribution. As 
detailed in Chapter 8, writing Y '""Nn,m(M, B, :E) indicates B and :E are 
symmetric and positive definite or positive semidefinite, and 
vec(Y') '""Nn,m[vec(M'), B 0 :E], a direct product matrix Gaussian. A singular 
distribution may be specified by writing SNn,m(M, B, :E), while writing 
( S)Nn,m ( M, B, :E) indicates the distribution may or may not be singular. If either 
B or :E is singular, then so is B 0 :E because the eigenvalues of the direct product 
are products of the eigenvalues of the original matrices. Also 
rank(B 0 :E) = rank(B)rank(:E). 
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Definition 3.2 Writing GLMN,p,q(Yi; XiB[RxBRy =A, :E) with Gaussian 
errors indicates Yj' "'NP{ [rowi(X)B]',:E}. 
Equivalently, Y "'NN,p(XB, IN,:E). 
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Following Kleinbaum, Kupper, Muller and Nizam (1998), and Muller and 
Fetterman (2002), the GLM assumptions may be summarized with the mnemonic 
HILE Gauss: Homogeneity (V(Yj') = V(Yj~) =:E), Independence (Yi Jl Y;' if 
i -1- i'), Linearity (E(Y) = XB), existence of finite second moments, and 
optionally, Gaussian observations. The mnemonic groups the least squares 
assumptions together and separates the distribution assumption. 

Adding the assumption of Gaussian errors allows deducing additional 
properties. With HILE Gauss, essentially all of the assumptions are captured by 
the statement Y "'NN,p(XB, IN, :E). Obviously the parameters of the Gaussian 
distribution coincide with the parameters of the GLM. First and second moments 
fully characterize both. Also, E "'NN,v(O, IN, :E). 

As in univariate models, the theory of the multivariate GLM applies for two 
apparently disparate classes of models: linear regression and ANOV A models. 
Both are special cases ofthe multivariate GLM. ANOVA models were developed 
to test the effects of one or more categorical predictors on two or more Gaussian 
responses with independent and homogenous errors. Multivariate regression 
models express a set of continuous responses as a function of one or more 
continuous predictors. Models with both categorical and continuous predictors fall 
in between and are best thought of simply as multivariate linear models. The 
underlying theory, for data analysis, if not always for power analysis, coincides for 
all ofthem. 

3.3 THE MULTIVARIATE GENERAL LINEAR HYPOTHESIS 

Definition 3.3 In the GLMN,p.q(Y;; XiB, :E), functions of the primary 
parameters are secondary parameters. 

Four important examples deserve specific mention because they lie at the heart 
of the multivariate general linear hypothesis (GLH). With C an a x q matrix of 
known constants, U a p x b matrix of known constants, and e 0 an a x b vector of 
known constants, a X b matrices e = c BU and e - eo are secondary 
parameters. Furthermore, the covariance matrix of the estimators, namely 
V[vec(e)] = V[vec(e- e 0)], as well as :E. = U':EU, are secondary 
parameters. 
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The general linear (null) hypothesis may be stated in two equivalent ways: 

Ho: CBU =eo 
Ho: e =ea. (3.9) 

Ifmax(a,b) > 1, then the alternative hypothesis is necessarily HA: e -1- e 0 . A 
one-sided alternative may occasionally be preferred when max( a, b)= 1 (and e 
reduces toe, a scalar, such as a mean difference). 

The C matrix (a x q) defines contrasts between groups or levels of predictors 
by computing linear combinations of coefficients of predictor variables, such as 
means. The C matrix implicitly computes and explicitly allows testing linear 
combinations of columns of X, the predictor variables. 

The U matrix (p x b) defines contrasts within an independent sampling unit 
(such as person) or level of response character (such as time) by computing linear 
combinations of coefficients of response variables, such as means. The U matrix 
implicitly computes and explicitly allows testing linear combinations of columns of 
Y, the response variables in the model Y = XB +E. The parameter :E provides 
the p x p covariance matrix among response variables. The parameter 
:E. = U':EU provides the b x b covariance matrix among transformed 
(hypothesis) variables in the model YU = XBU + EU. With repeated 
measures in Y, often U contains orthogonal or orthonormal polynomial trend 
contrasts (linear, quadratic, etc., through order p- 1). The zero-order trend 
corresponds to the mean across the times. 

Definition 3.4 For a GLMN,p,q(Y;; X;B, :E) with X fixed and full-rank 
M = C(X' X)-0', (a) the shijt parameter is the b x b matrix 

~ = (e- eo)' M-1(e- eo). (3.10) 

(b) For full-rank :E. = U':EU (b x b), the covariance matrix of transformed 
(hypothesis) variables, the noncentrality parameter is the b x b matrix 

n = ~:E-1 = (e- e )'M-1(e- e ):E- 1 
* 0 0 * . (3.11) 

Parameters ~ and 1l play central roles in the distribution theory of multivariate 
hypothesis tests. The noncentrality parameter 1l is scale free in the sense of 
corresponding to hypothesis variables standardized to have covariance Ib. 

As in the univariate case, both ~ and 1l do not vary under any full-rank 
transformation of the rows of both c and eo, of the form CT = TBC and 
eaT= TBe, for TB (a X a) of rank a. On the other hand, both~ and n do vary 
under simultaneous full-rank transformation of the columns of u and eo, of the 
form UT = UTw and eaT = eoTw, for Tw (b X b) of rank b. However, the 
eigenvalues of 1l do not vary under such a transformation. As discussed briefly 
below and in more detail in Chapter 16, the eigenvalues of 11, in addition to the 
dimensions of the problem, suffice to fully determine the distribution of the 



Linear Model Theory 61 

multivariate test statistics. The multivariate test statistics are functions only of the 
eigenvalues of fi and the dimensions. The statistics do not vary under any full­
rank transformation of C or U (and 9 0) as just discussed. 

A wide variety of apparently distinct methods correspond to special cases of the 
multivariate test statistics, include multivariate ANOV A (MANOV A) and the 
multivariate approach to repeated measures (MUL TIREP). However, tests arising 
from the univariate approach to repeated measures (UNIREP) differ fundamentally 
in both origin and many properties. The present chapter contains a brief overview, 
while Chapter 16 has full details. Both the multivariate (MULTIREP) and 
UNIREP tests arise from the same estimation theory. 

With the spectral decomposition E* = TDg(.>..)T', and ~1 = T'~T, the 
distributions of the tests in the UNIREP tests depend on the b eigenvalues of E*, 
.>.., and the diagonal elements (not the eigenvalues) of !lr = ~1Dg(.>..)- 1 = 
T' ~E:;- 1T = T'!lT. As functions of the eigenvalues of both £ and E* 
separately, the corresponding test statistics do vary under full rank transformation 
of the columns of U and So, of the form Ur = UTw and 9or = 9oTw, with T 
(b x b) of rank b. 

ExamJlle 3.2 A multivariate independent groups t test is sometimes described 
as a two sample Hotelling T 2 test. The setting also corresponds to the special case 
of a MANOV A test for two groups. which implies U = I JJ for p responses. With 
N!1 observations in group _g E {A, B}, Y and E are ( N A + N 8 ) x p. A reference 
cell coding, with {XJ = Jtn,J - lLA.J gives X of dimension (NA + N 8 ) X 2 and 

y = [lN" 0 ] (ttA.I /LA,2 .. ' ILA,I•] + E . 
l N., 1N11 0:1 <l2 • • • a 1, 

(3. 12) 

Therefore, with C = [ 0 1] and U = I p, 

M = [0 l ][N"' ~ Nn Nn] - t[O !]' 
J'liu 1Vn 

- [O l J[ l jN,., - l f l'\TA ] [01 ]' 
- -!flVA 1/Nu + 1/ NA 

= (NA + Nn)f(N,.,Na) , (3. 13) 

(3.14) 

e - e n= [0 1] [ ILA,l JLA.2 • • 'Jl·A.p] I - Olx ' 
a, 0:2 · · · o:1, P 1 

= [o1 n2 ··· n 1, ] . (3.15) 

If A = {n/l'J' } then 
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n = [ <l:J 0:2 ••• Op ]
1[(N,. + Nu )/ (N,. Nu)r 1 

[ al 0 '2 ••. 0:1' ]E - 1 

= (NANu )(N,. + Nu) - 1 AE- 1
• (3.16) 

As in the univariate case, noncentrality depends only on sample size, mean 
differences. and error variance. 

The rank of 0 plays an important role in the distribution theory of multivariate 
linear models. In general, with s* = rank(O), it follows that 
0 ::::: s* ::::: min( a, b) = s, with s* = 0 only when e = 9 0 . 

Explaining the origin of the bounds on s* describes many of the relationships 
among the dimensions and parameters. The matrices.{),. and E;:-1 are symmetric 
and b x b. A well-defined test requires full (row) rank of a for C. It also requires 
full (column) rank of b for U, which ensures full rank of b for E* = U'EU 
(given a full-rank E, as nearly always assumed) and also E; 1. The b x b 
noncentrality matrix, n = .{),.E;:-1 , will not be symmetric, except for special cases. 
Furthermore, rank(O) =rank(.{),.), with .{),. = (9- e 0 )' M-1(e- e 0 ). The 
a x aM matrix must be full rank for a well-defined test, which ensures the rank 
of .{),. (b x b) equals the rank of (9- 9 0 ) (ax b). Obviously 
0::::: rank(9- eo)::::: min( a, b). Here rank(e- eo) = 0 only when 9 =eo. 

Example 3.3 The matrix 0 = [(NANu)/(NA + Nu)]AE- 1 from the last 
example has rank I, which can be proven as follows. Square and full rank E - 1 

ensures rank(!l) = rank(A ). If et = [ o 1 a2 · · · o:1,]'. then A = ow/. Hence 
rank(A ) = rank(na/) = rank(o:'et) = 1. 

Alternately. if et1 = n / ~. then there exists orthonormal Ao of dimension 
p x (p - 1) with A;1et1 = 0 . The spectral decomposition of A is 

I 1 ( I I 1 
A = on = ~et a et)et ~ 

v n 'a v n 'a 
= n 1{n 'a )n ; 

[
(et'n ) 0] [ol] 

= [ a 1 A u] 0 0 ~~ . (3.17) 

The eigenvalues of n = (NANu)(NA + Nn) - 1aa' E - 1 and n . = 
(NANn) (.NA + N11)-

1et'E - 1n coincide, but not the eigenvectors. Writing WJ = 
(NANu)(lll ,. + Nu }-1a'E- 1n is more precise because w 1 is 1 x I, a scalar. Any 
scalar has a single eigenvalue. the scalar itself The expression may be written 

The parameter w1 is the Mahalanobis distance from the origin of the vecLor of 
group difTerenccs. If the responses are uncorrelated. then E is diagonal and 
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(3.19) 

lf p = 1 and NA = N 11 • then {N . .,Nn )(N/.. + N 11 ) -
1 

= N / 4 and w1 reduces to the 
/-test result in Chapter 2. 

Writing GLMN,p,q(Y;; XiB, :E) specifies an unconstrained model. A GLH 
(general linear hypothesis) describes a set of linear constraints on B, namely 
CBU =90, through the fixed and known constants C, U, and 9 0 . Writing 
GLMN,p,q(Y;; XiBICBU =9o, :E) specifies a constrained model. Hence every 
GLH corresponds to comparing a full and constrained model. Choosing U = Ip 
has the same effect as not using any U matrix. With U = IP, any C with all rows 
selected from Iq leads to an easily understood constrained model. In such a case, 
the constrained model may be produced from the full model simply by deleting 
appropriate columns of X and corresponding rows of B. Similarly,with C = Iq, 
any U matrix with all columns selected from IP leads to an easily understood 
constrained model. In such a case, the constrained model may be produced from 
the full model simply by deleting appropriate columns of Y and corresponding 
columns of B. More generally, U defines a priori linear transformations of the 
response variables, such as an average or set of difference scores. The hypothesis 
compares the original (full) and the reduced models. 

3.4 TESTS ABOUT COVARIANCE MATRICES 

The general linear hypothesis makes a statement about expected value 
parameters, elements of {3. It is less common, although perfectly reasonable, to 
consider hypotheses about covariance matrices, such as :E or :E*. Some exact tests 
have been developed. Morrison (1990), Anderson (2004), and Timm (2002, 
Section 3.8) have additional details. 

Tests of covariance pattern should not be used to check the assumption of 
homogeneity in a linear model. A number of authors have provided analytic and 
simulation results to support the proposition. Chapter 16 includes discussion of 
tests about covariance matrices. The tests do perform appropriately when used as 
they were intended. 

3.5 POPULATION CORRELATION 

The univariate correlation applies to one response and one predictor. Recalling 
1h = f3o + fJ1xi implies that the squared correlation of the response and predictor is 
the same as that between the response and the predicted value, 
p2 (yi, xi) = p2 (yi, 1h)- Allowing many predictors gives the squared multiple 
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correlation p2(yi,{xi 1, ... ,xiq-d)=p2(yi,Yi) with Yi=fJo+l:]:ifJjxij for a 
model with an intercept [more generally, Yi = Xi(X'X)-X'y]. Generalizing to 
p responses and q predictors (which span an intercept) leads to considering a set of 
s = min(p, q - 1) squared canonical correlations. Muller (1982) described the 
model underlying the traditional approach to canonical correlation as a measure of 
association between two sets of variables. Canonical correlation also lie at the 
heart of the multivariate linear model. 

Definition 3.5 For the GLMN,p,q(Yi; XiB, :E) and associated general linear 
hypothesis H0 : C BU = e 0, the (generalized) squared canonical 
correlations {p;k} are the eigenvalues of the b x b matrix 

(~ + N:E.)(N:E.)-1
. 

The eigenvalues of 1l = ~:E:;- 1 are {wk}, with wk = N p;d(1- p;k). With 
:E. = q,q,', the eigenvalues of n coincide with the eigenvalues of the symmetric 
and positive definite or positive semidefinite and b x b matrix n<I> = q, - 1 ~ q, -t. 

In all cases s. nonzero values of p;k occur, with s. = rank(1l<I>) = rank(1l) = 
rank(~)= rank(e- e 0 ). Also, 0::; s. ::; s =min( a, b). Only under the null 
hypothesis does s. = 0. In general, 

and 

2 

Wk=N~ 
1 - p2 

•k 

2 Wk 
P.k = Wk + N. 

(3.20) 

(3.21) 

Naturally the multivariate formulas reduce to the univariate formulas if p = 1. In 
tum, b = 1 implies s = 1, s. = 1 under the alternative, and s. = 0 under the null. 

As in the univariate case, { wk} and {p;k} always have scale invariance. If the 
model spans an intercept and the hypothesis excludes it, the hypothesis also has 
location invariance. If so, the generalized canonical correlations are appropriately 
described simply as canonical correlations. 

3.6 STATISTICAL ESTIMATES 

In practice, generalizing formulas for estimates from univariate to multivariate 
models simply requires replacing the N x 1 vectors y and e by the N x p matrices 
Y and E, with the additional columns corresponding to the p responses. 
Similarly, N x 1 fj and e become N x p Y and E, while q x 1 f3 and l!J become 
q x p B and B. The reason lies hidden in three implicit assumptions: (1) the 
same design matrix applies to all response variables, which correspond to columns 
ofY; (2) there are no missing data; and (3) each value within a variable (column 
ofY) was measured in a consistent way (no appreciable mistiming is allowed). 
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Adding responses adds columns in Y but does not change the properties of the 
design matrix. In a LTFR model [r = rank(X) < q] estimation relies on a 
nonunique generalized inverse (X' xr. In contrast, (X' X) -l exists only when 
X has full rank [rank( X) = q]. With less than full rank, the matrix 

jj =(X' X)-X'Y (3.22) 

is a proper estimator of B. However, it is biased and varies with the choice of 
generalized inverse. In contrast, a full-rank model defines B differently and 
thereby makes possible a unique and unbiased estimator, namely 

fi = (X'X)-1X'Y. (3.23) 

A full rank design defines B so that it is estimable, which means that a known 
function of the data is an unbiased estimator. The definition will be refined later. 

Definition 3.6 For the GLMN,p,q(Y;; X;B, :E), 
(a) predicted values may be expressed as 

Y=XB 
=X(X'X)-X'Y 

=HY. 

(b) In tum, the estimated errors, the residuals, are 

E=Y-XB 
= [I-X(X'X)-X']Y 

=(I -H)Y. 

(3.24) 

(3.25) 

The "hat matrix" H is unique even though (X' X)- is not, which also makes 
the predicted values and residuals unique. 

With C an a x q matrix of known constants and U a p x b matrix of known 
constants, e = C BU defines an a x b matrix of secondary parameters, with 
corresponding estimator e = CBU or cfiu. The covariance matrix of the 
estimator may also be described as a secondary parameter. We delay the 
discussion as to how to determine whether e is a good estimator, along with the 
proofs of all estimation properties, to Chapter 12. 

Definition 3.7 For the GLMN,p,q(Y;; XiB, :E) and associated general linear 
~~~ 

hypothesis H 0 : C BU = 8 0 , the error sum of squares is Be = U' E EU, 
and the hypothesis sum ofsquares is Bh = £ = (e- 8 0)'M- 1(e- 8 0 ), 

~~~ 

which are both b x b matrices. Choosing U = IP gives Be = E E, the 
error sums squares for the model. 
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The sum of squared errors SSE = e'e generalizes from a scalar to a b x b 

matrix U' E
1 

EU' and scalar a2 becomes the b X b matrix :E. = U'fU. Row 
.......... , .......... .........._ 

and column labels of U' E EU and :E. are the names of transformed response 
variables (columns ofYU, EU, YU, and EU). As with p = 1 (the univariate 
model), r = rank(X) and 

.........._ ......... , ...-... 
:E = E Ej(N- r) 

= Y'[I- X( X' X)-X']Y j(N- r) 

= Y'(I- H)Y j(N- r) (3.26) 

is unique and also can be proven to be an unbiased estimator of :E. Furthermore 

f.= U'Y'(I- H)YU j(N- r) (3.27) 

is also unique and unbiased. With p = 1, the univariate model, necessarily 
U = [ 1] = I 1. Multivariate models allow for U -1- Ip, which leads to interest in 
:E.= U':EU. 

The obvious estimators are £ = ( e - eo)' M-1 ( e - e 0) = Sh and 

~ ~ ~-1 ~ 1 ~ ~-1 

1l =~:E. = (e- eo)' M- (e- eo):E. . (3.28) 

3.7 OVERVIEW OF TESTING MULTIVARIATE HYPOTHESES 

As detailed in Chapter 16, well-defined multivariate tests of testable hypotheses 
require three properties. With M = C (X' X)-C' of dimensions a x a, 

rank(M) =a, (3.29) 

which means M is full rank and invertible. Testable hypotheses require estimable 
parameters, which is guaranteed when 

C = O(X'X)-(X'X). (3.30) 

Ensuring a testable multivariate hypothesis imposes an additional requirement, 
namely full (column) rank of the p x b matrix U: 

rank(U) = b, (3.31) 

A testable hypothesis necessarily has b :s; p. Only less-than-full-rank models 
require checking the estimability condition, which can be replaced by a variety of 
equivalent conditions (which are usually less computationally convenient). The 
first condition implicitly requires C, of dimension a x q, have full (row) rank a, 
which provides a sufficient condition to ensure testability for full-rank models, but 
not for less-than-full-rank models. In any case, a testable hypothesis necessarily 
has aS q. 

A multivariate set of response variables may be tested with any one of nine 
different tests, which fall into three groups, as summarized in Table 3 .1. In 
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contrast to the univariate setting, no single test satisfies the various measures of 
goodness for the multivariate general linear hypothesis H0 : C BU = e 0 for all 
conditions. Although the Wilks statistic (WLK) provides the likelihood ratio test, 
Roy's largest root (RLR) provides the union-intersection principle test. Equally 
important, the relative powers of the various tests vary with the pattern of 
noncentralities, which implies each may be preferred in some settings. We shall 
provide more detail after providing explicit forms for the tests. 

Table 3.1 Tests for Multivariate Hypotheses 

Approach Test 

Bonferroni 

MULTIREP Hotelling-Lawley (HL T) 
(MANOV A) Pillai-Bartlett (PBT) 

Wilks Likelihood (WLK) 
Roy's Largest Root (RLR) 

UN I REP Box Conservative 
Geisser-Greenhouse (GG) 
Huynh-Feldt (HF) 

Uncorrected (UN) 

:E* 
Eigenvalues 

Any 

Any 
Any 
Any 
Any 

Any 
Any 
Any 

Any 
E = 1 

1 Uniformly most powerful given assumptions 

Test Best 
Size Power? 

:S:a :E=Dg({ooJ})? 

=a s. > 1 
=a s. > 1 
=a s. > 1 
=a s. = 1 

«a E = 1/b 
,:Sa E near 1 
~a E near 1 

~a does not apply 
=a UMP1 

With p variables, the simplest approach uses a Bonferroni correction with afp 
test size in separate univariate analyses of each response variable. The approach 
does not completely test the multivariate general linear hypothesis 
H 0 : CBU = e 0 . Instead, for each C (between subject, a group contrast), a set 
of p distinct U matrices are created, with each a distinct column of IP. The 
approach has two particular strengths. First, it tolerates missing data and different 
design matrices for each response. Second, it allows allocating more test size to 
the important variables, which may better meet the scientific goals and desires of 
the investigators. The approach obviously inherits the in variance properties of the 
univariate model. 

The second approach, labeled MULTIREP, groups four tests together, 
traditionally described as the multivariate tests because they were specifically 
developed for the multivariate general linear hypothesis H 0 : CBU = e 0 . They 
share the important property of invariance to the value of :E and therefore to :E •. 
The tests may be employed with the "multivariate" approach to repeated measures, 
in contrast to the "univariate" approach to repeated measures (UNIREP). Both 
approaches to repeated measures decompose the p dimensional response space into 
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the p - 1 dimensions within- plus 1 dimension between-"subject" (independent 
sampling unit) subspaces. Tests involving contrasts between subject use 
uB = l pjp, of dimension p x 1, which computes the average response across 
repeated measures. Tests involving contrasts within subject's use Uw of dimension 
p x (p- 1 ), with full column rank of p - 1, such that Ip = [ uB Uw ]T, with T 
full rank and p x p. Two common choices include Uw = [ l p- 1 -Ip_!]', which 
gives pairwise contrasts, and the p x (p - 1) matrix of orthononnal polynomial 
trend coefficients, with columns corresponding to linear, quadratic, cubic, etc. 
Values ofthe continuous variable labeling the columns ofY, such as time, provide 
the points needed to generate the coefficients. 

The four MUL TIREP tests also provide an appropriate test of a MANOV A 
hypothesis, which always uses U = Iw The fact that Ip = [ uB Uw ]T, with T 
full rank and p x p allows concluding that the MANOV A hypothesis spans both 
the between and within hypothesis contrasts. It asks whether any linear 
combination of the responses included in the hypothesis (by the choice of C) is 
related to the predictors. 

The uncorrected UNIREP test was developed long before any of the other 
UNIREP tests. Validity of the uncorrected test requires :E* = U':EU = Iba;, 
namely sphericity of the b transfonned responses corresponding to the general 
linear hypothesis. With sphericity the uncorrected test provides an exact size-a 
test with unifonnly most power among all similarly invariant tests. Without 
sphericity the uncorrected test can have greatly inflated test size. 

The covariance matrix of the original responses achieves compound symmetry 
when all p response have the same variance, a 2 , and all p(p - 1) /2 pairs of 
distinct responses have the same correlation, p (Lemma 1.33 summarizes 
properties). Choosing U to be either u 0 = lpjp112 or any Ut with (1) Uflp = 0 
and (2) UfUt = Ib combines with compound symmetry to provide a sufficient (but 
not necessary) set of conditions to guarantee sphericity. If U = UQ, then b = 1 
and U':EcsU = )11 = ~[1 + (p - 1)p]. With repeated measures, the data may be 
arranged, without loss of generality, such that all observations in column j were 
collected at time tj, with tj E {t1, t2, . .. , tp} and tj < tJ+l · Here and throughout 
the book, time may be thought of as a metameter representing any interval- or 
ratio-scale dimension along which the observations vary within a subject 
(independent sampling unit, ISU). The orthononnal polynomial trends provide one 
convenient choice for Ut. 

Example 3.4 If p = :3 and the times are equally spaced. the orthononnal trends 
may be taken to be 

u, = [ -~-~] [1/Vi 0 l· 
I 1 0 l / J6 

(3.32) 

The first column provides the linear trend and the second column provides the 
quadratic trend. In tum, U(E csU, = >..2I 1,_ 1 = [a 2 (1 - p)]I p- l· Combining the 
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fom1s gives the spectral decomposition 

[
)q 0 ] [~] E cs = [ 'U(I Ut I 0 A.'l.l p- 1 u: . (3.33) 

Without sphericity and with Ak indicating one of the b possibly distinct 
eigenvalues of E*, Box (1954a, b) proposed quantifying the deviation from 
sphericity with the parameter 

tr2 (E*) 
E = -'------=:'-

btr(E;) 

(2:~=1A.i/b)2 (X)2 
( 2:~=1 >..j) /b ),2 (3.34) 

Under sphericity E = 1, while in general1/b :::; E :::; 1. Test size inflation forE < 1 
led to the development of the Box conservative, Geisser-Greenhouse, and Huynh­
Feldt tests. All use the same test statistic as the uncorrected test but use distinct 
and more stringent critical values. 

Allowing for any covariance pattern and for s = min( a, b) > 1, no single test 
provides the uniformly most powerful test (among size a and similarly invariant 
tests). The special case b = 1 implies s = min( a, b) = 1 and causes all 
MUL TIREP and UNIREP tests to become equivalent by providing exactly the 
same F statistic and p value. Furthermore, if b = 1 the single test provides the 
usual exact size-a and uniformly most powerful test (among the class of unbiased 
and scale invariant tests). Furthermore, b > 1 and a = 1 imply s = min( a, b) = 1. 
If a= 1, then the MULTIREP tests become equivalent to each other by providing 
exactly the same F statistic and p value. Similarly, if a= 1, then the (single) 
MUL TIREP test provides an exact size-a and uniformly most powerful test among 
the class of unbiased and scale invariant tests. However, if a = 1 and b > 1 the 
UNIREP tests are not equivalent to each other or to the MUL TIREP test. The 
differences arise from the fact that the UNIREP tests are only invariant to an 
orthonormal transformation, rather than fully scale invariant. Both UNIREP and 
MUL TIREP tests correspond to transforming the model and hypothesis as follows: 

YU=XBU+EU 
Y, =XBu+Eu, 

Eu has b x b covariance E* = U'EU, 

Ha :CBU=ea 
Ha: CBuib =ea. 

(3.35) 

(3.36) 

With spectral decomposition E* = TDg(>..)T' and T'T = Ib the MULTIREP 
and UNIREP tests do not vary under orthonormal transformation of the model and 
ea. In particular 
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Y,T=XBuT+EuT 
Yy =XBr+Er (3.37) 

and eaT= eaT. Here Ey has b X b covariance :Ey = Dg(>.). If 
q, = TDg(->.) 112, then q,-t = TDg(>.)- 112. The eigenvector transformation 
eliminates all correlations. With Gaussian data, the process creates independent 
but typically heterogeneous responses. In contrast to the situation for orthonormal 
in variance, in general the MUL TIREP tests do not vary while the UNIREP tests do 
vary under the (particular scale) transformation 

YrDg(>.rl/2 = XBrDg(>.)-1/2 + ErDg(>.)-1/2 

Y,q,-t = XBuq,-t + Euq,-t 

Yw=XBw+Ew. (3.38) 

Here Ew has b x b covariance :Ew = Ib. The only exception occurs when 
:E. = a;Ib, namely sphericity, with E = 1, and then the uncorrected test achieves 
size a and uniformly more power than the MULTIREP test. If a= 1, b > 1, and 
E < 1, examples can be found in which either the MUL TIREP test (exact size a) or 
a corrected UNIREP test (at least approximately size a) can be more powerful than 
the other for a particular :E.. The same statement holds for a > 1, b > 1 
[s =min( a, b)> 1], and E < 1. 

3.8 COMPUTING MULTIREP TESTS 

The four MUL TIREP test statistics are all simple functions of the s = min( a, b) 
nonzero estimators of the generalized squared canonical correlations { P;k}. The 
correlations are generalized in the sense that they may or may not be adjusted for 
an intercept. The { P;k} are the nonzero eigenvalues of the b x b matrix 

£[£ + (N- r)f.t 1
, with r =rank( X). 

Definition 3.8 A measure of multivariate association generalizes the concept 
of a squared multiple correlation, the proportion ofvariance controlled by the 
hypothesis. Each of the multivariate test statistics leads to a different measure 
of association. For test statistic m, 0 :::; T/m :::; 1, with T/m = 0 corresponding 
to no relationship and T/rn = 1 to a perfect relationship. 

Table 3.2 gives expressions for each of the MULTIREP test statistics. For 
compactness and to emphasize the sums-of-squares nature of the matrices, the 

alternate notations Ve = N- rank( X), Sh = £, and Be= (N- r)f. are used. 
The column labeled Tim defines a measure of the strength of multivariate 
association for test m which corresponds to the form of the test statistic. Cramer 
and Nicewander (1979) reviewed measures of multivariate association in the 
context of two models, Y = XBYIX + Ey1x and X= YBxiY + ExiY· Such 
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measures of correlation all share the property of symmetry with respect to the two 
sets of variables X and Y in the GLM: 17m(Y, X) = 17m(X, Y). In contrast, 
regression coefficients and other properties of regression models are generally not 
symmetric in the roles of the variables: By1x =/= BxiY· 

Table 3.2 Tests for Multivariate Hypotheses 
Tim = Strength of Multivariate Association of Test rn 

B~t =£'and Be= (N- r)f. 

Name Statistic Principle 17m Univariate Case 

HLT ~ p~ (B B-1) ANOV A 
~ (1- ~2) = tr h e analog 
k=i Pk 

HLT/s p 2 SSH 

1 + HLT/s (1-p2) - SSE 

PBT ~2 SSH 
s p = SSH+SSE 

8 

LP~ = tr[B~t(B~t+Be)- 1 ] Substitution 
k=1 

PBT 

WLK ITS (1-~2)=1B fB +B)-11 Li~elihood l-WLK1/g 1-~2= SSE 
Pk ev h e ratio p SSH+SSE 

k=i 

RLR 
~2 max eigenvalue Union- ~2 ~2 SSH 

mtxpk = B~t(Bh+Be)- 1 intersection p1 p = SSH+SSE 

UNIREP 
tr(B,) Best with tr(B~t) ~2 SSH 

tr(Be) sphericity tr(Bh +Be) P = SSH+SSE 

For consistency with the approximate distribution for WLK discussed in the 
remainder of the section, 

a2b2 :::::_ 4 

otherwise. 
(3.39) 

However, choosing g = s leads to a simpler interpretation of77wLK' the measure of 
multivariate association, in terms of a geometric mean of (canonical) error 
variances. In fact, if s S 2, then g = s. 

The b x b matrix .& contains the sums of squares for the hypothesis and reduces 
to the scalar sum-of-squares hypothesis, SSH, whenever b = 1. The b x b matrix 
(N- r):E. contains the sums of squares for error and reduces to the scalar sum of 
squares SSE whenever b = 1. Also, .&'[£ + (N -- r):E.]- 1 reduces to the scalar 
SSH/(SSH +SSE)= p2

, the estimated squared multiple correlation (which may or 
may not be adjusted for an intercept). Of course, any 1 x 1 matrix has only one 
eigenvalue, the scalar itself. Under the null, with s = min( a, b) = 1, each of the 
four MUL TIREP statistics can be expressed exactly as a one-to-one function of 
each other, and of an F random variable with numerator degrees of freedom 
v1 =a and denominator degrees of freedom v2 = N- r = ve. 

Under the null, with s > 1, the MUL TIREP statistics are not one-to-one 
functions of each other, and exact distributions are known only for special cases. 
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However, approximations based on an F random variable which match two 
moments are available for three of the four statistics, as detailed in Table 3.3. 
When s > 1 and mE {HLT, PBT, WLK}, an approximate p value may be 
computed as follows. Denominator degrees of freedom (dt) v2 (m) are in Table 
3.3. With ve = N - r, the numerator degrees of freedom v1 ( m) are 
v1 (HLT) = ab, v1 (WLK) = ab, and 

( T) - b 1 [s(ve+s-b)(ve+a+2)(ve+a-1) 2] 
v1 PB - a - . (3.40) 

s(ve+a) ve(ve+a-b) 

Table 3.3 Denominator df for F Approximations 

Test 

HLT 

PBT 

WLK 

[v;- ve(2b + 3) + b(b + 3)](ab + 2) + 
4 

ve(a + b + 1)- (a+ 2b + b2 - 1) 
ve+s-b [s(ve+s-b)(ve+a + 2)(ve+a-1) 2] 

ve+a ve(ve+a-b) 
g[ve- (b- a+ 1)/2]- (ab- 2)/2 

Computing 

leads to the associated approximate p value 

p(m) = 1- Fp[fobs(m); v1(m), v2(m)]. 

Author 

McKeon (1974) 

Muller ( 1998) 

Rao (1951) 

(3.41) 

(3.42) 

Harris (1975, Appendix B) provided a useful method for directly approximating 
tail probabilities of RLR. 

Eigenvalue k of ShS; 1 = fijve is a one-to-one function of eigenvalue k of 
Sh(Sh+Be)- 1 and also of eigenvalue k of Be(Bh+Be)-1

• Computational 
accuracy considerations lead to preferring to compute the eigenvalues of ShS; 1

, 

namely {!Jk/(1-pk) }. A standard and simple approach allows converting the 
nonsymmetric matrix to a symmetric matrix which has the same eigenvalues (and 
different eigenvectors which allow computing the eigenvectors of the original 
matrix). The Cholesky method, among other methods, allows finding~ such that 
~ ~ -"! ~-I ~-t ~-I 

:E. = q,q, , which implies :E. = q, q, . In tum, it is straightforward to prove 
that the eigenvalues offi coincide with the eigenvalues of the symmetric matrix 

(3.43) 

Similarly, if Be = vef• = FeF~, then the eigenvalues of ShS; 1
, namely {bk} = 

{ p~ / ( 1-p~) } , coincide with the eigenvalues of 
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(3.44) 

Obviously p~ = bkl(1 + bk) gives the squared canonical correlations, from which 
all of the test statistics may be computed, as detailed above. 

3.9 COMPUTING UNIREP TESTS 

The four UNIREP tests are not functions of the eigenvalues of ShS;: 1 = 

£(£ + vef.)-1
. They all use the same test statistic, 

/obs(U) = tr(Sh) I ( ab) = tr(£1 /a , 
tr(Se)/(bve) tr(:E.) 

(3.45) 

and corresponding measure of multivariate association, 

~ tr(Sh)/tr(Se) tr(Sh) 
T/u = 1 + tr(Sh)/tr(Se) = tr(Sh +Be). 

(3.46) 

The uncorrected test uses the p value 

p(Un) = 1- Fp[fobs(U); ab, bve]· (3.47) 

The Geisser-Greenhouse test reduces degrees of freedom by the maximum 
~ ~2 

likelihood estimator of E, namely'E = b-1tr2 (:E.) jtr(:E.): 

p(GG) = 1 - Fp[fobs(U); ab'E, bve'E]. (3.48) 

In seeking an approximately unbiased estimator, the Huynh-Feldt test uses 
E = (Nb'E- 2)/[b(ve- b'E)]: 

p(HF) = 1- Fp[fobs(U); ab'E, bve'E]. (3.49) 

The fact that E may exceed 1.0 leads to using Et = min('E, 1). The Box 
conservative test uses the lower bound forE, namely 1/b: 

p(Box) = 1- Fp[fobs(U); a, ve]· (3.50) 

For data analysis, UNIREP tests differ only due to the degrees of freedom 
multipliers, which are always in the same order: Box, GG, HF, and uncorrected, 
with values 1 I b :S: E :S: Et :S: 1. Furthermore, the p values will always be in the 
reverse order. 

If all Ak = >.. 1, then E = 1 and Dg(>.) = A. 1Ib, which corresponds to a spherical 
Gaussian distribution. Under sphericity /obs(U) '""F{ab, bve, tr(1l)} (exactly), the 
test is exactly size a and uniformly most powerful (among similarly invariant 
tests). Box (l954a, b) observed that 1/b :S: E :S: 1 and that E < 1 implies, under the 
null, fobs(U) "'F(abE, bveE), an approximate result. 

Muller, LaVange, Ramey, and Ramey (1992) reviewed power approximation 
for both UNIREP and MUL TIREP tests. We leave the topic until Chapter 21. 
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3.10 CONFIDENCE REGIONS FORe 

As noted in Section 2.1 0, confidence regions can be obtained by inverting 
hypothesis tests, and a confidence region can be inverted to yield a hypothesis test. 
The definiton in Section 2.10 can be extended easily from vector data y and vector 
parameter(} (or a 2) to matrix data, Y, and matrix parameter e (or :E). Doing so 
merely requires replacing y by vec(Y) and (} by vec(e) [or a 2 by vec(:E)] in 
Definition 2.12. In Section 15.6 we prove a variety of results for confidence 
intervals in univariate models. In Section 16.10 we describe extensions to 
multivariate models. 

3.11 SUFFICIENT STATISTICS FOR THE MULTIVARIATE MODEL 

If the multivariate linear model GLMN,p,q(Y;; XiB, :E) with Gaussian 
distribution is correct, then the matrix 

[
X'X X'Y] 

S= Y'XY'Y 

= [;:] [XY] (3.51) 

contains all of the complete sufficient statistics. If X contains an intercept, then, 
without loss of generality, X may be arranged with the intercept in column 1, with 
X= [ 1N XI], for xl of dimension N X (q- 1). In tum, 

[ 

1'1 1'X1 1'Y l 
S = X~1 X~X1 X'Y 

Y'1 Y'X1 Y'Y 

[ ~~ l [lX, YJ (3.52) 

contains all of the complete sufficient statistics for estimation of all parameters of 
the regression models (one for each column ofY) identified by the relationship 

E(YIX). (3.53) 

Here [ 1 xl Y] is N X (q + p) so s is (q + p) X (q + p). All parameter 
estimators and general linear hypothesis tests (both MUL TIREP and UNIREP) 
depend on the data only through the elements of S. Conveniently, the raw data are 
not needed for parameter estimation or testing the general linear hypothesis. 
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3.12 ALLOWING MISSING DATA IN THE MULTIVARIATE MODEL 

Definition 3.9 (a) If (1 x Pi) random matrix Yi = {YiJ} represents the 
potential response of ISU i, then an element Yii is said to be missing if a 
realized value for Yii is not included in the statistical analysis. 
(b) If only two patterns of data occur, namely either all elements of Yi are 
present or all elements are missing, the observations are described as having 
only casewise missing observations. 
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Examples of missing values include outlier values intentionally omitted by the 
analyst, recorded values that were lost during data entry, values that were never 
recorded because the ISU (individual participant) was not available for evaluation, 
and interval-censored values treated as unknown by the analyst. The definition 
applies to the multivariate model (pi = p 1::/i) as well as to clustered data in general. 

The standard methods described in the present chapter conveniently allow 
casewise missing observations in the multivariate (and univariate) linear model. If 
the mechanism causing data to be missing does not lead to selection biases, then 
the approach gives optimal estimators and exact tests. Partially missing Xi or Y; 
do not have such nice properties. In the multivariate linear model, nearly all 
research on the topic has focused on having complete X and partially missing Y;. 
Such patterns occur naturally in an experiment with random assignment to 
treatment, as in a typical clinical trial. Little (1992) reviewed methods for 
regression with incomplete X. Little and Rubin (2002) reviewed methods for 
missing data, with particular emphasis on estimation from a likelihood perspective. 

Using the notation of Stewart (2000) and others, a binary random variable 
TiJ = 1 indicates YiJ is not missing while Tij = 0 indicates that it is missing. With 
(1 x pi) matrix R; containing all Tij for ISU i, specifying the entire response for 
ISU i requires knowing {Yi, R;}. Vertical concatenation of {Y;'} and similar 
concatenation of { Ri} yield the pair of random vectors {y, r }. It is assumed that 
an appropriate parametric statistical model can be formulated for y. If y has a 
density function, then the model can be represented as {y, fv(y.IX; 8), 8 E 8}. 

Information for estimation and inferences about 8 is available only via 
{Yobs, R}, in which Yobs is the vector of nonmissing values. The missing values 
are denoted Ymis. Usually, most or all of this information about 8 is anticipated to 
come from Yobs· If the observed pattern of missing values R. contains no 
additional information about 8, then the underlying missing-data mechanism is 
said to be ignorable as defined by Rubin (1976). We then say the missing values 
are ignorably missing. 

In general, the likelihood function (any function proportional to the joint density 
function of {Yobs, r}) is obtained by an integration over possible values of Ymis 
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(Little and Rubin, 2002). The process creates a marginal density: 

fv(Y.obs, r. [X; 8, 7/J) = jtv(Y.obs, Y•mis[X; 8)fr(r * IY•obs, X; 1/J, 8) dy•mis. (3.54) 

Definition 3.10 The following definitions follow Rubin (1976). 
(a) If randy are statistically independent, given X, then the joint density is 

(3.55) 

and the missing values are said to be missing completely at random 
(MCAR). 
(b) The missing-data mechanism is said to be ignorable if the following 
factorization holds true: 

fv(Y.abs, r. [X; 8, 7/J) = fv(Y•obs[X; 8)fr(r. [Y•obs, X; 7/J) . (3.56) 

(c) Invariance of fr(r.[Y•obs,Y•mis,X;'IjJ,8) to the possible values ofy•mis 
gives data described as missing at random (MAR). 

The definitions lead to the following observations. If the conditional 
distribution of r in equation (3.55) does not depend on 8, then no information 
about 8 is neglected if r is ignored. Rubin (1976) proved that (3.56) holds if and 
only if fr(r.[Y.obs,Y•mis,X;'IjJ,8) is invariant to the possible values of {Y•mis,8} 
when evaluated at { r *, Y•obs}. The in variance with respect to 8 is a condition 
Rubin (1976) referred to as the absence of a priori ties between the parameters of 
the two densities in the factorization. 

If factorization (3.55) or (3.56) holds, then maximizing the {Yobs, r} likelihood 
with respect to 8 is equivalent to maximizing fv(Y.obs[X; 8). It is in this sense 
that r can be ignored. It is important to realize, however, that maximization of a 
likelihood can yield parameter estimates and likelihood ratios without providing 
standard errors for the parameter estimators. Verbeke and Molenberghs (2000, 
Chapter 21) gave examples of bias stemming from using the expected information 
matrix for approximating standard errors in the MAR case. Heitjan (1994) gave a 
clear statement of the problem. Diggle and Kenward (1994), Stewart (2000), and 
Lipsitz et al. (2002) discussed illustrative MAR examples. 

With all assumptions of the GLMN,p,q(Y;; XiB, :E) with Gaussian errors met, 
having MAR or MCAR data allows computing maximum likelihood estimates of 
{ B, :E}, although usually through iterative methods. One convenient approach 
uses the estimates in complete data formulas for confidence intervals and testing 
hypotheses. Unfortunately, Barton and Cramer (1989) demonstrated that the naive 
approach leads to optimistic (biased) estimates of precision with small to moderate 
sample sizes and MCAR data. The same authors, as well as Catellier and Muller 
(2000), described very simple adjustments to the degrees of freedom for the 
MUL TIREP and UNIREP tests in the MCAR case. In simulations, the adjusted 
tests completely or nearly control test size, even in very small samples (N = 12 
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and p = 6). In contrast, standard linear mixed model tests greatly inflated test size 
(up to 0.40 with a nominal value of a = 0.05). The Appendix (Section A.2) 
contains descriptions of free SAS/IML ® code, and where to find it on the Web, 
which implements the methods. 

Informatively missing data present one of the most vexing problems in 
statistical modeling. Almost unavoidably, quite specific assumptions must be 
made which derive from a particular scientific setting and analysis goal. As noted 
earlier, Little and Rubin (2002) provided the best starting point for further reading. 
General techniques have not been developed, and new developments continue. An 
analyst seeking the best method available for a specific analysis would be wise to 
carefully review the statistical literature. Using the Current Index to Statistics and 
other electronic databases greatly eases the pain of the search. 

EXERCISES 

All exercises refer to the breast cancer example described in the Appendix 
(Section A.l ). Use PO 1 04.SD2 for any data analysis. When necessary, consider 
"Benign" as the reference cell, which corresponds to choosing "MALIGN" as a 
predictor. Use a nominal test size of0.025 (chosen due to conducting two planned 
analyses in the original study). 

When needing to understand a test or contrast, one can often ignore the 
multivariate nature of the design and apply the logic of univariate ANOV A design 
and interpretation. (The approach fails for derivations of distribution theory.) To 
specify a within-subject contrast matrix, it may help to first specify a contrast 
matrix for between-subject effects based on cell mean coding (with the correct 
dimensions and factor pattern) and then transpose it. 

3.1 One focus of the study was testing the hypothesis of no difference in the 

variables DLOGROI1-DLOGROI3 DLOG_P _1-DLOG_P _3 between patients 
with malignant and benign pathology. Briefly specify an appropriate multivariate 
linear model GLMN,q,p(Yi; XiB, :E) with Gaussian errors. Use reference cell 
coding. Include values of all dimensions for the specific data in hand as well as 
brief definitions of parameter matrix elements. 
3.2.1 For the model chosen in exercise 3.1, explicitly specify all contrast matrices 
needed to test a "MANOV A" hypothesis of no differences between benign and 
malignant. Include all dimensions for the specific data in hand and brief 
definitions of parameter matrix elements. 
3.2.2 Choose a test statistic for 3.2.1 and briefly justify your choice. This must be 
done a priori (before looking at any data). 
3.2.3 Assuming that the overall MANOVA test just discussed is significant, 
explicitly specify a modest number of scientifically interesting and appropriate 
stepdown tests and associated contrast matrices. It is acceptable to use the simplest 
approach to control multiple testing bias, namely a Bonferroni correction. Include 
all dimensions for the specific data in hand and brief definitions of parameter 
matrix elements. 
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3.3 Treating tissue type [(region of interest (ROI), versus parenchyma] and time 
(with three levels) as factors in a factorial design with benign versus malignant 
may have more appeal than a MANOV A analysis. 
3.3.1 Use cell mean style coding in this exercise. Specify an appropriate 
multivariate model. 
3.3.2 Assuming a factorial approach describe an appropriate "source table" by 
listing the sources to be tested, and associated hypothesis degrees of freedom. 
3.3.3 Explicitly specify all contrast matrices for each source listed in 3.1. Include 
all dimensions for the specific data in hand and brief definitions of parameter 
matrix elements. Use individual rows (or columns) that test differences in means 
(which are the secondary parameters). 

3.4 Choose a test statistic for 3.1 and 3.2 and briefly justify your choice. This 
must be done a priori (before looking at any data). 

3.5 Explicitly specify all contrast matrices for each source listed in 3.1. Include 
all dimensions for the specific data in hand and brief definitions of parameter 
matrix elements. Use individual rows (or columns) that test polynomial trends 
which are the secondary parameters, even though not all factors have levels 
defined in terms of a continuous variable. 

3.6 Using PROC GLM and the data supplied, implement the two-way model 
described in 3.1, 3.3, and 3.4. Hint: Use a particular statement type available with 
GLM which does most of the coding and testing work associated with repeated 
measures automatically. 
3.6.1 Provide sufficient source code and a compact numerical version of a source 
table. Include numerator degrees of freedom, a test statistic p value, and an 
appropriate measure of multivariate association. 
3 .6.2 Provide a brief scientific interpretation of the results. 

3.7 Construct three new difference variables at times l, 2, and 3: DLOGROII­
DLOG _P _I, DLOGROI2-DLOG _P _ 2, and DLOGROI3-DLOG _P _3. 
3.7.1 Fit a one-way model, again using the same statement approach in PROC 
GLM, with Time as a factor. Report and interpret an appropriate test of no 
difference in the constructed variables between patients with malignant and benign 
pathology. 
3.7.2 How does the model relate to the two-way model in exercise 3.4? 

3.8 Examine the maximum likelihood estimate of E for the UNIREP tests. 
Compare the p values of the four UNIREP tests and also the four MUL TIREP 
tests. Make a recommendation for a choice of statistic in future studies of the same 
sort. 

3.9 (optional, noncredit) Use LINMOD to repeat the analysis. Select 
appropriate options to enrich the output and help understanding. If you used 
LINMOD in the first place, then use PROC GLM or a procedure in another 
computer language. You should be able to reproduce almost exactly nearly all 
values [except for some multivariate p values if s = min( a, b) > 1]. 

The Appendix (Section A.2) contains a brief description of the free software 
LINMOD and where to find it on the Web. 



CHAPTER4 

Generalizations of the Multivariate 
Linear Model 

4.1 MOTIVATION 

As mentioned in the previous chapter, the multivariate general linear model has 
a number of limitations: The multivariate model does not directly tolerate 
incomplete or mistimed data; the multivariate model does not allow the design 
matrix to vary across responses; the multivariate model does not explicitly allow 
modeling the covariance structure. A number of generalizations of the multivariate 
model have been developed to avoid the limitations. 

In the present chapter we briefly survey some generalizations of the multivariate 
linear model and its special case, the univariate linear model. Many of them stand 
somewhere in between the mixed and multivariate linear models, in terms of both 
theory and applications. As a broad generality, all provide well-behaved 
estimation but may have difficulty providing completely accurate inference in 
small samples. However, the alternative use of a mixed model may provide even 
less accuracy, depending on the situation. Lacking exact and perfect methods, 
good statistical practice, as always, centers on using the best available 
approximation. 

In contrast, the general linear mixed model has none of the limitations. 
Unfortunately, the generality of the mixed model may come at a steep price. Even 
with a correctly specified model, the approach can lead to extremely inaccurate 
inference (optimistically small confidence intervals and inflated test size), 
especially with small to moderate sample sizes. The inaccuracy arises from what 
Littel (2003) described as "approximations piled on approximations." 
Furthermore, limitations of current methods make it difficult to check the validity 
of the model, especially the covariance component. Simulation results make it 
clear that misspecification of the covariance model may introduce (additional) 
substantial inaccuracy in inference (Park, Park, and Davis, 2001; Muller, Edwards, 
Simpson, and Taylor, 2006). 

Although linear in the expected-value parameters, the likelihood varies 
nonlinearly as a function of the covariance parameters. As a consequence, 
computing estimates for a linear mixed model requires iterative solution of a 
system of simultaneous nonlinear equations. Collinearity arising from less than 
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careful attention to data scaling or location and less-than-full-rank coding schemes 
easily and often degrades the performance of the algorithms needed. The resulting 
difficulties in computing estimates can lead the unsophisticated user to propose a 
valid model which fails to converge. Simplifying the covariance model greatly 
increases the chances of achieving convergence. However, the simplification may 
also misspecify the covariance model and thereby introduce severe bias. 

A simple example illustrates the concern. Clinical trials of a pharmaceutical 
agent which involve repeated measures frequently lead to some missing and 
mistimed data, which make computing estimates for linear mixed models more 
difficult. In many such cases, analysts have assumed compound symmetry of 
covariance. Although extremely convenient (due to helping convergence), the 
assumption often seems implausible for a sequence of(time) ordered responses. 

4.2 THE GENERALIZED GENERAL LINEAR UNIVARIATE MODEL: 
EXACT AND APPROXIMATE WEIGHTED LEAST SQUARES 

The GLMN,q(y;; X;{J, a 2 ) can be generalized in many ways. The motivation 
lies in the need to allow for patterns of dependence, rather than complete 
independence, among response values. The simplest way to allow such 
dependence is to assume V(y) = V(e) = T, with T of dimension N x N, 
symmetric, and positive definite or positive semidefinite, (which allows any 
covariance matrix). In contrast, however, the approach allows describing only 
extremely limited results of little practical value. The limitations arise from the 
fact that T has N(N + 1)/2 distinct parameters, which exceeds N, the number of 
observations. Increasing sample size only worsens the problem because the 
number of parameters increases more rapidly than N. Even assuming complete 
independence while allowing complete heterogeneity does not solve the problem. 
In that case T = Dg(v) has N parameters, which implies increasing sample size 
never allows the number of observations to exceed the number of parameters to be 
estimated. A voiding the problem requires adding assumptions which impose 
structure on T. Necessarily the number of parameters must grow more slowly 
than the sample size if reasonable estimators are to exist. The multivariate and 
mixed linear models both generalize the univariate linear in the same fashion, 
although in very different directions. Subsequent chapters are devoted to 
properties of two approaches. 

Following McCullagh and Neider (1989), the term "generalized linear model" 
refers to a model with expected values linear or loglinear in the parameters and the 
response distribution any member of the exponential family, not just the Gaussian. 
To avoid confusion, we introduce the following definitions. 

Definition 4.1 A generalized GLM is indicated by the notation 
GGLMN,q(y; X,BIR.B =a, T), which describes all observations, not just a 
single observation for an independent sampling unit. The assumptions differ 
from a GLMN,q() in only one way, which is important. The assumption 
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"elements of the N x 1 random vector y are mutually independent." is 
replaced by the assumption "elements of the N x 1 random vector y have 
(finite) N x N, constant, covariance matrix T, which may be at least 
partially known." 

81 

The GGLMN,q() notation describes all N observations at once because they 
may not be independent, while all other model notations used here describe the 
observations for a single independent sampling unit. In fact, if all off-diagonal 
elements of a full-rank T are nonzero, then a GGLM has only one independent 
sampling unit. In the special case of a grand mean model, which has X fJ = lN f.L, 
the GGLMN,q(y; lNf.L, T) in many ways corresponds to a multivariate model with 
one observation, GLM1,N,1(y'; l'rvf.L, T). With Gaussian data, the special case has 
Y rv NN(lN, T). 

Definition 4.2 A GGLM with Gaussian errors refers to a setting in which 
y'"" NN(XfJ[RfJ =a, T), which is an assumption of joint ("multivariate") 
Gaussian distribution, not merely marginally Gaussian {y;}. As for a 
univariate GLM, a GGLM may be described as either FR or L TFR and 
restricted or umestricted, depending on X, R, and a. 

Lemma 4.1 For GGLMN,q(y; XfJ[RfJ =a, a 2 IN), elements of T = V(y) = 
V( e) control many properties of the model. 
(a) If any off-diagonal element ofT is not equal to zero, the model does not have 
independent observations. 
(b) If T has two or more distinct diagonal elements, the model does not have 
homogeneity of variance. 
(c) If T = a 2 IN, then the model meets the assumptions of the univariate 
GLMN,q(y;; X;{J[RfJ =a, a 2), which means the univariate GLMN,q() is a 
special case, namely GGLMN,q(y; XfJ[RfJ =a, a 2 IN). 
(d) More generally, the stringent condition T = a 2 D with D symmetric, 
positive definite or semidefinite of rank N 1 :S N, known, and not needing to be 
estimated allows converting a GGLMN,q() with Gaussian errors to a univariate 
GLMN,,q() with Gaussian errors. 

Proof. Parts (a), (b), and (c) are true due to properties of second moments. Part 
(d) has 0 <rank( D)= N 1 :S N. With V{Vj =IN" spectral decomposition gives 

D = VjDg(d1)V{. IfF'= Dg(d1)- 1/2Vi', then n+ = VjDg(d1)-1Vi' = FF'. 
The original data satisfy the equation y = XfJ + e, withe'"" (S)NN(O, a 2 D). In 
tum, knowing D allows transforming the model: 

F'y = F'XfJ+ F'e 
yp=XpfJ+ep. 

(4.1) 

(4.2) 

The relationship F' DF =IN, allows concluding that ep '""NN, (0, a 2 INJ. Any 
jointly Gaussian variables with zero covariance are statistically independent. 
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Therefore the {YFi} meet the assumptions of GLMN,q(YFi; XFi f31Rf3 = a, a 2
) 

with Gaussian errors. 0 

Definition 4.3 (a) Part (d) of the last lemma and the associated proof defines a 
model and data analysis process often described as exact weighted least 
squares or just weighted least squares (WLS). 
(b) Using observed data to estimate any property of D gives approximate 
weighted least squares (AWLS) analysis. 
(c) Iterated approximate least squares (JTAWLS) centers on alternately 
updating the estimates of mean and covariance parameters. 

Such methods apply whenever all assumptions of a GLMN,q(yi; Xi{3, a 2) hold 
except homogeneity of variance, and V(ydX.{3) = al = a2wi, with { wi} known 
and a2 unknown. As discussed in later chapters, the model can be transformed 
exactly to a GLM with all assumptions holding, including homogeneity. In such 
cases the transformation leads to optimal estimators and exact (and optimal) tests 
with respect to the parameters of the original model. 

To be precise, weighted least squares may be referred to as exact weighted least 
squares in order to distinguish it from approximate weighted least squares 
(AWLS), which estimates some features of D in estimating T = a2 D. Iterated 
approximate least squares (ITAWLS) relies on an alternating updating of the 
estimates of mean and covariance parameters. With Gaussian errors, in many 
settings the approach leads to maximum likelihood estimation. Not surprisingly, 
without appropriate adjustments, inference may be inaccurate in small to moderate 
sample sizes. 

Many popular statistical methods, including most mixed model analyses, 
implicitly include some variation of ITAWLS or AWLS and then operate as 
though the estimated covariance structure was the population structure. In small to 
moderate sample sizes the approach can lead to substantial optimistic bias in 
confidence intervals and hypothesis tests. We urge the reader to always 
distinguish between the two approaches in reading and evaluating the work of 
others and in reporting analyses using either method. Including some indication of 
the expected impact of estimating the weights seems necessary for nonstatisticians 
to appreciate the amount of uncertainty introduced by an approximate analysis. 

Example 4.1 Most methods for confi dence intervals and hypothesis tests in 
current mixed model software implicitly depend on a large-sample assumption: 
Using covariance estimates in weighted least squares forms introduces no bias. 
Later chapters centered on mixed models include the details. 
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4.3 DOUBLY MULTIVARIATE MODELS 

The standard multivariate linear applies to the doubly multivariate setting and 
provides exact size-a tests. However, with p response variables, each measured at 
t times, the approach implies estimating a (pt) x (pt) fully unstructured 
covariance matrix with pt(pt + 1) /2 distinct elements. The structure of the data 
makes it very appealing to assume the covariance matrix equals :E 1 0 :E2 , with :E 1 

the p x p covariance among responses and :E2 the t x t covariance among times. 
The direct-product form has far fewer covariance parameters, 
p(p + 1) /2 + t( t + 1) /2. Even in the simplest case with p = t = 2, the 
unstructured model has 10 covariance parameters, while the direct-product form 
has 6. In tum, p = t = 5 gives 325 versus 111 covariance parameters. Timm 
(2002) reviewed doubly multivariate models based on the direct-product 
covariance assumption. The work ofBoik deserves special attention. 

4.4 SEEMINGLY UNRELATED REGRESSIONS 

Definition 4.4 A seemingly unrelated regression model (sometimes called a 
multiple design matrix model) corresponds to a GLMN,p,q(Y;; XiB, :E) 
generalized to allow the design matrix and associated parameters to vary 
across columns ofY;. 

Much of the work on seemingly unrelated regression was motivated by 
econometric applications. Srivastava and Giles (1987) provided a book-length 
treatment. 

Repeated-measures settings may naturally lead to the desire to vary the design 
matrix across response values. A clinical trial of a drug in the elderly may need to 
use the dose of a second drug as a covariate. The dose of the second drug may 
represent a time-varying covariate (or repeated covariate). Two natural variations 
occur. In the first, only the contemporaneous dose of the second drug matters, 
while in the second the contemporaneous and all preceding doses matter. If cast as 
a GLMN.p.q(Y;; XiB, :E), the first setting implies the desire for a block of the 
regression coefficients matrix B to be diagonal. The second setting implies the 
desire for a block of B to be triangular. Either condition requires imposing 
nonlinear constraints on B [which correspond to linear constraints on vec(B)]. 

4.5 GROWTH CURVE MODELS (GMANOV A) 

When growth is observed over time by repeated measurement of a 
characteristic, the recorded longitudinal pattern can be plotted in two dimensions 
as a response-versus-time growth curve. The ordered responses of interest might 
be childrens' linearly increasing weights recorded at ages 1, 2.5, 3, and 4.5 months. 
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Alternately, the ordered responses might be longitudinal measurements of a drug's 
exponentially decreasing serum concentration in healthy volunteers. By definition, 
growth curve model (GCM) analysis focuses on investigating the functional 
relationship among ordered responses. Conventional GCM methods apply to 
growth data (indexed by time or age) and to other analogs such as dose-response 
data (indexed by dose), location-response data (indexed by distance), or response­
surface data (indexed by two or more variables such as latitude and longitude), for 
example. Growth data may exhibit either positive or negative growth, as in the 
case of the rise or decline of bacterial colonies grown in laboratory dishes. 
Although most applications of GCM methods center on longitudinal observations 
on a one-dimensional characteristic (e.g., weight of children), the methods can also 
apply to multidimensional characteristics such as {weight, height}. The GCM 
discussed in the present chapter is the classical model considered by Potthoff and 
Roy (1964 ), Grizzle and Allen (1969) and Rao (1973 ). It is also known as a 
GMANOV A model. Kshirsagar and Smith (1995) provided the best single source. 

The scope of our discussion will focus on any such one-dimensional collection 
of ordered responses with consistently timed observations; that is, all the ISUs 
studied have been observed (or not) on the same occasions (ages or times or doses, 
etc.). In such cases the observational design must have specified recording the 
response of interest at p different times, { t 1 , t 2 , ... , tp}, doses, { d1, d2 , .•• , dp}, etc. 
The observation process creates a matrix of responses, Y (N x p). If N = 1 and 
the response of interest is a child's weight, then plotting weight at several ages 
indicates a temporal pattern of growth. A univariate linear model for weight given 
age could be fitted with a design matrix T (p x m) expressing the child's central 
tendency as a linear or curvilinear function of age. Here T is an example of a 
within-subject design matrix. If N > 1, then a separate curve could be fitted for 
each child to obtain a separate (m x 1) matrix of regression parameter estimators 
for each ISU, {Bi = Y;T(T'T)- 1 

: i E {1, 2, ... , N} }. A simple average of the 
N fitted curves is a proper (if not efficient) estimator of the population growth 

curve: B = (B1 + B2 +···+EN)/ N. In the following, X (N x q) represents 
a between-subject design matrix, which contains intersubject explanatory variables 
such as gender. The ( q x m) efficient estimator has the form 

(4.3) 

If the subjects are a homogeneous group, then X= 1 (N x 1) is the appropriate 
choice for computing B. The choice of T defines the functional form of the 
population growth curve by describing a functional relationship between weight 
and age. It also defines functional dependencies among the age-specific mean 
heights. If mean height is linear in age, then the mean at 3.5 years is constrained 
by linearity to lie halfway between the means at 2.5 and 4.5 years. Necessarily the 
means are collinear. The GCM explicitly addresses the dependencies via the 
within-subject design matrix T and simultaneously addresses intersubject factors 
via the between-subject design matrix X. 
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The GCM can be fitted using methods of either a restricted multivariate linear 
model for Y (N x p) or a linear mixed model for vec(Y). The GCM thus 
provides common ground for our discussion of connections between multivariate 
linear models and linear mixed models. 

For Y; (1 x p) representing growth or dose-response in individual i, a 
preliminary multivariate model incorporating only a between-subject design matrix 
X is GLMN,p,q(Y;; X;BYIX, :Eylx). The key feature of the general model is that 
the (1 x p) matrix of means for individual i, Bi = ~-ti = E(Y;) = X;Bylx, is 
constrained to be a linear combination of the columns of X; (1 x r). In tum, the 
GCM is only of interest when the variation of the central tendency within 
individual i as a function of time (dose) satisfies a linear model, E(Yj') = T' BYIT· 
It follows that we also wish to constrain ~-ti to be a linear combination of the rows 
of T (m x p), ~-ti = E(Y;) = By1rT. The constraint can be imposed by 
modifying the preliminary multivariate model with the restrictions m :S: p and 

BT 
(q x m)(m x p) 

(4.4) 

With T treated as a given constant, the constrained model may be represented as 

(4.5) 

We assign a special notation to the corresponding restricted multivariate GLM in 
the following definition. Hopefully I :EYIX,T I will be noticeably smaller than 
I :EYIX I because conditioning on both X and T should partially account for both 
inter-individual variance and intra-individual variance. 

Definition 4.5 A growth curve model will be indicated by 
GCMN,p,q,m(Yi; X;BT, :E) and includes the following assumptions. 

1. The rows of the N x p random matrix Yare mutually independent. With 
Y; = row; (Y) = [ Yil Yi2 · · · Yip], columns correspond to p ordered 
responses for p doses, times, etc., arrayed in vector d = [ d1 d2 · · · dp ]'. 
2. Within-subject design matrix, T (m x p), has rank(T) = m :S: p and is a 
fixed, known function of d, and known without appreciable error. 
Consistent timing ensures d and T are constant 1::/i. 
3. With X;= rowi(X), the Nxq between-subjects design matrix X has 
rank(X)=r:S:q:S:N, and is fixed and known without appreciable error, 
conditional on knowing the sampling units, for data analysis. 
4. Elements of B (q x m) are fixed and unknown regression coefficients. 
5. The mean ofY; is E(Y;IX;, T) = XiBT (1 x q)(q x m)(m x p). 
6. Response Y; (1 x p) has finite covariance matrix, :E (p x p), which is 
fixed, unknown, and positive definite or positive semidefinite. Also 
V[vec(Y')IX, T] =I 0 :E. 

Writing GCMN,p,q(Y;; X;BTIRxBRy =A, :E) specifies additional 
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explicit restrictions on parameters in B through the fixed and known 
constants Rx, Ry, and A. 

The model is described as full rank (FR) if r =rank( [X' Rx '] ') = q and 
otherwise as less than full rank (L TFR) if r < q. 

Optionally, Yi may be assumed to follow a jointly Gaussian distribution. 

In the present section we assume :E is unstructured. In later sections we will 
consider the case in which the p(p + 1)/2 unique elements of:E are functions of a 
smaller number of parameters T (k x 1), with k < p(p + 1)/2. 

In the following, tj = colj(T). The bilinear form, E[Yij[row(X;), tj] = P,ij = 
X;Btj, has two interpretations. The first interpretation is that the mean is a linear 
function of tj with regression coefficients ( 0;) that are themselves functions of the 
characteristics of the participants (e.g., gender), /-lij = O;tj with 0; = X;B. The 
second interpretation is that the mean is a linear function of X; with regression 
coefficients (1/Jj) which are themselves functions of dose or time, etc., /-lij = X;'I/Jj 
with 1/J) = Btj. The concept of statistical interaction unifies the two 
interpretations. In particular, the magnitudes of the main effects and slopes for the 
variables represented in X (or T) depend on values in T (or X). The next lemma 
allows concluding that the GCM represents mean response as a linear function of 
the qm cross products of the q explanatory variables represented in row X; and the 
m explanatory variables represented in column tj. If X;= [ x;1 x;2 x;3 ] and 

tj = [ 1 dj d] ]', then the expected value for participant i on occasion j contains 

nine cross products, { x;1, x;1dj, x;1d], x;2, xi2dj, x;2d], x;3X;3dj, x;3dJ}. 

Lemma 4.2 The GCM assumptions have the following implications. For 
participant i on occasion j the mean response is 

E(y;j[X, T) = vec(X;Btj) = (X; 0 tj)vec(B'). (4.6) 

For participant i the mean response vector for all times together is 

E( ¥;'[X, T) = vec[(X;BT)'] =(X; 0 T')vec(B'). (4.7) 

For all observations simultaneously 

E[vec(Y')[X, T] = vec[(XBT)'] =(X 0 T')vec(B'), (4.8) 

which is ofthe form X./3. (Np x qm)(qm x 1). 

Data analysts often assume the errors follow a Gaussian distribution. As 
detailed in Chapter 8, writing Y ~ Nn,m(M, E, :E) indicates Y follows a direct­
product matrix Gaussian distribution. By definition, E and :E are symmetric and 
positive definite or positive semidefinite, and vec(Y') ~ Nn·m[vec(M'), E 0 :E]. 
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Definition 4.6 Writing GCMN,p,q,m(li;XiBT, E) with Gaussian errors 
indicates~' ~Nv{[rowi(X)B]',E}. Equivalently, Y ~NN,p(XB,IN,E). 

Example 4.2 Ordered responses of interest are repeated measures of height in 
centimeters recorded at ages 2, 3, 4, and 6 years for n boys and 11 girls. It may be 
plausible to suppose mean height increases linearly with age in years 2-6. In the 
context of E(Y !X , T ) = X BT (N x q}(q x rn )(m x p) there are n = N / 2 
participants per group, with q = 2 groups. The p = 4 measurements per 
participant are indexed by age, d' = [ 2 3 4 6 ]. and 

(4.9) 

Here row; (X ) = X ; = [ X;t x;z] is [ 1 0 ] for girls and [ 0 1 ] for boys. Parameters 
/111 and (312 are the intercept and slope, respectively, for girls and parameters ~'h1 
and fJ22 are the intercept and slope, respectively, for boys. In terms of 
X ;= row;(X ) and t .i = col.i(T ), the mean tor participant i on occasion j is 
Jl·iJ = X ;Bt1. By the lemma, 

f.l iJ = [x;1 x;1d1 X;2 X;zdJ]vec(B ' ), 

and the mean of the vertical concatenation of all the rows of Y is 

E[vec(Y ' )IX , T J = ([ ~" ~J ® [ l p d ])vec(B ' ) 

_ l Tlp d w 0 0 {31'2 

[
flu ] 

- [ 0 0 1,.,, d.] fh.· ' 
lh2 

(4.10) 

(4.11 ) 

in which d . = {111 ® d ) is a column vector. The difference between slopes, 
{/3r2 -11-.n.) . is an example of gender-by-age interaction. The mean for gi rls, 
l'·iJ = {l 11 + fl~:!.dJ. and the mean t(n boys, Jlij = fJ'lJ + fi2'1 dJ, are necessarily of the 
same functional tonn because the within-subject design matrix is assumed to be 
common to all subjects. 

4.6 THE RELATIONSHIP OF THE GCM 
TO THE MULTIVARIATE MODEL 

The GCMN,p,s,q(Y;T; XiBT, T'ET) can be interpreted as a transformed 
multivariate linear model. The corresponding model for all of the data is 

YT=XBT+ET. (4.12) 
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For a single independent sampling unit 

Y;T = XiBT + EiT 
Yir = XiBir + Eir. 

(4.13) 
(4.14) 

To avoid over parameterization the design matrix T (m x p) must have m :S: p. 
Both sides of the equation 

E(YIX,T) = XBT 
N x p (N X q)(q X m)(m X p) 

( 4.15) 

can be postmultiplied by a generalized inverse such as T+ = T'(TT')-1 (p x m) 

or T- = v- 1T'(TV- 1T'f\ in which v-1 is arbitrary, p X p, and nonsingular. 
Doing so gives 

E[Y;T'(TT')-1IX,T] = XiB ( 4.16) 

and 

( 4.17) 

The right-hand side, (Ji = XiB, is invariant to the choice of generalized inverse. 

The vector on the left, o: = (TV- 1T')- 1TV- 1Y;', is easily recognized as being a 
weighted least squares estimator (or unweighted if V = I) for the subject-specific 
model E(Y;'IT) = OjT. If m = p, then T- = T - 1 (p x p) and 

E(Y;T- 1IX,T) 
1 X p 

XiB 
(1 X q)(q X p) 

( 4.18) 

In the simple example of heights measured among boys and girls, measurements 
were made on four occasions and growth was assumed to be a linear function of 
age. It is possible to include additional terms in the within-subject regression 
equation, such as a quadratic term. However, it was assumed that higher order 
terms are not needed. The assumption constrains the boys' mean, 
/-lij = !311 + f312dj + f313d] + f314d], with (313 = 0 and !314 = 0. The same 
constraint applies for the girls. The general notation for the constrained 
representation is 

E(YIX,T) =XBT 

= X[ B1 B2] [ i] 
= [ 1 OJ [f3u 

0 1 !321 

constrained by B 2 = 0 with dimensions B 1 (q x m) and B2 q x (p- m). Here 
m = 2 and T is square and full rank. Also 
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E(YT-1 !X,T) = XB 

=X[Bl Bz], 
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(4.20) 

constrained by B 2 = 0. The form suggests partitioning the left-hand side as 
YT-1 = [1':1 1-:z], with E(¥:1/X,T) = XB1 while E(Y:ziX,T) = 0. Rao 
( 1965) first proposed the reduction of the GCM to an ordinary multivariate GLM. 

The GCM is a multivariate GLM constrained by p - m linear restrictions on the 
regression parameter matrix B. The unconstrained model is denoted 
GLMN,p,q(Y;;XiBYIX,EYIX) with BYIX (q x p). The assumption of a full rank 
within-subject design matrix T (q x m) with m ::; p defines the linear constraints 
BYIX = BT. If m = p, then T is a square nonsingular matrix and the number of 
linear restrictions is zero. 

Example 4.3 An example is given by 

T = { t ij : t ii = d~- 1 } 

- [~· 
1 1 

~~ l [~' 1 1 :, l d"J. d;j :3 4 
- d'!. d~ 2 1 = 32 42 

I d'3 d. I 
d:l dJ d:l d3 i' 3:! 43 63 

I :1 . ~ 

(4.21) 

In tum. 

E(Y (X T ) ~ [ 
1 0 W" p, ~" JJ, ' l [ !, I l 3 4 6 

0 1 f3zJ (322 {h."J [hl 2 32 42 62 . 

2:~ ;J'I 4:1 6:1 

(4.22) 

Usually some columns of B will be assumed to be zero. If T represents 
polynomial regression of Yij on dj, the last few columns of B correspond to the 
highest order polynomial terms. The constraint on B induces a partitioning of 
both BandT, with B 2 = 0 [(q x (p- m)] and B 1 (q x m) is the set of nonzero 
columns. The constraint B 2 = 0 corresponds to omitting some of the rows ofT 
from the model, which is conceptually no different from deciding to omit some 
columns of X. Usually B 1 is the first few columns of B, but any columns of B 
may be required to be zero. Since the rows ofT and the columns of B can be 
permuted, there is no loss in generality in using the notation given above. When 
some columns of B are required to be zero, then only the q nonzero columns, B1, 
must be estimated (2 ::; m::; p). The model can be represented by 
GCMN,p,q,m(Yi; XiB1T1, E) with B 1 (q x m) being a subset ofthe columns of B 
(q X p). 

Definition 4. 7 In the GCM, the mean response as a function of dose d or time 
1s of the form Jt(d; C)= CBud (1 x q x m x 1) in which 
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ud = [ 1 d · · · drn-I ]' (m x 1). In the special case of d = dj and C =Xi 
we have f.L(dj; Xi)= E(YijiXi, tj) = XiBtj. A set of coordinates 
{[d, f.L(d; C)]: dE [d1 , dP]} defines a growth curve. 

4.7 MIXED, HIERARCHICAL, AND RELATED MODELS 

The general linear mixed model encompasses the most general range of models 
considered in detail in the present book. In terms of expressions for population 
parameters, many other models mentioned can be thought of as special cases. The 
special relationships have led to the widespread misconception that similar special 
case relationships hold for estimates and tests. However, appropriate tests occur as 
special cases for only a very limited range of models. The mixed model has mostly 
approximate results and very few exact results for inference. The exact results for 
estimates and tests for a (univariate) GLMN,q(Yi; Xi/3, a 2 ) with Gaussian errors do 
occur automatically as special cases of mixed model approximations. In contrast, 
for the GLMN,p,q(Y;; XiB, :E) with Gaussian errors, only the maximum likelihood 
estimates occur automatically as special cases of mixed model results. None of the 
commonly used tests in mixed models correspond to multivariate model tests, 
except asymptotically or in the special case of a univariate model. 

The approximate theory of mixed models also applies to many models described 
as "hierarchical," which allow additional freedom in specifying the random 
components (in contrast to general linear mixed models). Raudenbush and Bryk 
(2002) provided a book-length treatment. Mixed model theory also appears to 
encompass and apply to a wide range of "state-space" models (Billio and Monfort, 
1998, provided an example). 



CHAPTERS 

The Linear Mixed Model 

5.1 MOTIVATION 

As discussed in earlier chapters, the general linear mixed model allows missing 
or mistimed data as well as repeated covariates. The approach also allows 
specifying covariance structures as a function of a small number of parameters. In 
most uses, the model implicitly assumes commensurate data (all measured in the 
same units). Most, but certainly not all, applications involve repeated measures. 

Many different classes of models have been described as "mixed models." The 
term dates back to early developments in ANOV A. The simplest ANOV A design 
involves one factor, a categorical predictor with G levels defining G groups, and 
nq = N /G independent sampling units in each group (cell). Classical less-than­
full-rank coding led to writing the model as a scalar equation, with 
i E {1, 2, ... , ng} and g E {1, 2, ... , G}: 

Yig = J-l + a 9 + e;g. (5.1) 

Here ~L and { a 9 } are fixed and unknown finite constants (parameters) which 
characterize the means and e;9 "'N(O, a~), with a~ a fixed and unknown finite 
constant, the variance. The nature of {au} led to describing the predictor variable 
as a "fixed effect" and the model as a fixed effect model. In contrast, a "random 
effect" model assumes { aq} are randomly selected from an infinite population, 
with independent and identically distributed a9 "'N(O, a~) independent of {e;9 }. 

Here ~L alone represents the mean, while a 9 + e;9 represents total variance in terms 
of two components. More generally, a model with two or more fixed effects was 
described as a fixed effects model, while a model with two or more random effects 
was described as a random effects model. In tum, a model with one or more fixed 
effects and one or more random effects was referred to as a mixed effects model. 

The terms random effect, fixed effect, and mixed effect do not always clearly 
convey the underlying simple structure of a mixed model to readers not intimately 
familiar with the theory. We prefer to discuss the parameters of a mixed model in 
terms of two separate components: the model for the means and the model for the 
covariance. With Gaussian distributions, specifying the first two moments fully 
determines the distributions and therefore implicitly all derived properties. The 
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approach allows couching most discussions about the mixed model in terms of the 
simple concepts of means, variances and correlations. 

Mixed models are a useful tool for longitudinal data exhibiting missing values, 
inconsistently timed observations, or mistimed observations. Incomplete data put 
the analyst at a disadvantage because critically important information is missing. 
Analysis cannot proceed unless the missing information is replaced by 
assumptions. The mixed model approach presents intuitively appealing 
assumptions and has some procedures for inference that work well at least with 
large and some moderate sample sizes. 

The approach involves building a model for the expected values of the data and 
also building a model for the covariances of the data. The linear model for the 
mean allows the flexibility of using polynomials, trigonometric functions, and 
regression splines, among others. Both linear and nonlinear models for the 
covariance structure are useful. 

We begin by considering an extremely general class of linear models. As 
stated, the model allows specifying a particular covariance model in a variety of 
ways. The generality allows ambiguity without adding further constraints. 
However, it serves well as the basis for special cases of interest. 

The interested reader seeking additional details may wish to consult any of a 
number of excellent book-length treatments centered on mixed models, including 
Vonesh and Chinchilli (1997), Khuri, Mathew, and Sinha (1998), Verbeke and 
Molenberghs (2000), and Demidenko (2004). Timm (2002) discussed the mixed 
model as an alternative to a wide variety of multivariate methods. 

5.2 DEFINITION OF THE MIXED MODEL 

Definition 5.1 A general linear mixed model will be indicated by 
LMMN,p,,q,m[Yi; Xi/3, zi~di( Td)Z[ + ~ei( Te)] and includes the following 
assumptions. When no clarity will be lost, the model may be abbreviated 
LMMN.p,,q,m(Yi;X,fJ, Zi~diZ[ + ~ei)· 

1. Fori E {1, 2, ... , N}, 
(a) theN random vectors, { ei}, are Pi x 1 and mutually independent, 
(b) the N random vectors, { di} are m x 1 and mutually independent, and 
(c) the { ei} and { d;} are all mutually independent. 
2. Each Xi, the Pi x q expected value design matrix for independent 
sampling unit i, is fixed and known without appreciable error, conditional on 
knowing the sampling units, for data analysis. 
3. Elements of fJ (q x 1) are fixed and unknown and often regression 
coefficients or means. 
4. Each Z 1, the Pi x m covariance design matrix for independent sampling 
unit i, is fixed and known without appreciable error, conditional on knowing 
the sampling units, for data analysis. 
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5. ForiE {1, 2, ... , N}, (a) E(e,) = 0 and (b) E(d,) = 0. 
6. With r' = [ Td T,] fixed and unknown, d; and e; have a finite, fixed, and 
unknown Uoint) covariance matrix which is either positive definite or 
positive semidefinite: 

(5.2) 

Elements of :Ed;( TcJ) are twice differentiable functions of TcJ, a vector of no 
more than m(m + 1)/2 covariance parameters. Elements of :Ee;(re) are 
twice differentiable functions of Te, a vector of no more than 
max;[p; (p; + 1) /2] covariance parameters. 
7. The p; x 1 response vector y; is expressed as Yi = X;/3 + Z;d; + e; with 

E(y;) = X;/3 (5.3) 

and fixed, unknown, and positive definite or positive semidefinite covariance 

(5.4) 

When no clarity will be lost, the covariance model may be abbreviated :E,. 
Writing LMMN.p,q,m(y;; X;fJ[RxfJ=a, Z;:Ed;Z[+:Ee;[Rdd;=O) specifies 
explicit restrictions on parameters in fJ through the fixed and known 
constants R.r and a and explicit restrictions on d; through the fixed and 
known constant Rd. 
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The definition contains what may be described as the "approximate generalized 
least squares" assumptions. In combination with mild restrictions on dimensions 
and ranks of {X;, :E;}, they guarantee the existence of estimators for fJ and r 
which satisfy an approximate generalized least squares criterion. It is very 
important to recognize that no particular distribution has been specified for any 
random variable. Only the rather modest requirement of finite second (and 
implicitly first) moments is made. 

The model definition specifies three components: the response vector for the 
independent sampling unit, the mean of the response vector, and the covariance of 
the response vector. In tum, the covariance of the response consists of two 
components, corresponding to the two unobservable random vectors di and e;. 

The data may be "stacked" to represent a combined model. With n = "L{:1p,, 
it is often convenient to write y~ = [ y~ Y2 · · · Ytv], which implies Ys is n x 1. 
Similarly, d~ = [ dj d2 · · · d'tv] implies d 8 is N m x 1 and e~ = [ ej e~ · · · e'tv ] 
implies e 8 is n x 1. In tum, concatenation of the predictor matrices gives 

Xs = [i:], 
XN 

(5.5) 

an n x q matrix. In contrast, 
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1] (5.6) 

0 

is ann x (Nm) block diagonal matrix. Necessarily the rows of Ys, d 8 , e 8 , X 8 , 

and Zs must be sorted in the same order (both within and between independent 
sampling units) for the following equation, the stacked data model, to be valid: 

(5.7) 

Consequently 

E(y,) = X,/3 (5.8) 

N 

V(y,) = :Es = EfJ(Zi:Ediz; + :Eei) 

i=l 
N N 

= EfJ(Zi:EdiZ!) + EfJ:Eei 

i=l i=l 

= Zs:Edsz; + :Ees · (5.9) 

The model Ys = Xs/3 + Zsds + es expresses the observations as a function of 
three terms. The term Xs/3 describes the fixed contribution of the population, 
conditional on the predictor values (which often define subpopulations). Each row 
of Z 8 d 8 describes a random deviation from the population value due to observing a 
particular person (ISU). Each row of e8 describes an additional and distinct 
random deviation due to observing a particular person on a particular occasion. In 
summary, a mixed model expresses an observation as a subpopulation mean plus a 
random deviation due to person plus an additional random deviation due to 
occasion. 

Alternately, the response vector may be expressed in terms of one purely fixed 
and one purely random vector. If e+s = Zsds + e 8 , then 

Ys = Xs/3 + Zsds + es 
Xs/3 + e+s 
fixed + random 

i i 
E(ys) V(ys) 

(5.1 0) 
model model' 

The fixed component Xs/3 completely determines the mean, the first moment, of 
Ys and has no effect on any variance or covariance. The random component e+s 
completely determines all variances and covariances, the second moments, and has 
no effect on the mean. The model for a particular independent sampling unit 
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naturally follows the same pattern: 

y; = Xif3 + Z;d; + e; 
X;{3 + e+i 

fixed + random. 
i i 

E(y;) V(y;) 
model model 
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(5.11) 

As in univariate and multivariate linear models, a less-than-full-rank design 
matrix Xs prevents unique identification and unbiased estimation of {3. Side 
conditions must be imposed to avoid the problem. We shall usually refer to the 
side conditions as "restrictions" or "constraints." As the model is defined in 
Definition 1.1, side conditions also must be imposed on the components of :E; to 
uniquely define the covariance model parameters and estimates. Given appropriate 
side conditions, modem computing tools often make it straightforward to find 
estimates for f3 and 7 which satisfy an approximate least squares criterion or an 
iterated approximate least squares criterion. Except for special cases or in large 
samples, the ~estimators have few optimal properties. Kackar and Harville (1984) 
proved that {3 from iterated approximate least squares (sometimes called estimated 
generalized least squares, among other names) is unbiased for a Gaussian (or any 
other symmetric) distribution. However, covariance parameter estimators, at least 
in small samples, typically have substantial bias. Littel (2003) provided an 
excellent overview. 

With additional restrictions on the covariance parameters 7 = [ 7~ 7~ ]' the 
model defined in Definition 1.1 becomes sufficiently well-defined to allow 
computing parameter estimators with reasonable properties. Typically data 
analysts greatly simplify or completely eliminate either 7d or 7e. As an example, 
assuming response vector i has a first-order autocorrelation covariance pattern 
requires the j,k element to be {:E;(7)}j,k = u 2plti-tk1. Choosing Z; = 0, 

:Ee; ( 7e) = { u2 plti-tkl}, and 7e = [ u 2 p ]' achieves the desired pattern. Doing so 
expresses the variances and covariances as a nonlinear function of the two 
parameters u 2 and p. Implicitly, the observations for sampling unit i follow a 
stationary time series. For nonstationary processes an inherently linear model for 
the covariances is often assumed. In particular, specifying {G;k} as known 
constant matrices allows writing 

t 

:E;(7) = LTk(Z;G;kZI) +u2
IPi" 

k=l 

(5.12) 

With such a structure :E;(7) is a linear function oft+ 1 unknown parameters. 

Example 5. 1 The ambiguity in representing the covariance model may be 
illustrated quik easily. The response vector (and the purely random part of the 
mixed model ) will have a compound symmetric covariance structure if 
V(e,) = o 2 [11 •. l ~,, P+I/', 0 -r)] and Z ; = 0 lZ ; = 0 has exactly the same effect as 
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assuming V (d;) = 0]. In either case V(y;) = V(e;). Alternately, choosing 
Z ; = 11,, , V(d;) = a2p. and V(e;) = a 2

( I -p)I1~ gives exact ly the same V(y ; ). but 
with a different V(e,). 

Most presentations of the general linear mixed model include the assumption 
that the random variables follow a Gaussian distribution. However, in contrast to 
the univariate and multivariate linear models, the assumption does not lead to 
closed formed expressions for estimates. 

Definition 5.2 Writing 
LMMN,p;,q,m(y;; Xif31Rxf3=a, Z;Edi( Td)Zf +Eei( Te)IRddi =0) 
with Gaussian errors indicates 

which is equivalent to 

Recalling E;(r) = Zi:Ed;(rd)Zf + Ee;(re), it follows that 

Yi "'Np;[X;{3, E;(r)J. 

Equivalently, 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

Some mixed models, members of a class often referred to as components of 
variance models, assume compound symmetric covariance among all observations, 
which implies having only one independent sampling unit. The special properties 
of compound symmetry allow using exact weighted least squares methods to 
transform the model to one with completely independent observations (and some 
heterogeneity). 

The mnemonic HILE Gauss must be interpreted carefully in the mixed model 
setting because allowing p; to vary causes E;(r) to vary. Independence of 
sampling units remains the cornerstone (even given the special handling required 
for some components of variance models). In tum, linearity of the response 
expected value (mean) as a function of the parameters also holds, as does the 
assumption of finite second moments (existence). However, describing the model 
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as having homogeneity of second moments must be interpreted to indicate that a 
single covariance model holds for all sampling units, while :E; ( r) = :Ei( r) only if 
Z; = Zj andp; =Pi-

5.3 DISTRIBUTION-FREE AND NONITERATIVE ESTIMATES 

As always in the history of mixed models, computing difficulties often 
dominate theory and practice. Although current computing hardware speed and 
associated software have virtually eliminated some problems, we still face many 
issues considered by Henderson (1953 ). Method-of-moments and MIN QUE 
(minimum variance quadratic unbiased estimation) provide noniterative estimates 
(Searle, Casella, and McCulloch, 1992). Although the methods have many good 
properties, they are currently much less popular than likelihood methods. 

5.4 GAUSSIAN LIKELIHOOD AND ITERATIVE ESTIMATES 

The nearly ubiquitous use of the Gaussian assumption leads most data analysts 
to seek either maximum likelihood (ML) estimates or restricted maximum 
likelihood (REML) estimates (Chapter 14 has some details). The joint log 
likelihood is, with n = 2:;:1p;, e~i = y;- XJ3 and :E;(r) abbreviated as :E;, 

1 N 
-2logL(/3, r) = nlog(27r)-- 2)logi:E;I + (y;-X;/3)':Ej1(y;-X;/3)]. (5.17) 

2 
i=l 

Iterative methods must be used to solve the system of equations, which are 
nonlinear in the parameters {/3, T }. Without the Gaussian assumption, the 
resulting estimates satisfy the iterated approximate weighted least squares criterion 
(IT AWLS). Either with or without the Gaussian assumption, the resulting 
estimates are biased in small samples. As mentioned earlier, the estimate of f3 is 
unbiased, while the estimate ofT (and { :E;}) typically has substantial bias in small 
samples. 

REML estimates ofT (and {:E;}) have less bias than ML estimates. REML 
estimates arise from maximizing the reduced profile log-likelihood equation, based 
one~; = y; - X]J: 

N 

-2logLREML(r) = (n-q)log(27r)+ l_)logi:E;I + e~;:Ej 1e+;) + 
i=l 

N 

logjl.:x::E;1X;j. 
i=l 

(5.18) 

Although we leave the details to Chapter 14, it is worth observing the following. 
In the univariate linear model, a special case of the mixed model, the maximum 
likelihood estimate of the error variance, a2 = y'[IN- X(X' X)- X']y/ N, has 
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an expected value smaller than a 2
. In contrast, &2 = a2 N j[N- rank( X)] is the 

unbiased REML estimate of a 2• 

Estimates of both the primary parameters and a variety of secondary parameters 
are usually desired. Interest may center on either estimates of population location 
parameters (elements of(} = C fJ) which apply to all sampling units or estimates of 
properties particular to a specific independent sampling unit. We leave further 
discussion to the more detailed treatment of estimation and testing in later chapters. 

5.5 TESTS ABOUT fJ (MEANS, FIXED EFFECTS) 

In the context of the mixed model, data analysts often wish to test a hypothesis 
of the form 

Ho: CfJ = Oo 
Ho : 8 = Oo. (5.19) 

Only low order approximate tests have been described. Not surprisingly, the tests 
often perform very poorly in small samples. 

Given the assumption of Gaussian data and the strong parallels of the forms to 
the univariate linear model, it is straightforward to define the form of the 
likelihood ratio test statistic. Computing the statistic requires iterative calculations 
to successfully fit two models, the full model and the constrained model, at least 
one of which must be false. In practice, the false model is less likely to converge. 
If both models converge, then the test is well defined. The difficulty with the 
likelihood ratio test lies in finding an adequate approximation to the distribution of 
the test statistic. The approximation -2log[L(OIOfJ = 80 )/ L(O)],.:., x2(a) with(} 
of dimension a x 1 relies on the log likelihood being approximately quadratic in 
shape. From the perspective of a Taylor series expansion for the test statistic, the 
approximation is less than first order (it matches the first moment only 
asymptotically). The inaccuracy arises from ignoring the variability due to 

replacing :E; by :Ei. 
It is also possible to create tests based on model comparisons with estimates 

based on REML estimates. Again, little is known about the resulting distributions. 

A variety of alternative tests have been suggested based on assuming the 
distribution of the test statistic may be approximated by an F distribution 
(sometimes referred to as a Wald type test). Such tests can be based on ML or 
REML estimates. A key advantage lies in only needing to fit a single model 
(which ideally provides an essentially correct model). With estimates 0 = cj!J and 

N 

fs = EB:Ei (5.20) 
i=l 

and C of dimension a x q and rank a, 
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(5.21) 

and 

~ ~-1 1 I ~ 
F"' = (0- Oo)'[O(X~:E, Xs)- C't (0- Oo)/a. (5.22) 

Among the widely available methods, the Kenward and Roger (1997) method 
appears to provide the most accurate test size. However, room for substantial 
improvement remains (Schaalje, McBride, and Fellingham, 2003). The Kenward 
Roger method starts with REML estimates and then creates an improved estimate 
of :E.,. Sample values are used to estimate a scale parameter ,\ and a degrees-of­
freedom parameter v with 

(5.23) 

5.6 TESTS OF COVARIANCE PARAMETERS, r (RANDOM EFFECTS) 

As in the univariate and multivariate linear models, a data analyst may wish to 
test hypotheses about variance or covariance parameters. The likelihood ratio test 
provides a reasonable approach. A variety of approximate F approaches also have 
been proposed, based on extending consideration to 

(5.24) 

Such tests have not received much attention. Some work of a similar nature has 
been done in univariate and multivariate linear models. 

EXERCISES 

5.1 Clearly specify values for every dimension and parameter which reduce a 
LMM2v,p,-<1.m[y;;X;,B,Z;:Ed;(rd)Z[+:Ee;(re)] with Gaussian errors to a 
GLMN,~1 (y1 ; X;,B, a 2

) with Gaussian errors. Some choices will not be unique. 

5.2 For a GLMN.p.q(Y;; X,B, :E) with Gaussian errors, the model may be 
written as Y = XB +E. Assume u, = vec(Y'), and ui = [row;(Y)]'. 
5.2.1 Clearly specify values for every dimension and parameter which specify a 
LMMN,p,q.111 [u;; X;n.Bu, Z; :Edi ( Td )Z[ + :Eei ( 'Tf·)] with Gaussian errors. Some 
choices will not be unique. 
5.2.2 Clearly specify (and simplify the expressions when possible) all matrices 
(including dimensions and pattern of elements) in the stacked-data form 
u, = Xs.Bu + e" corresponding to the choices you made in 5.2.1. 

5.3 Consider the magnetic resonance imaging (MRl) data used for the Chapter 3 
exercises. Ignoring all data for parenchyma and fat gives a multivariate model 
with three columns for the three region-of-interest (ROI) measurements. 
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5.3.1 Briefly specify an appropriate multivariate model, GLMN,p,q(Y;; XiB, :E) 
with Gaussian errors. Use reference cell coding. Specify all dimensions for the 
particular data in hand, as well as brief definitions of parameter matrix elements. 
5.3.2 Assume Zi = 0 and an unstructured covariance pattern across time. Clearly 
specify values for every dimension and parameter which specify a 
LMMN,p,,q,m [yi; Xi,B, Zi:Edi ( Td)Z[ + :Eei ( Te)] with Gaussian errors appropriate 
for the data which gives estimates of the same parameters as in the GLM() model. 
5.3.3 Clearly specify (and simplify the expressions where possible) all matrices 
(including dimensions and pattern of elements) in the stacked data form (for all 
observations on all participants) corresponding to the choices you made in 5.3.2. 

5.4 In the MRI analysis, the multivariate model applies and therefore should 
always be used in preference to the mixed model. However, to improve 
understanding oflinear models, the data may be analyzed with a mixed model. For 
the following questions, we are only interested in analyzing the ROI tissue type 
(ignore all data for parenchyma and fat). 
5.4.1 Briefly explain why a multivariate model is preferred to a mixed model here. 
5.4.2 Use a "stacked" version of the data (in file P0105) to fit the mixed model 
from exercise 5.3 using SAS PROC MIXED. You will need to use the CLASS 
and REPEATED statements in PROC MIXED and specify a compound symmetric 
covariance matrix. Provide tests for the Time and Diagnosis main effects as well 
as the Timex Diagnosis interaction (malignant versus benign) which correspond to 
the test that a multivariate model would provide. 
5.4.3 Starting with the P0104 file, use PROC GLM with the REPEATED 
statement to compute MUL TIREP and UNIREP tests of Time, Diagnosis, and 
Time by Diagnosis. 
5.4.4 Compare and discuss the degrees of freedom, F statistics, and p values from 
exercises 5.4.2 and 5.4.3. 
5.4.5 Implement a new version of the PROC GLM analysis and use reference cell 
coding in lieu of the CLASS statement for coding benign versus malignant. What 
changes result? 
5.4.6 (Optional, noncredit) Use LINMOD to compute MULTIREP and UNIREP 
tests of the same three hypotheses. 

5.5 (Optional, noncredit) Considering both the ROI and Parenchyma tissue 
type, we will now consider a factorial analysis that includes Time (three levels), 
Diagnosis (two levels), and Tissue (two levels). Again, the multivariate model is 
appropriate and should be used, but conducting a mixed model analysis will 
illustrate many issues. 
5.5.1 (Optional, noncredit) Starting with the P0105.sd2 file, create a file of stacked 
data which includes all covariates and the ROI and Parenchyma response variables. 
Using SAS PROC MIXED with the CLASS and REPEATED statements, provide 
tests for the Time, Diagnosis, and Tissue main effects as well as the three two-way 
and one three-way interaction. 
5.5.2 (Optional, noncredit) Compare and discuss the degrees of freedom, F 
statistics, and p values from exercise 5.5.1, with exercise 3.4 from Chapter 3. 



CHAPTER6 

Choosing the Form of a Linear Model 
for Analysis 

6.1 THE IMPORTANCE OF UNDERSTANDING DEPENDENCE 

The pattern of dependence among observations can have more effect on the 
validity and quality of a statistical analysis than any other feature. Therefore 
choosing an analysis must begin with determining the logical properties of the 
sampling scheme and thereby characterizing the patterns of independence and 
correlation among observations. 

In the simplest case, as in the general linear univariate model, all response 
values, all observations, are statistically independent. Relatively simple and well­
behaved methods are nearly always available for completely independent 
observations. In the most complicated case, all observations are correlated with 
each other in idiosyncratic ways. Few methods with desirable properties can be 
found for such general problems. The following definitions help characterize 
fundamental properties of sampling schemes central to the choice of an analysis. 

Definition 6.1 (a) Independent observations have values which are 
statistically independent. 
(b) An independent sampling unit (ISU) provides one or more observations 
such that observations from one unit are statistically independent from any 
other distinct unit while observations from the same unit may be correlated. 
(c) The observational unit distinguishes one correlated observation from 
another within the ISU. 
(d) Observing the same variable in two or more instances across time, space, 
or other dimension within an ISU creates repeated measures. 
(e) Commensurate observations share the same measurement scale and units. 
(f) Multivariate outcomes arise from a single ISU and therefore are not 
independent and need not be commensurate. 
(g) Doubly multivariate outcomes include repeated measures of two or more 
noncommensurate variables. 
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Developers of multivariate statistics have progressed by considering a relatively 
small number of limited and systematic patterns of dependence among 
observations. A simple taxonomy useful for describing any type of data and 
pattern of dependence may be developed by considering three diagnostic 
questions. We consider each separately. 

6.2 HOW MANY VARIABLES PER INDEPENDENT SAMPLING UNIT? 

Table 6.1 summarizes some dimensions for describing models. In a clinical 
trial of a new pharmaceutical with random assignment to treatment, usually the 
individual participants in the trial are the independent sampling units. Each person 
may have more than one response measured, such as red blood cell count and 
blood cholesterol level, which leads to two observations per ISU. For the example, 
a single value of a blood assay represents the observation unit. As a second 
example, an educator who randomly assigns all children in a classroom to a 
particular curriculum must treat scores from children within a classroom as 
correlated. 

Table 6.1 How Many Variables? 

Number of Number of 
Responses Predictors Model Description 
1 Univariate 

Many Multivariable 
Many 1 or many Multivariate 
Many Many Multivariate 
Repeated 1 or many Repeated measures 

In the latter setting, classroom becomes the ISU and child the observational 
unit. Recording performance on the same test for every child leads to repeated 
measures occurring within the classroom (ISU). Alternately, measuring only one 
child from each classroom once per month for three months also leads to repeated 
measures. All repeated measures have commensurate observations (all measured 
in the same units, on the same scale). However, not all sets of commensurate data 
are analyzed appropriately with repeated-measures models, which usually imply 
interest in contrasts corresponding to polynomial trends across a repeated-measure 
dimension. A simple example arises in measuring drug or toxicant levels in a 
variety of organs in the body of an animal. Although levels in the brain, muscle, 
and kidney would all be reported in the same units (the data are commensurate), 
trends across organs have no scientific appeal. 

The multivariate profile of drug or toxicant levels for a variety of organs does 
pique scientific interest. Statisticians usually describe any setting with two or more 
response variables as multivariate. From the perspective of mathematical and 
statistical theory, repeated measures merely represent a special case of multivariate 
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responses. Modeling and testing differences between independent sampling units 
often allow using simple univariate theory, while modeling and testing differences 
within independent sampling units usually require more complex multivariate 
theory, as do differences involving both within and between dimensions. 

Some research involves collecting two or more distinct response variables on 
two or more occasions. Many longitudinal studies of human development and 
clinical trials of treatments for chronic diseases have such data, which may be 
described as doubly multivariate. 

In summary, completely independent observations may be contrasted with many 
patterns of nonindependent observations. The presence of a nonzero correlation 
provides the simplest way to identify nonindependent observations, because any 
correlated variables are necessarily dependent (not independent). Although 
uncommon, examples of uncorrelated and nonindependent variables do exist. 
Hence a lack of correlation does not guarantee independence. However, in the 
special case of jointly Gaussian variables, the converse does hold: Uncorrelated 
and jointly Gaussian random variables are necessarily independent. 

The emphasis on recognizing the many forms of nonindependence reflects the 
crucial importance that the pattern of dependence plays in determining the 
underlying distribution theory and the choices of parameter estimates and tests. 
Improper analysis can severely bias results for estimation and inference. 
Furthermore, in sharp contrast to most other assumptions in linear models, access 
to large samples will not always overcome the problem. 

The term "large" is ambiguous in the presence of multivariate data. If a sample 
contains p observations on each of N independent sampling units, consideration 
must be given to increasing N alone (the most common meaning), p alone, Nand 
pin a fixed ratio, or Nand pin a varying ratio (with many variations). 

Fortunately, the theory for multivariate and repeated-measures data coincides 
for the multivariate general linear model. Only the particulars of the scientific 
context and goals can indicate which analysis method to choose for a specific 
application. The practical use and interpretation of multivariate theory varies 
greatly across applications, in contrast to the theory itself. 

6.3 WHAT TYPES OF VARIABLES PLAY A ROLE? 

Definition 6.2 (a) Nominal scales only define categories or groups of 
observations. 
(b) Ordinal scales provide numeric values sufficient only to rank 
observations. 
(c) Interval scales provide numeric values with all differences of the same 
size being equivalent. 
(d) Ratio scales give numeric values for which ratios of the same size are 
equivalent. 
(e) Continuous data may include any sort of interval- and ratio-scale 
variables. 
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The type of measurement scale, especially for random components such as error 
terms, typically plays a major role in determining the choice and validity of a 
particular analysis method. Stevens (1946, 1951) distinguished among four levels 
of measurement. Values on a nominal (categorical) scale only label objects. As an 
example, the chemical name of a compound only distinguishes it from other 
compounds. Values on an ordinal scale rank objects (and name them) but carry no 
other information. A person's finishing position in a 1 00-meter dash provides only 
ordinal information. Values on an interval scale provide information about 
differences between objects (and rank them and name them), such as acidity of a 
solution measured on the pH scale or temperature in degrees centigrade. Values on 
a ratio scale provide the additional information of relative size, such as the mass of 
an object in kilograms. 

The value of recognizing the scale of a response variable lies in the guidance it 
provides in choosing a data analysis. However, we agree with Velleman and 
Wilkinson's (1993) cautions about not being too rigid in using scale to choose a 
data analysis. Nominal or ordered categorical data typically lead to using 
categorical methods for data analysis. In tum, special "distribution-free" statistical 
methods have been developed for ordinal data (with few ties). Both interval and 
ratio data tend to be considered together (at some peril in guiding a choice of valid 
analysis) as continuous data. Typically we will classify such data as either 
Gaussian or not Gaussian. 

Ratio scale data are necessarily nonnegative. In such scales, a value of zero 
indicates the absence of the property and negative values have no meaning. In 
practice, such data often are positively skewed and have variance increasing with 
the mean, especially for a sufficient wide range of conditions. Concentration of a 
pollutant in a river, concentration of a drug in a person's bloodstream, and volume 
of lava emitted by a volcano in a month might be expected to have such a variance 
pattern. The data often appear Gaussian after a logarithmic or similar power 
transformation, including square or cube root. Muller and Fetterman (Chapter 7, 
2002) described the practical use of power (Box-Cox) type transformations. 

6.4 WHAT REPEATED SAMPLING SCHEME WAS USED? 

The distinction between the independent sampling unit (ISU) and the 
observational unit plays a key role in describing the sample scheme. Table 6.2 
summarizes some repeated sampling schemes. The table defines rough categories, 
with blurry distinctions between neighbors. Although various terms in the table 
are used interchangeably in the literature, the definitions and distinctions made 
here reflect the spirit and practice in the biological and behavioral sciences. The 
column for "timing" might correspond to a wide variety of dimensions, other than 
time, such as distance from a town, location on the surface of the earth, or amount 
of a treatment (measured on an interval or ratio scale). 
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Table 6.2 Some Simple Repeated Sampling Schemes 
(i Indicates a Particular ISU) 

Number of Number of 
Design Times IS Us Typical Timing 

Cross sectional 1 N None 

Repeated measures p>1 N Consistent 
Crossover p>1 N Consistent 

Longitudinal Pi> 1 N Inconsistent 

Time series N 1 Regular 
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Some terms in the table deserve clarification. Consistent timing simply requires 
all ISUs to be evaluated at the same times, such as Monday, Tuesday, and 
Thursday. In contrast, inconsistent timing allows one participant to appear on 
Monday, Tuesday, and Thursday, while another appears on Monday, Tuesday, and 
Friday. Inconsistent timing may arise due to an inability to fully control the timing 
of data collection. Such mistimed data often arise in human clinical trials. Regular 
spacing requires a constant distance between times, such as measuring air 
temperature at a weather station once per week for a set of N consecutive weeks. 
The study of univariate ANOV A models (for cross-sectional designs) led to the 
definition of certain terms that generalize to settings with repeated observations. 

Definition 6.3 (a) A complete design has at least one observation per 
treatment combination (cell). 
(b) Balanced designs have an equal number of observations in each cell. 
(c) Exchangeable observations may be correlated but have identical 
distributions and identical relationships to other observations with which 
they may be exchanged. 

Losing one or more independent sampling units and all associated observations 
usually creates unbalanced or incomplete designs. Both univariate and 
multivariate linear models can tolerate such deviations (in "between-subject" 
design) and retain excellent properties. In contrast, losing only a fraction of the 
observations for one or more !SUs greatly complicates the task of finding accurate 
estimates. Furthermore, creating accurate inferences (tests and confidence 
intervals) usually becomes extremely difficult in the presence of missing data, 
especially in small to moderate samples. The size of a sample has many possible 
variations in the presence of repeated measures. Most often, large-sample results 
refer to a setting with a fixed (or finitely bounded) number of repeated 
observations and an arbitrarily large number of independent sampling units. 
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Unfortunately, many data analysts refer to any sort of repeated sampling scheme 
as involving repeated measures. The failure to recognize special cases has often 
had the regrettable effect of more general and less accurate statistical methods 
being used when more accurate and easier to use methods were available. 

An important special case of repeated-measures designs arises when the 
observations for each ISU are exchangeable; the order is arbitrary and the variable 
distinguishing observations within an ISU only labels them, thus providing only a 
nominal (categorical) scale. The term split-plot design reflects the origin of the 
term in agricultural statistics. A study aimed at finding the best amount of 
fertilizer to apply to com might use such a design. A set of N fields from different 
farms represent the ISUs. With three levels of fertilizer of interest, the great 
variability between fields (plots of land) militates toward splitting each plot into 
three subplots and randomly assigning one of the three fertilizer levels to each. 
Local differences in such things as the quality of soil, rainfall, and cultivation 
equipment all contribute to between-plot variation but not within. Assuming equal 
variability and correlations (compound symmetry of the covariance matrix) of 
yields across subplots (the repeated measures) seems completely reasonable. 
Compound symmetry arises naturally with exchangeable observations, while 
nonexchangeable repeated measures rarely achieve compound symmetry. 

Time as the repeated-measure dimension provides the most common example of 
nonexchangeable repeated observations that seem extremely unlikely to have 
compound symmetry. Concern about the assumption led to documentation of 
dramatic inflation of type I error rates under violation of the assumption of 
compound symmetry (Box, 1954a, b). Subsequently, statisticians developed tests 
robust to violation of the assumption, which implicitly allow for an arbitrary 
covariance structure (Geisser and Greenhouse, 1958; Greenhouse and Geisser, 
1959; Huynh and Feldt, 1976) within the traditional split-plot or "univariate" 
approach to repeated measures. The "multivariate" test statistics, developed 
between roughly 1930 and 1970, avoid compound symmetry and begin with an 
assumption of unstructured covariance matrix. 

Every analysis of repeated measures makes an implicit or explicit choice of 
model for the covariance pattern within a participant (ISU) across repeated 
measures. With Gaussian data, the validity of a choice among a univariate, 
multivariate, or mixed linear model depends almost entirely on the actual 
covariance pattern among observations. Covariance models discussed here are 
usually one of four types: complete independence, compound symmetry, partially 
structured, and completely unstructured. The four are ordered from simplest to 
most complex. 

6.5 ANALYSIS STRATEGIES FOR MULTIVARIATE DATA 

Data suitable for analysis with general linear multivariate models may be 
grouped into four classes, depending on scientific considerations: pure 
multivariate, commensurate multivariate, repeated measures (also commensurate), 
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and doubly multivariate. The scientific goals drive the choice of analysis strategy 
for any particular set of data. We focus on the following possible strategies: (1) a 
collection of univariate analyses with a Bonferroni correction, (2) multivariate 
analysis of Variance (MANOVA), (3) a collection of multivariate analyses with a 
Bonferroni correction, (4) repeated measures with a "multivariate" approach 
(MUL TIREP), ( 5) repeated measures with a "univariate" approach (UNIREP), and 
(6) repeated measures with a "mixed" model approach. (7) Special purpose 
methods include growth curves, seemingly unrelated regression (SUR), a doubly­
multivariate model (DMM), and missing data methods. Given a particular analysis 
strategy, more than one approach to inference may apply. Table 6.3 summarizes a 
number of cases. 

Table 6.3 Linear Model Analysis Strategies for Gaussian Repeated Measures 

Pattern of Responses 
p Distinct 

p Repeated 

PI Distinct, repeated P2 

Strategy 
Bonferroni univariate 
MANOVA 
Bonferroni MANOV A c clusters 

Bonferroni univariate 
MULTIREP 
Growth curve 
UNIREP 
Mixed 
Bonferroni for clusters 

Bonferroni 4-7 for distinct clusters 
Bonferroni MANOV A time clusters 
DMM specific method 

Nominal 
Size of Test 

afp 
a 

ajc 

afp 
a 
a 
a 
a 

afc 

a/Pz 
afpt 

a 

A collection of univariate analyses with the total test size controlled with a 
Bonferroni correction may have particular appeal for a modest number of response 
noncommensurate variables. Additionally, no interest in profiles of response 
(weighted linear combinations of responses) goes with the desire to consider each 
variable separately. The approach .allows any pattern of missing data and any 
variety of design matrices across responses. The allocation of test size should 
reflect the relative scientific interest amd importance of the variables. 

A collection of multivariate, MULTIREP, UNIREP, or mixed model analyses 
with total test size controlled by a Bonferroni correction may have particular 
appeal in the doubly multivariate setting. Toxicologists often study a suite of 
responses measured repeatedly over time. A separate multivariate could be 
conducted at each time. Alternately, and most commonly, a separate repeated­
measures analysis could be conducted for each type of response variable. 
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Alternately some methods have been especially developed for the setting. Timm 
(2002, Section 6.7) provided a good review. 

Seemingly unrelated regression (Srivastava and Giles, 1987) and growth curve 
models (Kshirsagar and Smith, 1995) provide generalizations of the multivariate 
model. SUR seeks to take advantage of correlations among responses, while 
allowing for different design matrices. Growth curve models seek to capitalize on 
modifying a multivariate approach to repeated measures to take advantage of the 
simplest model that fits the repeated dimension. Timm's book (2002, Chapter 5) 
contains a detailed introduction to both. 

Table 6.4 Linear Model Form Properties for Gaussian Repeated Measures 

Smaii-N :E Additional 
Approach Inference? Robust? Plus Minus 

Bonferroni Good Yes Flexible No Profile, Trend 
univariate 
Bonferroni Good Yes Flexible 
multivariate 

MANOVA Good Yes1 Profiles X Same For All 
No Missing 

MULTIREP Good Yes Trends X Same For All 
No Missing 

Growth curve Good Yes Trends X Same For All 
No Missing 

UNIREP Good1 Yes1 Trends X Same 
No Missing 

Mixed Can be bad No Time Vary X OK Fragile 
Missing OK Limited Inference 
Model :E Limited Diagnostics 

EM and adjusted Good Yes Missing OK X Same For All 
MANOVA, In Small N 
MUL TIREP, or 
UNIREP 

SUR Uncertain Yes X Varies No Missing 
Inference? 

DMM Uncertain Uncertain Tailored No Missing 
1 With appropriate test choice. 
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Table 6.4 summarizes performance characteristics of the various forms of linear 
models that might be used. Barton and Cramer (1989) and Catellier and Muller 
(2000) recommended using the EM algorithm for estimation and adjusted degree 
of free tests for MANOV A, MUL TIREP, and UNIREP tests with missing data. In 
contrast to a mixed model, the approach always controls test size, even in very 
small samples. The Appendix (Section A.2) contains a description of free 
SAS/lML ® code which implements the methods and where to retrieve it from the 
Web. 

6.6 CAUTIONS AND RECOMMENDATIONS 

The flexibility and generality of the mixed model make it extremely tempting to 
simply always use it for any linear model analysis. However, just as a skilled 
carpenter understands and uses many different saws, a skilled data analyst 
understands and uses many different kinds of linear models. Littel (2003) urged 
readers to recognize the limitations of the mixed model, especially in terms of 
accuracy of inference. Some limitations arise from computational difficulties. 
Numerical problems with currently popular software may badly mislead the user. 

The algorithm may fail to converge to a solution, even though a valid and 
unique answer exists. Muller, Edwards, Simpson, and Taylor (2006) used popular 
mixed model software to analyze simulated Gaussian data. The observations 
followed a multivariate linear model with two within-subject factors, each with 
three levels, giving p = 9, and no between-subject factors. In all cases no missing 
or mistimed data were present and N E {10, 20, 40}. Consequently, Y was 
always N x 9 and X= lN (obviously full rank). Any standard multivariate 
linear model program can compute the unique maximum likelihood and REML 
estimates for the primary parameters (Band :E), which are guaranteed to exist, in 
one step. For mixed model analysis, an unstructured covariance model was always 
requested, which ensured that the model was valid in the population. Using the 
default options, the program failed to converge for roughly 2% of the samples. A 
standard multivariate linear model program was applied to each problematic 
sample to verify that estimates could be computed. Merely increasing the number 
of iterations reduced the number of convergence failures, but not completely. 
Artful tuning of the convergence criteria eliminated some more of the convergence 
failures, but not all. 

Faced with convergence failure, many data analysts would change the request 
for an unstructured covariance matrix to a request for a compound symmetric 
matrix. Although doing so might lead to convergence, the strategy will usually 
inflate test size in small samples. The uncorrected UNIREP test (which assumes 
compound symmetry) also inflates test size in the same setting but performs better 
than the mixed model tests in many ways when applicable. 

We recommend the following steps to reduce or completely avoid such 
problems. (1) Use a MULTIREP or UNIREP test and associated model whenever 
they apply. Current mixed model tests are never better in controlling accuracy of 
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inference. (2) Round the values of time and related predictor values to the smallest 
number of digits that are scientifically meaningful. In a clinical trial with visits 
once per month, recording time values in days may greatly destabilize the 
calculations with no scientific return. Obviously the choice of recording precision 
must be made jointly with the scientists leading the project. (3) Given the need for 
a mixed model analysis, begin the process by creating well-conditioned data. Such 
data have (a) careful scaling, (b) removal of any location differences, (c) full-rank 
coding schemes for indicator variables, especially effect coding or cell mean style 
coding, (d) centered or pseudocentered continuous predictors, and (e) design 
matrices transformed to make them as close to completely orthonormal as needed. 
A pseudocentered variable has had a scientifically meaningful and convenient 
value subtracted in order to make the mean approximately zero, such as 
D = T- 37, forT human body temperature in degrees centigrade. Orthogonal or 
orthonormal polynomial coding for time usually helps greatly when applicable. 
Both Xs and Z 8 , as well as y 8 , should receive the improvements. Chapters 8 and 
9 in Muller and Fetterman (2002) contain further discussion in the context of a 
univariate linear model. (4) Take advantage of the options of the particular 
program in use to help the program find a solution. An artful choice of starting 
value estimates is likely to have the most impact. The choice of algorithm and 
convergence criterion also can greatly affect the ability to find the solution (if one 
exists). 5) Finally, do not declare the covariance model to be invalid if the 
limitations of the data disallow estimating it. An alternate analysis method may be 
the only defensible choice. 

Example 6.1 Analyzing data from an observational study with a univariate 
multiple regression model illustrates the last recommendation. An epidemiologist 
seeking to build a model of lung function might choose to use smoking status (with 
three levels. current, previous, never). race (two levels), and gender (two levels) as 
basic predictors. Obviously interaction variables also have appeal. However. even 
in a relatively large sample, it might happen that only one white female who never 
smoked happens to be included. Including the three-way interaction of race by 
gender by smoking status creates a model with severe collinearity with the 
intercept and extremely unstable computations. The data do not allow estimating 
or testing the interaction, a fact revealed by careful attention to regression 
diagnostics. The data do not provide any evidence whatsoever either in favor of or 
against the existence of such an interaction in the population (no inference is 
available because no est imate is available). An epidemiologist would report t.he 
desire to consider the interaction and the fact that the current study provides no 
infommtion in either direction. The inability to fit the model in the sample at hand 
would not be interpreted as evidence against the interaction. Rather it indicates an 
inconvenient limitation stemming from the fi nite nature of the observational study 
design. 

Example 6.2 A second example involving a clinical trial comparing tbree 
asthma medications also illustrates the last recommendation. Repeated clinic visits 
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and measurements of lung function are scheduled every month for six months. 
Baseline lung. function (measured just before the start of treatment). treatment 
group, and the interaction of baseline with treatment provide rhe obvious starting 
model for between-subject effects. As usual for a repeated-measures study design 
for living organisms. a covariance pattern more complex than compound symmetry 
seems necessary. With I 00 participants. recording visit time as number of days 
since baseline will likely create dozens of distinct times of observation. With I 000 
participants, recording visit time as number of days since baseline will likely create 
over I 00 distinct time values. In either case. even considering only relatively low 
order trends across time (linear. quadmtic, and cubic). a mixed model analysis with 
an unstructured covariance pattern may fail to converge. Rounding time to week 
or half month will help some. as will careful use of orthogonal design coding. 

In the example of the epidemiology study, difficulty came from an insufficient 
X matrix, while in the example of the clinical trial, difficulty came from an 
insufficient Z matrix. The inability to fit the model for the sample at hand should 
not be interpreted as evidence against an unstructured covariance pattern or in 
favor of a simpler model. Evidence for a simpler model might be available. A 
model assuming autocorrelation or a combination of autocorrelation and compound 
symmetry may converge and provide appropriate and well-behaved regression 
diagnostics. Without such positive results, some other options still remain viable. 
One simple approach would be to compute univariate analyses of trend scores and 
use a Bonferroni correction. Heterogeneity must be treated in a credible way with 
the approach. Alternately, separate univariate analyses for each time window 
(clinic visit number), again with a Bonferroni correction, may be preferred. Either 
approach has many unappealing features. We list them merely to illustrate that the 
desire to fit a mixed model, or any other model, does not automatically guarantee 
having enough data to support the model. Defensible inference from a set of data 
requires a scientifically credible model supported with diagnostic analysis, not 
merely a model that converges to a numerical solution. 

6.7 REVIEW OF LINEAR MODEL NOTATION 

Although originating much earlier, the theory and practice of linear models 
began to flower early in the 1900s. Early work used scalar notation, although 
proofs often included geometric representations and arguments. Increasing interest 
in more complex designs, repeated measures, and especially multivariate questions 
was coupled with a gradually increasing use of matrix notation. The advent and 
spread of electronic digital computers in the second half of the century accelerated 
the trend. By the end of the century, nearly all statisticians had access to powerful 
computers, and nearly all new linear model theory was cast in matrix notation. 

Table 6.5 summarizes notation used for univariate, multivariate, and mixed 
linear models. The scalar equation provides a model statement for a single 
observation and is rarely used. Current discussion of linear mixed models most 
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often uses the "vector" form for one independent sampling unit (highlighted in 
gray). In contrast, current discussions of univariate and multivariate models most 
often use the forms for all observations (highlighted in gray). The disparity 
between the usual formulations of mixed and other linear models can be a source 
of confusion. Comparisons between models within a column of the table prove 
simpler and greatly help understanding. We chose notation for the models in order 
to facilitate such comparisons. 

As discussed in Chapter 4, the growth curve model, as commonly used, can be 
interpreted as a special case of a restricted multivariate linear model. Although the 
GCM() would fit naturally into an expanded Table 6.5, the generalized GLM, the 
GGLM(), would not. The lack of fit arises from the fact that a GGLM() may not 
have any independent observations. 

Table 6.6 summarizes covariance structures for the linear models described in 
Table 6.5. Comparing the structures for all observations considered together 
highlights the underlying similarities. In all cases, a block diagonal form occurs, 
with each diagonal block corresponding to an ISU. Zero values off diagonal 
reflect the statistical independence. The univariate model has all scalar diagonal 
blocks, all equal to a 2 (homogeneity of variance hold). The multivariate model has 
all diagonal blocks of the same size and value, :E (homogeneity of covariance 
holds). The mixed model allows the diagonal blocks to vary in size and value. 
The covariance elements must be a function of a modest number of parameters 
(relative to the number of observations) in order to allow computing valid 
estimates. 



Model 

GLMN,q(y;; X;/3, 0'2) 

GLMN,p,q(Y;; XiB, :E) 

Table 6.5 Linear Model Statements 

(Np <=> n = E!1Pi) 

One Observation Observations for One ISU All Observations 

q 

Yi = '[:.Xi,j/3j + ei Yi = Xi/3 + ei y = X /3 + e 
j=l lxl lxqxl lxl N x l N x qx l N x 1 

q 

Yi,k = '[:.Xi,j/3j,k + e;,k Y; = X;B + Ei 
j=l lxp lxqxp lxp 

Y = XB + E 
N x p N x q x p ,r..' xp 

q 

LMMN,p,,q,m[Y;; X;/3, :E;(r)] Yi,k = '[:.Xi,j/3j,k + 
j=l 

Yi = X J3 + Z ;d t + e i Ys = X 8 {3 + Z8 d8 + es 
/I;X l p,x q x l p,x m x l p,x l nxl nxqxl nxNmxl nxl 
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'L.z;,ldl + e;,k 
1=1 
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Table 6.6 Covariance Structures for Linear Models 

Model One Observation Observations for One ISU All Observations 

V(Yj') = :E V[vec(Y')] = 

N 

MN,p,q,m[Y;; X;,B, :E;(r)] V(y;,k) = (:E;(r))kk V(y;) = :E;(r) V(ys) = :Es = EJ: 
i= 



CHAPTER 7 

General Theory of Multivariate 
Distributions 

7.1 MOTIVATION 

Chapter 7 serves two purposes. First, we present a consistent notation and 
many basic results for groups of random variables, especially when arranged into 
vectors. Second, the presentation provides an implicit review of such concepts as 
moments and generating functions for single random variables. The reader may 
access the implicit review in a very simple way: Reduce all dimensions to make 
any matrix or vector a scalar (1 x 1). Applying the reduction to every result will 
immediately tell the reader which results are old friends that generalize 
conveniently and which are new acquaintances requiring extra time to get to know. 

Although some results about random vectors apply directly to random matrices, 
many others do not. If matrix X has random elements, considering y = vec(X) 
often proves fruitful. For symmetric Z, often the form u = vech(Z) is easier to 
work with. In particular, u = vech(Z) may have a density, while vec(Z) 
definitely does not. Gupta and Nagar's (2000) book reflects an increasing interest 
in studying random matrices directly. Johnson and Kotz (1972), Johnson, Kotz, 
and Balakrishnan (1997), Kotz, Balakrishnan, and Johnson (2000), and Kotz and 
Nadarajah (2004) contain more traditional treatments of joint distributions. 

In the theory of distributions, the adjective "multivariate" describes any 
collection of more than one random variable, including ones arrayed as vectors or 
matrices. Clarity requires distinguishing between vector and matrix forms. An 
example occurs in Chapter 8, which has separate treatments of the vector Gaussian 
(often called the multivariate Gaussian) and the matrix Gaussian distributions. 

As a general principle for the entire book, we provide a carefully stated and 
technically correct presentation. We rule out most pathological cases by imposing 
mild regularity assumptions (such as finite variance, a 2 < oo ). We do allow for 
pathologies that occur naturally in practice (such as a2 = 0). Taking advantage of 
the generality and convenience of characteristic functions involves limited 
consideration of complex variables. All other contexts involve only real values. 

For the sake of brevity, we omit many proofs in the present chapter, especially 
complicated ones. Most readers will have seen scalar versions of the results in the 
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present chapter. The vector and matrix generalizations are not primarily linear 
model properties. In all subsequent chapters we (1) provide a proof, (2) provide a 
reference to a proof, or (3) omit the proofs with the hope that a conscientious 
student will derive the result. 

7.2 NOTATION AND CONCEPTS 

The presentation here presumes knowledge of the basic theory of probability 
and inference. We focus here on multivariate properties of well-defined random 
variables that have a joint distribution. 

Most discussions consider vectors of random variables (random vectors), such 
as y = [ y1 Y2 · · · Yn ]', have a joint distribution defined for all y. E S (the sample 
space). Less often, we consider matrices of random variables (random matrices), 
such as Y = {YJd with a joint distribution defined for all Y. E S (the sample 
space). Implicitly, any result for a random vector always also applies to vec(Y) or 
to vech(Y) if Y = Y'. We will review ways of characterizing (uniquely and 
completely specifying) the distribution of y. We will also review some general 
properties of distributions, such as moments. Although many results apply to any 
random variable, continuous random variables will be discussed in detail. In 
contrast, corresponding forms needed for discrete variables will mostly be omitted. 

A distribution is an entity which exists apart from any particular 
characterization. The cumulative distribution function (CDF) is not the 
distribution. A well-defined distribution always has a CDF and may or may not 
have a probability density function (PDF). For a given CDF Fy(y.) a 
corresponding characteristic function (CF) ¢y(t) always exists, and is unique (a.e., 
that is, almost everywhere). Conversely, if ¢v(t) is the CF of a distribution, a 
corresponding CDF Fy(y.) always exists and is unique (a.e.). Moreover, 
mathematical methods allow determining one from the other. Thus a distribution 
is always completely and uniquely specified (a.e.) by (1) its CDF and (2) its CF. 

7.3 FAMILIES OF DISTRIBUTIONS 

We often consider a collection of distributions with CDFs which differ, 
functionally, only in the values of one or more parameters, the elements of(} E 8. 
In particular, the univariate Gaussian family of distributions is denoted 
{N(JL, a 2) : JL 2 < oo, 0 :S a 2 < oo }, while the multivariate family is denoted 
{Np(JL,:E): JL E 'iRP,JL'JL < oo,(p x p) :E = TDg(>.)T',>.j 2': 0}. More general 
families also exist. Members of the exponential family have PDFs which are not 
all of the same functional form but which can all be expressed in the general form: 

(7.1) 

Members of the elliptically symmetric family have PDFs depending on y. only 
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through a quadratic form: 

(7.2) 

Members of the spherically symmetric family have PDFs depending on y only 
through an inner product: 

fv(y.;8) = h(y:y.;8) = h[(y.- O)'I(y.- 0);8]. (7.3) 

7.4 CUMULATIVE DISTRIBUTION FUNCTION 

Definition 7.1 Every distribution is characterized by a joint cumulative 
distribution/unction (CDF): 

Fy(y.;8) = Pr{y-::; y.[8} 

= Pr{D(yj-::; yj.)[8}. (7.4) 

The simplified notation Fy(y.) is also used and the CDF is also known as 
the distribution function. 

Definition 7.2 A random vector y will be described as discrete if and only if it 
has countable support (smallest S such that Pr{y E S} = 1). 

Definition 7.3 Fy(y.; 8) andy are continuous if and only if Fy(y.; 8) is a 
continuous function of y •. 

7.5 PROBABILITY DENSITY FUNCTION 

Definition 7.4 Fy(y.; 8) andy are absolutely continuous (a. c.) if and only if a 
nonnegative function fv(y.; 8) exists such that the following n-fold integral 
over region Sy

0 
= {y. : y. -::; y0 } exists "i/y0 E ~n: 

(7.5) 

The dy. means dy.1dy.2· · ·dy.n in then-fold integral. 
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Definition 7.5 For continuous distributions, the partial derivative 

8(n) 

fv(y.; 8) = 8 8 .. ·8 Fy(y.; 8) 
Y*1 Y*2 Y*n 

(7.6) 

is the probability density function (PDF), or the density of the distribution, if 
it exists 1::/y. E S. 

Theorem 7.1 If the PDF fv(y.; 8) exists then, with Sy
0 

= {y. : y. :S y 0 }, 

1. r fv(y.; 8) dy. = 1 
}~n 

2. fv(y.; 8) 2: 0 'Vy. E ~n 

3. Fy(Yo; 8) = { fv(y.; 8) dy •. 
lsYO 

(7.7) 

Any function satisfying 1 and 2 is a PDF. Condition 3 implies it is a PDF of 
Fy(y.; 8). 

Theorem 7.2 If fv(y.; 8) is a PDF, and function g(y.; 8) = fv(Y.; 8) except at a 
countable number of points, then g(y.; 8) is also a PDF of Fy(y.; 8). Thus we 
say fv(y.; 8) is unique (a.e.). 

The nonuniqueness must be considered in defining maximum likelihood 
estimation. 

7.6 FORMULAS FOR PROBABILITIES AND MOMENTS 

The formula for a probability or moment changes with the type of random 
variable. Discrete random variables allow writing the formula in terms of a 
(possibly infinite) summation, while absolutely continuous random variables use 
an integral. However, some random variables, such as censored survival time of a 
person in a clinical trial, are neither discrete nor continuous. Furthermore, some 
continuous distributions do not have a PDF (although the CDF always exists). 

A straightforward generalization of the usual (Riemann) integral solves the 
problem for all random variables of interest in the present book. The Stieltjes (or 
Riemann-Stieltjes) integral allows defining probability and moment formulas for 
nearly any type of random variable (discrete, absolutely continuous, or "neither"). 
Handling the mathematically exotic random variables not covered by the Stieltjes 
integral requires measure theory and the methods of Lesbegue integration. 
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Definition 7.6 Following Weisstein (2003), a Stieltjes integral applies to real 
functions f(x) and h(x), both bounded on the closed interval [a, b]. For a 
partition {a= xo <XI<···< Xn-I < Xn = b} andxj < ej < Xj+J, 

n-1 

s = Lf(ej)[h(xH1)- h(xj)] 
j=O 

(7.8) 

is a Riemann sum. If s ----+ s0 , a fixed number, as max(xj+l - xj) ----+ 0, then 
s0 is the Stieltjes integral, written 

so= 1b f(x) dh(x). (7.9) 

Considering the complex plane extends the integral to complex variables. 

Continuity of f(x) and bounded variation of h(x) over [a, b] ensure the Stieltjes 
integral exists for [a, b]. It fails to exist if f(x) and h(x) are not continuous at a 
common point. If h(x) has a continuous derivative, the Stieltjes integral reduces 
to the Riemann integral. Any finite or infinite sum can be expressed as a Stieltjes 
integral with an appropriate choice of h ( x). 

7.7 CHARACTERISTIC FUNCTION 

Definition 7.7 The characteristic function (CF) of the distribution of y is 
defined for i = J=l and 1::/t E ~n as 

¢v(t) = E[exp(it'y)] = E[cos(t'y)] + iE[sin(t'y)] 

= { exp(it!y.) dFy(y.) 
}JRn 

= { exp(it'y.)fv(Y.) dy., 
}JRn 

(7.10) 

with the last line applying only if fv(y.) exists. The first two always apply if 
interpreted in terms of complex-variable Stieltjes integration. 

In general the integrals in the definition require contour integration methods 
(taught in a class on complex variables). The last integral is the Fourier transform 
of fv(y.). Here eiz = cos(z) + i · sin(z) is a complex number. It is represented in 
two dimensions by the coordinates of a point located on the unit circle, 
[cos(z), sin(z)]. Its magnitude is jeizl = jcos2(z) + sin2(z) :S: 1. The mapping 
of [cos(t'y), sin(t'y)] has a simple geometric interpretation (Epps, 1993). The 
mapping wraps the PDF around the unit circle, while ¢v(t) = E() specifies the 
location of the center of mass within the circle. 
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The definition makes it obvious that derivation and manipulation of 
characteristic functions require complex-variable analysis. Despite that, 
characteristic functions can provide many powerful and practical results with 
knowledge of only the most basic results about the complex variables. Most 
importantly for the developments in later chapters, linear transformations of 
random variables induce simple changes in characteristic functions of random 
vectors and matrices. With Gaussian errors, the use of characteristic functions 
greatly simplifies the derivation of distributions of mean and covariance 
estimators. The approach has the important advantage of allowing less-than-full­
rank coding schemes and population covariance matrices with little extra work. 

Theorem 7.3 (a) For any random vector y the characteristic function ¢v(t) always 
exists finitely; specifically, [¢y(t)[:::; 11::/t E ~n. 

(b) Any multivariate characteristic function ¢v(t) is a uniformly continuous 
function. Equivalently, lim[¢y(t+ h)- ¢v(t)[ = 0. 

h__,O 

(c) Ify (n x 1) is distributed with CDF Fy(y.), characteristic function ¢v(t), and 
Ft'y( s) specifies a distribution symmetric about zero 1::/t E ~n, then the 
multivariate characteristic function is real valued and ¢v ( t) E [ -1, 1]. 

Proofof(a). Ift = 0, then ¢v(O) = E(ei 0 ) = E(1) = 1. Ift -j. 0, we consider 
a.fixedvalue oft. Since tis fixed, a E ~exists such that ¢v(t) = [¢v(t)[eia (the 
"polar form"). Constant a is an unknown function oft. For fixed {t, a}, ::Jc such 
that a= t'c. The choice c = t(ajt't) will do. It follows that ¢v(t) = [¢y(t)[eit'c 
and l¢v(t)[ = ¢y(t)e-it'c. Thus [¢y(t)[ = E[exp(it'y- it' c)]= ¢(y-c)(t). Since 
[¢v(t)[ E ~ by definition, cP(y-c)(t) = E[cos[t'(y- c)]+ i · 0. Necessarily 
[¢y(t)[ E [-1, 1] since cos() E [-1, 1]. 

Proof of (b) is left as an exercise. 

Proof of (c). It is left as an exercise to prove the result holds for n = 1. Hence 
it holds for univariate characteristic functions in the set { ¢y

1 
( s) : s E ~' 'v'yj}, and 

for all characteristic functions in the set { cPt'y ( s) : t E ~n, s E ~}. Necessarily 
cPt'y(s) E [-1, 1]1::/t E ~n, s E ~,including s = 1. Also, ¢v(t) E [-1, 1]1::/t E ~n 

since cPt'y(1) = ¢v(t) 1::/t E ~n. D 

Many properties of characteristic functions of multivariate distributions can be 
proven via the following lemma and theorems. In the following discussions, 
sometimes it will be helpful to have ¢(s; t) denote the characteristic function of the 
univariate random variable t'y and write ¢(s; t) = cPt'y(s) = E{ exp[is(t'y)]}. The 
notation emphasizes that s is the argument of function ¢ while t is interpreted as a 
fixed parameter. 
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Lemma 7.1 If n x 1 y has a multivariate distribution and t is a nonrandom n x 1 
vector E ~", then z = t'y = L:?=i tjyj is a scalar random variable with a 

univariate distribution. 

Theorem 7.4 Knowing { <Pt'y(s) :t E ~", s= 1} determines ¢v(t) (Cramer-Wold). 

Proof. By definition, the characteristic function of random variable t'y is 
<Pt'y(s) = E{exp[is(t'y)]} 1::/s E ~and the characteristic function ofrandom vector 
y is ¢v(t) = E[exp(it'y)] 1::/t E ~n. By evaluating the univariate characteristic 
function at s = 1 we can determine the value of the multivariate characteristic 
function 1::/t E ~71 • In fact, <Pt'y(1) = ¢v(t) 1::/t E ~n. 0 

Theorem 7.5 Knowing ¢v( t) determines { <Pt~y( s) : t 0 E ~n, s E ~}. 

Proof. Here t 0 is any fixed, arbitrary vector in ~n. By definition the 
characteristic function of random variable t 0y is <Pt~y(s) = E{exp[is(t0y)]} 
1::/s E ~and the characteristic function of random vector y is ¢v(t) = E[exp(it'y)] 
1::/t E ~71 • By evaluating the multivariate characteristic function at t = st0 we can 
determine the value of the univariate characteristic function 1::/ s E ~. Merely 
evaluate ¢y(sto) = <Pt~y(s) 1::/to E ~". 0 

Theorem 7.6 If the distribution of y (n x 1) is absolutely continuous, then the 
PDF is determined by the characteristic function as 

fv(Y.) = (27r)-n { exp( -it'y.)¢y(t) dt. 
}JRrt 

Proof. The proof is left as an exercise. 

(7.11) 

Theorem 7.7 If xis distributed with CDF Fx(x.) and characteristic function ¢x(t) 
while a and b are two points of continuity of Fx(x.), 
Pr{ a :S: x :S: b} = Fx( b) - Fx( a) can be expressed as 

{ b} I
. 1 !T exp( -ita) - exp( -itb)"' ( ) d 

Pr a < x < = 1m - . '+'x t t. 
- - T-+oo27r -T -it 

The result implies <Px ( s) completely determines Fx( x.). 

Proof. The proof is left as an exercise. 

then 

(7.12) 

The form in the last theorem does not directly provide the CDF if 
Pr{x < 0} > 0 and Pr{x > 0} > 0. Imhof (1961) recommended the following 
result for such cases. 
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Theorem 7.8 If random variable x has CDF Fx(x.) and characteristic function 
¢x(t), while <:.S(z) indicates the imaginary part of z, then for x 0 a point of 
continuity of Fx(xo), 

F( )
-

1
. ~1T<s[exp(-itxo)¢x(t)]d 

x XQ - Ill t. 
T->oo7r 0 t 

(7.13) 

Proof. Gil-Pelaez (1951) included a proof. 

Theorem 7.9 lfy (n x 1) is distributed with CDF Fy(y.), characteristic function 
¢v(t), and J!R"l¢v(t)[ dt < oo, then Fy(y.) is absolutely continuous and a PDF 

fv(Y.) exists. 

Proof. The proof is left as an exercise. 

Theorem 7.10 If random vector x has characteristic function ¢x(t) and 
y =Ax+ b, for conforming constants A and b, then 

¢y(s) = exp(is'b)¢x(A's). 

Proof. ¢y(s) = E{exp[is'(Ax+b)]} = exp(is'b)E[exp(is'Ax)] = 
e(is'b)E{exp[i(A's)'x]} = exp(is'b)¢x(A's). 

(7.14) 

0 

The notation x Jl y indicates the random variables x and y are statistically 
independent. 

0 

Theorem 7.12 If E([y[m) < oo, then the derivative of order m of ¢y(t) exists 1::/t 

and is a uniformly continuous function with ¢~m)(t)lt=D = i111E(y111
). 

A converse is true for even but not odd m. 

Proof. Feller (1968) provided a proof. 

We have given only a brief introduction to characteristic functions. Kendall 
and Stuart (1977) provided a detailed presentation, including proofs of many of the 
results not proven here. Lukacs (1983) reviewed subsequent developments. Epps 
(1993) gave an excellent tutorial on the interpretation and value of characteristic 
functions based on geometric intuition (in the complex plane). 
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7.8 MOMENT GENERATING FUNCTION 

Definition 7.8 If it exists for all real tJ E { -t.j, t.j} with t.j > 0, the moment 
generating/unction (MGF) of the distribution of random vector (n x 1) y is 

my(t) = E[exp(t'y)]. (7.15) 

Unlike the characteristic function, the MGF does not exist for every 
distribution. However, when the MGF does exist, the characteristic function is the 
MGF with it replacing t, namely ¢v(t) = my(it). A proof requires consideration 
of the concept of analytic continuation. 

Theorem 7.13 If the random vector y has mean 1-£, dispersion :E, and MGF 
my(t) = E[exp(t'y)], then 

and 

amy(t) I = E(y) 
at t=o 

=~-t (7.16) 

(7.17) 

When they exist, E(yy') = V(y) + E(y)E(y') and aet'(t) jot= et'(t) OJL(t)jat. 

Proof. The first derivative is an n x 1 vector, 

am (t) 8 
Y = -E[exp(t'y)] 

at at 
(7 .18) 

= E[:texp(t'y)] = E[exp(t'y)y]. 

In tum, evaluating 8my(t)j8t at t = 0 gives E(1 · y) = E(y). 

The second derivative is an n x n matrix, 

82my(t) = .!!__ [amy(t)]' = .!!__ E[ex (t' ) '] 
at at' at at' at P Y Y 

= E[:t exp[(t'y)y'J] 

= E[exp(t'y) :ty' + :texp(t'y)y'] 

= E[exp(t'y) · 0 + exp(t'y)yy'], (7.19) 
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with the matrix 0 being n x n. In tum, 

a;m;(t) I = E(O + 1 . yy') 
t t' t=O 

= E(yy') = V(y) + E(y)E(y'). 

(7.20) 

0 

Theorem 7.14 If x is a random vector with MGF mx(t) and y =Ax+ b for 
conforming constants A and b, then 

my(s) = exp(s'b)mx(A's). (7.21) 

Proof. my(s) =E{ exp[s'(Ax+b)]} =exp(s'b)E[exp(s'Ax)] = 
exp(s'b)E[exp(A's)'x] = exps'bmx(A's). 

7.9 CUMULANT GENERATING FUNCTION 

Definition 7.9 (a) The notation mx(t) and ¢x(t) indicates the MGF (if it 
exists) and characteristic function, respectively, of the random vector x. If 
mx(t) exists, then 

c,(t) = log[mx(t)] (7.22) 

or 

Cx(t) = log[¢x(t)] (7.23) 

may be defined to be the cumulant generating function (CGF) cx(t) of the 
distribution (depending on the author). 
(b) If a scalar random variable x has a power series expansion for 
log[mx(t)], then 

oo trn 
log[mx(t)] = LK:m-

1
. 

m=O m. 
(7.24) 

The coefficients { K:m} are the cumulants. 

0 

Except for the first cumulant, which equals the mean, all cumulants of the 
random variable x are also the cumulants of the random variable x +a for 
constant a (hence the term semi-invariants). After taking derivatives, cumulant m 
equals the derivative of order m oflog[m(t)] evaluated at t = 0, 

_ [)(mllog[m:r(t)]l 
K:m- >l (m) . 

ut t=O 
(7.25) 

If a distribution is determined by its moments, then it is also determined by its 
cumulants. Not all distributions are completely determined by their moments. 
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Moments (and therefore moment and cumulant generating functions) fully 
characterize one class of random variables, namely all with finite variation. If 
Pr{ -oo < a :S: x :S: b < oo} = 1 then, 0 :S: E([x[m) < oo. For some distributions, 
cumulants and the CGF are easier to manipulate than moments and the MGF. 

A useful application of cumulants occurs in the derivation of moments of 
certain distributions. A moment about zero is defined as JL'm = E(xm), while a 
central moment is J-lm = E{[x- E(x)]rn}. Although only positive integer values 
of m are considered for cumulants, moments may exist (or may not, depending on 
the random variable) for any real m. When the moments and cumulants of order 
m exist, "'m may be written as a polynomial of degree m in {JL~, ... , J-l;,} or 
{JL1 , ... , ttm}; alternately, J-lm or J-l;n may be written as a polynomial of degree m 
in {~>, 1 , ... , "'m} (Kendall and Stuart, 1977, vol. 1, Section 3.1.4). Given the first 
four cumulants, the first four moments can easily be found because 

"'1 = J-l~ = E[(x- 0) 1
] = J-l = E(x) 

"'2 = J-l2 = E[(x- JL) 2
] = a2 = V(x) 

"'3 = /-l3 = E[(x- JL) 3
] 

"'4 = /-l4- 3JL2 = E[(x- JL) 4
] - 3JL2

. 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

Kendall and Stuart (1977), Johnson, Kotz, and Balakrishnan (1994), and Harvey 
(1972) presented further details. 

Theorem 7.15 If random vector Yj (n x 1) has CGF ey,(tj) and m finite 
cumulants for (finite) j E {1, 2, ... , J}, with {YJ} mutually independent (Section 
7.12 contains a precise definition of "mutual independence for vectors") and 

s = L,.f= 1yj, then 

Ifn = 1, then 

.J 

C8 (t) = LCy,(t). 
j=l 

.J 

"'m(s) = L"'m(YJ) · 
j=l 

(7.30) 

(7.31) 

The theorem provides some extremely practical and convenient formulas. 
When the expressions make sense, the CGF of a sum is the sum of the component 
CGFs. Also, a cumulant of a sum is the sum of the corresponding cumulants. The 
forms have value in both analytic and numerical work. 
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7.10 TRANSFORMING RANDOM VARIABLES 

Theorem 7.16 If y (n x 1) is distributed with PDF fv(Y.) and t(y) is a vector­
valued function defining (n x 1) z = t(y), with PDF fz(z.) such that the 
mapping of points in the support of y onto points in the support of z is one-to­
one (a.e.), then z = t(y) andy= r 1 (z) exists. Furthermore, with notation as in 
Searle (1982), 

{ ay.j} {. } 
Jy,-->z, = az.k = ]jk 

= ay. = ( ay: ) ' 
az~ oz. ' (7.32) 

the (n x n) Jacobian matrix for the transformation from y. to z., exists. 
Indicating the absolute value of the determinant of the Jacobian as 

(7.33) 

allows writing 

(7.34) 

Many authors (including Schott, 2005) define Jz,-->y, as the Jacobian. The 
reciprocal relationship for respective determinants ensures that either definition 
leads to the same density for the transformed variables. 

Definition 7.10 (a) If z (n x 1) is a random vector and A (n x n) is a finite 
constant matrix, then z = Ay is a linear transformation. 
(b) If constant (and finite) b =1- 0 is n x I then z = y + b is a translation 
(shift in origin). Defining x = Ay + b indicates a linear transformation 
with a translation. 
(c) A linear transformation is full rank (or nonsingular) when A is full rank 
(nonsingular). In such cases A - 1 exists uniquely and the transformation is 
one to one and invertible. The transformation is less than full rank (or 
singular) when A is less than full rank (singular). In such cases A - 1 does 
not exist and the transformation is neither one to one nor invertible. 

The definitions reflect precise, mathematical descriptions of transformations. 
More loosely, it is often convenient to describe a linear transformation with 
translation as simply a linear transformation. Describing a GLMN,q(y;; X;{J, a 2

) 

or GLMN,p,q(Yi; X;/3, :E) as a "linear" model because the unknown parameters 
enter the model equation linearly is consistent with the looser usage. 
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Lemma 7.2 If z. = Ay. +band A -l (n x n) exists, then y. =A - 1 (z. -b), 

(7.35) 

and 

(7.36) 

Here IIMII indicates the absolute value of the determinant of M. 

The following theorem illustrates the use of the transformation theorem for a 
linear transformation. The result is used frequently. 

Theorem 7.17 (a) If y is distributed with PDF fv(y.), n x n constant A is full 
rank and finite, and n x 1 constant b is finite, then the linear transformation 
z = Ay + b = t(y) is one to one andy= A-1(z- b)= r 1(z). 
(b) The Jacobian of the transformation from y to z is Jy,-.z, = IIJy,-.z,ll with 
Jy,-.z, = ayjaz' = A-1

. 

(c) Also, 

(7.37) 

(d) Furthermore z = Ay + b is distributed with PDF 

(7.38) 

Here IIA -Ill indicates the absolute value of the determinant of A - 1 . 

Proof. Left as an exercise. 

Theorem 7.18 (The Cramer-Wold Theorem) The distribution of a random vector 
y (p x 1 ), is completely determined by the one-dimensional distributions of all 
possible linear combinations of the form t'y, in which tis a nonstochastic vector. 
The result does not assume Gaussian distributions! 

Proof. Since a distribution is completely determined by its characteristic 
function, the Cramer-Wold Theorem can be stated {<Pt'y(s) :t E ~P}=?¢y(t). D 

The characteristic function of the univariate random variable t'y is <Pt'y(s) = 
E[exp(ist'y)] '\Is E ~. and the characteristic function of random vector y is 
¢v(t) = E[exp(it'y)] '\It E ~P. If ¢y(t) were unknown, could we determine it 
from the known set { <Pt'y( s) : t E ~P}? Yes, evaluating <Pt'y( s) at s = 1 gives 
<Pt'y(1) = E[exp(it'y)] = ¢v(t). 

Lemma 7.3 If Pis a permutation matrix, then p-i = P'. For a given y E ~", 
z = Py implies y = P' z. Also the Jacobian of the transformation is 1. 
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Theorem 7.19 If y is distributed with CDF Fy(y.), then permutation z = Py is 
distributed with CDF Fz(z.) = Fy(Pz.). 

Proof. Here 

Fy(Pzo) = Pr{y-::; Pzo} = Pr{y. -::;Yo} 
= Pr{y.r -::; Yo!,.··, Y•n -::; Yon} 
= Pr{ z.1 -::; ZQl, ... , Zm -::; Zon} 
= Fz(zo). 

Definition 7.11 The Box-Cox power transformation is given by 

yCA) = { (y), - 1) I A A # 0 
log(y) A= 0. 

The "standardized" version of y(>,) is 

(7.39) 
0 

(7.40) 

(7.41) 

Box and Cox (1964, 1984) proposed maximum likelihood estimates of A and fJ 
based on the model Y?) rv N(Xi/3, a 2). Others have studied the properties of the 
procedure (Carroll and Rupert, 1981; Hinkley and Runger, 1984). 

Definition 7.12 The Bickel-Doksum transformation (A > 0) is given by 

(),l _ sign(y)IYI),- 1 
y - A . (7.42) 

The Bickel-Doksum variation of the Box-Cox transformation can cope with 
negative y values. 

7.11 MARGINAL DISTRIBUTIONS 

Definition 7.13 If an ordered set of n random variables has a joint 
distribution, then any subset of m of them has a joint distribution which is 
known by any one of the following names: the marginal, the joint marginal, 
the marginal distribution, or the joint marginal distribution. 

Permutation matrix properties allow assuming the m variables of interest are the 
first m variables in the ordered set, without loss of generality. The marginal 
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distribution of them variables is uniquely (a.e.) characterized by either its CDF or 
its characteristic function. 

Theorem 7.20 If y (n x 1) has a distribution with CDF Fy(y.; 8) and is 
partitioned as 

m x 1 
(n- m) x 1 

(7.43) 

then the marginal joint distribution of the elements in y 1 is the distribution with 
CDF 

(7.44) 

Proof. 

Fy
1 
(y.1; 8) . 

Fy(Y•i, Y•2 = oo; 8) = Pr{n~~~ (yj -::; Yjo), n7=m+l (Yj < oo )[8} = 

D 

Definition 7.14 For a continuous marginal distribution with CDF F 1 (y.1 ; 8), 
the partial derivative 

(7.45) 

is the PDF of the marginal distribution if it exists 'Vy. 1 E S. 

Theorem 7.21 If fv
1 
(y.1; 8) exists (as just defined), then it satisfies, for 

Sy0 = {Y•l : Y•l -::;Yo}, 

fv1 (y.1; 8) = L"_Jv(y.; 8) dy.2 

LJ Yl (Yd; 8)dy.l = 1 

fv
1 
(Y>~; 8) ~ 0 1::/y>i E ~rn 

Fy1 (Yo) = { fv1 (Y>~;8)dy•l· 
is"" 

Proof. Left as an exercise. 

(7.46) 

(7.4 7) 

(7.48) 

(7.49) 

Theorem 7.22 The marginal characteristic function of y 1 may be obtained by 
evaluating the characteristic function of y' = [ y~ Y2] at t 2 = 0, 
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7.12 INDEPENDENCE OF RANDOM VECTORS 

Definition 7.15 Any pair of random vectors y 1 (n 1 x 1) and y 2 (n2 x 1) are 
statistically independent if and only if Pr{y1 E 51, Y2 E 52} = 

Pr{y1 E 5!}Pr{y2 E 52} 1::/ Borel-measurable sets 5 1 and 52. 

A Borel set is "a measurable set that can be obtained from closed sets and open 
sets on the real line by applying the operations of union and intersection repeatedly 
to countable collections of sets." (Daintith and Nelson, 1989). 

Definition 7.16 The members of a set of n random vectors (n < oo) 
{Yj ( ni x 1 ), j E { 1, 2, ... , n}} are pairwise independent if and only if any 
pair of random vectors in the set are statistically independent. 

The last two definitions do not imply the elements of y 1 (or the elements within 
any other Yj) are independent. An example illustrates the point. The {Y;'} for 
GLMN,p,q(Y;; XiB, :E) are pairwise independent. However, within a particular 
Y;' the elements are not independent because they have nondiagonal covariance :E. 

Definition 7.17 The members of a set of n random vectors (n < oo) 
{yj, n j x 1, j E { 1, 2, ... , n}} are mutually independent if and only if 

(7.51) 

for all Borel-measurable sets { 5j}. The vectors may also be described as 
having as total independence or just independence. 

Theorem 7.23 If n x 1 y' = [yi y~ ], with Yl m x 1 and Y2 (n- m) x 1, has 
CDF Fy( [ y:1 y:2 ]'; 8) and characteristic function ¢v( [ t~ t2 ]'; 8) defined 
1::/y E ~n, t E ~71 , then y 1 and y 2 are statistically independent ¢? 

(7.52) 

1::/y E ~n. Independence requires the CDF of the joint distribution of y to equal 
the product ofthe CDFs of the marginal distributions ofy1 and y 2 . Furthermore, 
Y1 and Y2 are statistically independent ¢? 

(7 .53) 

1::/t E ~n. Independence requires the characteristic function of the joint 
distribution of y to equal the product of the characteristic functions of the 
marginal distributions of y 1 and Y2· 
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Proof. Left as an exercise (Cramer, 1946, p. 266, may be consulted). 

Corollary 7.23.1 Similar statements of mutual independence can be formulated for 
a finite number of n subvectors {y1, y2, ... , Yn}· 

Proof. Left as an exercise. 

Corollary 7.23.2 If the characteristic functions are replaced by MGFs, then the 
second part does not hold true for some distributions, even though the theorem 
(as stated in terms of characteristic functions) holds true for all distributions. 

Proof. Left as an exercise. (Hint: Find a distribution.) 

Corollary 7.23.3 Any pair of random vectors y 1 (n 1 x 1), y 2 (n2 x 1) are 
independent if and only if l::/t1 E ~711 and l::/t2 E ~n, it follows that t;yi is 
independent oft2Y2· Symbolically, YI Jl Y2 ¢? t;yl Jl t2Y2 1::/t~, l::/t2. 

Proof. Left as an exercise. 

Corollary 7.23.4 The members of a set of n random vectors (n < oo) 
{Yi (nj x 1), j E {1, 2, ... , n}} are pairwise independent if and only if tjyj is 

independent of tk:Yk 1::/tj E ~n1 , tk E ~n,. Symbolically, {yj, j E {1, 2, ... , n}} 
pairwise Jl ¢? { t)Yi Jl tlcYk 1::/ j -1- k, tj, tk}. 

Corollary 7.23.5 The members of a set of n random vectors (n < oo) 
{yj, nJ x 1, j E {1, 2, ... , n}} are mutually independent or just independent if 
and only if the members of a set of n random variables, 
{ t)YJ : j E { 1, 2, ... , n}} are pairwise independent for all choices of tj E ~71 

J. 

Theorem 7.24 If n x 1 y' = [yj y2], with y 1 m x 1 and y 2 (n- m) x 1, has 
PDF fv(y.; 8) and the marginal distribution of Yi has PDF fj(y.j; 8), j E {1, 2}, 
then y 1 and Y2 are independent if and only if fv(y.; 8) = j 1 (Yi•l; 8)f2(y.2; 8) 
1::/yE R11

• 

Proof. Left as an exercise. 

7.13 CONDITIONAL DISTRIBUTIONS 

Definition 7.18 If n x 1 y' = [yj Y2], with y 1 m x 1 and y 2 (n- m) x 1, 
has a joint distribution with CDF Fy(y.; 8), the marginal of y 1 has CDF 
Fy1 (y, 1; 8), S C ~"' is a Borel-measurable set, and a function 
F211 (Y.21Ym; 8,) exists such that 
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Pr{yl E S,y2 :S:y02} = fsF2/I(Y.2IY•l;8c)dFy 1 (Y•l;8) (7.54) 

1::/ S C 3{P and Yo2 E 3{n-l, then F211 (y.2IY•L 8c) is called the CDF of the 
conditional distribution ofthe random vector Y2ly1 = y01 . Furthermore any 
random vector with CDF F2/I (yd Ym; 8c) may be called Y2IY1 =YO!· 

In practice, Y2IY1 = Yo1 and Y2IY1 are often used interchangeably, although 
they do not represent precisely the same random vector. 

Theorem 7.25 If the joint distribution of n x 1 y' = [ y~ y2], with y1 m x 1 and 
y2 (n- m) x 1, is absolutely continuous with PDF jy(y.; 8) and the marginal 
distribution of YI has PDF jy1 (Y•li 8) with support S1 <;;; 3{m (i.e., 
Pr{y1 E S!} = 1), then 
(a) the CDF of the conditional distribution of Y2IY1 =Yo! is, with 
SYo2 = {Y•2 : Y•2 :S: Y02}, 

(7.55) 

and (b) the density of the conditional distribution is, 'Vy. 2 E 5 1, 

(7.56) 

In many cases conditional distributions do not exist. A conditional probability 
exists only if the probability in the denominator is greater than zero. 

7.14 (JOINT) MOMENTS OF MULTIVARIATE DISTRIBUTIONS 

Definition 7.19 (a) The expected value of random vector y is a vector-valued 
function of the joint CDF Fy(y.; 8) defined as 

[ 
E(yi) l 

E(y) = : 
E(yn) 

(7.57) 

with 

(in general) 
(7.58) 

(if the PDF exists). 
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j(b) The value of E(y) is ann x 1 vector 1-£ also known as the mean vector. 
The vector of means exists if all its elements {J-lj} are finite. 

Definition 7.20 If y is a random vector which follows a distribution with CDF 
Fy(y; 8) and 

[

hl(Y)l 
h(y) = : 

hk(Y) 
(7.59) 

is a vector of functions of y E ~n which are integrable with respect to 
Fy(y; 8), then the expected value of E[h(y)] is defined as the following 
elementwise integral operation: 

[

E[hi(Y)]l 
E[h(y)] = : 

E[hk(y)] 
(7.60) 

with 

(in general) 
(7.61) 

(if the PDF exists). 

The moments exist if the integrals are finite. 

Definition 7.21 (a) If y follows a distribution with CDF Fy(y.; 8), c E ~k, 
m > 0, and 

(7.62) 

(in general) 
(7.63) 

(if the PDF exists). 

(b) If c = 0, then E[h(y)] = [J-lm',l · · · J-lm',k ]' = /-trn' is the set of moments 
about 0 of order m, 
(c) If c = /-£1', then E[h(y)] = [J-Lm,l · · · J-lm,k ]' = 1-trn is the set of central 
moments of order m. 

Usually we work with random vectors because distributions, covariance 
matrices, and many related properties of scalar random variables remain well-
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defined for random vectors. In addition, we sometimes consider random matrices, 
such as ann x p data matrix Y. Similarly, an estimated covariance (dispersion) 
matrix is a symmetric random matrix. 

Definition 7.22 If y = {yjk} is an n x p array of random variables having a 
joint distribution and E(Yjk) exists (finitely) for all (j, k), then x p matrix of 
expected values is E(Y) = {E(Yjk)}, with expectation an elementwise 
operation. 

Theorem 7.26 IfY and X are random n x p arrays and A, B, and Care constant 
matrices which conform for the matrix operations implied, then 

E(X + Y) = E(X) + E(Y) 
E(X +C) = E(X) + C 

E(O) = C 
E(AX) = AE(X) 
E(XB) = [E(X)]B. 

Definition 7.23 If it exists, the covariance or dispersion matrix V(y) is 

V(y) = E[(y- JL)(y- JL)'], 

(7.64) 

(7.65) 
(7.66) 

(7.67) 

(7.68) 

(7.69) 

with JL = E(y) and the (j, k) element a variance V(yj) if j = k and a 
covariance V(yj, Yk) otherwise. In particular, 

{ 
J (y.j-{Jj)(y.k-f.Lk) dFy(y.; 8) (in general) 

E[(Yrf.Lj)(yk-f.Lk)] = (7.70) j (y.j-{Jj)(y.k-f.Lk)fv(y.; 8) dy. (if a.c.). 

The array of second-order moments exists if and only if all its elements {a jk} 
have finite values. Although using a] in place of ajj seems tempting, consistent 

use of ajj helps prevent confusion. 

Theorem 7.27 If random vector y = [ Y1 · · · Yn ]' has a continuous JO!llt 
distribution, E(y)=JL, V(y)=:E, and ajj=V(yj)<oo 'v'jE{1,2, ... ,n}, 
then, for conforming constants A, a, and t, the following all hold. 

(a) (ajd = [V(yj, Yk)]
2 

-::; V(yj)V(yk) < oo 
(b) V(y +a)= V(y) = :E 'v'a E ~n 

(c) V(Ay) = AV(y)A' = A:EA' 'v'A E ~mxn 

(d) V(t'y) = t'V(y)t = t':Et ~ 0 'v't E ~n 
(e) :E is either positive definite or positive semidefinite 
(f) :E = E[(y- d)(y- d)']- (JL- d)(JL- d)' 'v'd E ~n 
(g) :E = E(yy') - JLJL1 ford = 0 
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Proof. Left as an exercise. Hints: The Cauchy-Schwartz inequality, 

[J: f(x)g(x)dx] 2 :S J:[f(x)j2dxJ:[g(x}Fdx, =?(a). The integral definition helps 
with (b). Also (c) =? (d)<(:::} (e). 

Theorem 7.28 If y' = [ Yi y; ], with Yi of dimension p;, and all elements have 
finite second moments, then 

(7. 71) 

with :Ejk (PJ x Pk) described as a covariance matrix. Also :Ejj = V(yj)· Here 

:E12 = :E21 = E[(Yl- ~-td(Y2- /-£2)'], often written V(yl, Y2) = [V(y2, Yi)]'. 
For (conformable) constants A and B, V() is a bilinear operator, 

(7.72) 

and V() is invariant to adding constants, 

V(a + Ay1, b + By2) = AV(y1, Y2)B'. (7.73) 

Proof. Left as an exercise. 

Theorem 7.29 For a random vector z following any distribution with finite second 
moments and T a fixed and conforming matrix, E(Tz) = Tl-£z and 
V(Tz) = T:EzT'. 

Definition 7.24 If n x 1 random vector y has V(y) = :E = {ajk} with 
0 < ajj < oo, then x n correlation matrix is 

P = [Dg( {au, ... , ann} )r112:E[Dg( {au, ... , ann} )r112 , (7.74) 

with (j, k) element Pjk = aJk(aJ]O"kk)-
112

. If j = k, then Pjj = 1, and 
otherwise PJk is the correlation between YJ and Yk· 

Theorem 7.30 If n x 1 random vector y has V(y) = :E, with 0 < ajj < oo, then 
(a) PikE [-1, 1] 1::/j, k 
(b) P (n x n) is symmetric and nonnegative definite. 
(c) For any given :E the unique value of Pis 

(d) For any given P the value of:E depends on knowing Dg(:E) because 

:E = [Dg(:E)]l/2 P[Dg(:E)]l/2. 

(7.75) 

(7.76) 

Proof. (a) The Cauchy-Schwartz inequality implies a.Jk :S ajjakk, which 

implies Pjk E [-1, 1]. (b) :E is positive semidefinite and congruent toP. Hence 
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P is also positive semidefinite (by Sylvester's law of inertia). (c) is true by 
definition. (d) Any valid choice of standard deviations (strictly positive and finite) 
yields a valid value for :E. 

Definition 7.25 For 

(7.77) 

(a) the vectors y 1 and Y2 are uncorrelated <(:::} :E12 = 0 <(:::} P 12 = 0. 
(b) The elements of y1 are uncorrelated <(:::} :Ejj is diagonal <(:::} ?;1 =I. 

A lack of correlation does not necessarily imply statistical independence. 

7.15 CONDITIONAL MOMENTS OF DISTRIBUTIONS 

Here we consider properties of y[x. In particular, E[E(y[x)] = E(y), while 
E[V(y[x)] :S V(y). The second result should seem reasonable because 
V(y[x = x 0 ) :S V(y) l::/x0 , with equality whenever y Jl x. Knowing the specific 
realization of x can only reduce uncertainty about the value of y. 

Lemma 7.4 If y and x have a joint distribution, then the CDF and PDF (if it 
exists) are 

Fy(y.) = E[Fvlx(y.[x.)] (always) 

fv(Y.) = E[fvlx(y.[x.)] (if it exists). 

Proof. Left as an exercise. 

(7.78) 

Theorem 7.31 Ify and x have a joint distribution then E(y) = E[E(y[x)], which 
for clarity may be written E(y) = Ex[Ey(y[x)]. 

Proof. (For absolutely continuous distributions.) 

E(y) = J y,fv(Y.) dy. 

= J y. [/ fv,x(y., x,)dx,] dy, 

= J J Y•fv,x(y.[x.)fx(x.) dx. dy, 

= J [! Y·fvlx(y.[x.)dy,] fx(x,) dx. 

= E[E(y[x)] = Ex[Ey(y[x)]. 

(7.79) 
0 
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Theorem 7.32 If y and x have a joint distribution and the moments exist, then 

V(y) = E[V(ylx)] + V[E(ylx)]. 

Proof. If JL = E(y) and Jlc = E(ylx) then 

V(y) = E(yy') - JLJL1 

Also 

and 

= [E(yy')- E(JLcJL~)] + [E(JLcJLc)
1

- JLJL']. 

E(yy')- E(JLcJLc)' = E{E(yy'lx)- E(ylx)[E(ylx)J'} 

= E[V(ylx)] 

E(JLcJLc)
1

- JLJL 1 
= E(JLcJLc)

1
- E(JLc)E(JL~) 

= V(JLc) 
= V[(E(ylx)]. 

(7.80) 

(7.81) 

(7.82) 

(7.83) 
0 

7.16 SPECIAL CONSIDERATIONS FOR RANDOM MATRICES 

At first glance, generalizing to matrices introduces no great complication. It 
obviously makes sense to define, for X = { x jk} with x jk random, 

E(X) = {E(xjk)}. (7.84) 

However, even when {xjk} have finite second moments, V(X) has no obvious 
meaning, although V[vec(X)] and {V(xjk)} are well defined (and typically quite 
different). For probability calculations and other operations directly involving 
matrix elements, expressions in terms of the vee() and vech() operators seem most 
useful. In contrast, it is often advantageous to consider moment calculations in 
terms of the original matrix form. Consequently the characteristic (and moment 
and cumulant generating) functions have been generalized. 

The characteristic function tends to be used more in the study of random vectors 
than for scalars. In tum, it plays an even bigger role for random matrices. Scalar 
(continuous) random variables that are commonly studied rarely fail to have a 
density. In contrast, singular vector and matrix Gaussian random arrays, which do 
not have a density, arise naturally in the study of data analysis. Even when a 
density for a vector or matrix exists, it may not have a convenient closed form. 
Useful expressions for CDFs are even more rare. Furthermore, even when known, 
densities for random vectors and matrices often prove difficult to manipulate, for 
both analytic and computational purposes. 

At least for the random vectors and matrices of interest in the present book, the 
characteristic functions are never more complicated than corresponding densities 
(when they exist), and often much simpler. In tum, much simpler proofs can often 
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be found in terms of characteristic functions. Most importantly, the proofs often 
apply to a wider range of distributions by tolerating random vectors and matrices 
which do not have densities (due to singularities in the distribution function). 

The first task is to generalize the definition of the characteristic function of a 
vector to a matrix. The definition follows the one give by Gupta and Nagar (2000, 

p45-46, with some notation changed). 

Definition 7.26 With i = J=l, T an arbitrary real n x p matrix, and random 
{ x jk} having a well-defined joint distribution, the characteristic function of 
nxpX = {xjk} is 

¢x(T) = E{exp[tr(iT'X)]}. (7.85) 

Definition 7.27 With T an arbitrary real nxp matrix and random {xjk} 

having a well-defined joint distribution, the moment generating function of 
n x p X= { Xjk }, when it exists, is 

mx(T) = E{ exp[tr(T' X)]} . (7.86) 

Definition 7.28 With T an arbitrary real n x p matrix, and random { xjk} 
having a well-defined joint distribution, the cumulant generating function of 
n xp X= {xjk}, when it exists, is 

cx(T) = log[mx(T)]. (7.87) 

The following lemma generalizes the result about a linear transformation of a 
random vector. The matrix form allows simple proofs of many results concerning 
Gaussian variables and corresponding covariance estimators. Most importantly, 
the lemma allows less than full rank transformations, even when applied to random 
variables lacking a density. In applications in later chapters, the resulting 
characteristic function is often seen to correspond to a known distribution. 

Lemma 7.5 If Y = AX B + C for random X and finite constants {A, B, C} of 
any rank and conforming size (n1 x PI)= (n1 x n )(n x p)(px Pi)+(ni x PI), then 

c/Jy(T) = ¢x(A'TB') · exp[itr(T'C)]. (7.88) 

Proof. The result is proven by writing 

E(exp{tr[iT'(AXB +C)]})= E{exp[tr(i T'AXB) + tr(iT'C)]} 
= E{ exp[tr(i BT' AX) ]exp[tr( iT' C)]} (7 .89) 

= E(exp{tr[i(A'TB')'X] })exp[itr(T'C)]. 0 



CHAPTERS 

Scalar, Vector, and Matrix Gaussian 
Distributions 

8.1 MOTIVATION 

The Gaussian distribution, which was discovered by de Moivre in 1733, has 
likely been studied more than any other. The distribution often provides a 
plausible model in a wide range of applications, primarily because it arises so often 
as the asymptotic distribution specified in central limit theorems. Equally 
importantly, Gaussian distributions and distributions of functions of Gaussian 
variables, such as chi squares, typically provide the backbone of many distribution­
free results for large samples. The statement holds for many scalar, vector, and 
matrix forms. 

In the context of linear modeis, assuming Gaussian error terms typically implies 
estimators of means and treatment effects (expected-value parameters) often follow 
Gaussian distributions. Gaussian distributions may provide an appropriate model 
of a first moment (mean, locatron) in scalar, vector, or matrix form. 

We avoid the term "normal" distribution to avoid the implication that the 
distribution should be expected >to apply or is "usuaL" The term originated from a 
philosophical position about tmiversal laws of nature. RefeiiJ.ng to a "Gaussian" 
distribution helps emphasize it i:s one particular distribution among many and that 
the specific choice must be juslliffied in any particular application. We mostly 
ignore the important practical pttoblem of defending the use of the Gaussian 
assumption for a partioular set of data and proceed under the assumption. 

Statisticians have !devised many ways of charncterizing the Gaussian 
distribution. The approaches vary in the simplicity of assumptions and 
presentation, generality of parameten; allowed, and ease of learning. We maintain 
complete generality but sacrifice some simplicity of presentation to make learning 
easier. We begin with the standard scalar Gaussian and define the general scalar 
Gaussian as a (scalar) linear transformation of the standard Gaussian. Some 
transformation constants lead to nonsingular distribution functions (they have 
continuous derivatives which provide a density) and correspond to nondegenerate 
random variables. Other transformation constants lead to distribution functions 
which are singular (they do not have continuous derivatives or a density) and 
correspond to degenerate random variables. 

139 
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The same sequence of constructions generalizes from scalars to vectors, 
beginning with a vector of independent standard Gaussian variables. In tum, many 
of the convenient and special properties of the vector Gaussian are derived. The 
chapter concludes with consideration of matrix forms of Gaussian variables. Such 
forms are particularly useful in the study of multivariate models, especially 
multivariate linear models. 

8.2 THE SCALAR GAUSSIAN DISTRIBUTION 

We delay defining the scalar Gaussian until we prove the function we claim is 
its density is in fact a density. Lemma 8.1 provides the standard Gaussian result. 

Lemma 8.1 

(8.1) 

Proof. The lemma is true if and only if the square of the integral is 27r. Here 

[l: exp( -z;/2) dz.] 
2 

= [l:exp( -x;/2) dx.] [l:exp( -y;/2) dy.] 

= I:l:exp [- ( x; + y;) /2] dx. dy. . (8.2) 

Switching to polar coordinates gives x. = r.cos(B.) and y. = r.sin(B.), with 
r; = x; + yz and dx.dy. = r.dr.dB. (r. is the Jacobian of the transformation). In 
tum, 

(8.3) 
D 

Theorem 8.1 The function fz(z.) = (27r)-112exp(-zz/2) is the density of an a.c. 
random variable with domain the real line. 

Proof. The function is nonnegative and integrates to 1 over the real line (by the 
lemma). By Theorem 7.1, the function is a density of a random variable. D 
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Corollary 8.1.1 For fz(z.) = (27rt 112exp( -z;/2), 
(a) the MGF of z is m 2 (t) = exp( -t2 /2) and 
(b) the CF of z is ¢z(t) = exp( -t2 /2). 
(c) E(z) = 0 and V(z) = E(z2

) = 1. 
(d) All odd moments are zero. 
(e) Ifm E {2, 4, ... }, then E(z"') = (m- 1)(m- 3)· · ·(3)(1). 
(f) The cumulants { K:m} are all zero form > 2. 

Proof. (a) 

E[exp(zt)] = (27r)- 112 I: exp(z.t)exp( -z;/2) dz. 

= (21r)- 112 I: exp[( -z; + 2z.t- t 2 + t 2)/2] dz. 

= (27r)-112 I: exp [ -(z.- t)
2 
/2 + t2 /2] dz. 

= exp ( t2 /2) (27r t 1
/

2 I: exp [ -(z. - t)
2 
/2] dz. 

= exp(t2 /2) (27r)-112 I: exp [ -( u.)
2 
/2] du. 

= exp(t2 /2) · 1. (8.4) 

(b) The characteristic function of z is 

E[exp(izt)] = (27r)-112 I: exp(iz.t)exp( -z;/2) dz. 

= (21rr 1
/
2 I: exp [ ( -z; + 2iz.t + t 2 

- t 2
) /2] dz. 

= (27r)- 112 I: exp [ -(z. - it) 2 /2 - t 2 /2] dz. 

= exp( -t2 /2) (27r )-1
/
2 I: exp [- (z. - it)

2 
/2] dz. 

(skipping a complex integration) 

= exp( -t2 /2) · 1. (8.5) 

(c) Moments are easily computed by integration or from derivatives of the MGF. 
(d) True due to symmetry about the origin. 
(e) and (f) are left as exercises (consider induction). 0 

Corollary 8.1.2 If the random variable z has density fz(z.) = 

(27rt 112exp(-z;/2) and domain ~1 , then y = az + J-l, 
(a) for (real) constants -oo <JL < oo and 0 < a 2 < oo, has domain ~1 and density 

(b) If a 2 = 0 and -oo < J-l < oo, then y = az + J-l is a discrete and degenerate 
random variable, with Pr{y = J-l} = 1, andy does not have a density. 
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Proof. If 0 < a 2 < oo, the function must be nonnegative, integrate to 1 over the 
domain, and integrate to provide the CDF of y for 0 < a 2 < oo. The function 
fv(y.; JL, a 2

) is clearly nonnegative for ally. (finite J-l, and 0 < a 2 < oo ). Also, 

Pr{y-::; Yo}= Pr{(az + JL)-::; Yo} 
= Pr{z-::; (Yo- JL)/a} 

l
(yo-!1)/a 

= -oo (27r)-112exp( -z;/2) dz •. 

If y0 __. oo then the integral is 1 over the real line (by the lemma). 
transformation t = a z. + J-l gives dt. = a dz. and z. = ( t. - J-l) /a. In tum, 

(8.7) 

The 

(8.8) 

If a2 = 0 then y = 0 · z + J-l = J-l and Pr{y = JL} = 1. If so, y is a discrete random 
variable and does not have a density. 0 

Corollary 8.1.3 For (real) constants -oo < J-l < oo and 0 -::; a 2 < oo, the 
characteristic function of y = a z + J-l is 

¢v(t) = eit11¢z(at) 
= exp(itJL- a 2t2 /2), (8.9) 

and the MGF is my(t) = exp(tJL + a 2t 2 /2). Furthermore, E(y) = J-l and 
V(y) = a 2, which fully characterize the distribution. 

Definition 8.1 (a) A scalar (real) random variable z with density 

(8.1 0) 

is said to follow a standard Gaussian distribution, written z '""N(O, 1). 
(b) If J-l and 0 < a 2 are finite real constants, then the scalar random variable 
y = az + J-l has density 

(8.11) 

and is said to follow a Gaussian distribution, written y '""N(JL, a 2). 

(c) If a2 = 0 (and J-l is finite), then y does not have a density, and follows a 
singular Gaussian distribution, written y '""SN(JL, 0), with Pr{y = J-l} = 1. 
(d) Writing y'"" (S)N(JL, a 2 ) indicates y may be either singular or 
nonsingular (with 0-::; a 2 < oo), which is sometimes written y'"" N(JL, a 2

). 

The adjective "singular" reflects a singularity at a 2 = 0 for fv(Y; JL, a 2), 

considered as a function of a 2• The corresponding CDF, considered as a function 
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of y., has a singularity at JL. Although y'"" SN(JL, 0) does not have a density, its 
CDF and other properties are well defined. The singular Gaussian can be 
appropriately treated as the limiting case of a (nonsingular) Gaussian for a 2 ----> 0. 

Other singularities arise if J-l----> ±oo or a 2 ----> +oo (separately). Although such 
conditions arise naturally as limiting cases, it is very common, although not 
universal, to exclude them from the definition of singular Gaussian, as we do here. 
In contrast, electrical engineers sometimes find it convenient to describe a 
theoretical source of random noise as having equal power at all frequencies. Such 
"white" noise corresponds to a Gaussian random variable with infinite a 2• 

No other values for {JL, a 2} lead to a valid distribution (at least without strong 
side conditions). In particular, if -oo < a 2 < 0 and -oo < J-l < oo, then the 
integral of exp[-(y.- tt? /(2a2)] over the real line does not exist. Furthermore, 
having J-l and a 2 approach either +oo or -oo (at the same time) may lead to 
undefined forms. Sufficiently strong side conditions, such as having the sequences 
increase in closely linked and particular ways, are needed to create valid 
distributions. We leave consideration of such exotic cases to others. 

Having carefully defined the scalar Gaussian distribution, it would be natural to 
derive associated properties, such as the characteristic function, MGF, CGF, 
moments, and cumulants. In particular, y'"" (S)N(JL, a 2 ) has mean E(y) = J-l and 
variance V(y) = a 2 ( -oo < J-l < oo and 0 :::; a 2 < oo ). Given that the reader is 
probably already familiar with properties of the scalar Gaussian, we present the 
scalar forms only as special cases of vector forms in the next section. 

8.3 THE VECTOR ("MULTIVARIATE") GAUSSIAN DISTRIBUTION 

Our approach to the vector Gaussian proceeds in three stages. First we 
construct random vectors as increasingly more complex linear transformations of a 
set of i.i.d. scalar Gaussian variables {zi} '""N(O, 1). Second, we describe the 
associated characteristic and related generating functions. Third, and finally, we 
demonstrate how any random vector possessing such a characteristic function can 
be expressed in terms of an underlying set of i.i.d. scalar Gaussian variables. No 
claim is made that the underlying variables were constructed directly from 
independent Gaussian variables. However, we are free to operate as though they 
were. Consequently properties of any vector Gaussian can be expressed in terms 
of properties of a set of fully independent unit Gaussian variables. 

Definition 8.2 (a) An m x 1 random vector z (1 :::; m < oo) with i.i.d. 
element Zj rv N(O, 1) follows a standard vector (multivariate) Gaussian 
distribution, written z rv Nm(O, I), with 0 m x 1 and I m x m. 
(b) An m x 1 random vector z (1 :::; m < oo) with i.i.d. element 
z.i '""N(J-Lj, 1) follows a standard noncentral vector (multivariate) Gaussian 
distribution, written z rv Nrn(~-t,I), with 1-£ = {JLJ} m x 1 and I m x m. 
For clarity, if 1-£ = 0, then z may be described as standard central vector 
(multivariate) Gaussian. 
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(c) If z ,...., Nm(O, I) and finite constant Cf) is n x m with 
1 :::; rank(~)= m:::; n, the n x 1 vector y = ~z + J.L follows a vector 
("multivariate") Gaussian distribution, written y ,...., Nn(J.L, E), with 
E = ~~' (n x n) of rank m. 
(d) If m = n, then E is nonsingular and y follows a nonsingular vector 
(multivariate) Gaussian distribution. 
(e) If m < n, then E is singular and y follows a singular vector 
(multivariate) Gaussian distribution, written y ~ SNn(J.L , E). 
(t) If m:::; n, then E may or may not be singular, which may be indicated 
y"' (S)Nn(J.Ly, E) for clarity, simply as y ,...., Nn(J.Ly, E). 
(g) If z ,...., N m(O, I) while finite constant matrix~ is n x m, n 2: m 2: 1, 
and rank(~) = 0, then ~ = 0 and n x 1 vector y = ~ z + JL, for J.L finite 
and constant, follows a degenerate (or completely singular) vector 
(multivariate) Gaussian distribution, written yrvSNn(J.L, 0). Also 
Pr{y=p,} = 1. 

Example 8.1 A GLM1v.q(:w; X 1{3 , f.f2 ) with Gaussian errors and ful l rank X has 

p = [<X 'X )- 1X '] y 

""J\q {j , (X ' X )- 1 o2] . (8.12) 

With or without full-rank X but with the requirements of full rank of 
M = C (X 'X )- C ' and C = C (X 'X )- (X 'X ) (which ensures 6 is testable), 

8 - Oo = C P - Oo 

"".No{ 6 - Oo, IC (X ' X )-OT 1 
o 2

}. 

f or rank(X ) = r:::; q, H = X (X 'X )- X ', rank(H ) = r, and 

fj = Hy 
,...., SN.~ (XB,Ho2) . 

Also 

e =(I - H )y 
...- SN;v [o, (I - H )o2

] , 

with rank( I - H ) = N - r. In contrast. e ....., N N(O, I o2). 

(8.13) 

(8. 14) 

(8.15) 

Theorem 8.2 (a) A standard central vector Gaussian z rv Nm(O, I) has 
characteristic function ¢z(t) = exp( -t!tf2), moment generating function 
mz(t) = exp(t!t/2), mean E(z) = 0 (m x 1) and covariance V(z) = I (m x m). 
(b) A standard noncentral vector Gaussian z,...., Nm(J.L, I) has characteristic 
function ¢z(t) = exp(it'p,-t!t/2), moment generating function mz(t) = 
exp(t'p, + t't/2), mean E(z) = J.L (m x 1), and covariance V(z) =I (m x m). 
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(c) The characteristic function ofy'"" Nn(J-t, :E) is ¢v(t) = exp(it'~-t- t':Et/2), 
and the moment generating function is my(t) = exp(t' 1-£ + t':Et/2). 
(d) A vector Gaussian y'"" Nn(J-t, :E) has a distribution fully characterized by 
{J-t, :E}, which are the mean vector and covariance matrix, respectively. 

Proof of (a). Due to independence properties, 

m m 

¢z(t) = IT¢z
1
(tj) = Ilexp(-t]/2) 

j~l j~l 

= exp (-ft]/2) 
y~I 

= exp( -t't/2). (8.16) 

A parallel argument gives mz(t). 

The first moment is E(z) = {E(zj)} = {0}. Independence among elements 
gives V(zj, zj') = 0. Combining zero covariance with E(zJ) = 1 gives V(z) =I. 

Proof of (b). Left as an exercise. 
Proof of (c). Necessarily :E = cpcp' for cp m x n of rank m, andy= cpz + 1-£ 

is a linear transformation of z '""Nm(O, I). Linear transformation properties give 

¢y(s) = exp(is'~-t)¢z(IP's) 

= exp(is'~-t)exp[ -(IP' s)'(cp' s)/2] 

= exp(is' 1-£- s'~Pcp' s/2) 

= exp(is' 1-£- s':Es/2). 

A parallel approach provides the MGF. 

(8.17) 

Proof of (d). The characterization by (J-t, :E) is obvious from inspection of the 
characteristic function, coupled with the unique determination of a distribution by 
a characteristic function. The moments may be found by differentiating the MGF, 
once for the mean and twice for the second moment about zero, and setting t = 0. 
Alternately, E(y) = E(~Pz + J-t) = IPE(z) + 1-£ = 1-£ and V(y) = V(~Pz + /-ty) = 
V(~Pz) = IPV(z)IP' = cpcp' =:E. 0 

Lemma 8.2 Any full-rank and orthonormal transformation of a standard vector 
Gaussian is also standard vector Gaussian of possibly smaller dimension. More 
specifically, if A is constant, m x n, 1 :S: m :S: n, AA' = Im (full row rank and 
rowwise orthonormal), and Zl rv Nn(O, I), then Z2 = Azl rv Nm(O, I). 

Proof. As a linear transformation of z 1, the characteristic function of m x 1 z 2, 

with m x 1 s, is 
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¢z,(s) = cPAz,(s) = eis'O · ¢zJA's) 

= 1· exp[-(A's)'A's/2] 

= exp( -s' s/2). (8.18) 

Recognizing the last expression as the characteristic function of a standard vector 
Gaussian (of dimension m), coupled with the unique determination of a 
distribution by a characteristic function, completes the proof. D 

Theorem 8.3 Linear transformations of vector Gaussian variables are Gaussian 
(the reproductive property). Ify2 =elY!+ Co for finite constants 01 (n2 X nl), 
Co (n2 X 1), and Yi rv NnJJLr, EJ), then Y2 rv Nn,(CIJLI +Co, OlEIC{). The 
special case of n 2 = 1 implies all linear combinations of vector Gaussian 
variables are scalar Gaussian. As for all Gaussian variables, the rank of 
E 2 = 0 1 E 1 C{ determines whether y 2 is degenerate, singular, or nonsingular. 

Proof. As a linear transformation, the characteristic function may written 

c/Jy,(s) = exp(is'eo)¢y,(O{s) 

= exp(is'eo)exp[i(Cfs)' JL1 - (O;s)'E1 (O;s)/2] 

= exp(is'eo + is'01JL1 - s'C1EIC{sj2) 
= exp[is'(eo + 0 1JLi)- s'OIEICfs/2]. (8.19) 

The function is the characteristic function ofy2 '""Nn,(C1JLI +eo, 0 1E 10{). D 

Theorem 8.4 The central standard vector Gaussian z '""Nn(O, I) has density 
fz(z.) = (27r)-nl2exp( -z~z./2). 

Proof. Due to independence properties, 

n n 

fz(z.) = IT!(z.j) = Il[(27r)-112 exp(-z;/2)] 
j=l j=i 

= (27r)-nl
2
exp (-~z;j/2) 

= (27r)-nl2exp( -z~z./2). 

(8.20) 
D 

Corollary 8.4 If z'"" Nn(O,I) andy= q,z + JL, with q, n x nand rank n, then 
E = q,q,' is full rank (of n, nonsingular). The nonsingular vector Gaussian 
y '"" Nn (JL, E) is continuous in n dimensions and absolutely continuous, with 
density 
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Proof. Full rank of the n x n matrix :E = q,q,' follows from full rank of n x n 
q,_ The spectral decomposition allows writing :E = TDg(>.)T', with 
T'T = TT' =In. Both T and Dg(>.) are square (n x n) and full rank, which 
gives :E-1 = TDg(>.)-1T' and q, = TDg(>.) 1/2. In tum, 

y=q,z+J-t, (8.22) 

andy is a full-rank linear transformation of z '""N;,(O, I). The theorem ensures it 
is continuous in n dimensions and absolutely continuous, with density 

fz(z.) = (2·nTn/2exp(-z:z./2). As a smooth and one-to-one function of an a.c. 
random vector, y is also. By Theorem 7.17 

fv(y.; ~-t, :E)= llq,-III!z [q,-1(Y.- ~-t)] 

= llog(>-r
112

II11T'IIfzR[q,-
1
(Y.- ~-t)] 

= J:EI-1/\27rrnf2exp{- [q,-1(y.- J-t)]'[q,-1(y.- ~-t)]/2} 

= J:EJ-1/\27r )-n/2exp [- (y. - 1-£ )' [ q,-tq,-1 (y. - J-t)] /2] 

= J:EJ-1/2(27r)-nf2exp[ -(y. _ ~-t)':E-l(y. _ J-t)/2]. 
(8.23) 

0 

Theorem 8.5 If y'"" Nn(J-t, :E) and :E = q,q,', with q, n x n 1 of rank n 1 with 
0 < n 1 < n, then y = q,z + 1-£ with z rv Nn

1 
(0, I), rank(:E) = n1 

(nondegenerate but less than full rank, singular). The vector Gaussian y can also 
be expressed as the sum of linear transformations of a nonsingular vector 
Gaussian y1 of dimension n1 (continuous and a.c.) and a discrete and degenerate 
random vector y2 of dimension n - n 1. Furthermore, the distribution function of 
y can be stated conveniently in terms of the density of the nonsingular vector 
Gaussian of dimension n1. Particular forms for the results may be expressed in 
terms of the spectral decomposition of the n x n matrix :E. With >.1 the n 1 x 1 
vector of positive eigenvalues, n2 = n- n 1, 0 of dimension n2 x 1, columnwise 
orthonormal T 1 of dimension n x n1, columnwise orthonormal T2 of n x n2, 
and T~T2 = 0, 

:E = TDg(>.I, O)T' 

= [TI T2]Dg(>.I,O)[~l]. (8.24) 

If 

[ 
YI ] = [ T~ ] = [ T~ y] 
Y2 T2 y T2y 

(8.25) 

[ /-£1] [T~] [T~~-t] /-£2 = T2 1-t = T2~-t ' 
(8.26) 

then y 1 '"" Nn
1 

[!-£1, Dg( >.I)] is a nonsingular vector Gaussian with density 
fv1 [y.1; /-£1, Dg(>.I)] and Y2 '""SNn,(/-£2, 0) is discrete and degenerate. Finally, 
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the distribution function of y can be conveniently expressed in terms of Kg = 

Tij~ 1 (27rAj)- 1 / 2 and the function 

g(y.; 1-£, :E)= Kgexp[-(y.-J-t)':E+(y.-J-t)/2] 

= Kgexp [ -(y.-J-t)'[T1 T2]Dg(.A1, ot [~l] (y.-J-t)/2] 

= Kgexp [- [ ~~:~=~~;] 
1 

[ Dg(~1)-
1 

~] [ ~~:~=~~;] /2] 

= fv1 [y.1;/-t1,Dg(.A1)]. (8.27) 

Function g(y.; 1-£, :E) serves as a pseudodensity for y in the following sense. 
With n1 x 1 Y•1 = TJ.y., 

(8.28) 

However, the integration is over ~n1 c ~n (and therefore does not meet all 
requirements for the definition of a density). Explicit and valid integration over 
~n requires a more general type of integration (Riemann-Stieltjes). 

Proof. The outer product :E is symmetric and either positive definite or positive 
semidefinite. Having rank(:E) = n 1 and 0 < n 1 < n ensures n 0 = n - n1 > 0. 
Therefore the dimensions and nature of the spectral decomposition are as claimed. 

Expressing y in terms of a sum of nonsingular and degenerate Gaussian 
variables is achieved simply by considering three particular characteristic 
functions. Applying the theorem for the characteristic function of a linear 
transformation to y1 = T~y gives ¢v1 (t1) = exp[it'11-t1- tJ.Dg(.AI)tJ/2] as the 
characteristic function of the n1 x 1 random vector Y1 '""Nn1 [!-£1,Dg(.A1)]. The 
full rank of n 1 for Dg(.A1) ensures y 1 is continuous and a.c. (by the previous 
theorem). Similar reasoning with Y2 = T~y gives ¢ 112 (t2) = exp(it'2 ~-t2) as the 
characteristic function of the n2 X 1 degenerate random vector Y2 rv SNn2(!-£2, 0), 
with Pr{y2 = ~-t2 } = 1 (and therefore discrete). Using the spectral decomposition 
of :E to expand and then simplify the characteristic function of y gives 

¢v(t) = exp(it' 1-£- t':Et/2) 

=exp(it'[Ti T2][~l]~-t-t'[T1 T2]Dg(.A1,o)[~l]t/2) 

=exp(i[t\. t2l[~~J -[t~ t2]Dg(.AI,o)[!~]/2) 
= exp[i(t2~-t2 + tJ.~-ti) - tJ. Dg(.A1)tJ/2] 
= exp(it2~-t2)exp[it\.~-ti - t; Dg(.A1)tJ/2] 
= ¢1/2(t2)¢yl (ti). (8.29) 

The last form implies y1 and y 2 are statistically independent. As eigenvectors of a 
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symmetric matrix (chosen to be orthonormal without loss of generality), 
T = [ T 1 T 2] is square, full rank, T'T = TT', and (T) -I = T'. Hence 

y= [T1 T2][~l]y 

= [TI T2] [~~] = T1Y1 + T2Y2, (8.30) 

which demonstrates y is a full-rank (and invertible) linear transformation of 
[ y~ y~ ] and also a sum of linear transformations of y1 and Y2. 

If g(y.; 1-£, :E) allows computing the CDF of y as claimed, then it must be the 
density ofy1. If A ism x n, Pis h x m with P'P = Im, and Q is n x p with 
Q' Q = IP, then ( P AQ) + = Q+ A+ p+ = Q' A+ P' (Lemma 1.15). Therefore 

:E+ = TDg(>.1, otT'. With K = (2·nTnJ/2 IJj~ 1 >..j 112
, the function is 

f[y.l; /-£1, Dg(>.J)] = Kexp[-(Y•I- ~-t!)'Dg(>.l)- 1 (Y•l- /-ti)/2] 

= Kexp [- [ ~~:~=~~~ r [Dg(~l)-1 ~] U~:~=~~n /2] 

= K exp [- [ (T~Y•l-T}~-t)]' [ Dg(>.1)-
1
0] [ (TJy*- T~J-t)] / 2] 

(T2Y•2-T21-£) 0 0 (T2y.-T21-£) 

= K exp [ -(y.-J-t)'[ T1 T2]Dg(>.1, 0)+ [ ~u (y.-J-t)/2] 

= Kexp[-(y.- J-t)':E+(y.- J-t)/2] 

= g(y.; 1-£, :E) . (8.31) 

If g(y.; 1-£, :E) allows computing the CDF of y, it must suffice to consider only y1 
in computing the CDF of y. Here y and [ y~ y~ ] are one-to-one functions of 
each other because y = T[ y~ y~ ]', although the transformation is not smooth. 
Both are of dimension n = n 1 + n 2 > n 1, while y1 has dimension n 1 and y2 has 
dimension n 2. The degenerate nature of y 2 gives Pr{y2 =~-to} = 1, which ensures 
[ yJ. y~ ] = [ y~ ~-ta with probability 1. Therefore the n 1 dimensions of y1 
capture all of the randomness in y, while the n 2 dimensions of y 2 affect only the 
location (the mean of y). Intuitively, a constant carries no information about a 
(truly) random vector. 

The argument may be formalized precisely by generalizing the concept of 
integration to cover computing probabilities for any combination of continuous and 
discrete random vectors. The interested reader may consult Lindgren (1976) for a 
more detailed treatment of the basic ideas behind Riemann-Stieltjes integration. 0 

The dimensions of the matrices change between the first two equations in the 
sequence, corresponding to a change from arn, to arn = arn, + arno. Here the plus 
sign indicates no overlap between the two subspaces. The form y2 - ~-t2 occurs 
only with the additional n 2-dimensional subspace and is guaranteed to be 
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~-t2 - ~-t2 = 0. The expression for g() is not unique because the same result may be 
computed by replacing :E+ with any choice of:E- (ofwhich infinitely many exist, 
except when :E is full rank). 

It is often convenient to express y'"" (S)Nn(/-ty, :E), with :E = q,q,', explicitly 
in terms of i.i.d. standard Gaussian variables. If rank(:E) = n, then q, is n x n 

with full rank and z = q,-1(y- l-tv) rv N,-,(0, I). In tum, y = q,(z + 1-tz) with 
/-tz = q,-1 !-tv and ( z + /-tz) '"" Nn (J-tz ,I). The following lemma generalizes the 
decomposition to the singular case. The result is very helpful in deriving the 
distribution of a general quadratic form, as will be seen in the next chapter. 

Lemma 8.3 Ify'"" (S)Nn(J-ty,:E) with finite /-ty and finite :E ofrank 0 < n 1 :::; n, 
then n x n1 finite constant q,1 exists such that :E = q,1 q,J.. If /-tz = 

( q,J. q,1r
1
q,\.1-tv = ( q,i)' !-tv and z '""Nn1 (O,InJ, then y = q,l (z + 1-tz). 

Proof. Spectral decomposition gives :E = T 1Dg(>.J)TJ. with TJ. T 1 = In
1 

and 

q,l = T1Dg(>.1 )
1

/
2

. In turn q,i = q,J.(q,\.q,1)-1 = Dg(>.1)-1/2TJ.. Furthermore 

V(y) = q,1In1q,\. =:E. Requiring /-ty = q,l/-tz implies (q,J.q,i)-1q,\./-ty = /-tz· As 
a linear transformation of z, the vector y is Gaussian. 0 

8.4 MARGINAL DISTRIBUTIONS 

Theorem 8.6 If y '"" N;-,1 +n2 (!-£,:E) with 

(8.32) 

(8.33) 

(8.34) 

Yi and 1-ti are nj x 1 for j E {1, 2}, while :Ejj' is n1 x nf, then the marginal 
distribution of YJ is Nn1 (~-t1 , :EJJ)· More generally, all marginal distributions of a 
vector Gaussian are vector Gaussian. 

Proof. The characteristic function of the marginal of y1 is 

¢vJti) = ¢v ( [ ci]) 
= exp{i[tJ. O'] [~~]- [t'1 

= exp(it'1 ~-t1 - tJ. :Eu t1 /2), (8.35) 

which is the characteristic function of the Nn
1 
(~-t1 , :Eu) distribution. More 

generally, the result does not depend on the order of the variables. It applies to any 
rearrangement and therefore to all subsets of {yi}. 0 
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Finding a marginal distribution of a vector Gaussian is very easy. One simply 
selects the corresponding elements of 1-£ and corresponding rows and columns of :E 
to get the parameters of the marginal Gaussian. The property does not necessarily 
hold for other distributions. 

The converse of the theorem is not true, because joint distributions do exist 
which have Gaussian marginal distributions but do not have a joint Gaussian 
distribution. Having Gaussian marginal distributions does not ensure a Gaussian 
joint distribution. More specifically, having Yj rv N;,

1
(J1,j, :Ejj) for j E {1, 2} and 

:E = V(y) = v( [~~]) = [~~~ ~~~] does not guarantee y'"" Nn,+n,(!-£, :E). 

Proving the result may be a useful exercise. 

8.5 INDEPENDENCE 

Theorem 8.7 Assuming y rv NN(!-£, :E) with y, 1-£, and :E partitioned 
correspondingly allows writing 

:EJ2 
:Eu]) :Ev 

. ' 
:E.].] 

(8.36) 

with y1 of dimension nj x 1 and "Lf~I nj = N. 
The J random vectors {yj, j E {1, 2, ... , k}} are mutually (totally) independent 
(a) if and only if Yj and Yi are (pairwise) independent for all j =1- j' and 
(b) if and only if :E jj' = 0 for all j =1- j'. 
(c) The result does not hold for all distributions that are not Gaussian. 

Proof. The characteristic function for y rv NN(!-£, :E) is defined 1::/t E ~N as 
¢v(t) = exp(it' 1-£- t':Et/2). Partitioning t to match y gives t' = [ t~ t2 · · · t~ ]. 
Therefore 

= exp (ittj/-tj- t.tj:E11t1j2- ~j'~1tj:Ejj'tj) . (8.37) 

The third summation is zero 1::/t E ~N {'} :E1j' = 0 1::/j =J j'. Thus :Ejj' = 0 
1::/ j =1- j' if and only if 
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¢v(t) = exp (ittjJLj- ttj'Ejjtj/2) 

J 

=IT exp(itjJLj- tj'EjjtJ/2) 
j=l 

J 

= Il¢j(tj). 
j=l 

(8.38) 

Mutual independence follows from the factorization. Gaussian distribution of each 
marginal follows from the form of the individual CFs. D 

Corollary 8.7.1 If nj = 1 and y '""NN(JL, 'E) with 'E = Dg( {a11 , ... , O'NN} ), 
then the N elements of y are all mutually independent random variables, and 
YJ '""N1 (JLJ, aJJ) 1::/ j. 

Corollary 8.7.2 If N = 2, nj ~ 1, and 

y= [Yi] '""NN([Jli], ['En 
Y2 JL2 'E21 

(8.39) 

then y1 and y 2 are independent if and only if E 12 = 'E21 = 0. 

8.6 CONDITIONAL DISTRIBUTIONS 

Theorem 8.8 For Yj and JLJ of dimension nj x 1, y = [ y~ Y2 ]', JL = [ JL; JL2 ]', 
while 'Ejj' is of dimension nj x nj' with 

(8.40) 

and N = n1 + n2. Here y'"" (S)NN(JL, 'E) with rank('E) = n+ ::::; N. 
(a) The conditional distribution of (Yi[Y2 = YD2) is Nn, (JL1.2, 'E1.2) with JL1.2 = 
Ill + 'E12'E22(Yo2 - JL2) and E1.2 = 'En - 'E12'E22'E21· 
(b) Although 'E22 is any generalized inverse of 'E22, both JL1.2 and E1.2 are 
invariant to the choice of'E22 (and therefore can be taken to be 'Ei2). 
(c) (Yl[Y2 = Yo2)'"" (S)Nn,[Jli + 'E12'Ei2(Yo2- JL2),'En- 'E12'Ei2'E2J] .(8.41) 

Proof. The following are true. (1) A matrix B exists satisfying 'E 12 = B'E22· 
(2) B = 'E12 'E22 is a solution, and is unique if and only if 'E22 is nonsingular. 
(3) 'El2 - 'El2'E22'E22 = 0. 

Proofs of 1 and 2 are left as an exercise. They are consequences of a slight 
generalization of the Cauchy-Schwartz inequality for inner products based on 
positive semidefinite matrices. 
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The proof of 3 starts with the definition of the generalized inverse, 
:E22 = :E22:E22:E22- Substituting the expression into the equation :E12 = B:E22 
implies :E12 = B(:E22:E22:E22) = (B:E22):E22:E22 = :E12:E22:E22· 

An important result relates stochastic independence and conditional distribution. 
If y1 and y 2 are random vectors with a joint distribution, then the conditional 
distribution of y1jy2 = y 02 , if it exists, is identical to the marginal distribution of 
y1 if and only if y1 and Y2 are independent. The basic approach is to construct a 
random variable x = (y1jy2 = y02 ) using the three results just stated. If 
x = A(y- 1-t) + c in which 

A = [ In 1 - :E12:E22] (8.42) 
0 In2 

c = [~~ + :E12:E22(Y02- /-£2)], (8.43) 

then x = [ x~ x; ]' = y - adjustment and 

[::] = [~~ +:E12:E22(Yo2 -y2)]. (8.44) 

Given y 2 = y02, the adjustment is zero and x = y. Furthermore, if Y2 = Yo2 then 
x1 = YI and (y1IY2 = Yo2) = (xdx2 = Yo2)· Here N x N A is full rank of N 
and rank(A:EA') = rank(:E) = n+· As a linear transformation of a vector 
Gaussian, x is also vector Gaussian with 

X = A(y - 1-£) + c 
r-v ( S)N N ( c, A:EA') . 

Using 3 we can prove 

A:EA' = [:En - :E
0
12:E;2:E21 0 J 

:E22 . 

(8.45) 

(8.46) 

Therefore x 1 Jl x 2 , which ensures the distribution of(x1jx2 = y 02 ) is identical to 
the distribution of x 1. In turn, the distribution of (y1jy2 = y02 ) coincides with the 
distributions of ( x 1jx2 = y02 ) and therefore x 1. Finally, c = [ 1-£;.2 1-£2 ]' and 

A:EA' = [ :E~.2 :E~2 ] (8.47) 

means X1 r-v (S)N;, 1 (/-£1.2, :E1.2), which is also the distribution of (y1jy2 = Yo2). D 

Corollary 8.8.1 If:E is full rank (n+ = n 1 + n2 = N), then 
(a) :E22 has full rank ofn2, 

(b) :E1.2 has full rank ofn1, and 
(c) (y1IY2 = Yo2) r-v Nn

1 
(/-tJ.2, :E1.2) has a density with 

/-£1.2 = /-£1 + :E12:E2l (Yo2 - /-£2) and :E1.2 = :En - :E12:E2l :E2l· 
(d) The dispersion matrix :E1.2 is not a function of y 2, and equals :E11 less an 
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adjustment which vanishes when E 12 = 0. 
(e) In contrast, mean /-£1.2 is a linear function of y 02 and equals 1-£1 plus an 
adjustment which vanishes ifE 12 = 0. 

Proof. Both y1 and y 2 have marginal densities as well as a joint density. The 
general form for the PDF of a conditional vector gives, with y.,o = [ y: 1 y02 ]', 

f ( I ) 
fv(Y.,o; 1-£, E) 

112 Y•1 Y2 = Yo2 = f ( . E ) y, Yo2, /-£2, 22 

(27r) -N 12jEj- 112 exp[- (Y.,o- 1-t )'E-1 (Y.,o-J-t) /2] 

(27r)-n2/
2 jE221-112exp[- (yD2-J.b2)'E?} (Yo2 -J-t2) /2] 

(details omitted) 

= (27r )-"I/2jE,2j-112exp [- (y.1-J.i<L2)'E~~ (Y•1 -/-£1.2\) /2] · 

Details are left as an exercise. 

(8.48) 

0 

Corollary 8.8.2 The validity of a multivariiate general linear modell rtlata analysis 
with (random) Gaussian predictors depends on :aonditional distnbutiun results. 
For independent sampling unit i E { 1, ... , N}, fue Jmsults can be fumnally stated 
in terms of ui = [ u;1 u;2]' ""'}1/p+q(/-t, 'J:..) with lfuH ;ronk E and"'" iintlt!pendent 
of ui' for i -1- i'. In tum, rowi(Y) = ( '11Li1jui2 = <'11,w2)' implies Y 'is N x p, 
row.i(X) = [ 1 (u;2-/-ti2)'] implies X is N x q, and.B (q x p) is 

B = [ (~12~22)'] . ((8.49) 

Under the conditions just stated, Y, X, and B satisfY tthe assumptions ~ the 
GLMN,p,q(Y;;X;B, E1.2) with Gaussianernm and 

Y=XB 

[ 

(uu!u12 = uw2)' l [ 1 
(u21lu22 = u2o2)' 1 . . . . . . 

(uNJjUN2 = uN02)' 1 

+E 

{ UJ2 _ /-£12,. r· 
(u22--:-1-t22)' · +E. 

. ' 

( UN2 - /-tN2)' 

(8.50) 

Also E[rowi(Y)jX] =row;(X)B. If p = 1, we have the GLMN11 (y;; X;/3, ar_2) 
with Gaussian errors and ar.2 = a11 - E12E22E21· 

Proof. Left as an exercise. 

Consequently, if we have p + q random variables with a joint Gaussian 
distribution, we may analyze p of the variables conditional upon the observed 
values of the other q variables. We merely use standard general linear models with 
the observed values of the given variables in the design matrix X. The general 
linear model requires X fixed, constant, and known without (appreciable) error. 
In a conditional analysis, ui2 = uio2 and the assumption is met. 
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The process of conditioning, as 11sed here, converts a random variable into a 
constant, namely the observed value. One can therefore treat a data vector either 
as a random vector or as a fixed constant vector by conditioning on the realized 
observation. In the conditional case, one makes inferences about the distribution 
of u 1[u2 = u 02 . In linear model notation, one models y given X at its observed 
value. A different X matrix would produce a different conditional distribution of 
y and possibly different results and conclusions. However, when one analyzes the 
unconditional joint distribution of u 1 and u 2, one treats u 2 as a random vector. 
Subsequently inferences about u 1 concern its unconditional distribution, which has 
mean and variance different from the conditional distribution of u 1 [u2 = taoz. 

Example 8.2 Generally speak ing, analysis based on the conditional distribution 
restricts the scope of inferences one can draw from the data. If u 1 and u ::- contain 
heights and weights of adult humans. then the analysis of the marginal distribution 
of u 1 would provide information about the weights of adult humans. In contrast, 
the analysis of the conditional distribution of u 1 [u 2 = u 112 would provide 
information about the distribution of adult weights for the given set of heights. 

The conditional Gaussian distribution provides the theoretical tools to support 
conditional analyses. If the data are approximately Gaussian in distribution, then 
the analysis has a sound theoretical basis. Unfortunately, the simplicity does not 
extend to the theory and computation of power analysis. Sampson (1974) provided 
an excellent discussion of the distinctions for the GLMN,q(Yii Xif3, a2

) and 
GLMN,p,q(Y;; Xi{3, E). Some discussion is also provided in later chapters on 
power analysis. 

8.7 ASYMPTOTIC PROPERTIES 

Theorem 8.9 A central limit theorem may be stated for a set of N i.i.d. length p 
random vectors {Yi'}, with E(Yi') = p, and V(Yi') = E, of rank p. 

(a) With B indicating convergence in distribution (law), the p x 1 vector 

N 

YN = LYi'/N = [Y{ Y{ ... Y,(, ]lN/N (8.51) 
i=l 

has the property VN(YN - J-t) B Nv(O, E) as N ~ oo. 
(b) From the convergence in distribution, we infer an approximation for large N, 

namely VN(YN - p,) ,.v Nv(O, E). 

Proof. Left as an exercise. 

Theorem 8.10 For (qxl) vector z*N= [!I(Y*N)'···fq(Y:N)J'=f(Y*N) a 
vector of real-valued functions ofy*N differentiable at Y*N = 1-£, 
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(8.52) 

exists. Equivalently, D = {di1} and dij = af1(Y*N)/8yi*N' evaluated at 
v 

Y*N =I-t· If the (p x 1) random vector YN ~ Np(/-t, ~/ N) has rank(~) = p, 
then random vector ZN = f(YN) is such 

(8.53) 

Proof. Mardia, Kent, and Bibby (1979) provided a proof. 

8.8 THE MATRIX GAUSSIAN DISTRIBUTION 

Definition 8.3 An n x p random matrix Y will be said to follow a 
general matrix Gaussian distribution if and only if 
vec(Y) '""(S)Nnp(/-tv, ~v)· Necessarily l-tv = vee [E(Y)] and 
V[vec(Y)] = ~v =~~is n.n.d. 

Definition 8.4 The n x p random matrix Y follows a direct-product matrix 
Gaussian distribution, typically abbreviated matrix Gaussian and written 
Y '""Nn,p(M, B, ~),if and only if 
(a) vec(Y) '""(S)Nn,p[vec(M), ~ 0 B]; if and only if 
(b) vec(Y')'"" (S)JV;,,p[vec(M'), B 0 ~];if and only if 
(c) Y =WZq,'+M with vec(Z) '""Nn,p, (0, I) and 

'II (n x ni) of rank n 1 ~ 1, B = '11'11', 
q,' (Pi x p) of rank Pi ~ 1, ~ = q,q,'. 

Writing Y '""SNn,p(M, B, ~) indicates n 1 = rank('ll) = rank(B) < n, or 
Pi = rank( q,) = rank(~) < p, or both. 

Writing Y'"" (S)Nn,p(M, B, ~) emphasizes allowing any combination of 
n 1 :S: n and Pi :S: p. 

Certain direct-product properties help in understanding the definition. As for 
any direct-product matrix, rank(B 0 ~) = rank(B) ·rank(~). Hence both B and 
~ must be nonsingular for B 0 ~ to be nonsingular (and the distribution to have a 
density). Furthermore the eigenvalues of B 0 ~ are all products of the 
eigenvalues of B and ~ of the form >-s,jA:E,k· Theorem 1.5 gives 
vec(wzq,') = (q, 0 w)vec(Z). 

The direct-product matrix Gaussian distribution has not been fully identified 
because, for any finite constant a> 0, one may write Y'"" Nn,p[M, (1/a)B, a~]. 
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The indeterminacy is not important for most applications because S will be a 
known matrix and often I. 

The direct-product matrix Gaussian arises naturally in many places in linear 
models with Gaussian errors, while the general matrix Gaussian apparently never 
arises naturally. Therefore, despite the ambiguity, we typically use the 
abbreviation "matrix Gaussian" to indicate a direct-product matrix Gaussian. The 
description agrees with Arnold's (1981, p. 310) discussion of the direct product 
matrix Gaussian as a "matrix normal" and with Gupta and Nagar's (2000), 
although the latter authors use slightly different notation. In a closely related 
approach, Mardia, Kent, and Bibby's (1979, p. 64) definition of a "normal data 
matrix" corresponds to the doubly special case of a direct-product matrix Gaussian 
with independent rows and homogeneity of mean across rows, namely 
y rv Nn,p(lnl£1

, In,~) for JL a p X 1 vector. 

Example 8.3 A counterexample demonstrates that not all matrices of jointly 
Gaussian variables are direct-product matrix Gaussian. If Y is 2 x 2 with 
vec(Y ),..., N~[O, Dg({l , 2, :1, 4})). then Y being a direct-product matrix Gaussian 
requires { Ot, a2, b ~, bz} exists such that Dg( { a h a2 }) 0 Dg(lJh b2) = 
Dg(fl , 2,:l, 4} ). Ifso. then {a1b1 = l , a 1b2 = 2,a2b1 = 3, a2b2= 4} implies 
a1 = l / b1 and b'l/b1 = 2. However. (a2b2)/(a2bd = b1 / b1 = 4/ 3 # 2, and the 
equations are inconsistent (they do not have any solution). 

Example 8.4 The (direct-product) matrix Gaussian permeates the 
GLMs., •.. ,(Y, ; X ;B , ~) with Gaussian errors. The model equation Y = 
XB + E has E ....., N,,. •. 1,(0,IN, ~) and Y ....., N lli.r•(XB , I ,v, E ). Except for the 
special cases when B = 0 or X = l N. Y does not meet Mardia, Kent, and 
Bibby's definition of a normal data matrix, although E always does. 

The three parameters of a (direct-product) matrix Gaussian have simple 
interpretations. Obviously E(Y) = M is the matrix of expected values. The 
matrix ~ describes the covariance structure of the columns within a row. The 
observation may be stated precisely as follows. If din indicates an n x 1 vector 
with 1 in position i and 0 everywhere else, then ro~ (Y) = Y' din = 

vec(d~nY) = (Ip 0 d~n)vec(Y). The reproductive property under a linear 
transformation of a vector Gaussian allows writing 

row~(Y) rv Nv[(Iv 0 d~n)vec(M), (Iv 0 d~n)(~ 0 S)(Iv 0 d~nJ'] 
rv Nv[row~(M), (Iv~Iv) 0 (d~nSdin)] 

rv Nv[row~(M), E 0 ~ii] 
rv Nv[row~(M), E~ii]· (8.54) 

Similarly, the matrix describes the covariance structure of the rows within a 
column. A particular column may be written as colj(Y) = (In 0 djp)vec(Y') and 
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colj(Y) r-v Nn [(In 0 djp)vec(M'), (In 0 djp) (8 0 :E) (In 0 djp)'] 

r-v Nn [ colj(M), (In8In) 0 (djp:Edjp)] 

r-v Nn[colj(M), 8 0 O"jj] 

r-v Nn[colj(M), 8ajj]. (8.55) 

A useful exercise would be to define colj(Y) = Ydjp = (djp 0 In)vec(Y) and 
derive the distribution of the row and column in terms ofvec(Y). 

Theorem 8.11 (a) With T = [ ti · · · tp1 ] an arbitrary real n 1 x PI matrix, the 
characteristic function of n 1 x PI Z r-v Nr,1 ,p1 (0, In

1
, Ip1 ) = { Zjk} = [ z1 · · · Zp1 ] 

with i.i.d. Zjk r-v N(O, 1) is ¢(T; Z) = E{exp[tr(iT'Z)]} = exp[-tr(T'T)/2]. 
(b) For conforming constants 8 = '11'11', :E = q,q,' and M, the (direct-product) 
matrix Gaussian Y = q,zq,' + M r-v (S)Nn,p(M, 8, :E) has characteristic 
function ¢Y(T) = exp[i tr(T' M) ]exp[ -tr(T'8T:E) /2]. 

Proof. (a) Independence allows the following exchanges of operations: 
E{exp[tr(iT' Z)]} = E{exp[I;~~I (itjzj)]} =E{exp[I;;~ 1 I;~~I (itkjZkj)]} = 

E[IJ;~1 I1~~ 1 exp(itkjZkJ)] = IJ;~~IJ~~IE[exp(itkJZkJ)] = 

TI~~~TI~~1 exp( -tL/2) = exp[I;~~IL~~I ( -t~/2)] = exp[-tr(T'T)/2]. 

(b) Lemma 7.5 gives 

c/Jy(T) = exp[i tr(T' M)]exp{ -tr[(w'Tq,)' (w'Tq,)/2]} 

= exp[i tr(T' M)]exp[-tr(q,'T'ww'Tq,)/2] 
= exp[i tr(T' M)]exp[ -tr(T'ww'Tq,q,') /2] 

= exp[i tr(T' M)]exp[-tr(T'8T:E)/2]. (8.56) 
D 

It would be hard to overstate the convenience and power of matrix Gaussian 
notation and describing properties of linear models. The following theorem 
provides one major contribution because it allows quickly deriving the 
distributions of estimates of expected values. Equally importantly, matrix 
Gaussian properties allow precisely identifying the distributions of quadratic forms 
and covariance matrix estimates, which lie at the heart of test statistic theory. 

Theorem 8.12 If Y r-v (S)Nn,p(M, B, :E) while A -j. 0 (n1 x n), B -j. 0 
(p x PI), and C (ni x p1) are finite constant matrices, then 

AYB+C r-v (S)Nn 1,pJAMB+C,ABA',B':EB). (8.57) 



Linear Model Theory 159 

Proof. Lemma 7.5 provides the characteristic function of a linear 
transformation of a random matrix. Examining the result verifies the reproductive 
property. 0 

The theorem holds for S and E of any rank. Here A transforms the rows and 
B transforms the columns. Although the CDF is always well defined, the density 
exists only ifrank(ASA') = n 1 and rank(B'EB) = p1. However, every singular 
form can be expressed in terms of an embedded nonsingular one. A particularly 
convenient form for the singular case arises from the spectral decomposition of the 
covariance matrices, as in the next lemma. 

Many useful results arise as special cases of the theorem. Choosing p = PI = 1 
provides a standard result about the vector Gaussian. Choosing C = 0 and one or 
more other matrices as an identity matrix also produces useful special cases. The 
theorem helps prove the following lemma, which plays a key role in developing 
properties of multivariate quadratic forms. 

Lemma 8.4 If Y"' (S)Nn,p(My, S, E) with S = "111"111' of rank n1 ::::: n, 
E = q,q,' of rank P1::::: p, and Mz=("lll'w)-1"111'Myq,(q,'q,)-1 

= 

w+Myq,+t, then (without loss of generality) Y="III(Z+Mz)q,' for 

Z rvNn~,P1(0,In"Iv1 ). Spectral decomposition gives q, = TDg(.>..) 1/2 and 
q,+t = TDg(.>..)-1/2. 

Proof. Requiring E(Y)=My =WMzq,' gives (w'w)-1w'Myq,(q,'q,)-1
= 

Mz. Theorem 8.12 ensures Y, as a linear transformation of Z, must be matrix 
Gaussian with the required distribution. D 

Exa mple 8.5 The GLM.\·.1,_,1(Y;: X ,B , E ) with Gaussian errors and full-rank X 
has 

(8.58) 

If p = I, then ,B""' .~1.![,8, (X 'X )- 1 ,a2
] if and only if vec(,B) = 

fj "" .N;1 [,8, (X ' X )- 1 ® a 2] . with (X ' X )- 1 ® a 2 = (X ' X )- 1 a 2 • With or 
without full-rank X but with the requirements of full rank of M = C (X ' X )- C ' 
and C = C (X 'X )- (X 'X ) (which ensures e is testable), 

e - e u = C B U - e n""' N,,,, { e - e n. [C (X 'X ) - C 'r 1
. U' EU }. (8.59) 

lf H = X (X 'X r X ' and rank(X ) = r :5 cJ. then rank(H ) = r· and 

(8.60) 

Also 
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E =(I - H )Y ,...., S.tVv.p[O, (I - H ), E J, (8.61) 

with rank(J - H )= N- r. In contrast, E "" A(v,,(O, I , E ). 

Theorem 8.13 The random matrix Y is N x p with rowi(Y) = }i. If 
(li)' rv Nv(JL, E) is independent of (Yt )' for i -=1- i' (i.i.d. rows) and 
rank(E) =PI::; p, then Y rv NN,p(lNp,',IN,E). In tum, for the special case, 
(a) vec(Y') = y rv NNp(lN ® p,, IN® E) with rank( IN ®E) = N P1 ::; N p, 

(b) vec(Y) = y rv NN·p(P, ® lN, E ®IN), and 
(c) if PI = p, the density exists and may be computed as 

fy(y*;p,, E)= (27r)-Nv/2IEI-N/2exp [-~(Y:i-p,)' E-1(Y;i-p,)/2] 

= 121rEI-N/Zexp{ -tr[(Y;. -1Np,')E-1(Y;. -lNp,')']/2} 

= l27rEI-NfZexp{-tr(E-1(Y;. -lNp,')'(Y;. -lNp,')]/2}. (8.62) 

Proof. Left as an exercise. 

Theorem 8.14 IfY rv Nn,p(M, B, E), rank(B) = n, and rank(E) = p, then 

f ( 
. '=' ) _ exp{ -[vec(Y;.-M)j'(B®E)-1vec(Y;.-M)/2} 

y Y;., M, ~, E - --=~_:______: __ ....:.:.....:......_...:._..,.-:::c_____: __ ...:.:...~ 

(27r)nv/21B®EI1/2 

exp{ -[vec(Y;.-M)]' (B-1®E-1 )vec(Y;.-M)/2} 

(27r)nv/21BI1/21EI1/2 

exp( -{ vec[(Y:-M)'] }' (E®B)-1vec[(Y;.-M)'V2) 

(27r)nvf21E®BI1/2 

_ exp (-{vee[ (Y;.-M)'] }'(E-1 ®8-1 )vee[ (Y;.-M)'V2) 

(27r)nvf21Eilf21Eil/2 

Proof. Left as an exercise. 

8.9 ASSESSING MULTIVARIATE GAUSSIAN DISTRIBUTION 

(8.63) 

Multivariate methods commonly assume the errors follow a Gaussian 
distribution. Whereas such methods have long been available for univariate data 
(since circa 1900), tests of the strong assumption of multivariate Gaussian 
distribution were not developed until relatively recently (circa 1970). Departure 
from the family of multivariate Gaussian distributions can occur in a great variety 
of ways. In contrast, departures from univariate Gaussian distribution occur in a 
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relatively small number of ways. Furthermore, obvious alternative univariate 
distributions often deserve consideration, such as the lognormal or Student's t. 
Unfortunately, any attempt to generalize the approach encounters a variety of kinds 
of multivariate t distributions (Kotz and Nadarajah, 2004) or a variety of other 
elliptical distributions. It is not clear which forms might provide reasonable 
alternatives. The uncertainty makes it difficult to choose sufficiently broad classes 
of alternatives to the null hypothesis of a multivariate Gaussian distribution. 

Departure from Gaussian distribution can occur in many ways. Many 
multivariate methods depend on the sample covariance matrix being a good 
representation of associations among the variables. However, if the dependencies 
among some or all of the variables are not linear in nature, such as x2 =xi + e, 
then the covariances (and associated correlations) can be very poor measures of 
association. Due to the variety of departures, a variety of detection techniques are 
needed. The techniques should include descriptive methods, graphical methods, 
and hypothesis tests. 

Any overall test we might formulate will have to examine many features and 
may therefore have low sensitivity for some. Consequently if the departure from 
Gaussian distribution involves only a small subset of the variables, then the 
sensitivity of an overall test may be diluted by most of the variables being jointly 
Gaussian. On the other hand, any test for a specific feature or small set of features 
can be powerful for the feature but may not detect the departures in other 
unexamined features. 

D'Agostino and Stephens (1986) surveyed goodness-of-fit techniques, in 
general. Thode (2002) discussed testing for normality in univariate and 
multivariate settings. Mecklin and Mundfrom (2005) provided a Monte Carlo 
comparison of the type I and type II error rates of tests of multivariate normality. 

Graphical procedures, some as simple as scatter plots, should always be 
employed to visually examine the data. Two-dimensional and three-dimensional 
scatter plots can reveal outliers and other extreme values. Outliers can be 
misleading as to whether or not the data follow a Gaussian distribution. They can 
both conceal and falsely mimic departures. On the other hand, extreme values 
may not be outliers at all in the sense of errors in the data. Rather, they may 
indicate the need for a transformation to a Gaussian distribution. A typical sample 
of lognormal data will illustrate the point. Such data are usually highly skewed to 
the right. A few extreme points almost always occur. In general, it is often 
difficult to discriminate between outliers (i.e., unacceptable errors) and valid 
extreme values. 

The difficulty of discriminating valid from invalid extreme values suggests 
modeling, transformation, and outlier detection should be undertaken 
simultaneously and interactively. In many cases "modeling" should be taken to 
mean robust estimation of parameters. Carroll and Rupert (1985) provided an 
excellent discussion of the principles for univariate analyses. 

The N x p data matrix Y has rowi (Y) = Yi independent of all other rows. In 
two or three dimensions (p ::; 3) we can plot the data to find outliers. Once found, 
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we have several options. In higher dimensions, algorithms become necessary for 
detecting outliers. The central question is "How far is Y;' (p x 1) from the center 
of the cloud of data points?" A measure of distance is needed. However, 
estimation underlying the measure needs to be robust to the presence of several 
outliers masking each other. 

Definition 8.5 Masking occurs when one or more outliers remain undetected 
due to the presence of other outliers. 

Definition 8.6 The Mahalanobis distance is 

d; = [Y;'- t(Y)]'[O(Y)r 1[Y;'- t(Y)], (8.64) 

with t(Y) = Y'lN IN = y, the p x 1 vector of arithmetic means, and 
C (Y) = :E = [Y'Y IN - yy'] N I ( N - 1), the sample covariance matrix 
estimate. 

The function suffers from the masking effect because a set of multiple outliers 
do not necessarily have large di values. Furthermore, t() and V() are not robust 
because a small cluster of outliers will attract t() and inflate V() in its direction. 

Definition 8.7 The breakdown point is the number of outliers (given as a 
percent of number of independent sampling units) tolerated by a procedure. 
Larger values are better. 

The Mahalanobis distance has a very low breakdown point because a few 
outliers can mask each other. 

Definition 8.8 The robust distance based on the minimum volume ellipsoid 
(MVE) estimator, proposed by Rousseeuw and Van Zomeren (1990), is 

RDi = {[Y;'- t(Y)]'[S(Y)r 1[Y;'- t(Y)J} 
112

. (8.65) 

Here t(Y) is the MVE center and S(Y) is the corresponding covariance 
matrix, with both being high-breakdown estimators. Also t(Y) is the center 
of the MVE covering half of the observations, and S (Y) is determined by 
the MVE. It is multiplied by a correction factor to obtain consistency for 
multivariate Gaussian distributions. 

8.10 TESTS FOR GAUSSIAN DISTRIBUTION 

The choice of specific tests should target ( 1) departures anticipated as most 
likely and (2) departures most detrimental to the particular analysis method being 
used. It is advantageous if the tests suggest either a transformation which makes 
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the data Gaussian or an alternative data analysis method. We need tests for 
examining subsets because deviations from Gaussian distribution can be limited to 
a subset of the variables. It is difficult to check all possible subsets. Choosing 
subsets most likely to exhibit deviations makes it difficult to determine the true 
significance level of a test. Essentially three kinds of tests exist: (l) tests for 
marginal Gaussian distribution, (2) univariate tests of joint Gaussian distribution, 
and (3) multivariate tests of joint Gaussian distribution. 

The simplest tests of marginal Gaussian distribution are achieved by 
individually testing p subhypotheses Hoj: {Yj '""Gaussian} using standard testing 
procedures. For the overall test of H0 : {Yj '""Gaussian 'v'j} the null hypothesis is 
rejected if any one of the subhypotheses is rejected. The significance level of the 
overall test must be controlled using principles of simultaneous testing. The 
method is effective in detecting the least Gaussian marginal distribution. However, 
it may not be powerful for detecting a subtle departure common to many or all of 
the variables. 

Tests of marginal Gaussian distribution designed to detect subtle, common 
departures have been formulated in terms of measures of skewness and kurtosis. 
Small (1980) formulated a test in terms of skewness and kurtosis vectors, /31 

(p x 1) and /32 (p x 1 ). Individual elements are the skewness and kurtosis 
parameters of the marginal distributions. Small derived scalar test statistics, Q 1 

and Q2, each distributed as a multiple of a chi square and "nearly independent." 

One approach to detecting departures from joint Gaussian distribution is to 
examine the Mahalanobis distances. Clustering of observation vectors too far from 
(or too near to) the sample mean vector is evidence of departure from the 
assumption of a joint Gaussian distribution. Gnanadesikan and Kettenring ( 1972) 
discussed plotting the order statistics { d(i)} against their expected values under the 
null hypothesis of Gaussian distribution. The distribution of the order statistics 
follows a beta distribution. Small (1988) noted that the order statistics can be 
converted to normal scores, which should follow a Gaussian distribution under the 
null hypothesis. A test of univariate Gaussian distribution of the normal scores is, 
however, equally influenced by clusters of points too close or too far from the 
sample mean vector. 

Another approach to accessing the joint Gaussian distribution derives from the 
"linear functional" characterization of Gaussian distributions. lt arises from the 
observation that every linear combination of the variates must have a univariate 
Gaussian distribution. 

ln principle, we might test every possible linear combination for the univariate 
Gaussian distribution with the goal of finding the linear combination which 
maximizes the deviation from the Gaussian distribution. Matkovich and Afifi 
(I 973) investigated the approach using each of three criteria: maximum skewness, 
maximum kurtosis, and minimum Shapiro-Wilks W statistic. If the number of 
variables, p, is large, then the approach will be computationally intensive. The 
alternative is to test specific linear combinations. If the specific linear 



164 SCALAR, VECTOR, AND MATRIX GAUSSIAN DISTRIBUTIONS 

combinations are suggested by the data, then it is prohibitively difficult to 
determine the significance levels of the tests. 

Cox and Small ( 1978) suggested yet another approach. An arbitrary 
transformation to a bivariate distribution, with a 1 and a 2 p x 1, may be written as 

Zi = [Zli] = [a~ ]y;' = AY'. Z2i a~ ' ' 
(8.66) 

Under the Gaussian assumption, zi follows a bivariate Gaussian distribution and 
the conditional mean is linear in the parameters (rather than quadratic, exponential, 
etc.). The regression function of interest is 

(8.67) 

A test for Gaussian distribution could be obtained by testing H 0 : {32 = 0 versus 
HA : {32 =1- 0. If>. = 2 and rh a 1, a2 ) is the sum of squares accounted for by the 
quadratic term in the regression model, we can maximize analytically over a 1 to 
yield r-?(a2 ), then maximize numerically over a2 to yield 7J~ax· Simulations by 
Cox and Small (1978) allows concluding that, for N 2 50, p :s; 6, and H 0 true, the 
following holds approximately: 

(8.68) 

Mardia (1970) defined scalar parameters for multivariate skewness and kurtosis, 
f31,p and {32,p, proposed tests based on estimators of the parameters, and provided 
tables of critical values for H 0 : { (/3l,p = 0) 1\ [/32,p = p(p + 2)]}. The two 
subhypotheses are also of interest. Mardia (1975) proved "broadly speaking, in the 
presence of nonnormality, normal theory tests on means are influenced by f31,p 

whereas tests about covariances are influenced by {32,p." 

Definition 8.9 For a set of N vectors, each p x 1, Yj' i.i.d. with mean vector JL 
and covariance :E of rank p, the population parameters for skewness and 
kurtosis are, respectively, 

/3J,p = E[(Y/- JL)':E-1(Yj;- JL)]
3 

/32,p = E [ (Yj' - JL )':E-1 (Yj; - JL)] 
2 

· 

The definitions are attributed to Mardia (1970). 

(8.69) 

Skewness /3Lp is the expected value of the cube of the angle between vectors Yj' 
and Yj{ (weighted by both distances) in the Mahalanobis space with metric :E. 
Kurtosis f32,P is the expected value of the squared Mahalanobis distance between 
vectors Yi' and Yj{ in the Mahalanobis space with metric :E. 
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Theorem 8.15 For N ¥;' '"" i.i.d. Np(/-t, :E) with rank(:E) = p, the population 
parameters for skewness and kurtosis are, respectively, 

(3~,P = E[(¥;'- 1-£ )':E- 1(¥;;- ~-t)] 3 = E(dfi,) = 0 

fJ2,p = E [ (¥;' - 1-t )':E -l (y;; - 1-£)] 
2 = E( dJi') = p( 2 + p) . 

(8.70) 
(8.71) 

Proof. It can be proven that the distribution of dii' is symmetric about zero. 
Symmetry with E(dii') = 0 implies E(df;,) = 0. Also, E(di) = p(p+ 2) since 

dJ '""x 2(p). D 

Corollary 8.15.1 The scalar (univariate) Gaussian is a special case of the vector 
Gaussian with p = 1. Observation i for variable j, namely Yij'"" N1 (J-lj, a1j), is 
i.i.d. for i E {1, 2, ... , N}. The corresponding population parameters for 
skewness and kurtosis are, respectively, 

fJ1 = E[(YiJ- /-lj)aj/(Yi'J- /-lj)r = E(dfi,) = 0 

(32 = E[(YiJ- /-lj) 2ajjf = E(dz) = 3. 

(8.72) 

(8.73) 

Corollary 8.15.2 If¥;''"" i.i.d. Np(/-t, :E) with rank(:E) = p, i E {1, 2, ... , N}, the 
vectors of population parameters for skewness and kurtosis are, respectively, 
/31 = 0 (p x 1) and /32 = 3 · 1 (p x 1). 

The result is relevant to Small's test for marginal Gaussian distribution 
discussed above. Andrews, Gnanadesikan, and Warner (1971) discussed a test for 
multivariate Gaussian distribution in the context of transforming the data to 
marginal Gaussian distribution. They focused on the class of transformations 
proposed by Box and Cox (1964 ), namely y(>-) = (y>- - 1) /A for A -:f. 0 and 
y(>-) = log(y) for A = 0. If A = 1, no transformation is needed. Marginal 
transformations to marginal Gaussian distribution could be obtained as 

(8.74) 

If the goal is to make every marginal distribution Gaussian, then each Ai would be 
estimated separately. 

Alternatively, a simultaneous estimation of A can yield a transformation to joint 
Gaussian distribution. If ¥;'(-X) is vector Gaussian for some value of A, then 
maximum likelihood methods can be used to obtain X, and a likelihood ratio test 
can be made for H 0 : A = 1 versus the general alternative. The maximized log 
likelihood Lrn (A) yields test statistic 

[ ~ ] v 2 2 Lm(A)- Lm(1) ---->X (p). (8.75) 

The MLE method assumes that for some value of A the transformed data are 
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jointly Gaussian. No such value may exist because the Box-Cox transformation 
has limited flexibility. Even if departures occur, no value of A may significantly 
improve alignment with a Gaussian distribution. Therefore, failure to reject 
H 0 : A = 1 does not guarantee a Gaussian distribution. However, if the null 
hypothesis is rejected, then the MLE ); indicates a useful transformation. 

Andrews et al. (1971) also considered a Box-Cox transformation of a particular 
projection of the data to univariate dimensions. Specifically, they suggested 
transforming the least Gaussian projection. First, the projection must be identified. 
Second, ,\must be estimated for the Box-Cox transformation of the corresponding 
univariate distribution. 

Cox and Small (1978) suggested testing H 0 : /32 = 0 versus HA : /32 =J 0 for the 
bivariate model 

(8.76) 

for variables j and j', j =f. j'. The test statistic QW follows a Student t 

distribution. By varying the choice of j =J j' the set of p(p + 1 )/2 such test 

statistics could be summarized in several ways. Plotting the ordered Q;~} against 

the expected values of such order statistics provides an example. 

EXERCISES 

A vector of 1's will be indicated by 1. To be explicit, one would specify the 
dimension, such as by writing lN. However, the assumption of conformation for 
multiplication and addition suffices to determine such dimensions. In some cases, 
the dimensions of such vectors, which may vary even in the same equation, are 
omitted in this set of exercises. 

8.1 Consider Yij=ao+botj+cotJ+ai+MJ+eij for jE{1, ... ,p} and 

iE{1, ... ,N}, with [aibi]'"'N2(0,D), eij"'N(O,a~) i.i.d., elements of 
{tj,a0 ,b0 ,c0 } are constants, and t1 =j. Assume that the vector [a;b;]' is 
independent of all elements of { eij}. Also assume independence between i and i' 
fori =J i'. 
8.1.1 Completely specify the distribution of Yi = [ Yii · · · Yip]'. 
8.1.2 Express V(y;1) as a polynomial in tj. 

8.2 Consider Yij = J-l + a1 + eij for j E {1, 2, ... , m} and i E {1, 2, ... , N}, 
i.i.d. ai "'N(O, a~) independent of i.i.d. eij "'N(O, a~,) (for all i and j), 
a 2 =a~+ a;

1
, and p = aV(a~ +a~} For n x m Y, rowi(Y) = y: 

and Yi = [ Yii · · · Yirn ]'ism x 1. Also :Ei = V(yi) ism x m. 
8.2.1 Completely specifY the distribution of Yi. 
8.2.2 Give an interpretation for a 2• 

8.2.3 Give an interpretation for p and specify the range of possible values of p. 
8.2.4 Find E(fl) and V(fl) for the "sample mean": 
p; = l'Yl/(nm) = (l~mlnm)- 1 l~m[vec(Y)] = (l~ln)- 1 l'Yl(l;nlmr 1 . 
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8.3 Suppose i.i.d. Yi '""Nm+l (J-t;, :E;) with 1-£; = J-Ll and :E; = 

a 2 [pll' + (1 - p)I] for i E {1, ... , N}. Partition Yi into two subvectors, y;1 

(m X 1) andy;2 (1 X 1): Yi = [Yil]. 
Yi2 

8.3.1 Completely specify the marginal distributions of y;1 and of y;2• 

8.3.2 Completely specify the conditional distribution of Yi2[Y; 1 = uilO· 

8.3.3 Describe the behavior of JL2 1 = E(Yi2[Yil = uilD) as a function of m, p, and 
0'2. 

8.3.4 (Optional, noncredit) Describe the behavior of d 1 = V(Yi2[Yil = u;w) as a 
function of m, p and a 2

• 

8.4 Consider a matrix, Y, N x p, with each element ofY marginally Gaussian, 
Yii '""N(JL;j, a 2), and all elements jointly Gaussian. Any pair of distinct 
observations has constant correlation p [any Yii and Yi'j' if (a) i -1- i' (b) j -1- j', or 
(c) i -1- i' and j -1- j']. 
8.4.1 What must the correlation be for the only remaining case (d) i = i' and 
j = j'? 
8.4.2 Clearly specify the distribution ofvec(Y). 
8.4.3 Explain why or why not Y is a direct-product matrix Gaussian. If it is, 
specify an appropriate choice of parameters. 

8.5 Consider a matrix X N x p, with each element of X marginally Gaussian, 
X;j '""N(!Lij, a 2), and all elements jointly Gaussian. Also assume that any pair of 
distinct observations within a column (any X;j and xi'j if i -1- i') has constant 
correlation p and any pair of distinct observations within a row (any Xij and Xif if 
j -1- j') are independent. 
8.5.1 Clearly specify the distribution ofvec(X). 
8.5.2 Explain why or why not X is a direct-product matrix Gaussian. If it is, 
specify an appropriate choice of parameters. 

8.6 Computing assignment, assuming access to SAS/IML, S+, MA TLAB, or 
similar matrix language program. Assume all means are zero. 
8.6.1 Use your knowledge of linear transformations as applied to Gaussian 
variables to sketch a simple algoritllm to transform two independent Gaussian 
variables to Gaussian variables with a correlation coefficient of0.5. 
8.6.2 Based on exercise 8.6.1, generate a sample of size N = 100 from a bivariate 
normal distribution with mean zero, unit variances, and correlation p = 0.5. 
Provide a scatter plot of the data. 

Hints 

Hint I. Review Section 1.1, especially the suggestions for writing matrices. 

Hint 2. The following results may help in exercise 8.3. If m x m matrix 
R = pll' + (1- p)I, then the following all hold. 
1. The eigenvalues of R are )q = pm + ( 1 - p) and A2 = 
( 1 - p) = A3 = .. · = Am. 
2. (m x m) R- 1 = (A1A2)- 1(-p11' + A1I). 
3. A set of orthonormal eigenvectors, vi ( m x 1 ), for R can be obtained easily by 
finding the orthonormal polynomial coefficients (Appendix, Section A.3). 
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4. Chapter 1 has a brief discussion of compound symmetry. 
5. The spectral decomposition gives R = VDg(>.)V' = ~';: 1 AjVjvj. The last 

form is the constituent matrix decomposition, with Vjvj = Gj a constituent matrix. 
6. Other alternative sets of orthonormal eigenvectors can be used, such as 
components of a Helmert matrix. 



CHAPTER9 

Univariate Quadratic Forms 

9.1 MOTIVATION 

In the univariate linear model y = X fJ + e estimates of fJ are linear 
transformations of the response vector y. In contrast, estimates of second-order 
moments (including a 2) are quadratic transformations of y. More specifically, 
they are statistical quadratic forms in y, as defined later in this chapter. Statistics 
for testing hypotheses are generally scalar-valued functions of quadratic forms in 
y. The present chapter includes some of the more important properties of 
quadratic forms in Gaussian distributed vectors, with particular emphasis on results 
with applications in linear models. A series of results have individual importance 
in general linear univariate models. They combine to allow proving the "ANOV A 
theorem," which provides the theoretical foundation for hypothesis testing in the 
Analysis-of-Variance and multiple regression. 

9.2 CHI-SQUARE DISTRIBUTIONS 

We begin by focusing on the family of central chi-square distributions and the 
superfamily of noncentral chi square. Noncentral distributions play an important 
role in power computations for tests of hypotheses. The noncentral chi square is 
the fundamental distribution. 

Definition 9.1 If z '"" Nv (0, Iv ), then 

x = z'z = llzll 2 (9.1) 

has a (central) chi-square distribution with v degrees of freedom, indicated 
.T rv x2(v), obviously with 0 :S: X< 00. 

The definition is unusual. Rather than specifying a density function or some 
other characteristic of the distribution, we specify a random variable as a function 
of other random variables and define the distribution to be the distribution of the 
new random variable. The definition contains very little direct information about 
the characteristics of the distribution. We do not yet know the CDF, characteristic 

169 
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function, whether it has a density function, or any other characteristic. The 
primary virtue of the type of definition is its simplicity. The definition also 
specifies the most important manner in which the distribution arises, namely, a chi 
square equals the sum of squares of i.i.d. N(O, 1) random variables. The 
characteristics of the central chi square are easily derived from the characteristics 
of the univariate Gaussian distribution. The following results are presented in 
many introductory texts. 

Theorem 9.1 If X rv x2(v), then its distribution is completely characterized by the 
following functions. The probability density function is (Vx. > 0) 

dv-2)/2e-x,j2 

fx(x.; v) = 2v/2f(v /2) 

The moment generating function is (for It! < 1/2) 

m:c(t; v) = (1 - 2t)-v/2 . 

The characteristic function is ('v't) 

¢x(t; v) = (1- 2itrv/2 . 

(9.2) 

(9.3) 

(9.4) 

Proof. Johnson, Kotz, and Balakrishnan (1994) provided a detailed account. 

Corollary 9.1.1 The distribution, density, and generating functions remain well­
defined for any real 0 < v < oo. 

Proof. Left as an exercise. 

Corollary 9.1.2 If X rv x2(v), then moments of the distribution are easily 
computed, for all realm > -v /2, as 

E( rn) = 2mr(v/2 + m) 
x r(v/2) · 

In particular, E(x) = v, V(x) = 2v, and, if v > 2, E(1/x) = 1/(v- 2). 

Proof. Left as an exercise. 

Definition 9.2 If z '""Nv(J-t, I), then 

v 

x = z'z = LZJ 
j~I 

(9.5) 

(9.6) 

has a noncentral chi-square distribution with v degrees of freedom and 
noncentrality parameter w = 1-£11-£ ~ 0, written X rv x2 

( v' w). Alternately, if 
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z ~ .\;,(l,,v::JV.I"). tltlen z'z ~ \ 2 (v . ..v). lf....: = 0, the quadratic fonn 

reduces to a central chi square. 

Warning! Some authors (Searllc, 1971~ Johnson, Kotz. and Balakrishnan. 
1995) use....:= ~-t'~-t/2 as the noncer111rality patrameter. while others (Rao. 1973) use 

c,c,' = ~-t'l-'· Although either choice is valid constants in the density. generating 
functions. and moments vary with the choice. When reading material on any 
function of univariate or multivariate nonoentral quadratic forms. one must take 
care to determine which definition of noncentrality parameter is being used. The 
warning applies to all noncentral versions of chi square. F. and quadratic forms. 
The same warning also applies to nonc.entral versions of multivariate 
generalizations .. including the Wishart random matrix and functions of it. 

Theorem 9.2 If.~· ~ '1. 2 
( v, w ), then its distribution is completely characterized by 

the probability density function (\f.r > 0). 

. x e ~12 (w/2)' . 
.f,(:r,: u . ..v) = L k' J,,(.r*: v + 2/cO). (9.7) 

k~ll . 

with fJr,: v + 2k. 0) = f,(.r*; l/ + 2k). a central density. The moment 
generating function (for ltl < 1/2). is 

" e-~i2(u.J/2)k 
1n,(t: u . ..v) = L ., m(t: v + 2k.O) 

1-=11 ". 

= (1- 2t) ''1 2exp{ -~ [1- (1- 2t)- 1]} 

= (1- 2t)-' :-exp --,;., ( tu-' ) 
1 - 2t ' (9.8) 

the characteristic function is (l;ft E 'R) 

the cumulant generating function is (for It I< 1/2). 

r·,(t: 11, w) = -(u/2)1og(1- 2t) + tc.v·/(1 - 21). (9.1 0) 

and cumulant 111 is 

t{ 11 ,(.r) = 2'"- 1 
(111- I )!(u + mu.•). (9.11) 
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Proof. If z "-' Nv (!-£, Iv) and x = z' z, the MGF is 

mx(t; v, w) = E[exp(tz' z)] 

=(27r)-vf2 { exp[tz:z.-(z.-~-t)'I(z.-J-t)/2]dz. 
}fRv 

=(27r)-vf2 r exp[tz:z.- z:z./2 + ~-t'z.- 1-£11-£/2] dz. 
}fRv 

=(27r)-vf2 r exp[-(1-2t)z:z./2+~-t'z.-~-t'~-t/2] dz. 0 (9.12) 
}fRv 

If A-1 = (1- 2t)Iv and w = 1-£11-£, then 

mx(t; v, w) = (27r)-vf2e-wf2 { exp( -z:A - 1 z./2 + ~-t' z.) dz. 
}fRv 

= e-wf2[A[ 112Lvexp(J-t1 z.) [ (27r )-vf2[A[-If2exp ( -z:A -l z./2)] dz. . (9.13) 

The last integral is the MGF of a Nv(O, A), with density contained in the brackets 
(and with 1-£ replacing the usual t). Therefore 

mx(t; v, w) = e-wf2[A[ 112exp(J-t1 A~-t/2) 

= (1- 2t)-v/2exp{ [(1- 2t)- 1 ~-t'!-t- w]/2} 

= (1- 2t)-v/2exp[tw/(1- 2t)]. (9.14) 

The characteristic function of the distribution with the density shown is 

¢x(t; v,w) = E(eitx) = ~a~itx. fx(x.; v,w) dx. 

1
oo oo -w/2( /2)k 

= eitx, ~ e w f (x · v + 2k 0) dx 
LJ kf X* *' ' * • 

0 k~O . 
(9.15) 

The bounded convergence theorem permits an interchange of the infinite 
summation and the integral: 

oo e-wf2(wj2)k1oo. 
¢x(t;v,w)=L 

1 
ettx,fx(x.;v+2k,O)dx. 

k~O k. 0 

oo e-wf2(wj2)k 
= {; k! ¢x(t; V + 2k, 0) 

oo -w/2 ( /2)k 
= Le ~ (1- 2it)-(v+2k)/2 

k~O k. 

= (1- 2it)-vf2e-wf2f= ~ ( w/
2

. )k (9.16) 
k=O k. 1- 2It 

Recalling ex = L~=0xk jk! and simplifying give the final form. D 
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The derivation of the characteristic function corresponding to the density can be 
repeated with ¢x(t; v, w) replaced by mx(t; v, w) and i omitted to prove the stated 
PDF corresponds to the stated MGF. Since we have previously derived the MGF 
from basic principles, the verification proves the stated PDF is correct. 

The PDFs in the expression for the density are weighted by Poisson 
probabilities for k E {0, 1, 2, ... }, which means the density describes a mixture. 
Similarly, the noncentral MGF and characteristic function are weighted averages of 
central MGFs and characteristic functions. 

Corollary 9.2.1 The distribution, density, and generating functions remain well 
defined for any real 0 < v < oo. 

Although Siegel (1979) discussed a distribution with zero degrees of freedom, 
we do not consider it here. Johnson, Kotz, and Balakrishnan (1994) provided 
related discussions. 

Corollary 9.2.2 If z"'Nv(D,Iv), then z'z"'x2(v,O), and equivalently 
z' z "' x2 ( v), i.e., the central chi-square is a special case of the noncentral chi­
square with w = 0. 

Corollary 9.2.4 For any finite set of independent chi-square random variables 
{X j}, with Xj "-' X2 (vj, Wj), 

n ( n n ) 
~Xj "'X2 ~Vj, ~Wj . (9.17) 

Corollary 9.2.5 If x "'x2 (v, w), then E(x) = v +wand V(x) = 2v + 4w. 

Proof. Left as exercises. 

9.3 GENERAL PROPERTIES OF QUADRATIC FORMS 

As briefly discussed in Chapter 1, in the study of matrix algebra a quadratic 
form is q = y' Ay for any conforming A andy. Without loss of generality, A may 
be assumed to be symmetric (Lemma 1.4) because q = y' Ay = y' By with 
B = [(A+ A')/2]. The result allows taking advantage of the special properties of 
symmetric matrices. Most importantly, we are assured the middle matrix has a 
spectral decomposition, B = VsDg(>.s)V~, with square, full-rank, and 
orthonormal Vs. 

In studying quadratic forms, it is helpful to remember the eigenvalues of B are 
necessarily real, but they may be positive, negative, or zero. When no negative 
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eigenvalues occur, the middle matrix in a quadratic form can be expressed as 
A = M' M . Many special properties of inner and outer product matrices are 
mentioned in Chapter I. Such products are automatically symmetric. They never 
have any negative eigenvalues, although some may be zero. In all cases 
rank(M' M) = rank(M M') = rank(M). 

Definition 9.3 With n x 1 random vector y and n x n constant middle matrix 
A, the scalar q = y' Ay is a random quadratic fonn. 

The next result is true for y following any distribution with finite second 
moments. For comparison recall E(yy') = E + p.p.'. 

Theorem 9.3 If y (n x 1) is any random vector with finite mean E(y) = p. (n x 1) 
and finite dispersion V(y) = E (n x n), then for any symmetric, finite constant 
matrix A (n x n) 

E(y'Ay) = tr(AE) + p.'Ap.. (9.18) 

Proof. The cyclical property of the trace for conforming matrices, 
tr(ABC) = tr(CAB) = tr(BCA), applies. Since the quadratic form is a scalar, 
it is equal to its trace. Therefore E(y'Ay) = E[tr(y'Ay)] = E[tr(Ayy')] = 
tr[AE(yy')] = tr[A(E + p.p.')] = tr(AE) + p.'Ap.. D 

Corollary 9.3 If A -1- A' the result still holds. 

Proof. Although Lemma 1.4 applies, tr(BE) = tr{[(A+A')/2]E} = 

[tr(AE) + tr(A'E)]/2 gives one pause. However, tr(AE) = tr(EA') = tr(A'E) 
proves the result by trace invariance to transposition and permutation. D 

9.4 PROPERTIES OF QUADRATIC FORMS IN GAUSSIAN VECTORS 

Definition 9.4 A (univariate) quadratic form in Gaussian variables is a 
(scalar) random variable q = y'Ay for n x n constant (finite) A with 
rank(AE) > 0 andy rv (S)Nn(P., E). Without loss of generality A = A'. 

Example 9. 1 Although not obvious, q may be negative. More precisely. 
although Pr{y'y < 0} = 0, depending on the choice of A , it may be that 
Pr{y 'Ay < 0} > 0. If. as an example, n = 1. A = l - 1]. and E = 1, then 
q = - y 'y = - !Ji and Pr{q < 0} = 1. 
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Example 9.2 If A = I ., and y ,..... N,,(O, I ,.a 2), then 

(9.19) 

Here :ri ,...., >.. 2(1, 0) and a;1 Jl 3.-"J if j # j' due to the independence of the 
underlying Gaussian variables. In turn qfa2 ,..... x2(n , 0) . 

Exam pie 9.3 If A = I .. and y "' /'{,, ( J.L , I,, a'l ). then 

J~ ,. 

q = y 'y = a2L 11J/a"2 = a2~ ... ) J. (9.20) 
j = l j = J 

Here x J ,..... x2 ( 1 ,11] / a 2) and Xj lL x 1 if j #- j' due to the independence of the 

underlying Gaussian variables. In tum q/ u 2 ,..._ y_2 ( n, J.L1 J.L! u 2) . 

The last two examples derive expressions for special quadratic forms in terms of 
simple sets of underlying Gaussian and chi square variables. In the most general 
case, similar expressions can be found in terms of weighted sums of possibly 
noncentral chi-square variables. The following three theorems provide explicit 
decompositions for increasing more general quadratic forms. 

Theorem 9.4 Random y rv Nn(J.L, a 2 In) and n x n constant (finite) A= A' of 
rank 0 < n 1 -::::; n define q = y' Ay. Spectral decomposition gives 
A= Vi.Dg(.>..I)V{, with orthonormal-by-column Vi= [ Vt,l · · · vl,n,] (n x n 1) 

and At (n1 x 1). 
(a) In any such setting 

n, 
q = a 2 L>-t,kXk, 

k=l 
(9.21) 

With {xk} mutually independent, Xk rv x2(1,wk), and Wk = (v~,kJ.L) 2 la2 = 
I I I 2 _J I I 2 J.L Vt,kVt,ki-L a = ·u1,ki-LI-L Vl,k a . 

(b) With the additional requirement of A= A 2 (idempotent with rank n 1), if 

n, 

w+ = LWk = J.L'ViVi.'J.Lia2 
k=l 

(9.22) 

(9.23) 

Proof. The results are special cases of the next theorem. However, the simpler 
proof for the special case more clearly illustrates the principles involved. For the 
special case (a), without loss of generality y = a(z + J.Lia) for z rv Nn(O,In). 
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As an orthonormal linear transformation of a unit vector Gaussian, by Lemma 8.2, 
V;' z rv Nn, (O,InJ· In tum, if /-tJ = Vi' ~-tfa, then X= (zi + /-tJ) rv Nn, (J-tiJnJ· 
Furthermore 

q = y'Ay = a(z + ~-tfa)'VjDg(>.i)Vi'(z + ~-tfa)a 
= (Vi'z+ Vi'~-t/a)'Dg(a2 >. 1 )(Vi'z+ Vi'~-t/a) 
= (z1 +~-ti)'Dg(a2 >.I)(zl +1-t1) 

= x'Dg(a2 >.1)x 
n, 

= l.:a2 >. 1 ,kx~. 
k=i 

Here { xn are independent and X~ rv x2 (1, wk)· 
For the special case (b), A= A 2 implies >.1,k = 1. 

(9.24) 

0 

The following theorem contains the preceding two as special cases. It also 
covers the two examples discussed at the beginning of the present section. 

Theorem 9.5 If y'"" Nn(J-ty, :E) with rank(:E) = n and q = y' Ay for n x n 
constant (finite) A= A' of rank 0 < n1 ::::; n, :E = q,q,' with q, n x n of rank n, 
then B = q,'Aq, is n x n, symmetric, and rank n 1 . Spectral decomposition 
gives B = VjDg(>.i)Vi', with columnwise orthonormal Vi = [ v1,1 · · · v1,n,] of 
dimension n x n 1 and >.1 n 1 x 1. Furthermore 

n, 

q = LAt,kXk, 
k=I 

(9.25) 

Proof. The result is a special case of the next theorem. However, the simpler 
proof for the special case more clearly illustrates the principles involved. For the 
special case, if /-tz = q,-l/-ty, without loss of generality, y = q,(z + J-tz) with 
z '""Nn(O, In)· Hence 

q = y'Ay = [q,(z + J-tz)J'A[q,(z + 1-tz)] 

= (z + J-tz)q,'Aq,(z + J-tz) 

= (z + /-tz)ViDg(>.i)Vi'(z + 1-tz) 

= (Vi'z + Vi'~-tz)'Dg(>.!)(Vi'z + Vi'~-tz) 
= x'Dg(>.1)x 

n, 

= LAi,kX~. 
k=l 

(9.26) 

As an orthonormal linear transformation of a unit vector Gaussian, by Lemma 8.2, 
Vi' z rv NnJD,In,). In tum, X= (V{ z + V{ 1-tz) rv Nn, (Vi' /-tzJn,) is a set of 
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independent Gaussian variables with E(xk) = v~kl-tz· In tum {xD are 

independentandx~ rv x2(1,wk), withwk = (v~kl-tz) 2 = (v~kq,-I/-ty{ 0 

Theorem 9.6 If y '"" ( S)N,, (J-t, :E) with rank(:E) = n 1 for 1 :s; n 1 :s; n and 
q = y' Ay for n x n constant (finite) A, then the following hold. 
(a) Without loss of generality, A= A' and :E = q,q,', with q, n x n 1 of rank n 1, 

while q,+ = (q,'q,)- 1q,'. 
(b) The matrix B = q,' Aq, is n 1 x n 1 and symmetric with 
rank(B) = n2 :s; n 1 :s; n. If n2 > 0, then B = V2Dg(>.2)V{, with columnwise 
orthonormal V2 = [ v2,1 · · · v2,n2 ] of dimension n 1 x n2 and >.2 n2 x 1. 
(c) Furthermore 

n2 

q = LA2,kXk, 

k=I 

(9.27) 

Proof. With z rv Nn, (0, In,), Lemma 8.3 ensures n 1 x 1 constant /-tz = q,+ /-ty 
exists such that y = q,(z + J-tz). In tum 

q = y' Ay = (z + 1-£2 )
1 
q,' Aq,(z + J-tz) 

= (z + J-tz)'B(z + 1-tz). (9.28) 

Symmetry of A ensures the symmetry of B = q,' Aq,. Hence B has 
rank( B) = n 2 nonzero eigenvalues { >.2,k} (all real and any mixture of positive and 
negative values), with 0 < n2 :s; n 1• Also B has n 1 - n2 zero eigenvalues. The 
spectral decomposition allows writing 

(9.29) 

Here Dg(>.2) is n2 x n2, while V2 is the n 1 x n2 columnwise orthonormal matrix 
of corresponding eigenvectors. In tum 

q = (z + J-tz)'V2Dg(>.2)V{(z + J-tz) 

= [V{(z + J-tz)J'Dg(>.2)[V{(z + 1-tz)]. (9.30) 

The vector 

u = V{(z + J-tz) = V{z + V{J-tz (9.31) 

(9.32) 

Therefore { Uk} are mutually independent with uk '"" N1 (JL 2,k, 1) and 

(9.33) 
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Furthermore 

n2 

q = u'Dg(>.2)u = l.:>-2,ku~, 
k=l 

with { uD being mutually independent and u~ '"" x2 ( 1, JL§,k). 

(9,34) 

0 

Corollary 9.6.1 The characteristic function, moment generating function, 
cumulant generating function, and cumulant m of q are 

(9,35) 

(9.36) 

(9,37) 

n2 

lim(q; >.2,w) = L[>-2,'k2m-I(m -1)!(1 + mwk)] 
k=I 

n2 

= 2m-1(m- 1)!L [>-rk(1 + mwk)]. (9,38) 
k=I 

Proof. The characteristic function of a sum of independent random variables is 
the product of the individual (marginal) characteristic functions. As a linear 
transformation of a noncentral chi square, the characteristic function of each Xk 

can be found by applying the form cPay+b ( t) = exp(i tb )¢x (at) to the characteristic 
function of a x2(1,wk). A parallel approach applies to the moment generating 
function. The cumulant generating function is available by taking a logarithm. 
The cumulant reflects the simple impact of a linear transformation on cumulants 
and the fact that the cumulant of a sum of independent random variables is the sum 
of the individual (marginal) cumulants. 0 
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Proof. The characteristic function of q reduces to 

(9.39) 

Observing the effect of transforming q to q /,\ 1 completes the proof. D 

The theorem characterizes a quadratic form in Gaussian random variables 
regardless of whether or not the quadratic form has a chi-square distribution. As 
will be seen in studying estimates of variability in linear models, perhaps the most 
important univariate quadratic forms are scaled chi-square random variables. 
However, many important quadratic forms are not scaled chi squares. They occur 
in a variety of settings, including variance component models and the distributions 
of test statistics. 

Corollary 9.6.3 The mean is 

n2 n2 

E(q) = 2.:>-2,k + 2.:>-2,kWk 
k=l k=l 

n, 

= tr(A:E) + LA2,kll~(q,+)'v2,kv;.kq,+lly 
k=l 

= tr(A:E) + tt~(q,q,+)'A(q,q,+)/Ly. (9.40) 

If :E has full rank of n, then the last form reduces to E(q) = tr(A:E) + tt~Atty 
and coincides with the result in Theorem 9.3 (which holds whether or not y is 
Gaussian and whether or not :E is full rank). Also, with B = q,' A q,, 
q, = V2Dg(>.dl 2 and q,+ = Dg(>.2)-

112V{, and q,q,+ = V2V{. Furthermore 

112 n2 

V(q) = 22.:>-~,k + 42.:>-~,kWk 
k=i k=i n, 

= 2tr[ (A:E) 2
] + 4 2.:>-~,x-IL~( q,+)' v2,kv;,kq,+ /Ly 

k=l 
n2 

= 2tr[(A:E)2
] + 4tt~(q,+)'L>-~,kv2,kv;,kq,+ /Ly 

k=i 

= 2tr[(A:E)2
] + 4tt~( q,+)' B 2q,+ /Ly 

= 2tr[(A:E) 2
] + 4tt~(q,q,+)'A:EA(q,q,+)/Ly. (9.41) 

If:E has full rank ofn, then V(q) = 2tr[(A:E)2] + 4tt~Atty, a very useful result. 
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Corollary 9.6.4 If:E has full rank of n and B = 4>' A q, is idempotent ( A2,k = 1, 
'ilk), then n 2 =rank( B)= rank(A) and q = y' Ay is distributed as the sum ofn2 

independent random variables distributed x2 (1, wk)· Also q'"" x2 ( n2, JL~AJLv). 

Proof. Partially left as an exercise. Lemma 1.30 is useful (q,' Aq, is 
idempotent <(:::} :EA is idempotent). The constituent matrix decomposition of a 
symmetric and idempotent matrix allows writing 

n2 n2 

L:Wk = L [JL~( q,+)' v2,kv;,kq, + JLy] 
k=1 k=1 

= JL~ q, -t (f v2,kv~,k) 4> -1 Jly 
k=1 

= JL~q,-t ( v [ ~n, ~n-n,] v') q,-1 Jly 

= JL~q, -t( q,' Aq, )q,-I ILv 

= JL~AJLv. 
(9.42) 

0 

Theorem 9.7 If y'"" Nn(JLy, :E), rank(:E) = n, and A 1 and A 2 are conforming 
constants, then 

(9.43) 

Proof. Left as an exercise. 

Theorem 9.8 If q = y' Ay withy'"" Nn(JLy, :E), rank(:E) = n, A= A' constant, 
and B ( m x n) constant (of any rank), then 

V(y,y'Ay) = 2:EAJLy 
V(By,y'Ay) = 2B:EAJLy. 

(9.44) 
(9.45) 

Proof. (Searle, 1971, p56) From the definition, then x 1 vector can be written 

V(By, y' Ay) =E{ (By- BJLy) [y' Ay- JL~AJLv- tr(A:E)]} 

= E{ B(Y-JLv) [(y-JLv)' A(y-JLv)+2(y- JLv)' AJLy-tr(A:E)]} 

=BE[(Y-JLv)(Y-JLy)'A(Y-JLv)J+2BE[(y-JLy)(Y-JLv)']AJLy-O 
=0 + (2B:EAJLv)- 0, (9.46) 

because the first and third moments of y - Jlv are zero. 0 

In practice, the most frequent use of the following theorem is to infer from the 
fact A= A 2 that q must be chi square regardless of the true value of Jly· 
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Theorem 9.9 If y rv Nn(/-ty, In), A= A' (n x n), rank( A) = n1, and 
w = ~-t~AJ-tu, then q = y'Ay'"" x2(nhw) I::! ~-tv <(:::} A= A 2. 

Proof. ( {=) The spectral decomposition of A is A= VDg(>.)V' with 
V'V = VV' = In. Given A is idempotent we have 

(9.47) 

Now q = y' Ay = y'VDg(>.)V'y. If z = V'y then y = V z, 

z= [;~] =V'y= [~~] rvN;,(V
1
1-£y,In), (9.48) 

and q = y'Ay = z'Dg(>.)z = z;zJ. Having ZJ rv Nn
1 
(Vj' J-tv, Iv) implies q = 

z;z1 '""x2 (n 1 ,w) withw = (Vj'J-tv)'(V{~-tv) = J-t~VjVj'J-tv = ~-t~A/-ty· 0 

Proof. ( =?) Given q = y' Ay'"" x2(n 1, w) for every choice of J-tu, in which 
w = ~-t~AJ-ty, and n1 = rank(A), we must prove A is idempotent. The MGF of 
the distribution of y' Ay is 

my'Ay(t) =II- 2tAj-112exp{ -~-t~[I- (I- 2tA)- 1r 1 ~-tv/2}, (9.49) 

while the MGF of x2(n 1 , w) is 

(9.50) 

By assumption the two MGFs must be equal 1::1~-ty E ~n, including /-ty = 0. If 
1-tu = 0, then w = 0, which implies (1- 2t)-nd2 =II- 2tAI-112 1::/t E ~. For 
any (square) matrix II- uAI = TI~=l (1- u>.k), in which the eigenvalues of A 
are )..1 ~ )..2 ~ · · • ~ An. If u = 2t, then raising both sides to the -2 power gives 
(1- u)n1 = TI~=l (1- u>.k) 1::/u E ~. The two polynomials are identical and so 
must be of the same degree. The polynomial on the left is of degree n 1 < n, which 
implies the polynomial on the right is also of degree n 1 • In tum, the last n - n1 
terms are equal to 1 because (1 - u>.k) = 1 fork E { n 1 + 1, n 1 +2, ... , n} 1::/u E ~ 
implies Ak=O for kE{n1+1,n1+2, ... ,n}. We now have (1-u)n1 = 
TI7= 1 (1 - u>.k) 1::/u E R Since the polynomials are identical, they must have 

identical roots. Therefore Ak = 1 for k E { 1, 2, ... , n 1}. The matrix A = A' has 
n 1 eigenvalues of 1 and n - n 1 eigenvalues of 0. Finally, A is idempotent of rank 
n1. 0 

Corollary 9.9 If y rv Nn(/-ty, :E), rank(:E) = n, A= A' (n x n), rank( A) = n 1, 

andw = ~-t~AJ-tv, theny'Ay'"" x2(n 1,w) 1::1~-tv <(:::} (A:E) = (A:E?. 

Proof. Factoring the covariance matrix allows transforming the random 
variables to independence. Spectral decomposition gives :E = TDg(>.)T' = q,q,' 
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with q, = TDg(>.) 1
/

2
• Alternately use the Cholesky decomposition of :E, with q, 

a lower triangular matrix. In general, q,- 1 exists if and only if :E-1 exists. For 
rank(:E) = n we have :E-1 = q,-tq,- 1 and q,-1:Eq,-t =In. Also z = 
q,-1y ~ Nn(q,-l/-ty,In)· If J-tz = q,-1/-ty then W = 1-t~(q,'Aq,)/-tz = J-t~A/-ty· 
Since y = q,z, we have q = y'Ay = z'q,'Aq,z. In terms of z, q ~ x2 (n1 ,w) if 
and only if q,' A q, = ( q,' A q, )2 . By Lemma 1.30 we conclude q ~ x2 ( n 1 , w) if 
and only if A:E is idempotent. 0 

The immediately preceding results assumed a nonsingular Gaussian 
distribution, while Theorem 9.6 and the following theorem provide results for 
singular and nonsingular Gaussian distributions. 

Theorem 9.10 For y ~ Nn(J-t, :E) and rank(:E) = n 1 :::; n, q = (y'Ay + b'y +c). 
If A= A' (n x n), b (n x 1), c (1 x 1), v = tr(A:E), and w = 

(A~-t + b/2)':E(A~-t + b/2) are all fixed constants, then q = 
(y' Ay + b' y + c) ~ x2 ( v, w) if and only if all three of the following conditions 
hold regardless of the value of 1-£ and :E: 

1. :EA:EA:E = :EA:E 

2. (A~-t + b/2)':E = (A~-t + bj2)':EA:E 

3. ~-t' A~-t + b' 1-£ + c = (A~-t + b j2)':E(A~-t + b /2) . 

Searle (1971, Section 2. 7) presented the theorem and its proof. One can obtain 
various corollaries by setting some of 1-£, b, and c to zero. 

The theorem is easily misinterpreted. If q has a noncentral chi-square 
distribution, the theorem does not imply A:E is idempotent, only that all three of 

1-3 are true. Searle (1971, p. 69) commented on problems which may arise from 
misinterpretation. 

9.5 INDEPENDENCE AMONG LINEAR AND QUADRATIC FORMS 

The proofs for Theorems 9.11 and 9.14 give independence properties based on 
factoring A= A' as A= F F'. If A has any negative eigenvalues, then complex 
variables occur in F. The complex variables could be avoided with a slight 
complication of the proofs. With A= VDg(>.)V', if s(.Aj) = 1 for Aj ~ 0 and 
-1 otherwise, writing Dg(>.) = Dg( {I.Ajl} )Dg( { s(.Aj)}) allows treating algebraic 
sign separately from eigenstructure. 

Theorem 9.11 If y ~ Nr,(J-t, :E) with rank(:E) = n, n x n constant A= A' has 
rank v:::; n, and m x n B is constant (and any rank), then y'Ay Jl By 1::1~-t <(:::} 

B:EA = 0. 
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Proof. ( {= ) Symmetric A can be written A = F F' with F of dimension 

n x v and rank v. One choice is F = ViDg(>.I) 1
/

2
, with Vi n x v, and the 

columns the v eigenvectors corresponding to the nonzero eigenvalues. Full 
column rank ofF ensures (F' F)-1 exists. Also 

0 = B:EA = B~FF' 

= B~FF'[F(F'F)-1 ] 
=B~F 

= V(By, F'y). (9.51) 

The last line is true <(:::} By Jl Fy' (due to the Gaussian distribution assumption), 
which implies By Jl (F'y)'(F'y) = y'Ay. 

Proof. (::::}) By Theorem 9.8 we know V(By, y' Ay) = 2B~AJL. By 
independence, 0 = 2B~AJL 1::/ JL, which implies B~A = 0. 0 

The first part of the proof reveals the underlying source of the independence, 
when it exists. Linear form By is independent of quadratic form y' Ay, because 
the quadratic form can be written as y' Ay = y' F F' y = z' z with z = F' y 
independent of By. 

The theorem is both significant and has a familiar result as a special case. A 
standard result from univariate theory is that y; ~ N(JL, a 2) i.i.d. ::::} Jl = y is 
independent ofa2

. The following corollary states the familiar result formally. 

Corollary 9.11 The sample mean is independent of the sample variance for i.i.d. 
Gaussian data. Given data y ~ NN(JL1, a 2 IN), in the notation of the theorem, 
the usual estimators are y = b'y and &2 = y'Ay with 1 x N b' = (1'1)-11' and 
N x N A= [I- 1(1'1)-11'] j(N- 1). Therefore y and &2 are independent. 

Proof. It is easy to prove b'(a2IN)A = 0 because 1'A = 0, which allows 
applying the theorem. 0 

The following theorem is the foundation for extending the preceding result to 
the singular Gaussian distribution. 

Theorem 9.12 (Good, 1963) For y ~ N;,(O, ~) with rank(~)= n 1 ::; n, 
constants A= A' (n x n), a E ~n, and bE ~n, 
(a) y' Ay and b'y are independent <(:::} ~A~b = 0 and 
(b) a'y and b'y are independent <(:::} a'~b = 0. 

Proof. Good ( 1963, Theorem 1 C; corrigenda in 1966) provided a proof. 

Theorem 9.13 If y ~ Nn(JL, ~), rank(~) = n 1 ::; n, A= A' (n x n) and B 
(m x n) are constants, then y' Ay and By are independent <(:::} B~A~ = 0 and 
B~AJL = 0. 
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Proof. (Searle, 1971, p. 70) Necessarily :E = q,q,', with q, n x n 1 and rank 
n 1 . Also y = 1-£ + q,z, with z rv Nn1 (O,I). If b' = row;(B), then y' Ay = 

z'q,' Aq,z + 2~-t' Aq,z + ~-t' A~-t and b'y = b'q,z + b' I-t· By Good's theorem, 
z'q,'Aq,z is independent ofb'q,z <(:::} I(q,'Aq,)I(q,'b) = 0 <(:::} B:EA:E = 0. 
Also 1-£1 Aq,z is independent of b'q,z <(:::} 1-£1 Aq,Iq,'b = 0 <(:::} B:EA~-t = 0. 
Combining results, y' Ay is independent of B'y <(:::} B:EA:E = 0 and 
B:EA~-t = 0. 0 

Corollary 9.13 Given the conditions of the theorem, if B:EA = 0, then y' Ay and 
By are independent. 

Proof. Immediate from the theorem. 

The useful corollary states a sufficient (but not necessary) condition for 
independence. 

Theorem 9.14 If y '""N;,(!-£, :E) with rank(:E) = n, A= A' (n x n) and B = B' 
( n x n) are constants, then y' Ay JL y' By 1::/1-£ <(:::} A:EB = 0. 

Here 0 = A:EB <(:::} 0 = (A:EB)' = B':E' A' = B:EA. It is not necessary 
for either quadratic form to have a (marginal) chi-square distribution. The theorem 
is about independence only. 

Proof. ( -{::: ) The approach centers on defining a transformation and proving the 
independence of the two underlying linear forms. If A= FAF~ and B = F 3 F3, 
with FA and F 3 full (column) rank factors, then (FA' FA)-1 and (F3 ' F 3 )-1 exist. 
Furthermore 

0 = A:EB = FAFA':EF3 F 3 ' 

=(FA' FA)-1 FA' FAFA':EF3 F 3 ' F 3 (F3 ' F 3 )-
1 

= FA':EFs 
= V(FA'y, F 3 'y) = V(x, z), (9.52) 

with x = FA'y, z = F3 'y. Under the assumption of Gaussian distribution, x and 
z are independent. Therefore x' x = y' Ay is independent of z' z = y' By. 

Proof. ( =? ) Assuming independence of y' Ay and y' By allows writing 

V(y'Ay+y'By) = V(y'Ay) + V(y'By) 
= V[y'(A + B)y]. (9.53) 

The first part follows from the fact that V(y' Ay) + V(y' By) -
V[y'(A + B)y] = 0. From a previous corollary, 
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and 

V(y'Ay) = 2tr[(A:E?J + 4JL'A:EAJL 

V(y'By) = 2tr[(B:E) 2
] + 4JL'B:EBJL 

V[y'(A+B)y] =2tr{[(A + B):E] 2
} + 4JL'(A + B):E(A + B)JL 

=2tr(A:EA:E) + 2tr(A:EB:E) + 2tr(B:EA:E) + 

185 

(9.54) 
(9.55) 

2tr(B:EB:E)+4JL' A:EAJL+8JL' A:EBJL+4JL' B:EBJL. (9.56) 

The difference should be zero 1::/ JL and :E. Therefore 

0 = 2tr(A:EB:E) + 2tr(B:EA:E) + 8JL' A:EBJL 
= 4tr(:EA:EB) + 8JL' A:EBJL. (9.57) 

Letting JL = 0 implies tr(:EA:EB) = 0 which, with the equation above, implies 
JL1 A:EB JL = 0 1::/ JL, which implies A:EB = 0. 0 

Theorem 9.15 If y'"" Nn(JL, :E) with rank(:E) = n 1 :s; n, while n x n matrices A 
and B are constant (of any rank), then y' Ay and y' By are independent if and 
only if all three of the following hold: 
(1) JL' A:EB JL = 0, (2) :EA:EB JL = :EB:EAJL, and (3) :EA:EB:E = 0. 
Without loss of generality, A and B may be assumed symmetric. 

Proof. Left as an exercise. The generalization for singular Gaussian vectors is 
from Searle (1971 ). The proof relies on Good's theorem. 

Corollary 9.15.1 If A:EB = 0, then y' Ay andy' By are independent. 

The useful corollary states a sufficient (but not necessary) condition for 
independence. 

Corollary 9.15.2 If both A and B are positive semidefinite or positive definite, 
then y' Ay and y' By are independent if and only if A:EB = 0. 

Proof. Shanbhag (1966; Searle, 1971, p. 71). 

As one can see, relaxing the assumption of full-rank :E to allow :E to be positive 
semidefinite complicates the necessary conditions for independence. The basic 
tool for manipulating the singular Gaussian distribution is a transformation to a 
full-rank distribution, as follows. For y'"" Nn(JL, :E), rank(:E) = n 1 :s; n, matrix 
q, exists with full column rank such that :E = q,q,'. In tum, y = JL + q,z with 
zrvNn,(O,In,), and z=(q,'q,)- 1q,'(y-JL). The technique is central to the 
proof of the last theorem. 
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9.6 THE ANOV A THEOREM 

ANOV A for general linear univariate models partitions the total sum of squares 
into component sums of squares as 

SST= y'y = y'A1y+y'A2y+ · · · +y'AnY· (9.58) 

Typically, it is crucial to be able to assume the n sums of squares are totally 
independent and have marginal chi-square distributions. The ANOV A theorem 
provides necessary and sufficient conditions for such quadratic forms to have 
independent chi-square distributions. The theorem is founded on theory for 
idempotent matrices and has a geometric interpretation. If Ai = Ar (N x N), 
then z = Aiy ( N x 1) is a projection onto a subspace, and z' z = y' Aiy is the 
squared length of the vector. The theorem is about squared lengths of projections 
ofy (N x 1) onto mutually orthogonal subspaces ofthe sample space. 

The proof of the statistical theorem arises directly from a matrix theorem. In 
tum, Loynes' lemma simplifies proving the matrix theorem. We first prove 
Loynes' lemma, then derive the matrix decomposition used in the ANOV A 
theorem, and finally prove the ANOV A theorem itself. The presentation follows 

Searle (1971, p. 60-64 ). Early proofs were quite long. Banerjee (1964) produced 
a shorter proof, which was shortened and improved by Loynes (1966). Therefore 
Loynes' lemma is a key to a concise proof of the ANOV A theorem. 

Lemma 9.1 (Loynes' lemma) If B = B' = B 2, Q = Q' is positive definite or 
positive semidefinite, and I - B - Q is positive definite or positive 
semidefinite, then BQ = 0. Furthermore BQ = QB. 

Proof. We prove QBx = 0 for all x E ~N. It then follows QB = 0. If 
y = Bx for arbitrary x E ~N then y'By = y'B(Bx) = y'B2x = y'B1x = 
y'(Bx) = y'y. Thus y'(I- B)y = (y'Iy- y'By) = 0 and y'(I -B-Q)y = 
-y'Qy ~ 0. The last inequality follows from the assumption I- B- Q is 
positive definite or positive semidefinite. The assumption Q is positive definite or 
positive semidefinite implies by definition that y'Qy is also n.n.d. for ally. Hence 
y'Qy = 0. Since Q = Q', F exists such that Q = F' F. Therefore y' F' Fy = 0 
implies Fy = 0 = F' Fy = Qy = Q(Bx) for arbitrary x. 0 

Only B is assumed to be idempotent. In many applications Q is also 
idempotent. However, the lemma only requires the weaker condition of positive 
definite or positive semidefinite Q. Of course, Q = Q 2 ::::} Q positive definite or 
positive semidefinite. Similarly, I - B - Q is required to be only positive 
definite or positive semidefinite rather than idempotent. However, if either Q or 
(I- B- Q) is idempotent, then all of B, Q, B + Q, and I- B- Q are 
idempotent. Idempotency is easy to prove using the result BQ = 0. 

The matrices B and Q have the same eigenvectors. If A and B are symmetric 
matrices then AB = BA if and only if A and B have the same eigenvectors 
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(Theorem 4.17, Schott, 2005). If so, A= VADg(>.A)V;( and B = VADg(>.B)V;(. 
So AB = BA = 0 implies Dg(>.A)Dg(>.B) = 0. 

Theorem 9.16 (Matrix decomposition used in the ANOV A theorem) If A = A' 
(N x N) of rank r is partitioned as A= 2:7= 1A; with each A;= A; of rank r;, 
then the following conditions may be defined. 
l. A; = A~ for i E { 1, 2, ... , k} 
2. A 1A;, = 0 =A;· A; fori -j. i' 
3. A= A 2 

""'"" 4. T = ui=l T;. 

With the definitions, it follow that 
I. Any two of 1, 2, 3 imply all of 1, 2, 3, and 4. 
II. Together, 3 and 4 imply all of 1, 2, 3, and 4. 

Proof. Proving I and II require only five steps: 
1 and 3 =? 2; 2 and 3 =? 1; 1 and 2 =? 3; 1 and 3 =? 4; 3 and 4 =? 1. 

Proof that 1 and 3 =? 2. By 3, A= A 2 =? (I- A)= (I- A? =? (I- A) 
is positive semidefinite (p.s.d.). By 1, Ak =A~ =? Ak is p.s.d. =? 2:i?'k?'i'Ak 
is p.s.d. =?(A- A;- A;·) is p.s.d. Therefore (I- A)+ (A- A;- A;·)= 
(I- A;- A;•) is p.s.d. By Loynes' lemma, A;Ai' = 0, which implies 2. 

Proof that 2 and 3 =? 1. Eigenvector v and corresponding eigenvalue A of A; 
are defined by A;v =VA or A -I A;v = v if A -=f. 0. By 2, Akv = AkA;v/ A= 0 
fork -=f. i and A -=f. 0. For any nonzero eigenvalue of A;, A -=f. 0, and corresponding 
eigenvector v, we have Av = (2:kAk)v = 0 + A;v = AV. Therefore A is an 
eigenvalue of A. Since 3 =? A = 1 or 0, every nonzero eigenvalue of A; equals 
1. Thus l holds. 

Proof that l and 2 =? 3. Using I and 2 in obvious ways we have 3, A 2 =A. 
Specifically A 2 

= (2:A.A,y = 2:12:;.AiAi' = 2:kAr = 2:kAk =A. 

Proof that l and 3 =? 4. Using 1 and 3 in obvious ways we have 4, r = 2:~;-rk, 

as follows: r = tr(A) = tr(2:kAk) = 2:ktr(Ak) = 2:krk. 

Proof that 3 and 4 =? I. By 3, A= A 2 =? -(A- I)= (A- I) 2 =? 

rank(A- I) = N- r. In tum, (A- I) has N- r linearly independent columns 
and so (A- I)x = 0 (N x 1) is a set of N equations containing N- r linearly 
independent (LIN) equations. Similarly, -A;x = 0 is a set of N equations 
containing 7'; UN equations. The concatenation of n such sets of equations yields 
N n equations, 
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(9.59) 

The equations contain at most (N- r) + r 2 + r3 + · · · + Tn LIN equations. By 4, 
a total of N - r 1 LIN equations exist. They can be reduced to N equations by 
adding terms on the left side to yield (A1 - I)x = 0 <(:::} A 1x = x <(:::} 

A 1x = lx. At most N- r 1 LIN equations exist. 

Since the N equations A 1x = lx contain at most N- r 1 LIN equations, at 
least N - ( N - ri) = r 1 LIN solutions x exist for the equations. Hence there are 
at least r 1 eigenvectors for A 1 which correspond to eigenvalues equal to 1. Since 
rank(Ai) = r 1, A 1 only has r 1 nonzero eigenvalues. Therefore A= 1 is an 
eigenvalue of multiplicity r 1 and A = 0 is an eigenvalue of multiplicity N - r 1. 

Consequently A 1 must be idempotent. The same proof can be applied to any other 
Ai. Thus, by extension, all Ai must be idempotent, which gives 1. D 

Theorem 9.17 (The ANOVA theorem) If y '""NN(J-t, :E) with rank(:E) = N, 
A= A' (N x N) of rank r with A= L:7=1Ai, Ai = Ai with rank Ti, and 
q = y' Ay, the following conditions may be defined. 
1. Ai:E = (Ai:E)2 for i E {1, 2, ... , k }, which is equivalent to Ai:EAi = Ai, 
2. Ai:EAi' = 0 for all i -=f. i', 
3. A:E = (A:E?, and 

4. T = L7=!Ti. 
For the conditions defined, 
(a) y' Aiy'"" x2(ri, ~-t' Ail-£), 
(b) y' Aiy is independent of y' Ai'Y 1::/i "I- i', and 
(c) y' Ay'"" x2 (r, ~-t' A~-t) 
are all simultaneously true if and only if 
I. any two of 1, 2, and 3 are true, or 
II. 3 and 4 are both true. 

Corollary 9.17.1 (Cochran, 1934) If y rv NN(O,IN) with A= IN [and 

rank(A) = N] is partitioned as I= L:7=1Ai with Ai = Ai of rank ri, and 
q = y'Ay, then the variates qi = y'Aiy, i E {1, 2, ... , k }, are mutually 

independent and distributed as x2(ri, 0) <(:::} N = L:7=1ri. Obviously 
q'"" x2 (N, 0). 

Proof. Left as an exercise. 
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Exampll' 9.4 A GLMx .,1(y,: X ;,6, o :l) with Gaussian distribution has 

- I -I l - 1 
- I 0 - 2 0 2 

{W 1, W :2, W;,. W 4} = 
- I I - I - I 

(9.60) 
- I I ' - I I 

0 - 2 0 - 2 

If X = [ Wj w2 W;} I and,B' = [,6~ /32 ,B!,J. then (X 'X ) = Dg({6, 6, 4, 12}) 
and (X 'X )-1 = Dg( {1 / 6, 1/ 6.1 / 4, 1/ 12} ). Finally, if 

(9.61) 

then 

{9.62) 

The { A k } provide projections of y (N x 1) onto mutually orthogonal subspaces of 
the sample space. The subspace spanned by (A 1 + A 2 + A 3 ) (with basis X ) is 
the estimation space. The subspace spanned by A ,1 (with basis W.1) is the error 
space. The corresponding source table is given below. The presence of o - 2 in the 
definition of A k scales the underlying Gaussian variables to have unit variance. 
which leads the associated sums of squares to be chi square. as required in the 
preceding corollary. 

ANOV A Table for Example 

Source df 
Mean 1 

A 
B 2 

Residual 2 

Total 6 

Sum of Squares 

y 'A ly 
y 'A 2y 
y 'A :!Y 
y'~y 

Corollary 9.17.2ln a GLMN,qFR(yi; x.,e, o 2
) with Gaussian errors, the fixed and 

known constants C and 00 define the a priori secondary parameter (a x 1) 
0 = 0,6-00 , with rank( C)= a::; q. In turn, 

F( ) = (0- Oo)'[C(X' x)-1CT1
(0- Oo)fa = SSHja 

Y a 2 SSEj(N- q) (9.63) 

is a ratio of quadratic forms. Here SSH = sum of squares for the hypothesis is 
computed from j3 =(X' x)-1 X'y and 0 = C/3, while 
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SSE = sum of squares for error 

= (y- x{:J)'(y- x{:J) 

= y'[I -X(X'X)-1X']y. (9.64) 

Hence F(y) '""F(a, N- q,w) forw = (8- Oo)'[C(X'X)-1CT
1
(8- Oo)fa2. 

Proof. Since {:J and (y - X {3) are statistically independent, SSE and SSH are 
statistically independent. Furthermore we can prove SSE I a 2 

rv x2 
( N - q) and 

SSHja2 '""x2(a,w). Thus F(y) is distributed as a ratio of independent chi-square 
statistics divided by their degrees of freedom. 0 

We shall see in Chapter 15 that in testing H0 = B(O = 80 ) versus 
HA = B(O -1- 80 ) both the likelihood ratio test (LRT) procedure and the union 
intersection test (UIT) procedure can use F(y) as the test statistic. 

9.7 RATIOS INVOLVING QUADRATIC FORMS 

The F and t distributions play central roles in describing distributions of test 
statistics for linear models. Both are defined in terms of other random variables. 
In particular, if z rv N ( 0' 1) and X rv x2 

( v) are independent, then 

z+JL t=--
~-

(9.65) 

The situation will be indicated by writing t'"" t(v, JL) for the noncentral case or 
t '""t(v) for the central case. The corresponding CDF is indicated Ft(t*; v, JL), and 
the corresponding quantile is Ft- 1 (p; v, J-l). A two-tailed test of size a use 
tcrit = Ft-1(1- aj2;v), while a one tailed test uses either Ft-1(1- a;v) or 
Ft- 1(a; v), depending on the direction (sign oft) required. 

If X1 rv x2 (vi' WJ) is independent of X2 rv x2 ( V2' W2)' then 

j = XJ/V1 

x2/v2 
(9.66) 

1s described as following a doubly noncentral F distribution, 
f '""F(v1,v2,w1 ,w2). The (singly) noncentral F has w2 = 0, written 
frvF(v 1,v2,w1 ), and the central has w1 =w2=0, written frvF(v~,v2). 
Noncentral F has corresponding CDF indicated Fp(f;v1 ,v2,w1) and quantile 
fcrit = Fj; 1 (p; VJ' V2, w). Equivalently t 2 

rv F(1, V2, w1)· A size a test uses 
fcrit = Fj;1(1- a; v1, v2), which corresponds to a two-tailed t test if v1 = 1. A 
one-tailed t test may be performed with Fj;1(1- 2a; 1, v2 ) while requiring the 
underlying t to have the correct sign. The notation may be summarized by writing 
Fp(fo; v1, v2,w) = Pr{f :S: fo} and, forw = 0, Pr{f > fcrit} =a. 
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More general ratios of quadratic forms occur naturally in linear models. Such a 
variable can be written 

(9.67) 

for constants {cj} and random Xj rv x2(vj,Wj) all fully independent. Typically 
Cj > 0, which implies Pr{ q1 / q2 > 0} = 1. For r0 > 0 a simple transformation 
gives 

(9.68) 

Although s = L,j~-t;hdjXj has a simple and known characteristic function, 

computing Pr{s:::; 0} = Pr{qJ/q2 :::; r 0 } proves difficult. With {dj} known, 
Davies' (1980) algorithm allows computing Pr{ s :::; 0} and more general results 
with specifiable precision. The method uses numerical inversion of the 
characteristic function (a numerical integration). Interest in special cases had led 
to the development of many alternative algorithms, typically based on series 

expansions. Johnson and Kotz (1970, Chapter 29, p. 169-173) summarized many 
issues of theory and computational practice in the long history of the problem. 
Johnson, Kotz, and Balakrishnan (1994) provided some additional information. 

In many settings, an approximation provides sufficient accuracy and can be 
much faster to compute. For ci > 0 and Wj = 0, a Satterthwaite (1946) 
approximation matches the mean and variance of qk to q.~.;, with 
q.~.:/ >...k '""x2(v.k, 0). In tum, Pr{q1jq2 Sro} ~ Fp[ro(>...2v•2)/(A..kv<~); v.1, v>2]. 
Kim, Gribbin, Muller and Taylor (2005) generalized the approximation to allow 
Wj > 0 for J S Ji by USing q.J/ A•J rv X2(v.!, W•J). 

EXERCISES 

[ 

1 p . pl 
9.1 Suppose y rv N,,(lnJ-l, :E) and :E = a 2 ~ ~ : ~ • Thus E(y;) = J-l for all 

p p . 1 
i, V(y;) = a 2 for all i, and V(y;, YJ) = a 2 p for all i -1- j; that is, the y's are 
equicorrelated. Equivalently, :E = a 2[(1- p)l + pll']. 
9.1.1 Show that L-:'= 1 (y; - Y? /[a2(1 - p )] is x2(n- 1). 
9 .1.2 Given that Vr is an n x ( n - 1) matrix which is columnwise orthonormal 
such that Vfln = 0, find the distribution of YT = Vfy. 
9.1.3 Explicitly specify the distribution of Q = YrYT· 
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9.2 Suppo"' y- A(,(l', E), w;th I'~ [ -!], 
A = [ -~ -~ =~ ]· 

-8 -6 3 
9.2.1 Find E(y' Ay). 
9.2.2 Find V(y' Ay)! 

[
4 1 0] 

:E= 121' 
0 1 3 

and 

9.2.3 Fully specify the exact distribution of y' Ay (including all parameters and 
dimensions). Explain why the distribution you claim provides the correct answer. 
You may use IML or any other matrix language for numerical calculations. 
If you do, please show both the code and final results to help the grader. 
9 .2.4 If :E = a 2 I' does y' Ay I a2 have a x2 distribution? 

9.3 Assume xrfa2 
rv x2(vl, w), independent of X2, and X2/ a2 

rv x2(v2)· 
Definer= (x 1jv1)j(x2/v2), c = v2/(v1ro) for r0 > 0, and s = cx1 - x2. 
9.3.1 ProvethatPr{r :S r 0 } = Pr{s :S 0}. 
9.3.2 What is E(s)? 
9.3.3 What is V(s)? 
9.3.4 What is the moment generating function of s? 



CHAPTERlO 

Multivariate Quadratic Forms 

10.1 THE WISHART DISTRIBUTION 

With A constant and y Gaussian, q = y' Ay is a univariate quadratic form and 
equals a weighted sum of chi squares. With equal weights, q is a scaled chi square. 
The necessary and sufficient conditions are detailed in the previous chapter. 
Replacing vector Gaussian y by matrix Gaussian leads to the following definition. 

Definition 10.1 The N x N constant A= A' andY'"" (S)NN,p(M, 8, :E) 
create the p x p matrix Q = Y' AY, a multivariate quadratic form. 

In the multivariate case we must always assume A= A'. Idempotent A leads 
to a special distribution (chi square) in the univariate case. Similarly, idempotent 
A and 8 leads to Q having a Wishart distribution, which is one multivariate 
generalization (of many) of the chi square. Wishart (1928), Johnson and Kotz 
(1972), Arnold (1981), Muirhead (1984), Gupta and Nagar (2000), and Anderson 
(2004) included related treatments. The nomenclature and approach to many 
proofs used here closely follow the presentation in Muller and Chi (2006). 

Definition 10.2 (a) If Y '""Nv,p(O, Iv, :E), then Y'Y'"" Wp(v, :E) indicates 
Y'Y follows a central (integer) Wishart distribution with (integer) v > 0 
degrees of freedom. 
(b) If Y '""Nv,p(M, Iv, :E), then Y'Y'"" Wp(v, :E, M' M) indicates Y'Y 
follows a noncentral (integer) Wishart distribution with (integer) v > 0 
degrees of freedom, shift~ = M' M, and noncentrality n = M' M:E+. 
(c) Singular :E may be emphasized by writing SWp(v, :E) or SWp(v, :E, ~). 
(d) Writing (S)Wp(v, :E) or (S)Wp(v, :E, ~)indicates possibly singular :E. 

In parallel to a chi square, a Wishart is defined as a quadratic form of 
independent standard Gaussian random vectors. The Wishart definition also 
includes scale. The shift and noncentrality parameters reflect the nature of the 
underlying Gaussian variables. If (and only if) M = 0, then ~ = M' M = 0 and 
n = 0, which reduces a noncentral Wishart to a central. Eigenvalues of the 

193 



194 MULTIVARIATE QUADRATIC FORMS 

noncentrality matrix 11 are invariant to any full-rank transformation of the columns 
of Y. Therefore they are scale free, in the sense of being invariant to multiplying 
each variable by a possibly distinct nonzero constant. 

Historically, most discussions of the Wishart have assumed full-rank :E, which 
implies 11 = M' M:E-1 is unique, and led to the notation Wp(v, :E, 11). For 
singular :E, some authors define noncentrality as M' M:E- or M' M:E+. In 
many applications, only functions of M' M:E- invariant to the choice of :E­
occur, which allows using M' M:E+ without loss of generality. 

Defining the Wishart in terms of~ = M' M not only avoids the ambiguity in 
singular cases but also is consistent with chi-square notation. If z '""N(J-Lz, 1), 
then y = za '""N(J-Ly, a 2

) with /-ly = aJLz· In tum, y2 ja2 = z2 '""x2 (1, JL;) and 
z2 '""Wi(1,JL;), with noncentrality J-l; = JL~fa2 = w, while y2 '""W1 (1,JL;). If 
Z '""Nv,p(Mz,Iv,Ip) and :E = q,q,', then Y = zq,' '""Nv,p(My,Iv, :E) with 
My= Mzq,'. In tum, q,-ly'yq,-t = Z'Z'"" Wp(v,Ip,M'zMz) with 
noncentrality M'zMz =q,-I M}rMyq,-t =11, while Y'Y'"" Wp(v, :E, M'yMy ). 

Table 10.1 Impact of Rank Conditions on Eigenvalue Estimation: 

Central Wishart, S = vfi""" Wp(v, :E) 

:E Singular :E Nonsingular 1::/)...j -1- 0 
rank(:E) =Pi= p Estimable? 

rank(fi) = v < P1 0 < v <Pi <p 0<v<p1 =p No 

rank(fi) =Pi ::; v 0 Yes 
Yes 

Arnold (1981, p. 317) noted that various authors have used the term "singular" 
or "pseudo" if :E is singular or if v < p. Such approaches fail to describe all 
possible combinations in Table 10.1. We suggest the following terms. The 
distinction between population singular and population nonsingular specifies 
rank(:E) = p or rank(:E) = p1 < p. In tum, f may be singular due to v < p or 
rank(:E) = p1 <p. The contrast between sample-rank sufficient (to estimate all 
nonzero population eigenvalues) and sample-rank insufficient fully captures the 
necessary distinction. Estimated eigenvalues are roots of the scalar polynomial 
If - )jP I = 0. Hence rank(f) determines the number of eigenvalues that can be 

estimated. As long as rank(f) = rank(:E) all population eigenvalues can be 
estimated, which reflects whether v ~ p1 or v < p1. Although four of five cases 
have singular fin Table 10.1, only two of five are sample-rank insufficient. 

Since S = S', only p(p + 1) /2 distinct elements exist, and the p2 elements are 
not functionally independent. Saying "S follows a Wishart distribution" always 
refers to the distribution of z = vech(S). Only Wishart matrices that are both 
population and sample nonsingular have a density. In parallel to the singular 
Gaussian, a population-nonsingular Wishart can be extracted from a population-
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singular one to represent all of the information available. The statement holds 
whether or not the Wishart is sample-rank sufficient or insufficient. In contrast, 
sample-rank insufficiency can not be converted to sample-rank-sufficiency, except 
for special cases of simple covariance structure. 

Example 10.1 A professor interested in predicting Graduate Record 
Examination (GRE) scores from undergraduate grade point might examine the 
residual covariance matrix for the scores on VerbaL Quantitative and Analytic 
sections of the test. The test construction process makes it reasonable to assume 
the data are multivariute Gaussian. With data from N = 20 students, the 
covariance estimate Et would be such that 8 1 = l9E1 "' l-%(20 - l. E 1 ) . which 
is population nonsingular and sample-rank sufficient. 

If the professor includes Total = Verbal + Quantitative + Analytic. then S.l = 

19E:~ "-' sw.(20 - I ' E :!). which is population-singular and sample-rank­
sufficient. lnfin itdy many 4 x 3 transformation matrices can transform 8 2 into a 
population-nonsingular Wishart . Choices include 

[ ~ 
() 

OJ T . = 
1 () [ ~ ] = 
0 I 

0 0 0 

(10.69) 

r 
0 

OJ 0 1 0 
T 2 = 0 I ~ . 

I) 0 

(10.70) 

As will be proven I mer in the chapter. T jS.1T i,..... W;1 (20 - l. T jE / l :',). which 
. . 

corresponds to studying Y1j wi th dimens ions (20 x 4)(-l x 3). 

Example 10.2 Medical imaging and genetic scientists often encounter data with 
more variables than participants. Pizer el al. (2003) compared human and 
computer segmentations from CT images of l = 12 kidneys. They modeled the 
surlhces at 88 points, giving p = 88 · 3 = 264 (.r.!J . .::-) variables. describing 
location in three dimensions. Gaussian data lead to the assumption of an observed 
covariance matrix E such that S = liE ....., YI-'2Fi1( 12 - 1, E ). Here S is 
population nonsingular and sample-rank insunicient. 

10.2 THE CHARACTERISTIC FUNCTION OF THE WISHART 

The following lemma summarizes properties of any covariance matrix. The 
notation helps describe the characteristic function of the Wishart. 

Lemma 10.1 A p x p covariance matrix is symmetric with no negative 
eigenvalues, Pi}, which allows writing E = TDg(A)T' = ~~'. with T, 
Dg(A), and ~ = TDg(A) 1

/
2 all p x p. Considering p1 columns in the first of 
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two partitiOns, with orthonormal T, gives T = [TI T 0 ], >. = [>.~ >.&]', 
q, = [ q,1 q,o ], q,I = T1Dg(>.1)I 12 , q,o = ToDg(>.o)1/2, and 

:E=[TTJ[Dg(>.I) 0 ][T~] 1 0 0 Dg(>.o) T& 

= [ q,1 q,o ] [ :u 
= q,1 q,~ + q,oq,&. 

If rank(:E) =PI :::; p, then E = TIDg(>.1)T~ = q,Iq,~ 
(q,~q,Iriq,~ = Dg(>.I)-1/2T~. 

and 

Proof. Eigenana1ysis and partitioned matrix properties give the results. 

(10.1) 

""-+­~1 -

Theorem 10.1 (a) For v > 0, :E = q,q,' = q, 1 q,~, pxp q,, pxp1 q,I, rank(q,) = 
rank(q,I) = rank(:E) =PI:::; p, i = (-l)I/2, p x p real U = U', (T)jj = Ujj, 
and (T)jk = Ujk/2, the characteristic function of s rv (S)Wp(v, :E) is 

¢s(T) = [Ip- 2iT:E[-v/2 

= [Ip- 2irq,q,'l-v/2 

= [Ip- 2iTq,1 q,; [-v/2 

= [Ip- 2iq,'rq,[-v/2 

-[I """-'T""" ~-v/2 - Pl - 21~1 ~1 · 

(b) The function ¢s(T) is a valid characteristic function for all real v > 0. 

(10.2) 

(10.3) 

(1 0.4) 

(10.5) 

(10.6) 

Proof. We use the approach of Muller and Chi (2006), who generalized earlier 
work to cover all population-singular and sample-rank-insufficient cases. 

Proof of (a). For rank(:E) =PI = p, Muirhead (1984) proved (10.2) for 
positive integer v. The proof of Theorem 10.2 includes (10.2) as a special case 
(11 = 0) for p1 :::; p. Lemma 10.1 gives (10.3). Equation (10.5) follows from 
[Ip-2iTq,q,'[-v/2 = ([q,-t_2irq,q,'[[q,'[) -v/2 = ([q,'[[q,-t_2iTq,q,'[)-v/2. If 

rank(:E) =p=p1, then q,' = q,1 gives (10.4) from (10.3) and (10.6) from (10.4). 
For PI < p and A1 > 0, there exists P1 X P1 81 rv Wp] [v, Dg(>.r)] with 

¢sJTI)= [JP1-2iTIDg(>.I)[-v/2 and S=TISI T~ rvSWp[v, T1Dg(>.1)T~]. 
With p x p real T = T' as defined in the theorem, Lemma 7.5 gives 

¢s(T) = 1Ip
1

- 2iT~T(T;)'Dg(>. 1 )1-v/2 

= IDg-1/2(>.1)- 2iT;TT1Dglf2(>.I)I-v/21Dg1f2(>.r)l-v/2 

= 1Ip
1

- 2iDg 1 12 (>.I)T~TT1Dg1 1 2 (>.r)l-v/ 2 , (10.7) 

which gives equation (10.6) for rank(:E) = p1 < p. Equation (10.5) follows from 
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¢s(T) =(liP! - 2iq,~Tq,J!IIP-Pllrv/2 

= I [Ip1 - 2iq,~Tq,1 0 J ~-v/2 

0 Ip-PJ 

= 1Ip-2i[q,I O]'T[q,I OJI-v/
2 

= liP- 2i[ q,l q,o ]'T[ q,l q,o Jl-v/
2

. 
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(10.8) 

With ¢s(T) = IIp
1
-2iT]TT1Dg(>.!)l-v/2

, Theorem 7.2 in Schott (2005) gives 

¢s(T) =I [Ip1 - 2~T}TTiDg(>.i) 0 ] ~-v/
2 

- 2IT0TT1Dg(>.i) Ip-p
1 

=II _ 2. [T]TT1 T]TT0 ] [Dg(>.i) 
P 

1 T~TT1 T~TTo 0 

=liP- 2iT'TTDg(>.I, O)l-v/2 

=ITT'- 2iTTDg(>.I,O)T'I-v/2 

=liP- 2iTT1Dg(>.I)T~I-v;2 . (10.9) 

Equation (10.4) and then (10.3) and (10.2) are seen to hold for rank(:E) =Pi < p. 
Proof of (b). Conditions guaranteeing a valid characteristic function (Kendall 

and Stuart, 1977, p. 105) may be verified directly for noninteger v. 0 

Theorem 10.2 (a) For v > 0, rank(:E)=rank(q,1) =Pi ~p, :E=q,Iq,\., pxpi q,I, 
i = (-1) 1

/
2

, p x p real U=U', (T)jj=Ujj, and (T)jk = Ujk/2, the 
characteristic function of S = Y'Y"" (S)Wp(v, :E, ~) for ~ = M' M and 
Y ""Nv,p(M, Iv, :E) is 

¢sy(T)=IIP- 2iT:EI-v/2exp{itr[T:E(Ip- 2iT:E)-i~]} 

=liP- 2iT:EI-v/2exp{i tr[T:E(Ip- 2iT:E)+ ~]} 

= IIp1 -2iq,~rq,d-v/2exp{tr[iTq,J (Ip1 -2iq,~rq,i)-iq,i ~J}. (10.10) 

(b) The function ¢8 (T) is a valid characteristic function for all real v > 0. 

Proof of (a). First the result for :E = Ip is proven. If Z ""Nv,p(O, Iv, Ip), then 
Bz=(Z+Mz)'(Z+Mz)""Wp(v,Iv,M'zMz). Symmetry of Bz restricts 
attention toT= VDg(t)V' with V'V = VV' = Ip. In tum 
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¢sz(T) = E{ exp[tr(iT' Sz)]} 

=E(exp{tr[VDg(t)V'(Z + Mz)'(Z + Mz)]}) 
=E(exp{i tr[Dg(t)(ZV + MzV)'(ZV + MzV)]}) 

=E(exp{i tr(Dg(t)(U + Q)'(U + Q)]}) 

=E{ exp [i~tj(uJ+QJ)'(uJ+QJ)]} 

=E{exp [i~tj~(ukj+qkj) 2]} =E{g g exp[i tj(Ukj+qkj)
2
]}. (10.11) 

Here U = ZV rv Nv,p(O,Iv,Ip) and Q = MzV is constant. Hence {ukj + qkj} 

and {(ukj+qkj) 2
} are independent. In tum Ukj+qkj"'N(qkj,l) implies 

( Ukj + qkj) 2 
rv x2 (1, q~j). Independence and chi-square properties give 

p v 

¢sz (T) =II II E{ exp [itj( Ukj + qkj)
2

] } 
j~l k~l 

p v 

=II II { (1-2itJ)- 112 exp[itjq~j(l-2itj)- 1 ]} 
j=l k=l 

= [g (1-2itjrv/
2

] exp [i~tj(l-2itjf 1 ~qq 

=II -2iTI-v/2exp [ii)J(l-2itj)-1qjqj] 
J=l 

=II -2iTI-v/2exp(i tr{Dg(t)[Dg(l-2iti)r1V' M~MzV}) 

=II -2iTI-v/2exp(i tr{VDg(t)V'V[Dg(l-2iti)r1v' M~Mz}) 
=II -2iTI-v/2exp{ tr[iT(I -2iT)-1 M~Mz]}. (10.12) 

The last form is the CF of a noncentral Wishart with covariance Ip. 
For clarity in generalizing to :E -1- Ip with rank(:E) = p1 ~ p, in the remainder 

of the proof Sy replaces S and ~ = M}rMy. Also Z "' Nv,p1 (0, Iv, IPJ has 
PI ~ p columns in the remainder of the proof. For y rv (S)Nv,p(My, Iv, :E), 
p X Pl CI>I, :E = q,l CI>'l, v X PI Mz, and z rv Nv,pl (0, Iv,IpJ, Lemma 8.4 gives 
Y = (Z + Mz)CI>;, with My= MzCI>~ and Mz = MyCI>it· In tum 

IfCI>1 = Y 1Dg(.X1) 1/2
, then CI>it = Y1Dg(.XI)- 112

. Lemma 7.5 gives 

¢sy(T) =II -2iCI>'1 TCI> 1 1-v/2 exp{tr(iCI>~TCI>l(Ip1 -2iCI>~TCI>l)- 1M~MzJ} 

(10.13) 

= IIp-2iT:EI-v/2exp{tr[iTCI>l (Ip1 -2iCI>;TCI>I)-1 M~MyJ}. (10.14) 
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The following equalities arise from repeated use of (1) CI>1 = Y 1Dg(.XI) 1/2 in 
Lemma 10.1, (2) (AB)- 1 = B-1 A-1 for square and full-rank matrices, and 
(3) similar generalized inverse results in parts (a) and (b) of Lemma 1.15. 

TCI>1 [Dg(.XI)- 112 -2iY~TCI> 1 ] -l Dg(.XI)-112 M'zMy = 

TCI>1 [ Y~ Y1Dg(.X1)-112 -2iY;TCI>1] -
1
Dg(.X1)-1/2 M'zMy = 

TCI>1 [ Y1Dg(.X1)-1/2-2iTCI>l] + Y;Dg(.XI)-1/2 M'zMy = 

TCI>l { [YI-2iTYIDg(.XI)]Dg(.XI)-l/2} + M'yMy = 

TY1Dg(.XI){[Y1-2iTY1Dg(.X1)]} + ~ = 

TY1Dg(.XI)[Y1-2iTY1Dg(.XI)Y; YI]+ ~ = 
TY1Dg(.Xl)Y~[Ip-2iTY 1 Dg(.XI)Y~]+ ~ = T:E(Ip-2iT:Et ~. (10.15) 

For p x p Y, (Ip-2iT:E) is similar to A= [Ip-2iY'TYDg(.X1, 0)]. For 

D = Dg(.X1, 1)1/2 and T partitioned like Y, (Ip-2iT:E) and A are similar to 

DAD-I = [Ip,-2iCI>~ T1,1 CI>1 0 ] . 
T2,1 Cl>1 Ip-p, 

(1 0.16) 

The triangular form ensures rank(DAD-1) = rank(Ip,-2iCI>J.T1,1CI>1) + (p-p1). 

In tum, CI>;Tu Cl>1 = VDg(a)V' and (Ip,-2iCI>J. T 1,1 CI>1) = V[Ip,-2iDg(a)]V'. 
Consequently rank(IP-2iT:E) < p only if (1 - 2iak) = 0 for one or more ak. 

which never happens because ak is always real. Furthermore (Ip-2iT:Et = 
( IP- 2iT:E) -I. A parallel analysis for the moment generating function gives 
(1- 2ak) > 0 as sufficient to ensure existence and full-rank (Ip-2iT:E). 

Proof of (b). Conditions guaranteeing a function is a valid characteristic 
function (Kendall and Stuart, 1977, p. 1 05) may be verified for noninteger v. D 

10.3 PROPERTIES OF THE WISHART 

Theorem 10.3 For v x p Y = [ Y1 Y2 · · · Yp] "' Nv,p(O, Iv, :E), rank(:E) = p, 
v ~ p, the p x p matrix S = Y'Y has a central nonsingular Wishart distribution 
with parameters v and :E. The joint PDF of the p(p + 1) /2 distinct elements of S 
is (Gupta and Nagar, 2000) 

fs(S*) = IS*I(v-p-l)/
2
exp[;tr(:E-1S*)/2] 

2vp/27rp(p-1)/41:Eiv/2IJr[(v + 1- j)/2] 
j~l 

(10.17) 

The j, j' element of S is a bilinear form for j -1- j' and a univariate quadratic 
form if j = j'. If v < p the density does not exist. 
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With v = N- rank( X), the central Wishart describes the distribution of v:E in 
the multivariate general linear model. The noncentral form applies to the 
hypothesis sum-of-squares matrix under the alternative. 

Theorem 10.4 If S"' (S)Wp(v, :E, ~)and Tis any pxp1 constant, then 

T' ST"' (S)Wp, (v, T':ET, T' ~T). (1 0.18) 

Proof. Left as an exerc1se. Hints: characteristic function, linear 
transformation. 

Many authors consider only full-rank :E and T (and p1 ::::; p). The result holds 
for any sort of Wishart and any conforming constant T. The transformation is 
equivalent to having transformed the underlying Gaussian (which can be the basis 
of a proof). If S = Y'Y withY"' (S)Nv,p(M, Iv, :E), then 

T' ST = T'Y'YT = Y{Yi (10.19) 

and 

Yi = YT"' Nv,p, (MT, Iv, T':ET). (10.20) 

Theorem 10.5 If S "'Wp(v, :E, ~) and t IS a vector of constants, then 
t' Stjt':Et"' x2(v, w), with w = t' ~t/t':Et. 

Proof. With s = L~~l Yi'Yi for [rowi(Y)]' = Yi' rv Nv(J.Li, :E) it follows that 

(10.21) 

Also t'Yi "'N1 (t' P,i, t':Et) allows concluding 

(10.22) 

The result follows because a squared unit Gaussian is a noncentral chi square. D 

The result can be proven more generally as a special case of the previous 
theorem. The converse is not true (Mitra, 1970). Theorem 10.9 provides a form of 
a converse, based on a far stronger condition. 

Theorem 10.6 Principal diagonal blocks of a Wishart are Wishart and independent 
if and only if the corresponding interblock covariance is zero. If 

8= [~~~~~~] rv(S)Wp(v,:E,~), (10.23) 

with :E and~ partitioned to match, Sn (q x q), then 
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8n "'(S)Wq(v, :En, ~11) 
822 "' (S)Wp-q(v, :E22, ~22) 

8n ll 822 <=? :EI2 = 0. 

Proof. Highly recommended as an exercise. 
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(10.24) 

(10.25) 

(10.26) 

Theorem 10.7 If 8 1 "'(S)Wp(vi,:E,~I) ll 8 2 "' (S)Wp(v2 ,:E,~2 ) then 
8 1 +82"' (S)Wp(vi +v2, :E, ~I +~2). 

Proof. Highly recommended as an exercise. 

Theorem 10.8 If Y"' (S)NN,p(M,IN, :E), rank(:E) =PI ::::; p with N ~PI, 
N x N A and B are constants, the following hold. 
(a) AY and BY are independent if and only if AB' = 0. 
(b) If A = A' is positive definite or positive semidefinite and AB' = 0, then 
BY and Y' AY are independent. 
(c) If A= A' and B = B' are positive definite or positive semidefinite and 
BA = 0, then Y' AY and Y' BY are independent. 
(d) If A= A'= A 2, then v = rank(A) = tr(A) and 

8 = Y'AY"' (S)Wp(v,:E,M'AM). (10.27) 

Proof. The basic approach is as follows. Here Y"' (S)NN,p(M, IN, :E) gives 

[~] "'(S)N2N,p([~],[(l2l;)Q9IN],:E) (1 0.28) 

(10.29) 

[A 0 ] [I I ] [A' 0 ] [ AA' AB'] 
0 B I: I; 0 B' = BA' BB' . (1 0.30) 

Part (a) follows immediately. If A = A' is nonnegative definite, then A = F F' 
and Y'AY = Y'FF'Y. Parts (b) and (c) follow from independence of the 
underlying Gaussian matrices, as seen from part (a). In part (d), A= A' = A 2 

implies A= VV' with V'V = Iv, YA = V'Y"' (S)NN,v(V'M,Iv, :E), and 
8 = Y~YA"' (S)Wp(v,:E,M'VV'M). D 

What does the theorem tell us about the independence of the usual sample 
covariance and sample mean vector? 
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Corollary 10.8.1 If p = 1 and a 2 > 0, then y"' Nn, 1 (p,, In, a 2
) <=? 

y"' Nr,(p,, Ina2
) and 

(10.31) 

Equivalently 

(10.32) 

Proof. Left as an exercise. 

Corollary 10.8.2 The matrix Y' AY is Wishart if and only if A= A'= A 2 

(idempotent). 

Proof. Only the statement "Y' AY is Wishart implies A is idempotent" must 
be proven. Spectral decomposition gives A= VjDg(.XI)V{ with Vi N x v and 
Vi'Vi = Iv. In tum Yi = V{Y "'Nv,p(V{ M, Iv, :E) and 

Y'AY = Y'ViDg(.XI)Vi'Y = Y{Dg(.XI)Yi. (10.33) 

The last equation can only be guaranteed to exist if A = A'. By the definition of a 
Wishart, Y{Yi "'Wp(v, :E, M'ViV{ M). Referring again to the definition of a 
Wishart, the v x v matrix Dg(.XI) must equal Iv for Y{Dg(.X1)Yi = Y'AY to be 
a Wishart. Requiring A = Vi Iv Vi' is equivalent to requiring A = A' = A 2. D 

If all conditions for part (a) of the last theorem are met except A -=f. A 2 , then 
Y' AY is a general multivariate quadratic form. As a generalization of results for 
univariate quadratic forms, a constituent matrix decomposition of A gives 

v 

Y'AY = L>.lkY'v1 kv~ky 
k~l 

(10.34) 

with i.i.d. Y'v1kv~ky"' (S)Wp(l, :E, Mvlkv~kM). We leave consideration of 
such forms for another venue. 

Theorem 10.9 For N X p y = [Yl Y2 ... Yp l rv NN,p(M,IN, :E), rank(:E) = p, 

N:::: p, and Y; = rowi(Y). The constant N x N matrix A= A' has v = 
rank( A) and~= M' AM. For the conditions given, 

S = Y' AY"' Wp(v, :E, ~) 

if and only if for all t E ~P 

t'Y'AYt 
--- rv x2(v t' ~t/t':Et). 

t':Et ' 

Furthermore v = tr(A). 

(1 0.35) 

(10.36) 
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Proof. The fact t'Y' AYtjt':Et is chi square may be proven by combining two 
previous theorems. The proof for the other direction begins with defining N x 1 
x = Yt for a fixed nonzero t and Yt"' NN, 1(Mt,IN, t':Et). Equivalently 
X rv NN(Mt,INt':Et). By assumption t'Y'AYtj(t':Et) = x'AxjV(x) rv 

x2(v, t' ~tjt':Et). By Theorem 9.6, for x' Ax/V(x) "'x2 (v, t' ~tjt':Et) to hold, 
the eigenvalues of A must all be 1. Therefore A is idempotent, which suffices, 
with Theorem 10.8, to ensureS"' Wp(v, :E, ~). 0 

Lemma 10.2 (a) If S"' (S)Wp(v, :E, ~),then, without loss of generality, it may 
be assumed S = Y{Yj with Yj rv (S)Nv,p(M, Iv, :E). 
(b) If A= A'= A 2, then A= ViV{ with Vi N x v and V{Vj = Iv. 
If Y"' (S)NN,p(M,IN,:E), then Yj = Vi'Y"' (S)Nv,p(M,Iv,:E) and 
Y'AY = Y{Yj "'(S)Wp(v,:E,M'ViVi'M). 

Proof. (a) By definition of a Wishart. (b) Shown by construction. 0 

Theorem 10.10 For N x p Y = [Y1 Y2 · · · Yp] "'NN,p(M,IN, :E), N:::: p, 
rank(:E) = p, and Yi = row;(Y). The constant N x N matrix A= A' has v = 
rank(A) and~= M'AM. Given the definitions, 

E(Y' AY) = tr(A):E + ~. (10.37) 

The result remains true with the weaker assumption of i.i.d. rows with finite 
second moments, even without Gaussian variables. 

The ANOV A theorem generalizes directly from univariate to multivariate 
quadratic forms. The result is the MANOV A theorem. 

Theorem 10.11 (MANOVA theorem) The N x p matrix Y = [Y1 Y2 · · · yp], 
with Yi = row;(Y) and N:::: p, is matrix Gaussian, Y"' NN,p(M, IN, :E), with 
rank(:E) = p. Also, with k E {1, 2, ... , d} and N x N matrix Ak = Ak of rank 

Vk > 0, the matrix Ao = 2:~~ 1 Ako with rank of v0 , is symmetric and N x N. 
The assumptions allow defining five conditions. 
1. Ak is idempotent fork E {1, 2, ... , d}; 
2. AkAk' = 0 'Vk -1- k' with k E {1, 2, ... , d} and k' E {1, 2, ... , d}; 
3. A 0 is idempotent; 

4. vo = 2:~~ 1 vk. which is equivalent to rank(2:~~ 1 Ak) = 2:~~ 1 rank(Ak); and 
5. Ak is idempotent fork E {1, ... , d- 1} and Ad is nonnegative definite. 
Given the assumptions, 
(a) Y' AkY"' Wp(vk, :E, M' AkM) fork E {0, 1, 2, ... , d} and 
(b) {Y' AkY} are mutually independent fork E {1, 2, ... , d} and k -1- 0 
if and only if 
I. any two of conditions 1, 2 and 3 are true, or 
II. conditions 3 and 4 are true, or 
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III. conditions 3 and 5 are true. 
Furthermore, if any ofl, II, or III, holds, then all hold. 

Proof. Mostly left as an exercise. Theorem 10.9 combines with the ANOVA 
theorem and Theorem 5 in Searle ( 1971, Section 2.5). 

Theorem 10.12 The conditional sum-of-squares matrix from a Wishart is Wishart. 
If 

(1 0.38) 

with :E partitioned to match, full-rank 822, and 81.2 = 8u - 8 128;;} 821 , then 

(10.39) 

Proof. Highly recommended as an exercise. 

Corollary 10.12 For any combination of singular :E22 and v ~ p, it follows that 
81.2 = 8n-8128i.2821 = 811-81280.821 and 81.2"' (S)Wq(v- p + q, :E1.2). 

Theorem 10.13 (Wijsman, 1959; Odell and Feiveson, 1966) If 8"' Wp(v, I, 0) 
and v ?: p, then a p x p lower triangular matrix T exists such that 8 = TT' and 
1. tjj rv x(v- j + 1, 0) for the diagonal elements, 
2. til "' N1 ( o, 1) for j > j', the lower off-diagonal elements, and 
3. all elements ofT are statistically independent. 
The result, the Bartlett decomposition, also holds for any (finite) real v > p. 

Corollary 10.13 (a) If :E = CI>CI>' is positive definite, T1 has the properties 
described in the theorem, 81 = T 1T{"' Wp(v, I), v?: p, and T2 = CI>Tb then 
82 = T2T~"' Wp(v, :E). 
(b) If v ?: p + 1 and y "' Np(J.L, :E), then a noncentral Wishart, 
8+ "' Wp(v, :E, p,p,'), may be generated as 8+ = 8 1 + 82, with 
8 1 "'Wp(v- 1, :E, 0) and 8 2 = yy'"' Wp(1, :E, p,p,'). Furthermore, as long as 
v > p + 1, the approach also allows directly generating noncentral pseudo­
random Wishart matrices with fractional degrees of freedom. 

The corollary leads to a simulation algorithm for generating pseudo-random 
Wishart matrices that can be dramatically faster than computing the inner product 
of a matrix of pseudo-random Gaussian variables. As long as v > p, the approach 
also allows generating pseudo-random Wishart matrices with fractional v. 

The steps are as follows. 
1. Compute CI> via a Cholesky algorithm or a spectral decomposition. If 

:E = YDg(.X)Y' then CI> = YDg(.X) 1
/
2

. 

2. Generate the required p(p + 1) /2 nonzero elements for matrix T1 using pseudo-
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random number generators. 
3. Compute T 2 = CI>T1, then T2T~, a pseudo-random realization. 
Repeat steps 2 and 3 to create the desired number of replications. For fixed p, as v 
becomes large, the approach is faster than generating a v x p matrix of psuedo­
random Gaussian variables and taking the inner product. 

10.4 THE INVERSE WISHART 

The inverse of a Wishart matrix occurs in many forms of multivariate test 
statistics. As a special case, the F statistic for testing a general linear hypothesis in 
the univariate GLM may be written, with r =rank( X), 

F(y) = S~Hja ) = SSH(SSEf1[(N- r)ja]. 
SSE N- r 

(10.40) 

Definition 10.3 For v ?: p = rank(:E), the p x p matrix T has the inverse 
(central) Wishart distribution, denoted T"' W;1(v,:E-1), if and only if 

r-1 = S "'Wp(v, :E). 

Certain features of the definition should be noted. Most importantly, the 
matrices T and :E are implicitly assumed to be symmetric, full rank, and positive 
definite. Furthermore, the definition leaves open the possibility of extending the 
concept to noncentral Wishart matrices. Finally, the random matrix is defined in 
terms of another random matrix, with no reference to the distribution function or 
other properties. Given the conditions of the definition, T has the density 

_
1 

ITI-(v+p+1)/ 2exp[-tr(:E- 1T- 1 )/2] 
J(T; v, :E ) = 12 . (10.41) 

2vp/27Tp(p-l)/41:Eiv IU~lr[(v + 1- j)/2] 

Mardia, Kent, and Bibby (1979, p. 85) gave a derivation. It is simple to prove 
E(T) = [:E(v- p- l)r 1

. Sampson (1974) stated the following two lemmas. 

Lemma 10.3 If T rv w; 1(v, :E-1) and constant A is full rank and p X p, then 
A'TA"' w- 1(v A':E- 1A) 

p ' . 

Proof. Left as an exercise. 

The result can be generalized, at least top x p1 A of rank p1 with p1 < p. 
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Lemma 10.4 If1jk and :Ejk are Pj x Pk with Pj + Pk = p and also 

T = [i~ i~] ~ w;1 (v, [:~~ :~~]), (1 0.42) 

then Tu ~ W~ 1 (v- P2, Wu). 

Proof. Left as an exercise. Hint: Use theorems about the mverse of a 
partitioned matrix and 81.2 = 8n - 8128:;/ 821· 

10.5 RELATED DISTRIBUTIONS 

The Wishart has useful relationships to other distributions. We have earlier 
noted 8 ~ Wp(v, :E, ~) {::} qt = t! 8tj(t':Et) ~ x2 [v, t' ~t/(t!:Et)] WE ~P. 
The trace and determinant of a Wishart have simple distributions. 

Theorem 10.14 Idempotent matrix A of rank v > 0 is constant and N x N. Also 
p x p :E is symmetric, positive semidefinite, rank p1 ::::; p, with spectral 
decomposition :E = YDg(.X)Y', and Y'Y = Ip. If .X1 is the p1 x 1 vector of 
strictly positive eigenvalues, then, without loss of generality, 

(10.43) 

We indicate a p x 1 vector with a 1 in row k and 0 elsewhere as dk. If 
Y = (S)NN,p(M,IN, :E), rnk = MYdk and Xk ~ x2(v, rnkArnk(\k) are 
independent, then 

P1 P 

tr(Y' AY) = LAkXk + L rnkArnk 
k=l k=pJ+l 

P1 

= L.\kxk + tr(YSM'AMY0 ). (1 0.44) 
k=l 

Ifp1 = p, then tr(Y0M'MY0 ) = 0. If M = 0, then tr(Y0M'MY0 ) = 0 and 
Xk ~ x2(v,O). 

Proof. Glueck and Muller (1998) proved the result. 

Corollary 10.14.1 The reproductive property of the matrix Gaussian allow 
concluding 

[Yi Yo]= Y[Y1 Yo] 
= YjY~ + YoYS ~ (S)NN,p[MY,IN,Dg(.X!,O)]. (10.45) 

Therefore Yj and Yo are statistically independent with 
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In tum 

Yi rv NN,p1 [MY1, IN, Dg(AI)] 

Yo rv SNN,p-pl [MYo,IN, Dg(O)]. 

Y{AYi "'Wp1 [v,Dg(.XI), Y~M'AMY1] 
Yo'AYo rv Wp-pj[v, Dg(O), YSM'AMYo]' 

with Y{ AYi independent of (degenerate and discrete) Yo'AYo. 
Pr{Yo'AYo = Y 0M'AMY0 } = 1. Furthermore 

tr(Y' AY) = tr(Y{ AYi) + tr(YQ' A Yo) . 
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(1 0.46) 
(10.47) 

(1 0.48) 
(10.49) 

In fact, 

(10.50) 

Corollary 10.14.2 The distribution of the trace and other properties of 
S "'Wp(v, :E, .6.) can be described by choosing A= IN. In particular, if 
Y = (S)NN,p(M,IN, :E), with :E = YDg(.X)Y' andY= [Y1 Yo], then 

PI 

tr(Y'Y) = L>.kxk + tr(YSM' MYo), (10.51) 
k=I 

with independent Xk rv x2(v, rn~rnk/ Ak)· If PI = p then tr(Y0M' MYo) = 0. 
If M = 0, then tr(Y0M' MYo) = 0 and Xk "'x2(v, 0). If PI= p or M = 0, 
then tr(Y0M'MYo) = Oandxk "'x2 (v,O). 

Theorem 10.15 If s rv Wp(v, :E, 0) and v;::: p, then ISII:EI-l rv IU=JXj with 

Xj rv x2 (v + 1- j) ll Xj' rv x2 (v + 1- j') Vj -1- j'. 

Proof. Here ISII:EI-1 =lSI I~~~~- I= 181(1~11~'1)- 1 = ISII~I- 1 1~'1- 1 = 
ISII~- 1 11~-tl = ~~-tiiSII~- 1 1 = ~~- 1 8~-tl. By a previous theorem, 
~~- 1 8~-tl "'Wp(v,I,O). The Bartlett decomposition theorem and corollary 

give ~~- 1 8~-tl = ITT'I = ITIIT'I = ITI 2
. Since T is triangular, its 

determinant is the product of its diagonals, 

ITI' ~ (ll'ii)' ~ Dtjj (10.52) 

The proof is completed by describing the joint distribution of { t]j} in terms of the 

distribution of { tjj} given in the triangular decomposition. D 

EXERCISES 

10.1 Prove that if s = [ ~~~ ~~~ ] rv Wp(v, :E, .6.) with Sll(q X q) and :E 

and .6. are partitioned to match, then 8 11 "'Wq(v, :E 11 , .6.1J). 
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10.2 Prove directly, without using the theorem for which the following is a 
(very) special case: 

IfY"' Nn,p(O, In!, Ip), then tr(Y'Y)/r "'x2(np). 
10.3 Consider the following SAS/IML program. 

START GAUSSl(N,MUMAT,FSIGMAT,SEED); 
*Function returns matrix Gaussian N(MUMAT,I(N),SIGMA); 
*SIGMA=FSIGMAT'*FSIGMAT; 
*SEED is the random # generator initial value; 
Y=MUMAT + NORMAL(J(N,NCOL(FSIGMAT),SEED))*FSIGMAT; 
RETURN (Y); 
FINISH GAUSSl; 

The J(r,c,x) function in IML creates a matrix with r rows, c columns, and all 
elements equal to x. Also, A'*B indicates matrix A transposed and multiplied by 
B. 
10.3.1 If SIGMA is p x p, what must the dimension ofMUMAT be? 
10.3 .2 What will be the dimension of the matrix Y? 
10.3.3 Fully specify the distribution of data created by 
NORMAL(J(N,NCOL(FSIGMAT),SEED)). The Normal function returns pseudo­
random N(O, 1) values. In SAS/IML, as with many pseudo-random number 
generators, the seed value is essentially ignored except for the very first call. 
Furthermore successive invocations create independent values. 
10.3.4 Indicate which theorem is being used to compute Y and use the theorem to 
fully specify the distribution of Y. The program may be used to help answer the 
following exercise. 

10.4 There are two common ways to generate a Wishart matrix in simulations. 
The simplest way is to generate Gaussian data and compute the Wishart as a 
function of the Gaussian data. The second approach is often much faster and uses 
the Bartlett decomposition. Here the simpler method is acceptable. 
10.4.1 Generate 100 pseudo-random samples following the W3 (r, :E, 0) 
distribution with r = 10, and :E = a2[(1- p)I3 + p1313], with 1m an m x m 
matrix filled with 1's. 

Assume a 2 = 2.0 and p = 0.50. The result should be a set of random matrices 
that follow the specified Wishart distribution: {8i: 8i "'W3 (r,:E,O)} for 
i E { 1, ... , 100}. 
10.4.2 Print :E, 8 1, 8 2 , 8 3, and a copy of your program. 
10.4.3 Compute the largest eigenvalue )'li of each of the N = 100 random 
matrices. 
1 0.4.4 Report the mean and variance of the set of largest eigenvalues. 
1 0.4.5 Display a frequency histogram for the distribution of the set of largest 
eigenvalues. 



CHAPTER 11 

Estimation for Univariate and 
Weighted Linear Models 

11.1 MOTIVATION 

Linear model estimation theory ranks as among the most beautiful in statistics. 
The derivations illustrate classical techniques for obtaining good estimators. The 
resulting explicit linear functions of the data also have nice geometric 
interpretations, which helps understand the estimators. We focus on the univariate 
linear model in the present chapter and leave multivariate generalizations to the 
next chapter. Separate treatments allows seeing the proof techniques in two 
slightly different settings. Although the approach creates some redundancy, taking 
more but shorter steps gives a faster path to understanding the multivariate GLM. 

The present chapter centers on deriving estimators for f3 and a 2 with a variety 
of optimal properties. Most of the properties do not require any particular 
distribution for the responses and are exact, even in small samples. In contrast, 
testing hypotheses uses test statistics. Finding exact test statistic distributions for 
small samples usually requires explicitly specifying the data distribution. 

11.2 STATEMENT OF THE PROBLEM 

Definition 11.1 (a) The vector f3 (qx 1) and scalar a 2 are the primary 
parameters of a GLMN,q(Yi; Xi/3, a 2), with or without Gaussian errors. 
(b) Any (finite) known constant C (ax q) and (finite) known constant (}0 

(a x 1) define secondary parameter (} = C f3 + (}0 (a x 1 ). 

Definition 11.2 (a) Estimators of primary parameters with good properties, 
especially unbiasedness, are indicated by jj and &2

, while ones with distinct 
and possibly fewer desirable properties are indicated by 73 and a2 . 

(b) Estimators of secondary parameters take the form 0 = Cjj + (}0 , or 
7J = C73 + Oo, or 0 = C73 + 00 . The third form is used only when (j 
possesses a desirable property not shared by 73, such as unbiasedness. 
(c) Covariance matrices such as V(O) are also secondary parameters. 

209 
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Overall, four classes ofGLMN,q(y;; X;/3, a 2) are defined by allowing either FR 
or L TFR designs, combined with either Gaussian or unspecified distributions for 
responses. For GLMN,q(y;; X;/3IR/3 =a, a 2), with or without Gaussian errors, 
estimation theory for primary parameter f3 and secondary parameter 0 is closely 
tied tor= rank([ X' R' ]'). 

The distinction between FR and L TFR describes properties of the columns of 
[X' R' ]',which correspond directly to properties of the rows of {3. In the absence 
of restrictions on f3 the classification depends solely on r = rank( X). Full rank 
models have an unbiased estimator for f3 and for all 0, while LTFR models never 
have an unbiased estimator for f3 and have an unbiased estimator only for some 0. 
Whether or not the model is FR, unbiased estimators of a 2 and related properties 
are always available [as long as N > r = rank( [X' R' ]')]. 

11.3 (UNRESTRICTED) LINEARLY EQUIVALENT LINEAR MODELS 

The basic theory of transformations between linearly equivalent univariate 
linear models is contained in the present section and in Section 11.15. The results 
allow defining two important types of linear equivalence, namely ( 1) equivalence 
between a LTFR and FR model and (2) equivalence between an explicitly and an 
implicitly restricted model. The value of the concept lies in being able to work 
with a model that is simpler (often due to involving fewer parameters and 
variables) while being assured of not losing access to any information from the 
original model. 

Definition 11.3 GLMN,q1 (Y;;X;,I/31,a2) and GLMN,q,(Y;;X;,2/32 ,a2
) are 

linearly equivalent whenever ( 1) for any /31 there exists {32 such that 
X1/31 = X2/32 and (2) for any /32 there exists /31 such that X1/31 = X2fJ2-

Linear equivalence describes the expected values, the means, of {y;}, because 
E(y) = X 1{31 and E(y) = X2/32. The definition implicitly requires X 1 and X 2 
have the same number of rows and rank(X1) = rank(X2). For a given /31 the 
required /32 need not be unique, while, given /32, the required {31 need not be 
unique. 

Lemma 11.1 (a) Models GLMN,q1 (y;;Xi,1/31,a2) and GLMN,q,(y;;X;,2{32 ,a2) 
are linearly equivalent if and only if X 1 and X 2 (1) haveN rows and (2) their 
columns span the same subspace of~N. 
(b) Alternately, GLMN,q1 (y;;X;,1/31,a2) and GLMN,q,(yi;X;,2/32,a2) are 
linearly equivalent if and only if(l) X 2 = X 1T 1 and(2) X1 = X2T2. 

Proof. Left as an exercise. 
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A clearer understanding of equivalence may be achieved by considering the 
SVDs of the two design matrices. Necessarily the number of rows and ranks of 
X 1 and X 2 must be the same (otherwise one would contain information not 
present in the other). With Dg(s!,j) containing only the strictly positive singular 
values of dimension rank(Xj), it helps to write the SVDs (using Lemma 1.29) as 

X = L[Dg(si)]R'-
J J 0 J 

= L1,pg(s1,i)R~,j (11.1) 

and define 

/3I.i = L;,jXj/3j 

= Dg(s1,j)R~.i/3j. (11.2) 

Here the 1 subscript indicates the component of the original matrix corresponding 
to positive singular values and the full-rank basis. Although /31 and /32 may have 
different dimensions, {31,1 and /31.2 must have the same dimension, because 
otherwise X 1 and X 2 would have different ranks. Requiring that for any /31 there 
exists /32 such that X1/31 = X2/32 implies 

X1f31 = X2fJ2 

L1,1 Dg( s1,1 )R;,1/31 = L1,2Dg( s1,2)R;,2fJz 

Luf3I,1 = L1.2/31,2. 

( 11.3) 

(11.4) 

(11.5) 

lf X 1 and X 2 span the same column space, then L1,1 = L 1,2T with T square and 
FR. Therefore 

L1,2T/31,1 = L1,2/31,2 

L~,2L1,2Tf31,1 = L;,2LI,2f3I,2 

T/31,1 = fJ1,2. 

(11.6) 
(11.7) 

(11.8) 

In tum, any parameters corresponding to a basis of one design matrix are full rank 
transformations of corresponding parameters in a linearly equivalent model (even 
though /31 and /32 need not be). 

The definition does not directly address the possibility of equivalence between 
an unrestricted model ( 1) and a restricted model (2) or equivalence between two 
restricted models. The first case is covered by results in Section 11.13 which 
allows finding an unrestricted model (3) which is linearly equivalent to model 2. 
The question is then reduced to comparing models 1 and 3. Similarly, two 
restricted models may be compared by first transforming each separately to an 
unrestricted model and then comparing the results. 

The guaranteed existence of equivalencies between FR and L TFR models and 
between restricted and unrestricted models allows deriving many of the desired 
results in the unrestricted and FR case. Naturally care must be taken in 
differentiating between properties that do generalize (from FR to L TFR and from 
unrestricted to restricted) from properties that do not. 
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Traditionally, the most important transformations between linearly equivalent 
linear models were from L TFR models to FR models. The transformations allow 
computing in the FR setting rather than in the L TFR setting. The following 
theorem formally establishes that one is never required to work with a L TFR 
model. One can always transform to a linearly equivalent FR model and do all 
estimation (theory and data analysis) in the FR setting. 

Theorem 11.1 Every L TFR model has a linearly equivalent FR model. In 
particular, for GLMN,qLTFR(yi; Xi,8, a-2 ) and r =rank( X) there exists 
GLMN,rFR(Yii X;1,81, a-2 ) which is linearly equivalent. The FR model provides 
a reparameterization of the L TFR. 

Proof. With the subscript 1 indicating the components corresponding to 
positive singular values, the SVD results summarized in Lemma 1.29 give 

which allows defining 

Furtheremore 

X = [ L1 La] [ Dg6sl) g] [ ~] 
= L1 Dg(si)R~, 

X1 = L1Dg(s1) 

.81 = R~,8. 

y=X,8 +e 
= X1.81 + e, 

(11.9) 

(11.10) 
(11.11) 

(11.12) 

with X 1 having full rank. Although especially elegant and well behaved, the 
model is merely one choice among infinitely many linearly equivalent models. 0 

11.4 ESTIMABILITY AND CRITERIA FOR CHECKING IT 

Definition 11.4 In a GLMN,q(Y;; Xi,8, a-2 ) or GGLMN,q(y; X,8, Y), 
,8 is the primary expected-value parameter while (} = C ,8 is a secondary 

(expected-value) parameter, as is (} + 00 . 

(a) Primary parameter ,8 is estimable if and only if a q x N constant matrix 
A 1 exists such that E(A1y) = ,8. 
(b) Secondary parameter (} = C ,8 is estimable if and only if a constant 
matrix A 2 (ax N) exists such that E(A2y) = 0. 
(c) For known, fixed 00, (} + (}0 is estimable if and only if(} is estimable. 

Part (a) is essentially redundant since it is a special case of part (b), with ,8 a 
secondary parameter and C = Iq. 
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Although estimability and parameter definition stem from different issues, 
Helms (1988a) proved a secondary parameter is estimable if and only if it is well 
defined. In the present chapter, understanding estimability, apart from the issue of 
being well defined, suffices for the study of estimation. The next theorem leads to 
the conclusion that nonestimability is a problem only in L TFR models. 

Theorem 11.2 Primary parameter f3 and secondary parameter (} = C /3, defined by 
known constant C may or may not be estimable in GLMN,q(y;; X;/3, a 2). 
(a) If rank(X) = q, then f3 and (} are always estimable m 
GLMN,qFR(y;; X;/3, a 2

). 

(b) If rank(X) = r < q, then f3 is never estimable m 
GLMN.qLTFR(y;; X;/3, a 2), while(} may or may not be estimable. 

Proof of (a). The FR assumption q = rank(X) = rank(X'X) implies 
(X'Xr1 exists. If A 1 = (X'X)-1X' (q x N) and A2 = CA1 (ax N), then 
j3 = A 1y and 0 = A 2y are linear estimators, which gives E(/3) = A 1E(y) = 
(X'X)-1X'Xf3=/3 and E(O)=CA1E(y)=Cf3=0. We have described 
linear unbiased estimators. Therefore both /3 and(} are estimable. 

Proof of (b). By contradiction. If A exists defining estimator j3 = Ay such 
that E(/3) = E(Ay) = AX/3 = f3 '<1/3, then AX= Iq, which implies 
rank(AX) = q. However, rank( AX) ::; min{ rank( A), rank( X)} ::; r < q. The 
assumption A exists has led to a contradiction. Therefore no such A exists. 0 

Theorem 11.3 If constant C defines (} = C f3 for GLMN,qLTFR(y;; X;/3, a 2), 
then(} is estimable, i.e., T exists such that E(Ty) = (}, 
{:} A exists such that C =AX, 
{:} rows ofC are linear combinations of rows of X, and 
{:} rows of Care in the space spanned by the rows of X. 

Proof. ( =} ) If A exists such that C = AX then the estimator defined by 

0 = Ay is unbiased, E(O) = E(Ay) = AX/3 = C/3 = 0. 
( .;=) If(} is estimable, then, by definition, matrix T exists such that E(TY) = 
TX/3 = (} = C/3 for any /3. Thus TX/3 = C/3 '<1/3 implies TX = C and 
A = T exists, as required, although is not necessarily unique. 0 

For checking estimability, the preceding theorem has the disadvantage of 
involving X, which has N rows. In practice, slow and inaccurate computations 
can make determining estimability difficult. The following theorems use a x q 
matrices, which are usually much smaller, with q « N. Computationally, if 
(X' X)- is available (as it typically will be), then the next theorem provides the 
easiest check for estimability. Computer arithmetic reduces the task to checking 
max{abs[C- C(X'X)-(X'X)]}::; {max[abs(C)]}E forE a value judged to be 
numeric zero, such as 10-12 in many contemporary software environments. The 
abs() operator gives the matrix of absolute values of the original elements. The 
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next theorem also simplifies derivations of moments and distributions of estimators 
in the univariate and multivariate GLM. The subsequent two theorems can serve 
the same purposes, although perhaps less conveniently. 

Theorem 11.4 If GLMN,qLTFR(y;; Xi,8, a 2) has secondary parameter(}= 0 ,8, 
with (X' X)- any particular generalized inverse, then (} is estimable <=? 

0 = O(X'X)-(X'X). 

Proof. ( =} ) If (} is estimable, then constant A (a x N) exists such that 
O=AX. Intum 

0 [(X' X)- X' X]= AX[(X'X)-X' X] 

= A[X(X'X)-X' X] 
=AX=O. (11.13) 

Searle (1971, p. 20) proved X= X(X'X)- X' X, which is in Theorem 1.15. 
(-¢:=)Given 0 = O(X'X)-(X'X), if A= O(X'X)-X', then 0 =AX 

and(} is estimable by Theorem 11.3. 0 

Corollary 11.4 Secondary parameter(} is estimable <=? 0 = O(X' xt (X' X). 

Proof. (=?)Estimable implies 0 = O(X'X)-(X'X), which clearly implies 
0 = O(X'X)+(X'X). 

(-¢:=) If 0 = O(X'Xt(X'X), then 0 = O(X'X)-(X'X). The result 
follows by the theorem. 0 

Theorem 11.5 A GLMN,qLTFR(yi;Xi,8,a2 ) may have Nx(r+s) X 
partitioned as X= [ X 1 X2] with N x r X 1 and N x s X 2 , while s = q- r. 
If (X; X!) is nonsingular and 0 = [ 0 1 0 2] with 0 1 ax rand 0 2 ax s, then 
(} = 0,8 is estimable if and only if02 = 0 1(X;X1)-1 x;x2. 

Proof. (Roy, 1957). Left as an exercise. 

Since rank(X) = r, X has r linearly independent columns. It may be 
necessary to permute the columns of X to make the columns the first r columns. 
The rows of ,8 and then 0 must be permuted to match. 

Theorem 11.6 If GLMN,qLTFR(yi;Xi,8,a2) has(}= 0,8, then(} is estimable 
<=? 3D (ax q) such that 0 = D(X' X). If D exists it is unique. 

Proof. ( =}) If D 1 = O(X'X)- (ax q), with (X'X)- any particular 
generalized inverse, and (} is estimable, then 0 = 0 (X' X)- (X' X), which 
allows writing 0 = D 1 (X' X) and ensures D exists. 

(-¢:=)If D 2 exists such that 0 = D 2(X'X), then A= D2X' exists such that 
0 = AX. Therefore (} is estimable. 

Proving uniqueness is left as an exercise. 0 



Linear Model Theory 215 

Example 11.1 Two different model fonnulations for the same simple situation 
illustrate some of the complications arising in considering estimability for L TFR 
models. For N = 3, two experimental units receive treatment I, and one 
experimental unit receives treatment 2. Model I, a cell-mean model, with q = 2, 
has scalar equation Yii = p.; + eij and corresponds to a GLMN,2FR(y;; X i.I /31, a 2 ) 

with Gaussian errors. Model 2, a classical ANOV A model, with q = 3, has scalar 
equation Yij = ll +a;+ Cii and corresponds to a GLMN.3LTFR(y,; X ;,2/3, a 2

) 

with Gaussian errors. In the setting described, 

Also 

and 

Yit1 = observation i subject to treatment g 

/tg = E(y;9 ) 

p. = an ''overall mean" 
a 9 = "the effect of treatment g" 

Cig "" JVi {0, a 2
) i.i.d. 

'II 

[Yll l Y12 

Y'J.I 

It is easily verified that 

[;;;] [ ~~ ] 

( 11.14) 

(11.15) 

{11.16) 

is unbiased, E(Pd = /31. Furthennore any linear combination of p.1 and 112 , say 

C/31 = CJ /-(J + C'l llz, is esti mable since c {:JI is a linear unbiased estimator of 
Cf3,. 

In contrast, {31 is not estimable (no linear unbiased estimator of f32 exits), and 
element j of !3!. is not estimable. In particular, no individual linear estimators with 
expectation equal to p., or to a., or to a2 exist. They are not. individually 
estimable, even as secondary parameters (0 = c J/32 = /3j,2 · with CJ 1 x q with all 
zero elements except for a 1 at position j ). 
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For model 2 the normal equations are 

(X~X2)P2 = X~y 

[ ~ ; ~] [:1 l 
l 0 I fi2 

~ [ll fly (11.17) 

Subtracting multiples of the third row from the first two rows gives the equivalent 
equations 

[ ~ ; =i] [& l [! ! =i]Y· 
I 0 I o:2 0 0 I 

(11.18) 

Since two of the equations are identical, we have a system of two equations in 
three unknowns. Infinitely many solutions exist for such a system. If {J2 is a 
solution, then so is i!J2 = P2 + z for any z = [-Zfl zo z0 J', because 

x,z ~ [: ~ m -:l ~ o (11.19} 

Particular solutions are obtained by placing an additional linear restriction on /32, 
specifically r' fJ2 = a, to supply a third equation. Requiring Jt = 0 corresponds to 
r' = [ 1 0 0 J and a = 0. The choice implies three equations in three unknowns, 

[ ~ ~ -~ ] [& l = [~ ~ -~] y . 
I 0 1 0:2 0 0 I 

(11.20) 

Further manipulation yields the solution 

(11.21) 

It is interesting to look at the expected values of the estimators. They are 

(11.22) 

We can also examine the expected value of all other solutions since they must be 
of the form {32 = /32 + z. No known quantity zo e.xists such that 
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( 11.23) 

Regardless of model specifications, Jlij = E(Y;.i) is always estimable, which is a 
trivial result since Yii is a linear unbiased estimator of l4.i = E(yiJ) . In the 
example, the fundamental parameters are E(y11 ) = ft + o:1 = E(y12) and 
E(y21 ) = JJ, + o:2• Since the parameters are estimable, linear combinations of them 
are also estimable, including o:1 - o:2 = (tt + o:1} - (tt. + o:2 ) . However, no linear 
combination of the fundamental estimable parameter has expectation equal to tt, or 
to o:~o or to o:2. They are not estimable, even as secondary parameters. The proofs 
of the assertions are recommended as exercises. 

In spite of the estimability problems, L TFR models are popular and can be 
useful in some circumstances. If one restricts interest to estimable secondary 
parameters, such parameters may be estimated equally well via either FR or L TFR 
models (aside from certain computational problems for LTFR models). The FR 
models have an advantage when defining a secondary parameter because one need 
not be concerned with whether the parameter is estimable. 

Since it is embarrassing to present an estimate of a nonestimable parameter, 
when using L TFR models one must check 
estimability, which can be a nuisance. 
C = C(X'X)-(X'X) seems the simplest. 

each secondary parameter for 
VerifYing the condition 

The following theorem formally justifies taking advantage of the convenience 
of working with a linearly equivalent model. Analyzing a full-rank model which is 
linearly equivalent to a less-than-full-rank model avoids the need to check for 
estimability and loses no information available in the original model. 

Theorem 11.7 Any primary or secondary expected-value parameter estimable in 
GLMN,q(Yii Xi/3, u 2

) is also estimable in a linearly equivalent model. 

Proof. Considering estimable () = C /3 first allows treating {.J as a special case. 
Direct comparison of the definitions of estimable and linearly equivalent provides 
the basis of the result. Details are left as an exercise. 

11.5 CODING SCHEMES AND THE ESSENCE MATRIX 

Even simple design matrices can be coded in a variety of ways. The choice 
affects the definitions and estimability of expected-value parameters {.J and 
() = C {3. Readers with limited knowledge of coding schemes will find it 

profitable to consult Chapters 12-16 in Muller and Fetterman (2002). They 
provided extensive guidance concerning practical applications in ANOV A and 
regression. They also explicitly describe equivalencies among models using such 
coding schemes in one- and two-way designs. 
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In the univariate linear model GLMN,q(Yi; Xif3, u 2), with corresponding model 
equation for all observations y = X {3 + e, the design matrix X represents 
between-subject information (distinctions among independent sampling units, 
ISUs). Most often, data analysts use one of six coding schemes to code 
distinctions among G groups of observations: reference cell (regression), cell 
mean, effect, classical ANOV A, natural polynomial, and orthogonal polynomial. 

Example I I .Z A G = 3 group AN OVA design, with N_9 independent 
observations in group g, may be written with reference celt coding as 

y = X d3 + e 

= [ ~ ~ ~ ] {J + e 
1 0 1 

[

1N, ® [I o o)l 
= h r2 ® [I 1 0] {3 + e . 

1N3 ® [ 1 0 1) 

If N1 = N2 = N:J (a balanced design), then Ng = N f G and 

X 1 = 1N11 ® [ ~ ~ ~ ] = 1N9 ® X E.l . 
1 0 1 

Cell mean coding gives 

'U = X 2{3 + e 

= [~ ~ ~]{3 + e 
0 0 1 

If the design is balanced, then 

[

I N, ® [1 0 0]] 
1N2 ® [0 1 OJ {3 + e . 
1Na ® [0 0 1] 

X, ~ lN,® [~ ~ ~] ~ 1N,®XE,2 
Obviously X E.2 = I a. 

(11.24) 

( 11.25) 

(1 1.26) 

(11.27) 

Definition 11.5 The essence matrix (Helms, l988a, b) simplifies any 
discussion of coding schemes. With N observations and q predictors, an 
N x q design matrix, X, has G x q essence matrix Es(X), which contains 
one and only one copy of each unique row of X. 
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With G rows in Es(X) each row X 9 = row9 [Es(X)] identifies one of G 
distinct groups of sampling units. Observations which share the same row;(X) 
and hence the same X 9 are described as being in the same cell, which corresponds 
to the same treatment combination for an experiment. With Nq observations in 
group g and an unbalanced design, 

(11.28) 

A balanced design has an equal number of observations in each cell so N 9 = N jG 
and X= Es(X) ®lNfG· 

For a one-way ANOVA design, cell-mean coding has Es(X) = Ic. Reference­
cell, effect, and polynomial coding schemes also have G x G and full-rank Es(X) 
for N x G and full rank X. Classical ANOV A coding has less-than-full-rank 
Es(X) = [ lc Ic ], while deleting any of the last G columns creates a reference­
cell coding. 

Questions of parameter definition and estimability can be answered in terms of 
the essence matrix. The easily proven fact that rank(X) = [Es(X)] gives some 
hint of value in considering the essence matrix. Furthermore, linear equivalence of 
two models can be assessed conveniently in terms of essence matrices. 

11.6 UNRESTRICTED MAXIMUM LIKELIHOOD ESTIMATION OF /3 

The following two lemmas support the derivation of the likelihood estimators. 

Lemma 11.2 If f(x) is a positive valued function of x on ~P, then xo is the 
location of a local maximum of f(x) if and only if xo is the location of a local 
maximum oflog[f(x)]. 

Proof. ( =}) Proving f(x0 ) is a local maximum is equivalent to proving 
::Jb > 0 such that II x- xo II < 8 =? f(x) ::; f(x 0 ). The monotonicity of the 
log() function allows writing f(x)::; f(xo) =} log[f(x)] ::; log[f(xo)]. 
Therefore we know II x- xo II < 8 =} log[f(x)]::; log[f(xo)]. 

( ¢=) Proving log[f(x0 )] is a local maximum is equivalent to proving :38 > 0 
such that II x- xo II < 8 =} log[f(x)]::; log[f(xo)] =} f(x)::; f(xo) due to 
the monotonicity of exp(). 0 

Lemma 11.3 For GLMN.q(Yi; X;/3, a 2
), the system of equations (X' X)/3 = X'y 

is consistent (Definition 1.34) when solving for unknown f3 in terms of known X 
andy. 

Proof. a'(X'X) = 0 =} a'(X'X)a = 0 =} a' X'= 0 =} a'X'y = 0. 0 
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Any model with less-than-full-rank design matrix disallows finding a unique 
estimate for /3. Infinitely many different estimates provide a valid solution, which 
could each be termed a supremum likelihood estimate. However, even when a 
unique estimate for /3 cannot be found, a unique estimate of cr2 will still exist. We 
follow convention in describing the estimates for {/3, cr2 } as the maximum 
likelihood estimates, even with a less-than-full-rank design. 

Theorem 11.8 For GLMN,q(y;; X;/3, cr2) with Gaussian errors and 
r = rank( X) ::::; q, the joint supremum (for /3 if r < q) or maximum (if r = q for 
{3; always for cr2) likelihood estimators of /3 and cr2 are 

{3 =(X' X)- X'y 

a2 = (y- X{3)'(y- X{3)1N = y'[IN- X(X'X)-X']yiN. 

(11.29) 
(11.30) 

Here {3 is any solution of (X' X){3 = X'y, with infinitely many for r < q, and 
one unique solution if r = q and (X' X)-= (X'X)-1. The value of a2 is 
invariant to the choice of (X' X)-. It is customary to use &2 = a2 N I ( N - r), 
which is unbiased. If X (N x q) is full rank, then (X'X)- = (X'X)-1

, and 
{3 = j3 = (X' X) -I X' y is unique and unbiased. 

Proof. The density function ofy (N x 1) with p, = X/3, :E = cr2 I is 

fy(y.) = (27r)-N/21:EI-1/2exp[ -(y.- p,)':E-I(y.- J.L)I2]. (11.31) 

We actually maximize the log likelihood (using Lemma 11.2), which is 

logL(y.; /3, cr2) = log[fy(y.)] 
N N 2 1 I 2 = - 2 log(27r)- 2 1og(cr )- 2(y.-X{3) (y.-X/3)1cr 

N 
= c- 2 log(cr2)-(y:y.-2y:Xf3 + f3'X'X/3)1(2cr 2

). (11.32) 

Step 1. Critical points are found by finding zeros of partial derivatives of log£ 

with respect tor= [/3' cr2 ]'. Here aiogLI 8{3 = (2cr2 f 1 
[2X'y- 2(X' X)/3] is 

q x 1. Evaluating 0 = aiogLI8/3 at /3 = {3 implies (X'X){3 = X'y. 
Equivalently, {3 =(X' X)- X'y. since the equations are consistent by Lemma 
1.17. Also, 

aiogL N 1 , 
8cr2 =- 2cr2 + 2(cr2)2 [(y.- X/3) (y.- X/3)]. (11.33) 

Evaluating 0 = aiogL I 8cr2 at cr2 = a2 implies a2 = (y- X{3)'(y- x{3) IN or 
a2 = y'(I- X(X' X)- X')yl N. The estimator is invariant to the choice of 
generalized inverse by Theorem 1.15. 

Step 2. Is the critical point a maximum, minimum, or saddle point? Deciding 
requires proving the Hessian matrix 
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8a2 8{3' 
8 2logL 

8{3 8/3' 
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(11.34) 

is negative definite if (X' xr I exists and negative semidefinite otherwise. Further 
details are left as an exercise. D 

Lemma 11.4 The solution to the equations (X'X)/3 = X'y gives predicted 
values orthogonal to the residuals, which leads to referring to (X' X) f3 = X' y as 
the "normal" equations. 

Proof. 

y'e = [X(X'Xf X'y]'[y- X(X'X)-X'y] 
= y'X(X'X)-X'[I- X(X'Xf X']y 
= y'H(I- H)y 

= y'(H- H 2)y 

= 0. 

(11.35) 
D 

The adjective "normal" in the lemma refers to a perpendicular property and 
applies whether or not the data are Gaussian, as does the following lemma. 

Lemma 11.5 (a) Predicted values and residuals from any GLMN,q(Yi; Xi/3, a 2
) 

have zero covariance and zero correlation. 
(b) With Gaussian errors the predicted values are statistically independent of the 
residuals. 

Proof. 

V(f), e)= V[Hy, (I- H)y] 
= E{ (Hy)[(I- H)y]'}- E(Hy)E{[(I- H)y]'} 
= H[E(yy')](I- H)- HE(y)E(y')(I- H) 
= H[E(yy')- E(y)E(y')](I- H) 
= HV(y)(I- H) 
=Ha2IN(I-H) =ONxN· (11.36) 

Jointly expressing predicted values and residuals as a linear transformation of a 
vector Gaussian implies they are jointly vector Gaussian: 

Zero covariance among Gaussian vectors implies statistical independence. D 
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Lemma 11.6 (a) The f3 estimator and the residuals from any GLMN,q(Yii Xi/3, a 2
) 

have zero covariance and zero correlation. 
(b) With Gaussian errors the f3 estimator and the residuals are statistically 
independent of each other. 

Proof. For H = X(X'X)- X', Theorem 1.15 gives [(X' X)- X']H = 
(X' X)- X', which implies [(X' X)- X'](IN- H)= 0. Proceeding as in the 
proof of the last lemma gives 

[ ~] = [(X'X)-X']y 
e (IN- H) 

"' { [ (X' X)- X' X /3] 2 [ (X' X)- 0 ] } 
SNq+N 0 ,a 0 (IN- H) . 

11.7 UNRESTRICTED BLUE ESTIMATION OF /3 

(11.38) 

0 

Definition 11.6 If at least one function of a set of data provides a linear 
unbiased estimator of a parameter, one may be best in the sense of having 
minimum variance (among unbiased estimators). Such a best linear 
unbiased estimator (BLUE) is also known as a (linear) uniformly minimum 
variance unbiased estimator (UMVUE). 

Theorem 11.9 For a GLMN,qFR(yi; Xi/3, a 2), the class of linear unbiased 
estimators is CLUE= {,8: ,8 = Ay, A (q x N), E(,B) = /3} for A constant. The 

BLUE can be identified in two ways. (1) The BLUE of f3 is jj = A 0y <=? 

V(,B) - V(/3) = V(Ay) - V(Aoy) is positive semidefinite for all ,8 E CLUE· 

(2) For Be = c,B and Be = cjj scalar V(Be) - V(Be) = V( C,B) - V( C/3) is 
nonnegative for all 0' E ~q and ,8 E CLUE· Condition 1 holds <=? condition 
2 holds. 

Proof. For any ,8, /3 E CLUE, the matrix V(,B) - V(/3) is positive semidefinite 
if and only if the scalar V(C,B)- V(C/3) is nonnegative VC' E ~q because 

V(C,B)- V(C/3) = C[V(,B)- V(/3)]0'. (11.39) 

Matrix theory guarantees the matrix (the left side of the equation) is positive 
definite or positive semidefinite if and only if the quadratic form (the right side of 
the equation) is nonnegative '</C. 0 

Theorem 11.10 For a GLMN,qFR(Yii Xi/3, a 2
) the unique BLUE of /3 is 

jj = (X' X)-1 X'y. The result is known as the Gauss-Markov theorem. 
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Proof. If A 0 = (X' X) -I X' ( q x N), then i!J = A 0y is in the class of linear 

unbiased estimators, i!J E !CLUE= {,8: ,8 = Ay for some A and E(,B) = ,8}. An 

arbitrary LUE ,8 = Ay has E(,B) = E(Ay) = AX,8 = ,8 for arbitrary ,8. Here 
AX,8 = ,8 for all ,8 if and only if AX= I. The special property A (q x N) 
must have in relation to X (N x q) is used to establish the fact that the matrix 

V(,B) - V(i!J) = V(,B -i!J) (11.40) 

IS a covariance matrix and therefore must be positive definite or positive 

semidefinite. It then follows i!J is best in !CLUE· The details are as follows. 
Beginning with 

v(,B) = V[(,B -i!J) + i!JJ 
= V(,B -i!J) + V(i!J) + 2V [i!J, (,8 -i!J)] 

leads to examining the (q x q) matrix 

V[i!J, (,8 -i!J)J = V[Aoy, (A- Ao)Y] 
= A 0 (a2 I)(A- Ao)' 

= a 2 (X'X)-1X'[A'- X(X'X)-1
] 

= a 2 (X'X)-1 [x'A'- X'X(X'X)- 1
] 

= a 2 (X' X) - 1 (I - I) = 0 . 

(11.41) 

(11.42) 

In tum, v(,B) - v(i!J) = V(,B -i!J) + 2 · 0. Since the difference matrix is a 

covariance matrix, the difference matrix must be positive definite or positive 

semidefinite. Thus i!J is BLUE. 
The vector i!J is also the unique BLUE, which can be proven by contradiction. 

Suppose ,8 = Ay and j3 = A 0y are both BLUE with A 0 = (X'X)-1X' -1- A. If 

both are BLUE, [V(,B)-V(i!J)] and [V(i!J)- V(,B)] are positive definite or positive 

semidefinite, which gives [V(,B)-V(l!J)] = 0. Here [V(,B)-V(l!J)] = 
[V(i!J)- V(,8)] implies V(,B-i!J) = 0. In tum V[(A- Ao)Y] = 
(A- A 0 )a2 I(A- A 0 )' = 0 for all a 2 , which implies (A- Ao) = 0, which is a 
contradiction and implies the assumption (A -1- A 0) is false. 0 

11.8 UNRESTRICTED LEAST SQUARES ESTIMATION OF ,8 

Here we consider building a model for a vector of observations, y (N x 1). 
Also y = t(,8) models y, with t() a (vector-valued) transformation from ,8 E ~q 

to y E ~-v. Here B indicates the parameter space of ,8, with ,8 E B c ~q. 
The choice of estimator may be restricted to a certain class of estimators IC 

which satisfy certain restrictions or conditions, such as !CLUE· Goodness of fit for 
such a model is assessed by examining the vector of estimated errors, the residuals 
(y - y) = r(,B) = e for ,8, an estimator of ,8. The value of the residuals depend 
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on the choice of /!J. The study of decision theory has led to many criteria for 
"small error," corresponding to many vector norms. 

Definition 11.7 (a) The squared error loss function is 

SSE(/!J) = e'e = 2:~1-e; = llell2. 
(b) If y = t(/3) is a model for y, and /3 E IC for IC a class of estimators of 
f3 E B, then jj is a least squares estimator of f3 if and only if 

SSE(/3) ::::; SSE(/!J) for all/!J E IC. 

Such an estimator may or may not be unique, biased, or linear. 

The Gauss-Markov theorem for the full-rank GLM provides a unique linear 
least-squares estimator /3 a representation which is linear in parameters, 
t(/3) = X/3. For each observation, the parameter estimates imply a predicted 

value, as in Y; = ~1 xil + ~2x;2 + ~3x;3, and error estimates, the residuals, 
e; = y;- Y;· In contrast, we may seek a least squares estimator in the context of 

an inherently nonlinear model such as Y; = ~1 x?1' + ~3x;2. 
A less-than-full-rank GLM corresponds to an inconsistent system of equations 

without a unique solution. Each nonunique set of parameter estimates does imply 
predicted values and error estimates. The following theorem, and other results 
later in the chapter, characterize important properties of such models. 

Definition 11.8 A GLMN,qLTFR(y;; X;/3, a 2 ) with r =rank( X) ::::; q, 
/3 E ~q' 73 E ICLE = {73: 73 = Ay for some A (q X N) }, has e = y- xfj 

and SSE(/!J) = e'e = (y- X/!J)'(y- X/!J). The vector /3 E ICLE is a 
(linear) least squares estimator of f3 if and only if SSE(/3) ::::; SSE(/!J) 
V/!J E ICLE· 

Theorem 11.11 The following hold for GLMN,q(Y;; X;/3, a 2). 

(a) Any solution /!J of the normal equations (X' X)/!J = X'y is a least squares 
estimator for {3. The solutions are of the form /!J = (X' X)- X' y with 
SSE(/!J) = y'[I- X(X'X)- X']y, which is invariant to the choice of 
generalized inverse. 
(b) If X (Nxq) has rank q, then (X'X)-=(X'X)-1

, and 
/!J = /3 = (X'X)-1 X'y is unique and unbiased. Uniqueness of /3 ensures 
SSE(/3) < SSE(/!J) for all/!J not identical to /3. 

Proof. We want to mmimJze SSE(b) = (y- Xb)'(y- Xb) = 
y' y - 2b' X' y + b' X' X b. Critical points are found by finding zeros of partial 
derivatives of SSE with respect to b. The q x 1 vector of derivatives is 

8SSE/8b = -2X'y + 2(X'X)b. (11.43) 

Evaluating 8SSE/8b = 0 at b = /!J implies (X'X)/!J = X'y, which implies 
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/3 = (X' X)-X' y because the equations are consistent. Is the critical point a 
minimum, maximum, or saddle point? The matrix of second derivatives, 

8(2lSSE 
8b8b' = 2X'X (11.44) 

is at least positive semidefinite. Having X' X positive definite =} a mm1mum 
point; X' X negative definite =} a maximum point; X' X ± semidefinite =} a 
minimum, maximum, or saddle point; and X' X indefinite =} a saddle point. 

If X has full rank, then /3 = i!J = (X' X) -I X' y corresponds to a minimum and 
is unique and unbiased. 

For the LTFR case, it must be determined whether or not /3 = (X'Xf X'y 
corresponds to a minimum. The result can be determined by evaluating SSE for 
other points in the neighborhood of /3, say /3 + h, for h a vector of any length in 

any direction. Here SSE (/3 + h) = II y - X (/3 + h) 11
2 

can be written as 

(/3 +h)= IIY- X/311
2 

+ 11Xhll2 + 2h' [(X'X)/3- X'y], (11.45) 

a Taylor series expansion. Thus SSE(j!J +h)= SSE(/3) + h'(X'X)h + 0. Now, 
X'X is positive definite <=? h'(X'X)h > 0 '</h. Also, X'X is positive 
semidefinite <=? h'(X'X)h:::: 0 'Vh and h'(X'X)h = 0 for some h. Therefore, 
in the L TFR case SSE has a level valley which is minimal. 

In variance of SSE(j!J) follows from uniqueness of X (X' X)- X' (Theorem 
1.15). 0 

Theorem 11.12 For a GLMN,qFR(y;; Xi/3, a 2) with Gaussian errors, 

j3 = (X'X)- 1X'y, 

ci = -
1-y'[I- X (X'X)-1X']y 

N-q 

(11.46) 

(11.47) 

are (a) unbiased, (b) consistent, (c) efficient, (d) complete, (e) sufficient, and 
(t) UMVUE. Furthermore (g) i!J and &2 are mutually independent, 
(h) i!J ~ Nq [/3, a 2(X'X)-1], and (i) &2(N- q)ja2 ~ x2(N- q). 

Proof. Proofs are left to the reader. 

11.9 UNRESTRICTED MAXIMUM LIKELIHOOD ESTIMATION OF(} 

Least squares estimation does not apply directly to estimation of secondary 
parameters (} except when MLE results apply to secondary parameter estimation. 
Even then, some additional details must be considered. 
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Theorem 11.13 For GLMN,q(y;; X;/3, a 2
) with Gaussian errors and 

r = rank(X) ::; q, (} = C/3, constant C (q x q) of rank q, the joint supremum 
(for(} if(} is not estimable) or maximum (for(} if(} is estimable; always for a 2) 

likelihood estimators of(} and a 2 are 

o = c13 

a2 = (y- X13)'(y- X{3)jN = y'[IN- X(X'X)- X']yjN. 

(11.48) 
(11.49) 

Here 13 is one of infinitely many solutions of (X' X)13 = X'y for r < q and the 
unique solution if r = q and (X' X)- = (X' X)-1

. Estimable (} gives 0 
invariant to the choice of (X' X)- ,while a2 is always invariant to (X' X)-. 

Proof. The invariance of 0 for estimable (} derives from two facts. First, 
estimability =} C =AX for some A. Second, X(X' X)- X' is invariant to 
choice of generalized inverse (Theorem 1.15). Here 0 = 0 = C13 = 
AX( X' X)- X'y. For nonestimable 0, infinitely many MLEs exist. 

It remains to be proven that MLE estimators are of the stated form, namely 
0 = C13 and 13 =(X' X)- X'y. Since matrix C is nonsingular and q x q, 
E(y) =: X/3 = (XC- 1)(0{3) = Z(} with (N x q) Z = xc- 1 and (} = C/3. 
Thus a linearly equivalent model with (} as the primary expected-value parameter 
is GLMN,q(y;; Z;O, a 2 ) with Gaussian errors and r = rank(Z). The problem is 
thus reduced to one already solved. 0 

Corollary 11.13 For a GLMN,q(y;; X;/3, a 2 ) with Gaussian errors and 
r = rank( X) ::; q, secondary parameter 0; = 0;{3 E ~"· for i E { 1, 2, ... , t} 
may be defined by C; (a; x q) such that rank(C;) =a;::; q = L;~1 a; and 

(a) A joint MLE of 0; (a; x 1) is 0; = C;/3, in which 13 =(X' X)- X'y. 
(b) If 0; is estimable, then 0; is invariant to the choice of (X' X)-. 
(c) 0; is invariant to the choice of C;• 'Vi' -1- i. 

(11.50) 

Proof. The results follow from the theorem since C (q x q) is nonsingular. The 
rows of the C; are linearly independent, as are, collectively, the rows of C. 0 

Although the C; of interest may not span the estimation space, one can always 
find additional rows to create nonsingular C (q x q). It is then convenient to find 
the joint MLE of all the secondary parameters, { (}1 , (}2 , ... , 01}, and define the 
joint MLE of { (}1 , fh, ... , fh}, k < t, to be the same values as the MLE of all of(} 
(q x 1). The result is invariant to the choice of the additional rows making C 
invertible. 
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If one attempts maximum likelihood estimation of (}i, i E {1, 2, ... , t- 1} (or 
fewer), then the problem is essentially indeterminate. The elements of Ot make an 
appearance as nuisance parameters, which makes the maximization depend on the 
unknown value of Ot. 

11.10 UNRESTRICTED BLUE ESTIMATION OF(} 

Definition 11.9 (a) For GLMN,q(yi; Xi{3, a 2) with r = rank( X) ::; q, any 
a x 1 estimable secondary parameter (} = C f3 has an associated class 
<CLUE= {8: 8 = Ay for some A (ax N) and E(8) = 0} of linear 
unbiased estimators. 
(b) One element of<CwE may have minimum variance and therefore gives a 
BLUE. 
(c) Such an estimator is also known as the (linear) uniformly minimum 
variance unbiased estimator (UMVUE). 

Theorem 11.14 (a) The BLUE of (} is 0 = A 0y such that [V( (8)) - V(O)] = 
[V(Ay)- V(Aoy)] is nonnegative definite \:/8 E <CLUE· 

(b) Equivalently, (scalar) [V(t'8)- V(t'O)] ~ 0 Vt E lRa and 8 E <CLUE· 

Proof. For any 8 E <CLUE and any 0 E <CLUE, the matrix [V(8) - V(O)] Is 

nonnegative definite <=? the scalar [V(t'8) - V(t'O)] is nonnegative Vt E lRa 

because [V(t'8)- V(t'O)] = t'[V(8)- V(O)]t. D 

Example 11 .3 With 2N i.i.d. observations 1J; ....., .N(Jt, u 2 ), the estimators 

. .tV 

ilt = L y;/N 
i=- 1 
'l.N 

ii2 = L y;/N 
i=N+l 
2JV 

ji = L Y;/(2N) = (Ji. + 10.)/2 
i - 1 

are all unbiased. However, V(i1d = V(jl2) = 2V(jl) . 

(li.S [) 

( 11.52) 

(11.53) 

Corollary 11.14 For a GLMN,q(Yi; Xi/3, a 2) with r =rank( X) ::; q, the BLUE of 

estimable(}= C/3 (ax 1) is 0 <=? the BLUE oft'(} is t'O Vt E lRa. 

Proof. The BLUE properties linearity, 0 = Ty <=? t'O = t'Ty Vt E lRa, and 

unbiasedness give E(O) = (} <=? t'E(O) = t'(} Vt E lRa. To prove the variance is 

a minimum, we proceed as follows. The matrix V(O) is minimal (as in BLUE 
version a) <=? Vt E lRa scalar V(t'O) is minimal. D 
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Theorem 11.15 For a GLMN,q(y;; X;/3, a 2
) with r =rank( X) ::::; q, the unique 

BLUE of an estimable(}= 0{3 (ax 1) is 0 = 013, with 13 = (X'X)-X'y the 
least squares estimator of {3. 

The assumptions guarantee 0 is unbiased, is invariant to the choice of 
generalized inverse defining 13, has minimum variance among all LUEs, and is 
unique in that it is the only estimator satisfying all of the requirements. 

Proof. It is sufficient to prove '<It E ~q the BLUE oft'(} is t'O. If c' = t'O, 
then by Lemma 11.7 the BLUE of Bt=c'f3=t'Of3=t'(} is 
Bt = (t'O)(X'X)- X'y. 0 

Corollary 11.15 For the special case of a GLMN,qFR(y;; X;/3, a 2) with estimable 
(} = 0{3 the unique BLUE is 0 = OfJ in which j3 = (X'X)-1 X'y. 

11.11 RELATED DISTRIBUTIONS 

It is definitely worth repeating that nearly all results about estimation presented 
earlier in the present chapter, except for likelihood properties, are distribution free. 
As long as the GLM assumptions hold, the random variables can have any 
distribution with finite second moments. The special case of Gaussian errors leads 
to simple forms of distributions for many estimators. 

Theorem 11.16 (a) For GLMN,qLTFR(y;; X;/3, a 2) with Gaussian errors and two­
condition inverse (X' X)-, 

13"' SNq [(X' X)- (X' X)/3, a 2(X' X)-] . (11.54) 

(b) A GLMN,qFR(yi; Xi/3, a 2
) has 

j3 "' Nq [/3, a 2 (X' X) - 1
] . (11.55) 

(c) For rank( X) ::::; q and any one-condition inverse, estimable (} = 0 f3 ensures 

(11.56) 

(d) For any one-condition inverse, H = X (X' X)- X' = X (X' X)+ X' and 

f)=X13=Hy 

"'SNN (X/3, a 2 H). (11.57) 

(e) Furthermore 

e = y- fj = (IN - H)y 

"'SNN [X/3, a 2(IN- H)]. (11.58) 
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Proof. Left as an exercise. Hints : linear transformations of Gaussian variables, 
Theorem 1.15, generalized inverse conditions, and estimability condition. 

Theorem 11.17 In a GLMN,q(Yii Xi,B,(}2 ) with Gaussian errors, {Jande are 
jointly Gaussian with zero covariance and correlation and are statistically 
independent. 

Proof. The joint distribution of the estimators is established by expressing the 
two vectors as a single linear transformation of a vector Gaussian: 

[
{J] = [(X'X)-·X'] = 
e (I-H) y Ty. 

In tum 

V({J, e) = E({Je') - E(fJ)E(e') 
= E{(X'X)-X'y[(I- H)y]'}- E(fJ)O 
= (X' X)- X'E(yy')(I- H) 
= (X'X)-X'(u2IN)(I- H) 
= (} 2(X'X)-[X'- X'X(X'X)-X']= (}2(X'X)-[O]. 

The last step is true by Theorem 1.15 and gives v({J, e) = 0. 

(11.59) 

(11.60) 

D 

11.12 FORMULATIONS OF EXPLICIT RESTRICTIONS OF ,BAND(} 

The notation GLMN,q(Yii Xi,B, (}2) describes a situation in which no restrictions 
have been placed on relationships among the elements of ,B. In some cases, data 
analysts wish to ensure some explicit linear relationships hold among the elements 
of ,B. The classical approach to one-way ANOV A coding for G groups uses the 

model Yii = f.1 + a-i + eii subject to the restriction E;=t ai = 0. The use of the 
restriction overcomes the inherently L TFR nature of the classical coding. It leads 
to a method for identifying a set of G estimable parameters (from among the set of 
G + 1 nonestimable original parameters). 

The notation may be extended to incorporate explicit linear restrictions on the 
elements of ,B by writing GLMN,q(Yi; Xi/3, IR,B =a, (}2

) for R (k x q) and a 
(k x 1) conforming and known constants with k.:;: q. Most often, a= 0. Without 
restrictions, ,B E ~q, whereas, with the explicit restrictions, R,B = a, ,B is required 
to lie in a subspace. Such linear restrictions on (the parameters space for) ,B can be 
imposed on both FR and L TFR models. They are particularly important for L TFR 
models because such additional restrictions can lead to a model with estimable 
primary expected-value parameters. They will also be seen to be important in the 
formulation of the general linear hypothesis test. 

Example 11.4 The classical ANOV A coding for a G = 3 group one-way 
ANOV A provides a simple example. In matrix notation, the model is 
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y = 

[

1 1 0 
= 1 0 1 

1 0 0 

X /3 + e 

~] [~:] + e . 
The "sum to zero" zero constraints may be stated as 

R/3 = a 

[0 1 lJ [~~] =[OJ. 
Qjl 

O :} 

{11.61) 

( 11.62) 

Since the usual estimation procedures involve optimization, estimation subject 
to linear restrictions can be performed via constrained optimization, such as 
through the use of Lagrange multipliers. However, the following two theorems 
allow restating the restrictions and in tum restating the restricted model as an 
unrestricted model. 

Theorem 11.18 A restricted GLMN,q(Yi; Xi{31Rf3 =a, a 2 ) has R (k x q) and a 
(k x 1) known constants, k::; q, and consistent equations R{3 =a (with at least 
one solution). 
(a) If rank(R) ::; k and R- (q x k) is any particular generalized inverse (i.e., 
RR-R = R), then any value f3R which satisfies the restrictions may be written, 
for some 'Y E lRq, as 

(b) Ifrank(R) = k, then the singular value decomposition allows writing 

R=P[AO]Q' 

= P[AO][QI Q2]' 
=PAQ~, 

the (unique) Moore-Penrose (four-condition) generalized inverse is 

R+ = QIA-Ipl' 

and {3 satisfies the restrictions if and only if, for some r E lRq-k, 

{3 = R+ a+ Q2r. 

(11.63) 

(11.64) 

(11.65) 

(11.66) 

Here P is k x k, Q is q x q, Q 1 is q x k, and Q2 with q x (q - k ), with all 
being columnwise orthonormal. 
(c) If rank(R) = k, then, with s = q- k and columns of R and corresponding 
rows of {3 permuted prior to partitioning if necessary, 
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(11.67) 

with R 1 k x k and full rank, which ensures R!1 exists. Also /31 is k x 1, R 2 is 
k x s, and /32 is s x 1. Only /32 is free to vary and f3 satisfies R/3 = a {:} 

(11.68) 

Proof of (a). ( .;= ) Any such f3R is a solution. 
(=})If f3 is any solution, then choosing 'Y = (R- R- Iq)/3 ensures f3 satisfies 

the relationship required of f3R· In tum, 

R-a+ (R- R-Iq)'Y = R-a+ (R- R- Iq)(R-R- Iq)/3 
= R-a + ( R-RR-R - R-R - R- R + Iq )/3 
= R-a+ (Iq- R-R)/3 
= R- (R/3) + (Iq - R-R)/3 
= /3 + 0. (11.69) 

Proof of (b). If R- = R+ and r = Q~'Y, applying part (a) gives 

R-a + (R- R- Iq)'Y = R+a + (Q 1Q;- Iq)'Y 

= R+a + (Q2Q~)'Y 
= R+a + Q2(r). 

Proofof(c). R 1/31 + R2/32 =a implies /31 = R!1a- R!1R2/32. 

(11.70) 

D 

Corollary 11.18 The matrix [X' R'] has full rank {:} Z = (X2 -X1R!1R2) 
has full rank. 

Proof. Left as an exercise. 

11.13 RESTRICTED ESTIMATION VIA EQUIVALENT MODELS 

Definition 11.10 (a) An explicitly restricted linear model is indicated 
GLMN.q(y;; X;/3IR/3 =a, o-2), with R/3 =a indicating restrictions on {3. 
(b) A linearly equivalent unrestricted form is an implicitly restricted linear 
model. 

The following theorem provides explicit methods for finding an unrestricted 
model for any given restricted model. Hence the theorem guarantees a linearly 
equivalent unrestricted form always exists for any restricted model. 
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Theorem 11.19 A restricted GLMN,q(Y;; X;/3IR/3 = a, a 2
) has R (k x q) and a 

(k x 1) known constants, with k::; q, r = rank(X)::; q and s=q-k. Consistent 
equations Rf3=a give three distinct ways to create and analyze a linearly 
equivalent unrestricted model, depending on rank(R). 

(a) Having rank(R) ::; k allows the following method. 
1. Compute R- ( q x k) such that RR-R = R. 
2. Compute transformed responses u = y- xR-a (N X 1). 
3. Compute transformed predictors Z = X(R- R- Iq) (N x q). 
4. Analyze unrestricted model (I) GLMN,q( u;; Zn, a 2 ) with rank(Z) ::; s. 

(b) Having rank(R) = k allows the following method. 
1. Compute the SVD R=P[AO][Q1 Q 2 ]' with P'P=PP'=lk> Q 1 

(q x k), Q;Ql = Ik> and Q2 (q x s), Q~Q2 = 18 • 

2. ComputeR+= Q 1A- 1P'. 
3. Compute transformed responses u = y- XR+a (N x 1). 
4. Compute transformed (and reduced) predictors Z = XQ 2 (N x s). 
5. Analyze unrestricted model (II) GLMN,s(u;; Z;r, a 2 ) with rank(Z)::; s. 

(c) Having rank(R) = k also allows the following method. 
1. Permute columns of X and corresponding rows of f3 to have R = [ R 1 R 2 ], 

with R 1 (k x k) full rank and X= [ X 1 X 2 ] partitioned similarly. 
2. Compute transformed responses u = y- X 1R;- 1a (N x 1). 
3. Compute transformed (and reduced) predictors (N x s) 

z =X [ -Rr R2] . (11.71) 

4. Analyze unrestricted model (III) GLMN,s(u;; Z;/32 , a 2 ) with rank(Z)::; s. 
Here (u- Z'Y) = (u- Zr) = (u- Z/32 ) = (y- X/3). 

Proof. If y = X/3 + t:: given R/3 =a, then Theorem 11.18 (a) implies 

(11.72) 

Hence the restricted model and model I are linearly equivalent. Theorem 11.18 (b) 
implies 

Hence the restricted model and model II are linearly equivalent. 
11.18 (c) implies 

Hence the restricted model and model III are linearly equivalent. 

(11.73) 

Theorem 

(11.74) 

0 
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Theorem 11.20 With the notation and assumptions of Theorem 11.18 (b), 
(} = C f3 (a x 1) is estimable. Here C = I is allowed {:} rank( X) = q. The 
BLUE of(} is OR= C(R+a + Q 27-), in which 7- is the BLUE ofr (s x 1) in the 
linearly equivalent unrestricted model II, namely GLMN,s(ui; Zir, a 2 ) with 
rank(Z) ::; s, u = y- XR+a, and Z = XQ2 (N x s). 

Proof. Subject to the restrictions R/3 =a, (} = C f3 is still estimable because 
(} = CR+a + CQ2r implies (}=constant+ (CQ2)r. Also, CQ2r is 
estimable in unrestricted model II because C f3 is estimable in the restricted model. 
Therefore, by Theorem 11.15, the BLUE of CQ2r is CQ27-, and the desired 
result follows. 0 

Corollary 11.20 (a) If rank( X) = q, then the BLUE of f3 is 

{JR = (R+a+Q2r) 

= {J- (X'X)-1R' [R(X'Xr1R'r
1 
(R{J- a), 

in which {J = (X'X)-1 X'y. 
(b) An unbiased estimator of a 2 is 

with 

and 

&2 = (y- X{JR)'(y- X{JR)/[(N- q + k)] 
=(SSE+ SSH)/[(N- q + k)], 

SSE= y'[I- X(X'Xr1X']y = (y- X{J)'(y- X{J) 

SSH = ( R{J - a)' [ R( X' X) -I R'] -I ( R{J - a). 

(11.75) 

(11.76) 

(11. 77) 

(11.78) 

Proof. The first form for {J R may be found by considering (} = f3 and applying 
the original theorem. In the special case of rank( X) = q the parameter (} = C f3 is 
estimable for all C including C =I. 

The second form for {JR may be found by using Theorem 11.18 (a) to help 
define a linearly equivalent unrestricted model, GLMN,q(ui; Zn, a 2 ) with Z 
Nxq with rank(Z)::;q, R qxk, a kx1, u=y-XR-a, 
Z = X(R- R- Iq), and f3R = R-a+ (R- R- Iq)'Y- Here f3R is an estimable 
parameter, f3R=C')'+R-a, since C=(R-R-Iq)=(X'X)- 1X'Z is a 
linear combination of the rows of Z, and R-a is a constant. By Theorem 11.15 
the unique BLUE of f3R is {JR = C"f +R-ain which "f = (Z'Z)- Z'U. The 
estimator can be written 
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{J R = ( R-R - Iq) ( Z' Z)- Z' (Y - X R-a) + R-a 

= [(R-R-Iq)(Z' z)-Z']y+{[h-(R-R-Iq)(Z' Z)- Z' X]R-}a 

= T1yY + T1aa. 

The estimator can also be written 

{JR =/3- (X'X)-1R'[R(X'X)-1R'r1(R/3-a) 

= ({Iq- (X'Xr
1
R'[R(X'X)-

1
R't 1R}(X'Xr

1
X')y+ 

{(X' xr1 R'[R(X' X) - 1 R't1 }a 

(11.79) 

(11.80) 

The equality of the expressions can be proved by first equating the coefficients of 
y and second equating the coefficients of a. 

The fact that R- can be chosen to ensure ( Z' Z)- Z' = 
( R-R - Iq) (X' X) -I X' helps accomplish the two equating tasks. The forms 

z-=(Z'z)-z' (i) 

z- = (R-R-Iq)(X'X)-1X' (ii) 

are both valid representations for a generalized inverse of Z. The representation 
(i) is contained in Theorem 1.15. The validity of (ii) follows directly from 
verifying zz-Z = Z for Z = X(R- R- Iq). All possible generalized 
inverses of Z are represented by each of the two expressions. Therefore, for any 
particular generalized inverse of Z' Z a particular generalized inverse of R exists 
which makes (i) and (ii) identical. 

Applying the equality, we have 

T1y = (R- R- Iq)(R-R- Iq)(X'X)-1X' 

= (Iq- R-R)(X'X)-1X', (11.81) 

compared with T2y = {Iq- (X'X)-1R'[R(X'X)-1R'r
1
R}(X'X)-1X'. 

Hence it will suffice to proveR- R = (X'X)-1 R'[R(X'X)-1 R']-1 R. Here 

R(X'X)-1R' = R[(X'X)-1R'] JJ. 

R-[R(X'X)-1R'] = (X'X)-1R' JJ. 

R- = (X'X)-1R'[R(X'X)-1R't1 JJ. 

R-R = (X'X)-1R'[R(X'X)-1R't1R JJ. 
T 1y = T2y. (11.82) 

Given T 1y = T2y, it follows almost immediately that T 1a = T2a since 

T1a = (I- T1yX)R-
T2aR = I - T2yX. 

Multiplying the first equation by a and the second equation by R-a gives 

(11.83) 
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T1aa = (I- T1yX)R- a 
T2aRR-a =(I- T2yX)R-a. 

235 

(11.84) 

Since RR-a = a and T 1y = T2y, it follows that T 1aa = T2aa for all a. Thus 
T 1y = T2y and T 1a = T2a· 

It is not necessary to assume Gaussian errors to formulate a reasonable 
estimator of a 2 . By Theorem 11.18, a linearly equivalent unrestricted model is 
GLMN.q(ui; Zn, a 2 ) with rank(Z)::::; q, u = y- XR-a, Z = X(R-R- Iq), 
and f3R = R-a+ (R-R- Iqh· For any real symmetric A E(u' Au) = 

tr(Aa2 IN)+ (Zr)' A(Zr). If A= [I- Z(Z' z)-Z] = (I- Pz), then 
E(u'Au) = a 2rank(A) + 0 = a 2[N-(q-k)]. Hence an unbiased estimator for a2 

is &2 = u'(I -P2 )uj(N -q+k) = (u- Zr)'(u- Zr)/(N- q + r). As noted 
in Theorem 11.18, ( u- Zr) = (y- X/3 R) and hence the desired result follows. 

The second form for &2 may be found in terms of the following expressions: 

(/3- /3R) = (X'X)-1 R'[R(X'X)-1 R']-1(R/3- a) 

SSE= (y- X/3)'(y- X{J) 

SSH = (R/3- a)' [R(X'X)-1 R'] -
1 
(R/3- a). 

Simple manipulations give 

&2(N- q + k) = (y-X{JR)'(y-X{JR) 

= [y-X/3 + X(/3-/3R) r [y-X/3 + X(/3-/3R)] 

= (y-X{J)'(y-X/3) + (/3-/3R)'(X'X)(/3-/3R) 
=SSE+SSH. 

(11.85) 
(11.86) 
(11.87) 

(11.88) 
0 

11.14 FITTING PIECEWISE POLYNOMIAL MODELS VIA SPLINES 

Definition 11.11 A collection of m piecewise linear functions connected at m 
points, known as knots, together define a spline function. 

In some cases, the study design and scientific setting dictate that no single 
model applies to the entire range of the predictor. The complication could arise in 
modeling the yield of a chemical manufacturing process as a function of total 
volume of ingredients. The batch size zi (a model predictor) can vary only within 
a limited range for each of m = 3 container sizes. Using regression splines allows 
specifying a distinct polynomial model for each container size, as does the obvious 
alternative of fitting three different models. However, not only do splines allow 
creating a smooth model for the entire range of interest, they also provide much 
greater precision by using a pooled estimator of variance. Smith ( 1979) provided a 
useful introduction to regression splines. 
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A statistical model for y (N x 1) specifying the mean as a piecewise 
polynomial function with m = 3 parts provides an example: 

{ 

a1 + b1zi zi E (ko, ki] 
E(Yilzi) = f(zi; /3) = a2 + b2zi + c2zf Zi E (k1, k2] 

a3 + b3zi Zi E (k2, k3]. 

(11.89) 

The points of connection k ( m x 1) are the knots. The m values are assumed to be 
fixed and known. Usually the values are chosen by the analyst and are evenly 
spaced with m ::; N 115• With the knots fixed and known, the only remaining 
parameters off() are the regression coefficients /3 = [ a1 b1 a2 b2 c2 a3 b3 ]'. 
The fact that E(Yilzi) = f(zi; /3) = Xi/3 verifies the mean is linear in /3. If 
X1i = [ 1 Zi], 81i = lffi{zi E (ko, k1]}, X2i = [1 Zi z?J, 82i = lffi{zi E (k1, k2]}, 
X3i = [ 1 zi], 83i = lffi{zi E (k2, k3]}, /31 = [ a1 bi]', /32 = [ a2 b2 c2 ]', and 
{33 = [ a3 b3 ]', then equivalent expressions for f ( Zi; /3) are 

{ 

Xli/31 zi E (ko, k1] 
f(zi; /3) = X2i/32 Zi E (k1, k2] 

X3i/33 Zi E (k2, k3] 
3 

= L}JiXji/3j 
j=l 

~ [ o,.x,. o,x, Oa;X,;] [~ l 
=Xi/3. 

It follows E(ylz) = f(z; /3) = X/3. (Can you say how X is defined?) 

(11.90) 

Theorem 11.21 Regression splines allow defining a valid univariate GLM. We 
assume E(Yilzi) is a piecewise linear function of /3, namely 

Zi E (ko, ki] 
Zi E (k1,k2] 

with known points of connection (knots) k ( m x 1 ). If 

d = { 1 Zi E (kj-1, kj] 
'·1 0 otherwise , 

X· = [ d1X 1 .. · d X ] t. t. t., t,m t,m 

and 

(11.91) 

(11.92) 

(11.93) 
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(11.94) 

then y satisfies GLMN,q (y;; Xi/3, a 2), with q the number of columns in {Xi}. 

Proof. Left as an exercise. 

Generally, the polynomial pieces {!J(zi; /3), j E {1, ... , m}} do not connect 
and will not form a smooth continuous curve unless some constraints are placed on 
them. To make f(z;; /3) = "L']: 18Jih(zi; /3) continuous at knot kj we must require 

fJ(z;f3)fz=k
1 
= h+l(z;/3)fz=k/ Even with the requirement, the pieces may not 

connect to form a smooth curve. A degree of smoothness is obtained by requiring 
the derivatives from the left and right to be equal, 

a h ( z; /3) 1 = a fJ+ 1 ( z; /3) 1 . 

az z=kj az z=kj 
(11.95) 

Higher degrees of smoothness are obtained by specifying requirements for higher 
order derivatives such as 

(11.96) 

Each constraint at each knot constitutes a single linear constraint on {3. 
Collectively the constraints can be expressed in the usual form, R/3 = a. The 
resulting constrained model can be transformed to a linearly equivalent 
unconstrained model. 

Corollary 11.21 If smoothness constraints are placed on f(zi; /3), then y satisfies 
GLMN.q(y;; Xif31Rf3 =a, a 2

). 

Proof. Left as an exercise. 

Some scientific settings require estimating the join points rather than having 
them fixed. Gallant and Fuller (1973) provided a useful discussion of splines. 

11.15 ESTIMATION FOR THE GGLM: WEIGHTED LEAST SQUARES 

All results presented so far in the chapter apply not only to the GLM but also to 
the GGLM. The generality arises due to most of the results depending only on 
properties of the design matrix as they relate to expected values. 
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Definition 11.12 Exactly as for two GLMs, models GGLMN,q, (y; X 1,81, T) 
and GGLMN,'l2 (y; X 2,82, T) are linearly equivalent whenever (1) for any ,81 

there exists ,82 such that X 1,81 =X2,82 and (2) for any ,82 there exists ,81 

such that X 1..81 = X2..82· 

It is useful to recognize that a GGLM may be linearly equivalent to a univariate 
GLM. Theorems about weighted least squares later in the chapter use such an 
equivalence. Similar results lie at the heart of some derivations of the "univariate" 
approach to repeated measures. The approach depends on the assumption of 
compound symmetric covariance among a set of p observations on each of N 
independent sampling units. 

Theorem 11.22 For any GGLMN,qLTFR(y;X,8, T) with r = rank(X), linearly 
equivalent GGLMN,rFR(y; X 1,81, T) always exists. 

Proof. Left as an exercise. 

Although results about restricted models are stated in terms of the univariate 
GLM, they also apply to the GGLMN,q(y; X,8IR..8 =a, T). The generalization 
is valid because the constraints apply only to the expected- value portion of the 
model. 

Definition 11.13 Estimators satisfying the least squares criterion for the 
GGLM are described as exact weighted least squares estimators. 

The BLUE and likelihood results involve second-moment properties. Hence the 
forms of the result differ between the GLM and the GGLM and require separate 
proofs. 

Lemma 11.7 For a GGLMN,q(y; X,8, a 2 D) with r =rank( X)::; q, D = D' 
known, positive definite and N x N, and estimable scalar () = c' ,8, the unique 
BLUE of() is e = c'l!J in whichl!J = (X'D- 1X)- X' n-1y. 

Proof. The approach is to construct and discover (j which must be a linear 
estimator, namely (j = a'y for some a E ~N. The estimator (j must be unbiased, 
E(B) = (). If E( a' y) = c' ,8 V ,8, then a' X ,8 = c' ,8 V ,8, which implies a' X = c' 
and gives q linear restrictions on a. That () is estimable implies c' = AX for some 
A (1 x N). Hence the equations a' X = c' are consistent and there exists a value 
of a' which makes e unbiased. Also, () must have minimum variance, so 
V(B) = a 2a' Da must be minimized subject to consistent restrictions a' X= c'. 
The solution is found with the Lagrange function s2 = a 2a' Da- 2( a' X- c').X 
for A E ~q. The stationary point (value of a) is specified by the requirements 
8s2 ;a.x = 0 and 8s2 j8a = 0, which imply 
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a'X=c' 

XA=a2Da. 

In tum, substituting a = a-2 D-1 X A into the first system gives 

A'(X'D-1X)a-2 = c', 

which is a consistent system. Therefore solutions are of the form 

A'= a-2c'(X'D-1X)-. 
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(11.97) 
(11.98) 

(11.99) 

(11.1 00) 

Substituting the A solution back into the original form and solving for a give 

(11.101) 

Hence A and a satisfy the original conditions, and ( a-2 ) -I cancels a-2 . 

It must now be determined that the stationary point corresponds to a minimum 
rather than a saddle point, which may be done by comparing e = a'y with possible 
competitors. IfB = a'y is also a LUE, then a satisfies the restrictions a' X = c'. 
The variance ofB can be expressed as 

in which 

v(e) = v[(e- e)+ e] 
= v(e- e)+ v(e) + 2v[e, (e- e)], 

v[e, (B-e)] = V[a'y, (a'- a')y] 

= a2a' D(a- a) 
= [c'(X'D-1X)- X'D- 1]D(a- a)a2 

= c'(X' D- 1x)-(X'a- X'a)a2 

(ll.l02) 

= c'(X' D-1 X)-(c- c)a2 = 0. (11.103) 

Hence e has minimum variance because V(B ) - V(e) = V(B- e) ?: 0. 0 

Theorem 11.23 Model I, GGLMN,q(y; X,8, a2 D) with Gaussian errors, has 
r = rank(X) ~ q, D = D' known and positive definite, and D-1 = LL' for 
nonsingular L (N x N). Model 2, GLMN,q[rowi(L'y); rowi(L' X),8, a 2], has 
rank(L' X) = r, is linearly equivalent, and satisfies the least squares and 
Gaussian assumptions of the GLM. 

Proof. y=X,8+€"'NN(X,8,a2D) implies L'y=L'X,8+L'€"' 
NN(L'X,8, a2I). 0 

Theorem 11.24 GGLMN,q(y; X,8, a 2 D) with Gaussian errors, r =rank( X) ~ q, 
D known, positive definite, and symmetric, has estimable secondary parameter 
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(} = C {3. Joint MLEs of r' = [ /3' a 2 ] and (} are 

73 = (X' n-1 X)- X' n-1y (11.104) 

a2 = (y- x73)' n-1(y- xl!J); N (11.1 05) 

and 

iJ = c73, (11.106) 

with iJ and a2 invariant to 73. Unbiased &2 = a2 N /(N- r) is usually preferred. 

Proof. Left as an exercise. 

Theorem 11.25 For GGLMN,q(y; X/3, a 2 D), if D = D' is known and positive 
definite while (} = C f3 is estimable, the following hold. 
(a) If rank:( X) = q, then the unique BLUE of f3 is j3 = (X' n-1 X)-1 X' n-1y. 
(b) If rank( X) < q, then the class of LUEs of f3 is empty and f3 is not estimable. 
(c) The unique BLUE of(} is 0 = C73 in which 73 =(X' D-1X)- X'D- 1y. 

Proof. Left as an exercise. 

Theorem 11.26 Weighted least squares (WLS) estimators, also known as 
generalized least squares (GLS) estimators, may be found for 
GGLMN,q(y; X/3, a 2 D) with r =rank( X) .::; q and known positive-definite, 
matrix D such that n-1 = LL'. 
(a) Any solution 73 of the WLS equations (X' n-1 X)73 =X' n-1y is a WLS 
estimator for {3. The solutions are of the form 

(11.107) 

with 

SSE(l!J) = y' [I- L' X(X' n-1 X)- X' L] y 

= y'L[I- L'X(X'D-1X)- X'L]L'y, (11.1 08) 

which is invariant to the choice of generalized inverse. 
(b) If rank( X) = q, then (X' n-1 X)- = (X' n-1 X)-1 and 73 = j3 = 
(X' n-1 X)-1 X' n-1y is unique and unbiased. 

Proof. Left as an exercise. 

Theorem 11.27 Ordinary least squares (OLS) and WLS estimators may coincide. 
If 

(11.1 09) 
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and 

&2 = (y- X/3)' n-1 (y- X/3)/ N, 

then /3v = /3 {:} ::JB-1 such that DXB-1 =X. If so, then &2 =&'b. 

Proof. ( =} ) The fact that /3 v = /3 ('Vy) implies 

(X'D-1X)-1X'D-1 = (X'X)-1X' 

X'= [(X'D-1X)(X'X)-1]X'D 

B-1 = [(X'D-1X)(X'X)-1J'. 
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(ll.IIO) 

(ll.lll) 

(ll.ll2) 

(ll.l13) 

( -¢=: ) If such B exists, then together n-1 X = X B-1 and 
(X'D-1Xr1 =B(X'X)-1 give n-1X(X'D- 1X)- 1 =XB-1B(X'X)-1

• In 

tum, (X'D-1Xr1X'D-1 = (X'X)-1X', or /3v = {J 'Vy. D 

The special case of compound symmetric covariance illustrates the 
simplification that can occur with known covariance in a GGLM. The importance 
of the next lemma lies in the "univariate" approach to repeated measures and is 
discussed in detail in the context of hypothesis testing. 

Lemma 11.8 A GGLMN,q(y; X/3, D) may have D which is compound 
symmetric (Lemma 1.33 summarizes properties), 

with unknown a 2 > 0 and -1/(p- 1) < p < 1. Such models allow an exact 
transformation to a model with uncorrelated but heteroscedastic observations, 
GGLMN,q[V'y; V'X/3, Dg(.X)]. 

Proof. The restrictions on the unknown parameters are necessary and sufficient 
for D to be positive definite. The eigenvalues are )q = a 2 (1 - p + pp) and, 
Vj -=f. 1, Aj = .\2 = a 2(1-p). By Lemma 1.33, the eigenvectors V = 
[ vo v1 • · • VN-I] may be taken to be vo = p-1121N and [ v2 · · · VN-I] = Vr, the 
set of N - 1 normalized trends for N measurements. Hence V may be specified 
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without knowing a 2 or p. The result gives an exact transformation of 
y = X f3 + e to a model with uncorrelated but heteroscedastic observations, 
V'y = V'X/3 + V'e. The new model has V'e "'NN[O, Dg(.X)], corresponding 
to GGLMN,q[V'y; V'X/3, Dg(.X)]. D 

EXERCISES 

Prove Theorem 11.9. For a GLMN,qFR(yi; X;/3, a 2 ) with Gaussian errors, 
estimators 

are 
11.1 consistent, 
11.2 efficient, 
11.3 unbiased, 
11.4 complete, 
11.5 sufficient, and 
11.6 UMVUE. 

j3 = (X'X)- 1X'y 

&2 = - 1
-y'[I- X (X'X)- 1X']y 

N-q 

II. 7 Furthermore i!J and &2 are mutually independent, 
11.8fj rv N'q[/3, a 2(X'X)-1

] and 
11.9 &2(N- q)ja2 "'x2(N- q). 

Hints. You may prove the results in any order you wish. 

(11.49) 

(11.49) 

Among asymptotically unbiased estimators, one with mm1mum variance m 
large samples is called an efficient estimator or simply efficient. 

You may cite results in Chapters 1-11 for the exercises. When you cite a result 

from Chapters 1-11, clearly indicate the number of the theorem, corollary, or 
lemma that you are using. 

For your own enlightenment (but not for the exercises), you may wish to 
consider proving the results without using any results from Chapter 11. 



CHAPTER12 

Estimation for Multivariate Linear 
Models 

12.1 ALTERNATE FORMULATIONS OF THE MODEL 

The univariate general linear model concerns an N x 1 vector of responses y 
with all observations independent. The multivariate general linear model allows 
generalizing the response vector to an N x p matrix Y with some observations 
independent and some dependent (correlated). Only particular patterns of 
correlation meet the assumptions. For data with correlated observations, 
distinguishing between the observational unit and the independent sampling unit 
often provides the key first step in choosing a valid model. 

Depending on the task at hand, it may be more convenient to express N x p Y 
in terms of its N rows {Y;} or its p columns {yj}. Each row, sometimes indicated 
Y; = row;(Y), is 1 x p, while each column, say Yj = colj(Y), is N x 1. Each 
row corresponds to a particular independent sampling unit, with elements within a 
row being observations for the sampling unit. In a study with (unrelated) human 
participants, each row of Y contains the data for one person, while different 
columns contain different response variables, which might be repeated measures of 
a single variable. It helps to remember that 

(12.1) 

The first form decomposes Y into p variables and the second into N independent 
sampling units. 

The present chapter centers on deriving estimators for B and :E which satisfy a 
variety of optimal properties. The great majority of such properties do not depend 
on a particular choice of distribution function for the responses and are exact, even 
in small samples. In contrast, the desire to test hypotheses leads to describing 
distributions of test statistics. Finding exact test distributions for small samples 
usually requires explicit and particular specification of the distribution of the data. 
The most common choice involves assuming each row of errors independently 
follows a multivariate Gaussian distribution. 
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Describing the model in vector form helps explain the many relationships 
among the elements. The vector form helps in understanding the connections and 
differences among the multivariate and univariate GLM, mixed models, and more 
general forms. It also provides a convenient basis for many proofs of multivariate 
GLM properties. In parallel to expressions for Y in terms of rows or columns, 

X = [ x1 Xz · · · xq] = [xi:_N~ l' (12.2) 

(12.3) 

and 

(12.4) 

As discussed in Chapter 3, a multivariate linear model is often written as 
Y = X B + E. The notation just described allows stacking the data by variable 
(column ofY, B, and E) to give a single column of responses and errors: 

vec(Y) = vec(XB) + vec(E) 

[ ~~] [~] + [~~] 
Yp Xf3p ep 

[: l ~(I, 0 X)vcr(B) + [ J:l 

[ j:J ~ (I, 0 X) [: l + [ J:l 

[ ~~] [~ ~ ::. g l [~] + [~~1-
Yp 0 0 · · · X {3p ep 

(12.5) 

Stacking the data by variable allows concluding that the submodel for response 
variable j is a (valid) GLM corresponding to YJ = Xf3J + ej, with a common 
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design matrix and distinct parameters GLMN,q(Yij; X;/3j, a}). Elements of X and 
/3j, combine to describe differences between sampling units in response variable j. 

Alternatively, stacking the data by independent sampling unit (row of Y, X, 
and E) focuses on differences within sampling unit, between correlated response 
variables, as captured by Bk. The approach gives 

vec(Y') = vec[(XB)'] + vec(E') 

[ 

Y{ l [ (X1B)' 1 [ E~ l ~{ = (X:B)' + ~~ 
Yi (X B)' E' N N N 

[Xl ~ (X0I,)vcc(B') + [!] 
[Xl ~ (X0I,) [ ::1 + [!] 
[ ~] = [~::?, ~::?, ~: ~::?,1 [~B:2q:1 + [E~N! l 
Yk XNJip XN2Ip ... XNqip 

The corresponding equation for sampling unit i, namely 

Yi' = (X;® Ip)vec(B') + EI, 

(12.6) 

(12.7) 

does not describe a valid univariate GLM because V(Yi') = V(ED =:E. 
However, it does implicitly define GGLMp,q[Y;'; (X;®Ip)vec(B'), :E] for 
independent sampling unit i and GGLMNp,q[vec(Y'); (X®Ip)vec(B'), Ip®:E] for 
all of the data. Later discussions of mixed models will demonstrate that the 
equation also defines a corresponding particular mixed model. 

As a special case of a mixed model, the defining characteristics of a multivariate 
GLM are "Kronecker design" and "Kronecker covariance." The first requires a 
common design matrix for all response variables (columns of Y, which may be 
repeated measures), and the second requires a common covariance matrix for all 
independent sampling units (rows of Y, which may be persons). Many current 
approaches to mixed models were developed largely to allow relaxing the 
restrictive assumptions of homogenous design and homogenous covariance 
inherent in the multivariate GLM. 
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Definition 12.1 (a) The matrices B (q x p) and :E (p x p) are the primary 
parameters of a multivariate GLMN,p,q(Y;; X;B, :E) with or without 
Gaussian errors. 
(b) Any (finite) known constant C (ax q), (finite) known constant U 
(p x b), and (finite) known constant e 0 (ax b) define secondary parameter 
e=CBU+eo(axb). 

Definition 12.2 (a) Estimators of primary parameters with good properties, 
especially unbiasedness, are indicated by B and f, while ones with distinct 
and possibly fewer desirable properties are indicated by Band :E. 
(b) Estimators of secondary parameters take the forme= CBU +eo, or 

e = c BU + eo, or e = c BU + eo. The third form is used only when 
e possesses a desirable property not shared by B, such as unbiasedness. 
(c) Covariance matrices such as V[vec(S)] are also secondary parameters. 

Definition 12.3 (a) With T 1 (m1 x p) and 'I2 (m2 x p) known constant 
matrices, GLMN,p,q, (Yi; X;1B17i, :E) and GLMN,p,q2 (Yi; X;2B2T2, :E) are 
linearly equivalent between subjects whenever the columns of xl and x2 
span the same subspace of ~q. 
(b) The two models are linearly equivalent within subject whenever the rows 
ofT1 and T 2 span the same subspace of~P. 
(c) If both conditions (a) and (b) hold, then the two models are simply 
linearly equivalent. 

Linear equivalence describes the expected values, the means, of {Yij}, because 
E(Y) = XIBITI and E(Y) = X2B2'I2· While xl and x2 provide between­
subject information, T1 and T 2 provide within-subject information. Most often, 
one or both of T 1 and T 2 are simply Ip (invisible). With linearly equivalent 
between-subject models, (I) for any B 1 there exists B 2 such that X 1B 1 = X 2B 2 
and (2) for any B 2 there exists B 1 such that X 1B 1 = X 2B 2• With linearly 
equivalent within-subject models, (I) for any B 1 there exists B 2 such that 
B1T1 = B2T2 and (2) for any B2 there exists B1 such that B1T1 = B2T2. 

Obviously, if T 1 = T 2, then no attention must be paid to the question of linear 
equivalence within subjects. Often we have T 1 = T 2 = Ip. In such cases, 
verifying linear equivalence of two multivariate models (p > 1) reduces to 
considering only between-subject properties. The multivariate setting requires the 
univariate requirement to apply simultaneously to p parameter vector pairs. Here 

Y = [ Y1 Y2 · · · Yp ] 

B1 = [ .Bu ..82,1 · · · ,8p,l ] 
B2 = [ ..81,2 ..82,2 · · · ,8p,2] . 

(12.8) 
(12.9) 
(12.10) 

Linear equivalence of Y = X 1B 1 + E1 and Y = X2B2 + E2 corresponds to 
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linear equivalence of all p univariate model pairs; Yi = XI{3j,l + ej,l must be 
linearly equivalent to Yi = X2f3j,2 + ej,2· 

If X 1 = X 2, then no question arises about linear equivalence between subjects. 
Similarly, if T 1 = T 2, then no question arises about linear equivalence within 
subjects. If both conditions hold, the term "linear equivalence" can be discussed 
without ambiguity. 

Example 12.1 A growth curve model provides one application of7J. '# I v• with 
the columns of Y containing repeated measures and T defining the (within­
subject) predictor values of interest as a function of time. With p = 3 times and no 
between-subject factor, a simple example is 

Y = XBT + E 

= l,v(tJofill32) [ :~t~t~l + E . 
t~ t~ t~ 

( 12.11) 

The corresponding scalar form is Yii = f3o + f3I t l + fi1t~ + eij · The model may be 
converted to one without T : 

YT- 1 = XBT- 1 + ET- 1 

Y r= XBT +Er . (12. 12) 

IfT has m ::; prows, eliminating T requires multiplying by T ' (TT' ) -I = T +. 

Overall, four classes of multivariate GLMs are defined by allowing either FR or 
L TFR designs, combined with either Gaussian or unspecified distributions for 
responses. For GLMN,p,q(Y;; XiBIRxBRy = A, E), with or without Gaussian 
errors, estimation theory for primary parameter B and secondary parameter e is 
closely tied tor= rank([ X' R~ ]'). 

The distinction between FR and L TFR describes properties of the columns of 
[X' R~ ]', which correspond diredly to properties of the rows of B. The form of 
the model statement implies the properties apply only to every element of each row 
and hence to each column in B considered separately. Just as for the univariate 
models considered in the preceding chapter, every multivariate GLM constrained 
by Rx -/=- Iq has a linearly equivalent unconstrained model. 

The presence of Ry-/=- Ip describes constraints among the columns of¥, which 
correspond directly to properties of the columns of B. Such constraints may either 
introduce or eliminate singularity of the error covariance matrix. Not surprisingly, 
every multivariate GLM constrained by Ry -/=- Ip has a linearly equivalent 
unconstrained model. 

In the absence of Rx, which gives row restrictions on B, the distinction 
between FR and LTFR depends solely on r = rank(X). FR models have an 
unbiased estimator for B and for all e, while LTFR models never have an 
unbiased estimator for B and have an unbiased estimator for only some e. 
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Whether or not the model is FR, unbiased estimators of :E and related properties 
are always available [as long as N > r = rank( [X' R~ ]')]. The presence or 
absence of Ry has no effect on bias of estimators. However, it may introduce 
singularity and hence cause distributions to degenerate. In tum, hypothesis tests 
may be undefined and require modification. Just as an equivalent FR model can be 
found for any L TFR model, an equivalent "non singular" model can be found for 
any "singular" model. 

Theorem 12.1 Every multivariate GLM with L TFR design matrix has a linearly 
equivalent model with a full-rank design matrix. In particular, for 
GLMN,p,qLTFR(Yi; XiB, :E) with rank(X) = r < q, there exists 
GLMN,p,rFR(Yi; Xi,1B1, :E) which is linearly equivalent with rank(X1) = r. 

Proof. With the subscript 1 indicating the components corresponding to 
positive singular values, the SVD allows writing 

and also allows defining 

In tum 

X= [L1 La] [Dgbs
1
) ~] [ ~] 

= L1Dg(s1)R~ 

X1 = L1Dg(s1) 
B1 =R~B. 

Y=XB +E 
=X1B1 +E, 

(12.13) 

(12.14) 
(12.15) 

(12.16) 

with full rank X 1. Although well behaved and elegant, the full-rank model is 
merely one particular choice among infinitely many equivalent models. 0 

12.2 ESTIMABILITY IN THE MULTIVARIATE GLM 

For secondary parameter e = CBU, the within-subject contrast matrix U 
helps define e. It also plays a key role in determining (within-subject) linear 
equivalence as well as whether or not a valid hypothesis test exists. However, it 
has no effect on estimability. 

Definition 12.4 A GLMN,p,q(Y;; XilB, :E) has e = CBU. 
(a) Primary parameter B is estimable if and only if a q x N constant matrix 
A 1 exists such that E(A1Y) =B. 
(b) Secondary parameter e is estimable if and only if constant matrix A 2 

(a X N) exists such that E(A2YU) =e. 
(c) For known, fixed eo, e +eo is estimable if and only if e is estimable. 
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Part (a) of the definition is essentially redundant since it is a special case of part 
(b). Choosing C = Iq defines B as a secondary parameter. 

Theorem 12.2 In GLMN,p,qFR(Y;; XiB, :E) with e = CBU defined by 
constants C and U, both Band e are estimable. 

Proof. The proof is essentially the same as for univariate models. Only the 
properties of the design matrix X are involved in the issue of estimability. D 

Theorem 12.3 For GLMN,p,qLTFR(Y;; XiB, :E) withe= CBU, the following 
hold. 
(a) With A 1 q x N and constant, no linear transformation of the data, say 
B = A 1 Y, exists such that E(B) = B. 
(b) For ax b secondary parameter e, with constants A2 ax Nand Up x b, a 
linear transformation of the data, say e = A 2 YU, may or may not exist such 
that E(S) =e. 
(c) If Xi= rowi(X), E; = rowi(IN), and B;J = E(E;YEj) = E;XBEj = 
X;BEj, then B;j is always estimable. 
(d) The within-subject contrast matrix U plays no role in determining 
estimability ofe, only C does. Secondary parameters e = CBU and e- eo 
are estimable if and only if C B is estimable. 

Proof. Essentially the same as for univariate models, by considering individual 
columns of U. Only the properties of X are involved in the issue of estimability. 

Theorem 12.4 Any primary or secondary expected-value parameter estimable in 
GLMN.p,q(Y;; X;B, :E) is also estimable in a linearly equivalent model. 

Proof. Considering estimable e = C BU allows treating B as a special case. 
Extending the known result for p = 1 (the univariate result) is easy due to the 
unimportance of U in determining estimability. Details are left as an exercise. 

Estimators for the univariate GLM arise naturally as special cases of the 
multivariate forms. However, multivariate models require expanding the concepts 
and results surrounding estimability and restricted models. Furthermore, 
differences in development are sufficient to warrant separate treatment in some 
cases, especially for maximum likelihood estimation. We have omitted separate 
development of least squares estimators for the multivariate case. The task is 
straightforward and can easily be done by the interested reader. Although 
distribution free, the key mathematical forms coincide with or closely resemble the 
forms needed for deriving maximum likelihood estimators. 
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12.3 UNRESTRICTED LIKELIHOOD ESTIMATION 

Derivation of the maximum likelihood estimators of B and :E under 
GLMN,p,q(Yi; X;B, :E) assumptions with Gaussian variables is lengthy but 
straightforward. In formulating the likelihood function it helps to keep in mind the 
close relationship between the univariate and multivariate GLM. 

Lemma 12.1 Model 1, GLMN,p,q(Y;; XiB, :E) with constant C has estimable 
ax p secondary parameter 8 = CB. The assumptions and definitions of the 
model can also be expressed as specified in models 2 and 3 below. 
Model 2, GGLMNp,q[vec(Y); (Ip ® X)vec(B), :E ®IN] and estimable ap x 1 
secondary parameter 

r = vec(8) 
= vec(CB) 
= (Ip ® C)vec(B). (12.17) 

Model 3, GGLMNp,q[vec(Y'); (X® Ip)vec(B'), (IN® :E)] and estimable 
ap x 1 secondary parameter 

'TT = vec(8') 

= vec(B'C') 

= (C ® Ip)vec(B'), (12.18) 

with 'TT and r differing only by being a permutation of each other. 

Proof. Results follow directly from the definitions of the multivariate GLM, the 
GGLM, the vee() operator, and the Kronecker product A® B. In particular, 
Theorem 1.5 gives vec(ABC) = (C' ® A)vec(B). 0 

Lemma 12.2 For a GLMN,p,q(Y;; XiB, :E) with Gaussian errors and 
rank( X) ~ q, the log likelihood may be written 

logL(B,:E; Y.) = -Nlogi27T:EI/2- tr[:E-1(¥.-XB)' (Y.-XB)] /2. (12.19) 

Proof. With Yi 1 x p and Xi 1 x q, the joint density function for vec(Y) is 

N 

L = Jy(Y.) = ITI27T:EI-1
/
2exp[ -(Y;.- XiB):E-1(¥;.- XiB)' /2] 

i=l 

= 121r:EI-N/2exp{ -tr[(Y.- XB):E-1 (Y.- XB)'] /2}. (12.20) 

In tum log£= -Nlogi27T:EI/2- tr[(Y.- XB):E- 1(¥.- XB)']/2. The final 
form follows from the cyclical property of the trace function. 0 

Lemma 12.3 For a GLMN,p,q(Yi; XiB, :E) with Gaussian errors and 
rank( X) ~ q, if Ys = vec(Y), X, = Ip ®X, f3s =vee( B), :Es = (:E ®IN), 
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e 8 = vec(E), and E = (Y- XB), then the log likelihood is 

logL(/38 ,:Es: Ys•) = -logi2Jr:E,I/2-(y,.-Xs.Bs)':E;1(yS*-Xs.Bs)/2 (12.21) 

= -logi2Jr:E,I/2-tr(:E,;- 1 es•e~.) /2. 

Proof. The joint density function of Ys can be written as 

Further details are left to the reader. 

(12.22) 

D 

The following lemmas are in numerous matrix theory books and will be used in 
the proof of the next theorem. Proofs are left as exercises. 

Lemma 12.4 (a) If A is symmetric and nonsingular, then 8logiAI/8A = 

2A-1 - Dg({(A-1)jj}). 
(b) If X is symmetric and a is fixed, then 8(a'Xa)j8X = 2aa'- Dg(aa'). 

Lemma 12.5 (a) If A, B, C, and D conform to the operations, then 
(A0B)(C0D) = (AC0BD). 
(b) If X and B conform to the operations, then vec(XB) =(I 0 X)vec(B) 
and vec(B'X') =(X 0 I)vec(B'). 
(c) If E and S conform to the operations, then [vec(E)]'(S0I)[vec(E)] = 
[vec(E')]'(I 0 S')vec(E'). 
(d) (A 0 B)-= A- 0 B- (which is just one of infinitely many). 

Theorem 12.5 For GLMN,p.q(Y;;XiB,:E) with Gaussian errors, 
r = rank(X) ~ q, and ax b estimable secondary parameter 8 = CBU, the 
joint supremum (for B if r < q) or maximum (if r = q for B; always for :E and 
estimable 8) likelihood estimators of B, :E, and 8 are 

jj =(X' X)- X'Y 

f: = (Y- XB)'(Y- XB)/N = Y'[{JV- X(X'X)- X']Y/N 

e = CBU, 

(12.23) 
(12.24) 
(12.25) 

with e invariant to jj for estimable 8. Here jj is any solution of 
(X' X)B = X'Y, with infinitely many for r < q, and one unique solution if 
r = q and (X'X)- = (X'X)-1

. The value of f: is always invariant to 
(X' X)-. It is customary to use :t = f:'N / ( N - r), which is unbiased. 

Proof. To obtain the solution equations, we differentiate the log likelihood with 
respect to the elements of B and :E, set the derivatives to zero, and solve for B 
and :E. Next y,=vec(Y) is Npxl, X,=Ip0X (Npxpq), .Bs=vec(B), 
:Es = :E0IN, e8 = vec(E) = (y8 -X,,88 ), and E = Y -XB. By Lemma 12.3 
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logL(B, :E; Y.) = -logl27r:Esl/2- (y'*-Xsf3s):E; 1(y8.-Xsf3s)' /2. (12.26) 

If to= -(Np/2)log(27r), t1(:E) = -(1/2)logi:Esl, and t 2(/3, :E)= 
(Ys•-Xsf3s)':E-; 1(Ys•-Xsf3s), then logL(B, :E; Y.) =to+ t1(:E)- t2(B, :E)/2. 
Also, 

t 1 (:E) = -(1/2)log I:E ® INI 
= (1/2)logi:E ® INI-1 

= (1/2)log (I :E-1 (II NIP) 

= (N /2)logi:E-1 1. 

Using direct-product properties in Lemma 12.5, 

t2(J3s,:E) = Y~.(:E ® IN)-1Ys•- 2j3~(Ip ® X')(:E ® IN)- 1Ys• + 
j3~(Ip ® X')(:E ® IN)- 1(Ip ® X)J3s 

(12.27) 

= Y~. (:E-1 ®IN )ys.-2j3~(:E- 1 ® X')y'*+frs(:E-1 ®X' X)f3s. (12.28) 

Differentiating log£ with respect to f3s gives 

aiogL/8/38 = 8[-t2(J3s, :E)/2]/8/38 

= 0 + (:E-1 ® X')y'* - (:E-1 ®X' X)f3s. (12.29) 

Setting the expression to zero (and using Lemma 12.5) gives the MLE for /3" 

l!Js = (:E-1 ®X' X)- (:E-1 ® X')Ys 
= [:E ® (X'X)-](:E- 1 ® X')Ys 
= [Ip ®(X' X)- X']Ys. (12.30) 

Surprisingly, and very conveniently, :E cancels! Equivalently, vec(B) = 
[Ip ®(X' X)- X']vec(Y). By Lemma 12.4, B =(X' X)-X'Y. In summary, 
B = [731 · · · l!JP] with l!Jj = (X' X)- X'yi and 

(12.31) 

The cancellation of :E in the derivation of f3s is extremely important. The 
"disappearance" allows estimating f3s (and thus B) in a noniterative fashion. If :E 
did not disappear from the likelihood equations, one would be required to know or 
estimate :E before estimating B. The strong structural assumptions allow :E to 
cancel. Rows of Y are independent, each row of Y has the same covariance 
matrix, and each column ofY has the same design. 

Since :E and :E-1 have a one-to-one correspondence, maximization with respect 
to :E-1 is the same as maximization with respect to :E. It is more convenient to 
take derivatives of log£ with respect to :E-1: 
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(12.32) 

By Lemma 12.4 

(12.33) 

For differentiating with respect to :E-1, it is more convenient to express t 2 as a 
sum of quadratic forms in :E-1, which corresponds to working with the likelihood 
function of vec(Y') (i.e., Y stacked by rows) rather than vec(Y). With E. = 

(Y.- XB) and E;. = row;(E.), direct-product properties in Lemma 12.5 give 

t2({3, :E) = (y'* - Xsf3s)':E-;1 (y'* - Xsf3s) 
= [vec(E.)]' (:E-1 ®IN )[vec(E.)] 

= [vec(E~)]'(JN ® :E- 1 )[vec(E~)] 
N 

= LE;.:E-1E;:. 
i=l 

Using Lemma 12.4 we have 

N 

= L[2EI.E;.- Dg({(EI.E;.)jj})] 
i=l 

= 2E~E. - Dg( { (E~E.) jj}) 

(12.34) 

= 2(¥.-X/3)'(¥.-X/3)- Dg( { ((Y.-XB)'(Y.-XB))jj}). (12.35) 

The MLEs for B and :E are produced by combining results and setting the 
derivatives equal to zero. Considering aiogL(B, :E, Y,.)ja:E- 1 = 0 implies 

[2f:- Dg(f:)] N /2 = [2.E' E/ N- Dg( { (E' E)jj} )/ N] N /2, (12.36) 

~ - - ~I~ - -
in which E = (Y- XB). Hence :E = E EjN = (Y- XB)'(Y- XB)jN. 

Differentiating the log likelihood function and setting the results to zeros gave 
Band f: as solutions of the likelihood equations. The uniqueness ofthe solutions 
implies that if the likelihood function has an extremum (minimum, maximum, or 
saddle point), then our estimators provide the coordinates of the extremum. 

The likelihood function, being a density, is nonnegative for all values of the 
variable (Y.) and the parameters. For a fixed value of Y. (say Yo), one can make 
the likelihood arbitrarily close to zero by choosing :E = Ip and f3s such that 
[vec(Yo)-Xsf3s] _, ±oo. Thus, the likelihood function has an infimum at zero 
but no minimum. The only possibilities are that B and f: locate a maximum or a 
saddle point. 
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To demonstrate the extremum is a maximum for rank(X) = r = q and 
supremum for r < q, one must prove 

(12.37) 

is negative definite at B and :E. Details will be left to the reader. 0 

Theorem 12.6 For GLMN,p,q(Yi; XiB, :E) with r =rank( X) ::::; q and 
{38 = vec(B) (pq x 1) the following results hold. 
(a) If r < q, then no BLUE exists and B is not estimable. 
(b) Ifr = q, then BLUE( B)= B = (X'X)-1 X'Y. 

(c) Equivalently BLUE(/3s) = /3s =vec(B) = [I®(X' Xf1 X']vec(Y). (12.38) 

Proof. By Lemma 12.1, the assumptions ofGLMN,p,qFR(Yi; XiB, :E) may be 
expressed as GGLMNp,qFR(ys; X 8 B 8 , :E8 ), in which Ys is Np x 1, :E is p x p and 
X is N x q, Ys = vec(Y), Xs = (Ip ®X), f3s = vec(B), and :E8 = (:E ®IN)­
By Theorem 11.25 on weighted estimation, the BLUE of {38 is 

{Js = (X~:E; 1 Xst 1 Xs:E; 1Ys 

= [(Ip 0 x')'(:E ® IN)- 1 (Ip ® x)r1
(Ip ® x')(:E ® INt 1Ys 

= [(:E-1 ®X')(Ip®X)r
1
(:E-1 ®X')Ys 

= (:E-1 ®X'X)-I(:E-1 ®X')Ys 

= [:E ® (X'X)-1] (:E-1 ® X')Ys 

=[I® (X'X)-1X']Ys 

= [(X'X)~
1

X'y1l· 
(X'X)- 1X'yp 

Hence B must satisfy /3s = vec(B) = [ /3: 13; ···liP]'. 

(12.39) 

0 

Here :E "drops out" in the derivation of B. Thus, unlike the situation in 
weighted least squares, one need not know the value of :E in order to determine the 
BLUE in the multivariate GLM. 

Corollary 12.6 The covariance matrix of BLUE( B) is V(/38 ) = :E ®(X' X)-1. 



Linear Model Theory 

Proof. 

V(/3s) = [IP ® (X'Xr
1
X']V(y,) [IP ® (X'X)-1X']' 

= [IP ® (X'X)-1X'](:E ®IN)[IP ®X(X'X)- 1
] 

= [:E ® (X'Xr1X'] [IP ® X(X'X)-1
] 

= :E ® (X'X)-1X'X(X'Xr1 

= :E ® (X'X)-1
. 

12.4 ESTIMATION OF SECONDARY PARAMETERS 

255 

(12.40) 
D 

The commonly described format of secondary parameters in the multivariate 
GLM is the a X b form e = CBU, with c and u usually full-rank matrices, 
a = rank( C) ~ q and b = rank(U) ~ p. Subtraction of a constant matrix e 0 has 
no effect on estimation and precision and we may ignore e 0 without loss of 
generality when discussing nearly all estimation properties. 

An alternative form is r = Lf3, = Lvec(B), with L constant. For 
convenience we assume C = rank( L) ~ pq. An additive constant may be ignored 
without loss of generality. Although thee= CBU form is more common, the 
r = Lf3s form is also valid and more general in that some secondary parameters 
can be defined in the Lf3s form but cannot be defined in the C BU form. 

One can easily verify the above statements as follows. Each element of 
e = C BU is a linear combination of the elements of B and, therefore, of the 
elements of {38 • Any linear combinations of the elements of B can be written in 
the form Lf3,. It is easy to find counterexamples to the converse. 

Theorem 12.7 Having BE 'iRqxp allows defining f3s = vec(B) and considering 
fixed constants C, U, and L. 
(a) Ife = CBU and T = L/38 , then vec(e) = T VB {:} L = (U' ®C). 
(b) Ife = CBU and T = vec(e), then L exists such that T = L/38 VB. 
(c) Ifr=L/3,, then {C, U} may or may not exist such that r=vec(CBU) VB. 

Proof. (a) follows directly from the properties ofvec() and A® B. 
For (b), choosing L = (U' ®C) satisfies the claim. 

(c) A counterexample Is L=[100-1], B=[~~:~~~], 
/3, = [ /111 /121 /112 /122 ]', and T = L/3, = (/1n - /122). If 1 x q C and p x 1 U 
exist such that T = L/3, = CBU, then CBU = 'L7=1'L7=1C;/1;JUJ = 
(/111 - /122 ) must hold VB. The last equation requires the impossible, that (a) 
some elements of { C, U} are zero, and (b) none of the elements of { C, U} are 
zero. The supposition that { C, U} exists has led to a contradiction. D 
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Lemma 12.6 If 0 (ax 1) is an estimable secondary (or primary) parameter for a 

GLMN,p,q(Y;; X;B, :E) and 0 is the BLUE of 0, then a tertiary (or secondary) 

parameter vector is 'Y = TO, with g = rank(T) ::::; a. The BLUE of 'Y is ;y = TO. 

Proof. If 0 = BLUE( 0), then (1) 0 is an LUE, which ensures ::JA such that 

0 = Ay and E(Ay) = 0. Hence 'Y is a LUE since E('Y) = E[(T A)y] = 
TE(Ay) =TO= 'Y· Also, 0 = BLUE(O) implies (2) 0 is the "best" LUE. For 

any other LUE, say, 01 = A 1y (#A), V(s' Ay) = s'V(Ay)s and 
V(s'A1y) = s'V(A1y)s. By Theorem 11.9, V(A1y)- V(Ay) is positive 
semidefinite. The definition of "positive semidefinite" immediately implies 
V(s'A1y) 2: V(s'Ay) '<Is E ~a. For s E {s: s' = k'T with k E ~9} <;;;~a it 
follows that V(s'A1y) 2: V(s'Ay) for all such sand V(k'TA1y) 2: V(k'TAy) 
'Vk E ~9 . 0 

Theorem 12.8 For GLMN,p,q(Y;; XiB, :E), f3s = vec(B), r =rank( X) ::::; q, and 

estimable secondary parameter T = L/38 with r C x 1, C = rank(L) ::::; pq, if jjs 
is the BLUE of {38 , then r = q and the BLUE ofT is 7 = L/38 • 

Proof. The theorem follows from the form of the likelihood and from a 
univariate estimation theorem. The details are left to the reader. 

Corollary 12.8 For estimable secondary parameter matrix 8 = CBU with 
a= rank( C)::::; q and b = rank(U)::::; p, the BLUE is e = CBU. 

Proof. The result follows immediately from Theorem 11.14 and the preceding 
theorems in the present chapter. The details are left to the reader as an exercise. 

Theorem 12.9 (a) For GLMN,p,qLTFR(Y;; XiB, :E) with Gaussian errors and 
two-condition inverse (X' X)-, 

jj"' SNp,q[(X'X)-(X'X)B, (X' X)-, :E]. 

(b) A GLMN,p,qFR(Y;; XiB, :E) has 

BrvNp,q[B,(X'X)-l,:E]. 

(12.41) 

(12.42) 

(c) For rank( X)::::; q and any one-condition inverse, estimable 8=CBU gives 

e- 8 0 "' (S)Na[8- 8 0 ,C(X'X)-C',U':EU]. (12.43) 

Proof. Left as an exercise. 
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12.5 ESTIMATION WITH MULTIVARIATE RESTRICTIONS 

Writing GLMN,p,q(Y;; XiBIRxBRy = A, :E) indicates an explicitly restricted 
multivariate model. The (q x p) matrix B has between-ISU (independent 
sampling unit, "subject") restrictions defined by known and constant matrices Rx 
of dimension ax q with a::; q, rank(Rx) =a. The (q x p) matrix B has within­
subject restrictions defined by Ry of dimension p x b with p ~ b and 
rank(Ry) =b. The a x b constant A plays a role in both sorts of restrictions. The 
matrices Rx, Ry, and A must all be chosen without knowledge of the data, prior to 
data collection. As in univariate models, matrix Rx implicitly specifies restrictions 
about X, the between-subjects design matrix. The matrix Ry implicitly specifies 
restrictions about Y and can be thought of as indirectly defining a within-subject 
design matrix. Naturally all results about restrictions in univariate models occur in 
the special case of the multivariate model with p = 1. 

Example 12.2 A set of ipsative measures add to a known constant. Such 
variables occur naturally in the study of allocation of behavior and many other 
areas. The pandemic of obesity in the United States has led scientists to assess 
how much time Americans allocate to sleeping, eating, watching television, 
walking, etc. Each person's allocations always add to 24 hours. The implicit 
constraint creates a singular covariance matrix (:E), and difficulties in defining 
scientifically appealing parameter estimators which account for the constraint. 

Example 12.3 Pan (2003) evaluated models of land use allocation among rural 
farmers in the Amazon Basin of South America. With farm as the independent 
sampling unit, the multivariate response of interest was % land in crops,% land in 
pasture, % land fallow. The formulation corresponds to the restrictions 
BRy = A , with~~= !III ) and A = !100 ). 

E.xample 12.4 The same constraint arises in the study of diets as predictors of 
cancer. Nutritional epidemiologists seek to build models of% calories from fat, % 
calories from protein,% calories from carbohydrates, and % calories from alcohol. 

Having restrictions only between subjects requires Ry = Ip and simplifies the 
model statement of an explicitly restricted linear model to the form 
GLMN,p,q (Yi; XiBJRxB = A, :E). Any such model can be transformed to a 
linearly equivalent unrestricted linear model GLMN,p,q(Yiu; XiuBu, :Eu) with all 
dimensions the same. Adding within-subject restrictions corresponds to choosing 
Ry -1- Ip and writing GLMN,p,q(Y;; XiBIRxBRy = A, :E). 

The same statement does not hold, except in special cases, for a model having 
within-subject restrictions, GLMN,p,q(Y;; XiBIRxBRy = A, :E). Without loss 
of generality, for the purposes of the present argument, we may assume Rx = Iq 
and discuss GLMN,p,q(Y;; XiBIBRy = A, :E). A linearly equivalent umestricted 
model can be guaranteed to exist in such a model only if b = p = rank(Ry). 
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However, in practice, the restriction statement often implicitly defines the only 
parameters of interest. If so, analysis of the (within-subject) restricted model only 
loses access to scientifically irrelevant parameters. Equally importantly, and not 
surprisingly, properties of the restricted model suffice to fully specifY the 
distributions of estimators and tests available in the restricted model. 

The next theorem has many uses. The results provide ways of defining linearly 
equivalent multivariate GLMs and GGLMs in the presence of restrictions. 
Looking ahead, testing a general linear hypothesis may be cast as specifYing a set 
of restrictions. The various forms help simplifY derivations of estimators, tests, 
and the associated distributions. 

li:xample 12.5 A paired data t test can be cast as a test in a multivariate linear 
model with }J = 2 or as a univariate model with p = 1 and the responses being 
difference scores. In both cases, X = l N. The following theorem allows 
expressing the 7J = 2 model as a restriction of the JJ = 1 model. The restriction 
matrix is U = [ 1 - 1 J'. 

Theorem 12.10 Model 1 is GLMN,p,q(Y;; XiBIRxBRy = A, E), with Rx 
(ax q) rank a:::; q and Ry (p x b) rank b:::; p. If Ry1. is any p x (p --b) matrix 
such that T = [ Ry Ry1.] is p x p and full rank, it defines 

r=BT=[BRyBRyJ.]=[ r1 r2 ]. (12.44) 
qxb qx(p-b) 

Here B = [r1 r2]T-1. If Rxr1 =A is consistent, then r 1 satisfies the 
restrictions if and only if, for some q x b ~ (with sign adjustable), 

(12.45) 

In tum, Rxr1 =A is equivalent to the original restrictions, and models 2, 3, 4, 
and 5, defined below, satisfy the restrictions. Models 1, 2, 4, and 5 are always 
linearly equivalent to each other, and linearly equivalent to model 3 if Ry is 
square and full rank. 
Model 2 isGLMN,p,q(Y;T,Xi[ri r2]IRxr1 = A,T'ET). 
Model 3 is GLMN,b,q(Y;3,Xi3~,R~ERy), with Y3=YRy-XR;A and 
X 3 =X(R; Rx-Iq) and ignores r2. If b=p=rank(Ry), it is linearly 
equivalent. 
Model 4 is GGLMNp,q(Ys;Xs,BsiRs,Bs =as, E ®IN), with Ys=vec(Y), Xs= 
(Ip®X), ,Bs=vec(B), Rs (abxq), as (abx 1), Rs= (T'®R), and as=vec(A). 
Model 5 is GGLMNp,q( u; Z-ys, E ®IN), with u = Ys - XsR; as, Z = 
Xs(R; Rs- Iqp), 'Ys of dimension qp x 1, and Z of dimension N p x qp. 

Proof. Expressions for r 1 in terms of~ may be derived in terms of an arbitrary 
column j of r 1, say 'Yij (q x 1). Here Rx'Yij = ai (a x 1) {=} 

'Yij = R; Aj + (R; Rx- Iq)lij for some Iii (q x 1). Results on univariate models 
ensure the desired properties hold. The remainder of the proof is also based on 
univariate results and is left to the reader as an exercise. 0 
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12.6 UNRESTRICTED ESTIMATION WITH COMPOUND SYMMETRY: 
THE "UNIVARIATE" APPROACH TO REPEATED MEASURES 

As detailed in Lemma 1.33, a p x p compound symmetric covariance matrix 
may be written 

:E = a2 [1Pl~p+Ip(1- p)] 
= VDg(.X)V' 

= [Vs Vwl[~ ASp_J [ ~]. (12.46) 

The pxp matrix Dg(.X)=Dg(A1,A21p-I) has A1 =a2[1+(p-1)p] and 
A2 = a 2(1- p), with known eigenvectors. 

Theorem 12.11 Model 1, GLMN,p,q(Yi; XiB, :E), has positive definite compound 
symmetric covariance :E = VDg(.X)V'. The eigenvectors provide a known, 
constant and exact transformation to a model with uncorrelated observations, 
model 2, GLMN,p,q[Y;V; XiBV, Dg(.X)]. With Gaussian data the columns of 
YV, as well as the rows, are independent. Column 1 has variance 
A1 = a 2 [1+(p-1)p] and the other p-1 columns have variance A2 = a 2(1- p). 

Proof. Lemma 1.33 provides most results needed. Model transformation gives 

Y=XB+E 
YV = XBV + EV, (12.47) 

E[row;(EV)] ={E[row;(E)]} V =0, and V{[row;(EV)]'} = V':EV =Dg(.X). D 

Corollary 12.11 If the original data are Gaussian, then all observations split into 
one set of N observations which exactly follow model2B (between), a univariate 
GLMN_q(), and a second set of N(p- 1) observations which exactly follow 
model2W (within), a univariate GLMN(p-l),q()· 

Proof. lfy8 = Yv8 (N x 1) and Yw = YVw [N x (p- 1)], then 

Y[ VB Vw] = XB[ VB Vw] + E[ VB Vw] 
[ YB Yw] = X[ BvB BVw] + [ eB Ew] . 

If /38 = Bv8 (q x 1), extracting the model (2B) for the first column gives 

YB = X f3B + eB . 

Furthermore 

eB rv NN(O, AIIN) 
YB rv NN(X/3s, AI IN). 

(12.48) 

(12.49) 

(12.50) 
(12.51) 

Hence model 2B meets the assumptions of GLMN,q(YBi; X;/38 , A1) with Gaussian 
errors. With similar notation, Bw = BVw is q x (p - 1) and 
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Here 

Observing 

allows writing 
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Yw=XBw+Ew. 

Ew rv NN,(p-1)(0,IN, Azlp-d <=? 

ew = vec(Ew) rv NN(p-1) (0, AzlN(p-1)), 

Yw rv NN,(p-1)(XBw,IN, Azlp-1) <=? 

Yw = vec(Yw) rv NN(p-1) [vec(XBw), AzlN(p-1)l· 

vec(XBw) = (Ip-1 ®X)vec(Bw) 

= Xwf3w 

vec(Yw) = ( Ip- 1 ® X)vec( Bw) + vee( Ew) <=? 

Yw Xwf3w + ew. 

(12.52) 

(12.53) 

(12.54) 

(12.55) 

(12.56) 

Finally, the last equation satisfies univariate GLMN(p-1),q[Yw,i; rowi(Xw)/3w, >..2] 

with Gaussian errors, model 2W. 0 

Model 2B describes differences between subjects (ISUs), while model 2W 
describes differences within subjects. The formulation provides a basis of the 
theory underlying the "univariate" approach to repeated measures and the 
"uncorrected" UNIREP test. Muller and Barton (1989) included many details. 

EXERCISES 

Here e1 is a vector with a 1 as the first element and zeros as all other elements: 
e1 = [ 1 0 · · · 0 ]'. In different exercises e 1 can have different dimensions. 

True/False Exercises. Several propositions are stated below. For each choose 
one of the following: T if the proposition is true and F if the proposition is false. 
Be careful! Some propositions may be tricky. Most are either correct theorems or 
a slight modification of correct theorems (in which case the proposition is false). 

For each proposition you mark as "false," give either (1) a brief counterexample 
or (2) a brief remark on why the proposition fails to be true. This should make 
clear which aspects of the proposition you reject. In addition to intentional errors 
in the propositions, there is always the possibility of unintentional typographical 
errors. Therefore, your brief remarks are important. If you mark a proposition 
"true" when it is in fact false, it will be inferred that your proof would contain one 
or more errors. Therefore, do not attach proofs or comments for propositions 
marked true. 
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The following assumption and definitions apply to exercises 12.1-12.6. 
Assume GLMN,p,q(Y;; XiB, :E) with Gaussian errors and rank(X) = r:::;: q. Also 
jj =(X' X)- X'Y = [,81 ,82 · • · ,BP], ~ = Y'[I- X(X'X)- X']Y /(N- r), 

/31 = (X'Xf X'Ye1, and &i = e~Y'[I- X(X'X)- X']YeJ/(N- r). 

T F 12.1 Proposition: ,81 "'Nq[BeJ, e~:Ee 1 (X'X)-] of rank r:::;: q. 

T F 12.2 Proposition: &i/(e~:Ee1 ) "'x2(N- r, 0). 

T F 12.3 Proposition: /31 and &i are uncorrelated. 

T F 12.4 Additionally assume(}= CBe1 and 0 = CBe1 are ax 1, a:::;: q. 

Proposition: 0 rv Na[CBel, e~ :Ee1 C(X'X)-C'] and rank[V(O)] =a. 

The following assumptions and notation apply to exercises 12.5-12.8. Assume 
GLMN,p,qFR(Yi; XiB, :E) with Gaussian errors, N » q, and rank( :E) = p. Also 
jj = (X'X)- 1X'Y, S = Y'[I- X(X'X)-X']Yj(N- q), Ys = vec(Y), 

f3s = vec(B), and /3s = vec(B). 

TF 12.5Proposition: ,Bs"'Npq[/38 ,:E®(X'X)-1
] andrank[V(/38 )]=pq. 

T F 12.6 Proposition: S "'Wp(N- q, :E, 0). 

T F 12.7 Proposition: jj and S are independent. 

T F 12.8 Proposition: E(S) = :E and V(sij) = (N- q)crtj + (N- q)
2
cri;CJjj· 

12.9 Three models may be written for the same data as follows: For model 1 

For model2 

For model3 

Y = (In® l3)B1 + E 
Y=X1B1 +E. 

( [

1100-1-1]) 
Y = ln ® 1 0 1 0 1 0 B3 + E 

1001 0 1 
Y=X3B3+E. 

Each meets the assumptions of a GLMN,p,qk(Yi; Xi,kBk, :E). 
12.9.1 Prove that model! and model2 are linearly equivalent. 
12.9.2 Prove that model 1 and model 3 are linearly equivalent. 
12.9.3 matrices Rx = [0 13 0] and A= 0 specify model 4 
GLMN.p,q,(Y;;Xi,3B3!RxB3 =A, :E) as a restriction of model 3. Specify the 
dimensions of A and submatrices in Rx. 
12.9.4 Find a full-rank and unrestricted model 5, equivalent to model 4, with the 
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additional restriction that all elements of B 5 are also elements of B3. This may be 
done by inspection (no proof needed). 



CHAPTER13 

Estimation for Generalizations of 
Multivariate Models 

13.1 MOTIVATION 

As detailed in the preceding two chapters, the "least squares" assumptions of 
the univariate and multivariate GLM allow finding unbiased estimators of the 
primary parameters and broad classes of secondary parameters. The additional 
assumption of Gaussian errors leads to the estimators also satisfying likelihood 
principles. In all cases the estimates can be computed in closed form, with a 
noniterative algorithm for solving a system of simultaneous linear equations. 

Do more general linear models allow such nice results? For a range of 
generalizations of the multivariate linear model, the answer is essentially "Yes." 
Although usually much less convenient to compute, estimates satisfying 
generalized least squares or likelihood criteria can be found. Furthermore, the 
expected value parameter estimators are usually unbiased or nearly so. Covariance 
parameter estimators can range from unbiased to substantially biased. 

As discussed in Chapter 4, models for growth curves, seemingly unrelated 
regressions, multiple design matrix settings, and doubly multivariate settings can 
be cast as generalizations of the GLM. The references given there contain details 
about particular techniques. 

13.2 CRITERIA AND ALGORITHMS 

Given Gaussian errors, ordinary least squares (OLS) estimators coincide with 
the likelihood estimators in the univariate and multivariate GLM. The same holds 
true for exact weighted least squares (WLS), as seen in results in the previous two 
chapters for the GGLM. 

Definition 13.1 (a) Using estimated weights (covariance matrix) in weighted 
least squares (WLS) formulas defines approximate weighted least squares 
(AWLS) estimators. 
(b) Using WLS formulas to iteratively estimate expected values and 
covariance defines iterative approximate least squares (IT AWLS). 

263 
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AWLS requires an initial computation of an OLS estimate for the expected­
value parameters, followed by computation of covariance parameter estimates in 
terms ofthe residuals. Except in very special cases (e.g., Gaussian errors in special 
patterns), the two-step method does not produce maximum likelihood estimates. 

Although much more efficient algorithms can often be found, iterating the two­
step AWLS method (ITA WLS) yields maximum likelihood estimates for a variety 
of models with Gaussian errors. The covariance estimate from the second step 
allows computing an updated estimate of the expected-value parameters. In tum, a 
new covariance estimate may be computed, etc. 

13.3 WEIGHTED ESTIMATION OF B AND :E 

Weighted estimation in a multivariate model implies considering 
Y "'NN,p(XB, D, :E), with known X, full-rank D = FDFb, and unknown B 
and :E. Given the assumptions, vec(Y') "'NNp[(X ® Ip)vec(B'), D ® :E]. 
Multiplication by Fj} gives YD=Fi) 1YrvNN,p(Fi) 1XB,I,:E). If 
XD = F£1 X, then YD corresponds to GLMN,p,q[rowi(YD), rowi(XD)B, :E] <=? 

GLMN,p,q(F£ 1 Yi, F£ 1 XiB, :E). 

Theorem 13.1 Matrices Y (N x p), X (N x q), rank(X) ~ q, positive definite 
D = D' (N x N), and positive definite or positive semidefinite :E = :E' (p x p) 
define GGLMNp,q[vec( Y'); (X® Ip)vec(B'), D ® :E], with Gaussian errors. 
The same assumptions give GGLMNp,q[vec(Y' L );(L' X®Ip)vec(B'),IN®:E]. 
The latter model has a corresponding multivariate GLM satisfying the least 
squares assumptions with Gaussian errors and rank(L'X) = rank(X). 

Proof. With Yi = rowi(Y) and Y' p x N, vec(Y') is the "vertical 
concatenation of rows." Hence 

V[vec(Y')] = D ® :E 

[ 

du:E 
- d2l:E 
- . 

dNl:E 

d1N:E 1 d2N:E 
: ' 

dNN:E 

(13.1) 

and vec(L'Y) = (Ip ® L')vec(Y) has covariance (Ip ® L')(:E ® D)(Ip ® L) = 
:E®IN, while vec(Y'L)=(L'®Ip)vec(Y') has covariance 
(L'®Ip)(D®:E)(L®Ip) =IN® :E and mean (L' ® Ip)(X ® Ip)vec(B') = 
( L' X ® Ip )vee( B'). The proof is completed by appealing to properties of a 
direct-product matrix Gaussian. 0 
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Theorem 13.2 For GGLMNp,q[vec(Y'); (X® Ip)vec(B'), D ® :E] with Gaussian 
errors, r = rank(X) ::::; q, 8 = CB is estimable, unknown :E = :E' (p x p) is 
positive definite, while D = D' (N x N) is known and positive definite. The 
joint MLEs of B, :E, and 8 are 

B= (X'n-'x)-x'n-'Y 
f: = (Y- XB)'D- 1(Y- XB)/N 

S=CB. 

(13.2) 

(13.3) 

(13.4) 

Both f: and e are invariant to B, which is unique if r = q. The unbiased 
restricted maximum likelihood estimator :E = f:N j(N- r) is typically used. 

Proof. The proof is left as an exercise. 

13.4 TRANSFORMATIONS AMONG GROWTH CURVE DESIGNS 

Often a GCMN,p,q,m (Yi; XiBT, :E) leads to interest in a reduced model for the 
within-subject dimension. As in all our discussions of the GCM, for convenience 
of exposition we assume that columns of Yi differ (only) in regard to the time a 
repeated measure was collected. With polynomial coding, the reduced (within­
subject) model can typically be created from the full (within-subject) model by 
deleting higher-order terms corresponding to trailing columns of B. If so, the 
expected value for the full model may be written 

E(YIX, T) = XBT 

=X[B, B2][~] 
= XB1T 1 +XB2T2, 

with corresponding expected value for the reduced model of 

E(YIX, T, B2 = 0) = X[ B1 0] [ ~] 
= XB1T 1 . 

(13.5) 

(13.6) 

With m x p T for 1::::; m::::; p and m 1 x p T 1, necessarily T2 must be 
(m- mi) x p for 1 ::::; m1 ::::; m::::; p. The fully saturated (within-subject) model 
has m = p and T = { dr1 

}. Equivalently, for ISU i the expected values are 

written E(YiiXi,T)=XiBT=XiB1T 1+XiB2T2 and E(Y;IXi,T,B2=0)= 
XiB1T1. 

A similar construction relating a full and reduced model for between-subject 
design applies when the columns of X contain polynomials for a continuous 
predictor. A scientist using natural polynomial coding and a participant's age as 
the basic predictor can use Xi = { Xij} with Xij = age;-1

, g1vmg 
X; = [ 1 age; ager · · · age;- 1 

]. The strong constraints relating the univariate 
GLM to all variations of the multivariate GLM, including the GCM, guarantee 
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univariate techniques for coding X and reducing models apply directly to X in the 
multivariate setting. Hence we do not discuss the topic here. Muller and 
Fetterman (2002, especially Chapters 9, 11, and f6), as well as many other authors 
of univariate texts, provided detailed discussions of polynomial models. 

Natural polynomial models seem easy to handle and interpret. Disadvantages 
include potential numerical problems and a corresponding lack of statistical 
independence among the columns of B1 (which contains the estimators assumed to 
not be zero, as in the last equation). In tum, dependencies among terms can greatly 
complicate interpretations (a fact often overlooked). Muller and Fetterman (2002, 
Chapter 9) addressed the difficulty in the context of comparing added-last and 
added-in-order tests and corresponding correlations. Orthogonal or orthonormal 
polynomial models avoid the disadvantages. Within-subject design matrix T 
(m x p) is assumed to be rank m::::; p. It is orthogonal (by rows) if TT' Is 
diagonal and orthonormal (by rows) ifTT' = Im. 

Definition 13.2 In discussing growth curve models, TNAT indicates a matrix 
with tij = (d1)i-l, a natural polynomial. Similarly, ToRT indicates 
ToRTTbRT = D, a diagonal matrix, which implies ToRT is orthogonal by 
rows. Also, ToRN indicates a matrix orthonormal by rows, ToRNTbRN =I. 

Example 13.1 The weight of each of N = 50 ch ildren is measured in kilograms 
at 5, 6, and 7 years of age. The resulting p = 3 ordered responses for child i is 
Y; = [ WT;5 WT;6 WTi7 J and d' = [ 5 6 7] = { dj }. The cohort is assumed to be 
a single homogeneous group, and consequently the between-individual design 
matrix has one column, X = I N = [1 · · · 1 ]'. Without Joss of generality, any 
X matrix could be used, but to keep the example simple, we assume no additional 
predictor variables are needed. We further suppose the data were collected with 
the understanding the growth curve for the children would be well approximated 
by a low-order polynomial. Therefore a polynomial matrix Tis desired and may 
be defined in terms of a natural polynomial: 

(13.7) 

and 

(13.8) 

Element (i , j) of T = [ t 1 • • · t p] is a monomiaL In turn, the elements of the 
parameter matrix B are the coefficients of the natural polynomial. The expected 
weight of child i at time j is 

E(y,JIX , T ) ~ lBNATt; ~ [iJ, {3, {3, ( [ ~ ]· (13.9) 
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If we assume {32 = 0. then B is partitioned such that B 1 = [.8o fJ1] and 

and B Ia ] C d' I T . . . ed . h IT' [ I I I J . 2 = 1_..2 . orrespon mg y, IS part1tton w1t .L 1 = 
5 6 7 

72 = [25 36 49 ]. 

Definition 13.3 One-to-one linear transformations exist among natural, 
orthogonal, and orthonormal polynomial design matrices. A set of matrices, 
all p x p, may be defined as follows: 

AoRTNAT = ToRTTN'1T 

AoRNNAT = ToRNTN'1T 

AoRNoRT = ToRNToJT. 

(13.10) 
(13.11) 
(13.12) 

Although (TNAT )-1 always exists, the ratio of its eigenvalues, >.If Ap, 
approaches zero asp--+ oo. Numerical problems will be encountered when trying 
to invert large natural polynomial matrices represented in computer arithmetic with 
typical finite precision. By contrast, inverting the orthonormal polynomial design 
matrix is perfectly stable and a trivial operation: (ToRN)- 1 

= (ToRN)'. 

Lemma 13.1 One-to-one linear transformations among natural, orthogonal, and 
orthonormal polynomial regression coefficients exist. The following one-to-one 
relationships hold (with all B of dimension q x p and all A p x p: 

Er.AT = BoRTAoRTNAT 
BNAT = BoRNAoRNNAT 
BoRN= BoRTAoRNORT· 

Proof. Left as an exercise. 

(13.13) 
(13.14) 
(13.15) 

Definition 13.4 If the elements of d are equally spaced, then dj+I - dj is 
a constant Vi, and an orthogonal design matrix ToRT exists with every 
element an integer. The elements of ToRT can be found in tables of 
orthogonal polynomial coefficients (in the Appendix, Section A.3). 

Exampl~ 13.2 For p = 3 

ToRT ~ H -~ :] <- constant 
- linear 
- quadratic 

( 13.16) 
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Forp = 4 

ToRT= [-! - I ~ ~] 
1 - I - 1 I 

- 1 3 - 3 1 

<---- constant 
+- linear 
- quadratic 
+- cubic 

(13.17} 

Dividing tii by (I:r=I t 2) 
112 

creates the corresponding orthonormal matrix. 

Premultiplying by Dg [ (I:r=I t~i) -I/2] accomplishes the task. 

Example 13.3 For the example, 

- constant 
ToRN = - 0.707107 0.000000 

[ 

0.577350 0.577350 0.577350] 
0.707107 - linear (13.18) 

0.408248 - 0.816497 0.408248 <---- quadratic 

In the example of children's weights (N =50, m = 2, p = 3, q = 1), the chi ldren's 
weights were measured at equally spaced time intervals. Therefore an orthogonal 
matrix exists which has integer entries: 

ToRT~ [ -: -~ : ]· 
(13. 19) 

In tum, the expected value of the weight of child i at time j is 

E(y,i!X = 1, T ) = B oRT7}oRT =[Po P1 132] [ -6 + d:] 
106 - 36di + 3dj 

= [Po P1 132 ] [ -! ~ ~] [ ~{ ]· 
106 -36 3 dj 

(13.20} 

The B matrices and T matrices of the natural and orthogonal models are 
linearly related. The linear transfonnation matrix for the two designs is 

[ 
I 0 0] 

AoRTNAT = - 6 I 0 
106 - 36 3 

(13.21) 

Thus we have B NAT = B oRTA oRTNAT. 

~ 63]· 
- 36 

(13.22) 
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[-! ~ ! l = [ -! 
1 -2 1 106 

0 0] [ 1 I I] 1 0 5 6 7 . 
-36 3 25 36 49 

(13.23) 

We suppose mean weight is approximately linear in time over the ages from 5 to 7 
years. lfso. it is appropriate to assume (32 = 0 in the natural polynomial model. or 
(32 = 0 in the orthogonal polynomial model. The resulting model in terms of 
orthogonal polynomials is E(Y !X l T ) = {flu {31 JoRT T J.ORT. in which 

[ 1 1 1] 
T IORT = -1 0 1 . {13.24) 

The possibility of specifying a GCM using one of several kinds of polynomials 
raises the question of equivalence among models more generally in terms of any 
specifications of the within-individual design matrix T. 

Definition 13.5 Two models specified by their design matrices and parameter 
spaces, GCM(Y;XtBt71, :E), B1 E Ot. and GCM(Y;X2B2T2, :E), 
B2 E 02, are linearly equivalent {::} 
(a) VB1 E Ot there exists B2 E 02 such that XtBt71 = X2B2T2 and 
(b) VB2 E 02 there exists Bt E Ot such that XtBt71 = X2B2T2. 

Having fitted a GCM, it is desirable to create graphical representations of the 
estimated growth curve. As for all polynomial models, computations are best 
conducted in orthogonal or orthonormal terms, although displayed in terms of 
natural polynomials. 

Definition 13.6 The estimated polynomial growth curve, or dose-response 
curve, is the estimator of mean response as a function of time, or dose, d of 
the form ji(d; C)= CBud (1 x q x m x 1) with ud = [ 1 d · · · dm-I]' 
(m x 1). A set of coordinates {[d,ji(d;C)]: dE [dx,dp]} define an 
estimated growth curve. 

Theorem 13.3 For GCMN,p,q,m( li; XiBoRTTORT, E) and any value of d in the 
range of the data, a growth curve can be conveniently and plausibly estimated. 
With C (1 x q) and ud (m x 1) such that {[d, jt(d; C)] :dE [d1, dp]} gives 

(13.25) 

with m x 1 

Ud = [ 1 d · · · dm-I ]'. (13.26) 

The result allows plotting growth curves (or dose-response curves) at arbitrarily 
many points in terms of the orthogonal polynomial regression parameters. 
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Proof. The natural polynomial model and the orthogonal polynomial model are 
linearly equivalent (with all corresponding matrices of the same dimensions). In 
particular, GCM(Y; XBoRTToRT, E) with B20RT = 0 is equivalent to 
GCM(Y; XBNATTNAT, E) with B 2NAT = 0. The linear relationship between 
natural and orthogonal polynomial coefficients gives BNAT = BoRTAoRTNAT· In 

tum Jl(d;C) = ciiNATUd = c( BoRTAoRTNAT )ud. D 

Extrapolating a growth curve, or any other model, outside the range of data can 
be quite misleading. Muller and Fetterman (2002, Chapter 9) provided examples. 
As with most issues of practical data analysis and interpretation, we leave the topic 
for consideration in other settings. 

Example 13.4 The integer-valued orthogonal polynomial model for 
dE {1 ,2,3,4} is 

E{YIX, T ) = XBoRrToRT 

= X (Po f3t 132 113 ] [-~ 
- 1 

I I 1] - 1 I 3 
- 1 - 1 l . 

3 - 3 1 

(13.27) 

If we require Pt = 0 and {13 = 0, then B aRT = [/1o 0 fi2 0 ]. The corresponding 
natural polynomial regression coefficients are B NAT = [Al {31 132 0 ). The result 
is obtained from B NAT = B oRrAoRTNAT. with 

[ 
I 0 0 0] 

- 5 2 0 0 
AoRTNAT = 5 - 5 l 0 · 

- 35 55.66 - 25 3.33 

(13.28) 

The example natural polynomial has m = 3 nonzero coefficients, 
B I.NAT = [Po f3t 132}. while the orthogonal polynomial has only m 1 = 2 nonzero 
coefficients, B 1,oRT = [ f3o /12 ] . The quadratic term of the integer-valued 
orthogonal polynomial is /12(5 - d + d2). which includes a linear component. It is 
important to remember that different kinds of polynomials (of the same order) for a 
given model may have different numbers of nonzero regression coefficients. 

The notation A[ · , · ] indicates a submatrix of A created by selecting all 
elements of rows in a list and all elements of columns in a list. We use J 1 ( 1 x m) 
to indicate which of p columns are assumed to be not zero. With J 1 = [ 1 3] and 
m1 = max{Jt} = 3, AoRTNAT[J~,[ 12 · · · mt]] has m rows and mt columns and 
BtNAT = BwRTAoRTNAT[J~, [ 1 2 · · · m1]]. The J 1 matrix selects the rows and 
columns of AoRTNAT needed to transform orthogonal polynomial results into 
results in terms of natural polynomials. Similarly J 2 = [ 2 4 J (1 x p-m) indicates 
columns 2 and 4 of the coefficient matrix are assumed to be zero. 
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Theorem 13.4 For GCMN,p,q,rn( Y;;XiBT,E) with BandT in terms of an 
orthogonal or orthonormal polynomial, growth curves can be plotted in terms of 
J 1 (1 x m ), the list of columns of B assumed not to be zero. At time d the 
estimated value is specified by C (1 x q), B1 (q x m), and A (m x m1) as 

(13.29) 

with ud = [ 1 d d2 drn- 1 ]'and 

A= AoRTNAT[J1, [ 1 2 .. · mi]], (13.30) 

in which m1 = max{J1}. 

Proof. Left as an exercise. 

Corollary 13.4.1 A set of s > p points on a growth curve can be computed with a 
natural polynomial design matrix with more columns than rows, U (p x s ), the 
first prows ofTNAT (s x s). ForO (1 x q), B (q x p), p! (1 x s), d (s x 1), 

(13.31) 

The set cannot be computed with an orthogonal design matrix with s > p 
columns (the dimension of the fitted model). In particular, 

ji(d; C)-::/- CBoRNUT ifUr (p x s) is the first prows ofToRN (s x s). 

Proof. Left as an exercise. 

Corollary 13.4.2 Under the same assumptions, estimated growth curve values can 
be computed as 

jl(d; C)= CBoRN AoRNNAT ud, 

with ud = [ 1 d d2 · · · drn-l ]', in which dis any value. 

Proof. Left as an exercise. 

(13.32) 

The example of children's weights (N = 50, q = 1, p = 3, m = 2) allows 
illustrating the process. Having estimated BwRT = [ ;3o ;31 ] , we can plot the 
estimated growth curve. Suppose we only want to plot three points on the curve 
corresponding tot'= [ d1 d2 d3]. With C = 1 and ToRT (3 x 3) we have 

jl( d; C) = C BoRTToRT (13.33) 

= 1 [00 01 0 ]ToRT. 

Here C = 1 because the participants form a single homogeneous group. The three 
points correspond to the observed ages ( 5, 6, and 7 years). Corollary 13 .4.1 
answers the question "How would additional intermediate points be plotted?" 
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Example 13.5 We seek to compute five points within the range of the data, 
corresponding to ages [5 5.5 6.0 6.5 7.0 J' = t 1• With C = I, A (3 x 3), U 
(3 x 5 ), the points would be computed as 

Ji(t 1 ; C ) = C BoRT AoRTNATU 

= [130 P1 0] [ -! ~ ~] [ ~ ~.50 ! 
106 - 36 3 25 30.25 36 

[ ~ ~ ) [ 1 0] [I I I I 1] 
= f3o {3 , - 6 I 5 5.5 6 6.5 7 

[ ~ ~ l[ I I I I I] 
= f3o {3, -1 -0.5 0 -0.5 I · 

1 '] 6.50 7 
42.25 49 

(13.34) 

Matrix U can be interpreted as being TNAT (3 x 3) augmented with two additional 
columns. It can also be interpreted as being the first three rows of T NAT ( s x s). 
Arbitrarily large numbers of points on the curve may be plotted by augmenting the 
T NAT matrix with additional columns. It is usually desirable (but not necessary) to 
choose evenly spaced points. 

13.5 WITHIN-INDIVIDUAL DESIGN MATRICES 

Two of the most desirable attributes of the T matrix are full rank and 
orthogonality. The creative analyst can draw from the great variety of orthogonal 
designs to formulate an appropriate GCM. Any full-rank nonorthogonal design 
matrix can be reparameterized as an orthogonal design. After applying the new 
design, hypotheses about the original nonorthogonal design are easily tested. 

The process may be described in terms ofT, a p x p arbitrary full-rank design 
matrix. Since TT' is full rank, p x p, and symmetric, a lower triangular matrix L 
(p x p) exists such that TT' = LL' (the Cholesky decomposition). Lower 
triangular L-1 maps Tonto an orthogonal matrix Tnew = L-1T. If a model 
which assumes E(YIX, Tnew) = X BnewTnew is fitted, the original hypothesis 
Ho: CBU = 0 (ax b) can be tested in the form Ho: CBnewUnew = 0 (ax b), 
in which Unew = L -I U. If some columns of B ( q x p) are assumed to be zero, 
then T (p x p) is replaced by T 1 (m x p) in the above equations. 

Polynomials are useful when little is known about the mechanisms underlying 
the ordered responses. If more is known about the underlying process, then a 
formulation which uses the additional information likely will be better. As an 
example, if the underlying process is known to be periodic, then the design matrix 
T might be formulated in terms of sine and cosine functions of time. 
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Definition 13.7 It may be convenient to define transformation matrix T in a 
GCM in terms of a discrete Fourier transform (OFT). If pis even, then 
Pc = (p- 0)/2 and Pb = (p- 2)/2. If pis odd, then Pa = Pb = (p- 1)/2. 
For time dj, Cij = cos(2widjf) and Sij = sin(2witjf), with f the 
fundamental frequency of the process and 1 j f the fundamental period. In 
tum, 

Torr~[~] 
+--- constants 
+--- cosines 
+--- sines 

( 1 X p) 
(Pc X P) 
(Pb X p) 

(13.35) 

in which T, = { Cij} with 1 ::; i ::; Pa and Ts = { Sij} with 1 ::; i ::; Ph· 
Larger values of i indicate the higher order terms. The terms with i = 1 
represent the lowest frequency component. The terms with i = 2 represent 
the first harmonic, while i = 3 terms give the second harmonic. 

Theorem 13.5 If d' = [1 2 · · · p] = {dj} = {j} and f = 1jp, then the OFT 
design matrix ToFT is a p x p orthogonal matrix. 

Proof. Left as an exercise. 

So far we have assumed the measurement made at time j is a function of dj, 

which implies the ordered columns of Y (N x p) are functionally related. The 
design matrix T can, when necessary, be formulated in terms of a polynomial in 
more than one variable. 

Example 13.6 Temporal changes in level of pain (Y) indexed by time (t) in 
hours can be observed for several doses (d) of an analgesic drug via a multi-period 
crossover design; i.e., the individual sequentially experiences the different doses in 
different periods of the study and longitudinal observations are recorded within 
each period. In other human studies, simultaneous administration of different 
doses of a drug can occur, for example, when two different doses of a drug are 
applied to the left and right eyes respectively. Other examples include allergy skin 
testing (various patches of skin are exposed to different allergens) and in vitro 
studies [e.g., a blood sample is drawn, divided into multiple subsamples of equal 
volume (aliquots), each aliquot is treated with one of the dose levels of interest, 
and response in each aliquot is then observed longitudinally]. 

For illustration, suppose two within-subject factors, time (t) and dose (d), are 
present, and further suppose a response y is observed at p = 3 times for each of 3 
doses. In terms of a two-variable natural polynomial the mean response for the 
3 x 3 factorial experiment is of the form 

/-lijk = E[yi(tj, dk)IX, T]j 

(13.36) 
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in which Tis the Kronecker product of two single-variable design matrices: 

T(t, d) = T(t) ® T(d). (13.37) 

If the participants are a homogeneous group, then X= 1 (N x 1). If the two­
variable polynomial is of maximal order, then 

J-liJk = f3oo+f3wt+f32ot2+f3o1d+f3utd+f32It2d+f3o2d2+f3I2td2+f322t2d2. (13.38) 

For T(t, d) to be an orthogonal matrix, a Kronecker product of orthogonal T 
matrices is used: T(t, d) = T(t) ® T(d) is (9 x 9) and 

T(t) ~T(d) ~ H -~ :] (13.39) 

Similarly the design matrix for a polynomial in three variables is 

T(t, s, u) = T(t) ® T(s) ® T(u). (13.40) 

In general, the T matrix for a polynomial in K variables is the Kronecker product 
of K matrices. The inverse of T is the Kronecker product of the individual 
inverses. IfT(t, d) = T(t) ® T(d), then r-1(t, d) = r-1 (t) ® r-1 (d). 

In the GCM, the definition of matrix X (N x q) does not require any additional 
considerations beyond the ones made in the multivariate GLM. Therefore the 
between-individual design matrix X may be thought of as the usual X matrix in a 
general linear model. Given a matrix of responses Y (N x p), the definition of 
matrix T (p x p) does not place any restrictions on the definition of X. 

13.6 ESTIMATION METHODS 

Under the assumptions of GCMN,p,q,m(Yi; X;B T, :E), the correct model for a 
single individual's responses is 

E(Y;'IX;,T) = (O~T)', (13.41) 

with m x 1 0; = (X;B)' and V(Y;'IX;, T) = :E (p x p). Multiplying both sides 
of the regression equation yields 

E[Y:V-1T'(TV-1T')-1 IX T] = O' = XB ~ t.' 't l • (13.42) 

The vector 0; = (TV-1T')- 1TV- 1Y;' is an m x 1 weighted-least-squares 
estimator (unweighted if V = Ip) for the individual-specific model 
E(Y;'IX;, T) = T'O;. Given o; = X;B, with X;B invariant to the choice of V, 
it follows 0; is invariant to the choice ofV. Also 



Linear Model Theory 

E(O;) = E[(rv-1r'r1rv-1Y;'] 

= (TV-1T')-1TV-1E(Y;') 

= (rv-1T')- 1rv-1(o;r)' 
=0;. 
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(13.43) 

~I 

Although Oi is unbiased for all choices of V, its precision is optimal if V = :E. 
Unfortunately :E is unknown. 

If a separate univariate GLM model is fitted for each individual, it would then 

be reasonable to fit a multivariate GLM for e = [81 ... ON]'= 
YV- 1T(TV-1T')- 1 (N x m), with N x q x m mean 

E(OIX) = XB (13.44) 

and V[vec(O)IX] = n ®I. Here n = G':EG with G = v- 1T(TV- 1T')- 1 

gives estimator 

The variance of the estimator, 

V[vec(B)IX] = (G':EG) ® (X'x)-1
, (13.46) 

depends on the choice of V. Obvious 
Y'[I -X(X'X)-1X'])YjN, the MLE, 

f = f:.N /[N- rank(X)]. 

choices for V include f:. = 

and the unbiased estimator 

The results just stated could be derived in terms of a transformation of the 
columns of an ordinary multivariate GLM using G = r-1 (p x p), combined with 
the fact that conditioning on Tis the same as conditioning on G. In particular, 

E( YGIX, G) = XB (13.47) 

and 

V(YGIX,G) = (G':EG) ®IN. (13.48) 

The transformation yields new dependent variables, YG, and provides a GLM 
setting for estimation and inference. The partitioned model 

E(YIX,T) = XBT (13.49) 

= X[ B1 B2] [ i] 
induces the partitioning YG = [YG1 YG2 ] = [Yi Y2]. Constrained by 
B2 = 0, here E(Y2IX, T) = 0 [N x (p- q)] while E(YiiX, T) = XB1. The 
columns of G 1 are usually the first few columns of G. In any case, the rows ofT 
can always be permuted (along with columns of B and columns of G) so no 
generality is lost by assuming G 1 contains the first few columns of G (p x p). 
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Restricting some columns of B to be zero is achieved by omitting Y2 (N x p- q) 
from the model. The test of H0 : B 2 = 0 serves as a goodness-of-fit test. 

If all of the Y2 variables are omitted from the GLM in order to restrict B 
(q x p), then the following model is fitted: 

(13.50) 

(13.51) 

Rao (1965) and Khatri (1966) described how to reduce a GCM to an ordinary 
multivariate GLM. They proved some information is discarded ifthe Y2 variables 
are ignored. Furthermore the use of some or all of Y2 as independent covariates 
can improve the power of tests and reduce the widths of confidence intervals. 
Including none of the Y2 variables as covariates yields the unweighted estimator 

(13.52) 

while using all of the Y2 variables as covariates yields the weighted estimator 

(13.53) 

in which :E is the MLE of :E. Using all Y2 variables requires fitting the model 

(13.54) 

V(Yj IX,G1' ¥2) = G~ :EG1 ®I' (13.55) 

which is equivalent to computing B 1 = (X'X)- 1X'YV- 1T(TV- 1T')- 1 with 
V = :E. Grizzle and Allen ( 1969) derived the variance of jj 1: 

v[vec(B)IX] = G':EG ® (X'X)- 1(N -1)/[N- (p- q)- 1]. (13.56) 

Conditioning on some or all of the Y2 variables uses additional degrees of 
freedom. Since some of the Y2 variables may be redundant of one another in the 
information they provide, Rao (1965) and Grizzle and Allen (1969) proposed 
balancing the gain of information against the use of degrees of freedom by 
including only a few well-chosen Y2 covariates. As criteria for including or 
excluding variables, Rao proposed examining the resulting widths of confidence 
intervals for elements of B. Grizzle and Allen proposed relying on a measure of 
generalized variance, the determinant of the covariance matrix of estimator jj. For 
confirmatory hypothesis testing, the conservative approach is to include all of the 
Y2 covariates. 

Berger (1986) conducted simulations evaluating various strategies for growth 
curve analysis. His results indicate that using observed properties of the data to 
help model the covariance inflates the type I error rate. Hence he recommended 
avoiding the approach unless an appropriate correction could be determined. 



Linear Model Theory 277 

13.7 RELATIONSHIPS TO THE UNIVARIATE AND MIXED MODELS 

The model Y =XB+E has the corresponding equation for sampling unit i: 

Y;' =(X;@ Ip)vec(B') + EI. (13.57) 

For p x m T the model Y = XBT + E has corresponding equation for 
sampling unit i: 

Y;' = (X;@ Irn)vec(T' B') + EI. (13.58) 

From Theorem 1.5, vec(ABC) = (C'@ A)vec(B). With T' B' = T' B' Iq, 

Hence 

Y;' =(Xi@ Im)(Iq@ T')vec(B') + EI. 

Y;' = (X;@ T')vec(B') + EI. 
( m X 1) = [ ( 1 X q) @ ( m X p)] (pq X 1) + ( m X 1) 
( m X 1) = ( m X qp) (pq X 1) + ( m X 1) 

(13.59) 

(13.60) 

Here X; contains between-subject design information, while T contains within­
subject design information. The last equation corresponds directly to a mixed 
model or a GGLM. In contrast to a GCM, a mixed model allows elements ofT 
and m to vary across subjects. 

It can be extremely helpful in understanding an incomplete design to examine 
the corresponding complete (factorial design). Considering restrictions or variable 
deletions can then be used to specify the incomplete design in terms of the 
complete design. The model form just described is intended to help the reader in 
such an endeavor in the context of mixed models. 

EXERCISES 

13.1 An investigator gathered ni observations on each of N sampling units for 
i E {1, ... , N} from two different groups. A total of N1 sampling units were 
selected from group 1 and N 2 sampling units were from group 2 (N1 + N2 = N). 
The ni observations from each sampling unit are assumed to be independent of the 
observations from another sampling unit and follow the linear model 
Yi = Xn + eiy with Xi = [ 1n, 0] if sampling unit i belongs to group 1 and 
X; = [ 0 1n, ] if sampling unit i belongs to group 2. Also 'Y = [ ')'1 /'2 ]' is fixed 
and unknown, while eiy "' Nn, (0, cr2 InJ with cr2 unknown. The original data, Yii' 

are not available, but we do know ~j~ 1 Yii for each sampling unit. From the sums, 

we calculate m; = ~j~ 1 Y;i/ni and consider the following linear model: 

rn = {mi} = Z/3 + e, with f3 = [/11 /12 ]'and Z = [ 
1
; 1 1~,]. 

Hint for some parts of the exercise: Summation notation may help simplify. 
13.1.1 Completely specify the distribution of e. 
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13 .1.2 Find an expression for the OLS estimator /3. Simplify the expression, and 
very briefly describe the nature of the elements of /3 in terms understandable to a 
scientific collaborator. 

13.1.3 Find E(/3). Simplify the expression. 
13.1.4 Find V(/3). Simplify the expression. 
13 .1.5 Enough is known to allow using (exact) weighted least squares. Given what 
is known, provide an expression for an appropriate WLS estimator 7J and simplify 
it. 
13.1.6 Specify the model for rn associated with 13.1.5 as a GGLM. 
13.1.7 Create a linearly equivalent GLM for the GGLM in 13.1.6. 
13.1.8 Find E(jj). Simplify the expression. 

13.1.9 Find V(lJ). Simplify the expression. 

13.1.10 Compare V(/3) with V(lJ). In particular, is V(/3)- V(lJ) always positive 
definite, negative definite, nonnegative definite, or nonpositive definite? Explain 
why briefly. Based on your results in the exercises, can either or both be ruled out 
as a candidate for being the BLUE? 



CHAPTER14 

Estimation for Linear Mixed Models 

14.1 MOTIVATION 

Given the background of the previous chapters, the theory of estimation may be 
stated quite simply for the general linear mixed model. Without the need to 
assume any particular distribution, the method of approximate weighted least 
squares provides parameter estimates. With the additional assumption of Gaussian 
errors, iterating the process yields maximum likelihood estimates. 

Although the mixed model theory of estimation takes simple forms, successfully 
finding numerical solutions satisfying the theory sometimes proves difficult with 
real data. The difficulty often has the unfortunate effect of encouraging 
practitioners to choose a simple covariance model without data to support the 
choice. Instead, the analyst should first round the within-subject predictor values 
to the most coarse resolution scientifically acceptable (often time has been 
recorded with much numerical precision) before attempting analysis. Second, the 
analyst should improve the scaling, centering, and coding of the data, as discussed 
in Chapters 8, 9, and 12 in Muller and Fetterman (2000). If a model with an 
appropriate and defensible covariance structure will not converge, a different 
analysis strategy, other than oversimplifying the covariance structure, should be 
considered. In particular, compound symmetry does not seem to be a plausible 
model for many types of repeated measures in time. 

Throughout most of our discussion of linear models, we make two strong 
assumptions: a valid model and a sample size sufficient to compute estimates. In 
contrast to univariate and multivariate model properties, the two assumptions do 
not suffice to guarantee optimal estimators for mixed models. We must also 
require symmetry of distributions to guarantee unbiased estimates of expected­
value parameters. More importantly, unbiased estimates of covariance parameters 
are available only with complete and balanced designs (no missing or mistimed 
data). In practice, such models very often correspond to multivariate models, 
which can and should be analyzed with multivariate techniques in order to use the 
best available methods for estimation and inference. Some limitations of the 
mixed model gradually diminish as sample size increases. 

Given that relatively little is known about the finite-sample properties of mixed 
model methods, we should consider them to be "large-sample" methods. The 
question naturally arises: How big is "large?'' We speculate that serious concerns 

279 
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about accuracy may be present with fewer than N = 100 independent sampling 
units (ISUs), and no more than a modest number of observations for each (perhaps 
all p; < 10). It should be emphasized that, except in very special cases, simply 
having a large number of observations (n = 2:;:1p;) is not reassuring. The ratio 
of N to n, as well as the absolute size, plays a role in the performance of mixed 
models. 

14.2 STATEMENT OF THE GENERAL LINEAR MIXED MODEL 

The definition and notation of the mixed model was introduced in Chapter 5. 

14.3 ESTIMATION AND ESTIMABILITY 

Except for various special cases, the mixed model does not have closed-form 
expressions for estimators for any criterion. Gaussian theory estimation 
procedures for the mixed model with incomplete and unbalanced data include 
maximum likelihood (ML ), restricted maximum likelihood (REML ), moment 
estimators, and general linear model (ANOV A) estimators. Hocking ( 1985) 
discussed estimation for each. Harville (1977) gave a comprehensive review of 
ML and REML procedures, along with computational techniques. Laird and Ware 
(1982) discussed the Bayesian approach to variance component estimation, its 
relationship to REML estimation, and the application of the EM algorithm. 
Fairclough and Helms (1986) and Andrade and Helms (1986) explored ML 
estimation for the mixed model with linear covariance structure. More recently, 
Vonesh and Chinchilli (1997), Verbeke and Molenberghs (2000), and Demidenko 
(2004) provided book-length treatments of mixed models. 

Conditional on knowing {:E;} exactly, the theory of exact weighted least 
squares applies, which implies the theory of estimability and linearly equivalent 
models developed in previous chapters applies. Our treatment of estimability and 
linear equivalence concerned only the expected-value parameters {,Bj} = f3 (the 
fixed effect parameters). The possibility of ambiguous parameter sets caused by 
( 1) purposefully or accidentally L TFR between-subject (X) design matrices or 
(2) explicit restrictions on rows of f3 motivated the developments for univariate 
models. Multivariate and related growth curve models introduce the additional 
concerns of (3) purposefully or accidentally L TFR within-subject design matrices 
(T, U) or (4) explicit restrictions on columns of the multivariate form of the 
expected value parameters, B = [ /31 • • · /3p ]. The mixed model form may be 
created by vertically concatenating all of the columns of B to give 
f3mixed = vec(B) = [/3i · · · /3~]'. All aspects ofthe same estimability issues arise 
in mixed models, albeit with between-subject and within-subject design and 
parameters jumbled together. 

The simplicity of the GLM covariance model essentially eliminates any need to 
study the analog of estimability for covariance parameters. The (univariate) 
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GLMN,q(y;; X;/3, a 2
) describes a model for N ISUs and 1 observation per ISU. 

Stacking all of the data together gives an N x 1 vector y with y' = [ y~ · · · Y'rv ]. 
The associated covariance model matrix for the entire set of data describes a total 
of n = N observations, 

(14.1) 

The (multivariate) GLMN,p,q(Y;; X;B, :E) describes a model for N ISUs and p 
observations per ISU. Stacking all of the data together by participant gives an 
(Np) x 1 vector, vec(Y') with vec(Y') = [Yi · · · YN ]'. The associated 
covariance model for all data describes a total of n = N p observations, 

V[vec(Y')] =IN® :E (14.2) 

[: :] 
Although rarely considered, the multivariate GLM theory of estimation can tolerate 
a singular :E, if handled carefully. The calculation of primary parameter estimates 
CB, :E) does also. An appropriate choice of U matrix or multivariate restrictions 
(RxBRy =A) avoids any difficulties in testing associated with defining a 
singular error covariance matrix :E. = U':EU. 

In contrast to the univariate and multivariate GLM, the general linear mixed 
model LMMN,p,q,m[y;; X;/3, Zi:Edi(rd)Z[ + :Ee;(re)] describes a model for N 
I SUs and p; observations per ISU. The presence of subscript i allows the number 
of observations to vary across ISU. Stacking all data together by participant gives, 
with n = 2:~ 1 pi, an n x 1 vector Ys with y~ = [yi · · · Y'rv ]. The associated 
covariance model for the entire set of data describes a total of n observations, 

N 

:Es = V(ys) = EB(Z;:Ed;z; + :Eei) 

i=l 

(14.3) 

Edwards, Stewart, Muller, and Helms (200 1) described how linear restrictions 
can be defined which allow identifying a corresponding unrestricted and linearly 
equivalent general mixed model. Their results apply to linear constraints providing 
parallel restrictions on the fixed effect (expected-value) parameters and random 
effect (covariance) parameters and the class of two-stage mixed models. Hence 
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much work remains to be done to extend the results to the full range of mixed 
models and constraints. 

Heterogeneity among {:Ei} leads to heterogeneity among {Ei}, which serve as 
weights for j3 during the iterative calculation of estimates. Despite having full­
rank {Ei}, either {Ei} or expressions based on the estimates may have difficulty 
maintaining their intended ranks due to finite precision computer arithmetic. 
Imprecision may arise due to limitations of the sample size, timing of observations, 
poor scaling, lack of centering, or poor predictor coding. Estimability may fail at 
any iteration. Much remains to be learned about how to overcome such local 
difficulties. 

14.4 SOME SPECIAL TYPES OF MODELS 

Practical use of the linear mixed model requires further assumptions and 
constraints to reduce the number of covariance parameters to a manageable level. 
For stationary processes we often assume that the j, k element of the covariance 
matrix, C!jk = (Ei(r))jb is a simple function of the elapsed times between the 
various pairs of observations. In particular, an autoregressive covariance model of 
order l, AR(l), assumes (Ei(r))jk = cr2pitrtki for observation j at time tj and 
observation kat time tk. The AR(l) structure specifies a nonlinear model for the 
variances and covariances. It has two parameters, r' = [ ~ p ]. In some cases, an 
inherently linear model for the covariances can be defined. 

Definition 14.1 ALMMN,pj,q,m[Yi;Xi/~,ZiEdi(rd)Zf + Eei(re)] with 

Ei(r) = Edi(rd)Z{ + Eei(re) 
K 

= LTkGik 
k=I 

(14.4) 

and all { Gik} known constants which may vary with i has linear covariance 
structure. 

A wide variety of useful covariance models can be expressed as a linear 
structure. Andrade and Helms (1986) developed estimators and test statistics for 
linear hypotheses on /3 and r under the assumption of linear covariance structure. 

Example 14.1 If Z ; = l p; while E d;(Td) = T 1 and E .,i(Te) = r2I p, • then 
E ;(r } = r, lp, l~ + T2 I p, exhibits linear covariance structure. The covariance 
model corresponds to assuming compound symmetry for each independent 
sampling unit. What are p and a 2 as functions of { Th T2}? 

Definition 14.2 A LMMN,pi,q,m[Yii Xi/3, ZiEdi(rd)Z.f + Eei(re)] with full­
rank xi = zi = X I is a balanced random coefficient model. 
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Demidenko (2004, p. 62) noted that a balanced random coefficient model 
corresponds exactly to a particular form of a growth curve model. Hence the 
machinery for the GLMN.p() multivariate model can provide noniterative and 
optimal estimators as well as exact size-a tests in small samples. Except for (even 
more) special cases, the commonly used mixed model tests will not coincide with 
the optimal (multivariate) tests. Although we do not pursue the topic here, we note 
that a wider class of mixed models may be cast and analyzed as multivariate 
models and an even wider set as multivariate models with missing data. 

14.5 ML ESTIMATION 

As discussed in Chapter 5, the mixed model for ISU i may be expressed as 
y; = X;/3 + Z;d; + e;, with E(y;) = X;/3 and V(y;) = :E;(r) abbreviated as :E;. 
In tum, 

e+i = Y; - X;/3 
= Z;d; +e;. 

Recalling that n = z=;:,1p;, the joint log likelihood is 

or 

N 

-2logL(f3,r) = nlog(27r) + l)logi:E;I +tr(e+;e~;:Ei 1 )]. 
i=1 

(14.5) 

(14.7) 

Here avec[:Ezl/8/3 = 0. For any fixed r the value of f3 which maximizes the 
likelihood is the weighted least squares estimate. Using 9- leads to an approximate 
weighted least squares estimator, 

( 
~-1 ) -1 ( ~-1 ) 

{3(9-) = X~ :E., X 8 x: :Es Ys 

= (f:x:~; 1 x;) -I (f:x; ~; 1 Yi) . 
•=1 1=1 

(14.8) 

Hence the task reduces to maximizing the profile likelihood, with 
e+i = y;- X;/3(9-), 

Finding the MLE of T requires solving 8L(9-)/07 = 0. The most useful 
representations of the system of estimating equations depend on features of the 
model. If:E; has linear structure [V(y;) = :E;(r) = '5:.

9
T9G;9 with {G;9 } known], 
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then the MLE of r is 

Here [( )9] is a vector and the expression in ()is the value of its element g. Matrix 
[ ( ) gh] is similarly defined and has the indicated value for the element in row g and 
column h. Advantageous simplifications of the estimating equations can depend 
on whether the data are balanced, whether the repeated measurements are 
consistently timed, or whether compound symmetry is assumed. 

Except for special cases, the above equations for 73 and 9 must be iterated to 
achieve a maximum. Computation requires solution of simultaneous nonlinear 
equations via algorithms such as the Newton-Raphson, the Method of Scoring, or 
the EM algorithm. Jenmich and Schluchter (1985) and Fairclough and Helms 
( 1986) compared performances of the algorithms. Lindstrom and Bates (1988) 
provided arguments favoring the use of the Newton-Raphson approach. The 
MIXED procedure in the SAS® System software uses a ridge-stabilized Newton­
Raphson algorithm and offers, optionally, Method of Scoring steps for the initial 
iterations. Wolfinger, Tobias, and Sail (1994) reported many further details. 

All three algorithms are iterative. Given results from iteration t E {1, 2, ... }, 
all three algorithms compute a new estimate of the form 

(14.11) 

with 01+1 being the next value of the parameter estimates, 0 = [73' 9' ]'. The 

length of the next step taken towards the MLE is indicated by scalar .\1 E [0, 1]. 
Vector H 1-

18IogLj80 specifies the direction of step t. In the Newton-Raphson 
algorithm H 1 is the negative of the observed information matrix, 

~ a2 I I( 0) = -
8080

,log L ( 0) 
9

=
0 

. (14.12) 

In the Fisher Scoring algorithm H 1 is the negative of the expected information 
matrix. At convergence, the two algorithms yield a computed value H 1-

1 which is 
an estimate of the asymptotic covariance matrix of01. Maximum likelihood theory 

gives H 1
1
/
2 (01-0) a;!] N(O,I). Hence the matrix is useful computing the 

estimated asymptotic standard errors of01, with sufficiently large N. 

The EM algorithm has advantages of simplicity, positive definite H 1 '<It, and 
assured increments in the likelihood at each step. However, its iterations provide 
only the MLEs of 73 and T and do not provide any standard errors. Thus, 
additional computations are needed to estimate standard errors of 73 and 9. Of 
several proposed methods, the supplemental EM algorithm (SEM) of Meng and 
Rubin ( 1991) seems best. The SEM derives necessary information about the 
asymptotic standard errors via evaluation of the rate of convergence of the EM 
algorithm. 
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The key parts of conventional maximum likelihood estimation are 
1) specification of the likelihood (which arises from assumptions about the model), 
2) numerical computation of the MLEs of 73 and 9, 3) computation of estimates of 
asymptotically correct approximations of the standard errors of 73 and 9, and 
4) subsequent computation of confidence intervals and test statistics. Under 
certain regularity conditions the ML estimators have the desirable properties of 
being consistent, asymptotically Gaussian, and efficient (Harville, 1977; Magnus, 
1978). As noted earlier, Kackar and Harville (1984) proved 73 is unbiased, while 
variance estimators are optimistically biased (too small). 

14.6 REML ESTIMATION 

Restricted maximum likelihood (REML) estimators of variance are less biased 
because they take into account the loss of degrees of freedom due to the estimation 
of {3. For purposes of estimation (as distinct from hypothesis testing), the method 
seems preferable to ML methods. 

In the simplest GLMN,q(y;; X;/3, a 2) with N i.i.d. errors, the estimators of f3 
and a 2 have very desirable properties. With Gaussian data, Lemma 11.6 
guarantees the independence of 73 and the residuals e in the GLMN,q(y;; X;/3, a 2). 

It follows immediately that the ML estimators 73 and a 2 = e'ej N are statistically 
independent. However, the ML estimator of variance is optimistically small. 
Hence it is customary to replace the MLE a 2 with &2 = a2 N / ( N - r). Here N is 
the number of I SUs and r = rank(X). The advantage of&2 over a 2 lies in the fact 
thatE(&2

) = a 2, while E(a2 ) = a2(N- r)/N::; a 2
. 

In seeking estimators with similar properties for mixed models, Patterson and 
Thompson ( 1971) recommended transforming the data to functionally separate 
computation of covariance and expected-value parameter estimators. With 

y~ = [y~ ... y~ l 
X'=[X'···X'] s 1 N ' 

they considered the transformation 

es = [In - Xs(X~Xsr X~]Ys. 

(14.13) 
(14.14) 

(14.15) 

As always, n = 2::~1 p; indicates the total number of observations (not the number 
of ISUs). The appeal of the transformation arises from properties of the 
GLMN,q (y;; X;/3, a 2 ) with i.i.d. Gaussian errors, as summarized in Lemmas 11.5 
(independence of y and e) and 11.6 (independence of 73 and e). Harville (1974) 
discussed the concept in the context of estimating variance components. Applying 
the transformation to the mixed model gives the reduced-profile log likelihood: 
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N 

-2logLREML(7) = (n-q)log(27r) + l::(logi:E;I + e~;:Ei 1 e+i) + 
i=l 

N 

logJ2:xf:Ei
1
X;J. 

i=l 

(14.16) 

The REML estimates are found by maximizing the last equation. The REML and 
ML forms differ only by 

N 

-2[log£REML(7) -logLML(r)] = -qlog(27r) + logJ2:Xf:Ei1X;J. (14.17) 
i=l 

Lindstrom and Bates (1988) provided helpful discussion about algorithms, as did 
Demidenko (2004 ). 

14.7 SMALL-SAMPLE PROPERTIES OF ESTIMATORS 

Kackar and Harville (1984) proved j3 from iterated approximate least squares 
(sometimes called estimated generalized least squares, among other names) is 
unbiased. However, covariance parameter estimators, at least in small samples, 
typically are biased. Littel (2003) provided an excellent overview. 

Theorem 14.1 (a) In the LMMN,p,q,m [Yi; Xi/3, Zi:Edi ( Td)Z[ + :Eei ( Te)] with 
Gaussian errors and full-rank X 8 =[X~ X~··· X'rv ]',the ML estimator of {3, 
namely /3, is unbiased. 
(b) If d; and e; have symmetric but not necessarily Gaussian distributions and all 
other assumptions are met, the result still holds. 
(c) If d; and ei have symmetric but not necessarily Gaussian distributions, and all 
other assumptions are met, the REML, method-of-moments (MM) and MINQUE 
estimators of /3 are also unbiased. 
(d) In general, ML, REML, estimators of r, and functions thereof, including 
:Edi ( Td) and :Eei ( Te) are biased. 

Proof. A surprisingly simple proof arises from the combination of the 
symmetry of distribution assumption and a variance estimator expressible as an 
even function. Demidenko (2004, Section 3.6) provided detailed proofs. 

Theorem 14.2 (a) In the general LMMN,p,,q,m[Y;; Xi/3, Z;:Edi( Td)Z[ + :Eei( re)J, 
with or without Gaussian errors, the ML, REML, MM, and MINQUE variance 
estimators ofr and functions thereof, including :Edi(rd) and :Ee;(re), are biased. 
(b) In the special case of a balanced random-coefficient model, the REML, MM, 
and MINQUE variance estimators (1) coincide, (2) are unbiased, and (3) differ 
from corresponding ML estimators only by a scaling constant, such as 
N /(N -1). 
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Proof. Dimedenko's (2004, p. 140) proof of his Theorem 14 and surrounding 
discussion contain the desired results. 

14.8 LARGE-SAMPLE PROPERTIES OF VARIANCE ESTIMATORS 

Given the preceding theorem, it is not surprising that only asymptotic results are 
available for properties of variance parameter estimators 9 and :Ei(9). Most such 
results provide only very low order approximations. As often happens with 
variance estimation, any bias is nearly always optimistic (estimates too small). In 
tum, estimated confidence intervals and tests are also optimistic. Much useful 
work remains to be done. 

14.9 CONDITIONAL ESTIMATION OF di AND BLUP PREDICTION 

In addition to estimation of /3 and 9, prediction of { d;} (collectively ds) is often 
of interest in applications of the general linear mixed model. Henderson (1963) 
popularized the use of the "best linear unbiased predictor" (BLUP) of di, namely 
d; = :Ed;Zf:Ej1(Yi- Xi/3), with :Ed; and :E; as in Definition 5.1. For Gaussian 
data the BLUP is easily proven to be the expected value of d; conditional on the 
observed value of y;. Substituting the MLEs for the unknown parameters yields 
the empirical BLUP (eBLUP): 

(14.18) 

Collectively, with :E8 , :Eds, and :Ees as defined in equation 5.9, 

~ ~ ~-1 ~ 

ds = :Ed,Z~:E, (y, - X,/3) . (14.19) 

Depending on :E; 1 
and the dimension and magnitude of (Yi - X;/3), the value of 

d; is subject to shrinkage toward zero. If Pi is small, then conditioning d; on y; is 
not highly informative and the shrinkage toward zero will be substantial. In tum, 
the eBLUP of the ISU central tendency, namely, 

Yi = X;/3 + Z;d; (14.20) 

shrinks toward the estimated population central tendency, X;/3. 

Computing the expression for di above would require inversion of a p; x p; 
~-1 

matrix :E; , which can be problematic for large Pi· Henderson (1963) offered 
equivalent mixed model equations of the form 

(14.21) 

which involve the more manageable inversion of :Ees and :Eds (as defined in 
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equation 5.9). The greatest advantage accrues with diagonal :Ees and block 
diagonal :Eds· 

Harville ( 1990) proved that 

X~:E;,,1 Z, ] ~ 
:E;J} + Z~:E;/ Zs ' 

(14.22) 

in which both d8 and d 8 are random vectors. The MLEs must be substituted for 
the unknown parameters :Ees and :Eds to use the expression computing estimated 
standard errors, confidence intervals, and prediction intervals. 

EXERCISES 

A ~4p!~ ,;:d(~~~N[~,m~;;1~]',:::(:::: + =d(:;)J~ h~ Z; ~ 0, 

0 0 ()~ 
14.1.1 Show that :Ei ( r) has a linear structure. 
14.1.2 Assuming 9 is given, provide an appropriate expression for :Ei. 
14.1.3 Use equation (14.8) to find a slightly simplified expression for f3(r). 
14.1.4 Use equation (14.10) to provide an expression for 9 = [&i &~ &~]'. 
SimplifY the expression. 

14.2 Give an example of a covariance matrix that does not have a linear 
structure. 



CHAPTER15 

Tests for Univariate Linear Models 

15.1 MOTIVATION 

In the present chapter, we always assume Gaussian errors in considering a 
univariate linear model, a GLMN,q(Yi; XJ3, u2 ) with rank( X) = r ::::; q, or a 
GGLM. Throughout the chapter,(}= C/3 is ax 1 and rank( C)= a::::; q. With 
(}0 an a x 1 vector of known constants, the associated general linear hypothesis 
(GLH) may be stated 

Ho : (} = Oo, (15.1) 

with corresponding alternative HA : (}-=f. 00 . In terms of Boolean variables, with 
JE() E {0, 1}, the hypothesis may be written Ho = JE((} = Oo) versus 
H A = lE ( (} -=f. (}0 ). The first issue addressed is testability. We will restrict 
attention to well-defined hypotheses and then examine the properties of the 
resulting tests. We will demonstrate that reasonable hypothesis testing procedures 
do not exist for nontestable hypotheses. 

Another important issue is whether (} is truly a fixed constant. If the model and 
its parameters are defined prior to collection of the data, then (} is an unknown, 
fixed constant. However, in the course of an analysis one frequently discovers 
interesting aspects of the data which were not considered prior to data collection 
and which are directly suggested by the results at hand. In such a case the 
dimensions and the definition of(} (implied by the choice of C) or the model itself 
may have been influenced by the observed value of y. Hypotheses suggested by 
the data (y) raise issues of multiplicity which may or may not be intractable. 

Definition 15.1 (a) Parameters defined without regard to y are a priori 
parameters. 
(b) Other parameters, including ones which are suggested by the data, are 
post hoc parameters. 

As indicated by the status of the parameter, the corresponding hypothesis is 
either an a priori hypothesis or a post hoc hypothesis. Different statistical tests are 
required for the two different kinds of hypotheses. When appropriate methods are 
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used, tests of a priori hypotheses are more powerful than tests of post hoc 
hypotheses. 

15.2 TEST ABILITY OF UNIVARIATE HYPOTHESES 

In the theoretical formulation of any hypothesis test procedure, the hypothesis is 
always manipulated in terms of its linearly independent (LIN) components. Hence 
one requires the rows of C to be LIN, with rank( C) =a~ q. In the following 
developments, we first address the issue of testability for full-rank C matrices. 
Later we consider less-than-full-rank C. With full-rank C, the formal definition 
of a testable hypothesis implies questions of testability that arise only in L TFR 
models. 

Definition 15.2 Under the assumptions of GLMN,q(Yii Xi/3, a 2 ) with 
rank(X) = r ~ q and (} = C/3 ax 1, the hypothesis H0 = JE((} = 00 ) 

versus HA = JE((} -=f. 00 ) is testable if and only if (} is estimable and 
rank( C)= a~ q. 

In FR models, f3 and (} are always estimable and corresponding tests with full­
rank C are always testable. In LTFR models H 0 = lE(/3 = 0) versus 
HA = lE(/3 -=f. 0) is never testable, while(} may or may not be estimable and hence 
may or may not be testable. 

The great majority of all results presented about properties of hypothesis tests 
depend on the assumption of Gaussian errors. In contrast, in estimation theory, 
many first- and second-moment properties are distribution free in the sense that the 
particular likelihood need not be specified (finite second moments and appropriate 
independence and homogeneity suffice). The distribution-free feature carries over 
to testability, even though the forms of the distributions of test statistics studied 
here depend strongly on the Gaussian assumption. 

The following argument helps explain the relationship between estimable 
parameters and testable hypotheses. We will find that test statistics are functions 
of iJ = C73, with 73 = l!J in the FR case. The quantity iJ needs to be invariant to 
the choice of 73 in order for the test to be invariant. We do not want the test result 
to depend on our choice of generalized inverse! We have previously proven 0 is 
invariant if and only if (} is estimable. A series of theorems were presented in 
Chapter 10 which give estimability criteria. In particular, C (X' X)- (X' X) = C 
if and only if C f3 is estimable. 

Lemma 15.1 For ax q C, the matrix M = C(X'X)-C' is ax a. 
(a) If X is full rank, then rank(M) = a provides a necessary and sufficient 
condition for testability. 
(b) If X is less than full rank, then the condition rank(M) =a provides a 
necessary but not sufficient condition for testability. 
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(c) If X is less than full rank, then rank(M) =a combined with the requirement 
C = C(X'X)-(X'X), or any other condition which guarantees estimability, 
provide a necessary and sufficient set of conditions for testability. 

Proof. Left as an exercise. 

Lemma 15.2 Estimable () = C /3 (a x 1) with rank( C) = a implies M IS 

symmetric, and unique and rank(M) = a. Also C =AX with rank(A) = a. 

Proof. Estimability allows writing C = AX (Theorem 11.3). In tum, 

M=C(X'X)-C' 
= AX(X'X)-X' A' 
= AX(X'X)+ X' A' 
=AHA'. (15.2) 

The matrix H = X(X'Xt X' is symmetric, idempotent, unique and of rank 
r = rank( X) (Theorem 1.15). Hence M is symmetric whether or not (X' X)- is 
symmetric, and M is unique. 

Lemma 1.29 gives X = L 1Dg(s1)Ri, with R~Rt = I r, Dg(si) r x r of rank 
r, L 1 N x r of rank r, L~L1 =I,., and H = L1L~ . Hence M = (ALJ)(ALt)'. 
Having C = AX implies CC' = AXX' A'= AL1Dg(st)2 L;A' = FF' for 
F = [AL1Dg(st)] and a = rank( C)= rank(CC') = rank(F) = rank(AL1) = 
rank(M) . With C = AX of rank a<:::: r, Lemma 1.6 gives 
rank( AX) <:::: min[rank(A), rank( X)], which implies a <:::: min[rank(A), r] and 
a<:::: rank(A). Also A is ax N, with a <:::: N, which implies rank( A) <::::a. Hence 
rank(A) =a. 0 

Example 15.1 The theory of linearly equivalent models provides many insights 
into the structure underlying a testable hypothesis. For any testable a x 1 
() = C/3. the last lemma and the notation developed in its proof allow defining 
full-rank N x r matrix X 1 = XR1 = L 1Dg(s 1) and r x 1 matrix /31 = R~/3-
The corresponding model equation may be written 

y = X /3 
= L1 Dg(s 1 )R~ {3 

X 1 fJ1 

+ e 
+ e 
+ e . (1 5.3) 

Choosing the 11 x r matrix C 1 = CR1 implies C 1R i = C and ()1 = C d31 = 
C1~/3 = C /3. Orthonormal P and Q ensure (PAQ't = QA P'. Also 

M , = C, (X~X,)- 1C~ = CR, (X~X,) - 1R~C' 
= C(R,~X,R~ tC' 
= M . (15.4) 

Hence wi th a less-than-full-rank model, a testable hypothesis corresponds to 
finding the linearly equivalent full-rank model with predictors X 1 = X R ., the 
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principal component scores. In tum, CI expresses the original contrasts in tem1s 
of the component score parameters, namely {31• 

Theorem 15.1 For GLMN,q(yi; Xif3, a2 ) with rank( X) = r ::::; q, () = C {3 a x 1, 
and rank( C) = a ::::; q, if () is not estimable then H 0 = IB( () = 00 ) versus 
HA = IB((J i=- Oo) is not testable. Consequently no reasonable test exists for the 
hypothesis; i.e., any test procedure will have size a = 0 and power 1 - f3 = 0. 
Furthermore the test will not be invariant to changes in irrelevant quantities. 

Proof. (Searle, 1971, p. 193-194) Intuitively, tests involve a comparison ofthe 
model with and without the linear restrictions 0{3 = ()0 • In the case ofnontestable 
hypotheses the model seems to fit equally well with or without the restrictions. If 
(a) () is not estimable, (b) {J satisfies the restricted normal equations 
X'XfJ + C'>.. = X'y, and (c) C{J = 00 (in which>.. is the vector of"Lagrange 
multipliers"), then {3 also satisfies the unrestricted normal equations 
X'X/!J = X'y. For a nontestable hypothesis, SSE is the same with or without 
restrictions! In terms of goodness of fit, the unrestricted model and the restricted 
model are indistinguishable; we have no reason to prefer one to the other. Thus, 
any test has size a= Pr{rejecting H 0 IH0 =TRUE}= 0 and power 1- f3 = 
Pr{rejectH0 !HA =TRUE}= 0. 0 

Corollary 15.1 If 08 = [ Oi ()~ ]' and ()I is estimable but ()2 is not, then tests for Os 
are indistinguishable from tests for 01. 

Proof. For ()0 = [ 00,1 00,2 ]' the model subject to the restrictions Cif3 = Oo,I is 
linearly equivalent to some unrestricted model. It then follows from the proof for 
Theorem 11.18 (with restrictions not necessarily of full rank) that, in terms of 
goodness of fit via SSE, the model constrained by both ()I = 0 1{3 - Oo,1 = 0 and 
()2 = 0 2{3 - 00,2 = 0 cannot be distinguished from the model constrained only by 
()I = 0 1{3 - Oo,I = 0. Therefore either of the two constrained models may be 
compared with the original, unrestricted model; the results in terms of difference in 
SSE would be the same. D 

Test statistics are functions of 8 = ( o{J ~ Oo)'[O(X' X)-CTI ( c{j- Oo) 
(with {3 = j3 and X' X nonsingular in the FR case) and the test statistics depend 
on C and ()0 only through 8. The ability to compute 8 depends on the existence of 
M-I = [O(X'X)-CT1 and can be computed if and only if 
M = [C(X' X)-0'] i=- 0 has full rank. Having testable() ensures full-rank M. 

In many cases it is possible to compute 8 (and therefore the test statistic) even 
though () is not estimable and the hypothesis is not testable. The result is 
formalized in the following theorem. In tum, the next theorem answers the 
question "What hypothesis is the test statistic addressing?" in such cases. 
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Theorem 15.2 If GLMN,q(Yi;X;,B,a2
) has rank(X) = r::::; q, (} = C.B (ax 1), 

andrank(C) =a::::; q, then 
(a)(} is estimable implies M = C(X'X)-C' has full rank, although 
(b) M = C (X' Xf C' having full rank does not imply (} is estimable. 

Proof of (a). (Compare with Searle, 1971, p. 189-190) It is assumed a x q C 
has (full) rank( C) = a ::::; q. Estimable C .B insures there exists unique matrix A 
such that C = A(X'X) which implies C(X'xrc' = A(X'X)A'. Therefore 
rank[C(X'XfC'] = rank[(AX')(XA')] = rank(AX')::::; a. 

It suffics to prove rank(AX') =a. Matrix theory gives a= rank(C) = 
rank[A(X'X)]::::; min{rank(AX'),rank(X)}. Therefore rank(AX') ~a and 
rank(X) = r ~a. Hence rank(AX') =a since rank(AX') cannot exceed a. 
We can similarly prove rank(A) =a since a= rank(C) = rank[A(X'X)]::::; 
min{ rank( A), rank(X'X)}. 

Proof of (b). By counterexample, with p = 1, q = N = 3: 

X .8 = [ ~ ~ ~ l [ ~~ l 
1 0 1 a 2 

(15.5) 

(X'X)- = 2 2 0 =- -2 3 0 ([
321])- 1[ 2-20] 
101 2 0 00 (15.6) 

(15. 7) 

(15.8) 

C (X' xr (X' X) = [ ~ ~ _ i] # C. (15.9) 

Hence the result is true by counterexample. 0 

Theorem 15.3 For GLMN,q(y;; Xi/3, a 2 ) with rank( X)= r::::; q, (} = C.B ax 1, 
and rank(C) =a::::; q, even though M- 1 = [C(X'X)-CT 1 exists,(} may not 
be estimable. If so, test statistics based on 8 = (Cl!J- 00 )' M- 1 (Cl!J- 00 ) can 
be computed and the testable hypothesis actually tested is H 0 = lffi(Oc = 0) 
versus HA = lffi(Oc # 0) with Oc = C(X'X)-(X'X).B- 00 . 

Proof. Searle ( 1971, p. 195) provided a proof. 
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Here Oc is not necessarily invariant to the choice of (X' X)-. For each choice 
of generalized inverse a potentially different testable hypothesis is tested! The 
special case of r = q has all (} estimable. In the special case, full rank of 
M = [C(X'X)-C'] guarantees a testable hypothesis, which corresponds to a 
unique parameter and a well-defined test. 

Example 15.2 The following example illustrates a poorly defined hypothesis. 
If p = 1, q = N = 3, Bo = 0 , 

[ 
1 1 0] 

X = 1 1 0 
1 0 1 

(15.10) 

(X 'X )- = 2 2 0 =! -2 3 0 ([321] )- [ 2-20] 
101 2 0 00 

(15.11} 

c = [ 1 0 0] 
0 1 0 

(15.12) 

[
1 0 1] 

C (X'X )- X'X = C 0 1 - 1 , 
0 0 0 

(1 5.13) 

fj' = [ It 0:1 o:2 ]', 8 = [It a:tJ', and Oc = [ 1-L + o:2 a , - o:2 ]'. More 
generally, all possible generalized inverses are given by 

(X' X )- = ! - 2 3 0 + 0 0 1 T + S 0 0 0 , [ 2 -2 0] [0 0 -1] [ 0 0 0] 
2 0 0 0 0 0 1 - 1 1 1 

(15.14) 

in which T and S are arbitrary. Choosing 

(X 'X )- = ! - 2 3 2 [ 2 -2 -2] 
2 0 0 2 

(15. 15) 

would give 8 r; = (0 11 + u,J'. 

We now consider more general forms of C. Previously we have assumed a x q 
C with 1::; rank( C)= a::; q. Can the requirements be relaxed? We are 
occasionally interested in less-than-full-rank C. In any case we will need 
C = AX (for some A) to have any hope of formulating a testable hypothesis. 
Otherwise (} will not be estimable. Estimability of (} does not require C to have 
full rank. In particular, if C /3 = (} is estimable, then so is 
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(15.16) 

Here 1::; rank(C2) < 2a. Also, Ho = JE(02 = 0) = JE[(O = 0) n (0 = 0)] is 
overstated and is identical to H 0,1 = JE(O = 0). We should test subhypothesis H 0,1 

rather than H 0 itself. 

Theorem 15.4 A test with a L TFR C matrix is indistinguishable from a test with 
C replaced by a full (row) rank matrix with rows that span all rows of C. More 
specifically, model GLMN,q(Yi; Xi,8, a 2) has rank(X) = r::; q, estimable (a x 1) 

(15.17) 

and 00 = [ 00,1 00,2 ]'. Also Ci, Oj, and Oo,j have aj rows for j E {1, 2}, 
rank( C)= rank(C1) = a1 <min{ a, q}. 
(a) Tests about 0 are indistinguishable from tests about 01; i.e., 0 = 00 iff 
01 = OoJ, and Ho = lE(O = Oo) = lE(01 = Oo,I). 
(b) Tests about 01 = 01{3 are testable; i.e., 0 1 has full row rank and 01 is 
estimable. 

Proof. The rows of 0 2 are linear combinations of the rows of 0 1; i.e., 
0 2 = AC1 for some fixed matrix A. Hence 82 = ACI{3 = A01• Also, 0 = Oo 
iff 81 = Oo,1 and 

(15.18) 

Estimable 0 implies 01 is estimable; combining estimability with 0 1 having full 
row rank implies b\ exists. While 8 = (iJ- 00 )'[C(X'X)-C'r1(0- 00 ) does 

~ ~ - -1 ~ 
not exist and cannot be computed, 81 = (81- Oo,1)'[C1(X'X) C{] (01 - Oo,1) 
does exist and can be computed. D 

The following theorem justifies using a simpler model which is linearly 
equivalent. The approach allows avoiding some of the pitfalls with LTFR models. 

Theorem 15.5 Any primary or secondary expected-value parameter testable in 
GLMN.q(Yii X;,8, a 2) is also testable in a linearly equivalent model. 

Proof. Follows almost directly from the parallel result about estimability. 

15.3 TESTS OF A PRIORI HYPOTHESES 

Theorem 15.6 The likelihood ratio test in the univariate full rank GLM may be 
expressed exactly in terms of an F. For a GLMN.qFR(yi; Xi,8, a 2 ) with 
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Gaussian errors, interest centers on a priori and estimable (} = C f3 (a x 1) with 
rank( C)= a::; q, M = C(X'X)- 10', and C and (}0 known constants. 
(a) For testing Ho = JE((} = Oo) versus HA = JE((} =/= 00 ), with 
Pr{F(v1,v2 ,w) > fcrit} =a, the likelihood ratio test (LRT) of size a is 
¢(y) = JE[F(y) > fcrit], in which 

{J = (X'X)- 1X'y 

o = c{J 
&2 = y'[I- X(X'X)-1 X']yj(N- q) 

F(y)= [(0-0o)'M- 1(0-00 )/a]/&2
• 

(b) Under H0 F(y) "'F(a, N- q, 0). 
(c) In general, F(y) "'F(a, N- q, w), with 

w = (0- Oo)' M-1(0- Oo)/a2
. 

(15.19) 

(15.20) 

(15.21) 
(15.22) 

(15.23) 

(d) Testing Ho = JE((} = 00 ) versus HA = JE(O =!= 00 ) is equivalent to testing 
Ho = JE(w = 0) versus HA = JE(w =!= 0). 
(e) Test statistic F(y) can be written as a ratio of chi-square statistics (scaled 
sums of squares) divided by their degrees of freedom, 

F( ) _ SSHja 
y - SSE/(N- q)' 

(15.24) 

with SSH =sum of squares for the hypothesis and SSE= sum of squares for error. 

Proof. Results in Chapter 11 on univariate linear model estimation provide the 
basis for the proof, which is cast in terms of the more general concept of 
supremum, rather than maximum. Doing so simplifies generalizing the proof to 
L TFR models because FR models lead to a unique estimator of {3, while L TFR 
models do not. 

Part 1. The model has primary parameters r = [/3' a 2 ]'. Unrestricted 
estimation finds values in the set r A = { r : f3 E ~q, a 2 :::: 0}. The null hypothesis 
restricts attention to the set ro = { r: (} = (}0 , f3 E ~q' a2 :::: 0} < TA. 

Unrestricted maximum likelihood estimators are derived as follows. The 
maximum likelihood estimate is any particular value of r, say 9, for which the 
likelihood 

or equivalently 

logL(r; y.) = -Nlog(27r)- Nlog(a2
)- a-2(y.- Xf3)'(y.- X/3)/2, (15.26) 

achieves its supremum. The LR T statistic is 
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sup£(,8, a 2 ; y.) 
TE71J 

'Y(Y) = sup£(,8, a 2 ; y.) 
TE'TA 

L(ro) 
L(rA). 

297 

(15.27) 

Here £(70 ) is the restricted supremum of L over all r which satisfy H 0 , while 
L(r A) is the unrestricted supremum of Lover all r which satisfy the model. 

For the ful-rank case, the unrestricted supremum is obtained at7 A specified by 

13 = (X'X)- 1X'y. 

a2 = ( y. - X 13) I ( y. - X 13) IN . 

Hence 

(15.28) 

(15.29) 

(15.30) 

Part 2. The technique of Lagrangian multipliers allows finding the supremum 
of logL(r; y.) subject to the restrictions of H 0 : (} = 0. In the following, A is an 
a x 1 vector of LaGrangian multipliers. The restricted optimization with respect to 
r is achieved by undertaking unrestricted optimization with respect to [ r' X ]' for 
the objective function 

h(r, .X; y.) = logL(r; y.)- (0,8- Oo)' A. 

Here h() = log£() for all values of ,8 satisfying the restriction. 
derivatives with respect to ,8 it is useful to write 

8h/8.X = 0,8- Oo 

a/ 2 I 2(1 1 h 8,8= -Xy.-- X X),B-0 .X 
2a2 2a2 

2 -N 1 ( -)' -8hj8a = -
2 

+ - 4 y.- X,8 (y.- X ,B). 
2a 2a 

Setting each derivative to zero and simplifying gives 

0,8 = Oo 
X' X(j + 0' .Xa2 = X'y. 

Ci2 = (y. - X(j)' (y. - X(j) IN. 
The second equation implies 

Combining the last result with the first equation gives 

(15.31) 

For taking 

(15.32) 

(15.33) 

(15.34) 

(15.35) 
(15.36) 
(15.37) 

(15.38) 
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(15.39) 

Hence 

(15.40) 

The last two equations together give 

(15.41) 

Hence f3 satisfies the restriction C f3 = (}0 and is in fact the restricted MLE of /3. 
Part 3. Demonstrating /3 is the supremum of the function, as desired, may be 

approached in various ways. A direct approach would be to begin by applying 
Theorem 9.15 in Schott (2005), which allows verifying a local maximum was 
achieved. Complete verification also requires excluding boundary values of the 
parameter space, the set over which maximization was performed, as possible 
solutions. Alternately, monotonicity properties of the likelihood could be used. 
Finally, results for the restricted model could be cast in terms of a linearly 
equivalent unrestricted model. 

Part 4. The last form allows writing the restricted maximum of the likelihood as 

(15.42) 

In tum, the LR T statistic is 

( ) = L(ro) = [(y.- X/3)'(y.- X/3)]-N/2 
'Y y L(9 A) [(y.- X/3)'(y.- X/3)]-N/2 

= ((j2;a2rN;2. (15.43) 

Part 5. The fact that 0::::; L(90 ) ::::; L(9 A) allows concluding 'Y(Y) E [0, 1]. If 
llCf3-0oll=(Cf3-0o)'(Cf3-0o)~O, then L(9o)~L(9A) and 'Y~l, 
while if JJC/3- 00 JJ » 0, then L(9o) « L(9 A) and 'Y(Y) « 1. Hence reject Ho 
for small values of 'Y(Y) with the decision function 

tPLRT(Y) = JEb(y) < 'Yal· (15.44) 

We indicate the density of 'Y(Y) by g( 'Yi 'T) [which exists due to 'Y(Y) being a well­
behaved and smooth function of a.c. random variables]. For tests of size a, the 
appropriate critical value is 'Yn as specified by 

(15.45) 

The critical region is [0, "fa]. 
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Part 6. The complexity of the density, g(r), led statisticians to work with a 
different statistic. Using the fact 

allows writing 

Hence 

(y.- X{3)'(y.- X{j) = (y.- X{J)'(y.- X/3) + 

in which 0 = C/3, 

and 

Thus 

(iJ- Oo)'[C(X'X)- 1C't 1(0- Oo) 
= SSE+SSH, 

SSE= (y.- X{J)'(y.- X{J) 

= y:[I- X(X'X)-1X']y., 

'Y(Y) = [(y.- X~)'(y.- X~)l-N/2 
(y.- Xf3)'(y.- X/3) 

= (SSE+SSH)-N/
2 

SSE 

= (1 SSH)-N/2. 
+ SSE 

(15.46) 

(15.48) 

( 15.49) 

(15.50) 

(15.51) 

Part 7. Statistical independence of /3 and (y- X/3) guarantees independence 
of quadratic forms SSE and SSH. Furthermore SSE/ a 2 

"' x2 
( N - q) and 

SSHja2 "'x2(a, w). The properties lead to the transformation 

F = SSH/rank(C) 
SSEj(N- q) 

= N- q ('Y-2/N- 1) 
a 

"'F(a,N- q,w), (15.52) 

with w = (0- 00)'[C(X'Xf10']-1(0- 00 )ja2 . Testing Ho: 0 = Oo versus 
HA : 0 -1- 00 is equivalent to testing H0 : w = 0 versus HA : w -1- 0 because w = 0 
iffO = 00 . 
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Here F is a monotone decreasing function of 'Y and 'Y E (0, 'Ym) iff 

FE [Fm, oo) with Fm = ("(;;,2/N- 1)(N- q)ja. Therefore a test based on F can 
be made equivalent to the test based on "(: tPLRT(Y) = JE["f(y) <"fa] = 
JE[F(y) > fcrit]. Hypothesis (} = Oo or equivalently w = 0 is rejected for 
improbably small values of the likelihood ratio, or equivalently, for improbably 
large values of the F statistic. 0 

Corollary 15.6.1 For GLMN,qLTFR(y; X,8, a 2 ) with Gaussian errors and 
rank(X) = r < q, (} = 0,8 (ax 1) with known constant C of rank a~ r. If 
H0 = JE((} = Oo) versus HA = JE((} -j. Oo) is a testable hypothesis, then the 
likelihood ratio test may be implemented exactly by rejecting H 0 for improbably 
large values of the statistic 

(15.53) 

Here iJ = C/!J, and /!J is any least squares estimator of ,8 based on (X' X)-, any 
generalized inverse of(X'X), and &2 = (y- X/!J)'(y- X/!J)j(N- r). 

Proof. Left as an exercise. One possible approach centers on finding a linearly 
equivalent FR model. 

Corollary 15.6.2 For GGLMN,qLTFR(y; X,8IR,8 = r, a 2 D) with Gaussian 
errors, D = D' (N x N) is known and positive definite, R,8 = r is a consistent 
system of r equations, with rank(R) = r ~ q. If (} = C ,8 is an estimable 
parameter and H0 = lE ( (} = (}0 ) versus H A = lE ( (} -j. (}0 ) is testable, then the 
LRT consists of rejecting H 0 for improbably large values of the F statistic 
_____________ (to be completed by the reader). 

Proof. Left as an exercise. 

Corollary 15.6.3 The GLMN,q(y; X,8, a 2 ) with Gaussian errors has estimable 
scalar secondary parameter e = C ,8 with 1 x q C -j. 0 and 1 x 1 m = 
C(X'X)-C' -j. 0. Ift = B/(m&2

)
112

, then the following hold. 
(a) The likelihood ratio test of size o: for testing Ho = JE(e =eo) versus 
HA = JE(e -1- eo) is ¢(y) = lE(Itl > tcrit) in which tcrit is the 100(1- o:/2) 
percentile of the t(N- q) distribution. 
(b) The likelihood ratio test of size a for testing H = JE(e >eo) versus 
HA = JE(e ~eo) is ¢(y) = lE(t > tcrit), in which tcrit is the 100(1- a) 
percentile of the t(N- q) distribution. 

For multiparameter hypotheses such asH= JE((} = Oo) we have a "generalized 
two-tail" alternative hypothesis HA = JE((} -j. 00 ). For a one-parameter hypothesis 
H = JE(e =eo), either a two-tail or one-tail test may be chosen. 
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The notation of Boolean algebra (Definition 2.5) includes three operators, 
namely V (OR), 1\ (AND), as well as --, (NOT). As throughout, JE() = 1 results 
from a "TRUE" argument, while JE() = 0 results from a "FALSE" argument. 

Definition 15.3 (a) With a an arbitrary real vector, a E ~a, and unknown 
parameter vector (}, the composite hypothesis is H = JE((} = 0), with 
H (a) = lE (a'(} = 0) a component hypothesis. 
(b) Similarly, the composite alternative is HA = JE((} -1- 0) = •H, and 
H A (a) = lE (a'(} -1- 0) = --,H (a) is the component alternative. 

Lemma 15.3 With the notation of the preceding definition, 

H=(\H(a) 
a ,.CO 

HA = v HA(a). 

(15.54) 

(15.55) 

a ,.CO 

Proof. Here(}= 0 iff a'(}= 0 '<Ia E ~a. Consequently 

JE((} = 0) = (\lE(a'(} = 0). (15.56) 
a ,.CO 

The results follow immediately. 

Definition 15.4 (a) Hypothesis H can be decomposed as an intersection of 
component hypotheses, 

H = (\H(a), (15.57) 
a ,.CO 

and ¢(y; a) is a test of component hypothesis H(a) with rejection region 
(critical region) RR(a) = {y: ¢(y;a) = 1} and acceptance region 
AR(a) = {y: ¢(y; a) = 0}. 
(b) The union-intersection test of hypothesis H is the test specified by the 
acceptance region 

RR = URR(a) 
a ,.CO 

AR = nAR(a). 
a ,.CO 

(15.58) 

(15.59) 

0 

Theorem 15.7 Union-Intersection Test (Roy, 1957) For GLMN,q(Yi; Xi,8, a 2 ) 

with Gaussian errors, rank(X) = r ~ q, and ax 1 (} = C,8 is an a priori testable 
secondary parameter[(} is estimable and rank( C)= a~ q, C and (}0 are known 
constants]. For testing H = JE((} = Oo) versus HA = JE((} -1- 00 ), the union-
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intersection test (UIT) of size a is ¢(y) = IB[F(y) > fcrit] in which 

F(y) = { (0- Oo)'[C(X' X)-C't 1(0- 00 )/a} /&2
, 

with 

jj =(X' X)- X'y 

O=CfJ 
&2 = y'[I- X(X'X)- X']yj(N- r), 

and fcrit is the 100( 1 - a) percentile of the F (a, N - q, 0) distribution. 

(15.60) 

(15.61) 

(15.62) 

(15.63) 

Proof. By the union-intersection principle, we define the estimator of the value 
ofH::=B(0=00)as 

(15.64) 

An appropriate test procedure for the component sub-hypothesis, 
H(a) = lffi(a'O = a'Oo), is a two-sided t test, ¢(y; a)= lffi(t2 (a) > t~rit). Here tcrit 
is the 100(1- a/2) percentile of the t(N- r, 0) distribution and t~rit = fcrit is the 
100(1 -a) percentile of the F(l, N- r, 0) distribution. In tum, 

( ) 
a'O- a'Oo 

t a = ------::--:-:-
(&2a'Ma)l/2' 

(15.65) 

with V(O) =&2M and M = C(X'X)-C'. Since 0 is estimable, M is 
nonsingular. The acceptance region for the test is 

and the decision rule is 

AR(a) = {y: ¢(y; a)= 0} 

= { y : e (a) :::; !crit} ' 

The union-intersection decision rule for the composite test is 

fi = (\ fi(a) 
a#O 

= (\ lffi [ t 2 (a) :::; fcrit] 
a#O 

= lffi{sup[t2 (a)] :S fcrit} · 
a#O 

Thus 

(15.66) 

(15.67) 

(15.68) 



Linear Model Theory 303 

'Y(Y) = sup[t2 (a)] (15.69) 
a#O 

could be used as a UIT statistic. However, it is convenient to simplify the form as 

[ 
( ~ )2] a'(} a'(} 

"f(Y) =sup ~2 -
0 

a#O a a'Ma 

= sup [ ( a'O - a' Oo) (a' M a) -
1 

( a'O - a' 00 ) /&2 J 
a#O 

= : 2 sup [ ( a'O- a'Oo) (a' M a)-
1 

( a'O- a'Oo) J 
a a#O 

= (0- Oo)' M-1 (0- 00 ) /&2 

= (C/3- Oo)'[C(X'X)-C't 1(C{J- 00 )/&2
. (15.70) 

The second from the last step uses a matrix theory result about quadratic forms 
(Schott, 2005, problem 9.42). We know F(y) = "f(Y)/a"' F(a, N- r,w), with 

w = (C /3- Oo)'[C(X' X)-C't 1(Cj3- Oo)/a2
. (15.71) 

Thus F(y) can be used as the UIT statistic. 

In summary, the union-intersection decision rule for the composite test is 

= lffi{sup[t
2(a)] :S fcrit} 

a#O 

= lffi [F(y) :S ~fcrit] · (15.72) 

However, one problem remains, because the size of the test is too large. In fact, 

Pr{type I error}= Pr{R =False I H =True} 

= Pr{ F(y) > a-1 fcrit(l, N- r)} 

> Pr{F(y) > fcrit(a, N- r)} =a (15.73) 

because a-1 fcrit(l, N- r) < fcrit(a, N- r). Since the individual tests for the 
component subhypotheses can be of any size, we need only specify that the critical 
value to be used throughout the proof should be afcrit(a, N- r) rather than 
fcrit(l, N- r). 0 
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15.4 RELATED DISTRIBUTIONS 

With Gaussian errors, all components of test statistics for the univariate linear 
model are quadratic forms in Gaussian variables that reduce to scaled chi squares. 
Here we give explicit forms for the distributions. 

The formulation of the likelihood ratio test makes it clear that testing a general 
linear hypothesis always corresponds to comparing two models, with the smaller 
nested inside the larger. The simplicity of univariate theory allows computing tests 
in terms of results from fitting a single model. Hence the following theorem 
applies to a wide variety of tests. Muller and Fetterman (2002, Chapter 5) included 
explicit expressions for sums of squares components of added-in-order tests and 
added-last tests, among others. 

Theorem 15.8 With Gaussian errors and rank(X) = r ::::; q, a 
GLMN,q(Yii X;/3, a 2

) has 

SSEia2 
= &2(N- r)la2 

= y'[IN- X(X'X)- X'Jyla2 

"'x2(N- r). 

Estimable(} and full rank M = C(X'X)- 10' ensure 

SSH I a 2 = (iJ- Oo)' M- 1 (8 - Oo) I a 2 

"'x2 [a,(O-Oo)'M- 1(0-0o)la2
]. 

(15.74) 

(15.75) 

Proof. Corollary 1.15 gives that [IN- X( X' X)- X']= L 0L'o is idempotent 
of rank N- r with L 0Lo =IN-rand L 0X = 0. Withy rv NN(X/3, a 2 IN) and 
/3' X' LoL'oX/3 = 0, Theorem 9.4 gives SSEia2 "'x2(N- r, 0). If 

Yt = y- XC'(CC')- 10o, (15.76) 

having y rv NN(X/3, INa2
) implies Yt rv NN[E(yt), INa2

], with 

(15.77) 

1fT= C(X'X)-X' then iJ = Ty. Testable(} ensures C(X'X)-(X'X) =C. 
Hence TXC'(CC')- 1 = Ia and 

In tum 

0- Oo = Ty- T[XC'(CC')- 1]00 

8 = (0- Oo)' M- 1(0- Oo) 

= y;T' M- 1Tyt. 

If A= T' M- 1T, then 8 = y;Ayt and 

(15.78) 

(15.79) 
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A 2 = (T'M- 1T)(T'M- 1T) 

= T'M- 1C(X'X)- {X'X[(X'X)-]'C'}M- 1T 

= T'M- 1C(X'X)- {C'}M- 1T 
=A. 

Furthermore, with Oco = C'(CC')- 10o, 

[E(Yt)J' AE(yt) = [X,8-XOcoJ'T' M- 1T[X,8-XOco] 
= [TX,8-TXOco]' M-1 [TX,8-TX0co] 
= ( (} - Oo) 'M- 1 

( (} - Oo) . 
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(15.80) 

(15.81) 

The idempotency of A combines with Yt "'NN[E(yt),INa2
] and Theorem 9.4 to 

give8ja2 "'x2 [a,(O-Oo)'M-1(0-0o)/a2
]. D 

15.5 TRANSFORMATIONS AND INVARIANCE PROPERTIES 

A test which does not vary when the data have been transformed in an 
unimportant way will usually be preferred to any test without the same invariance 
property. Any one of a large number of often mutually incompatible invariance 
properties may seem ideal, depending upon the application. However, (1) the scale 
of the data (nominal, ordinal, interval, ratio), (2) the mathematical constraints 
imposed among parameters by the hypothesis (inequalities, orderings, differences, 
ratios), and (3) the statistical distribution assumed combine to greatly narrow the 
range of sensible choices. 

Our focus centers nearly all of the time on linear models of interval-scale data 
with Gaussian errors. Furthermore, most tests of interest involve linear 
relationships among parameters. Consequently, and not surprisingly, statisticians 
have focused on invariance under linear transformations in such settings. 
Transformation of the data (or functions of the data, such as parameter estimators), 
contrast matrices, and parameters all hold some interest. 

Definition 15.5 (a) A test ¢ has scale invariance iff its value does not vary 
with changes in the units of the original observations, I.e., 
¢( {Y;J}) = ¢( {bJYiJ} ). 
(b) A test ¢ has location in variance iff its value its value does not vary with 
changes m the ongm of the original observations, i.e., 
¢({yij}) = ¢({aJ+YiJ}). 
(c) A test¢ is linearly invariant, which is often abbreviated as invariant, iff 
its value is scale invariant. Many, but not all, such applications also have 
location invariance. 

For random vector x, with A and b conforming constants, statisticians often 
describe the transformation of y = Ax + b as a linear transformation. However, a 
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precise use of mathematical definitions of transformations would classifY y = Ax 
as a linear transformation and y = Ax + b as a linear transformation plus a 
translation. 

The great majority of linear models used in practice either have IN in X or 
have IN spanned by the columns of X (i.e., IN= Xt0 for some q x 1 constant 
t 0). In either case the columns of X span an intercept (Definition 2. 7). At the 
same time, most hypotheses tested in practice exclude the intercept (Ct0 = 0). 
The parameter deserves the name because it equals the y-axis intercept in plotting 
the regression function. For the univariate GLM, the usual F test is always 
invariant to a scale transformation of the response and predictors. In addition, if 
the model spans an intercept and the hypothesis excludes the intercept, the test has 
location invariance for the response. All other tests lack location invariance. 
Section 16.8 contains details and proofs for the more general multivariate case. 

Multiplying all Yi by a nonzero constant k has simple consequences. Both f3 
and 0 are multiplied by k, while SSH and SSE are multiplied by k2 . Most 
importantly, the F statistic, p value, and R2 values do not change (are invariant). 

Theorem 15.9 (a) Both SSH and SSE are invariant to a square, full-rank 
transformation ofthe rows ofC and 00 , with Cr = TC and Oar= T00 . 

(a) The F statistic, p value, and R2 are invariant to the same transformation. 

Proof. SSE is not a function of C. 1fT (ax a) is full rank, with Cr = TC, 

SSH = (iJ- Oo)' M-1 (iJ- Oo) 

= (c{3- Oa)'[c(x'xrcT1 
(c{3- Oo) 

= (0{3- 00)' (T- 1T)'[C(X'X)-C'r 1T- 1T(C{3- 00 ) 

= (T'C{3- T00 )'[TC(X'X)-C'T'r1 (TC{3- T00 ) 

= ( Crf3- Oar )'[Cr(X' X)-c~r 1 
( Cr{3- Oar), (15.82) 

which suffices to prove the invariance of SSH. 0 

Theorem 15.10 If the model spans an intercept (Xt0 = IN for constant t 0) and 
the hypothesis excludes the intercept (Ct0 = 0), the following hold. 
(a) Both SSH and SSE are invariant to a location shift of the form y + INt1 for 
constant t 1. 

(b) The F statistic, p value, and R 2 are similarly invariant. 

Proof. The proof of Theorem 16.13 provides the result. 

15.6 CONFIDENCE REGIONS FOR 0 

Confidence regions (defined in Section 2.1 0) can be obtained by inverting 
hypothesis tests, and a confidence region can be inverted to yield a hypothesis test. 
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We now prove the main results which describe how to create confidence intervals. 
We also prove that confidence regions exist only for parameters that are testable. 

Theorem 15.11 If for any 00 E S there exists a size-a test, ¢(y), of hypothesis 
H ( 00 ) = lE ( 0 = 00 ), then there exists a corresponding confidence region for 0 
with confidence coefficient c(a) = 1 -a. Furthermore, ifthe acceptance region 
of ¢(y) is AR(Oo) = [y.: ¢(y.) = 0], then R(y) = [Oo: y E AR(00 )] is the 
corresponding confidence region. 

Proof. Acceptance region AR(00 ) is a fixed, constant region within the sample 
space with boundaries defined by the choice of 00 and a. The proof strategy is to 
define R(y) = [00 : y E AR(Oo)] and then show that R(y) is a confidence region. 
The first step is to note that 00 E R(y) if and only if y E AR(00 ). It follows that 
Pr{00 E R(y)} = Pr{y E AR(00 )}. Evaluating the probability at 00 = 0 reveals 
Pr{O E R(y)} = Pr{y E AR(Oo)IOo = 0} = 1- Pr{type I error}= 1- a. D 

Theorem 15.12 If an exact 100(1- a) percent confidence region exists for 0, 
then (a) a corresponding test procedure of size a for testing H(Oo) = JE(O = 00 ) 

exists for any Oo E S and 
(b) H ( 00 ) is a testable hypothesis. 
(c) If the confidence region is R(y), then the acceptance regwn of the 
corresponding test is AR(Oo) = [y. : Oo E R(y*)]. 

Proof. For R(y) a confidence region for() with confidence coefficient 1- a, 
Pr{O E R(y)} = 1- a. A particular fixed value 00 E S gives AR(Oo) = 
[y* : 00 E R(y.)], the set of all values in the sample space for which the 
confidence region would contain 00 . Having AR(Oo) defined allows defining a 
Boolean function ¢(y) and proving that ¢(y) is a size-a test. For RR(Oo) the 
complement of AR(00 ), AR and RR define a mutually exclusive and together 
exhaustive partition of the sample space. The Boolean function ¢(y) indicates 
whether y is in RR, with ¢(y) = 0 if y E AR(Oo) and ¢(y) = 1 if y E RR(00 ). 

Showing that the test is size a begins by noting y E AR(00 ) if and only if 
Oo E R(y). Now Pr{y E AR(Oo)IOo = 0} = Pr{O E R(y)} = 1- a. It follows 
that ¢(y) is a size-a test of hypothesis H(Oo) = JE(O = 00 ). Tests do not exist for 
nontestable hypotheses. Therefore we conclude that H(00 ) is testable. D 

The last two theorems and proofs reveal the relationship between tests and 
confidence regions. The confidence region R(y) = [00 : y E AR(00 )] partitions 
the parameter space as a function of the data. On the other hand, the acceptance 
region AR(Oo) = [y* : Oo E R(y*)] partitions the data space as a function of the 
parameter. For a given value of y, confidence region R(y) is the set of all choices 
of Oo E S such that hypothesis H(Oo) is not rejected. The fact that R(y) depends 
on the data makes it stochastic with boundaries that depend on the realization ofy. 
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Exampll' 15.3 In the context of a GLMs.,1(y;; X ;,6, o-~) with Gaussian errors. 
inverting a test to obtain a confidence region is easy to illustrate when fJ (a x 1) is 
a scalar (a = I). The two-sided t test. d>( y ) = JB( t1 > Jcr;1), of H(Bu) = 
IR(B = Bed has scalarm = C (X 'X )- C' (because a= I) and acceptance region 

AR(Bu) = { y : t 2(y) = (0 - Bn)1 /(P/·m) ~ Jeri•} 
_ { . ~(} ( 1 . ~2 )1 /2 < (}, < ~(} (j . . ~:.! . )1 /2} - y . - JcruO IH _ (l _ + ct~c O m, 

= { y : Bn E [o ± Ucri•a
2m) 112

]}. (15.83) 

It follows that the confidence region is interval 

~ . -:.! 1/ 2 
R(y ) = [B ± Ucritcr m) ]. (l5.H4) 

Here, fcrit is the appropriate critical value defined as the l 00( I - n ) percentile of 
the F(I, V - ·r , 0) distribution and V(O) = &"lm. By Theorem 15.11. the 
confidence coefficient f()r R(y ) is I - o. 

Example 15.4 In the comext of a GLM,v_,1(y;: X , ,e. o 2 ) with Gaussian errors, 
more generality arises by inverting an F test to obtain a confidence region for () 
(a x 1}. The test &(y ) = JB( F > fcrit ) of H ( 811 ) = Iffi( 0 = 811 ) has acceptance 
region 

11 fo llows that the 100( I - n) percent ellipsoidal confidence region is 

r ......._ 1 - ] - - - ? 
R(y) = tBo : (8 - OcJ ) m. (8 - Bo) ~ (u.o--)f.,.;,]. (15.86) 

The appropriate critical value fcrit is defined in Theorem 15. 7. 

In practice, high dimensional (a> 2) hyperellipsoidal confidence regions are of 
limited utility. To facilitate graphical representations, a practical approach is to 
create a set of simultaneous confidence intervals for the elements of 8. Inverting a 
Bonferroni test, a Tukey test, a Scheffe test, or any of the other multiple­
comparison test procedures gives the desired confidence region. The intervals for 
the individual elements of (} collectively define a high-dimensional rectangular 
confidence region for (} which has confidence coefficient no more than 1-o:. 

Example 15.5 A GLM N,,1(y;; X ;,6, a 2
) with Gauss ian errors allows many 

approaches to formulating simultaneous confidence intervals for the k elements or 
set Sa= la'B : a E { a1, a2 , ... , ak} J, with k finite. For each of the k choices of 
a. the Bon ferron i test of !-/ (a , 80 ) = !ffi( a'(} = a' 811 ) has acceptance region 

AR(a, Bn) = [y: F(y) = Ja'(O -- Bu) f' /( &2a'ma ) S .fcri•] . (15.87) 
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The critical value .f.:rit depends on k and is the 100[1 - (n / k)J percentik: of 
F ( I . . V - r. 0 ). The corresponding Bonfcrroni confidence interval for a'8, 

( 15.g8) 

has a confidence coefficient no greater than I - H. Similarly. the Union­
Intersection test (also known as the Schdfe test) can be inverted to obtain k 
simultaneous con lidencc intervals. The Scheffe test of IJ (a, Bu) = JE( a'(} = a' (}0 ) 

has acceptance region 

( 15.89) 

Here fn . .:rit is the JOO( 1 - n ) percentile of F (a . . 1\l- r, 0). which depends only on 
a and not on k. The Scheffe confidence interval for a'O, 

R (a,y) = [a 'O ± (a.f ... .:rit a2a'ma )112
] . (15.90) 

has a confidence coefficient no greater than I - o. Unless k is roughly on the 
order of 2". the Bonferroni intervals will be narrower than the Schefle intervals. 
Comparing'' · f u.crit to fait illustrates the claim. When set Sa comprises k points 
on a regression curve or surface. then the set of confidence intervals define a 
confidence band. Depending on the kind of confidence band desired, k can be 
very small or extremely large. Stewart ( 1987, 1991) discussed contidence band 
procedures and compared various methods with respect to their graphical 
advantages and disadvantages. 

EXERCISES 

15.1 Prove the following. 
Lemma. If X= ln 0 XEs, then (X' X)-= n- 1(Xf:8XEs)-. 

15.2 Modell is 

1 
0 
0 

0 
1 
0 

Finding a valid and unambiguous test of the general linear hypothesis 
Ho: C{3 = Oo requires verifying that (a) (} = C{3 is estimable and (b) the 
hypothesis is testable. In the following, with (}j = Cj{3, verify (a) holds or does 
not hold and verify (b) holds or does not hold. It is not sufficient to merely state 
the correct answer. You must briefly justify each positive or negative answer. For 
each estimable(}, describe each element very briefly as a function of cell means. 
15.2.1 c1 = [1 o o OJ 
15.2.2 c2 = [o 1 o OJ 
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15.2.3 03 = [ 1 1 0 0 l 

:: ::::: ][:l~ ': '_ ~ ]/~ ~] 
0 0 1 -1 

15.2.6 06 = [ ~ ~ ~ = ~] 
15.3 A complete, unbalanced, G group one-way ANOVA may be written as 

y = [ lg~ -~. g l [ ~~ l + e. 
0 0 INa J-lG 

Assuming i.i.d. ei "'N(O, a 2), a testable hypothesis of the form H 0 : (} = (}0 with 
(} = 0/3 may be expressed in terms of a possibly noncentral F statistic. The total 

sample size is N + = 2:;=! N 9 • 

15.3.1 Briefly explain what "complete" requires of a particular sample for the 
design being considered. 
15.3 .2 Briefly explain what "unbalanced" requires of a particular sample for the 
design being considered. 
15.3.3 Consider 0 = [ 1 -1 0 · · · 0 ], with (}0 = 0, and the corresponding F test in 
this particular model. 
(a) What are the degrees of freedom for the test in terms of { N 9 , G}? 
(b) Given the complete unbalanced design, what constraints on { N9 , G} must be 
present for the test to be well defined? 
(c) Find a convenient form for the noncentrality parameter in terms of 
{p,9 , N 9 , a 2 }. 

15.3.4 In this part, consider the special case of a completely balanced design. 
(a) Simplify the expression for the design matrix given the special case. 
(b) If G = 3 and 0 = [ l2 -I2], with (}0 = 0, find a convenient form for the 
noncentrality parameter in terms of {p,9 , N 9 , a 2 } (with a completely balanced 
design). 



CHAPTER16 

Tests for Multivariate Linear Models 

16.1 MOTIVATION 

Throughout the chapter, we always assume Gaussian errors in considering a 
multivariate linear model, a GLMN,p,q(Y;; X;B, :E) with rank( X) = r::; q. With 
fixed, known constants { c' u' eo}' a secondary parameter is a X b e = c BU. 
Most of the time, but not always, we will require rank( C) = a ::; q and 
rank(U) = b ::; p. The associated general linear hypothesis (GLH) may be stated 
as 

Ho: e =eo, (16.1) 

with corresponding alternative HA : e -1 ea. In terms of Boolean variables, with 
JE() E {0, 1 }, the hypothesis may be written as H0 = JE(e = eo) versus 
HA = lffi(e f:: e 0 ). Results for the univariate GLM will always be included as the 
special case of p = 1 column in Y and B, with U = [ 1]. The first issue 
addressed is testability. The above hypothesis is testable iff the parameter e is 
estimable and the contrast matrices are full rank. We do not have hypothesis 
testing procedures for nontestable hypotheses. 

Another important issue is whether e is truly a fixed constant. If the model and 
its parameters are defined prior to collection of the data, then e is an unknown, 
fixed constant. However, one frequently discovers interesting aspects of the data 
which are directly suggested by the results at hand but not considered prior to data 
collection. In such cases e may depend in some way upon the observed Y. As in 
the univariate model (Definition 15.1 ), we shall refer to parameters defined 
independently of Y as a priori parameters. Others, including ones obviously 
suggested by the data, will be called post hoc parameters. As indicated by the 
status of the parameter, the corresponding hypothesis is either an a priori 
hypothesis or a post hoc hypothesis. Different statistical tests are required for the 
two different kinds of hypotheses. 

311 



312 TESTS FOR MULTIVARIATE LINEAR MODELS 

16.2 TEST ABILITY OF MULTIVARIATE HYPOTHESES 

In the theoretical formulation of any hypothesis test procedure, the hypothesis is 
always manipulated in terms of its linearly independent (LIN) components. 
Therefore one requires the rows of a x q C to be LIN and the columns of p x b U 
to be LIN [rank(C) =a:::; q and rank(U) = b:::; p]. For a univariate model 
(p = 1 ), U is a scalar, U = 1. In the following, we first address the issue of 
testability for such full-rank C and U matrices. Later we consider more general 
C and U. The formal definition of a testable hypothesis implies questions of 
testability arise only in L TFR models. 

Definition 16.1 Under the assumptions of GLMN,p,q(Yi; X;B, :E) with 
Gaussian errors, rank(X) = r:::; q, and ax b 8 = CBU, the hypothesis 
Ho = JE(8 = 8o) versus HA = JE(8 -1- 8o) is testable iff 
(1) rank( C) =a:::; q, (2) rank(U) = b:::; p, and (3) 8 is estimable. 

In FR models, B and 8 are always estimable and corresponding tests are 
always testable. In LTFR models Ho = JE(B = 0) versus HA = JE(B -1- 0) is 
never testable, while 8 may or may not be estimable. As in the univariate case, 
estimability and testability require only the least squares assumptions 
(Homogeneity, Independence, Linearity, Existence of finite second moments) and 
do not require a particular distribution. 

To motivate the relationship between estimable parameters and testable 
hypotheses, we highlight the following argument. We seek test statistics which are 
functions of e = C BU, with B = B in the FR case and U = 1 in univariate 

models. The quantity S must be invariant to the choice of B for the test to be 
invariant. The test result should not depend on the choice of generalized inverse! 
We have previously proven S is invariant iff 8 is estimable. A collection of 
theorems in Chapters 11 and 12 give estimability criteria. In particular, 
C(X'X)-(X'X) = C ifand only ifCBU is estimable. 

Lemma 16.1 A GLMN,p,q(Y;; X;B, :E) leads to considering constants ax a 
M = C(X'X)-C' andp x bU. 
(a) If X is full rank, then rank(M) =a and rank(U) = b provide necessary and 
sufficient conditions for testability of a x b C BU. 
(b) If X is less than full rank, then the conditions rank( M) = a and 
rank(U) = b provide necessary but not sufficient conditions for testability. 
(c) If X is less than full rank, then the conditions rank(M) = a and 
rank(U) = b combined with the requirement C = C(X'X)-(X'X), or any 
other condition which guarantees estimability, provide a necessary and sufficient 
set of conditions for testability. 

Proof. Left as an exercise. 
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Certain related conditions are worth remembering. With full rank X, the rank 
of M is the rank of C. No matter the rank of X, with C a x q, both rank( C) and 
rank(M) are necessarily bounded above by min( a, q). 

Theorem 16.1 A nontestable hypothesis has no reasonable test. For 
GLMN,p.q(Y;;XiB,:E) with Gaussian errors and rank(X) = r::; q, 
nonestimable 8 = C BU (a x b) may have rank( C) = a ::; q and 
rank(U) = b::; p. Even with rank(C) =a and rank(U) = b the hypothesis 
H0 = JE(8 = 8 0 ) versus HA = JE(8 =/= 8 0) is not testable. No reasonable test 
can be found; i.e., any test procedure will have size a = 0 and power 1 - (3 = 0. 
Furthermore the test will not be invariant to changes in irrelevant quantities. 

Proof. The univariate model is a special case of the multivariate modeL Hence 
the proof of the nonexistence of a valid test in the univariate case demonstrates a 
valid test can not be guaranteed in the multivariate case. D 

Corollary 16.1 If 8 8 = [ 8~ 8~ ]' and 8 1 is estimable but 8 2 is not, then tests for 
es are indistinguishable from tests for el. 

Proof. The previous chapter has a proof for the univariate case. The U matrix 
plays no role in estimability, although it does affect testability. D 

The multivariate test statistics described in Chapter 3 are all functions of 

(16.2) 

The b x b matrix generalizes SSH = 8 from the univariate setting, which leads to 
the alternate notation Sh = .&. In the FR case B = B and X' X is nonsingular. 

The test statistics depend on C and 8 0 only through .&. In a univariate model 

(p = 1 or b = 1), .& is a scalar. The ability to compute .& depends on the 
existence of [C(X'X)-C'r1

. The value of .& can be computed iff 
M = C(X'X)-C' =/= 0 has full rank. Testable 8 guarantees full-rank M. 

In many cases it is possible to compute .& (and therefore the test statistic) even 
though 8 is not estimable and the hypothesis is not testable. The result is formally 
stated in the following theorem. Subsequently, we prove a theorem which answers 
the question "What hypothesis is the test statistic addressing?" in such cases. 

Theorem 16.2 The GLMN,p,q(Y;; XiB, :E) with Gaussian errors has 8 = CBU 
ax b, rank(X) = r::; q, and rank( C)= a::; q, andrank(U) = b::; p. 
(a) 8 is estimable implies M = C(X'X)-C' has full rank, although 
(b) M = C (X' X)-C' having full rank does not imply 8 is estimable. 

The preceding chapter includes a proof in the univariate case. As always, U 
plays no role in determining estimability. 
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Theorem 16.3 For a GLMN,p,q(Y;; X;B, :E) with Gaussian errors, 
rank(X) = r < q, rank(C) =a::; q, and rank(U) = b::; p, e = CBU 
(ax b) may not be estimable even though M-1 = [C(X'XfCT1 exists. If 
so, test statistics based on 

.& = (CBU- e 0 )'M-1 (CBU- e 0) (16.3) 

can be computed and the testable hypothesis actually tested is H 0 = JE(ec = 0) 
versus HA = JE(ec -1- 0), with ec = C(X'X)-(X'X)BU- e 0 . 

Proof. Searle ( 1971, p. 195) provided a proof in the univariate case. 

Without estimability, ec is not necessarily invariant to the choice of (X' X)-. 
For each choice of generalized inverse a potentially different testable hypothesis is 
tested! An example of such a poorly defined test is given in the previous chapter. 

We now consider more general definitions of a x q C and p x b U. Previously 
we have required rank(C) =a::; q and rank(U) = b::; p. Can the requirement 
be relaxed? We are occasionally interested in matrices C and U which are not of 
full rank. In any case we will need C =AX (for some A) to have any hope of 
formulating a testable hypothesis. Otherwise e will not be estimable. 

Estimability of e does not require c to have full rank. If a X b c, BU, = e, 
is estimable, then so is the 2a x 2b parameter 

[g~]B[U,Ul]= [g:~][U,U!] (16.4) 

C2BU2 = [ ~: ~: ] = e2 . 
(16.5) 

However, e 2 is not testable because rank(C2) =rank( OJ) =a< 2a and 
rank(U2) = rank(U1) = b < 2b. Also H 0,2=JE(e2=0) <=? JE[(e1 =O)n 
(e, =O)n(e1 =O)n(e1 =0)] is overstated and identical to H 0,1 =lE(e1 =0). 
We should test subhypothesis H 0,1 rather than H 0,2. 

Theorem 16.4 A test with a LTFR C matrix cannot be distinguished from a test 
with C replaced by a full (row) rank matrix with rows that span all rows of C. 
More specifically, GLMN,p,q(Y;; X;B, :E) has Gaussian errors, 
rank(X) = r::; q, estimable e = CBU (ax b), rank(C) = a1 < min(a,q), 
rank(U) = b ::; p, 

e=CBU 

= [g~]Bu = [~~], (16.6) 

and eo= [e0,1 e 0,2 ]'. For j E {1, 2}, Cj, ej, and eo,j have aj rows and 
rank( C)= rank( OJ)= a 1 <min{ a, q}. 
(a) Tests about e cannot be distinguished from tests about e,; i.e., e = e 0 iff 
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e1 = eo,1, and Ho = JE(e =eo)= JE(e1 = eo,J). 
(b) Tests about e1 = OIBU are testable; i.e., 01 has full row rank, u has full 
column rank, and e1 is estimable. 

Proof. The rows of 0 2 are linear combinations of the rows of 0 1; i.e., 
0 2 = A01 for some fixed matrix A. Hence e 2 = A01BU = Ae1 and 
e =eo iffe1 = eo.1. Also 

e = OBU = [~]01BU 

= [ ~~ J = [ ~ J e1 . (16.7) 

Estimable e implies e 1 is estimable; combining estimability with full rank of 0 1 
implies .&1 exists. While .& = (e-eo)'[O(X'X)-OT1(S-eo) does not 

exist and cannot be computed, .& I = ( 81 -eo, I)' [ 01 (X' X)-0{ r I ( 81-eo.1) 
does exist and can be computed. The commonly used tests require the existence of 
~-1 ~ . 

:E. = (U':EU)-1. Full column rank of U (and the assumption of full-rank :E) 
guarantees the desired property. 0 

Theorem 16.5 A test with a L TFR U matrix is indistinguishable from a test with 
U replaced by a full (column) rank matrix with columns that span all columns of 
U. More specifically, a GLMN,p,q(Yi; X;B, :E) has Gaussian errors, 
rank(X) = r::::; q, estimable e = OBU (ax b), and rank(O) =a::::; q. For 
j E {1, 2} Uj p X bj, u = [ ul u2], and ej a X bj, e = [ e1 e2], 
eo= [eo,t eo.2J, and rank(U) = rank(U1) = b1 ::::; min{b,p}. 
(a) Tests about e are indistinguishable from tests about e 1; i.e., e =eo iff 
e1 = eo,lo and Ho = JE(e =eo)= JE(el = eo,I). 
(b) Tests about e 1 = OBU1 are testable; i.e., 0 has full row rank, U1 has full 
column rank, and e1 is estimable. 

Proof. (a) All columns of U 2 are linear combinations of columns of U1: 
U2 = U1A for fixed A. Here e = e 0 iff e 1 =eo 1, because e2 = OBU2 = 

OBU1A = e 1A. (b) Matrix .&1 = (S1-eo,I)'[O(X'X)-OT1(SI-eo,I) 
exists and can be computed. The commonly used tests require the existence of 
~-1 ~ 

:E. = ( U{:EUJ) -l, which is guaranteed by the full column rank of U1, even 
though (U'f.U) is singular and (U'f.u)- 1 does not exist. 0 

The following theorem justifies using a simpler model which is linearly 
equivalent. The approach allows avoiding some of the pitfalls with L TFR models. 

Theorem 16.6 Any primary or secondary expected- value parameter testable in 
GLMs p,q (Yi; X;B, :E) is also testable in a linearly equivalent model. 
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Proof. The result follows from the parallel result about estimability. 

16.3 TESTS OF A PRIORI HYPOTHESES 

The present chapter focuses on the GLH, Ho : e = eo, for a multivariate 
GLMN,p,q(Y;; X;B, :E) with rank( X)= r ~ q and Gaussian errors. Here we 
consider only testable e = c BU of dimensions a X b. Testable parameters must 
be estimable and have rank(C) =a~ q, and rank(U) = b ~ p, for fixed and 
known C, U, and e 0 . The primary parameters Band :E have estimators 

jj =(X' X)- X'Y 

~ = Y'[I -X (X'X)-X']Yj(N- r). 

(16.8) 
(16.9) 

Next we derive tests of H0 = JE(e = e 0) versus HA = JE(e -=f. eo) in terms 
of secondary parameters 

e=CBU 
:E.= U':EU, 

(16.10) 
(16.11) 

which are ax band b x b respectively. With M = C(X'X)-C' (ax a), fully 
specifying distributions under the alternative involves the b x b shift matrix 

or the noncentrality matrix 

!l=~:E,;-1. 

Corresponding estimators, with Ve = N- rank( X), are 

e = CBU 

Also 

-1 ~ I~ 

ve Be = :E. = U :EU 
Bh = .& = (e- ea)'M-1(8- eo). 

e- eo"' Na,b(CBU- eo, M, :E.) 
Be"' Wb(ve, :E., 0) 
Bh "'Wb(a, :E.,~). 

(16.12) 

(16.13) 

(16.14) 
(16.15) 
(16.16) 

(16.17) 
(16.18) 
(16.19) 

The parameters determining the distributions of the secondary parameter 
estimators make it obvious that any reasonable test statistic must be a function of 
.& and~., which gener~lize SSH and &2 (equivalent to SSE) and reduce to them if 
p = 1. Properties of special cases help motivate the choice of statistics. Most 
importantly, if b = 1 (always true for p = 1), then the b x b matrix 
~ ~~-1 n; a = ~:E. /a is 1 x 1, a scalar, and exactly equals the usual F random variable 
from univariate theory. In the same case, n = ~:E;:- 1 is 1 x 1 and reduces to 
w = ( (}- (}0)' M-1 ( (}- (}0 )cr;:-2, the F noncentrality. More generally, if 
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~ ~-1 

s = min( a, b) = 1, then the b x b matrix ~:E. /a has a single nonnegative 
eigenvalue which is a constant multiple of an F random variable. 

The most general case, with s = min(a,b) > 1, creates more complication. In 
contrast to the univariate results, which are a special case, the multivariate 
likelihood ratio and union-intersection tests differ. Furthermore, other criteria, 
such as the substitution principle, lead to distinct tests. A form of linear in variance 
and exact test size stand as the properties demanded of all candidate statistics. 

16.4 LINEAR INV ARIANCE 

A multivariate test is said to be linearly invariant if the hypothesis test 
(interpreted as a decision function) does not vary under full-rank transformation of 
the response variables being tested. Transformations of the underlying model 
provide a straightforward way to formalize the idea. For testable S = CBU, a 
test of H0 : CBU =So in GLMN,p,q(Yi; X;B, :E) with Gaussian errors may be 
expressed in terms of a model of Yu = YU ( N x b) by the transformation 

YU=XBU+EU 
Yu=XBu+Eu. (16.20) 

With :E. = U':EU, the transformation implicitly defines the 
GLMN,b,q(Yui;X;Bu,:E.). In tum, testing H0 : CBu =So is obviously 
equivalent to testing Ho: CBU =So. 

Definition 16.2 A GLMN,p,q(Y;; X;B, :E) with Gaussian errors and testable 
S = CBU allows testing Ho: CBU =So. 
(a) lfYu = YU and Bu = BU, the test is linearly invariant whenever the 
same test occurs for H0 : ST = SoT in GLMN,b,q(Yu;T; XiBu, T':E.T), 
with constant and full-rank T (b x b). As always, :E. = U':E.U. 
(b) The test has location invariance whenever the model spans an intercept 
(X t 0 = IN) and the hypothesis excludes it ( Ct0 = 0). 

Location invariance also can be expressed in terms of the transformation 
Yu; + INt~ for constant t 1 (b x 1). Clearly E(Yu; +IN~) = (X;Bu + INtD. 
However, the specific impact on Bu = BU varies with the design. In the special 
case of a full-rank model with IN as the first column (defining the intercept 
parameter),~ is added to the first row of Bu. 

Some authors include location invariance as part of linear invariance. In any 
case, the only functions of .& and :E. which allow achieving the invariance 

~ ~~-1 

properties are the eigenvalues oHl = ~:E. . 

Although many appealing size-a tests exist, for general :E, no uniformly most 
powerful (UMP) test of size a (among scale- invariant tests) can be found for the 
general linear multivariate hypothesis. Next we consider four commonly used test 
procedures all of which are invariant, unbiased, and admissible. 
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16.5 FOUR MULTIVARIATE TEST STATISTICS 

The multivariate (MULTIREP) statistics involve Ve = N -rank( X), M (ax a) 
with rank(M) =a,.& (b x b) with rank(.&) = s =min{ a, b }, and rank(:E.) =b. 
The four multivariate test statistics of interest are defined in terms of the 

s =min{ a, b} nonzero eigenvalues of .&:E~ 1 , which is usually not symmetric. 
The symmetric and full-rank nature of :t. ensures full-rank F exists such that 
~ ~ ~~-1 

:E. = F F' and :E. = p-t F-1. The eigenvalues of ~:E. coincide with the 
eigenvalues of the symmetric matrix F-1.&F-t, while the eigenvectors differ by 
the transformation VF = F-1 V. The coincidence may be proven by observing 

~~-1 

(~:E. - >..Ib)v = 0 
p-1(£p-tp-l- >..Ib)(FF-1)v = p-10 

(F- 1£p-t- >..Ib)(F-1v) = 0. (16.21) 

With probability 1, :E~ 1 
is positive definite and ~ is either positive definite or 

positive semidefinite, and both are symmetric. Hence the eigenvalues in the last 
equation are real and nonnegative (F- 1.&F-t and.& are congruent and therefore 
have the same number of positive, negative, and zero eigenvalues). The b x b 

~~-1 ~ ~ 

matrices ~:E. and F- 1~F-t have ranks= min{a,b} because :E. and Fare 

rank b, while rank(.&) =a= rank(M). Various authors discuss matrices which 
differ by a simple multiple (Kuhfeld, 1986). The matrix Be = ve:t. (b x b) is the 
sum of squares of error and reduces to SSE in the univariate case. Considering 

BhB,-1 = £:t~ 1 
fve, the multivariate generalization of SSH/SSE, is often 

convenient. The multivariate analog of the total sum of squares is Bt = Bh +Be. 

The test statistics can also be defined in terms of the eigenvalues of BhBt-1, 
which reduces to SSH/SST, or BeBt-1, which reduces to SSE/SST. Writing 
Bh = .& leads to Table 16.1, which summarizes algebraic relationships among the 
different sets of eigenvalues. Table 1 in Muller, LaVange, Ramey, and Ramey 
(1992) contains additional information. Here 0 ~ Pk ~ 1 is one of s generalized 
canonical correlations. It reduces to the sole multiple correlation for a univariate 
model which spans an intercept combined with a hypothesis excluding the 
intercept. 

Table 16.1 Eigenvalues of Matrix Labeling Column 
as a Function of Eigenvalues of Matrix Labeling Row 

B"B;1 BhBt-1 BeBt-1 

BhBe-l ¢k ¢d(l + ¢k) 1/(1 + ¢k) 
BhBt-l {J%/(1- 7J%) ~2 

Pk (1 - Pk) 
B,Bt-1 (1- :\k)/:\k (1 - :\k) >:k 
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Definition 16.3 Wilks lambda (A), the likelihood ratio statistic, is 

A= IB"B;1 + Ibl-1 

= IBei/IBh +Bel= IBei/IBtl 
= IBeBt- 1

1 

b 

=II (1- Pk). 
k=l 
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(16.22) 

Definition 16.4 Roy's largest root (RLR), the union-intersection principle 

statistic, is RLR = ¢max(BhB,.-1 
), which is the largest eigenvalue of BhBe-1

, 

say ;,61. The variable ;,61 is a one-to-one function of and hence equivalent to 
~2 

PI· 

Definition 16.5 The Hotelling-Lawley trace (HLT, ANOVA analog) is 

b b 

HLT = tr(BhB;:1
) = 2::¢k = LPkf (1- Pk). (16.23) 

k=l k=l 

Definition 16.6 The Pillai-Bartlett trace (PBT), the R 2 analog statistic, is 

b 

PBT = tr(BhBt- 1
) = LPk. (16.24) 

k=l 

Pillai ( 1955) justified the PBT on heuristic grounds. It is linearly invariant, and 
the distribution depends only on the dimensions of the problem under the null. 
The other three statistics considered in the chapter share the same properties. 

Roy (1957) proposed ¢1 as a multivariate test statistic and derived the central 
distribution of Pi = ¢1/ (1 + ¢1 ). Some authors (including Muller and Peterson, 
1984) refer to Pi as Roy's largest root. 

Lawley (1938) and Hotelling (1951) proposed T 2 as a test statistic and derived 
the central distribution ofT2 jv,. = tr(BhBe-1 ). Some authors refer to tr(B,Be- 1) 

as "the trace criterion" or as "Hotelling's trace criterion" (Timm, 1975). 

Timm (1975, p. 148-149) noted the noncentral distributions have been very 
difficult to compute, although recent advances in algorithms have led to published 
tables. Muller and Peterson ( 1984) also discussed the non central distributions. 

For a multivariate model, Be ~ Wb(ve, :E.), independently of 

(16.25) 

Under Ho, ~ = 0 and.& has a central Wishart distribution. Aside from certain 
special cases, addressed later, the distribution of A is complicated. 
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Theorem 16.7 Under H0 , the statistic A equals a product of b independent beta- I 
random variables. More specifically, if Be "' Wb(ve, :E) independently of 
Bh "' Wb (a, :E) and Ve ?: b, then 

(16.26) 

with {xk} independent beta random variables, Xk "'jj[(ve+k-b)/2,a/2]. If 
a = 1, A has the same distribution as a single beta random variable with 
parameters { (ve + 1 - b) /2 , b /2} and hence is a one-to-one function of an F. 

Proof. Rao (1973, Section 8.b.2.xi, Theorem 3.4.3, Corollary 3.4.3) gave a 
proof. 

Corollary 16.7 With s =min{ a, b }, 
(a) if s = 1, then 

(b) if s = 2, then 

~-I 

F=(A -1)(ve+1-b)/(la-bl+1) 
"'F(la- bl + 1, Ve + 1- b), 

F = (A-I - 1) ( Ve + 1 - b) I (I a - b I + 2) 

"' F[2la - bl + 8, 2( Ve + 1 - b)]. 

Proof. Morrison (1990) provided a proof. 

(16.27) 

(16.28) 

The results can be used for an exact LRT when s = 1 or s = 2, which covers a 
useful proportion of hypotheses tested in practice. 

Theorem 16.8 The likelihood ratio test (LRT) statistic is A. More specifically, 
GLMN,p,q(Y;; XiB, :E) with Gaussian errors has estimable e = CBU ax b, 
rank(X) = r::::; q, rank( C)= a::::; q, and rank(U) = b::::; p, C, U, and e 0 

known constants. The LRT of H0 = JE(e = e 0 ) versus HA = JE(e -1- e 0) is 

fiA = JE(A <to) with A= IBhBe-l + Il-1 = IBei/IBh +Bel and appropriate 
~ ~ ~ 1 ~ 

critical value to. Here e = CBU, Bh = (e-eo)'[C(X'X)-CT (e-eo), 
f = Y'[I-X(X'X)- X']Y/(N-r), and Be= U'fU(N- r). 

Proof. Anderson (2004) included a proof. The result follows from expressing 
the test in terms of the unconstrained and constrained likelihood expressions in the 
proofs for MLEs of B and e. The proof directly generalizes the univariate proof. 

Hypothesis H 0 is rejected for improbably small values of A, relative to an 
appropriate critical value. 
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Theorem 16.9 The union-intersection (UI) test statistic is ¢max(ShS;; 1
). The 

GLMN,p,q(Y;; X;B, :E) with Gaussian errors has estimable e = CBU ax b, 
rank(X) = r::::; q, rank(C) =a::::; q, and rank(U) = b ::::; p, with C, U, and 
e 0 known constants. For testing H0 = lffi(e =eo) versus HA = lffi(e -I- e 0 ) 

the UI test of H 0 versus HA is fiA = lffi[¢max(ShS;;1
) > ln] and has test statistic 

¢max(shse-l), the largest eigenvalue of shse-l and sometimes described as 
Roy's largest root statistic. The appropriate critical value isla. Hypothesis H 0 is 
rejected for improbably large values of the test statistic relative to la, the 
appropriate critical value. 

Proof. Any hypothesis involving eo -=f. 0 can be converted to a test with 
e 0 = 0. The proof (in the section on invariance below) is based on the fact 
e = 0 iffeb = 0 'Vb E ~b (b is b x 1). In terms of Boolean algebra we have the 
following decomposition of the null hypothesis into infinitely many univariate 
hypotheses: 

Ho = lffi(e = 0) 

= (\lffi(eb = 0) 
brfO 

=1\Ho(b). (16.29) 
brfO 

For a given b -=f. 0, H 0 (b) is a univariate joint hypothesis and eb is an (ax 1) 

vector with Sb ~ Na[eb, b':EbC(X'Xf1C']. The result is easily derived from 
Yb ~ N:'V(XBb,b':EbiN). The univariate UI test of H0 (b) = lffi(eb = 0) IS 

based upon the statistic 

b'Shb/a F(b; Y) = ----'--
b'Seb/ve 

(b'S) [C(X' X)-0']-1 (Sb) /a 
b'U'Y'[IN- X(X'X) X']YUb/ve. 

(16.30) 

The distributions of Sh and Be are both Wishart. Hence qj = b' Sjb is distributed 
as a scaled chi square. The univariate UI test is 

with decision function 

fiA(b) = fiA(b;Y) 
= lffi[F(b; Y) > fcrit], 

fio(b) = fi o(b; Y) 
= lffi[F(b; Y) ::::; fcrit] 
= 1-fiA(b). 

(16.31) 

(16.32) 

The appropriate critical value, fcrit. is the 100 ( 1 - a) percentile of the F (a, Ve) 

distribution. The appropriate critical value does not depend on b. 
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Corresponding acceptance and rejection regions are 

AR(Ho) = nAR[Ho(b)] 
brfO 

RR(H0 ) = URR[Ho(b )]. 
brfO 

(16.33) 

(16.34) 

The regions are sets in the sample space, AR(Ho) = {Y : fl A =TRUE} and 

RR(H0 ) = {Y: flo= FALSE}, while 

and 

AR[H0 (b)] = {Y: fl 0 (b) =TRUE} 
= {Y : F(b; Y) ::::; fcrit} 

RR[H0 (b)] = {Y: fl 0 (b) =FALSE} 
= {Y : F(b; Y) > fcrit} . 

(16.35) 

(16.36) 

The decision function is flo= lffi[Y E AR(Ho)] and the test is 
fl A = lffi [Y E RR( H 0) ]. Thus by the union-intersection principle we have 

flA = v flA(b) 
brfO 

Ho = /\ Ho(b). 
brfO 

With the above notation the heart of the proof is simple: 

flo= lffi[Y E AR(H0 )] 

= (\lffi{Y E AR[H0 (b)]} 
brfO 

= (\ lffi[F(b; Y) ::::; fcrit] 
brfO 

= lffi [sup{F(b; Y)}::::; fcrit] = lffi(>.::::; fcrit). 
brfO 

(16.37) 

(16.38) 

(16.39) 

Similar equalities allow proving fl A = Jffi(>. > fcrit)· Thus the Ul statistic is 

>. = sup{ F(b; Y)} 
brfO 

=sup( b'Shb) (Ve) 
brfO b' Seb a . 

(16.40) 

Given se-1 exists with probability 1, so does the Cholesky decomposition 
se-1 = L'L and L-1. Ifw = (L-1 )'b, then b = w'L and 
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with ¢max the largest root of characteristic polynomial 

Thus the U-I test is 

ILShL1
- '¢II= ISh- '¢Bel 

= IS,se-1 
- ¢II = 0. 

Ha = lffi(¢ > fcrit) 

= lffi[(v,ja)¢max(S,Sc-
1

) > fcrit] 

= lffi[¢max(ShS;
1

) > fcritalve]. 
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(16.41) 

(16.42) 

(16.43) 
D 

In practice, the statistic Pi = ¢max I ( 1 + ¢max) (which is a monotone function of 
¢max) is preferred because 0 :::; ¢max < oo while 0 :::; Pi :::; 1. Therefore Pi may be 
interpreted simply as the fraction of variance controlled. Since ¢max = 
Pi I ( 1 - Pi), the critical values bear the relationship la = X a I ( 1 - Xrx). 

The distribution ofpi has been tabulated and charted by Heck, with the symbol 
B,. Heck's charts are given in the appendix of Morrison's (1990) book. Timm's 
book gives both tables and charts of the distribution. Also, Pillai (1956) gave an 
algorithm to approximate the right tail probability. Code for Pillai's approximation 
is listed in an appendix of Harris (1975). Free software LINMOD also implements 
the algorithm. The Appendix (Section A.2) of the present book contains a 
description ofLINMOD and where to retrieve it from the Web. A missing value is 
returned if the p value exceeds 0.10 because the algorithm is guaranteed to work 
for small p values. Under H0 , the distribution of pi has parameters s = min( a, b), 
rn = (la-bl-1)12, and n = (ve-b-1)12. Hypothesis Ho is rejected ifpi > Xa. 

Theorem 16.10 The substitution test (ST) principle leads to the following test for 
the GLMN.p.q(Y;; X;B, :E) with Gaussian errors, estimable 8 = CBU (ax b), 
rank(X) = r:::; q, rank(C) =a:::; q, rank(U) = b :::; p, and known constants 
C, U, 8 0 . The ST of Ho = JE(8 = 8o) versus HA = 'Ho is 
fiA = lffi[tr(Shse- 1) > t 0] with test statistic tr(Shse- 1 ), the Hotelling-Lawley 
trace, and appropriate critical value t0 . Hypothesis H 0 is rejected for improbably 
large values of the test statistic relative to the appropriate critical value. 

Proof. Arnold (1981, p. 363-364) included a proof. 
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The substitution principle may be described as the conditioning principle. If :E. 
were known, then the UMP, invariant, size-a test would reject the hypothesis for 
improbably large values of tr(Sh:E,;-1 ). Substituting :E. for :E. removes the 
conditioning and suggests a test which may or may not have desirable properties. 

Under the null, the eigenvalues of Shst- 1 will be close to zero. Data that do 
not support the null yield large eigenvalues. Hence each test statistic discussed can 
be thought of as a means of summarizing the information in the s = min (a, b) 
nonzero eigenvalues. Roy's criterion uses the largest eigenvalue, the LRT uses a 
product of nonzero eigenvalues (a one-to-one function of a geometric mean), and 
the two trace criteria look at weighted sums ofthe eigenvalues. Each statistic has a 
reasonable interpretation in terms of the eigenvalues. 

The one- and two-sample versions of T 2 generalize the one sample and 
independent groups t tests to allow simultaneous consideration of p response 
variables. Both correspond to special cases of the four general statistics, which 
provide the same p value and conclusion in any situation with a = 1. 

16.6 WHICH MULTIVARIATE TEST IS BEST? 

The existence of four tests leads to an obvious question: Which one is best? 
Not surprisingly, the answer varies with the definition of "best" and the particular 
hypothesis being tested. Here we emphasize accuracy of test size, robustness to 
violation of assumptions, and power. The multipart answer to the question derives 
from a few dimensions and one set of eigenvalues for data analysis and a 
corresponding set of eigenvalues for power analysis. 

All four test statistics are functions of the data solely through the s = min( a, b) 
~ ~~-1 

nonzero eigenvalues of the b X b matrix n =~:E. = ShS; 1ve. Equivalently, 
the s generalized, squared canonical correlations, { p~}, the eigenvalues of 

.&(.& + ve:E.)-1 = Sh(Sh + Se)-I, suffice. The only additional values needed to 
compute any of the tests are the constants {a, b, ve} with Ve = N- r. Under the 
null, {a, b, ve} completely determine the distribution, and all four are exact size a. 

Although all four tests are size a, typically they give four distinct p values. 
Reporting only the smallest is statistically dishonest due to the bias introduced. 
More precisely, the reported value gives a test with inflated test size. 

Specifying the distributions of the four test statistics under the alternative 
requires knowing only {a, b, ve} and the nonzero eigenvalues of the noncentrality 
matrix n = ~:E,;- 1 , or equivalently {pk}, the eigenvalues of~(~+ ve:E.)- 1

. 

Although rank(O) = s with probability 1 and 1 ::::; s ::::; b, rank(O) = s. with 
0::::; s. ::::; s. Heres. = 0 iff!l = 0 iff8 = 8o iffthe null hypothesis is true. 

If s = 1, then the four multivariate test statistics (1) are one to one functions of 
each other, and (2) provide exactly the same p value and power and, (3) the unique 
test is optimal in many ways. The test is then exactly size a, invariant, provides 
the likelihood ratio test and the union-intersection test, and is uniformly most 
powerful among all size-a and invariant tests. 
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If s > 1, no uniformly most powerful test exists among the class of size-a and 
invariant tests for finite samples. Which test is most powerful depends on the 
particular set of eigenvalues of n or equivalently the particular set of {PH. Some 
performance differences among the tests are known. Olson (1974, 1976, 1979) 
provided extensive studies of power and robustness for the multivariate tests. He 
characterized alternative hypotheses as involving either concentrated noncentrality 
if s* = 1 or diffuse noncentrality if s* > 1. Concentrated noncentrality ensures 
RLR is the most powerful test of the four, while diffuse noncentrality ensures RLR 
is the least powerful test of the four. Olson concluded RLR was the least robust 
while PBT was the most robust. For the range of cases he considered, he strongly 
preferred PBT, with LRT in second place. 

Example 16.1 The following unusual example occurred in an actual data 
analysis. For a data set with s = 5, m = 0, N = 10, the following p values were 
obtained: Wilks lambda p = 0.1896. Pillai's trace p = 0. 7799, Hotelling-Lawley 
trace p = 0.0030, Roy's largest root ]J = 0.0001 . Such examples are uncommon. 
Usually the various test multivariate statistics are in approximate agreement. 

16.7 UNIVARIATE APPROACH TO REPEATED MEASURES: UNIREP 

Muller and Barton (1989) detailed the origin and history of the UNIREP tests. 
Although they are not invariant to a full-rank transformation of the transformed 
response data, they do meet a weaker criterion, namely invariance to a full-rank 
orthonormal transformation. All linearly invariant tests, including the four 
"MUL TIREP" tests, are also orthonormal invariant. 

The sphericity property is met whenever E* has all eigenvalues of the same 
size. With sphericity, E = 1, and the uncorrected test provides an exact size a with 
uniformly most power, among the class of similarly invariant tests. Without 
sphericity, the uncorrected test typically has inflated test size, the Geisser­
Greenhouse and Huynh-Feldt tests are approximately size a, and the Box test is 
nearly always very conservative. 

John (1972) discussed the likelihood ratio test of sphericity (Mauchly's test) and 
the locally (near the null) most powerful size-a test of sphericity. The likelihood 
ratio statistic is a one-to-one function of IE*i/tr(E*), while the locally most 

powerful test is a one-to-one function of"E = b- 1 tr(E*)/tr(E~)- In our opinion, 
neither should be used as a "screening test" to choose a UNIREP test, for the same 
reasons a test of heterogeneity should not be used to choose between an unadjusted 
or Satterthwaite t test. The locally most powerful nature of the sphericity test 
based on E leads to the speculation that the Geisser -Greenhouse test shares the 
property. 

Coffey and Muller (2003) proved the following lemma, which characterizes the 
noncentral distribution of the UNIREP statistic. The lemma uses the spectral 
decomposition E* = YDg(>.)Y', with Y'Y = Ib, which allows defining 
.6.y = Y' .6. Y and Or = .6.yDg(>.)-1

. 
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Lemma 16.2 Except for known constants, the distribution of the UNIREP test 

statistic, Tu = [tr(.&)ja]/tr(:E.), is completely and exactly determined by the b 
eigenvalues of :E., A, and the b noncentralities Wy = { wnk} = 
{vk(e- 8 0)'M-1(8- 8 0 )vk(\k}, the diagonal elements of fly= 

.6.yDg(Ar1
. The same characterization holds for all four UNIREP tests. 

Proof. Coffey and Muller (2003) provided a proof. 

It is straightforward to prove that the eigenvalues of fly and n coincide. Of 
course, the eigenvalues of !ly coincide with the diagonal values only when !ly is 
diagonal. Hence it is not surprising that Monte Carlo simulations demonstrate the 
UNIREP tests may be more or less powerful than any of the MUL TIREP tests, 
depending on A, wy, and the eigenvalues of!ly, which are equivalent to {pn. 

16.8 MORE ON INV ARIANCE PROPERTIES 

Theorem 16.11 (a) The eigenvalues of BhBe- 1, (b) the canonical correlations, 
(c) the usual four MUL TIREP test statistics, and (d) the associated p values are 
invariant to a square and full-rank transformation simultaneously applied to 
Yu = YU and 8o, with Yr = YuT and 8 0r = 8 0T. The same invariance 
holds under the same type of transformation to u and eo. 

Proof. Here Be = F F' and B;: 1 = p-t F-1 . A similarity transformation 
allows proving the eigenvalues of BhBe- 1 = BhF-t p-1 coincide with the 
eigenvalues of F- 1BhF-t. If H = X(X'X)-X' and M = C(X'X)C', then 

Be= U':EUve 
= U'[Y'(I- H)Y/ve]Uve 
= U'Y'(I- H)YU = Y~AeYu (16.44) 

and 

Bh = (e- eo)'M-1(8- eo) 
= ( c fiu - eo) I M-1 

( c fiu - eo) 
= [C(X'X)- X'YU- 8o]'M-1[C(X'X)-X'YU- 8o] 
= [Y~X(X'X)-C'- 8SJM-1[C(X'X)-X'Yu- 8 0]. (16.45) 

If 8o = 0, then 

In tum, 

Bh = Y~X(X'X)-C'M- 1C(X'X)-X'Yu 

=Y~AhYu. 
(16.46) 
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(ShS; 1
- .H)x = o 

[(Y6AhYu)(Y6AeYu)-
1

- .H]x = 0 

[(Y6AhYu)TT- 1(Y6AeYu)- 1T-tT'- >.T-tT']x = 0 

[(Y6AhYuT)(T'Y6AeYuT)- 1
- >.T-t]T'x = 0 

T' [(Y6AhYuT)(T'Y6AeYuT)- 1
- >.T-t]T'x = T'O 

[(T'Y6AhYuT)(T'Y6AeYuT)- 1
- >.I]xr = 0 

[(Y~AhYr)(Y~AeYr)- 1 - >.I]xr = 0. (16.47) 

The last form demonstrates the eigenvalues coincide (although eigenvectors differ 
by the factor ofT') if e 0 = 0. Allowing e 0 =/= 0 is covered below. D 

Corollary 16.11 Without loss of generality, analysis or simulation of the 
MULTIREP tests for any p:::.1 = Cl>CJ)', ~1 , 0 1 = ~1 :E:n can be based on the 
equivalent model with :E,2 = Ib, ~2 = CJ)- 1 ~ 1 CI>-t, and !l2 = ~2:E,;-21 = ~2-
Also, 0 2 = n~ has the same eigenvalues as 0 1 (which need not be symmetric). 

Proof. lf:E*' = CI>CI>' and T = q,-t, then [rowi(Yr)J'"' Afi,[(XiBUCI>-t)',Ib]­
Also, .&1 rv Wb(a,:E.,~I) and q,-l,&lq,-t rv Wb(a,Ib,q,-I~ICJ)-t). Finally, 
!l1 is similar to q,-1(0I)CJ) = q,-l(~1q,-tq,- 1 )Cl> = q,-I~lq,-t = ~2 = !l2 
and therefore has the same eigenvalues. D 

Theorem 16.12 (a) The matrices S, and Sh are invariant to a square, full-rank, 
simultaneous transformation of the rows of C and e 0, with Cr = TC and 
eor =Tea. 
(b) The eigenvalues of Shse- 1, the canonical correlations, the usual four 
MUL TIREP test statistics, and their associated p values are all invariant in the 
same way. 

Proof. (a) Be is not a function of C. If T is a x a and full rank, with 
Cr=TC, 

S" = (CBU- ea)'[C(X'xrcT1 (CBU- eo) (16.48) 

= (CBU- e 0 )'(T-1T)'[C(X'X)-C'r 1T- 1T(CBU- e 0) 

= (T'CBU- Tea)'[TC(X'X)-C'TT 1 (TCBU- Te0 ) 

= (CyBU- eor)'[Cr(X'X)-c~r1 (CrBU- ear), 

which suffices to prove the invariance of Sh. Part (b) follows immediately. D 

As noted earlier, the parameters determining the distributions of the secondary 
parameter estimators make it obvious that any reasonable test statistic must be a 
function of.& and :E •. Given that the eigenvalues of Shse-1 are invariant, how do 
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we know they are the only invariants for a testable hypothesis? We have proven 
all four statistics depend on the data only through the eigenvalues. Therefore any 
other feature may change and not affect the test, unless the change carries over into 
the eigenvalues. They are also obviously the minimal sufficient statistics because 
changing any one of them changes the test statistics (except perhaps for RLR). 

Theorem 16.13 If the model spans an intercept (Xt0 = IN) and the hypothesis 
excludes the intercept (Ct0 = 0), then the following hold. 
(a) Matrices Bh and Be, the eigenvalues of BhB;1

, and the canonical 
correlations, are invariant to a location shift of the form Yu + I Nt~ for b x 1 
constant vector t 1 and Yu = YU. 
(b) The MUL TIREP test statistics and associated p values are similarly invariant. 
(c) The UNIREP test statistics and associated p values are similarly invariant. 

Proof. With H = X(X'X)-X', the matrices Bh and Be and the test statistics 
depend on Yu only through 

e = C(X'X)-X'Yu 
Eu = (IN-H)Yu, 

~ ~t ~ 

with :E. = EuEu /ve. Writing 

(16.49) 
(16.50) 

C(X'Xr X'(Yu + INt~) = C(X'X)-X'Yu + C(X'X)-X'INt~ (16.51) 
(IN- H)(Yu + INt;) =(IN- H)Yu +(IN- H)INt~ (16.52) 

allows concluding location invariance reduces to proving 

0 = C(X' X)- X'INt; 
0 =[IN- X(X'X)- X']INt;. 

(16.53) 
(16.54) 

The zero matrices of the two equations have dimensions a x band N x b. In tum, 
it suffices to prove 

0 = C(X'X)-X'IN 
0 =[IN- X(X'X)-X']IN. 

The zero matrices have dimensions a x 1 and n x 1. 

(16.55) 
(16.56) 

In the simplest case, X is full rank, the first column is IN, and the remaining 
columns are centered. Therefore 

X'I - [N ] 
N- O(q-l)xl 

(16.57) 

and 

(16.58) 

If the test excludes the intercept, then C = [ Oaxl Cd] and 
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C(X'X)-X'lN = [Oaxl 

= [Oaxl (16.59) 

Furthermore 

(16.60) 

which completes the proof of the special case. The theory of linearly equivalent 
models allows extending the result to estimable parameters in L TFR cases. 0 

Theorem 16.14 The UNIREP test statistic, for any population covariance pattern, 
is invariant to a FR transformation of columns of U and eo by orthonormal T 
(but not general FR T). Here r- 1 = T' and hence TT' = Ib. 

Proof. 

Fu = tr(Sh)/(ab) 
tr(Se)/(bve) 

tr(S"TT')/(ab) 

tr(SeTT')/(bve) 

tr(T' ShT) / ( ab) 

tr(T'SeT)/(bve) · 
0 

Corollary 16.14 In a simulation, choosing T = Y, with :E. = YDg(.X)Y' and 
Yr = YUT, gives [row;(Yr)J' "'Ali, [(XiBUY)', Dg(.X)]. 

Theorem 16.15 Without loss of generality, eo= 0 may be assumed. 

Proof. A multivariate GLMN,p,q(Yi; XiB, :E) with Gaussian errors, fixed X, 
N » r = rank(X), has model equation Y = XB + E, with testable secondary 
parameter e = C Band corresponding hypothesis H 0 : e = e 0 . Choosing 

(16.61) 

defines the model 

Yr =XBr+Er, (16.62) 

with associated estimable secondary parameters er = C Br and corresponding 
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hypothesis H0 : 8r = 0. Estimability ensures C (X' X)- X' X= C. Therefore 

Sr = CBr 
= C(X'X)-X'[Y- XC'(CC't 18o] 

= C(X'X)-X'Y- [C(X'X)- X'X]C'(CC')- 18 0 

= C(X'X)-X'Y- [C]C'(CC')-18 0 

= e- ea. (16.63) 
0 

The result holds for hypothesis testing, no matter what kind of predictors. It is 
unclear whether the result applies to power analysis for random predictors. 

Theorem 16.16 For any testable general linear hypothesis for a GLM, a linearly 
equivalent model may be found in which C = [I a 0] provides the original test. 

Proof. A GLM (with any sort of predictors), with N » r = rank(X), has 
model equation Y = XB + E, with testable secondary parameter 8 = CB and 
corresponding hypothesis H 0 : 8 = 0. For any C of dimension a x q, rank a, the 
singular value decomposition allows writing C = L[ Dg( sc) Oax(q-a) ]R' with L 
and Dg(sc) ax a and R q x q. In tum, CC' = LDg(s~)L', and 
LL'=L'L=Ia. WithR1qxaandRoqx(q-a), 

C'C = [R1 Ro] [Dg~~) ~][ ~J, 

with RR' = R' R = Iq. IfC_1 = R 0, which is (q- a) x q, then 

and 

T= [~J 
= [ LDg(sc)~J 

= [ ~ ~ J [ Dg~c) ~ J R' 

r-1 = [R Ro] [Dg(sc)-
1 

OJ [L' OJ 
I 0 I 0 I 

= [RI Ro][Dg(s~)-lL' ~] 
= [R1Dg(sc)-1L' Ro] 
=[a+ .Rol 
= [C'(CC')- 1 .Ro]. 

(16.64) 

(16.65) 

(16.66) 
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In turn, 

Y=XT- 1TB+E 

= [XC'(CC')- 1 X.Ro] [ ~J + E 

= [Xrr Xro][~J +E 

=Xr[~J +E. 
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(16.67) 
D 

The proof is a special case of one approach to a "completion" theorem, seen in 
various contexts in linear models and matrix theory. The basic idea is part of the 
theory and process behind the concept of linearly equivalent models. A parallel 
approach is useful for identifying the estimable part of a L TFR model. 

A similar result may be proven for U = I. The result holds for hypothesis 
testing, no matter whether predictors are fixed or only conditionally fixed. It is 
unclear whether the result applies to random predictors. 

16.9 TESTS OF HYPOTHESES ABOUT :E 

Multivariate models raise the interesting possibility of estimating constrained 
structures and testing hypotheses about the structure of :E. Many exact and 
approximate results have been developed for such tasks. Such techniques may be 
roughly described as falling into one of four types. 

One class of tests concerns testing hypotheses about functions of :E, such as the 
trace or determinant. For central Wishart matrices, both have simple forms. Each 
can be thought of as the generalized variance, with the trace corresponding to the 
arithmetic average eigenvalue and the determinant to the geometric mean, 

( 16.68) 

(16.69) 

The interpretation is strengthened by recognizing that the eigenvalues of a 
covariance matrix equal the variances of the underlying principal components. 

A second class of tests involves H 0 : :E = :E0, based on :E"' Wp(v, :E0 , 0) and 
:E0 a particular structure. Anderson (2004), Morrison (1990), and Timm (2002, 
Section 3.8) provided useful treatments of some techniques. Some specific tests 
have been developed for special patterns, including :E0 = a 2 IP, sphericity, and 
:E0 = a 2 [plpl~ + (1- p)Ip], compound symmetry (Lemma 1.33). 
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Tests for sphericity have an unfortunate history in the "univariate approach" to 
repeated measures. Violation of sphericity may greatly inflate the test size of the 
uncorrected UNIREP test. The problem led to using a nonsignificant test of 
sphericity as justification for using an uncorrected test. The process is the 
multivariate generalization of testing for homogeneity of variance between groups 
as part of a univariate ANOV A for independent observations. The process fails to 
control test size while providing a false sense of security. 

In contrast, the following decision path is valid. One should assume compound 
symmetry if and only if the sampling scheme guarantees it. Most importantly, we 
have never encountered repeated measures in time which seemed likely to meet the 
assumption. If the sampling scheme does imply meeting the assumption, then use 
the uncorrected test. Otherwise, use either the Geisser-Greenhouse corrected test 
(preferred by the present authors) or the Huynh-Felt corrected test, which is likely 
somewhat more widely used. Muller, Edwards, Simpson, and Taylor (2006) and 
Muller and Barton ( 1989) provided additional discussion. Careful consideration of 
Kirk's (1995) recommendation for a three-step process allows concluding it always 
gives the same test result as always using the Geisser-Greenhouse test. 

A third class of tests involve techniques known as factor analysis, which 
provide tools for developing models of correlation and covariance matrices. The 
key idea is to assume each response variable equals a linear combination of a set of 
unobserved, underlying, latent variables plus a component unique to the variable. 
The name common factor model reflects the decomposition in terms of shared, or 
common, and unique pieces. Advances in computing power allowed focusing on 
maximum likelihood methods for covariance structure models. From the 
perspective of the multivariate GLM, such a model allows only a simple design 
matrix, such as one between group factor, and complex specification of covariance 
structure. McDonald (1985) and Joreskog (1993) gave thorough presentations. 

The fourth and final type of tests involves mixed models. A general linear 
mixed model requires an explicit choice for a covariance model, commonly 
described as specifying the random effects. The validity and numerical feasibility 
of such a model depends on choosing a scientifically defensible covariance model 
with sufficiently few parameters. Current methods use large-sample theory for 
comparing covariance structures. The fragility of mixed models with respect to the 
accuracy of the covariance model makes such statistics, especially in small 
samples, important in fitting mixed models. Regrettably, even less is known about 
statistics focused on such random effects than is known about statistics focused on 
fixed effects. 

16.10 CONFIDENCE REGIONS FOR 8 

Section 2.10 contains a definition of confidence regions for (} in the univariate 
model. Inverting a hypothesis test creates a confidence region, and inverting a 
confidence region yields a unique hypothesis test. Confidence regions exist only 
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for parameters that are estimable and testable. Section 15.6 contains proofs of the 
results as well as a description of the inversion process and examples. 

In Section 3.10, replacing {y,O,u2 } by {vec(Y),vec(e),vec(E)} allowed 
extending the definiton of confidence regions from the univariate model to the 
multivariate model. Consequently, separate multivariate proofs are not needed for 
the following two theorems. In multivariate notation, the essence of the 
relationship between hypothesis tests and confidence regions is that 
R(Y) = [eo : Y E AR(eo)] while AR(eo) = [1-': :eo E R(l':)]. 

Theorem 16.17 If for any eo E S a size-o: test exists, </>(Y), of hypothesis 
H(e0 ) = lffi(e = e 0), then there exists a corresponding confidence region for 
e with confidence coefficient c(o:) = I - o:. Furthermore, if the acceptance 
region of <j>(Y) is AR(e0 ) = [1-': : 4>(1-':) = 0], then the corresponding 
confidence region is R(Y) = [eo: Y E AR(eo)]. 

Theorem 16.18 If there exists an exact 100(1- o:) percent confidence region for 
e, then (a) a corresponding test procedure of size 0: exists for testing 
H(80 ) = lffi(8 =Go) for any Go E 8 and 
(b) H(80 ) is a testable hypothesis. 
(c) If the confidence region is R(Y), then the acceptance region of the 
corresponding test is AR(80 ) = [1-': : Go E R(l':)]. 

Example 16.2 A GLMs .p.,1(Y; ; X ;B , E ) with Gaussian errors has 
rank( X ) = ,. ::; q. while t (Y: 8 11 ) represents any of the multivariate test statistics 

based on S ;, = (S - e u)'M - 1(e - e !, ) and S , = VeU'EU . When inverting 
rhe test based on I to obtain a confidence region l'or 8 (a X iJ). the test 
(,l'.l(Y ) = lffi( l > fa;d of H (e u) = JB( e = e n) has acceptance region 

A R (e u) = [Y : t(Y; Eln) $ fcrid- (16.70) 

Here lcrit is the appropriate critical value. The corresponding 100(1 - n) percent 
ellipsoidal confidence region is 

R (Y ) = [e n : Y E AR{e o)]. {16.71} 

The region is a hypcrcllipsoidal and has nb dimensions. If a = L then 

t (Y:H11 ) = tr(S11 S,- 1
) 

= tr{ [C (X 'X )- C T 1}(S - e 0)s,- 1(8 - e n)' 

= F (Y· 8 ) p(N- 1
·) C 16.72) 

' 
11 N(N - p) . 

with /• ( Y: 8 0 ) ,..... F (p, n.- p). It follows that the 100(1 - o) percent ellipsoidal 
confidence region is 
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R(Y) =[eo: (e- eo)S;1(S- eo)'::::>.], 

in which>.= tcritftr{[O(X'X)-OT1}. 

EXERCISES 

16.1 Modell is 

I y, y, y, I ~ ( ln 0 [: ~ ! m B.+ E 

Y=X1B1+E. 

(16.73) 

Finding a valid test of the general linear hypothesis Ho : 0 BU = e 0 requires 
verifying that (a) e = 0 BU is estimable and (b) the hypothesis is testable. In 
the following, with ej = OjBUj, verity (a) holds or does not hold, and (b) holds 
or does not hold. It is not sufficient to merely state the correct answer. You must 
briefly justifY each positive or negative answer. For each estimable ej, describe 
each element very briefly as a function of cell means. 
16.1.1 01 = [ 1 o o o ] u1 = I3 
16.1.202=[0 10 0] U2=[l2 -I2]' 
16.1.3 03 = [1 1 0 OJ U3 = [U2 -U2] 

:::::::1[:3~: ~~ ~~l:l ~::I[3~ -~ -~] 
0 0 1 -1 1 1 1 

16.1.6 06 = [ ~ ~ ~ = ~ J u6 = u5 

16.2 For this exercise, you may use any results in the book up to immediately 
before Lemma 16.1. 
16.2.1 Provepart(a)ofLemma 16.1. 
16.2.2 Prove part (b) of Lemma 16.1. 
16.2.3 Prove part (c) ofLemma 16.1. 

16.3.1 With Sh as defined in Chapter 3 and Chapter 16, prove directly that 
tr(Sh) is invariant to a full-rank and orthonormal transformation of the columns of 
U. Assume that e 0 = 0. (A separate proof, which is not part of this exercise, 
allows concluding that this may be done without loss of generality.) 
16.3.2 With :E. as defined in Chapter 3 and Chapter 16, prove directly that tr(:E.) 
is invariant to a full rank and orthonormal transformation of the columns of U. 
16.3.3 Prove directly that the UNIREP F statistic is invariant to multiplying 0 
(between-subject contrast matrix) by a nonzero constant. Assume that eo = 0. 
16.3.4 Prove directly that the UNIREP F statistic is invariant to multiplying U 
(within-subject contrast matrix) by a nonzero constant. Assume that eo = 0. 
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16.4 A complete, unbalanced, repeated-measures ANOV A, with p repeated 
measures, may be written using cell mean coding as 

y = [~N1 -~. ~ l [ IL~,I :: .. IL~,P l +E. 

0 0 INc ILG,I ... ILG,p 

Assuming i.i.d. [rowi(E)]' "'Np(O, :E), a testable general linear hypothesis has 
the form Ho: 8 = 8 0 , with 8 = CBU. It is convenient to write 

L;:=IN9 = N+· 
16.4.1 Express the distribution of Y in terms of a (direct-product) matrix Gaussian. 
16.4.2 Ignoring group, the set of p averages (grand means), with one for each 
response variable, can be computed directly as a linear transformation of Y. 
Provide simple expressions for the transformation. Also provide an explicit form 
for the joint distribution of the set of p averages. 
16.4.3 For any full-rank model, jj "'Nq,p [B, (X' X)- 1

, :E] (here q = G). 

(a) Provide a simple expression for (X' Xf1
. 

(b) With C = l'c/G and U = Ip, provide an explicit form for the distribution of 

e (mean of the group means, one per variable). 
(c) Testing the hypothesis defined by C = l'c/G and U = Ip involves 

~I ~ 

Sh = 8 M-18. Provide an explicit form for M- 1 . What relevance, if any, does 
the term "harmonic mean" have? 
(d) Assuming the alternative hypothesis holds, name the distribution and provide 
explicit forms for the parameters of the distribution of sh. 

16.5 Assume y;9 "'N1 (IL9 , a~) for constant 0 <a~ < oo, constant finite ILg, 

i E {1, ... ,n}, and g E {1,2}, with Yig independent of Yi'!i unless i = i' and 
g = g'. The exercise concerns the model 

Ys = X{3+es 

[ ~~ ] [ ~ ~J [ ~~ ] + [ =~ ] ' 
with y~ = [ Y1 9 • • • Yng] and testing hypothesis 1, Ho : ILl = IL2 versus 

HA : ILl -j. IL2· 
16.5 .1 Fully specify the distribution of e 8 • 

16.5.2 Specify the likelihood function for Ys· 
16.5.3 Describe maximum likelihood estimators for {IL1 ,1L2 ,ai,aD. You do not 
need to verify the validity of solution as a maximum (to save time in the exercises). 
16.5.4 Briefly indicate why the likelihood ratio test statistic for hypothesis 1 is not 
a one-to-one function of a t (or F) random variable, such as occurs for the usual 
independent groups t. 
16.5.5 Alternately, consider testing hypothesis 2, H 0 : (IL1 = ~L2 ) n (af =a§), 
versus HA : (ILl -I- ~L2 ) U (ai -I- a~). Give an explicit form for the maximum log 
likelihood under H 0 . 
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Hint: Take advantage of special cases of results covered in the text. Doing so 
will greatly reduce the work for the exercise. 

16.6 (Optional, noncredit.) Assume [row;(Yg)]' = Y;~ "'Np(P,9 , E 9 ) for 
constant 0 < IE9 1 < oo, constant finite p,9 , i E {1, ... , n }, and g E {1, 2}, with 
¥;9 independent ofY;'g' unless i = i' and g = g'. This question concerns the model 

Ys =XB+Es 

[iJ = [~ ~J [~U + [ ~~J 
and testing hypothesis l, H0 : p,1 = P,2, versus HA : J.L1 -1- J.L2· 

16.6.1 Fully specify the distribution of Es. 
16.6.2 Specify the likelihood function for¥;;. 
16.6.3 Describe maximum likelihood estimators for {p,1 , p,2 , E 1, E 2 }. You do 
not need to verify the validity of solution as a maximum (to save time in the 
exercises). 
16.6.4 Briefly indicate why the likelihood ratio test statistic for hypothesis 1 is not 
a one-to-one function of a t (or F) random variable, such as occurs for the usual 
independent groups Hotelling T 2. 

16.6.5 Alternately, consider testing hypothesis 2, H 0 : (p,1 = p,2 ) n (E 1 = E 2), 

versus HA : (p,1 -1- p,2 ) U (E 1 -1- E 2 ). Give an explicit form for the maximum log 
likelihood under H 0 . 



CHAPTER17 

Tests for Generalizations of 
Multivariate Linear Models 

17.1 MOTIVATION 

Generalizations of the multivariate linear model typically allow straightforward 
estimation. In contrast, accurate inference in small samples often proves difficult. 

Example 17 . I A GLM K.p_,1 ( Y;: : X ;B E ) for blood sugar measured once per 
day at noon on Monday- Friday has N x 5 Y . The scientists wish to assess how 
well the amount of sugars consumed at breakfast (measured once per day. 
Monday- Friday ) predicts blood sugar levels. A model with only linear effects is 

!jn.M f3o.Tu f3u. w f3n.Th /3n.F 
/J l.M fJ1.Tu ~1. W fJ1.111 fJ1.F 

(h_M .B2.Tu /h W :Hh f:J-2.F 

£% M ,8:1.Tu , %.w f]:l_Th /lu­
fJ-I.M .Buu (J4. w Pun ,8u 
.fhM ,B5.lu ,85. w Pun .d5_F 

( 17.1) 

Unl(xtunately. the model uses sugar consumed on Friday to help predict blood 
sugar on Monday. A more reasonable model constrains all illogical coefficients to 
be zero. with nonzero coefficients only tor predictors on or before the Jay: 

I YM Yru Yw Yrh Yl· ] = [ 1 _v X M X ru Xw Xln X F ] 

(irLM .3o.Tu u.w t!u.ln .du.F 
/J1 ,M PI.Tu fJ 1. W fiulo fir.F 

0 fJ2.Tu /h.w fiz.Th fhr 
0 0 !l:n"' /J.un ,8:u 
0 0 0 /hTh /Jif 
0 0 0 n /3u 

( 17.2) 

A simpler model assumes that only the covariate from the same day is a predictor: 
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( 17.3) 

flo.M flo.Tu #u.w /:l'n.Th /~:r..r 
fJJ.M () I) () () 

[YM Yru Yw YTh YF I=[ l ,v XM XTu x w x n X F I 0 /h.Tu 0 0 0 
(} 0 {~;I.W 0 0 
0 0 0 tJ i.Th I) 

0 0 0 O f:l;o.l' 

All three models have a simple Gaussian likelihood. Derivatives give equations 
that can be solved iteratively for estimators or B i and :E. and the likelihood ratio 
test is simple 10 compute. However, any pair of {B 1 . B 2. B ;d diller due to 
nonlinear constraints. which disallows applying standard linear hypothesis theory. 

17.2 DOUBLY MULTIVARIATE MODELS 

As discussed in Chapter 4, some doubly multivariate settings may be analyzed 
with combinations of multivariate models. The approach has the advantage of 
exact properties (often a Bonferroni correction must control overall test size). 

Timrn (Section 6.7, 2002) reviewed doubly multivariate models based on a 
direct-product covariance assumption. The work of Boik (1988, 1991) deserves 
special attention because his methods appear to control test size in small samples. 

17.3 MISSING RESPONSES IN MULTIVARIATE LINEAR MODELS 

Section 3.12 includes a brief discussion of missing data in the multivariate 
linear model. For data missing at random, the methods of Catellier and Muller 
(2000) very nearly control test size,. even in small samples (N = 12). In contrast, 
current mixed model tests may dramatically inflate test size. Section A.2 in the 
Appendix contains a description of free software (which may be downloaded from 
the Web) to implement the methods. 

17.4 EXACT AND APPROXIMATE WEIGHTED LEAST SQUARES 

Knowing exact weights allows transforming the linear model to a new model 
which exactly follows the usual assumptions. Some commercial software 
incorporates options to simplifY the process. 

Approximate and iterated approximate weighted least squares typically leads to 
very optimistic tests and inference, at least in small samples. Some form of 
corrected or test should be used, if available. Estimation is typically well behaved. 
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17.5 SEEMINGLY UNRELATED REGRESSIONS 

Seemingly unrelated regression models (Srivastava and Giles, 1987) also allow 
accurate estimation. However, the specific nature of the model has allowed 
statisticians to develop approximate tests which work reasonably well in small 
samples (Rocke, 1989). Also, Timm (2002, Section 5.14) gave a useful review of 
testing, including some newer work. 

17.6 GROWTH CURVE MODELS (GMANOV A) 

From the perspective of today, early formulations of growth curve models may 
be transformed exactly into special cases of the general linear multivariate model. 
Often a GCM expresses repeated measures as a polynomial function of time. A 
quadratic model uses only the average, linear, and quadratic trends and hence 
PT = 3 coefficients. The approach corresponds to restricting attention to a reduced 
model defined by a transformation. For a GLMN,p,q(Yi; X;B, :E) with p = 4 
equally spaced repeated measures, 

defines an N x 3 matrix of lower order trend scores, 

Yr=YUr. 

Transforming the original model gives 

YUr =X BUr+ EUr 
Yr =XBr+Er. 

(17.4) 

(17.5) 

(17.6) 

The theory of the multivariate linear model applies exactly to the reduced model. 

The N x 1 set of cubic trend scores has been ignored in the reduced model. 
Later formulations introduced the use of the ignored high-order trends as 
covariates to increase precision of the estimators. Unfortunately, the process 
makes hypothesis tests and confidence intervals optimistic (Berger, 1986). 

17.7 TESTING HYPOTHESES IN THE GCM 

The GCM is a multivariate GLM with Gaussian errors and p - q linear 
restrictions on B. The unrestricted model is GLMN,p,q(Y;; X; B., :E), while the 
restrictions give GLMN,p,rn(Yi;X;B.IB. =B1T1,:E) withE. (qxp). Equivalently 

E(Y) = XB. 
V[vec(Y')] = I® :E. 

(17.7) 
(17.8) 
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The general GCM is obtained from the GLM by choosing 
B * = B 1T 1 (q x m x p) or, equivalently, 

B . = [B1 B2] [~], (17.9) 

with B 2 = 0. Here we assume T (p x p) has full rank and r-1 = G = [ G 1 G2], 
with G 1 (p x m) and G 2 [p x (p- m)]. The relationship between B . and B can 
be written as B . [ G 1 G2] = [ B1 B2], with B 1 (q x m) and B 2 [q x (p- m)]. 
Since B 2 = 0, the equation makes it clear an equivalent notation is 
GLMN,p,q(Yi;XiB . jB.G 2 = 0, E) with G 2 of dimension p x (p-m). The 
matrix T has specified structure, such as a polynomial structure, and the restriction 
imposes the structure on B . (q x p) in the form of p - m linearly independent 
constraints. With T based on polynomials, the restriction indicates the elements of 
B . are functionally related to one another as specified by the polynomial. 

Example 17.2 If the children's weights in Example 13.1 had been recorded 
monthly from the ages of 5 to 7 years, then B . would be 1 x 25. If growth is truly 
linear during the time of observation, then only two parameters (intercept and 
slope) are needed to characterize the growth curve. The 25 elements of B . are the 
mean we.ights over 25 months. Since the elements are functionally related (they 
form a straight line), the 25 elements (nteans) can be condensed into 2 columns: 

B . = I i% {31 0 . . . 0 ]T . (17.1 0) 

Therefore it is appropriate to impose the restriction B .G 2 = 0 , with G 2 (25 x 2:J). 

Theorem 17.1 The GCMN,p,q,m( li; XiB1 T 1 , E) with BandT defined in 
terms of an orthogonal or orthonormal polynomial allows testing 
Ho: CB1U = 0 (ax b) against the general alternative. Under 
GLMN,p,q(Yi; X iB . jB.G2 = 0, E) with G 2 of dimension p x (p - m), an 
equivalent hypothesis is H0 : C B .G 1 U = 0. 

D 

A more general version of the linear restrictions on B. involves an arbitrary 
constant matrix D, with B . = BT +D. No new problems arise. The form leads 
to an ordinary GCM having expectation of the form E(Y - XD) = XBT. 

17.8 CONFIDENCE BANDS FOR GROWTH CURVES 

For the polynomial GCMN,p,q,m(Yi; x .BT, :E) with m = 2, Stewart (1987) 
developed a finite-interval confidence band in terms of a type III bivariate t 
distribution, in a manner analogous to Bowden's (1970) univariate results. The 
procedure generalizes tom > 2 in terms of type III multivariate t distributions. 



CHAPTER 18 

Tests for Linear Mixed Models 

18.1 OVERVIEW 

We introduced the notation LMMN,p,q,rn[Y;;X;{3,Z;'Ed;(rd)Z[ + 'Eei(re)] in 
Chapter 5 to indicate a general linear mixed model, with model equation 
y; = X;/3 + Z;d; + e; for one independent sampling unit (ISU). In the present 
chapter, we always add the Gaussian assumption, which has three parts: 
e; "'Np,[O,"E,;(r,)], d; "'Np,[O,"Ed;(rd)], and e; lld;. The model implies 
E(y;) = X,f3 and V(y;) = Z;'ErJ;(rd)Z[ + 'Eei(re)· Hence /3 determines the 
expected values, the first moments of the observations. In tum, TrJ determines the 
covariance matrix, the second moments, of the unobserved (latent) error 
components varying within the ISU due to observed characteristics in Z;. 
Similarly, r, determines the covariance matrix of the unobserved (latent) error 
components varying within the ISU due to observation. The Gaussian structure 
ensures parameters f3 and r' = [ Td r: ] fully determine the distributions of all 
model statistics. 

The presence of just mean and covariance parameters leads to three possible 
types of inferences. Most often, data analysts seek to draw inferences about 
functions of {3, the parameters determining the means (the fixed effects). Less 
often, data analysts seek to draw inferences about functions of r, the covariance 
parameters, especially Trf (the random effects parameters). Even less often, data 
analysts seek to draw inferences about functions directly involving both f3 and r. 

The univariate and multivariate models allow computing exact or nearly exact 
likelihood-based inferences as an adjunct to the noniterative calculation of 
estimates of a single model. In contrast, the mixed model requires iterative 
calculation of estimates for two or more models. The desire for speed and 
convenience has led to a heavy emphasis on approximate tests based on single­
model fits. The inexorable increase in computer speed has made the computer time 
needed to fit an additional model much less consequential. However, the control 
language for contemporary software makes comparing two model fits awkward 
and hence creates a barrier to conducting tests based on two model fits. 

At the present time, confidence intervals and hypothesis tests based on a single 
model fit dominate practice. Two related reasons reinforce the habit. First, 
popular contemporary commercial software does not directly implement any 
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inference based on fitting two or more models. Second, invoking software twice to 
fit two distinct models takes extra time and care for the data analyst to implement 
correctly. 

Vonesh and Chinchilli ( 1997), Verbeke and Molenberghs (2000), and 
Demidenko (2004) provided excellent book-length treatments of mixed models. 
Khuri, Mathew, and Sinha (1998) focused specifically on tests in mixed models. 

18.2 ESTIMABILITY OF (} = C /3 

For an estimable secondary parameter(}= C /3, we consider testing 

Ho: (} = Oo. {18.1) 

In parallel to extending the concept of estimable (} to mixed models, the concept of 
a testable hypothesis extends to the mixed model. In particular, we require 
estimable (} and full (row) rank of C. Results about testability center on 
guaranteeing existence of a valid test. Such statements involve population 
parameter and design matrix properties and hence apply to mixed models. 

18.3 LIKELIHOOD RATIO TESTS OF C/3 

Hypotheses concerning (} = C f3 can be tested with a likelihood ratio test. 
However the distribution theory is not well developed. The process involves 
finding estimates for two models, with one of them false. The iterative 
calculations for the false model may be unstable. Although theoretically 
appealing, the method is less used than methods based on fitting a single model. 

Example HU The likelihood ratio approach allows testing f/11 : C/3 = 6n in 
the GUv1x .. 1(y; : X ;/3, a2 ) with (i.i.d.) Gaussian errors. as a special case of the 
mixed model. With r = rank(X ). the exact distribution of the likelihood ratio test 
stat istic can be eX(}ressed in terms of 

SSH/ n 

SSEj(N- r) 
"" f'{n. N - 1· ). (18.2) 

The mixo.::d model likelihood ratio test approximation co1Tesponds to saying 
(Fn ) ...;_, \ 2(a ). which is correct only asymptotically. With SSEja1 = 
fi~ /r:r1 ..._, \ 2(N- r ). fi 2

-> a'1 as N-----+ oo. For any N. under the null 
SSH/ n 2 "" \:2 ( (/ }. The denominator degrees-of-freedom l}arameter of the F 
distribution accounts for having estimated f7:! in a linite sumple. 

It is typically straightforward, and always possible, to code a linear model 
design matrix so that a hypothesis test corresponds to deleting one or more 
variables from the model. Doing so allows computing the likelihood ratio test 
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statistic as the difference between the log likelihood values for the full and reduced 
model. The asymptotic approximation is -2ln[L(OIC,8 = 00 )/L(O)] "'x2(a). 
Unfortunately, more accurate approximations are available only for some special 
cases. Zucker, Lieberman, and Manor (2000) described a second-order 
approximation for a particular class of models and also demonstrated the 
substantial improvement in accuracy that the approach provides. 

18.4 LIKELIHOOD RATIO TESTS INVOLVING r 

Many linear and some nonlinear hypotheses concerning T alone or r' = [ ,8' r' ] 
can be tested with the likelihood ratio approach. As always, the hypothesis of 
interest must correspond to comparing a full and constrained model with the 
constrained model nested within the full. Maximum likelihood estimates are used. 
Some special case tests for some models have known distributions (Demidenko, 
2004). Otherwise only large-sample results are available. 

18.5 TEST SIZE OF WALD-TYPE TESTS OF ,8 USING REML 

Among the widely available approximate F methods based on fitting a single 
model, the Kenward and Roger ( 1997) technique appears to provide the most 
accurate test size. However, substantial room for improvement in small-sample 
performance remains. Simulations of Park, Park, and Davis (2001) as well as 
simulations ofSchaalje, McBride, and Fellingham (2003) support the conclusion. 

Table 18.1 Estimated Test Size, Target= 0.04, 
for UNIREP (Std. Err. < 0.0004) 

and Mixed (Std. Err.< 0.003) 

UNIREP Mixed 
N € GG1 HF2 Resid3 Satter4 KJR5 
10 0.28 0.042 0.045 0.254 0.138 0.114 

0.51 0.039 0.052 0.263 0.137 0.081 
1.00 0.021 0.052 0.263 0.144 0.043 

20 0.28 0.041 0.042 0.116 0.077 0.040 
0.51 0.040 0.046 0.115 0.072 0.036 
1.00 0.029 0.038 0.116 0.075 0.038 

40 0.28 0.040 0.041 0.075 0.054 0.040 
0.51 0.041 0.043 0.076 0.061 0.045 
1.00 0.034 0.039 0.074 0.056 0.040 

1Geisser Greenhouse, 2Huynh-Feldt 
:JResidual, 4Satterthwaite, 5Kenward Roger 

Muller, Edwards, Simpson and Taylor (2006) illustrated some limitations of the 
approach with a simulation summarized in Table 18.1. Simulated Gaussian data 
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were generated which met all assumptions of a GLMN,p,q(Yi; XiB, :E) with p = 9 
and q = 1, with X= IN, a grand mean model. No missing or mistimed data 
were allowed. The 9 responses reflected a 3 x 3 within-subject factorial design, 
with factor names Clip and Region. The study design used a = 0.04, not 0.05. 
For the UNIREP test of Clip x Region interaction, Ho : C BU = eo used 
c = 1, eo = 0, and 

Ucr=T'c®Tr 

[

-4/J42 
-1/J42 

5/v42 

2/Ji4] [-1/v'2 
-3/Ji4 ® 0 

1/Ji4 1/J2 

1/J6] -2/J6 . 
1/J6 

(18.3) 

Columns of Tc contain the linear and quadratic orthonormal trends for 
log2 (Clip) E {1,2,4}, and columns of 7;. contain the orthonormal contrasts of 
linear and quadratic trends for log2 (Region) E {1, 3, 5}. Four eigenvalues sets, 
.X~~[0.4796 0.0100 0.0100 O.OlOO],.X&~[0.3455 0.0612 0.0556 0.0472], 
.x~~[0.2355 0.1712 0.0556 0.0472], and .x~~[0.1274 0.1274 0.1274 0.1274], 
were used. Corresponding values of E are approximately 0.28, 0.51, 0.72, and 1. 
Having E = 1 corresponds to having the underlying repeated measures being 

compound symmetric. The conditions are the same as conditions 5-8 in Table III 
in Coffey and Muller (2003). Given :E.= Dg(.Xj) for j E {1, 2, 3, 4}, 
:E = Ucr:E.U~r· A total of 500,000 replications were tabulated for each condition 
for the UNIREP tests (Geisser-Greenhouse and Huynh-Feldt). A total of 5000 
replications were tabulated for the mixed tests based on fitting a single model with 
SAS PROC MIXED® and using an F approximation (residual sum of squares, 
Satterthwaite, and Kenward-Roger approximations for denominator degrees of 
freedom). The "unstructured" covariance option on the repeated statement was 
always used. In addition to the type I error rate inflation, the mixed model 
approach also failed to converge in a fraction of the cases. A number of 
adjustments to the inputs controlling the estimation algorithms greatly reduced but 
did not completely eliminate the problem. Each set of data which led to 
convergence failure was subsequently analyzed with the UNIREP approach, which 
always gave well-behaved and reasonable estimates for the data observed. As 
noted earlier, no missing or mistimed data were present. 

In interpreting the results, it helps to keep in mind the distinction between 
number of independent sampling units (ISUs), with N E {10, 20, 40} in the 
simulations, and number of observations, with n = 9N E {90, 180, 360} in the 
simulations. The residual sums-of-squares approximation inflates test size the 
most. It implicitly uses weighted least squares estimators and makes no adjustment 
for having estimated the covariance parameters. Consequently, denominator 
degrees of freedom are based on n- rank(Xs), which coincides with the degrees 
of freedom for the uncorrected UNIREP test. The corrected tests use reduced 
numerator and denominator degrees of freedom. 
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18.6 USING W ALD-TYPE TESTS OF /3 WITH REML 

We next describe the steps needed to compute the Kenward and Roger (1997) 
approximation for inference about elements of /3. The approach assumes E; ( r) 
has been correctly specified and does not change. Except for notation differences, 
our presentation closely follows the original. 

Using notation introduced in Chapter 5, we consider 
LMMN,p,q,m[Y;; X;/3, Z;Ed;(rd)Zf + Eei(re)] with Gaussian errors. The model 
for all of the data stacked by participant (ISU) may be written 

0 

For an a x 1 testable secondary parameter (} = C {3, necessarily with 
rank( C) = a ::::; q, we consider testing the hypothesis 

H0 : (} = Oo (18.5) 

against the general alternative. Here E(y;) = X;/3 implies E(ys) = X 8 {3, while 
E;(r) = Z;Ed;(rd)Zf + Ee;(re) implies 

N 

V(ys) = ffiEi(r) = Es(r). (18.6) 
i=l 

The unbiased REML estimator of f3 ( q x 1) is 

13 = [X~E:;\r)xsr 1 X~E:; 1 (7)ys. (18. 7) 

The asymptotic covariance matrix of /3 is 

(18.8) 

More precisely, with s elements in r, 

(18.9) 

As always, the distinction between the number of ISUs, N, and the number of 
observations, n = L~!Pi, must be treated carefully. Fixing N and having 
Pi ----> oo implies n ----> oo but does not guarantee convergence of V(/3), except with 
side conditions to greatly simplify the covariance structure. 

The following asymptotically correct estimator has often been used for 
evaluating the precision of /3 and for testing hypotheses: 
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V1(/3) = CI>(9) = [X~:E; 1 (9)Xst 1 

=~1· (18.1 0) 

The estimator treats 9 in equation (18.7) as if it were a fixed constant. Doing so 
corresponds to assuming V(9) ~ 0, which is not true for finite sample sizes. In 
tum, CI>(9) = ci>1 is a biased estimator of CI>(r), which is an approximation of 
V(/3). Consequently, when N is small, V1 (/3) underestimates V(/3) due to a 
combination of bias and approximation error. 

Kackar and Harville (1984) used a first-order Taylor series expansion to better 
approximate V(/3) in small sample sizes. The expansion depends on 

(18.11) 

and 

(18.12) 

The expansion leads to the approximation 

(18.13) 

An estimator ofV(/3) may be computed in three steps: (l) evaluate 'Pj and Qjk at 

9 to give Pk and Qjk; (2) replace CI>(r) by ci>1 = CI>(9) from equation 18.10; and 
(3) replace V(9) with an estimator, V(9). The value of V(9) may be computed 
either as the inverse of the r submatrix of the expected information matrix or as 
the T submatrix of the inverse of the observed information matrix. In tum, 

Kenward and Roger ( 1997) used the Kackar and Harville result to devise a 
further improved estimator of V(/3). The estimator adds an adjustment in 
estimating CI>(T) to compensate for finite N [and V(9) -1- 0]. With 

, -1 {8(2l:E,; 1(r)} -1 
Rjk = X 8 :E8 (r) aTjaTk [:Es (r)]Xs/4 (18.15) 
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and Rjk the value of Rjk evaluated at 9, the adjusted estimator is 

v3(..8) = ~~ + 2~1 [t±>v(r))jk ( Qjk-Pj~IPk-iljk )j ~~. 
J-1 k~I 

= ~2· (18.16) 

Kenward and Roger found, in limited simulations, that replacing the expected 
information matrix by the observed information matrices had no discernible effect 
on accuracy of tests and standard errors. However, the missing data mechanisms 
in their examples and simulations were arguably MCAR. More generally, many 
kinds of MAR mechanisms can require using the observed information matrix to 
avoid bias (Verbeke and Molenberghs, 2000, Chapter 21 ). 

Kenward and Roger ( 1997) provided an F approximation for hypothesis tests. 
Computing the test statistic, FKR, requires a denominator degrees of freedom and a 
scaling constant >.. Both depend on 

(18.17) 

t t 

d1 = Ll)V(r))jktr(TCI>PjCI>)tr(TCI>PkCI>), (18.18) 
j=l k=l 

t t 

d2 = LL(V(r))j!Jr(TCI>PjCI>TCI>PkCI>), (18.19) 
j=l k=l 

g= [(a+l)d1-(a+4)d2]/[(a+2)d2], c1 =g/[3a+2(1-g)], c2= (a-g)/[3a+2(1-g)], 
c3 = (a-g+2)/[3a+2(1-g)], b = (d1+6d1)/(2a), c4 = (l-d2/a)-1

, c5 = 
2(1+c1b)/ [a(l-c2b) 2(l-c3b)], and p = c5j(2c4) 2

. In tum, 

v. = 4 +(a+ 2)/(ap- 1) (18.20) 

and 

(18.21) 

~ ~-I ~ 

The simplest approximation uses Frn = (0- Oo)'(CCI> 1 C')- 1(0- 00 )/a. 
Replacing ~1 by ~2 in the expression for Frn and using ~2 to compute v * and :>: 
gives 

~ ~ ~-1 1 ~ 
FKR = >. · (0- Oo)'(CCI>2 C')- (0- Oo)/a 

"'F(a,v.). (18.22) 
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18.7 USING WALD-TYPE TESTS OF {,8, r} WITH REML 

A simpler approximation for tests of H 0 : 0 = 00 , with 0 = C ,8, involves using 

(18.23) 

A variation on the test statistic was discussed in Helms (1992). The distribution of 
Fm is approximated by the F(a, v2 , w) distribution in which a= rank( C), 

v2 = N- rank([ Xs Zs ]), and w = (0- Oo)'[C(X~:E_;- 1 Xs)-ICT 1 (0- Oa). 
The appropriate critical value for testing H 0 versus the general alternative is 
fc = Fp-I(1- a; a, v2). The power of the approximately size-a test is 
approximately Power= 1- F(fc; a, v2, w). Only limited simulation results are 
available. As noted earlier, the Kenward-Roger approximation provides greater 
accuracy for inference about 0 = C ,8. 

The same form of approximate test can be applied to tests involving both 
{,8, T }. It seems likely that the roughness of approximation requires a substantial 
number of independent sampling units to provide the desired distribution. If, as 
defined in equation 5.9, :Eds = EB~ 1 :Edi and :Ees = EB~I :Eei, then 

ForM positive definite, 

-I_ [M(ll) 
M - M(2I) 

Tests of hypotheses involving d 8 , such as 

M(I2)] 

M(22) 

Ho : L' [ ~] = Oo , 

are testable against the general alternative using test statistic 

Here VI= rank(L), v2 = n- rank([Xs Zs ]), and 

(18.24) 

(18.25) 

(18.26) 

(18.27) 

(18.28) 

The appropriate critical value for testing H 0 versus the general alternative is 
fc = Fp-I(l- a, VI, v2). The power of the approximate size-a test is 
approximately Power= 1- F(fc; vi, v2 , w). 



CHAPTER 19 

A Review of Multivariate and 
Univariate Linear Models 

19.1 MATRIX GAUSSIAN AND WISHART PROPERTIES 

The results in the present section give the basic distribution theory needed for 
parameter estimators in the multivariate and univariate linear models with 
Gaussian errors. Only the test statistic distributions require separate treatment. 
Univariate results occur as the special case with p = 1. 

We begin by reproducing key results about Gaussian and Wishart distribtutions 
from Chapter 8 and Chapter I 0. The results provide the basis for nearly all 
distributional results in the remainder of the chapter. 

Copy of Definition 8.4 The n x p random matrix Y follows a direct-product 
matrix Gaussian distribution, typically abbreviated matrix Gaussian and 
written Y rv Nn,p(M, B, :E), if and only if 
(a) vec(Y) rv (S)Nn,p[vec(M), :E ® B]; if and only if 
(b) vec(Y') rv (S)Nn,p[vec(M'),B ® :E]; if and only if 
(c) Y = W Z~' +M with vec(Z) rv Nn,p, (0, I) and 

q, (n X ni) of rank ni :::: 1, B = ww', 
~'(PIx p) ofrankpi 2': 1, :E = ~~'. 

Writing Y "'SNn,p(M, B, :E) indicates ni = rank(w) = rank(B) < n, or 
PI = rank(~) = rank(:E) < p, or both. 

Writing Y"' (S)Nn,p(M, B, :E) emphasizes allowing any combination of 
ni ::::; nand PI ::::; p. 

Copy of Theorem 8.12 If Y"' (S)Nn,p(M, B, :E), while A-# 0 (ni x n), 
B-# 0 (p x pi) and C (ni x PI) are finite constant matrices, then 

AYE+ C"' (S)Nn"p,(AMB + C,ABA',B':EB). (19.1) 

349 
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Copy of Definition 10.2 (a) If Y "'Nv,p(O, Iv, :E) then Y'Y"' Wp(v, :E) 
indicates Y'Y follows a central (integer) Wishart distribution with (integer) 
v > 0 degrees of freedom. 
(b) If Y"' Nv,p(M, Iv, :E), then Y'Y"' Wp(v, :E, M' M) indicates Y'Y 
follows a noncentral (integer) Wishart distribution with (integer) v > 0 
degrees of freedom, shift~= M' M, and noncentrality n = M' M:E+. 
(c) Singular :E may be emphasized by writing SWp(v, :E) or SWp(v, :E, ~). 
(d) Writing (S)Wp(v, :E) or (S)Wp(v, :E, ~) indicates possibly singular :E. 

Copy of Theorem 10.4 If S"' (S)Wp(v, :E, ~) and T is any p x p1 constant 
matrix, then 

(19.2) 

Copy of Theorem 10.8 If Y"' (S)NN,p(M,IN, :E), rank(:E) = p1 ::; p with 
N 2 p1, N x N A and Bare constants, the following hold. 
(a) AY and BY are independent if and only if AB' = 0. 
(b) If A= A' is positive definite or positive semidefinite and AB' = 0, then 
BY and Y' AY are independent. 
(c) If A= A' and B = B' are positive definite or positive semidefinite and 
BA = 0, then Y' AY and Y' BY are independent. 
(d) If A= A'= A 2

, then v = rank(A) = tr(A) and 

S = Y' AY"' (S)Wp(v, :E, M' AM). (19.3) 

Copy of Corollary 10.8.1 If p = 1 and a 2 > 0, then y rv Nn,l (p,, In, a 2
) {:} 

Y"'Nn(P,,Ina2
) and s=y'AyrvW1(v,a2 ,p,'Ap,). Equivalently sja2 rv 

x2(v, p,' Ap,/ a 2
). 

19.2 DESIGN MATRIX PROPERTIES 

Section 1.15 includes many useful results on functions of a design matrix X of 
dimension N x q, with rank( X)= r::; q < N. With s 1 an r x 1 vector of strictly 
positive values, L 1 an N x r and colurnnwise orthonormal matrix L; L 1 = Ir, and 
R 1 a q x r and orthonormal matrix Ri R 1 = Ir, the SVD gives 

Without loss of generality, the decomposition may be chosen such that 

X' X= RDg( s,, 0)2 R' = R,Dg( sd Ri 

(19.4) 

(19.5) 
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and 

(19.6) 

Even though (X' X)= (X' X)', a one-condition inverse (X' X)- need not be 
symmetric. However, the special properties of X(X' X)- X', a projection matrix, 
ensures uniqueness and symmetry of 

H = X(X'X)-X' 

=X(X'X)+X' 

=L1L~. (19.7) 

The matrix His rank rand idempotent. In tum, IN-His rank Ve = N- rand 
idempotent. Furthermore 

IN-H = IN-L1L~ 

= [ L1 La] [ ~ I~-r] [ L1 La]'- [ L1 La] [ ~ ~] [ L1 La]' 

= [ L1 La] [ ~ I~-r] [ L1 La]' 

= LoLS. (19.8) 

Lemma 19.1 In the multivariate GLM, whenever X has full rank and IN is the 
first column, the matrix (X' X) - 1 has a simple form in terms of the first two 
moments of the remaining q- 1 predictors, X2. With x = X~lN / N and 
Sx = (x;x2- Nxx')/N, 

(x' X)-1 = N_ 1 [ 1 + x' Bx
1x x' Bx

1 J . 
s.x1x s.x1 (19.9) 

Proof. Without loss of generality, the intercept may be assumed to be the first 
column, which allows writing 

Standard results on partitioned matrices (Theorem 1.16) gives 

(X' X)-1 = [ bu b~ 1 ] , 
b21 B22 

with 

(19.11) 
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and 

B22 = (An- a21a1/a;1r 1 

= (x;x2- NxN- 1Nx'r
1 

- (X'X N __ ,)-1 
- 2 2- XX 

= N-1sx.l, 

b -1 -1 I B -1 
11 =au +all a21 22a21a11 

= N- 1 +N-1Nx'N-1SX_1NxN-1 

= N- 1 (1 + x' SX_ 1x), 

b -1 I B 
12 = -all a21 22 

= -N-1Nx'N-1SX_ 1 

= -N- 1x'Bx1
. 

19.3 MODEL COMPONENTS 

(19.12) 

(19.13) 

(19.14) 
D 

For a GLMN,p,q(Y;; XiB, :E) with Gaussian errors and X fixed at least 
conditionally, 

(19.15) 

and 

(19.16) 

In the special case of the univariate model p = 1 and 

(19.17) 

and 

(19.18) 

19.4 PRIMARY PARAMETER AND RELATED ESTIMATORS 

With a L TFR design matrix 

B =(X' X)- X'Y, (19.19) 

which reduces to /3 =(X' X)- X'y if p = 1 (the univariate model). Choosing a 
particular (X' X)- which meets the following condition is equivalent to choosing 
a two-condition generalized inverse: 
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[(X'X)-X']I[(X'X)-X']' = (X'X)-X'X[(X'xn' = (X'X)-. (19.20) 

With the condition, 

B"' (S)Nq,p[(X'X)- X'XB, (X' X)-, :E] 
vec(B) "'(S)Nqp{vec[(X'X)-X'XB], :E ®(X' X)-}. 

The univariate model has p = 1 and 

{3"' (S)N'q,1 [(X' X)- X' X/3, (X' X)-, a 2
] 

"'(S)Nq[(X'X)-X'Xj3,a2(X'X)-]. 

The relationships X(X'X)- X'XB = XB and HIH = H give 

Y=XB 
=HY 

(19.21) 
(19.22) 

(19.23) 

(19.24) 

"'SNN,p(XB,H,:E) (19.25) 

E=Y-Y 
=(IN-H)Y 
"'SNN,p{[IN- X(X'X)- X']XB, (IN- H)I(IN- H), :E} 
"'SNN,p[O, (IN- H), :E]. (19.26) 

The univariate case hasp= 1, 

and 

y=X{3 
=Hy 

"'SNN,l (X/3, H, a 2
) 

"'SNN(XJ3,Ha2
), 

E=y-iJ 
=(IN- H)y 

"'sNN,I [o, (IN- H), a 2
] 

"'SN:v [0, (IN- H)a2
] . 

With Ve = N- rand r =rank( X), in general 

and for p = 1 

~ ~~~ 

Ve:E = EE 
= Y'(IN-H)(IN-H)Y 
= Y'(IN-H)Y 
"'Wp(ve, :E), 

(19.27) 

(19.28) 

(19.29) 
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Equivalently, 

~2 ~~~ 
Veer = e e 

=SSE 

= y'(IN- H)y 

"' W1 (ve, cr2
) . 

~2; 2 2 ( ) VeCJ CJ "' X Ve . 

19.5 SECONDARY PARAMETER ESTIMATION 

(19.30) 

(19.31) 

As always, M = C(X'X)-C'. Having an estimable e requires 
C(X'X)-X' X= C. Hence for estimable e 

e = CBU (19.32) 

= [C(X'X)-X']YU, 

C(X'X)-X'XBU = CBU, (19.33) 

and 

[C(X'xr X'][C(X'X)- X']'= C(X'X)-X'X[(X'X)-]'C' 

= C(X'X)- {C(X'X)- X' X}' 
= C(X'X)-C'. 

Using the results just described gives 

and 

8- eo"' Na,b[CBU- eo, C(X'X)-C', :E] 

vec(S- eo)"' Nab[vec(CBU- eo), :E.® M] 

The univariate special case hasp = 1 and 

In tum, 

iJ = c{J 
= [C(X'X)-X']y. 

0- Oo "'Na,I [0,8- Oo, C(X' X)-C', cr2
] 

"' Na ( C ,8- Oo, cr2 M) 

(19.34) 

(19.35) 
(19.36) 

(19.37) 

(19.38) 

(19.39) 
(19.40) 
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A testable hypothesis requires estimable 8, full (row) rank of C, and full 
(column) rank of U. The requirements ensure full rank of the a x a symmetric 
matrix M = C(X'XfC' as well as nonsingular :E.= U':EU. In tum, 

and 

Furthermore 

M = C(X'X)~C' 
= V~!Dg(.XM )V{f 

= [V:uDg(.XM) 112][Dg(.XM) 1/2Vif] 
= FMF~1 

.& = (S- ea)'M~'(e- So) 

= (S- 8o)'FJ:/FA~/(S- 8o) 

= [Fif'(e- eo)]'[Fif'(e- eo)]. 

F:;:/(S- 8o) ~ Na,b [F:;:/(8- 8o), F:;,;/ MFift, :E.] 

~ Na,b[FA£1(8- 8o),Fi[1 FMF~1 FA£t,:E.] 

(19.41) 

(19.42) 

~ Na,b[Fif1(8- 8o),la, :E.]. (19.43) 

The row covariance structure being Ia allows concluding 

.&= [FA!1(S-8o)J'[FA£1(S-8o)] 

~ Wb{ a, :E., [FA£1(8- 8o)J'Fi[1(8- 8o)} 

~ Wb[a,:E., (8- 8o)'M~ 1 (8- 8o)]. 

A more traditional derivation of the last result follows from considering 

Yu = YU- XC'(CC'f
1
8o. 

Having Y ~ NN,p(XB,IN, :E) implies Yu ~ NN,b[E(Yu ),IN, :E.] with 

E(Yu) = XBU- XC'(CC'f
1
8o 

:E.= U':EU. 

(19.44) 

(19.45) 

(19.46) 
(19.47) 

If T = C(X'X)~ X', then e = TYU. 
TXC'(CC')~ 1 = Ia. Therefore 

A testable 8 ensures 

Furthermore 

S- 8o = TYU- T[XC'(CC')~1 ]80 
=TYu. 

.& = (e- 8o)'M~ 1 (S- 8o) 
= Y6T' M~1TYu. 

(19.48) 

( 19.49) 
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If A= T' M- 1T then.&= Y6AYu and 

A 2 = (T' M- 1T) (T' M- 1T) 

= T'M- 10(X'X)-X'{X[(X'X)-]'O'}M-1T 

= T'M- 10(X'Xr {O'}M- 1T =A. 

Furthermore, with 8co = 0'(00')-18 0 , 

[E(Yu)]'AE(Yu) = [XBU -X8coJ'T' M- 1T[XBU -X8co] 

= [TXBU -TX8coJ' M- 1 [TXBU -TX8co] 

= (8- 8o)' M-1(8- 8o). 

(19.50) 

(19.51) 

The idempotency of A combines with Yu "'NN,b[E(Yu),IN,:E.] to give 
.& "'Wb[a,:E., (8- 8 0)'M-1(8- 8 0)] (Theorem 10.8). 

19.6 ADDED-LAST AND ADDED-IN-ORDER TESTS 

Muller and Fetterman (2002) gave detailed discussions of the interpretations 
and uses of added-last and added-in-order tests in univariate models. Here we 
prove some important properties. 

Lemma 19.2 In a GLMN,p,qFR(Yi; XiB, :E) with Gaussian errors, the added-last 
SS for all predictors are independent if and only if X' X is a diagonal matrix. 

Proof. Testing f3 = 0 uses 0 = Iq, while testing a particular slope uses 

OJ= rowi(O). With ((X'X)-1
)Jk the j, k element of(X'X)-1, 

mi = Oj(X'X)-10j = [0 0 · · · 1 · · · O](X'Xr
10j = ((X'X)-1)iJ (19.52) 

and 

(19.53) 

Furthermore 0 j = O/iJ and 

(19.54) 

Here i!J"'Nq[f3,a2(X'X)- 1
]. With j=j=k, Theorem 8.13 gives qjllqk {:} 

AJ[a2(X'Xf 1]Ak = 0. The scalar OJ(X'X)- 10A, = ((X'X)-1
) jk gives 

Ap2(X'X)-
1 Ak = a20jmj1 [o1(X'X)-

10£] m"k10k 

= (a2mj1m"k 1)(0j0k) [oj(X'X)-
1
0£] 

= (a2mj 1m"k 1 )(OjOk) ( (X'X)-1
) Jk. (19.55) 
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Given the assumptions, the scalar (a2mj1mJ;1
) is never zero. Furthermore 

( CjCk) is a q x q matrix with a 1 in location j, k and zeros elsewhere. Hence the 

last expression is zero if and only if ( (X' X) - 1
) jk is zero. The proof is completed 

by noting (X' X) -I is diagonal if and only if (X' X) is diagonal. 0 

Lemma 19.3 In a GLMN,p,qFR(Yi; XiB, E) with Gaussian errors, if X includes 
an intercept, then added-last SS for predictor variables other than the intercept are 
mutually independent if and only if they are mutually uncorrelated. 

Proof. Without loss of generality, we may assume the intercept is the leftmost 
column in X. Testing all slopes equal to zero uses C = [ 0 Iq-1 ], while testing a 
particular slope corresponds to considering Ci = row i (C). Lemma 19.1 gives 

(X' X) -1 = ~ [ 1 + x'C)(
1
x x'C)(

1
] 

N C)(1x CJ(1 . 
(19.56) 

With (C)( 1 \k indicating element j, k of C)( 1 , 

mj = Cj(X'X)-1Cj = [0 0 · · · 1 · · · O](X'X)-1Cj = N-1(Cx1)ii (19.57) 

and 

(19.58) 

Furthermore Oi = C/{3, 

(19.59) 

Here fj"'Nq[,8,a2(X'X)-1
]. With j-j.k, Theorem 8.13 gives qjllqk <=? 

Ai[a2 (X'X)-1]Ak = 0. The scalarCi(X'X)-
1
C£ = (Cx1 )jk gives 

Ap2 (X'X)-1 Ak = a 2Cjmj 1 [cj(X'X)- 1C£] mJ; 1Ck 

= (a2mj 1mJ;1)(CjCk) [cJ(X'X)-1
C£] 

= (a2mj 1mJ;1)(CjCk)(Cx 1
)ik. (19.60) 

Given the assumptions, the scalar (a2mj1mJ;1) is never zero. Furthermore 

( CjCk) is q x q with a 1 in location j, k and zeros elsewhere. Hence the last 
expression is zero if and only if ( CJ(1

) Jk is zero. The proof is completed by 

noting Cj(1 is diagonal if and only if Cx is diagonal if and only if the 
corresponding correlation matrix is diagonal. 0 

Lemma 19.4 Added-in-order SS are always independent in a 
GLMN,qFR(y;; Xi,8, a 2 ) with Gaussian errors. 
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Proof. In the following, Xj indicates the first j columns of X, and 
Xi,j = row;(Xj). In tum, model j is GLMN,qFR(yi; Xi,j{3j, a"]) with Gaussian 

errors. Furthermore y = Xj{3j + ej, with full-rank Xj of dimension N x j. Also 

X1{31 = [xl][,BI] 

(19.61) 

The matrix Hi= Xi(Xjxir
1
Xj = HJ is N x N, symmetric, idempotent, and 

rank(Hj) = rank(Xj) = j. Similarly, (IN - Hj) is symmetric, N x N, 
idempotent, of rank N- j, and Hj(IN- Hj) =(IN- Hj)Hj = 0. Also 

y'y = y'INY = y'Hjy + y'(IN- Hj)Y 

SSTj = SSHi + SSEi. 

The ANOV A theorem may be applied by defining Yu = yaj 1 and writing 

A= AI +A2 
IN = Hj + (IN - Hj) ' 

with a corresponding decomposition of ranks, namely N = j + ( N - j). 

(19.62) 

(19.63) 

(19.64) 

The test of adding variables {j + 1, j + 2, ... , j + k} in order compares model 
j to model j + k (models in the added-in-order pool) and uses the added-in-order 
sums of squares, SSi+k = SSEi - SSEJ+k = SSHj+k - SSHj. In particular, 

SSi+k = y' Hi+kY - y' Hiy = y' ( Hi+k - Hi )y = y' Aj+kY. (19 .65) 

The design matrix for model j + k may be partitioned as Xj+k = [ Xj Xk(-j)], 
with j columns in xj and k- j columns in xk(-j)• which contains variables 
{j + 1, j + 2, ... , j + k }. In tum, 

I [ XjXj XjXk(-j) ] 
xj+kxi+k = x~(-j)xi X£(-j)xk(-j) 

has a similarly partitioned inverse, 

with 

(19.66) 

(19.67) 

(19.68) 

(19.69) 

Using the partitioned matrix inverse in the hat matrix for the larger model gives 
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The first term in the last line of the preceding equation may be expressed as 

XJB11Xj = XJ(Xjxir
1
Xj + 

( 
I )~1 I I ( I )~! I 

xJ xJxJ xJxk(~j)B22xk(~J)xJ xjxj xj 

=Hi+ HJXk(~j)B22X~(~j)Hi, 

while the third term may be expressed as 

XJB12X~(~j) = XJ[-(XjXJr 1XjXk(~J)B22]X~H) 
= -HJXk(~J)B22X~(~J). 

Substituting the alternate forms back into the expression for HJ+k gives 

HJ+k = XJBnXj + Xk(~J)B; 2Xj + XJB12X~(~J) + Xk(~J)B22X£(~J) 
=Hi+ HJXk(~J)B22X~(~J)Hi­

(Xk(~J)B22X£(~J)Hi+HJXk(~J)B22X~(~J)) + 

(19.71) 

(19.72) 

X~.:(~J)B22X£(~J). (19.73) 

In tum, 

HJHi+k = Hj + HJXk(~J)B22X£(~J)HJ­
(HJXk(~J)B22X~(~J)HJ + HJXk(~J)B22X~(~J)) + 
HJXk( ~ J)B22X~( ~J) 

= Hi+ HjXk(~j)B22X£(~j)Hi­

(HJXk(~J)B22X£(~J)HJ + HJXk(~j)B22X£(~J)) + 
HJXk(~J)B22Xk(~J) =Hi. (19.74) 

Also HJ+k =HJ+(HJ+k-HJ) = HJ+AJ+b HJAJ+k = HJ(HJ+k-HJ) = 0, and 
rank(HJ+k) = rank(HJ) + rank(AJ+d· Finally 



360 A REVIEW OF UNIVARIATE AND MULTIVARIATE LINEAR MODELS 

Aj+k, A(i+kl)+kz = ( Hj+k, - Hj) ( Hi+k, +kz - Hj+kJ 

= Hi+k, Hj+k, +kz-HjHj+k, +kz-Hi+k, Hj+k, + H1Hi+k, 

= Hi+k, - Hj - Hi+k, + Hi 

=0 (19.75) 

and 

Aj+k,A(i+k,+m)+k, = (Hj+k,- Hj)(Hj+k,+m+k2 - Hi+k 1+m) 

= Hi+k, Hi+k, +m+kz- HiHi+k, +m+k,­

Hi+k, Hi+k, +m + HjHi+k, +m 

= Hj+k, - Hi - HJ+k, + Hj 

=0. 

(19.76) 

0 



CHAPTER20 

Sample Size for Univariate Linear 
Models 

20.1 SAMPLE SIZE CONSULTING: BEFORE YOU BEGIN 

A scientist describes, in three sentences, a study requiring six months and 
costing tens of thousands of dollars. The scientist then asks "How many subjects 
do I need?" Finding a good answer requires intensive and iterative collaboration 
between the scientist and statistician to clearly detail the (1) ethical, monetary, and 
time constraints, (2) scientific goals, both long term (vague) and short term 
(concrete), (3) study design, and (4) data analysis plan. We believe some form of 
sample size analysis, such as power analysis for test procedures and analysis of 
precision for estimators, should play a key role in the planning of most studies. 
Muller, Barton, and Benign us (1984 ), Muller and Benign us (1992), O'Brien and 
Muller (1993), and Catellier and Muller (2002) provided introductory and tutorial 
presentations. 

In practice, scientists typically seek to achieve more than one goal in each 
study. Finding a satisfactory design and analysis plan requires eliciting the 
complete set of goals and the relative importance of each. Although estimation 
essentially always has importance, the importance of statistical hypothesis testing 
can range from negligible (or not applicable) to critically essential. An important 
question for the statistician to ask the scientist is, "Will the study be a success if 
none of the planned hypothesis tests turn out to be statistically significant?" 
Jiroutek, Muller, Kupper, and Stewart (2003) discussed the question from the 
perspective of choosing a criterion probability to control when choosing a sample 
size. 

In addition to choosing a sample size, the collaborative process should include 
comparing a variety of designs and associated analyses. Exploring and describing 
the variation in performance as a function of design features, assumptions about 
the population, and choice of analysis inform and improve the decision process. 

Tables and plots for a range of different scenarios help greatly. Figure 20.1 
illustrates the power tradeoffs between sample size and mean difference for an 
independent groups t-test. As with all univariate linear models with Gaussian 
errors and fixed predictors, given a, only 1) sample size, 2) mean differences and 
3) error variance affect power. Example EOl in the manual for the free software 

361 
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POWERLIB203.1ML described in the Appendix (Section A.2) gives the code used 
to produce Figure 20.1. 

Power 

1.0 

0.8 

0.6 

0.4 

0.2 

o.oo 6 

Figure 20.1 Power as a function of sample size (N) and mean difference (b) 
for a balanced independent groups t test with cr2 = 0.068 and a = 0.01. 

20.2 THE MACHINERY OF A POWER ANALYSIS 

The discussion assumes Gaussian errors and fixed predictors. We restrict 
attention to testable hypotheses, which requires full-rank C = C (X' X)- (X' X). 
A univariate GLM power calculation with fixed predictors is fully specified by a, 
a 2, X, {3, C, and 00 . The size of the test, a, as well as the test statistic must be 
chosen a priori. The dimensions of the model fix the degrees of freedom. 
Although specifying f3 and a 2 suffices to complete the power analysis, specifying 
the (usually smaller and simpler) matrices (} = C {3, 00 , and a 2 also suffices and 
usually proves easier. A further simplification occurs because the noncentrality 
w=(0-0o)'M- 1(0-00 )ja2 suffices. With w=Np2/(1-p2), p2 is a 
(generalized) squared correlation. Also 0 :::;: w < oo and 0 :::::: p2 :::::: 1, while w = 0 
<=? p2 = 0 <=? (} = Oo <=? Ho holds <=? power = a. 

Deleting any duplicate rows from the design matrix creates the essence matrix 
(Definition 11.5), Es( X). It allows easily determining essential properties of a 
design, such as rank. Comparing essence matrices allows determining 
relationships between alternate parameter definitions. The concept allows 
conveniently separating total sample size from the coding scheme. The separation 
simplifies computing and interpreting power in linear models. 
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20.3 INDEPENDENT t EXAMPLE 

For cell mean coding, Es(X) = 12, C = [ 1 ~ 1], and U = 1, while for 

reference cell coding Es( X) = U ~] and C = [ 0 1]. Here n indicates the 

number of replicates (number of observations per unique row of X, which 
corresponds to a cell for any factorial design). In tum, 

Y = (ln 0 12) [~~] + e 

= (ln0 [~ ~])[~]+e. (20.1) 

Here [ J..t {; ]' is equivalent to 8 · [ 0 1 ]' in terms of power for the test of interest. 

Example 20. 1 The following code computes power tor the model just 
descrihcd. 
TITLEl " P0802 . SAS-- simple independent t test "; 

PROC IML SYMSIZE=4000 WORKSIZ E=4000 ; 

INCLUDE " .. \IML \POWERLIB . IML"; 

C={1 - lJ ; U=!1J ; THETAO=O ; 

ALPHA= . 01 ; 

SIGMA={2 . l} ;*Va riance if univariate , as here ; SIGSCAL={ll ; 

RHOSCAL= II ) ; 
ESSENCEX=I (2 ) ; REPN=5 ; or REPN={5 , 10 J ; 

BETA=t7 . Q, 7 . 0 } ; BETASCAL={lJ ; RUN POWER ; 

BETA={7 . 0 , 7 . 3 J ; BETASCAL=(1} ; RUN POWER ; 

BETA={7 . 0 , 7 . 1 5J ; BETASCAL= il } ; RUN POWER ; 

• last 3 lines together equ ivalent to ei ther o f next 2 lines ; 

* BETA={0 , 1} ; BETASCAL={O , . 15 , . 30} ; RUN POWER ; 
BETA= {O , l) ; BETASCAL 00(0 , . 30 , . 15 ) ; RUN POWER ; 

Here 0 = (/11 - 111 ) = b. l-Ienee one may choose BETA= :O, J} and 
HETASCA L=t- or BETASCAL=DO(tllow. hhigh. llincrement). Doing so avoids 
specifying the grand mean, (/ 11+ t1 2)j2, which does not affect the power of 
interest. 

HOLD POW CASE ALPHA SIGSCAL RHOS CAL BETAS CAL TOTAL N POWER 
1 0 . 01 1 1 0 1 0 0 . 01 

2 0 . 01 1 1 0 20 0 . 01 
3 0 . 01 1 1 0 . 15 10 0 . 011 
4 0 . 01 1 l 0 . 15 20 0 . 012 
5 0 . 01 1 1 0 . 3 10 0 . 013 
6 0 . 01 1 1 0 . 3 20 0 . 017 

What if an unbalanced design is required? Two methods are available. 
Mcllwd I. REPN= I. 

Example with _V1 = II participants in one group and N :. = 7 in the second group. 



364 SAMPLE SIZE FOR UNIVARIATE LINEAR MODELS 

REPN= l; 

Nl = ll ; N2=7; ESSENCEX=BLOCK( J(N2,1,1), J(NI , I,l) ); X = [~' ~11 ]; 
Method 2. REPN ~ I. 

Example proportional design with two controls for[et~~]Lreatment participant. 

ESSENCEX- BLOCK(J(2.l.I) . J(I.I.J)); X = ~ ~ ; 

Allows using REPN= {3,61; to consider N=9 and N= 18. 

20.4 PAIRED t EXAMPLE 

A paired data t test can be conducted as a one-sample t test with the model 

Example 20.2 
TITLE I "P0804.SAS--paired t, one sample/difference version"; 
PROC IML SYMS IZE=4000 WORKSIZE=4000; 
%INCLUDE " .. \1M L \POW ERLI 8.1 M L'\ 
C=lll; U= lJ :; THETAO=O; 
ALPHA=.Ol; 
SIGMA={ 1.1 };*Variance of difference; SIGSCAL={ I} ; RHOSCAL=' !I :-; 
ESSENCEX=I( I); 
REPN=, {5,l0}; 
BET A= {I j; BET ASCAL=DO(O,.J,.l5); 
RUN POWER; 

20.5 THE IMPACT OF USING Ci2 OR fJ IN POWER ANALYSIS 

(20.2) 

Data analysts often use ci, an estimator of CJ2 , in a power analysis. In tum, the 
power value inherits the randomness of the estimator. Taylor and Muller (1995) 
derived exact methods to account for the randomness in the context of the 
GLMN,q(Yi; Xi{3, CJ

2 ) with fixed X and Gaussian errors. Accounting for the 
randomness leads to creating a confidence region around the power curve, as 
illustrated in Figure 20.2. The particular range of values used in the figure reflect 
the following scientific context. In humans, substantially elevated creatinine levels 
in the blood typically indicate severe kidney disease. With normal values falling 
below 1 mg/dL, values of 2 or higher are important and a bad sign. Values in the 
range of 1 Q-20 usually reflect kidneys near complete failure (leading to dialysis, 
kidney transplant, or death). Experience with the measure has led to the realization 
that 1/creatinine (in units of dL/mg) is approximately Gaussian. The vertical 
reference line at 0.5 dL/mg in Figure 20.2 indicates the change in reciprocal 
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creatinine deemed of clinical significance by the nephrologist (kidney specialist) 
who asked for guidance on sample size. 

1.0 ------_...,-
0.8 / 

p 
/ 

0 0.6 / 
w / 
e 0.4 / 
r / 

0.2 
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0.00 0.25 0.50 0.75 

Mean Difference, 1/Cr ( dL/mg) 

Figure 20.2 Power curve with two-sided 95% confidence region due to 0'2 

for independent groups t test power with N = 12 + 12. 

In some cases, data analysts conduct power analysis conditional on the outcome 
of a study. At the end of a trial in the drug discovery process, planning for future 
studies, including power analysis, centers on the conditions and variables with the 
smallest p values. In other settings, a strong intellectual commitment to a 
particular hypothesis may lead a scientist to conduct a power analysis following a 
nonsignificant result. The first scenario implies &2 arose from a density truncated 
on the right (excluding large values), while the second scenario implies &2 arose 
from a density truncated on the left (excluding small values). Muller and Pasour 
(1997) extended the results of Taylor and Muller (1995) to allow for such 
truncation. The first scenario creates optimistic bias (estimated power too large), 
while the second scenario creates pessimistic bias (estimated power too small). 

Taylor and Muller (1996) described the impact of using estimates of both a 2 

and /3 in estimating power of a univariate linear model. We have seen the 
approach used in three settings: data analysis, study planning for assessing 
individual response, and study planning for population response. Only the last 
application seems defensible. 

In the context of data analysis, Lenth (200 1) appropriately criticized the 
computation of such an estimate ("retrospective power," P). Taylor and Muller's 
( 1996) results make it clear that P is a one-to-one function of the p value. Hence it 
adds no information or value to any data analysis. Finding the largest P is 
equivalent to finding the smallest p value, which is often very misleading. 

Lenth (200 l) also appropriately criticized estimating both a 2 and /3 when 
planning a future study ("prospective power"). Allowing an observed difference to 
drive the sample size makes no reference to the concept of scientific importance. 
In Figure 20.2, the clinically important difference of 0.5 dL!mg (1/Cr) drove the 
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power analysis. In the context of evaluating a drug intended to improve kidney 
function, with response variable 1/Cr, it does not seem defensible to use an 
estimate of /3 to drive the power analysis. The setting involves study planning for 
assessing individual response. 

In contrast, estimating both a 2 and /3 in study planning for assessing population 
response may be defensible. Taylor and Muller (1996) illustrated the process in 
the context of U.S. EPA funded research on the effects of carbon monoxide (CO) 
on human perceptual-motor performance, such as driving an automobile. For a 
particular exposure level, the performance decrement for a single individual might 
be modest or even negligible. However, the same exposure level experienced by 
an entire population may lead to an unacceptable level of total risk. Hence EPA 
scientists sought to replicate the most credible, not the largest, published finding. 
Taylor and Muller provided a detailed description of the application. 

Taylor and Muller (1996) also described the impact of conducting the power 
analysis condition on the outcome of the study providing the estimate. As when 
estimating only a 2, requiring the previous study to have a significant result creates 
optimistic bias (estimated power too large). Similarly, requiring the previous study 
to have a nonsignificant result creates pessimistic bias (estimated power too small). 

20.6 RANDOM PREDICTORS 

Although errors in measurement could introduce additional randomness in both 
fixed and random predictors, we assume that the scientist measures all predictors 
without appreciable error. Given the assumption, in practice, the distinction 
between random and fixed predictors does not affect the distribution theory. 
However, in power analysis the distinction between random and fixed predictors 
changes and complicates the distribution theory. Sampson (1974) detailed many of 
the basic issues and known results for both the univariate and multivariate model 
with Gaussian predictors. 

Jayakar (1970), Soller and Genizi (1978), Genizi and Soller (1979), and 
Gatson is and Sampson ( 1989) developed methods for models involving random 
dichotomous and Gaussian predictors in the univariate GLM. To our knowledge, 
power with any other predictor distribution has not been studied. 

Many questions remain, especially with combinations of fixed and random 
predictors. Most importantly, do the simple approximations often used in practice 
lead to poor approximations of power? 

As with any probability, power can be interpreted as the expected value of an 
indicator variable. Power computed with random predictors can be thought of as 
expected power due to expectation with respect to the choice of predictor values. 
Glueck and Muller (2003) recommended considering quantile power, such as 
median power, in lieu of expected power. A more conservative approach would 
use a lower quantile to reduce risk of study failure. 
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20.7 INTERNAL PILOT DESIGNS 

Having chosen a f3 of scientific importance (such as a pattern of mean 
differences), a valid choice of a 2 usually stands as the biggest barrier to an 
appropriate choice of sample size in the univariate linear model. An internal pilot 
design (Wittes and Brittain, 1990) solves the problem as follows. First, a 
traditional power analysis is conducted based on a planning value a6 and a target 
power which together imply a total sample size of n 0 . Second, the first n 1 < no 
observations are collected, and &i is computed from residuals from the appropriate 
linear model. However, no interim data analysis is conducted, and the data 
analysts and scientists remain masked with respect to treatment assignment. Third, 
a new total sample size, N+ = n 1 + N 2 , is computed, based on &i. Fourth, an 
additional N 2 observations are collected. Fifth, and finally, the analysis is 
conducted for the complete set of N+ observations. The interim power analysis 
typically increases sample size when needed to compensate for a6 being too small 
and decreases sample size to compensate for a6 being too large. Hence expected 
sample size and power are improved. 

Unfortunately, an internal pilot design can inflate test size, at least in small 
samples. Hence Coffey and Muller (1999, 2000a, 2000b, 2001) described many 
small-sample results which allow using an internal pilot with any univariate linear 
model with Gaussian errors and fixed predictors. The methods control test size 
while still providing the desired advantages in power and expected sample size. 

20.8 OTHER CRITERIA FOR CHOOSING A SAMPLE SIZE 

In the context of the Neyman-Pearson approach to testing a hypothesis, test 
size, indicated a, equals the probability of rejecting the null hypothesis given the 
null holds: a =Pr{reject HoiHo =TRUE}= Pr{reject HoiHA =FALSE}. 
While a equals the probability of a type I error, a false positive, 
(3 = Pr{fail to reject H0 1HA =TRUE} gives the probability of a type II error, a 
false negative. In tum, the conventional definition of power is 1 - (3 = 
Pr{ reject H0 1HA =TRUE}. It is mathematically convenient to define the power 
function, Pr{y E RRIH}, as a function of (J by adding a single point so that power 
under the null is at most a. 

A goal other than rejecting a hypothesis leads to using design criteria other than 
power. Historically, interest in controlling confidence interval width has been the 
next most popular criterion. For scalar hypotheses in the general linear model, 
Jiroutek, Muller, Kupper and Stewart (2003) reviewed criteria in terms of three 
basic events. The event width (W) occurs when the observed confidence interval 
is less than a fixed constant chosen a priori. The event validity (V) occurs if the 
confidence interval contains the parameter of interest. The event rejection (R) 
occurs if the confidence interval excludes the null value of the hypothesis. For a 
two-sided test in the general linear model, the probability of rejection is slightly 
greater than power due to the slight chance that the hypothesis is rejected in the 
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"wrong" direction. For a t test with positive difference in population means, 
rejection in the wrong direction involves rejecting the null with a negative 
difference observed. For a one-sided test, the probability of rejection and the 
(unconditional) definition of power coincide. 

Jiroutek et a!. (2003) observed that various authors have considered controlling 
only power, essentially Pr{R}, or Pr{RIV}, or Pr{W}, or Pr{WIV}. They 
argued that scientists often desire not only a valid hypothesis test with good power 
but also a valid confidence interval of a reasonable size. If so, then 
Pr{ (W n R) IV} captures the combined goals, with all previously studied criteria 
occurring as special cases. Jiroutek et a!. described convenient single-integral 
formulas for computing Pr{ (W n R) IV}. Not surprisingly, controlling Pr{W} or 
Pr{WIV} when study goals include rejection can lead to collecting far too few or 
far too many observations. Either problem may also occur when controlling power 
and ignoring confidence interval goals. Free SAS/IML ® software to compute 
Pr{(W n R)IV}, Pr{R}, Pr{W}, and Pr{WIV} for any scalar hypothesis in a 
univariate or multivariate GLM with fixed predictors can be found at the website 
documented in the Appendix (Section A.2). 

EXERCISES 

20.1 Use the POWERLIB software described in the Appendix (Section A.2) to 
reproduce the results in Example 20.1. 

20.2 A GLMN,q(Yi; X;/3, a 2 ) with Gaussian errors and N = 10 observations 
has 

Xfi = [ l10 X] [ ~]. 

With 0 = [ 0 1] and M = [O(X' X)-10'], a two-sided test of H 0 : 'Y = 0 uses 

~2 N 

Fobs= (0/3)'M- 1(0/3)(ii2 = 22 2)xi- xi"' F(1,N-2,w), 
() i=1 

and noncentrality w = (0 fi)' M-1(0 fi)/a2 = ("(2 ja2 )2:~ 1 (xi- x) 2
. 

Consider testing the null hypothesis H 0 : 'Y = 0 with a significance level of0.05. 
20.2.1 What is the probability of rejecting the null hypothesis if a = 1, 'Y = 1/4, 
a 2 = 1, and x = [0.3 1.0 1.5 1.7 1.8 2.5 2.6 4.0 7.4 14.5]'? 
20.2.2 Suppose that instead of being fixed, x is the realization of a vector-valued 
random variable. Specifically, let x be a random sample of size 10 from an 
exponential distribution with mean J-lx = 4. Use computer simulations to estimate 
the unconditional probability of rejecting the null hypothesis. 
Hints. (a) Pr{REJECT NULL}= Ex(Pr{REJECT NULLix}) = Ex[g(x)] (say). 
(b) Let {x 1 , ... , XN} denote a random sample and let y; = g(xi)· The statistic 
y = 2:~ 1 y;j N is an unbiased estimator of the unconditional probability. 
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(c) The simulations can be conducted in SAS/IML or another matrix-based 
language. The following is a skeleton program. 
SEED=nnnnn ; ~you must assign a value to start 

pseudo- random number generator ; 
*Ideally, choose a prime number as large as possible ; 
*In practice , choose 5-7 digit t not divisible by 2 , 3 , or 5; 
*Number nmopq is divisible by 3 <=> n+m+o+p+q divisible by 3 ; 
NREPS = 1000 ; * THE NUMBER OF REPLICATIONS ; 
power = J(NREPS , l ,. ) ; * AN EMPTY VECTOR TO STORE RESULTS ; 

do i = 1 to NREPS ; 
x=4 *ranexp(J (l0 , l , SEED)J ; * GENERATE RANDOM SAMPLE, SIZE 10 ; 
NCP = ..• ; * A FUNCTION OF I • u2 , and x . 
CRIT = ... , *CALCULATE THE CRITICAL VALUE; 
power[i] 
end; 

* A FUNCTION of NCP, CRIT dfl , df2 ; 

estimate~ sum(power ) /NREPS ; * ESTIMATED UNCONDITONAL POWER ; 

The approach suggested is an extremely inefficient programming strategy. The 
data should be "buffered" (written to disk after, perhaps, every 100 replications). 
We accept such inefficiem:y to help keep the exercise manageable. 

20.3 A researcher plans a randomized trial to compare three drugs (H2 receptor 
antagonists) used to treat stomach ulcers. An equal number of patients will be 
randomized to three treatment groups (Cimetidine, Ranitidine, Famotidine). The 
main outcome is gastric acidity measured in pH. The goal is to test whether the 
three drugs increase pH the same amount. There are no covariates. The 
investigator is not sure whether to obtain baseline measurements. She knows that 
baseline measurements can improve power but is not sure whether it is worth the 
cost. With a fixed budget, money spent on baseline measurements reduces the 
number of participants. She has asked help in choosing the most cost-effective and 
powerful design. All tests will be based on a type I error rate of o: = 0.05. 

Design I: one measurement per participant 
Measure gastric acidity after a 6 month treatment regimen. Use a univariate one­
way ANOVA model with 3 groups. The outcome variable is gastric acidity (call it 
y1). The null hypothesis is that E(yl) is the same for all participants in all 
treatments. The test statistic is the ANOV A test of overall regression, which has 2 
numerator degrees of freedom. 

Design 2: difference scores, two measurements per participant (baseline and 
follow-up) 
Obtain a "baseline" measurement prior to initiating therapy (call it y0 ) and a 
follow-up measurement (yl) after the 6-month treatment. Due to randomization, 
E(y0 ) is the same for all patients regardless of treatment assignment. Let 
z = y1 - y0 . The null hypothesis is that E( z) is the same for all participants 
regardless of treatment assignment. The data analysis is the same as for design 
option 1, but the outcome is z rather than y1. The approach is equivalent to fitting 
a general linear multivariate model with two outcome variables, y0 and y1, and 
using U = [1 -1 ]'. 
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Participants are statistically independent with data assumed to be Gaussian. 
Which design yields the better power depends on unknown parameters. The 
anticipated difference between follow-up and baseline, E(y1 - y0 ), is 0.75 for 
Cimetidine, 1.00 for Ranitidine, and 1.25 for Famotidine. 
Previous studies suggest that V(yo) ~ V(y1) ~ 1 and p(yo, yl) = p ~ 0.6. 
20.3.1 Under design I, what is the probability of rejecting the null hypothesis 
when there are n =50 participants per group (N = !50 participants total)? 
20.3.2 What is the smallest sample size needed to achieve 0.80 power for design I? 
20.3.3 Under design 2, what is the probability of rejecting the null hypothesis 
when there are n =50 participants per group (N = !50 participants total)? 
20.3.4 What is the smallest sample size needed to achieve 0.80 power for design 2? 
20.3.5 Repeat 20.3.3 using several different choices of p between 0 and 1. Plot a 
graph illustrating the relationship between p and power (an approximate, hand­
drawn graph is acceptable). 
20.3.6 The physician wants to enroll as many participants as possible, but can only 
spend a fixed amount of money. You're asked to help her determine which design 
is more cost effective. Under design option I, the study costs $75 per participant. 
Under design option 2, the study costs $100 per participant. Which design do you 
recommend and why? 



CHAPTER21 

Sample Size for Multivariate Linear 
Models 

21.1 THE MACHINERY OF A POWER ANALYSIS 

We focus here mostly on the theory of power analysis and ignore the many 
important practical issues surrounding the task. The reader may wish to consult 
O'Brien and Muller (1993) for a tutorial and many related references. 

The discussion assumes Gaussian errors and fixed predictors. For data analysis, 
the presence of random predictors causes no additional complexity. In contrast, 
allowing random predictors introduces an additional layer of distributional 
complexity to power analysis. Glueck and Muller (2003) reviewed the limited 
range of cases that have been solved. The same authors considered fixed 
predictors in combination with Gaussian covariates. An important open question 
remains concerning how to compute power for the interaction of fixed and 
Gaussian predictors. More generally, power analysis for random but not Gaussian 
predictors have received little attention. 

We restrict attention to testable hypotheses, with full-rank C, U, :E., and M, 
while C = C(X'X)-(X'X). As discussed in Section 2.5 of Muller, LaVange, 
Ramey, and Ramey (1992), a, :E, X, B, C, U, and 8 0 fully specifes a 
multivariate general linear model power calculation. Both a, the size of the test, as 
well as the test statistic must be chosen a priori. The dimensions of the model fix 
the degrees of freedom. Although specifying B and :E suffices to complete the 
power analysis, specifYing the (usually smaller and simpler) matrices 8 = C BU, 
8 0, and :E. = U':EU also suffices and often proves easier. Further simplification 
occurs because the b x b matrix n = (8-80)'M-1(8-80):E:; 1 suffices. As a 
final simplification, the eigenvalues of n provide the minimally sufficient 
(additional) information required to complete the power analysis. Eigenvalue k of 
n is wk = N PU (1- p~), with p~ a (generalized) squared canonical correlation. 
Also 0 _::::; wk < oo and 0 _::::; p~ _::::; 1. Writing :E. = CI>CI>' gives :E:;1 = q,-tq,- 1 and 
allows defining the symmetric matrix !lq, = q,- 1(8- 8 0)'M-1(8- 8 0)CI>-t, 
which is a quadratic form in the symmetric matrix M-1. The eigenvalues of n 
equal the eigenvalues of !lq,. For (a X b) e, s =min( a, b) and rank(8) = s., 
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with 0::::; s*::::; s. In tum, rank(O) = s* , the number of nonzero Wk. which equals 
the number of nonzero p~. Also s* = 0 ~ Wk = 0 ~ p~ = 0 ~ e = eo 
~ Ho holds ~ power = o:. 

The sizes of s and s* control many features of power analysis in the multivariate 
GLM. If s = 1, then all tests coincide and s* = 1. Having s > 1 allows 
increasing s*, which always increases power (with all other properties held 
constant). The theoretical property has a very important and practical implication. 
A study design with sufficient power to detect a linear dose effect will have even 
more power if an additional quadratic effect occurs (above and beyond the linear). 
Hence power analysis with s* = 1 often may be taken as a conservative approach. 

Deleting any duplicate rows from the design matrix (X) creates the essence 
matrix (Definition 11.5). It simplifies determining properties of a design, such as 
rank. Comparing essence matrices allows determining relationships between 
alternate parameter sets. The concept provides convenient separation of total 
sample size from the coding scheme. The separation helps simplify interpretation 
and computation of power. 

21.2 PAIRED t TEST EXAMPLE 

A paired data t test can be conducted with Es(X) = I 1 = 1, C = 1, and 
U = [ -1 1 ]'. The power for Ho : f..t2 = p 1 will be the same for either of two 
different models: 

Y = ln[f..tl f..t2] + E 
Y = ln[O 1]8 +E. 

(21.1) 
(21.2) 

Here CBU = () = (p2 - p 1) = 8. The second model avoids the need to specify 
the grand mean, (p1 + pl)/2, which has no effect on the power analysis. 

Example 21.1 The code can use BETA = { 0 I}=( { 0.1 } )' and BET ASCAL=b or 
BET ASCAL=D0(61ow, 6high, 6increment)~. 
TITLE! " P0803 . SAS--simple paired t example"; 
PROC IML SYMSIZE=4000 WORKSIZE=4000 ; 
%INCLUDE " .. \IML\POWERLIB . IML"; 
U= I { 1 -1)) ' ; 

C= {l) ; THETAO =O ; 

ALPHA"' . 0 1 ; 

S IGSCAL= { 11 ; 
RHOSCAL={1) ; 

SIGMA={ 2 . 1 3 . 2 , 
3 . 2 2 . 4 } ; 

*or ; P=2 ; VARIANCE=2 . 1 ; RH0= . 4 ; 
SIGMA=VARIANCEU( I(P)#(1-RH0) +J (P, P, RHOI ) ; 

ESSENCEX=I(l) ; 
REPN={5, 10} ; 
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BETA= { 0 1} ; 

BETASCAL=DO(O , . 30 , . 15) ; 

RUN POWER ; 

HOLDPOW CASE ALPHA SIGSCAL 

1 0 . 01 1 

2 0 . 01 1 

3 0 . 01 1 

4 0 . 01 1 

5 0 . 01 1 

6 0 . 01 1 

RHOS CAL BETAS CAL TOTAL N 

1 0 5 
1 0 10 

1 0 . 15 5 

1 0 . 15 10 

1 0 . 3 5 

1 0 . 3 10 

21.3 TIME BY TREATMENT EXAMPLE 
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POWER 

0 . 01 

0 . 01 

0 . 011 

0 . 012 

0 . 013 

0.02 

For GLMN,p,q(Y;; XiB, E) with Gaussian errors, the hypothesis of time-by­
treatment interaction often generates particular interest. All participants are 
assumed to have been measured at the same times, { t1, ... , tP}, with Es( X) = Iq 
and X = ln 0 Es(X). In the simplest case s* = 1. 

The hypothesis of treatment-by-time interaction may be expressed in terms of 
differences of differences of means, with 

01 = [lq-1 

UI = [lp-1 
8o=0. 

-Iq-1] 

-Ip-1 ]' 

Useful corresponding canonical forms are, with q x p B 1 and ax b eh 

01x(p-1) ] 

O(q-1)x(p--1) 

01x(p-l) ] 8 
O(q-1)x(p-1) ' 

e1 = [
() 

O(a-1)x1 

01x(b-1) ] 

O(a-1)x(b-1) 

= [ ~(a-1)xl 01x(b-l) ] 8 
O(a-1)x(b-1) . 

(21.3) 
(21.4) 
(21.5) 

(21.6) 

(21.7) 

The alternative hypothesis of interest may be a linear-by-linear (treatment-by­
time) interaction. If so, 0 2 and U2 give the orthonormal polynomial trends for q 
and p values, respectively. If p = 3 and q = 4 (assuming equal spacing for both 
between and within factors), eo = 0 and 
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Oz = Dg({20,4,4})- 1
/
2 1 -1 -1 1 = ~ [ 

-3 -1 1 3] [ Oz 1 l 
1 - 1 1 - 1 Oz,q-1 

[
-1 1] 

Uz = ~ - i Dg(2, 6)-112 
= [ u2,1 U:2,2 · · · u2,p-1]. 

Also, with q X p B2, q X 1 o~,b 1 X p u~,l' a X b 8z, 

B2 = (0~, 1 u~, 1 )8 

and 

= [ 1 Olx(b-1) ] 8 = 81 
O(a-1)xl O(a-l)x(b-1) . 

(21.8) 

(21.9) 

(21.10) 

(21.11) 

More generally, if ti = [ 81 82 · · · 8s. ]', 0 2• indicates the first s. rows of 02, 

and U 2• indicates the first s. columns of U2 , then B 2 • = O~.Dg( ti)U~. has rank 
s. and 

82. = 02Bz.Uz 
= (020~.)Dg(ti)(U~.Uz) 

[(axq)(qxs.)[(s. xs.)[(s. xp)(pxb)] 

= [~s. ] Dg(ti)[ Is. Os.x(b-s.)] 
(a-s.) xs. 

= [ Dgci ti) O(a-s.~x(b-sJ . 

Choosing 

(21.12) 

(21.13) 

(21.14) 

(21.15) 
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In some cases, the alternative hypothesis of interest may concern a main effect. 
For a between-groups main effect, examples are 

[
0 0 01 B=~ 1 1 1 8 

6 2 2 2 
3 3 3 

(21.16) 

and 

(2l.l7) 

while a within-subject main effect example is 

B = l~u;, 18. (2Ll8) 

Example 21.2 The to! lowing code provides an example calculation of C 2C J.z •• 
PROC IML ; RESET PRINT ; 

Q= 4 ; SSTAR=2 ; 

POLY=ORPOL !l: Q); 
C= ( POLY[ • , 2 : Q] } . ; 

CSTAR=C[l : SSTAR,• ]; 

CCSTARP=C *CSTAR' ; 

The foll owing program comput es power for a time by tre a tmen t 

interaction . 

PROC IML SYMS IZE=4 000 WORKSIZE=4000 ; 

%INCLUDE " .. \ IML \ POWERLIB . IML"; 

P=3 ; U= l JIP- 1 , 1 ,1} II (-I(P-1)) l · ; 

Q=4 ; C=J IQ-1, 1, ll I I ( -I (Q- 1 l I ; 
ALPHA= . Ol ; 

VARIANCE=2 . 1 ; 

RH0= .4; 

SIGMA=VARIANCE #( I(P)~(l-RHO) +J(P , P , RHOI ) ; 

IGSCAL= {1 I 2} ; 

RHOSCAL= ill ; 

ESSENCEX=I (Q} ; 

REPN={S , lOI ; 

BETA=J(Q, P, O) ; 
BETA{l , l] =l ; 

BETASCAL=DO (O, . 30 , . 15) ; 

RUN POWER ; 
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21.4 COMPARING BETWEEN AND WITHIN DESIGNS 

A multivariate GLM with Gaussian errors for a paired data t test, with Yi 
dimension N x 1, may be written 

(21.19) 

For simplicity of comparison to an independent t test analysis, we assume 
homogeneity of variance holds across repeated measures (within subject): 

~ = a2 [~ i]. (21.20) 

Using C = [1] and U = [1 -1]' tests Ho: J-ll = J-l2· In tum, 8 = (J-LI- P,2), 

~. = U'~U 

= a
2 

[ 1 -1] [ ! i ] [ _ ~ ] 
=a22(1-p), (21.21) 

(21.22) 

and 

(21.23) 

For Ve = N -rank( X), the degrees of freedom are ab = 1 and 
s(ve-b+s) = N-1. 

An independent groups t test with a balanced design corresponds to 

[ ~~ ] = I2 0 1 N /2 [ ~~ ] + e . (21.24) 

Assuming e rv N(O, a 2 IN) implies homogeneity of variance (between groups). 
Choosing C = [ 1 -1] and U = [ 1] allows testing H 0 : p,1 = p,2 . In tum, 
e = (J-Ll- J-l2), ~. = a 2, 

M = [ 1 -1][(N /2)I2r [ -~] = 4/N, (21.25) 

and 

(21.26) 

The degrees of freedom are ab = 1 and s(ve- b + s) = N- 2. 
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Two possible comparisons seem interesting, based on having either a constant 
number of independent sampling units (ISUs) or a constant number of 
observations. With constant ISUs, N has the same value in the two settings, and 
the error degrees of freedom for paired minus independent equals 
(N- 1)- (N- 2) = 1. In tum, 

Wpaired N 1[2(1- p)] 
Windep N 14 

2 
=( )>1. 1-p 

(21.27) 

Both discrepancies favor the paired design (with constant ISUs, which requires 
collecting more observations). 

With a constant number of observations, the error degrees of freedom for paired 
minus independent equals (N 12- 1) - (N- 2) = - N 12 + 1. In tum, 

Wpaired (N 12)1[2(1- p)] 
Windep N 14 (21.28) 

1 
---
(1- p)" 

If p::::; 0, then (1- p)-1 
::::; 1 and both discrepancies favor the independent design. 

If p 2': 0, then (1- p)-1 2': 1 and for each N there exists p0 (N) such that p 2': p0 

implies the paired design is superior, and otherwise the independent design is 
superior. Equivalently, for each p there exists No(p) such that N?: No(P) and the 
paired design is superior, while otherwise the independent design is superior. 
Some regions may be undefined. A three-dimensional plot, with power difference 
vertically, N and p as the floor plane, can be especially informative. Critical 
values are fp = Fj1(1- a; 1,NI2 -1) and fi = Fj1(1- a, 1,N- 2). In tum, 
for method m, Power(m) = 1- FF(frn; 1, vrn; Wrn)· 

Other comparisons are also interesting. For paired data 

vec(S) "'Nab[vec(8), :E.® M] 
"'N[(/11 -112), 2(1- p)a2 IN], 

while for independent data 

vec(S) "'Nab[vec(8),:E. ® M] 
rv N[(/11 - /12), 4a2 IN] . 

With equal sample sizes 

while for equal observations 

2(1 - p )a2 IN 
'Y = 4a2 IN 

=(1-p)l2, 

(21.29) 

(21.30) 

(21.31) 
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2(1- p)cr2 /(N /2) 
'Y = 4cr2 / N 

= (1- p)/4. (21.32) 

The difference in error degrees of freedom affects the confidence interval. Hence 
one should compare quantiles of confidence interval widths, which are of the form 

w = 2crmV Fj1(1- a; 1, Vm). (21.33) 

21.5 SOME INVARIANCE PROPERTIES 

Any testable secondary parameter e = GBU (a X b), with Ho: e = 8o, has 
rank( C) = a ::::; q and rank(U) = b ::::; p. Eigenvalues of Shse-l, and hence all 
multivariate test statistics and associate p values, are invariant to full-rank 
transformation of rows of G and columns of U (Section 16.8). Specifying B and 
:E usually requires the most thought. Specifying 8 = GBU, 8 0 , and 
:E. = U':EU suffices. In tum, B and :E reduce to canonical forms. For 
Ho : J-ll = p,z either /3 = [ p,1 p,z ]' or /3 = [ 0 8 ]' (with 8 = p,z - p,I) leads to the 
same power. In practice, most tests involve hypotheses which exclude the 
intercept, while the model does span an intercept. Such situations allow assuming 
a grand mean of zero because the mean has no effect on power. 

For fixed a, :E, X, G, U, and 8 0, power for any s. = 1 alternative may be 
expressed and plotted as a function of a scalar parameter, such as a mean 
difference or a squared canonical correlation. Choosing such a representation can 
be extremely helful in defining a range of alternate hypotheses of interest. Plotting 
power in terms of the scalar parameter is especially enlightening. 

21.6 RANDOM PREDICTORS 

As discussed in the previous chapter, the presence of random predictors greatly 
complicates noncentral distribution theory. Sampson (1974) detailed many of the 
issues for the univariate and multivariate models with Gaussian predictors. 

Glueck and Muller (1998) reviewed the limited work on random predictor 
power in multivariate models. They also described methods for accurately 
approximating power for a GLMN,p,q(Yi; XiB, :E) with combinations of fixed and 
Gaussian predictors corresponding to a baseline covariate design. Approximating 
power for the more general model allowing unequal slopes for each group remains 
an open and important question. 
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21.7 INTERNAL PILOT DESIGNS 

The principles and advantages of internal pilot designs for univariate models 
were introduced in Section 20.7. An interim residual analysis (without any interim 
data analysis) provides a variance estimate &i. In tum, a power analysis based on 
&i leads to increasing or decreasing total sample size. Avoiding the potential for 
inflated test size due to using an internal pilot requires special testing procedures. 

Coffey and Muller (2003) considered using internal pilot designs with the 
UNIREP approach to repeated measures. They (incorrectly) speculated that the 
inherent conservatism of the Geisser-Greenhouse test in small samples might 
compensate for the test size inflation induced by an internal pilot. The interim 
analysis produces f. 1 = U'f1 U and an updated sample size choice. Simulations 
demonstrated that test size was inflated above the target level in small samples. 
Hence work on developing other strategies for controlling test size was begun. 

Coffey and Muller drew an additional conclusion from their simulations. For 
E = tr2(:E.)/[btr(:E;)] near the lower boundary of 1/b and small N, the UNIREP 
power approximations of Muller and Barton ( 1989) lack sufficient accuracy for 
internal pilot use. In the worst case, b = 1, E ~ 0.29, and N = 20, a particular 
pattern of means gave a predicted power of 0.65, while a power of 0.87 was 
observed in a simulation with I 00,000 replications (standard error~ 0.00 15). 
Muller, Edwards, Simpson, and Taylor (2006) demonstrated approximations for 
power of the UNIREP tests which almost entirely eliminate the inaccuracy. In the 
worst-case condition just described, the new method predicted power of0.84. 

EXERCISES 

21.1 Use the POWERLIB software described in the Appendix A (Section A.2) 
to reproduce the results in Example 21.1. 

21.2 A clinical trial is planned to compare a new drug with an existing one. 
Treatment starts on a Monday morning. The outcome is measured that afternoon 
and the four following afternoons. A multivariate GLMN,p,q(Yi; XiB, :E) with 
Gaussian errors has Y (20 x 5), and 

XB=[l10 010][J-lu 
010 110 J-l21 

J-l12 J-ll3 
J-l22 J-l23 

Suppose that :E = a 2[(1- p)I + ll'p], 
J-lij = ( i - 1) (j - 1) for i E { 1, 2}, j E { 1, ... , 5}. 
chosen for all tests. Define 

J-li4 J-li5] 
J-l24 J-l25 

a 2 = 7, p = 0.5, and 
The Wilks statistic has been 
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81 = [ J-Lu - J-L21 J-L12 - J-Ln J-ll3 - J-l23 J-ll4 - J-l24 J-ll5 - J-l25] 

fh = [ (J-Lu + P,12 + J-ll3 + J-ll4 + J-li5)/5- (J-l21 + P,22 + J-l23 + J-l24 + J-l25)/5] 

83 = [J-lll - J-ll2 
J-l21- J-l22 

J-lll - J-ll3 J-lll - J-li4 
J-l21 - J-l23 J-l21 - J-l24 

J-lll - J-ll5] 
J-l21 - J-l25 

21.2.1 Write a one-sentence scientific interpretation, aimed at the scientists, of 
Ho: 81 = 0. 
21.2.2 Specify the C and U matrices needed. 
21.2.3 What is the probability of rejecting H 0 : 8 1 = Ousing a 0.05 level test? 
21.2.4 Write a one-sentence scientific interpretation, aimed at the scientists, of 
Ho: fh = 0. 
21.2.5 Specify the C and U matrices needed. 
21.2.6 What is the probability of rejecting the null hypothesis fh = Ousing a 0.05 
level test? 
21.2. 7 Write a one sentence scientific interpretation, aimed at the scientists, of 
H 0 : 83 = 0. 
21.2.8 Specify the C and U matrices needed. 
21.2.9 What is the probability of rejecting the null hypothesis 8 3 = 0 using a 0.05 
level test? 
21.2.1 0 Write a one-sentence scientific interpretation, aimed at the scientists, of 
Ho: 84 = 0. 
21.2.11 Specify the C and U matrices needed. 
21.2.12 What is the probability of rejecting the null hypothesis 8 4 = 0 using a 
0.05 level test? 
21.2.13 The various tests arise from either a MANOV A or repeated-measures 
approach. A third alternative is a set of Bonferroni corrected tests of drug 
difference, one for each day. 
21.2.14 Specify the C and U matrices needed to conduct the five tests and the 
appropriate nominal level of a. 
21.2.15 What is the probability of rejecting the null hypothesis Ho : 85,1 = 0? 
21.2.16 What is the probability of rejecting the null hypothesis H 0 : 8 5,5 = 0? 
21.2.17 In practice, balancing control of test size and maximizing power leads to 
using only one of the approaches (MANOVA, REPM, Bonferroni univariate). 
Which seems preferable? Which particular tests are most logically consistent (not 
necessarily the most powerful) with the speculation that J-liJ = ( i - 1) (j - 1)? 
Without doing any additional calculations, do the results suggest a different sample 
size, assuming a target power of0.90 or better? 

21.3 Consider Table 6, p. 553, in Muller and Barton (1989). Row 9 provides 
data about condition 113, which is detailed in their Table 4 and associated text. 
21.3.1 The canonical form of the B matrix is described in the right-hand column 
of p. 552, line 9. Think of the form as B = cBc. For the conditions of the 

simulations associated with their Tables 4-6, give a numerical value for Be. Write 
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this as a matrix of numbers. 
21.3.2 For the conditions of the simulations associated with their Tables 4-6, use 
their Table 4 and associated text to give a numerical value of the covariance matrix 
used for condition 113. Write the results as a matrix of numbers. 
21.3.3 Use power software to find the value of c which was used to produce the 
predicted power value of0.80 for the GG test for the ninth line of Table 6 (p. 553), 
for condition 113. 

Hint: In SASIIML ®, use the DO function to create a list of candidate c values 
and assign the result to BET ASCAL, as in the examples. 
21.3.4 Produce a high-resolution plot of power as a function of c. 
Hint: You will likely wish to use the DS option in POWERLIB. 

21.4 Assume the notation and setting of Muller, LaVange, Ramey, and Ramey, 
1992). As throughout, lj indicates a j x 1 vector of 1's. With n = 9, define 
X=I3®ln, 

1 [0 1 4 9 16] 
B=t-l131~+8- 0 1 2 3 4 ' 

16 0 0 0 0 0 

1 0 0 0 0 
1/2 1 p p2 p3 p4 1 0 0 0 0 

1/2 

0 2 0 0 0 p 1 p p2 p3 0 2 0 0 0 
:E = 0'2 0 0 3 0 0 p2 p 1 p p2 0 0 3 0 0 

0 0 0 4 0 p3 p2 p 1 p 0 0 0 4 0 
0 0 0 0 5 p4 p3 p2 p 1 0 0 0 0 5 

c = [~ -1 

-~l 0 

u'~ [1 
-1 0 0 

~l 0 -1 0 
0 0 -1 
0 0 0 -1 

and eo= 0. 
Assume 8 = 2, a 2 = 1, and p = 0.6. Use a = 0.025. 
21.4.1 Prove that 8 is invariant to the value of J-l for this hypothesis. You may use 
IML, or any other matrix language, for the purely numerical calculations. (Hence, 
without loss of generality, assume J-l = 0.) 
21.4.2 Compute n. 
21.4.3 Compute the eigenvalues of!l. 
21.4.4 Compute the squared canonical correlations. 
21.4.5 Compute the (population values) of the measures of multivariate association 
for the four MUL TIREP (invariant) tests. 

21.5 Write your own matrix language code to directly implement the steps in 
Section 2.5 of Muller, LaVange, Ramey, and Ramey (1992, p. 1214) to compute 
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the approximate power of the Pillai-Bartlett test only. In particular, compute 
21.5.1 Step I in Section 2.5 for the Pillai-Bartlett test only. 
21.5.2 Step 2 in Section 2.5 for the Pillai-Bartlett test only. 
21.5.3 Step 3 in Section 2.5 for the Pillai-Bartlett test only. 
21.5.4 Step 4 in Section 2.5 for the Pillai-Bartlett test only. 

21.6. Use POWERLIB to compute the same power value as in the last part of 
the exercise. 



CHAPTER22 

Sample Size for Generalizations of 
Multivariate Models 

22.1 MOTIVATION 

In developing new statistical methods, statisticians have historically focused 
first on estimation and then on inference. Methods for choosing a sample size 
typically come last. Practical and mathematical reasons stimulate the order. 
Distribution theory for sample size involves greater complexity than estimation or 
inference under the null. Furthermore, the enthusiasm that practicing data analysts 
have for sample size methods has never been shared by more theoretical 
statisticians. Hence few results are available for power and sample size analysis of 
generalizations of multivariate linear models. In keeping with our discussions of 
estimation and testing, we sketch some results for growth curve models. 

22.2 SAMPLE SIZE METHODS FOR GROWTH CURVE MODELS 

Some noncentral theory has been developed for growth curves with higher 
order trends used as covariates, especially for large samples. However, the 
methods have not been studied carefully in small samples. Berger ( 1986) used 
simulations to study both test size and power for a variety of methods for analyzing 
growth curves. His results support avoiding the use of high-order polynomials as 
co variates due to the likelihood of inflating test size. 

Without the use of high-order polynomials as covariates, growth curve analysis 
reduces to a special case of a multivariate GLM. Hence methods in the previous 
chapter apply. Particular care must be taken to choose U matrices to correctly 
reflect the specified model. 

An example will illustrate the issue. If the data involve five time points while 
the desired model includes only linear and quadratic trends (along with zero 
order), then two within-subject contrasts would be used, U0 = 5~ 1 /2 · [ 11111] 
and 
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I _ [ 10 0 r 112 
[ _ 2 -1 0 1 ~] . u1_ 2 - o 14 2 -1 -2 -1 

(22.1) 

The omitted cubic and quartic trends are spanned by 

1 _ [ 10 0 r I / 2 
[ -1 -2 0 -2 ~] . u3_ 4 - o 70 1 -4 6 -4 

(22.2) 

The default choices for a multivariate linear model (the multivariate approach to 
repeated measures, MUL TIREP) would use U0 and 

[

-1 1 0 

U 1 = -1 0 1 
w -1 0 0 

-1 0 0 

0 0] 0 0 
1 0 . 

0 1 

(22.3) 

However, the columns of Uw span U1-2 and U3-4· More precisely, if 
UT = [ ul-2 u3-4] then UT = UwP for 4 X 4 and full rank. Invariance 
properties of the multivariate model imply that any test with Uw gives the same 
result as a test with Uw f:: Ul-2· 

Using Uw rather than U1_ 2 provides another example of an alignment error, as 
discussed in the previous chapter. Checking the degrees of freedom associated 
with the hypothesis and parameters leads to recognizing that 4 f:: 2. Making sure 
dimensions and degrees of freedom correspond to the desired inference can help 
avoid alignment errors. 



CHAPTER23 

Sample Size for Linear Mixed Models 

23.1 MOTIVATION 

Mixed models have become one of the most widely used methods for data 
analysis. Unfortunately, as Verbeke and Molenberghs (2000, Section 23.2) noted, 
very little is known about nonnull distributions in mixed models. The wide variety 
of test statistics used in mixed models adds a substantial complexity to the task. 
Additional complexity arises from interest in random predictors. As always with 
questions of power, Monte Carlo simulations provide a completely defensible, 
although onerous, method of approximating power. 

In linear models, full specification of non central distributions requires knowing 
the (population) distributions of any random predictors. For mixed models, the 
comment applies to both xi and zi. 

23.2 METHODS 

Two approaches have been suggested for approximating power in general 
mixed models. Both are based on a supposition that reflects a property of many 
univariate and multivariate linear models. Only limited simulations are available 
to support the methods which use F approximations for Wald-type tests. 
However, the basic ideas are promising. In the particular case of a 
GLMN,q(Yi; Xi,8, a 2

) with fixed predictors and Gaussian errors, the (testable) 
general linear hypothesis is Ho: 0,8 = (}0 • With w = (0- 00 )' M- 1((}- (}0 )ja2 

and M = C(X' X)C', the usual F statistic (for a univariate model) is given in 
equation 2.32 as F=[(0-00 )'M-1(0-00 )/a](a2 =wjarvF(a,N-r,w). 
Hence the noncentrality parameter may be characterized as w = fA a, with fA the 
F statistic occurring in the very special case with 0 = (} and &2 = a 2 . O'Brien and 
Muller ( 1993) described the concept as the exemplary data approach to power 
calculation and credited Graybill (1976) with earlier promotion of the idea. The 
exemplary data approach leads to noncentral F approximations for power of the 
mixed model. 

Helms (1992) described a noncentral F power approximation for an F statistic 
(FH) defined in terms of a novel modification of the usual REML estimators 
(equations 14-15 in his paper). Verbeke and Molenberghs (2000, Section 23.2) 
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provided some related discussion. However, the latter authors implicitly allow 
using standard REML or ML variance estimators (in the definition of the F 
statistic, their equation 6.6) while emphasizing the importance of specifying the 
degrees of freedom parameter. As mentioned earlier, additional simulations seem 
to be necessary to assess the accuracy of the approximations discussed. 

Stroup (2003) described a strategy for approximating mixed model power 
which also uses the exemplary data concept. A simulation with 500 replications 
for one design gave power estimates consistent with the approximation. For 
computing convenience, Stroup used the Satterthwaite approach to determine 
approximate error degrees of freedom in power approximation. His simulations 
(for a narrow range of models) used the Kenward and Roger (1997) null case 
approximation (which currently provides the best control of test size). 

23.3 INTERNAL PILOT DESIGNS 

The principles and advantages of internal pilot designs for univariate models 
were introduced in Section 20.7. Zucker and Denne (2002) examined internal pilot 
designs for a two group clinical trial with at least N = 40 participants. In most 
cases, they disallowed a decrease in sample size. They used a likelihood ratio test 
with a second-order (Bartlett) approximation specifically derived for the 
covariance structure chosen, as derived by Zucker, Lieberman, and Manor (2000). 
Applying the method to any other design requires design-sJlecific derivatives. An 
adjustment for using an internal pilot was required to avoid test size inflation. 



APPENDIX 

Computing Resources 

A.l EXAMPLE DATA: DETECTING BREAST CANCER IN MAGNETIC 
RESONANCE IMAGING WITH A CONTRAST AGENT 

Research data used by permission of Dr. M.P. Braeuning and Dr. E. D. Pisano. 

Approximately 1 in 9 American women develop breast cancer, based on full life 
expectancy. Breast cancer kills more American women than any other cancer. 
Regular self-examination for all women and screening mammography (x-rays of 
the breasts) for older women provide the main lines of defense. Having detected a 
suspicious region, the physician must discriminate between malignant and benign 
tissue. The life-and-death consequences of diagnosis make expensive procedures 
worthwhile. More information can be found at www.cancer.org. 

The goal was to compare image brightness over time in different types of breast 
tissue on MR!s that followed injection of the contrast agent intravenous 
gadolinium-DTPA. For each woman, average brightness was recorded on each of 
four images, taken at 0, 45, 90, or 135 sec(+/- a few seconds) after injection. For 
each image, measurements were recorded from one region of fat, one of 
parenchyma, and one or two regions of interest (ROI). Each ROI was classified as 
benign or malignant (cancer), based on a subsequent pathologist's reading of a 
biopsy. Ten women requiring diagnosis were imaged. The following diagram 
shows the data available for each patient. Multicenter trials typically pay for a 
second pathology reading to increase reliability and validity of the (high quality 
but not perfect) single reading. 
Patient Cancer Benign Fat Parenchyma 

2 ../ ../ ../ ../ 
6 ../ ../ ../ ../ 
7 ../ ../ 

I ../ 
3 
4 ../ 
5 
8 
9 

10 

../ 

../ 

../ ../ 

../ ../ 

../ ../ 

../ ../ 

../ ../ 

../ ../ 

../ ../ 

../ ../ 
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Each../ indicates the presence of four observations (baseline=O, 45, 90, and 135 
sec). Except where indicated in the diagram, for each patient, tissue type and time, 
the mean recorded MRI signal, the standard deviation, and the area (mm2

) were 
available. Missing data indicates that no such tissue was found in the images. 

Conversations with physicists led us to conclude that the logarithm of (signal at 
time jjsignal at time 0) is proportional to concentration, which was chosen as the 
response variable. Exploratory analysis of Box-Cox power transformations of the 
response, coupled with evaluation of jackknife residuals, supported the choice. 

All files can be downloaded from the Web site http://ehpr.utl.edu/muller/. Raw 
data are in POlOl.DAT (a text file). Programs POlOl.SAS-P0105.SAS created 

SAS files P010l.SD2-P0105.SD2 (version 6.12, created on a PC). If you have 
trouble transporting the files to another platform, and feel compelled to start from 
raw data, you must use the programs provided to ensure that the same variable 
names, labels, and data are being analyzed. 

The exercises use P0104.SD2, produced by P0104.SAS, which has the 
following statement: 
LABEL DLOGROI1="Dif log ROI 45sec" 

DLOGROI2="Dif log ROI 90sec" 
DLOGROI3="Dif log ROI 135sec" 
DLOG F 1="Dif log Fat 45sec" 
DLOG F 2="Dif log Fat 90sec" 
DLOG F 3="Dif log Fat 135sec" 
DLOG P 1="Dif log Parenchyma 45sec" 
DLOG P 2="Dif log Parenchyma 90sec" 
DLOG P 3="Dif log Parenchyma 135sec" 
BENIGN ="1=> Benign, else 0" 
MALIGN ="1=> Malign, else 0"; 

The program P0104.SAS produced the following: 
P0104.SAS-Create file using only one benign or malig per case 

All variables in file 

0 

b I 

s D 

D 

L 

0 

G 

F 

1 

D 

L 

0 

G 

F 

2 

D 

L 

0 

G 

F 

3 

D 

L 

0 

G 

p 

1 

D 

L 

0 

G 

p 

2 

D 

L 

0 

G 

p 

3 

D 

L 

0 

G 

R 

0 

I 

1 

1 2 0.002 0.008 0.041 0.210 0.259 0.278 0.944 

2 6 0.083 0.071 0.137 0.054 0.001 0.142 0.084 

3 3 0.118 0.271 0.234 0.001 0.055 0.056 0.081 

4 8 -.178 -.243 0.056 0.007 0.056 0.066 0.087 

5 9 0.137 0.080 0.191 0.174 0.162 0.127 0.062 

6 7 0.016 0.165 0.135 0.038 0.149 0.168 0.121 

D 

L 

0 

G 

R 

0 

I 

2 

1.127 

0.037 

0.184 

0.209 

0.197 

0. 162 

D C 

L 0 

0 N B M 

G S E A 

R T N L 

0 A I I 

I N G G 

3 T N N 

1. 195 1 1 0 

0.088 1 1 0 

0.260 1 1 0 

0.193 1 1 0 

0.184 1 1 0 

0.261 1 0 1 
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7 1 0.054 0.057 0.017 0.037 -.031 0.019 0.099 0.003 0.082 1 0 1 

8 4 0.623 0.518 0.604 -.096 0.180 0.154 -0.578 -0.124 0.092 1 0 1 

9 5 -.085 0.231 0.153 -.033 0.026 0.071 0.071 0.136 0.293 1 0 1 

10 10 -.122 -.285 -.084 0.029 0.070 0.064 0.232 0.225 0.253 1 0 1 

Before you begin the exercises, please read programs P010l.SAS through 
P0104.SAS, as well as the associated log and list files (contained in the same 
directory) to understand both the programming and scientific decisions behind 
creating the file P0104.SD2. Most importantly, note that P0104.SD2 and 

P0105.SD2 have no missing data, while P010l.SD2-P0103.SD2 do. 

A.2 FREE SOFTWARE 

A.2.1 Overview 

The software described here is available at no cost on the Web at 
http://ehpr.utl.edu. All of the software is written in SAS/IML ®. Hence the source 
code is included, which allows embedding the software in other programs, as well 
as translating modules to other languages. Each must be downloaded separately. 
The files include user manuals and many examples. 

A.2.2 LINMOD: Multivariate Linear Models Analysis 

LINMOD (LINear MODels) performs a wide variety of computations in 
SAS/IML for a general linear multivariate model with Gaussian errors. LINMOD 
allows the analyst familiar with matrix algebra notation and IML syntax to 
efficiently compute tests, estimates, and all associated statistics. Muller, LaVange, 
Ramey, and Ramey (1992) presented a succinct statement of the model, the general 
linear hypothesis, and associated statistics. Chapters 3 and 6 provide a more 
detailed overview. Chapters4, 12, 13, 16, 17, 19,and21 contain more detail. 

All of the results can be computed with some combination of PROC GLM and 
REG in SAS. The primary advantage of LINMOD lies in the efficiency which 
results from the direct relationship between the syntax of the program and the 
matrix algebra formulation of models and tests. The primary disadvantage of 
LINMOD lies in the statistical sophistication required to use the program to 
produce valid results. However, anyone who has spent time trying to deduce 
exactly how an estimate, test, confidence interval, or correlation was computed by 
a particular option in a particular program will welcome the ability to explicitly 
control the calculations in a formula-based syntax. The additional overhead of 
LINMOD will usually only be worthwhile for complex designs or tests. The less 
simple and traditional the design and/or hypothesis, the more likely that LINMOD 
will appeal to someone able to define and analyze linear models in matrix notation. 
A further advantage lies in the fact that all of the computed values remain available 
to the user in matrices. This allows storing all results in a permanent SAS database 
(as distinct from the listing file) and exercising complete control of formatting. 
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Having results in matrix format makes subsequent custom processing very easy. 
Using ODS with GLM or REG provides an alternative approach. 

Comparing LINMOD to PROC REG (or GLM) demonstrates a classic tradeoff 
in program design: increased flexibility and control for the sophisticated user 
versus friendly interface for the naive user. For example, LINMOD does not add 
or in any way recognize an intercept term in any model. The user must code one if 
desired and may choose to test it if present. Using LINMOD requires the ability to 
define and analyze linear models in matrix notation. 

Starting from the assumption of the user having matrix know ledge, great effort 
was expended to give LINMOD an interface with consistent design, extensive 
error checking, and informative messages. The wide assortment of matrix 
operators and functions in PROC IML greatly enhances power and flexibility. 
Furthermore, the extensive editing, printing, plotting, and data management 
facilities of SAS are available for pre- and post-processing. 

A.2.3 MISSMOD: Multivariate Linear Models with Missing Data 

MISSMOD provides accurate test size in small samples for many kinds of 
Gaussian repeated measures and multivariate data with missing values. The 
software computes approximate tests described by Catellier and Muller (2000) for 
general linear multivariate models. Simulations support the conclusion that, in 
contrast to current mixed model competitors, the methods control test size even 
with as few as 12 observations for 6 repeated measures and 5% missing data. 
Assuming data missing at random (MAR), the EM algorithm provides maximum 
likelihood estimates using all of the available data. The tests generalize standard 
"multivariate" and "univariate" approaches to repeated-measures tests by reducing 
the error degrees of freedom by replacing the number of independent sampling 
units by various functions of the numbers of nonmissing pairs of responses. The 
program is based closely on LINMOD. Source code, an extensive user's guide, 
and example programs are included in the free download. 

A.2.4 POWERLIB: Multivariate and Repeated-Measures Power 

POWERLIB provides convenient power calculations for a wide range of 
multivariate linear models with Gaussian errors. The multivariate and univariate 
approaches to repeated measures as well as MANOV A tests are covered. F 
approximations are used throughout and are reduced to exact forms whenever 
possible. Approximate or exact power for the Wilks, Pillai-Bartlett, and Hotelling­
Lawley tests is available. Approximate or exact power for the Box conservative 
test, Geisser-Greenhouse, Huynh-Feldt, and uncorrected test is also available. 
Confidence limits may be requested for most power values to reflect the 
uncertainty due to using estimated variances and, when appropriate, means and 
variances. A simple option causes SAS data files to be produced automatically, 
which simplifies producing plots and tables for manuscripts. Documentation 
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includes a range of designs and examples for both UNIX and Windows systems. 
Source code is included in the free download. 

A.2.5 CISIZE: Sample Size Involving Confidence Intervals 

CISIZE generalizes ideas about sample size to achieve confidence intervals and 
power properties. It computes Pr{ (W n R) IV}, Pr{ R}, Pr{W} and Pr{WIV} for 
any scalar hypothesis in a univariate or multivariate GLM with fixed predictors. 
The software implements the techniques discussed in Jiroutek eta!. (2003). 
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A.3 ORTHOGONAL POLYNOMIAL COEFFICIENTS 

d =Number of Distinct Points, p =Power of Trend 

d p CJ C2 c3 C4 c5 C6 C7 cs Cg l:d 2 
J~l cj 

2 -1 2 
3 -1 0 2 

2 1 -2 6 
4 1 -3 -1 3 20 

2 -1 -1 4 
3 -1 3 -3 20 

5 1 -2 -1 0 2 10 
2 2 -1 -2 -1 2 14 
3 -1 2 0 -2 10 
4 1 -4 6 -4 1 70 

6 1 -5 -3 -1 3 5 70 
2 5 -1 -4 -4 -1 5 84 
3 -5 7 4 -4 -7 5 180 
4 1 -3 2 2 -3 28 
5 -1 5 -10 10 -5 252 

7 -3 -2 -1 0 1 2 3 28 
2 5 0 -3 -4 -3 0 5 84 
3 -1 1 0 -1 -1 1 6 
4 3 -7 1 6 1 -7 3 154 
5 -1 4 -5 0 5 -4 84 
6 -6 15 -20 15 -6 1 924 

8 -7 -5 -3 -1 1 3 5 7 168 
2 7 -3 -5 -5 -3 7 168 
3 -7 5 7 3 -3 -7 -5 7 264 
4 7 -13 -3 9 9 -3 -13 7 616 
5 -7 23 -17 -15 15 17 -23 7 2184 
6 -5 9 -5 -5 9 -5 264 
7 -1 7 -21 35 -35 21 -7 1 3432 

9 1 -4 -3 -2 -1 0 1 2 3 4 60 
2 28 7 -8 -17 -20 -17 -8 7 28 2772 
3 -14 7 13 9 0 -9 -13 -7 14 990 
4 14 -21 -11 9 18 9 -11 -21 14 2002 
5 -4 11 -4 -9 0 9 4 -11 4 468 
6 4 -17 22 -20 22 -17 4 1980 
7 -1 6 -14 14 0 -14 14 -6 1 858 
8 1 -8 28 -56 70 -56 28 -8 1 12870 
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Autoregressive covariance matrix, 38 
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Balanced design, 105 
Balanced random coefficient model, 283 
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Best linear unbiased estimator (BLUE), 
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Best linear unbiased predictor (BLUP), 
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Bickel-Doksum transformation, 128 
Bilinear form, 10 
Biorthogonal matrices, 10 
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Boolean algebra, 44 
Bonferroni correction, 67, 77, 107-108 
Box-Cox power transformation, 128 
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Canonical correlation, 64 
Casewise missing, 74-75 
Cauchy-Schwartz inequality, 135 
Characteristic function (CF) 

Vector, 119 
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Chi-square distribution, 169-170 
Cholesky factor matrix, 25, 72 
Coefficient of determination, 4 7 
Column, extracting from matrix, 4 
Commensurate, 1 01 
Common factor model, 332 
Commutative laws for matrix algebra, 9 
Complete design, 105 
Composite acceptance region, 301 
Composite alternative, 301 
Component hypothesis, 301 
Composite hypothesis, 300 
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37-38 
Concatenating matrices, 4 
Conditional distribution, 132 
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Coefficient, 52 
Intervals, 52 
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Congruent matrices, 21 
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Constituent matrix decomposition, 23 

Continuous 
Data, 103 
Random variable, including 
absolutely, 117 

Correlation matrix, 33, 135 

Covariance design matrix, 92 

Covariance (dispersion) matrix, 8, 25, 
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sample value, 34 
For Gaussian data, also see Wishart 
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Cumulative distribution function (CDF), 
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Data matrix, 34 
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Discrete Fourier transform, 273 

Discrete random variable, 117 
Distributions, 116, 117 
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Eigenanalysis, 18, 19, 20, 21 
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Error sum of squares, 49, 65 
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Exact weighted least squares, 238 

Exchangeable observations, 105 
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F 
Factor matrix, 24 

Factor analysis, 332 

Fisher Scoring algorithm, 284 

Full rank, 12-15 
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INDEX 
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Vector (multivariate), 143-144 
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General linear (null) hypothesis, 60 

General linear mixed model, 92 
With Gaussian errors, 96 

General linear multivariate model, 56 
With Gaussian errors, 59 
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Geometric multiplicity, 20 

Generalized general linear model 
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linearly equivalent, 238 

General linear model (GLM), univariate 
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models, 42 
Definition, 40 
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Estimated errors, 65 
Estimation, 39 
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Numerical methods, 39 
One-to-one linear transformations, 
267 
Predicted values, 65 
Primary parameters, 40, 209 
Secondary parameters, 43, 209 
With Gaussian errors, 41 

General linear model (GLM), 
multivariate 
Estimators, 246 
Primary parameters, 59, 246 
Secondary parameters, 59, 246 

Growth curve model (GCM), 84---86, 89, 
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H 

Hat matrix, 49, 65 
Horizontal direct product, 6 
Horizontally concatenated, 4 
Hotelling-Lawley trace statistic, 61, 67, 

319 
Hypothesis 
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A priori parameter, 289 
Full and constrained model, 45 
General linear hypothesis (GLH), 43-
44,46,48,59,289 
Post hoc parameters, 289 
Sum of squares, 49,65 
Testability, 290-295 
Tests, multivariate, 66-73, Chapter 16 
Tests, univariate, 50-51, Chapter 15 

Idempotent, 1 0 
Identity matrix, 3 

Ignorable (missing data), 76 
Independence 

Mutual (total), 130 
Observation, 101 
Pairwise, 130 
Statistical, 130 

Independent sampling unit (ISU), 101 
Inner product, 6, 1 0 
Interval scale, 1 03 
Inverse (matrix operator), 15 
Inverse Wishart, 205 
Iterated approximate weighted least 

squares (ITAWLS), 82,263 

J 

407 

Joint cumulative distribution function, 
117 

K 
Knots, see Spline 

Kurtosis, 164 
Kronecker covariance, 245 
Kronecker design, 245 
Kronecker (direct) product, 7 

L 

Less than full rank, 12, 15, 48, 95 
Least squares estimator, 224 
Linear covariance structure, 282 
Linear mixed models tests, 341-343 
Linear transformation, including full 

rank (nonsingular) and less than full 
rank (singular), 126 

Linearly equivalent, 210, 246, 269 
Linearly dependent, 11 
Linearly independent, 11 
Linear (scale) invariance, 305, 317 
Location invariance, 305, 317 
Lower triangular matrix, 3 
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Mahalanobis distance, 62, 162 
Marginal distribution, 128-129 
Masking, 162 
Matrix addition and subtraction, 5 

Matrix, defined, 1 
Mean 

Population, 32, 132 
Sample, 34 
Also see moments 

Missing 
Data, 75 
At random (MAR), 76 
Completely at random (MCAR), 75 

Model notation, summary, Ill 

Moment generating function (MGF) 
Vector, 123 
Matrix, 138 

Moments, 133 
Moore-Penrose generalized inverse, 16 

Multiplication 
Direct product of two matrices, 7 
Elementwise for two matrices, 5 
Matrix with matrix, 2, 6 
Horizontal direct product, 6 
Scalar with matrix, 5 

Multivariate analysis of variance 
(MANOVA), 107 

Multivariate association, 70 

Multivariate outcomes, 101 
Multivariate quadratic form, 193 
Multivariate tests, including multivariate 

N 

approach to repeated measures 
(MULTIREP), 59, 61, 70,318 

Negative definite, 22 
Negative semidefinite, 22 
Nominal scale, 103 
Noncentral chi-square distribution, 170 
Noncentral Wishart distribution, 350 
Noncentrality parameter, 44, 59 

Nonnegative definite, 22 
Nonpositive definite, 22 

Nonsingular matrix, 15 

INDEX 

Nonsingular Gaussian vector, 144, 146 
N onsymmetric square matrices, 12 
Nonzero eigenvalues, 21 
Null hypothesis, 44 

0 
Observational unit, 1 01 
Operations in matrix algebra, rules for, 

8-9 

Ordinal scale, 1 03 
Ordinary least squares (OLS), 263 
Orthogonal matrix, 1 0 

Orthonormal matrix, 1 0 
Outer product, 6, 1 0 

p 

Partitioned matrix, 3, 4, 30, 33 
Permutation matrjx, 30 
Pillai-Bartlett trace, ANOVA analog 

statistic, 67, 319 
Polynomial growth curve, 269 
Positive definite, 22 
Positive semidefinite, 22 

Power of a test, 51 
Power function, 51 
Predicted values, 49, 65 
Principal component, 36 
Projection, projection matrix, 27-28 
Probability density function (PDF), 116, 

118, 129 
Projection matrix, 28 

Q 
Quadratic form 

Matrix expression, 10 
Random, 174 



R 

Linear Model Theory 

univariate Gaussian, 174 
multivariate Gaussian, 193 

Random deviation, 94 
Random vector, 143 
Rank of a matrix, defined, 12 
Rank of a vector space, 12 
Ratio scale, 1 03 
Rejection region (critical region), 51 
Repeated measures, 101 
Residuals, 49, 65 
Restricted maximum likelihood (REML ), 

285 
Restricted linear model (explicit or 

implicit), 231 
Row, extracting from matrix, 4 
Roy's largest root, the union-intersection 

principle statistic, 66, 319 

Robust distance, 162 

s 
Sample mean (vector), 34 
Sample SSCP matrix, 34 
Sample covariance matrix, 34 
Scalar multiplication of a matrix, 5 
Scalar, defined, 1 
Scale (linear) invariance, 305, 317 
Secondary parameter, 43, 209, 246 
Semidefinite, 22 
Seemingly unrelated regressions, 83 
Shift parameter, 44, 59 
Similar matrices, 21 
Simple matrix, 20 
Singular matrix, 15 
Singular value decomposition, 13, 26 
Singular Gaussian vector, 144 
Size of a test, 51 
Skewness, 164 
Spans an intercept, 46 

Spectral decomposition, 13, 36 
Spectrum (of a matrix), 19 
Sphericity, spherical distribution, 37 
Spline, 235 
Square matrix, 2 
Squared error loss function, 223 
Stacked by column, 4 
Standard Gaussian: see Gaussian 
Stieltjes integral, 119 
Subpopulation mean, 94 
Sums of squares and cross products 

(SSCP) matrix, 34 
Sylvester's Law oflnertia, 21 
Symmetric matrix, 2 

T 

Testable, 290, 312 
Testability of hypothesis, 312, 316 
Test statistic, 51 

Trace, matrix, 5 
Transpose, 2 
Translation, 126 
Triangular matrix (upper, lower), 3 
Type I error, 51 
Type II error, 51 

u 
Uncorrelated, 136 
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Uniformly minimum variance estimator, 
(UMVUE), 222, 227 

Union-intersection test, 301 
Univariate approach to repeated 

measures (UNIREP) tests, 61,67 
Unstructured covariance matrix, 37 
Upper triangular matrix, 3 

v 
Variance, 134 
Vector space, defined, 1, 11 
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Vertically concatenated, 4 

w 
Weighted least squares (WLS), 82 
Wilks lambda, likelihood test, 67, 319 
Wishart distribution, 193, 350 

z 
Zero matrix, 3 
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