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Chapter 1 

Investigating Students' Reasoning 
About Linear Measurement 

as a Paradigm Case of 
Design Research 

Paul Cobb 

The issues discussed in this monograph are situated in a description of a design 
experiment that focused on linear measurement and was conducted in a first-grade 
class. Because the focus on this particular mathematical domain might appear to 
be relatively narrow, I want to clarify at the outset that the report of this experi- 
ment is framed as a paradigm case in which to illustrate general features of the 

design-experiment methodology. Design experiments involve both developing 
instructional designs to support particular forms of learning and systematically 
studying those forms of learning within the context defined by the means of 

supporting them. This monograph also emphasizes that design experiments are 
conducted with a theoretical as well as a pragmatic intent, in that the goal is not 

merely to refine a particular instructional design. In the example at hand, the 
experiment was conducted with the intent of contributing to the development of a 
domain-specific instructional theory of linear measurement. A theory of this type 
specifies both a substantiated learning trajectory that aims at significant mathe- 
matical ideas and the demonstrated means of supporting learning along that trajec- 
tory. This concern for domain-specific theories reflects the view that the explana- 
tions and understandings inherent in them are essential if educational improvement 
is to be a long-term, generative process. 

This attention to methodological issues is timely given the increasing prominence 
of the Design Research methodology in mathematics education. For example, 
Suter and Frechtling (2000) recently identified Design Research as one of the five 

primary research methodologies in mathematics and science education. As they 
note, about 20% of the research projects funded by the National Science 
Foundation's (NSF's) Division of Research, Evaluation, and Communication 
between 1996 and 1998 were design experiments. Not surprisingly, this increasing 
activity finds expression in the growing number of articles written by mathe- 
matics educators who report design experiments (e.g., Bowers & Nickerson, 2001; 
Lehrer, Jacobson, Kemney & Strom, 1999; Moss & Case, 1999; Rasmussen, 1998; 
Simon, 1995). However, as Suter and Frechtling go on to observe, a number of rela- 
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tively common misconceptions about the methodology are apparent. Although the 

methodology is dynamic and open for adaptation, several central tenets serve as 
the basis for Design Research, namely, that instruction should (a) be experientially 
real for students, (b) guide students to reinvent mathematics using their common- 
sense experience, and (c) provide opportunities for students to create self-developed 
models. One of the goals of this monograph is to illustrate these tenets by grounding 
them in the concrete situation of a specific experiment. In this regard, the mono- 

graph complements three chapters on Design Research in a recent handbook on 
research design in mathematics and science education (cf. Cobb, 2000; Confrey 
& Lachance, 2000; Simon, 2000). 

All the chapters in this monograph explore three themes that concern design 
researchers: (1) the relation between the development of instructional designs and 
the analysis of students' learning, (2) the relation between communal classroom 

processes and individual students' reasoning, and (3) the role of tools in supporting 
development. The first of these themes stems directly from the dual emphasis in 

Design Research on the development of domain-specific instructional theories and 
the formulation, testing, and revision of instructional designs. The relevance of the 
second theme is indicated by theoretical debates that have appeared in leading 
educational journals concerning the relation between collective communicational 

processes and the reasoning of the participating students (e.g. Anderson, Greeno, 
Reder, & Simon, 2000; Anderson, Reder, & Simon, 1996; Anderson, Reder, & 
Simon, 1997; Cobb & Bowers, 1999; Greeno, 1997; Lerman, 1996, 2000; Steffe 
& Thompson, 2000a). These exchanges indicate that no clear consensus has been 
reached on how the relation between these two types of processes might be produc- 
tively conceptualized. We pursue that question and elaborate our contribution to 
the debate by exploring the interplay between individual students' reasoning and 
collective processes of communication and interaction as they played out in the case 
study in this monograph. 

The importance of the third theme of mathematical tools becomes apparent 
once one notes that the development of tools to support students' learning is 
central to instructional design. The realization that students' mathematical learning 
is profoundly influenced by the tools they use, however, underpins a range of 
different approaches to instructional design. For example, Doerr (1995) distin- 
guishes between expressive and exploratory approaches to design. In expressive 
approaches, students are encouraged to invent and test the adequacy of tools, such 
as notation systems, that express their developing understandings. In effective 
designs of this type, students develop increasingly sophisticated mathematical 
understandings by incrementally reformulating their informal knowledge (e.g., 
Bednarz, Dufour-Janvier, Portier, & Bacon, 1993; diSessa, Hammer, Sherin, & 
Kolpakowski, 1991). In contrast, exploratory approaches involve the development 
of computer environments in which students can investigate the links between 
conventional mathematical symbol systems and selected everyday phenomena. For 
example, Kaput (1994) and Nemirovsky (1994) have both developed environments 
in which distance-time graphs are introduced at the outset and students explore the 
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use of these graphs as a means of representing various types of motions. In effec- 
tive designs of this type, the computer environments span the initial gulf between 
students' authentic experiences and mathematical ways of symbolizing, such as 
graphing. The comparison of the expressive and exploratory approaches highlights 
a tension inherent in instructional design between the ideal of building on students' 
contributions and the need to decide in advance the tools and symbolizations that 
students should eventually come to use. This monograph addresses this tension 
when describing the instructional design developed and revised in the course of 
the measurement experiment. 

In the following pages, I first situate the three themes of the monograph by giving 
a brief historical overview of Design Research. In the remainder of this introduc- 
tory chapter, I focus on two main aspects of the Design Research methodology. 
These aspects concern the instructional theory that undergirds the formulation of 
instructional designs and the interpretive framework that guides the analysis of 
classroom events. 

EXPERIMENTING IN THE CLASSROOM 

As I have indicated, the intimate relation between theory and practice is one of 
the defining characteristics of the Design Research methodology. On the one 
hand, instructional design serves as a primary context for research and the develop- 
ment of theory. On the other hand, analyses of students' learning and the means 
by which it was supported inform researchers in their revision of the instructional 

design. As a consequence, the purpose when experimenting in the classroom is not 
to try to demonstrate that the initial design formulated in advance of the experi- 
ment works. Instead, the purpose is to test and improve the initial design as guided 
by both ongoing and retrospective analyses of classroom activities and events. 

Methodologies in which instructional design serves as a context for the develop- 
ment of theories of learning and instruction have a long history, particularly in the 
former Soviet Union (Menchinskaya, 1969). The term Design Research, however, 
was coined relatively recently and is most closely associated with Ann Brown 
(1992). In her formulation, Design Research emerged as a reaction against tradi- 
tional approaches to the study of learning that emphasize the control of variables. 
In a more recent discussion of the methodology, Collins (1999) also takes tradi- 
tional psychological methodology as his point of reference. For example, he 
follows Brown in contrasting studies of learning conducted in relatively artificial 

laboratory settings with design experiments that focus on learning as it occurs in 

complex and messy settings, such as classrooms. The purpose of Design Research 
for Brown and Collins, however, is not merely to study learning in situ. They 
emphasize that the methodology is highly interventionist and involves developing 
designs that embody testable conjectures about the means of supporting an en- 
visioned learning process. In addition, they underscore that the methodology has 
both a theoretical and a pragmatic intent by drawing an analogy with design 
sciences, such as aeronautical engineering. As they note, an aeronautical engineer 
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creates a model, subjects it to certain stresses, and generates data to test and revise 
theoretical conjectures inherent in the model. Similarly, a Design Research team 
creates a design to support an envisioned learning process, conducts an experiment 
to subject the design to certain stresses, and generates data to test and revise theo- 
retical conjectures derived from prior research that are inherent in the design. This 
analogy also clarifies that in both aeronautical engineering and Design Research, 
generalization is accomplished by means of an explanatory framework rather than 
by means of a representative sample, in that the theoretical insights and under- 
standings developed during one or more experiments can feed forward to influence 
the analysis of events and thus pedagogical planning and decision making in other 
classrooms (cf. Steffe & Thompson, 2000b). 

The concerns for the development of domain-specific instructional theories and 
for potential generalizability serve to differentiate Design Research from the 
activity of thoughtful practitioners who continually seek to improve their practices. 
The parallels are indicated by Franke, Carpenter, Levi, & Fennema's (2001) obser- 
vation that mathematics teaching is for some teachers a knowledge-generating 
activity in the course of which they elaborate and refine their understandings of 
both their students' reasoning and the means of supporting its development. 
Whereas the teachers described by Franke and others work in their local classroom 
and school settings to improve their effectiveness in supporting their students' 
learning, Design Researchers explicitly frame aspects of the learning processes they 
are attempting to support as paradigm cases of broader classes of phenomena. Thus, 
whereas practitioners are primarily concerned with the effectiveness of their prac- 
tices in their local settings, Design Researchers also focus on the development of 
theoretical insights when they plan for an experiment, generate data during an exper- 
iment, and conduct retrospective analyses. 

Collins's (1999) and Brown's (1992) works have proved to be foundational to 
the emerging field of the learning sciences, itself a direct descendent of cognitive 
science (cf. DeCorte, Greer, & Verschaffel, 1996). As the increasing adoption of 
their terminology indicates, their arguments have also had a considerable influence 
in mathematics education. Although Design Research in the learning sciences and 
that in mathematics education are highly compatible, their histories differ. The 
emergence of the learning sciences from cognitive science signaled a relatively 
radical change of priorities, whereas the development of Design Research in math- 
ematics education has been more evolutionary and builds on two existing research 
traditions: the constructivist teaching experiment and Realistic Mathematics 
Education developed at the Freudenthal Institute in the Netherlands. 

The constructivist teaching experiment methodology was developed by Steffe 
and his colleagues (Cobb & Steffe, 1983; Steffe, 1983; Steffe & Kieren, 1994; Steffe 
& Thompson, 2000b). The purpose of the teaching experiment as formulated by 
Steffe and his colleagues is to enable researchers to investigate the process by which 
individual students reorganize their mathematical ways of knowing. To this end, a 
researcher typically interacts with a student one-on-one and attempts to precipitate 
his or her learning by posing judiciously chosen tasks and by asking follow-up ques- 
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tions, often with the intention of encouraging the student to reflect on his or her 
mathematical activity. The primary products of a teaching experiment of this type 
typically consist of conceptual models composed of theoretical constructs devel- 

oped to account for the learning of the participating student(s) (Thompson & 
Saldanha, 2000). The intent in developing these models is that they will prove useful 
when accounting for the learning of other students and can thus inform teachers 
in their decision making. Although the researcher acts as a teacher in this methodo- 
logical approach, the primary emphasis of the constructivist teaching experiment 
is on the interpretation of students' mathematical reasoning rather than on the devel- 
opment of instructional designs. 

An initial attempt to adapt the constructivist teaching experiment methodology 
to the classroom setting involved creating a complete set of instructional activities 
for second- and third-grade classrooms (Cobb, Yackel & Wood, 1989). 
Nonetheless, the primary focus of these experiments was consistent with Steffe's 
(1983) emphasis on the development of explanatory constructs rather than the 
formulation of instructional designs. In particular, Cobb and his colleagues gave 
priority to developing an interpretive framework that would enable them to situate 
students' mathematical learning within the social context of the classroom (cf. Cobb 
& Yackel, 1996). In the course of this work, they came to view their lack of posi- 
tive design heuristics that could guide the development of instructional activities 
as a severe limitation. In general, constructivism and related theories present a 
number of negative heuristics that rule out a range of approaches to instructional 
design. The types of cognitive and interactional analyses that Cobb and others 
conducted at that time, however, did not provide an adequate basis for design, 
because the analyses did not focus explicitly on the means by which students' math- 
ematical learning was supported and organized. 

The second research tradition on which Design Research is built, that of Realistic 
Mathematics Education (RME), offsets this weakness by focusing primarily on 

design rather than the development of explanatory theoretical constructs (cf. 
Gravemeijer, 1994; Streefland, 1991; Treffers, 1987). Guided by Freudenthal's 
(1973) notion of mathematics as a human activity and building on his didactical 

phenomenology of mathematics, RME researchers have developed, tried out, and 
modified instructional sequences in a wide range of mathematical domains. Further, 
as Treffers (1987) documents, reflection on this process of developing, testing, and 

revising specific instructional sequences has resulted in the delineation of a series 
of heuristics for instructional design in mathematics education. Gravemeijer (1994), 
for his part, has analyzed the process of the emergence of both these general 
design heuristics and the domain-specific instructional theories that constitute the 
rationale for particular instructional sequences. As will become apparent, the 

development of the measurement instructional sequence that is the focus of this 

monograph was guided by RME design heuristics. In addition, the processes by 
which the initial design of the instructional sequence was tested and revised during 
the first-grade design experiment is consistent with Gravemeijer's analysis of the 

development of a domain-specific instructional theory. 
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This brief historical account of Design Research should clarify that my colleagues 
and I attribute great importance both to the instructional theory that serves to orient 
the development of specific designs and to the interpretive framework that serves 
to organize classroom analyses that in turn influence the ongoing design effort. The 
remainder of this introduction focuses on these two core aspects of classroom 
Design Research. 

DESIGNING LEARNING ENVIRONMENTS 

Gravemeijer, Bowers, & Stephan (chapter 4 of this monograph) set the stage for 
their discussion of the measurement design experiment by giving an overview of 
RME design theory. Against this background, they then describe the conjectured 
learning trajectory that was formulated in advance of the experiment. As they make 
clear, the conjectured means of supporting the students' learning were not limited 
to the instructional tasks but included the students' use of several different types 
of tools for measuring. They emphasize that these tools were not designed to 
serve merely as a means by which students might express their reasoning. Instead, 
the design team conjectured that students might reorganize their reasoning as they 
used the tools. The approach taken to instructional design in the measurement- 
design experiment is therefore compatible with the proposition that the use of tools 
can serve not merely to amplify but to reorganize activity (cf. DbSrfler, 1993; Pea, 
1993). Stephan (chapter 2 of this monograph) emphasizes this point of agreement 
with distributed theories of intelligence by speaking of the students' reasoning with 
the tools both when describing the conjectured learning trajectory and when 
analyzing classroom events. 

In addition to focusing on instructional tasks and associated resources, such as 
tools, the design team also considered potential means of support that typically fall 
beyond the purview of curriculum developers when preparing for the measurement 
experiment. This work included conjectures about both classroom discourse and 
the classroom activity structure as means of support. In the case of classroom 
discourse, these conjectures concerned norms or standards for what would count 
as an acceptable explanation of measuring activity. A distinction that Thompson, 
Philipp, Thompson, and Boyd (1994) make between calculational and conceptual 
orientations in teaching proved to be particularly relevant. The design team 
extended this distinction by developing a contrast between calculational discourse 
and conceptual discourse. The standards of argumentation in calculational discourse 
are such that an acceptable explanation need only describe the method or process 
by which a result is produced. With regard to measuring, a calculational explana- 
tion involves demonstrating how a measuring tool has been used to find the length 
of an object. An important point to clarify is that calculational discourse is not 
restricted to conversations that focus on the procedural manipulation of con- 
ventional tools and symbols whose use is a rule-following activity for students. The 
methods for producing results that students explain as they contribute to such a 
conversation, might, in fact, be self-generated and involve relatively sophisticated 
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mathematical understandings. As a consequence, the contrast between calculational 
and conceptual discourse should not be confused with Skemp's (1976) well- 
known distinction between instrumental and relational understanding. 

The reference to Skemp's (1976) work serves to emphasize that the defining char- 
acteristic of calculational discourse concerns the norms or standards for judging 
what counts as an acceptable argument rather than for judging the quality of 
students' understandings. In calculational discourse, contributions are acceptable 
if students describe how they produced a result, and they are not obliged to explain 
why they used a particular method. By this criterion, examples of classroom 
discourse presented in the literature to illustrate instruction compatible with current 
reform recommendations are, in fact, calculational rather than conceptual in nature. 
In contrast with this emphasis on methods or solution strategies, the issues that 
emerge as topics of conversation in conceptual discourse also include the reasons 
for calculating in particular ways. In measuring, these reasons concern the way in 
which particular methods of measuring structure the space measured into units of 
length. 

I can best illustrate the distinction between these two types of classroom discourse 

by foreshadowing Stephan, Cobb, & Gravemeijer's analysis (chapter 5 of this 
monograph) of an incident that occurred early in the measurement design experi- 
ment. The teacher and observing researchers noted that different groups of students 

developed two different methods when they measured various distances by pacing 
heel to toe. In the ensuing whole-class discussion, the teacher asked selected chil- 
dren to measure the length of a rug in the classroom so that she could highlight the 
difference between these two methods. In one method, the student places one foot 
in line with the beginning of the rug but does not begin counting paces until she 

places the second foot heel to toe in front of the first (i.e., from our standpoint, the 
child fails to count her first pace). We might reasonably speculate that these 
students were counting their physical acts of placing down a foot per se instead of 

attempting to find the number of paces they needed to take to cover the linear exten- 
sion of the rug. In the second method, the child counts her initial placement of a 
foot in line with the beginning of the rug as "one" and then continues by counting 
successive paces as "two, three,. The project team conjectured that these 
students might have been partitioning the linear extension of the rug instead of 

merely counting their physical movements per se. 
If calculational norms had been established for argumentation, then justifications 

in which students repeatedly demonstrated to one another how they had counted 
their paces would have been acceptable. Imagine for a moment how students who 
failed to count the first pace might have interpreted calculational explanations of 
the other method. Such explanations would likely not have made sense to these 
students, because the method is unrelated to the task as they understood it: to count 

physical acts of pacing. These students might, however, have realized that the 
method being explained is more valued than their own and adjusted their approach 
accordingly. In doing so, they would have adopted the desired method but without 

reconceptualizing the nature of their activity. The crucial point to note is that a 
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calculational discussion of the two methods provides little support for substantive 
mathematical learning. Instead, the students largely on their own would have to 

reconceptualize their activity as one of covering a distance. 
A calculational exchange of this type can be contrasted with a conceptual discus- 

sion in which the reasons for counting paces in a particular way become an explicit 
topic of conversation. For example, a student who counted her placement of the 
first foot might explain that her paces completely fill the spatial extension of the 

rug without any overlaps and without leaving any gaps. Further, the students who 
used this method might argue that the students who did not count the first pace 
missed a piece of the rug. In the context of such an exchange, the way in which 
the two methods structure the spatial extension of the rug can emerge as an explicit 
criterion for comparing them. The emergence of this criterion, in turn, serves to 

support the reconceptualization of pacing as a distance-covering activity. Students' 

engagement in conceptual discussions of this type therefore provides them with 
resources that might enable them to reorganize their thinking. As Stephan and her 

colleagues demonstrate in their analysis of the measurement design experiment in 

chapter 5, these resources were not limited to what was said but include the nota- 
tional schemes that were developed to record the ways in which different methods 
of measuring structured the linear extension of the object being measured. The goals 
for students' learning that were formulated when preparing for the design experi- 
ment were not restricted to methods of measuring but included the meaning of 

measuring (i.e., the partitioning of the linear extension of objects into units). As a 
consequence, students' engagement in conceptual discussions in which differing 
ways of structuring distance came to the fore was viewed as a primary means of 
advancing the pedagogical agenda. 

To this point, I have discussed three means of supporting students' learning that 
were considered when planning for the measurement experiment: (1) the instruc- 
tional activities, (2) the tools that students would use to measure, and (3) the 
nature of classroom discourse. The classroom activity structure constituted the final 
means of support to which the design team attended prior to the experiment. The 
proposed organization of classroom activities had three main phases: 

1. The teacher would develop with the students an ongoing narrative in which the 
characters in the narrative encounter problems that involve either measuring with 
an existing tool or developing a new measuring tool. 

2. The students would engage in measuring activities either individually or in pairs. 
3. The teacher would capitalize on the range of interpretations and solutions that 

the students developed during individual or small-group work to lead a whole- 
class discussion in which mathematically significant ideas that advance the 
pedagogical agenda emerge as topics of conversation. 

The design team conjectured that students' engagement in the first of these three 
phases would support their learning in two specific ways. Both these conjectures 
were premised on the assumption that students would identify with the characters 
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in the narrative as they attempted to resolve the various problems they encountered. 
The first conjecture was that students' measuring activity would take on a broader 

significance and purpose within the context of the narrative so that they would not 

merely be measuring at the teacher's behest. The design team's second conjecture 
was that if students identified with the characters in the narrative, the need to develop 
various new measuring tools as formulated within the narrative would seem plau- 
sible to them. Further, a discussion of possible solutions would serve to clarify the 

design specifications for the new tool. As a consequence, new tools would not seem 

arbitrary to students even on those occasions when the teacher introduced them. 
Instead, students would view tools introduced in this way as reasonable solutions 
to problems that had significance within the context of the narrative. 

These two conjectured ways in which the ongoing narrative might support 
students' learning constituted the primary justification for the first phase of the 

proposed classroom-activity structure. The issues I raised when clarifying the 
distinction between calculational and conceptual discourse serve to justify the last 
two phases of the classroom-activity structure. Clearly the intent of the whole-class 
discussions was not simply to provide students with an occasion to share their 

reasoning. Instead, the design team's overriding concern was with the quality of 
the discussions as social events in which students would participate. From this 

perspective, the value of whole-class discussions is suspect unless mathematically 
significant issues that advance the instructional agenda emerge as explicit topics 
of conversation. Conversely, students' participation in substantive, conceptual 
discussions is viewed as a primary means of supporting their enculturation into the 
values, beliefs, and ways of knowing of the discipline. 

This discussion of the classroom activity structure serves to clarify the last of the 
four means of support considered when preparing for the measurement experiment: 

1. The instructional tasks 

2. The tools the students would use to measure 

3. The nature of classroom discourse 

4. The classroom activity structure 

Because I have focused on each means of support separately, they might be 
construed as a largely independent set of factors that influence learning separately. 
An important point to emphasize is that the design team viewed the four means of 

support as highly interrelated. For example, the instructional tasks as actually 
realized in the classroom depended on the extent to which the students identified 
with the characters in the narratives, the tools they used to measure, and the nature 
of the classroom discussions. One can easily imagine, for example, how the tasks 

might be realized differently if a conventional measuring tool, such as a ruler, were 
introduced at the outset or if no whole-class discussions were held and the teacher 

simply graded the accuracy of the students' measuring activity. 
In light of these interdependencies, one can reasonably view the various means 

of support as constituting a single classroom activity system. This perspective is 
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compatible with Stigler and Hiebert's (1999) contention that teaching should be 
viewed as a system. In making this claim, Stigler and Hiebert directly challenge 
analyses that decompose teachers' instructional practices into a number of in- 
dependent moves or competencies. They instead propose that the meaning and 
significance of any particular facet of a teacher's instructional practice becomes 

apparent only when analyzed within the context of the entire practice. In a similar 
manner, the four means of support considered when planning for the measurement 

design experiment should be viewed as aspects of a single classroom activity 
system. Instructional design from this point of view therefore involves designing 
classroom activity systems in which students develop significant mathematical ideas 
as they participate in their exploration and contribute to their evolution. 

The orientation to design that we took when preparing for the measurement experi- 
ment sits uncomfortably with approaches that focus exclusively on tasks and tools. 
In these formulations, tasks are typically cast as the cause and learning as the effect. 
An important point to emphasize is that when Gravemeijer and his colleagues 
discuss tasks and measuring tools while outlining the proposed instructional 

sequence in chapter 4, they are describing aspects of an envisioned classroom 
activity system. Their overview of the proposed instructional sequence is made 

against the backdrop of assumptions about both the classroom activity structure and 
the classroom discourse. As a consequence, their conjectures about students' 

learning as they use particular tools to complete particular tasks are metonymies 
for conjectures about students' learning as they participate in an envisioned class- 
room activity system. 

ANALYZING MATHEMATICAL LEARNING IN SOCIAL CONTEXT 

As I noted in the first part of this introduction, the design of classroom learning 
environments is one of the two principal aspects of Design Research. The second 
aspect concerns the analysis of mathematical learning as situated within the social 
context of the classroom. In chapter 3 Stephan and Cobb describe in some detail 
the interpretive framework that was used to organize the analysis of the measure- 
ment teaching experiment. Rather than summarize their presentation by discussing 
the constructs that compose this framework, I instead attempt to clarify its ratio- 
nale. As should become apparent, the framework can best be viewed as a poten- 
tially revisable solution to problems and issues encountered while conducting 
design experiments. 

As a first step in outlining the rationale, a point worth reiterating is that class- 
rooms are complex, messy, and sometimes confusing places. One of the concerns 
that all Design Researchers need to address is that of developing an analytic frame- 
work that enables research participants to discern pattern and order in what often 
appear to be ill-structured events. These concerns and interests give rise to several 
criteria that an analytical approach should satisfy if it is to contribute to reform in 
mathematics education as an ongoing, iterative process of continual improve- 
ment. These criteria include the following: 
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" The results from the analyses should feed back to improve the instructional 
designs. 

" The methodology should permit documentation of the collective mathematical 
learning of the classroom community over the extended periods of time spanned 
by design experiments. 

" The analysis should permit documentation of the developing mathematical 
reasoning of individual students as they participate in communal classroom 
processes. 

The first of these criteria follows directly from the emphasis on testing and 
revising the conjectures inherent in initial designs when conducting a design 
experiment. The second criterion, which emphasizes the importance of focusing 
on the mathematical learning of the classroom community, stems from the approach 
to instructional design that I have outlined. As noted, the designer develops conjec- 
tures about an anticipated learning trajectory when preparing for a design experi- 
ment. These conjectures, however, cannot be about the trajectory of each and every 
student's learning for the straightforward reason that significant qualitative differ- 
ences are present in their mathematical thinking at any point in time. As a conse- 
quence, descriptions of planned instructional approaches written to imply that all 
students will reorganize their thinking in particular ways at particular points in an 
instructional sequence involve, at best, questionable idealizations. For similar 
reasons, analyses that speak of changes in students' reasoning are potentially 
misleading in that they imply that students will all reorganize their thinking in the 
same way. I should acknowledge that I have, in fact, spoken in these terms to this 

point in this introduction for ease of explication. Although this approach proved 
to be adequate when discussing the various means of supporting and organizing 
learning, it does not offer the precision we need to improve our designs. 

Against the background of these considerations, an issue that my colleagues and 
I have sought to address is that of clarifying what the envisioned learning trajec- 
tories central to our, and others', work as instructional designers might be about. 
The resolution that we propose involves viewing a hypothetical learning trajectory 
as consisting of conjectures about the collective mathematical development of the 
classroom community. This proposal, in turn, indicates the need for a theoretical 
construct that enables us to talk explicitly about collective mathematical learning, 
and for this reason we have developed the notion of a classroom mathematical prac- 
tice. Stephan and her colleagues (chapters 3 and 5 of this monograph) define and 
illustrate this construct when they present their analysis of the measurement design 
experiment. For the present, it suffices to note that a hypothetical learning trajec- 
tory that is framed in these terms consists of an envisioned sequence of mathematical 

practices together with conjectures about the means of supporting and organizing 
the emergence of each practice from prior practices. 

The last of the three criteria that an interpretive approach should satisfy focuses 
on qualitative differences in individual students' mathematical reasoning. The 
rationale for this criterion is again deeply rooted in the activity of experimenting 
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in classrooms. The classroom activity structure that I described when discussing 
our preparations for the measurement experiment is representative in that, in most 
of the design experiments that I and my colleagues have conducted, the students 
work either individually or in small groups before convening for a whole-class 
discussion of their interpretations and solutions. During the individual or small- 
group work, the teacher and one or more of the project staff normally circulate in 
the classroom to gain a sense of the diverse ways in which students are interpreting 
and solving the instructional activities. Toward the end of this phase of the lesson, 
the teacher and project staff members confer briefly to prepare for the whole-class 
discussion. In doing so, they routinely focus on the qualitative differences in the 
students' reasoning to develop conjectures about mathematically significant issues 
that might, with the teacher's guidance, emerge as topics of conversation. They 
might, for example, conjecture that a particular mathematical issue will emerge if 
two specific types of solutions are compared during the discussion. Given this prag- 
matic focus on individual students' reasoning, we require an analytic approach that 
takes account of the diverse ways in which students participate in communal class- 
room practices. In the hands of a skillful teacher, this diversity can, in fact, be a 
primary resource on which the teacher can capitalize to support the collective math- 
ematical learning of the classroom community. 

This discussion of the three criteria that an interpretive framework should satisfy 
illustrates the pragmatic orientation we take in viewing theoretical constructs as 
conceptual tools whose development reflects particular interests and concerns. From 
this perspective, the relevant concern when assessing the value of theoretical 
constructs is whether they enable us to be more effective in supporting students' 
mathematical learning. Clearly, also, an interpretive approach that satisfies the three 
criteria will characterize students' mathematical learning in situated terms. In 
doing so, however, an interpretive approach will take a different view of the class- 
room activity system. The aspects of this system on which I focused when 
discussing the various means of supporting and organizing mathematical learning 
dealt with resources (e.g., tasks, tools) and with characteristics of collective activity 
(e.g., the structure of classroom activities, classroom discourse). Missing from this 
picture is an indication of the specific processes by which increasingly sophisti- 
cated mathematical ways of reasoning might emerge as students participate in these 
collective activities by using the tools to complete instructional tasks. The inter- 
pretive framework that Stephan and Cobb (chapter 3 of this monograph) employ 
when analyzing the data generated in the course of the measurement design exper- 
iment is designed to address this limitation. 

CONCLUSION 

My purpose in this introduction has been to situate the measurement design exper- 
iment within a broader methodological context. To this end, I highlighted cycles 
of design and analysis as a defining characteristic of Design Research. I also noted 
the pragmatic emphasis of the methodology in addressing problems of supporting 
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students' mathematical learning similar to those addressed by practitioners. In addi- 
tion, I discussed the theoretical intent of developing domain-specific instructional 
theories that enable the results of an experiment to be generalized by means of an 

explanatory framework. This dual focus on theoretical issues and pragmatic 
concerns makes the methodology particularly well suited to the task of investigating 
the prospects and possibilities for reform in mathematics education at the class- 
room level. 

The two core aspects of Design Research on which I have focused are the design 
theory that guides the development of specific designs and the interpretive frame- 
work that guides the analysis of classroom events. In discussing the design theory, 
I emphasized that the conjectures developed when preparing for the measurement 
experiment were not restricted to curriculum developers' traditional focus on tasks 
and tools. As I illustrated, the conjectures also took account of both the nature of 
classroom discourse and the classroom activity structure. To accommodate this 
broader perspective on design, I introduced the notion of the classroom activity 
system. The hallmark of such systems is that they are intentionally designed to 
produce the learning of significant mathematical ideas as students participate in 
them and contribute to their evolution. In light of this shift from a focus on tasks 
and tools to a broader concern for the activity systems that constitute the social situ- 
ations of students' learning, one might appropriately speak of design experiments 
rather than of teaching experiments. The term teaching experiment indicates that 
the methodology is agenda driven and highly interventionist. The term design exper- 
iment adds a theoretical dimension by indicating the broader perspective from which 
the interventions are conceptualized. 

My discussion of the second core aspect of Design Research focused on the three 
criteria that an appropriate interpretive framework should satisfy. As I noted, the 
resulting accounts of students' mathematical learning are necessarily situated in 
that they are tied to analyses of the actual environment in which that learning 
occurred. As Stephan and others' analysis in chapter 5 of the measurement exper- 
iment illustrates, one can therefore disentangle aspects of this environment that 
served to support the development of the students' reasoning. Doing so, in turn, 
leads to the development of testable conjectures about the way in which those means 
of support and thus the instructional design might be improved. In this regard, the 

methodology employed by Stephan and her colleagues remains true to Brown's 
(1992) and Collins's (1999) vision of educational research as a process of ongoing, 
iterative improvement. 

Given my purpose in this chapter, I have focused on general characteristics of 
the design experiment rather than on concrete aspects of the methodology. These 

aspects are discussed in the remainder of this monograph and include the specifi- 
cation of the relation between classroom-based research and instructional design, 
the interpretive framework used to analyze learning in the social context of the class- 
room, and the role of tools in both learning and design. In chapter 2, Stephan synthe- 
sizes the literature on students' measurement conceptions to further develop the 
three monograph themes. In chapter 3, Stephan and Cobb discuss the interpretive 
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framework and method that guided the analysis of students' learning in the social 
context of the classroom. In chapter 4, Gravemeijer, Bowers, and Stephan illus- 
trate the central instructional design heuristics of RME and present a hypothetical 
learning trajectory that served as the basis for the measurement experimentation. 
In chapter 5, Stephan, Cobb, and Gravemeijer offer an analysis that coordinates 
the learning of the classroom community with the reasoning of the participating 
students. Gravemeijer, Bowers, and Stephan then use this analysis in chapter 6 to 
influence the revision of the prior hypothetical learning trajectory. Finally, in 

chapter 7, Stephan revisits the three monograph themes in light of the measurement 

experiment. The content of the chapters was organized in this manner to illustrate 
the cyclic process of instructional design and classroom-based research that is char- 
acteristic of Design Research. 
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Chapter 2 

Reconceptualizing Linear 
Measurement Studies: 

The Development of Three 
Monograph Themes 

Michelle Stephan 
Purdue University Calumet 

Measuring lengths of objects is a common practice in a wide range of out-of- 
school situations. For example, some families keep track of their children's growth 
by measuring their heights and either keeping a written record or making physical 
marks on a wall. In addition, learning to measure forms a foundation for investi- 
gating other mathematical topics, such as proportion, decimals, and fractions, to 
name a few (cf. National Council of Teachers of Mathematics [NCTM], 2003). For 
these reasons, instruction in linear measurement is included in most elementary 
curricula. The NCTM Principles and Standards for School Mathematics (2000) 
emphasizes the importance of establishing a firm foundation in the underlying 
concepts and skills of measurement. The document emphasizes that children need 
to "understand the attributes to be measured as well as what it means to measure" 
(p. 103). A large body of literature on children's conceptions of measurement has 
amassed over the past three decades, with undoubtedly the most influential work 
being that of Jean Piaget and his colleagues (e.g., Piaget, Inhelder, Szeminska, 
1960). Piaget and his colleagues identified developmental stages through which 

they claimed children pass as they learn to measure. As a result of this analysis, 
many researchers have tried to isolate the ages at which children develop certain 
measurement concepts. Other researchers have devised training programs to 
increase the acquisition rate of measurement concepts. Whereas each of these 
studies took a primarily individualistic approach to learning and training, few studies 
have been conducted that address social' influences on children's development of 

measuring abilities. As such, I argue that current measurement studies should 
include social aspects as well as tool use as an integral part of learning to measure. 

I We use the term social throughout the monograph to refer to the interactions between the teacher and 
the students at the local level of the classroom, not to any particular societal characteristic, such as a 
student's racial background or SES status. 
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The purpose of this chapter is to identify and develop three research themes that 
drive the organization and substance of this monograph in regard to supporting 
students' development of linear measurement conceptions. To provide rationale 
for these three research themes, I first include an extensive literature review 
describing prior research on children's measurement conceptions. This review 
includes descriptions of studies conducted by Piaget and his colleagues and of 
training programs that were designed to support children's development of measure- 
ment skills. Second, I use this literature review as background to elaborate the three 
research themes that serve as the basis of inquiry for this study. Third, I elaborate 
our theoretical position on each of the research themes to argue that new investi- 
gations of children's measurement development should attend to social aspects of 
learning to measure, the use of tools to support development, and learning as it is 
closely tied to the designer's in-action decisions. 

MEASUREMENT INVESTIGATIONS 

Most investigations into children's conceptions of measurement have been 
based on studies that were published in the 1950s and 1960s by Piaget and his 
colleagues (i.e., Piaget & Inhelder, 1956; Piaget et al., 1960). Other researchers have 
set out to either substantiate or disprove the claims that Piaget made about chil- 
dren's development. Because the majority of the literature on children's concep- 
tions of measurement focused on Piaget's stage theory, I begin this section by 
discussing Piaget's investigations on measurement. Further, I draw connections 
between our findings and those of Piaget throughout the monograph, in particular 
in chapter 5. 

Piaget's Studies 

Piaget defined measurement as a synthesis of change of position and subdivision 
(Piaget et al., 1960). More precisely, measurement for Piaget involved (a) under- 
standing space or the length of an object as being partitionable, or as being able to 
be subdivided (subdivision), and (b) partitioning off a unit from an object and iter- 
ating that unit without overlap or empty intervals (change of position). Piaget and 
his colleagues argued that the coordination of these two notions along with the 
understanding that these continuous units form inclusions (i.e., the first length 
measured is included in the length that comprises two units, etc.) leads to a full 
understanding of measurement. The claim that conservation of length develops as 
a child learns to measure is implicit in this definition. Conservation of length means 
that as a child moves an object, the object's length does not change. Conservation 
of length is not equivalent to the concept of measurement but, rather, develops as 
the child learns to measure (Inhelder, Sinclair, & Bovet, 1974). 

For Piaget, knowledge of measurement required that a child be able not only to 
apply the procedures and skills of measuring but also to carry out these activities 
without merely following specific, formalized measuring procedures. In other 
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words, measurement for Piaget did not consist of simply performing the steps 
required to measure. Rather, children who could measure in his terms were almost 
immediately able to use the standard measure with insight, not by trial and error 
(Piaget et al., 1960). Consequently, a child who could use a ruler correctly to 
measure would not necessarily have an operational understanding of measurement 
according to Piaget and others' definition. Piaget and his colleagues' analyses have 
particular value because they focused on the mathematical meanings and inter- 
pretations rather than solely the methods of measuring associated with particular 
measurement understandings. These types of analyses are also consistent with 
current mathematical reform efforts. For example, the NCTM Principles and 
Standards document (2000) emphasizes that mathematics should be meaningful 
activity rather than a set of learned rules and procedures for calculating. 

Piaget et al. (1960) categorized children's development of measurement concep- 
tions into either three or four stages, depending on which aspect of measurement 
was being investigated. For example, the development of the conservation of 
length fell into three distinct stages with various substages. What follows is a brief, 
integrative description of some of the main stages in Piaget' s account of children's 
development of measurement concepts. For a more detailed inspection of the 
various stages of development, see Piaget et al. (1960), Carpenter (1976), Copeland 
(1974), and Sinclair (1970). 

At the initial stages of development, including various substages, children 
conserve neither length nor distance. Piaget used the term distance to refer to the 
empty space between two objects, such as two trees. He used the term length to 
denote the physical extension of an object, such as a stick. Children who are clas- 
sified as being at early stages of development rely strictly on visual perception for 

judgments about length. For instance, Piaget asked several children in clinical inter- 
views about two strips of equal length (see Figure 2.1). He placed them in direct 
alignment with each other, as shown in situation (1) in Figure 2.1, and asked the 
child which strip was longer. Once the child acknowledged equality of length, the 
interviewer moved the bottom strip a few centimeters, as shown in situation (2) in 

Figure 2.1, and again asked which one was longer. 
Those children classified as in the early stages of development concluded that 

the bottom strip was now longer than the top strip because the bottom strip extended 
beyond the top one. Piaget concluded that these children were reasoning by relying 

(1) (2) 

Figure 2.1. Interview task focusing on conservation of length. 
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on perceptual judgments centering on the position of the endpoints. He argued that 
operational measurement is not possible for children classified as in early stages, 
because space is not viewed as a common medium containing objects with well- 
defined spatial relations between them. According to Piaget, children with such an 
uncoordinated view of space do not understand that the distance from A to B is the 
same as the distance from B to A. 

Piaget argued that children whom he classified as in the early stages were not 
able to reason transitively, an ability that involves, for instance, using a stick as an 
instrument to judge whether two immovable towers are the same size. Being able 
to reason transitively is essential for operational measurement. A child who can 
reason transitively can take a third or middle item (e.g., the stick) as a referent by 
which to compare the heights or lengths of other objects. During the early stages 
of development, however, when children do not conserve length, transitive 
reasoning is impossible because once children move the middle object (e.g., the 
stick), the length of that middle object, in their view, can change. 

Piaget asserted that children classified as in the early stages do not have an under- 
standing of either subdivision or displacement. This lack of understanding can be 
seen as children measure the length of an item with a smaller unit. Typically, these 
children either run the smaller unit alongside the length of the item without prop- 
erly partitioning the length or they make iterations of unequal spaces, sometimes 
neglecting gaps or overlapping areas. Their thinking at these early stages is said 
to be intuitive and irreversible (i.e., they are unable to go backward; for instance, 
A to B is not the same as B to A). 

Piaget identified transitional stages between these early stages and the final stages 
of operational measurement. Children in these transitional stages (about 6 to 7 years 
old) begin to reason transitively by using their body as a middle referent. Later, at 
about 7 to 8 years old, they can reason transitively with other objects and begin to 
conserve length. Piaget asserted, however, that children classified as in a transi- 
tional stage have not yet coordinated change of position and subdivision but 
possess each of the notions separately. These children understand that changing 
the position of an item does not alter quantity and that the whole is the sum of its 
parts, but they do not coordinate these two concepts. 

Finally, the child attains the last stage, operational measurement, when he or she 
has synthesized displacement with subdivision (about 8 to 10 years old). Implicit 
in this acquisition for Piaget was that measuring consisted of a series of nested rela- 
tions. In other words, as a unit is iterated, the distance covered by the first two units 
is nested in the distance covered by three units, and so on. Differentiating this last 
stage from the mere ability to perform the skills of conventional measuring is impor- 
tant. To be operational, the actions of the measurement process must be interior- 
ized into conceptual acts that are an integral part of an organized structure 
(Carpenter, 1976). In other words, the child's activity of measuring correctly does 
not indicate operational measuring; rather, the activity must be accompanied by a 
conceptual reorganization. Children at this stage can compare units' lengths and 
discover that a small unit is a third or half of another. Similar to Piaget' s percep- 
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tion, we characterize acting in a spatial environment as coordinating units with 
different measures, an ability that includes structuring parts of units in fractional 
units. In addition, the results of measuring should come to signify a series of 
nested distances (what we call accumulation of distance). 

In Piaget' s developmental stage theory, children pass from one stage to the next 

by making shifts in how they reorganize their previous experiences. Children 

proceed through these stages in a relatively fixed order. Piaget's developmental 
stage theory seems to characterize learning as a series of clear-cut cognitive re- 

organizations that signal that an individual has passed from one stage to the next. 
This characterization is individualistic in that Piaget explained learning as occur- 
ring solely in the mind of the child. Piaget would not deny that conceptual re- 
organizations often occur as a consequence of social interaction, but his analysis 
of children' s learning to measure was cast primarily as an individual accomplish- 
ment. In contrast, current studies have demonstrated the social nature of learning 
(Lave, 1988; Rogoff, 1990; Saxe, 1991; Vygotsky, 1978). Piaget et al.'s (1960) 
analysis that children pass through a fixed set of stages did not account for social 

aspects of the learning process. The study that we report in this monograph can be 
viewed as drawing on Piaget and his colleagues' description of what counts as a 

deep understanding of measurement (e.g., operational measurement as subdivision 
and displacement and inclusive), yet it recasts cognition as occurring in situ. In other 
words, we find Piaget and others' psychological analysis to be extremely valuable 
for determining the instructional intent of the measurement design experiment but 
insufficient for analyzing the learning of students as they participate in the social 
context of a classroom community. Therefore, we draw on Piaget's conceptual 
distinctions regarding learning to measure to make sense of children's learning in 
social context. 

Reactions to Piaget 

Researchers, sparked by Piaget's analysis of children's conceptions of measure- 
ment, focused on two different sets of issues. One interpretation of Piaget' s devel- 

opmental model was that certain measurement concepts developed in fixed order. 
For example, some researchers argued that the conservation of length developed 
before transitive reasoning. Also, some researchers interpreted the ages at which 
children construct particular measurement concepts as being relatively fixed. 
Researchers commonly tested the order in which measurement concepts developed 
or debated the ages at which children reasoned transitively. As a consequence, many 
researchers sought to substantiate or discredit Piaget's earlier claims. Along this 
same line, more recent studies have used Piaget's epistemology to detail the 

conceptual schemas that children construct as they learn to measure. Thus, I call 
the first collection of measurement literature "cognitive analyses." 

A second set of investigations based on Piaget' s analyses focused on increasing 
the acquisition rate of certain measurement concepts (Beilin, 1971). For example, 
researchers attempted to train children to conserve length by using a variety of 
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training techniques. The primary focus of the "training studies" was to increase 
the rate at which children learn the conservation and transitivity of length using 
various training techniques. Therefore, many different experimental methods 
were being used. 

In the following sections, I synthesize the majority of the studies based on 
Piaget's analyses. Because the researchers made a variety of different and some- 
times conflicting theoretical assumptions, however, definitive conclusions about 
their findings are very difficult to draw. Thus, I describe briefly the most common 
theoretical perspectives that guided the research. My intent is not to present an 
exhaustive account of the research but rather to provide an overview of the topics 
that were studied and debated. 

Cognitive analyses. In this first set of studies, what I have termed "cognitive 
analyses," many researchers tested the order of Piaget' s measurement concepts by 
using different experimental methods and tasks (e.g., Carpenter, 1975; Gelman, 
1969; McManis, 1969; Murray, 1965, 1968; Shantz and Smock, 1966). For instance, 
Shantz and Smock conducted a study investigating whether the development of the 
conservation of length occurs before the development of a spatial coordinate 
system. Their findings supported Piaget and Inhelder's (1956) theory that the 
development of the conservation of length, which occurs around age 7, precipitates 
the development of a spatial coordinate system, which occurs at about age 9. 
Generally, earlier research on the age and order of the development of measure- 
ment concepts supported Piaget and Inhelder's claims. In more recent studies, 
however, researchers argued that conservation and transitivity do not necessarily 
need to be constructed first after all. In fact, they contend that children can construct 
the inverse relation between number and unit-size before conservation (Clements, 
1999; Hiebert, 1981; Petitto, 1990) but that conservation is an important notion that 
leads to operational measurement (Petitto, 1990). 

A second body of research focused on the age at which students learn transitivity. 
Transitivity studies were the subject of so many methodological variations that 
researchers argued that the ages at which transitivity developed in children ran from 
as early as 4 years to as late as 8 years old. As a result, a debate ensued between 
Braine (1964) and Smedslund (1963, 1965) concerning assessment techniques and 
the need to define more exactly what was meant by evidence of transitivity. Both 
Braine and Smedslund accounted for learning using Piaget' s developmental model, 
but they disagreed on the ages at which transitivity occurred; Braine suggested that 
transitivity occurred at 4 to 5 years old, and Smedslund suggested that it occurred 
at 7 to 8 years old. A more recent study by Kamii (1997) confirmed Piaget and 
Inhelder' s (1956) and Smedslund' s findings. She also found that transitivity must 
be developed before unit iteration. As to Piaget's earlier claims that transitivity and 
conservation develop simultaneously, some researchers performed experiments that 
negated this claim (Brainerd, 1974; Lovell & Ogilvie, 1961; McManis, 1969; 
Smedslund, 1961; Steffe & Carey, 1972). 

With regard to constructing a full, operational understanding of measurement, 
Lovell, Healey, and Rowland (1962) generally substantiated Piaget and Inhelder's 
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(1956) stage theory categorizations. Also, the ages at which full measurement 
develops in children were found to be close to Piaget's estimate of 9 years old. 
Kamii (1997) obtained similar results in her study, suggesting that full measure- 
ment understanding develops around 9 to 10 years old. Lehrer, Jenkins, & Osana 
(1998) substantiated this age range when they found that children below fourth 
grade incorrectly measured the length of an object using two different-sized units. 

Lehrer and his colleagues concluded that these students had not constructed the rela- 
tion between unit of measure and the attribute being measured (see also Barrett and 
Clements, 1996; Clements, Battista, & Sarama, 1998). 

Although Piaget and other researchers often disagreed, all these studies share 
one assumption. In these analyses, learning is primarily analyzed as an individu- 
alistic achievement. Learning consists of cognitive reorganizations that occur in 
the mind of the child, sometimes as a consequence of social interaction or tool 
use. In other words, the researchers realized that the process of learning could have 
social aspects, but analyses were cast solely in terms of an individual's cognitive 
development. 

Training studies. The second body of literature, training studies, came about as 
a reaction to Piaget's naturalistic slant on learning. Piaget developed a general theory 
of conceptual development for transitions between stages, but most of this research 
focused on children's performing tasks presented in clinical interviews. Very little 
empirical evidence supported his theories about the process and ways of supporting 
conceptual development. Consequently, training studies centered on the acquisi- 
tion of cognitive structures by considering the effect of different types of training 
procedures. 

Piaget described training studies as an attempt to rush development (Rogoff, 
1990), and he is generally interpreted as doubting that training has an effect on the 
development of children's conceptions. Nevertheless, many researchers based 
their training techniques on the basic components of Piaget's equilibrium model. 
Equilibration is best described as a dynamic, self-organized balance between 
assimilation and accommodation. Assimilation is the process of organizing new 
experiences in terms of prior understanding. When new experiences cannot be 
adequately organized in this way or when they give rise to contradictions, an 
accommodation typically occurs. An accommodation involves reflective, inte- 

grative processes that create a new understanding to restore equilibrium. Piaget 
conjectured that disequilibrium is brought about by experiences that generate 
cognitive perturbations (von Glasersfeld, 1995). 

Many of the training programs used aspects of the equilibrium model as the 

assumptions behind their training methods. Researchers tried to induce cognitive 
conflict in children to bring about disequilibrium (Bailey, 1974; Brainerd, 1974; 
Murray, 1968; Overbeck & Schwartz, 1970; Smedslund, 1961). Other researchers 

argued that reversibility might play an important role in decreasing the age at which 
conservation of length developed in children (Brison, 1966; Murray, 1968; Smith, 
1968). For instance, one of the experimental treatments in Smith's (1968) training 
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program involved asking children to make judgments about the length of an object 
after adding and subtracting pieces from the end of it. In this way, the child was 
"shown" that reversing operations could help determine equality of objects. Like 
the cognitive analyses, training studies also focus primarily on individual cogni- 
tive growth and hence do not include descriptions of any social aspects or tool use 
involved in the training sessions. 

Although these training studies were based on aspects of Piaget's equilibrium 
model to determine training methods, their training goals seem to have differed from 
Piaget's goals. In my view, Piaget was concerned with identifying children's 
understanding of, and their constructed meanings for, conservation. In contrast, 
analyses of the training studies focused only on whether children could conserve 
length by the end of the training sessions. Their primary concern was on children's 
acquisition of the conservation of length, and this attainment was determined by 
correct answers to conservation tasks. In other words, evidence that a child 
conserved length was determined by his or her performance on conservation tasks, 
not by detailed analyses of his or her thinking. One exception to this technique is 
a study conducted by Inhelder et al. (1974). This study differed in that preliminary 
experiments were conducted to understand children's conceptions of the relation- 
ship between number and length and to identify stages of development pertaining 
to this relationship. After the stages were identified, training sessions were 
conducted and several of the children's responses during the session were analyzed 
to identify the psychological processes involved in coordinating discrete units with 
continuous length. The main product of these training sessions consisted of psycho- 
logical analyses of children's solutions, not just scores on tests. On the one hand, 
this kind of study reflects Piaget's theory of learning more than the other training 
studies. On the other hand, such analyses were still cast in terms of cognitive re- 
organizations devoid of social context. 

Another set of training studies focused on whether children transferred their 
measurement concepts to other task situations (or domains). For example, many 
researchers investigated whether children who were trained to conserve length 
would transfer those skills to conserve weight or area (Beilin, 1965; Brainerd, 1974; 
Brison, 1966; Gruen, 1965; Tomic, Kingma, & Tenvergert, 1993). Training success 
was determined by comparing scores on pretests and posttests instead of attempting 
to explain children's meaningful activity on a variety of interview tasks. Generally, 
researchers found that training for the conservation of length using various tech- 
niques transferred to other domains (cf. Beilin, 1965; Brainerd, 1974). For a more 
in-depth review of the literature concerning transfer of training, see Osborne 
(1976). 

A final group of training studies was conducted from an information-processing 
perspective. Studies had been conducted in the 1970s by researchers trying to iden- 
tify the information-processing demands of tasks that dealt with the conservation 
of length (Baylor, Gascon, Lemoyne, & Pothier, 1973; Hiebert, 1981; Klahr and 
Wallace, 1970). The computer was the dominant metaphor with which to describe 
children's mathematical learning, as in the following: 
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It was because the activities of the computer itself seemed in some ways akin to cogni- 
tive processes. Computers accept information, manipulate symbols, store items in 
"memory" and retrieve them again, classify inputs, recognize patterns and so on. 
(Gardner, 1987, p. 119) 

Human thought was conceptualized as an information-processing system, and 
the goal was to develop computational models whose input-output relations 
matched those of children's observed performance (Cobb, 1990). In some cases, 
researchers actually attempted to write computer programs that matched their 
observations of children's strategies (e.g., Baylor et al., 1973). According to these 
researchers, many mathematics tasks require the ability to process several pieces 
of information simultaneously, and students with low short-term-memory capac- 
ities were assumed to perform less well than children with high capacities. 
Therefore, researchers took into account the information-processing requirements 
of a task as they analyzed students' solutions to problems. Hiebert (1981) and Baylor 
et al. (1973) studied the relationship between information-processing capacities and 
children's ability to learn concepts of linear measurement and found that the infor- 

mation-processing capacity had no detectable influences. Nonetheless, Hiebert 
argued along with Baylor and his colleagues that the usefulness of this perspec- 
tive in educational settings requires more research (see also Inhelder, 1972; Klahr 
& Wallace, 1970). A more recent study outlined the sequence in which measure- 
ment concepts should be taught and based their ordering on the information- 

processing demand of the tasks (Boulton-Lewis, 1987). This approach, as other 
computational models of the information-processing and training theories do more 
generally, focuses primarily on cognitive aspects of training. As such, the approach 
influenced the work of researchers attempting to learn what types of interventions 
work, but it did not generate insights regarding what social aspects or tools affected 
the observed outcomes. 

Summary of Measurement Investigations 

Throughout this review, I have alluded to several common themes among the 
various studies. In this section, I summarize the findings from the literature to 
describe three main issues that appear to run throughout the literature regarding 
Piagetian development: (1) learning was analyzed primarily from an individual 

perspective, (2) most studies involved documenting the criteria for the success of 

training studies, and (3) very few studies emphasized the role of tools in supporting 
students' development. Of these three main issues, I identify the theoretical themes 
that run throughout the monograph. 

The first issue running throughout the literature involved characterizing learning 
as an individual accomplishment. In most cases, social aspects were seen as serving 
as catalysts for cognitive reorganizations, but their role as such was not explicitly 
described. For example, consider the debate between Smedslund (1961) and 
Brainerd (1974) regarding the age at which students learn transitivity. Smedslund 

interpreted Piaget as giving very little importance to social processes (i.e., 
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Smedslund argued that Piaget would claim that positive feedback from the inter- 
viewer was not the cause for conceptual reorganizations, because they were social 
processes; conceptual reorganizations, in Smedslund's interpretation, were caused 
by the individual). Brainerd countered that Piaget would argue that positive feed- 
back could cause cognitive perturbations. Both interpretations explained learning 
in terms of cognitive reorganizations (at times caused by social events) and placed 
little emphasis on learning as a social process. At the beginning of this chapter, I 
pointed out that current theories emphasize placing more than a secondary role on 
the social processes involved in learning. As a consequence of these current theo- 
ries, further investigations of children's development of measurement conceptions 
might focus on students' activity in social context. Thus, one theoretical theme that 
follows naturally out of this literature review concerns paying explicit attention to 
learning as it occurs in the social context of the classroom. 

A second issue illuminated in the literature review concerns the criteria for 
success of the training studies. A training technique was judged successful if 
posttest scores were significantly higher than pretest scores. The means of 
supporting children's development, however, were not described in the analysis 
of training sessions. In other words, if training techniques did, in fact, increase the 
likelihood that students could conserve length, then training was considered a 
success. Analyses of students' learning during these training sessions were not tied 
to the ways the researchers engaged with them that might have led students to make 
their conceptual reorganizations during training sessions. Current instructional 
design theories call for analyses of students' learning to be tied to our (i.e., 
teachers', trainers', or researchers') role in supporting that learning (Cobb, Stephan, 
McClain, and Gravemeijer, 2001). In other words, the goals of a researcher are not 
only to improve students' learning but also both to reflect on the process by which 
students developed and to locate themselves as designers in that process. Thus, 
analyses of students' learning in social context can feed back to inform designers 
of the ways in which instructional sequences (or training techniques) can be 
revised to better support students' learning in the social context of the classroom 
setting. The second theme, therefore, that runs throughout this monograph focuses 
on ways of proactively supporting students' development from the designers' 
perspective. 

A third issue running throughout the literature review centers on the role of tools 
in supporting or constraining students' mathematical development. With the excep- 
tion of a few studies (e.g., Barrett & Clements, 1996; Clements et al., 1998; Nunes, 
Light, & Mason, 1993; Piaget et al., 1960), very few of the prior studies on 
measurement focused on the role that measuring tools play in supporting students' 
mathematical development. When tools were considered as part of the child's devel- 
opment, the nature of these tool analyses was individualistic as well. For example, 
Piaget and his colleagues ascribed a child's assimilation or accommodation of a 
tool to previous measuring experiences. Again, it was as if the tool served as a cata- 
lyst for cognitive reorganizations but was not an integral aspect of what was 
learned. In contrast, current theories suggest that further measurement analyses 
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consider tools as an intimate part of students' mathematical development. Currently 
in the field of education, many theorists have emphasized that learning does not 
occur apart from tool use (cf. Cobb, 1997; Kaput, 1994; Meira, 1995, 1998; 
Nemirovsky & Monk, 2000; Pea, 1993; van Oers, 1996; Vygotsky, 1978). Some 
researchers go further by arguing for an extremely strong relationship between tool 
use and learning. They contend that symbol creation and meaning making are not 
separate endeavors but occur simultaneously (Meira, 1995, 1998). Because 
measuring clearly involves using measurement tools, a third and final theme 
concerns supporting students' mathematical development as they reason with 
cultural tools. 

RECONCEPTUALIZING MEASUREMENT INVESTIGATIONS 

Theoretical growth in the field of mathematics education allows us, as researchers, 
to look back on the tremendous work of our predecessors and build on their 
measurement findings to learn more about supporting students' development of 
measurement understandings from new perspectives. Current theories on social and 
cultural processes and new methods of proactively supporting students' mathe- 
matical development provide new lenses with which to view old problems. In this 
section I develop our theoretical position on each of the three literature review 
themes discussed above: (1) social aspects of learning, (2) proactively supporting 
students' learning, and (3) cultural tools. 

Social Aspects of Learning 

All the studies discussed in the literature review involved a primarily individu- 
alistic view of learning. An increasing number of researchers, however, have 
adopted the premise that learning occurs in a socially situated context and that these 
social and cultural aspects greatly influence the way individuals construct their 

understandings (cf. Cobb & Bauersfeld, 1995; Cole, 1996; Lave, 1988; Rogoff, 
1990; Saxe, 1991; Vygotsky, 1978; Wenger, 1998). 

One of the consequences of adopting such a position is that whereas most 
researchers acknowledge that learning has both social and individual qualities, the 

emphasis they place on each perspective may differ significantly. For example, 
whereas Piaget and his colleagues (Piaget et al., 1960; Piaget and Inhelder, 1956) 
cast analyses in terms of cognitive reorganizations, with social aspects serving 
merely as a secondary catalyst, some theorists take a highly contrasting viewpoint 
(cf. Lerman, 1996). For example, some socioculturalists have maintained that 

learning is first and foremost a social endeavor, with individual processes consid- 
ered to be secondary. This argument is often supported by the following commonly 
cited quote by Vygotsky: 

Any function of the child's development appears twice, or on two planes. First it appears 
on the social plane and then on the psychological plane. First it appears between people 
as an interpsychological category and then within the child as an intrapsychological 
category. (Vygotsky, 1978, p. 63) (italics added for emphasis) 
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The authors of this monograph attempt to transcend these two extreme positions 
and view learning as a process that involves both individual and social aspects with 
neither taking primacy over the other. This way of viewing learning is a version 
of social constructivism called the emergent perspective. In this view, the rela- 

tionship between social and individual processes is extremely strong, in that the 
two cannot be separated-the existence of one depends on the existence of the other. 
The result of this assumption is that researchers assuming the emergent perspec- 
tive attempt to account for individuals' mathematical development as they partic- 
ipate in the social and cultural practices of the classroom community (Cobb, 2000; 
Yackel and Cobb, 1995). On the one hand, individual students' development is 

analyzed in terms of their participation in, and contribution to, the emerging, 
communal mathematical practices. On the other hand, mathematical practices are 
the taken-as-shared ways a community comes to reason and argue mathematically 
(Cobb et al., 2001; Stephan, 1998) and often involve aspects of symbolizing. 
(Chapters 3 and 5 of this monograph further elaborate the meaning of the construct 
of a mathematical practice.) Thus, we can say that the relationship between indi- 
vidual and social process is strong because although practices constitute the taken- 
as-shared learning of a community, we take it as equally important to acknowledge 
that students are seen to contribute to the evolution of the classroom mathematical 

practices as they reorganize their mathematical activity. In other words, mathe- 
matical practices and individual students' conceptual development are seen as 

reflexively related. Whereas practices are established and evolve as students partic- 
ipate in, and contribute to, them, these acts of participation constitute, for us, acts 
by individual students of reasoning and possible conceptual reorganizations. 

Although a strong dichotomy seems to exist between situated and individual 
perspectives at the extremes (consider, e.g., the recent debate between Lerman 
(2000) and Steffe & Thompson (2000)), the emergent perspective attempts to co- 
ordinate the two positions (cf. Confrey, 1995). The classroom teaching experiment 
reported in this monograph is an example of an investigation that places students' 
understandings of measurement in the local mathematical practices of their class- 
room community. 

Despite different perspectives regarding the role of social and cultural processes 
in learning, most researchers in this area agree that students' development cannot 
be adequately explained in cognitive terms alone; social and cultural processes must 
be acknowledged when explaining mathematical development. These social theo- 
ries, of course, do not discount psychological analyses conducted in interviews. 
Theorists from both sociocultural and emergent perspectives, however, would 

argue that traditional psychological analyses of interview situations characterize 
students' conceptual understanding independently of situation and purpose (Cobb 
& Yackel, 1996) and thus must be complemented by social analyses to gain a more 
comprehensive view of the learning process as it evolves. 
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Proactively Supporting Students' Learning 

A second theme that was illuminated by the prior literature concerned the role 
that designers and researchers play in supporting students' mathematical devel- 
opment. The prior training studies showed that students' scores on pretests and 
posttests determined the success of the training techniques and thus whether 
students constructed the targeted conceptual structures. The analyses of students' 

progress, therefore, focused on neither the process of their development nor the 
researchers' means of supporting conceptual reorganizations. 

In contrast, we have been in the process of refining an approach to classroom- 
based investigations that both situates analyses of students' learning in social 
context and ties these analyses to our means of supporting development. This type 
of research, called Design Research (Brown, 1992; Cobb et al., 2001; Collins, 1999), 
involves a reflexive relationship between classroom-based research and instruc- 
tional design (see Figure 2.2). 

Instructional design 
guided by domain-specific 
Instructional theory 

Classroom-based research 
guided by interpretive 
framework 

Figure 2.2. Phases of the Design Cycle. 

Gravemeijer (1994) has written extensively about the process of design. In 
brief, he explains that designers engage in an anticipatory thought experiment in 
which they anticipate how the taken-as-shared mathematical learning and discourse 

might evolve as proposed instructional activities are enacted. This conjecturing 
amounts to developing a potential taken-as-shared learning route and the means 

by which designers might support such mathematical activity. These conjectures 
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are provisional and are tested and modified in the course of classroom-based 

experimentation. As Cobb and his colleagues (2001) note, the process of testing 
and refining is guided by classroom-based research, the second aspect of the 

Design Cycle. These analyses feed back to inform the designer of both the role of 
the instructional activities in supporting the learning of the community and possible 
changes in the instructional sequence. This way of proceeding differs from previous 
studies conducted on measurement in that a more detailed account of children's 

learning as it occurred in social context is documented. Further, the success of the 
measurement training studies was determined by pretest and posttest scores. Thus 
the process of supporting students' learning was left unexamined. In contrast, 
Design Research is one viable model that accounts for both the process of students' 
measurement conceptions and the ways of supporting that development. 

Cultural Tools 

For the most part, the measurement analyses discussed throughout this chapter 
did not take into account students' activity with cultural tools, which, for our 

purposes include physical materials, tables, pictures, computer graphs and icons, 
and both conventional and nonstandard symbol systems. Interestingly, those four 
studies that did consider tool use in students' development did so only in a limited 
way. For example, the analyses conducted by Piaget and his colleagues (1960) char- 
acterized individual development as a consequence of assimilating cultural tools 
with prior experiences. The analyses conducted by Barrett & Clements (1996), 
Clements et al. (1998), and Nunes et al. (1993) all focused on the ways in which 
tools facilitated conceptual development and served as catalysts for developing 
thought processes. Current theories contend that conceptual development and 
symbol creation are reflexively related (Meira, 1995, 1998; van Oers, 2000). These 
theories hold that symbols and meanings are constructed simultaneously and are 
consistent with Vygotsky's (1978) view emphasizing that semiotic mediation is 
integrally involved in students' development. 

One theoretical perspective that has been developing a socially situated position 
on tool use is the sociocultural view. Socioculturalism developed in reaction to 
mainstream psychology's attention to individual activity. Socioculturalists empha- 
size the complexity of learning within a social environment and suggest that tools 
have a direct influence on how individuals learn. The notion of distributed intelli- 
gences, which draws heavily on sociocultural theories, suggests that students may 
use cultural tools as scaffolds to their internalization process. Pea (1993) describes 
tool use as a reorganizer, rather than amplifier, of understanding. Socioculturalists 
characterize tool use as a process of internalizing a cultural tool so that it becomes 
a tool for thinking (Davydov & Radzikhovskii, 1985) or of appropriating it to one's 
own activity (Newman, Griffin, & Cole, 1989). These and other sociocultural theo- 
rists often argue that tools are the primary vehicles for enculturation into the 
cultural practices of the wider community because tools are carriers of meanings 
from one generation to the next (van Oers, 1996). In this view, students are said 
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to inherit the cultural meanings involved in using a particular tool. From the socio- 
cultural perspective, the tools and their associated, culturally approved meanings 
are objects to be internalized by the individual. Nunes et al. (1993) took this 
approach when analyzing their students' development of measuring conceptions. 

In the emergent perspective, tools are also viewed as a constituent part of indi- 
viduals' activities. Further, emergent theorists would argue that the meanings 
associated with tools are created and evolve as students reason with physical mate- 
rials, pictures, and so forth (Cobb and Yackel, 1996). This perspective is in marked 
contrast with sociocultural views in which established cultural meanings are said 
to be internalized by the individual. Along with Meira (1995), emergent theorists 
contend that the meanings involved in acting with a particular tool evolve as 
students are engaged in goal-directed activity with the tool. From the emergent 
perspective, the idea that learning occurs as students act with cultural tools is based 
on the assumption that the symbolic and conceptual meanings that evolved from 
students' activity with tools do not develop apart from the mathematical practices 
in which students participate. The teacher's role, then, is to initiate and guide the 
development of individuals' mathematical activity-in particular, tool activity- 
as well as the mathematical practices so that these practices become more compat- 
ible with those of the wider society (Cobb, 1994). 

Although ways of analyzing and describing tool use are still being investigated, 
attending to the role of semiotic mediation in measurement clearly is of great 
importance. Cultural tools were used to a large extent in training students to 
conserve length, to reason transitively, and to learn to measure. The question 
remains as to how students' activity with these tools changed the way they came 
to view measuring. With this question in mind, we hope to build on the impor- 
tant work of those researchers who have already begun to highlight tool use in 
students' measurement development (e.g., Barrett & Clements, 1996; Clements 
et al., 1998; Nunes et al., 1993). 

CONCLUSION 

In this chapter, I used the prior literature as background to develop three theo- 
retical themes that lay the foundation for this monograph. The first of these themes 
concerned outlining the theoretical perspective for documenting students' mathe- 
matical (i.e., measuring) activity as they participate in the social context of their 
classroom community. The second theme focused on issues of instructional design 
and ways of supporting students' measurement development. The third theme dealt 
with the evolution of the collective meanings associated with tools used to support 
students' measuring activity. Each of these themes reflects an orientation toward 

learning as both a social and individual process. The view I have portrayed is one 
in which social and individual processes are reflexively related. In other words, 
social and individual processes coexist, and learning in the context of classroom- 
based instruction cannot be adequately explained in terms of either one or the other. 

Also, an argument has been made that individual as well as collective activity cannot 
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be separated from activity with cultural tools. Therefore, in specifying the math- 
ematical practices and individual mathematical development within these practices, 
activity with cultural tools becomes a central focus. In the next chapter of the mono- 
graph, we expand more generally on our instructional design theory while inte- 

grating the other two research themes into the discussion. 
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The previous chapter detailed a considerable number of linear measurement 
studies and described three main themes that cut across the literature: analyzing 
learning in social context, accounting for the role of tools in students' development, 
and developing instructional design theories that examine the means of supporting 
learning. Stephan argued that new investigations might build on these three themes 
to support students' development of linear measurement conceptions. To this end, 
we designed and implemented an instructional sequence concerning linear measure- 
ment. Whereas the monograph itself focuses on all three themes described in 
chapter 2, this particular chapter focuses on the third theme, instructional design, 
while integrating the other two. More specifically, we expound on an instructional 
design theory that integrates analyses of students' learning with the design of 
instructional activities. 

Both Cobb (chapter 1 of this monograph) and Stephan (chapter 2 of this mono- 
graph) described Design Research as an iterative process of integrating socially situ- 
ated analyses of students' learning within the design of classroom environments, 
of which instructional sequences are one part. This approach differs from previous 
measurement studies in that analyses of students' learning are described both in 
terms of the evolving taken-as-shared mathematical development and the role of 
the instructional activities and tools in supporting that development. This instruc- 
tional design theory served as the basis for the constitution of the measurement 
sequence implemented in the first-grade classroom that is the subject of this mono- 
graph. Whereas Design Research incorporates both analyses of students' learning 
and designing-refining instruction, this chapter focuses only on the former char- 
acteristic, building on the discussion from chapter 2 on the theoretical under- 
pinnings of social constructivism by detailing the interpretive framework that 
guided the forthcoming analyses of students' measuring development (see chapter 
5). We follow this discussion by describing the method used to analyze the evolving 
taken-as-shared learning that occurred over 32 class periods. We conclude this 

chapter with a description of the variety of sources used to collect data during class- 
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room experimentation. Although we focus only on one aspect of Design Research, 
classroom analyses, we save chapter 4 for elaboration of the second aspect, instruc- 
tional design. 

ANALYSES OF STUDENTS' LEARNING 

As Cobb (chapter 1 of this monograph) noted, the purpose of a design experi- 
ment is not to implement an instructional sequence and see whether it worked; 
rather, the purpose is to use ongoing and retrospective analyses of classroom 
events as fodder for improvements to the original design. The interpretive frame- 
work that guides both ongoing and retrospective analyses of students' individual 
and collective learning is examined in this chapter. Such a framework is necessary 
for understanding the actual learning that emerges as students engage in the instruc- 
tional activities. The analyses, as guided by the framework, then provide feedback 
to inform the designer as to how the original instructional sequence supported and 
constrained that learning so that modifications can be made. 

The theory we draw on to make sense of students' learning while we are in a class- 
room or when we are conducting analyses at the completion of an experiment is a 
version of social constructivism called the emergent perspective. Cobb and Yackel 
(1996) and Stephan (chapter 2 of this monograph) describe this theory more specif- 
ically. Briefly, this theory draws from (a) constructivist theories, which specify 
learning as an organic, autoregulated series of cognitive reorganizations (Steffe, 
von Glasersfeld, Richards, & Cobb, 1983; von Glasersfeld, 1995), and (b) inter- 
actionist theories, which emphasize learning as a social accomplishment 
(Bauersfeld, 1992; Blumer, 1969). These two perspectives on how learning takes 

place have been widely debated over the years. The emergent perspective is one 
attempt to transcend the individual versus social dichotomy by taking learning to 
be both simultaneously. In other words, learning is characterized as both an indi- 
vidual and a social process, with neither taking primacy over the other. Students 
are viewed as reorganizing their learning as they both participate in, and contribute 
to, the social and mathematical context of which they are a part. Motivated by this 
theoretical perspective, Cobb and Yackel constructed an interpretive framework 
useful for detailing the learning of a classroom community and its participants (see 
also Yackel, 1995). We subsequently elaborate how this interpretive framework 

guides the analyses we conduct both on a daily basis during an experiment and retro- 

spectively. 

An Interpretive Framework 

Cobb and Yackel (1996) developed the framework that shapes our analyses of 
students' learning. This interpretive framework emerged from an attempt to conduct 

analyses that coordinate individual students' mathematical development with the 
social context of the classroom (see Figure 3.1). The left side of the framework 
draws on an interactionist view of communal or collective classroom processes 
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(Bauersfeld, Krummheuer, & Voigt, 1988; Blumer, 1969). The individual perspec- 
tive draws on psychological constructivist views of students' activity as they 
participate in the development of these communal processes (von Glasersfeld, 
1995). The relationship between the two sides of the framework is said to be 
reflexive. 

Social Perspective Individual Perspective 

Classroom social norms Beliefs about own role, others' roles, 
and the general nature of mathe- 
matical activity in school 

Sociomathematical norms Mathematical beliefs and values 

Classroom mathematical Mathematical conceptions 
practices 

Figure 3.1. An interpretive framework for analyzing classrooms. 

The social perspective consists of three aspects: classroom social norms, 
sociomathematical norms, and classroom mathematical practices. In an effort to 
explain this framework, we elaborate each of these components by focusing on the 
reflexivity between the social and individual perspectives. 

Social Norms. The first aspect of the interpretive framework involves describing 
the classroom-participation structure that was established jointly by the teacher and 
the students. In the measurement experiment, the social norms that were inter- 
actively constituted included explaining and justifying solution methods, attempting 
to make sense of other students' solution methods, and asking clarifying questions 
whenever a conflict in interpretations arose. The teacher and the students we 
worked with had already negotiated these social norms before the classroom 
teaching experiment began, because we had worked with this classroom teacher 
on prior experiments, and the teacher thus saw value in initiating the negotiation 
of these particular social norms in her classroom. We began the classroom teacher 
experiment in February, four to five months into the school year, so these norms 
had already been relatively well established. As the teaching experiment progressed 
and new situations arose, however, these social norms were renegotiated. For 
example, two days after the beginning of the measurement sequence, the students 
themselves initiated a discussion about asking clarifying questions. In the episode 
that follows, a pair of students had just measured a portion of the classroom floor 
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with a strip of paper containing a traced record of five of their feet-a footstrip- 
by placing it down end to end four times. In the middle of a lengthy whole-class 

discussion, Melanie explained to the class that 20 feet is the same length as four 
strips: 
T*: Ohhh, so 20 is the number of feet, but it's only four footstrips, it's not 20 foot- 

strips.., it's just 4. How many people agree with what Melanie says? [Some 
people raise their hands.] How many people have a question for her? If you 
disagree? [No hands are raised.] Alice? 

Alice: Well, I have a question for the whole class. Umm, but not for the people who, 
umm, raised their hand. Well, if they didn't understand Melanie and what she 
said and agreed with what she said, then they would all have questions. [Perry 
raises his hand.] 

Perry: It seems that Ms. Smith said, or you said, raise your hand if you agree with 
Melanie, what Melanie said. Some people raised their hands and some people 
didn't. And the, umm, somebody said raise your hand if you don't agree, and 
they don't answer? [He seems to mean that those people who did not understand 
did not indicate so.] 

T: Yeah, I was just wondering about that myself. That's why I was really wanting 
to see what people do, because I think it's, I'.m really interested and I think Ms. 
Smith is really interested to know how you're thinking about this. So if you're 
not sure about what Melanie said, or you disagree with her, you need to say so. 

(*T refers throughout to the person taking responsibility for leading the discussion. 
At any time, this individual could have been the classroom teacher or a member 
of the project team.) 

In this episode, Alice noticed that students who did not understand Melanie's 
explanation did not raise their hands to ask a clarifying question. For her, these 
students were violating a social norm, and she explicitly challenged them about their 
obligations. Perry, for his part, reiterated Alice's concern when he asked why those 
people who "don't agree.., don't answer" (i.e., they did not raise their hands). The 
teacher capitalized on this opportunity by repeating that it was important for students 
to vocalize their lack of understanding. As the classroom teaching experiment 
progressed, the social norm of asking clarifying questions became taken-as-shared. 

The individual correlate to social norms concerns the teacher and students' indi- 
vidual beliefs about their own and others' roles. At the beginning of the teaching 
experiment, most students appeared to regard their role as explicating their solu- 
tion methods, attempting to make sense of the solution methods of others, and 

asking clarifying questions when they did not understand. As illustrated by the fore- 

going episode, several students initiated conversations when they believed a social 
norm had been violated. 

Sociomathematical Norms. The second aspect of the interpretive framework is 

describing the sociomathematical norms that were interactively constituted over 
the course of the teaching experiment. Cobb and Yackel (1996) discussed several 
sociomathematical norms including what counts as a different, an efficient, a 

sophisticated, and an acceptable mathematical solution. The most significant 
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instance in which a sociomathematical norm was renegotiated during the measure- 
ment teaching experiment concerned the norm of what counts as an acceptable 
mathematical solution. Initially, the students explained their solution methods by 
describing the calculational methods that led them to a result or answer. In 
Thompson, Philipp, Thompson, and Boyd's (1994) terms, students were giving 
explanations that were consistent with a calculational orientation. Thompson and 
his colleagues argue that solutions reflecting a calculational orientation focus 
mainly on the explanation of a procedure. An alternative orientation would be 
conceptual in nature if a student explained his or her interpretation of the problem 
situation that led to a particular calculation. Thompson and his coworkers empha- 
size that explanations involving a conceptual orientation are more productive for 
mathematical discussions and for learning. As a consequence of that research, the 
teacher attempted to initiate a renegotiation of the criteria by which an explana- 
tion was judged as acceptable. The teacher wanted students' explanations to focus 
on their interpretations of task situations as well as on calculational methods (see 
Cobb, chapter 1 of this monograph, for a similar discussion). For example, prior 
to the measurement experiment, the teacher tried to initiate a conceptual discus- 
sion by asking students to describe the ways in which they anticipated solving prob- 
lems. In the following episode, the teacher had posed the following problem: 
"Lena has 11 hearts. Dick has 2 hearts. How many more hearts does Lena have than 
Dick?" 

T: What was it we wanted to know about the problem? 
Sandra: What the answer was. 
T: What was it we wanted to know about the hearts? 
Sandra: The answer. 
T: I think we can all agree that we want to know the answer because that is what 

you get when you ask a question, but what kind of answer does the question want 
you to tell us? 

Meagan: How many more hearts does Lena have than Dick. 
Mitch: We are trying to find out how many more does Dick have. 
T: Do other people understand what Mitch was saying? Can someone ask him a 

question? 
Meagan: I don't understand, but I don't know what to ask. I think he needs to explain it 

again. 

As can be seen in this excerpt, initially the students had a calculational orienta- 
tion (Thompson et al., 1994) to solving problems. The purpose of their explana- 
tions was to explain their method for obtaining "the answer." The students were 
not familiar with the type of explanations they were now expected to give. In fact, 
students like Meagan did not know how to ask questions to make sense out of such 
explanations. Thus, the teacher attempted to explicitly renegotiate what counted as 
an acceptable explanation just prior to the measurement sequence. Two weeks after 
the foregoing example, explanations that focused on conceptual interpretations of 
the task that led to the calculational method rather than solely the method itself 
became taken-as-shared. 
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In the following excerpt, Porter had just explained his solution method to the 
following problem: "Tom had 15 sandwiches. Len had 6 sandwiches. How many 
more did Tom have than Len?" The following excerpt illustrates a shift in the types 
of explanations that were being given: 
T: How did you think about what happened with the sandwiches? Hilary? 
Hilary: I thought about drawing a picture. I was thinking about Tom's 15 sandwiches. 

[She draws 15 squares to stand for sandwiches.] I got 6 out of it, and then I circled 
6 and then I counted how many more were not in the circle with the 6 and I knew 
how many. Eight. [She accidentally circles 7 instead of 6]. 

Melanie: The ones that she circled is 7. 

Hilary: Thank you, now I got it better. It would equal 9. 

This excerpt illustrates that explanations were now cast in terms of students' inter- 

pretation of the problem situation, which led them to a calculation, rather than in 
terms of their focusing strictly on the calculational method. In fact, many students 
now drew pictures to describe how they reasoned about the problem. Drawing 
pictures not only helped students explain their reasoning but also served as a 
means for other students to understand their explanation. Thus, what constituted 
an acceptable explanation involved describing both the calculational method and 
the underlying interpretation of the situation. 

The individual correlate of sociomathematical norms involves students' beliefs 
about what types of explanations are acceptable, efficient, sophisticated, and 
different. These beliefs are reflexively related to sociomathematical norms in that 
students play an active role in negotiating the criteria by which solutions are 

judged as acceptable. That is, as the teaching experiment progressed and new 
instructional situations arose, the teacher and students continually modified the 
criteria by which solutions were judged as acceptable. 

Classroom Mathematical Practices. The final aspect of the interpretive frame- 
work involves documenting both the collective mathematical development of a 
classroom community and the learning of individual students. Such an analysis 
involves detailing the classroom mathematical practices that evolved over the 
course of the teaching experiment while documenting individual students' mathe- 
matical growth as they participated in, and contributed to, the emergence of these 
mathematical practices. A mathematical practice can be described as a taken-as- 
shared way of reasoning and arguing mathematically (Cobb, Stephan, McClain, 
& Gravemeijer, 2001). Classroom mathematical practices evolve as the teacher and 
students discuss situations, problems, and solution methods and often include 

aspects of symbolizing and notating (Cobb, Gravemeijer, Yackel, McClain, & 

Whitenack, 1997). To be clear, the term mathematical practices has been used 

widely in the literature to mean different things. Some researchers use the term to 
mean those practices from the mathematical community that are already established. 
The teachers' goal in this example is to help students appropriate a certain set of 
mathematical practices. In this monograph, we do not use the term in this manner. 
As we use the term, classroom mathematical practices are more localized to the 
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classroom and are established jointly by the students and the teacher through discus- 
sion; they emerge from the classroom rather than come in from the outside. We 

acknowledge that in most situations, the local classroom mathematical practices are 
established as students bring in their ways of participating in outside mathematical 

practices. Hence, an interaction between outside and local mathematical practices 
is possible (cf. Whitenack, Knipping, and Novinger, 2001). Classroom mathemati- 
cal practices differ from social and sociomathematical norms in that the latter are 
constructs that describe the participation structure of the classroom; that is, they 
describe what is normative in terms of how the teacher and the students will commu- 
nicate with one another. Classroom mathematical practices, therefore, can better be 

thought of as the mathematical interpretations that become normative through these 

interactions-practices that are content specific (e.g., normative measuring inter- 

pretations and methods) and do not refer to more general social practices. 
Individual students' mathematical interpretations and actions constitute the indi- 

vidual correlates of the classroom mathematical practices. Their interpretations and 
the mathematical practices are reflexively related in that students' mathematical 

development occurs as they contribute to the constitution of the mathematical prac- 
tices. Conversely, the evolution of mathematical practices does not occur apart from 
students' reorganization of their individual activity (Cobb et. al., 1997). Here the 

prior cognitive analyses of Piaget become important to us. Although we have argued 
that prior measurement studies were primarily cast as individualistic and have advo- 
cated for analyses that discuss the role of social context in learning, we find partic- 
ular value in Piaget, Inhelder, and Szeminska's (1960) cognitive constructs for 
analyzing students' interpretations in the case studies that appear in chapter 5 of 
this monograph. Specifically, we found Piaget and others' definition of measure- 
ment as the mental activity of partitioning and iterating to be more helpful for 

analysis than analyzing students' behaviors during measuring, in other words, 
learning whether a student can measure with a ruler correctly. Furthermore, we 

incorporated Piaget and others' mention that full measurement understanding 
means that students form inclusion relations among subsequent iterations, and we 
renamed this idea accumulation of distance (cf. Thompson & Thompson, 1996). 
In this way, we built on the cognitive analyses in the literature review to strengthen 
our analysis of students' development as it occurred in social context. 

The primary focus of chapter 5 of this monograph is to present a sample analysis 
to illustrate the evolution of classroom mathematical practices, because this is the 
least developed aspect of the interpretive framework. Our unit of analysis will there- 
fore be that of a classroom mathematical practice and students' diverse ways of 

participating in, and contributing to, its constitution (Cobb and Bowers, 1999; Cobb 
et al., 2001). In making reference to both communal practices and individual 
students' reasoning, this analytic unit captures the reflexive relation between the 
social and individual perspectives on mathematical activity. As difficult as it is to 
document the evolution of students' learning from an individualistic perspective, 
an even more daunting task is to chronicle the collective learning. Part of the diffi- 
culty lies in the fact that countless, complex interactions occur among a large 
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number of students. A logical question is, How does one justify the claim that a 

particular mathematical interpretation is taken-as-shared in a classroom commu- 
nity? In the next section, we elaborate our method for analyzing all data in general, 
and, more specifically, we establish the criteria by which we documented the 
emergence of taken-as-shared, classroom mathematical practices. 

METHOD OF ANALYSIS 

The approach we take follows Glaser and Strauss' (1967) constant comparison 
method as adapted to the needs of Design Research (Cobb & Whitenack, 1996). 
This method, like others in the interpretivist tradition, treats data as text and aims 
to develop a coherent, trustworthy account of their possible meanings. The method 
can be organized into two distinct phases, initial conjectures and mathematical 

practices. 

Phase 1, Initial Conjectures 

With regard to the actual process of analyzing data, the first phase of the method 
involves working through the data chronologically episode-by-episode. In doing 
so, we develop conjectures about the ways of reasoning and communicating that 

might be normative at a particular time and about the nature of selected individual 
students' mathematical reasoning. These conjectures, together with the evidence 
that supports them, are explicitly documented as part of a permanent log of the 

analysis. This log also records the process of testing and revising conjectures as 

subsequent episodes are analyzed. A useful approach has been to focus on norma- 
tive argumentation to develop these conjectures about the evolution of the collec- 
tive mathematical practices (e.g., Bowers, Cobb, & McClain, 1999; Cobb, 1999; 
Cobb, in press; Gravemeijer, Cobb, Bowers, & Whitenack, 2000; Stephan & 
Rasmussen, in press). We have gained insight from Yackel (1997) who, following 
Krummheuer (1995), used Toulmin's (1969) model of argumentation to analyze 
the evolution of mathematical practices (see Figure 3.2). We have simplified 
Toulmin' s model here to draw out the aspects most relevant to documenting mathe- 
matical practices. For a more complete version that includes rebuttals and quali- 
fiers, see van Eemeren et al. (1996). 

Figure 3.2 illustrates that for Toulmin (1969), an argument consists of at least 
three parts, called the core of an argument (see dotted oval in Figure 3.2): the data, 
the claim, and the warrant. In any argument, the speaker makes a claim and, if chal- 

lenged, can present evidence, or data, to support that claim. The data typically 
consist of facts that lead to the conclusion. Even so, a listener may not understand 
what the particular data presented have to do with the conclusion that was drawn. 
In fact, the listener may challenge the presenter to clarify why the data lead to the 
conclusion. When this type of challenge is made and the presenter clarifies the role 
of the data in making the claim, the presenter is providing a warrant. Toulmin argues 
that a warrant is always present in an argument, whether explicitly articulated- 
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DATA: 
Evidence 

CLAIM: 
Conclusion 

WARRANT: 
Explain how the 

data leads to the claim the Core 

BACKING: 
Explain why the 

warrant has authority 
-the Validity 

Figure 3.2. A portion of Toulmin's model of argumentation. 

usually as the result of a challenge-or implied by the presenter. As Toulmin's 
model shows, another type of challenge also can be made to an argument. The 
listener may understand why the data support the conclusion but may not agree with 
the content of the warrant used. In other words, the authority of the warrant can be 
challenged, and the presenter must provide a backing to justify why the warrant 
and, therefore, the core of the argument is valid. 

Yackel (1997) and Cobb et al. (2001) have shown the usefulness of Toulmin's 
model for analyzing collective mathematical learning by relating it to the docu- 
mentation of mathematical practices. In the case of the sample measurement 
analysis that we present in chapter 5, the data in students' arguments may consist 
of the manner in which a student measures the physical extension of an object, and 
the claim is the numerical measure of that physical extension. An appropriate 
warrant that serves to explain why the data support the conclusion might involve 
demonstrating how and why a measurement tool was used to produce the numer- 
ical result. This warrant can, of course, be questioned, thus obliging the student to 
give a backing that indicates why the warrant or measurement procedure should 
be accepted as having authority. A backing that might be treated as legitimate could 
involve explaining how the use of the measurement tool structures the physical 
extension of the object into quantities of length. 

As part of the social norms that the teacher and class established, students in the 
first-grade classroom were expected to challenge one another' s solutions when they 
did not understand. Often, challenges arose when new measuring tools were used. 
When challenges arose, students were obliged, with the teacher's help, to provide 
backings for why their mathematical interpretation should be accepted as valid. This 
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need for a backing indicates that the way in which the use of a new tool structured 
the physical extent of objects into quantities was not taken-as-shared. In subsequent 
episodes, however, giving backings to justify their mathematical interpretation of 
a new measuring tool or measuring interpretation was no longer necessary for 
students. Shifts of this type are one indication that a taken-as-shared meaning for 
the use of the tool has become established. In other words, when a backing is no 
longer necessary to justify a particular measuring interpretation or a student calls 
for a backing and the class questions the need for one, we claim that a mathemati- 
cal idea has become taken-as-shared. We therefore search for instances in the public 
discourse in which students no longer provide backings for a new measurement 
interpretation, and we record these occasions in the log for Phase 1. 

We test our conjectures, for example, that a backing has dropped out and a partic- 
ular measurement idea is taken-as-shared, as we analyze subsequent videotaped 
episodes by looking for occasions in which a student' s activity appears to be at odds 
with a proposed normative meaning and examine how members of the classroom 
community treat the student' s contribution. If the community does not accept the 
contribution, on the one hand, then we have further evidence that an idea has been 
established. If, on the other hand, the contribution is treated as legitimate, we need 
to revise our conjecture. 

Phase 2, Mathematical Practices 

The result of the first phase of the analysis is a chain of conjectures, refutations, 
and revisions that is grounded in the details of the specific episodes. In the second 

phase of the analysis, the log(s) of the first phase becomes data that are meta- 

analyzed to develop succinct yet empirically grounded chronologies of the mathe- 
matical learning of the classroom community and of selected individual students. 
During this phase of the analysis, the conjectures developed during the first phase 
about the possible emergence of taken-as-shared mathematical ideas are scrutinized 
from a relatively global viewpoint that looks across the entire teaching experiment. 
The results of the analysis are then organized and cast in terms of the analytic units 
that were alluded to previously-mathematical practices-and students' diverse 

ways of participating in them. 
In summary, documenting classroom mathematical practices involves working 

through contributions to classroom discourse individually and using Toulmin's 
model of argumentation to develop conjectures about the mathematical ideas that 

emerge and eventually become taken-as-shared during various discussions. Once 
these numerous ideas are recorded, they are tested against one another and organized 
around common mathematical activities to develop the classroom mathematical 

practices. In this sense, we say that the mathematical practices are established by 
the community and not dropped in from outside, that is, predetermined by the 

designer, fully formed. Rather, our documentation of mathematical practices 
involves analyzing student-teacher interaction as it occurs and as the class decides 
what becomes legitimate mathematics in their classroom. (Stephan and Rasmussen 
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[in press] recently extended this analysis technique by analyzing the mathematical 
practices that emerged in a class studying differential equations.) 

To analyze the communal practices and situate students' learning in those prac- 
tices, we draw from a vast amount of data. The data corpus for an analysis of this 
type consists of videotape recordings of all classroom sessions conducted during 
a teaching experiment, videotape recordings of student interviews conducted 
before and after the teaching experiment, and audiotape recordings of every project 
meeting held prior to, and during, the teaching experiment. Each of these data 
sources is described subsequently. 

DATA CORPUS 

The first-grade classroom that was the subject of this study was one of four first- 
grade classrooms at a private school in Nashville, Tennessee. The class consisted 
of 16 children: 7 girls and 9 boys. The majority of the students were from middle- 
class backgrounds. The classroom teaching experiment took place over a 4-month 
period from February to May 1996. Just prior to the teaching experiment, the teacher 
and the students had been engaged in instruction on single-digit addition and 
subtraction. The teacher was an active member of the research team and continu- 
ally worked at developing a teaching practice consistent with the reform guidelines 
of Professional Standards for Teaching Mathematics (NCTM, 1991). She had been 
involved with the project members for 3 years and originally sought help from 
professionals in the mathematics education field because she had become dis- 
satisfied with the current mathematics textbooks. The research team had developed 
a close professional relationship with this teacher, such that the researchers occa- 
sionally inserted commentary and questions during whole-class discussions. The 
students accepted the researchers' contributions as if they were visiting teachers. 
In the sample episodes already presented in this paper and throughout the remainder 
of the monograph, we use the word teacher collectively to refer to both the teacher 
and the researcher. The classroom teacher, however, took primary responsibility 
for leading all instruction. She clearly shared the research goals and the importance 
of basing instructional decisions on students' understanding. As such, we consider 
her an irreplaceable member of the research team. 

Each of the data sources elaborated subsequently contributed in its own way to 
the analyses that will be presented in the next two chapters of the monograph. Data 
were collected from three distinct sources: classroom sessions, formal and informal 
meetings with the teacher, and two sets of interviews focusing on both measure- 
ment and thinking strategies for single- and two-digit addition and subtraction. Data 
collected from each of these sources were used to document individual students' 
learning (see case studies in chapter 5 of this monograph), the communal learning 
(see mathematical practices in chapter 5 of this monograph), and the emerging tool 
use (see chapter 6 of this monograph). 
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Classroom Sessions 

Data from classroom sessions were collected in five modes: videotape record- 

ings, field notes, clarifying questions, reflective journals, and student work. All 
mathematics lessons were recorded on videotape daily using two cameras. One 
camera was placed at the back of the classroom and recorded the teacher and all 
teacher-student activity taking place at the white board at the front of the room. The 
second camera was placed at the front of the room and recorded the students' 

activity during whole-class discussions. 
Two researchers documented a total of five target students' individual devel- 

opment by asking their target students clarifying questions during pair or individual 
work on a daily basis. Each of these interactions with target students was video- 

taped to infer shifts in their individual mathematical development. Further, at the 
end of each day, both researchers reflected on their target students' activities and, 
in the form of reflective journals, made informal conjectures concerning their math- 
ematical activity. All 16 of the students' written work was collected daily. The intent 
here was to infer shifts in notational and thinking strategies. 

Researchers collected three sets of field notes to document instructional activi- 
ties and to record whole-class discussions. On completion of the classroom teaching 
experiment, copies of each set of field notes were made and were discussed for 

purposes of triangulation. 

Formal and Informal Meetings 

After each classroom session, the research team met with the classroom teacher 
for approximately 10 to 15 minutes to plan instructional activities for the following 
day. Often during these informal meetings, the team offered observations of 
students' reasoning and made conjectures about individual and collective mathe- 
matical activity. In addition, more formal weekly meetings were held in which the 

pedagogical goals were revisited and the students' mathematical activity was 
discussed in terms of the conjectured learning trajectory. This type of discussion 
included how the measurement sequence was being realized in interaction and ways 
of further supporting the students' development. Consequently, instructional activ- 
ities were revised in light of the students' activity during that week. These weekly 
meetings typically began by team members' sharing observations of the students' 

activity and making conjectures about the communal mathematical development. 
Both formal and informal meetings were audiotaped to document the intent of the 
instructional sequence as it evolved during the course of the teaching experiment 
and to record conversations in which we conjectured about students' development. 

Formal Interviews 

All 16 students were individually interviewed using two types of interview 
tasks. At the outset of the teaching experiment, our focus was on supporting students' 

development of increasingly sophisticated strategies for mental estimation and 
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computation. Therefore, one set of interviews focused on students' thinking 
strategies for single-digit and two-digit addition and subtraction. As noted previ- 
ously, however, our focus became that of supporting students' increasingly sophis- 
ticated measuring conceptions. Therefore, a second set of interviews centered on 
students' measuring conceptions. The arithmetic tasks were posed in both pretest 
and postinterview situations, whereas the measurement interviews were conducted 
as midinterviews and postinterviews. As soon as we learned how conceptually 
demanding learning to measure is, we developed the measurement interviews and 
conducted them 3 weeks after instruction on measurement had begun and imme- 
diately following the experiment. 

The purpose of the pre-interviews concerning mental estimation and computa- 
tion was to assess students' mathematical understanding so that the instructional 
sequence could build on their current ways of knowing. A second set of interviews 
was conducted on completion of the teaching experiment and again focused on chil- 
dren's thinking strategies. The intent of this postinterview was to assess students' 
problem-solving strategies to document growth over the 4-month period. The 
tasks from pre-interviews and postinterviews included solving horizontal number 
relations, organizing unstructured quantities, organizing structured quantities, 
counting by l's, estimating, and solving story problems. 

The measurement interviews were conducted, as mentioned, approximately 3 
weeks after the measurement sequence began. At that time, the five target students 
and three other students were interviewed. These interviews were conducted to 
assess initial interpretations of their measuring activity. After the completion of the 
teaching experiment, we conducted a second set of postinterviews that focused on 
all 16 students' conceptions of measurement. The interview tasks focused on 
students' measuring activity with tools used during the teaching experiment as well 
as novel measurement tools. 

For all sets of interviews, at least two researchers were present. One researcher 
conducted the interview by selecting problems from an interview protocol sheet. 
A second researcher recorded the interview with videotaping equipment and 
recorded the students' solution procedures on a protocol sheet. 

CONCLUSION 

In this chapter, we have detailed the interpretive framework that characterizes 
a student's learning as both an individual and a social endeavor. The framework 
enables researchers to account for individual learning by viewing it as an act of 
social participation. The goal of the analysis is to focus on how various students 
participate in, and consequently contribute to, the establishment of communal 
mathematical practices. To elaborate on how we identified these mathematical 
practices, we drew on Toulmin' s (1969) model of argumentation to identify shifts 
in the mathematical ideas that became taken-as-shared over the course of the 
teaching experiment. Finally, we elaborated each of the sources of data from 
which the subsequent analyses were documented. In the next chapter, we focus 
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on the second aspect of Design Research, designing testable classroom learning 
environments. 
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In chapter 1, Cobb described Design Research as an approach that integrates 
instructional design and classroom-based experimentation in such a manner that 
the design effort shapes the research effort and the research effort shapes further 
design as well (see also Gravemeijer, 1998). In chapter 2, Stephan examined the 
theoretical perspective that underlies the research effort. And in chapter 3, Stephan 
and Cobb explored the interpretive framework and method that serve as the basis 
for analyzing the ongoing events of a classroom environment. In this chapter, we 
first focus on the theoretical underpinnings that guided the process of instructional 
design for the measurement experiment. We then cast this perspective in terms of 
an instructional theory on measuring and flexible arithmetic that guided the present 
teaching experiment. 

DESIGN RESEARCH 

The type of Design Research in which we engage falls under the broad headings 
of developmental research (Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 
1997; Freudenthal, 1991; Gravemeijer, 2001; Gravemeijer, 1998) and transfor- 
mational research (NCTM Research Advisory Committee, 1996). Other users of 
the term Design Research (Brown, 1992; Collins, 1999) define it in an interpreta- 
tion similar to ours. At the heart of Design Research is a cyclic process of designing 
instructional sequences, testing and revising them in classroom settings, and then 

analyzing the learning of the class so that the cycle of design, revision, and imple- 
mentation can begin again. Therefore, testing and revising occur at both a forma- 
tive level-that is, on an ongoing, daily basis during classroom intervention-and 
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a summative level-that is, retrospectively. At the core of this cycle is the inter- 
play between designing a potential instructional sequence and using analyses of 
students' learning while they are engaged in the instructional activities to shape 
the redesign of the sequence. In what follows, we elaborate on the general heuris- 
tics that guide the development of an instructional sequence in the design phase. 

Realistic Mathematics Education 

The preliminary design and continual modification of an instructional sequence 
is guided by the domain specific instructional theory called Realistic Mathematics 
Education (RME), developed at the Freudenthal Institute (Gravemeijer, 1994a; 
Streefland, 1991; Treffers, 1987). RME is consistent with the emergent perspec- 
tive in that both are based on a view of mathematics as a human activity and a view 
of mathematical learning as a process that occurs as students develop ways to solve 
problems within the social context of a mathematics classroom (Cobb, 2000). Given 
these assumptions, the main activity that designers attempt to support is progres- 
sive mathematization, or level-raising: Students' activity on one level is subject to 
reflection and analysis on the next level. Although many important ideas are 
embodied within the idea of mathematization, we have chosen to highlight the three 
basic RME heuristics that, when taken together, inform designers in their efforts 
to support students' reasoning within the cycle of Design Research. 

Heuristic 1. Sequences must be experientially real for students. One of the 
central heuristics of RME is that the starting points of instructional sequences should 
be experientially real in that students must be able to engage in personally mean- 
ingful activity (Gravemeijer, 1994b). Often, this requirement means grounding 
students' initial mathematical activity in experientially real scenarios, which can 
include mathematical situations. To find such scenarios, the designer may carry out 
a didactical phenomenological analysis, within which he or she investigates what 
phenomena are organized by the mathematical concepts or procedures to be devel- 
oped by students. For example, a scenario that was developed for the first-grade 
teaching experiment was one in which a king needed to measure the lengths of 
particular items in his kingdom. Of course, by saying the starting points are expe- 
rientially real, we are not suggesting that the students had to experience these 
starting points firsthand. Instead, we are saying simply that the students should be 
able to imagine acting in the scenario, as king, for example. 

Heuristic 2: Guided Reinvention. A second heuristic of RME involves what 
Freudenthal (1991) termed guided reinvention. To start developing a sequence of 
instructional activities, the designer first engages in a thought experiment to 
imagine a route the class might invent (Gravemeijer, 1999). Here, knowledge of 
the history of mathematics as well as prior research concerning students' invented 
mathematical strategies can be used to develop what Simon (1995) has called a 
Hypothetical Learning Trajectory, or a possible taken-as-shared learning route for 
the classroom community. This construct is further elaborated in a subsequent 
section of this chapter. 
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Heuristic 3. Emergence of student-developed models. A final heuristic of Design 
Research involves building on students' informal modeling activity to support the 
reinvention process. As such, instructional sequences should provide settings in 
which students can model their informal mathematical activity (Gravemeijer, 
1994a). Often, therefore, the designer imagines what types of practices will emerge 
as students reason with certain tools-physical tools, symbols, or notation-that 
might support taken-as-shared development of new mathematical solutions. Integral 
to this heuristic is the conjecture that students' models of their informal mathe- 
matical activity evolve into models for increasingly sophisticated mathematical 
reasoning. Gravemeijer (1999) notes that although a model may manifest itself in 
a variety of ways during the sequence, the model is a global notion that spreads 
over the instructional sequence. 

The interplay among the three heuristics: Anticipating a transition from model 
of to model for. In the RME approach, all three heuristics are seen as working in 
unison to support the development of increasingly sophisticated mathematical 
practices as students participate in the sequence of activities. In what follows, we 
describe this unison by first elaborating what is meant by a model from the perspec- 
tive of an RME developer. Next, we describe the model of to model for transition 
that is the center of this approach. 

The word model can be interpreted in different ways. Specifically, RME's inter- 
pretation differs from that of mainstream information-processing approaches or 
cultural-historical approaches, such as that elaborated by Gal'perin (1969). In the 
latter approaches, models come to the fore as didactic models that embody the 
formal mathematics to be taught. In other words, the formal abstract mathematics 
is seen as concretized to be made accessible for the students through discovery. This 
view is consistent with the sociocultural view of tools described in chapter 2. In 
contrast with this view, RME models are not derived from the intended mathe- 
matics. These models are seen as student-generated ways of organizing their 
mathematically grounded activity. Thus, the RME models are products of modeling; 
the starting point is in the experientially real situation of the problem that has to 
be solved, for example, the king scenario. The idea is that acting with these models 
will help the students (re)invent the more formal mathematics that constitutes the 
goal of instruction. 

According to the theory of RME, student-generated models evolve as students 
collectively construct new mathematical realities. Therefore, a transition in students' 
activity from model of to model for indicates a shift in the ways that the students 
are participating in and hence constituting the mathematical practices of the class- 
room community. In theory, the transition in models occurs as follows. Initially, 
the models are to be understood as context-specific models. The models refer to 
concrete or paradigmatic situations that are experientially real for the students. On 
this level, the model should allow for informal strategies that correspond with situ- 
ated solution strategies at the level of the situation that is defined in the contextual 
problem. From then on, the role of the model begins to change. As the classroom 
community gathers more experience with similar problems, a taken-as-shared 
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model becomes more general in character. The process of acting with the model 
changes from one of constructing solutions situated in the context to one of using 
the model to communicate reasoning strategies. In this sense, the model becomes 
an object in and of itself within the classroom community. By then, the model 
becomes more important as a basis for mathematical reasoning than as a way to 
represent a contextual problem. As a consequence, the model can become a refer- 
ential base for the formal mathematics. Or, in short, a model of informal mathe- 
matical activity becomes a model for more formal mathematical reasoning. 

The shift from model of to model for can be seen as aligned with shifts in the 
collective mathematical practices. In brief, researchers look for these shifts in prac- 
tices by noting changes in students' justifications that reflect differences between 
explanations of their solutions within the modeled context and explanations of 
mathematical relations. As an aside, a helpful approach has been to limit the use 
of the model of-model for characterization to more encompassing shifts. Otherwise, 
every symbolizing act could be predicated as a model shift. Usually, something is 
symbolized (model of), and the symbolization is used to reason with (model for). 
If we include all such shifts in the emergent-models heuristic, this heuristic would 
lose its power. We therefore want to delineate when we do or do not speak of a 
shift from a model of to a model for by specifying that such a shift coincides with 
the creation of some new mathematical reality (Gravemeijer, 1999). 

In summary, the three RME heuristics can be seen as integrated into the process 
of supporting shifts from contextualized activity to more formal ways of reasoning. 
In the following section, we describe the process by which designers anticipate how 
this transition occurs through the development of a hypothetical learning trajec- 
tory. After that, we illustrate the process by describing the hypothetical learning 
trajectory that was developed for the measurement and number-relations sequences. 

Distinctions Between a Hypothetical Learning Trajectory and Traditional Lesson 
Planning 

The RME design heuristics described in the foregoing serve as tools for enabling 
instructional designers to conceptualize how a teacher might build on students' 
models to support their construction of increasingly sophisticated reasoning. One 
question that often arises is the inherent tension between adapting one')s teaching 
to the ideas and suggestions of the students and, at the same time, planning instruc- 
tional activities in advance. Our response to this apparent paradox of "on-the-fly 
planning" is to revisit Simon's (1995) study of the role of a constructivist teacher. 
Simon analyzed his own role as a teacher who tries to influence his class's argu- 
mentation by playing off their personally developed mathematical meanings. He 
tries to envision ways in which his students will engage in the activities, then tries 
to anticipate how his students' potential lines of argumentation might lead to the 
types of explanations and justifications he wants to become taken-as-shared in the 
evolving classroom community. To describe this process, Simon introduces the 
notion of a hypothetical learning trajectory (HLT): 
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The consideration of the learning goal, the learning activities, and the thinking and 
learning in which the students might engage make up the hypothetical learning trajec- 
tory .... (Simon, 1995, p. 133) 

We have come to believe that this notion of an HLT addresses the apparent 
paradox of "on-the-fly planning" by taking into account four specific considera- 
tions of the process that distinguish it from the traditional process of lesson plan- 
ning: (1) the socially situated nature of the learning trajectory, (2) the view of plan- 
ning as an iterative cycle rather than a single-shot methodology, (3) the focus on 
students' constructions rather than mathematical content, and (4) the possibility of 
offering the teacher a grounded theory describing how a certain set of instructional 
activities might play out in a given social setting. Each of these considerations is 
further elaborated subsequently. 

The first difference between the RME approach and that of traditional lesson plan- 
ning is that RME designers view learning as situated within a classroom activity 
system. Two implications of this assumption are that we do not assume that any 
given sequence will play out the same in any classroom, and we do not view a 
proposed trajectory as a series of conceptual stages along which each individual 
student in the class will progress. Instead, when developing a learning trajectory, 
we attempt to outline conjectures about the collective development of the mathe- 
matical community by focusing on the practices that might emerge at the begin- 
ning of the sequence, then creating tools and activities that might support the emer- 
gence of other practices that would be based on increasingly sophisticated ways 
of acting and justifying mathematical explanations. 

The second aspect of the RME planning process that distinguishes it from more 
traditional teacher-only lesson planning is that it incorporates feedback from 
research and, hence, is cyclic in nature. As the teacher and students engage in the 
activities, new insights into the types of mathematical practices that are emerging 
form the basis for the constitution of a modified HLT for the subsequent lessons. 
Simon (1995) describes this process as a mathematics teaching cycle. Although the 
teaching cycles that Simon used as examples concerned the teacher's preparation 
for the next day's instructional activity, we have extended this notion of cyclic plan- 
ning to characterize the process by which the teacher envisions a more encom- 
passing learning route. Thus, when enacting any activity, the teacher adjusts her 
or his time to build on what actually happens in the classroom. The overall plan 
provides a basis for thinking through how to get back on track. In relation to this 

flexibility, we may borrow Simon's journey metaphor. When making a journey, 
we may start out with a well-considered travel plan. Nevertheless, our actual 

journey will differ from this plan because of the circumstances that we meet during 
our journey. Moreover, not every aspect of a journey can be planned in advance. 
A preconceived, conjectured learning route may be compared with a travel plan, 
in which what is actually going on in the classroom constitutes the journey. 

A third characteristic of the design process that distinguishes it from traditional 
lesson planning and also resolves the apparent "on-the-fly planning" paradox is that 
the HLT takes students' cognitive development as the basis for design. This focus 
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stands in stark contrast with traditional instructional design programs that organize 
the goals of instruction in terms of mathematical content. Therefore, Simon's 
notion of an HLT is more consistent with reform recommendations that place high 
priority on students' mathematical reasoning and justifications (NCTM, 2000). 

The final distinction between Design Research and traditional lesson planning 
is that the result of a Design Research experiment, like the one that is the topic of 
this monograph, can be cast in terms of a grounded theory describing a learning 
route. The latter is also referred to as a conjectured instructional theory. The term 
instructional theory is used to convey the intent of offering a socially situated ratio- 
nale. That is, the objective of Design Research is not to offer an instructional 
sequence that "works" but to offer a grounded theory that describes the tools, 
imagery, discourse, and mathematical practices that emerge as the instructional 
sequence is played out in the social setting of a mathematics classroom. 

This last criterion, offering a grounded description of how a sequence will play 
out, is consistent with the message of a recent editorial published by the Research 
Advisory Committee (RAC) of the National Council of Teachers of Mathematics 
(NCTM) (1996). In its piece, the RAC observed that fewer research articles, at least 
those published in the Journal for Research in Mathematics Education, simply 
report findings that show that instructional approach A works better than approach 
B. The rationale for this trend is that researchers have realized that simply comparing 
two instructional approaches does not have much to offer to teachers who are not 
successful with the approved approach. In other words, the only thing that those 
teachers know is that it worked elsewhere. In contrast, in the instance of a justifi- 
cation in terms of a grounded theory about how a new approach works, teachers 
have a basis for thinking through why something may not have worked in their 
classroom and beginning to conjecture about what adaptation might be helpful. Note 
that, from this perspective, the enactment of an instructional sequence can be seen 
as a continuation of the teaching experiment, in that teachers can contribute to the 
research; the knowledge gained by teachers may be used to enhance the conjec- 
tured instructional theory. Moreover, teachers become aware of the social nature 
of learning, in that the Design Research perspective takes advantage of the diver- 
sity of classroom settings by offering a global learning route to be tailored to the 
specific situations by classroom teachers. In short, when we discuss the conjectured 
instructional theory that is the yield of the teaching experiment on linear measure- 
ment and flexible arithmetic, the reader should not expect a textbook-type elabo- 
ration of an instructional sequence. Instead, our presentation looks more like a 
socially situated rationale for an instructional sequence (an example will be 
presented in chapter 6 of this monograph). 

DESIGNING THE HYPOTHETICAL LEARNING TRAJECTORY 
FOR THE FIRST-GRADE SEQUENCE 

We begin by situating the classroom teaching experiment on measurement and 
arithmetic in the context of the research that preceded it. One aspect that we need 
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to elaborate here is that originally, learning to measure was a means to an end- 
developing a sequence for supporting students' constructions of computational 
strategies for reasoning with numbers up to 100-and not a goal in itself. Learning 
to measure, however, proved to be a sophisticated process that deserved attention 
in its own right. Therefore, the actual teaching experiment encompassed two 
partial sequences consisting of linear measurement and mental computation. 

Prior classroom-based research 

One source that influenced the design of the current activities was our prior 
research of the empty-number-line instructional sequence. The goal of the empty- 
number-line sequence was to support students' activities so that they would develop 
flexible computation strategies for addition and subtraction up to 100 (Whitney, 
1988; Treffers, 1991). In prior research settings, we found that students reasoned 
with this tool to describe the solution of two-digit addition and subtraction prob- 
lems by marking the numbers involved and drawing "jumps" that corresponded with 
their partial calculations. For example, solving 64 - 29 by subtracting 4, 10, 10, 
and 5, respectively, might have resulted in the inscription shown in Figure 4.1. Such 
a solution method, which could be seen as a shortened form of counting down, 
belongs to the most common informal solution methods that students use. 

5 10 10 4 

35 40 50 60 64 

Figure 4.1. 64- 29 on the empty number line. 

In relation to this categorization, we found that we were helped in our research 
by distinguishing between collection-type solution methods and linear, counting- 
type solution methods. In the first type, students partition each number into a tens 
part and a ones part, then add or subtract the numbers of those parts separately. In 
contrast, when reasoning with linear-based methods, students increment or decre- 
ment directly from one number as in the example in Figure 4.1. 

We found this distinction useful because research has shown that collection-type 
solutions may cause problems when used with more complex subtraction tasks (see 
Beishuizen, 1993). Therefore, the empty-number-line sequence was especially 
designed to support more counting-type reasoning strategies. We also acknowl- 
edged, however, the fact that collections-based reasoning has its merits, in relation 
to both the written algorithms and estimation. Therefore, we also planned to 
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provide opportunities in which students could develop well-understood, collection- 
based strategies for reasoning with tens and ones. Note that our aim was not to teach 
the students efficient solution strategies as such. Instead, our aim was to help 
students develop a framework of number relations, which would enable them to 
construe flexible solution methods. 

As part of the cycling process of Design Research, our prior research on the empty 
number line led us to make revisions to the arithmetic instructional sequence 
(Cobb et al., 1997). The original arithmetic sequence developed in the Netherlands 
incorporated a bead string with red and white alternating colors every ten beads as 
the foundational imagery for reasoning with the empty number line. The indis- 
pensability of this kind of imagery proved itself in the teaching experiment 
conducted by Cobb and others, in which the bead string was skipped. Without some 
sort of linear-based contextual imagery, alternative interpretations concerning the 
meaning of numerals as specified on the number line arose. For example, students 
interpreted "73" as either the 73rd instance of counting or as the result of having 
counted 73 times. In using the bead string, these interpretations are equivalent to 
students' deciding whether to put a clothespin, for example, directly on the 73rd 
space or on the space after. Without the imagery of, and discussions about, the bead 
string as a background, the students could not resolve these issues. Because the 
underlying imagery had been lacking with its introduction, the students needed to 
create a semantic grounding for the empty number line individually and privately. 
They did so in a variety of ways, rendering impossible their resolution of inter- 
pretation issues; they had no common ground. Rather than fall back on the bead 
string, which lacks in real-life motivation-no one would realistically place clothes- 
pins on a bead string-we designed the measurement sequence as a replacement 
for reasoning with a bead string. Thus, this monograph serves more broadly as one 
complete iteration of the Design Research Cycle: using prior analyses of the empty 
number line to revise and subsequently test a new instructional sequence and then 
analyzing and revising the enactment of the resulting instructional sequence. 

As we began planning a new sequence that would precede the empty number line, 
we focused on the ruler as the prime model. With this model in mind, we then 
focused on prior research related to students' understandings of measurement. As 
noted in chapter 2, Piaget's prior research on children's learning revealed that to 
have students view measuring as an act of structuring space, they must first develop 
concepts of nested and iterable units. To use Greeno's (1991) terms, the intent of 
the instructional sequence would be that students would come to act in a spatial 
environment in which the results of iterating signify an accumulation of distances. 
Our decision to use nonconventional units was influenced by the work of Piaget, 
Inhelder, & Szeminska (1960); Steffe, von Glasersfeld, Richards, & Cobb (1983); 
and Thompson & Thompson (1996), who maintain that understanding measuring 
involves developing an image of accumulated distance. Whereas some researchers 
agree with the approach of having students build a "ruler" out of iterating non- 
conventional and then conventional units (Lehrer, in press), others argue that children 
prefer to use a conventional ruler from the beginning, and their research findings 



Koeno Gravemeijer, Janet Bowers, and Michelle Stephan 59 

support such an approach (Clements, 1999; Nunes, Light, & Mason, 1993). Our 
reasoning for the choice of nonconventional units is explained in the following 
section. 

The Hypothetical Learning Trajectory 

We started our design activity with the observation that a strong similarity is 
evident between the empty number line and a ruler. Speculating on the genesis of 
the ruler in history, we reasoned that we could take the view that the ruler came 

about as a record of iterating a measurement unit. So the ruler could be thought of 
as a model of iterating some measurement unit. As described previously, our prior 
classroom-based research indicated that the empty number line could function as 
a model for mathematical reasoning in the context of mental computation strate- 
gies for reasoning with numbers up to 100. The connection between the two would 
be in the relation between iterating measurement units as accumulating distances 
and a cardinal interpretation of positions on the number line. In the context of 
measurement, we hoped that students would come to see distances on a ruler or 
number line as magnitudes. By using the same tool as a means for supporting 
students' efforts to solve contextual problems that do not involve measurement, 
we hoped students would engage in practices that involved reasoning about quan- 
tities more generally. Finally, even the direct reference to specific quantities might 
become less prominent, since the numbers on the empty number line would start 
to derive their meaning from a framework of number relations for the students. 

One of the overriding concerns in this sequence was to bring the decimal struc- 
ture of our number system into focus for whole-class discussions. In the context 
of measurement, we planned to do so by designing activities in which students 
would shorten their iterating activity by means of a larger measurement unit, that 
is, a unit of 10. Measuring with tens and ones can form the basis for the develop- 
ment of students' view of the ruler as structured in terms of tens and ones. At the 
same time, we hoped it would support the emergence of other strategies that use 
decuples as reference points. 

In summary, we envisioned the skeleton of a sequence for supporting students' 
arithmetical reasoning with numbers less than 100 that would unfold as follows: 

1. Constructing context-based meaning for measuring. 
a. Iterating units. The students start measuring the lengths of various objects by 

iterating some measurement unit. 
b. Organizing or structuring space. The students discuss their solutions in terms 

of structured space covered by iterated units. 

2. Reasoning with a ruler. The students explain their efforts to shorten their itera- 
tions of counting by using tens and ones. While doing so, the students start to 

develop a framework of number relations with decuples as reference points. 
3. Extending the activity of measuring to incrementing, decrementing, and 

comparing lengths. Here the activity shifts from measuring to reasoning about 
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measures. This type of task would offer students the opportunity to develop arith- 
metical solution methods that might be supported by referring to the decimal 
structure of the ruler. 

4. Using a schematized ruler as a means of scaffolding and communicating arith- 
metical solution methods for measurement problems. The students develop 
increasingly sophisticated methods for arithmetical reasoning based on an emer- 

gent framework of number relations. 

5. Reasoning with a flexible ruler. The students develop new ways of communi- 

cating solution methods for all sorts of addition and subtraction problems. 

As Cobb (chapter 1 of this monograph) noted, the Design Researcher not only 
envisions a sequence of instruction but also forms conjectures about the potential 
mathematical argumentation and evolving tool use that might accompany the 
realization of the sequence. As such, the global structure of the anticipated learning 
trajectory would include conjectures of possible discourse and tool use. Hence, in 

preparation for the teaching experiment, this global structure of a hypothetical 
learning trajectory was worked out in the following manner. 

" The sequence would start with pacing to structure linear distance. Measuring with 
centimeters or inches would have been so familiar to the students that the need 
for structuring of iterative units might not have become an explicit topic of discus- 
sion. Moreover, we imagined that measuring with one's feet would create the 
opportunity to raise awareness for the need for a standardized measurement unit; 
one such scenario introduces the king's foot as a standardized measurement unit 
(cf. Lubinski & Thiessen, 1996; Lehrer, 2003). We anticipated that the discourse 
would focus on students' ways of structuring distances as they counted paces in 
different manners. 

* Measuring with the king's foot would be followed by measuring with a different 
iterable unit: Unifix cubes in a smurf scenario. According to the story that would 
be told to the students, the smurfs-little blue dwarfs-measure with their food 
cans, which happen to have the size of Unifix cubes. An important instructional 
design consideration here was rather practical, namely, that this smaller measure- 
ment unit would allow students to deal with larger numbers more easily. 

" Next students would be confronted with a dilemma in which the smurfs decided 
to only use a small number of food cans for measuring instead of a bag of 50 
cans. Students would offer suggestions of smaller quantities (e.g., 2, 5, 10, 20), 
and the teacher would choose 10 to capitalize on the decimal structure of our 
number system. As students would engage in measuring activities with a rod of 
ten cans, we anticipated that the discourse would focus on structuring distance 
in tens and ones and coordinating measuring with two different-sized units. 
Furthermore, the idea that a rod of ten would signify the result of counting Unifix 
cubes might become taken-as-shared. Discussions concerning the result of iter- 
ating as an accumulation of distance might emerge here in students' attempts to 
clarify their measuring interpretations. 
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* As students reasoned with these nonconventional measuring tools, we envisioned 
that they would begin to stop counting every unit mark and begin counting by 
tens and then adjusting by adding or subtracting ones. Ultimately, we hoped that 
measuring with tens and ones would help the students reason with tens and ones 
to structure the number sequence up to 100. 

* Measuring by tens and ones would lay the basis for introducing a measurement 
strip that was made of a paper strip on which 10 units of ten were iterated, each 
subdivided into 10 units of one cube (Figure 4.2). The idea was that measuring 
with the measurement strip would become a taken-as-shared way of signifying 
the result of iterating with the smurf bar and the individual cubes. Discussions 
might center on the meaning that certain marks or numerals had for students. We 
could imagine accumulation of distance becoming a taken-as-shared interpre- 
tation of the symbols on the measurement strip. In other words, we hoped that 
eventually a number on the measurement strip would signify the distance that 
extends from the beginning of the measurement strip to the line to which this 
number belongs. 

10 20 30 40 50 60 70 80 90 

Figure 4.2. Measurement strip of 100. 

* After the students grew accustomed to reasoning with the measurement strip, we 
envisioned that a shift might be made in taken-as-shared mathematical reasoning 
from measuring objects to using the measurement strip to reason about 
comparing, incrementing, and decrementing lengths of objects that are not 
physically present. The focus of discourse would be on identifying and comparing 
numerically the lengths and heights of objects. In this way, the discourse would 
shift from interpreting the result of measuring to quantifying the difference 
among various heights. These tasks were designed to offer opportunities for 
developing arithmetical solution strategies as described previously. 

* To further foster a shift away from measuring to reasoning about magnitudes, 
another tool, the measurement stick, would be introduced along with a new 
scenario. In this case, the stick was attached to a wall and used to read off the 
height of the water in a canal (see Figure 4.3). The students would be invited to 
reason with the measurement stick to solve contextual problems around the rise 
and fall of water heights. The design of the measurement stick was based on our 
prior research with another tool, the bead string. An important feature of this tool 
was that although it has no numbers, values are easy to read off by counting tens 
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and ones. The conjecture was that this feature might prompt discussions in 
which students stop counting and instead rely on the decimal structure of the stick. 

Figure 4.3. Measurement stick. (Here the stick is shown in a horizontal position; in the 
context of the water heights, the stick is positioned vertically.) 

" Next the empty number line would be introduced. The goal of this tool was to 

support students' efforts to reason with a tool that was not demarcated with 

specific units. The idea was that these line-based solution methods would still 
be grounded in measuring with units of 10 and 1. We anticipated that students 
would draw on the practices that emerged during measuring to develop and inter- 

pret strategies with the empty number line. For example, jumps on the number 
line might symbolize distance quantities that themselves signify accumulation 
of distances. For some students, these jumps might also signify iterating Unifix 
cubes or rods of ten. 

" As a final step, the students would be encouraged to use the same solution 
strategies and explanations that evolved when reasoning with the empty number 
line to solve contextual problems involving incrementing, decrementing, and 
comparing. Here we hoped that jumps on the number line would signify quan- 
titative changes in the contextual situation under consideration. Eventually, 
however, we expected that the students' thinking strategies would become based 
on more generalized numerical relationships. The shift from numbers as refer- 
ents to numbers as mathematical entities is reflexively related to the model 
of-modelfor transition. Initially, the students' actions with the model would foster 
the constitution of a framework of number relations. After the transition, in which 
students develop a framework of number relations, the model would become a 
model for generalized mathematical reasoning. 

Cascade of Tools and Inscriptions 

The succession of various tools constitutes an essential element of the instruc- 
tional sequence. Although the ruler served as the overarching model, it was mani- 
fested in the form of various tools or inscriptions throughout the hypothetical 
learning trajectory (Gravemeijer, 1999). This representation is characteristic of our 
view that reasoning with each new tool should support the students' efforts to 
shorten or stop their previous activity when reasoning with earlier ones. We hoped 
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the class would participate in a series of emergent mathematical practices in which 
each successive practice was based on students' increasingly sophisticated tool use 
and discourse. Moreover, we believed a meaningful buildup of reasoning strate- 
gies would ensure that all students had a way of participating in the practices because 
anyone could go back to earlier, more familiar ways of participating if the need 
arose. From this perspective, an essential image for the teacher to have was how 
the reasoning strategies that we envisioned for each tool built on previous reasoning 
strategies. 

We find Latour' s (1990) description of a "cascade of inscriptions" to be a useful 
way to describe how the proposed sequence of tools can be seen as reflecting 
RME's theoretical reinvention process. We say theoretical because we need to 
acknowledge that we cannot expect students to spontaneously invent these tools 
as needed at just the right time. Here, again, we rely on the teacher to resolve the 
apparent "on-the-fly planning" paradox. In this case, our solution was that the 
teacher would introduce the new tools as a way to do justice to the reinvention 
idea while also moving the class forward. The timing and process by which the 
teacher introduced each new tool were crucial. First she had to make sure that 
each new tool was discussed in the whole-class setting as a solution to a problem 
or an encapsulation of some reasoning strategy. For example, the teacher would 
tell a story about how the king did not want to do all the measuring by pacing 
each length personally. The teacher would then involve the students in this 
problem by asking them for their solutions (cf. Stephan, Cobb, Gravemeijer, & 
Estes, 2001). Next the solutions offered by the students would become the topic 
of a whole-class discussion in such a way that the students could explore the 
advantages and disadvantages of each suggested solution. Only then would the 
teacher inform the students of the solution that was chosen in the story. With luck, 
a similar solution had already been suggested by one of the students. If not, the 
preceding discussion would have at least have provided a basis on which the 
students could conclude that the teacher' s proposed solution was sensible under 
the given conditions. 

Another aspect of the teacher' s role in introducing each new tool was that she 
needed to emphasize the tool's relation with the preceding activities. That is, the 
context problem for which the new tool offered a solution could not be an arbitrary 
problem; it had to be one that was rooted in the preceding scenario and that oper- 
ated under the preceding constraints. In the instance of the king who did not want 
to do all the measuring, the problem had it roots in the earlier activity of measuring 
with the king's foot, or measuring like a king by pacing with students' feet. This 

aspect is important because that history must provide the imagery underlying the 
new tool. In the case of the unwilling smurfs, a bar of 10 cubes was introduced to 
build on the activity of measuring with individual cubes. More precisely, the 

imagery underlying the bar of 10 was that of a record of measuring with single cans. 
Students were expected to discuss advantages of this tool, such as the fact that it 
could be used as a tool for a shortened form of measuring, that is, it was easier to 
carry 10 cans than a whole bag, and counting by tens was simpler than counting 
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by ones. Taken together, these three elements-introducing each new tool as a solu- 
tion to a problem, collectively discussing the advantages and disadvantages of the 
new tool, and the importance of a context-relevant scenario-were designed to 
engage the students in the experience of the reinvention process. 

CONCLUSION 

This chapter has focused on the ways in which we were informed in our design 
process by the overall ideas underlying Realistic Mathematics Education. We 
began the chapter by describing three heuristics: experientially real activities, 
guided reinvention, and emergent models. We then described how each of these 
heuristics enabled us to address the "on-the-fly planning" paradox of how teachers 
can, on the one hand, adapt to the ideas and solutions of the students and, on the 
other hand, move the class toward a mathematical goal. Following Simon (1995), 
we argued that the essential component is anticipating the collective practices in 
which the students might engage as they reason with the various tools in the 
context of the activity scenarios. In the second part of the chapter, we described 
the hypothetical learning trajectory or conjectured instructional theory that func- 
tioned as a framework of reference as we enacted the sequence. 

One of the major themes of this chapter has been the importance of considering 
how the sequence will support the taken-as-shared development of increasingly 
sophisticated thinking. The conjectured instructional theory we offered addresses 
this concern by first describing the general concept of modeling. We envisioned 
that, as students reasoned with various tools, the ruler would shift from serving as 
a model of iterating or measuring to being a model for arithmetical reasoning. The 
model of-modelfor shift is the tie that binds the measurement and arithmetic instruc- 
tional sequences. 

A second fundamental theme that was presented in this chapter was our view of 
the role of tools in supporting learning. In brief, the solutions that students develop 
depend heavily on the fact that they are reasoning with the tools they are given. 
This view differs from a view of tools as devices that enable one to transfer one's 
mental reasonings to a physical device. This view also differs from a view of a tool 
as a culturally laden device whose use and meaning are predetermined. 

Teachers who want to adhere to the calls of reform mathematics education to 
build on students' own contributions may build on our work, but they will need to 
construe their own hypothetical learning trajectories on a day-to-day basis to be 
consistent with the anticipated practices in each social setting. Thus, teachers will 
need to take into consideration their knowledge of their own students, the instruc- 
tional history of the class, and the end points they envision. In relation to these 
considerations, we can recall Simon's (1995) journey metaphor. The instructional 
theory offers a travel plan-or maybe a travel guide, on the basis of which one could 
design a travel plan-but the actual journey of the teacher and the students will 
always differ from the travel plan. Still, we would argue, the better the travel plan, 
the easier the journey. 
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At this point, we hope that we have piqued the reader's interest to the point of 

wondering how the proposed sequence actually played out. The next chapter 
addresses this question by presenting an analysis of how the mathematical prac- 
tices actually emerged over the course of the enacted sequence and how this emer- 

gence compares with the hypothetical learning trajectory described here. In this 

chapter, we have presented the results of prior research and described how the 

analyses of that research shaped the design of the measurement-arithmetic sequence. 
Consistent with the Design Research Cycle, the classroom analysis found in the 
next chapter is used to generate possible mathematical practices that accompany 
the proposed instructional sequence and to provide the rationale for revisions to 
it. In the chapter following the analysis, we discuss revisions and outline a gener- 
alized instructional theory on measurement and linear-based arithmetic, thus 

completing one iteration of the Design Research Cycle. 
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Traditionally, analyses of students' learning has been cast as an individual 
endeavor (cf. Piaget, Inhelder, & Szeminska, 1960), with social aspects, if accounted 
for at all, seen as catalysts for thought processes. Recently mathematics education 
research has seen a shift in emphasis from treating learning as solely an individual 
process toward analyzing learning in the social context of communities. As can 
happen in these kinds of profound shifts, a dichotomy was produced: that of 
subscribing to either an individual or a social perspective (see Cobb, 1994). Some, 
however, have attempted to transcend these two extreme positions by coordi- 
nating the two perspectives (Bauersfeld, 1988; Cobb, 1994). In their view, learning 
is simultaneously a social and an individual process, with neither taking primacy 
over the other. The primary goal of this chapter is to use the results of the class- 
room teaching experiment on linear measurement to detail an analysis of students' 
learning from a coordinated perspective. We will show with this sample analysis 
how students' learning can be characterized as having both social and individual 
aspects simultaneously. To this end, we view the forthcoming analysis as situating 
students' learning in the social context of their classroom community. For us, 
students' learning is seen as participation in the local, emerging mathematical prac- 
tices. This view will become clearer as the sample analysis is presented. 

The sample analysis found in this chapter gives an account of the collective 

learning accompanying the measurement sequence and thus serves as the backbone 
for revisions to the hypothetical learning trajectory laid out in chapter 4. 

Although the main objective of this particular chapter is to discuss the theoreti- 
cal notion of coordinating social and individual aspects of learning-the first of 
the three themes of the monograph-the sample analysis will illustrate each of the 



68 Coordinating Social and Individual Analyses 

other two monograph themes, as well. The analysis will show that the use of 
taken-as-shared tools was integral to the evolution of the measuring practices. More 
theoretically, the analysis in this chapter also takes its place in the Design Research 

Cycle because it is an instance of classroom-based research and because it provides 
a rationale for revisions and continuation of the Cycle. We leave the tool-use theme 
implicit for now and take up its role in learning in chapter 6. We visit the third theme 
of this monograph-the Design Research Cycle-more specifically in the next 

chapter, as well. 
This chapter is organized as follows. First, we present an analysis that coordinates 

the evolution of both the collective learning and two students' personal mathe- 
matical development. We document the emergence of five classroom mathemati- 
cal practices and situate two students' learning within these practices. Second, we 
use the analysis as a context within which to discuss theoretical aspects of analyzing 
learning in social context. Specially, we argue that the mathematical practice 
analysis and complementary case studies serve as a more complete picture of the 

learning of the first-grade classroom. Further, we contrast this coordination with 
traditional cognitive and sociocultural analyses. Finally, we note the usefulness of 
the classroom mathematical practice as a construct for documenting collective 
learning and supporting learning in other socially situated classrooms. 

THE EVOLUTION OF THE CLASSROOM MATHEMATICAL PRACTICES 

This measurement sequence is divided into five phases, each corresponding to 
the emergence of a classroom mathematical practice. In this section, we discuss 
each phase of the measurement sequence, simultaneously elaborating each of the 
five mathematical practices. Concurrently, we discuss two students' individual ways 
of reasoning as they participated in, and contributed to, the emergence of each of 
the five mathematical practices. The two students chosen for this analysis had been 
targeted at the outset of the teaching experiment and were followed almost daily 
during the entirety of the project. These students were targeted on the basis of their 
distinct ways of reasoning at the outset. 

Phase 1-Measuring Items in the Kingdom (3 Days) 

At the beginning of the measurement sequence, the teacher told a story about a 
king who lived in a kingdom and sometimes needed to measure for various 
purposes. The king decided he wanted to use his foot to measure. The teacher asked 
the students to imagine that they were servants in the kingdom and to help the king 
determine how he might use his feet to find how long various items were. They 
decided that he could pace by placing his feet heel-to-toe with no spaces in between 
paces. During whole-class discussion, a student paced along the edge of a rug at 
the front of the classroom to illustrate how the king might pace. As she paced, she 
counted each step to keep track of how many steps had been taken. In subsequent 
instructional activities, students pretended to be the king and found how long various 
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items around the classroom-the kingdom-were, using their own feet. Organized 
in pairs, each student took turns being the king and recorded what they found each 
time they measured. The classroom mathematical practice that became estab- 
lished as students participated in these activities involved measuring by covering 
distance. (Unlike Piaget et al. (1960), we do not distinguish between distance and 
length. For easier reading we use the word distance to refer to both the empty space 
between two points and the length of an object. We write the word space in our 
analysis when the students use the term themselves.) 

The emergence of the first mathematical practice-Measuring by covering 
distance 

The first mathematical practice that emerged involved a qualitative shift from 
measuring by counting the number of units used in the activity to measuring by 
covering distance. In addition, students had a variety of ways of participating in 
this measuring practice. Here we discuss the collective learning of the classroom 
community by documenting the establishment of the first mathematical practice and 
the learning of two students as they participated in, and contributed to, the emergence 
of the practice. First, we describe the negotiation process that led to the emer- 
gence and eventual establishment of the first measuring practice. Second, we detail 
the ways in which two students, Nancy and Meagan, participated in this practice. 
Third, we provide another snapshot of classroom activity in which the first 
measuring practice was negotiated. 

Negotiating the purpose of measuring. On the day the king' s-foot scenario was 
introduced, the teacher and the students discussed that the king could use his feet 
to pace the length of items in the kingdom. As students worked in pairs, we 
observed two distinct ways of counting paces. Some students placed their first foot 
down such that their heel was aligned with the beginning of the carpet and counted 
"one" with the placement of the next foot (see (a) in Figure 5.1). Other students 
placed their first foot such that the heel was aligned with the beginning of the rug 
and counted "two" with the placement of their next foot (see (b) in Figure 5.1). 

"one" 

(a) 

"one" "two" 

(b) 

Figure 5. 1. Two methods of counting as students paced the length of a rug. 
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We conjectured that those students who counted paces in the first manner (situ- 
ation (a) in Figure 5.1) did not see their initial pace as covering a distance. In other 
words, for these students, the goal of pacing was to count the number of steps 
required to reach the end of the rug rather than to cover a length. We thought that 
if students contrasted these two ways of counting paces in the subsequent whole- 
class discussion, then the mathematically significant issue of measuring as covering 
distance might emerge as a topic of conversation. In the following whole-class 
discussion, the teacher and the students negotiated both the method and purpose 
of pacing. The teacher asked Sandra and Alice to show the class how each of them 
would measure the rug at the front of the classroom so that the students could 
contrast the two methods of counting paces. 
T: I was also really watching how a couple of you were measuring. Who wants to 

show us how you'd start off measuring, how you'd think about it? 
Sandra: Well, I started right here [places the heel of herfirstfoot at the beginning of the 

rug] and went one [starts counting with the placement of her second foot as in 
figure 5.1(a)] two, three, four, five, six, seven, eight. 

T: Were people looking at how she did it? Did you see how she started? Who thinks 
they started a different way? Or did everybody start like Sandra did? Alice, did 
you start a different way or the way she did it? 

Alice: Well, when I started, I counted right here [places the heel of herfirstfoot at the 
beginning of the rug and counts it as one as in figure 5.1(b)], "One, two, three." 

T: Why is that different to what she did? 
Alice: She put her foot right here [places it next to rug] and went, "One [counts one as 

she places her second foot] , two, three, four, five." 
T: How many people understand? Alice says that what she did and what Sandra did 

was different. How many people think they understand? Do you think you agree 
they've got different ways? 

As this episode progressed, the two students, with the teacher's aid, articulated 
their initial methods and interpretations of measuring the length of the rug. In 
Sandra'"s first explanation, she indicated that she started measuring by placing her 
first foot down and counting the placement of her next foot as "one." Using 
Toulmin' s (1969) model of argumentation, which is a useful analytic tool because 
the students did not view their contributions as constituting parts of this model, we 
argue that she was providing a claim-that is, that the rug to a certain point was 
eight paces long-and the data consisted of her method of counting-that is, 
counting "one" with her second step. In this bit of argumentation, Sandra had not 
made her warrant explicit to the class. As the argumentation continued, however, 
Alice presented an alternative explanation, after which the teacher attempted to 
make the warrants and backings explicit. In contrast with Sandra's explanation, 
Alice counted "one" the first time she placed her foot down and counted "two" with 
the placement of the second foot. Similar to Sandra, Alice did not explicitly artic- 
ulate a warrant. As we see it, the question "Why is that different to [sic]what she 
did?" was an attempt to have Alice explain more explicitly how her interpretation 
of measuring led her to make the conclusion she did. In the next line, Alice 
contrasted the two solution methods by presenting Sandra's explanation. In 
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Toulmin' s terms, Alice was providing a warrant, or information that described how 
each of those students came to their alternative solutions. Notice that Alice's 
warrant here contained exactly the same content as Sandra's explanation; however, 
we characterize it as a warrant, not data, because it serves the function of answering 
a challenge (see chapter 3 of this monograph). The teacher challenged Alice to 

justify why the two interpretations were different, how each student's data led to 
the contrasting conclusions that were drawn. In response to the challenge, Alice 
offered Sandra' s explanation implicitly as a contrast with hers. In the next episode, 
we will see instances in which students provide more detailed warrants for each 
of Sandra and Alice's solutions. 

Before we proceed to the next piece of dialogue, we note that, to this point, 
students' warrants for their measuring generally consisted of explaining their 
method of pacing, that is, which paces were counted. For students who paced 
Sandra's way, measuring initially appeared to signify going through the act of 

pacing without considering that their first foot covered a distance. To initiate a 
discussion in which the two different warrants were made more explicit, the 
teacher asked Melanie to begin pacing the length of the rug so that a piece of 

masking tape could be placed at the beginning and end of each pace. Once this 
record was made, the students who counted their paces Alice's way began to argue 
that Sandra' s method of counting would lead to a smaller result because she missed 
the first foot. In the excerpt that follows, Melanie differentiated between the two 

ways of counting paces, whereas other students justified their particular method. 

Melanie: Sandra didn't count this one [puts foot in first taped space]; she just put it down 
and then she started counting, "One, two." She didn't count this one, though [points 
to the space between the first two pieces of tape]. 

T:- So she would count, "One, two." [refers to the first three spaces, since the first 
space is not being counted by Sandra]. How would Alice count those? 

Melanie: Alice counted them, "One, two, three." 

T: So for Alice, there's one, two, three there, and for Sandra, there's one, two. 
Melanie: Because Alice counted this one [points to thefirst taped space] and Sandra didn't, 

but if Sandra would have counted it, Alice would have counted three and Sandra 
would have too. But Sandra didn't count this one, so Sandra has one less than her. 

T: What do you think about those two different ways, Sandra, Alice, or anybody else? 
Does it matter? Or can we do it either way? Hilary? 

Hilary: You can do it Alice's way or you can do it Sandra's way. 
T:- And it won't make any difference? 

Hilary: Yeah, well, they're different. But it won't make any difference because they're 
still measuring, but just a different way, and they're still using their feet. Sandra' s 
leaving the first one out and starting with the second one, but Alice does the second 
one and Sandra's just calling it the first. 

Phil: They're both different ways. I thought Sandra's way would go higher than Alice's. 
Cause Alice started by ones and got three and Sandra only got two. Sandra would 
go higher cause she was lesser than Alice.... 

Phil: She's fifteen [refers to the total number offeet Sandra counted when she paced]. 
Alice went to the end of the carpet [he means the beginning of the carpet]. Sandra 
started after the carpet. Hers is lesser 'cause there's lesser more carpet. Alice started 
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here, and there's more carpet. It's the same way, but she's ending up with a lesser 
number than everybody else. 

Alex: She's missing one right there. She's missing this one right here [points to thefirst 
taped space]. She's going "one," but this should be "one" 'cause you're missing 
a foot, so it would be shorter. 

T: So he thinks that's really important. What do other people think? 
Alex: Since you leave a spot, it's gonna be a little bit less carpet. 

Melanie' s first and second contribution provided a contrast between Sandra and 
Alice's measuring interpretations. In other words, Melanie was explicitly articu- 
lating, according to Toulmin, the warrants for each of the students' arguments. She 
described how the data led each student to make the conclusion that they did: 
"Because Alice counted this one and Sandra didn't...."The argumentation takes 
a turn when the teacher asks whether it made a difference which way one measured. 
In our view, the teacher was attempting to elicit a backing for the argumentations 
just presented. In other words, the teacher was implicitly asking which of these inter- 
pretations is mathematically acceptable to our classroom community. In the ensuing 
argumentation, we saw a lengthy negotiation in which a particular backing becomes 
taken-as-shared. By the end of the argumentation, Alice's interpretation was 
treated as legitimate in the public discourse, and the subsequent backings reflected 
the interpretation that measuring was about covering distance (e.g., Alex: "Since 
you leave a spot, it's gonna be a little bit less carpet"). If one measured Sandra's 
way, "you're missing a foot, so it would be shorter" [not as much carpet was 
measured]. 

This excerpt is significant because students' justifications suggest different 
interpretations of measuring. Initially, in such justifications as Melanie's, students 
were comparing two different sequences of paces instead of discussing that an 
amount of carpet was being measured. When the teacher asked the class if it 
mattered which way students began counting, the backings became articulated and 
involved measuring as covering distance. On the one hand, Hilary's explanation 
indicated that both Sandra and Alice were measuring the extent of the carpet but 
were counting their paces differently. For Hilary, measuring was a matter of 
convention, that is, students could count their paces either way even though they 
were different. On the other hand, Phil argued that the difference in the counting 
methods was indeed significant because Sandra would obtain a smaller number of 
feet: "there's more carpet." Alex explained that because Sandra was not counting 
her first foot, an amount of carpet was not being measured. 

Alex's and Phil's justifications appeared significant because no one counted paces 
using Sandra's method in the whole-class discussion the following day. In fact, from 
this point on, the goal of measuring as covering amounts of distance was now 
beyond justification. In terms of Toulmin's (1969) model of argumentation, back- 
ings that involved measuring as covering distance dropped out of students' argu- 
ments, which is to say that measuring as covering distance became taken-as- 
shared. The foregoing episode is an illustration of the negotiation process involved 
in the constitution of a taken-as-shared mathematical practice. Documenting 
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instances in public discourse in which backings emerge from the students to vali- 
date an argument is therefore helpful in delineating the emergence of new mathe- 
matical practices. As we see it, mathematical practices emerge during argumenta- 
tions in which the participants provide new backings that shift the mathematical 

interpretations of the community to a new level. When backings for a particular 
interpretation drop out of the discussions or when alternative backings are 
contributed by a student and rejected by the community, we say that a mathemat- 
ical practice has become established. 

Many students, interestingly, had an intuition that pacing with smaller feet 
would result in more paces. Also, students were very careful not to leave any space 
in between their paces. The students' explanations of these two issues suggest that 

initially measuring was tied to the bodily action of pacing. If a student missed some 

space between her feet as she paced, a taken-as-shared explanation was that she 
had taken bigger steps, which result in fewer paces. If two students paced the same 
item and attained different results, it was argued that the person with larger-sized 
feet measured faster than the other person. In other words, her feet were bigger so 
she would take fewer paces and do less counting rather than cover more distance 

by each pace. These types of explanations further support the argument that the idea 
had become taken-as-shared that measuring was tied to the bodily act of pacing. 

Meagan and Nancy. The episode discussed previously focused on the develop- 
ment of a taken-as-shared understanding of the purpose of pacing, that is, to cover 
distance. Nancy's participation in the taken-as-shared interpretation of pacing 
involved covering amounts of distance. For example, the day after Alice and 
Sandra's methods were contrasted, we observed Nancy measuring the length of a 

rug by counting her paces as Alice had done. When she reached the end of the rug, 
she said, "Forty-three and a little space." The fact that Nancy described the result 
of pacing as "Forty-three and a little space" suggests that she interpreted her 

pacing activity as covering an amount of distance. Our interpretation of Nancy's 
activity in this example is consistent with subsequent observations of her measuring 
activity. Such an interpretation was made possible by her participation in the 
whole-class discussion described in the previous section. 

In contrast, Meagan appeared to participate in this practice by counting each pace 
as she walked the length of an item, without regarding each pace as covering 
distance or a part of the rug. For example, on the third day of the instructional 

sequence, Meagan measured the length of a wall as she worked with Nancy during 
small-group work. She began by placing the heel of her foot at one end of the wall 
and counted that foot as "one." She continued pacing heel-to-toe the entire length 
of the wall as she counted her paces. When she reached the end, she counted her 
last pace as "fifteen" even though part of the pace extended past the end of the wall. 
In this instance, because she saw no conflict in having part of her last pace extend 

past the end of the wall, Meagan seemed to simply count the number of paces she 
needed to take to reach the end of the wall. In other words, Meagan did not inter- 

pret her paces as distance-covering units, as segmenting the physical extent of the 
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wall. Rather, her way of participating in the practice of measuring by covering 
distance involved the act of placing each foot and counting the number of steps that 
she took as she walked along the length of the wall. "Fifteen," for her, seemed to 

signify the number of paces she took her to reach the end of the wall rather than 
the amount of distance (wall) she had covered. 

Our description of the second phase of the instructional sequence shows clearly 
that as Meagan participated in the first mathematical practice, she eventually made 
a conceptual reorganization concerning the underlying purpose of measuring, that 
is, to cover distance. 

More learning in the first mathematical practice. Like Meagan, other students 
also had interesting ways of counting their last pace when part of it extended past 
the end of the item they were measuring. In fact, the teacher capitalized particu- 
larly on Perry's contribution, and later on Meagan's, in the following whole-class 
discussion. In the episode below, Sandra had paced the extent of a rug at the front 
of the room and found that it was 18 of her feet long. Perry argued that because 

part of Sandra's last pace extended past the end of the rug, she could not know how 

long the rug was. 

Perry: My question was, What could it be, 'cause her foot is right here? [He points to 
Sandra's last foot that extends past the end of the rug.] 

T:- What's the problem with her foot being right there? 
Perry: 'Cause then we can't figure out how many feet it would be. 
T:- Why not? 
Perry: Well, because it's longer out. 

[Note: An ellipsis such as this between lines of transcript indicates that irrelevant 
conversation has not been reported.] 

Perry: Well you see, why would it be out here if that's not how long the rug is? 
Max: Her foot's longer than the carpet. 
Perry: That still doesn't matter. 'Cause it still doesn't make the feet different. The carpet 

can't move. 

T: What do you mean the carpet can't move? 
Perry: I mean the carpet isn't alive, so it can't move. So it has to stay right there, so it 

doesn't make a difference with the feet... and that doesn't tell us how many feet 
the carpet is... it doesn't count, they're still off the rug, but that doesn't tell us 
how long the rug is and that's what we're trying to figure out. So how can we know 
it if people's feet are going off the rug? 

T: Is what you mean that they don't fit at the end exactly? 
Perry: [Agrees.] 

For Perry, an item could not be measured if a person'"s last foot did not fit exactly 
within the physical boundaries of the item. Perry understood that when a student'"s 
last foot extended past the endpoint, the result of pacing did not determine how 
many feet long the rug was. His backing for this interpretation consisted of the idea 
that the "carpet can't move." We interpret that statement to mean that as students 
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paced, they were, in effect, defining the distance as they measured. For example, 
Samantha' s last pace defined a distance that extended past the end of the rug. This 

newly defined distance did not fit with what Perry had anticipated. In other words, 
Perry anticipated that paces would fit exactly within the physical endpoints of the 
rug. In his view, when the last pace was shorter or longer than the endpoint of the 

rug, the rug could not be measured. To him, the rug itself seemed to take prece- 
dence over the measuring activity, and he could not conform his measuring activity 
to fit with the length of the rug; that is, as he said, "the carpet can't move," and the 

possibility of adjusting his measuring activity was not available for him. No one 

challenged Perry's backing, but they tried instead to develop ways to measure so 
that no part of their paces extended past the end of the item being measured. This 
lack of challenge indicates to us that Perry' s interpretation was taken-as-shared in 
this mathematical practice. 

To correct for their last pace extending past the endpoint of the carpet, many 
students simply turned their feet sideways so that the last foot fit exactly within 
the end of the rug, and they counted the whole foot as "one." The teacher asked 
whether counting the last pace in this manner was a good way to measure the extra 
distance at the end of the rug. Some students argued that they could not count the 
last pace as a whole foot because a whole pace was not needed. Thus, these 
students argued that the remaining distance was about a half a foot. The teacher 
remembered that Meagan had counted the turned pace as "one" in small group work 
earlier in the class period and asked students whether they could solve it that way. 
That solution method was immediately rejected by the class, indicating that 

measuring as covering distance was taken-as-shared. Finally, instead of turning the 
last foot and fitting it inside the remaining distance, some students did not place 
their foot at all and just visually estimated, for example, "Fourteen and a little 
space." 

To make a clarification, we see the contrasting reasoning of Meagan and others 
as acts of participation in the first mathematical practice. Further, we consider those 
acts of participation as simultaneously contributing to the emergence of the math- 
ematical practice. For example, when the teacher offered Meagan's reasoning as 
a possible solution method, the students rejected it. In fact, the rejection of Megan's 
solution by her classmates indicates that her act of participation contributed to the 

negotiation of the first mathematical practice. We view the coordination of social 
and individual perspectives in that sense: on the one hand, the first measuring prac- 
tice emerged as Meagan and other students reasoned and contributed to it; on the 
other hand, as we will see in the next phase of the instructional sequence, Meagan 
and others reorganized their evolving interpretations as they participated in the 

evolving mathematical practice. 

Describing the result of measuring. As students continued to engage in pacing 
activities, the idea that the result of pacing signified a sequence of steps that could 
be counted also became taken-as-shared. For example, if students paced the carpet 
and obtained a result of 15, "13" was taken-as-shared to be the distance covered 
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by the 13th step rather than the whole span of the rug. As Hilary explained in whole- 
class discussion, the 14th, the 13th, and so on, paces were "what got you up to 15." 
For us, this way of describing the results of pacing could lead to a mathematically 
significant whole-class discussion. Recall that we were trying to support students' 

coming to act in a spatial environment in which measuring signified an accumu- 
lation of distances. Hilary's explanation, together with the fact that the commu- 

nity accepted her explanation, indicated that it had become taken-as-shared that the 
result of pacing signified a chain or sequence of individual paces. In other words, 
"fourteen" signified the distance covered by the 14th pace in the sequence rather 
than an accumulation of the distance covered by 14 paces. 

In summary, the first mathematical practice emerged as students compared 
different ways of counting their paces. That measuring involved defining a distance 
as one measured appeared to be taken-as-shared. Defining this distance seemed to 
be tied to the bodily activity of pacing such that the physical placement of each pace 
defined the distance being measured. Also, the results of pacing signified a sequence 
of paces that could be counted to find how long an item was. Further, the last number 
word that was spoken signified the distance covered by the last pace rather than 
the accumulation of distances covered by all paces. Meagan and Nancy appeared 
to participate in this first mathematical practice in two different ways. Meagan's 
participation involved interpreting the activity of measuring as counting the number 
of paces she took to reach the end of the object; pacing did not necessarily signify 
covering distance at this point for her. Alternatively, measuring signified covering 
distance for Nancy. 

Phase Two-Footstrip (7 days) 

The students engaged in pacing activities for 3 days. On the 4th day, the teacher 
introduced a new scenario about smurfs who lived in a village and sometimes 
needed to know how long things were. The teacher explained that to find out how 
long things were, the smurfs used their food cans (Unifix cubes) to measure by 
placing them end to end and counting them. Our intent was for the collective activity 
of measuring with the Unifix cubes to serve as a basis for a more sophisticated tool 
to be developed later in the sequence. As students engaged in initial activities with 
the Unifix cubes, however, we learned that these new instructional activities were 
inappropriate for them. For example, one activity the teacher posed involved using 
food cans-Unifix cubes-to show the height of a wall, which was 41 cans tall, 
so that the smurfs could build a rope ladder tall enough to climb over the wall. As 
students attempted to solve this task, we soon realized that using the cans as a unit 
with which to measure was not taken-as-shared. Most students argued that it was 
impossible for the smurfs to find the height of the ladder unless they had enough 
cans to scale the wall on both sides. They imagined the smurfs actually climbing 
a column of cans to get to the top of the wall. The smurfs, therefore, needed 
enough cans to climb up the wall and enough extra cans to get down the other side. 
The difference between this new situation and the king's-foot scenario was in the 
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contrast between interpreting the results of measuring and engaging in the activity 
of measuring. In the prior pacing activities, students created the measure of an object 
as they paced; students were engaged in the activity of measuring and actually 
carried it out. In contrast, with the Unifix cubes, students were asked to take the 
results of measuring as given, that is, the height of the wall was given to them instead 
of their having to create it by actually measuring. Our conjecture was that students 
needed to have more experience shortening their measuring activity and needed 
to engage in discussions that centered on what the results of measuring signified. 

The emergence of the second mathematical practice-Partitioning distance with 
a collection of units 

Creating a record ofpacing. Given these reflections, the teacher returned to the 
king's-foot scenario the following day and told the students that the king was 
spending all his time measuring instead of doing things that were necessary to run 
a kingdom. She asked whether they could think of another way that the king could 
measure so he would not always have to measure things for other people. Students 
made several suggestions, including sending one pair of the king's shoes out to those 
who needed them and distributing several pairs of the king's shoes around the 

kingdom. The teacher then related that one of the king's advisers suggested putting 
a picture of the king's foot on a piece of paper. The students decided that they would 
need at least two feet so that a person who was using this picture would not skip 
any distance between two feet. The teacher asked students to draw five feet on a 
strip of paper and then asked how the king might use such a strip: 
T: The king says he wants five. "I want five in a row." How could you use some- 

thing like this? 
Melanie: It would work because he would put the paper in front of itself. 
Hilary: This would be faster. He'd have lots more feet, and if he had lots more feet, he 

could just take a big step with all the feet together and there were ten. It wouldn't 
be just ten, twenty. Each one would be the same size, and you could just add them 
all together. 

In this excerpt, Hilary drew on her prior participation in the first mathematical 
practice to anticipate how using the footstrip would be more efficient. Instead of 
taking five little steps with their feet, students could now take one "big step" of 
five. More important, the students realized that solving problems would now be 
faster, indicating that some of them anticipated counting their individual paces more 

efficiently, that is, they would count faster by five paces than by single paces. This 

phenomenon of drawing on prior participation is exactly what we hope for when 

designing instruction for students. The instruction in this teaching experiment was 

designed to build on students' prior understanding so that when students encoun- 
tered new problems, they would have a way to act. So, having come to this conclu- 
sion, each pair of students then created their own strips of five paces, which the 
class subsequently named footstrips. 

Meagan. Meagan's way of participating in the first mathematical practice 
appeared to involve counting the number of paces she took to reach the end of an 
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item, without necessarily regarding her measuring activity as covering the phys- 
ical extension of an item. As she participated in the whole-class discussion during 
the constitution of the first practice, Meagan appeared to reorganize the goal of 
measuring such that paces now became distance-covering items. Evidence for this 
result comes as Meagan participated in a whole-class discussion on day 5 in which 
two groups of students were comparing the footstrips they had made. One pair of 
students had constructed the footstrip seen in Figure 5.2. 

Figure 5.2. One pair of students' footstrip. 

Meagan argued that if they used their footstrip "and you were measuring the rug, 
you would be missing some spaces." Paces, or records of paces, now seemed to be 
distance-covering entities for Meagan because she argued that the paces were 
arranged on the students' footstrip in such a way that measuring with that partic- 
ular footstrip would allow amounts of distance to be missed when iterating the foot- 
strip. In fact, she and Nancy had constructed their footstrip by drawing five paces 
heel-to-toe and marking a line and numeral after each pace (see Figure 5.3). Meagan 
explained that when they were making their footstrip, they had placed numerals at 
the end of each pace so they would not miss any distance in between paces. 

1 2 3 4 5 

Figure 5.3. Nancy and Meagan's footstrip. 

Nancy and Meagan-Measuring with thefootstrip. The 7th day marked the first 
instance in which students measured with their footstrips. They were asked to work 
in pairs and measure items on the playground. Observations of Nancy and Meagan's 
activity indicated that measuring, for them, was dependent on the act of placing 
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down the footstrip. For example, consider how Meagan and Nancy measured the 
length of a small shed, which actually measured 24 1/2 paces. They placed one end 
of the footstrip at the beginning of the shed and counted "five." Next they iterated 
the footstrip end to end, counting by fives as they did so, "Five, ten, fifteen, 
twenty, twenty-five, twenty-five and a half [sic]" (see Figure 5.4). 

Shed 

"5" "...10" . ."15" . "20" ".25" 

Figure 5.4. Meagan and Nancy's method of measuring a shed. 

Instead of placing the footstrip a fifth time and counting up by ones from 20, that 
is, 21, 22, 23, 24 1/2, Meagan and Nancy placed the footstrip, counted 25, and then 
counted the half a foot that extended beyond the end of the shed. When they began 
measuring the shed, they seemingly intended to cover the spatial extension of the 
shed with an exact number of footstrips. The final placement of the footstrip, 
however, extended past the end of the shed. This result did not fit with what they 
had originally intended to do, which was to cover the spatial extent of the shed with 
a sequence of footstrips. Thus, they placed the footstrip a fifth time, saying "twenty- 
five," where 25 signified the last part of the spatial extension of the shed. They then 
realized that the footstrip extended past the end of the shed and added an extra half 
a pace. Measuring seemed to have become inseparable from the activity of iter- 
ating the footstrip. Because the distance they had measured, the distance covered 
by 25 paces, did not fit with what they had intended to cover, they added the extra 
half pace. 

This interpretation of measuring with the footstrip was typical of both Nancy's 
and Meagan's activity initially. As they participated in the negotiation of a sec- 
ond mathematical practice described below, both eventually reorganized their 
understanding. 

Constitution of the second mathematical practice. In the whole-class discussion 
that follows, the taken-as-shared interpretation of measuring evolved and the 
second mathematical practice emerged. Whereas Nancy reorganized her under- 
standing in this episode, Meagan did not. A fundamental issue reemerged as 
students participated in the whole-class discussion following the small group work 
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described in the foregoing. Recall that the previous mathematical practice involved 

covering the spatial extension of items with an exact number of paces and that this 

activity was integrally tied to bodily action. As the second mathematical practice 
was constituted, the idea that part of a unit of measure can extend past the endpoint 
of an item became an explicit focus of conversation. During the whole-class 
discussion that follows, Porter and Sandra used their footstrip to find the length of 
a cabinet that was located at the side of the classroom and ended against a wall. 
After three iterations, Porter and Sandra found that they did not have enough 
room to place another full footstrip. Instead of sliding one end of the footstrip up 
the wall, Porter and Sandra placed the farthest end of the footstrip against the wall 
so that it overlapped the third placement of the footstrip (see Figure 5.5). 

cabinet 

"five" 'len" ".181/4 17 16" 

Figure 5.5. Sandra and Porter's method of measuring the cabinet. 

Sandra and Porter then counted "Sixteen, seventeen, eighteen and a fourth" back 

along the footstrip from the wall until they reached the end of the third placement. 
Because many students seemed to be confused by this solution method, the teacher 

suggested that it might be easier for others to understand if Porter and Sandra moved 
the footstrip so that the excess ran up the wall. Lloyd argued that moving the foot- 

strip up the wall would not work. 

Lloyd: Uh-uh. It doesn't measure the whole cabinet. But it won't work. 
T:- So Lloyd says it won't work. That's interesting. What do others think? 
Pat: I think it would be like, uh, I think that would be just 18 from measuring the 

cabinets. 
Lloyd: I don't think so. You're supposed to be measuring from down there [points to the 

beginning of the cabinet] to right here [points to where cabinet meets the wall]. 
I mean to the wall. And that is measuring up the wall. It's supposed to stay here. 

Pat: But, well, it stopped at the end of the cabinet. 
Lloyd: It doesn't work. 'Cause she said from that box [he is pointing to a box that sits at the 

beginning of the cabinet] all the way to the wall, and it's measuring up the wall. She 
said from the box to this wall right here [points to where the wall and cabinet meet]. 
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T:- We've got two people saying different things here. 
Sandra: I have a question for Pat. She didn't say go all the way up to the wall. 
Pat: Yeah, but if you just left it right here [with footstrip extending up the wall], then 

you wouldn't have these extra feet right here [pointing to the 2 3/4feet extending 
up the wall]. 

T:- So, Pat. Are you kind of in your mind seeing where the wall, the wall...? 
Lloyd: I see something [excitedly]. The half and the two feet. Fifteen, sixteen, seventeen, 

and a half foot [points to each foot in the last footstrip as he counts]. It's about 
this. I think he meant to, like, pretend that that part was cut off right there [points 
to part of strip going up the wall]. 

Pat: Yeah. 

T: So you just imagine that in your mind, Lloyd? Does that help, Edward? 
Edward: I agree. 
Max: Some people could think that he might be measuring up the wall, like to get to 

twenty. 
Lloyd: No. That's not what he's doing. He's just cutting it off. I think we solved the 

problem. 
In this episode, Lloyd initially reasoned that because the footstrip extended past 

the endpoint of the cabinet, then this method of measuring would not work. In 
Toulmin's terms, Lloyd claimed that measuring in this manner did not work, the 
data being that the footstrip went past the edge of the item. For Lloyd and others, 
placing the footstrip defined the distance being measured. When Lloyd placed the 

footstrip down the fourth time, the distance being measured no longer stopped at 
the end of the cabinet but rather extended to the far end of the footstrip. Hence, 
measuring this way "would not work" because the distance that was being covered 

by the footstrip extended past the physical extension of the cabinet. In this way, 
measuring was tied to the activity of placing the footstrip. This measuring activity 
grew out of students' participation in the first mathematical practice, where 
measuring by pacing was tied to bodily action; the footstrip was a record of their 
physical actions. 

As a result of Pat's challenge, Lloyd provided a warrant, saying, "They're 
supposed to be measuring" from one end to the other. In our view, he is drawing 
on his participation in the prior mathematical practice of covering distance with 
an exact number of units. This practice had been taken-as-shared, and, therefore, 
Lloyd did not produce a backing for his argument. In contrast, Pat argued that he 
could, in fact, place the footstrip so that part of it extended up the wall, and he would 
still only measure the cabinet. The data in this argument involved counting only 
those paces that were needed and ignoring the extra paces. Students still had diffi- 

culty with Pat's interpretation, so the teacher, for his part, attempted to elicit a 

backing for Pat's argument when he said, "Are you kind of in your mind seeing 
where the wall... ?" The teacher was helping Pat articulate how he mentally struc- 
tured the distance that was being measured. Lloyd reorganized his measuring 
understanding and recast Pat's justification in terms of pretending to cut off the foot- 

strip at a certain point. Significantly, mentally cutting the footstrip along any point 
became a taken-as-shared backing in this episode. As subsequent whole-class 
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discussions proceeded, other students used mentally cutting the footstrip as a 
backing to justify why they extended parts of a footstrip past the end of an object 
and counted only those paces that were relevant to their measuring. This shift in 
the content of students' justifications-the evolution of the backing-marks the 
emergence of a second mathematical practice involving partitioning distance with 
collections of units, in this case, with five paces. When mentally cutting the foot- 
strip eventually dropped out of students' arguments, we claim that the second math- 
ematical practice was relatively stable. The remaining mathematical practices also 
came under the same methodological scrutiny as the two practices we have 
described, although we do not present a detailed analyses of the discourse with 
warrants and backings because we do not want to overwhelm the reader. 

In this second mathematical practice, the distance to be measured was indepen- 
dent of activity, independent of the placement of the footstrip. Now the distance 
to be measured took priority over the measurement activity instead of the footstrip- 
placing activity'9s defining what was being measured. Measuring was no longer tied 
to the physical act of placing a footstrip; rather, the footstrip's being mentally cut 
as the need arose became taken-as-shared. 

The initial interpretation of not extending a unit past the farthest endpoint had 
become taken-as-shared in the first mathematical practice but was renegotiated 
during the establishment of this second mathematical practice. The explicit atten- 
tion given to this issue in this phase of the sequence can be attributed to the taken- 
as-shared use of the footstrip. When measuring by pacing the length of an item, 
students could simply remove their last foot if it extended past the endpoint and 
refer to the extra distance by pointing to it. Now, when using the footstrip, three 
or four extra paces might extend past the endpoint, but these paces were physically 
inseparable from one another. Therefore, opportunities to discuss what happened 
when paces extend past the endpoint of an item were made possible. 

Meagan and Nancy: Reorganizing their measuring activity. During the pivotal 
whole-class discussion described previously, Nancy, not Meagan, appeared to 
reorganize her prior measuring activity. For the remaining occasions in which 
Nancy measured with the footstrip, she coordinated measuring with a strip of five 
paces and counting single paces. In fact, Nancy continually challenged Meagan's 
measuring activity during small group and whole-class discussions in which she 
measured with her partner. For example, in the following episode, Meagan, for 
whom measuring depended on the placement of the footstrip, and Nancy were 
measuring string that signified the length of fish that the king had caught. The string 
actually measured 12 1/2 paces long, and Nancy explained her result: 

Nancy: We didn't have enough room for fifteen, so I went ten, eleven, twelve, thirteen 
and a half [points to each of the first three paces on the third iteration of the 
footstrip]. 

For Nancy, measuring with the footstrip now appeared to signify a more effi- 
cient form of pacing; "fifteen" was the amount of distance covered by 15 single 
paces. Thus, "We didn't have enough room for fifteen [paces]" indicated that, for 
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her, the string was not long enough to be covered by exactly one more footstrip. 
Hence, "ten" signified the distance covered by 10 paces, and then she counted 
"eleven, twelve, thirteen and a half." This approach illustrates that Nancy now co- 
ordinated measuring with the footstrip with the result she would obtain if she actu- 
ally paced. Measuring no longer depended on the placement of the footstrip; the 
third footstrip did not define the distance she had measured thus far. Rather, Nancy 
mentally envisioned cutting the last footstrip on half of the 13th pace. This concep- 
tion is a significant shift in her understanding from the beginning of the second 
phase of the measurement sequence. 

In contrast, Meagan had difficulty coordinating the result of measuring with the 

footstrip with what she would have gotten if pacing. Meagan eventually, however, 
came to coordinate measuring with the footstrip and individual paces. She re- 

organized her thinking during whole-class discussions in which students' inter- 

pretations of the results of measuring were made explicit and during pair work with 

Nancy. Although both Meagan and Nancy made this coordination while measuring 
with the footstrip, the result of measuring signified different things for them. 

Meagan, on the one hand, interpreted the result of measuring as a sequence of indi- 
vidual paces, whereas Nancy understood the result as an accumulation of distance. 
For example, when a researcher asked Meagan to show on the footstrip how long 
something 3 1/2 feet would be, Meagan pointed to half of the fourth pace: 

T: Where's three? 
Meagan: There [points to the third pace]. 
T: So three is that one foot there? 
Meagan: Yeah. Three and a half of the fourth foot. 
T: Could three mean all of these feet [points to the space between the beginning of 

the footstrip and the end of the third pace]? 
Meagan: That's number one [points to the first pace], that's number two [points to the 

second pace], and that's number three [points to the third pace]. 

From this exchange, Meagan appears to have interpreted the result of her 

measuring activity as a sequence of individual paces. "Three" signified the 
distance covered by the third pace rather than the distance covered by all three 

paces. When the researcher asked her to clarify if "three" could mean all three feet 

together, Meagan indicated clearly that "one" meant the first pace; "two," the 
second; and "three," the third pace. This interpretation is significant in that we were 

trying to support students' coming to act in a spatial environment in which 

measuring signified the accumulation of distances. As Meagan participated in the 

practice of partitioning distance with a collection of units-for us, the cognitive 
or mental activity of segmenting space with units-the result of measuring signi- 
fied a sequence of individual paces for her. As can be seen in the episodes related 
here, the results of partitioning were different for Nancy and Meagan. Even 

though she did not interpret the result of measuring as an accumulation of distance, 
Megan'"s interpretation is clearly more sophisticated than how she initially partic- 
ipated in the practice. 
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Nancy, in contrast, interpreted the result of measuring as the accumulation of 
distance covered by paces. When asked to show how long something 8 1/2 feet 
would be, Nancy iterated the footstrip twice and replied: 
Nancy: [Sweeps her hand over the space from 0 to 8.] Eight and a half [points to half of 

the eighth foot]. 

Nancy clearly indicates by the sweeping motion of her hand that she interpreted 
the result of measuring as an accumulation of distance. "Eight" signified the 
distance covered by 8 paces, as indicated when Nancy demonstrated that 8 would 
stretch from the end of the 8th pace to the beginning of the distance. In this 
episode, Nancy illustrated that the "half' from "eight and a half' is located on the 
half of the eighth foot. This answer is not in conflict with our claim that measuring 
for her signified an accumulation of distance. Rather, where to locate the half, for 
the teacher, was a matter of convention--either 8 and a half more or half of the 
eighth foot. The teacher, as a consequence of observing such solutions as Nancy' s, 
established that the half is conventionally located on half of the next foot. 

This kind of interpretation remained consistent throughout the rest of the 
measuring activities involving the footstrip. In fact, Nancy and Meagan sometimes 
measured during whole-class discussions. In this way, Nancy's and Meagan's 
participation in the practice of partitioning distance with a collection of units 
contributed to the constitution of this taken-as-shared way of measuring with the 
footstrip. In other words, as they and the class discussed contrasting interpretations, 
the understanding that the placement of the footstrip no longer defined the distance 
measured became taken-as-shared in the public discourse. Measuring became 
independent of the activity of iterating, and the footstrip could be mentally cut along 
any point as the need arose. 

Conclusion of phase 2. In summary, the first mathematical practice involved 
measuring by covering distance, and the result of measuring signified a sequence 
of individual paces that extended to the end of the item being measured; measuring 
was tied to the bodily act of pacing. The second mathematical practice evolved from 
the first mathematical practice in that the footstrip was a record of their paces; hence, 
that similar issues emerged as topics of conversation was significant. Initially, 
measuring with the footstrip seemed to be integrally tied to the placement of the 
footstrip. As in the previous practice, the physical activity took precedence over 
the physical extension of an item. The idea became taken-as-shared, however, that 
the footstrip could be mentally cut; the extension of the item now took precedence 
over the activity. Measuring had to conform to the extension of the item rather than 
the other way around. Therefore, the second mathematical practice involved a 
collective reorganization of the first practice. In addition, a transition in the taken- 
as-shared argumentations about the result of measuring began. As illustrated by 
Nancy's reasoning, she and several students began talking about the result of 
measuring as a whole measured distance-an accumulation of distance-rather than 
a sequence of individual paces. Further, they used their hands to show the accu- 
mulation of distances measured, for instance, from 0 to 8, and referred to these 
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distances as "the whole eight." This way of talking and gesturing became taken- 
as-shared later in the instructional sequence, but the transition seemed to begin as 
students measured with the footstrip. 

Phase 3-Smurf Village (11 days) 

In this phase of the instructional sequence, the teacher reintroduced the smurf- 
village scenario. Initially, students were given a bag of Unifix cubes and asked to 
find how long various items around the smurf village, the classroom, were. 
Subsequent instructional activities included giving students a piece of adding 
machine tape and telling them that it signified the length of an animal pen. They 
were also supplied several other pieces of adding machine tape that signified the 
lengths of different animals in the kingdom, such as a dog, a cat, or a horse. 
Students were then asked to determine whether each of the animals would fit in 
the pen. If the animal did not fit exactly, the student was asked to find how much 
longer or shorter than the pen the animal was. The taken-as-shared interpretation 
of measuring items in the classroom involved making a bar or rod of cubes that 
stretched the length of an item and then counting the cubes. The teacher suggested 
that the students might find a more efficient way of measuring with the food cans 
and asked students whether they could think of a way that the smurfs could 
measure without carrying around a whole bag of cubes. Students gave several 
suggestions that included carrying only a bar of 10 cubes, which they named a smurf 
bar because they had previously been told that smurfs were about 10 cans, or cubes, 
tall. Instructional activities with the smurf bar included having students find the 
lengths of various items around the room and cutting pieces of paper signifying 
different-sized wooden boards for building a smurf house. The instructional activi- 
ties in this phase of the sequence differed from those in the first two phases in that 
now the students used a physical entity as a measuring tool instead of using a part 
of their body or a record thereof. The mathematical practice that emerged as 
students participated in the activities described in the foregoing involved measuring 
by accumulating distances. 

On the 14th day of the instructional sequence, the class measured with a bar of 
10 cubes for the first time. The teacher asked the students to work in pairs and to 
measure items in the classroom. Using a smurf bar for the first time, Meagan began 
measuring the height of an animal cage. She placed one end of the smurf bar at 
the bottom of the cage and said, "ten." She iterated the bar end to end along an 
edge of the cage and counted "ten, twenty." She placed the bar a third time and 
counted "thirty" even though the third iteration extended past the top of the cage. 
Then, she counted the cubes, saying, "thirty-one, thirty-two, thirty-three" (see 
Figure 5.6). 

For Meagan, counting 30 as she placed the smurf bar for a third time seemed 
to mean that the cubes within that iteration should be counted "thirty-one, thirty- 
two, thirty-three .... "This way of reasoning indicated that Meagan was not co- 
ordinating measuring using the bar of 10 with measuring with the individual cubes 
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"30" 

"20" 

"10" 

Figure 5.6. Meagan's method for measuring the height of a cage. 

of which the bar was composed. In other words, iterating with the bar of 10 did 
not signify a record of measuring with individual cubes for her. 

Nancy indicated that she disagreed with Meagan's measurement and remeasured 
the height of the cage by counting as follows: [iterates the bar once] "ten," [iter- 
ates the bar a second time] "eleven, twelve, 

thirteen,..... 
twenty," [iterates the bar 

a third time] "twenty-one, twenty-two, twenty-three." For Nancy, iterating the bar 
of 10 appeared to signify the distance covered by cubes thus far, which can be seen 
by her counting by single cubes to justify her method of measuring. Although 
Meagan accepted Nancy's measurement, she continued to measure in the manner 
she had before. The fact that Meagan did not reorganize her understanding in this 
episode might be due to the calculational nature of Nancy's explanation. Nancy 
described only how she counted cubes; she did not specify her interpretation of 
distance that underpinned her measuring activity. Other students interpreted their 
measuring with the smurf bar in the same manner as Meagan; hence, the teacher 
decided to ask students to compare and contrast their differing interpretations in 
whole-class discussions. The teacher hoped that an accumulation-of-distance inter- 
pretation would become a topic for whole-class discussion. As we see in the next 
section, an accumulation-of-distance interpretation did become an explicit focus 
in subsequent public discourse. 

The emergence of the third mathematical practice-Measuring by accumulating 
distance 

The episode that follows illustrates a pivotal whole-class discussion in which 
an accumulation-of-distance interpretation was an explicit focus of conversa- 
tion. This excerpt is significant because students' explanations indicate that an 
accumulation-of-distance interpretation became taken-as-shared during the discus- 
sion. Below, Alice and Chris were asked to cut a piece of adding machine tape that 
signified wooden boards to be used for a smurf house so that it measured 23 cans 
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long. Alice iterated the smurf bar twice and uttered "ten, twenty" after each itera- 
tion. Next she placed the smurf bar down once more to find a length of 23 but picked 
it up, broke off three cubes from the smurf bar, and laid the three cubes at the end 
of the second iteration to indicate a length of 23: 
Edward: I think it's thirty-three [points to where they have marked 23 with the three cubes] 

because ten [iterates the smurf bar once], twenty [iterates the smurf bar a second 
time], twenty-one, twenty-two, twenty-three [counts the first, second, and third 
cube within the second iteration, thus measuring a length that was actually 13 
cubes]. 

T: Let's be sure all the smurfs can understand, 'cause we have what Alice had 
measured and what Edward had measured. We need to be sure everybody under- 
stands what each of them did. So Edward, why don't you go ahead and show what 
it is to measure twenty-three cans. 

Edward: Ten [iterates the smurf bar once], twenty [iterates the smurf bar again]. I changed 
my mind. She's right. 

T." What do you mean? 
Edward: This would be twenty [points to the end of the second iteration]. 

T: What would be twenty? 
Edward: This is twenty right here [places one hand at the beginning of the "plank" and 

the other at the end of the second iteration]. This is the twenty. 

Then, if I move it up just three more. There. [Breaks the bar to show 3 cans and 
places the 3 cans beyond 20] That's twenty-three. 

Phil: When you put the second down, that's the whole twenty [points to the space from 
the beginning of what was the first iteration to the end of the second iteration]. 

In the course of his explanation, Edward reconceptualized his measuring activity. 
Initially, for Edward, placing the smurf bar down for a second time defined the cubes 
in the second decade, the twenties. In other words, if he were to count the individual 
cubes, he would count "twenty, twenty-one,. Thus, although iterating involved 
a shortening of counting by individual cubes, it was based only on a number-word 
relation. "Twenty" was the number word associated with the second placement of 
the smurf bar rather than with the amount of distance covered by 20 cubes. After 

reflecting on Alice'9s explanation, however, Edward came to view "twenty" as signi- 
fying the length covered by 20 cubes and realized that 21, 22, and 23 must extend 

beyond the length whose measure was 20. Similar to Alice' s reasoning, now if he 
were to count individual cubes in the second iteration, he would count "eleven, 

twelve.....4"For Alice, measuring with the smurf bar was a shortening of covering 
distance with individual cubes and involved an accumulation of distance. To 

clarify the meaning of the number 20, Phil explained that 20 signified the length 
from the beginning to the end of the second iteration, not the distance covered by 
the last 10 cans. 

The main point of this excerpt is not only that Edward and others possibly reor- 

ganized their prior understanding but also that students negotiated a taken-as-shared 
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interpretation of measuring with the smurf bar. When Alice initially explained how 
she measured 23, she iterated the bar twice and broke off three extra cubes to show 
23. That she provided no backing for why this solution was acceptable is signifi- 
cant. Edward challenged her explanation, offering a justification in which he did 
not coordinate measuring with a bar and measuring with individual cans. As 
Edward reorganized his understanding in the midst of a rejustification, Phil expli- 
cated a backing that involved an accumulation of distance. As the whole-class 
discussion carried on, no student rejected Phil's explanation. In fact, other students 
used this way of reasoning as backing in subsequent conversations, with the 
backing eventually dropping out of students' arguments. Furthermore, when 
students offered an explanation that did not reflect an accumulation-of-distance 
interpretation, the community rejected it. We claim that in this way measuring by 
accumulating distance became taken-as-shared. That physically iterating along an 
item created a partitioned distance that could be structured in collections of tens 
and ones also became taken-as-shared. 

Meagan and Nancy. Our observations of Nancy and Meagan's measuring activity 
for the remainder of this phase indicated that both girls interpreted the result of 
measuring as an accumulation of distance and coordinated measuring by 10 cans 
and individual cans. Meagan, however, was better able to coordinate measuring 
with tens and ones when she symbolized the results of her measuring activity. As 
she measured an object, she kept track of the number of cans by recording each 
iteration of 10 with masking tape or numerals. As Meagan reasoned with her 
record of iterating, two iterations signified the accumulation of distance covered 
by 20 cubes. Another way to state this outcome is that the number word "twenty" 
signified a numerical composite (Steffe, Cobb, & von Glasersfeld, 1988), an entity 
or a distance partitioned by 20 cubes rather than the distance covered by the 20th 
cube. This episode brings to the fore the role of symbolizing in Meagan's activity. 
As she reasoned with her record of iterating, Meagan interpreted the result of each 
iteration as an accumulation of distance covered by cans. Further, when reasoning 
with such symbols, she coordinated measuring by iterating a bar of 10 and 
measuring by iterating single cubes. Thus, as she participated in the prior conver- 
sations in which mathematically significant issues arose, she developed relatively 
powerful ways of reasoning with symbols. When she did reason with symbols, 
Meagan coordinated measuring with a bar of 10 and measuring by iterating single 
cubes. When Meagan did not reason with symbols, however, she did not make such 
a coordination. 

Although Nancy symbolized her activity when she worked with Meagan, on her 
own, Nancy coordinated measuring with a bar of 10 and measuring with single 
cubes without symbolizing. Further, Meagan' s reasoning with symbols was an act 
of participation in the emerging mathematical practice and constituted not only her 
learning but also a contribution to the taken-as-shared practices of the community. 

Conclusion of phase 3. In summary, the emergence of the third mathematical 
practice of measuring by accumulating distances can be seen to grow out of the 
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second mathematical practice. As a result of participating in the second mathe- 
matical practice of partitioning distance with collections of units, taking the result 
of measuring as a given had become taken-as-shared. As the third practice was 
established, a numeral, such as 23, signified an object's measure, and immediately 
iterating collections of 10 cubes to specify its length was beyond justification. 

Phase Four-Measuring with the Measurement Strip (5 Days) 

In this phase of the instructional sequence, the teacher built on the students' 
measuring activity to introduce a measurement strip that was 100 cans long. 
Students had engaged in instructional activities in which they cut pieces of adding 
machine tape that signified lengths of pieces of wood to be used for a smurf raft. 
For example, students were asked to cut pieces of wood that were 30 cans, 22 cans, 
and 5 smurf bars long. Whereas most students iterated a smurf bar and cut the paper 
at the end of the last iteration, Nancy and Meagan actually recorded each iteration 
of 10 on the pieces of paper (see Figure 5.7). 

10 20 ID 

Figure 5.7. Nancy and Meagan's wooden board measuring 30 cans. 

The teacher built on this innovation by suggesting to students that Nancy and 
Meagan's paper might be easier to carry around than a bag of cans. One student 
suggested they carry around a strip that was 10 cans long. The teacher responded 
that she liked their idea but that the smurfs decided they wanted to make a strip 
that was 50 cans long. The teacher asked the class to construct measurement strips 
that were 50 cans long and that did not require them to carry any cans with them. 
As we observed pairs of students, we noticed that most students constructed their 

strips as in Figure 5.8. An interesting feature of these strips was the fact that no 
individual lines were drawn to signify cubes within the decades. In fact, every pair 
of students constructed their 50-strips by iterating a smurf bar and marking only 
the end of the bar with a numeral until they had made a strip that was 50 cans long. 

One interpretation of the students' constructions could be that each iteration of 
10 that they marked on the strip did not signify composites of 10 but simply 
records of measuring with the smurf bar. Another interpretation, however, takes 
note of their participation in the previous mathematical practice involving iterating 
bars of 10. Consider how students measured the length of a table 43 cans long using 
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10 20 30 40 50 

Figure 5.8. Initial constructions of the measurement strip 

a smurf bar. Most students would iterate the smurf bar "ten, twenty, thirty, forty," 
iterate the bar one more time, and count the first three cubes in that iteration to obtain 
43. "Forty" signified what students would get if they counted the cubes in the first 
four iterations by ones, and they needed only to count three individual cubes 
beyond "forty." Thus, in making the 50-strip, students marked only the end of each 
iteration because they seemed to have no need to know where the individual cubes 
ended when measuring something, say, 50 cans long. Hence, the construction of 
the 50-strip can be traced back to students' participation in the third mathematical 
practice of measuring by accumulating distances. The marks that students drew on 
the strip were a record of their activity of iterating the smurf bar where they had 
no need to record individual cubes. 

The next day, the teacher asked students to make strips that were only 10 cans 
long instead of 50 cans. We thought that to support the emergence of a measure- 
ment strip 100 cans long, students might build on their constructions of 10-strips 
more naturally than 50-strips. The intent of the 10-strip was to build on the previous 
practice of measuring by accumulating distances; it fit with the activity of iterating 
to find a measure. At least two pairs of students cut paper 10 cans long and marked 
individual cubes on the strip. In a subsequent whole-class discussion, the need for 
individual markings arose from the students and every pair revised their strips. 

In the absence of symbolizing, both Meagan and Nancy had difficulty coordi- 
nating measuring with a 10-strip and measuring with individual cans. Both of them, 
however, clearly understood the result of iterating as an accumulation of distance. 

The emergence of the fourth mathematical practice-Measuring with a strip of 
100 

Subsequent instructional activities with the 10-strip included measuring items 
around the classroom. In a whole-class discussion on the 24th day, two students 
came to the white board at the front of the classroom and showed how they would 
measure it with their 10-strip. They iterated their strip, saying "ten, twenty,...." 
and recorded the endpoint of each iteration with a marking pen (see Figure 5.9). 
They argued that counting by tens would be easier than counting by ones each time. 
Then the teacher taped seven 10-strips underneath their drawing and commented 
that each strip meant 10 cans they did not have to count by ones. In this way, the 
100-can measurement strip emerged as a record of the activity of measuring. The 
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teacher asked students such questions as "Where is twenty-five?" and "How long 
would something twenty-seven be?" During this discussion, one student illustrated 
that 49 cans would stretch from the beginning of the white board to the line signi- 
fying the end of the 49th cube. Nancy countered, however, that 49 actually extended 
from the beginning of the board to the line signifying the end of the 39th. To justify 
her way of reasoning, Nancy pointed to each of the first four spaces and counted, 
"ten, twenty, thirty, forty," and then, "forty-one, forty-two, ..., forty-nine" within 
the space signifying the fourth iteration of the 10-strip. Because the new measure- 
ment strip intentionally had its roots in iterating the 10-strip, a reasonable and desir- 
able outcome is that students would draw on their participation in the prior prac- 
tice associated with iterating a collection of ten to interpret their activity with the 
new tool. Other students countered her argument by starting with the numeral 20 
and counting by ones up to 39 to show Nancy that where she pointed actually 
marked 39 cubes. Nancy accepted this justification and redescribed her solution 
method by counting by ones to show that what she originally thought was 49 was 

only 39 cans long. 

64 
63 

62 
61 1 

10 20 30 40 50 60 

Figure 5.9. One student pair's way of symbolizing measuring the white board. 

Thus, as students negotiated what became a taken-as-shared way of inter- 

preting measuring with the strip of 100 in the foregoing example, their warrants 
consisted of counting individual cubes, and backings of accumulation of distance 

re-emerged in the context of reasoning with a new tool. The result of measuring 
with the 10-strip quickly came to signify the accumulation of distance as the 

community rejected Nancy's contribution. From this point on, no student during 
subsequent whole-class discussions had difficulty coordinating measuring with 
a 10-strip with measuring with individual cubes, indicating that it had become 
taken-as-shared. Such an interpretation was supported by the conceptual discus- 
sion illustrated previously in which students folded back to counting by individual 
cubes. To clarify, we view Nancy' s contribution here as both her reasoning, and 
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reorganization, and an act of contributing to the stability of the third mathemati- 
cal practice. The community did not treat her act of participation as legitimate, 
indicating that the third mathematical practice had indeed been established. Her 
contribution also can be viewed as contributing to the negotiation of measuring 
with a new but similar tool. 

Meagan and Nancy. As illustrated in the foregoing example, Nancy reorganized 
her understanding during the whole-class discussion. From this point on, Nancy 
and Meagan no longer had difficulty coordinating measuring with a 10-strip and 

measuring with individual cans. This reorganization was made as they participated 
in, and contributed to, the constitution of the fourth mathematical practice. To be 
sure, the reorganization was supported by the teacher's record of iterating that had 

played such an important role in each child's mathematical learning. 

The measurement strip. After the discussion in which the teacher taped seven 

10-strips on the whiteboard, she gave each pair of children a paper measurement 

strip that measured 100 cubes long (see Figure 5.10). Students engaged in various 
activities, such as using the measurement strip to find the lengths of items in the 
classroom. During activities such as these, the mathematical practice of measuring 
with a strip of 100 became established. Initially, many students measured by 
laying the strip down alongside the item and counting by tens and ones until they 
reached the endpoint of the item. Significantly, many students measured by 
"building" the extent of an item by iterating or counting by tens and ones instead 
of by finding where the farthest endpoint corresponded to a numeral on the 
measurement strip. For example, when measuring the length of a table, many 
students laid the measurement strip next to the edge of the table and counted each 
collection of 10 from the beginning of the table-"ten, twenty, thirty"-rather than 
simply read off the numeral 30. Thus, measuring with the measurement strip for 
many students appeared to have evolved out of their participation in prior mathe- 
matical practices in which they iterated single or collections of units. 

10 20 30 40 50 60 70 80 90 100 

Figure 5.10. The measurement strip. 

Very quickly, students abbreviated their activity of counting up on the measure- 
ment strip, and the fact became taken-as-shared that the length of an item could be 
measured by laying down the measurement strip alongside the item and simply 
reading off the numeral corresponding to the position of the farthest endpoint. Also 
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taken-as-shared was that when students measured the length of an item and read 
off a number, that number signified the distance that extended from the beginning 
of the measurement strip to the line signifying the end of the item. Students now 
seemed to take-as-shared that they were acting in a spatial environment in which 
distance was already partitioned. Distance no longer had to be partitioned in an 
activity by physically iterating. Rather, the fact that laying down the measurement 
strip simply specified the measure of an already-partitioned spatial extent was taken- 
as-shared. Students seemed to be acting in an environment in which an item was 
already partitioned-that is, it already had a measure-and the measurement strip 
simply specified the measure. This taken-as-shared interpretation was signifi- 
cantly more sophisticated than in prior mathematical practices and constitutes 
operational measurement as defined by Piaget et al. (1960). 

Meagan and Nancy. Both Nancy and Meagan came to interpret measuring in the 
way just described. Initially, however, Meagan laid down the measurement strip 
to find the length of a table and started by counting individual cubes, "one, two, 
three ......" Nancy interrupted Meagan's counting and continued from where 

Meagan had left off, counting by fives. Meagan also counted by fives until they 
had "iterated" the length of the table. Hence, initially, for Meagan the measurement 
strip did not signify the result of iterating strips of 10. The very next day, however, 
she stopped counting by ones and, finally, no longer counted cubes at all. Rather, 
she simply located the appropriate place on the measurement strip and read off the 
measure of the item. This participation seemed to be supported by the physical 
record that was inherent in the measurement strip. The strip itself became a record 
of the units that Meagan had initially established or counted along the strip. 
Further, the numerals signified what she would have measured had she actually iter- 
ated a 10-strip. In reasoning in this manner, she contributed to the establishment 
of this fourth mathematical practice. As before, symbolizing and tool use were inte- 
gral to her reasoning. 

Other than in the foregoing example, Nancy never counted by tens or ones to 
establish the length of an item when using the measurement strip. The strip already 
signified, for her, the result of iterating a 10-strip, or smurf bar. When determining 
the measure of an item with the measurement strip, the measure signified the result 
of accumulating distances for both Nancy and Meagan. The length they had deter- 
mined signified a distance that could be partitioned into tens and ones for them. 
Their reorganizations were made as they participated in the emerging mathemati- 
cal practice of measuring with the measurement strip. Their reorganizations also 
constituted their contribution to the ongoing evolution of the fourth mathematical 

practice. 

Conclusion of phase 4. In summary, the teacher built on the prior mathemati- 
cal practice of iterating bars of 10 by asking students to draw paper strips 10 cans 

long. Then students engaged in measuring activities with these paper 10-strips. 
The teacher next taped the 10-strips together end to end to support students' 
construction of a measurement strip 100 cans long. A taken-as-shared way of 
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measuring with the measurement strip was immediately constituted. Laying down 
the measurement strip seemed to partition the distance into cans, or cubes, that 
were themselves organized into composites of 10. That the spatial extension of 
an item was partitioned before the physical act of measuring took place was 
taken-as-shared, and when the measurement strip was laid down, it simply spec- 
ified the measure. Measuring was now no longer tied to physically iterating to find 
an item's measure; rather, in a sense, the measurement strip signified the prior 
activity of iterating collections of 10. Measuring seemed to be routine at this point. 
Thus, the fourth mathematical practice involving measuring with a strip of 100 
became established. 

Phase 5-Reasoning with the Measurement Strip (5 Days) 

Because the foregoing measuring activities became routine for students fairly 
quickly, the teacher posed problems that involved making comparisons of lengths 
on the measurement strip. At this point of the instructional sequence, the fifth math- 
ematical practice, which involved reasoning with a strip of 100, emerged. The 
teacher introduced a scenario in which the wizard smurf was testing secret formulas 
that controlled the growth rates of sunflowers. The students were told that the wizard 
smurf was conducting an experiment in which he had created several secret 
formulas for speeding the growth of sunflowers. He noticed that seeds treated with 
various secret formulas grew into different-sized sunflowers. Students were asked 
to help the wizard smurf decide which formula would make his flowers grow taller. 
Wizard smurf needed to know how much taller each sunflower was than the 
others. One flower grew from a plain seed and was 51 cans tall. Seeds treated with 
secret formulas A, B, C, and D grew to be 45, 35, 61, and 70 cans tall, respectively. 
The students' task was to find out how much taller each of the flowers grown with 
secret formula were than the flower grown with a plain seed. This type of task 
differed from previous activities in that students no longer measured a physical item 
with the measurement strip. Previously, the strings and adding machine tape signi- 
fied the spatial extent of the dragons, fish, wooden boards, and so forth, and 
students actually had to measure the objects. In the sunflower activity, the spatial 
extents of the various sunflowers were given numerically, and students had to 

specify the length on the measurement strip rather than measure it. 

The emergence of mathematical practice 5-Reasoning with a strip of 100 

Three days after the measurement strip had been introduced, the teacher posed 
the sunflowers problem. This instructional activity was the first one in which the 
students did not measure an item that was physically present. As a consequence, 
a new mathematically significant issue arose that continued to be the focus of 
discussion for the next two class periods. When the students specified the spatial 
extent of two sunflowers' heights, say, 51 and 45, some counted the spaces 
between the two numbers, whereas others counted the lines. The students who 
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counted the spaces between the two specified heights obtained 6 as the difference 
(see Figure 5.11). 

51 

45 

70 

-60 

-50 

-40 

Figure 5.11. A portion of the measurement strip. 

The students who counted the lines between the two heights started counting with 
the line beside 45 and stopped with the line beside 51, getting a result of 7. We 
thought that for students who were counting lines, their use of the measurement 
strip was divorced from their participation in prior mathematical practices. The gap 
between 45 and 51 on the strip did not signify for them a distance that could be 
covered by cubes. Instead, they simply counted the only things perceptually avail- 
able-the lines. We therefore speculated that these students might be helped by 
engaging in a discussion in which their descriptions folded back to the context of 
measuring with cubes. In the excerpt that follows, the teacher asked students how 
much shorter the sunflower measuring 45 cans would be than the sunflower 
measuring 51 cans. A measurement strip was hung vertically at the front of the class- 
room, and Phil recorded where he thought the two sunflowers' heights would be 
on the strip (see Figure 5.11). Then he explained that the sunflower measuring 45 
cans would be 7 shorter than the other would because he counted the lines between 
the two numerals. 
Phil: From here down to here would be seven [points to the line beside 51 and 45, 

respectively]. Because one, two, three, four, five, six, seven [counts the lines]. 
Pat: I have a question. You're supposed to count spaces, not the lines, because it's ... 
Phil: It would be the same because one, two,.... six [seems confused]. I'm counting 

the lines because they're the same as spaces. Here's a line [points to a line], it goes 
down to here [moves his finger down to the line below it]. 

I I 1-ftr Mo.- I 
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... 
Even if you count the lines, it's still like the space because you go down to here 
[points to a line and moves his finger down to the line below it]. 

... 
Pat: Yeah, but there's more lines than one space. I'm saying there's two lines in one 

space because, see the front of one, the end of one. So there's two lines. 

Phil and others seemed to be simply counting what was perceptually available 
without realizing they were counting an extra line. Our initial conjecture that 
students were not relating counting lines to the number of cans that partitioned the 
distance between the two heights had to be revised in light of Phil's explanation. 
In retrospect, Phil seemed to be relating his counting activity to counting spaces 
when he said, "I'm counting the lines because they're the same as spaces." In fact, 
he argued that counting either lines or spaces would give the same number. Thus, 
Phil and others seemed to be indicating the number of cans or the measure of the 

spatial extent between two heights by counting what was perceptually available 
without taking the extra line into account. In the preceding excerpt, the teacher tried 
to encourage students to justify their particular method in terms of what each line 
or space signified to them. For Pat, the lines signified the top and bottom of a cube 
and the space signified the distance covered by one whole cube. Thus, counting 
the lines gave an extra number because "there's two lines in one space." During 
this and other conversations, counting spaces to specify the measure of the spatial 
extension between two lengths became taken-as-shared. Students' explanations of 
their activity indicated that the idea had become taken-as-shared that a measure, 
such as 35, signified the distance starting from the bottom of the strip to the top of 
the 35th. 

Meagan and Nancy. Meagan initially participated in this practice by first using 
a cube to mark the end of the spatial extensions of each of the two items being 
compared on the strip. Then she counted the number of cubes that fit exactly 
between the two cubes. For example, on the last day that the students used the 
measurement strip (day 31), the teacher asked them to measure one another's 
heights and record the results. The teacher, for her part, recorded on the board the 
results of each small group, for example, Chris 65 and Hilary 75; Lloyd 67 and Alex 
72. Then the students were asked to work in their small group to find the differ- 
ences between each pair of students' heights. Alice and Meagan used a measure- 
ment strip to find the difference between Chris's (65) and Hilary's (75) heights. 
Meagan placed a cube in the space signifying the 66th cube and a cube in the space 
signifying the 76th cube, as if she were marking the top of the two students' 

heights. Meagan then counted the number of spaces on the measurement strip 
between the two cubes, getting a total of 9 cubes (see Figure 5.12). 

This example illustrates that at the very least, Meagan could specify the spatial 
extensions of two items on the measurement strip, that is, Hilary's and Chris's 
heights. These specified spatial extensions signified composites units, for example, 
the height stretching from 0 to 66. When it came to quantifying the difference (the 
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50 60 70 80 

Figure 5.12. Two cubes marking the 66th and 76th spaces. 

distance) between the two heights, however, she did not see Chris's height (65) as 
nested in, or as a part of, Hilary's height (75). Rather, Meagan seemed to be 
measuring the gap between the two cubes, and that gap did not appear to signify 
an entity in and of itself. In other words, she measured the gap between the two 
cubes instead of reasoning about the difference between two quantities. This 
approach indicates that Meagan did not seem to be reasoning in part-whole terms 
in this instance, that is, Chris's height was not nested in Hilary's height, with the 
remaining space viewed as an quantity to be measured. 

Meagan's reasoning with symbols also contributed to the emergence of the fifth 
mathematical practice. In the subsequent whole-class discussion, the teacher asked 
Meagan to show how tall Lloyd (67) and Alex (72) were using a measurement strip 
that had been taped vertically at the front of the classroom. Meagan pointed to the 
line beside the numeral 67 and explained that Lloyd would be that tall, indicating 
the length from the floor to where she has marked 67. The teacher drew a short hori- 
zontal line at the line indicating Lloyd's height. Meagan indicated that Alex's height 
began from the floor to the line beside the numeral 72, and again the teacher drew 
a horizontal line to mark it. Note that the teacher's symbols served the same 
purpose as the cubes Meagan had used to mark Chris and Hilary's heights in the 
previous example. Then, to find the difference between Lloyd's and Alex's heights, 
Meagan placed a smurf bar between the two horizontal lines the teacher had 
drawn, broke off six cubes, and placed the six cubes so that they fit exactly between 
the two lines. The space between the two marks did, in fact, signify the difference 
between the two heights. This activity, however, is consistent with her activity in 
the prior episode, in that she did not reason with the two heights in part-whole terms. 
Rather, Meagan empirically measured to find the difference between the two 
marks. 

Several students objected to the result and argued that the difference between 
the two heights was only 5 cans long. For example, Alex reasoned that 3 more cubes 
from 67 would be 70, and 2 more cubes made 5 cubes altogether. Hence, Alex took 
the gap between 67 and 72 as a measurable distance, as well, but did not actually 
measure to find the result. Other students simply counted 5 single cubes by ones. 
Phil argued, however, that because Meagan had measured the space and gotten 6, 
Alex must have counted incorrectly. The teacher then redrew the lines so they were 
straighter and more accurate, and when Meagan remeasured in the same manner 
as before, she found that exactly 5 cans fit. The mathematically significant issue 
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that was the focus of this conversation centered on how to quantify the gap between 
the two heights-actually measuring versus reasoning. Meagan, for her part, drew 
on her prior participation in mathematical practice 4 by actually measuring the space 
with cubes to solve the task at hand. Alex, for his part, could take that gap as a 
measurable space and reason with it. Both Alex and Meagan could specify the two 
spatial extents very easily on the measurement strip by simply pointing to the lines 
corresponding to 67 and 72. The spatial extension that signified the physical length 
of an object seemed to be a partitioned distance for them; the distance signified by 
the measurement strip was already partitioned, and when Meagan measured with 
the strip, she was simply structuring that distance into composites of tens and ones. 
When attempting to reason with the spatial extensions that she had specified on 
the measurement strip, however, those spatial extensions did not appear to be nested 
in one another, that is, the two spatial extents were not related in part-whole terms 
and, therefore, she measured the space with cubes. In the conversation described 
in the foregoing, Meagan contributed to the constitution of a taken-as-shared inter- 
pretation that the measure of an item signified an objective property of that item- 
65 signified Lloyd's height and was now beyond justification. 

Nancy, in contrast, participated in this practice by reasoning in part-whole 
terms. For example, on the 30th day of the instructional sequence, the teacher gave 
each pair of students a sheet of paper with pictures of various pieces of furniture 
and their respective measures, for example, box, 42 cans; television, 24 cans. The 
students were told that the smurfs wanted to stack the furniture items on top of 
one another so they could minimize the amount of storage space in a room that 
was 60 cans high. The following episode describes how Nancy typically reasoned 
about this problem situation. In one instance, Nancy decided to stack a box 42 cans 
high first. She identified the line beside the numeral 40 and counted up two more 
spaces, "forty-one, forty-two." She explained, "That's the forty-two cans. Here, 
all the way to here [motions from 0 to 42)]. It's the box." Clearly, the spatial exten- 
sion that she had specified signified the height of the box. Then she counted by 
ones starting with the 43rd space to see how much room remained to stack another 
item on top of the box, "one, two, 

three,..... 
eighteen." After consulting the activity 

sheet, she explained, "We can put the lamp [17 cans high]. Here's the one more 
space that's left [pointing to the 60th space]." When a researcher asked her where 
the lamp was, Nancy replied, "from right here [points to the line signifying the 
top of the 42nd can] to here [points to the line signifying the top of the 59th can]." 
From Nancy's activity in this example, she appeared to be able to specify the spatial 
extension of two items on the measurement strip, and, in turn, reason with these 
extensions. The space from 42 to 59 signified, for her, the spatial extension of the 
lamp. Furthermore, the two spatial extensions together-the distance from 0 to 
59 as well as each of the two spatial extensions themselves-were nested in the 
height of the storage room, 60. She reasoned that the box and lamp would fit inside 
the room with only one can of distance left over. In fact, when Meagan suggested 
stacking the television (24 cans high) on top of the box, Nancy argued that the 
room would not be high enough. She seemed to be able to imagine the spatial 
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extension signifying the height of the box (42) being nested in the spatial exten- 
sion signifying the height of the room (60) with 18 cans of space remaining. She 
therefore automatically eliminated furniture that measured over 18 cans high. This 
realization indicated that she was envisioning nesting two or more spatial exten- 
sions within the spatial extension signified by the height of the room and, in turn, 
could identify the amount of space left over after stacking the furniture. The impor- 
tant point is that Nancy viewed the unknown difference as a quantity whose 
measure she then found. 

Aform-function shift. Stacking problems such as those in the foregoing seemed 
to become relatively routine. Possibly, the idea that the measure of an item signi- 
fied an objective property of that item had become taken-as-shared. In other words, 
a reversal between the spatial extent and its measure had taken place. Before, the 

spatial extent of an item was physically present and the goal was to find its measure 

by laying the measurement strip beside it. Now, the measure was given and the goal 
was to use the measurement strip to specify the spatial extent signified by its 
measure. This change constitutes what Saxe (1991) terms aform-function shift. In 
this way, the measure of an item signified an objective property of an item because 
the measure was not being found but was being used, that is, taken as a given, to 

specify an item's spatial extent. The spatial extent now signified the height of a stool 
or the height of a chair, and these heights took on a life of their own, so to speak- 
they could be used to compare and combine with other heights. As can be seen, 
the taken-as-shared way of reasoning with the measurement strip went beyond 
simply specifying already partitioned spatial extents on the strip. The practice that 
was constituted involved working from someone else's measure instead of actu- 

ally finding the measure itself. 

ANALYZING STUDENTS' LEARNING IN SOCIAL CONTEXT 

The first issue discussed in the literature review was that of locating students' 

development of measuring conceptions in the social context of the classroom. 
Previous research (e.g., Clements, Battista, & Sarama, 1998; Inhelder, Sinclair, & 
Bovet, 1974; Piaget et al., 1960; Smedslund, 1963) typically analyzed students' 
solutions to interview tasks from primarily an individualistic viewpoint. Thus, the 
main goal of this chapter was to analyze the first graders' development of measuring 
conceptions as it occurred in social context. To this end, we viewed learning as an 
act of participation in the local mathematical practices of the classroom commu- 

nity. We detailed the emergence of five classroom mathematical practices that 
served to document the immediate social context of the individual students' 

learning. We presented two case studies in conjunction with the documentation of 
the collective learning. The purpose of presenting the two simultaneously was to 
show that (1) students' learning occurred as they participated in these emerging 
practices, and (2) the mathematical practices emerged as students, often the target 
students, contributed to them. A traditional cognitive analysis would have treated 
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the target students' learning independently of the local classroom community by 
describing their development in terms of cognitive reorganizations with little 
attention to the social context, that is, to the collective argumentation. Although 
we described the cognitive development of each target student by drawing on the 

cognitive constructs of Piaget and his colleagues and of Steffe et al. (1988)-for 
example, accumulation of distances and partitioning-we cast each instance of 

learning as an act of participation in the mathematical practice that was either 

emerging or was established. For instance, Meagan made certain reorganizations 
as she participated in the whole-class discussion in which certain practices were 
established. Furthermore, the mathematical practices were documented by 
analyzing the way in which structuring distance evolved over time and became 
normative in the classroom discourse. 

When we talk about the mathematical activity of a community, we refer to the 
taken-as-shared activity of the community rather than the overlap of the meanings 
of all its individual members (Voigt, 1996). An analysis that focuses on the overlap 
in individual meanings would constitute a cognitive analysis of the development 
of a plurality of individuals rather than the mathematical activity of a single 
community. Thus, when describing the classroom mathematical practices, we 
made claims about the mathematical practices of a community but not about how 
any one child was reasoning. Instead, we described ways of reasoning that became 
normative over time as indicated by the taken-as-shared mathematical activity 
observed in the public discourse. The documentation of the classroom mathemati- 
cal practices reflects the way in which taken-as-shared ways of reasoning, arguing, 
symbolizing, and using tools evolved as the measurement sequence was enacted. 
When we focused on individual students' participation in these mathematical 
practices, we made claims about each student's personal way of reasoning, but 
always in the context of the taken-as-shared practices of the community. 

One final issue that should be addressed here relates to the usefulness of the class- 
room mathematical practice as a construct for documenting the learning of a 
community. As previously mentioned, Cobb and Yackel (1996) first developed the 
construct of the classroom mathematical practice as a way to account for the 
mathematical learning of a classroom community over long periods of time. Thus 
that construct is useful for describing the emerging social situation of the mathe- 
matical learning that is jointly constituted by the teacher and the students. The 
analysis we have presented should clearly show that the classroom mathematical 
practices are not to be viewed as emerging independently of the previously estab- 
lished practices. In other words, each practice grew out of practices previously estab- 
lished by the classroom community. Also, the mathematical practices did not 
suddenly appear fully formed. The evolution of the taken-as-shared meanings and 
interpretations involved an analysis and discussion of each of the mathematical prac- 
tices with the intent of documenting the process of their emergence. Thus the 
analysis of the classroom mathematical practices served not only as documenta- 
tion of the evolving social situation in which the students were participating but 
also, retrospectively, as a summary of the mathematical content that emerged over 
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the course of the measurement sequence. Furthermore, the documentation of the 
collective mathematical practices, the evolving tool use, and the quality of 
whole-class discourse provide the necessary backdrop for teachers who wish to 
incorporate aspects of the instructional sequence in their own socially situated 
classrooms. 

In contrast with a purely cognitive analysis, some social theories might have 
involved analyzing the learning of the classroom independently of the variety of 
students' thought processes. In our view, the collective mathematical practices 
emerged only as students contributed their personal mathematical interpretations. 
In sociocultural traditions, the teacher guides students to fuller participation in 
broader practices of the mathematical community. In this sense, mathematical prac- 
tices are fixed a priori and the teacher's goal is to guide students' enculturation into 
these practices. In our use of the term, mathematical practices are not fixed prior 
to experimentation but emerge as students contribute to them. Thus, classroom 
mathematical practices are normative for the particular classroom social structure 
in which they are established and draw on the diversity of students' contributions. 
The role of the teacher in this type of classroom is to guide students' reasoning so 
that their practices become more consistent with those of wider society. 

CONCLUSION 

In this chapter, we have used a sample analysis from a first-grade classroom to 
discuss the theoretical nature of coordinating social and individual aspects of 
learning. We presented the evolution of the collective mathematical practices and 
complementary case studies of two students' individual development. We argued 
that although five practices emerged in the collective discourse, individual students' 
development constituted acts of reasoning that contributed to the evolution of these 
practices. Toulmin's (1969) model of argumentation was used as a methodologi- 
cal tool to determine, from the observers' standpoint, when practices appeared to 
be established. Finally, we reflected on one of the overarching themes of the 
monograph-analyzing students' learning in social context-by contrasting this 
type of analysis with both traditional cognitive and sociocultural analyses. During 
that discussion, we argued that although traditional analyses are useful, neither tradi- 
tional nor sociocultural analyses alone gives a full explanation of the process of 

learning. 
Although the main focus of discussion has been on the theoretical implications 

of learning in social context, we have argued the practical merits of such an 

analysis elsewhere (Cobb, chapter 1 of this monograph; Gravemeijer et al., chapter 
4 of this monograph). The practices and case studies provide a background against 
which to make revisions to the measurement sequence and to incorporate the 
instructional sequence within one's own classroom. We discuss these character- 
istics of mathematical practices further in the next chapter. 
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INITIATING A NEW DESIGN RESEARCH CYCLE 

In chapter 5, we analyzed the development of the first graders' conceptions of 
measurement and, in so doing, completed the second phase of the Design Research 
Cycle. In this chapter, we initiate a new cycle by reflecting on the revised sequence. 
This discussion focuses on the three themes that were discussed during the litera- 
ture review. The first theme involved analyzing students' development of measuring 
conceptions as it occurs in social context. The second theme concerned the need 
to delineate the role of tools in supporting students' understanding. We address this 
issue by documenting the evolution of a chain of signification (Walkerdine, 1988), 
which is based on our analyses of the taken-as-shared meanings that emerged as 
students used a variety of tools in the measurement sequence. The third theme 
centered on proactively supporting students' development through integrating 
research and instructional design. We address this issue by reflecting on our prior 
work to develop suggested revisions for ensuing phases of Design Research. 

Theme 1: Analyzing Students' Learning in Social Context 

In the previous chapter, we argued that identifying the collective mathematical 

practices and coordinating them with individual case studies give a fuller account 
of the learning of the first-grade community than traditional analyses that cast 

learning as primarily an individualistic endeavor. The main emphasis of this 

chapter is to demonstrate that the mathematical practice as a theoretical construct 
has usefulness as it relates to instructional design, as well. As Gravemeijer et al. 
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(chapter 4 of this monograph) noted, mathematics research has seen a shift in 
instructional research interests from merely stating that one instructional approach 
is better than another on the basis of some statistical measures. Our concern with 
these types of comparative studies is that they provide little explanation as to how 
the instruction was realized in social context, and, therefore, teachers would have 
difficulty knowing why the approach did not work in their particular situation. 
Furthermore, because classrooms are socially diverse entities, instructional 
approaches that offer recipes for implementation cannot do so for every possible 
encounter. In contrast, we suggest that the products of instructional design research 
should present rich descriptions of the instructional tasks, classroom activity struc- 
ture, tools and discourse that can lead to the development of desirable mathemati- 
cal practices. As Cobb and his colleagues have noted elsewhere (Cobb, Stephan, 
McClain, & Gravemeijer, 2001), the pragmatic power of the classroom mathe- 
matical practice lies in the fact that being able to anticipate the learning route of 
each of 25 individual students is not feasible for a teacher. One can, however, think 
of guiding the discourse and tool use of a class in a way that allows for, and capi- 
talizes on, the diversity of students' thinking. Therefore, the hypothetical learning 
trajectory in chapter 4 and the resultant instructional theory outlined in this chapter 
can be thought of in collective terms. The learning route is that of a class, not of 
individual students. Therefore, we present the resulting instructional theory on 
measuring and arithmetic in this chapter, noting that these theories were designed 
using the mathematical practices as the backdrop. In other words, the designer uses 
the analysis in chapter 5 detailing the mathematical ideas and discussion topics that 
became taken-as-shared measurement practices to formulate the rationale and 
intent of the resulting instructional theory found in this chapter. To summarize, the 
power of the classroom mathematical practice from the standpoint of the designer 
is that the practices serve as the basis for outlining the potential mathematical ideas 
and conversation topics during the enactment of the sequence. The usefulness from 
a teacher's standpoint is that these potential practices can be used to lead a commu- 
nity, rather than individual students, to sophisticated mathematical reasoning. 

Although we describe the sequence in terms of the collective mathematical 
reasoning that can emerge as teachers and students engage in these instructional 
activities, we do not neglect individual students' reasoning. On the contrary, the 
case studies presented a rich account of how two students participated in, and 
contributed to, the emerging practices. Thus, any teacher implementing the instruc- 
tional theory discussed in this monograph can use the theory to anticipate poten- 
tial collective shifts in mathematical discourse that are made possible by students' 
diverse ways of reasoning and of contributing to the emerging taken-as-shared prac- 
tices. The case studies provide examples of students' different ways of reasoning 
that a teacher might expect from her or his own students as the sequence is imple- 
mented in the classroom. The teacher can use these examples to anticipate the contri- 
butions from students that she or he wants to draw on in classroom discussions. 
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Theme 2: Documenting the Role of Tools with a Chain of Signification 

A second, but related, theme from the literature review was that of documenting 
the interplay between the development of meaning and that of symbolizing and tool 
use. The rationale for this aspect of the analysis reflected the growing realization 
in the mathematics education research community that learning does not occur apart 
from reasoning with symbols and tools. Further, much of the prior literature on 
students' development of measuring conceptions attributed a limited role to 
reasoning with measurement tools. Given that measuring inherently involves using 
both conventional and nonconventional measurement devices, this study offers an 
opportunity to investigate the role of tool and symbol use in students' mathematical 
development. Along with Meira (1998), we use the word tool to mean any physi- 
cal device, such as a ruler, computer microworld, or a calculator, and the word 
symbol to refer to semiotic systems, such as graphs, tables, icons, or drawings. 

A review of the emergence of the classroom mathematical practices reveals that 
the use of tools and symbols was integral to the mathematical activity of the 
community. As figure 6.1 illustrates, the emergence of the first four mathematical 
practices occurred as students acted with different tools and symbols (see Figure 
6.1). As indicated by the transition from the fourth to the fifth mathematical prac- 
tice, however, a new mathematical practice can emerge as students reason with the 
same tool. Recall from the analysis that the transition from the fourth to the fifth 
practice involved shifting from measuring with the measurement strip to reasoning 
with specified quantities-spatial extensions-on the measurement strip. Thus, as 
the taken-as-shared function of the measurement strip changed, a new mathemati- 
cal practice arose. The analysis makes clear that the communal learning, the emer- 
gence of mathematical practices, did not occur apart from reasoning with tools. In 
the previous analysis of classroom mathematical practices, however, the focus was 
on coordinating individual and social perspectives to give a full account of learning, 
with explicit focus on the role of tools in this process fading into the background. 
In this section, we bring the evolution of tool use to the fore by elaborating the taken- 

CLASSROOM MATHEMATICAL PRACTICES 

1. Measuring by covering distance 

2. Partitioning distance with a collection of units 

3. Measuring by accumulating distance 

4. Measuring with a strip of 100 

5. Reasoning with a strip of 100 

Figure 6.1. The evolution of the classroom mathematical practices. 
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as-shared meaning that developed as students reasoned with a variety of tools. To 
do so, we detail both the meaning and the taken-as-shared goals and purposes that 
evolved. Such an analysis is crucial for documenting the taken-as-shared imagery 
and activity with tools that are part of the measurement instructional theory 
presented at the end of this chapter. 

In this teaching experiment, the general notion of a ruler-that is, the general 
form and structure of a ruler although without the inch markings of a conventional 
ruler-served as the overarching model (Gravemeijer, 1998). As described in 

chapter 4, a model can take many forms throughout an instructional sequence. One 
way to describe the various manifestations of a model is to describe the evolving 
taken-as-shared meanings associated with the use of the tools and symbols. Cobb, 
Gravemeijer, Yackel, McClain & Whitenack (1997) and Gravemeijer (1998) both 

suggest documenting this evolutionary process by describing the emergence of a 
chain of signification. A chain of signification, as described by Walkerdine (1988), 
captures the process by which taken-as-shared activity with symbols and tools 
comes to signify the use of another. When one symbol or tool comes to signify a 

previous symbol or tool, Walkerdine states that one serves as a signifier for the other. 
This relationship forms a signified-signifier pair and constitutes a link in a more 

global chain of signification. For example, in the measurement sequence, students 
initially paced the length of items and subsequently made records of this activity, 
for example, when the teacher placed masking tape to mark each pace. Thus, the 
first signified-signifier combination that became constituted as the first mathe- 
matical practice emerged involved pacing and records of pacing (see Figure 6.2). 

signifier) record of pacing 
sign1 

pacing signified) 

Figure 6.2. The first link in a chain of signification. 

More specifically, distance, as structured by records of paces, served as the signi- 
fier for pacing. As we learned from the analysis of the classroom mathematical prac- 
tices, distance was initially something to be filled by paces and then by records of 
paces. Thus, as the first mathematical practice emerged, records of paces came to 
signify pacing activity. 

Figure 6.2 illustrates that the first link in the chain of signification is that between 
records of pacing and pacing, designated as {Irecords of pacing/pacing }. As Cobb 
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et al. (1997) note, one advantage of identifying a chain of signification is that a 
signifier-signified combination can, in turn, be signified by other symbols as the 
interests of the community change. Specifically, in the instance of the measure- 
ment sequence, the constitution of the first link in the foregoing (Figure 6.2) devel- 
oped as the interest of the class involved deciding how one could measure with one's 
feet in accurate and spatially legitimate ways. As students measured with the foot- 
strip, the taken-as-shared interests of the community changed and a second mathe- 
matical practice emerged that involved partitioning distance with a collection of 
units. No longer were students concerned only with measuring and counting single 
units; the taken-as-shared purpose of the community changed to partitioning 
distance with collections of units-in the footstrip tool-that could not be physi- 
cally separated. As this practice was constituted, a second link in the chain of signi- 
fication was established and can be illustrated as shown in Figure 6.3. In this case, 
the footstrip served as a signifier-signifier 2-for the first signified-signifier 
pair. Walkerdine (1988) uses the word sign to refer to a signifier-signified pair. 
Thus, { record of pacing/pacing)I constitutes the first sign, which is signified by the 
taken-as-shared activity and purposes for measuring with the footstrip. 

footstrip 	 signifier2 

record of pacing - signifier) 
sign) / signified2 

pacing 	 signified1 

sign2 

Figure 6.3. A second link in the chain of signification. 

As the first and second mathematical practices emerged, the chain of significa- 
tion exemplified in Figure 6.3 was constituted. These links were constituted as 
students discussed their interpretations of the result of measuring. As this link was 
constituted, the relationship between the signifier and the signified was not one in 
which one symbol merely replaced the other. Rather, the mathematical practices 
became established as students reasoned with subsequent tools and as the commu- 

nity's interests changed; this outcome, in turn, changed the nature of the activity 
with previous signifieds; thus, the nature of distance evolved for students. In this 

way, signified entities are said to slide under succeeding signifiers rather than be 
masked or replaced by them (Cobb et al., 1997; Walkerdine, 1988). As students 
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measured with the footstrip, mentally structuring distance into composites of 5 
became taken-as-shared. Measuring became divorced from activity, that is, the idea 
was taken-as-shared that a numeral, such as 25 paces, signified the measure of a 

spatial extension apart from physically measuring to create the measure. Therefore, 
as students measured with the footstrip, not only did the idea become taken-as- 
shared that the footstrip signified the previous sign, but also the nature of distance 
again evolved. This example illustrates the interplay between the taken-as-shared 
mathematical activity of the classroom community and their evolving taken-as- 
shared symbolic meanings. In other words, as the mathematical practices evolved 
and the interests of the community changed, new links in the chain of significa- 
tion emerged. 

A second chain of signification began to emerge when the teacher introduced 
the smurf scenario. We say that a new chain began because the background 
scenario changed from measuring with feet and collections of feet to measuring 
with single Unifix cubes for the purposes of helping smurfs perform their measuring 
tasks. Also, the initial tasks in the new scenario recapitulated the first chain; the 
new scenario began with iterating single units and moved to iterating collections 
of units. At the beginning of this scenario, students used Unifix cubes as substi- 
tutes for food cans. The understanding that a measure, say, 27 cans, signified the 
length of an item became taken-as-shared fairly quickly. Thus, the first link in the 
second chain consisted of food cans signified by Unifix cubes (see Figure 6.4). 

Figure 6.4. The beginning of a second chain of signification. 

The fact that this link was constituted fairly quickly can be explained by taking 
note of the students' participation in prior mathematical practices during which the 
first chain of signification was constituted. Recall that we had attempted to intro- 
duce the smurfs scenario earlier, prior to the students' construction of the footstrip. 
When we did so, it became apparent that most students had difficulty taking a 
measure, such as 41 cans, as a given for the height of a wall in the smurf village. 
We conjectured that the inability of the class to take the result of measuring--41 
cans-as a given for the length of an item was taken-as-shared; rather, measuring 
was grounded in the activity of iterating, that is, iterating to create the measure 41 

Unifix cubes------------signifier 

food cans-------------signified 
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cans. As the students engaged in activities where they iterated the footstrip and 
participated in discussions where interpreting the result of measuring was an 
explicit topic of conversation, the second mathematical practice emerged. As 
discussed previously, distance was no longer something to be covered with an exact 
number of footstrips. Rather, as the second mathematical practice was established, 
the fact that the results of measuring could be divorced from the activity of counting 
became taken-as-shared. Twenty-five signified the number of times that one would 
pace to measure the length without actually carrying out the action. In other words, 
25 specified an amount of distance that could be measured, or a potentially measur- 
able distance. Therefore, as the link between the footstrip and its signified became 
established, the nature of distance evolved such that taking a measure, such as 41 
cans, as a given for the length of an object was now taken-as-shared. The first time 
we introduced the smurf scenario, only the first link of the chain (see Figure 6.2) 
had been established. At that point, the idea was taken-as-shared that distance signi- 
fied something to be covered in activity, something to be created by physically 
measuring. For that reason, the introduction of the smurf scenario was inappropriate 
at that point, and the students engaged in activities with the footstrip. In that way, 
the constitution of the first chain of signification was integral to the emergence of 
the second chain (see Figure 6.5). 

As the instructional activities changed from measuring with individual cubes to 

iterating a smurf bar, measuring by accumulating distances emerged as the third 
mathematical practice. Further, issues that emerged as topics of conversation now 
focused on the students' interpretation of distance rather than their method of 

measuring per se. For example, the students were asked to describe how they inter- 

preted a measure, such as 20. Many students explained that 20 was the distance 
accumulated by iterating a bar twice and saying, "ten and ten is twenty." Thus, the 
interests and activity of the community had changed from finding methods of 

footstrip -  signifier2 

record of pacing- -- signifier) 

pacing -  signified) 

sign2 CHAIN 1 

signs / signified2 

Unifix cubes  signifier) 
signs CHAIN 2 

food cans - signified) 

Figure 6.5. The emergence of two interrelated chains of signification. 
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iterating and counting to solve the measuring dilemmas of the smurfs to interpreting 
and organizing distance in measures of tens and ones. As this third mathematical 
practice was established and the interest of the class changed to describing partic- 
ular ways of organizing distance mathematically, a further link in the chain of signi- 
fication was formed. Now the food can-Unifix cube combination, designated as 

{food cans/Unifix cubes }, became signified by the smurf bar (see Figure 6.6). 

signifier2 smurf bar 

sign2 Unifix cube signifier) 
sign1 / signified2 

signified, food cans 

Figure 6.6. A second link in the second chain of signification. 

The first chain of signification, involving the footstrip and pacing, was also para- 
mount to both the food can-Unifix cube link and the constitution of the link 
between the smurf bar and the food cans or Unifix cubes. As students measured 
with the footstrip, distance was structured in collections of 5 and single paces. As 
a result of discussing their engagement in these activities, measuring became 
divorced from pacing activity and this way of reasoning about and structuring 
distance became taken-as-shared in the classroom community. Because of this 
historical construction of an understanding of distance, measuring with single 
Unifix cubes became taken-as-shared almost immediately. Further, iterating a 
collection of 10 cans was, in some sense, similar to measuring with a collection of 
5 paces. Although the number in the collection was different-10 instead of 5- 
the underlying image of distance as divorced from physically measuring was the 
same in the context of the smurfs. Thus, the first chain of signification was para- 
mount to the emergence of both the first and second links of the second chain of 
signification (see Figure 6.7). 

The link between the smurf bar and the food cans or Unifix cubes was consti- 
tuted as the third mathematical practice, measuring by accumulating distances, 
emerged. The emergence of the third mathematical practice signals a shift in the 
interests of the classroom community. The interest had changed from simply 
discussing how to count paces to structuring distance into collections of tens and 
ones, for example, 20 is two tens. At the beginning of the instructional sequence, 
the interest of the community was on how to physically measure an item. Now the 
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Figure 6.7. An emerging chain of signification. 

interests and conversations focused on organizing and structuring distance mathe- 

matically. Thus, the meaning of the previous sign combinations evolved once the 
second chain was established. Further, the nature of distance evolved, in that now 
the result of measuring signified an accumulation of distance. 

As the fourth practice of measuring with a strip of 100 emerged, two new signi- 
fying links were formed. First, in the fourth practice, the recognition became 
taken-as-shared that measuring with the 10-strip served as a symbolic record of iter- 

ating a smurf bar. Recall that this meaning emerged as students discussed the utility 
and meaning of marking each successive food can on their strips. The interests of 
the students again had changed from measuring by iterating a bar to finding an effi- 
cient and useful way of marking the 10-strip so that it could be used as a measuring 
device without the presence of any Unifix cubes. Then the purpose of their 

measuring and discussions was to find ways of both structuring distance with the 

10-strip and coordinating measuring with tens and ones by accumulating distances. 

Although their practical goals were to find the measure of objects in the smurf 
village, their mathematical goals had changed to interpreting and refining their 
methods of counting their iterations of the 10-strip. A link was thus formed in which 

measuring with a 10-strip came to signify the meanings associated with iterating 
a smurf bar (Figure 6.8). 

1 O-strip ---------------------signifier3 

smurf bar.......----------------------. signifier2 
sign3 

Unifix cubes.---------.signifier sign2 I signifier3 
sign1 / signified2 

food cans--------signifiedJ 

Figure 6.8. A new link in the second chain of signification. 

Chain 1 

{food cans.-----------.Unifix cubes)}----------. smurf bar (Chain 2) 
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Measuring with the 10-strip soon gave way to the more efficient 100-strip and 
came to be signified by the results of measuring with the 100-strip. This new link 
again involved a shift in the purposes of measuring for the community. Instead of 
finding methods of iterating a tool to measure, now the agreement became taken- 

as-shared that the purpose of their measuring was to develop a way to interpret 
measuring with a strip that they did not need, for the most part, to iterate. Recall 
from chapter 4 that students often looked back (Pirie & Kieren, 1994) to measuring 
with smurf bars to interpret measuring with the 100-strip. Thus, the history of 
evolving links is strong, in that new links may be formed by drawing on mathe- 
matical practices formed in several previous links, not just the one immediately 
preceding it. As the fourth practice was established, the understanding became 
taken-as-shared that distance signified a partitionable unit that could be structured 
in collections of tens and ones. Further, the idea was taken-as-shared that distance 
had the characteristic or property of a measure that was independent of physically 
iteration. Laying down the measurement strip simply specified the item's measure. 
Thus, the global chain of signification that emerged over the course of the measure- 
ment sequence can be pictured in its entirety as in Figure 6.9. 

The transition from the fourth to the fifth mathematical practice involved a shift 
from measuring with the measurement strip to reasoning with the measurement 
strip. This transition in practices and interests signaled a shift in the taken-as-shared 
understanding of distance. Now students specified spatial extensions of items on 
the strip and reasoned about the differences between lengths and heights. Following 
Saxe (1991), this transition can be seen to involve a form-function shift, in that now 
the function of the measurement strip has changed from measuring to reasoning. 
This form-function shift is also consistent with the "model of-model for" transi- 
tion described by Gravemeijer (1994). 

measurement strip 

10 strip 

footstrip smurf bar 

record of pacing Unifix cubes 

pacing food cans 

Both dotted and full lines indicate the constitution of a signifying relationship. 
The dotted lines indicate an instance of one signified sliding under a new signi- 
fier. The two arrows indicate the places where the chain associated with the king 
scenario influenced the second chain (recall Figure 6.7). 

Figure 6.9. The global chain of signification. 
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Again, an important point to note is that the shift from measuring to reasoning 
with the measurement strip coincided with a change in the interest of the classroom 
community. The taken-as-shared goals shifted from measuring an item to finding 
ways to interpret and use the measurement strip to make comparisons among 
spatial extensions. This outcome is indicative of a general pattern: As the interests 
of the community change, that is, become more mathematical, new links in the chain 
of signification evolve. The realization is imperative that Figure 6.9 incorporates 
not only the change in physical tools but also the evolution of classroom mathe- 
matical practices and taken-as-shared interests and purposes that accompany new 
symbolizations. 

Although the focus of the analysis in chapter 5 ended with students' construc- 
tion of, and reasoning with, the measurement strip, two more tools were created 
and used by the students: the measurement stick and the empty number line. We 
have not included these two tools in the global chain of signification because we 
have not conducted formal analyses of the mathematical practices and taken-as- 
shared goals associated with using these two tools. We have, however, conducted 
an informal analysis to anticipate how or whether we can include these tools 
within a hypothetical learning trajectory. We discuss the importance of these two 
tools in two subsequent sections of this chapter: "Generalization" and "Revisions 
to the Sequence." 

A semiotic analysis of this type brings to light the role that tools play in support- 
ing students' learning along with the mathematical practices that are constituted 
during the evolving semiosis. Furthermore, the analysis emphasizes the evolving 
purposes and goals of the community that accompany the transitions involving 
new tools. Such an analysis brings to the fore the taken-as-shared symbolizations 
and meanings that accompany the mathematical practices and the taken-as-shared 
interests that evolve as the practices are constituted, both important aspects of class- 
room mathematical practices (Cobb, 1999). An additional benefit of the chain-of- 
signification analysis is that the analysis can shed light on why certain tools can 
be included or omitted in an instructional sequence. For instance, when we 
designed the initial measurement sequence, we did not intend to have students 
reason with a footstrip. The chain of signification indicated, however, that the 
taken-as-shared learning that emerged as students acted with the footstrip was para- 
mount in the sequence of the use of two tools, the 10-strip and the measurement 

strip, that is, the 100-strip. Thus, the measurement sequence has now been modi- 
fied to include the footstrip and other revisions as described in a subsequent section 
of this chapter. 

Theme 3: Design Research 

A third issue from the literature review concerns the relation between research 
and instructional design. Chapter 2 indicated that a number of the prior measure- 
ment studies used training methods to support students' development of measuring 
conceptions. Typically, researchers who engaged in training studies drew on 
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Piaget's cognitive theory to derive training tasks. Instruction on these tasks was 
then implemented, and the students were assessed to determine whether the training 
instruction had been effective (see Figure 6.10). 

(Piaget's developmental) theory -- training procedure -- measured outcomes 

Figure 6.10. Training procedures. 

The linearity in Figure 6.10 is based on a one-way process in which experimenters 
list a set of hypotheses prior to the study and then test their conjectures with 
pretests and posttests. The account of students' learning given in training studies 
provides evidence only as to whether the hypotheses were proved. In contrast, 
although developers who are engaged in the Design Research paradigm also make 
conjectures that are tested and revised, their intent in research is to construct the 
means of supporting development rather than to determine whether a conjecture 
was proved true or false. 

The iterative cycles of Design Research can be viewed at two levels. At a global 
level, the first phase of a cycle begins when designers anticipate a global learning 
trajectory-rather than specific instructional activities---on the basis of results from 
previous research. Then the designers carry out an initial thought experiment in 
which they envision what students might learn as they participate in instructional 
activities, the quality of discourse and mathematical practices that supports learning, 
and the evolving cascade of inscriptions (Latour, 1990) or potential chain of signi- 
fication (Walkerdine, 1988). Gravemeijer (1999) notes that in conducting this 
thought experiment, the developers formulate conjectures both about students' 
mathematical development and about the means of supporting it. In the second 
phase, the research team carries out a classroom teaching experiment in which the 
initial conjectures concerning the realization of the proposed sequence are tested 
and revised in action. Once the classroom teaching experiment concludes, a retro- 
spective analysis, such as the one described in chapter 5, is conducted to inform 
the designers of any unanticipated interpretations that arose in the social setting of 
the classroom. 

One interesting aspect of Design Research is that it is inherently recursive in 
nature. At a microlevel, daily minicycles are enacted during the research phase. For 
example, as the measurement teaching experiment took place, researchers used 
informal analyses of students' mathematical reasoning to make decisions about 
daily revisions of the instructional activities. Consequently, the resulting instruc- 
tional sequence was shaped by our daily analyses of students' mathematical 



Koeno Gravemeijer, Janet Bowers, and Michelle Stephan 115 

activity, which were made against the backdrop of a conjectured learning trajec- 
tory. Further, revisions to the sequence shaped students' subsequent mathematical 
activity. Therefore, we can now augment the initial Design Research figure intro- 
duced in chapter 2 by adding the minicycles shown in Figure 6.11. 

Figure 6.11. Minicycles in Design Research. 

In summary, the documentation of the mathematical practices that became 
taken-as-shared in the community provided an account of the instructional sequence 
that emerged as a consequence of these daily modifications. As we documented 
the emergence of the mathematical practices, we took care to describe our role in 
the enactment of the instructional sequence. Where appropriate, we provided 
information concerning our conjectures about students' understanding and our 

subsequent decisions concerning further instructional activities to clarify our role 
in supporting students' learning. The analysis of the mathematical practices gave 
a situated account of the learning that was tied to students' participation in prac- 
tices as they reasoned with tools. Thus the account of students' learning presented 
in this monograph was integrally tied to the means of supporting that learning. These 
analyses have led us to initiate a new cycle of Design Research by describing our 
revised sequence. 

informal analyses 

revisions 

a) Minicycles consisting of informal analyses and revisions 
to the instructional sequence. 

Instructional design Classroom-based research 

informal analyses 

rXXXsXX 

b) Revision of the graphic with minicycles consisting of informal analyses and 
revisions to the instructional sequence. 
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REVISIONS TO THE SEQUENCE 

In this section, we first describe three revisions to the sequence and their accom- 
panying rationales. We then present a table that incorporates our instructional design 
theory by listing the imagery, taken-as-shared interests of the community, and 
potential topics for discourse for each tool in the revised sequence. Our goal in 
constructing this table is to develop a heuristic for others attempting to envision a 
hypothetical learning trajectory. 

Revision 1: The Introduction of the Footstrip 

The genesis for this revision occurred the first time we introduced the smurfs 
scenario and asked students to show the height of a wall with Unifix cubes. Our 
intention was to use pacing activities only as a setting to introduce the idea of 
measuring. We conjectured that students would move easily from pacing to activ- 
ities with the Unifix cubes, but, as documented in the analysis, they did not. We 
found that taking the result of measuring with the food cans as a given was not taken- 
as-shared, that is, the quantity of 41 cans did not signify the result of measuring 
but rather was created by physically pacing. As a consequence, we conjectured that 
if students engaged in activities in which they iterated collections of paces symbol- 
ized on paper-the footstrip--instead of measured with units that were parts of their 
bodies, taking the result of measuring as a given might become taken-as-shared. 

Revision 2: The Construction of the Measurement Strip 

During one activity in the teaching experiment, two students recorded each iter- 
ation of 10 on a piece of adding machine tape that signified a piece of wood that 
had to be cut 30 cans long (see Figure 6.12). The teacher used this incident to 
suggest that a piece of paper would be much easier to carry around than the smurf 
bar, which was 10 connected Unifix cubes, and asked the students to make a strip 
50 cans long as a new measurement tool. The students made a strip of 50, but they 
marked only the decades, as described in Nancy and Meagan's case studies. The 
reason these students may not have felt the need to make marks for individual cubes 
may have been that they were making a record of the activity of iterating the entire 
smurf bar. So when they were measuring with the strip of 50, the students could 
have intended to use individual cubes to measure the ones, just as they had done 
with the smurf bar. 

10 20 30 

Figure 6.12. Student's record of iterating tens. 
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The teacher later asked the students to make a strip 10 cans long that could replace 
the smurf bar, in contrast with the student-initiated tool that arose from the students' 
efforts to stop iterating the smurf bar. At this point, some of the students did draw 
marks for the individual cubes because, when they were measuring with the smurf 
bar, they could measure with either the whole bar or the individual cubes on an as- 
needed basis. Hence they reasoned that if they were going to replace the bar, they 
would need marks for individual cubes. This reasoning led naturally to the construc- 
tion of the measurement strip of 100, which was introduced by taping 10 ten strips 
together in the context of a discussion on measuring with ten strips. 

Revision 3: The Diminished Role for the Measurement Stick 

As part of our hypothesized learning trajectory outlined in chapter 4, we antic- 
ipated a transition in measuring activity from reasoning with a measuring strip to 
reasoning with a measuring stick (see Figure 6.13). An analysis of the teaching 
experiment, however, led us to diminish the role of the measurement stick in the 
revised teaching experiment. We learned that the measurement stick was not 
needed to help support the transition from reasoning with the strip to reasoning with 
the empty number line. One reason was that the measurement stick was not needed 
to introduce tasks concerning incrementing, decrementing, and comparing. As the 
students engaged in such activities, they reasoned with the measurement strip in a 
natural way. In fact, when the measurement stick was introduced, several students 
had difficulty reading the unit measures. For these reasons, we suggest that its use 
be limited or eliminated altogether as teachers and researchers initiate a new 
Design Research Cycle. 

Revision 3: The Diminished Role for the Measurement Stick 

Conclusions 

Taken together, these three revisions serve as a paradigm case of the feedback 
mechanism found in the Design Research Cycle. In other words, the daily and retro- 

spective analyses of students' learning in situ provided feedback to inform the 

designer of revisions to the instructional sequence. After reflecting on these revisions, 
we were able to create table 6.1, which serves as the outline of our measurement- 
instruction theory. This table was created using the analyses of classroom mathe- 
matical practices and chains of signification as a basis. Specifically, the cascade 
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of tool-use and taken-as-shared purposes of the community as they acted with these 
tools formed the basis for the first three columns, whereas the analysis of mathe- 
matical practice shaped all columns, but mainly the last. 

Table 6.1 
Overview of the Proposed Role of Tools in the Instructional Sequence 

Tool Imagery Activity/Taken-as- Potential mathematical 
shared interests discourse topics 

Feet 
(heel to toe) 
Masking 
tape 
Footstrip 

10-strip 

Record of activity 
of pacing 
Record of pacing 
(builds on masking 
tape) 

(form-function 
shift:using a record 
of pacing as a tool 
for measuring) 

Signifies measur- 
ing tens and ones 
with the smurf bar 

Reasoning about 
activity of pacing 
Measuring with a 
"big step" of five = 
measuring by iterating 
a collection of paces 

Measuring by creating 
a stack of Unifix cubes 

Measuring by iterating 
a collection of 10 
Unifix cubes; 

structuring distance 
into measures of tens 
and ones 

Measuring by iterating 
the 10-strip, and using 
the strip as a ruler for 
the ones 

Focus on covering distance 

Measuring as divorced from 
activity of measuring; 

structuring distance in col- 
lections of fives and ones 

Builds on measuring divorced 
from activity of iterating 

Accumulation of distances; 

coordinating measuring by 
tens with measuring by ones 

Accumulation of distances 

Smurf cans Stack of Unifix 
cubes signifies 
result of iterating 

Smurf bar Signifies result of 
iterating 

Measuring 

Measure- Signifies measuring 
ment strip with 10-strip; 

starts to signify 
result of measuring 

(form-function shift 
inscription devel- 
oped for measuring 
is used for scaffold 
ing and communi- 
cating) 

(1) measuring: 
strip alongside item; 
counting by tens and 
ones 

Reading of endpoint 

(2) Reasoning 
about spatial extensions 
(results of measuring 
have become entities in 
and of themselves) 

Distance seen as already 
partitioned; extension 
already has a measure 

Part-whole reasoning; 
quantifying the gaps be- 
tween two or more lengths 

Shift in focus: focus on 
number relations; developing 
and using emergent frame- 
work of number relations 

Empty 
number line 

Signifies reasoning 
with measurement 
strip 

Means of scaffolding 
and means of communi- 
cating about reasoning 
about number relations 

Numbers as mathematical 
entities (numbers derive their 
meaning form a framework 
of number relations) 

Various arithmetical strategies 
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GENERALIZATION 

At the end of a Design Research Cycle, what can be taken from the experience? 
In other words, what, if anything, from the measurement classroom teaching experi- 
ment generalizes beyond this one enactment of an instructional sequence? In our 
view, at least two aspects of this study generalize beyond Ms. Smith's first-grade 
classroom: (1) an instructional theory on linear measurement, and (2) theoretical 
innovations regarding Design Researching and analyzing learning in social context. 

Measurement Instructional Theory 

One of the most, if not the most, important products of a series of design exper- 
iments is the generation of an instructional theory for a specific mathematical 
content area that can be used by classroom teachers. After all, one of the main 
commitments of Design Researchers is to test and revise an instructional theory 
with the goal of producing a viable theory that can be adapted by classroom 
teachers. We suggest that the Measurement Instructional Theory outlined in this 
monograph and summarized in Table 6.1 can be generalized. We are very delib- 
erate when we claim that the instructional theory, versus an instructional sequence, 
generalizes. One of the main problems with claiming that a sequence generalizes 
is that researchers expect that if teachers follow their instructional recipes, they will 
obtain the same learning results in their classrooms. We believe that no instruc- 
tional sequence or curriculum materials can be written so that if the teacher follows 
directions precisely, the teacher will obtain the same results attained in the measure- 
ment experiment. The reason for this discrepancy is that classrooms are, by nature, 
idiosyncratic entities with a wide range of students with diverse backgrounds and 
abilities. Therefore, we would never expect that the measurement sequence would 
generalize and produce exactly the same learning results in a variety of classrooms. 
Rather, we propose that what can be generalized is the measurement instructional 
theory-the ideas embodied in table 6.1 -that express the potential tools, discourse, 
mathematical activity, and imagery that can be integrated to support students' under- 
standing of linear measurement. Individual teachers, who are familiar with the diver- 
sity of their particular classrooms, should use the results of our measurement 
experiment as a guide to develop their own hypothetical learning trajectories 
specific to the needs of their students. More specifically, we see three aspects that 
teachers should consider when designing hypothetical learning trajectories for their 
own classrooms: 

1. How the students are expected to act and reason with the tools 

2. How this activity relates to the preceding activities 
3. The relevant mathematical concepts and the students' conceptual development 

in relation to them 

Our overall goal is that as different teachers develop their own ways of adapting 
the Measurement Instructional Theory to their classrooms, the results-their own 



120 Continuing the Design Research Cycle 

personal instructional theories on measurement-can be shared with others so that 
they contribute to the overall strengthening of the instructional theory developed 
in this monograph. In other words, the creating, testing, and revising of measure- 
ment instructional theories by other teachers and researchers constitutes another 

phase of the Design Research Cycle and contributes to the research that began in 
this measurement teaching experiment. 

Theoretical Innovations 

A second aspect of this measurement experiment that we contend can be gener- 
alized is certain theoretical and practical ideas about designing instruction and 

analyzing learning in situ. Ideas, such as the methodological approach to analyzing 
students' learning in context, involving using Toulmin' s model of argumentation 
(chapter 3) and Walkerdine's chains of signification can be used by other 
researchers who are interested in conducting similar types of analyses. 
Furthermore, the processes involved in designing instruction, such as developing 
hypothetical learning trajectories, can be further developed by other researchers 
who wish to conduct design experiments. Already, several of the authors of this 

monograph have used the ideas developed in this analysis to design and conduct 

experiments in differential equations and algebra (Stephan & Rasmussen, in 

press; Presmeg et al., in press). These new studies show that not only can the ideas 
in this monograph be used to conduct new research but the new research has served 
to modify the original theoretical ideas here presented. For example, as a result 
of our experiences analyzing the mathematical practices from the measurement 
experiment, the methodology for documenting classroom mathematical prac- 
tices has now been expanded (see Stephan & Rasmussen, in press). Therefore, the 
theoretical and practical innovations described in this monograph are already being 
generalized and used by ourselves and other researchers who are engaged in 
similar research. 

CONCLUSION 

In this chapter, we have revisited the three themes of the monograph in terms of 
the Design Research methodology. First, we made the point that classroom-based 
analyses, such as those found in chapter 5, that document learning in social context 
provide teachers with the details for implementing an instructional sequence in their 
own classrooms. Teachers may draw on both the classroom mathematical practices 
and the diversity of students' participation in these practices to design hypothetical 
learning trajectories that fit their classroom situations. Furthermore, we argued that 
being able to conjecture about 25 individual learning trajectories is not feasible for 
a teacher and that the classroom mathematical practice provides the teacher a way 
to support the learning of a community. These types of analyses satisfy two of the 
three criteria that Cobb outlined in chapter 1, that an analytic approach should make 
possible the documentation of both the collective mathematical learning and the 
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mathematical reasoning of individual students as they participate in the practices 
of the community. 

Second, we used the notion of a chain of signification to analyze the tool use that 
coincided with the evolving interests and mathematical practices of the first-grade 
classroom. We stressed that the chain provides an account of the history of the 
evolving meaning associated with the formation of signifying links. The chain and 
associated practices were pragmatically useful in that they provided a backdrop 
against which to make revisions to the instructional sequence and to elaborate the 
Measurement Instructional Theory (Table 6.1). We have therefore satisfied Cobb's 
(chapter 1 of this monograph) criterion that an analytic approach should feed back 
to inform researchers in the improvement of instructional designs. We presented 
the revisions and resulting instructional sequence on measuring and arithmetical 
reasoning in table form, which included a description of each tool along with the 
imagery, activity, and potential mathematical topics that could possibly arise as the 

sequences are enacted. 
Finally, we argued that the Design Research Cycle, which consisted of succes- 

sive rounds of design, classroom-based research, and socially situated analyses and 
revisions, differs from traditional measurement studies. The difference lies in the 
fact that prior analyses typically focused on pretest and posttest results and seldom 
tied the processes of learning to the training techniques that were employed. 
Another way to state this point is that the learning that occurred in the measure- 
ment training sessions did not account for the socially situated nature of the ex- 

perimentation. Thus teachers have few resources or guides for making adjustments 
to the instruction so that it fits their particular classroom community. One of the 

strengths of Design Research is that the decisions, whether good or bad, of the 
research team and the rationale for daily revisions were articulated during the 
analysis. This reflective process of using students' learning in social context to 
inform practitioners in their daily instructional decisions and retrospective revisions 
is the hallmark of this approach. 
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Chapter 7 

Conclusion 

Michelle Stephan, Purdue University Calumet 

The goals of this monograph were both theoretical and pragmatic in nature. 
Theoretically, we examined three main research questions: (1) How do we char- 

acterize learning, in particular, learning to measure, in terms of both social and indi- 
vidual processes? (2) What role do tools play in supporting students' measuring 
development? (3) How do we account for our presence and influence as instruc- 
tional designers in the learning process? Each of these research questions was recast 
as a theme and explored throughout the monograph's chapters. Stephan, in chapter 
2, used prior research on students' development of measuring conceptions both to 
reveal the motivation for further investigation of each theme and to develop our 
theoretical position on each. Throughout this monograph, the emergent perspec- 
tive was described as a view that coordinates both social and individual aspects of 
learning and takes learning with tools as central to mathematical development. The 

emergent perspective was cast as a view that could expand prior measurement 
studies that did not take social context or tool use into account during analyses. 
Further, the heuristics of Design Research were outlined to describe the instruc- 
tional design theory underlying the research documented in the monograph. Design 
Research was posed as an alternative to design theories used during prior measure- 
ment studies. In the third chapter, we described the methodology that guided the 
analysis presented in the fifth chapter. The analysis consisted of documenting both 
the collective and individual learning of the classroom community and the evolving 
tool use that emerged during the course of the measurement sequence. 

Pragmatically, we hoped to extend prior measurement investigations by outlining 
a potentially viable instructional theory that could be adapted by classroom teachers. 
In the fourth and sixth chapters, Gravemeijer and his colleagues summarized the 

process of conjecturing a possible learning trajectory and using analyses of students' 

learning to revise the measurement sequence both in action and retrospectively. This 

process of experimentation yielded a potentially viable instructional theory on linear 
measurement and arithmetic that consisted of the tools that might be used along 
with the conceptual development that evolves simultaneously. Gravemeijer and 
others went on to describe how teachers might adapt the sequence to their own 
students. 

In the sections that follow, I conclude the monograph by revisiting and clarifying 
some important aspects of each of the three themes. I discuss each theme in turn 
and close the monograph by pointing to future researchable issues. 
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THEME 1: LEARNING AS A SOCIAL AND INDIVIDUAL PROCESS 

The first main theme discussed in the literature review concerned documenting 
students' learning, in particular, of measurement conceptions, as it develops in social 
context. From the literature review, I argued that current research advocates 
building on cognitive analyses of students' measurement development to include 
a social perspective on learning (cf. Bauersfeld, Krummheuer, & Voigt, 1988; 
Krummheuer, 2000; Vygotsky, 1978). Rather than swing from one side of the 
social-versus-individual dichotomy to the other, we advocated a coordination of 
these two perspectives. In this regard, we were indebted to the pioneers of co- 
ordinating social and cognitive perspectives (e.g., Bauersfeld et al., 1988; Cobb and 
Yackel, 1996). Cobb, Stephan, McClain, & Gravemeijer (2001) describe this co- 
ordination best by taking the relation between social and individual perspectives 
as reflexive. The relationship between these two perspectives is extremely strong 
in that one does not exist without the other. 

The analysis presented in the fifth chapter of this monograph was one example 
of such a coordination of perspectives. On the one hand, we took a social perspec- 
tive to document the mathematical interpretations that became taken-as-shared in 
the public discourse. The teacher's and students' interpretations were seen as 
constituting that which became normative in the public domain-a social perspec- 
tive. On the other hand, the case studies presented two students' development- 
an individual perspective-yet their learning was cast as acts of participation in, 
and contribution to, the evolving normative activity. Cobb et al. (2001) offer more 
detail concerning aspects of coordinating these two perspectives. The results, 
however, of the complementary analysis served as documentation of the evolving 
classroom mathematical practices and a diversity of ways of participating in them. 
Coordinating these two perspectives gave a fuller picture of learning than either 
one of the perspectives could do alone. For example, if we presented only the 
analysis of the classroom mathematical practices, one might wonder how individual 
students participated in these practices. Although a mathematical practice is clearly 
a social construct, we emphasized that students' reasonings were considered as acts 
of participation in the practice and constituted the reasoning from which the prac- 
tices arose. Therefore, an analysis of mathematical practices is complemented by 
individual students' reasoning. If we had documented only individual students' 
reasoning, the analysis would not have considered the social environment in which 
these students' learning occurred. As the analysis showed, the reorganizations that 
these two students made did not occur apart from the classroom conversations in 
which they participated. In the next sections, I address some remaining concerns 
about coordinating the two perspectives. 

Mathematical Practices 

I wish to clarify two main points concerning analysis of mathematical practices. 
The first concerns the methodological criteria that one adopts when documenting 
the emergence of mathematical practices. As we detailed in the third and fifth 
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chapters of the monograph, the absence of a backing in students' argumentations 
was one indication that a practice had become established. This statement does not 
imply that any absence of backings suggests that a practice is taken-as-shared. 
Mathematical justification, or backings, must be explored publiclyfirst before they 
can drop out of the discourse and indicate a shift in practices. In other words, the 
absence of discussion about an interpretation does not necessarily imply taken-as- 
shared understanding. When backings that have been debated, however, publicly 
drop out of students' argumentations, then we can agree that this absence has signifi- 
cance. A second indication that a practice is relatively stable is that when a student 
offers a contribution that appears to violate a practice, the other members of the 
classroom treat the proposal as a breach. Methodologically speaking, this statement 
implies that the social and sociomathematical norms must also be relatively stable 
for the researcher to form such conclusions as those mentioned. If students are not 
obliged to explain their thinking or to challenge one another when a difference in 
interpretation occurs, then the researcher cannot assume that the absence of back- 
ings indicates a shift in taken-as-shared learning. 

A second point I wish to clarify concerns the use of a commonly adopted crite- 
rion for judging the establishment of a mathematical practice. Under this criterion, 
a question such as "When do we decide that a mathematical practice is established, 
when 90 percent of the students share the same view?" is asked. We would argue 
that such a question imposes an individual perspective on a social phenomenon. 
To answer the question, one must assess each student' s current cognitive under- 
standing and determine whether 90 percent of the students share a sufficiently 
similar understanding. Our perspective is that a mathematical practice does not 
assume that everyone "shares" an interpretation. In fact, to claim the establishment 
of practices makes no claims about how any individual student is reasoning. 
Rather, the establishment of a mathematical practice means that the community has 
accepted as taken-as-shared an interpretation for the purposes of continued commu- 
nication and progression of its members' reasoning. Therefore, we would not 
consider whether a certain percentage of students shared the same interpretation 
(see also Bowers and Nickerson, 2001). Instead, we analyze the mathematical 
reasoning that becomes normative in the public discourse, using the two criteria 
discussed in the preceding paragraph to determine the collective interpretation that 
is taken-as-shared. 

Case Studies 

The two case studies presented in the fifth chapter document different ways of 
participating in mathematical practices. By documenting these different ways, we 
hoped to account for the diversity of students' reasoning as they participated in, 
and contributed to, the local classroom community. A traditional cognitive case 
study would have documented the shifts in Meagan's and Nancy's reasoning, as 
well, but this evolution would have been cast purely in terms of their cognitive re- 
organizations. In other words, traditional case studies would have done well at 
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documenting the shifts that occurred in students' minds but would not necessarily 
have accounted for the students' development in terms of social interaction. We 

argue that cognitive analyses can be a useful but incomplete account of students' 
development. We presented strong evidence in the fifth chapter to suggest that not 
only did Meagan and Nancy make substantial progress in their thinking, but they 
did so as they participated in their classroom community. Often during the analysis 
of the mathematical practices, we saw that Nancy and Meagan made important re- 
organizations during the course of a whole-class discussion or small-group inter- 
action. Therefore, an analysis that documents only students' cognitive reorgani- 
zations stops short of explaining the context within which these reorganizations 
occurred. In this spirit, the case studies were presented alongside, and sometimes 
within, the analysis of classroom mathematical practices. The practices of the 
community and individual students' reasoning co-evolved, and presenting the two 
analyses together was an attempt to illustrate the simultaneity of social and indi- 
vidual learning processes. 

The Pragmatics of the Coordination 

We have argued theoretically that coordinating social and individual perspectives 
of learning is essential for understanding students' conceptual development. 
Pragmatically, such coordination has important consequences. The analysis of the 
mathematical practices in the fifth chapter not only presented an account of the 
learning of the classroom community but also outlined the emergence of a poten- 
tially powerful instructional theory on linear measurement. The learning detailed 
in the measuring practice analysis summarized the mathematical content that 
emerged during the enactment of the sequence of instruction. This analysis was 
helpful for Gravemeijer and his colleagues, who, in chapter 6, revised the hypo- 
thetical learning trajectory to present an instructional theory on linear measurement. 

Gravemeijer and others were able to draw on the analysis to anticipate both major 
shifts in collective learning and mathematical topics of conversation that can be initi- 
ated by the teacher during the enactment of the measurement sequence. 

The case studies are helpful for teachers who want to enact a similar measure- 
ment sequence, because the studies detail the contributions made by students as the 
sequence is enacted. As I have argued before, diversity in students' thinking is crucial 
for the growth of the community because teachers need to draw from a wide range 
of contributions for productive discussions. Thus the case studies provide teachers 
with differing accounts of students' development and help teachers better anticipate 
students' reasoning that will contribute to their pedagogical agenda. 

THEME 2: TOOL USE AS CENTRAL TO MATHEMATIZATION 

The literature review in chapter 2 first documented, then challenged prior 
research on students' development of measuring conceptions and the role of tools 
in supporting learning. The measurement experiment that is the subject of this 
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monograph was an excellent domain to explore this issue because measuring 
necessarily incorporates the use of physical devices. Had we started the measure- 
ment instructional sequence by presenting students with a conventional ruler and 
taught them how to use it, the students would have experienced the introduction 
of this tool in a top-down manner. The tool would have been something separate 
from their current mathematical experiences, and students would have had to 
create meaning as they decoded the device. Rather, the approach we took used 
informal tools to build on students' existing mathematical understanding and led 
them to progressively construct meaning with several devices prior to the "ruler." 
In this way, the students developed foundational imagery that grew out of their ex- 
perience in a bottom-up manner. At the heart of this approach was the conviction 
that tool use and mathematical meaning develop simultaneously; tool use and 
meaning making were viewed as reflexively related. 

Even though the designer intends for the tools to be experienced in a bottom-up 
manner, this situation does not always occur. For example, recall from chapter 5 
that the first introduction of Unifix cubes as measuring devices was problematic; 
the task called for reasoning with the new tool in a manner inconsistent with the 
existing taken-as-shared reasoning. Thus, the analysis of mathematical practices 
in the fifth chapter and the ensuing chain of signification in chapter 6 were signifi- 
cant in that they described the learning that occurred as students reasoned with tools. 
We have found an analysis that details the emerging chain of signification to be 
more helpful than approaches that neglected the role of cultural tools, both for deter- 

mining the progression of tool use and for documenting the changing interests of 
the classroom. The chain of signification elaborated in chapter 6 detailed the 
evolving tool use more explicitly than previous studies were able to do and docu- 
mented the importance of including several tools that were not originally intended 
for the instructional sequence. 

The chain of signification is important for a second reason. In their chapter, 
Gravemeijer and his colleagues described the emergent-models heuristic that 
undergirds the design of an instructional sequence. The backbone of a sequence 
relies on the idea that students learn as they model their mathematical activity. A 

sequence is typically organized around a global "model of-model for" shift. As 
Gravemeijer and others noted, however, the model can take on different manifesta- 
tions during the realization of an instructional sequence. In the example of the 
measurement sequence, the "ruler," the overarching model, took several forms, such 
as the masking-tape record, the footstrip, the smurf bar, the measurement strip, and 
so on. The chain of signification detailed not only the manifestations and progres- 
sion of the model during the experiment but also the evolving taken-as-shared 

meaning and purposes of the classroom community. Therefore, a chain of signifi- 
cation can be a helpful design heuristic, in that the skeleton of a hypothetical learning 
trajectory can be organized as an anticipated chain of signification. As Table 6.1 
indicated, a sequence can be organized according to the anticipated tools that will 
be used and the imagery and the mathematical activities, interests, and practices 
that correspond to them. 



128 Conclusion 

The analysis of the classroom mathematical practices in the fifth chapter showed 
that students' learning did not occur apart from reasoning with tools. The chain of 
signification provided a detailed account of that learning from the perspective of 
the role that various tools played in students' development of measuring concep- 
tions. This account added to prior measurement studies that did not analyze the role 
that reasoning with tools plays in supporting learning. 

THEME 3: DESIGN RESEARCH 

We have argued throughout the monograph that mathematical practices and 
tools are inseparable aspects of learning. We have also argued that an instruc- 
tional designer capitalizes both on mathematical practices to form a conjectured, 
or realized, learning trajectory and chains of signification to anticipate how a 
model might take on life during instruction. The instructional theory on measure- 
ment as detailed by Gravemeijer and his colleagues in the sixth chapter is the 
product of such analyses and experimentation. The chapters in this monograph 
are the next iteration in the long cycle of experimentation guided by the Design 
Research Cycle described in the second chapter by Stephan. The measurement 
experiment encompasses both phases of the cycle. In the Design Phase, the 
measurement sequence was prompted by and designed to enhance prior instruc- 
tional sequences on arithmetical reasoning. A hypothetical learning trajectory was 
conjectured and subsequently tested in a classroom teaching experiment. The 
Research Phase was the measurement classroom teaching experiment. The experi- 
ment consisted of testing and revising the instructional sequence with a class of 
students and analyzing the learning that occurred as students reasoned with 
tools. This analysis then led Gravemeijer and his coresearchers to make revisions 
to the sequence, the results of which they presented in the sixth chapter, thus 
completing another iteration of the Design Research Cycle. 

That Design Researchers are more than participant observers during experi- 
mentation should be clear by now. In fact, we view our role as proactive in 
shaping the evolving learning that occurs in classrooms. As such, the analyses in 
this monograph tied students' development to the decisions the researchers made 
during experimentation. In other words, our accounts of students' learning were 
tied to the means by which we supported that learning. This type of account 
provided a clearer picture as to the reasons instruction was changed during and 
subsequent to experimentation. Thus Design Researchers, one of whom is the 
classroom teacher, have an important role in shaping the mathematical practices 
of the classroom community, and this role, from a design perspective, was high- 
lighted and accounted for during the analysis. This type of analysis stands in 
contrast with prior measurement studies that focused on whether students scored 
better on tests after measurement training was conducted (see Stephan, chapter 2 
of this monograph). 

Finally, if we take seriously our contention that learning is inherently social in 
nature, then we must emphasize that the measurement sequence is not replicable 
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in its purest sense. Social perspectives on learning warn us that each classroom is 
a different social setting and that an instructional sequence can be realized in a 

variety of ways. Rather than view this warning as a negative, Gravemeijer and his 

colleagues argued in chapter 6 not to expect the instructional sequence to be replic- 
able. Instead, they detailed a potential instructional theory that teachers should adapt 
to their particular setting by formulating their own hypothetical learning trajecto- 
ries. To aid in this endeavor, Gravemeijer and others detail the mathematical ideas 
that can arise for students as they engage in the sequence rather than provide teachers 
with a list of activities or tools that they can use during instruction. The importance 
of such a description is that it organized instruction on the basis of students' 
thinking rather than mathematical content and it viewed the teacher as a profes- 
sional decision maker rather than an invariant of the social context. 

UNEXPLORED TERRITORY 
Throughout this monograph we have examined a variety of research subjects, 

including investigating the role that social situations, tools, and designers play in 

supporting students' mathematical development. In particular, we explored these 
issues in the context of an investigation in a first-grade classroom that engaged in 
a measurement instructional sequence. Consequently, we were able to not only 
examine theoretical ideas but also develop an instructional theory in the domain 
of linear measurement. For all our ambitious efforts, we are aware that we have 
underemphasized important aspects of classroom life. For example, although we 
detailed the decision-making process of the researchers-who included the 

teacher-during experimentation, the role of the teacher was not examined to its 
full potential. Whereas powerful mathematical tasks and tools are important for 
supporting learning, a teacher who understands the mathematical intent of these 
components is more important. As seen during the analyses in this monograph, the 
teacher was very skilled at initiating and guiding classroom discourse to bring math- 
ematically sophisticated ideas to the forefront. An analysis of this teacher's peda- 
gogical practices is vital to understanding the way in which the teacher makes on- 
the-spot decisions that can promote sophisticated discourse and, therefore, learning. 

Another area that should be further explored following this study is the role that 
students' participation in outside cultural practices played in supporting their 
measuring development. For example, students participate in measuring practices 
at home or in other outside-of-school environments. Furthermore, we defined social 
at the outset to mean social interactions at the level of the classroom, not as one'9s 
social status in the world. An interesting exploration would investigate how 
students with diverse societal backgrounds participated differently in the classroom 
mathematical practices. Although these lines of investigations were beyond the 
scope of this study, we believe they are extremely important aspects of classroom 
life and that understanding them would foster a stronger measurement instructional 

theory. 
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