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Preface

Over the last few decades the role of statistics in the evaluation and interpretation
of clinical data has become more and more important. As a result the standards of
clinical study design, conduct and interpretation have been advanced. In this book
statistical considerations in data analysis as a basis for deriving an accurate clinical
interpretation are elaborated.

Most often it is the physician who decides whether to prescribe a specific drug for
a specific patient in a specific situation. The decisions of the physicians are largely
based on the interpretation of data they have read and heard. This book describes
various ways of approaching and interpreting the data that result from a clinical trial
study.

The book reemphasizes the essential role that biostatistics plays in clinical
trials. The book contains 18 carefully reviewed chapters on recent developments
in trials and statistics. The chapters in this book are generally autonomous and
may be read in any order. Each chapter is written by one or more experts in the
specific approach. Starting from (a) some background information about the specific
approach (short history and main publications), the chapter (b) describes the type
of research questions the approach is able to answer and the kind of data to be
collected, (c) gives the statistical and mathematical explanation of the model(s) used
in the analysis of the data, (d) discusses the input and output of the software used in
the analysis, and (e) provides one or more examples with typical data sets enabling
the readers to apply the programs themselves. The chapters are worked out in a
homogeneous style to enhance comparability between the approaches. The data sets
and the computer code for the analysis with various softwares are a very important
component of the book. They are available upon request (by emailing the authors of
the chapters).

Each chapter is self-contained in this edited volume. The chapters are written and
reviewed by experts in the specific approach. Although an authored volume could
have advantages, because of the rapid changes in the field, an edited book written
by people who are in the middle of the latest developments in the specific approach
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vi Preface

is preferable. In addition, the authors of the chapters use a shared notation to enable
the reader to compare methods more easily.

The book addresses the great majority of researchers in the field of clinical
trials. Included are biostatisticians, medical researchers and physicians. It is meant
as a reference work for all those actually doing and using research in the field
of clinical trials. To reach this vast audience, knowledge of statistics as taught at
master degree level in medical and biomedical sciences is required. However, the
restricted number of chapters gives each of the chapters the opportunity to go into
sufficient details to enable the readers to understand and apply the methods. In
addition, the book addresses biostatisticians and physicians, who are professionally
dealing with research in the field of clinical trials, to provide standards for state-
of-the-art practices. Furthermore, the book offers researchers new ideas about the
use of biostatistical analysis in solving their research problems. Finally the book
is suitable as obligated literature for courses in clinical trial evaluation given at
university medical and epidemiological research schools.

We thank the authors of the chapters for their willingness to contribute to the
book, the anonymous reviewers for their expertise and time invested and Springer
Publishers for their decision to publish the book in their Statistics book program.

Rotterdam, The Netherlands Kees van Montfort
Nijmegen, The Netherlands Johan Oud
Rotterdam, The Netherlands Wendimagegn Ghidey
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Chapter 1
Statistical Models and Methods for Incomplete
Data in Randomized Clinical Trials

Michael A. McIsaac and Richard J. Cook

Abstract In this chapter we discuss several models by which missing data can arise
in clinical trials. The likelihood function is used as a basis for discussing different
missing data mechanisms for incomplete responses in short-term and longitudinal
studies, as well as for missing covariates. We critically discuss common ad hoc
strategies for dealing with incomplete data, such as complete-case analyses and
naive methods of imputation, and we review more broadly appropriate approaches
for dealing with incomplete data in terms of asymptotic and empirical frequency
properties. These methods include the EM algorithm, multiple imputation, and
inverse probability weighted estimating equations. Simulation studies are reported
which demonstrate how to implement these procedures and examine performance
empirically.

1.1 Introduction

In well-conducted randomized clinical trials, randomization eliminates the possible
effect of confounding variables in the assessment of treatment effects. That is, when
the assignment of the treatment to patients is carried out by random allocation,
different treatment groups will have similar distributions of demographic and
clinical features, so any differences seen in the distribution of responses between
the treatment groups are attributable to the different treatments they receive. There
are a number of other rationale put forward for use of randomization in health
research [40], but it is the elimination of the effect of confounding variables and
facilitation of causal inference that has had the most profound impact in advancing
scientific understanding.

Following recruitment and randomization, however, participants in clinical trials
often withdraw before completion of follow-up, leading to incomplete outcome
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2 M.A. McIsaac and R.J. Cook

data. Incomplete data can of course arise for a variety of reasons; many illustrative
examples can be seen in the second chapter of Molenberghs and Kenward [26].
Depending on the reasons for withdrawal, the individuals who remain in the study
may no longer form groups with similar distributions of the demographic and
clinical features, which compromises the validity of causal inferences. The purpose
of this article is to discuss models and mechanisms by which incomplete data can
arise in clinical trials, the consequences missing data can have on the interpretation
of study results, and methods which can be employed to minimize the effect of these
consequences. A clear understanding of the practical and statistical issues involved
with incomplete response data will improve ability to critically appraise the clinical
literature.

The remainder of this chapter is organized as follows. In Sect. 1.2 we discuss
the problem of incomplete binary responses. We restrict attention to the case of a
binary treatment indicator and a single binary confounding variable to simplify the
discussion, calculations, and empirical studies, but we remark on practical issues
with more complex settings at the end of this section. We discuss the case of
incomplete longitudinal data in Sect. 1.3, and the problem of incomplete covariates
in Sect. 1.4. Concluding remarks are made in Sect. 1.5.

1.2 Incomplete Binary Response Data

1.2.1 Models and Measures of Treatment Effect

Consider a balanced two-arm clinical trial in which patients are randomized to
receive either an experimental treatment or standard care. Let X D 1 indicate that a
patient was allocated to receive experimental therapy and X D 0 otherwise, where
P.X D 1/ D 0:5. Suppose the outcome of interest is whether the patient had a
successful response; we let Y D 1 if this is the case and Y D 0 otherwise. We
illustrate the problem of dependently missing data by considering a situation with
a single additional binary variable V , where V D 1 indicates the presence of a
particular feature and V D 0 otherwise; P.V D 1/ D p. Suppose that the variable
V is an effect modifier [33] so that the treatment has a different effect for individuals
with and without the feature. This may be represented by the logistic model

P.Y D 1jX;V I �/ D expit.�0 C �1X C �2V C �3XV/ ; (1.1)

where � D .�0; �1; �2; �3/
0. In most situations there will be sub-populations between

which there is variation in the event rate and the effect of treatment; (1.1) is the
simplest model which accommodates this phenomenon.

While (1.1) may reflect reality, in clinical trials we typically aim to assess
treatment effects based on marginal models (i.e. models that do not condition on
prognostic variables such as V ); indeed providedX is independent of V , the causal
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effect of treatment is typically defined in terms of such a model. Thus the logistic
model used for treatment comparisons is formulated as

P.Y D 1jX Iˇ/ D expit.ˇ0 C ˇ1X/ ; (1.2)

where ˇ D .ˇ0; ˇ1/
0. Of course,

P.Y D 1jX Iˇ/ D EV ŒP.Y D 1jX;V I �/Ip� ; (1.3)

since V is independent ofX due to randomization, and so it is possible to obtain the
functional form of ˇ in terms of .� 0; p/0.

The resulting response rates in the control and treatment arms are pC D P.Y D
1jX D 0/ D expit.ˇ0/ and pT D P.Y D 1jX D 1/ D expit.ˇ0Cˇ1/, respectively.
Some common measures of treatment effect include the absolute difference AD D
pT � pC , the number needed to treat NNT D .pT � pC /

�1, the relative risk RR D
pT =pC , and the odds ratio OR D ŒpT =.1�pT /�=ŒpC =.1�pC/� [16,22]. When the
experimental treatment has a higher response rate, the AD and NNT measures are
positive and the RR and OR are larger than one.

Let I.A/ be an indicator function such that I.A/ D 1 if A is true and I.A/ D 0

otherwise. If response data are incomplete, in order to thoroughly discuss modeling
issues it is necessary to introduce a new random variable R D I.Y observed/,
so R D 1 if Y is observed and R D 0 otherwise. The biases that result from
incomplete data arise if there is an association between the response (Y ) and
whether we observe it or not (R). There are a variety of ways of introducing an
association between Y and R including through bivariate binary models [6] and
shared random effect models [1]. Here we consider the setting in which both Y and
R are associated with the covariates X and V . When V is unknown, an association
between Y and R exists because of the omission of V from the analysis. We adopt
this framework because when V is known, there are a variety of approaches to
incorporating information about V into the analyses to mitigate problems, as we
discuss in the following sections.

Suppose that the missing data model is

P.R D 1jX;V I˛/ D expit.˛0 C ˛1X C ˛2V C ˛3XV/ ; (1.4)

where ˛ D .˛0; ˛1; ˛2; ˛3/
0. This model accommodates a different dependence on

V in the two treatment arms. We assume in this idealized setting that R ? Y jX;V .
Since X ? V by randomization, the marginal proportion of missing data is

pR D P.R D 1I˛;p/ D EX fEV ŒP.R D 1jX;V /�g

D
1X

xD0

1X

vD0

P.RD 1jX Dx; V D vI˛/ P.V D vIp/ P.X D x/ ;

where P.V D vIp/ D pv.1 � p/1�v, and P.X D x/ D 1=2 if randomization is
balanced. The joint probability mass function for Y;RjX is
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P.Y;RjX I �/ D EV ŒP.Y jX;V I �/ P.RjX;V I˛/�

D
1X

vD0
P.Y jX;V D vI �/ P.RjX;V D vI˛/P.V D vIp/ ;

(1.5)

where � D .˛0; � 0; p/0. From (1.5) we can derive the conditional odds ratio for the
association between Y and R given X as

ORY;RjX D P.Y D 1;R D 1jX I �/
P.Y D 1;R D 0jX I �/

�
P.Y D 0;R D 1jX I �/
P.Y D 0;R D 0jX I �/ ;

and we can calculate the conditional probability

P.Y jX;RI �/ D P.Y;RjX I �/
P.RjX I �/ D P.Y;RjX I �/

P1
yD0 P.Y D y;RjX I �/ : (1.6)

So, thus far we have defined a simple model for Y jX;V and RjX;V under the
assumption that Y and R are conditionally independent given .X; V /. When we
condition on X but not V , the response Y and the missing data indicator R are
associated (i.e. dependent). We have mentioned that this setting was problematic,
but here we will explore why this is the case.

1.2.2 Parameter Estimation with Incomplete Response Data

1.2.2.1 Complete-Case Analyses

Complete-Case Analyses when Covariate V Is Unknown

The likelihood function is perhaps the most fruitful starting point when considering
inference based on parametric models [39]. When response data may be incomplete,
the availability of the response of interest is stochastic, and hence the observed data
likelihood is

L / P.Y;R D 1jX/R P.R D 0jX/1�R :

Noting that P.Y;R D 1jX/ D P.Y jR D 1;X/P.R D 1jX/, this may be re-
expressed as LY jRD1;X � LRjX where

LY jRD1;X D �
P.Y D 1jR D 1;X/Y P.Y D 0jR D 1;X/1�Y

�R
(1.7)
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is obtained from P.Y jR D 1;X/R by considering the two possible realizations of
Y , and

LRjX D P.R D 1jX/R P.R D 0jX/1�R : (1.8)

When responses are not available from all individuals in a sample, it is tempting
to restrict attention to individuals with complete data and base analyses on this
subset. This restriction, however, implicitly conditions onR D 1 so that a complete-
case maximum likelihood analysis actually maximizes the partial likelihood (1.7).
It appears that (1.8) does not contain information about the parameters we are
interested in because it relates to the missing data process alone. Note however that
while (1.7) is indexed by � , the quantities estimated by standard analyses based on
available data (i.e. the sub-sample of individuals with R D 1) are

ˇ
�
0 D logit P.Y D 1jX D 0;R D 1I �/

and

ˇ
�
1 D logit P.Y D 1jX D 1;R D 1I �/� ˇ

�
0 :

These parameters differ from ˇ0 and ˇ1 whenever P.Y jX;R D 1/ ¤
P.Y jX/, which will occur here if P.Y jX;V / ¤ P.Y jX/ and P.RjX;V / ¤
P.RjX/. Using (1.6), we can compute the naive measures of treatment
effect which are actually being estimated from complete-case analyses:
AD� DP.Y D 1jX D 1;RD 1/ � P.Y D 1jX D 0;R D 1/, NNT� D 1=AD�,
RR� D P.Y D 1jX D 1;R D 1/=P.Y D 1jX D 0;R D 1/, and
OR� D ŒP.Y D 1jX D 1;R D 1/=P.Y D 0jX D 1;R D 1/�=ŒP.Y D
1jX D 0;R D 1/=P.Y D 0jX D 0;R D 1/�.

To explore this more fully, we consider here some specific parameter configura-
tions. Let P.X D 1/ D 0:5 and P.V D 1/ D 0:5. In the response model (1.1),
we let �2 D 0 and �3 D log 2 so the odds ratio characterizing the treatment effect
is twice as big for those with V D 1 compared to those with V D 0. We set
ˇ1 D log 1:5 in (1.2), so the marginal odds ratio of the treatment effect is 1.5,
and we solve for �0 and �1 so that P.Y D 1jX D 0/ D expit.ˇ0/ D 0:5 (i.e.
the probability of response is 0.5 in the control arm). The marginal relative risk is
therefore 1.2. In the missing data model (1.4) we set ˛1 D ˛2 D 0 and for each ˛3
we solve for ˛0 so that P.R D 1/ D 0:5.

Figure 1.1 displays a plot of RR� and OR�, the limiting values of complete-
case estimators of RR and OR, as a function of ˛3. When ˛3 D 0, the probability
of the response being missing is the same for all individuals regardless of their
covariates (data are missing completely at random, in the terminology of Little
and Rubin [20]), so P.RjX;V /DP.RjX/DP.R/. In this case, RR� D RR D 1:2

and OR� D OR D 1:5. When ˛3 < 0, complete-case estimators of these effect
measures will be too small and hence correspond to a understatement of the effect
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Fig. 1.1 Limiting values of naive complete-case estimators of the relative risk (RR�) and odds
ratio (OR�) as a function of ˛3

of treatment. Conversely, when ˛3 > 0, the inferences regarding the benefit of
treatment are anti-conservative.

Complete-Case Analyses when Covariate V Is Known

If we are able to identify the variable V which renders Y and R conditionally
independent (i.e., Y ? RjX;V ), another option is to write the observed data
likelihood based on the conditional model as

L / P.Y;R D 1jX;V /R ŒP.R D 0jX;V /�1�R :

Since P.Y;R D 1jX;V / D P.Y jX;V /P.R D 1jY;X; V / and P.R D
1jY;X; V / D P.R D 1jX;V / this can in turn be written as LY jX;V � LRjX;V
where LY jX;V / P.Y jX;V / and LRjX;V / P.RjX;V /. In practice one would
naturally restrict attention to the partial likelihoodLY jX;V , since we are not typically
interested in modeling the missing data process unless it is necessary. As seen
above, a complete-case analysis with restriction to individuals with R D 1 yields
inconsistent estimators of ˇ when we just condition on X , however when we
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condition on V as well, a complete-case analysis gives consistent estimators for � .
Identification of variables like V which are prognostic for Y and associated with the
missing data process is therefore key to ensure consistent estimation of parameters.
It is not sufficient for these variables to be associated with the response alone or the
missing data status alone since in either case such variables cannot render Y and R
conditionally independent.

While conditioning on a suitable V seems to have solved our problem, the catch
is that we did not want to condition on V in our assessment of the treatment effect –
we are estimating � instead of ˇ, so we are estimating the wrong thing! We do have
the option of modeling V jX , which amounts to modeling the marginal distribution
of V since X was determined by randomization, and given an estimate of p as Op,
we can compute a crude estimate by solving for ˇ in

QP.Y D 1jX I Q̌/ D
1X

vD0
P.Y D 1jX;V D vI O�/ Opv.1 � Op/1�v :

Due to the so-called curse of dimensionality, this process is considerably more
challenging and undesirable when V is high dimensional (i.e. a vector) [30]. A
very convenient and more direct approach to estimating ˇ is obtained using inverse
probability weights as we describe in the next sub-section.

1.2.2.2 Use of Inverse Probability Weights

Suppose we have a sample of n independent subjects giving data f.Yi ; Xi ; Vi /; i D
1; 2; : : : ; ng. The score function for the logistic regression model in (1.2) resulting
from (1.7) can be written as

S.ˇ/ D
nX

iD1
Ri .Yi � E.Yi jXi Iˇ//

�
1

Xi

�
:

With complete data (i.e. if P.Ri D 1/ D 1; i D 1; 2; : : : ; n) this has expectation
zero and hence yields a consistent estimator for ˇ [23]. With incomplete data
however,

EŒS.ˇ/� D EX
˚
EY jX

˚
ERjY;X ŒS.ˇ/�

��

D
nX

iD1
EX

�
EY jX

	
P.Ri D 1jYi ; Xi / .Yi � E.Yi jXi Iˇ//

�
1

Xi

�
�
;

which does not in general equal zero. If the probability of a response being
missing depends on Y given X , then inconsistent estimators are obtained for ˇ;
the corresponding limiting values are the ˇ� given in the previous section.
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Now again suppose we are able to identify V as a covariate which renders Y ?
RjX;V . In this case we can employ the model for P.R D 1jY;X; V / D P.R D
1jX;V I˛/ in an inverse probability weighted estimating function defined as

U.ˇ/ D
nX

iD1

Ri

P.Ri D 1jXi; Vi I˛/ .Yi � E.Yi jXi Iˇ//
�
1

Xi

�
(1.9)

[32]. Taking the expectation of (1.9) as before yields

EŒU.ˇ/� D
nX

iD1

EX;V

�
EY jX;V

	
ERjY;X;V

�
Ri

P.Ri D 1jXi ; Vi / .Yi �E.Yi jXi Iˇ//
�
1

Xi

��
�

D
nX

iD1

EX;V

�
EY jX;V

	
.Yi � E.Yi jXi Iˇ//

�
1

Xi

�
�

D
nX

iD1

EX

�
EV jX

�
.E.Yi jXi ; Vi /� E.Yi jXi Iˇ//

�
1

Xi

���

D
nX

iD1

EX

	
.E.Yi jXi Iˇ/� E.Yi jXi Iˇ//

�
1

Xi

�

D 0 (1.10)

and so a consistent estimator of ˇ is obtained from (1.9) [11].
Note that in practice the parameters in the model P.RjX;V I˛/ must be

estimated and this can easily be carried out via logistic regression sinceR is a binary
variable. Naive standard errors which do not recognize that the weights have been
estimated can lead to invalid tests (with incorrect type I error rates) and invalid
confidence intervals (with coverage rates not compatible with the nominal level).
Large sample theory for correct variance estimation is beyond the scope of this
note, but see Robins et al. [32] for general results or Chen and Cook [3] for simpler
results corresponding to the present formulation.

1.2.2.3 Multiple Imputation

Multiple imputation is, in its simplest implementation, a simulation-based approach
to creating complete data from an incomplete dataset. Again suppose that we have
identified a covariate V which renders Y ? RjX;V , and the model for Y jX;V is
given by (1.1). A multiple imputation approach involves fitting a model to Y jX;V
based on individuals with complete data, even though Y jX is the model of interest.
The fitted model would give a consistent maximum likelihood estimator O� , along
with the asymptotic covariance matrix for O� , I �1. O�/, where I .�/ is the expected
information matrix from an analysis based on (1.1). Since � is not of interest, this
fitted model is simply used to generate complete data which are then analyzed with
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the model of interest. The particular steps in such analyses are described in the
following paragraphs.

The approach has a Bayesian flavour in that after fitting Y jX;V we sample from
MVN( O� , I �1. O�/) to obtain another realization of the 4�1 parameter vector O� which
we denote by g.1/. If the response for any individual is missing, then we simulate
the binary response as a Bernoulli variate with probability expit.g.1/0 C g

.1/
1 X C

g
.1/
2 V Cg

.1/
3 XV / using the respective covariate values. This yields the first imputed

value for each individual with missing data, and we label the realized response y.1/.
After each individual with incomplete data in the dataset has a response simulated
based on g.1/, a second sample is drawn from MVN( O� , I �1. O�/) and labelled g.2/.
Using this value, one samples a second value Y .2/ � Bern.expit.g.2/0 C g

.2/
1 X C

g
.2/
2 V C g

.2/
3 XV// for each person with a missing response data. This procedure is

repeatedm times until we havem “complete” datasets. For each of them “complete”
datasets we then fit the model of interest given by (1.2).

Let Ǒ.r/
1 denote the estimate of ˇ1 from the r th imputed data set and !.r/ D

cvar. Ǒ.r/
1 / be the naive variance estimate ignoring the fact that some data had

been imputed by simulation. The combined estimate of ˇ1 obtained by multiple

imputation is simply the average, so NǑ
1 D Pm

rD1 Ǒ.r/
1 =m is the reported point

estimate from multiple imputation. Let N! D Pm
rD1 !.r/=m denote the average of the

naive (within imputation) variance estimates, and let !� D .m� 1/�1Pm
rD1. Ǒ.r/

1 �
NǑ
1/
2 denote the variation between imputation samples. Rubin [36] argues that the

asymptotic variance of NǑ
1 is var. NǑ

1/ D N! C .1Cm�1/!� and

NǑ
1 � ˇ1r

var
� NǑ

1


 � tum

approximately, where the degrees of freedom are given by

um D .m� 1/

	
1C m N!

.1Cm/!�


2
:

Wang and Robins [42] prove consistency and derive the large sample properties of
estimators arising from multiple imputation under correct model specification. More
refinements to the estimated degrees of freedom have since been made [2] and are
implemented in SAS. We will not get into these issues here, but remark simply that
one appeal of multiple imputation is the ability to make use of auxiliary variables
such as V when constructing the imputation model. In the context of longitudinal
data with missing at random processes (see Sect. 1.3), this can be achieved by
adopting a joint model for the responses over time (e.g., a mixed model) and, while
the primary analysis is to be based only on a final response, intermediate values
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can ensure a more suitable imputation process which may translate to more precise
estimates of treatment effects and more powerful tests.

1.2.3 An Illustrative Simulation Study

Here we report on a simple simulation study to illustrate these methods. We let
pC D 0:5, P.V D 1/ D p D 0:5, ˇ1 D log 1:5, �2 D log 0:5 and �3 D
log 2. These specifications can be used to obtain values for �0 and �1. Note that the
true odds ratio exp.ˇ1/, which would be consistently estimated in the absence of
missing data, is 1.5 in this formulation (ˇ1 � 0:4055). We then specify the missing
data model as ˛1 D 0, ˛2 D log 2, ˛3 D log 4, and ensure that P.R D 1/ D
pR D 0:5, so 50 % of subjects will have incomplete response data and there is a
differential degree of association between Y and R in the control and treatment
arms. The limiting value of a naive estimate of ˇ1 is 0:4831 based on the earlier
calculations, giving an asymptotic bias of approximately 0:0777.

Two thousand datasets of n D 500 individuals were simulated and the following
analyses were carried out: (i) a complete-case likelihood analysis using (1.7),
(ii) an inverse weighted analysis using (1.9) with weights known, (iii) an inverse
weighted analysis with weights estimated via logistic regression, and (iv) multiple
imputation withm D 20 and the imputation model based on Y jX;V . In all cases the
response model was simply based on Y jX . The empirical biases, empirical standard
errors (ESE), average asymptotic standard errors (ASE), and empirical coverage of
nominal 95 % confidence intervals (ECP) are reported in Table 1.1.

The empirical biases of the complete-case analyses (expected since �3 ¤ 0

and ˛3 ¤ 0) are apparent, and this leads to empirical coverage probabilities
less than the nominal 95 % level. The bias from the inverse weighted analyses

Table 1.1 Simulation results of naive and adjusted analyses using inverse weighting (known and
estimated weights) and multiple imputation; P.X D 1/ D 0:5; P.V D 1/ D 0:5; pC D 0:5;
ˇ0 D 0, ˇ1 D log 1:5, �0 D 0:347, �1 D 0:059, �2 D log 0:5,�3 D log 2,pR D 0:5;
˛0 D �0:654, ˛1 D 0, ˛2 D log 2, ˛3 D log 4, Number of subjects = 500; Number of simulations
= 2,000

Method of analysis Parameter Bias ESE ASE ECP

Complete-case analysis ˇ0 �0.072 0.201 0.196 93.3

ˇ1 0.076 0.268 0.260 93.1

Weighted analysis ˇ0 �0.005 0.204 0.199 95.1

(Known weights) ˇ1 0.009 0.278 0.274 94.1

Weighted analysis ˇ0 �0.004 0.203 0.200 95.2

(Estimated weights) ˇ1 0.008 0.279 0.275 94.3

Multiple imputationa ˇ0 �0.004 0.203 0.195 94.2

(m D 20) ˇ1 �0.004 0.281 0.277 94.2
a m indicates the number of complete pseudo-datasets created for multiple imputation
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with known and estimated weights are negligible and the empirical coverage
probabilities are compatible with the 95 % level. The biases are similarly small for
the estimators based on multiple imputation and the empirical coverage probabilities
are compatible with the 95 % level for these as well. Also noteworthy is the
similarity in the standard errors of the estimates based on inverse weighting and
multiple imputation.

1.2.4 Further Remarks

In many clinical settings there are a number of ad hoc alternative approaches for
dealing with missing response data. In dermatology trials, for example, it is common
to use so-called non-responder imputation [12, 28]. If, as we have described here,
the response Y D 1 indicates a successful response to treatment (e.g. alleviation
of symptoms), then in non-responder imputation (NRI), individuals who do not
provide a response are assigned a value Y D 0 (i.e. they did not remain in the
trial and report an alleviation of symptoms). The rationale for this crude form of
imputation may arise from the notion that anything other than completing the course
of treatment and exhibiting a good clinical response is undesirable and hence should
be treated as a failure. An intuitively appealing aspect of this form of imputation is
that all patients randomized are utilized in the analysis. However with NRI, a naive
estimator of the probability of a successful response given X is, in fact, consistent
for the joint probabilityP.Y D 1;R D 1jX/; this reflects that individuals must both
provide a response and the response must be successful. The validity of estimates
achieved through this method depends, therefore, on the process giving rise to the
missing data. If R ? .Y;X/, estimates of response rates within treatment arms (and
therefore also estimates of AD) are conservative in that they are down-weighted by
the probability of a response being observed (in fact, we are consistently estimating
P.Y D 1jX/ � P.R D 1/). When data are not missing completely at random,
NRI analyses will not yield consistent estimates of RR, OR, or AD. Depending
on the mechanism giving rise to the missing data (which is generally unknown),
NRI analyses can lead to conservative (too small) or anti-conservative (too large)
estimates of treatment effect [25]. Despite this, NRI is commonly assumed to be a
conservative method of analysis [37].

When responses are continuous, the calculations discussed in previous sections
can be carried out following similar principles; to make this clear we wrote the
expressions in a general form using expectations and explicit probability statements
in key places. With continuous responses, however, another common crude method
of imputation is often used called mean value imputation. In this case the average
value of the response (perhaps for that particular treatment arm, or overall) is
assigned to individuals with missing responses. This strategy can also lead to
conservative or anti-conservative estimates of treatment effect depending on the
particular setting, and naive standard errors will not typically reflect the effect of
imputation.
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The discussion of multiple imputation given earlier is often referred to as
parametric multiple imputation since it relies on the explicit specification of a
parametric model to simulate the imputed data for each data set. Other versions of
multiple imputation are often adopted which employ implicit models to exploit the
data observed in the sample [15, 21]. Nonparametric multiple imputation involves
finding a set of completely observed individuals who are “similar” to an individual
with a missing response (with respect to key attributes or a summary measure)
and randomly selecting the responses from this set of similar individuals [29, 38].
This sampling is done with replacement to make up multiple complete datasets.
Here judgement is not required to specify a probability model for imputation of the
response, but rather to identify the set of “similar” individuals for each individual
with a missing response [36]. Matching, stratification or use of propensity scores
are useful for this goal, and several procedures are available in common statistical
packages to facilitate this.

1.3 Incomplete Longitudinal Data

1.3.1 Notation and Terminology

Consider a longitudinal study in which the plan is to assess each of n individuals
over K distinct assessment times. Let Yi D .Yi1; : : : ; YiK/

0 denote the random vari-
able corresponding to the response vector for individual i over the K assessments.
Suppose that every individual under study has measurements taken on p baseline
covariates so that subject i has baseline covariate vector Xi D .Xi1; : : : ; Xip/

0. We
assume Xi is completely observed, and let P.Yi jXi/ denote the probability model
of interest.

We restrict attention to incomplete longitudinal data due to drop-out, and suppose
that the last time an observation for individual i occurred was at time Ki ; this is a
random variable and we let ki denote its realization, as illustrated in Fig. 1.2. We can
then partition the response vector as Yi D . NYi ; Y �

i /, where NYi D .Yi1; : : : ; YiKi /
0

is observed and Y �
i D .Yi;KiC1; : : : ; YiK/ is missing. Let Ri D .Ri1; : : : ; RiK/

0
be the corresponding vector of missing data indicators, where Rik D I.k � Ki/,
k D 1; : : : ; K . We can therefore equivalently think of Ri as a random vector or Ki

as a random variable. Little and Rubin [20] and Rubin [35] define three classes of
missing data mechanisms for this context.

Data are said to be missing completely at random (MCAR) if missingness (failing
to observe a value) does not depend on any observed or unobserved measurements,
i.e. P.Ri jYi ; Xi/ D P.Ri /. Data are said to be missing at random (MAR) if,
conditional on the observed data, missingness does not depend on the data that
are unobserved; that is, P.Ri jYi ; Xi / D P.Ri j NYi ; Xi /. Data are said to be not
missing at random or, equivalently, missing not at random (MNAR) if missingness
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| | | | |

1 2 3 4 5

Yi1 Yi2 Yi3 Yi4 Yi5

Ri1 = 1 Ri2 = 1 Ri3 = 1 Ri4 = 0 Ri5 = 0

ASSESSMENTS

Fig. 1.2 Schematic of schedule of assessments in longitudinal study withK D 5 for an individual
with ki D 3

depends on the value of the realized (but unobserved) response, i.e. P.Ri jYi ; Xi /
cannot be simplified. It is perhaps worth emphasizing that these terms must be
used and interpreted in the context of the available information (or at least the
information being used); MNAR mechanism can become a MAR mechanism in
light of additional information used judiciously.

1.3.2 Likelihood-Based Methods of Estimation and Inference

As in the univariate case, the likelihood for incomplete longitudinal data is devel-
oped by specifying the joint distribution of response variable Yi and the missing data
indicators Ri (or equivalently Ki ), given the covariates Xi . Two classes of models
have been proposed based on alternative factorizations of the joint distribution of
.Yi ; Ri /jXi [19]: one is based on selection models [20], the other is based on pattern
mixture models [10, 18].

With selection models, the joint distribution of Yi and Ri is factored as

P.Ri ; Yi jXi Iˇ; ˛/ D P.Ri jYi ; Xi I˛/ P.Yi jXi Iˇ/ ; (1.11)

where the distribution of Ri , P.Ri jYi ; Xi I˛/, is indexed by a vector of parameters
˛ and the distribution of Yi , P.Yi jXi Iˇ/, is indexed by a vector of ˇ.

With pattern-mixture models, the factorization of the joint distribution is

P .Ri ; Yi jXi Iˇ; ˛/ D P .Yi jXi;Ri I �/ P .Ri jXi I �/ ; (1.12)

where in P.Yi jXi ;Ri I �/, the distribution of Yi , is defined separately for each
missing data configuration and indexed by parameters �, and the distribution of Ri ,
P.Ri jXi I �/, is known up to parameters � .

When we are concerned with the parameters of the marginal distribution of Y ,
averaged over the missing data patterns, it is in many senses more natural to use
selection models, because people do not want to make inference conditional on the
missing data indicators. In the following, we focus on selection models.
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To describe the likelihood based approach we derive the joint density of the
observed data . NYi ; Ri / by integrating out the missing data Y �

i in the selection model
of the joint distribution as

P.Ri ; NYi jXi I˛; ˇ/ D
Z
P.Ri j NYi ; Y �

i ; Xi I˛/ P. NYi ; Y �
i jXi Iˇ/ dY�

i :

Let NY D f NYi ; i D 1; 2; : : : ; ng and R D fRi ; i D 1; 2; : : : ; ng for a sample of n
independent subjects. Then the observed-data joint likelihood for .˛0; ˇ0/0 is

L.˛; ˇI NY ;R/ D
nY

iD1

Z
P.Ri j NYi ; Y �

i ; Xi I˛/ P. NYi ; Y �
i jXi Iˇ/ dY�

i : (1.13)

When the missing data mechanism is MAR, P.Ri j NYi ; Y �
i ; Xi/ D P.Ri j NYi ; Xi /

and (1.13) becomes

L.˛; ˇI NY ;R/ D
nY

iD1

�
P.Ri j NYi ; Xi I˛/

Z
P. NYi ; Y �

i jXi Iˇ/ dY�
i

�
(1.14)

D
nY

iD1

˚
P.Ri j NYi ; Xi I˛/ P. NYi jXi Iˇ/

�
:

If the parameters ˛ and ˇ are functionally independent, then likelihood inference for
ˇ from (1.14) is the same as a likelihood inference for ˇ from the observed “partial”
likelihood simply using the available data

L.ˇI NY / D
nY

iD1
P. NYi jXi Iˇ/ : (1.15)

Thus likelihood functions are unaffected by MAR mechanisms and this has
contributed in part to the popularity of mixed effects models for the analysis of
longitudinal data. If data are MNAR, then the simplification in (1.14) is not possible
and we must use (1.13). This likelihood may lead to identifiability problems and so
sensitivity analyses are often advocated for this case [31].

We remark that, as in the univariate case, one can sometimes identify an auxiliary
covariate Vi which renders Ri ? Y �

i j NYi ; Xi ; Vi , so that inclusion of Vi in the
analysis causes the missing data mechanism to be MAR. In this case, consider

P.Ri ; NY jXi; Vi / D
Z
P.Ri j NYi ; Y �

i ; Xi ; Vi / P.
NYi ; Y �

i jXi; Vi / dY�
i

D P.Ri j NYi ; Xi ; Vi / P. NYi jXi; Vi / :
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This is only useful if we aim to estimate the effect of both Xi and Vi on the
distribution of Yi . Again, however, Vi may be useful for multiple imputation (as
in Sect. 1.2.2.3) or for inverse weighting as we discuss in the next section.

1.3.3 Generalized Estimating Equations

Using standard notation for generalized linear models of binary data, we let
E.Yikjxi / D P.Yik D 1jxi/ D �ik and var.Yikjxi / D �ik.1 � �ik/, k D
1; : : : ; K . Furthermore, we let ˙i.ˇ; �/ D cov.Yi jxi / D A

1
2
i Q.�/A

1
2
i where

Ai D diagf�ik.1 � �ik/; k D 1; : : : ; Kg and Q.�/ is a K �K working correlation
matrix with .k; k0/ entry,Qkk0.�/, parameterized in terms of a vector of association
parameters �. A marginal generalized linear model is formed by letting g.�ik/ D
x0

ikˇ where g.�/ is a known link function and ˇ D .ˇ0; : : : ; ˇp/
0 is a .p C 1/ � 1

vector of regression coefficients.
Generalized estimating equations for ˇ take the form

U.ˇ; �/ D
nX

iD1
Ui .ˇ; �/ D 0 (1.16)

where Ui.ˇ; �/ D G0
i .ˇ/˙

�1
i .ˇ; �/.Yi � �i /, with �i D .�i1; : : : ; �iK/

0 and
Gi.ˇ/ D @�i .ˇ/=@̌

0 a K � .p C 1/ matrix of derivatives [17]. If Ǒ is the solution
for fixed � D �o, then asymptotically

p
n. Ǒ � ˇ/ � N.0; var.

p
n. Ǒ � ˇ/// with

var.
p
n. Ǒ � ˇ// D ŒA�1.ˇ; �o/�ŒB.ˇ; �o/�ŒA�1.ˇ; �o/�0 ; (1.17)

where A.ˇ; �/ D E.@Ui.ˇ; �/=@̌
0/ and B.ˇ; �/ D E.Ui .ˇ; �/U

0
i .ˇ; �//. When �

is not specified, estimation of ˇ is facilitated by iteratively replacing � with a
p
n-

consistent moment-type estimate based on estimates of ˇ at successive iterations of
a scoring algorithm [17].

The functional form ofQkk0.�/, k ¤ k0, k; k0 D 1; : : : ; K , is typically unknown,
but even if the correlation structure is misspecified, consistent estimators of ˇ
arise from solving (1.16), and (1.17) will still hold. However, misspecification of
the correlation structure in (1.16) can lead to inefficient estimators of ˇ and, in
more extreme cases, problematic asymptotic properties arise for the solution [7].
In many cases, the working independence assumption can yield quite efficient
estimators [41], so we set Qkk0.�/ D �o D 0 for k ¤ k0 in what follows. An
estimate of (1.17) is obtained in this case by computing

cvar.
p
n. Ǒ � ˇ// D Œ OA�1. Ǒ; �o/�Œ OB. Ǒ; �o/�Œ OA�1. Ǒ; �o/�0 ; (1.18)
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where

OA. Ǒ; �o/ D �n�1
nX

iD1
G0
i .

Ǒ/A�1
i .

Ǒ; �o/Gi . Ǒ/;

and

OB. Ǒ; �o/ D n�1
nX

iD1
G0
i .

Ǒ/A�1
i .

Ǒ; �o/.yi � O�i/.yi � O�i/0A�1
i .

Ǒ; �o/Gi . Ǒ/ :

As in the univariate case, however, this estimating equation approach is not
appropriate when data are incomplete and not missing completely at random.

Selection models provide a natural framework for characterizing factors which
affect the risk of attrition in longitudinal studies. Let Rik D I.k � Ki/ and
NRik D fRi1; : : : ; Rikg, k D 1; : : : ; Ki . Selection models involve modeling the

conditional probability of drop-out at each visit, which we denote here as 	ik D
P.Rik D 0jRi1 D � � � D Ri;k�1 D 1; yi ; xi /. As mentioned in Sect. 1.3.1, the
nature of the relation between this conditional probability of drop-out, covariates,
and (possibly missing) responses determines the impact that drop-outs have on
inferences regarding the regression coefficients in the response model. We restrict
attention here to settings in which data are MAR, with any covariate dependence
based only on previously observed covariates or responses. In this case, 	ik may be
a function of NYi and Xi , but not of Y �

i . Let Hy
ik D fyi1; : : : ; yi;k�1g be the history

of response Y up to time k. In practice, we typically let 	ik depend on Hy
ik and Xi .

Since Rik is a binary variable it is convenient to formulate logistic regression
models for the conditional probability of drop-out given by

log.	ik=.1 � 	ik// D w0
ik˛

.k/ ; (1.19)

where ˛.k/ D .˛
.k/
0 ; : : : ; ˛

.k/
qk /

0 is a .qk C 1/ � 1 vector of regression coefficients
characterizing the nature of the relationship between wik and 	ik, and wik is a
covariate vector containing relevant observed information in Hy

ik and Xi .
The inverse-weighted estimating equations under the working independence

assumption take the form

U.ˇ; ˛/ D
nX

iD1
Ui .ˇ; ˛/ D 0 (1.20)

where under cluster-specific weights as discussed by Fitzmaurice [9],

Ui.ˇ; ˛/ D G0
i .ˇ/˙

�1
i .ˇ/
i .˛/.Yi � �i/ ;

˙i .ˇ/ D diagf	ik.1 � 	ik/; k D 1; : : : ; Ki g, 
i.˛/ D I.Ki D ki /=�i .˛/, and
�i .˛/ D P.Ki D ki j NYi ; xi I˛/. We often assume all subjects are available for the
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first assessment, so �i .˛/ D 	i2.˛/ if ki D 1, �i .˛/ D .1 � 	i2.˛//	i3.˛/ if
ki D 2, �i .˛/ D .1� 	i2.˛//.1 � 	i3.˛// if ki D 3, etc. In practice, an estimate of
˛ can be obtained by fitting ordinary logistic regression models to the missing data
indicators as appropriate. Inserting Ǫ into (1.20) gives estimating equations which
can be solved for ˇ in the usual fashion [32].

1.3.4 Naive Methods of Imputation

The “last observation carried forward” (LOCF) imputation approach for dealing
with missing values due to drop-outs operates as follows: if ki < K , missing
observations at visits k D ki C 1; : : : ; K are replaced with the value of the most
recently observed response (i.e. yiki ). To distinguish the actual (possibly latent)
responses from the pseudo-responses used under this imputation scheme, we use
Y �
i to denote the response vector under LOCF imputation. Therefore Y �

ik D Yik
for k � ki and Y �

ik D Yiki for k > ki , k D 1; 2; : : : ; K . Assumptions made for
the response Yi are adopted for the pseudo-response Y �

i since analyses are typically
carried out under the assumption that they are in some sense equivalent. In fact,
in most situations for which the assumptions regarding Yi are true, they will not
be true for Y �

i , implying that the estimating equation (1.16) is misspecified for the
pseudo response. The frequency properties of estimators of ˇ based on Y �

i have
been investigated under a wide range of settings by several authors [5, 27] based
on the theory of misspecified models [34, 43]. As with the other naive imputation
approaches discussed earlier, LOCF leads to inconsistent estimators in a wide
variety of settings and can result in either conservative or anti-conservative estimates
of treatment effect.

1.4 Missing Covariates

1.4.1 Likelihood Analyses

Now consider a setting of a clinical trial in which the secondary analyses are
directed at fitting a regression model which controls for a variable Z in addition
to the treatment indicator; for the sake of simplicity we again suppose Z is a binary
variable. One might simply specify a model with the main effects, but we consider
a model of the form

P.Y D 1jX;ZI�/ D expit .�0 C �1X C �2Z C �3XZ/ : (1.21)

This would be of interest if there are questions about whether the effect of treatment
was significantly different in different subgroups defined by a binary covariate Z,
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for example, in which case �3 is parameter of primary interest. Such questions
arise frequently when the goal is to examine the robustness and generalizability
of findings; in cancer trials, for example, the aim may be to investigate whether
the effect of chemotherapy varies according to tumour type. Some centers may
not collect complete histological data and in such circumstances covariate data on
tumour type will be incomplete.

Let C D I.Z observed/ indicate whether the covariate value was recorded. The
observed data likelihood can then be written as

L / P.Y;Z;C D 1jX/C P.Y; C D 0jX/1�C ; (1.22)

where we can marginalize over Z with
P

z P.Y;Z D z; C D 0jX/ to obtain
P.Y; C D 0jX/, the contribution from individuals for whom Z is unobserved.

As in the case of incomplete responses, the tendency is to focus on simple
analyses such as those restricted to individuals with complete covariate data. In this
case the adopted likelihood would be based on the response model with the implicit
condition C D 1 and so is proportional to

P.Y jZ;X;C D 1/ D P.C D 1jY;Z;X/ P.Y jZ;X/P
y P.C D 1jY D y;Z;X/ P.Y D yjZ;X/

D P.C D 1jY;Z;X/
P.C D 1jZ;X/ P.Y jZ;X/ : (1.23)

If C ? Y jZ;X , then (1.23) reduces to P.Y jZ;X/ and a complete-case analysis
will yield consistent estimators of �, but otherwise inconsistent estimators are
obtained; we show this by example in the simulation studies that follow. Note
that with incomplete covariate data, missingness can depend on the potentially
missing variable (Z) and a complete-case analysis remains valid because it involves
conditioning on this covariate; this is in contrast to the setting of missing responses
where the missing data must be modelled. However even when valid, this complete-
case analysis ignores the information contained in the responses from individuals
with incomplete data, and therefore may result in less than optimal efficiency.

1.4.2 An EM Algorithm

If one makes assumptions regarding the distribution of the incomplete covariate in
likelihood analyses based on (1.22), one can exploit information from individuals
with C D 0 and improve efficiency. To see this note that the second term in (1.22),

P.Y; C D 0jX/ D
1X

zD0
P.Y jZ D z; X/ P.Z D zjX/ P.C D 0jY;Z D z; X/ ;



1 Statistical Models and Methods for Incomplete Data in Randomized Clinical Trials 19

is indexed by � (as well as the parameters in P.ZjX/ and those of the missing data
process). If P.C jY;Z;X/ D P.C jY;X/ or P.C jX/, then the missing data process
can be modelled using observed data (Y and X ). If P.C jY;Z;X/ D P.C jZ;X/,
then while this is a desirable missing data process for complete-case analysis
(see (1.23)), in this setting there is a need to make uncheckable assumptions about
the missing data process, since the dependence between C and Z given X cannot
be modelled in general. Progress can be made here if an auxiliary variable V can be
found which satisfies C ? ZjX;V; Y (see Sects. 1.4.3 and 1.4.4).

The assumptions that are needed to exploit information from individuals with
C D 0 could include the fully specified conditional covariate distribution, or simply
its parametric form. In the latter case, the EM algorithm offers a convenient method
for estimation [8]. The complete data likelihood LC corresponding to (1.22) is
proportional to

ŒP.C jY;Z;X/ P.Y jZ;X/ P.ZjX/�C ŒP.C jY;Z;X/ P.Y jZ;X/ P.ZjX/�1�C :

We typically work with the “partial” complete data likelihood

LC / ŒP.Y jZ;X/ P.ZjX/�C ŒP.Y jZ;X/ P.ZjX/�1�C (1.24)

under the assumption that the information regarding � in the missing-data model is
negligible. Working with (1.24) then requires an expression for

P.ZjC D 0; Y;X/ D P.C D 0jY;Z;X/ P.Y jZ;X/ P.ZjX/P
z P.C D 0jY;Z D z; X/ P.Y jZ D z; X/ P.Z D zjX/

(1.25)

for the expectation step of the EM algorithm, which if C ? ZjY;X gives simply

P.Y jZ;X/ P.ZjX/P
z P.Y jZ D z; X/ P.Z D zjX/ : (1.26)

It is clear from (1.26) that, provided P.C jY;Z;X/ D P.C jY;X/, the partial
complete data likelihood (1.24) can be used if assumptions are made regarding the
distribution ofZjX . In fact, when treatment is randomly assigned, only the marginal
distribution ofZ is required sinceZ ? X . However, ifC depends onZ given Y and
X , then there is an identifiability problem and (1.25) cannot be evaluated without
strong assumptions regarding the missing data process.

1.4.3 Multiple Imputation with Missing Covariates

Suppose now that there exists a completely observed covariate V which renders
C ? ZjY;X; V . Again for simplicity we assume V is binary with P.V D 1/ D p
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and P.V D 0/ D 1 � p. Multiple imputation can be carried out using a model
for P.ZjY;X; V; C / D P.ZjY;X; V / and because Z ? C jY;X; V , the model for
ZjY;X; V can be fitted based on individuals with complete data. For illustration
here, we adopt a simpler model whereby P.ZjV;X; Y / D P.ZjV;X/ which can
be easily fitted using a saturated logistic regression model,

P.Z D 1jX;V / D expit.ı0 C ı1X C ı2V C ı3XV/ : (1.27)

Suppose the missing data model is

P.C D 1jX;V / D expit.˛0 C ˛1X C ˛2V C ˛3XV/ ; (1.28)

and the response is generated according to

P.Y D 1jX;Z; V / D expit.��
0 C ��

1X C ��
2Z C ��

3XZ C ��
4 V / : (1.29)

The response model of interest (1.21) can be recovered by noting that P.Y D
1jX;Z/ D EV jX;ZŒP.Y D 1jX;Z; V /�.

The association between Y and C given X and Z is determined by the joint
model

P.Y; C jX;Z/ D
X

v

P.Y jX;Z; V D v; C /P.C jX;Z; V D v/P.V D vjX;Z/

D
X

v

P.Y jX;Z; V D v/P.C jX;V D v/P.V D vjZ/ :

If we simply fit the response model in (1.21), a complete-case analysis is generally
invalid in this setting because C 6? Y jX;Z due to the omission of the variable V
in (1.21).

Following the same arguments as given earlier, for any given data set we may
carry out multiple imputation of Z based on the model P.ZjY;X; V /. If this
model is fit and an estimate of ı is obtained, by standard large sample theory
Oı � MVN.ı;I �1. Oı//.

We proceed by letting d .r/ denote the r th realization from MVN. Oı�;I �1. Oı�//,
and using d .r/ to generate values for all missingZ according to P.ZjY;X; V I d .r//.
Then based on this “complete” data set, we fit P.Y jZ;X I�/ to obtain O�.r/. This is

repeatedm times, and we let NO� D Pm
rD1 O�.r/=m and compute the standard errors as

described in Sect. 1.2.2.3.
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1.4.4 Inverse Probability Weighted Estimating Functions

Inverse probability weighting can be used to obtain unbiased estimating functions
for a complete-case analysis. If P.Ci jYi ; Xi ; Vi ; Zi / D P.Ci jYi ; Xi ; Vi /, then we
can write the inverse weighted estimating function as

U.ˇ/ D
nX

iD1

Ci

P.Ci D 1jYi ; Xi ; Vi / .Yi � E.Yi jXi;Zi I�// Wi ; (1.30)

where Wi D .1;Xi ; Zi ; XiZi /
0, and this can be shown to have expectation zero.

Since the model in the weight indicates a dependence on .Yi ; Xi ; Vi / which are
always observed, then it can be fit and a

p
n-consistent estimator of ˛ in (1.28)

inserted; a consistent estimator of � will then be obtained by setting (1.30) equal to
zero and solving for �.

1.4.5 A Simulation Study

Here we report on a simulation study designed to demonstrate the performance
of several methods of dealing with missing covariates. We consider the response
model (1.21) with ��

4 D 0 and log 4 in (1.29) and find the parameters of the
covariate distribution to ensure these parameter values were obtained. We set
�1 D 0, �2 D log 1:5, �3 D log 0:5, P.X D 1/ D 0:5, P.V D 1/ D 0:5,
and P.Z D 1/ D 0:25 so P.Y D 1/ D 0:5. We set ı1 D 0, ı2 D 0,
ı3 D log 4 in (1.27) to ensure that, as desired, P.Z D 1/ D 0:25 based
on (1.27). Finally, setting ˛0 D �0:151, ˛1 D log 0:8, ˛2 D log 1:2 and
˛3 D log 2 in (1.28) yields P.C D 1/ D 0:5; so for 50 % of subjects we would
expect the covariate to be missing. We generated data for sample sizes of 500 and
2;000 individuals in 2,000 simulated datasets. The analyses conducted included
a complete-case analysis, inverse probability weighted analyses with known and
estimated weights, an EM algorithm for which the correct covariate distribution was
assumed, and multiple imputation. The imputation model adopted was a saturated
logistic regression model for Z given .Y;X; V /, involving eight parameters: the
intercept, three main effects, three two way interactions and a three way interaction.
The empirical biases, empirical standard errors, average asymptotic standard errors,
and empirical coverage probabilities are reported in Table 1.2 for sample sizes of
500 (left column) and 2;000 (right column). The top half of the table corresponds to
the case where C ? Y jX;Z; in the bottom half, C 6? Y jX;Z but C ? Y jX;Z; V
where V is the auxiliary covariate used for inverse weighting with P.C jX;V /, and
multiple imputation via P.ZjX;V /.

The results where Y ? C jX;Z (top half) indicate all methods yield approx-
imately unbiased estimates, close agreement between the empirical and average
asymptotic standard errors, and empirical coverage that is compatible with the
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nominal 95 % level. The efficiency gains realized by modeling the covariate
distribution are apparent by comparing the standard errors from the complete-case
analysis with those of the EM algorithm. The standard errors of the estimates from
the EM and MI algorithms are in close agreement. For the bottom half of the table,
the empirical biases from the complete-case analyses expected due to (1.23) are
apparent. The weighted analyses yielded estimators with much smaller empirical
biases and better performance with the larger sample size. Smaller biases and
smaller standard errors are seen with the EM algorithm. The multiple imputation
analyses yielded small empirical biases as well and their standard errors are in close
agreement with those of the EM algorithm. The empirical coverage probabilities
for all valid methods are compatible with the nominal 95 % level. Simulations and
analyses were carried out in R version 2.14.0 and SAS 9.2 on the Sun Solaris 10
platform.

1.5 Discussion

Incomplete data can arise in a number of settings for a variety of different reasons.
Key factors influencing the extent of the impact on standard analyses are the
proportion of missing data, and as demonstrated in this chapter, the nature of the
stochastic mechanism which causes the data to be incomplete. Even when analyses
are valid, loss of efficiency and decreased power are always issues. When possible,
the extent of missing data should always be minimized.

Likelihood methods which have been developed and applied to minimize the
effect of incomplete data are often directed at retrieving information about parame-
ters of interest and improving power, but these come at the cost of making modeling
assumptions beyond those typically made in analyses with complete data. These
additional model assumptions are explicit, for example, when a parametric multiple
imputation approach is adopted for incomplete response data. When covariates are
missing and the EM algorithm is applied, one must make assumptions regarding
the covariate distribution, which is not customary in routine analyses. When inverse
probability weights are used, a model for the missing data process must be specified,
which again is not something that is routinely done in standard analyses. The
specified models should be checked carefully since consistent estimators only result
if these are correct.

Throughout this chapter we have emphasized simple models with binary data,
primarily for transparency and so that explicit results would be easy to obtain.
When responses are continuous, inverse probability weighting changes very
little; this approach requires modeling the missing data indicator which remains
binary. Multiple imputation can be carried out in this case based on a linear
regression model. The methods for longitudinal data can be similarly adapted.
When incompletely observed covariates are continuous or categorical, the necessary
model assumptions for the EM algorithm or multiple imputation may become more
involved and robustness of inferences becomes more of a concern. When multiple
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covariates are missing, high-dimensional joint models for the covariates are required
and these can be challenging to specify and check. These challenges, in part, are
reasons for the appeal of inverse probability weighted analyses of individuals with
complete data [24].

We have considered the cases of a missing response or a single missing covariate
separately. Frequently both responses and covariates can be missing in a given
dataset and hybrid methods can be employed [4].

We have emphasized the setting in which interest lies in a regression model for a
marginal mean parameter. In some settings, association parameters (e.g. correlations
or odds ratios) are viewed as of comparable importance. This occurs when scientific
interest lies in the nature of the association structure, or if concerns lie in optimizing
efficiency. In this case, regression models can be formulated for the association
parameters and appropriate likelihood functions can be formed [13, 14]. Zhao and
Prentice [45] describe how to do this using second order estimating equations. In the
likelihood setting, the EM algorithm can be adopted and the idea of using inverse
weighting for estimating association parameters can be adapted [44].
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Chapter 2
Bayesian Decision Theory and the Design
and Analysis of Randomized Clinical Trials

Andrew R. Willan

Abstract Traditional approaches to the analyses and sample size determinations for
randomized clinical trials are based on tests of hypotheses and rely on arbitrarily set
error probabilities and smallest clinically important differences. Recently Bayesian
methods have been proposed as an alternative. In particular, many authors have
argued that Bayesian decision theory and associated value of information methods
can be used to the determine if current evidence in support of a new health care
intervention is sufficient for adoption and, if not, the optimal sample size for a future
trial. Value of information methods incorporate current knowledge, the value of
health outcome, the incidence and accrual rates, time horizon and trial costs, while
maximizing the expected net benefit of future patients and providing an operational
definition of equipoise. In this chapter value of information methods are developed
in detail and illustrated using a recent example from the literature.

2.1 Introduction

The standard approach to the analysis and sample size determination for a
randomized clinical trial (RCT) is based on the use of tests of hypotheses and
the frequentists definition of probability. Consider a randomized clinical trial in
which a new health care intervention, referred to as Treatment and labeled T , is
compared to an existing intervention, referred to as Standard and labeled as S .
The trial is conducted for the purpose of considering the adoption of Treatment if
it is superior to Standard. This type of trial is often referred to as a superiority
trial. Let Y be the random variable representing the primary outcome where
larger values of Y are preferred, such as survival (where Y D 1 if the patient
survives, 0 otherwise), survival time, quality-adjusted survival time or net benefit.
LetE.Y ji/; i D T; S be the expected value of the outcome for a patient randomized
to i , and let � D E.Y jT / � E.Y jS/. Thus, larger values of � favour Treatment.
Typically, in a superiority trial the data is used to test the null hypothesisH W � � 0
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versus the alternative hypothesis A W � > 0. Treatment is considered for adoption
if, and only if, H is rejected in favour of A. The probability of falsely rejecting
H, referred to as the Type I error probability, is set to some relatively small value.
Sample size is determined by specifying the smallest clinically important (positive)
difference for � , labelled as �SCID, and requiring that the probability of failing to
reject H when � � �SCID is less that some relatively small value, referred to as the
Type II error probability.

There are many problems with this approach. Firstly, the value selected for the
Type I error probability is somewhat arbitrary and is almost always set to 0:05.
Using the same value for the probability of a Type I error for every trial ignores
the seriousness of the error, which clearly varies from trial to trial. Thus, a trial that
randomizes patients with age-related macular degeneration between two different
wavelengths of laser coagulation [42] uses the same probability of falsely declaring
Treatment superior, as does a trial of Caesarean section versus vaginal delivery for
women presenting in the breech position [23]. Declaring one wavelength superior to
another when they are the same is not a serious error since selecting the wavelength
is a matter of simply dialing the appropriate frequency and the only difference to
patients is the colour of the light observed during the procedure. However, in the
latter, declaring Caesarean section superior when it is the same as vaginal delivery
is a serious error. Assigning the same probability to the two errors makes no sense,
quite apart from the fact that the value of 0:05 is somewhat arbitrary in the first
place. Also somewhat arbitrary is the typical choice of 0:2 for the probability of a
Type II error. It means that there is a 20% chance that the effort and money invested
in the trial will be wasted, even if a clinically important difference between the
treatments exists. Again, it fails to reflect the seriousness of making the error. The
choice of �SCID can be less arbitrary and can be estimated by polling clinicians and
decision makers. However, in practice it is often back-solved from the sample size
equation after substituting in a sample size that reflects constraints relating to patient
recruitment and budget. Even if �SCID is a reasonable, clinically determined estimate
of the smallest clinically important difference, there is a range of values for the true
treatment difference that is less than the smallest clinically important difference,
for which the probability of rejecting the null hypothesis and adopting Treatment is
greater than 50%. This sometimes referred to as a Type III error.

In response to these problems, many authors have proposed alternative methods
[1, 3, 9, 11–16, 18–22, 25, 26, 28, 33–35, 43–49, 52]. In particular many authors
have proposed the application of decision theory and associated expected value of
information methods for assessing the evidence from RCTs and for determining
optimal sample size for future trials. The application of decision theory to the
design and sample size determination is the subject of the remainder of this chapter.
In Sect. 2.2 an introduction to the cost-effectiveness analysis of RCTs is given,
complete with an illustrative example. The use of decision theory in the design
and analysis of RCTs is given in Sect. 2.3 and illustrated with the same example
in Sect. 2.4. A summary and discussion are given in Sect. 2.5.



2 Bayesian Decision Theory and Randomized Clinical Trials 31

2.2 Cost-Effectiveness Analysis of Randomized Clinical
Trials

Consider the cost-effectiveness comparison of a new health care intervention
referred to as Treatment and labeled T , with an existing health care intervention
referred to as Standard and labeled S . The health care interventions could be
therapeutic, preventive or diagnostic. Let ej and cj be the respective mean measure
of effectiveness and cost for patients receiving intervention j , where j D T; S . The
measure of effectiveness is framed in the positive, such as surviving the duration
of interest, survival time or quality-adjusted survival time. Cost includes not just
cost of the interventions, but all down-stream health care cost over the duration of
interest and might, depending on the perspective taken, include non-health care cost,
such as time lost from work, etc. Let
e D eT � eS and 
c D cT � cS .

Initially, cost-effectiveness inference was centred on the parameterR 	 
c=
e,
which is referred to as the incremental cost-effectiveness ratio (ICER) and is the
cost of achieving each additional unit of effectiveness from using Treatment rather
than Standard. For example, suppose the probability of surviving the duration of
interest was 0:6 for a patient receiving Standard and 0:7 for a patient receiving
Treatment and the respective mean costs for Standard and Treatment over the
duration of interest were $14,000 and $15,000 respectively. The ICER D .15; 000�
14; 000/=.0:7� 0:6/ D $10; 000 per life saved or death averted. Many authors have
discussed inference on the cost-effectiveness ratio [4–6, 8, 27, 30–32, 37, 40, 41, 50].

Due to the concerns regarding ratio statistics, focus has shifted from the
incremental cost-effectiveness ratio to the incremental net benefit (INB). Let the
net benefit (NB) of intervention j be defined as NBj 	 ej � � cj where � is
the threshold value for a unit of effectiveness (e.g., the value of saving a life or
the value of a year of life gained). The INB is defined as b 	 NBT � NBS D
eT �� cT � .eS�� cS / D 
e��
c . The term
e� is the incremental effectiveness
(benefits) expressed in monetary terms and the term �
c subtracts the incremental
costs, leaving the incremental net benefit. When INB is positive, Treatment is
considered value-for-money and should be considered for adoption, subject to
budgetary constraints and the level of uncertainty. In the simple example above
b 	 0:1� � 1;000 and is positive for values of the threshold greater than $10,000
(i.e., the ICER). Many authors have discussed inference on the incremental net
benefit [2, 7, 24, 29, 36, 38, 39, 53–56].

Suppose O
e and O
c are the respective estimates of
e and
c from a study, such
as a clinical trial or an observational study, where individual patient measures of
effectiveness and cost have been recorded. Let V. O
e/, V. O
c/ and C. O
e; O
c/ be the
relevant variances and covariance. For more on parameter estimation the reader is
referred to Willan and Briggs [57]. Assuming no prior information, and invoking the
central limit theorem, the posterior pdf for the incremental net benefit can be given
by N.b0; v0/, where b0 D O
e� � O
c and v0 D V. O
e/�

2 C V. O
c/� 2C. O
e; O
c/�.
Inference regarding INB, which is an attempt to characterize the cost-effectiveness
of Treatment compared to Standard and the corresponding uncertainty, can best
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be presented by a plot the cost-effective acceptability curve (CEAC), which is
the probability that the INB is positive (i.e., that Treatment is cost-effective) as a
function of the threshold value for a unit of effectiveness and, invoking the central
limit theorem, can be calculated as ˚

�
b0=

p
v0
�
, where ˚.�/ is the cdf for the

standard normal random variable. The CEAC passes through 0.5 at � D ICER,
crosses the vertical axis at the probability that Treatment is cost saving (i.e.,
O
c < 0), and is asymptotic to the right to the probability that Treatment is more

effective (i.e., O
e > 0). For more on the CEAC the reader is referred to Fenwick et
al. [17].

2.2.1 The CADET-Hp Trial

The CADET-Hp Trial is a double-blind, placebo-controlled, parallel-group, multi-
centre, randomized controlled trial performed in 36 family practitioner centres
across Canada. The results are published in Chiba et al. [10] and Willan [51].
Patients 18 years and over with uninvestigated dyspepsia of at least moderate sever-
ity presenting to their family physicians were eligible for randomization, provided
they did not have any alarm symptoms and were eligible for empiric drug therapy.
Patients were randomized between T : Omeprazole 20mg, metronidazole 500mg
and clarithromycin 250mg, and S : Omeprazole 20mg, placebo metronidazole and
placebo clarithromycin.

A total of 288 patients were randomized, 142 .D nT / to Treatment and 146 .D
nS/ to Standard. Both regimens were given twice daily for 7 days. The binary
measure of effectiveness was treatment success and defined as the presence of no
or minimal dyspepsia symptoms at 1 year. Total cost was determined from the
societal perspective and are given in Canadian dollars. A summary of the parameter
estimates is given in Table 2.1. The details regarding parameter estimation are
given in the Appendix. Assuming no prior information and invoking the central
limit theorem, the posterior pdf for the INB is normal with mean 0:1371�C 53:01

Table 2.1 Parameter estimates for the CADET-Hp trial

Treatment Standard

.nT D 142/ .nS D 146/

Proportion of successes 0.5070 0.3699 Difference D O
e D 0:1371

Average cost 476.97 529.98 Difference D O
c D �53:01
V(Proportion of successes) 0.00176 0.001596 Sum D OV

� O
e



D 0:003356

V(Average cost) 2,167 2,625 Sum D OV
� O
c



D 4; 792

C(Proportion of successes, �0:2963 �0:4166 sum D OC
� O
e; O
c



D �0:7129

mean cost)
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Fig. 2.1 The
cost-effectiveness
acceptability curve for the
CADET-Hp trial
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0:1371�C 53:01=
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, is shown

in Fig. 2.1. Because Treatment is observed to increase effectiveness (i.e., O
e > 0)
and decrease cost (i.e., O
c < 0), the INB will be positive and the CEAC will be
greater than 0:5 for all positive values of the threshold value (�).

Because the mean INB is positive regardless of the threshold value, and because
Treatment is observed to reduce cost and therefore budget constraints may not be
an issue, it may seem obvious that Treatment should be adopted. But this would
ignore the uncertainty regarding the INB (i.e., v0 > 0). Because of this uncertainty,
there is a positive probability that the INB is negative. (For � D 250, the probability
that INB is negative, i.e., 1 � CEAC for � D 250, is 0:12.) Therefore, there is
a positive expected opportunity loss associated with the net benefit maximizing
decision (action) to adopt Treatment and the optimal action might be to obtain more
information (e.g., another trial) to reduce the uncertainty and decrease the expected
opportunity loss. Whether or not another trial is optimal, and the optimal size of
the trial if it is, will depend on the trade-offs between the additional cost and the
reduction in expected opportunity loss. This is covered in the next section.

2.3 Decision Theory and Value of Information in RCT
Research

2.3.1 Introduction

In response to the many problems associated with sample size determinations
based on tests of hypotheses and power arguments, many authors have proposed
alternatives [1,3,9,11–16,18–22,25,26,28,33–35,43–49,52]. In particular, among
others, Willan and Pinto [43], Eckermann and Willan [14–16], Willan [44, 45],
Willan and Kowgier [46], and Willan and Eckermann [47–49] propose methods
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based on decision theory and the expected value of information that determines the
sample size for maximizing the difference between the expected cost of the trial and
the expected value of the information provided by the results. Fixed, variable and
opportunity trial costs are considered. In addition to providing optimal sample sizes,
these methods can identify circumstances when the current information is sufficient
for decision making, see Willan [44]. Details of the approach are given below.

2.3.2 Opportunity Loss in Decision Making

To recognize the role that decision theory can play in the analysis and design of
RCTs one must understand the definition of opportunity loss and how to determine
its expected value. To that aim we use an example based on a simple bet on the
toss of a (not necessarily fair) coin. The decision to accept the bet on the coin
toss has an associated opportunity loss, and one can determine its expected value
based on the current information regarding the outcome of a toss of the coin. The
more information one has regarding the toss of the coin, the less is the expected
opportunity loss. The chance to gather additional information should be accepted
only if the cost of doing so is less than the reduction in the expected opportunity cost
provided by the additional information. The reduction in the expected opportunity
loss provided by additional information is referred to as the expected value of
information (EVSI).

Suppose Karl has tossed a particular coin on 12 occasions and noted that it came
up heads on 9 of them. He must now decide whether or not to accept the following
bet: On a new toss of the coin, if it comes up heads he wins $1,000 and if it comes
up tails he loses $1,000. Let the random variable X D 1 if the next toss of the
coin is a head, and 0 otherwise. A reasonable pdf for X to reflect the uncertainty
regarding the next toss (i.e., the value of X ) is Bernulli(�), given by Pr.X D x/ D
�x.1� �/1�x , where � is the probability that the next toss of the coin is a head. The
utility of accepting the bet is $1,000 if the toss is a head and �$1,000 if it is tail,
and as a function of X , equals 1;000X � 1;000.1 � X/ D 1;000.2X � 1/, with
expectation 1;000.2� � 1/. The utility of refusing the bet is zero, since nothing is
gained or lost. Karl’s previous experience with the coin has provided him with some
knowledge regarding � . In general, if Karl had observed r heads in n tosses, and
assuming he had no other prior knowledge or opinions regarding � , the posterior
distribution for � is Beta.a0; b0/, where a0 D r C 1 and b0 D n � r C 1, with
mean a0=.a0Cb0/ and variance a0b0=

˚
.a0 C b0/

2.a0 C b0 C 1/
�
. The pdf and cdf,

denoted by fB.� I a0; b0/ and FB.� I a0; b0/ respectively, are given by

fB.� I a0; b0/ D Œ.a0 C b0 � 1/Š= f.a0 � 1/Š.b0 � 1/Šg� �a0�1.1 � �/b0�1 and

FB.� I a0; b0/ D
a0Cb0�1X

jDa0

.a0 C b0 � 1/Š

j Š.a0 C b0 � 1 � j /Š �
j .1 � �/a0Cb0�1�j
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Therefore, Karl’s current knowledge regarding � after observing 9 heads in 12
tosses is characterized by a beta distribution with mean 10=14 D 0:7143 and
variance 10 � 4= ˚.10C 4/2.10C 4C 1/

� D 0:01361, and his expected utility for
the decision to accept the bet is 1;000.2� 0:7143� 1/ D 428:6. Since his expected
utility for the decision to refuse the bet is 0, he should accept the bet if he wants
to maximize expected utility. Nonetheless, there is an opportunity loss associated
with deciding to accept the bet. In general, the opportunity loss associated with a
decision is the utility of the best decision minus the utility of the decision made.
The opportunity loss of accepting the bet depends on whether the coin comes up
heads or tails. If it comes up heads there is no opportunity loss because, in that case,
accepting the bet is the best decision. If the coin comes up tails, the best decision
would have been to refuse the bet. The utility of refusing the bet is zero, but the
utility of accepting the bet when it comes up tails is �$1,000. Thus, the opportunity
loss of accepting the bet when it comes up tails is the utility of refusing the bet
minus the utility of accepting the bet, i.e., 0 � .�1;000/ D $1;000. Consequently,
Karl’s opportunity loss function is 1;000� I (coin comes up tails), where I.�/ is the
indicator function. Therefore, Karl’s expected opportunity loss based on the current
information (EOL0) is given by

EOL0 D 1;000 � Pr.� < 0:5/ D 1;000 � FB.0:5I 10; 4/: That is,

EOL0 D 1;000

13X

jD10

13Š

j Š.13 � j /Š
0:513 D 46:14:

Therefore, based on current information, Karl faces an expected opportunity
loss of $46.14 associated with the decision to accept the bet which is his expected
utility-maximizing course of action.

Suppose Karl is given the opportunity to pay $20.00 to toss the coin 12 more
times. The question is: Is the additional information worth $20.00? In decision
theory that question is interpreted as: Will the additional information provided by
12 more tosses reduce the expected opportunity loss by more than $20.00? Suppose
Karl tosses the coin 12 more times and observes r heads. The posterior distribution
is Beta(a1; b1), where a1 D a0 C r D 10C r and b1 D b0 C .12� r/ D 16� r . The
posterior expected opportunity loss if Karl observes r heads in 12 tosses is

EOL1 D 1;000 � Pr.� < 0:5/ D 1;000 � FB.0:5I 10C r; 16� r/:

Since the expected opportunity loss is a function of the number of heads observed,
the expected value of the expected opportunity loss must be taken with respect to
the random variable number of heads observed, denoted Y . Thus, the expected
opportunity loss including the new information provided by the 12 coin tosses
(EOL1) is given by
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EOL1 D
12X

rD0
f1;000 � FB.0:5I 10C r; 16 � r/ � Pr.Y D r/g

D 1;000

12X

rD0

8
<

:

25X

jD10Cr

25Š

j Š.25 � j /Š 0:5
25 3Š

rŠ.3 � r/Š �
r
0 .1� �0/

12�r
9
=

;

D 29:87:

where �0 D a0=.a0 C b0/ D 0:7143, Karl’s current mean of � . Therefore, the
expected value of sample information provided by the 12 coin tosses is EOL0 �
EOL1 D 46:14 � 29:87 D $16:27, which is less that the offered cost of $20.00.
Therefore, Karl’s optimal action is to accept the bet based the information from
the initial 12 tosses. To emphasize here, Karl’s optimal decision is to accept the
bet without paying for the additional information because the cost of the additional
information exceeds the amount by which it would reduce the expected opportunity
loss. As illustrated in later sections, a similar situation arises in evaluating evidence
from a clinical trial. Because of the uncertainty inherent in the evidence, the decision
to adopt the utility-maximizing intervention will be associated with an expected
opportunity loss. Additional evidence should be sought only if the cost of attaining
the evidence is the less than the amount by which it reduces the expected opportunity
loss.

Suppose now that Karl was offered the opportunity, prior to deciding whether or
not to accept the bet, to make as many tosses as he wished at $0.50 a toss. If he took
12 tosses the $6.00 cost would be less than the expected value of information of
$16.27. The question now is: What is the optimal number of tosses? The answer is:
It is the number of tosses that maximizes the difference between the expected value
of sample information and the cost of making the tosses. The difference between
the expected value of information and the cost is referred to as the expected net
gain (ENG). If we let m be the number of tosses taken, then the posterior expected
opportunity loss is

EOL1.m/ D
mX

rD0
f1;000 � FB.0:5I 10C r; 4Cm � r/ � Pr.Y D r/g

D 1;000 � 0:516 �
mX

rD0

8
<

:

13CmX

jD10Cr

.13Cm/ŠmŠ�r0 .1 � �0/
m�r

j Š.13Cm � j /ŠrŠ.m � r/Š

9
=

; ;

where �0 D a0=.a0 C b0/ D 0:7143, Karl’s current mean of � . Plots of the EVSI
(i.e., EOL0 � EOL1.m/) and total cost (i.e., 0:5m), as functions of m, are given in
Fig. 2.2. By inspection, the difference between the expected value of information
and total cost is maximized at 34 tosses, where the expected value of sample
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Fig. 2.2 The expected value
of information and total cost
for the coin toss example
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information D $37:06 and the total cost is $17.00, yielding an expected net gain of
$20.06. As illustrated in later sections, an analogous situation arises when assessing
the evidence from an RCT. One must decide to adopt the utility-maximizing
intervention or, if given the chance, perform another trial which should be performed
only if the maximum amount by which the expected opportunity loss is reduced (i.e.,
EVSI) exceeds the cost of the trial. That is, only if the maximum ENG is positive.

It may seem odd that the expected opportunity loss based on the initial 12 tosses
is only $46.14, given that Karl has a 1 � �0 D 0:2957 probability of losing $1,000.
But the expected opportunity loss relates to the uncertainty regarding � , not its actual
value. That is, if Karl knew for certain that the probability of heads is 0:55, his
expected opportunity loss is zero, even though there is a 0.45 probability that he
will lose $1,000. The value of perfect information, when you have it, is zero. Karl
accepts the bet if the expected value of the utility (i.e., 1;000.2�0 � 1/) is greater
than zero because we have assumed Karl is risk-neutral, that is, a dollar lost has
the same value as a dollar won. Being risk-neutral makes most sense if the bet can
be accepted or refused numerous times, thus spreading the risk of any single bet
over many others. Based on the information Karl has from the initial 12 tosses, the
probability that he will lose money on a single toss is 1� �0 D 0:2857. However on
k tosses he will lose money only if less than a half of them are heads, that is, with
probability

k�X

rD0

kŠ

rŠ.k � r/Š
�r0 .1 � �0/k�r ;

where k� is the largest integer less than k=2. So, for 10 tosses the probability of
losing money is 0:03764 and for 20 tosses it is 0:01171.
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2.3.3 The Expected Value of Sample Information

Consider the problem of determining the sample size for a randomized clinical trial
designed to examine the cost-effectiveness of Treatment in comparison to Standard.
The trial is conducted with the purpose of adopting Treatment if it is found to be
cost-effective. Treatment is cost-effective if the INB is greater than zero. Recall
from Sect. 2.2 that the INB is defined as b 	 
e� � 
c , where � is the threshold
value for a unit of health outcome (effectiveness); 
e D eT � eS , where ej , for
j D T; S , is the mean effectiveness for intervention j ; and 
c D cT � cS , where
cj , for j D T; S , is the mean cost for intervention j . Recall that b 	 eT � � cT �
.eS�� cS /, so that INB D NBT � NBS , where NBj .	 ej �� cj / is the net benefit
for intervention j .

In the following, the threshold value is initially considered fixed for ease of nota-
tion but can be allowed to vary, as demonstrated later when examining robustness.
Let the current information regarding incremental net benefit be characterized by a
normal prior pdf with mean b0 and variance v0, where b0 > 0 and v0 > 0. Since the
prior mean INB (b0) is positive, adopting Treatment, rather than retaining Standard
maximizes the expected net benefit for future patients. However, since the prior
variance of INB (v0) is positive, adopting Treatment is not necessarily the optimum
decision facing a decision maker. Consideration must be given to collecting more
information, i.e., conducting another trial. Decision uncertainty resulting from a
positive v0 implies that a decision maker faces an opportunity loss when adopting
Treatment, even though doing so is the decision that maximizes expected net benefit
for future patients. The opportunity loss per patient associated with the decision to
adopt Treatment is defined as the utility of the best decision minus the utility of
adopting Treatment. Since, in this context, utility equals net benefit, the opportunity
loss becomes the maximum of (NBT , NBS ) minus NBT . The maximum of (NBT ,
NBS ) depends on b, the INB. If b is positive, then NBT > NBS , and NBT is the
maximum. On the other hand, if b is not positive, then NBT � NBS , and NBS is the
maximum. Thus the opportunity loss per patient associated with adopting Treatment
(OLppT ), as a function of INB, is given by:

OLppT .b/ D
(

Max.NBT ;NBS /� NBT D NBS � NBT D �b W b � 0

Max.NBT ;NBS /� NBT D NBT � NBT D 0 W b > 0

)
:

When INB is positive there is no opportunity loss associated with adopting Treat-
ment since future patients would receive the net benefit-maximizing intervention.
However, if Treatment is adopted when incremental net benefit is negative, future
patients would not receive the net benefit-maximizing intervention and each patient
would experience a reduction in net benefit equal to the absolute value of INB. A
plot of OLppT .b/ is given in Fig. 2.3.

Taking the expected value of OLppT .b/ with respect to the current information
regarding incremental net benefit which, as assumed above, is characterized by a
normal prior pdf with mean b0 and variance v0, yields the prior expected opportunity
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Fig. 2.3 The opportunity
loss function per patient of
adopting Treatment

OLppT (b) = 0 : b > 0 b 

loss per patient (EOLppT 0). Letting fN .xI�; v/ be the pdf for normal random
variable with mean � and variance v, then

EOLppT 0 D
Z

1

�1

OLppT .b/fN .bI b0; v0/db D
Z 0

�1

�bfN .bI b0; v0/db D D .b0; v0/ ;

where

D .�; v/ D Œv=.2�/�
1
2 exp

���2=.2v/
�� �

h
˚.��=v

1
2 / � I.� � 0/

i
I (2.1)

where ˚.�/ is the cdf for the standard normal random variable; and, I.�/ is the
indicator function, see Willan and Pinto [43] for details. The expected opportunity
loss per patient, multiplied by the number of future patients, is the total expected
opportunity loss and is also known as the expected value of perfect information,
since if the decision maker had perfect information (i.e., v0 D 0), the opportunity
loss could be avoided by adopting Treatment if b0 is positive and retaining Standard,
otherwise. Applying decision theory, as illustrated in Sect. 2.3.2, the expected value
of sample information (EVSI) of a new trial is the amount by which the information
from the new trial reduces the total expected opportunity loss.

Suppose a new trial of n patients per arm is conducted where O
e and O
c are the
respective estimators of 
e and 
c from the trial data. Thus, the estimate of INB
based on the trial data is Ob D O
e� � O
c and relying on the central limit theorem
regarding the distribution of Ob the posterior mean and variance for incremental net
benefit are given by:

b1 D v1

 
b0

v0
C n Ob

2C

!
and v1 D

 
1

v0
C n


2C

!�1
;

where 
2C is the sums over treatment arm of the between-patient variances of
net benefit, and is assumed known or determinable from prior data. Details for
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estimating 
2C for the CADET-Hp trial are given in the Appendix. The posterior (i.e.,
post-trial) expected opportunity cost per patient is given by EOLpp1 D D.b1; v1/.
EOLpp1 is a function of the random variable Ob and to determine the expected
reduction in per-patient opportunity loss, with the purpose of identifying the optimal
sample size, the expectation of EOLpp1 must be taken with respect to Ob. Applying
the central limit theorem, the predictive distribution for Ob is N.b0; v Ob/, where
v Ob D v0 C 
2C=n, and the expected value of EOLpp1 with respect to v Ob becomes,
see Willan and Pinto [43],

E ObEOLpp1 D E ObD.b1; v1/D
Z 1

�1
D.b1; v1/f . ObI b0; v Ob/d ObD I1 C I2 C I3; where

I1 D p
v0=.2�/


2C exp
��b20=2v0

�
=.nv Ob/;

I2 D �b0˚
��b0=pv0

�C v3=20 exp
��b20=2v0

� ı �
v Ob

p
2�


; and

I3 D b0˚
��b0pv Ob=v0

� � v0 exp
��b20v Ob=.2v20/

� ıq
2�v Ob:

Thus, the expected value of sample information of a trial of n patients per arm is
given by

EVSI.n/ D B.n/
˚
D.b0; v0/� E ObD.b1; v1/

�
;

whereB.n/ refers to the post-trial patient horizon, defined as the number of patients
who could potentially receive the new intervention following the trial and therefore
can benefit from a reduction in the opportunity loss. For an incidence rate of k
patients per year, a time horizon of h years and a trial duration of t.n/ years,
B.n/ D k fh� t.n/g. The time horizon is the duration for which the decision to
either adopt Treatment or perform another trial is relevant. Although there is no
software packages for determining EVSI, it components can be calculated directly
from the formulae using a spreadsheet.

2.3.4 Expected Total Cost

The cost of a trial is assumed to have two components, one financial and the other
reflecting opportunity costs. Let Cf be the fixed financial cost of setting up a trial
and let Cv be the variable financial cost per patient. Then the total financial cost of
a trial with n patients per arm is Cf C 2nCv. The assumption is made that since b0
is positive, if the trial is not performed, all future patients would receive Treatment.
This is referred to as the assumption of perfect implementation. It is also assumed
that while the trial is performed, all patients outside the trial and half the patient
within the trial will receive Standard. All patients who receive Standard while the
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trial is performed, denoted as D.n/, pay an expected opportunity cost equal to
b0. The decision to perform the trial means that these patients have an expected
reduction in net benefit equal to b0 because they will receive Standard rather than
Treatment. ThereforeD.n/ D kt.n/�n. That is, the number of patients who receive
Standard because of the trial are all the patient who are incident while the trial
is performed, minus the n patients who receive Treatment in the trial. Therefore,
the expected total cost (ETC) of delaying the decision and performing the trial is
ETC.n/ D Cf C 2nCv CD.n/b0.

The function t.n/, an important part of the functions of B.n/ and D.n/, will
depend on what assumptions are made regarding the proportion of patients that are
recruited into the trial and the duration between when the last patient is randomized
and when the trial results are available. These assumptions and their implications
are discussed in Sect. 2.4 using the CADET-Hp trial as an example.

2.3.5 The Expected Net Gain and Optimal Sample Size

Given b0, v0, 
2C, h and k, the EVSI is a function of the sample size n, given as
EVSI.n/ D B.n/

˚
D.b0; v0/� E ObD.b1; v1/

�
. Likewise, given b0, Cf and Cv, the

expected total cost is a function of the sample size n, given as ETC.n/ D Cf C
2nCv CD.n/b0. The expected net gain is defined as ENG.n/ 	 EVSI.n/�ETC.n/.
Considering the trial in isolation, and being free of budget constraints, let n� be that
value of n that maximizes the expected net gain. That is, ENG.n�/ � ENG.n/ for
all positive integers n. If ENG.n�/ � 0 then optimal sample size is zero and the
current information, i.e., b0 and v0, is sufficient for decision making. In this case
no trial is necessary, since the expected value of the information from the trial is
less than the expected total cost, regardless of the sample size. On the other hand, if
ENG.n�/ > 0, the decision maker is in a state of equipoise and the optimal decision
is to delay adopting Treatment, even though b0 > 0, and perform a trial with n�
patients per arm.

2.4 Applying VOI Methods: The CADET-Hp Trial

Suppose, for sake of illustration, the threshold value of a treatment success is $250,
i.e., � D 250. Assuming no prior information, the current mean and variance for
incremental net benefit is given by:

b0 D 0:1371� 250� .�53:01/ D 87:285;

v0 D 0:003356� 2502 C 4;792� 2 � .�0:7129/� 250 D 5;344:7;
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and, invoking the central limit theorem, the prior pdf for INB for the planning of a
new trial is N.87:285; 5;344:7/. The probability that Treatment is cost-effective for
� D 250 is 0.88, see Fig. 2.1. Since b0 > 0 the net benefit maximizing decision,
based on current evidence, is to adopt Treatment (i.e., add the antibiotics) for future
patients. However, since v0 > 0, the decision to adopt Treatment is associated with
an expected per-patient opportunity loss of D.87:285; 5;344:6/ D 4:1528 (from
Eq. 2.1), and the optimal decision might be to delay the adoption of Treatment and
perform another trial. Performing another trial would be optimal if the reduction in
total expected opportunity loss (i.e., the expected value of sample information) is
greater than the expected total cost, that is, if the expected net gain is greater than
zero.

2.4.1 Simplifying Assumptions

If we make the simplifying assumptions that all patients in the jurisdiction of interest
are recruited into the trial and that the results of the trial are available immediately
after the last patient is randomized, then duration of the trial will equal total sample
size divided by the incidence (i.e., t.n/ D 2n=k). Under the same assumptions the
number of patients that can benefit from the new information (B) will equal the total
patient horizon (i.e., kh) minus the 2n patients in the trial (i.e., B.n/ D kh � 2n).
The time horizon of a decision is the duration over which the decision is considered
relevant. Assuming an incidence of 80,000 per year and a time horizon of 20 years,
the plots of EVSI, ETC and ENG as functions of n are given in Fig. 2.4. The fixed
(Cf ) and variable (Cv) financial cost of the trial were assumed to be $800,000 and
$2,000, respectively. The optimal sample size is 463 patients per arm, yielding an
optimum ENG of $1,329,020 with an ETC of $2,692,413 for a return on investment
of 49 %.

Willan et al. [51] demonstrates that plotting the combinations of the threshold
value (�) and horizon (h) for which the ENG is zero provides a sensitivity analysis
for those variables, see Fig. 2.5. For combinations of � and h above the curve the

Fig. 2.4 EVSI, ETC and
ENG for the CADET-Hp
example using the unrealistic
assumptions
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Fig. 2.5 The values of the
threshold value for health
outcome and horizon for
which the ENG is zero for the
CADET-Hp example using
the unrealistic assumptions
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ENG is positive (i.e., a state of equipoise exists) and a new trial is the optimal
decision. Whereas, for combinations below the curve the ENG is negative and the
current evidence is sufficient for decision making. Note that the combination of
� D 250 and h D 20 lies above the line.

2.4.2 More Realistic Assumptions

In Sect. 2.4.1 it was assumed that all patients in the jurisdiction of interest are
recruited into the trial and that the trial results are available immediately after the
last patient is randomized. These assumptions almost never hold. Usually only a
small fraction of the eligible patients are recruited, and patients need to be followed
to observe outcomes. Further, time is required for data entry, cleaning and analysis.
If we let the annual accrual rate be denoted by a and the number of years between
when the last patient is randomized and the data is analysed be denoted by � , the
trial duration becomes t.n/ D � C 2n=a. Consequently, the number of patients
who will benefit from the trial results (B) and the number of patient incurring an
opportunity cost (D) are given by:

B.n/ D k fh� .2n=a C �/g
D.n/ D k.2n=a C �/ � n

For the CADET-Hp example, if we assume an accrual fraction of 1 % (i.e.,
a D 800 per year), and allow for 1 year of follow-up (necessary to observe the
measure of effectiveness) with 3 months for data entry, cleaning and analysis (i.e.,
t D 1:25), the optimal sample size is zero. A plot of the expected total cost and
expected value of sample information is given in Fig. 2.6, where it can be seen
that costs exceeds value for all sample sizes. The expected total cost have been
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Fig. 2.6 EVSI and ETC for
the CADET-Hp example
using the realistic
assumptions
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driven up by the very high expected opportunity cost for the patients who receive
Standard while the trial is conducted. These patients consist of 99 % of incident
cases while the trial is recruiting patients and 100 % during the follow-up period.
The expected opportunity cost for the 1.25 years of follow-up alone is $8,728,500.
Further, because the trial takes longer to perform the number of patients that can
benefit from the new information is reduced, which in turn reduces the EVSI. For
details, the reader is referred to Eckermann and Willan [15, 16].

2.4.3 Relaxing the Assumption of Perfect Implementation

For the solution above and in Sect. 2.4.1 the assumption has been made that if the
current mean INB is positive (i.e., b0 > 0) that all future patients would receive
Treatment in the absence of a new trial. Referred to as perfect implementation
this assumptions is unlikely to hold. To examine the effect of allowing imperfect
implementation Willan and Eckermann [48] assume that the probability that a
future patient that would receive Treatment if no additional evidence is forthcoming,
is a non-decreasing function of the strength of the evidence as measured by the
z-statistic, defined as zi D bi

ıp
vi , i D 0; 1. To demonstrate the dramatic effect

that this more realistic assumption has on the solution, the authors use a sliding
step function, where if zi � � , the probability that a future patient would receive
Treatment is 0, and if zi � ˇ, the probability that a future patient would receive
Treatment is 1, where � � ˇ. For � < zi < ˇ, a linear function is assumed, where
the probability that a future patient receives Treatment is .zi � �/=.ˇ � �/. For
perfect implementation, � D ˇ D 0.

Relaxing the assumption of perfect implementation can have a dramatic effect
on the value of information solution. Firstly, additional information, apart from
reducing the expected opportunity cost as before, now has value in increasing
the expected proportion of future patients receiving the net benefit maximizing
intervention (i.e., E.z1/ > z0). Secondly, the expected opportunity cost of delaying
the decision to adopt Treatment and performing a future trial is far less since only a
portion of the patients would receive Treatment in the absence of the future trial and
therefore incur an expected opportunity cost.
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To demonstrate the effect on the solution using the CADET-Hp example suppose
� and ˇ are chosen to correspond with values of the probability of Treatment being
cost-effective of 75 and 99 %, respectively, that is, � D ˚�1.0:75/ D 0:675

and ˇ D ˚�1.0:99/ D 2:326. (Recall that for normally distributed incremental
net benefit, the CEAC is given by ˚(z-statistic).) Based on the evidence from the
existing trial

z0 D b0
ıp

v0 D 87:28
ıp

5;345 D 1:194;

and the probability of a future patient receiving Treatment in the absence of a new
trial is

.z0 � �/=.ˇ � �/ D .1:194� 0:6745/=.2:326� 0:6745/ D 0:3135:

Consequently, the expected opportunity cost of performing new trial is less than a
third of what it is under the assumption of perfect implementation.

Figure 2.7 contains a plot of the expected value of information and expected
total cost as a function of sample size assuming imperfect implementation as
characterized by the value of � and ˇ given above and the same assumption
regarding accrual and follow-up given in Sect. 2.4.2. The optimal sample size is
486, with an expected net gain of $64,299,751. Compared to Fig. 2.6 a dramatic
increase in the expected value of information is observed. This is because the new
information, apart from reducing the total expected opportunity cost, is expected
to increase the proportion of future patients receiving Treatment. For the optimal
sample size of 486 the post-trial expected probability that a future patient receives
Treatment is 0.7. Also observed is a dramatic decrease in the expected total cost,
which is a result of the reduction in expected opportunity cost as noted above.

Fig. 2.7 EVSI and ETC for
the CADET-Hp example
using the realistic
assumptions with imperfect
implementation
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2.5 Discussion

In this chapter the application of decision theory and associated value of information
(VOI) methods for the design and analysis of RCTs have been proposed as an
alternative to the standard hypothesis testing approach with its reliance on arbitrarily
chosen Type I and II error probabilities and smallest clinically important differences.
VOI methods allow for the explicit incorporation of important factors, such as
the value of health outcomes, incidence and accrual rates, time horizon, current
information, follow-up times and trial costs. They also can be used to identify those
situations where the evidence is sufficient for decision making and, where evidence
is insufficient (equipose), the optimal size of a future trial. Using VOI methods to
assess the evidence from a clinical trial or the meta-analysis of several trials provides
a more rational alternative to the standard methods since they maximize the expected
net benefit for future patients and optimize the allocation of research funding,
while providing an operational definition for equipoise. In addition, since the
EVSI increases with incidence, interventions for rarer diseases need less evidence
for adoption. Thus VOI methods help address the obvious difficulty of patient
recruitment in rare diseases.

The use of VOI methods raises a number of issues. Perhaps the most subtle is
that of jurisdiction. The assumption is made that trial financial costs are borne by
society through government or private donation-based or philanthropic agencies.
This raises an issue for research funding agencies. On whose behalf is it acting? The
answer to this question has a huge impact on VOI methods since it determines the
incidence, which is an important determinant of EVSI. Agencies acting on behalf of
small jurisdictions, such as provincial/state governments or health insurers, are less
likely to find the funding of additional trials attractive, since the optimal sample size
will be zero with greater frequency. However, for federal governments or private
donation-based or philanthropic agencies, which may take a more global view,
funding additional trials may be more attractive.

Typically VOI methods are based on the assumptions that if a new trial is carried
out, the definitive decision regarding the adoption of Treatment will be made at the
end of the trial. However, the truly optimal procedure would be to repeat the VOI
process at the end of the new trial to determine if the updated evidence is sufficient.
Relaxing this assumption leads to multi-stage designs as discussed in Willan and
Kowgier [46].

The limitations of VOI methods have mostly to do with specifying values for
the required parameters. The parameter incidence should be available from the
literature, and is generally required to establish the burden of the health condition
under study regardless of what methods are used to determine the sample size.
Similarly, regardless of the methodology used, the financial cost and accrual rate are
needed for planning and budgetary reasons. The parameters that could be considered
specific to VOI methods are the threshold value for a unit of health outcome and the
time horizon. Various threshold values for a quality-adjusted life-year have been
applied in cost-utility analyses, however threshold values for other health outcomes
are less well established. The time horizon for a new health care intervention varies
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depending on the type of intervention (e.g., pharmacological, surgical) and the
health condition under study. Time horizons of 20–25 years are often used because
they correspond to infinite time horizon with discount rates for future benefits of
around 4 or 5 %. It is worth noting that the advantage of VOI methods is that
they make the assumptions regarding threshold value of health outcome and time
horizon explicit, and although both parameters may be associated with uncertainty,
a sensitivity analysis can be performed, as illustrated in the example.

In conclusion, decision theoretic/VOI methods can be used to identify those
situations where the evidence is sufficient for decision making, and where evidence
is insufficient, the optimal size of a future trial.

Appendix

Let eji and cji be the respective observations of effectiveness and cost for patient i
receiving intervention j , where j D T; S ; i D 1; 2 : : : nj ; and nj is the number
of patients on intervention j . For the CADET-Hp trial eji D 1 if the patient is a
success, 0 otherwise.

Let Nej D 1

nj

njX

iD1
eji and Ncj D 1

nj

njX

iD1
cji

Then

O
e D NeT � NeS
O
c D NcT � NcS
OV . O
e/ D OV . NeT /C OV . NeS/ D NeT .1 � NeT /

nT
C NeS.1 � NeS/

nS

OV . O
c/ D OV . NcT /C OV . NcS / D
PnT

iD1.cTi � NcT /
nT .nT � 1/

C
PnS

iD1.cSi � NcS /
nS .nS � 1/

OC. O
e; O
c/ D OC. NeT ; NcT /C OC. NeS ; NcS/

D
�PnT

iD1 eTicTi
� � nT NeT NcT

nT .nT � 1/ C
�PnS

iD1 eSicSi
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where O
2C is the sum of treatment arms of the between-patient variance of
incremental net benefit.
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Chapter 3
Designing Multi-arm Multi-stage Clinical
Studies

Thomas Jaki

Abstract In the early stages of drug development there often is uncertainty about
the most promising among a set of different treatments, different doses of the same
treatment or sets of combinations of treatments. An efficient solution to determine
which intervention is most promising are multi-arm multi-stage clinical studies
(MAMS). In this chapter we will discuss the general concept to designing MAMS
studies within the group sequential framework and provide detailed solutions for
multi-arm multi-stage studies with normally distributed endpoints in which all
promising treatments are continued at the interim analyses. An approach to find
optimal designs is discussed as well as asymptotic solutions for binary, ordinal and
time-to event endpoints.

3.1 Background and Motivation

The development of new medicinal products is a time consuming and very expensive
process which has been estimated to take 10–15 years and cost several hundred
million pounds on average [7]. The reason for the long duration is that, even
after a potentially useful compound has been identified, the product needs to
undergo pre-clinical animal studies, first in man studies and a series of clinical
trials addressing different questions such as safety, dosing and efficacy. Among the
largest contributors to both time and cost are confirmatory (Phase III) clinical trials
that often involve thousands of patients with follow-up period frequently lasting
years [27].

In the early stages of drug development there often is uncertainty about the most
promising among a set of different treatments. In order to ensure the best use of
resources in such situations it is important to decide which, if any, of the treatments
should be taken forward for further testing. This is particularly important as in
recent years 45 % of confirmatory clinical trials overall and 59 % of confirmatory
trials in oncology have been unsuccessful [15]. An efficient solution to this problem
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Fig. 3.1 Schematic illustration of traditional “sequential” development process (a) and a MAMS
design (b). In both three novel treatments (T1,. . . , T3) are evaluated against control (C) and only
treatment 2 chosen for confirmation in Phase III. In (a) each treatment is compared to control in
separate trials while in (b) only one control group serves for all treatments

is a multi-arm clinical trial in which several active treatments are compared to a
common control group. By comparing several treatments within one trial the sample
size and duration required tends to be markedly smaller than if each treatment were
evaluated separately. For added efficiency it is desirable to monitor the trial at a
series of interim analyses to allow early stopping if efficacy is quickly established
and to eliminate ineffective treatments early [2]. In addition the contemporary
comparison of treatments will often result in finding a suitable treatment quicker
than using the traditional approach in which different treatments are evaluated
sequentially. This is illustrated in Fig. 3.1 where the left panel shows the traditional
process of evaluating each treatment separately in independent Phase II studies.
Only after all three studies are completed treatment 2 is evaluated against control in
a confirmatory Phase III study. In the multi-arm multi-stage (MAMS) design (right
panel) all three experimental treatments are evaluated against control in one study
and a decision for further evaluation made at the interim analysis which at the same
time marks the end of Phase II and start of Phase III. Further efficiency is gained
as patients in the Phase II part of the study also contribute to the final confirmatory
comparison.

This class of designs can be used in exploratory (Phase II) studies to make an
informed selection of a treatment (or dose of a treatment) to then be evaluated in
a randomized controlled Phase III study, but can also be used for seamless Phase
II/III studies. In the seamless setting one analysis time-point (often the first interim
analysis) is used to decide on a single treatment which in the subsequent stages of
the study is evaluated against control. This analysis marks the end of Phase II and the
beginning of the Phase III portion of the study. Even confirmatory (Phase III) studies
can benefit from these designs as it has been shown that using two doses instead
of a single dose in a Phase III study can improve the study’s success probability
considerably [1].
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Multi-arm multi-stage studies are typically structured to have J prespecified
analysis time points with the timing of the analyses based on the number of patients
with observed response. For example analysis time point one is when the response
of interest is observed from n1 subjects, the second analysis is planned when the
response is available for n2 subjects for each of theKC1 treatment arms and so on.
At each of the analysis time points a decision is made which treatment arm(s) are
to be continued and which to be stopped. Should all treatment arms be stopped the
trial ends. In general treatments will be stopped and removed from the study if the
test statistic (or p-value) is insufficiently promising to warrant further investigation
(i.e. if the test statistic is low or equivalently the p-value is large). Similarly the
hypothesis of superiority of an experimental treatment over control can be rejected
and the study stopped for benefit if the test statistic is large or equivalently the
p-value is small.

From this structure it can be seen that MAMS studies are set up in the same spirit
as group-sequential designs. The main difference between sequential designs and
MAMS is that the former evaluates a single experimental treatment to control while
the latter compares several experimental treatments to control. Many of the ideas
used in designing MAMS are, however, built on the literature of group-sequential
designs which is extensively discussed in the books [38] and [13].

One of the early (and popular) approaches to deal with multi-arm (but single
stage) designs is due to Dunnett [8]. In this chapter we will give an detailed account
of methods for multi-arm multi-stage studies that are based on these ideas. There do,
however, exist alternative methods to designing multi-arm multi-stage designs that
are based on p-value combination tests (e.g., [4,16]) which are often combined with
closed testing [19]. The interested reader is referred to the works [3, 25] and [6]
for details on this approach. The advantage of the approach based on sequential
designs is that it is often more powerful due to the use of sufficient statistics and
since it allows the required sample sizes to be found analytically rather than via
simulations. Moreover, confidence intervals are generally straightforward to obtain.
The p-value combination approach, on the other hand, is more flexible and does
allow other adaptations such as sample size reassessment at the interim analyses.

3.2 When to Use and When to Avoid

MAMS designs are a rich class of designs that have their use throughout the
development process (see previous section). They are, however, set up to answer
the very specific question: Does one or more experimental treatments yield a better
response on average than a control treatment? In answering this question these
designs assume that all treatments start at an equal footing, i.e. that all treatments
are working equally well under the null hypothesis and that the interesting effect
(improvement over control) is the same for all experimental treatments. As a
consequence MAMS designs are best suited for situations were it is believed that no
experimental intervention has an advantage over its competitors. In such a situation
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MAMS studies will be an efficient solution to finding the best experimental
treatment if one exists. If there is evidence/believe, however, that one of the potential
experimental treatments is markedly better than the others a more traditional design
is likely better suited.

A frequently used selling point of MAMS designs and many adaptive designs
in general is that one can expect the trial to require fewer subjects than a single
stage (fixed sample) study. The cost of this expected advantage is, however, that the
maximum sample size will often be larger than the equivalent single stage study. If it
is therefore impossible to recruit the number of subjects required for a fixed sample
study, adding interim analyses as in MAMS studies will not solve that problem as
there will be a chance (although a small one) of needing even more subjects.

The other cost of using an adaptive design such as a MAMS study is that
finalizing the design of the study is frequently more time consuming as for fixed
sample designs. As a consequence it is possible that, despite a smaller number of
subjects being required on average the overall duration of the study (from planning
to completion of the analysis) is the same or even longer than a more traditional
design. Some of the factors that lead to the increased time to set up a MAMS study
are:

• Additional decisions to be made before starting the study, e.g.,

– How many and which treatments to include,
– How many analyses time points should be used.

• Thorough simulation studies highly recommended [10] to fully understand the
characteristics of the study under many settings.

• Patient information sheets need to cover all possible scenarios. Therefore
different information sheets may have to be developed based on the decision
at an analysis time point.

There are, however, many reasons to use MAMS studies as well. Not least of
all the unique opportunity to compare treatments within the same study which will
ensure a fair head-to-head comparison as by construction the same population will
be studied, all patients will follow the same protocol and therefore receive the same
standard of care due to it being a contemporary comparison. In addition, despite
the additional work required up front, in many situations MAMS designs will still
reduce the overall duration of the investigation. Furthermore, fewer patients tend to
be exposed to ineffective or harmful treatments as these treatments are eliminated
quickly from the study. Moreover, if all viable candidates are included within the
study, a MAMS design will also lead to a better conclusion at the end due to the
possibility of head-to-head comparisons of different active treatments. A further
advantage of a MAMS design is that a lower dose than the most promising dose
can also easily be included in the study and subsequently selected if safety concerns
arise with the higher (often more efficacious) dose. Last but not least MAMS designs
tend to be very popular with patients as the increased number of active treatments
means that the ‘risk’ to receive placebo is lower helping recruitment in these studies.
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3.3 Methodology

In this section we give some insight into the methodology used to design MAMS
studies. For all developments except Sect. 3.3.4 we will assume that the endpoint
of interest is normally distributed with known variance which is the same for all
treatments. Methods to overcome these assumptions will be discussed in Sects. 3.3.4
and 3.5. Without loss of generality we will assume that an increase in the response is
a good outcome and hence desirable. Consequently we will only consider one-sided
tests and denote the one-sided type-I-error by ˛. Generalizations to two-sided tests
are, however, straightforward. In addition we will suppose that a J stage design
evaluating K experimental treatments against a common control is being planned.
We will denote the response of patient i D 1; 2; : : : on treatment k D 0; : : : ; K

by Xik where a subscript of zero represents control. We will denote the number of
subjects on control in the first stage by n and define the ratio of the sample size of
treatment k at timepoint j over the sample size on control in the first stage as r.j /k ,

so that the total sample size on treatment k at timepoint j is r.j /k n.

3.3.1 Constraints on the Design

We will now discuss the constraints imposed on multi-arm multi-stage designs. The
reason why evaluation of multiple experimental treatments within one trial requires
specialist statistical methods arises from the fact that more than one hypothesis is
tested. In a trial withK active treatments the family ofK null hypotheses of interest
which is to be tested at each analysis timepoint j is

H01 W �1 � �0; : : : ; H0K W �K � �0 ;

where �k is the mean response of a patient on treatment k. If each of these K
hypothesis, that are tested up to J times, were tested at a level of, say, 5 %, the
overall error, called the familywise error rate, would be substantially larger than
5 %. The objective is instead to control the familywise error rate at a specific level
˛, i.e.

P.reject at least one trueH0k; k D 1; : : : ; K/ � ˛ : (3.1)

Furthermore we want to control the above probability under any true
(�0; : : : ; �K ), i.e. control the familywise error rate in the strong sense. The standard
z-statistics for comparing treatment k to control at stage j , defined as

Z
.j /

k D O�.j /k � O�.j /0



r
r
.j /
k Cr.j /0

r
.j /
k r

.j /
0 n

; k D 1; : : : KI j D 1; : : : ; J :
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where O�.j /q D
Pr

.j /
q n

iD1 Xi;q

r
.j /
q n

; q D 0; : : : ; K are the sample means of all observations

on treatment q up to analysis time point j , can be used to test the individual null
hypothesesH0k .

Just as we wish to control the type I error under the null hypothesis we want to
find a sample size that will ensure that we can reject a null hypothesis provided the
mean response of the corresponding treatment is large enough. We will utilize the so
called ‘least favorable configuration’ (LFC, [9]) to specify the power requirement.
The least favorable configuration is set up to recognize that not all improvements
in response are worthwhile, either for practical or financial reasons. It requires two
effect sizes, that is improvements of an experimental treatment over control, to be
provided by the clinical team: a clinically interesting effect, ı, that, if present, we
would like to detect with high probability and an uninteresting effect, ı0, that, if
present, would mean that we would not want to proceed to a further confirmatory
study or registration of the treatment. For any effect between ı0 and ı we are happy
with either proceeding or abandoning. Power is then defined as the probability that,
without loss of generality, H01 is rejected and treatment 1 is recommended given
�1 ��0 D ı and �k ��0 D ı0 for k D 2; : : : ; K . The sample size is then found so
that the power under the LFC is large, i.e.

P.reject H01j�1 D ı1; �2 D ı0; : : : ; �K D ı0/ � 1� ˇ : (3.2)

This set up is called the LFC since it minimizes the probability of selecting
treatment 1 over all choices of �k such that �1 � �0 � ı and �k � �0 � ı0, [33].

These two constraints, namely type I error and power constraint are sufficient
to design a traditional (two-arm, single stage) study, once the ratio of subjects on
control versus experimental is fixed as only two design parameters are left: the
critical value for rejecting the null hypothesis and the sample size. In a multi-
stage study, however, even after assumptions on the relative sample size, r.j /k , have
been made, stopping boundaries are required at each stage, j . Lower boundary
values (futility bound), lj , are used to stop treatments in the trial as soon as the

corresponding test statistic,Z.j /

k , falls below it. At this point no more patients will be
randomized to the corresponding treatment. Once any test statistic exceeds the upper
boundary (efficacy bound), uj , the trial is stopped and the corresponding hypothesis
rejected, i.e. it can be concluded that the corresponding treatment is superior to
control. If at least one test statistics is between the upper and lower bound while
none exceeds the upper bound additional patients are randomized to each of the
remaining active treatments plus control. If throughout the trial none of the test
statistics exceeds the efficacy bound, then we fail to reject the null hypothesis and
conclude that none of the investigated treatments is superior to control. Note that
the futility bound and the efficacy bound at the final analysis time point are equal to
ensure that a conclusion is reached. As a consequence a multi-stage design has 2�J
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parameters � the lower and upper boundaries lj and uj at each stage, the boundary
at the last stage and the sample size � after the allocation ratio has been specified. In
order to obtain a design, there are two principal approaches to overcome the problem
of 2 � J unknowns with only 2 constraints:

1. Make additional assumptions about the relationship of critical values and sample
size.

2. Use an optimality criterion.

We will defer a discussion of the second approach to Sect. 3.3.3 and focus on the
first approach for the moment.

We start by fixing r.j /k , the ratio of sample sizes, a priori in the same way as
in a traditional design the ratio of patients on control to experimental treatment is
fixed. Commonly equal numbers of patients on each experimental treatment within
each stage: r.j /1 D : : : D r

.j /
K D r.j / for j D 1I : : : IJ are assumed. The choice

then reduces to setting r.j / and r.j /0 so that setting r.j / D r
.j /
0 D jr.1/ means that the

sample size at each stage is equal across all treatments and control. Setting r.j / D
jr.1/ and r.j /0 D 2jr.1/ D 2r.j / allocates twice as many patients to control than each
experimental treatment for all stages. The next step is to make all critical values for
stages 1 to J �1 known functions of the final critical value; uj D f .j; uJ / and lj D
g.j; uJ /, j D 1; : : : ; J � 1. This approach is identical to the idea frequently used
in sequential designs and the same functional relationships can be used. Popular
examples are the boundaries due to Pocock [24], O’Brien and Fleming [22] and the
triangular test described in [38]. These boundaries are illustrated in Fig. 3.2.

Once a suitable allocation ratio and boundaries have been chosen, two unknown
design parameters, the final critical value, uJ , and the sample size, n, remain. These
are then obtained by solving the type I error and power equation given in (3.1)
and (3.2).
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Fig. 3.2 Frequently used boundaries: (a) Pocock, (b) O’Brien-Fleming, (c) Triangular. Note that
a futility boundary of zero is used in (a) and (b)
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3.3.2 All-Promising Design

The ideas discussed in the previous subsection give a general framework that can be
used to design MAMS studies. Within this framework a variety of different designs
that differ mainly in the treatment selection at the interim analyses are available. So
called “pick-the-winner” designs select the most promising experimental treatment
at the first interim analysis and compare it to control in the subsequent stages (e.g.
Stallard and Todd [30]). Stallard and Friede [29] allow more than one treatment to
continue beyond the first stage, provided the number of treatment arms within each
stage is pre-specified while Kelly et al. [14] advocate using a rule that allows all
treatments that are within some margin, �, of the best performing treatment to be
selected.

In the discussion below we will consider the select “all-promising” setting where
all experimental treatments are selected at each interim analysis, provided that they
are promising enough. It is worth noting that the sample size requirement of “pick-
the-winner” design tends to be smaller than the “all-promising” design as only two
treatment arms remain after the selection while it is possible to recruit patients for
all K C 1 arms throughout an “all-promising” design. The advantage of the “all-
promising” design on the other hand is that it is still possible to recommend any
treatment for registration or further testing provided its performance is good enough.
Moreover more stringent selection rules such as the ones discussed above can still
be used without an inflation of the familywise type I error � the power of the study
on the other hand would be compromised.

3.3.2.1 Example

We start by giving an illustrative example of a trial with four novel treatments that
are to be compared with control. Suppose that a maximum of three analyses are to
be conducted, two interim analyses and one final analysis, and that an equal sample
size, n, is used for each treatment at each stage. Moreover, assume that an O’Brien
and Fleming boundary shape [22], uj D uJ

p
r.J /=r.j / D uJ

p
3=j , and a futility

boundary of .0; 0; uJ / is used. Using the results in [17] one can find that, for a
familywise error rate of ˛ D 0:05 and a power of 1 � ˇ D 0:9, the final critical
value, uJ is 2:182 which results in an efficacy boundary of .3:779; 2:672; 2:182/
and a futility boundary of .0; 0; 2:182/.

Let the interesting effect size, ı, be such that the probability of a randomly
selected person on that treatment observing a larger score than a person on
control is 0:65 and an uninteresting effect, ı0 be set such that this probability
is 0:55. Note that this, slightly unusual, way to specify an effect size has the
advantage that no assumption about the standard deviation, 
 , is needed. It is,
however, straightforward to obtain the traditional effect size from this formulation.
Assuming that the variance is equal to one the interesting effect size, ı, can then
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be found as ˚�1.0:65/
p
2
 D 0:545 while the uninteresting effect size, ı0, is

˚�1.0:55/
p
2
 D 0:178. The resulting required sample size per arm and stage is

then n D 31. As a consequence the maximum sample size for this design is 465
which is necessary if no conclusion is reached before the last analysis, while the
smallest sample size is 155 (when either all experimental treatments perform poorly
or at least one experimental treatment performs very well). For comparison, the
sample size of a single stage design would be 420 under this setting showing that a
reduction in sample size by 265 patients is possible. At the same time one can see
that in the worst case situation an additional 45 patients would be required. Since
the expected sample size, that is the average sample size if the trial were performed
numerous times, is around 310 patients if either the null hypothesis or the LFC is
true, the benefit does outway the potential risk.

Suppose now that at the first interim analysis test statistics are found to be
.2:330;�1:342;�0:449; 0:621/. The test statistics corresponding to the second and
third experimental treatment fall below the lower boundary at the first analysis so
that the corresponding treatments are removed from the further study. Since none
of the treatments exceeds the upper boundary a further n patients are randomized
to treatments one and four as well as control. Suppose now that at the second
interim analysis we find the test statistics for the remaining two treatments based
on data from both stages to be .2:920; 1:662/. Since the test statistics for the
first experimental treatment exceeds the corresponding efficacy boundary, Z.2/

1 D
2:920 > 2:672 D c2, the trial is stopped with the conclusion that the first
experimental treatment is superior to control. Figure 3.3 provides an illustration
of the study.

Fig. 3.3 Illustration of an
all-promising MAMS design
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3.3.2.2 Designing a Two-Stage Trial

We now provide the constraints required to design a 2-stage design with K

treatments assuming equal sample size per arm and stage. This special case is
discussed here for brevity of notation and because two-stage designs are the most
frequently utilized designs in this class. For general results for J stage trials the
reader is referred to [17]. A software implementation of the general setting is
discussed in Sect. 3.4. To obtain the critical value for a 2-stage design the final
critical value uJ can be found by solving

˛ D 1 �
Z 1

�1

Z 1

�1

	
˚
�
l1

p
2C t2



C ˚2

�
u1

p
2C t2; u2

p
2C t1 C t2p

2
;
1p
2

�

�˚2
�
l1

p
2C t2; u2

p
2C t1 C t2p

2
;
1p
2

�
K
d˚.t1/d˚.t2/ ;

where ˚ denotes the standard normal distribution function and ˚2 .a; b; 
12/

denotes the result of integrating the bivariate normal density with mean 0 and
covariance matrix with one in the diagonal and 
12 in the off diagonal over a
region defined by a and b. Note that l1 and u1 are chosen to be known functions
of the final critical value so that this equation can be solved, and hence the
boundaries determined, without knowledge of 
 or n. The equation does involve
a two-dimensional integral (for the two stages) which in practice needs to be solved
numerically. The complexity of the equation does not, however, increase with the
number of treatment arms in the study.

To find the required sample size it is worthwhile to point out at this stage that
the trial is only stopped with rejection of the null hypothesis at one of the stages.
As a consequence the probability of rejecting the null hypothesis can be written as
the sum of the rejection probabilities at each of the stages. For a 2-stage design the
overall power of the study under the LFC is therefore the sum of two integrals:

1 � ˇ D
Z 1

�1
˚

�
u1

p
2C t C

p
n



ı

�	
˚

�
t C

p
n



.ı � ı0/

�
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�1
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�
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2C t2 �

p
n



ı0

�

C˚2
 

u1
p
2C t2 �

p
n



ı0; t1 C .ı � ı0/

p
2n



;
1p
2

!

�˚2
 
l1

p
2C t2 �

p
n



ı0; t1 C .ı � ı0/

p
2n



;
1p
2

!#K�1



3 Designing Multi-arm Multi-stage Clinical Studies 61

"
˚

 
2u1 C t2

p
2 � t1 �

p
2n



ı

!
� ˚

 
2l1 C t2

p
2 � t1 �

p
2n



ı

!#

˚
�
t1

p
2 � t2 � 2u2



d˚ .t1/ d˚ .t2/ :

Once again the equation involves a two-dimensional integral which can be solved
for n, once the boundaries have been found, for a given ı and ı0.

3.3.2.3 Deviation from the Planned Design

Having found the design to use, deviations to the plan will invariably occur. The
most frequent deviation for the design is that the achieved sample sizes within each
arm will deviate slightly from the planned value. To prevent a (typically very small)
inflation of the familywise error rate, the boundaries can then be adjusted using the
truly observed number of responses. Worked examples how this can be achieved are
given in [12].

Besides this, fairly straightforward, departure from the planned design more
extreme situations are also likely to occur. It may happen that one of the treatments
that is deemed promising based on the efficacy endpoint, i.e. the test statistic exceeds
the lower bound at an analysis timepoint, but is found to be unsafe. In this case
recruitment to the treatment would naturally be stopped. The implications on the
study design are a reduction in the type-I-error rate as well as a reduction in power.
Although this behaviour is acceptable in many situations, the conditional error
approach due to [21] can be used to, for example, increase the sample size to ensure
that the overall power is satisfactory [18].

The design discussed above is set up so that the familywise error is controlled
(and exhausted) if the treatment corresponding to the largest test statistic is taken
forward to further testing. It is, however, possible that more than one test statistic
exceeds the upper boundary for the first time at a given analysis time point. In such
a situation it is acceptable to take any treatment forward to further testing provided
it exceeds the upper boundary as the familywise error will still be controlled. Note
that, due to the binding nature of the futility boundary, the opposite of keeping a
treatment that falls below the futility boundary is not acceptable and will inflate the
familywise error rate.

A final situation we want to discuss at this stage is when a test statistic does
exceed the upper boundary, but the investigators do not want to stop the study at
this stage. This may be due to requiring additional information on a secondary or
safety endpoint or two treatments performing very similarly. While we stress here
that one ought to try to avoid such a situation at the design stage by ensuring that
sufficient information on all interesting endpoints is available at the earliest analysis
time point already, it is possible to continue with the trial without compromising
the familywise error rate. This is provided that any further tests done follow the
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procedure of the design (i.e. only reject the null hypothesis if a test statistic exceeds
the efficacy boundary at the analysis time point).

3.3.3 Optimal Design of MAMS

In the previous section we have discussed an approach where the boundary shape
is pre-specified in advance to reduce the number of parameters in the design so that
we were able to obtain the final critical value and the required sample size from the
traditional type I and power equations. An alternative approach, discussed in [34],
is to find boundaries that optimize a certain criterion. Once an appropriate criterion
is identified, the parameter space is searched for the solution that optimizes the
choosen criterion. In most situations it will not be feasible to evaluate all possible
designs so that stochastic search algorithms, such as simulated annealing, are often
used.

Besides the computational burden to find an optimal design the biggest challenge
is to find a satisfactory optimality criterion. Traditionally the optimality criterion
aims to minimize the sample size under a specific parameter configuration. The
null-optimal design searches for the minimal expected sample size under the global
null hypothesis, �0 D : : : D �k D 0, while the LFC-optimal design optimizes the
expected sample size under �1 � �0 D ı1; �2 � �0 D : : : D �k � �0 D ı0. The
drawback of using such an optimality criterion is that, although the expected sample
size under the chosen parameter configuration is optimal, their performance under
other configurations can be quite poor. To get a design that is better balanced it is
therefore advisable to use a more complex criterion such as the ı-minimax criterion.
This criterion minimizes the expected sample size for a parameter configuration
of �1 � �0 D Qı1; �2 � �0 D : : : D �k � �0 D ı0 where Qı1 is found to
maximize the expected sample size under this configuration. The criterion therefore
ensures that under the worst case situation the expected sample size is smallest.
As a consequence of this construction the criterion tends to give a good balance of
expected sample sizes across many true parameter configurations.

Besides the obvious advantage to use an optimal design (subject to using the
appropriate criterion) a further benefit of this approach is that it is not restricted
to searching over boundaries. It is, for example, possible to include the allocation
ratio between control and experimental treatments in the search as well. The main
limitation of using an optimality criterion to design a study is the computational
effort required. In their evaluations Wason and Jaki [34], however, find that a
triangular boundary shape, defined as lj D �uJ .1� 3 r.j /

r.J /
/=

p
r.j / and uj D uJ .1�

r.j /

r.J /
/=

p
r.j /, which has been shown to be asymptotically optimal for traditional

group sequential designs, does yield close to optimal solutions in the multi-arm
setting in many situations as well. In particular if only few interim analysis are
planned the triangular design performs particularly well.
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3.3.4 Non-normal Endpoints

The discussion so far has focused on trials with a normally distributed endpoint. In
this section we will discuss how asymptotic theory allows the framework developed
for normal endpoints to be used with binary, ordinal and time-to-event endpoints
as well. Note that binary endpoints are a special case of ordinal endpoints and
are hence not discussed separately. For MAMS studies in which only the most
promising treatment is selected at an interim analysis full details can be found in [33]
for binary endpoints, [39] for ordinal endpoints and [30] for survival endpoints.
Asymptotic results for the “all-promising” selection strategy are discussed in [12]
for all endpoints. A specific solution for time-to-event endpoints without early
stopping for efficacy in which an intermediate endpoint is used for selection of all
promising treatments is given in [28].

3.3.4.1 Ordinal Endpoints

Consider an ordinal endpoint with categoriesC1 (best); : : : ; Ca (worst) and denote
the probability that a patient on treatment k falls into a category u by pk;u. At
analysis j , the number of patients on treatment k in category Cu is denoted by
n
.j /
ku and the cumulative probabilities up to category u are denoted by Qk;u D
pk;1C� � �Cpk;u. Under the proportional odds assumption (e.g. [20]) the parameters
of interest, which is the log-odds ratio, can be defined as

ˇk D log

�
Qk;u.1 �Q0;u/

.1 �Qk;u/Q0;u

�
:

The efficient score statistics for ˇk evaluated at stage j is

S
.j /

k D 1

.r
.j /

k C r
.j /
0 /n

aX

uD1
n
.j /
ku .W

.j /
0;u � B

.j /
0;u /;

where the number of subjects in any of the categories C1; : : : ; Cu�1 (better than Cu)
at stage j is denotedB.j /

iu ; .B
.j /
i1 D 0/, and the number falling into a category worse

than Cu by W .j /
iu ; .W

.j /
ia D 0/. Whitehead and Jaki [39] show that, under the null

hypothesis, the efficient score statistics asymptotically follow a K � J dimensional
multivariate normal distribution with
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S
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where Npu D p0;u D : : : D pK;u is the anticipated proportion of subjects falling into
category u.

The correlations between the standardised test statistics Z
.j /

k D S
.j /

k =r
Var

�
S
.j /

k



are now exactly the same as for a normal endpoint so that both

the boundaries and sample sizes found for a normal endpoint can be used directly
to design a study based on an ordinal endpoint.

3.3.4.2 Time-to-Event Endpoints

To design a MAMS study with a time-to-event endpoint we will use the log-rank
test which is a special case of the efficient score statistic under the assumption of
proportional hazards and assume that no ties are present. Denote the overall total
maximum sample size byN , the calendar time with � and let
p.�/ be the indicator
that subjectp has had an event by study time � , p D 1; : : : ; N . To denote a subjectp
being on treatment q D 1; : : : ; K we use the indicator Ip fqg and similarly Ip fq; q0g
indicates that subject p is on either q or q0. Finally let rq.�/ denote the number of
patients at risk just before calendar time � on treatment q.

The efficient score statistic for comparing active treatment k .k D 1; : : : ; K/

with control at interim j .j D 1; : : : ; J / is

S
.j /

k D
NX

pD1
Ip fk; 0g
p.�j /

	
�Ip fkg C rk.�p/

rk.�p/C r0.�p/



;

where �j is calendar time at analysis time point j and �p is patientp’s calendar event
time. Asymptotically, the efficient scores follow a multivariate normal distribution
and, assuming an equal allocation of patients to each arm at each stage and that the
effect size is small, the variance and covariance of the efficient score statistic for
treatment k at stage j can be estimated as

Var
�
S
.j /

k



� ek;0.�j /

4
;

and

Cov.S.j /k ; S
.j 0/

k0
/ � ek;k0;0.�j /

12
;

where ek;0.�j / is the number of events from patients in the treatment groups k and
control up to time �j and ek;k0;0.�j / is the number of events in treatment groups k,

k0 and control up to time �j . The standardized statistics, Z.j /

k D S
.j /

k =

r
Var

�
S
.j /

k




then have again the same correlation structure as for normally distributed endpoints
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so that the same boundaries can be used. The number of events required is the same
as the number of patients required for normal endpoints.

3.4 Software

To date software solutions for MAMS studies are rare and often do require a good
understanding of the theory to be able to use the programmes effectively. The
add-on package MAMS [11] for R [26] provides one of the few existing ready
made software solutions and implements the “all-promising” design discussed in
the previous sections. In particular the function mams allows the user to determine
the boundaries of the design for a given familywise error and the required sample
size for a given power.

The parameters of the function include K, the number of experimental treatments,
J, the number of stages together with alpha and power for the one-sided
familywise error rate and power. The shape of the boundaries to be used are specified
via u.shape and l.shape for the efficacy and futility boundary, respectively.
These parameters can be set to either "pocock", "obf" and "triangular"
for boundaries according to [22, 24] and [38]. Additionally setting the boundaries
to "fixed" allows a constant boundary to be used. To specify the level of the
boundary in this case the parameters lfix and ufix are used. The interesting
effect size is specified via p while the uninteresting effect is set via p0. Both
parameters are parametrized as the probability of a random person on treatment
k observing a larger effect than a random person on control. The final set of
parameters, r and r0, specify the allocation ratio of subjects on experimental
treatments and control respectively. For both a vector of length J is expected. A
choice of r=1:3 and r0=c(2,4,6) corresponds to a trial were twice as many
subjects are randomized to control than experimental treatment at each stage.

To illustrate the use of the package we consider the example given in Sect. 3.3.2.1
which seeks a three stage design for four active treatments using an O’Brien and
Fleming boundary shape [22] for the efficacy and a zero boundary for futility. Equal
sample size per arm and stage is desired, the familywise error rate is set a 5 % and
a power of 90 % is used. To obtain the design parameters under this setting the
function call

mams(K=4, J=3, p=0.65, p0=0.55, r=1:3, r0=1:3, alpha=0.05,
power=0.9, u.shape="obf", l.shape="fixed", lfix=0)

can be used. The output given:

Design parameters for a 3 stage trial with 4 treatments

Stage 1 Stage 2 Stage 3
Cumulative sample size per stage (control):

31 62 93
Cumulative sample size per stage (active):

31 62 93



66 T. Jaki

Maximum total sample size: 465

Stage 1 Stage 2 Stage 3
Upper bound: 3.78 2.673 2.182
Lower bound: 0.00 0.000 2.182

clearly shows the sample size required per stage separately for control and each
experimental treatment. The boundaries and maximum total sample size are also
provided.

Alternative to this R package there exist a variety of software solutions
for the design of multi-arm multi-stage designs using the p-value combination
approach. The commercial software AddPlan (www.aptivsolutions.com/adaptive-
trials/addplan6/), for example, provides an add-on module for multi-arm trials,
while the open-source R package asd [23] is a specialized package for multi-arm
multi-stage trials.

3.5 Discussion

In this chapter we discussed the statistical concepts of designing multi-arm
multi-stage clinical studies within the group sequential framework. Focus has
been given to the general ideas useful when designing such studies, to provide some
illustrative examples and highlight the advantage of these studies over parallel group
and single stage designs. MAMS studies have, however, not only been investigated
in the context of a single study but also in the context of the wider drug development
process in [35]. The most interesting finding of this work is that inclusion of a large
number of treatment arms within one study tends to be optimal when the objective is
to find one working treatment at the end of the process. The assumption underlying
this result is that the expected effects of all treatments follow the same distribution
a priori which essentially means that only treatments that are truly believed to have
an effect ought to be included.

As illustrated, MAMS studies offer the opportunity to make an informed decision
about the most potent of a number of different treatments in an efficient manner, they
do, however, also bring with them a number of practical and more subtle technical
challenges. One of the technical details concerns the assumption of a known
variance which is being made by virtually all the approaches referenced in this
chapter. In practice, however, the best available estimate of the variance would be
used to analyse the trial. Using an estimate for the variance instead of a known value
does slightly increase the type I error of the study. Taking this added uncertainty
into account, however, would make the design of MAMS studies considerably more
complex. In studies with a large sample size the effect of estimating the variance
will be negligible. For small sample sizes Jennison and Turnbull [13], discuss an
adjustment based on transformation to overcome this problem. Note, however, that
this approach will only reduce the impact of using an estimate instead of a known
variance, but not ensure strict control of the familywise error [36]. The main idea

www.aptivsolutions.com/adaptive-trials/addplan6/
www.aptivsolutions.com/adaptive-trials/addplan6/
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is to transform and back-transform the individual test statistics as, ˚�1�T�
�
Z
.j /

k

��
,

were T� is the distribution function of a t-distribution with � degrees of freedom and
the degrees of freedom, �, are based on the sample size in the trial.

A further challenge arises when estimating the treatment effect at the end of the
study. It has been recognised that the maximum likelihood estimate (MLE) of the
treatment effect for trials with selection is biased [5]. While the bias of the MLE
tends to be small, accurate estimation of a treatments effect is vital for expressing
its true worth. Several classes of estimation procedures have been proposed to find
unbiased estimates or obtain a reduction in the bias. One general approach is to
estimate the bias of the MLE and to use this to iteratively calculate a bias-reduced
MLE [31, 37].

Besides decisions on the statistical aspects of MAMS studies, there are also a few
practicalities to consider when running a MAMS study. One challenge, for example,
is ensuring adequate supply of the treatments under investigation which is much
more complex due to the stochastic nature of the demand on individual treatments.
Also, patient information sheets covering all possible settings after the selection has
taken place need to be prepared. An illustrative account of practical and statistical
challenges in the context of a specific study is given in [32].
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Chapter 4
Statistical Approaches to Improving Trial
Efficiency and Conduct

Janice Pogue, P.J. Devereaux, and Salim Yusuf

Abstract Given the trend towards increasing complexity and cost of clinical trials
today, future trials may end up being small, complex, and under-powered to detect
clinically meaningful treatment effects. In order to continue to perform important
research in the future, we need to make clinical trial designs more efficient. Through
the retrospective statistical analysis of variation in the design of past trials and the
prospective comparisons of clinical trials methods, we can determine which trial
procedures truly influence the bias and precision of treatment estimates and where
complexity and costs can be reduced. We provide two examples of the retrospective
study of clinical trials methods that could change the conduct of future trials.
First, an overview of the effect of outcome adjudication on treatment estimates for
cardiovascular trials is presented. Second, a prognostic model to detect fraud within
multi-centre trials is developed as part of a system of central statistical monitoring.
There are many more unanswered questions about efficiencies in clinical trials
methodology that need to be examined by statisticians and researchers.

4.1 Background

Researchers have always been interested in studying and improving clinical trials
methodology. It is only natural that one who lives by the scientific method may apply
this to the process of science itself. Trials today have benefited from many statistical
advances including: proper random assignment to treatment groups, intention-to-
treat analysis populations, conservative statistical monitoring boundaries, statistical
adjustments for multiplicity, proportional hazards models, and many others. To date
research has primarily focused on improving trial design and statistical approaches
to analyses, but given the changes that are happening, it is the area of trial conduct
that now needs our collective thoughts and innovation.

The environment of clinical trials is increasing in complexity and bureaucracy.
The current climate for clinical trials is now much more complex, fuelled by
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layers of regulation and a misplaced hypersensitivity and fear of litigation. Take
for example, the typical trial informed consent form. This was once a page or two
containing an explanation of the purpose of the trial, a summary of the efforts
asked of the participant, and a listing any foreseeable risks involved. It is now an
equivalent to a corporate contract: over 20 pages is now common, incomprehensible
to anyone except lawyers, and full of protection clauses in case of class-action
lawsuits, without distinguishing between usual risks seen in clinical practice and
any significant risks due to the experimental design or interventions. Thus, due to
increasing complexity and bureaucracy today’s “informed consent” form no longer
fulfils its purpose.

What has happened to the informed consent is mirrored in many parts of clinical
trials conduct today where there is a disproportionate focus on minor deviations
or inaccuracies in use of inclusion criteria, inappropriate over emphasis on the
precision of individual data points and reporting every minor “adverse event” (even
those which are part of the natural history of the disease or conditions common in
a particular age group). These procedures have gotten in the way of ensuring the
precision of the outcomes that matter because so much cost is going into collecting
unnecessary data and monitoring aspects of trial conduct that ultimately do not
matter.

The danger is that if we cannot determine how to perform well-designed trials in a
more efficient manner, we may be left pursuing only expensive small complex trials
that have little hope of finding effective treatments for the world’s burden of disease.
Statisticians and scientists must determine what trial methods, rules, and regulations
are necessary, as they really affect trial results and participant safety, and which ones
are wasting scientific and monetary resources. Rather than face validity, personal
experiences, or legal opinion, what we need now is objective evidence obtained from
past and future trials that evaluate whether detailed procedures materially influence
trial results and validity.

4.2 Growing Complexity in Modern Trials and its Effect

Prentice [32] pointed out the paradox that the randomized controlled trial, the
research design most insulated from confounding, is subject to the most effort
and expense to record and control confounders. Compared to cohort studies,
trials typically have more complex and detailed inclusion and exclusion criteria,
extensive baseline characteristics and follow-up data collection, multiple quality
control procedures, standardized outcome monitoring, definitions and reporting,
and outcome adjudication. This complexity is ever-present in trials and continues
to grow. Getz [18] and Wampler [40] have documented a steady increase in protocol
complexities since 1990.

Getz [18] conducted a retrospective analysis of 10,038 phase one to four
clinical trials protocols, from pharmaceutical and biotechnology, hosted in the Fast
Track System [26]. They estimated a growth in the average total procedures in
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trials of 6.5 % per year from 1999 to 2005, with procedures in phase four trial
protocols increasing by 9.1 % per year. The total burden of work required of the
site investigator by trial protocols increased by 10.5 % per year. The number of
eligibility criteria increased three-fold, the median number of reported adverse
events grew by a 122 % increase, and the median number of serious adverse events
reported per participant in the year 2005 was 12.5 times that of 1990. The average
number of case report forms per trial increased from 55 pages to a staggering 180
pages. The length of consent forms has more than doubled, and the work load on
REBs has increased substantially yet the number of trials reviewed per month has
declined. Performance by sites within trials has been declining within the context of
increasing demands. Getz [18] found a 16 % absolute drop in site enrolment between
1999 and 2005, while the rates of retention of participants in trials fell by 21 %.

Others have also documented the growing demands on trial site investigators
and participants, the associated increased cost of trials, and an associated decline
in site performance. Eisenstein et al. [16] have documented a doubling in the cost
of clinical trials over the past decade within the United States from 37 to 64 %
of total expenditures of the pharmaceutical industry and the National Institutes
of Health from 1994 to 2003. Yet there was a reduction in the number of Food
and Drug Administration approvals from 35.5 to 23.3 entities per year over the
same period. Clearly this increase in cost has not translated into greater availability
of effective disease therapies. Yet the cost of individual trials is substantial, with
estimates ranging from 83 to 142 million US dollars for multicenter cardiovascular
trials [16]. Trials that require such large investment will by their very nature be
limited in number, leading to fewer clinical trials in many areas.

While these “perverse” trends are of great concern, many have suggested that
trial methodology can be made more efficient. At the heart of the large simple trial
design is the tenant that simple efficient designs will produce the clearest results,
and focusing efforts on those methods can influence trial results [12, 43, 44]. Since
then others have made further suggestions for increased efficiencies. Thornquist [38]
predicted up to a 12 % decrease in total trial budget if non-compliance could be
reduced by 50 %. Eisenstein [16] suggested that trials in congestive heart failure and
acute coronary syndrome that followed a simplified design could reduce their costs
by up to 43 %, without reducing sample size. Simplifications could include: reduced
data collection, less use of on-site monitoring, lower site payments, and more
efficient site management and data management. Eisenstein et al. [15] suggested
that 59 % of the cost of running trials could be saved through reducing planning
time for trials, time to recruit the full sample size, reductions in the number of case
report forms, smaller numbers of sites, use of electronic data capture systems, and
efficient site management practices.

Given that cost and complexity can (and must) be reduced, the question we must
now answer is what aspects of trial methodology need to be reduced, improved,
increased, or maintained in order to produce reliable, precise, unbiased trial results.
We now need researchers experienced in trial methodology to focus their efforts
on determining the value of clinical trials practices as a guide to finding needed
simplifications and cost reductions. In particular statisticians can assist in this
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endeavour by quantifying or measuring the effect of these practices on the treatment
effects in terms of bias and precision for both efficacy and safety outcomes. One
good source for such methodology research would involve examining the data from
past clinical trials, both individually and over multiple datasets to compare and
estimate the effect of various clinical trials practices.

All clinical trial practices need to be evaluated in terms of their ability to
serve three important functions. First, they may help to minimize the difference
between the trial treatment estimate ' and the true effect g.�/, known as bias in the
estimation of the treatment effect:

b'.�/ D E�
�
'.X/

� � g.�/ :

While the true effect g.�/, is never known, it may be expected that a valuable
clinical trial practice which reduces bias would bring the estimated treatment effect
closer to the true treatment effect. Second, a clinical trial methodology may increase
the precision � of the trial treatment estimate � or decrease the variance, such that

� D 1


2�
:

Lastly, means of performing trial functions efficiently but with less resources, thus
reducing the cost of trials, are worthy of study. Means of minimizing bias and
increasing precision directly affect trials results, but cost (c) is also indirectly related
to precision:

� / 1

c
:

If the cost of enrolling and following an individual subject in a trial is high, trialists
may reduce sample size or select less clinically important outcomes in order to
make the trial feasible, and this will decrease the precision of the treatment estimate.
Having recognised this we now use our units of measurements to examine useful and
wasteful procedures in trials. We would like to present two examples where parts
of typical trial methodologies were examined to determine their value and suggest
possible improvements in efficiency.

4.3 Example 1: Estimating the Effect of Outcome
Adjudication

To evaluate the effectiveness of a treatment on a series of protocol-defined outcomes,
we require an unbiased collection and validation of these outcomes [17]. One of
the key clinical trials methods to ensure this is to have central adjudication of all
important outcomes, to determine that they truly meet the protocol definitions.
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Outcome adjudication commonly involves a group of experts who examine the
supporting documentation for each outcome event and either except it as a valid
outcome or reject it from the trial database. The goals of outcome adjudication
are clear. Evaluating non-fatal or complex outcomes that may have a subjective
component or variability in their ascertainment, in theory could decrease precision
due to added “noise” in any trial, regardless of treatment blinding. Adjudication
seeks to minimize this potential noise and bias by enforcing standardized outcome
definitions through the review of source documents and tests [19, 34, 39]. It should
be able to correct any systematic misclassification based on investigators a priori
beliefs about the effectiveness of the treatments being compared. Trial credibility is
thought to increase if outcome adjudication is used for the trial’s important outcomes
[19, 34]. This process is thought to provide a check on the quality and consistency
for the trial’s outcomes [14, 19]. This method has appeal to many trialists, as it
may increase trial precision by eliminating outcomes that may not be affected by
the treatment being studied [14, 19]. It may also help eliminate biased reporting in
trials where the therapy is not masked to the participant and/or the site physicians
[5, 19, 21, 23]. It is important to recognize, however, that adjudicators typically
only evaluate events that were submitted and if biased reporting happens in a
trial—whereby there is under-reporting of borderline events in one of the treatment
group—this problem is usually not overcome by central adjudication. The process of
outcome adjudication does increase the cost of trials [11,19,39]. Source documents
need to be collected centrally, after redacting all direct participant identifiers,
masking and sham masking of treatment information needs to be complete for
open trials, translations to the language of the adjudicator may be required for
international trials, costs for document shipment, tracking software, and adjudicator
remuneration are required.

It remains to be demonstrated if the potential value of outcome adjudica-
tion is worth its cost. There have been few systematic efforts to estimate the
value of outcome adjudication. Individual trials have occasionally commented that
the treatment effect based on investigator-reported outcomes differed from that
based on adjudicated outcomes. For example, CHARM-Preserved trial found that
candesartan was superior to placebo in reducing the composite of cardiovascular
deaths or hospitalization of heart failure with a hazard ratio of 0:85 (p D 0:028)
based on reported outcomes, but after adjudication this decreased to 0:89 (p D 0:12)
[45]. The EPIC trial found the opposite pattern that a reported hazard ratio of 0:73
(p D 0:12) changed to 0:65 (p D 0:008) after the outcomes were adjudicated
[36]. Yet other trials, such as the CDP [7] and PARAGON-B [25], have documented
consistency between reported and adjudicated trial results. Generally comments
about the effect of outcome adjudication on the estimated treatment effect in specific
trials are relatively rare and potentially influenced by publication bias.

To address this problem, we conducted a systematic comparison to evaluate and
estimate the effect of outcome adjudication within the large cardiovascular trials
conducted at the Population Health Research Institute of McMaster University,
between 1993 and 2006 [30]. This involved 10 trials with >95,000 trial participants
randomized and >9,000 outcomes. It included trials with and without blinding
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Fig. 4.1 Masked vs. unmasked trials: ratio of odds ratios for adjudicated vs. reported outcomes
(Reprinted from [30] with permission)

or masking of treatments. For each trial, we determined the odds ratios for treatment
effects using investigator reported events and the treatment odds ratio based on
events after adjudication, and pooled these odds ratios across trials with trial as
a random effect. The paired difference of the natural logarithm of the odds ratio
for adjudicated outcomes minus the natural log odds ratio for reported outcomes
was regressed over all trials. Exponentiating this mean difference produced a ratio
of odd ratios, where 1:0 indicates no evidence of a treatment difference due to
outcome adjudication. This analysis was performed overall and then separately for
trials with blinding of treatment group and for trials without blinding. All analyses
were weighted by trial size. Figure 4.1 displays the effect of outcome adjudication
on the primary outcome for each trial and overall, showing a ratio of odd ratios of
1:00 with 95 % confidence interval 0:97–1:02, implying that we cannot reject the
null hypothesis that

b'.�/ D 0 :

This estimate was similar for trials with and without blinding [OR ratio D 1:00

(0:98–1:01) and OR ratio D 0:97 (0:79–1:19), respectively]. Similar comparisons
were done for individual outcomes included cause specific cardiovascular death,
myocardial infarction, and stroke. No significant effect of outcome adjudication was
found.

These analyses suggest that the quality monitoring part of systematic and
complete outcome adjudication could be eliminated or replaced by a random
sampling approach for major cardiovascular mortality and morbidity. Similar
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analyses need to be conducted on trials from other coordinating centres and in other
research areas (i.e., based on trials with different types of outcomes) so that we may
understand when we do and do not need outcome adjudication to minimize bias and
maximize precision in trials.

4.4 Example 2: Central Statistical Monitoring
as an Alternative to Onsite Monitoring

The gold standard of site monitoring for clinical trials is thought to be frequent
on-site visits where all trial data are verified against local source documents.
ICH E6 states that, “In general there is a need for on-site monitoring, before,
during, and after the trial” [20]. It then goes on to state that central monitoring
accompanied by appropriate investigator training and guidance may replace regular
on-site monitoring in “exceptional circumstances”. As a result of this guidance
document, the use of on-site monitoring is wide spread within industry or clinical
research organization trials (84 %), although less commonly used in less well funded
academic or government sponsored trials (31 %), based on a survey of 65 research
organization that conduct clinical trials in 2009 [27].

On-site monitoring is a costly component of trial methodology, often consuming
20–30 % of the entire cost of a trial, representing tens of millions of dollars for large
multi-site trials. Yet there have been surprisingly few evaluations of the effectiveness
of on-site monitoring to detect either problems in implementing the trial protocol
or possible data fabrication. Published summaries of FDA audits [33] indicate that
serious deficiencies are sometime detected (4 % of data audit conducted), but the
definition of a serious deficiency is not provided. This means that the reader cannot
determine if any of these would have altered trial results. This summary does give
examples where data fabrication was detected, but fails to quantify the number of
times this misconduct was identified directly by on-site auditors. In contrast to this,
others have found that on-site monitoring did not find important problems at sites
and did not alter important trial results. The National Institute of Cancer’s on-site
monitoring program did not change the agreement rate for treatment failures or the
number of protocol deviations [41]. A program of on-site audits started near the
end of the GUSTO trial found no errors that would have changed the trial results
[17]. The National Surgical Adjuvant Breast and Bowel Project on-site monitoring
program found no unknown treatment failures or deaths, and only a very small
number of not previously known ineligible participants [9].

In contrast to this dearth of evidence for the effectiveness of on-site monitoring,
there have been some limited successes reported with the use of statistical methods
and central statistical monitoring to confirm or identify fabricated data. Several
authors have used statistical methods to illustrate the implausibility of data sets
that were suspected to contain fabricated data. When fraud was suspected in a
diet trial submitted for publication to the British Medical Journal, a comparison
of these data with that from another diet trial found that their suspicions may have
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been warranted. In comparing the intervention to control group within each trial,
Al-Marzouki et al. [1] found many more statistically significant differences within
the data set thought to be fabricated. Kranke [24] and Carlisle [8] separately used
probability models to calculate the chances of observing the group of summary
statistics presented in multiple publications (n D 47 and n D 169) published by
a single researcher. Carlisle [8] compared summary binary patient characteristics
(e.g., sex or use of antihypertensive medications) to the expected binomial distri-
bution, allowing for a separate population rate per trial across this one researcher’s
published trials. The discrepancy between these reported and expected distribution
was quantified using a Fisher’s exact test. For each trial’s mean continuous variables
(m) (e.g., weight or blood pressure) a similar comparison was done using the central
limit theorem.

m � �

SEM
�
�
1C SDSEMp

SEM

�
:

Here � is the grand mean over all trials and SEM is the standard error of the
mean from each individual trial. They each concluded that these trials collectively
resulted in implausible published data. Central statistical monitoring, in various
forms, has been used successfully to identify sites within a multi-center trial that
have fabricated data. These trials include the AMPIM [3], MRFIT [28], NSABP-06
[9], Second European Stroke Prevention Study [37], COMMIT-1 [10], POISE [13],
and other trials. In many of these cases central statistical monitoring identified the
problem, while on-site existing monitoring had failed to find the problem.

While the above case studies demonstrate promise for the use of central statistical
monitoring in trials, further work in this area is needed. Just as we commonly
develop risk models to predict disease in patients, central statistical monitoring
could use risk models to identify sites at high-risk for fabricating data, within a
multi-centre trial. If a statistical model with sufficient predictive ability could be
developed, then their use within central statistical monitoring could replace the
function of on-site monitors in fraud detection. We used data from the POISE Trial
to retrospectively build a series of prognostic logistic regression models conducted
on site-level data to identify the sites that had fabricated their data [29]. Let y take
on the value 1 if the site committed fraud and 0 otherwise and suppose there are
k independent variables (x1 to xk) that predict fraud. Then the probability of fraud
having occurred at the j th centre is:

p D P hy D 1 j X D xi ;
ln
� pj

1 � pj



D ˇ0 D ˇ1x1 C � � � C ˇkxk :

POISE was a multi-centre, multi-national randomized controlled trial testing the
effectiveness of a peri-operative beta-blocker in preventing cardiovascular outcome
in high-risk patients undergoing non-cardiac surgery. Of the 196 participating
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clinical sites from 24 countries, 9 were found to have fabricated data, representing
947 patients out of the total 9,298 randomized within this trial.

For the purpose of building a prognostic model, we used data from all sites that
had randomized at least 20 trial patients (N D 109 sites). An analytic strategy was
followed to develop these prognostic models. First, a wide variety of statistical tests
were included since authors have suggested that many types of data and statistics
may be useful to identify fabricated data [1–4, 6, 10, 22, 31, 35, 37, 42]. Variables
were included from baseline characteristics (binary or continuous), combinations
of baseline variables, compliance, site performance, concomitant medications,
physical measurements in follow-up, and efficacy and safety outcomes (see Pogue
et al. [29] for the complete description). Second, for these models data were
summarized at the site level, as opposed to the patient level, since the goal was to
identify sites at high-risk for data fabrication. We focused on comparing data across
sites and determining how different each site was from the others. We required that
these summaries be unit-less, and not dependent on the exact variables collected in
the POISE Trial.

These risk models will only be useful for future trials if their prognostic variables
may be replaced by the different variables collected in each trial. Making the
independent variables unit-less is likely to assist in this goal. Primarily, this involved
using probability values (p-values) to quantify how different a site was from all other
sites combined for a particular variable. We made no assumptions about direction
of effect for these summaries, but instead analysed p-values as continuous possible
predictors, rather than using pre-defined cut-offs.

Seven different types of statistical summaries were used. We tested whether
each site was different from the rest using a two-by-two frequency comparison for
binary variables, such as history of diabetes, and summarized as that site’s Pearson
chi-square test p-value. We tested how different each site was from the rest for
continuous variables (e.g., systolic blood pressure) using two-sample t-tests and
calculated a p-value for each site. We compared digit preference for variables such
as day of week for randomization for each site versus all others using Pearson’s
chi-squared test p-values. The variances of continuous variables were compared for
each site versus all others using Folded F-test p-values. Distance measures (dj ) were
derived for each site for continuous variables indicating how far away one site’s data
are from the overall mean .y/ across all centers, standardized by the overall standard
deviation .s/, using data from the i th trial participant at the j th center. The natural
logarithm of distance was used as a possible predictor.

dj D
X

i

�
yij � y
s

�2
:

For the comparison of outcomes and compliance, we calculated the probability of
observing an outcome rate as extreme as that observed at a site, assuming a Poisson
distribution, adjusting for country variation. Instead of testing each center against
all the others, we directly calculated each site’s cumulative probability distribution
(CDF) value from these models. Lastly, for repeated physical measurements over
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Table 4.1 Risk scores predicting fabricated data (Reprinted from [29] with permission)

Model terms Categories Category Score

Predictor 1: SBP over time Intra-class correlations 1 C0

2 C1

3 C2

4 C3

5 C4

Predictor 2: DBP Mean Comparison – t-test p-values 1 C0

2 C1

3 C2

4 C3

5 C4

Predictor 3: Model 1: SBP digit preference �2 p-values 1 C0 (C4)

Model 2: Surgery: Intrathoracic or intraperitoneal –
frequency �2 p-value

2 C1 (C3)

Model 3: Anaesthesia: General – frequency �2 p-value 3 C2 (C2)

Model 4: ACE-I/ARB �2 p-value 4 C3 (C1)

Model 5: Compliance Outcome Probability – CDF 5 C4 (C0)

Note: point reversed for model 5 only and provided in brackets
Categories: ICC and p-values: 1 D� 0:20, 2 D 0:21–0:40, 3 D 0:41-0:60, 4 D 0:61–0:80,
5 D 0:81C

time, the intra-class correlation coefficient (ICC) itself was used as a unit-less
summary for a site’s data.

This lead to a long list of potential predictors for fabricated data, and we then
eliminated redundancy among these using factor analysis with varimax rotation. Out
of 52 possible predictors, 18 independent factors were identified and the predictor
with the highest loading for each of these factors was selected for inclusion into a
series of logistic regression with fraud at each site as the outcome. We used the best
subsets of models using the branch and bound algorithm of Furnival and Wilson
to find models with the largest score statistic for including different numbers of
variables. The final series of models was selected based on no significant increase
in the score test for increasing the number of variables in the model. These models
were checked for lack of fit using the Hosmer and Lemeshow goodness of fit test.
Out of these, the five best predictive models were selected. We then converted these
into risk scores using a points system. These are summarized in Table 4.1.

These risk scores were tested in an independent data set in a trial that had
on-site monitoring and contained no known data fabrication and produced low-risk
score for almost all sites (see Fig. 4.2). These risk scores appear to distinguish well
between sites with and without fabricated data, but will require further validation
across different types of trials. Where the specific variables used in these score are
not collected within a trial, the focus should be on substituting other similar repeated
physical measurements or baseline characteristics into these risk scores. The goal
is to look for the combination of a site with both greater than normal correlation
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Fig. 4.2 External validation of Model 1 on a trial without fabricated data: a comparison of the
distribution of Center Risk Score in POISE (with nine fraudulent centers) and HOPE (no fraudulent
centers) (Reprinted from [29] with permission)

over time in physical measurement (high ICCs), and baseline characteristics that
look extremely similar to all the other sites (high �2 p-values). More research into
this area is needed potentially leading to a toolbox of statistical risk scores that can
more effectively guide monitoring within trials and lead to greater efficiencies for
trials.

4.5 Improving Future Trials

We have illustrated only two investigations into determining what efficient trial
conduct should involve. There are many other trial methodologies that need to be
studied. It would be useful to estimate the effect of conducting a pilot study prior
to launching a full-scale trial, and what are the characteristics of a good pilot study.
The effect of complex inclusion/exclusion criteria on speed of recruitment and study
power could be estimated. The effect of a run-in period on compliance in the main
trial should be studied. These are just a few important unanswered questions that
we could examine, using retrospective trial database analyses or overviews of prior
trials.

In the future, we may be able to build in tests of differing trial methodology
prospectively within given trials. The only way to argue against increasing complex-
ity and bureaucracy is through scientific evidence. We need to separate the elements
that matter in conducting a trial that leads to an unbiased, precise answer, from those
methodologies that represent a waste of resources. The quality and quantity of future
trials may depend on us doing so.
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Chapter 5
Competing Risks and Survival Analysis

Kees van Montfort, Peter Fennema, and Wendimagegn Ghidey

Abstract The analysis of time-to-event data in the presence of competing risks is
part of many studies today. However, the impact of the interrelationship between
the competing risks on the interpretation of the results seems to be unclear to
many researchers, however. We try to provide a guide to researchers interested in
analysing competing risks data. Estimation of the cause-specific hazard function, the
cumulative incidence function, the Gray test statistic, and the multi-stage models for
analysing competing risks data are explained. Furthermore, we apply the theoretical
methodology and illustrate the fundamental problems of interpreting the results of
competing risk analyses by using empirical data in the field of outcome research in
orthopaedics.

5.1 Introduction

In clinical trials, time to an event is frequently studied as endpoint. Competing
risks data are encountered when subjects under study are at risk of more than one
mutually exclusive events, like death from different causes. If after removal of one
cause of failure the risks of failure of the remaining causes are unchanged, we may
use classical statistical methodology. However, this situation is rather rare. Although
the statistical methodology for analysing such competing risks data has been known
for decades (see Kalbfleisch and Prentice [16]; Prentice and Kalbfleisch [22]),
there is still great uncertainty in the medical research about how to approach this
type of data. This is reflected by many of the recent publications in the medical
and biostatistical literature reconsidering (see Tai et al. [27]; Tai, Peregoudov and
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Machin [28]; Satagopan et al. [26]; Friedlin and Korn [9]; Fennema and Lubsen [6];
Crowder [5]).

The Kaplan-Meier curves are commonly used for assessing survival curves in the
presence of competing risks data (see Kaplan and Meier [17]). The Kaplan-Meier
method describes the time to any one single event, such as revision for any reason.
It assumes the independence of the event of interest from any competing event that
precludes it (see Alberti et al. [1]; Fennema and Lubsen [6]). However, when the
competing event is defined as death without any event of interest, censoring these
patients will affect the incidence of the event of interest by modifying the number
of exposed patients. Classical survival methods then assume that patients who are
censored and are no longer part of the risk set owing to an unrelated competing
event (for instance, death) have a similar probability of the event occurring to those
who are not censored. As we have noted, this patient group consists of at least two
categories, namely those who died without the occurrence of the event of interest,
and those who are still alive. In this setting, the Kaplan-Meier curve estimates how
the survival curve would look if all censored patients were allowed to continue
until they had the event of interest. Part of the curve is therefore attributable to
patients who died. This is a hypothetical setting that cannot be tested statistically
(see Alberti et al. [1]; Grunkemeier, Anderson and Starr [15]; Pepe and Mori [21]).
Consequently, the estimated failure probabilities of the classical survival methods
cannot be interpreted as the probabilities of failure of the cause of interest in the
presence of competing risks because, under these circumstances, it leads to biased
results and conclusions. The bias mainly depends on the magnitude of the correla-
tion between the events of interest and the competing events (see Gooley et al. [13]).

The basic theoretical approaches used for analysing competing risks data will
be presented in the following section. In particular, the concept of the cause-
specific hazard function, the cumulative incidence function, and the Gray test will
be explained. Next, we will deal with multi-state models—which are an extension
of competing risks models—and the available software to run a competing risks
model. Furthermore, the analysis of competing risk models will be illustrated using
two examples of outcome research data in the field of orthopaedics. The results of
the classical survival methodology, which do not account for competing risks, will
be compared to the results of methodology correcting for these competing risks.
Finally, an example with generated data will be discussed. The dependency between
the occurrences of the primary risk and competing risk will be modeled by using the
Clayton copula.

5.2 Theoretical Framework

5.2.1 Estimation

The competing risks data are represented by the failure time T (i.e. continuous and
positive), the failure cause D (i.e. values in the finite set f1; : : : ; mg) and a matrix
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of covariates Z. An option to model these data is by using multivariate failure time
models. In such models each subject is assumed to have a potential failure time for
each type of event. The earliest event is actually observed and the others are latent.
This approach focuses on the joint distribution of the failure times of them different
failure types, described by the joint survival function

S.t1; : : : ; tm/ D P.T1 > t1; : : : ; Tm > tm/:

The marginal hazard function of cause j

hj .t/ D lim

t!0

P.t � Tj < t C
t j Tj � t/=
t

is defined by the marginal survival

Sj .t/ D P.Tj > t/ D S.0; : : : ; 0; t; : : : ; 0/:

Without any additional assumptions, no joint survival function is identifiable from
the observed data, nor are there any marginal distributions identifiable (Fürstovà
and Valenta [10]). Therefore, in the presence of competing risk(s) these multivariate
failure time models have little practical use.

Other concepts in competing risks models use the cause-specific hazard function
or the cumulative incidence function. These two functions specify the joint distribu-
tion of the failure time T and the failure causeD. The cause-specific hazard function
for cause j (with j D 1; 2; : : : ; m) is defined as follows:

�j .t/ D lim

t!0

P.t � Tj < t C
t;D D j j Tj � t/=
t:

This cause-specific hazard for cause j corresponds to the instantaneous failure rate
from this cause in the presence of all other possible causes of failure. The probability
of failure from cause j until time t in the presence of all other possible causes is
known as cause-specific cumulative distribution function and depends on the cause-
specific hazards for all other causes:

Fj .t/ D P.T � t;D D j /:

Parameter estimates for the cause-specific hazard of a cause j may be obtained by
maximizing the likelihood function involving cause j . It should be noted that these
parameters are the same with the likelihood function that would be obtained by
treating failures from all other causes, except for j , as censored observations. For
the cause-specific hazard functions we may assume the well-known semi-parametric
proportional hazard model (with vector of covariates z):

�j .t; z/ D �j0.t/ exp.ˇTj z/:
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The function �j .t; z/ should not be interpreted as a marginal survival function,
unless the competing event time distributions and the censoring distributions are
independent. The corresponding partial likelihood function is (with j D 1; : : : ; m):

L.ˇ1; : : : ;ˇm/ D L.ˇ1/ � � �L.ˇm/;

with

L. ǰ / D exp .ˇTj z1/ � � � exp .ˇTj zn/=
nX

iD1
exp .ˇTj zi /;

where j D 1; : : : ; m; i D 1; : : : ; n; and zi the realization of the vector of covariates
corresponding to observation i .

Parameter estimates for the cause-specific hazard for cause j may be obtained
by maximizing the likelihood for the vector of parameters ǰ . This may be applied
by treating observations with failure from all other causes except j as censored
and fitting a Cox proportional hazards model on these data. It is possible to
simultaneously fit cause-specific hazard models for all causes and to test the equality
of effects of specific covariates on different failure types. We need to multiply the
records m times, one for each failure type, and to generate a failure type identifier,
so that each record of a subject corresponds to one cause of failure. The failure
indicator takes the value 1 in the record of the subject that corresponds to the
actual failure cause and 0 in the remaining records of this subject. Thus, the failure
indicator takes the value 0 in all corresponding records for subjects who have not
(yet) failed.

The Kaplan-Meier estimate (based on cause-specific hazard) does not always
provide an appropriate estimate for cumulative incidence of cause j , as it generally
overestimates that quantity (Gichangi and Vach [12]). The cumulative incidence
of the competing risks method, first described by Kalbfleisch and Prentice [16],
overcomes the shortcomings of Kaplan-Meier and provides a valid estimate of
cumulative incidence in the presence of competing risks. In medical literature,
cumulative incidence of competing risks is also known as “cause-specific failure
probability” (Gaynor et al. [11]), “crude incidence curve” (Korn and Deroy [19]),
and “cause-specific risk” (Benichou and Gail [4]). It takes into account the
informative nature of censoring due to competing risks by assessing the risk of
failure of the cause of interest and that of the competing risk.

As mentioned above, a second concept in competing risks models is the use
of the cumulative incidence function. The cumulative incidence for a particular
cause of failure is defined as the probability of experiencing the cause of failure
until a specific time point t , in the presence of all other causes. The cumulative
incidence of competing risks acknowledges that a competing risk influences the risk
of occurrence of the event of interest. A competing risk is handled as another type
of event (see Fürstovà and Valenta [10]).
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The cumulative incidence function of a specific cause does not only depend
on the hazard of that specific cause, but also on the hazards of all other causes.
Therefore, the relation of the cumulative incidence function of a specific cause for
two different covariate values does not only depend on the effect of the covariate of
the specific cause, but also on the effects of the covariate on all other causes and on
the baseline hazards of all other causes.

A well-known form of cumulative incidence is the proportional hazard model for
the subdistribution of a competing risk (see Fine and Gray [7]). This method uses the
hazard of a subdistribution, which is a function of the cumulative incidence for the
corresponding cause of failure and may be defined as (with vector of covariates z):

�sub
j .t I z/ D lim


t!0
P.t � T < t C
t;D D j j T � t _ .T � t ^D ¤ j /; z/=
t

D @ log.1 � Fj .t I z//=@t;

where T is the failure time .� 0/ and D the cause of failure (for example, D D 1

or D D 2).
The above-mentioned function includes at time t subjects who did not fail yet

as well as subjects who failed from other causes before t who are not really at risk
at that time. The semiparametric proportional hazard form of the hazard of the sub
distribution (of event j ) is defined as follows:

�sub
j .t I z/ D �sub

j0
.t/ exp.ˇTj z/:

We may define the indicator function Ii .t/, which is equal to value 1 if it is
known that subject i has not been censored or failed until time point t . Based on
this indicator function and the estimated survival distribution (i.e. Kaplan-Meier
estimator) of the factor of interest, we can estimate the vector of coefficients ˇ (see
Bakoyannis and Touloumi [3]).

It should be noted that the Kaplan-Meier estimate (based on the cause-specific
hazards) does not guarantee to provide an appropriate estimate for cumulative
incidence for cause j , as it generally overestimates this quantity. It may be applied
to estimate the cumulative incidence for cause j in the ideal situation in which
failures from other causes were eliminated and the cause-specific hazard of interest
does not change after this elimination (i.e. failure times for the different events are
uncorrelated), which is seldom.

5.2.2 Comparing the Survival of Different Groups

The cause-specific hazard and cumulative incidence functions are the most impor-
tant approaches to analyze competing risks data in biomedical research. The effect
of a covariate on the cause-specific hazard function for a particular cause may differ
from its effect on the cumulative incidence of the corresponding cause. Therefore the
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estimation of the cause-specific hazard function on the one hand and the cumulative
incidence function on the other hand may yield different results. The choice of the
best approach depends on the research question of interest and the assumptions
with respect to the independence of the competing risks. For instance, if we are
interested in how many subjects failed by a specific cause, then we should use
cause-specific cumulative incidence functions. If we are interested in how the risk
of failure due to different causes changes over time, we should use cause-specific
hazard functions. Nevertheless, in many situations the research question is specified
in terms of investigating the difference between two (or more) patient groups with
respect to the occurrence of the various causes.

In standard survival analysis the comparison of the cause-specific cumulative
incidence functions among different groups is done by using the nonparametric tests
comparing curves generated by the Kaplan-Meier method (i.e. the log-rank test). In
the presence of competing risks, these tests are not appropriate. Gray [14] proposed
a class of linear rank statistics for testing equality of the cumulative incidence
functions. The tests are based on comparing weighted averages of the hazards of
the cumulative incidence function for the failure type of interest (see Fürstovà and
Valenta [10]). A study of Williamson, Kolamunnage-Dona and Tudur Smith [29]
provided simulation results for the log-rank test comparing cause-specific hazard
rates and Gray’s test comparing cause-specific cumulative incidence curves. In
settings where there are effects in opposite directions for the two event types, Gray’s
test has greater power to detect treatment differences than the log-rank analysis has.

5.3 Multi-state Models and Competing Risks

In fact, multi-state models are an extension of the competing risks models.
Competing risks models deal with one initial state and one or more mutually
failure/success states. For instance, a patient’s disease or recovery process may
consist of intermediate events that can neither be classified as initial states nor as
final states. Multi-state models also deal with different states in the course of the
time (see Klein, Keiding and Copelan [18]).

A property that is often assumed in practice is that the multi-state model is a
Markov model, i.e., given the present state and the event history of a patient, the
next visited state and the time at which this will occur will only depend on the
present state. Competing risk models are always Markov models, since there is no
event history (see Putter, Fiocco and Geskus [23]).

If one is especially interested in the event of interest as a first event, the other
events are competing risks. The intermediate event types, not equal to the initial
state, nor equal to the event of interest, provide more detailed information on the
failure/recovery process and allow for more precision in predicting the prognosis
of patients. The occurrence of an intermediate event may be considered a transition
from one state to another. Multi-state models provide a framework that allows for
the analysis of such transitions. They are an extension of competing risk models,
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since they extend the analysis to what happens after the first event. The estimation
of the transition probabilities is discussed in Andersen, Abildstrøm and Rosthøj [2]).

5.4 Available Software

Cumulative incidence curves in a competing risk setting may be estimated by using
the software packages R, Stata, SAS and S-Plus/R (cmprsk library). The R package
cmprsk allows the user to calculate and plot cumulative incidence functions. This
package has functions for performing cumulative incidence regression described by
Fine and Gray [7]. The R package mstate, which deals with multi-state models,
may also be used for competing risks. It implements the reduced rank approach of
Fiocco et al. [8].

In the Stata function stcompet.ado, we observe an event of interest and
one or more competing events, the occurrence of which precludes or alters the
probability of occurrence of the first one. stcompet.ado creates variables con-
taining cumulative incidence, a function that, in this case, appropriately estimates
the probability of the occurrence of each endpoint, the corresponding standard error,
and confidence bounds. Among others, the cumulative incidence for failure type j
will be estimated as

Ij .t/ D
X

i W ti�t
S.ti�1/dj;i=ni ;

where S.ti�1/ is the Kaplan-Meier estimate of the overall survival function, that is,
considering failures of any kind, and the second factor is an estimate of the hazard
of failure type j (see Marubini and Valsecchi [20]). The sum of these incidences
equals .1�S.T //, the complement of the overall Kaplan-Meier estimate of survival
considering failures of any kind.

Furthermore, in Stata version 12 and higher the function stcrreg.ado fits, via
maximum likelihood, competing-risks regression models according to the method
of Fine and Gray [7]. The function stcrreg.ado posits a model for the subhazard
function of a failure event of primary interest. In the presence of competing
failure events that impede the event of interest, a standard analysis using Cox
regression is able to produce incidence-rate curves that either (1) are appropriate
only for a hypothetical universe where competing events do not occur or (2) are
appropriate for the data at hand, yet the effects of covariates on these curves are not
easily quantified. Competing-risks regression, as performed using stcrreg.ado,
provides an alternative model that can produce incidence curves that represent the
observed data and for which describing covariate effects is straightforward.

To our knowledge, no procedure is available for computing cumulative incidence
functions in SAS (see http://support.sas.com/resources/papers/proceedings12/344-
2012.pdf). However, you can find SAS macros on the internet for performing the cal-
culations (see http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros or

http://support.sas.com/resources/papers/proceedings12/344-2012.pdf
http://support.sas.com/resources/papers/proceedings12/344-2012.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros
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http://www.biostat.mcw.edu/software/softmenu). In addition, Rostøj et al. [25]
wrote a set of SAS macros that allows you to translate results on cause-specific
hazards into cumulative incidence curves (see website http://www.pubhealt.ku.dk/).

5.5 Empirical Examples

Total hip arthroplasty (implantation of an artificial hip) generally yields 10-year
survivorship of around 95 %. As hip arthroplasty is typically performed in the
elderly population; there is a high probability that the prosthesis outlives the patient.
Follow-up data of an established total hip system were evaluated and assessed for
the effect of the presence of competing risk (Fennema and Lubsen [6]). A slightly
different subset of this cohort of 406 patients has been published previously by
Zweymüller et al. [30]. The patients were operated on between January 1993 and
May 1994. A retrospective study was initiated in 1995. At that time, 91 patients
(22.4 %) had died from unrelated causes, and 7 patients (1.7 %) had undergone
revision for various reasons. The remaining 299 patients had their prosthesis in situ.

All risks were measured on a daily basis, and expressed as the daily probability
of an event occurring. Death was unrelated to the implantation of the artificial joint.
Competing events were not included if they followed revision surgery. Stata 12.1
(Stata Corp LP, College Station, TX, USA) was used to perform the analysis, and
the stcompet.ado command was used to calculate the cumulative incidence
function, which was compared to standard Kaplan-Meier analysis (1 � K-M).

The Kaplan-Meier and cumulative incidence approach are displayed in Fig. 5.1.
Taking revision for any cause as an endpoint, the 1 � K-M was 4.3 %, whereas the
cumulative incidence was 3.3 % at 15 years. The 1 � K-M thus overestimated the
incidence of revision by 1.0 %. The relative difference was 31.3 %.

Fig. 5.1 Comparison of the
incidence of revision for the
cumulative incidence of
competing risk and 1� K-M
methods for dataset 1

http://www.biostat.mcw.edu/software/softmenu
http://www.pubhealt.ku.dk/
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Fig. 5.2 Comparison of the
incidence of revision for the
cumulative incidence of
competing risk and 1� K-M
methods for dataset 2

In a second example, we analysed 15 year follow-up of a total hip system,
which has recently been published by Repantis et al. [24]. The authors report a
high probability of aseptic loosening that is stated to have been caused by the low
carbide metal-on-metal articulation. Repantis et al. [24], however, do not take into
account the presence of competing risks. In the current study, revision for other
causes, as well as (unrelated) death can be considered as competing events. Similar
methodology as described above was applied to these data.

Between 1994 and 1999, 217 patients were operated on, of which 27 (12.4 %)
had experienced the event of interest, 10 patients (4.6 %) had a competing event
and 21 (9.7 %) patients died from unrelated causes. The 1 � K-M was 19.5 % at
15 years, while the cumulative incidence was 18.7 %, at a relative difference of
4.7 % (Fig. 5.2).

5.6 Simulation Study

In this example we generate data with respect to a primary risk, a competing risk
and a censoring event. The durations of the risk events are drawn from exponential
distributions with the shape parameter value corresponding to a hazard rate lambda
of 1/0.0125, 1/0.2 and 1/0.4 for the primary risk and 1/0.1 for the competing risk.
These parameters settings correspond to hazard ratios of 0.125, 2.0 and 4.0. The
values of the lambda’s of the censoring duration are chosen equal to the values of
the lambda’s of the primary risk.

The dependency between the occurrences of the two risks is modeled by using the
Clayton copula, with the chosen parameter values of 0 (i.e. independency between
both risks), 1 and 2. So, in this Monte Carlo simulation we will vary the hazard
ratios and the dependencies of the two risks.
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Table 5.1 Simulation results: cumulative incidence (first line) and 1-KM percentage (second
line) of the primary risk and the competing risk after 1 year (i.e. means and standard deviations
between parentheses)

Clayton cupola parameter 0 1 2

Hazard ratio

0.125 0.46 (0.07) 0.43 (0.07) 0.42 (0.07)

0.70 (0.11) 0.62 (0.10) 0.60 (0.10)

2 0.64 (0.07) 0.70 (0.07) 0.77 (0.08)

0.88 (0.10) 0.88 (0.10) 0.88 (0.09)

4 0.77 (0.08) 0.86 (0.08) 0.89 (0.08)

0.92 (0.09) 0.93 (0.08) 0.93 (0.09)

The cumulative incidence and the 1-KM percentage (after 1 year) of the primary
risk and competing risk will be calculated for each value of the hazard ratio (i.e.
0.125, 2.0 and 4.0) and the dependency measure (i.e. Clayton copula parameter
value of 0, 1 and 2). Each parameter setting consists of 200 replications of a clinical
trial with 100 included patients. The results of the simulation study are presented in
Table 5.1.

The differences between the cumulative incidences and the 1-KM percentages
depend on the hazard ratios and the dependency of the primary and competing risk.
From our simulation results it follows that the impact of competing risk on KM
increases with decreasing hazard ratio and with decreasing clayton copula parameter
(i.e. independency of the event of interest and the competing event(s)).

5.7 Conclusions

The limitations of the Kaplan-Meier method in the presence of competing risks have
been well described in the literature. Alternative approaches have been discussed,
including the cumulative incidence function and Gray’s linear rank statistics for
testing the equality of the cumulative incidence functions (Gray [14]), as well as
the proportional hazard model for the sub-distribution of a competing risk (Fine and
Gray [7]). Despite the availability of these approaches in many modern software
packages, researchers frequently fall back on standard statistical approaches that do
not take into account the presence of competing risks for the analysis of time-to-
event data.

Empirically, we have shown that the use of Kaplan-Meier leads to statistical
bias in the presence of competing risk, although the magnitude of this bias varied
considerably. Comparing Kaplan-Meier curves in different cohorts of patients
(with different rates of competing risk) obviously affects the results of statistical
significance testing and leads to biased conclusions.
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In view of the frequent occurrence of competing risks in biomedical research,
we encourage the use of methods that account for the presence of competing risk
approaches in order to improve the interpretability of time-to-event analyses.
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Chapter 6
Recent Developments in Group-Sequential
Designs

James M.S. Wason

Abstract In a group-sequential trial, patients are recruited in groups, and their
response to treatment is assessed. After each group is assessed, an interim analysis is
conducted. At each interim analysis, the trial can stop for futility, stop for efficacy,
or continue. The main advantage of group-sequential designs is that the expected
number of patients is reduced compared to a design without interim analyses. There
are infinitely many possible group-sequential designs to use, and the choice strongly
affects the operating characteristics of the trial. This chapter discusses optimal and
admissible group-sequential designs. Optimal designs minimise the expected sam-
ple size at some specified treatment effect; admissible designs optimise a weighted
sum of trial properties of interest, such as expected sample size and maximum
sample size. Methods for finding such designs are discussed, including a detailed
description of an R package that implements a quick search procedure. Recent
applications of group-sequential methodology to trials with multiple experimental
treatments being tested against a single control treatment are also described.

6.1 Group-Sequential Designs Background

The traditional approach to analysing a randomised controlled trial is to conduct
a statistical test of some null-hypothesis after a planned number of patients are
recruited. In most disease areas, the number of patients is limited and so recruitment
is generally time-consuming. Thus, data on the effect of treatment on early patients
are available before recruitment is finished. A group-sequential design allows for
multiple tests of the null-hypothesis as data is accrued. These earlier tests are
referred to as interim analyses. The trial design may allow for early stopping if
results from an interim analysis suggest the experimental treatment is significantly
better than the control treatment. This is referred to as stopping for efficacy. The
design may also allow for early stopping for futility if the results at an interim
analysis suggest the trial is unlikely to end in success. A third reason for stopping
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is for safety – for example if the new treatment causes unacceptable side-effects.
We just consider designs that allow stopping on the basis of whether or not the
new treatment is effective, but one can also incorporate safety monitoring [5] into
group-sequential designs.

The main advantages of group-sequential designs over designs that have no
interim analyses (referred to as fixed sample-size trials) are:

1. Due to the possibility of early stopping, the expected sample size used in a trial
will be lower than a fixed sample-size trial with the same significance level and
power;

2. If the experimental treatment is less effective than the control treatment, the
trial may stop early, meaning fewer patients are subjected to an ineffective
experimental treatment;

3. In the long run, due to lower expected sample sizes, a limited set of patients can
support more trials.

Group-sequential designs also have disadvantages:

1. More analyses means more statistical and data-management support is required;
2. Interim analyses require data to be unblinded before the end of the trial, meaning

more potential for bias;
3. Since the null hypothesis is tested multiple times, the significance level of each

analysis must be lower than that of the fixed sample-size trial in order to control
the overall significance level; thus, if the trial continues to the end without
stopping, the sample size used in the group-sequential trial will be larger than
the fixed sample size trial.

Group-sequential designs are less useful when the outcome of interest takes a
long time to observe, since recruitment will often be completed before the data on
the effect of treatment on early patients are available. In settings where the treatment
outcome is observed relatively quickly, the efficiency and ethical advantages of
group-sequential designs are generally thought to outweigh the disadvantages.

In this chapter we will restrict attention to one-sided group-sequential designs.
These are used when the null-hypothesis is tested against a one-sided alternative
hypothesis. One-sided group-sequential tests are more relevant in clinical trials, as
the experimental treatment is generally not of interest if it is worse than the control
treatment.

A one-sided group-sequential design is parametrised by: (1) the number of
patients to be recruited at each stage; (2) the futility boundaries, determining the
threshold for futility stopping at each analysis; and (3) the efficacy boundaries,
determining the thresholds for efficacy stopping at each analysis. The constraints on
the design are the overall type-I error rate and power of the design. Since there are
more parameters than constraints, there are an infinite number of possible designs to
choose from. The choice of design is extremely important as it affects the statistical
properties of the design, such as expected sample size.

There are three main approaches to choosing a design. The first is to constrain
the stopping boundaries using some shape function. Commonly used functions are
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those of Pocock [22], O’Brien and Flemming [20], and Whitehead [33]. The main
advantage of this approach is that it is quick to find a design; the main disadvantage
is that the properties of the design, such as expected sample size, may not be
desirable for the investigator. A second approach is to use a more flexible family
of stopping boundary functions. For example, the power-family of group-sequential
tests, proposed by Pampallona and Tsiatis [21], is a single-parameter family of
stopping boundary shapes. By varying the parameter, the properties of the resulting
design differ. A third approach, is to search over the full set of parameters in order
to choose the design that best matches the desired properties of the investigator.

This chapter provides an overview of some recent methodological developments
in group-sequential designs, and is organised as follows: in Sect. 6.2, notation for
the rest of the chapter is given; in Sect. 6.3 some background on optimal designs is
provided; in Sect. 6.4 the ı-minimax design is motivated, and a simulated annealing
technique to find optimal designs is discussed; in Sect. 6.5 the concept of admissible
designs is motivated and discussed; in Sect. 6.6 the problem of not knowing the
variance of the treatment response at the design stage is addressed; in Sect. 6.7
an R package which allows quick finding of admissible designs is described; in
Sect. 6.8, extensions of group-sequential methods to multi-arm multi-stage designs
are discussed; finally in Sect. 6.9, some limitations and possible extensions of the
methods in the chapter are discussed.

6.2 Notation

Consider a randomised two-arm group-sequential design with up to J analyses.
The j th analysis takes place after nj patients have been randomised to each arm,
and their treatment response measured. The response of patient i on the control
arm, X0i , is assumed to be distributed as N.�0; 
2/, with the response of patient i
on the experimental arm, X1i , is assumed to be distributed as N.�1; 
2/. Here, the
value of 
2 is assumed to be known, although unknown variance will be addressed
in Sect. 6.6. The parameter of interest is the difference in mean response between
the experimental and control arms, �1 � �0, and is labelled ı. The null-hypothesis
tested is H0 W ı � ı0. A design is required such that the probability of rejecting
the null is at most ˛ when H0 is true, and at least 1 � ˇ when ı � ı1, where ı1 is
the clinically relevant difference (CRD). The value of ı0 will generally be set to 0,
indicating that any improvement is of interest. These two constraints are referred to
as the type-I error and power constraints respectively. A design which meets both
constraints is called feasible.

At a given interim analysis j , the z-statistic for testing H0, Zj , is calculated:

Zj D
r
nj

2
2

Pnj
iD1 Xi1 �Pnj

iD1 Xi0
nj

: (6.1)
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If Zj > ej , the trial stops for efficacy; if Zj � fj , the trial stops for futility. If it is
between the two thresholds, the trial continues to stage j C 1. The value of eJ is set
to fJ to ensure that a decision is made at the last interim analysis.

The number of design parameters is 3J � 1: J parameters for the sample size at
each stage, J efficacy parameters e D .e1; : : : ; eJ ), and J futility parameters f D
.f1; : : : ; fJ�1/ (actually J � 1 free parameters as fJ D eJ ). Generally the number
of parameters is reduced by assuming a constant number of patients recruited per
stage to each treatment arm, n, called the group-size. With this assumption, the value
of nj will be equal to jn. This reduces the number of parameters to 2J .

The vector of random variables .Z1;Z2; : : : ; ZJ / has a multivariate normal

distribution with mean vector
�q

n
2
2
ı;
q

2n
2
2
ı; : : : ;

q
Jn
2
2
ı



, and covariance matrix

˙ , where the .i; j /th entry of ˙ , ˙ij, is equal to
q

min.i;j /
max.i;j / , [31]. Finding the

probability of stopping for efficacy at stage j ,˘j , involves multivariate integration.
Stopping for efficacy at the j th stage happens if and only if .Z1; : : : ; Zj�1/ were
all between the futility and efficacy stopping boundaries, and Zj is above ej . The
probability of this is:

˘J .ı/ D
Z e1

f1

Z e2

f2

: : :

Z ej�1

fj�1

Z 1

ej

fZ.j / .z1; : : : ; zj /dzj : : : dz1 ; (6.2)

where fZ.j / is the pdf of .Z1; : : : ; Zj /. Note that the mean of Z.j / depends on ı,
but the covariance does not. Equation (6.2) can be evaluated using the technique
of Genz and Bretz [10], or the technique of Armitage [2, 18], described further in
Chap. 19 of Jennison and Turnbull [13]. Note that the normality of the test statistics
is the main assumption used and not the normality of the treatment endpoint –
therefore other types of endpoints such as binary and time-to-event for which there
are asymptotically normally distributed test statistics can be considered within this
framework [13].

The probabilities ˘1.ı/; : : : ; ˘J .ı/ can be summed to give the total probability
of stopping for efficacy. Setting ı D ı0 will give the type-I error rate, and setting ı D
ı1 will give the power. A similar formula as (6.2) can be used to find the probability
of stopping for futility at each stage. From the probabilities of stopping for futility
and efficacy at each stage, the expected sample size can be straightforwardly found.

6.3 Optimal Group-Sequential Designs

Within the context of group-sequential designs, an optimal design is one that
satisfies the required type-I error rate and power (i.e. it is feasible), and out of all
possible feasible designs, it optimises some criterion of interest. Criteria considered
tend to be some function of the sample size, for example the expected sample size
at some value of ı.
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Finding an optimal design involves searching over the stopping boundary
parameters as well as the sample size parameters. With the constraints described
in Sect. 6.2, searching for an optimal J -stage group-sequential design involves
searching over 2�J parameters, as the final futility and efficacy threshold are set to
be the same. There are just two constraints: the type-I error and the power. This is a
computationally challenging problem when J > 2, as the number of parameters is
large and there are many local optima in the set of designs to be searched.

The method of dynamic programming was proposed for finding symmetric (i.e.
the type-I error rate, ˛, is equal to the type-II error rate, ˇ) optimal one-sided group-
sequential designs [7] and optimal two-sided designs [8]. This was extended to
non-symmetric designs by Barber and Eales [3]. The method works by defining
a Bayes decision theory problem for which the optimal group-sequential design is
the solution. The decision theory problem is to decide between D0 W ı D 0 and
Dı W ı D ı�, with the cost of making decision D with true treatment difference ı
equal to C.D0; ı

�/ D dı for D D D0, and C.Dı; 0/ D d0 for D D Dı. For any
other value of ı, C.D; ı/ is set to be 0. Backwards induction can be used to find the
design that minimises a given objective function, such as expected sample size at
the null hypothesis. A numerical search over (d0; dı) is conducted in order to find
the design giving the correct type-I error rate and power. This final design will then
be the optimal one.

Generally this method can be used to find an optimal design when the optimality
criterion is the expected sample size at a specific value of ı (or sums of expected
sample sizes at different values of ı). However, in the next section an optimality
criteria is proposed that is of potential interest and that cannot be optimised using
dynamic programming.

6.4 ı-Minimax Design and Simulated Annealing

The expected sample size of a group-sequential design depends on the true treatment
effect. If an optimal design is chosen for a particular treatment effect, then the design
may perform poorly when the true treatment effect varies from the design value.
For designs allowing stopping for both futility and efficacy, the expected sample
size increases in ı monotonically to a maximum and then decreases monotonically.
Intuitively this is because as ı increases, the probability of the trial stopping early
for futility decreases monotonically, but the probability of the trial stopping early
for efficacy increases monotonically. A slightly more formal explanation is given in
Wason, Mander and Thompson [31].

Thus each design has a treatment effect, Qı, that leads to the design having
the maximum expected sample size over all possible values of ı. This is called
the worst-case-scenario treatment effect. The optimality criterion of choosing the
feasible design with the lowest maximum expected sample size was proposed for
two-stage trials with binary outcomes by Shuster [25]. The design showed some
good properties such as low expected sample sizes at the null treatment effect
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and CRD. The design was extended to two-stage trials with normally distributed
outcomes by Wason and Mander [30] and named the ı-minimax design, as it has
the lowest maximum expected sample size over ı. To find the ı-minimax design for
two-stages, it is feasible to use a grid-search technique, as the number of parameters
(i.e. futility and efficacy boundary parameters, and group-size) is low. For more than
two-stages, there are too many parameters to perform a grid-search. The dynamic
programming algorithm proposed by Barber and Jennison [3] works when the
optimality criterion is independent of the design; however the value of Qı depends
on the design, thus a different method must be used for J > 2. In Wason et al. [31],
use of a stochastic search technique called simulated annealing was proposed to find
the ı-minimax design.

The simulated annealing algorithm is described in detail in the supplementary
material of Wason et al. [31], and C code is available on the author’s website (http://
sites.google.com/site/jmswason). Each iteration of the simulated annealing process
consists of two steps. The first step is to generate a new candidate design from the
current design (i.e. the design which the process is currently at). The second step is
to decide whether the process should move from the current design to the candidate
design. Both steps rely on so-called ‘temperature’ parameters. At the end of each
iteration, the temperature parameters are reduced. As the temperature parameters
fall: (1) the candidate design generated at each iteration will, on average, be closer
to the current design; and (2) the process is less likely to move to a design that is
worse. In this way, the process is more likely to explore the space of designs towards
the beginning, with the aim of avoiding getting stuck at a local optimum.

For two and three-stage designs, simulated annealing is quick and reliable, with
results not varying considerably between independent runs. However, for four or
more stages, the process takes longer and becomes less reliable. The reason that
it takes longer is that evaluating the operating characteristics of a design is more
time-consuming when there are more stages. The process is less reliable because
the number of parameters is greater and there are more local optima in the space of
possible designs. One can run the simulated annealing process for longer in order
to improve reliability, but of course this takes longer. With four or five stages,
it is recommended that a number of independent simulated annealing processes
with different random number seeds are run. The best resulting design can then
be chosen.

The ı-minimax design is comparable to the triangular design proposed by
Whitehead and Stratton [33]. In the case of a symmetric (˛ D ˇ) and fully sequential
(i.e. interim analyses after each patient), as the type-I error rate converges to 0, the
resulting triangular stopping boundaries minimise the maximum expected sample
size. It is thus of interest to see whether the ı-minimax design adds anything over
the use of the triangular stopping boundaries. Table 6.1 shows, for ı0 D 0, ı1 D 1,

 D 3 and various values of J , the expected sample size of the null-optimal design
(optimal at ı D ı0), the CRD-optimal design (optimal at ı D ı1), the ı-minimax
design, and the triangular test at: (1) the null treatment effect, i.e. 0; (2) the CRD, i.e.
1; (3) the worst-case-scenario treatment effect. Also shown is the maximum sample
size used by the design if early stopping does not take place.

http://sites.google.com/site/jmswason
http://sites.google.com/site/jmswason
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Table 6.1 Expected and maximum sample sizes per arm of investigated designs for different
numbers of stages. The random variable N denotes the sample size per arm used with a specified
design

Null-optimal CRD-optimal ı-minimax Triangular design

J D 2 E.N jı D ı0/ 107.6 118.0 110.9 111.2

E.N jı D ı1/ 130.5 117.1 119.4 117.6

E.N jı D Qı/ 138.9 136.8 133.3 132.2

Maximum sample size 170 172 180 180

J D 3 E.N jı D ı0/ 94.9 105.7 98.0 100.4

E.N jı D ı1/ 128.9 107.0 109.2 108.4

E.N jı D Qı/ 137.3 130.0 125.9 125.5

Maximum sample size 183 186 189 192

J D 4 E.N jı D ı0/ 88.7 98.0 92.7 98.3

E.N jı D ı1/ 119.1 102.2 105.0 106.1

E.N jı D Qı/ 130.6 125.5 122.0 124.9

Maximum sample size 192 196 196 204

J D 5 E.N jı D ı0/ 85.4 92.1 89.2 96.0

E.N jı D ı1/ 113.1 99.3 102.8 103.9

E.N jı D Qı/ 126.8 122.5 119.6 123.0

Maximum sample size 200 210 205 210

Table 6.2 Group-size, futility stopping boundaries, and efficacy stopping boundaries of five-stage
optimal and triangular designs

Design n f e

Null-optimal 40 .�0:24; 0:37; 0:76; 1:09; 1:56/ .3:01; 2:47; 2:23; 2:03; 1:56/

CRD-optimal 42 .�0:51; 0:29; 0:83; 1:33; 2:05/ .2:14; 2:05; 2:09; 2:15; 2:05/

ı-minimax 41 .�0:52; 0:34; 0:92; 1:38; 1:83/ .2:54; 2:09; 2:03; 1:96; 1:83/

Triangular 42 .�0:85; 0:30; 0:98; 1:49; 1:90/ .2:55; 2:10; 1:96; 1:91; 1:90/

When J D 2 or 3, the ı-minimax and triangular designs have very similar
expected sample size properties. The ı-minimax design in fact has a higher
maximum expected sample size for J D 2; 3, but this is because the equations
determining the triangular design, given in Jennison and Turnbull [13], for given
˛ ¤ ˇ do not result in the feasibility constraints being met exactly (the triangular
design has ˛ D 0:0517 and 0:0512 for J D 2 and J D 3 respectively). For J D 4

and 5 the ı-minimax design is more distinct, having a 7.1 % reduction in expected
sample size under the null, and a 5.7 % reduction for J D 4, compared to the
triangular design.

Table 6.2 shows the design parameters for each five-stage design, and Fig. 6.1
shows the stopping boundaries of the three optimal designs graphically. Although
the expected sample size patterns are similar, the stopping boundaries of the
ı-minimax and triangular designs are somewhat different. Generally the ı-minimax
design is marginally more likely to stop at the first stage, although this is balanced
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Fig. 6.1 Futility and efficacy
stopping boundaries, in terms
of test statistics, of the
null-optimal, CRD-optimal,
and ı-minimax design for
˛ D 0:05; ˇ D 0:1; 
 D
3; ı0 D 0; ı1 D 1
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by it being slightly less likely to stop once the trial is at a later stage. The maximum
sample sizes are similar, but differ between the designs for some values of J (see
Table 6.1).

The ı-minimax design has desirable properties in comparison to the other two
optimal designs. By definition it has the lowest maximum expected sample size
of the three designs, but it also has low expected sample sizes across the range of
treatment effects considered. When the treatment effect is close to ı0, its expected
sample size is only slightly higher than that of the null-optimal design; similarly its
expected sample size is only slightly higher than that of the CRD-optimal design
when ı is close to ı1. The optimal designs perform well when ı is close to the
treatment effect for which they are optimal, but poorly when ı is different. As one
would expect, the expected sample size curves shifts downwards as J increases,
indicating that including more stages results in lower expected sample sizes at each
value of ı. The relative shapes of the curves change slightly, especially as ı increases
past ı1.

Minimising the expected sample size is an important objective in trials, but it
is also of interest to control the maximum potential sample size. A design which
yields a small improvement in expected sample size at a cost of a large increase
in maximum sample size is unlikely to be preferred in practice. Table 6.1 shows
that the ı-minimax and triangular designs generally have larger maximum sample
sizes compared to null-optimal and CRD-optimal designs. All the optimal designs
have maximum sample sizes noticeably larger than the sample size required for the
one-stage design (155).

6.5 Admissible Designs

Optimal designs tend to have large maximum sample sizes, which can be
problematic for planning individual trials. In addition, they may perform poorly
with respect to other criteria of interest. For example, the null-optimal design has
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a relatively high maximum expected sample size. Admissible designs have been
proposed in order to balance over more than one criteria of interest.

The first work on admissible designs was in the context of two-stage trial
designs with binary outcomes and only futility stopping allowed. These designs
have been well studied in the literature due to their relative simplicity and the fact
that all possible designs can be enumerated (as sample size and stopping boundary
parameters are all integers). Simon [26] discussed and recommended two designs
for this type of trial. The first was the ‘optimal’ design (in the terminology of
Sect. 6.4, the null-optimal design). The second was the ‘minimax’ design, which
chooses the design with the lowest expected sample size at the null out of all designs
that have the lowest maximum sample size. Jung et al. [14] noted that the optimal
design has a relatively large maximum sample size, and the minimax design has a
relatively large expected sample size. These observations motivated investigation of
‘admissible’ designs, which would balance the two criteria.

To do this, the authors specified a loss function as the weighted sum of the
expected sample size under the null treatment effect and the maximum sample size:
!E.N jH0/ C .1 � !/max.N /, for ! 2 Œ0; 1�. Admissible designs are feasible
designs that minimise the loss function for some value of w. Additional information
is available in Jung et al. [14] about how this corresponds to admissible decision
rules in Bayesian decision theory. The optimal and minimax designs are admissible
(for ! D 1 and 0 respectively), but other admissible designs also exist which
balance the two quantities in different ways. Admissible designs exist that show
very small increases in expected sample size compared with the optimal design,
but large decreases in the maximum sample size. In practice, such a design may be
preferable to the optimal design, as a small maximum sample size is desirable.

Mander et al. [17] extend the ideas in Jung et al. to phase II trials with
binary outcomes allowing early stopping for efficacy. When stopping for efficacy
is allowed, the expected sample sizes at treatment effects other than the null are also
of interest. Designs that are admissible with respect to the expected sample size at
the null, the expected sample size at the CRD, and the maximum sample size are
evaluated.

When considering normally distributed endpoints, finding admissible designs
is more challenging. This is because the stopping boundary parameters are non-
integer and so infinitely many feasible designs exist. This is as opposed to the
binary outcome case where the stopping boundary parameters are integers, and so
all designs can be enumerated. Instead, in Wason et al. [31], it was argued that the
maximum expected sample size could be used as a surrogate for all expected sample
sizes of interest. The loss function in this case is:

!E.N j Qı/C .1� !/max.N / : (6.3)

The advantage of just considering the two criteria in (6.3) is that it is
computationally feasible to find all admissible designs. For each possible maximum
sample size, the futility and efficacy parameters can be chosen so that the maximum
expected sample size is minimised. Any other design with that maximum sample
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Table 6.3 Properties of
admissible designs for
J D 3; max.N /D maximum
sample size per arm, !
interval gives the values of !
that would lead to that design
being the admissible design
of choice

max.N / E.N jı0/ E.N jı1/ E.N jQı/ ! interval

156 117.29 124.73 139.02 [0,0.426)

159 107.34 121.43 134.97 [0.426,0.539)

165 102.05 114.78 129.83 [0.539,0.713)

168 101.44 112.55 128.62 [0.713,0.820)

171 100.21 111.23 127.96 [0.820,0.843)

177 98.19 111.14 126.84 [0.843,0.921)

186 98.74 109.19 126.07 [0.921,0.981)

189 98.20 109.88 126.01 [0.981,1]

Fig. 6.2 Expected sample
sizes of ı-minimax design
(solid line) and admissible
design with N D 171 in
Table 6.3 (dashed line)
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size cannot be admissible because loss function (6.3) will always be higher (unless
! D 0). No design with maximum sample size greater than that of the ı-minimax
design can be admissible, as such a design would have both a higher maximum
sample size and a higher maximum expected sample size.

As an illustration, Table 6.3 displays the properties of the possible admissible
designs for ı0 D 0, ı1 D 1, 
 D 3, ˛ D 0:05, 1 � ˇ D 0:9.

From Table 6.3, using the value of max.E.N // as an admissibility criterion is a
good surrogate for jointly considering E.N jı0/ and E.N jı1/, since the two latter
quantities generally decrease as the former does. The table includes the range of !’s
(i.e. the weighting put on the maximum expected sample size) for which each design
is best. For instance, if the two quantities are each given equal weight .! D 0:5/, the
second design in the table is the best one to pick. The choice of ! may depend on
several factors. For instance, if the trial is being carried out in an area with limited
patient numbers, ! might be chosen to be low, since it would be desirable to reduce
the maximum sample size. In other situations, a higher value of ! may be preferred,
since on average the number of patients required is reduced.

Figure 6.2 shows the expected sample size curve of the ı-minimax design for
a range of values of ı. Also included is the expected sample size curve for the
admissible design from Table 6.3 with max.N / D 171. The difference in the
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expected sample size curves is very small, but there is a 9.5 % reduction in the
maximum sample size. This indicates that by relaxing the requirement for optimality
very slightly, a big improvement in other characteristics of interest is possible.

6.6 Unknown Variance

A common assumption made in the design of group-sequential trials is that the
variance of the treatment response, 
2 is known for each arm. In practice this is
unlikely to be the case, and if the postulated value is incorrect, then the operating
characteristics of the trial can be strongly affected.

Various techniques to allow for unknown variance have been proposed in the
literature. Shao and Feng [24] suggest using Monte-Carlo simulation to choose an
appropriate critical value. Although this technique would be too computationally
intensive to be used in conjunction with a search for optimal designs, it could be
used to modify the final design’s stopping boundaries. Jennison and Turnbull [12]
show how one can convert boundaries for the known variance case to the unknown
variance case using a recursive algorithm.

Jennison and Turnbull [13] propose a method for converting the stopping
boundaries that is simpler than the recursive algorithm and less computationally
intensive than simulation. Recall that fj and ej are the stopping boundaries for
analysis j , and nj is the number of patients per arm that are randomised by the
time of the analysis. Then the thresholds for stopping in terms of p-values are
attained from the quantile of the normal distribution, i.e. 1 � ˚.ej / and 1 � ˚.fj /

respectively. With unknown variance, when ı D 0, the test-statistics would be
marginally distributed as a Student’s t-distribution with 2nj �2 degrees of freedom.
Therefore by substituting in new stopping boundaries f 0

j D T2nj�2.1 � ˚.fj //

and e0
j D T2nj�2.1 � ˚.ej //, where Tp is the cumulative distribution function of

Student’s t-distribution with p degrees of freedom, the design will marginally have
the correct stopping characteristics (under the null) at each stage. The overall type-I
error rate of the trial will still differ from its nominal value because the assumed
correlation between test-statistics when the variance is known will differ from the
actual correlation when it is unknown (the size of the difference is investigated later
on in this section).

Table 6.4, taken from Wason et al. [31], shows the type-I error rate and power
for the five-stage ı-minimax design for ı1 D 1; 
 D 3; ˛ D 0:05; ˇ D 0:1 as the
true value of 
 differs from 3. Three scenarios are considered: (1) no modification is
made, (2) t-tests are used with the known-variance stopping boundaries, (3) t-tests
are used with the stopping boundaries modified using the quantile-substitution
method. The type-I error rate and power are estimated from 250; 000 independent
replicates each.

The simulated type-I error rates show that methods (2) and (3) both work well.
The type-I error rates are very close to the required level of 0.05, with quantile-
substitution working slightly better. The power is not controlled as the value of
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Table 6.4 Type-I error rate and power estimates as the true standard deviation varies from the
assumed value of 3

Type I error Power
T-test with T-test with


 Z-test T-test modified boundaries Z-test T-test modified boundaries

1 0.000 0.051 0.050 1.000 1.000 1.000

1.5 0.000 0.052 0.050 0.998 1.000 1.000

2 0.000 0.051 0.050 0.984 0.995 0.995

2.5 0.021 0.052 0.050 0.95 0.965 0.965

3 0.050 0.051 0.050 0.900 0.900 0.899

3.5 0.086 0.052 0.050 0.851 0.810 0.809

4 0.124 0.052 0.051 0.807 0.714 0.712

4.5 0.158 0.052 0.051 0.768 0.626 0.623

5 0.189 0.051 0.050 0.737 0.550 0.547

Table 6.5 Type-I error rate and power estimates as the true standard deviation varies from the
assumed value of 1

Type I error Power
T-test with T-test with


 Z-test T-test modified boundaries Z-test T-test modified boundaries

0.25 0.000 0.070 0.054 1.000 1.000 1.000

0.5 0.000 0.069 0.052 0.997 1.000 1.000

0.75 0.011 0.069 0.053 0.964 0.986 0.985

1 0.050 0.069 0.052 0.900 0.902 0.893

1.25 0.102 0.068 0.052 0.832 0.768 0.750

1.5 0.154 0.069 0.052 0.775 0.64 0.613

1.75 0.201 0.069 0.052 0.726 0.533 0.503

2 0.236 0.069 0.052 0.691 0.455 0.424


 increases however. To overcome this, an adaptive design would be required in
which the sample size of the rest of the trial is chosen depending on the estimated
variance; an example of this is given in Whitehead et al. [34]. The good performance
of both methods (2) and (3) could be due to the large group-size resulting in
the degrees of freedom of the t-distribution being sufficiently high to allow the
standard normal to be a good approximation. To see what happens when the group-
size is lower, results are shown for the five-stage ı-minimax design with 
 D 1.
This results in a group-size of 4, f D .�0:914;�0:026; 0:698; 1:177; 1:761/, and
e D .2:980; 2:308; 2:048; 1:976; 1:761/. It is clear that the type-I error rate is less
well controlled in this case (Table 6.5), although the T-test in conjunction with the
quantile-substitution method controls the type-I error rate fairly well.

Thus it seems that quantile substitution is a straightforward, but effective method
to control the type-I error rate when the variance is unknown.
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6.7 OptGS: An R Package for Optimal and Admissible
Group-Sequential Designs

The consideration of optimal and admissible group-sequential designs has been
motivated in the previous sections. All the theory to implement finding such
designs is available in the literature, but it takes a lot of work to implement from
scratch. There are some existing software packages that implement group-sequential
designs, summarised by Wassmer and Vandemeulebroecke [32]. The IML module
in SAS R� contains routines that allow calculation of stopping boundaries that give
a specified type-I error rate. In R, the package gsDesign [1] allows the user to find
boundaries and group-size required for several group-sequential designs, including
O’Brien-Flemming and Pocock. Commercially available stand-alone programs that
implement group-sequential designs include ADDPLAN, East, PASS, and PEST.
However, none of these software packages include a function that searches for
optimal or admissible designs.

FORTRAN code that implements searching for optimal designs using dynamic
programming, as described in Barber and Jennison [3] is available from Stuart
Barber’s webpage (http://www1.maths.leeds.ac.uk/~stuart/Research/Software/
0118.tar). Compilation of the code requires some technical computing knowledge,
as it requires installation of the GNU Scientific Library. The code would also
not be extendable to all optimality criterion, for example the maximum expected
sample size. In this section, the R package OptGS [28] is described, which is freely
available from the author’s website (http://sites.google.com/site/jmswason). The
package allows quick searching for designs that are near-optimal, or admissible with
respect to four optimality criteria. Instead of simulated annealing, an extension of
the Power-family is used. This extension allows a wide range of stopping boundary
shapes, but considerably reduces the time taken to search. A quick method for
searching is desirable so that investigators may explore many possible admissible
designs in a short time.

6.7.1 Two-Parameter Power Family

The power family of group-sequential tests was first proposed by Emerson and
Flemming [9] for symmetric designs (i.e. ˛ D ˇ). Pampallona and Tsiatis [21]
extended the family to allow non-symmetric designs (˛ ¤ ˇ). In this section we
consider the formulation of Pampallona and Tsiatis. The family is indexed by a
parameter 
, which determines the shape of the stopping boundaries. The power-
family stopping boundaries are:

ej D Ce.J; ˛; ˇ;
/.j=J /

�0:5

fj D ı1

q
Ij � Cf .J; ˛; ˇ;
/.j=J /


�0:5 ;

where Ij D 2nj =

2.

http://www1.maths.leeds.ac.uk/~stuart/Research/Software/0118.tar
http://www1.maths.leeds.ac.uk/~stuart/Research/Software/0118.tar
http://sites.google.com/site/jmswason
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To meet the required constraint eJ D fJ , the value of IJ is set to:

IJ D 2nJ =

2 D

˚
Ce.J; ˛; ˇ;
/C Cf .J; ˛; ˇ;
/

�2

ı2
: (6.4)

For a specific value of 
, Cf .J; ˛; ˇ;
/ and Ce.J; ˛; ˇ;
/ take values such
that the design has correct type-I error rate and power. Varying 
 changes the
shape of the boundaries, and thus the operating characteristics of the design, with
higher values generally giving designs with lower expected sample sizes, but higher
maximum sample sizes.

Although the power-family provides a flexible range of stopping boundary
shapes, it does not provide enough flexibility to include optimal designs. For optimal
designs, the shape of the efficacy stopping boundaries will differ from the shape of
the futility stopping boundaries.

OptGS uses a straightforward extension to the power family: introducing two
shape parameters 
f and 
e, allowing the shape of the futility and efficacy
boundaries to differ, and thus allowing greater flexibility in shape. The stopping
boundaries are:

ej D Ce.J; ˛; ˇ;
/.j=J /

e�0:5

fj D ı1

q
Ij � Cf .J; ˛; ˇ;
/.j=J /


f �0:5 : (6.5)

Note that Eq. (6.4) still ensures eJ D fJ .
Given values of .J;
f ;
e; Cf ; Ce/, the group-size and stopping boundaries are

determined from (6.4) and (6.5). As in Pampallona and Tsiatis [21], for each value
of .
f ;
e/, values of Cf and Ce exist so that the design has desired type-I error
rate, ˛, and power, 1 � ˇ. These values can be found by searching for the values of
.Cf ; Ce/ that minimise the following function:

.˛�.J;
f ;
e; Cf ; Ce/� ˛/2 C .ˇ�.J;
f ;
e; Cf ; Ce; ı/ � ˇ/2 ; (6.6)

where ˛�.�/ and ˇ�.�/ are the type-I and type-II error rate of the design given by
.J;
f ;
e; Cf ; Ce/. The value of (6.6) is 0 if and only if the type-I error rate and
power of the design are equal to the required values. In OptGS, this minimisation is
performed using the Nelder-Mead algorithm [19].

The Nelder-Mead algorithm is also used to search over values of .
f ;
e/ in
order to find an optimal design. Almost surely, the optimal value of .
f ;
e/ will
imply a non-integer group size. To get a final design with integer group-size, two
additional optimisations are run. The first with the constraint that the final group-size
is equal to the group-size implied by the optimal .
f ;
e/ rounded up. The second
instead rounding down. Of the designs found, the one that is closer to optimal is
picked as the final design. Additional details are provided in Wason [28].
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OptGS allows the user to find a design that balances the three optimality criteria
discussed in Sect. 6.4 as well as the maximum sample size. A vector of weights,
.!1; !2; !3; !4/, is specified by the user such that all are non-negative. Then the
feasible design is found that minimises the following function:

!1E.N jı D ı0/C !2E.N jı D ı1/C !3 maxE.N /C !4Jn1 : (6.7)

This design balances the three optimality criteria together with the maximum
sample size. Note that one of !1, !2, and !3 must be strictly positive, because an
infinite number of designs will exist with the lowest maximum sample size.

6.7.2 Comparison of OptGS and Simulated Annealing

Table 6.6, taken from Wason [28], shows the time taken to find J -stage null-optimal
designs using SA and using OptGS. A single M5000 SPARC 2.4 GHz processor
was used to carry out all computation. Ten independent simulated annealing (SA)
searches were carried out for each value of J because SA is a stochastic process,
and results may vary between runs. The average and minimum expected sample size
under the null over the ten processes are shown in the table.

For several values of J , the optimal design found from OptGS is actually better
than that found from the best of 10 runs of SA. This is despite the shape constraint
imposed by use of the extended power-family. Only for J D 5 does SA show
some improvement over OptGS. OptGS is substantially faster than even one SA run.
Clearly, using OptGS has substantial advantages over using simulated annealing.

Table 6.7, also taken from Wason [28], shows the optimal values of

f ;
e; Cf ; Ce for the three types of optimal design implemented in OptGS as well
as the .1; 1; 1; 1/-admissible design, i.e. the admissible design that puts equal weight
on all four operating characteristics. The results show that allowing 
f to differ
from 
e is necessary to allow optimal designs to be found – the null-optimal and
CRD-optimal designs have 
f and 
e designs with opposite signs. Interestingly,

Table 6.6 Comparison of run-time and expected sample size at ı D ı0 of designs found from
simulated annealing (SA) and OptGS

E.Nı0/ Time taken
Average from Minimum from

J 10 SA runs 10 SA runs OptGS Average SA run (s) OptGS (s)

2 108.2 107.9 107.5 18.2 0.27

3 95.2 94.8 94.8 193.5 9.91

4 89.9 89.6 89.0 373.7 13.7

5 85.6 85.7 85.8 573.6 25.5
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Table 6.7 Optimal design parameters .
f ;
e; Cf ; Ce/ for various optimality criteria and num-
ber of stages. The rows labelled .1; 1; 1; 1/ correspond to the .1; 1; 1; 1/-admissible design. Note
that the expected and maximum sample sizes shown are for both treatment arms

Design J 
f 
e Cf Ce E.2Nı0/ E.2Nı1/ maxE.2N / max.2N /

Null-optimal 2 0:45 �0.34 1.50 1.57 215.0 285.1 293.4 340

3 0:52 �0.55 1.66 1.52 189.6 276.0 283.2 366

4 0:52 �0.41 1.74 1.53 178.0 261.4 272.1 384

5 0:53 �0.37 1.81 1.52 171.6 256.2 267.8 400

CRD-optimal 2 �0.18 0:46 1.25 1.84 241.0 234.6 276.9 344

3 �0.15 0:48 1.26 1.96 231.1 214.8 265.6 372

4 �0.13 0:49 1.27 2.03 222.7 205.5 259.0 392

5 �0.01 0:48 1.31 2.06 207.3 200.0 250.6 410

ı-minimax 2 0:30 0:33 1.40 1.74 221.4 238.7 266.5 356

3 0:33 0:33 1.48 1.79 196.8 219.4 251.9 384

4 0:32 0:32 1.51 1.82 185.8 210.0 244.2 400

5 0:32 0:32 1.53 1.84 179.7 204.2 239.4 410

.1; 1; 1; 1/ 2 �0.01 0:08 1.32 1.68 226.3 245.7 272.9 324

3 0:06 0:05 1.37 1.68 206.1 233.1 259.0 336

4 0:12 0:12 1.41 1.71 194.3 220.2 248.8 352

5 0:08 0:04 1.42 1.70 191.3 219.2 246.4 350

the ı-minimax and .1; 1; 1; 1/-admissible designs would be well approximated by
the original one-parameter power-family, as 
f and
e are very close in value.

6.7.3 Tutorial on Use of OptGS

OptGS contains a single function optgs(). The arguments taken by optgs are
documented in the help file. The default arguments will produce a two-stage design
with ı0 D 0; ı1 D 1; 
 D 3; ˛ D 0:05; 1 � ˇ D 0:9, and .!1; !2; !3; !4/ D
.0:95; 0; 0; 0:05/. The entries of ! imply that the design of interest is the admissible
design that puts 0:95 weight on the expected sample size at the ı0, and 0:05 weight
on the maximum sample size. The output is as follows:

> optgs()

Groupsize: 84
Futility boundaries 0.5781 1.5776
Efficacy boundaries 2.9559 1.5776
ESS at null: 107.522
ESS at CRD: 145.325
Maximum ESS: 148.302
Max sample-size: 168
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The output shows the required group-size (i.e. patients to be recruited per arm
per stage); the futility and efficacy boundaries; and the operating characteristics of
the design. Note that the expected sample sizes and maximum sample size are per
arm. If the user wanted a design with three stages, then they could change the J
argument:

> optgs(J=3)

Groupsize: 60
Futility boundaries 0.1388 0.9458 1.5551
Efficacy boundaries 3.9195 2.1874 1.5551
ESS at null: 94.935
ESS at CRD: 132.496
Maximum ESS: 137.018
Max sample-size: 180

Note that the futility and efficacy boundaries now have three entries. The
expected sample sizes have all fallen, and the maximum sample size has risen, as
one would expect. The above designs put weight on the expected sample size at
the null, so will tend to have high expected sample sizes at the CRD, and also high
maximum sample sizes. If the user wanted to put some of the weight on the expected
sample size at the CRD, they could change the weights argument as follows:

> optgs(J=3,weights=c(0.5,0.45,0,0.05))

Groupsize: 62
Futility boundaries -0.0062 1.0382 1.77
Efficacy boundaries 2.2247 1.9258 1.77
ESS at null: 98.945
ESS at CRD: 110.062
Maximum ESS: 126.107
Max sample-size: 186

Note that the resulting design has a somewhat higher expected sample size at the
null, but considerably reduced expected sample size at the CRD (and also a reduced
maximum expected sample size and an increased maximum sample size despite the
respective weights not having changed).

As discussed in Sect. 6.6, in practice the assumption of known variance is not
reasonable. OptGS uses the quantile-substitution method to convert the known-
variance stopping boundaries to unknown-variance stopping boundaries. Setting the
sd.known 0 argument to F will return unknown-variance stopping boundaries:

> optgs(J=3,weights=c(0.5,0.45,0,0.05),sd.known=F)

Groupsize: 62
Futility boundaries -0.0062 1.0404 1.7749
Efficacy boundaries 2.2522 1.9351 1.7749
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ESS at null: 98.945
ESS at CRD: 110.062
Maximum ESS: 126.107
Max sample-size: 186

Notice that in this case the stopping boundaries do not differ considerably to
previously. This is because the group-size is fairly large. If the group-size was
smaller, there would be a more noticeable difference between the two.

6.8 Multi-arm Multi-stage Clinical Trials

In this section, we briefly discuss recent work that extends group-sequential design
methodology to allow testing of multiple experimental treatments against a control
treatment. If more than one experimental treatment is available for testing, then
testing all within a multi-arm trial is more efficient than separate randomised trials
of each. That is because only one control group is needed instead of one control
group per treatment. Applying group-sequential methodology to a multi-arm trial
gives a multi-arm multi-stage (MAMS) clinical trial. At each interim analysis,
treatments may be dropped for futility, or the whole trial may be stopped if an
effective treatment is found.

6.8.1 Notation

Consider a MAMS trial with J stages and K experimental treatments and one
control treatment. At each stage n patients are allocated to each remaining treatment.
The treatment response of patient i on treatment k (k D 0 represents the control
group), Xik, is assumed to be distributed as N.�k; 
2k /. The parameters of interest
are .ı.1/; : : : ; ı.K//, where ı.k/ D �k ��0. There areK null hypotheses being tested
in the trial; the kth is H.k/

0 W ı.k/ � 0.

At a given interim analysis j , the z-statistic for testing H.k/
0 , Z.k/

j , is calculated:

Z
.k/
j D

s
jn


2k C 
20

Pjn
iD1 Xik �Pjn

iD1 Xi0
jn

: (6.8)

If Z.k/
j � fj , arm k is dropped for futility. If Z.k/

j > ej , then the trial stops for

efficacy, and H.k/
0 is rejected.
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6.8.2 Designing a MAMS Trial

As in the group-sequential case, designing a MAMS trial involves choosing the
group-size, futility boundaries and efficacy boundaries so that the type-I error and
power are as required. The type-I error is more complicated than previously as there
are multiple hypotheses. Magirr et al. [16] explain that it is sufficient to consider
the probability of rejecting any null hypothesis when ı.1/ D ı.2/ D : : : D ı.K/ D 0,
because this strongly controls the family-wise error rate. In other words, the
probability of rejecting any true null hypothesis is maximised when ı.1/ D ı.2/ D
: : : D ı.K/ D 0. The authors derive an analytic formula for this probability.

The power is also more complicated. Magirr et al. recommend powering the trial
at the least favourable configuration (LFC) of Dunnett [6]. This is the probability
of rejecting H.1/

0 when ı.1/ D ı1 and ı.2/ D ı.3/ D : : : D ı.K/ D ı0. Here, ı1 is
the clinically relevant difference, and ı0 is the threshold such that if ı.k/ is below
ı0, treatment k is considered uninteresting. A suitable value of ı0 could be 0, with
higher values requiring a larger sample size but making it more likely that the best
treatment will be picked.

Magirr et al. show how to apply traditional stopping boundaries to MAMS
trials, for example those of Pocock. However, the same ideas of optimal and
admissible designs discussed previously can be applied. Wason and Jaki [29] discuss
considerations for searching for optimal designs in the case of a MAMS trial.

6.8.3 Future Work for Design of MAMS

MAMS trials are a very broad class of designs, with the ones considered above
being relatively straightforward. In practice, MAMS trials have been used when
the endpoints considered differ at each interim analysis, such as in the MRC
STAMPEDE trial [27]. The methodology for this is described in Royston et al. [23],
and consists of powering each individual stage separately. Efficiency could be
gained by considering the whole trial at once, as Magirr et al. do, but this becomes
difficult when the endpoint differs at each stage. Currently this area is an important
priority for research.

6.9 Discussion

There are strong ethical and efficiency arguments for the use of group-sequential
designs in practice. They reduce the average number of patients used in a trial,
and therefore allow more trials to be run using the same limited population of
patients. Statistical research in group-sequential designs has been ongoing since
the 1970s, and shows no sign of slowing down. Greater computational power
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has allowed considerable progress in areas such as searching for optimal group-
sequential designs and group-sequential multi-arm multi-stage trial designs. This
chapter has provided a summary of some of the recent research on group-sequential
designs.

We have just considered normally distributed endpoints with known variance.
Although this may at first seem highly restrictive, in fact asymptotically normally
distributed test statistics are used for binary and survival endpoints. Thus, with
some modification, methods discussed in this chapter can be used for other types
of endpoints. The known variance assumption can be overcome with methods
discussed in Sect. 6.6.

In practice, analyses may not take place when the planned number of patients
have been assessed. Some patients may have dropped out of the trial, or practical
considerations may have determined that the interim analysis must be at a certain
time. In a time-to-event trial, it is particularly hard to ensure the planned number
of events have taken place. As long as the total number of analyses is not varied
this does not cause a problem as the stopping boundaries can be modified. Jennison
and Turnbull [13] describe a method to adapt stopping boundaries from the one-
parameter power family to allow different numbers of patients at each analysis.
Additionally, fixed stopping boundaries from an optimal or admissible group-
sequential design can be interpolated using an error spending function, as described
by Kittelson and Emerson [15]. Both of these approaches control the overall type-I
error, but not necessarily the power.

Group-sequential designs are less useful when the endpoint takes a long time to
observe, such as in a time-to-event trial. In this case, one cannot pause recruitment
until a group of patients have had the effect of treatment fully observed. Although
group-sequential designs will not be able to reduce the expected number of patients
recruited, they can still be useful in order to determine if a trial should be stopped
early. Hampson and Jennison [11] propose group-sequential methods for when
treatment responses are delayed. A Bayesian approach could also be used to
incorporate early information to improve decision making at interim analyses, as
discussed in chapter 5 of Berry et al. [4].
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Chapter 7
Statistical Inference for Non-inferiority
of a Diagnostic Procedure Compared
to an Alternative Procedure, Based
on the Difference in Correlated Proportions
from Multiple Raters

Hiroyuki Saeki and Toshiro Tango

Abstract In a clinical trial of diagnostic procedures to indicate non-inferiority,
the efficacy is generally evaluated on the basis of the results from multiple raters
who interpret and report their findings independently. Although we can handle the
multiple results from the multiple raters as if there were a single rater by considering
consensus evaluations or majority votes, this handling is not recommended for
the primary evaluation. Therefore, all results from the multiple independent raters
should be used in the analysis. This chapter addresses a non-inferiority test, confi-
dence interval and sample size formula, for inference of the difference in correlated
proportions between the two diagnostic procedures based on the multiple raters.
Moreover, we illustrate the methods with data from studies of diagnostic procedures
for the diagnosis of oesophageal carcinoma infiltrating the tracheobronchial tree and
for the diagnosis of aneurysm in patients with acute subarachnoid hemorrhage.

7.1 Introduction

In situations where an accepted standard diagnostic procedure exists, it is possible
to plan a clinical trial to confirm that a new diagnostic procedure is superior
to the standard diagnostic procedure. However, if it will be expected that the
efficacy of the new diagnostic procedure is not lower than that of the standard
diagnostic procedure and the new diagnostic procedure is less or non-invasive,
less or non-toxic, inexpensive or easy to operate in comparison with the standard
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procedure, we can plan a non-inferiority study. A non-inferiority study of two
diagnostic procedures is designed to indicate that the sensitivity or specificity of
the new diagnostic procedure is no more than 100
 percent inferior compared
with the sensitivity or specificity of the standard procedure, respectively, where

.0 < 
 � 1/ is a pre-specified acceptable difference between the two proportions.
In general, sensitivity is defined as the probability that a result of a diagnostic
procedure is positive when the subject has the disease, and specificity is defined as
the probability that a result of a diagnostic procedure is negative when the subject
does not have the disease. These two measures are very important to evaluate the
performance of the diagnostic procedure. However, these measures are calculated on
the basis of different populations of subjects. Therefore, we consider the statistical
inference for the difference in sensitivities in this chapter. However, the same
methods can be applied to examine the difference in the specificities using a different
study population.

If two diagnostic procedures are performed on each subject, the difference in
proportions for matched-pair data has a correlation between the two diagnostic
procedures. Nam [10] and Tango [17] derived the same non-inferiority test for the
difference in proportions for matched-pair categorical data based on the efficient
score in which the pairs were independent. Tango [17] also derived the confidence
interval based on the efficient score. However, these methods are only applicable
to the case where the results of the two diagnostic procedures are evaluated by
a single rater. Multiple independent raters often evaluate the diagnoses obtained
from these diagnostic procedures (see, e.g., [6]). If multiple raters are involved
in the evaluation, the differences in proportions for matched-pair data also have
correlations between different raters. Although we can apply the aforementioned
methods by considering consensus evaluations or majority votes to handle multiple
results from the multiple raters as if there were a single rater, these methods are
not recommended for the primary evaluation [1, 2, 12]. The consensus evaluations
may produce a bias caused by non-independent evaluations. For example, senior or
persuasive raters may affect the evaluations of junior or passive raters. Moreover,
the majority votes cannot take into account the variability in results of the multiple
raters. Therefore, all results from the multiple independent raters should be used in
the analysis.

In this chapter, we introduce a non-inferiority test, confidence interval and sample
size formula proposed by Saeki and Tango [14], for inference of the difference in
correlated proportions between two diagnostic procedures on the basis of the results
from the multiple independent raters where the matched pairs are independent.
Furthermore, we consider a possible procedure based on majority votes and we
conduct Monte Carlo simulation studies to examine the validity of the proposed
methods in comparison with the procedure based on majority votes. Finally, we
illustrate the methods with data from studies of diagnostic procedures for the
diagnosis of oesophageal carcinoma infiltrating the tracheobronchial tree [13] and
for the diagnosis of aneurysm in patients with acute subarachnoid hemorrhage [4].
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7.2 Design

7.2.1 Data Structure and Model

Consider a clinical experimental design where a new diagnostic procedure (or
treatment) and a standard diagnostic procedure (or treatment) that are independently
performed on the same subject (or matched pairs of subjects) and independently
evaluated by K raters are compared. Each rater’s judgment is assumed to take on
one of two values: 1 represents that the subject is diagnosed as ‘positive’, and 0
indicates that the subject is diagnosed as ‘negative’. Suppose we have n subjects. If
we consider only subjects with a pre-specified disease, we use a positive probability
as a measure, that is, sensitivity. On the other hand, if we consider subjects without
the disease, we use a negative probability as a measure, that is, specificity. In the
following, we consider a situation on the basis of sensitivity.

For ease of explanation, let us consider the case of K D 2 first. The resulting
types of matched observations and probabilities are naturally classified as a 4 � 4
contingency table shown in Table 7.1, where C.1/ or �.0/ denotes a positive or
negative judgment on a procedure, respectively. For example, y1101 denotes the
observed number of matched type {C on the new procedure by rater 1, C on the
new procedure by rater 2, � on the standard procedure by rater 1, C on the standard
procedure by rater 2} and r1101 indicates its probability.

Let �.k/N (�.k/S ) denote the probability that rater k judges as positive on the new
(standard) diagnostic procedure of a randomly selected subject. Then, it will be
naturally calculated as

�
.1/
N D r11�� C r10�� ; �

.2/
N D r11�� C r01�� (7.1)

Table 7.1 A 4� 4 contingency table for matched-pair categorical data in the case of two raters

Standard procedure

Judgment of (Rater 1, Rater 2) (C,C) (C,�) (�,C) (�,�) Total

New procedure (C,C) r1111 r1110 r1101 r1100 r11::

.y1111/ .y1110/ .y1101/ .y1100/ .y11::/

(C, �) r1011 r1010 r1001 r1000 r10::

.y1011/ .y1010/ .y1001/ .y1000/ .y10::/

(�, C) r0111 r0110 r0101 r0100 r01::

.y0111/ .y0110/ .y0101/ .y0100/ .y01::/

(�, �) r0011 r0010 r0001 r0000 r00::

.y0011/ .y0010/ .y0001/ .y0000/ .y00::/

Total r::11 r::10 r::01 r::00 1

.y::11/ .y::10/ .y::01/ .y::00/ (n)
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and �.1/S and �.2/S are defined in a similar manner. Let �N and �S denote the
probability of a positive judgment on the new and standard diagnostic procedures,
respectively. Then, these probabilities can, in general, be defined as follows:

�N D !.1/�
.1/
N C !.2/�

.2/
N ; (7.2)

�S D !.1/�
.1/
S C !.2/�

.2/
S ; (7.3)

where !.k/ (!.1/ C!.2/ D 1) denotes the weight for rater k, showing the difference
in the raters’ evaluation skill. However, raters are usually selected among the raters
with at least equivalent skill, and it is assumed in this paper that

!.k/ D 1=K .k D 1; : : : ; K/ : (7.4)

Therefore, these probabilities can be defined as follows:

�N D �
.1/
N C �

.2/
N

2
D r11�� C r10�� C r01��

2
; (7.5)

�S D �
.1/
S C �

.2/
S

2
D r��11 C r��10 C r��01

2
: (7.6)

On the basis of the form of the expressions of (7.5) and (7.6), the 4 � 4 contingency
table is found to be reduced to the 3 � 3 contingency table shown in Table 7.2,
where p`m (x`m) denotes the probability (observed number of observations) that `
raters judge as positive on the new procedure and m raters judge as positive on the
standard procedure. Then, we have

�N D p2� C 1

2
p1�

D p20 C .p21 C 1

2
p10/C .p22 C 1

2
p11/C 1

2
p12 ; (7.7)

Table 7.2 A 3� 3 contingency table for matched-pair categorical data in the case of two raters

Standard procedure

Judgment of (Rater 1, Rater 2) (C, C) (C,�) or (�,C) (�,�) Total

New procedure (C, C) p22 p21 p20 p2:

.x22/ .x21/ .x20/ .x2:/

(C, �) or (�, C) p12 p11 p10 p1:

.x12/ .x11/ .x10/ .x1:/

(�, �) p02 p01 p00 p0:

.x02/ .x01/ .x00/ .x0:/

Total p:2 p:1 p:0 1

.x:2/ .x:1/ .x:0/ .n/
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�S D p�2 C 1

2
p�1

D p02 C .p12 C 1

2
p01/C .p22 C 1

2
p11/C 1

2
p21 : (7.8)

Let � denote the difference in positive probabilities; that is,

� D �N � �S

D p20 C 1

2
.p21 C p10/� p02 � 1

2
.p12 C p01/ ; (7.9)

and its sample estimate will be

Q� D 1

n

�
x20 C 1

2
.x21 C x10/ � x02 � 1

2
.x12 C x01/

�
; (7.10)

which clearly shows that the inference on � can be made by the observed vector x D
.x20, x21Cx10, x02, x12Cx01, x22Cx11Cx00/ following a multinomial distribution
with parameters n and p D .p20, p21 C p10, p02, p12 C p01, p22 C p11 C p00/.

It should be noted that x20 is the frequency such that the number of raters judging
as positive on the new procedure is larger than the number of raters judging as
positive on the standard procedure by 2 and that .x21 C x10/ is the frequency
such that the number of raters judging as positive on the new procedure is larger
than the number of raters judging as positive on the standard procedure by 1.
Similarly, x02 is the frequency such that the number of raters judging as positive
on the standard procedure is larger than the number of raters judging as positive
on the new procedure by 2 and .x12 C x01/ is the frequency such that the number
of raters judging as positive on the standard procedure is larger than the number
of raters judging as positive on the new procedure by 1. These observations lead
to a generalization to K raters. The resulting types of matched observations and
probabilities are classified as a .K C 1/ � .K C 1/ contingency table similar to
Table 7.2. However, the method is reduced to the following. Let nNk denote the
frequency such that the number of raters who judge as positive on the new procedure
is larger than the number of raters who judge as positive on the standard procedure
by k and let qNk indicate such probability. Namely, we have

nNk D
X

`�mDk
x`m ;

qNk D
X

`�mDk
p`m ;

where ` is the number of raters who judge as positive on the new procedure, and m
is the number of raters who judge as positive on the standard procedure. Similarly,
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let nSk denote the frequency such that the number of raters who judge as positive on
the standard procedure is larger than the number of raters who judge as positive on
the new procedure by k and let qSk indicate such probability. Then, we have

nSk D
X

`�mD�k
x`m ;

qSk D
X

`�mD�k
p`m ;

and qN0 D qS0 and nN0 D nS0. Namely, for K raters, the inference on � can be
made by the vector of random variables n D .nN0; nN1; : : : ; nNK ; nS1; : : : ; nSK/

following a multinomial distribution with parametersn and q D .qN0; qN1; : : : ; qNK ,
qS1; : : : ; qSK/. Then, we have

�N D
KX

kD1
!.k/�

.k/
N D 1

K

KX

kD1
k

KX

mD0
pkm D 1

K

KX

kD1
kpk�

D 1

K

KX

kD1
kqNk C 1

K

KX

kD1
kpkk C 1

K

X

`;m2K
`<m

`p`m C 1

K

X

`;m2K
m<`

mp`m ;

�S D
KX

kD1
!.k/�

.k/
S D 1

K

KX

kD1
k

KX

`D0
p`k D 1

K

KX

kD1
kp�k

D 1

K

KX

kD1
kqSk C 1

K

KX

kD1
kpkk C 1

K

X

`;m2K
`<m

`p`m C 1

K

X

`;m2K
m<`

mp`m : (7.11)

Therefore, the difference in positive probabilities (7.9) is generalized to

� D �N � �S D
� 1
K

KX

kD1
kpk�



�
� 1
K

KX

kD1
kp�k




D 1

K

KX

kD1
k.qNk � qSk/ : (7.12)

Then, the estimate Q� given in (7.10) is generalized to

Q� D 1

nK

KX

kD1
k.nNk � nSk/ : (7.13)
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7.2.2 Problems in Consensus Evaluations or Majority Votes

Although we can handle multiple results from the multiple raters as if there
were a single rater by considering consensus evaluations or majority votes, these
handlings are not recommended for the primary evaluation [1,2,12]. The consensus
evaluations may produce a bias caused by non-independent evaluation, even if the
consensus evaluations are performed after individual evaluations by the multiple
raters are completed. For example, senior or persuasive raters may affect the
evaluations of junior or passive raters. Moreover, the majority votes cannot take
into account the variability in results of the multiple raters. For ease of explanation,
let us consider the case of K D 3. The resulting types of matched observations
are classified as a 4 � 4 contingency table in Table 7.3. In this case, Q�KD3 can be
addressed from (7.13) as

Q�KD3 D 1

n

�
.nN3 � nS3/C 2

3
.nN2 � nS2/C 1

3
.nN1 � nS1/

�
;

where .nN3 � nS3/ D .x30 � x03/, .nN2 � nS2/ D f.x31 C x20/� .x13 C x02/g and
.nN1 � nS1/ D f.x32 C x21 C x10/� .x23 C x12 C x01/g. If we adopt the majority
votes, the 4 � 4 contingency table shown in Table 7.3 is transformed to the 2 � 2

contingency table shown in Table 7.4, and the estimate of the difference between
�N and �S on the basis of the results from the majority votes will be

Q�MV D .b � c/

n
D 1

n
f.nN3 � nS3/C .nN2 � nS2/C .x21 � x12/g :

We should focus on two problems in Q�MV .

Table 7.3 A 4�4 contingency table for matched-pair categorical data in the case of three raters

Standard procedure

(C, C, �) (C, �, �)

or or

(C, �, C) (�, C, �)

Judgment of or or

(Rater 1, Rater 2, Rater 3) (C, C, C) (�, C, C) (�, �, C) (�, �, �)

New procedure (C, C, C) x33 x32 x31 x30

(C, C, �) or (C, �, C) or x23 x22 x21 x20

(�, C, C)

(C, �, �) or (�, C, �) or x13 x12 x11 x10

(�, �, C)

(�, �, �) x03 x02 x01 x00
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Table 7.4 A 2�2 contingency table transformed from Table 7.3 by majority votes

Standard procedure

Judgment (C) (�)

New procedure (C) a b

.D x33 C x32 C x23 C x22/ .D x30 C x31 C x20 C x21/

.D nN3 C nN2 C x21/

(�) c d

.D x03 C x13 C x02 C x12/ .D x11 C x10 C x01 C x00/

.D nS3 C nS2 C x12/

1. Q�MV involves .nN2�nS2/ and .x21�x12/ without the weights of the contribution
for �N and �S from �

.1/
N , �.2/N , �.3/N and �.1/S , �.2/S , �.3/S .

2. x32, x10 and x23, x01 do not take part in Q�MV , because these values are involved
in the cells ‘a’ and ‘d’ in Table 7.4.

Therefore, it is important that all results from the multiple independent raters are
used in the analysis appropriately.

7.3 Methods for Statistical Inference

In this section, we shall introduce methods for statistical inference of the dif-
ference �, that is, a non-inferiority test, confidence interval and formula for
determination of sample size.

7.3.1 Non-inferiority Test

The non-inferiority hypothesis will be formulated as

H0 W �N D �S �
; H1 W �N > �S �
 ;

where 
 (0 < 
 � 1) is a pre-specified acceptable difference in two probabilities.
Let

ı D �C
 D �N � .�S �
/ D 1

K

KX

kD1
kqNk �

� 1
K

KX

kD1
kqSk �




: (7.14)

Then, under the null hypothesis, the log-likelihood function without constant terms
is expressed as
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L D L.�/ D nN0 log.qN0/C nNK log.qNK/C
K�1X

kD1
nNk log.qNk/C

KX

kD1
nSk log.qSk/

D nN0 log.1 � ı C
 � A� B � C/C nNK log.ı �
C A/

C
K�1X

kD1
nNk log.qNk/C

KX

kD1
nSk log.qSk/ ; (7.15)

where � D .ı; qN1; : : : ; qN.K�1/; qS1; : : : ; qSK/
T is the parameter vector of

dimension 2K and

A D 1

K

� KX

kD1
kqSk �

K�1X

kD1
kqNk



; B D

K�1X

kD1
qNk ; C D

KX

kD1
qSk :

Then, the score test for testing the null hypothesisH0 W ı D 0 againstH1 W ı > 0 is
expressed as

ZS D
	
@L

@ı

ˇ̌
ˇ
ıD0; qNkDOqNk ; qSkDOqSk


r� OI�1



11

ˇ̌
ıD0; qNkDOqNk ; qSkDOqSk

�H0 N.0; 1/ ;

(7.16)

where . OqN1; : : : ; OqN.K�1/; OqS1; : : : ; OqSK/ is the vector of the maximum likelihood
estimators under the null hypothesis, which is the unique solution for the following
equations:

@L

@qNk

ˇ̌
ˇ̌
ıD0

D 0; .k D 1; : : : ; K � 1/ ; (7.17)

@L

@qSk

ˇ̌
ˇ̌
ıD0

D 0; .k D 1; : : : ; K/ : (7.18)

These equations can be obtained iteratively using the quasi-Newton method with
constraints. The R function ‘constrOptim’ is useful for the quasi-Newton method
with constraints. Further, . OI�1/11 indicates the .1; 1/th element of the (2K � 2K)
inverse Fisher information matrix evaluated at the maximum likelihood estimators.
On the other hand, we can consider a test based on the sample estimate T for the
difference ı

T D Q�C
 D 1

nK

KX

kD1
k.nNk � nSk/C
 : (7.19)

The variance of T evaluated at the null hypothesis ı D 0 is

VarH0.T / D 1

n

"
1

K2

KX

kD1
k2.qNk C qSk/ �
2

#
:
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Therefore, the normal deviate for testing H0 W ı D 0 against H1 W ı > 0 is
expressed as

ZND D
1
nK

PK
kD1 k.nNk � nSk/C


r
1
n

h
1
K2

PK
kD1 k2. OqNk C OqSk/�
2

i �H0 N.0; 1/ : (7.20)

It can be shown that when K D 1, the normal deviate test statistic, ZND, is
equivalent to the score test statistic ZS [10, 17]. When K D 2 or 3, we confirmed
that ZS and ZND were approximately equal using the example data (see Sect. 7.5).
However, we have not been able to show the equivalence between ZS and ZND

analytically. On the other hand, by using the observed proportions QqNk D nNk=n,
QqSk D nSk=n instead of the maximum likelihood estimators, we can construct a
Wald-type test statistic for testing H0 W ı D 0 againstH1 W ı > 0:

ZW D
1
nK

PK
kD1 k.nNk � nSk/C


r
1
n

h
1
nK2

PK
kD1 k2.nNk C nSk/�
2

i �H0 N.0; 1/ : (7.21)

When 
 D 0, the Wald-type test ZW is identical to Schouten’s [15] generalized
McNemar test although Schouten’s test statistic is presented in a different form.
When K D 1, the Wald-type test ZW is identical to the unconditional test for
non-inferiority of Lu and Bean [7]. When 
 D 0 and K D 1, both the normal
deviate test ZND and the Wald-type test ZW are identical to the McNemar test [9].

7.3.2 Confidence Interval

Testing non-inferiority with an acceptable difference 
 at a one-sided significance
level ˛=2 is equivalent to judging whether the lower limit of the 1 � ˛ level
confidence interval is greater than �
. The score-type approximate confidence
limits for the difference in two proportions, �, are the two solutions to the equation

1
nK

PK
kD1 k.nNk � nSk/ � �

r
1
n

h
1
K2

PK
kD1 k2. OqNk C OqSk/� �2

i D ˙Z˛=2 ; (7.22)

where the plus and minus signs indicate the lower limit �low and the upper
limit �up, respectively, and Z˛=2 is the upper ˛=2 percentile of the standard normal
distribution. These two limits can be found using an iterative numerical method such
as the secant method (see, e.g., [17]). On the other hand, we can easily derive the
Wald-type confidence interval:
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CIW W 1

nK

0

@
KX

kD1
k.nNk � nSk/˙Z˛=2

vuut
KX

kD1
k2.nNk C nSk/

1

A : (7.23)

Equation (7.23) utilizes the variance evaluated under the null hypothesis and is
identical to Schouten’s [15] Wald-type confidence interval.

7.3.3 Sample Size

To calculate the sample size required for testing the null hypothesis H0 W ı D 0

against the alternative hypothesisH1 W ı > 0, we only have to consider the following
properties of the statistic T :

EH0.T / D 0 ;

EH1.T / D �C
 ;

S D lim
n!1nVarH1.T / D

"
1

K2

KX

kD1
k2.qNk C qSk/� �2

#
:

On the other hand, we have

R D lim
n!1nVarH0.T / D

"
1

K2

KX

kD1
k2. NqNk C NqSk/�
2

#
;

where . NqNk; NqSk/, k D 0; : : : ; K , are the asymptotic values of the maximum
likelihood estimators . OqNk; OqSk/, k D 0; : : : ; K . These asymptotic values are
solutions to (7.17) and (7.18). From the aforementioned equations, the approximate
sample size n required for 100.1 � ˇ/ power of a one-sided normal deviate test at
˛=2 level is given by

n D
 
Z˛=2

p
RCZˇ

p
S

�C


!2
: (7.24)

When K D 1, the derived formula for determining the sample size agrees with that
proposed by Nam [10]. The sample sizes required for 80% power of a one-sided
non-inferiority test at ˛=2 D 2:5% forK D 2, 3,
 D 0:1, 0:05, and various values
of .qN3, qN2, qN1, qS3, qS2, qS1/ with �N � �S D � D 0 are shown in Table 7.5.
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Table 7.5 Sample sizes calculated by formula (7.24) for nominal power D 80% of a non-
inferiority test at ˛=2 D 2:5% for K D 2, 3, 
 D 0:1, 0:05, �N � �S D � D 0, qN3 D qS3,
qN2 D qS2, qN1 D qS1

K 
 qN3 D qS3 qN2 D qS2 qN1 D qS1 Sample size

2 0:1 � 0:05 0:05 117 (81.7)

� 0:05 0:1 132 (81.9)

� 0:1 0:05 187 (80.7)

� 0:1 0:1 204 (80.7)

0:05 � 0:05 0:05 417 (80.6)

� 0:05 0:1 487 (81.0)

� 0:1 0:05 718 (80.8)

� 0:1 0:1 793 (80.2)

3 0:1 0:05 0:02 0:05 120 (81.5)

0:05 0:02 0:1 126 (81.5)

0:05 0:05 0:1 142 (80.8)

0:1 0:02 0:05 190 (80.4)

0:1 0:02 0:1 197 (80.3)

0:1 0:05 0:1 215 (79.8)

0:05 0:05 0:02 0:05 428 (80.2)

0:05 0:02 0:1 459 (80.0)

0:05 0:05 0:1 536 (80.2)

0:1 0:02 0:05 730 (81.1)

0:1 0:02 0:1 763 (80.7)

0:1 0:05 0:1 844 (80.5)

The parenthetical values are empirical power .%/ based on 10,000 replicates

7.4 Simulation

We have indicated here the results of simulation studies for the methods at a
one-sided 2:5% level for the case of K D 3 and sample size n D 25, 50
or 100 with 10; 000 replicates. Simulation data were generated on the basis of
a multinomial distribution by considering typical situations for parameter values
.qN3; qN2; qN1; qS3; qS2; qS1/ and non-inferiority margin 
 D 0:1. In assessing
the performance of the methods based on the majority votes, we transformed the
simulation data based on the following definitions: qN D .qN3 C qN2 C 1

3
� qN1/,

qS D .qS3 C qS2 C 1
3

� qS1/.

7.4.1 Non-inferiority Test

We performed Monte Carlo simulation studies to assess the empirical size and power
of the normal deviate test statistic ZND, the Wald-type test statistic ZW and the test
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Table 7.6 Empirical sizes of the normal deviate test ZND, the Wald-type test ZW and the test
based on majority votes ZMV at ˛=2 D 2:5% for K D 3, �N � �S D � D �0:1, 
 D 0:1 based
on 10,000 replicates

Size (%)

n qN3 qN2 qN1 qS3 qS2 qS1 ZND ZW ZMV

100 0.01 0.02 0.05 0.11 0.02 0.05 2.2 4.6 1.7

0.01 0.02 0.1 0.11 0.02 0.1 2.3 4.3 1.3

0.01 0.05 0.1 0.11 0.05 0.1 2.2 3.7 1.6

50 0.01 0.02 0.05 0.11 0.02 0.05 2.0 5.9 1.5

0.01 0.02 0.1 0.11 0.02 0.1 2.2 5.5 1.3

0.01 0.05 0.1 0.11 0.05 0.1 2.2 4.6 1.4

25 0.01 0.02 0.05 0.11 0.02 0.05 1.6 8.0 1.1

0.01 0.02 0.1 0.11 0.02 0.1 1.9 7.3 0.9

0.01 0.05 0.1 0.11 0.05 0.1 2.4 5.9 1.2

Table 7.7 Empirical powers of the normal deviate test ZND, the Wald-type test ZW and the test
based on majority votes ZMV at ˛=2 D 2:5% for K D 3, �N � �S D � D 0, 
 D 0:1 based on
10,000 replicates

Power (%)

n qN3 qN2 qN1 qS3 qS2 qS1 ZND ZW ZMV

100 0:01 0:02 0:05 0:01 0:02 0:05 97:2 99:3 85:8

0:01 0:02 0:1 0:01 0:02 0:1 95:7 98:4 78:6

0:01 0:05 0:1 0:01 0:05 0:1 89:5 93:2 62:2

50 0:01 0:02 0:05 0:01 0:02 0:05 70:6 89:6 45:8

0:01 0:02 0:1 0:01 0:02 0:1 68:4 85:2 38:1

0:01 0:05 0:1 0:01 0:05 0:1 60:1 72:7 29:7

25 0:01 0:02 0:05 0:01 0:02 0:05 22:7 69:6 15:2

0:01 0:02 0:1 0:01 0:02 0:1 22:9 65:5 10:0

0:01 0:05 0:1 0:01 0:05 0:1 25:0 50:6 10:8

statistic based on the majority votes ZMV . ZMV was calculated using the method
of Nam [10] and Tango [17]. Table 7.6 presents the empirical sizes. For the set of
parameter values .qN3; qN2; qN1; qS3; qS2; qS1/ considered here, the empirical sizes
for the normal deviate test ZND are generally closer to the nominal ˛=2-level of
2:5% than those for the Wald-type test ZW or the test based on the majority votes
ZMV . The empirical sizes of ZW tend to be quite inflated. The empirical sizes of
ZMV , on the other hand, tend to be quite reduced. Table 7.7 presents the empirical
powers for the alternative hypothesis H1 W �N D �S for the case of 
 D 0:1. The
differences in powers between ZND and ZW are generally small. When the sample
size is small, however, the empirical powers of ZW are far greater than those of
ZND. On the other hand, the empirical powers of ZMV are far smaller than those of
ZND under all situations.
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Table 7.8 Coverage probabilities of the score-type 95% confidence interval, the Wald-type 95%
confidence interval and the 95% confidence interval based on the majority votes for K D 3 based
on 10,000 replicates generated under the null hypothesis �N � �S D � D �0:1

Coverage prob. (%)

n qN3 qN2 qN1 qS3 qS2 qS1 score-type CIW CIMV

100 0:01 0:02 0:05 0:11 0:02 0:05 95:0 94:8 96:4

0:01 0:02 0:1 0:11 0:02 0:1 94:9 94:9 97:3

0:01 0:05 0:1 0:11 0:05 0:1 94:7 95:2 96:7

50 0:01 0:02 0:05 0:11 0:02 0:05 94:7 94:2 96:7

0:01 0:02 0:1 0:11 0:02 0:1 94:7 94:4 97:7

0:01 0:05 0:1 0:11 0:05 0:1 95:0 95:1 97:1

25 0:01 0:02 0:05 0:11 0:02 0:05 95:3 93:7 97:7

0:01 0:02 0:1 0:11 0:02 0:1 95:4 93:9 98:4

0:01 0:05 0:1 0:11 0:05 0:1 95:9 94:6 97:9

7.4.2 Confidence Interval

We performed Monte Carlo simulation studies to evaluate the coverage probability
of the score-type confidence interval, the Wald-type confidence interval CIW
and the confidence interval based on the majority votes CIMV . CIMV was calcu-
lated using the method of Tango [17]. Table 7.8 shows the empirical coverage
probabilities of the score-type 95% confidence interval, the Wald-type 95%
confidence interval and the 95% confidence interval based on the majority votes
under the hypothesis �N � �S D � D �0:1. It shows that the score-type
confidence interval and the Wald-type confidence interval both generally perform
very well. However, when n D 25, the score-type confidence interval outperforms
the Wald-type confidence interval. On the other hand, the confidence interval based
on the majority votes shows a conservative property.

7.5 Example

7.5.1 Study of Diagnostic Procedures for the Diagnosis
of Oesophageal Carcinoma Infiltrating
the Tracheobronchial Tree

Here, we shall consider the data presented by Rapp-Bernhardt et al. [13]. They
compared the sensitivities between axial computed tomography (CT) slices and
minimal intensity projection (MIP) in 21 patients with oesophageal carcinoma
infiltrating the tracheobronchial tree. The bronchoscopic findings were determined
as the gold standard. Three radiologists, working independently of each other and
without knowledge of the findings on the gold standard, assessed separately the
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Table 7.9 A 4 � 4 contingency table (K D 3) of the assessments of MIP and axial CT slices by
three radiologists (True positive (TP: C) and false negative (FN: �) by three radiologists (1, 2,
3): I (C, C, C), II (C, C, � or C, �, C or �, C, C), III (C, �, � or �, C, � or �, �, C),
IV (�, �, �)) (Rapp-Bernhardt et al. [13])

Axial CT slices

TP and FN by three radiologists I II III IV Total

MIP I 14 2 1 0 17

II 0 0 0 0 0

III 0 0 2 0 2

IV 0 0 2 0 2

Total 14 2 5 0 21

CT, computed tomography; FN, false negative;
MIP, minimal intensity projection; TP, true positive

axial CT slices and MIP. In these diagnostic procedures, stenoses were localized,
and the degree of stenosis was assessed as in real bronchoscopy. The resulting type
of matched observations was classified as a 4 � 4 contingency table for MIP versus
axial CT slices and is shown in Table 7.9 (similar to Table 7.3), where ‘C’ indicates a
true positive and ‘�’ indicates a false negative based on binary assessment where 0–
50 % of total occlusion was considered as negative and 50–100 % of total occlusion
was considered as positive. MIP is one of the reconstruction techniques of making
three-dimensional images. MIP images make it easier to appreciate the condition of
the whole tracheobronchial tree than axial CT slices. Therefore, we are interested
in the non-inferiority of MIP to axial CT slices where the non-inferiority margin is
set as 
 D 0:1. From Table 7.9, we have Qp3: D 17=21, Qp2: D 0=21, Qp1: D 2=21,
Qp:3 D 14=21, Qp:2 D 2=21 and Qp:1 D 5=21. Then, the sensitivities of MIP and

axial CT slices are estimated as Q�MIP D .17C 2=3 � 0C 1=3 � 2/ =21 D 0:841

and Q�CT D .14C 2=3 � 2C 1=3 � 5/ =21 D 0:810, respectively. Moreover, we
have QqN3 D 0=21, QqN2 D .1 C 0/=21, QqN1 D .2 C 0 C 0/=21, QqS3 D 0=21,
QqS2 D .0C0/=21 and QqS1 D .0C0C2/=21. Then, the difference in the sensitivities
between MIP and axial CT slices based on the three raters is Q�KD3 D 0:032, and
the normal deviate test has ZND D 1:753 � ZS (one-sided p-value D 0:040).
The score-type 95% confidence interval is �0:141 to 0:181 where the lower limit
is not greater than �
 D �0:1. These results suggest that the non-inferiority of
MIP to axial CT slices cannot be claimed at the one-sided 2:5% significance level.
The Wald-type test statistic, on the other hand, suggests non-inferiority because
ZW D 3:358 with one-sided p-value <0.001 and because the Wald-type 95 %
confidence interval under the null hypothesis is �0:056 to 0:120. However, the
simulation study suggests that the Wald-type test result here is not reliable because
of its inflated empirical sizes for a quite small sample size such as n D 21. The result
of the normal-deviate test, on the other hand, may or may not be reliable because its
empirical sizes for 
 D 0:1 and n D 25 are shown to be around 1:6 � 2:4.
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7.5.2 Study of Diagnostic Procedures for the Diagnosis
of Aneurysm in Patients with Acute Subarachnoid
Hemorrhage

Jäger et al. [4] performed a blinded multi-rater study comparing magnetic resonance
angiography (MRA) and digital subtraction angiography (DSA) in 34 prospectively
enrolled patients who presented with acute subarachnoid hemorrhage (SAH). Two
raters independently evaluated the MRA and DSA images. The presence of an
aneurysm was evaluated on a 4-point ordinal scale (1, absent; 2, probably absent; 3,
probably present; 4, definitely present). Additionally, all aneurysms for which the
two raters had given different evaluations on the 4-point scale were subsequently
reviewed by consensus evaluations. Because the authors intended to study the inter-
rater and inter-procedure agreement, neither method was a priori taken as the gold
standard. However, they showed the data of evaluation of the MRA and DSA images
by the two raters with details of the clinical follow-up of all patients. Therefore, we
considered comparing the difference in sensitivities between MRA and DSA on the
basis of the data of 27 patients with aneurysms among the patients with SAH. Data
were analyzed on a patient-basis, taking into account only the aneurysm with the
highest ranking on the 4-point scale in each patient. We assigned the rating of true
positive (‘C’) for scores of 3 and 4 or false negative (‘�’) for scores of 1 and 2. The
resulting types of matched observations based on the two independent raters and
the consensus evaluations were classified as a 3 � 3 and 2 � 2 contingency tables,
respectively (Tables 7.10 and 7.11). DSA is a procedure in which radiographic
images of blood vessels filled with a contrast agent are digitized and then subtracted
from images obtained before administration of the contrast agent. This method
increases the contrast between the vessels and the background. However, as a
catheter (a long, thin, flexible tube) is inserted into an artery, DSA is considered
to be invasive. MRA is a procedure to image blood vessels based on MRI. Unlike
DSA that involves placing a catheter into the body, MRA is considered noninvasive.
Therefore, we are interested in the non-inferiority of MRA to DSA where the non-
inferiority margin is set as 
 D 0:1. From Table 7.10 based on the multiple raters,
we have Qp2: D 20=27, Qp1: D 5=27, Qp:2 D 22=27 and Qp:1 D 2=27. Then, the
sensitivities of MRA and DSA are estimated as Q�MRA D .20C 1=2 � 5/ =27 D
0:833 and Q�DSA D .22C 1=2 � 2/ =27 D 0:852, respectively. Moreover, we have
QqN2 D 1=27, QqN1 D .0 C 2/=27, QqS2 D 0=27 and QqS1 D .3 C 2/=27. Then, the
difference in the sensitivities between MRA and DSA based on the two raters is
Q�KD2 D �0:019, and the normal deviate test has ZND D 1:393 � ZS (one-sided
p-value D 0:082). The score-type 95% confidence interval is �0:141 to 0:144
where the lower limit is not greater than �
 D �0:1. Furthermore, the Wald-
type test has Zw D 1:397 (one-sided p-value D 0:081) and the Wald-type 95%
confidence interval under the null hypothesis is �0:139 to 0:102. From Table 7.11
based on the consensus evaluations, on the other hand, the sensitivities of MRA
and DSA are estimated as Q�MRACE D 0:926 and Q�DSACE D 0:889, respectively.
Then, the difference in the sensitivities between MRA and DSA based on the
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Table 7.10 A 3 � 3 contingency table (K D 2) of the assessments of MRA and DSA by two
neuroradiologists (True positive (TP: C) and false negative (FN: �) by two neuroradiologists (1,
2): I (C, C), II (C, � or �, C), III (�, �)) (Jäger et al. [4])

DSA

TP and FN by two radiologists I II III Total

MRA I 19 0 1 20

II 3 0 2 5

III 0 2 0 2

Total 22 2 3 27

DSA, digital subtraction angiography; FN, false negative;
MRA, magnetic resonance angiography; TP, true positive

Table 7.11 A 2� 2

contingency table of the
assessments of MRA and
DSA by consensus
evaluations (True positive
(TP: C) and false negative
(FN: �)) (Jäger et al. [4])

DSA

TP and FN by consensus evaluations C � Total

MRA C 22 3 25

� 2 0 2

Total 24 3 27

DSA, digital subtraction angiography; FN, false negative;
MRA, magnetic resonance angiography; TP, true positive

consensus evaluations is Q�CE D 0:037, and the score test derived from Nam [10]
and Tango [17] has ZS D 1:510 (one-sided p-value D 0:066). Moreover, the
score-based 95% confidence interval derived from Tango [17] is �0:150 to 0:227.
These results suggest that the non-inferiority of MRA to DSA cannot be claimed at
the one-sided significance level. However, although the difference in the sensitivities
based on the two raters Q�KD2 is a negative value, the difference in the sensitivities
based on the consensus evaluations Q�CE is a positive value. We consider that bias
from the consensus evaluations caused this phenomenon.

7.6 Conclusion

A non-inferiority trial of diagnostic procedures is generally evaluated on the basis
of the results from multiple independent raters who are independent of the study
centers. However, consensus evaluations or majority votes to handle multiple results
from the multiple raters are not recommended in terms of bias or loss of information
[1, 2, 12]. Therefore, it is important that all of the results from the multiple raters
are utilized appropriately in the statistical analysis. The methods addressed in
this chapter are available for inference of the difference in correlated proportions
between the two diagnostic procedures based on the multiple raters. In this chapter,
we introduced methods on the basis of sensitivity. However, the methods can be
applied to inference of the difference in specificity. Furthermore, if we need to
consider the simultaneous non-inferiority of a new diagnostic procedure to the
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standard diagnostic procedure in sensitivity and specificity, we can extend the
methods using an approach proposed by Lu et al. [8]. Lu et al. extended the score
test proposed by Nam [10] and Tango [17] for a single proportion to a simultaneous
test for both sensitivity and specificity based on the principle of intersection-union
test.

We carried out Monte Carlo simulation studies to evaluate the performance of
these methods. The normal deviate test for non-inferiority was shown to have an
empirical size closer to a nominal significance level of one-sided 2:5% than the
Wald-type test or the test based on the majority votes. Moreover, the score-type
confidence interval had better performance than the Wald-type confidence interval
under the null-hypothesis in terms of coverage probability, when the sample size
was small. On the other hand, the confidence interval based on the majority votes
shows a conservative property.

When we plan a clinical trial to compare the efficacies between two diagnostic
procedures, it is very important to take into account the study design. The methods
addressed in this chapter are only useful for a study design in which two diagnostic
procedures are applied to each subject and all raters evaluate all subjects, that is,
paired-patient, paired-rater design. Zhou et al. [18] provided information on study
designs for diagnostic procedures in detail. Moreover, it is noted that these methods
may not be appropriate for clustered matched-pair data. Schwenke and Busse [16]
proposed a Wald-type test for clustered matched-pair data based on multiple raters.
However, the test of Schwenke and Busse is a so-called test for superiority and
cannot be used as a test for non-inferiority. If the results of the two diagnostic
procedures are evaluated by a single rater, we can apply several non-inferiority
tests for clustered matched-pair data [3, 5, 11]. Therefore, we expect that a non-
inferiority test for clustered matched-pair data on the basis of the results from
multiple raters will be developed. If there are missing data among the results from
the multiple raters in some subject, we would have to apply some kind of imputation
method, which would require future research. Furthermore, if the presence of a
qualitative interaction between the two diagnostic procedures and the multiple raters
is demonstrated, we would not be able to apply these methods for those data.
However, this problem could probably be solved by a non-statistical study, for
example, by training all of the raters on the criteria of judgment about diagnostic
procedures before the start of evaluation.

7.7 Program

The R programs for the methods of this chapter can be downloaded at http://www.
medstat.jp/downloadsaeki.html.

http://www.medstat.jp/downloadsaeki.html
http://www.medstat.jp/downloadsaeki.html
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Chapter 8
Design and Analysis of Clinical Trial Simulations

Kazuhiko Kuribayashi

Abstract Clinical trial simulation is a powerful tool for supporting decision making
in designing clinical trials, and plays an important role in clinical research and drug
development. In clinical trial simulation, however, the design is often not well-
considered and the results are empirically assessed. In this chapter, we present points
to consider when planning a clinical trial simulation, and discuss how to design a
clinical trial simulation employing a fractional factorial design and how to analyze
the simulation results.

8.1 Introduction

Clinical trial simulation (CTS) is a process to mimic the conduct of a clinical
trial on computers by generating the outcomes for each virtual patient based on
the prespecified models and/or assumptions. CTS is a powerful tool for supporting
decision making in designing clinical trials, and plays an important role in clinical
research and drug development. The primary objective of CTS is to investigate
the validity and robustness of study designs under various design scenarios and/or
assumptions.

When planning clinical trials, complicated study designs such as adaptive designs
are considered to achieve the objectives efficiently. Trial operating characteristics
should be assessed at the planning stage of such complicated study designs. In
particular, assessments of operating characteristics and factors that may influence
them would help not only to select an optimal study design, but also to provide a
guidance for trial monitoring. Since statistical theory for such study designs is often
complicated and their operating characteristics are assessed analytically only under
relatively strong assumptions, we usually rely on Monte Carlo simulations. CTS is
relatively easily conducted to evaluate the operating characteristics under various
practical settings. CTS is also useful for traditional fixed designs. In actual clinical
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trials, it is not unusual to deviate from the study protocol, and assessments of the
effects of such deviations on the outcomes would be a key to study success.

In CTS, the number of simulations is often not objectively determined and the
results are empirically assessed. Moreover, the design of factor arrangements is
often not well-considered. It seems to be practical to perform simulations at all
possible combinations of levels across all factors, which is a full factorial design.
CTS generates virtual patient responses under a number of scenarios, which are
combinations of levels of various factors. The number of combinations increases
greatly with the increase in the number of factors and their levels. We often
encounter difficulties to conduct simulations for all possible combinations of the
levels with sufficient numbers of replications within a reasonable time. In such
cases, if simulations are conducted with insufficient replications, then it is important
to evaluate the Monte Carlo error. On the other hand, we can reduce the number of
combinations of levels of factors by employing a fractional factorial design, which
is a factorial design in which only an adequately chosen subset of the combinations
required for the full factorial design is selected to be run (e.g., [6]).

In this chapter, we present points to consider when planning CTS and discuss
how to design CTS and how to analyze the results. In Sect. 8.2, protocol develop-
ment of CTS and how to determine the number of simulations based on the Monte
Carlo error are described. In Sect. 8.3, the design of CTS using orthogonal array and
the analysis of simulation results are presented. An example of an adaptive group
sequential design is illustrated in Sect. 8.4. Finally, some remarks are provided in
Sect. 8.5.

8.2 Planning of Clinical Trial Simulations

8.2.1 Protocol Preparation

As poorly designed and poorly conducted clinical trials produce questionable
results, poorly designed and poorly conducted CTS also make inappropriate choices
of study designs and statistical methods. Hence, CTS should be planned with similar
rigor as clinical trials, in particular, if the purpose of CTS is to provide information
on decision making in designing clinical trials. Planning the CTS, “protocol”, which
describes what the objectives of the simulation are, how the simulation is to be
performed and how the results are assessed, should be prepared as clinical trials
[2, 5, 12]. The protocol also includes the rationale for all the specifications of the
CTS plan. An example of the contents of the protocol is as follows.

Objectives of the Simulation Study Clearly defined objectives of the simulation
study should be stated in the protocol. This includes how to assess questions of
interest by simulation and how to leverage the simulation results to decision making.
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Scenarios and Factors to Investigate with Rationale Scenarios of the clinical
outcome to be investigated by simulation should be described along with some
rationale. The scenarios include favorable, unfavorable and highly possible ones.
Factors and their levels to be examined should be also described.

Simulation Study Design CTS usually generates virtual patient responses under
combinations of levels of various factors. This is considered as a factorial exper-
iment. The design of factor arrangements should be well-considered. The factor
arrangements in the simulation, such as full factorial design, fractional factorial
design or split-plot design (e.g., [6]), should be explained.

Data Generation Method A thorough description of data generation methods
should be provided. This includes the rationale for selections of assumed distri-
butions, required parameters for statistical models and correlation structure of the
covariates.

The random number generation method should be described. The quality of
simulation depends very much on the quality of the pseudorandom numbers.
Unreliable algorithms should not be employed.

The data generated should simulate situations that enable to generalize the
simulation results, and should be checked by using some statistics, such as summary
statistics for distributions of the covariates and Kaplan-Meier estimates for time-to-
event data.

It might be useful to simulate data by bootstrapping or permutation from real
clinical trial data for creating resemblance to reality.

It is also useful to apply the inclusion and exclusion criteria of the clinical trial
to generated data.

Assessments The operating characteristics quantifying the performance of the
study design, such as power, expected sample size and so on, to be evaluated in
CTS, should be defined.

Determination of the Number of Simulation Replications The rationale for the
number of simulation replications should be stated. The number of simulations can
be determined based on the Monte Calro error. Details are described in the next
section.

Statistical Evaluation The analysis methods for the simulation results should be
stated. How to handle ill-conditioned cases, such as failure to estimate parameters
of interest due to non-convergence and/or infrequent events, should be described.

8.2.2 Determination of the Number of Simulation Replications

The estimated accuracy of operating characteristics, which is the amount of the
Monte Carlo error, depends on the number of simulation replications R. Once
the target amount of the Monte Carlo error is chosen, the number of simulation
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replications is determined using the inversely proportional relationship between the
Monte Carlo error and the square root of the number of replications [8].

Let � be an operating characteristic to be evaluated by simulation, and O�.R/ the
estimate based on theR simulations. For instance, when the operating characteristic
to be evaluated by simulation is the power or the probability of type I error, letting
I Œ�� be an indicator function which equals 1 when the argument is true, 0 otherwise,
z.r/ the test statistics at the r th simulation and c the critical value, the estimate of the
power or the probability of type I error is provided by

O�.R/power D 1

R

RX

rD1
I Œz.r/ > c� :

The estimate of the expected sample size based on the R simulation replications is
provided by

O�.R/N D 1

R

RX

rD1
N .r/ ;

where N.r/ denotes the sample size at the r th simulation. The variability of the
estimated operating characteristics is quantified by the Monte Carlo error

MCE. O�.R// D
q
V. O�.R// ;

where V.�/ denotes the variance [8]. To estimate the Monte Carlo error, the R
simulation replications need to be replicated a sufficient number of times. This
would be impractical since an additional investment of time is required. If O�.R/ is
asymptotically normal, then the estimated Monte Carlo error is obtained as

1MCEasym. O�.R// D O
�p
R

D 1p
R

vuut 1

R � 1

RX

rD1

�
S.r/ � 1

R

RX

rD1
S.r/


2
; (8.1)

where S.r/ denotes an outcome related to the operating characteristic at the r th
simulation, such as S.r/ D I Œz.r/ > c� for the power or the probability of type I error
and S.r/ D N.r/ for the expected sample size. If O�.R/ is not asymptotically normal,
the bootstrap method can be employed. B sets of bootstrap samples with size R,
S �
1 ;S

�
2 ; : : : ;S

�
B , are drawn with replacement from S D fS.1/; S.2/; : : : ; S.R/g

generated by R simulations, and O�.R/.S �
1 /, O�.R/.S �

2 /,: : :, O�.R/.S �
B/ are calculated

for each bootstrap sample. A bootstrap estimate of the Monte Carlo error is
provided by

1MCEboot. O�.R// D
vuut 1

B � 1

BX

bD1

� O�.R/.S �
b /� 1

B

BX

bD1
O�.R/.S �

b /

2
:
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The number of simulation replicationsR can be determined by the target amount
of the Monte Carlo error and the variation between simulations 
� in (8.1). When an
operating characteristic to be evaluated is the binomial proportion, such as the power
or the probability of type I error, the variation between simulations is obtained as


� D p
Q.1 �Q/ ;

where Q denotes the assumed value of the proportion. Letting MCE0 be a target
amount of the Monte Carlo error, the required number of simulations is

R0 D
� 
�

MCE0

2
: (8.2)

For example, when estimating the probability of type I error with the Monte Carlo
error 0.001 in a one-sided test with significance level 0.025, 24,375 simulations
are required. In the case of Monte Carlo error 0.005, 975 simulations are required.
It is not unusual to have much uncertainty in the assumed value of the power. In
such case, the calculation usingQ D 0:5, which gives the largest variation between
simulations, is on the safe side. When Q D 0:5, 10,000 simulations are required to
achieve a 0.005 for the Monte Carlo error. This means that the Monte Carlo error of
the binomial probability estimated by 10,000 simulations is at most 0.005.

When the variation between simulations is unknown, such as the expected sample
size, it can be estimated by simulation. First,R simulations are tentatively conducted
and fS.1/; S.2/; : : : ; S.R/g are obtained. Next, R1;R2; : : : ; Rp samples are drawn
with replacement. That is, S �

1 D fS.1/; : : : ; S.R1/g, S �
2 D fS.1/; : : : ; S.R2/g, : : :,

S �
p D fS.1/; : : : ; S.Rp/g are generated. The Monte Carlo error is estimated in

each set, and the variation between simulations 
� is estimated as the slope

by applying the least-squares method to the paired data,
�

1p
R1
;1MCEboot. O�.R1//



,

�
1p
R2
;1MCEboot. O�.R2//



, : : :,

�
1p
Rp
;1MCEboot. O�.Rp//



.

8.2.3 Determination of the Number of Bootstrap Samples

When employing the bootstrap method to estimate the Monte Carlo error, the
accuracy depends on the number of bootstrap samples B . The number of bootstrap
samples is determined so that the probability that the relative error of the bootstrap
estimates of the Monte Carlo error falls within a certain range is ensured [1]. That
is, we choose B such that

1 � ! D Pr

�
1 � � <

1MCEboot. O�.R//2
OV . O�.R// < 1C �

�
;
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where ! and � denote a small probability and a small positive value, respectively.
Suppose that the distribution of O�.R/ is approximately normal and �2B�1 D .B � 1/

1MCEboot. O�.R//2 ı OV . O�.R// has approximately a chi-squared distribution with
.B � 1/ degrees of freedom. Since B is large enough to ignore the difference
between B and B � 1, the approximation

Pr

�
1 � � <

1MCEboot. O�.R//2
OV . O�.R// < 1C �

�

� Pr
�
B.1 � �/ < �2B < B.1C �/

�

� Pr

 
B.1 � �/ < B C p

2B
O�.R/q
OV . O�.R//

< B.1C �/

!

D 1 � 2˚

 
�
r
B

2
�

!

can be obtained. The number of bootstrap samples to achieve a relative error less
than � with probability 1 � ! is approximately

B � 2
�
˚�1 �!

2

��2

�2
:

For example, 769 bootstrap samples are required to achieve a relative error ranged
from 0:9 to 1:1 with probability 0.95.

8.3 Design and Analysis of CTS by Orthogonal Arrays

In CTS, operating characteristics quantifying the performance of the study design
are evaluated under a number of scenarios, which are combinations of the levels
across various factors. This is considered as a factorial experiment. In practice, CTS
is often conducted at all possible combinations of levels across all factors, which is a
full factorial experiment. In that case, the number of combinations increases greatly
with an increase in the number of factors and their levels. For example, with ten
factors each taking two levels, a full factorial experiment would have 210 D 1;024

combinations in total. This means R simulations at each combination have to be
replicated 1,024 times. It can easily be imagined that such a full factorial experiment
with a sufficient number of simulations for each combination requires a great deal
of time. In that case, it might be difficult to perform CTS with sufficient replications.
On the other hand, we can try to reduce of the number of combinations of the levels
of the factors.
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Table 8.1 Orthogonal array
for 2 levels, L8.27/

Columns
Run 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

a b a c a b a

b c c b

c

A full factorial experiment evaluates the main effect of each factor as well as
the effects of interactions between factors. For ten factors, each taking two levels,
the full factorial experiment requires 1,024 simulation runs and allows to evaluate
1;013 interactions including 10C2 D 45 two-factor interactions, 10C3 D 120 three-
factor interactions, : : :, 10C10 D 1 ten-factor interactions. However, usually it is very
difficult to interpret higher-order interactions, such as more than three factors. Such
higher-order interactions could be negligible. If so, there is no need to employ a full
factorial experiment. Rather a fractional factorial experiment, which is a factorial
experiment in which only an adequately chosen subset of the combinations required
for the full factorial experiment is selected to be run, may be useful and the factors
are easily assigned by Taguchi’s orthogonal array (e.g., [6]).

Table 8.1 shows an example of an orthogonal array for 2 levels. This table is
represented by L8.27/, where “L” stands for Latin squares because orthogonal array
is an expansion of Latin squares, “8” indicates the number of rows, “2” means
the number of levels and “7” is the number of columns. When selecting any two
columns from this table, they include four types of combinations, (1,1), (1,2), (2,1)
and (2,2), with the same frequency. We allocate a factor to one of the columns and
assign 1 for one level and 2 for the other level, and then conduct simulations for
eight combinations of the levels of the factors.

When the number of factors is three, this is equivalent to the full factorial
experiment. But if some interactions are negligible, then we can allocate more than
three factors. Consider a simulation study with four factors, say A, B , C and D,
each taking two levels, and no interactions between the factors. The full factorial
experiment requires 16 simulation runs. In contrast, a fractional factorial design
using the orthogonal array presented in Table 8.2 requires 8 simulation runs. The
four factors, A, B , C andD are allocated to 4 columns out of 7 and 8 combinations
of the levels of the factors are determined. We can examine the main effects of the
factors based on results of the 8 simulation runs.
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Table 8.2 Assignment of
factors in an orthogonal array

Columns
Run 1 2 3 4 5 6 7 Combinations

1 1 1 1 1 1 1 1 A1B1C1D1

2 1 1 1 2 2 2 2 A1B1C1D2

3 1 2 2 1 1 2 2 A1B2C2D2

4 1 2 2 2 2 1 1 A1B2C2D1

5 2 1 2 1 2 1 2 A2B1C2D2

6 2 1 2 2 1 2 1 A2B1C2D1

7 2 2 1 1 2 2 1 A2B2C1D1

8 2 2 1 2 1 1 2 A2B2C1D2

A B C D

In the example above, we used an array with 2 levels in each factor and 7 columns
for simplicity. If each factor takes the same number of levels, then corresponding
orthogonal arrays are available. For factors with three levels, L27.313/, which has
27 rows and 13 columns, is available. Orthogonal arrays can handle factors taking
different number of levels. For example, when allocating a factor taking 4 levels to
L8.2

7/, we choose any two columns and allocate the 4 levels to each of 4 types of
combinations, (1,1), (1,2), (2,1) and (2,2).

Simulation results based on the orthogonal array can be analyzed as a factorial
experiment since all the factors are orthogonal. In the case of Table 8.2, the total
sum of squares ST is the summation of the sum of squares of the factors, A, B , C ,
D and the error:

ST D SA C SB C SC C SD C Se ;

where Se denotes the sum of squares of the error, and the effects of the factors are
evaluated by analysis of variance.

8.4 An Illustrative Example: Adaptive Group
Sequential Trial

We describe a process of CTS using an example, that applies an adaptive group
sequential trial.

Consider a one-sided test with significance level ˛.D 0:025/ of the null
hypothesis H0 W �x D �y against the alternative hypothesis H1 W �x > �y in
a confirmatory trial with two treatments. Now suppose the response of the test
treatment x � N.�x; 


2/, that of the control y � N.�y; 

2/, and ı D .�x��y/=
 .

This trial employs a group sequential design with the sample size 2n0 allowing
an interim analysis with 2tn0 .0 < t < 1/ subjects. When the test statistic doesn’t
cross the boundary at the interim analysis, the sample size is re-estimated based on
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the conditional power and increased up to 2rn0 .r > 1/. Let 2n be the re-estimated
sample size, Nx1 and Ny1 denote the sample means at the interim analysis in each
treatment group, respectively, and Oı1 D . Nx1 � Ny1/=
 . The test statistic at the interim
analysis is given by

z1 D
Oı1q
2

tn0

:

At the final analysis, the weighted Wald statistic

z D z1
p
t C z2

p
1 � t

is used as the test statistic [3], where

z2 D
Oı2q
2

n�tn0

D Nx2 � Ny2


q

2
n�tn0

denotes the Wald statistic based on 2.n � tn0/ subjects entered after the interim
analysis. Cui et al. [3] showed that the weighted Wald statistic z has the same
distribution as with the original sample size 2n0 under the null hypothesis. So we
can use the original boundary without inflation of the probability of type I error even
when increasing the sample size.

The conditional power given z1 at the interim analysis is provided by

CPOı1 D Pr.z > c j z1/ D 1 �˚

0

B@c
r

1

1 � t
� z1

r
t

1 � t
�

Oı1q
2

n�tn0

1

CA ;

where c denotes the boundary at the final analysis and ˚.�/ denotes the cumulative
distribution function of the standard normal distribution. The sample size to achieve
the conditional power CP is obtained as

n D
2

�
c

q
1
1�t � z1

q
t
1�t � u1�CP

�2

Oı2 C tn0 ;

where u1�CP D ˚�1.1 � CP/. The boundaries for efficacy and futility stopping are
calculated based on O’Brien-Fleming type ˛-spending function [9].

Suppose that we would like to assess the influence of the minimum requirement
for sample size increase (A), target conditional power (B), upper limit of sample
size (C ) and timing of interim analysis (D) on the overall power, and to estimate
the optimal combination of the levels of the factors, and also evaluate the expected
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Table 8.3 Factors and their levels

Factor Levels

Minimum requirement for sample size increase (A) z1 > lower boundary, CP
Oı1
> 0:5

Target conditional power (B) CP D 0:8, CP D 0:9

Upper limit of sample size (C ) r D 2, r D 3

Timing of interim analysis (D) t D 0:3, t D 0:5
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Fig. 8.1 Plots of the four pair of the estimated Monte Carlo error and the size of bootstrap samples
and the line fitted by the least-squares method

sample size at that combination. Table 8.3 shows the levels of interest of the factors.
In addition, we have interests in 2 two-factor interactions, A �B and B � C , while
the others are negligible.

The number of simulations is determined based on the Monte Carlo error
in estimating the power and the expected sample size. For the power, 10,000
simulations are required to estimate it with 0.005 of Monte Carlo error when the
variation between simulations 
� D 0:5, which is largest. The variation between
simulations for the expected sample size is estimated by simulation. Thousand
simulations are conducted using the following levels of the factors shown in
Table 8.3: A W z1 > Lower boundary, B W CP D 0:9, C W r D 2, D W t D 0:5.
From the simulation results fS.1/; : : : ; S.1;000/g, four sets of bootstrap samples with
the size fR1;R2;R3;R4g D f200; 400; 600; 800g are drawn with replacement, and
the Monte Carlo error for each bootstrap sample is calculated. The variation between
simulations is estimated as O
� D 53:57 by the least-squares method applied to the
four pairs of the estimated Monte Carlo error and the size of the bootstrap samples.
Figure 8.1 shows the plots of the four pair values and the fitted line. The number of
simulations required to estimate the expected sample size with 0.5 of the Monte
Carlo error is calculated by assigning O
� D 53:57 and MCE0 D 0:5 to (8.2).
This provides R0 D 11;478. Taking into consideration the above calculations, we
determine to conduct 10,000 simulations.
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Table 8.4 Assignment of factors and simulation results

Columns Simulation resultsa

Run 1 2 3 4 5 6 7 Combinations Power ESS

1 1 1 1 1 1 1 1 A1B1C1D1 0.9508 167.97

2 1 1 1 2 2 2 2 A1B1C2D2 0.9422 218.28

3 1 2 2 1 1 2 2 A1B2C1D2 0.9156 149.38

4 1 2 2 2 2 1 1 A1B2C2D1 0.9840 251.75

5 2 1 2 1 2 1 2 A2B1C1D2 0.9197 136.25

6 2 1 2 2 1 2 1 A2B1C2D1 0.9877 216.65

7 2 2 1 1 2 2 1 A2B2C1D1 0.9525 147.34

8 2 2 1 2 1 1 2 A2B2C2D2 0.9425 200.95

A B A C B D

� �
B C

a Based on 10,000 replications

Table 8.5 Analysis of variance for the simulation result

Factors Df Sum Sq Mean Sq F value Pr.>F / Prop SS

A 1 0.00001200 0.00001200 29.6420 0.115641 0.002501

B 1 0.00000421 0.00000421 10.3827 0.191572 0.000876

C 1 0.00173460 0.00173460 4282.9753 0.009727 0.361407

D 1 0.00300313 0.00300313 7415.1235 0.007393 0.625704

A � B 1 0.00004512 0.00004512 111.4198 0.060132 0.009402

B � C 1 0.00000012 0.00000012 0.3086 0.677171 0.000026

Residuals 1 0.00000040 0.00000040 0.000084

Total 7 0.00479960

Table 8.6 The point estimates and 95 % confidence intervals of means at each combination of
the upper limit of the sample size (C ) and the timing of the interim analysis (D)

Estimate 95 % C.I.

C1 r D 2 0.9347 0.9335 0.9358

C2 r D 3 0.9641 0.9630 0.9652

D1 t D 0:3 0.9688 0.9676 0.9699

D2 t D 0:5 0.9300 0.9289 0.9311

The allocation of the factors and the simulation results are shown in Table 8.4
and the analysis of variance (ANOVA) table is shown in Table 8.5. This indicates
that the upper limit of the sample size (C ) and timing of the interim analysis (D)
have some effect on the power.

The point estimates and 95 % confidence intervals of means at each combination
of the upper limit of the sample size (C ) and the timing of the interim analysis (D)
are calculated based on the fitted ANOVA model, and shown in Table 8.6. This table
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suggests that the combination of C2 (r D 3) and D1 (t D 0:3) is optimal. The point
estimates and 95 % confidence intervals of means at the optimal combination based
on the fitted ANOVA model are 0.9835 for the power with 95 % confidence interval
(0.9821, 0.9848) and 231.76 for the expected sample size with 95 % confidence
interval (220.23, 243.30).

This example was implemented by R [11].

8.5 Concluding Remarks

Clinical trial simulations are a statistical experiment, and should be appropriately
performed with careful planning. Even if advanced methodologies/technologies are
employed, incomplete inputs produce incomplete outputs or, as it is often said,
“garbage in, garbage out.” CTS should be planned with similar rigor as clinical
trials, and conducted with the following two points in mind:

1. To achieve the given purpose of the simulation study, what is the best way to
obtain appropriate information with the smallest number of simulations in total?

2. To draw the accurate conclusion, how should the simulation results including the
Monte Carlo error be analyzed?

In reporting clinical trials, standard errors and 95 % confidence intervals are
routinely presented with point estimates. In reporting CTS, only point estimates are
presented in practice. As a guidance for reporting simulation studies for statistical
methods, it is pointed out that all reporting should make it easy for the reader to
assess the quality of the experimental work and the accuracy of the results [7]. In
the same way, reporting CTS should routinely include the Monte Carlo error and
95 % confidence intervals. The 95 % confidence interval is given by

� O�.R/ � 1:961MCEasym. O�.R//; O�.R/ C 1:961MCEasym. O�.R//


;

where O�.R/ is asymptotically normal. If it is not normal, but the distribution is
symmetric about O�.R/, the 95 % confidence interval is estimated by the 2.5 and 97.5
percentile of O�.R/.S �

1 /;
O�.R/.S �

2 /; : : : ;
O�.R/.S �

B/,

� O�.R/BŒ0:025�;
O�.R/BŒ0:975�



:

If it is not symmetric, the interval is given by

�
2 O�.R/ � O�.R/BŒ0:975�; 2 O�.R/ � O�.R/BŒ0:025�




(e.g., [4]). In addition, the limitations of the conclusion and recommendation from
the simulation study should be addressed in the reporting of CTS.
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In this chapter, we discussed CTS with factors, which each takes fixed level
values. Taking into account uncertainties, including randomness in the sampling of
subjects, uncertainty about the baseline characteristics of the subject population and
uncertainty about the treatment’s clinical effects, we can consider Bayesian CTS,
which simulates parameter values from probability distributions that represent the
current state of knowledge about the parameters [10]. Bayesian CTS accounts for
all sources of uncertainty and allows more realistic assessments of the outcomes of
individual clinical trials and sequences of clinical trials for the purpose of decision
making. In Bayesian CTS as well, the concept of the experimental design discussed
here is important. This concept is applicable not only to CTS, but also to assessment
of statistical methodologies.
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Chapter 9
Causal Effect Estimation and Dose Adjustment
in Exposure-Response Relationship Analysis

Jixian Wang

Abstract Determining causal exposure effects is often a challenging task even with
randomized clinical trials. Confounding factors may cause bias in: (1) the pharma-
cokinetic exposure-response relationship and (2) dose-response relationship when
dose-adjustment depends on potential responses. Dose adjustment often happens
in clinical trials either designed for therapeutic dose monitoring, or spontaneously
due to, for example, adverse events. It makes causal effect inference difficult since
it often relates to potential response. On the other hand, dose adjustment in some
trials such as the randomized concentration controlled (RCC) trials are designed
to reduce confounding bias in exposure-response relationship. We review different
types of dose-adjustment mechanisms and their impact on causal effect estimation
with a number of dose-exposure and exposure response models. Following the
concept of sequential randomization and approaches for missing data analysis, we
examine a number of approaches for causal effect estimation including the classical
joint modeling based on joint likelihood functions and instrumental variable and
control function methods. We explore simplified approaches for joint modeling with
sequential randomization conditional on potentially confounded subject effects and
alternatives to the joint modeling approaches. Performance of these approaches in
typical practical scenarios was assessed with a simulation study.

9.1 Introduction

In a randomized clinical trial the differences of mean responses between groups
are unbiased estimates for the causal treatment effects since potential confounding
factors between treatment and response are eliminated by randomization. However,
it is more complex to determine exposure-response relationships since drug expo-
sure may not be fully controlled even in a randomized clinical trial, and is often
affected by confounding factors. The Food and Drug Administration (FDA) have
issued a technical document for exposure-response analysis [3] with an emphasis on
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the importance of dealing with confounding bias. Recent statistical developments in
causal effect estimation make available several approaches for determining causal
drug effects in exposure-response relationships. See, for example, Robins and
Hernán [16]. This chapter reviews relevant current developments and discusses
potential applications of classical approaches and recent technical advances for
determining causal drug effects in exposure-response relationships.

We consider drug exposure as a general measure of drug strength. It is referred
to as either drug dose or pharmacokinetic (PK) exposure as in [3]. With this
general definition of exposure, we will consider causal effect estimation in both
dose-response and PK exposure-response relationships in a uniform way, and will
use “exposure” to refer to PK exposure when there is no ambiguity. In some
simple situations such as randomized dose controlled trials in which patients are
randomized into different dose levels, it is straightforward to determine the causal
effect of dose level changes. However, it is no longer the case when the dose changes
are made during the trial by dose adjustment, since the adjustment is often related
to potential exposure or response to the drug. An example is that a dose reduction
is more likely for patients at higher risk of adverse events (AE) than those at lower
risk.

The exposure-response relationship is more difficult to determine than the dose-
response relationship since in general drug exposure cannot be randomized to a
specific value and it is often affected by factors relating to the response. Partial
control may be achieved by random concentration controlled (RCC) trials [17]
in which patients are randomized into two or three exposure ranges and the PK
exposure is measured repeatedly and the dose adjusted, if necessary, until the
individual exposure level is within the range the patient is randomized to. Kraiczi
et al. [9] reviewed applications of RCC trials focusing on practical considerations.
Design and analysis issues in RCC trials can be found in [8]. This approach only
controls the exposure level within a range, hence is still affected by confounding
factors. Therefore, routine analysis procedures may still lead to confounding bias in
the estimated drug effect. Karlsson et al. [8] pointed out that most analyses for RCC
trials did not adjust for confounding bias, but they used a joint modeling approach,
which showed advantages over the approaches without any adjustment. To control
the exposure in a target range for highly variable drugs, a similar approach is the
therapeutic dose monitoring. With a given target exposure range, a therapeutic dose
monitoring uses a dose adjustment algorithm to adjust individual doses to force
individual exposure levels to lie in the range.

Rapid development in determining causal treatment effects allowing treatment
changes has been seen in the last 10–20 years. The development that closely relates
to dose-adjustment is known as dynamic treatment regimens (DTR) [12], referring
to response related treatment changes in a general sense. The development has
been mainly focused on simple treatment switching between a few alternatives,
since dealing with continuous changes is not only more complex in theory, but
also more difficult in practice. A key assumption for determining causal effects
is that treatment changes can be considered as the consequence of a sequential
randomization at any time point given observed history, or more intuitively no
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unobserved confounding factors. Since some unknown subject level characteristics
are often the main source of confounding between dose adjustment, exposure and
response, it may be necessary to find less restrictive assumptions than sequential
randomization to estimate causal effects. We consider a number of approaches
including the classical joint modeling under slightly different assumptions to
sequential randomization. Particularly we borrow approaches for missing data
analysis based on joint likelihood functions of dose, exposure and response under
a few classes of dose adjustment mechanism, one being similar to the missing
data mechanism classified as missing at random (MAR) [10] and we call it
dose adjustment at random (DAR), when the dose changes can be considered as
sequentially randomized.

Another important tool for causal effect estimation is the instrumental vari-
able (IV), which was originated in econometrics but has found increasing applica-
tions in clinical trials [1]. The approach takes the advantage of randomized clinical
trials using randomization as the IV to deal with, for example, non-compliance.
Randomization in RCC trials can also be used as an IV. We will show a two-stage
implementation for the IV approach and also discuss differences between IV based
estimates for RCC trials and for randomized clinical trial.

This chapter is organized as follows. The next section introduces concepts of
causal effects and confounding bias with dynamic treatment adjustments. Then
models for dose-exposure, exposure-response and dose-response relationships are
introduced in Sect. 9.3. The following section examines dose adjustment mech-
anisms, the definition of sequential randomization and introduces conditional
sequential randomization, the class when the sequential randomization condition
is satisfied by conditioning on subject effects in the above models, and the use
of directional acyclic graphs (DAG) [15] to determine dependence between dose,
exposure, response and other factors. Joint modeling approaches and their alterna-
tives are introduced in Sects. 9.5 and 9.6 followed by using IV based approaches for
RCC trials. In Sect. 9.9 the performance of a number of approaches are examined
by simulation under some typical practical scenarios.

9.2 Causal Effects, Confounding Bias and Dynamic
Treatment Regimen

In this section we briefly review the concept of confounding bias, response related
treatment changes, and approaches for causal effect determination and confounding
adjustment. To focus on the topic of dose adjustment, we will use dose changes to
represent treatment changes and consider response related dose changes as a special
case of dynamic treatment regimens. Pre-determined dose changes are not under our
consideration.

Let y be the response of interest, the causal effect of a dose change is referred to
as the change in y it causes. For example, the effect of dose change from 0 to 1
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on response y can be defined as E.1;0/ D E.yj1/ � E.yj0/, where E.yjd/ is
the conditional mean of y under dose d . Suppose that patient i was exposed to
dose di D 1 and had response yi .1/ and patient j; j ¤ i had dose dj D 0 and
response yj .0/. Then E.yi .1/� yj .0//may not be an unbiased estimate for E.1;0/,
since the baseline means E.yi .0// and E.yj .0// may be different unless the dose
is randomized. Therefore, the naive estimate OE.1;0/ D Ny:.1/ � Ny:.0/, where Ny:.d/
is the mean of all patients with dose d , is often biased. The focus of causal effect
determination is to eliminate or reduce this bias. One approach is to use response
comparisons between different doses within a unit, e.g., a patient. This approach is
not possible when the dose does not change in the same unit. However, we can use
this idea to introduce the counterfactual framework to dose adjustment. Suppose
that patient i was given dose di D 1 and had response yi .1/. To determine the
causal exposure effect on i , we need to compare yi .1/ with yi .0/. They are known
as counterfactuals since often only one is realized. Although one cannot compare
them directly, a model (known as a structure model) can be used to describe them
and their relationship with dose and other factors. We can write a structural model
for yi .di / as:

yi .di / D �C diˇ C ui C e; (9.1)

where � is the overall mean, ˇ is a parameter and ui is an unknown subject effect
and e is a random term with E.e/ D 0. The causal exposure effect is determined
by ˇ since E.yi j1/ � E.yi j0/ D ˇ. Hence determining the causal effect can be
simplified to the estimation of ˇ.

Confounding bias can be adjusted in a number of ways if confounding factors
are observed. For example, a direct adjustment is to add the confounding factors
in the dose-response or exposure-response model, given that a correct model can
be determined. Stratification can be used if there is one or a few confounding
factors which can be stratified. The inverse probability weighting (IPW) approach
makes weighted data between different exposure levels comparable (Robins and
Hernán [16]). The key assumption needed for all these approaches is no unobserved
confounding factor. Dynamic treatment regimen adds more complexity to causal
effect estimation, since it is a dynamic process during which data are sequen-
tially observed and confounding factors may also be introduced sequentially. An
extension to the key assumption of no unobserved confounding factor for dynamic
treatment regimen is sequential randomization, that is, the treatment change at each
time point only depends on observed data in its history, hence there is no unobserved
confounding factor at each time point.

Due to high complexity of general dynamic treatment regimen framework,
researches in this area have been mostly focused on situations when treatment
changes are among a few pre-determined alternatives. Some procedures such as the
IPW can only be applied to these situations. Theoretical complexity for dealing
with continuous treatment changes such as dose changes can be seen in [4].
Most commonly used models for dynamic treatment regimen are marginal mean
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models [13]. We use a slightly different approach based on specific models and
assumptions for dose adjustment and revisit the joint likelihood function and
approaches for missing data analysis. However, we will also look at alternatives
to joint modeling based on the joint likelihood function. To avoid complexity of
dealing with continuous time (see, e.g., [11]), we will consider discrete times such
as, for example, study visits, since they are sufficient in most clinical scenarios.

9.3 Dose-Exposure and Exposure-Response Models

Consider a trial with multiple visits j D 1; : : : ; J at which exposure measurements
such as the drug concentration are taken. Let cij be the drug concentration and
dij be the dose level of subject i; i D 1; : : : ; n at visit j . The following power
model is widely used in clinical pharmacology to describe typical dose-exposure
relationships:

log.cij/ D ˛ log.dij/C XT
ij ˛x C vi C eij; (9.2)

where Xij contains the intercept and a set of covariates such as age and body surface
area but may also include pre-determined time varying covariates, eij � N.0; 
2e /

represents within subject variations including, for example, assay error, and vi �
N.0; 
2v / is a zero-mean subject effect representing inter-subject variations in the
exposure. When ˛ D 1 the exposure is proportional to the dose and the dose-
exposure relationship is known as dose-proportional. Although this model may be
considered as empirical, some models derived from PK mechanisms may reduce
to this form, particularly when vi represent factors such as age that affect drug
clearance and volume of distribution in a single compartment model. In fact, the
log-linear relationship with dose in model (9.2) is not necessary for our purpose, the
following general dose-exposure model forK doses is sufficient:

log.cij/ D ˛T dij C XT
ij ˛x C vi C eij; (9.3)

where dij D .dij1; : : : ; dijK/ is a K-vector with dijk D 1 if subject i is given the
kth dose at visit j and dijk D 0 otherwise. ˛ is also a K-vector containing the
corresponding log-mean exposures of these doses. The key feature of this model is
that vi is also additive, as in model (9.2).

In contrast to the dose-exposure model, exposure-response models may take
many forms depending on factors such as the type of responses. We will mainly
consider the response as a continuous variable, e.g., a biomarker with a linear
relationship with the exposure, but most approaches in this chapter also applies to
other models with a linear structure such as generalized linear models for categorical
response variables. Let yij be the response of patient i at visit j . Assume that

yij D ˇcij C XT
ij ˇx C ui C "ij; (9.4)
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where ui is the patient’s baseline characteristics and "ij is a measurement error.
Here we assume that Xij is the maximum set of all covariates in this model
and in model (9.3). For elements in Xij not applicable to one model, we set the
corresponding coefficients to zero. Transformations may apply to one or both sides
of the model.

Dose-exposure models have wide applications as often PK exposure may not be
measured. A linear dose-response model may have a similar structure to (9.4):

yij D �dij C XT
ij �x C u�

i C "ij; (9.5)

where the parameters and factors have similar interpretation as those in (9.4).
Sometimes a dose-exposure model can be derived as a combination of dose-
exposure and exposure-response models. Suppose that

yij D ˇ log.cij/C XT
ij ˇx C ui C "ij (9.6)

and the power model (9.2) does not contain covariates. Then taking log.cij/ in (9.2)
into (9.6) leads to, after dropping the covariates, a model

yij D ˛ˇ log.dij/C XT
ij ˇx C ˇ.vi C eij/C ui C "ij; (9.7)

which has the same form as model (9.5) with � D ˛ˇ and u�
i D ˇvi C ui . The

(log)linear relationship in model (9.2) makes it easy to derive the corresponding
dose-response model from the dose-exposure and exposure-response models in
many common settings. For example, if the exposure-response model is a gen-
eralized linear mixed model (GLMM) with log.cij/ and the dose-response model
is (9.2), the dose-response model is also a GLMM.

9.4 Dose Adjustment Mechanisms

There are many types of dose adjustment, some are not planned and may be
difficult to describe exactly. Nevertheless it is important to understand and to model,
if necessary, the mechanism for causal inference. Two common types of dose
adjustment are adjustments based on drug exposure and adjustments based on drug
response. The former is often planed and serves purposes such as therapeutic dose
monitoring, while the latter is often spontaneous.

9.4.1 Exposure Dependent Dose Adjustment

Often the purpose of dose adjustment is to keep individual exposure levels within
a target exposure range .L;U /, for example, in a trial with therapeutic dose
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monitoring. For this purpose a simple adjustment rule is to escalate the dose one
level higher when cij < L and to de-escalate one level lower when cij > U .
This adjustment is a trial-and-error approach and needs no dose-exposure model.
Formally this mechanism can be written as

dijC1 D

8
ˆ̂<

ˆ̂:

dij C
 cij < L;

dij L � cij � U;

dij �
 cij > U;

(9.8)

where 
 is the dose adjustment size, which may also be variable. In practice,
often the dose adjustment stops when the exposure becomes stable within the target
range. This adjustment is widely used for therapeutic dose monitoring because of
its simplicity.

Knowing the dose-exposure model is sometimes beneficial as dose adjustment
can be made more efficiently and safer by using this model. For example, with the
power model the required dose to achieve exposure level c0 can be found as [2]

Od D .log.c0/� XT
i Ǫ x � Ovi /= Ǫ ; (9.9)

where Ǫ x , Ovi and Ǫ are estimated based on dosing and exposure data observed
until visit j � 1, and Xij D Xi , j D 1; : : : ; J . Another model-based approach
using an empirical model was proposed by O’Quigley et al. [14]. They all examined
asymptotic properties of the dose adjustments and showed consistency of sequential
estimation of ˛ under some technical conditions. Since often there are only a few
available doses, e.g., when the drug formulation is tablet or capsule, the simple
algorithm (9.8) is the most commonly used. We will concentrate on the simple
adjustments based (9.8).

In practice, the adjustment described by (9.8) may not be followed exactly, since
some factors that are often unknown or not recorded may also have an impact on
dose adjustment. To model this mechanism, one has to consider them as random
factors. A straightforward approach is to use two binary (e.g., logistic) models. The
probability of dose increase at step j may be expressed as

P.dijC1 D dij C
/ D 1=
�
1C exp.�	.L � cij/ � 	0 C si /

�
; (9.10)

where L is the lower bound of the target exposure and 	 and 	0 are parameters. In
addition to the part 	.L� cij/ depending on the exposure, si is a factor representing
the impact of subject level characteristics on dose escalation. For example, a subject
may have a lower probability of a dose increase if he has a higher risk of AE
than someone with the same cij but having a lower risk of AE. One can set up
the model for dose reduction in the same way. Alternative models treating dose
levels as an ordered categorical variable may also be used if appropriate. Since
there are unknown parameters in the model, if the dose adjustment mechanism is
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to be considered in causal effect estimation, one needs to fit the dose adjustment
model as well.

9.4.2 Dose Adjustment for Causal Effect Determination: RCC
Trials

Under some situations dose adjustment may be used for the purpose of causal effect
determination, e.g., in RCC trials. The dose adjustment in RCC trials is essentially
exposure-dependent. In an RCC trial patients are randomized into k D 1; : : : ; K

groups with exposure ranges .Lk; Uk/, and often with Lk D Uk�1. Then the dose
for a patient is adjusted so that the exposure falls into the range corresponding to the
group that the patient is randomized to. For RCC the simple adjustment (9.8) can be
written as

dijC1 D

8
ˆ̂<

ˆ̂:

dij C
 cij < Lk;

dij Uk � cij � Lk;

dij �
 cij > Uk;

(9.11)

where subject i is randomized to the kth group. 
 is the step size for dose
adjustment, which may not necessarily be constant.

9.4.3 Response Dependent Dose-Adjustment

A common dose response-dependent adjustment in clinical practice is dose reduc-
tion due to AEs. Here we introduce the following model assuming the probability
of AE occurrence depending on the exposure level. Let yij D 1 if an AE occurs
between visits j and j � 1 and yij D 0 otherwise. A dose reduction is triggered
when yij D 1, i.e., dijC1 D dij � 
 if yij D 1. We assume that the risk of the AE
relates to the exposure via a logistic model with

P.yij D 1jcij�1/ D 1=.1C exp.�ˇ.cij�1/� ˇ0 C ui //; (9.12)

where ui � N.0; 
2u / is a subject level effect. With this model we link drug exposure
to dose adjustment, hence the exposure-response model forms a part of the dose
adjustment mechanism.

A similar dose adjustment to (9.8), but depending on efficacy measurements, may
also be used. For example, when yij is the blood pressure level, then a dose increase
of an anti-hypertension drug may be granted when yij is higher than a certain level.
Again we find the exposure-response model in the dose adjustment mechanism.
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9.4.4 Dose Adjustment and Sequential Randomization

We consider an important class of dose adjustment with which the analysis of dose-
dose and exposure-response relationship can be simplified. In particular we are
interested in a class of dose adjustments that satisfy the condition of sequential
randomization in the dynamic treatment regimen framework to characterize dose
adjustments that only depend on observed previous dosing, exposure and response
history, and known factors. Specifically,

dijC1 � g.d I NFij/; (9.13)

where g.d I NFij/ is an arbitrary density function, conditional on NFij containing
the history of dosing and exposure information till visit j , and known constant
or time varying covariates in Xij. For convenience, we call a dose adjustment
mechanism a dose adjustment at random (DAR), named after missing at random
(MAR) in missing data analysis, when it satisfies the condition of sequential
randomization. The key feature of DAR is that dij can be considered as sequentially
randomized given previous history. Note that this assumption may not hold if the
dose adjustment is also based on unobserved exposure, as we will find later.

Although condition (9.13) is very general, we only consider it in the context
of the specific models given in the previous section. With cij observed, adjust-
ments (9.8) and (9.11) are a DAR, while (9.10) is a DAR only when si is independent
of ui and vi . The key characteristic of DAR is that it allows fitting the dose-response
model separately from the dose adjustment model, given that a proper adjustment for
factors in NFij is made in the model fitting. The assumption of DAR appears similar
to MAR in missing data mechanisms. Sometimes dose adjustment may depend on
models sequentially estimated. These adjustments may also be a DAR.

Since sometimes si depends on ui or vi , we may introduce a class that is less
restrictive than DAR: dose adjustments which satisfy the sequential randomization
condition conditional on si

dijC1 � g.d I NFij; si / (9.14)

and we call this class conditional DAR. Note that the sequential randomization
condition is not satisfied since si may not be observed and cannot be counted as
a part of the history. This class excludes change of dij due to yij directly. The
exclusion is not trivial since it is not uncommon that a dose adjustment is not even a
conditional DAR, for example, when the doctor makes a decision based on factors
not reflected in the history nor the constant characteristics. For example, when the
patient’s characteristics change very quickly, there may be a time varying factor
connecting yijC1 and dijC1.

We can also define a similar condition for the exposure cij as

cijC1 � h.cI NGij/; (9.15)
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where h.:/ is an arbitrary density function for cij and NGij includes observed history
as NFij does but also dijC1. Similarly the conditional sequential randomization for cij

conditioning on vi is

cijC1 � h.cI NGij; vi /: (9.16)

These conditions will play a key role in determining the modeling strategy.
The sequential randomization condition can be utilized in the estimation of causal

effects. First confounding factors in NFij can be controlled directly by including
appropriate terms in Xij, given the model is correctly specified. Other approaches
such as stratification by these factors can also be used. Note that including ui
as unknown parameters is equivalent to stratification by subject and results in
estimation by within subject comparisons.

9.4.5 A View in Directional Acyclic Graphs

The development of directional acyclic graphs (DAG) [15] provides a powerful and
intuitive tool for investigating potential confounding and finding approaches to deal
with it. A DAG is a graph consisting of nodes, each represents a variable, linked
by directional edges (indicated by arrows), but the directional edges do not form
directional cycles. For each arrow the starting node is a parent of the ending node,
and the ending node is the descendant of the starting nodes. A DAG represents
how the distribution of one variable depends on the others. Under the assumption
of Markov factorization, the joint distribution of all variables in a DAG can be
factorized as a product of distributions of descendants conditional on their parents,
while for those without any parent, their distributions are unconditional. Figure 9.1
shows the DAG with conditional sequential randomization for both dij and cij, and
Li as the source of correlation between potential confounding factors si , ui and
vi . The arrows to dijC1 represent typical dose adjustments but are by no means
exhaustive. From the DAG, it can be found that for the distribution of dijC1, NFij

should include cij and yij, while for the distribution of cij, NGij should include dij.
The assumption of stationary Li is often an approximation. For example, when the
patient’s characteristics change very quickly, there may be a time varying Lij and
paths from its node to yijC1 and dijC1.

A DAG can also be used to determine the confounding on the causal effect of
one variable on another one. Intuitively confounding occurs when a factor affects
both the exposure (dij or cij) and the response yij as indicated by paths (regardless
of direction) linking the exposure and the response via ui , si and vi . It also shows
that conditional on ui the path is blocked hence a causal effect can be identified by
conditioning. A useful result in DAG theory is the back-door criterion for a set of
nodes blocking confounding paths [15]. Specifically for Fig. 9.1, a node set blocks
confounding paths between cij and yij if: (1) no node in the set is a descendant of
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Fig. 9.1 Directional acyclic graph with longitudinal observations and exposure/response depen-
dent dose adjustment and potential subject level confounding factors

cij and (2) the set blocks every path between cij and yij that has an arrow into cij. It
can be found that the block set is vi and si . A practical implication of the back-door
criterion is that when all confounding paths between, e.g., cij and yij, are blocked
by a set of nodes, causal effects of cij on yij can be estimated by conditioning on
elements in the blocking set.

9.5 Joint Modeling and Likelihood Function

In this section we consider estimation of the dose-response and exposure-response
models for different scenarios of dose adjustment and patterns of confounding with
the assumption of conditional sequential randomization for dij and cij. We use yij

as a general notation for the measurement of a safety or efficacy response, and use
f .yij; cij; dij/ as the joint distribution of yij; cij and dij with Xij omitted. The joint
distribution for yij, cij and dij, conditioning on subject level factors, can be factorized
into

f .yij; cij; dijjsi ; ui ; vi / D l.yijjcij; ui /h.cijj NGij�1; vi /g.dijj NFij�1; si /; (9.17)

where l.yjc; u/, h.cj NG; v/ and g.d j NF ; s/ are conditional distributions for y given
c, for c given NG and v and for d given NF and s, respectively, and we drop the
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parameters in the models for simplicity. ui ; vi and si are subject level random
variables as defined in the exposure-response, dose exposure and dose adjustment
models, respectively, and NFij�1 and NGij�1 are defined as in the previous section.
The factorization is in fact the Markov factorization for the DAG in Fig. 9.1, which
underlines some assumptions we make based on our models. For example, one
is that given cij and si , yij is independent of dij. The marginal likelihood with
parameters ˝ for yij, cij and dij is then

L.˝/ D
nY

iD1

Z

.si ;ui ;vi /

JY

jD1
f .yij; cij; dijjsi ; ui ; vi / dH.si ; ui ; vi /; (9.18)

where
R

c is a shorthand for a multiple integration with respect to all the components
in c andH.c/ is their joint distribution. The potential correlations between si , ui and
vi play an important role in fitting these models. To estimate the parameters in the
models using the maximum likelihood estimate (MLE), one needs to evaluate (9.18),
which is generally difficult except under some simple situations, e.g., when all
models are linear. The approach also needs correct specification of the joint
distributions of si , ui and vi . In the following we consider situations when (9.18)
can be simplified and alternatives to the full joint modeling approach can be found.

The MLE approach based on the joint marginal likelihood can be simplified by
examining the DAG in Fig. 9.1. When the exposure-response model is the only
consideration, it is possible to separate the dose-exposure part even when si is
correlated with ui and vi . By conditioning on dijC1 (as a part of NGij) we block the
path from si to cijC1, and consequently can fit a joint model for yij and cij only.
However, in doing so we eliminate the contribution of the exposure change due
to the change in dij even if it is not confounded and get a safe but less efficient
parameter estimate in the joint model.

Obviously, when si , ui and vi are independent, hence dij and cij are unconditional
sequential randomization, the likelihood can be factored into three parts for yij, cij

and dij separately. Therefore, the three models can be fitted separately. Note that
this is a very strong assumption even when dijs are randomized. For example, an old
patient may have impaired liver or renal function leading to a higher exposure (hence
a higher ui value), while he also has a higher risk of having an AE (hence higher
si value). The positive correlation will give a false positive correlation between yij

and cij. Therefore, dose randomization does not control the bias in the exposure-
response relationship, unless an appropriate approach is used. Some approaches will
be discussed in Sect. 9.7.

When si is independent of ui and vi , at least one can factor out f .dijj NFij�1; si /
from the marginal likelihood (9.18) since dij is a DAR. Formula (9.18) becomes

L.˝/ D
nY

iD1
Ld

Z

.ui ;vi /

JY

jD1
l.yijjcij; ui /h.cijj NGij�1; vi / dH.ui ; vi /; (9.19)
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where Ld is the part relating to dijs only. Therefore, joint modeling of the exposure-
response and dose-exposure models only is a valid approach when vi and ui are
correlated. For a large range of model combinations, it can be implemented in
standard softwares such as SAS proc MIXED and proc GLIMMIX without extra
programming. More general models can be fitted jointly using proc NLMIXED with
some extra programming. A sample program is given in the Appendix.

When the cijs are not observed and the dose-response relationship is the only
concern, the likelihood function can also be simplified. As discussed in Sect. 9.3,
for some types of exposure-response models, one may be able to combine it with
the dose-exposure model (9.2) to get a single model such as (9.7). Therefore, the
marginal likelihood (9.18) can be written as

L.˝/ D
nY

iD1

Z

.u�

i ;si /

JY

jD1
l�.yijjdij; u

�
i /g.dijj NGij�1; si /dH.u�

i ; si /; (9.20)

where u�
i D ui C ˇvi , l�.:/ is the likelihood function for yij as given in

model (9.7). When si is independent of u�
i the dose adjustment is a DAR and

the dose exposure model can be fitted separately. This situation includes response-
related dose adjustments and, as a trivial example, randomized dose trials. However,
exposure-related dose adjustments do not satisfy the DAR condition, since cijs are
not observed. Consequently g.dijj NGij�1; si /, cannot be factored out if NGij�1 contains
cij�1. When dij is a sequential randomization conditionally, i.e. si is not independent
of u�

i , a joint modeling approach can be used based on (9.20).

9.6 Alternatives to Joint Modeling

Although joint modeling provides a general approach to dealing with subject level
confounding factors, it has a number of drawbacks, for example, the need for
specifying the joint distribution and complexity of model fitting techniques. An easy
alternative when using longitudinal exposure-response models is conditioning on
individual subject effects. This approach has an intuitive interpretation. It leads to
using within subject comparisons for estimating ˇ, which is free from individual
level confounding factors. A simple way of conditioning on, say, ui when J is
sufficiently large is to treat ui as an unknown parameter and estimate it. Note that
the condition of sufficiently large J is needed in general. Although under some
situations, such as when case-control studies or trials are designed in such a way
that ui and exposure are orthogonal, this is unnecessary, dose adjustments in general
do not lead to similar situations. Therefore, small sample (i.e., small J ) properties
of this approach are of technical and practical interest.

With this approach it is also important to count the total variation in exposure
that can be used for the conditioning approach, since between-subject variation
is eliminated by conditioning. The variance of Ǒ

c , the ˇ estimate treating ui s as
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unknown parameters can be found in the text on panel data analysis with fixed
individual intercepts [7]:

var. Ǒ
c/ D 
2e

� nX

iD1

JX

jD1
.cij � Nci:/2


�1
; (9.21)

where Nci: D PJ
jD1 cij=J . Therefore, it is straightforward to estimate the precision

of Ǒ
c given the dose-adjustment mechanism and variability of the exposure, if

available, at the design stage.
Sometimes the exposure in a trial may be measured repeatedly, e.g., for ther-

apeutic dose monitoring, but the response may only be measured once. Although
joint modeling can be used, a simple alternative known as the control function (CF)
approach [20] also exists. The idea is that since the confounding in ui is due to its
correlation with vi , if one can estimate vi then one may use a direct adjustment
by including the estimates in the exposure-response model. A key assumption
for this approach is that the conditional mean of ui given vi can be written as
E.ui jvi / D avi , where a is a constant. It is satisfied when ui and vi are jointly
normally distributed, or ui D aviCwi in which vi is a shared latent variable between
the dose-exposure and exposure-response models. The efficiency of this approach
depends on the prediction of vi , while repeated measurements provides data for the
prediction. The approach consists of two stages of simple model fitting:

• Fit the mixed effect dose-exposure model to repeated exposure data and obtain
prediction Ovi for each subject, using common approaches for mixed models such
as the best linear unbiased prediction (BLUP).

• Fit the exposure-response model adding Ovi from the first step as a covariate.

This approach has been widely used in combination with IV in social science. For
an application in dose-exposure modeling, see [19]. As a general approach it can
also be used for estimation of the dose-response relationship, given that a good
prediction for si can be obtained by fitting the dose-adjustment model, and based
on the prediction, a proper approach to fitting the dose-exposure model (9.7), e.g., a
direct adjustment including the predicted si in the model, is implemented.

9.7 Instrumental Variable Approach for RCC Trials

The IV approach is also an alternative to joint modeling but it is rather special
and different from those in the last section as it does not need the assumption
of no unobserved confounding factors. We assume that the exposure is measured
repeatedly but the response is measured only until the target exposure has been
achieved, e.g. at the j th visit. Let yi and ci be the response and exposure of
patient i at visit j and we suppress the subscript j . We assume the following
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exposure-response model:

yi D ˇTx Xi C ˇci C ui C "i ; (9.22)

where Xi is a set of covariates including the intercept, ˇx are the corresponding
parameters. Here ui C "i is treated as a single error term, but potential confounding
comes from ui only. Although patients are randomized into these ranges and a
part of variation in ci is indeed randomized, there is often still significant variation
potentially confounded within each range. The reason is mainly due to feasibility;
most common RCC designs use only two ranges, hence the sizes of the ranges are
very large and leave variation within them uncontrolled. Therefore, a least squares
estimate for ˇ is still biased.

The IV method is a powerful tool to eliminate the confounding bias. An IV is a
variable relating to the exposure but not directly relating to the potential outcome.
In RCC trials randomization is a natural IV, since randomization is independent of
the response, and dose adjustment to achieve a certain range of exposure makes it
strongly related to the exposure. For linear and a few special nonlinear models, the
following two-stage IV (2SIV) approach is very easy to implement [18].

• Fit the randomization-exposure model

log.ci / D ˛TRi C vi C ei ; (9.23)

where Ri D .Ri1; : : : ; RiK/ with Rik D 1 if subject i is randomized to group
k and Rik D 0 otherwise, to the exposure data and obtain the predicted mean
exposure for each group.

• Fit the exposure-response model yi D ˇTx Xi C ˇci C ui C "i with ci replaced
by the predicted mean exposure of the group subject i is randomized to. The IV
estimate Ǒ

IV is the coefficient for the predicted exposure.

Ǒ
IV does not have confounding bias; but its small sample bias depends mainly on

how closely the dose is correlated to the exposure.
Ǒ
IV is also the solution to the following estimating equation (EE)

S.ˇ/ D
NX

iD1
Zi .yi � XT

i ˇx � ciˇ/; (9.24)

where ˇ D .ˇx; ˇ/ and Zi D .Xi ;Ri /. For simplicity, one may consider non-
confounders Xi as their own IVs so we refer to Zi as a set of IVs. Although the
two-stage approach is more convenient than solving the EE (9.24), the EE plays a
key role in checking if Ǒ

IV is unbiased, since the key condition for unbiasedness of
the solution to the EE isE.S.ˇ// D 0, which is satisfied here since

PN
iD1 E.Zi .uiC

"i // D 0, when Ri is randomized. However, the IV approach can not eliminate
the bias due to confounding factors in treatment heterogeneity ubi in the following
model.
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yi D ˇTx Xi C .ˇ C ubi/ci C ui C "i ; (9.25)

although in general it helps to reduce the bias. For more details and the impacts of
confounding in ubi, see [18].

9.8 Testing Confounding Factors

Although in general it is not possible to test for the existence of confounding factors,
with the model assumptions the correlations between ui , vi and si can be tested and
their impact on confounding can be judged based on the DAG, the conditions of
sequential randomization and approaches for estimation of ˇ and � . Since often si is
independent of ui and vi , we consider this situation and test the correlation between
ui and vi . The idea is to predict vi based on the dose-exposure model, then test
if it has a significant impact in the exposure-response model as a surrogate for ui .
Based on the dose-exposure and dose adjustment models, the following two-stage
approach can be used.

• First fit the dose-exposure model and obtain prediction Ovi .
• Fit the exposure-response model including Ovi as a fixed effect in model

yij D ˇcij C XT
ij ˇx C ui C � Ovi C "ij: (9.26)

• Test H0 W � D 0 vsHa W � ¤ 0.

For fitting the dose-exposure model to predict vi , we have assumed independence
between si and vi . This test does not test the confounding bias directly. One obvious
example is that when the estimation is based on within subject comparisons, hence
subject level confounding does not cause bias in the estimate. Nevertheless the
relationship between ui and vi as latent variables may still be useful information.

There are other ways to test independence between ui and vi . For example,
one can fit the joint dose-exposure and exposure-response models, then use the
likelihood ratio test to test the correlation between ui and vi . However, this approach
involves fitting a complex model, and will not be discussed here.

There is a natural link between the two-stage test procedure and the control
function approach for estimating ˇ. The test procedure is similar to the approach
of using the control function method for estimating ˇ with dose as an IV. The test
is equivalent to the test for the difference between the control function adjusted
estimate (with Ovi in the model) and that without adjustment, known as the Hausman
test [5]. The two-stage approach in some specific situations is equivalent to a test by
comparing the two estimates [6].
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9.9 Simulation Study

The performance of different approaches for estimating the causal effect ˇ in the
simple exposure-response model (9.4) was investigated by a simulation study. The
simulation setting was based on typical practical scenarios. Suppose that for drug A
the exposure is dose-proportional and the dose-exposure model can be written as

log.cij/ D log.dij/C vi C eij: (9.27)

In addition we assume that cij has 20 and 50 % intra- and inter-subject coefficient
of variation (CV), which is equivalent to 
v D 0:47 and 
e D 0:2. The response is
the change from baseline of a continuous measurement (e.g., a biomarker) and the
exposure-response model is

log.yij/ D log.cij/C ui C "ij: (9.28)

We further assume that 50 % of ui is from vi and another 50 % is independent, i.e.
ui D vi C wi and wi is independent, and var."ij/ D 0:3. Note that this model
does not allow zero concentration and we assume that there is no placebo arm.
A more flexible model may include the baseline, but we opt to use model (9.28)
for simplicity. Suppose that the target exposure level is 5 ng/mL, hence the starting
dose is set 5 mg. Due to high inter-subject CV, a therapeutic dose monitoring with
repeated exposure measurements at a number of visits is considered to allow a dose
increase to 10 mg if cij < 5 ng/mL at any visit j . An RCC trial was considered as an
alternative for a more reliable causal effect estimation. In the RCC trial patients were
randomized into two groups, one with exposure lower than 5 ng/mL while the other
higher than 5 ng/mL. Since a dose reduction would be needed when cij > 5 ng/mL,
a 2.5 mg dose was introduced, but the starting dose for all patients was 5 mg. A
subject randomized to the lower range group would have dose reduced by one level
if at the current dose cij > 5 ng/mL, and who randomized into the higher range
group would have dose increased by one level if at the current dose cij < 5 ng/mL,
subject to availability of the increased/decreased dose level.

For the response measurement two scenarios were considered, one with repeated
response measurements yij and the other only measured at one visit when the drug
effect has become stable. Therefore, in the latter scenario, there is only one response
measurement available. We first consider the performance of the approaches and
models for estimating ˇ with the therapeutic dose monitoring design. For each
scenario and a number of J values and sample sizes, 500 simulation data sets
were generated and ˇ in the exposure-response model (9.4) was estimated with a
number of approaches. The approaches we used are (1) joint modeling with the
dose-exposure model, (2) fitting a mixed model without adjustment, (3) fitting a
fixed subject effect model (treating subject effects as unknown parameters), (4)
unadjusted exposure-response model at visit J only, (5) control function estimate
at visit J only (Sect. 9.6). The mean, variance, minimum and maximum of the
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Table 9.1 Summary of parameter estimates using different methods and models. The true values
of ˇ equals to 1. The five models are (1) joint modeling, (2) mixed model, (3) fixed subject effect
model, (4) unadjusted exposure-response model at visit J only, and (5) control function estimate
at visit J only

n Model/approach Mean Var Min Max Mean Var Min Max

J D 2 J D 3

50 1 0.9983 0.0098 0.8021 1.1858 1.0080 0.0063 0.8404 1.2786

2 1.1609 0.0138 0.9014 1.4881 1.1175 0.0066 0.9423 1.3923

3 1.0008 0.0100 0.7911 1.1761 1.0081 0.0064 0.8366 1.2934

4 1.7040 0.0834 0.8626 2.4319 1.7748 0.0420 1.3137 2.4891

5 1.0005 0.0704 0.4665 1.9738 0.9958 0.0761 0.2487 1.6911

100 1 0.9917 0.0042 0.8222 1.1869 0.9967 0.0032 0.8313 1.1342

2 1.1531 0.0061 0.9820 1.4141 1.1049 0.0034 0.9087 1.2355

3 0.9916 0.0043 0.8314 1.1850 0.9967 0.0031 0.8314 1.1276

4 1.7171 0.0282 1.2994 2.0981 1.7536 0.0206 1.3831 2.1865

5 1.0002 0.0338 0.5742 1.4631 1.0049 0.0374 0.4701 1.5912

200 1 0.9960 0.0028 0.8596 1.1424 0.9936 0.0016 0.8946 1.1004

2 1.1610 0.0040 1.0207 1.3137 1.1041 0.0018 0.9784 1.2028

3 0.9961 0.0029 0.8652 1.1515 0.9940 0.0016 0.8933 1.1047

4 1.7186 0.0191 1.3995 2.0604 1.7437 0.0103 1.4799 1.9753

5 1.0065 0.0178 0.7164 1.3231 0.9838 0.0185 0.7242 1.3318

J D 5 J D 7

50 1 1.0011 0.0043 0.8437 1.1857 0.9925 0.0024 0.8771 1.1049

2 1.0572 0.0044 0.8886 1.2624 1.0309 0.0023 0.9241 1.1379

3 1.0007 0.0042 0.8428 1.1749 0.9920 0.0023 0.8841 1.1071

4 1.7477 0.0359 1.2309 2.1110 1.7268 0.0418 1.1078 2.2733

5 1.0157 0.0559 0.4479 1.5261 1.0217 0.0588 0.4196 1.5487

100 1 0.9951 0.0022 0.8849 1.1164 0.9930 0.0012 0.9013 1.0818

2 1.0521 0.0023 0.9406 1.1765 1.0331 0.0012 0.9407 1.1209

3 0.9949 0.0022 0.8864 1.1167 0.9929 0.0012 0.9010 1.0821

4 1.7316 0.0194 1.3217 2.0334 1.7144 0.0198 1.3438 2.0059

5 1.0166 0.0239 0.6577 1.3729 0.9882 0.0333 0.2860 1.4424

200 1 1.0010 0.0011 0.9130 1.1057 0.9952 0.0007 0.9291 1.0560

2 1.0584 0.0011 0.9666 1.1694 1.0352 0.0007 0.9721 1.0995

3 1.0010 0.0011 0.9128 1.1081 0.9951 0.0007 0.9283 1.0551

4 1.7323 0.0091 1.5099 1.9279 1.7190 0.0101 1.4267 1.9275

5 1.0078 0.0152 0.5942 1.3455 1.0012 0.0164 0.6738 1.4102

estimates are present in Table 9.1. The joint modeling approach resulted in estimates
with almost no bias and the lowest variance among all the estimates for all scenarios.
The mixed model estimate had considerable bias when J D 2 but the bias reduced
with increasing J . The fixed subject effect model estimates also had almost no bias
with variance slightly higher than the joint modeling ones when J is small. The
estimates based on response data at the end visit j D J showed that the unadjusted
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Table 9.2 Summary of parameter estimates using different methods and models with RCC design.
The true values of ˇ equals to 1. The six models or approaches are (1) joint modeling, (2) mixed
model, (3) fixed subject effect model, (4) unadjusted exposure-response model at visit J only,
(5) IV estimate at visit J only and (6) control function estimate at visit J only

n Model/approach Mean Var Min Max Mean Var Min Max

J D 2 J D 3

50 1 0.9965 0.0090 0.7179 1.2812 0.9992 0.0049 0.7929 1.1782

2 1.1582 0.0121 0.8154 1.6076 1.0629 0.0054 0.8299 1.2514

3 0.9975 0.0094 0.7017 1.2808 0.9996 0.0052 0.7957 1.1855

4 1.3762 0.0435 0.7971 1.9150 1.1495 0.0341 0.5279 1.8336

5 0.9589 0.0979 �0.0013 1.9576 0.9914 0.0516 0.3541 1.6394

6 0.8715 0.0760 �0.1622 1.6152 0.8949 0.0383 0.3273 1.5345

100 1 1.0017 0.0056 0.7261 1.2507 0.9983 0.0024 0.8614 1.1725

2 1.1626 0.0072 0.9191 1.4596 1.0605 0.0026 0.8976 1.2239

3 1.0010 0.0058 0.7354 1.2483 0.9973 0.0026 0.8554 1.1824

4 1.3903 0.0208 1.0180 1.8623 1.1548 0.0164 0.7364 1.5553

5 0.9961 0.0486 0.3257 1.6628 0.9946 0.0228 0.4590 1.4026

6 0.8698 0.0373 0.3470 1.4778 0.8860 0.0177 0.4517 1.2806

J D 5 J D 7

50 1 0.9994 0.0028 0.7994 1.1359 0.9987 0.0017 0.8839 1.1177

2 1.0256 0.0029 0.8388 1.1834 1.0133 0.0019 0.8890 1.1326

3 0.9981 0.0029 0.7985 1.1311 0.9978 0.0019 0.8751 1.1261

4 1.0835 0.0290 0.6188 1.6406 1.0437 0.0231 0.5292 1.4270

5 1.0151 0.0364 0.4580 1.6954 1.0005 0.0261 0.3967 1.4267

6 0.9223 0.0298 0.4806 1.5948 0.9211 0.0233 0.4726 1.3618

100 1 1.0001 0.0013 0.8933 1.1033 0.9980 0.0009 0.9042 1.0871

2 1.0257 0.0014 0.9158 1.1382 1.0129 0.0010 0.9359 1.1091

3 0.9996 0.0014 0.8901 1.1094 0.9977 0.0010 0.9152 1.0878

4 1.0764 0.0148 0.7228 1.3897 1.0455 0.0129 0.7058 1.3709

5 1.0043 0.0166 0.6618 1.3566 0.9935 0.0163 0.6253 1.3453

6 0.9111 0.0142 0.5154 1.2139 0.9165 0.0138 0.5846 1.2272

one was severely biased, while the control function approach eliminated the bias
successfully even with very small J and sample sizes.

Next we examine the performance of the approaches and models for estimating
ˇ for the same scenarios when the RCC design is applied. In addition to those
used with the therapeutic dose monitoring design, an additional one is the two-
stage IV estimates. To using the control function approach for the analysis based on
response at the end visit only one can estimate vi using repeated exposure data or the
exposure data at the end visit only. The latter is in fact equivalent to the two-stage
IV estimate for the linear exposure-response model [20]. The results are presented
in Table 9.2. The results are generally similar to those when the therapeutic dose
monitoring design was used. For example, when J D 2 the joint modeling estimate
had the lowest variance, but only 5 % lower than the estimate with the fixed subject
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effect model. Special features of the results were that the bias of unadjusted estimate
was significantly reduced due to the RCC. The IV estimate was generally unbiased
except with slight bias when J D 2 and n D 50. This is likely to be due to the fact
that the exposure was not well controlled when J D 2 hence randomized ranges as
an IV was weak. With a weak IV the IV estimate may behave badly particularly
when the sample size is small. The bias in the control function approach using
repeated exposure data was, however, unexpected.

In general we found that the joint modeling approach provided a very good
estimate for ˇ. When repeated response measurements were available, the estimate
with fixed subject effect model was also good, while the mixed model approach
might subject to some bias. When the response was only measured at the end visit,
the control function estimate provided a good estimate for the therapeutic dose
monitoring design but bias occurred when the RCC design was used. In this case, the
two-stage IV estimate provided an unbiased estimate as long as J and the samples
size were not all small.

9.10 Discussion

In this chapter we have considered the role and impacts of dose adjustments, par-
ticularly individual exposure-dependent and response-dependent dose adjustments
in the analysis of dose-exposure and exposure-response relationships. Exposure-
response modeling is a key part of modeling and simulation during drug devel-
opment with increasing applications in industry as well as in academic research.
Recent research in causal effect determination in econometrics and medical statistics
has led useful techniques, and some are closely related to causal effect estimation
in studies with dose adjustments. This chapter has shown a number of possible
combinations of approaches from both areas and potential applications in drug
development.

A number of interesting topics can not be covered by this chapter due to the space
limit. Exposure may be considered as a mediator of dose, and the exposure-response
relationship as representing indirect effects of dose changes. We have assumed that
there is not a direct effect of the dose on the response in any of the models. This
is a reasonable assumption in common cases since a drug is normally absorbed
in the central system (blood or plasma) then transported to target organs where
drug effects take place. Therefore, PK samples taken from the central system is
a good surrogate for the change in exposure at target organs due to dose change in
general. However, it is possible a drug may bypass the central system. A well known
example is the first pass scenario in clinical pharmacology. Another interesting topic
is the heterogeneity in exposure-response relationship among patients with different
observed characteristics. When the characteristics are observed and included in
the models, the g-computation is a powerful tool to calculate causal effects in
the population, e.g., the average diastolic blood pressure reduction by 1 unit
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concentration increase in a mixed population of different characteristic values. In
practice the g-computation may be implemented by simulation.

We have concentrated on individual response-dependent and exposure-dependent
dose adjustments. The approaches can be adapted for some other scenarios. For
example, in a typical phase I dose escalation trial with a 3C 3 design, a number of
doses are tested with cohorts of three subjects. At the beginning, a dose is given to
one cohort. If no AE occurs, the next higher dose will be tested on another cohort;
if there is one AE, the same dose will be tested, and if there is more than one AE
the next lower dose will be tested. In this case the cohort can be considered as an
individual and the exposure-AE model (9.12) can be used to model the number of
subjects with AEs. Then the model can be used to describe the dose adjustment
mechanism.

A variant of model (9.4) has cij replaced by the right hand side of model (9.2)
without eij, a model often used in PK/PD modeling. If the variant is the true model,
model (9.4) is a classical measurement error model and fitting the model with
observed cij results in inconsistent parameter estimates even without confounding.
This situation is beyond the scope of this chapter.

One key feature of dynamic treatment regimen is the optimal treatment selection
and adjustment, which we have not considered in this chapter. The omission is
partially due to the technical complexity of the method and partially the feasibility
of implementing complex dosing formulae in practice. Nevertheless, some quasi-
optimal approaches might be feasible. In some special situations optimal dose
adjustments using complex algorithms can also find applications. Some general
principles discussed here, e.g. when the dose-adjustment process can be ignored,
also apply. Some approaches, such as the control function approach, that needs
fitting the dose-adjustment model, may depend on specific situations.

Appendix

This section provides a SAS program to fit the following joint model:

log.cij/ D � log.dij/C vi C eij;

yij D Emax=.1C EC50=cij/C ui C "ij; (9.29)

where the first one is the power model (9.2) and the second one is known as Emax
model. ui and vi are correlated, hence ui is a confounding factor. For simplicity no
other random effect is included. This model cannot be fitted with SAS proc MIXED
or GLIMMIX due to nonlinearity in the Emax model.

In dataset “joint” below, one variable rij contains both the exposure and
response variables as two records identified by an indicator ind. When ind =
"pk", rij D log.cij/ and logdose D log.dij/ in the power model. Otherwise
(when ind = "resp"), rij D yij in the Emax model, and logcij D log.cij/
in the power model. In the program, variable i is the subject identifier, siguv is
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the covariance between ui and vi , and sigp and sigr are var.eij/ and var."ij/,
respectively.

proc nlmixed data=simu qpoints=6;
parms sigu=1 sigv=1 sigr=1 sigp=1 sige=1 theta=1 emax=1

ec50=1;
bounds sigu sigv sigr sigp sige >0;
if ind="pk" then do;

pred=theta*logdose +vi; g=sigp;
end;
else if ind="resp" then do;

pred=emax/(1+ec50/exp(logcij))+ui; g=sigr;
end;
model rij~normal(pred,g);
random ui vi~normal([0,0],[sigu,siguv,sigv]) subject=i;

run;

The program is illustration only. Adjustments on starting parameter values and
options in the procedure is often necessary to fit real data. The program can be
adapted to fit other types of response by specifying the likelihood function.
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Chapter 10
Different Methods to Analyse the Results
of a Randomized Controlled Trial
with More Than One Follow-Up Measurement

Jos W.R. Twisk

Abstract In this chapter, an overview is given of different methods to analyse
data from a randomised controlled trial (RCT) with more than one follow-up
measurement. For a continuous outcome variable, a classical GLM for repeated
measurements can be used to analyse the difference in development over time
between the intervention and control group. However, because GLM for repeated
measurements has some major disadvantages (e.g., only suitable for complete
cases), it is advised to use more advanced statistical techniques such as mixed model
analysis or Generalised Estimating Equations (GEE). The biggest problem with the
analysis of data from an RCT with more than one follow-up measurement is the
possible need for an adjustment for baseline differences. To take these differences
into account a longitudinal analysis of covariance, an autoregressive analysis or a
‘combination’ approach can be used. The choice for a particular method depends on
the characteristics of the data. For dichotomous outcome variables, an adjustment
for baseline differences between the groups is mostly not necessary. Regarding the
more advanced statistical techniques it was shown that the effect measures (i.e. odds
ratios) differ between a logistic mixed model analysis and a logistic GEE analysis.
This difference between these two methods was not observed in the analysis of
a continuous outcome variable. Based on several arguments (e.g., mathematical
complexity, unstable results, etc.), it was suggested that a logistic GEE analysis
has to be preferred above a logistic mixed model analysis.

10.1 Introduction

Randomized controlled trials (RCT’s) are considered to be the gold standard for
evaluating the effect of a certain intervention [10]. In a randomized controlled trial,
the population under study is randomly divided into an intervention group and a
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non intervention or control group (e.g., a placebo group or a group with ‘usual’
care). Regarding the analysis of RCT data a distinction must be made between
studies with only one follow-up measurement and studies with more than one
follow-up measurement. When there is only one follow-up measurement relatively
simple statistical techniques can be used to evaluate the effect of the intervention,
while when more than one follow-up measurement is considered, in general, more
advanced statistical techniques are necessary.

In the past decade, an RCT with only one follow-up measurement has become
very rare. At least one short-term follow-up measurement and one long-term
follow-up measurement ‘must’ be performed. However, more than two follow-up
measurements are usually performed in order to investigate the ‘development over
time’ of the outcome variable, and to compare the ‘developments over time’ among
the intervention and control group. Sometimes these more complicated experimental
designs are analysed with simple cross-sectional methods, mostly by analysing the
outcome at each follow-up measurement separately, or sometimes even by ignoring
the information gathered from the in-between measurements, i.e. only using the
last measurement as outcome variable to evaluate the effect of the intervention.
Besides this, summary statistics are often used. The general idea behind a summary
statistic is to capture the longitudinal development of an outcome variable over
time into one value; the summary statistic. With a relative simple cross-sectional
analysis these summary statistics can be compared between the intervention and
control group in order to analyse the effect of the intervention. One of the most
frequently used summary statistics is the area under the curve (AUC) [14]. However,
nowadays mostly more advanced statistical methods such as mixed model analysis
or generalised estimating equations (GEE analysis) [8, 19] are used to analyze
RCT data with more than one follow-up measurement. In this chapter, the different
methods will be discussed by using an example dataset in which the effect of a new
therapy (i.e. intervention) for low back pain is evaluated. The example dataset is
a manipulated dataset from an RCT in which patients who seek care in a private
physical therapy clinic with low back pain as primary complaint were included.
Besides a baseline measurement, three follow-up measurements were performed at
6, 12 and 18 months respectively. In the present example, two outcome variables
will be considered: one continuous outcome variable and one dichotomous outcome
variable. The continuous outcome variable is a score on a questionnaire aiming to
measure complaints, while the dichotomous outcome variable reflects whether the
patient is recovered or not; this is based on subjective self-report.

10.2 Continuous Outcome Variables

Table 10.1 shows descriptive information for both the intervention and control group
at baseline and at the three follow-up measurements.
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Table 10.1 Descriptive
information regarding the
example with a continuous
outcome variable

Intervention Control

Complaints Mean (sd) N Mean (sd) N

Baseline 3.25 (0.40) 74 3.47 (0.43) 82

Time-point 1 3.03 (0.45) 68 3.25 (0.48) 71

Time-point 2 2.89 (0.51) 64 3.18 (0.57) 73

Time-point 3 2.83 (0.47) 67 3.12 (0.55) 73

Table 10.2 Results of a GLM for repeated measurements performed on the example dataset with
a continuous outcome variable

Overall time effect Overall intervention effect Intervention*time interaction

p < 0:001 p < 0:001 p D 0:74

10.2.1 Generalised Linear Model (GLM) for Repeated
Measurements

Although GLM for repeated measurements can not be seen as a new (more
advanced) statistical technique to analyse longitudinal data, it can be used to analyse
a continuous outcome variable measured in an RCT with more than one follow-
up measurement. The basic idea behind GLM for repeated measurements (which
is also known as (multivariate) analysis of variance ((M)ANOVA) for repeated
measurements) is the same as for the well known paired t-test. The statistical test is
carried out for the T � 1 absolute differences between subsequent measurements.
In fact, GLM for repeated measurements is a multivariate analysis of these T � 1

absolute differences between subsequent time-points. Multivariate refers to fact
that T � 1 differences are used simultaneously as outcome variable. Besides the
‘multivariate’ approach, the same research question can also be answered with a
‘univariate’ approach. This ‘univariate’ procedure is comparable to the procedures
carried out in simple analysis of variance (ANOVA) and is based on the ‘sum
of squares’, i.e. squared differences between observed values and average values.
In most software packages, the results of both the ‘multivariate’ and ‘univariate’
approach are provided at the same time. From a GLM for repeated measurements
with one dichotomous determinant (i.e. intervention versus control), basically three
‘effects’ can be derived [14]. An overall time-effect (i.e. is there a change over time,
independent of the different groups), an overall group effect (i.e. is there a difference
between the groups on average over time) and, most important, a group*time
interaction effect (i.e. is there a difference between the groups in development over
time). Table 10.2 shows the results of a GLM for repeated measurements performed
on the example dataset, while Fig. 10.1 shows the so called ‘estimated marginal
means’ resulting from the GLM for repeated measurements.

From Table 10.2 it can be seen that there is an overall time effect, an overall
intervention effect but no intervention*time interaction effect. From Fig. 10.1
(and also from Table 10.1), however, it can be seen that the baseline values of
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Fig. 10.1 Estimated
marginal means derived from
a GLM for repeated
measurements performed on
the example dataset with a
continuous outcome variable
( ____ control,
. . . intervention)

both groups are different. This is a problem that often occurs in RCT data which
should be taken into account in the analysis evaluating the effect of the intervention.
Different baseline values for the therapy and the control group causes ‘regression
to the mean’. If the outcome variable at a certain time-point t D 1 is a sample of
random numbers, and the outcome variable at the next time-point t D 2 is also a
sample of random numbers, then the subjects in the upper part of the distribution at
t D 1 are less likely to be in the upper part of the distribution at t D 2, compared to
the other subjects. In the same way, the subjects in the lower part of the distribution
at t D 1 are less likely than the other subjects to be in the lower part of the
distribution at t D 2. The consequence of this is that, just by chance, the change
between t D 1 and t D 2 is correlated with the initial value. For the group with
higher baseline values, a decrease in the outcome variable is much easier to achieve
than for the group with the lower baseline value. It is clear that this problem arises
in the analysis of the example dataset. Therefore, the consequence is that when the
intervention group and control group differ at baseline, a comparison of the changes
between the groups can lead to either an overestimation or an underestimation of
the intervention effect [15].

There is, however, a nice way to adjust for the phenomenon of regression to the
mean. This approach is known as ‘analysis of covariance’. With this technique the
value of the outcome variable Y at the second measurement is used as outcome
variable in a linear regression analysis, with the observation of the outcome variable
Y at the first measurement as one of the covariates:

Yit2 D ˇ0 C ˇ1Yit1 C ˇ2Xi C � � � C "i ; (10.1)

where Yit2 D observations for subject i at time-point t D 2; ˇ1 D regres-
sion coefficient for Yit1; Yit1 D observations for subject i at time-point t D 1;
ˇ2 D regression coefficient for Xi ; Xi D intervention variable and "i D error for
subject i .
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Table 10.3 Results of a GLM for repeated measurements adjusted for the baseline differences
performed on the example dataset with a continuous outcome variable

Overall time effect Overall intervention effect Intervention*time interaction

p < 0:001 p D 0:04 p D 0:14

Fig. 10.2 Estimated
marginal means derived from
a GLM for repeated
measurements adjusted for
the baseline differences
performed on the example
dataset with a continuous
outcome variable ( ____
control, . . . intervention)

In the analysis of covariance, the change is defined relative to the value of Y at
t D 1. This relativity is expressed in the regression coefficient ˇ1 and, therefore, it is
assumed that this method adjusts for the phenomenon of regression to the mean. In
fact the effect of the intervention is evaluated assuming the same baseline value for
both groups. The same idea can be used in a GLM for repeated measurements; i.e.
the analysis can be adjusted for the baseline value. This approach is also known as
(M)ANCOVA for repeated measurements. Table 10.3 and Fig. 10.2 show the results
of a GLM for repeated measurements adjusting for the baseline value performed on
the example dataset.

Although GLM for repeated measurements is often used, it has a few major
drawbacks. First of all, it can only be applied to complete cases; all subjects with
one or more missing observation are not part of the analyses. Secondly, GLM for
repeated measurements is mainly based on statistical significance testing, while
there is more interest in effect estimation. Because of this, nowadays, new more
advanced statistical techniques, such as mixed model analysis and GEE analysis are
mostly used.

10.2.2 More Advanced Analysis

The questions answered by a GLM for repeated measurements could also be
answered by more advanced methods, such as mixed model analysis and GEE
analysis [14]. The advantage of the more advanced methods is that all available
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data is included in the analysis, while with GLM for repeated measurements only
those subjects with complete data are included. Another important advantage of the
more advanced analyses is that they are basically regression techniques, from which
the effect estimates (i.e. the magnitude of the effect of the intervention) and the
corresponding confidence intervals can be derived.

The general idea behind all statistical techniques to analyse longitudinal data
is that because of the dependency of observations within a subject an adjustment
must be made for ‘subject’. The problem, however, is that the variable ‘subject’ is a
categorical variable that must be represented by dummy variables. Suppose there are
200 subjects in a particular study. This means that 199 dummy variables are needed
to adjust for subject. Because this is practically impossible, the adjustment for
‘subject’ has to be performed in a more efficient way and the different longitudinal
techniques differ from each other in the way they perform that adjustment [14].

Mixed model analysis is also known as multilevel analysis [4, 13], hierarchical
linear modeling or random effects modeling [6]. As has been mentioned before, the
general idea behind all longitudinal statistical techniques is to adjust for ‘subject’ in
an efficient way. Adjusting for ‘subject’ actually means that for all subjects in the
longitudinal study, different intercepts are estimated. The basic principle behind the
use of mixed model analysis in longitudinal studies is that not all separate intercepts
are estimated, but that (only one) variance of those intercepts is estimated, i.e. a
random intercept. It is also possible that not only the intercept is different for each
subject, but that also the development over time is different for each subject, in
other words, there is an interaction between ‘subject’ and time. In this situation
the variance of the regression coefficients for time can be estimated, i.e. a random
slope for time. In fact, these kind of individual interactions can be added to the
regression model for all covariates. In a regular RCT, however, assuming a random
slope for the intervention effect is not possible, because the intervention variable is
time-independent [13]. When a certain subject is assigned to either the intervention
or control group, that subject stays in that group along the intervention period.
An exception is the cross-over trial, in which the subject is his own control and
the intervention variable is time-dependent. In this situation the intervention effect
can be different for each subject and therefore a random slope for the intervention
variable can be assumed. For mixed model analysis, one has to choose which
coefficients have to be assumed random. This choice can be based on the result
of a likelihood ratio test.

Within GEE, the adjustment for the dependency of observations is done in a
slightly different way, i.e. by assuming (a priori) a certain ‘working’ correlation
structure for the repeated measurements of the outcome variable [8,19]. Depending
on the software package used to estimate the regression coefficients, different
correlation structures are available. They basically vary from an ‘exchangeable’
(or ‘compound symmetry’) correlation structure, i.e. the correlations between
subsequent measurements are assumed to be the same, irrespective of the length of
the measurement interval, to an ‘unstructured’ correlation structure. In this structure
no particular structure is assumed, which means that all possible correlations
between repeated measurements have to be estimated.
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In the literature it is assumed that GEE analysis is robust against a wrong choice
for a correlation structure, i.e. it does not matter which correlation structure is
chosen, the results of the longitudinal analysis will be more or less the same [9,12].
However, when the results of analysis with different working correlation structures
are compared to each other, the magnitude of the regression coefficients are
different [14]. It is therefore important to realize which correlation structure should
be chosen for the analysis. Although the unstructured working correlation structure
is always the best, the simplicity of the correlation structure also has to be taken
into account. The number of parameters (in this case correlation coefficients) which
needs to be estimated differs for the various working correlation structures. The best
option is therefore to choose the simplest structure which fits the data well. The first
step in choosing a certain correlation structure can be to investigate the observed
within-person correlation coefficients for the outcome variable. It should be kept
in mind that when analyzing covariates, the correlation structure can change (i.e.
the choice of the correlation structure should better be based conditionally on the
covariates).

Within the framework of the more advanced statistical techniques, several models
are available to evaluate the effect of an intervention. In an RCT with more than one
follow-up measurement, the simplest model that can be used is

Yit D ˇ0 C ˇ1Xi C � � � C "it; (10.2)

where Yit D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable and "it D error for subject i at time t .

With this model the outcome variable at the different follow-up measurements
is compared between the therapy and control group simultaneously. This is compa-
rable to the comparison of the post-test value between two groups in a pre-post
test design. It should be noted that with this model, the influence of possible
differences at baseline between the two groups is ignored. In the example dataset,
however, it was seen that there is a (big) difference in baseline values between the
intervention and control group and that this difference can cause regression to the
mean. The intervention effect estimated with the standard model shown in (10.2), is
therefore not correct. To adjust for differences at baseline, a longitudinal analysis of
covariance can be used:

Yit D ˇ0 C ˇ1Xi C ˇ2Yit0 C � � � C "it; (10.3)

where Yi t D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable; ˇ2 D regression coefficient for
observation at t0; Yit0 D observation for subject i at time t0 and "it D error for
subject i at time t .

The general idea behind a longitudinal analysis of covariance is that the outcome
variable at each of the follow-up measurements is adjusted for the baseline
value. The regression coefficient of interest, i.e. the regression coefficient for
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Table 10.4 Average effect of the intervention over time estimated with both mixed model
analysis and GEE analysis with a standard analysis, a longitudinal analysis of covariance and an
autoregressive analysis

Effect 95 % confidence interval p-value

Mixed models

Standard analysis �0.23 �0:38 to �0:09 <0:01

Longitudinal analysis of covariance �0.14 �0:27 to �0:01 0:03

Autoregressive analysis �0.17 �0:26 to �0:07 <0:01

GEE analysis

Standard analysis �0.23 �0:38 to �0:09 <0:01

Longitudinal analysis of covariance �0.14 �0:27 to �0:02 0:03

Autoregressive analysis �0.15 �0:24 to �0:06 <0:01

the intervention variable reflects the overall ‘adjusted’ difference between the
intervention and control group over time.

Another possible way to analyse RCT data with more than one follow-up is to
use a so-called autoregressive analysis. In an autoregressive analysis the outcome
variable is not adjusted for the baseline value, but each measurement of the outcome
variable is adjusted for the value of the outcome variable one time-point earlier:

Yit D ˇ0 C ˇ1Xi C ˇ2Yit�1 C � � � C "it; (10.4)

where Yit D observations for subject i at time t ; ˇ0 D intercept; ˇ1 D regression
coefficient for Xi ; Xi D intervention variable; Yit�1 D observation for subject i
at time t � 1; ˇ2 D regression coefficient for observation at t � 1 (autoregression
coefficient) and "it D error for subject i at time t .

The idea underlying an autoregressive analysis is that the value of an outcome
variable at each time-point is primarily influenced by the value of this variable one
measurement earlier. To estimate the ‘real’ influence of the intervention variable on
the outcome variable, the model should therefore adjust for the value of the outcome
variable at time-point t � 1. In fact, with an autoregressive analysis, the ‘adjusted’
changes between subsequent measurements are compared between the therapy and
the control group. Table 10.4 shows the results of the three analyses performed on
the example dataset. For all analyses the results of both a mixed model analysis and
a GEE analysis are shown.

From Table 10.4 it can first be seen that the results derived from a mixed
model analysis and the results derived from a GEE analysis are more or less the
same. Furthermore, it can be seen that the standard analysis gives a higher effect
measure compared to the other two methods. This has to do with the fact that
with the standard analysis, the differences at baseline between the intervention
and control group are not taken into account. Because the intervention group has
lower values all over the follow-up period, the intervention effect obtained from the
standard analysis is overestimated. In the example dataset the differences between
an analysis of covariance and an autoregressive analysis are small. Slightly higher
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effect estimates for the autoregressive analysis and slightly smaller 95 % confidence
intervals.

Although the longitudinal analysis of covariance is mostly used, it is questionable
whether or not this is correct. In fact, the adjustment for baseline for all the follow-
up measurements can overestimate the overall therapy effect. This is especially true
when the effect of the therapy is particularly found in the first part of the follow-
up period [14]. In the present example this is not really the case, so therefore, the
longitudinal analysis of covariance and the autoregressive analysis gave more or
less the same results. It is sometimes argued that both analyses are not correct.
This has to do with the fact that in a RCT only the differences at baseline are
caused by chance. Differences between the groups at the follow-up measurements
are probably mostly caused by the intervention and should therefore not be adjusted
for. To take that into account, a so-called ‘combination’ approach is suggested [17].
In this ‘combination’ approach, the first follow-up measurement is adjusted for the
baseline differences, but the next follow-up measurements are not adjusted anymore
for either the baseline differences (as in the longitudinal analysis of covariance) or
the value of the outcome one time-point earlier (as in the autoregressive analysis).
Although this approach makes sense, it is not much used in practice.

Up to now, the more advanced analyses performed were aimed to estimate
an overall intervention effect. Sometimes, however, one is more interested in
the estimation of effects at the different follow-up measurements. This can be
done in a simple way by performing separate analyses at the different follow-up
measurements, either by comparing the change between the baseline measurements
and the three follow-up measurements or by performing three separate analyses of
covariance (see Tables 10.5 and 10.6).

As expected, the results derived from the analysis of change scores are totally
different from the results derived from the analyses of covariance. This has to do
with the fact that the analyses of change scores not adjust for the difference at
baseline. The analyses of covariance take into account these differences and because
the intervention group has a lower value for the outcome variable at baseline, the
effect derived from analyses of covariance are much higher than the ones derived
from the analyses of change scores. Performing separate analyses, however, is
theoretically wrong because the separate analyses are highly dependent on each

Table 10.5 Effects of the
intervention at different
time-point estimated with
three separate analyses of
change scores

Effect 95 % confidence interval p-value

Time-point 1 �0:01 �0:16 to 0:15 0.90

Time-point 2 �0:02 �0:18 to 0:14 0.79

Time-point 3 �0:06 �0:21 to 0:08 0.38

Table 10.6 Effects of the
intervention at different
time-point estimated with
three separate analyses of
covariance

Effect 95 % confidence interval p-value

Time-point 1 �0:12 �0:26 to 0:03 0.11

Time-point 2 �0:18 �0:34 to �0:01 0.05

Time-point 3 �0:19 �0:35 to �0:03 0.03
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Table 10.7 Effects of the intervention at different time-point derived from one longitudinal
analysis estimated with a mixed model analysis with a longitudinal analysis of covariance and
an autoregressive analysis

Effect 95 % confidence interval p-value

Longitudinal analysis of covariance

Time-point 1 �0.10 �0:26 to 0:05 0.19

Time-point 2 �0.14 �0:30 to 0:01 0.07

Time-point 3 �0.18 �0:34 to �0:03 0.02

Autoregressive analysis

Time-point 1 �0.13 �0:27 to 0:01 0.07

Time-point 2 �0.16 �0:31 to �0:02 0.03

Time-point 3 �0.22 �0:36 to �0:07 <0.01

other. To obtain the separate effects in one analysis, time and the interaction between
the intervention variable and time can be added to the longitudinal analysis of
covariance and the autoregressive analysis.

Table 10.7 shows the results of the analyses performed on the example dataset in
order to obtain the effects of the intervention at the three follow-up measurements.

From Table 10.7 it can be seen that the differences between the results obtained
from a longitudinal analysis of covariance and the ones obtained from an autore-
gressive analysis are comparable to the differences between the two analyses in the
estimation of the overall effect over time (see Table 10.4). Table 10.7 only shows
the results from a mixed model analysis. It is obvious that the results obtained from
a GEE analysis are comparable.

An approach to evaluate the effect of an intervention at different time-points
is provided by Fitzmaurice et al. [3]. In this approach all measurements are used
as outcome (including the baseline measurement). The following model (which is
basically an extension of the standard model shown in (10.2)) is then used:

Yit D ˇ0 C ˇ1Xi C ˇ2 time1 C ˇ3 time2 C ˇ4 time3 C ˇ5Xi � time1

Cˇ6Xi � time2 C ˇ7Xi � time3 C � � � C "it;
(10.5)

where Yit D observations for subject i at follow-up time t , ˇ1 D the regression
coefficient for Xi ; Xi D intervention variable and time1, time2, time3 D dummy
variables for time and "it D error for subject i at time t .

In this model, the ˇ1 coefficient reflects the differences between the two groups at
baseline, ˇ1 C ˇ5 reflects the differences between the two groups at the first follow-
up measurement, while ˇ1 C ˇ6 reflects the differences between the two groups
at the second follow-up measurement and ˇ1 C ˇ7 the differences between the two
groups at the third follow-up measurement. Although, this is a nice way of analysing
the effect of the intervention at the different time-points, it does not adjust for the
differences between the groups observed at baseline, or in other words, it does not
adjust for possible regression to the mean.
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Table 10.8 Effects of the intervention at different time-point derived from one longitudinal
analysis estimated with a mixed model analysis based on (10.5) and (10.6)

Effect 95 % confidence interval p-value

Standard analysis

Time-point 1 �0.22 �0:38 to �0:06 <0.01

Time-point 2 �0.27 �0:43 to �0:11 <0.01

Time-point 3 �0.29 �0:46 to �014 <0.001

Standard analysis without the intervention variable

Time-point 1 �0.11 �0:24 to 0:03 0.13

Time-point 2 �0.16 �0:30 to �0:02 0.03

Time-point 3 �0.19 �0:32 to �0:05 <0.01

Table 10.8 shows the results of the two analyses performed on the example dataset estimated with
a mixed model analysis

An alternative approach to tackle this problem is to use the same model but
without the intervention variable:

Yit D ˇ0 C ˇ1 time1 C ˇ2 time2 C ˇ3 time3 C ˇ4Xi � time1

CXi � time2 C ˇ6Xi � time3 C � � � C "it;
(10.6)

where Yit D observations for subject i at follow-up time t , Xi D intervention
variable and time1; time2; time3 D dummy variables for time and "it D error for
subject i at time t .

Because the intervention variable is not in the model, the baseline values for
both groups are assumed to be equal and are reflected in the intercept of the model
(i.e. ˇ0). In this model, the coefficients of interest are the same as in the model with
the intervention variable. The only difference is that now the effects of intervention
at the different time-points are adjusted for the differences at baseline (Fig. 10.8).

The analyses based on (10.6) (i.e. the model without the intervention variable)
are basically the same as a longitudinal analysis of covariance. The difference in
the effect estimates between the two approaches is caused by a different number
of observations (due to missing values). When the two analyses would have been
performed on a full dataset without any missing values, the results of the two
analyses would have been exactly the same.

Although longitudinal analysis of covariance is mostly used to analyse the effect
of an RCT with more than one follow-up measurement one should be careful with
the interpretation of the results of such an analysis. In some situations, it is better
to use an autoregressive analysis. However, when differences at baseline occur
between the groups, they must be taken into account in the analysis.



188 J.W.R. Twisk

Table 10.9 Number of subjects recovered at different time-points for both the intervention and
control group

Intervention Control
Recovered Not recovered Recovered Not recovered

Time-point 1 10 58 5 66

Time-point 2 21 43 14 59

Time-point 3 25 42 12 61

Fig. 10.3 Percentage of
subjects recovered at different
time-points for both the
intervention and control
group
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10.3 Dichotomous Outcome Variables

The statistical models used for the analysis of dichotomous outcome variables
derived from an RCT with more than one follow-up measurement are somewhat
less complex than the models discussed for the analysis of a continuous outcome
variable. This has to do with the fact that in general an adjustment for differences in
baseline values is not necessary, because all subjects have the same value at baseline
(e.g. all subjects are not recovered). As has been mentioned before, the example
dataset used in this section is derived from the same RCT that has been used in the
example with a continuous outcome variable. However, in this section the outcome
is dichotomous reflecting whether the patient is recovered or not. Table 10.9 shows
the number of subjects recovered versus the number of subjects not recovered in the
intervention and in the control group at the three follow-up measurements, while
Fig. 10.3 shows the percentages over time for both groups.

The classical way to analyse the results of such an RCT is to analyse the
difference in proportion of patients experiencing recovery between the intervention
and the control group at each of the three follow-up measurements, by simply
applying a Chi-square test. Furthermore, at each of the follow-up measurements,
the effect of the intervention can be estimated by calculating the relative risk
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Table 10.10 Effects (expressed as relative risks) of the intervention at different time-points
estimated with three separate analyses

Relative risk 95 % confidence interval p-value

Time-point 1 1.60 0.77–3.33 0.15

Time-point 2 1.45 0.93–2.24 0.07

Time-point 3 1.83 1.12–2.99 0.01

Table 10.11 Effects (expressed as odds ratios) of the intervention at different time-points esti-
mated with three separate analyses

Odds ratio 95 % confidence interval p-value

Time-point 1 2.28 0.74–7.05 0.15

Time-point 2 2.06 0.94–4.50 0.07

Time-point 3 3.03 1.37–6.68 0.01

(and corresponding 95 % confidence interval). The relative risk is defined as the
proportion of subjects recovered in the intervention group, divided by the proportion
of subjects recovered in the control group [10]. Table 10.10 summarizes the results
of the analyses.

From Table 10.10 it can be seen that the effect of the intervention at the first and
second follow-up measurement is more or less the same, while at the third follow-up
measurement the effect of the intervention is somewhat greater and also statistically
significant.

It is, of course, also possible to estimate the effect of the intervention with a more
advanced longitudinal technique. Because of the nature of the outcome variable, a
logistic mixed model analysis or a logistic GEE analysis should be used instead of
a linear mixed model analysis or a linear GEE analysis. It should be noted that for
a dichotomous outcome variable GLM for repeated measurements is not possible.
Furthermore, it should be realized that as a result of a logistic longitudinal analysis,
odds ratios are calculated. Odds ratios are often interpreted as relative risks, but
they are not the same. Owing to the mathematical background of the odds ratios and
relative risks, the odds ratios are always an overestimation of the ‘real’ relative risk.
This overestimation becomes stronger as the proportion of ‘cases’ (i.e. recovered
patients) increases. To illustrate this, the odds ratios for intervention versus control
were calculated at each of the follow-up measurements (see Table 10.11).

From the results in Table 10.11 it can be seen that the calculated odds ratios are
bigger than the relative risks shown in Table 10.10, and that the confidence intervals
are wider, but that the significance levels are the same. So, when a logistic GEE
analysis is carried out, one must realize that the results (i.e. odds ratios) obtained
from such an analysis cannot be interpreted as relative risks.

Table 10.12 presents the results of a logistic mixed model analysis and a logistic
GEE analysis in which the average effect of the intervention over time is analysed.

The most intriguing finding regarding the comparison of the two analyses is
that the odds ratio obtained from a logistic mixed model analysis is much higher
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Table 10.12 Average effect of the intervention over time estimated with both mixed model
analysis and GEE analysis

Odds ratio 95 % confidence interval p-value

Mixed model analysis 3.94 1.29–12.04 0.02

GEE analysis 2.15 1.13–4.10 0.02

compared to the odds ratio obtained from a logistic GEE analysis. This is not just a
coincidence, but this has a theoretical background; i.e. the odds ratio obtained from
a logistic mixed model analysis will always be bigger than the one obtained from a
logistic GEE analysis.

Basically, both ‘longitudinal’ techniques take all measurements into account,
and use a logistic regression approach with an adjustment for the dependency of
the observations. This is done either by assuming a certain ‘working’ correlation
structure (GEE analysis) or by allowing random regression coefficients (mixed
model analysis). The difference between the two techniques is that GEE analysis
is a so-called population average approach, while mixed model analysis is a so-
called subject specific approach [14]. The different estimation procedures cause the
difference in the magnitude of the odds ratios, which is always in favour of the mixed
model analysis, i.e. the effects estimated with a logistic mixed model analysis are
always bigger than the effects estimated with a logistic GEE analysis. Because the
standard errors are also bigger for a logistic mixed model analysis (and therefore
the 95 % confidence intervals are wider), the corresponding p-values are not much
different and when conclusions are based on these p-values, they will be more or
less the same. However, when the conclusions are based on the magnitude of the
odds ratios, the conclusions will differ remarkably between the two techniques.

It should further be noted that the estimations of the regression coefficients (i.e.
odds ratios) with logistic mixed model analysis can be very complicated and often
lead to instable results. Furthermore, the results of these analyses can differ between
software packages [7, 14, 18].

It is of course also possible to estimate the effects of the intervention at the
three follow-up measurements in one analysis. This can be done in exactly the
same way as has been described for continuous outcome variables, i.e. by adding
dummy variables for time and the interaction between these dummy variables and
the intervention variable to the model. Again, this is far less complicated as for a
continuous outcome variable because in general an adjustment for differences in
baseline values is not necessary.

Table 10.13 shows the results derived from a both a logistic mixed model analysis
and a logistic GEE analysis.

From Table 10.13 it can be seen again that the odds ratios derived from a logistic
mixed model analysis are much higher than the ones derived from a logistic GEE
analysis. It can also be seen that the odds ratios derived from a logistic GEE analysis
are much closer to the ones obtained from the three separate analyses than the odds
ratios derived from a logistic mixed model analysis (Table 10.11). This suggests that
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Table 10.13 Effects of the intervention at different time-point estimated with one analysis

Odds ratio 95 % confidence interval p-value

GEE-analysis

Time-point 1 1.96 0.68–5.70 0.21

Time-point 2 1.83 0.85–3.91 0.12

Time-point 3 2.99 1.35–6.59 0.01

Mixed model analysis

Time-point 1 3.84 0.54–27.46 0.18

Time-point 2 3.63 0.75–17.65 0.11

Time-point 3 9.98 1.87–53.09 0.01

regarding the more advanced longitudinal techniques, logistic GEE analysis has to
be preferred above logistic mixed model analysis.

The data used in the present example is an example of ‘recurrent event’ data. To
analyse ‘recurrent event’ data, also some other approaches are available. Based on a
survival approach, Cox proportional hazards regression for recurrent events can be
performed [5, 11, 16]. Although there are different estimation procedures available
the general idea behind Cox proportional hazards regression for recurrent events is
that the different time periods are analysed separately adjusted for the fact that the
time periods within one patient are dependent. The idea of this adjustment is that
the standard error of the regression coefficient of interest is increased proportional
to the correlation of the observations within one subject. One of the problems using
Cox proportional hazards regression for recurrent events for RCT data is that it is
assumed that the events under study are short lasting, which means that after an
event the particular subject is directly at risk to get another event. This assumption
does not hold for most RCT’s, including the example RCT used in this chapter.
Although the events can be recurrent, most of the events are long lasting. So in
this situation, Cox proportional hazards regression for recurrent events is not very
suitable.

There are also other possibilities to model recurrent events data, such as the
continuous-time Markov process model for panel data [1] or the conditional
frailty model [2]. However, most of those alternative methods are mathematically
complicated and not much used in practice.

10.4 Discussion

In this chapter several methods were discussed that can be used to analyse data from
an RCT with more than one follow-up measurement. The data of the examples were
analysed with different software packages. GLM for repeated measurements was
performed with SPSS, while both mixed model analysis and GEE analysis were
performed with STATA. Nowadays, it is possible to perform both linear and logistic
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mixed model analysis as well as linear and logistic GEE analysis with all popular
(commercial) software packages such as SPSS, STATA, SAS and R. It should be
realised that the results of linear mixed model analysis and linear GEE analysis are
very stable; i.e. there is no difference in results obtained from the different software
packages. This also holds for logistic GEE analysis. However, for logistic mixed
model analysis this is not the case. The use of different software packages lead
to different results as well as the use of different estimation procedures within a
software package [14]. Therefore, the results obtained from a logistic mixed model
analysis should be interpreted with great caution.
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Chapter 11
Statistical Methods for the Assessment
of Clinical Relevance

Meinhard Kieser

Abstract It is commonly accepted that the results of clinical trials to be important
for medical practice do not only have to be statistically significant but also clinically
relevant. While an elaborated and canonical methodology exists for statistical
significance tests, there is no common sense so far on how to judge the clinical
relevance of a medical finding. The assessment of the clinical relevance of a study
result should provide quantified information about its practical importance. For this,
both statistical procedures and appropriate effect measures on which the relevance
judgment is based are required. The test for relevant superiority and the relevance
assessment based on the observed effect are presented as two statistical approaches
for the assessment of clinical relevance. The properties of these procedures are
investigated and contrasted. Furthermore, an overview of effect measures used for
relevance assessment is given and their characteristics are illustrated. Application of
the methods is illustrated with a clinical trial example.

11.1 Introduction

It is commonly accepted that the results of clinical trials to be important for medical
practice do not only have to be statistically significant but also clinically relevant
the latter being often also denoted as clinically significant. As Friedman stated
“statistical significance refers to whether or not the value of a statistical test exceeds
some pre-specified level. Clinical significance refers to the medical importance
of a finding. The two often agree but not always.” [18]. This means that specific
methods for the assessment of clinical relevance are required. However, while an
elaborated and canonical methodology exists for statistical significance tests, there
is no common sense so far on how to judge the clinical relevance of a medical
finding.

The assessment of the clinical relevance of a study result should provide quanti-
fied information about its practical importance. Ideally, the results of an evaluation
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of clinical relevance can be used to support decision making both for the complete
population at hand and for the individual patient. Furthermore, it is favorable if the
results of a relevance evaluation are easy to interpret and depend as less as possible
from (arbitrary) relevance criteria. Moreover, statistical procedures for sample size
calculation and analysis should be available that are tailored to the effect measure
that is applied for relevance assessment. Finally, methods for relevance assessment
should have good statistical properties. Especially, they should not lead to a huge
increase in required sample size thus making practical implementation feasible.

This contribution reviews methods for relevance assessment and judges their
characteristics according to the above criteria. In Sect. 11.2, we present the test for
relevant superiority and the relevance assessment based on the observed effect as
two statistical approaches for the assessment of clinical relevance. The properties
of these methods are investigated and contrasted. Both these procedures can be
applied to any of the effect measures presented in Sect. 11.3. Here, an overview
of effect measures used for relevance assessment is given and their characteristics
are discussed. Application of the methods is illustrated in Sect. 11.4 with a clinical
trial example. We conclude with a summary of the findings and recommendations
for practical application.

11.2 Statistical Approaches to the Assessment of Clinical
Relevance

In 1987, Victor pointed out that the statistical procedure of testing the classical
nullhypothesis of non-superiority does not adequately reflect the demand of judging
the clinical relevance of therapeutic effects within the analysis of clinical trials [38].
Instead, he proposed to test “non-zero nullhypotheses (shifted nullhypotheses)
where the ‘clinically relevant difference’ is the shift parameter.” [38]. If the effect
measure is denoted by � and the threshold for clinical relevance by # (higher values
indicating here and in the following more favorable effects), the approach consists
of testing the nullhypothesisH relsup

0 W � � #; # > 0, at one-sided level ˛ D 0:025.
Of course, a statistical significant result for the test for relevant superiority at one-
sided level ˛ is equivalent to the lower boundary of the two-sided 1�2˛ confidence
interval lying above the relevance threshold. Therefore, when the test of relevant
superiority is statistically significant this relates to a “large clinically significant
effect” according to the categorization of Jones [23].

This approach is appealing because, unlike for classical hypothesis testing,
statistical significance also implies clinical relevance. A major disadvantage of
this method lies in the fact that the sample size is substantially increased as
compared to the usual test for superiority. As an example, let us consider the
situation of a two-group comparison between a test treatment (T) and a reference
(R) with a continuous outcome and the difference in expectations between the two
interventions as effect measure. We express the relevance threshold # as a fraction
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Fig. 11.1 Ratio of sample size required for the assessment of clinical relevance by testing for
relevant superiority (shifted t -test, ˛ D 0:025, one-sided) or based on the observed treatment
effect, respectively, to sample size required for significance test for superiority (t -test, ˛ D 0:025,
one-sided) depending on fraction � D #=
. For all approaches the sample size is calculated for
a treatment effect 
 to achieve the same power when applying the same relevance threshold #
(shifted normal distributions with common variance)

of the treatment group difference 
 D �T � �R used for sample size calculation,
i.e., # D � �
; 0 < � < 1. It can then easily be seen that for the same desired power
1�ˇ the sample size required for the proof of relevant superiority is approximately
by a factor .1 � �/�2 higher than when testing the common nullhypothesis of a
superiority trial H sup

0 W �T � �R � 0. For example, if the relevance threshold is
chosen as 0:6 or 0:7 of the assumed difference, respectively, the sample size is 6:25
or 11:1 fold for the shifted nullhypothesis approach (see Fig. 11.1). It is therefore not
surprising that despite its appeal this approach has not been broadly implemented in
practice. A recent literature search revealed only a single report of a clinical study
where this approach was applied (but only as secondary analysis after having proven
‘simple’ superiority [34]). Furthermore, there is up to now only a single guideline
that adopted the test for relevant superiority [20, 21].

In contrast, a number of regulatory guidelines recommend to address the
judgment of clinical relevance by assessing whether the observed treatment effect
lies above a pre-specified threshold (see, e.g., [5, 13]). When testing the null-
hypothesis H relsup

0 , a one-sided p-value below 0:50 is obtained if and only if
the observed treatment effect falls above the threshold. Therefore, this approach
is equivalent to testing H

relsup
0 at one-sided level 0:50. Jones [23] denoted a

result where the point estimate of the treatment group difference overcomes the
relevance threshold but not the lower boundary of the 1 � 2˛ confidence interval
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as “probably clinically significant effect”. For continuous outcomes and using the
same relevance threshold for the test for relevant superiority and for the approach
based on the observed effect, the required sample size is approximately by a factor�
˚�1 .1 � ˛/C˚�1 .1 � ˇ/

�2
=˚�1 .1 � ˇ/ higher for the former as compared to

the latter. Here,˚�1 .�/ denotes the � -percentile of the standard normal distribution
and 1 � ˇ the desired power. For the common values ˛ D 0:025 and 1 � ˇ D 0:80

(or 0:90) this factor amounts to 11:1 (or 6:4). A similar picture can be observed
in Fig. 11.1 where the sample size required for exceeding the relevance threshold
with the observed effect is compared with the sample size required for testing the
common superiority nullhypothesis. The same treatment group difference and power
values are taken for sample size calculation, and the relevance threshold is expressed
as a fraction� of the effect. The ratio between the sample sizes is then approximately
given by

�
˚�1 .1 � ˇ/ =

�
˚�1 .1 � ˛/C ˚�1 .1 � ˇ/��2=.1� �/�2. It can be seen

that the relevance assessment based on the observed difference does not require
a higher sample size than the common superiority test for � � 0:6 (power 0:90)
or � � 0:7 (power 0:80) and increases only moderately for higher thresholds.
Especially, the higher type I error rate inherent to the observed difference approach
leads to a considerably smaller sample size as compared to testing for relevant
superiority.

When testing for relevant superiority at common values for the significance level,
a considerably smaller type I error rate is applied as compared to judging relevance
based on the observed effect. One may therefore argue that a less restrictive (i.e., a
smaller) threshold may be used for the first approach as compared to the latter in
order to enable the feasibility of clinical trials implementing this method. Such an
argument was implicitly used when justifying the comparatively low threshold fixed
in the above cited guideline for testing shifted nullhypotheses [21]. There it was
stated “The proposed ‘irrelevant’ quotient (�0 D 1:05) is based on these figures, on a
cautious estimation of the standard deviation and on realistic sample sizes.” [21]. As
an example, if the threshold for the approach that is based on the observed difference
is chosen as �obs D 0:7 �
, the same power of 1 � ˇ D 0:90 can be achieved with
the same sample size by relaxing the threshold for the test for relevant superiority
to �relsup D 0:24 �
.

Values for the significance level between 0:025 and 0:50 for the test of the shifted
nullhypothesis could be chosen resulting in a practicable compromise between the
two approaches described above. Nevertheless, relevance assessment is currently
performed in practice throughout by inspection of the observed value of the applied
effect measure. For this reason, we will focus on this approach in the following.
However, methods for a relevance assessment by testing shifted nullhypotheses
can also be derived for all effect measures presented in the next section. The
characteristics with respect to the required sample size are very similar to those
shown above for the difference in means.



11 Causal Effect Estimation and Dose Adjustment 199

11.3 Effect Measures for the Assessment of Clinical
Relevance

11.3.1 Difference in Location Parameters

A frequently used measure for the judgment of clinical relevance is the
between-group difference of the location parameters of the endpoints’ distribution
functions. For example, a CHMP guideline states for placebo-controlled superiority
trials that “Establishing a clinically relevant benefit over placebo is accomplished
by considering the point estimates of the difference between the test product and
placebo and assessing its clinical relevance, . . . using the original scale . . . .” [5].
This approach is easy to interpret, and assessing relevance in this way in addition
to testing for statistical significance results in an acceptable increase in sample
size or reduction in power, respectively, as compared to testing only the classical
superiority hypothesis [25]. However, while the results provide information for the
complete population, the mean difference observed for a continuous endpoint may
be difficult to interpret for individual patients and may not be helpful for decision
making.

For binary endpoints indicating whether some kind of treatment success has
been achieved or not, the situation is more comfortable. For example, the CHMP
guideline on the evaluation of medicinal products indicated for treatment of bacterial
infections states that “In addition, clinical judgment should be applied to assess
whether the observed difference in cure rates between the test antibacterial agent
and placebo is clinically relevant.” [13]. The observed cure rates and their difference
give an impression about the individual benefit (‘cure’) in the patient population
(‘difference in cure rates’). Responder analyses which are described in the next
section aim at creating a similar situation for continuous endpoints.

11.3.2 Responder Analysis

Responder analyses are recommended by many regulatory guidelines for the
assessment of clinical relevance (see, e.g., [6–10, 12]). Here, a continuous outcome
is dichotomized at a pre-defined cut point indicating a clinically important effect for
the individual patient; then the observed difference in the rate of patients achieving
this success criterion is judged for clinical relevance. This approach mimics the
method sketched in Sect. 11.3.1 above for the case of binary endpoints and thus
shows the same benefits: It provides a simple measure for the patient population
based on a criterion that defines a clinically important benefit for the individual
patient. This desirable property is a result of the dichotomization of the original
continuous scale which, however, is criticized due to a potential loss of information
and power (see e.g., [4, 16, 17, 28, 35–37]). Recently, Peacock et al. [32] proposed
a distributional approach to derive a difference in proportions from continuous data
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together with a related confidence interval that retains the precision and power of
the confidence interval for the difference in means on the original scale.

A further point of critic of responder analyses is the frequently arbitrary
chosen cut point separating responders from non-responders [35–37]. It has to be
noted, however, that there are also situations where internationally accepted and
established thresholds for a successful outcome exist.

If in addition to a significance test on the original outcome scale the clinical
relevance is assessed by responder analyses, this should already be taken into
account in the planning phase when choosing the sample size (see, e.g., [7, 11]
for examples of regulatory documents that adopted this requirement). Kieser
et al. [26] developed methods for sample size calculation for the simultaneous
assessment of statistical significance and clinical relevance based on responder
analyses by exploiting the correlation between the original outcome and the
dichotomized responder variable. As an example, let us consider the situation of
normal distributions shifted by 
=
 D 0:6. We assume that dichotomization of
the continuous outcome is performed at the cut point providing the maximum
difference in responder rates. Figure 11.2 shows the sample size per group and the
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Fig. 11.2 Power for the simultaneous assessment of statistical significance (t -test, ˛ D 0:025,
one-sided) and clinical relevance based on responder analyses depending on sample size n per
group and relevance threshold # for the difference in responder rates (normal distributions with
common variance shifted by 
=
 D 0:6, dichotomization at cut point providing the maximum
difference in responder rates)
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power for the simultaneous assessment of statistical significance (t-test, ˛ D 0:025,
one-sided) and clinical relevance based on a responder analysis when applying the
relevance threshold # to the responder rates. Note that the sample sizes per group
for the threshold # D 0 refer to the test for statistical significance only, e.g., to
sample sizes per group n D 45 for a power of 0:80 and n D 60 for a power
of 0:90. When heightening the relevance threshold away from zero, the required
sample size initially increases only slightly but subsequently enlarges dramatically.
For the threshold # D 2 � ˚ Œ0:5 � .
=
/� � 0:236, the probability of observing
a difference in responder rates above the threshold is equal to 0:5 for any sample
size. If the threshold is further increased, this probability becomes smaller. This
explains why for such threshold values the power for the simultaneous assessment
of statistical significance and clinical relevance decreases with increasing sample
size: Such relevance hurdles are too high to be achieved for the effect measure
at hand. When planning a clinical trial where in addition to showing statistical
significance the relevance of treatment effects shall be judged by responder analyses,
considerations as those outlined above are useful for choosing an adequate relevance
criterion and the correct sample size.

Shift alternatives for the original outcome were assumed for the evaluations
described above. However, if one supposes that the population consists of patients
that respond and others that do not respond to the investigated treatment, this
situation may be modeled by mixture alternatives. Tests were proposed in the
literature that are specifically tailored to this type of test problems [14,22]. However,
in a recent investigation it turned out that these tests are not advantageous to standard
tests such as t-test or the Wilcoxon-Mann-Whitney test [24]. This article also
provides a sample size formula for the t-test in case of mixture normal distributions.

11.3.3 Probabilistic Index

As mentioned in the preceding section, regulatory guidelines strongly advocate the
assessment of clinical relevance by responder analyses. It is probably due to two
reasons that this approach is such attractive. Firstly, it results in a simple summary
measure for the study population, namely the rate difference that can easily be
transferred to other popular measures such as the number needed to treat [15].
Secondly, this approach also includes a success criterion for the patient. Thus,
responder analyses combine two levels of relevance and result in measures with
an easy interpretation for the physician and the patient.

The probabilistic index is an alternative measure for capturing the clinical
relevance of treatment effects. This approach shows the above mentioned desirable
properties of responder analyses but avoids their disadvantages, namely dichoto-
mization (which is frequently done at arbitrarily chosen cut points) and the inherent
loss of information. This effect measure is defined as � D P .XT > XR/ C
0:5 � P .XT D XR/, where Xi ; i D T;R, denotes the random outcome under
treatment i . For continuous outcomes the probabilistic index is thus given by
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� D P .XT > XR/ and gives just the probability that a patient treated with the test
treatment achieves a more favorable result than a patient treated with the reference.
As for the dichotomization approach, this is a simple summary measure for the study
population which is based on a success criterion for the individual patient. However,
other than for responder analyses, the patient-based criterion is defined in terms of
a direct comparison of treatments under investigation.

Another difference to responder analysis is that this approach allows a
straightforward connection of the assessment of statistical and clinical relevance.
This is possible due to the one-to-one relationship between the p-value of
the significance test and the observed value of the probabilistic index. For
example, Browne [1] pointed out for normally distributed data that O� D
˚
hp
1=n � T �1

2.n�1/ .1 � p/
i
, where p denotes the observed one-sided p-value

of the two-sample t-test performed with sample size per group n, and T �1
df .�/ the

� -percentile of the central t-distribution with df degrees of freedom. A rule for
statistical significance (“p-value below a defined threshold”) thus directly matches
to a rule for clinical relevance (“observed value for probabilistic index above a
defined threshold”).

A further advantage of the probabilistic index as compared to responder analyses
is that the former does not dichotomize the data by an (arbitrary) cut point but uses
the complete shape of the underlying distribution. It can be expected that this leads
to higher power or lower required sample sizes, respectively. In [24] the relationship
between the observed probabilistic index and the p-value was used to derive
formulae for the sample size required for the assessment of clinical relevance based
on the probabilistic index in case of normally distributed data. Similar expressions
can easily be derived also for other kinds of data, as, for example, censored survival
data [19]. These formulae can be used to address the topic of relevance assessment
already in the planning phase when defining the relevance threshold and when
calculating the required sample size. An example is shown in Fig. 11.3.

We consider again the situation of a normally distributed outcome and a
standardized treatment effect of 
=
 D 0:6 where for the responder analysis
dichotomization is performed at the cut point leading to the maximum difference
in responder rates. The threshold used for the probabilistic index (# D 0:6) relates
to a threshold # D 2 �0:6�1:0 D 0:2 for the observed difference in responder rates.
It can be seen from Fig. 11.3 that the sample size required for the simultaneous
assessment of statistical significance and clinical relevance based on a responder
analysis is mainly driven by the sample size required to fulfill the relevance criterion.
Furthermore, this sample size is considerably higher than that required for statistical
significance. In contrast, when assessing clinical relevance by using the probabilistic
index, the required sample size is, if at all, only moderately higher than for the
significance test. As a consequence, the required sample size for the simultaneous
assessment of statistical significance and clinical relevance is much smaller when
using the probabilistic index as an effect measure instead of the difference in
responder rates.
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Proper statistical inference requires valid methods for point estimation and
construction of confidence intervals for the applied effect measure. For arbitrary
distributions the Mann-Whitney test statistics provides an unbiased and consistent
estimator of the probabilistic index [2]. Furthermore, point estimators that share
these properties can be derived for randomized trials where an adjustment for
baseline covariates is performed [33] as well as for randomly censored data [27].
Newcombe [29,30] presented and evaluated various methods for the construction of
confidence intervals for the probabilistic index.

Another favorable characteristic of the probabilistic index lies in the fact that
it is a general concept that includes commonly used effect measures as special
cases. For example, for normally distributed data � is just a transformation of the

standardized difference (� D ˚
�

1p
2

� 






, where 
 is the common population

standard deviation), for binary endpoints it is directly related to the rate difference
(� D 0:5C 0:5 � .pT � pR/, where pi ; i D T;R; denotes the rate in group i ), and
for survival data it has a simple relationship to the hazard ratio (� D HR=.1C HR/,
where HR denotes the hazard ratio [3]). A common interpretation of treatment
effects measured on a variety of scale levels is certainly a worthwhile characteristic
facilitating the communication of trial results.
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11.4 Example

In an open-label randomized controlled trial, Okun et al. [31] investigated the effects
of constant-current deep brain stimulation in patients with Parkinson’s disease.
Primary outcome was the change from pre-implantation to 3 months after surgery
in duration of time without bothersome dyskinesia. Assuming normal distribution,
a common standard deviation of 
 D 4:9h, a difference between treatment groups
of 
 D 3h and an allocation ratio of 3 W 1, a total of 116 .D 87C 29/ patients was
calculated to achieve a power of 0:80 for the test for statistical significance (t-test,
˛ D 0:025, one-sided). If a test for relevant superiority at the same significance level
and a relevance threshold of #rs D 1:5h (2h) was employed instead, the required
total sample size would be approximately fourfold (ninefold).

The secondary analysis of the trial included a responder analysis where the
cut point of c D 2h was chosen for the primary variable to define a treatment
response. It should be mentioned that this cut point was denoted by the authors
as “arbitrarily defined” [31]. For illustrative purposes, we assume that clinical
relevance is demonstrated by the responder analysis if the observed difference
in responder rates lies above the threshold #r D 0:2. Under the above plan-
ning assumptions, the difference in responder rates in the population amounts to

r D ˚.c=
/ � ˚ ..c �
/=
/ D 0:239. Applying the methods presented in [26],
the power to observe a difference in responder rates of at least 0:2 can be calculated
to be 0:649, and a total of 564 .D 423 C 141/ patients are required to achieve a
power of 0:80. For the simultaneous proof of statistical significance and clinical
relevance based on the responder approach, the power is 0:622 for a sample size
of 116 patients, and the 564 patients calculated above assure a power of 0:80. Note
that there is a sharp increase in required sample size when increasing the value of
the desired power as the threshold #r D 0:2 is quite close to the actual difference in
responder rates 
r D 0:239.

Let us now assume that we base the assessment of clinical relevance on the
observed probabilistic index. The threshold #r D 0:2 for the difference in responder
rates translates to a boundary for the probabilistic index of #pi D 0:5 � .1C 0:2/ D
0:6 (see, for example, [2]). The power to observe a probabilistic index of at least
0:6 for a total of 116 patients amounts to 0:882. As the power for the proof
of both statistical significance and clinical relevance is the minimum of the two
power values, this sample size also assures a power of 0:80 for this criterion. All
computations presented in this book chapter can be performed with any statistical
software that includes the probability function of the bivariate standard normal
distribution.

11.5 Discussion

The purpose of this contribution was to present statistical methods and effect
measures for the assessment of the clinical relevance of treatment effects and
to evaluate their characteristics. When choosing whether relevance assessment
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should be performed based on the observed effect or on the lower bound of
the confidence interval, one has to weigh the aspects of selecting an appropriate
relevance threshold, the desired amount of protection against a type I error, and the
required (and feasible) sample size. While the test for relevant superiority requires a
considerably higher sample size when applying the same relevance threshold, it can
lead to similar or only moderately higher sample sizes when the relevance threshold
is relaxed. Vice versa, increasing the significance level by basing the judgment
on the observed effect may be counterbalanced by applying a stricter relevance
criterion. It may be worthwhile to consider approaches that apply a significance
level between the two extremes ˛ D 0:025 and ˛ D 0:50. By this, a reasonable
compromise between the antagonistic requirements of applying a strict relevance
criterion and assuring a low type I error rate while at the same time using practicable
sample sizes may be achieved.

Responder analyses are based on success rates derived from originally
continuous outcomes. This provides a simple measure that is informative both
for physicians and patients. However, if the cut point used for dichotomization is
not widely accepted in the scientific community, its choice is somehow arbitrary.
Furthermore, dichotomization may lead to a loss in power and information. The
latter two disadvantages of responder analyses are overcome by the probabilistic
index while saving their advantages. The probabilistic index is a general concept that
provides the same interpretation for any kind of data and that allows an assessment
of statistical and clinical relevance on the same scale.

In summary, in situations where a commonly accepted cut point for
dichotomizing a continuous variable is available clinical relevance may be assessed
by use of responder analyses. In all other situations, application of the probabilistic
index seems to be beneficial due to the many advantages this effect measure offers.
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Chapter 12
Statistical Considerations in the Use
of Composite Endpoints in Time to Event
Analyses

Richard J. Cook and Ker-Ai Lee

Abstract Many disease processes are complex and impact functional ability and
quality of life of affected individuals in a multitude of ways. Diseases such as
diabetes, lupus and other autoimmune disorders, for example, involve several
different organ systems, which makes it challenging to select one specific endpoint.
In other settings a disease puts affected individuals at risk of several different types
of undesirable clinical events. This is the case in cardiovascular disease where
individuals are at increased risk of myocardial infarction, angina, or stroke. In such
settings it is common for clinical trialists to adopt composite endpoints on which
to base treatment comparisons. We discuss issues in the use of composite endpoints
and emphasize the difficulty in interpreting measures of effect.

12.1 Introduction

12.1.1 Clinical Settings Involving Multiple Endpoints

Disease processes are often complex and put individuals at risk for a wide range of
clinically important events. When one type of event is of greater clinical importance
than others, it can be chosen as the basis of the primary treatment comparison and
hence play a central role in the trial design. Statistical analyses are then relatively
straightforward and the effects of treatment on other endpoints can be assessed
through secondary analyses. How best to select such a primary endpoint is, however,
often not clear. We describe three settings involving multiple events.

Scenario I. Events have Similar Manifestation but Different Etiology Patients
with asthma experience exacerbations of symptoms which significantly impact
morbidity and quality of life, as well as incur considerable expense to the healthcare
system. Trials of experimental prophylactic treatments often take the time of
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the first exacerbation after randomization as the endpoint of interest. Cellular
analysis of sputum samples obtained during an exacerbation reveal the nature of
the inflammatory process leading to the exacerbation and exacerbations can be
classified as neutrophilic or eosinophilic in nature [11]. A given treatment may be
more effective at preventing one type of exacerbation than another, but prevention
of all exacerbations is of primary concern since they generally have the same impact
on patients.

Scenario II. Events have Different Manifestation but Similar Etiology In
trials of paediatric immunology, malnourished children in developing countries
are at increased risk of infection, but many different organ systems can become
infected [21]. Data on the time of onset and resolution of different infections
can be collected over a period of observation and interest may lie in comparing
the incidences of infection between one or more groups and interest may lie in
comparing the incidences of infection between treatment groups.

Scenario III. Events are of Different Importance In trials of palliative therapies
in cancer, interest may lie in demonstrating a new treatment is effective in preventing
a non-fatal morbidity event which decreases quality of life or functional ability.
In cancer metastatic to bone, patients are at risk of fractures which are associated
with pain and disability, but they remain at high risk of death due to the advanced
disease [18].

These three scenarios differ in the role of the various types of events. In
Scenario I the different types of exacerbations have a similar consequence to
patients and the exploration of the treatment effect according to the nature of
the exacerbation is of secondary importance. From a patient perspective if the
impact on morbidity and quality of life is the same for the different types of
exacerbations, the physiological nature of the inflammatory response matters little.
In Scenario II, the events are reflective of the state of an underlying condition,
the strength of the immune system of the child. The occurrence of any infection
is more likely with poorer immune function, and it is the immune function that
the intervention is directed at improving. However, the different types of infection
lead to quite different physical manifestations and risks. Infectious diarrhea can
be fatal if not successfully treated and accounts for millions of deaths worldwide.
Upper respiratory tract infections typically have serious but milder manifestations.
Estimation of treatment effects on different types of infections are necessary in
this setting to understand the consequences of any health policy decisions. Similar
situations arise in diabetes trials where interventions may aim to improve glucose
control but clinically important long-term endpoints may be based on measures of
retinopathy and nephropathy [1]. In Scenario III, interest lies in the prevention of
the non-fatal event impacting the morbidity of the patient. Death is an obviously
undesirable event but treatment is not expected to impact risk of death.
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12.1.2 Statistical Issues in the Analysis of Multiple Events

When different types of events are of comparable importance, but separate
inferences about treatment effects are desired, co-primary endpoints can be
specified. Use of co-primary endpoints, however, typically requires control
of the experimental type I error rate through use of multiple comparison
procedures [4, 27, 29]. Sample size requirements are often high in such designs
due to the allocation of the type I error across the hypothesis tests for the individual
endpoints. Moreover decision making following completion of the trial can be
more complex if results are not in accord. Another strategy is to use global tests
of treatment effects using methods that synthesis evidence of effect across separate
analyses of the different events. Such methods are typically based on multivariate
analyses [26, 32] which furnish estimates of treatment effects for the individual
endpoints.

Perhaps the most common approach is to adopt a composite endpoint [7, 12].
A composite endpoint is said to have occurred when any one of a set of component
endpoints occurs, and the time of the composite endpoint is the time of the first of
its component endpoints. There are several reasons investigators may consider the
use of composite endpoints in clinical trials. In studies involving a time-to-event
analysis, the use of a composite endpoint will mean that more events will be
observed than would be for any particular component. If the same clinically
important effect is specified for the composite endpoint and one of its components,
this increased event rate will translate into greater power for tests of treatment
effects; at the design stage a reduction in the required number of subjects or duration
of follow-up [7, 16, 24]. This rationale presumes that the same minimal clinically
important effect applies for the composite endpoint and the component endpoint
of interest. Composite endpoints are routinely adopted through the introduction of
one or more less serious events, which presumably warrants changing the clinically
important effect of interest. Moreover we show later that with models featuring a
high degree of structure, model assumptions may not even be compatible for the
composite endpoint and one of its components.

Recommendations are available in the literature on how to design trials, analyse
resultant data, and report findings when composite endpoints are to be used [8,
16, 24, 25]. The main recommendations include that (1) individual components
should have similar frequency of occurrence, (2) the treatment should have a similar
effect on all components, (3) individual components should have similar importance
to patients, (4) data from all components should be collected until the end of
trial, and (5) individual components should be analysed and reported separately
as secondary endpoints. The first three recommendations have face validity and
seem geared towards helping ensure that conclusions regarding treatment effects on
the composite endpoint have some relation to treatment effects on the component
endpoints, thus helping in the interpretation of results. The collection of data on the
occurrence of the component endpoints until the end of the trial facilitates separate
assessment of treatment effects on each of the component endpoints. This means the
consistency of findings across components can be empirically assessed.
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The aforementioned issues have been actively debated in the medical litera-
ture [5, 14, 23–25]. In this chapter we discuss statistical considerations related to
composite endpoint analyses and use the recommendations to guide the inves-
tigation. Since proportional hazards regression models are routinely adopted for
the analysis of composite endpoints in clinical trials [8], we consider them here
and point out important issues regarding model specification and interpretation.
We formulate multivariate failure time models with proportional hazards for the
marginal distributions which may be used to reflect the settings where composite
endpoints are most reasonable according to the current guidelines. We study the
asymptotic and empirical properties of estimators arising from a composite endpoint
analysis. We also explore the utility of marginal methods based on multivariate
failure time data [32]. We argue that the belief that composite endpoints provide
an overall measure of the effect of treatment is overly simplistic, and a thoughtful
interpretation of intervention effects based on composite endpoints alone is difficult.
Their use as a primary basis for treatment comparison in clinical trials therefore
warrants careful consideration.

12.2 Composite Endpoints in the Absence of Competing
Risks

12.2.1 Notation and Modeling Issues

We first consider the case of two types of events in the context of a parallel group
randomized trial. Let Z D 1 for patients in the experimental arm and Z D 0

otherwise, T1 denote the time of an event of type 1, and T2 denote the time of an
event of type 2. Figure 12.1 contains timeline diagrams for six individuals indicating
the occurrence of a type 1 (closed circle) event, a type 2 (open circle) event, and
a censoring time (vertical dash). A time to event analysis for the type 1 event
would based on four observed and two censored event times, and for the type 2
event there would be two observed and four censored event times. A composite
endpoint analysis would involve five observed failure times and only one censored
time corresponding to individual 3.

Let

hk.t jzI �k/ D lim

t#0

P.t � Tk < t C
t jt � Tk; z/


t
(12.1)

denote the hazard for a type k event given Z D z. Under a proportional hazards
model

hk.t jzI �k/ D h0k.t I˛k/ exp.ˇkz/ ; (12.2)



12 Composite Endpoints in Time to Event Analyses 213

Fig. 12.1 Timeline diagrams
indicating the occurrence of a
type 1 (closed circle) and type
2 (open circle) event and
censoring for a sample of six
individuals
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where ˛k indexes the baseline hazard function and ˇk reflects the effect of treatment
on the type k events; �k D .˛0

k; ˇk/
0 and we let � D .� 0

1; �
0
2/

0. The marginal survivor
function for a type k event is then given by

P.Tk � t jzI �k/ D Fk.t jzI �k/ D exp

�
�
Z t

0

hk.ujzI �k/ du

�
;

for k D 1; 2.
For preliminary reflections we suppose that the times are independent given an

assigned treatment. If T1 ? T2jZ, then the failure time of the composite endpoint is
T D min.T1; T2/, and the corresponding survivor function is

P.T � t jzI �/ D F .t jzI �/ D exp

�
�
Z t

0

.h1.ujzI �1/C h2.ujzI �2// du

�
:

At time u, the hazard ratio for T is then

w.u/ exp.ˇ1/C .1 � w.u// exp.ˇ2/ ; (12.3)

where w.u/ D h01.u/=.h01.u/Ch02.u//, which is in general a function of time. The
marginal event times satisfy the proportional hazards assumption, the composite
endpoint does not satisfy the proportional hazards assumption unless one or both of
the following conditions are satisfied.

Condition I The treatment effects are common (i.e. ˇ1 D ˇ2 D ˇ);
Condition II The baseline hazards are proportional (i.e. h02.t/ D c�h01.t/, c � 0).

Under Condition I, (12.3) reduces to exp.ˇ/, the common hazard ratio, and under
Condition II, w.u/ D .cC1/�1 and (12.3) becomes .exp.ˇ1/Cc �exp.ˇ2//=.1Cc/.

It is of course more realistic to assume there exists a dependence between the
event times given treatment. There are several ways of formulating joint models
for multivariate failure times, but models based on copula functions [20] are most
appealing since they enable one to link two marginal failure time distributions
of any form to create a joint survival function. If Uk � UNIF.0; 1/, k D 1; 2,
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any bivariate cumulative distribution function for .U1; U2/, denoted C.u1; u2I�/ D
P.U1 � u1; U2 � u2I�/, is a copula function. The association between the two
components can be characterized by Kendall’s � . If we let U1 D F1.T1jzI �1/ and
U2 D F2.T2jzI �2/, then Uk � UNIF.0; 1/, k D 1; 2. A joint survivor function for
T1; T2jZ is obtained as

P.T1 � t1; T2 � t2jzI˝/ D F12.t1; t2jzI˝/ (12.4)

D C.F1.t1jzI �1/;F2.t2jzI �2/I�/ ;

where ˝ D .� 0; �/0. Since Kendall’s � is invariant to monotonic increasing
or decreasing transformations [17], it can also be interpreted as a measure of
association of the transformed variables .T1; T2/0 given Z.

In this model, the random variable T D min.T1; T2/ has survival, density and
hazard function conditional on z, given by

P.T � t jzI˝/ D F .t jzI˝/ D F12.t; t jzI˝/ ; (12.5)

f .t jzI˝/ D �dF .t jzI˝/=dt and h.t jzI˝/ D f .t jzI˝/=F .t jzI˝/, respectively.
A key point here is that the hazard ratio h.t jz D 1I˝/=h.t jz D 0I˝/ is not
independent of time, in general, even when Conditions I and II are satisfied.
As a result, even if the marginal distributions feature the proportional hazards
assumption, the model for the composite endpoint will typically not.

Wu and Cook [33] found that there is generally an incompatibility between
the marginal models and the composite endpoint model even if h02.t/ / h01.t/

or the marginal effects of treatment are the same (i.e. ˇ1 D ˇ2). That is, if the
component endpoints feature the proportional hazards structure, the Cox model for
the composite endpoint is typically misspecified because the proportional hazards
assumption does not in general hold. The estimator of treatment effect under
such a misspecified Cox model for the composite endpoint typically may have
a conservative or anti-conservative limiting value. The factors that influence the
limiting value include the specific copula function linking the component events, the
strength of the association between the individual component events, the stochastic
ordering of the individual components, and the degree and nature of the censoring
process. These factors are relevant when the treatment effect is common across the
component endpoints. When the treatment effect varies across component endpoints
it becomes even more difficult to interpret estimates.

The marginal approach of Wei, Lin, and Weissfeld [32] for analysing multivariate
failure time data has considerable appeal in this setting. This approach is based on
formulating ordinary Cox models for each component event to obtain component-
specific estimates of treatment effect, so it is compatible with the way we have
formulated the joint distributions using copula functions. Estimation proceeds
under a working independence assumption, as often adopted for analyses based on
generalized estimating equations [22].
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In what follows we again assume there are two events of interest. We suppose
analysis is to be based on a sample of m independent individuals labelled i D
1; : : : ; m. We let dNik.s/ D I.Tik D s/ indicate that a type k event experienced
by individual i at time s, and let fNik.s/; 0 < sg, k D 1; 2 and fNi.s/ D
.Ni1.s/; Ni2.s//; 0 < sg denote the univariate and bivariate counting process for
individual i , i D 1; : : : ; m, respectively. If Ci is a right censoring time, let
Yi.s/ D I.s � Ci/, Yik.s/ D I.s � Tik/, and NYik.s/ D Yi.s/Yik.s/, k D 1; 2,
i D 1; : : : ; m. Under a Wei-Lin-Weissfeld approach for bivariate event times, the
Cox model for a type k event is given by (12.2) and the corresponding score function
for ˇk is

Uk.ˇk/ D
mX

iD1

Z 1

0

NYik.u/

 
Zi � S

.1/

k .ˇk; u/

S
.0/

k .ˇk; u/

!
dNik.u/ ; (12.6)

where S.1/k .ˇ; u/ D Pm
iD1 NYik.u/Zr

i expfˇkZi g, r D 0; 1.
Under the copula model (12.6) the marginal distributions retain the proportional

hazards structure, and so the solution to the score equation (12.6), Ǒ
k , is consistent

for the true marginal treatment effect ˇk , k D 1; 2. If Ǒ D . Ǒ
1; Ǒ

2/
0 is the estimate

of ˇ D .ˇ1; ˇ2/
0 obtained under the working independence assumption, Wei, Lin,

and Weissfeld [32] show that
p
m. Ǒ � ˇ/ converges in distribution to a multivariate

normal distribution with a zero-mean vector and covariance matrix V.ˇ/ and they
provide the form of a consistent sandwich-type estimate of V.ˇ/. A global estimate
of the treatment effect is justified under the assumption ˇ1 D ˇ2 D ˇ and is a
weighted combination of the component-specific estimates Ǒ

1 and Ǒ
2. If OV. Ǒ / is

the empirical estimate of the covariance matrix of Ǒ and J D .1; 1/0, then we take
OŇ D C0 Ǒ , where the weight C D Œ OV. Ǒ /��1 OJŒOJ0Œ OV. Ǒ /��1 OJ��1 is chosen to correspond

to the estimator with the minimize variance among all linear estimators.
A key distinction between the global approach of Wei, Lin, and Weissfeld [32]

and the composite endpoint approach is that the former makes use of all observed
events whereas the composite endpoint uses only information on the first event.
There may also be gains in power as a result of this if model assumptions are correct.

12.2.2 Application to an Asthma Trial

We now apply both the composite endpoint analysis and the global approach to
an asthma management study [19]. This is a two-phase, multicenter, randomized,
parallel group effectiveness trial for comparing two treatment strategies for asthma
management over a 2-year period. The control strategy is a “clinical strategy” (CS),
in which the treatment was guided based on patient symptoms and spirometry
readings. The experimental strategy is a so-called “sputum strategy” (SS), whereby
a cellular analysis of sputum samples was used to guide cortricosteroid therapy use
to keep eosinophils cell counts less than 2 %. In phase I, a total of 107 patients
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Fig. 12.2 Empirical distribution functions for mild exacerbations, severe exacerbations and the
composite endpoint in asthma trial

were identified through the minimum treatment to maintain control. The aim of this
asthma study was to investigate whether SS is more effective than CS on reducing
the number and severity of exacerbations in phase II.

In our analysis we focus on two types of exacerbations: mild exacerbations
defined as requiring a daily maintenance dose of fluticasone of <250�g, and
severe exacerbations defined here as requiring a minimum daily maintenance dose
of �250�g. The composite endpoint is defined as the time to the first of the two
type of exacerbations. Figure 12.2 displays the empirical distribution function plots
for the two component types of exacerbations and for the composite endpoint. It
is apparent that the severe exacerbations occur much more frequently than mild
exacerbations, and thus represent the majority of the events contributing to the
composite endpoint.

Table 12.1 presents the results of the proportional hazards regression analysis in
which the single binary covariate is the treatment indicator taking the value one for
patients in the experimental (SS) group and zero otherwise. From these results it
is clear that the experimental SS strategy leads to a significantly lower hazard of
severe exacerbations with a relative risk reduction (1-RR) of 0.47 (95 % CI: 0.01,
0.71; p D 0:047), but has little effect on the occurrence of mild exacerbations
(p D 0:247). The result from the composite endpoint analysis is not statistically
significant with p D 0:137. The last column of Table 12.1 gives the p-values
for testing the proportional hazards assumption using univariate tests based on
Schoenfeld residuals. There is insufficient evidence to reject the null hypothesis of
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Table 12.1 Analysis results
of the asthma management
study [19]; RR denotes
relative risk defined by the
ratio of hazards

Endpoint/analysis RR 95 % CI p-valuea p-valueb

Mild 2:07 (0.60, 7.06) 0:247 0:114

Severe 0:53 (0.29, 0.99) 0:047 0:220

Composite 0:66 (0.39, 1.14) 0:137 0:063

Global (WLW) 0:70 (0.40, 1.22) 0:209

a Wald test of the null hypothesis that regression coefficients
are zero
b p-value for test of the proportional hazards assumption [31]

proportional hazards for each component, and the test yields a p�value just shy of
statistical significance for the composite endpoint analysis at 0.063. Thus, while we
have demonstrated that, in principle, if the proportional hazards assumption holds
for the components of a composite endpoint, it generally does not hold for composite
endpoint itself, the tests do not suggest problems with model fit for this particular
data.

12.3 Composite Endpoints with Semi-competing Risks

12.3.1 Notation and Description of the Setting

In palliative trials in oncology, patients with bone metastases are at risk of skeletal
complications including vertebral and non-vertebral fractures, bone pain, and need
for surgery to repair bone [18]. The study population is at high risk of death given
presence of metastatic disease. We consider trials directed at assessing therapeutic
interventions to prevent clinical or disease-related non-fatal events in populations at
high risk of death. In this, and many similar settings, while interest lies in assessing
whether a new treatment is effective in preventing non-fatal events, death is an
important outcome which affects the information we can collect on the event of
interest.

Individuals are randomized in state 0 and are at risk of a transition to state 1
(corresponding to event occurrence) or state 2 (corresponding to death); following
event occurrence individuals can of course make a transition to the death state. In
this setting individuals are at risk of a non-fatal event but they may die without
experiencing this event, or after experiencing the event. The term “semi-competing
risk” is used to describe this setting because one event (usually death) precludes the
future occurrence of the other event, but the reverse is not true [34].

There are two broad settings where this multistate figure applies. In one scenario,
interest lies primarily in evaluating the effect of a treatment on the prevention of a
non-fatal event. This is the case in studies of palliative interventions in patients
with advanced cancer where treatments are directed at reducing pain-related events,
maintaining functional ability by preventing debilitating events. Here treatment may
be envisioned to have an effect on the non-fatal event and a traditional competing
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risk analysis is warranted as we describe in the next subsection. In the second
scenario, primary interest may lie in overall survival (i.e. time to entry into state
2). This arises in cancer and cardiovascular trials, for example, when evaluating
new treatments for improvement in survival. In such settings if the mortality rate is
low, a composite endpoint of event-free survival is often adopted. In oncology, for
example, it is common to adopt progression-free survival as a composite endpoint.
In cardiovascular disease trials similar composites such as hospitalization-free
survival may be used.

12.3.2 Assessing Treatments on Non-fatal Events

Here we consider a trial aiming to evaluate the effect of an experimental treatment
on the prevention of a single non-fatal event in a population at high risk of death.
Figure 12.3 contains a multistate figure for an illness-death process reflecting the
possible occurrence of the event and death. If Ti1 denote the time of transition from
state 0 to state 1 and let Ti2 denote the time of transition from state 0 to state 2
(death). We let qk.t jzi / denote the cause-specific hazard defined by

qk.t jzi / D lim

t#0

P.t � Ti < t C
t;Rik D 1jt � Ti ; zi /


t
; (12.7)

where Ti D min.Ti1; Ti2/ andRik D I.Tik < Ti;3�k/ indicates which event occurred
first. It is customary to adopt a cause-specific proportional hazards model and so we
often set qk.t jz/ D q0k.t/ exp.ˇkz/, k D 1; 2, and let Qk.t jz/ D R t

0
qk.ujz/du and

Q0k.t/ D R t
0
q0k.u/du, and denote the full vector of parameters for type k events by

�k D .q0k.�/; ˇ0
k/

0 and let � D .� 0
1; �

0
2/

0.
Let Ti D min.Ti1; Ti2/ and Y �i .s/ D I.s � Ti / indicate that individual i is at

risk of transition out of state 0 at time s. If Ci is the censoring time for individual i ,
Yi.s/ D I.s � Ci/, and we let NYi .s/ D Yi .s/Y

�
i .s/ indicate that individual i is both

under observation and at risk of a transition out of state 0. The likelihood function
based on a competing risk model for the first event is then

ALIVE, EVENT− FREE

STATE  0

DEATH

STATE  2

EVENT

STATE  1

q01(t z)

q 02 (t | |

|

z) q12 (t t1, z)

Fig. 12.3 Illness-death diagram characterizing the joint occurrence of a non-fatal and fatal event
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L.�/ / L1.�1/L2.�2/ : (12.8)

We maximize L.�/ by separately maximizing Lk.�k/ for k D 1; 2, where

logLk.�k/ D
mX

iD1

Z 1

0

�
NYi .u/dNik.u/ log dQk.ujzi / �

Z 1

0

NYi .u/dQk.ujzi /
�
;

(12.9)

k D 1; 2 and obtain consistent estimates [9].
The fact that the likelihood factors in (12.8) means that estimation of ˇ1 is

carried out by effectively censoring individuals at the time of death if they have
not experienced the event of interest. This is viewed as unappealing to many since
death is the most serious event that can occur and it is generally viewed as poor
practise to selectively censor individuals based on event arising post-randomization.
The multistate model in Fig. 12.3 is an accurate reflection of the possible outcomes
in individuals and this approach to the analysis is well-justified. Such analyses are
best presented, however, along with the results of analyses directed at assessing the
treatment effect on survival in order to provide a complete representation of the data.

The aforementioned reservations about competing risk analyses, however, has
prompted investigators to adopt a composite endpoint based on the minimum time
to the non-fatal event and death [8, 13] even though type I events are of real
interest. This strategy leads to an “event-free survival” analysis which is particularly
common in cancer where progression-free survival is routinely adopted as a primary
endpoint [30]. A concern with this approach is that in palliative trials, treatments
under study may not be expected to affect survival times, and if a non-negligible
proportion of individuals die before experiencing the clinical event of interest, this
analysis can lead to a serious attenuation of the estimator of treatment effect [10,16].
The extent of the attenuation depends on the probability that the first event is the
non-fatal event (i.e. a 0 ! 1 transition occurs rather than a 0 ! 2 transition in
Fig. 12.3). The cumulative incidence function of a 0 ! k transition in the control
arm is

Fk.t jZ D 0/DP.T < t;Rk D 1jZ D 0/D
Z t

0

dQ0k.u/ exp.�ŒQ01.u/CQ02.u/�/ ;

(12.10)

and the cumulative probability of either event occurring by time t is

F.t jZ D 0/ D P.T < t jZ D 0/ D 1 � exp.�ŒQ01.t/CQ02.t/�/ : (12.11)

As an illustration, suppose q01.t/ D �1�1.�1t/
�1�1 and q02.t/ D �2, where �k >

0, k D 1; 2 and �1 > 0. Suppose we plan a trial with follow-up over the interval
Œ0; 1�. We may set �1 to any value to reflect a trend in the hazard for type 1 events. We
set F.1jZ D 0/ D p where p D 0:40 or 0:80 and let F1.1jZ D 0/=F.1jZ D 0/ D
p1 where p1 D 0:25; 0:50 and 0:75. Finally we set ˇ1 D log.0:5/ to correspond
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Fig. 12.4 Plots of hazard ratio for the composite event-free survival analysis based on T jZ

to a large treatment effect on the reduction in the intensity of type 1 events, and
ˇ2 D 0 to reflect no effect on survival. Figure 12.4 gives plots of the hazard ratio
for the composite event with T D min.T1; T2/ for Z D 1 vs. Z D 0, for each
parameter configuration with �1 D 0:5 and 2. Here it can be seen that the hazard
ratio varies considerably with time and that at any given time the ratio is more than
0.50, the value specified for the intensity of the non-fatal event. This reveals the
fact that an event-free survival analysis will tend to yield conservative estimates of
the effect of treatment on intermediate events if the intervention is not expected to
improve survival. This point is illustrated empirically in the example of Sect. 12.3.4.

12.3.3 Composite Endpoints When Interest Lies in Survival

We focus on the second scenario discussed earlier where interest really lies in the
effect of treatment on survival but where the non-fatal event was incorporated into
a composite endpoint. This is often the case in cancer trials when interest lies
in showing that a treatment can prolong survival but progression is incorporated
as a component in a progression-free survival endpoint. There has been much
discussion in the literature about the interpretation of findings based on survival,
progression-free survival and progression endpoints, and in particular the challenges
in reconciling the findings when the conclusions about an experimental intervention
differ [2, 6, 15].
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To address this scenario we must more completely define the process in Fig. 12.3.
We let V.s/ be the state occupied at time s and let

q12.t jt1; z/ D lim

t#0

P.V .t C
t�/ D 2jV.t�/ D 1; t1; z/


t
;

denote the 1 ! 2 transition intensity. Under a Markov model this intensity depends
only on the state occupied and the time, so q12.t jt1; z/ D q12.t jz/. In contrast,
under a semi-Markov model, q12.t jt1; z/ D q12.B.t/jz/ where B.t/ D t � t1 is
the time since entry to state 1. In the context of cancer trials time might measured
as time since randomization and we adopt a Markov model with q12.t jz/ D
q0;12.t/ exp.ˇ12z/.

In this scenario interest lies in examining the effect of an intervention on the
survival distribution. In fact in cancer trials, primary interest is in survival (entry
time to state 2, regardless of path) but progression is often added to form a composite
endpoint T D min.T1; T2/ to increase the number of events and hence increase
power (this is predicated on the assumption that the treatment effect is the same for
the composite endpoint progression-free survival as it is for survival). The hazard
for death can be obtained from the three-state model in special circumstances. Under
the assumption of constant transition intensities we can compute the transition
probability matrix P.0; t jz/ with .j; k/ entry.

The transition intensity matrix for the three state process under a Markov
assumption is

dQ.t jz/ D
2

4
�dQ01.t jz/ � dQ02.t jz/ dQ01.t jz/ dQ02.t jz/

0 �dQ12.t jz/ dQ12.t jz/
0 0 0

3

5 :

If we let
Y

.s;t �

denote product integration over the interval .s; t �, then

P.s; t jz/ D
Y

.s;t �

fI C dQ.ujz/g ;

is the transition probability matrix [3] where I is a 3�3 identity matrix. This matrix
has Œj; k� entry of P.s; t jz/ is Pjk.s; t jz/ D P.V.t/ D kjV.s/ D j; z/ where s and
t (s < t) are two specified times; we write P.0; t jz/ D P.t jz/ and Pjk.0; t jz/ D
Pjk.t jz/. The functions P02.t jz D 0/ and P02.t jz D 1/ of P.t jz/ are the cumulative
distribution functions for death for control and treated individuals, respectively.
From this we can obtain the hazard functions hD.t jz/ D �d log.1 � P02.t jz//=dt,
z D 0; 1. The hazard ratio is then

hD.t jz D 1/

hD.t jz D 0/
D exp .�d log.1 � P02.t jz D 1//=dt Cd log.1 � P02.t jz D 0//=dt/ ;
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which again does not satisfy the proportional hazards form in general. The point is
that the models we may examine in the analysis and secondary analysis of composite
events are often incompatible.

Here we can consider a setting where there is a treatment effect on the risk
of death reflected by models with q1.t jz/ D q01.t/ exp.ˇ1z/ and q12.t jz/ D
q0;12.t/ exp.ˇ12z/ with ˇ2 D ˇ12 D log 0:5 so there is a 50 % reduction in the
rate of death for individuals who have and have not experienced progression. The
association between progression and death is reflected by the relation between q01.t/
and q0;12.t/. We consider time-homogeneous transition rates with q0;12=q01 D 2:0

to reflect a doubling of the risk of death following the intermediate event, and
q01=q02 D 0:25 and 0.75 so the odds of progression are 25 % and 75 %, respectively.
Then we set ˇ1 D log 0:5 and 0 to correspond to a comparable effect of treatment
on progression and no treatment effect on progression. We consider a trial designed
with follow-up over Œ0; 1� and set q01 so that the proportion of patients dying by
the administrative end of study is EzŒP.V .1/ D 2jV.0/ D 0;Z D z/� D p where
p D 0:50 and 0.80; we also set P.Z D 1/ D 0:5. Figure 12.5 displays the hazard
ratio for a survival analysis in this setting. Here we can see considerable variation
in the hazard ratio where this variation depends critically on the relative odds of the
possible paths as well as the effect of treatment on the cause-specific hazard of the
intermediate event.
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Fig. 12.5 Hazard ratio as a function of time for a composite endpoint analysis (event-free survival)
when the events are governed by an illness-death process
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Table 12.2 Results of several time to event analyses based on the fracture and survival times [18]

Event Ǒ se( Ǒ ) RR 95 % CI p�value

Fracture �0:411 0:160 0:66 (0.48, 0.91) 0:010

Fracture-free �0:256 0:142 0:77 (0.58, 1.02) 0:072

Survival 0.084 0:256 1:09 (0.66, 1.80) 0:742
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Fig. 12.6 Plot of cumulative cause-specific hazard for fracture and cumulative hazard for the
fracture-free survival analysis

12.3.4 Application to a Cancer Trial for Event-Free Survival

Consider data from an international multicenter randomized clinical trial of 380
breast cancer patients with skeletal metastases. The skeletal metastases weaken bone
and put patients at increased risk of fractures and hence there is a need to treat
patients for the prevention of fractures. In this trial patients were randomized to
receive pamidronate or placebo medication by monthly infusions and followed over
time for the occurrence of fractures. A substantial number of patients could die
before experiencing a fracture and hence Fig. 12.3 characterizes this setting well
with the non-fatal event being fracture.

We present the results of several analyses related to these data in Table 12.2 and
Fig. 12.6. The time from randomization to fracture is the time of interest in the first
row, the time from randomization to the first fracture or death (whichever is first) is
the event in the second row, and the time from randomization to death is the time of
interest in the third row; all times are subject to right censoring. Analyses are carried
out using R version 2.14.0 [28]. The estimated hazard ratio from the cause-specific
Cox regression model for fracture reveals a significant reduction in risk of fracture
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associated with pamidronate (RR D 0:66; 95 % CI: 0.48, 0.91; p D 0:010). A
fracture-free survival analysis gives a more conservative estimated relative risk of
0.77 (95 % CI: 0.58, 1.02; p D 0:072). A cause-specific survival analysis directed
at 0 ! 2 transitions gives a relative risk 1.45 (95 % CI: 0.76, 2.75; p D 0:258)
and an overall survival analysis gives a relative risk of 1.09 (95 % CI: 0.66, 1.80;
p D 0:742).

Figure 12.6 gives a plot of the cumulative cause-specific hazard for fracture
(left panel) arising from a competing risk analysis, as well as the estimated
cumulative hazard for the fracture-free survival analysis (right panel). The fact that
the estimated cumulative hazard functions on the right are closer together reflects
the attenuation that can arise from including death in a composite endpoint when
treatment is not expected to (nor does) have an effect on it.

12.4 Discussion

We have focussed on the setting of composite endpoints which are used in the
setting of time to event data. Separate consideration was given to the setting where
mortality rates are negligible and the setting where patients are at non-negligible
risk of death where competing or semi-competing risks arise. For the latter situation
a competing risk analysis seems natural but there seems to be some resistance to
this among clinical trialists. Concerns regarding dependent censoring are unfounded
when interest lies in the effect of treatment on a non-fatal event unless one takes
the latent variable view of the competing risk problem, by which the time of the
non-fatal event is conceptualized to occur after death. The multistate diagram is
more appealing, in our view, in that it makes it clear that this is not the case. As
a result, the association between the non-fatal event time and the time of death is
not appropriate to model in terms of a correlation but rather through the intensity
functions q02.t/ and q3.t jt1; Z/ and notions of dependent censoring are moot vis a
vis the component endpoints.
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Chapter 13
Statistical Validation of Surrogate Markers
in Clinical Trials

Ariel Alonso, Geert Molenberghs, and Gerard van Breukelen

Abstract The increasing cost of drug development has raised the demand on
the use of biomarkers as surrogate endpoints for the evaluation of new drugs in
clinical trials. However, failed past attempts to use surrogate endpoints made it
clear that, before deciding on the use of a candidate surrogate endpoint, it is of
the utmost importance to investigate its validity. Such validation process has proven
challenging for conceptual and practical reasons. In the present chapter, some of
the statistical methods introduced for the evaluation of surrogate markers will be
discussed. Emphasis will be made on the so-called meta-analytic approach and its
information-theoretic version, where information from several units is combined to
carry out the validation exercise. The methods will be illustrated using a case study
in ophthalmology.

13.1 Motivations and Antecedents

Recent discoveries in medicine and biology are opening an entire range of pos-
sibilities for the development of new treatments. However, these unquestionable
achievements are also facing us with the challenge of having to evaluate a large
number of promising therapies, using increasingly complex and costly clinical
trials [2].

One of the most important factors influencing the duration and complexity of
modern clinical trials is the choice of the endpoint used to assess drug efficacy.
Actually, the most sensitive and relevant clinical endpoint, the so-called “true”
endpoint, might often be difficult to use. This can happen, for instance, if mea-
surement of the true endpoint is costly (e.g., to diagnose “cachexia”, a condition
associated with malnutrition and involving loss of muscle and fat tissue, expensive
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equipment measuring content of nitrogen, potassium and water in the patient’s body
is required); requires a long follow-up time (e.g., survival in early stage cancers);
or requires a large sample size due to a low incidence of the event (e.g., short-
term mortality in patients with suspected acute myocardial infarction). A plausible
strategy in these circumstances is the use of biomarkers for efficacy. The pursue of
this strategy has been further encouraged by recent developments in many medical
and biological fields that have considerably increased the number of promising
biomarkers for the assessment of efficacy. In addition, a growing number of new
drugs have a well-defined mechanism of action at the molecular level, allowing drug
developers to measure the effect of these drugs on the relevant biomarkers [15].

Basically, one would like to replace the problematic true endpoint by a biomarker,
which is measured earlier, more conveniently, or more frequently. From a regulatory
perspective, a biomarker is not considered an acceptable endpoint for a determina-
tion of efficacy of new drugs, unless it has been shown to function as a valid indicator
of clinical benefit, i.e., unless it is a valid surrogate marker [5].

Because of the possible benefits for the duration and cost of clinical trials,
surrogate markers have been used in medical research for a long time [12, 14].
However, in spite of all its potential advantages, the use of surrogate endpoints
in the development of new therapies has always been controversial. This may
be due to a number of unfortunate historical instances where treatments showing
a highly positive effect on a surrogate endpoint, were ultimately shown to be
detrimental to the subjects’ clinical outcome. One of such unfortunate events was the
approval by the Food and Drug Administration (FDA) in the United States of three
antiarrhythmic drugs: encainide, flecainide and moricizine, based on their efficacy to
effectively suppress arrhythmias. It was believed that, since arrhythmia is associated
with an almost fourfold increase in the rate of cardiac-complication-related death,
the drugs would also reduce the death rate. Nonetheless, a clinical trial conducted
after the drugs had been approved and introduced into clinical practice showed that,
in fact, the death rate among patients treated with encainide and flecainide was more
than twice the one among patients treated with placebo [8]. An increase of the risk
was also detected for moricizine.

Behind many of these failures in the initial use of surrogate endpoints, was the
logical but naive perception that surrogacy could be established by only evaluating
the association between the biomarker on the one hand and the corresponding true
endpoint on the other hand. Nevertheless, these failed past attempts made clear that
the mere existence of an association between a biomarker and the true endpoint
is not sufficient for using the former as a surrogate, i.e., a good correlate is not
automatically a good surrogate [14]. The recognition of this fact opened an exciting
and fruitful debate about the properties that a good surrogate should satisfy. After
more than 20 years of research, this debate is far from settled and many questions
and practical issues still need to be addressed. This notwithstanding, our level of
knowledge has been dramatically increased and plethora statistical methods are now
available for the evaluation of surrogate markers.

In Sect. 13.2 some important definitions are given. The single-trial methods and
the meta-analytic approach to the validation of surrogate markers are introduced
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in Sects. 13.3 and 13.4 respectively. Section 13.5 describes some of the issues that
emerge when the true and/or the surrogate endpoints are not normally distributed
and in Sects. 13.6 and 13.7 a unified approach based on information theory is intro-
duced. The meta-analytic approach is illustrated using a case study in Sect. 13.8 and
the implementation of this method in widely used software packages is addressed in
Sect. 13.10. Eventually, some final comments are presented in Sect. 13.11.

13.2 Some General Definitions

The terms “endpoint”, “biomarker”, and “marker” have often been interchangeably
used to refer simply to a random variable that can be measured over the course of
the disease process. Variables that are measured early in the course of the disease are
frequently suggested as potential surrogates for those that are measured later. The
following definitions, introduced by the Biomarker Definitions Working Group, are
nowadays widely accepted and adopted in the biomedical literature [4]:

• Clinical endpoint: a characteristic or variable that reflects how a patient feels,
functions, or survives;

• Biomarker: a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention;

• Surrogate endpoint: a biomarker that is intended to substitute for a clinical
endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm
or lack of benefit or harm).

It is important to point out that, although extremely useful, the previous
definitions do not include all situations one may encounter in practice. For instance,
in our case study we analyze a potential surrogate that is not a biomarker, but an
intermediate endpoint that has clinical meaning of its own. This is frequently the
case in medical fields like, for instance, oncology, where progression-free survival
is often considered as a potential surrogate for survival.

13.3 Single-Trial Methods

All earlier approaches to the validation of surrogate markers were framed in a
single-trial setting, i.e., it was assumed that information on both the surrogate (S )
and the true endpoint (T ) was available from a single clinical trial. Within this
setting Prentice introduced in 1989 the first formal definition of surrogacy. Basically,
Prentice proposed to define a surrogate endpoint as

a response variable for which a test of the null hypothesis of no relationship to the treatment
groups under comparison is also a valid test of the corresponding null hypothesis based on
the true endpoint [21].
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Symbolically, Prentice’s definition can be written

f .S jZ/ D f .S/ , f .T jZ/ D f .T / ; (13.1)

where f .X/ denotes the probability distribution of random variableX and f .X jZ/
denotes the probability distribution of X conditional on the treatment variable
Z. Note that this definition involves the triplet .T; S;Z/ and, consequently, the
endpoint S is a surrogate for T always with respect to the effect of some specific
treatmentZ. This implies that, at least in principle, if a new treatment is considered,
then the validation process would need to be repeated. Prentice and other authors
supplemented the previous definition with the following set of operational criteria
that has become known as the Prentice’s Criteria: (1) treatment has a significant
impact on the surrogate endpoint f .S jZ/ ¤ f .S/, (2) treatment has a significant
impact on the true endpoint f .T jZ/ ¤ f .T /, (3) the surrogate endpoint has a
significant impact on the true endpoint f .T jS/ ¤ f .T /, and (4) the full effect
of treatment upon the true endpoint is captured by the surrogate f .T jS;Z/ D
f .T jS/ [5].

The latter two are Prentice’s original criteria and it has been proven that the
definition and criteria are only equivalent when both the surrogate and the true
endpoints are binary [5]. Note that the first two criteria measure the departures from
the null hypothesis used in (13.1) and the third criterion implies that the surrogate
has a prognostic value for the true endpoint. Finally, the fourth criterion requires S
to fully capture the effect of treatment on the true endpoint, that is, there is no effect
of treatment on the true endpoint after correcting for the surrogate.

Freedman et al. argued that the last criterion raises conceptual problems, since it
requires the statistical test for the treatment effect on the true endpoint to be non-
significant after adjustment for the surrogate [16]. In general, the nonsignificance
of this test does not prove that the effect of treatment on the true endpoint is totally
captured by the surrogate [5, 13]. Freedman further proposed to shift the paradigm
from hypothesis testing to estimation and to calculate the so-called proportion of
treatment explained (PTE). The PTE is the proportion of the treatment effect on
the true endpoint captured by the surrogate and is defined as PTE D .ˇ � ˇS/ˇ,
where ˇ denotes the effect of the treatment on the true endpoint emanating from
f .T jZ/ and ˇS is the effect of the treatment on the true endpoint after adjusting by
the surrogate and can be calculated using f .T jS;Z/.

Note that PTE is large when ˇS is small relative to ˇ, Prentice fourth criterion
implies ˇS D 0 and therefore, if this criterion holds, PTE D 1. Freedman
suggested that a good surrogate is one for which PTE is close to one. However,
some conceptual problems also surround PTE, the most paradoxical one is that it
is not a proportion. In fact, PTE can take any value on the real line, making its
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interpretation problematic [5]. Freedman himself acknowledged that the confidence
limits for PTE will tend to be rather wide or even unbounded if Fieller’s confidence
intervals are used.

Frangakis and Rubin strongly criticized the conceptual foundation of Prentice’s
fourth criterion and the PTE [13]. They pointed out that the treatment effect on
the true endpoint used in these two procedures is obtained after conditioning on
the surrogate, i.e., a post-randomization variable and, consequently, is not a causal
effect. Further, they proposed to assess surrogacy using the so-called principal
stratification which is based on the potential outcomes model often used in causal
inference. It has been argued that this method suffers from a similar drawback as the
Prentice’s definition and criteria, in that it is too stringent and difficult to implement
in practice [27]. In addition, the intrinsically unobserved nature of the vector of
potential outcomes implies that untestable assumptions are unavoidable.

In a separate line of research, Buyse et al. showed that, for continuous and nor-
mally distributed endpoints, PTE can be decomposed in three different quantities:
the first one merely is the ratio of the surrogate and true endpoint variances and,
therefore, it only represents a scale factor, the other two are the so-called relative
effect RE and the adjusted association �Z [7]. The relative effect is defined as
RE D ˇ=˛, where ˛ is the treatment effect on the surrogate emanating from f .S jZ/
and ˇ is defined as before. Notice that, unlike Prentice’s fourth criterion and the
PTE, the treatment effects involved in RE are not adjusted by post-randomization
variables and, hence, have a direct causal interpretation. Indeed, ˛ and ˇ are simply
the average causal effects of the treatment on the surrogate and the true endpoint
respectively. The adjusted association is the correlation between the surrogate and
the true endpoint after adjusting by treatment and is defined as �Z D Corr.S; T jZ/.

The relative effect tries to enable prediction of the treatment effect on the
true endpoint based on the treatment effect on the surrogate, but to do so strong
and untestable assumptions have to be made. Essentially, in a single trial setting
one is confronted with the problem of estimating the relationship between both
average causal effects using a single observation, namely the vector of treatment
effects .˛; ˇ/. A way out of the problem is to assume that E.ˇj˛/ D RE � ˛,
i.e., the average causal effects satisfy the regression through the origin equation
ˇ D RE � ˛ C ". Regression through the origin has often been surrounded by
controversy due to the paradoxical results it can produce, like negative coefficients
of determination and negative F ratios. Even when there are theoretical reasons to
believe that the function relating the two variables of interest does pass through the
origin, regression through the origin may be problematic if the relationship between
the variables of interest is not linear in a neighborhood of zero. Moreover, if the
data at hand lie far from zero, then the assumption of linearity at this point becomes
impossible to evaluate. This lack of replication is a fundamental problem of all the
previously discussed approaches and it can only be overcome when more than one
pair .˛; ˇ/ is available for the analysis.
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13.4 Data from Several Trials: The Meta-analytic Approach

Over the years, it has become clear that the single trial setting is too restrictive
for the evaluation of surrogate markers and a general agreement has been growing
regarding the need of replication at the trial level as well. A first formal proposal
along these lines, using Bayesian methods, was given by Daniels and Hughes [11].
Buyse et al. extended these ideas using the theory of linear mixed-effects
models and Gail et al. extended it further using generalized estimating equations
methodology [7, 17]. In what follows, we describe the approach as proposed by
Buyse et al. under the assumption that both endpoints are normally distributed
and in Sects. 13.5–13.7 other types of endpoints will be addressed. To that end let
us assume that data from i D 1; : : : ; N trials are available, in the i th of which
j D 1; : : : ; ni subjects are enrolled. Further, let us denote the true and surrogate
endpoints for patient j in trial i by Tij and Sij, respectively, and the indicator
variable for the new treatment by Zij. The random treatment allocation in a clinical
trial context naturally leads to the following bivariate model

(
Tij D �Ti C ˇiZij C "T ij ;

Sij D �Si C ˛iZij C "Sij ;
(13.2)

where �Ti and �Si are trial-specific intercepts quantifying the average response in
the control group, ˇi and ˛i are trial-specific average causal effects and "T ij and
"Sij are correlated error terms, assumed to be zero-mean normally distributed with
covariance matrix

˙ D
�

TT 
TS

TS 
SS

�
; (13.3)

i.e., (13.3) denotes the within-trial covariance matrix of T and S after adjusting
by treatment and considering the patient the level of analysis. Furthermore, due to
replication at the trial level, one can decompose the trial-specific parameters in the
following way
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where the second term on the right hand side of (13.4) is assumed to follow a zero-
mean normal distribution with covariance matrix

D D
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dST dTT dTa dTb
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dSb dTb dab dbb

1

CCA : (13.5)
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Essentially, (13.5) denotes the between-trial covariance matrix of intercepts and
treatment effects on T and S , considering now trial the level of analysis. Buyse
et al. investigated how the treatment effect on the true endpoint can be predicted by
the treatment effect on the surrogate [7]. The main idea is to predict the treatment
effect on T in a new trial i D 0 based on: (a) information obtained in the validation
process using trials i D 1; : : : ; N , and (b) the estimate of the treatment effect on
S in the new trial i D 0. To this end, these authors notice that .ˇ C b0jmS0; a0/

follows a normal distribution with mean and variance

E.ˇ C b0jmS0; a0/ D ˇ C
�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
�S0 � �S
˛0 � ˛

�
; (13.6)

Var.ˇ C b0jmS0; a0/ D dbb �
�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
dSb

dab

�
: (13.7)

If the treatment effect on the surrogate conveys a lot of information about the
treatment effect on the true endpoint, then the conditional variance (13.7) will be
close to zero. In that case, there would be an almost deterministic relationship
between the treatment effects on the true and surrogate endpoint, and a very accurate
prediction of the first one would be possible if the second one has been observed.
Based on these ideas Buyse et al. proposed to assess surrogacy at the trial level using
the coefficient of determination

R2trial D R2bi jmSi ;ai
D
�
dSb

dab

�T �
dSS dSa

dSa daa

��1 �
dSb

dab

�
: (13.8)

This coefficient measures how precisely the treatment effect on the true endpoint
can be predicted, provided that the treatment effect on the surrogate endpoint has
been observed in a new trial (i D 0). It is unitless and ranges in the unit interval
if the corresponding covariance matrix D is positive-definite, two desirable features
for its interpretation.

One special case of the model given in (13.2) is the so-called reduced model,
which assumes that the intercepts, i.e. the average responses in the control group,
are constant across trials. Under this assumption, expressions (13.6) and (13.7)
reduce to

E.ˇ C b0ja0/ D ˇ C dab

daa
.˛0 � ˛/ ;

Var.ˇ C b0ja0/ D dbb � d2ab

daa
;

with corresponding

R2trial D R2bi jai D d2ab

daadbb
: (13.9)
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Similar to the logic in (13.6) and (13.7), the conditional model for ˇi given �Si

and ˛i can be written as

ˇi D �0 C �1�Si C �2˛i C "i ; (13.10)

where expressions for the coefficients .�0; �1; �2/ follow from (13.4) and (13.5). In
case the surrogate is perfect at the trial level (R2trial D 1), the error term in (13.10)
vanishes and the linear relationship becomes deterministic, implying that ˇi equals
the systematic component of (13.10).

Notice first that, unlike for the RE, the regression line (13.10) does not neces-
sarily pass through the origin. Secondly, this new approach avoids the conceptual
problems surrounding the RE, since the relationship between ˇi and ˛i is studied
across a family of units, rather than in a single unit. By virtue of replication, it is
possible to check the stated relationship for the treatment effects and, if the posited
linear relation does not hold, alternative regression functions can be considered.
Nevertheless, one has to be aware of a potentially low power to discriminate between
candidate regression functions.

At the individual level, one tries to assess how an individual’s surrogate outcome
is predictive for the true endpoint outcome. To this end, one needs to construct the
conditional distribution of T , given S and Z. From (13.2) we obtain

TijjZij; Sij � N
˚
�Ti � 
TS
�1

SS
�Si C .ˇi � 
TS


�1
SS
˛i /Zij
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SijI 
TT � 
2

TS

�1
SS

�
:

The association between both endpoints after adjustment by treatment is captured
by the coefficient of determination

R2ind D 
2
ST


SS
T T
: (13.11)

Basically, the R2ind is the squared correlation between both endpoints once we
have adjusted for treatment and trial and, therefore, it is a natural extension of
the adjusted association. Unlike the trial level surrogacy, the individual level does
not depend on the treatment and it can be interpreted as a quantification of the
biological plausibility of the surrogate. An endpoint producing a high individual
level surrogacy is always a potential surrogate, however, it may fail to be predictive
at the trial level for a specific treatment that follows a causal path that completely
avoids it.

Although elegant, the above hierarchical model often poses a considerable
computational challenge [5]. To address this problem, Tibaldi et al. suggested
several simplifications, like treating the trial-specific parameters in (13.2) as fixed
effects in a two-stage approach [25]. The first-stage model will take the form (13.2)
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and at the second stage, the estimated treatment effect on the true endpoint is
regressed on the estimated treatment effect on the surrogate and the intercept
associated with the surrogate endpoint as

Ǒ
i D �0 C �1 O�Si C �2 Ǫ i C "i : (13.12)

Essentially, the trial-level surrogacy R2trial is assessed by regressing Ǒ
i on . O�Si ; Ǫi /

and the individual-level value is calculated as before, using the estimates
from (13.3). Notice that, when the fixed-effects approach is chosen, there is a
need to adjust for the heterogeneity in information content between trial-specific
contributions. One way of doing so is weighting the contributions according to trial
size. This gives rise to a weighted linear regression model (13.12) in the second
stage.

Another cornerstone of the meta-analytic method is the choice of unit of analysis
such as, for example, trial, center, or country. This choice may depend on practical
considerations, such as the information available in the data, experts’ considerations
about the most suitable unit for a specific problem, the amount of replication at a
potential unit’s level, and the number of patients per unit. From a technical point of
view, the most desirable situation is where the number of units and the number of
patients per unit is sufficiently large. Of course, after choosing a specific unit for the
analysis, one always has to reflect carefully on the status of the results obtained.
Arguably, they may not be as reliable as one might hope for, and one should
undertake every effort possible to increase the amount of information available. This
issue has been covered at large by Cortiñas et al. and we refer the interested reader
to this work for more details [9].

13.5 Other Types of Endpoints

In the previous section, the formalism developed by Buyse et al. was introduced
using the simplest setting where both endpoints are Gaussian random variables
measured cross-sectionally. However, this is not always the case, for example, one
can encounter:

• Binary (dichotomous): the surrogate and/or true endpoints are binary, for
instance, biomarker value below or above a certain threshold (e.g., viral load
in HIV+ patients below detection limit) or clinical “success” (e.g., tumor
shrinkage).

• Categorical (polychotomous): the surrogate and/or true endpoints are categorical,
for instance, biomarker value falling in successive, ordered classes (e.g., choles-
terol levels <200, 200–299, 300+ mg/dl) or clinical response (e.g., complete
response, partial response, stable disease, progressive disease).
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• Longitudinal or repeated measures: the surrogate and/or true endpoints are
longitudinally measured, for instance, biomarker (e.g., CD4+ counts over time)
or clinical outcome (e.g., blood pressure over time).

• Multivariate longitudinal: the surrogate and/or true endpoints are multivariate
outcomes measured longitudinally, for instance, several biomarkers (e.g., CD4+
and viral load over time) or several clinical measurements (e.g., dimensions of
quality of life over time).

• Time to event: the surrogate and/or true endpoints are failure-time random
variables, for instance, time to cancer recurrence as a surrogate marker for
survival.

Assessing surrogacy in these more complex scenarios raises a number of difficult
challenges. Firstly, one now needs to deal with highly complicated hierarchical
models. These models frequently bring severe numerical issues and the use of
alternative, simplified approaches like the ones proposed by Tibaldi et al., becomes
unavoidable. Secondly, based on the outputs of these models, one needs to define
meaningful measures to quantify surrogacy at both the trial and individual level.

If one is ready to only consider linear models to study the relationship between
the treatment effect on the surrogate and the true endpoint, then the methodology
previously described can be applied in a straightforward fashion to quantify trial
level surrogacy. At the individual level, however, abandoning the realm of normality
has much deeper implications. Indeed, based on this meta-analytic paradigm, several
individual-level measures have been proposed. For instance, in the binary-binary
setting Renard et al. assumed that the observed dichotomic outcomes emerge from
two latent and normally distributed variables . QS; QT /. Essentially, it is assumed that
the surrogate (true endpoint) takes value one when corresponding latent variable
exceeds a threshold value, i.e., when QS > 	S ( QT > 	T ) and zero otherwise. In this
framework, using a bivariate probit model, these authors defined individual-level
surrogacy as R2ind D �2QS QT , which is the correlation at the latent level. Alternatively,

they also defined R2ind D  , the global odds ratio between both binary endpoints
estimated from a so-called bivariate Plackett-Dale model [22].

When the true endpoint is a survival time and the surrogate is a longitudinal
sequence, Renard et al., using Henderson’s model, proposed to study the individual
level based on a time function defined as R2ind.t/ D corrŒW1.t/;W2.t/�

2, where
.W1.t/;W2.t// is a latent bivariate Gaussian process [23]. Burzykowski et al.
approached the case of two failure-time endpoints based on copula models and
quantified the individual level surrogacy using Kendall’s � [6].

Using multivariate ideas, the so-called R2� has been proposed to evaluate
surrogacy when both responses are measured longitudinally [1]. TheR2� coefficient
quantifies the association between both longitudinal sequences and is defined using
the covariance matrices emanating from a hierarchical model that characterized
the joint distribution of both endpoints. Furthermore, the R2� can be incorporated
into a more general framework allowing for interpretation in terms of canonical



13 Statistical Validation of Surrogate Markers in Clinical Trials 237

correlations of the error vectors, based on which, one can define a family of
individual-level parameters [1].

All these examples underscore a limitation of the meta-analytic methodology
so far: different settings require different definitions and in some of these settings,
the association is measured at a latent level, hampering interpretation. Furthermore,
in all cases, a joint and often non-standard model for both endpoints is needed,
frequently representing a serious computational burden. In the next section, a unified
approach to the validation of surrogate markers based on information theory will be
introduced. Furthermore, it will be argued that this approach may help to overcome
some of the aforementioned problems.

13.6 An Information-Theoretic Unification

Information theory, originated as a rigorous science in the 1940s, deals with the
study of problems concerning complex systems, and has been applied in a variety
of fields such as modern communication theory. In spirit and concepts, information
theory has its mathematical roots connected with the idea of disorder or entropy
used in thermodynamics and statistical mechanics. An early attempt to formalize
the theory was made by Nyquist in 1924 who recognized the logarithmic nature
of information [19]. Another major contribution in this area came in 1948 when
Shannon published a remarkable paper on the properties of information sources and
communication channels [24].

R.A. Fisher’s well-known measure of the amount of information supplied by data
about an unknown parameter is the first use of information in statistics. Further,
Kullback and Leibler in 1951 studied another statistical information measure,
involving two probability distributions associated with the same experiment [18].

The concept of entropy lies at the center of information theory and it can be
interpreted as a measure of the randomness or uncertainty associated with a random
variable. If Y is a discrete random variable taking values fk1; k2; : : : ; kmg with
probability function P.Y D ki / D pi , then the entropy of Y is defined as

H.Y / D �EŒlogP.Y /� D �
X

i

pi logpi :

H.Y / can be interpreted as the average uncertainty associated with P . The joint and
conditional entropies are defined in an analogous fashion. Entropy is always non-
negative and satisfies H.Y jX/ � H.Y / for any pair of random variables .X; Y /,
with equality holding under independence. Basically, the previous inequality states
that uncertainty about Y can only decrease if additional information (X ) becomes
available. Furthermore, entropy is invariant under a bijective transformation [10].
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Similarly, the so-called differential entropy hd .Y / of a continuous random
variable Y with density fY .y/ and support SfY is defined as

hd .Y / D �EŒlog fY .Y /� D �
Z

SfY

fY .y/ logfY .y/ dy :

Differential entropy enjoys some but not all properties of entropy, it can be
infinitely large, negative, or positive, and is coordinate dependent. For a bijective

transformationW D �.Y /, it follows that hd .W / D hd .Y /�EW
�

log
ˇ̌
ˇ d�

�1

dw .W /
ˇ̌
ˇ



.

One can now quantify the amount of uncertainty in Y , expected to be removed
if the value of X were known, by I.X; Y / D h.Y / � h.Y jX/, the so-called mutual
information, where h D H in the discrete case and h D hd for continuous random
variables. It is always non-negative, zero if and only if X and Y are independent,
symmetric, invariant under bijective transformations of X and Y , and I.X;X/ D
h.X/.

Additionally, if Y is a n-dimensional random vector, then the entropy-power of
Y can be defined as

EP.Y / D 1

.2�e/n
e2h.Y / :

The differential entropy of a continuous normal random variable is given by
h.Y / D 1

2
log

�
2�e
2

�
, a simple function of the variance and, therefore, on the

natural logarithmic scale EP.Y / D 
2, i.e., for the normal distribution variability
and information are equivalent concepts. However, this equivalence does not hold
in the general case. Indeed, in general, EP.Y / � Var.Y / with equality if and only if
Y is normally distributed.

We can now define an information-theoretic measure of association as

R2h D EP.Y /� EP.Y jX/
EP .Y /

; (13.13)

which ranges in the unit interval, equals zero if and only if .X ;Y / are independent,
is symmetric, is invariant under bijective transformation of X and Y , and, when
R2h ! 1 for continuous models, there is usually some degeneracy appearing in the
distribution of (X ;Y ); often Y D �.X/ with probability one for some nontrivial
function �. This means that there exists a deterministic relationship between X

and Y . There is a direct link between R2h and the mutual information: R2h D 1 �
e�2I .X ;Y /. For Y discrete: R2h � 1 � e�2H.Y /, implying that R2h has an upper bound
smaller than 1; in this setting it is better to consider

R2hmax D R2h
1 � e�2H.Y / ;

reaching 1 when both endpoints are deterministically related.
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Surrogacy can now be redefined preserving previous proposals as special cases.
It is important to point out that, although the focus will be on the individual-level
surrogacy, all results apply to the trial level as well. Let Y D T and X D S be the
true and surrogate endpoints, respectively. S would be considered a good surrogate
for T at the individual (trial) level, if a “large” amount of uncertainty about T (the
treatment effect on T ) is reduced when S (the treatment effect on S ) is known.
This definition, in spite of being based on formal concepts rooted in information
theory, is simple and intuitive, since the idea behind surrogacy is to reduce our
lack of knowledge about a true endpoint through the use of a surrogate alternative.
At the trial level, the situation is similar: we want to gain information about the
unobserved treatment effect on the true endpoint using the known treatment effect
on the surrogate.

The R2h coefficient is a valuable tool to evaluate surrogacy in practice. R2h � 1

implies that our potential surrogate is promising, and could be interpreted as follows:
once the surrogate is known, almost all of our uncertainty about the true endpoint
will be removed. On the other hand, R2h � 0 evidences a poor surrogate, unable to
reduce our uncertainty about the true endpoint.

For the cross-sectional normal-normal case, Alonso and Molenberghs have
shown that R2h D R2ind [1]. The same holds forR2�, defined in a longitudinal context.
Finally, when the true and surrogate endpoints have distributions in the exponential

family, then LRF
P! R2h when the number of subjects per trial goes to infinity,

where LRF denotes the likelihood reduction factor introduced by Alonso et al. [3].
These authors also showed that (13.13) can be estimated based on f .T jZ;S/ and
f .T jZ/, i.e., two univariate models that can often be easily fitted using standard
software packages, in contrast to the original meta-analytic approach that requires
the fitting of the complex joint hierarchical model f .T; S jZ; ˛; ˇ/.

13.7 Fano’s Inequality and the Theoretical Plausibility
of Finding a Good Surrogate

Fano’s inequality relates prediction accuracy with different information-theoretic
concepts and, when applied to the evaluation of surrogate endpoints, this inequality
sets a limit for our capacity to successfully predict the true endpoint using the
surrogate [3, 10]. For continuous endpoints it can be written as

E
�
.T � g.S//2� � EP.T /.1 � R2h/ : (13.14)

Note that nothing has been assumed about the distribution of both the surrogate and
true endpoint and no specific form has been considered for the prediction funct-
ion g.
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Essentially, Fano’s inequality states a lower bound for the prediction error and
this lower bound can be decomposed in two different elements. The second element
on the right side of (13.14) depends on the surrogate through the value of R2h,
the first element, however, is an intrinsic characteristic of the true endpoint and
it is independent of the surrogate. It is clear from (13.14) that the prediction error
increases with EP.T / and, consequently, if the true endpoint has a large entropy-
power then a surrogate should produce a close to one R2h to have some predictive
value. In other words, the surrogate would need to be almost deterministically
related to the true endpoint to have some predictive power. Essentially, this
inequality hints on the fact that, for some true endpoints, the search for a good
surrogate may be a dead end street.

13.8 An Age-Related Macular Degeneration (ARMD) Trial

In what follows, the use of the meta-analytic approach will be illustrated using
a clinical trial involving patients suffering from age-related macular degeneration
(ARMD), a condition in which patients progressively lose vision [20]. Overall,
240 patients from 43 centers participated in the trial. Patients’ visual acuity was
assessed using standardized vision charts (see Fig. 13.1) displaying lines of five
letters of decreasing size, which patients had to read from top (largest letters) to
bottom (smallest letters).

The visual acuity was measured by the total number of letters correctly read. In
this example, the binary indicator for treatment (Z) is set to �1 for placebo and

Fig. 13.1 Visual acuity
study. Visual chart
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to 1 for treatment with interferon-˛. The surrogate endpoint S is the change in the
visual acuity at 6 months after starting treatment, while the true endpoint T is the
change in the visual acuity at 1 year. In the meta-analytic approach the centers in
which the patients were treated will be considered the units of analysis. Two out of
43 centers participating in the trial enrolled patients only to one of the two treatment
arms. These centers were excluded from considerations. A total of 41 centers were
thus available for analysis.

13.9 Analysis of the ARMD Trial

In this section, the data from the age-related macular degeneration trial, described
in Sect. 13.8, are used to evaluate visual acuity at 6 months as a surrogate endpoint
for visual acuity at 1 year. Primarily, one would like to assess, for a given patient,
how much information his visual acuity at 6 months provides on his visual acuity
at 1 year and, similarly, one would also like to assess how much information the
treatment effect at 6 months conveys about the treatment effect at 1 year. These
are the questions addressed by the individual- and trial-level surrogacy. Notice that
the individual level may be especially relevant for a treating physician who, having
observed a particular outcome for a patient with a treatment at 6 months, wants to
know what this means for the status of the patient at 1 year. On the other hand, the
trial level may be more relevant for a data analyst that wants to know if the follow
up period of a new trial might be shorten by 6 months in order to reduce cost.

Figure 13.2 shows the scatterplot of the two endpoints for all patients included in
the trial. Clearly, there is a correlation between both variables. Indeed, the estimated
Pearson correlation coefficient equals 0:757 and the 95% confidence interval is
CI95% D .0:688; 0:812/. We have learned in previous sections that, although
appealing, the existence of correlation does not imply that visual acuity at 6 months

Fig. 13.2 Age-related
macular degeneration trial.
True endpoint (change in
visual acuity at 1 year) versus
surrogate endpoint (change in
visual acuity at 6 months) for
all individual patients,
raw data
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is a valid surrogate and further analyses are needed. In the present section we will
follow the multi-units paradigm introduced in Sect. 13.4.

Using similar data, Buyse et al. experienced problems when fitting the full
random-effects model, irrespective of whether standard statistical software or user
developed alternatives were employed [7]. Similarly, our attempt to fit the complete
hierarchical model given in (13.2) produced an infinite likelihood and the resulting
D matrix was ill-conditioned with a condition number equal to 5.852�E15.

It is important to point out that when the full bivariate random-effects model
is used, severe numerical issues are often encountered, especially if the surrogate
and/or the true endpoint are not normally distributed. This numerical issues may
have a huge impact on the assessment of surrogacy, particularly at the trial level.
Indeed, theR2trial is computed based on the covariance matrix D and it is possible that
this matrix becomes ill-conditioned and/or non-positive definite due to numerical
problems. In such cases, the resulting quantities computed based on this matrix
might not be trustworthy. For example, in our case study, the estimated D matrix
produced a R2trial D 0:972 with a 95% confidence interval .0:955; 0:989/. Although
possible, such a large value for the trial level surrogacy inevitably raises some
doubts. Obviously, this result emanates from an ill-conditioned matrix and is
probably misleading. One way to asses the ill-conditioning of a matrix is by
reporting its condition number, i.e., the ratio of the largest over the smallest
eigenvalue. A large condition number is an indication of ill-conditioning. The most
pathological situation occurs when at least one eigenvalue is equal to zero. This
corresponds to a positive semi-definite matrix, which occurs, for example, when
the maximization procedure used to calculate the maximum likelihood estimators
converges to a boundary solution. Thus, when using the full hierarchical model in
the validation process, it is always necessary to check the D matrix to evaluate the
presence of these issues.

Due to the numerical problems found with the ARMD data when fitting the
complete hierarchical model, simplifying strategies along the lines introduced by
Tibaldi et al. were called for and a two-stage approach was adopted [25]. At a
first stage, the bivariate regression model given in (13.2) was fitted considering the
trial-specific parameters as fixed effects. Within the two-stage approach, Tibaldi et
al. explored two plausible strategies for fitting the model in (13.2), the so-called
univariate and bivariate strategies, taking into account whether the surrogate and
true endpoints are modeled as a bivariate outcome or rather as two univariate ones.
In the latter case, the correlation between both endpoints is not incorporated into
the model, rendering the study of the individual-level surrogacy more involved.
However, it is important to point out that, if the trial-level surrogacy is of most
interest and the investigation of the individual-level surrogacy is only of secondary
importance, then the adoption of the univariate strategy can largely ease the
computational burden in some scenarios. For the ARMD trial, the bivariate strategy
was feasible and, hence, always adopted. In addition, the reduced model that
assumes constant intercepts across units was also employed. Finally, at the second
stage, one can consider weighted and unweighted versions of the model given
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Table 13.1 Results of the
trial and individual level
surrogacy: R2trial, Rind and
95% confidence intervals
(CI) obtained using the Delta
method for the ARMD trial

Full model

Unweighted Weighted

R2trial 0.381 0.437

R2trial CI .0:138; 0:6234/ .0:200; 0:674/

R2ind&CI 0.512, CID .0:422; 0:601/

Reduced model

Unweighted Weighted

R2trial 0.601 0:517

R2trial CI .0:404; 0:797/ .0:297; 0:738/

R2ind&CI 0.581, CID .0:499; 0:662/

in (13.12) to estimate the trial level surrogacy. A summary of all these analyses
is given in Table 13.1.

Note firstly that the individual-level surrogacy is estimated at the first stage and,
consequently, it is not affected by the strategies followed to fit the second-stage
model (weighted/unweighted). Secondly, the R2ind produced very similar results for
both the reduced and full models. However, the AIC associated with the reduced
and full model were 2668.3 and 2185.4 respectively, indicating that the assumption
of equal intercepts across units produced a poorer fit to the data.

At the trial level, the results are much more variable, with the estimates R2trial

varying from 0.38 to 0.60 across different settings. Because the full model seems to
produce a better description of the data in what follows we will focus on the results
displayed at the top panel of Table 13.1.

Taking into account that the sample size greatly varied across centers, one may
consider a weighted analysis a more reliable option in this case. Nonetheless, the
point estimate of R2trial was similar when the weighted or unweighted strategy was
used and the confidence intervals largely overlapped in both scenarios. The general
conclusion is that the trial level surrogacy seems to be rather weak, with the upper
bound of the confidence intervals never exceeding 0.7.

Figure 13.3 displays the results obtained with the full-weighted model approach.
Figure 13.3a shows a plot of the treatment effects on the true endpoint by the
treatment effects on the surrogate endpoint and the size of the points are proportional
to the sample size of each center. These effects are weakly correlated. Figure 13.3b
shows a certain degree of correlation between the measurements at 6 months and
at 1 year, after correction for treatment effect and center. Based on the previous
findings, even with the limited data available, one may conclude that the assessment
of visual acuity at 6 months seems to be a poor surrogate for the same assessment at
1 year.
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Fig. 13.3 Age-related
macular degeneration trial.
(a) Treatment effects on the
true endpoint versus
treatment effects on the
surrogate endpoint in all
centers. The size of each
point is proportional to the
number of patients in the
corresponding center. (b)
True endpoint versus
surrogate endpoint for all
individual patients, after
correction for treatment effect

13.10 Software Packages

R functions and SAS macros have been developed to implement the methods
discussed in the previous sections [26]. The ARMD trial was analyzed using the
macro SURCONCON in SAS 9.3. The macro is a slight modification of the one that
can be downloaded from http://www.ibiostat.be/software/surrogate.asp. The SAS
code to carry out the analysis, the modified version of the macro and the data set
will be available from the book’s website. A detailed account of the macro can also
be found in [26].

http://www.ibiostat.be/software/surrogate.asp
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13.11 Conclusion

The initial enthusiasm that accompanied the use of surrogate markers, was followed
by concern and skepticism after some dramatic failures. However, these failures
opened a fruitful and stimulating scientific debate that has resulted in the develop-
ment of different approaches and schools of thoughts for the validation of surrogate
markers [2]. It is now clear that surrogate markers are a powerful tool that can
play an important role in the drug development process. But it has also transpired
that they need to be properly evaluated. Consequently, the initial enthusiasm and
subsequent skepticism have been substituted by a more scientific and objective
comprehension of their potentials and limitations.

At the same time, regulatory agencies around the globe, in particular in the
United States and in Europe, have developed new policies and methods to accelerate
the approval of certain types of drugs through the use of surrogate endpoints.
In the United States, accelerated approval, sometimes referred as “conditional
approval” or subpart H, refers to an acceleration of the overall development plan by
allowing submission of an application, and if approved, marketing of a drug based
on the evidence obtained, for instance, using a surrogate endpoint while further
studies demonstrating direct patient benefit are underway. In the same way, the
European regulatory agency has developed a set of regulations that are converging
to an accelerated approval system like in the United States, perhaps with more
flexibility [5].

As the previous sections illustrate, the scientific debate and research on surrogate
markers, initiated more than 20 years ago, is still thriving and we believe this work
together with the clear regulations established by leading regulatory agencies in the
world will arguably allow, in the near future, a more rational and efficient use of this
powerful tool.
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Chapter 14
Biomarker-Based Designs of Phase III Clinical
Trials for Personalized Medicine

Shigeyuki Matsui, Takahiro Nonaka, and Yuki Choai

Abstract Advances in biotechnology and genomics have accelerated development
of molecularly targeted treatments and prognostic and predictive biomarkers,
particularly, in oncology. This chapter provides an overview of various biomarker-
based designs for phase III randomized clinical trials to evaluate clinical utility of
a biomarker or biomarker-based treatment, including biomarker-strategy, enrich-
ment, and randomize-all designs. We also provide a simulation comparison of
the randomize-all designs in terms of their ability to assert treatment efficacy for
the correct patient population. Complex adaptive designs with development and
validation of predictive biomarkers are also discussed.

14.1 Introduction

A key component to realize personalized medicine is the development of biomarkers
for treatment selection. Biomarkers that are particularly important for personalized
medicine can be broadly categorized as prognostic or predictive biomarkers.
Prognostic biomarkers are pretreatment or baseline measurements that predict the
long-term risk for untreated patients or those receiving the standard treatment, and
thus can aid in the decision of whether a patient needs a more aggressive treatment
(when diagnosed with high-risk) or no additional treatment (when diagnosed with
low-risk). Predictive biomarkers are baseline measurements that provide informa-
tion about which patients are likely or unlikely to benefit from a specific treatment.
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A predictive biomarker is often designated for the use of a particular new treatment,
as a companion biomarker in the development of the new treatment. For example, a
biomarker that captures overexpression of the growth factor receptor protein HER-2,
which transmits growth signals to breast cancer cells, can be a companion biomarker
in developing a molecularly-targeted drug for breast cancer patients, trastuzumab
(Herceptin R
), which blocks the effects of HER-2 [24].

A biomarker needs to be validated before its clinical application. Analytical
validation refers to establishment of robustness and reproducibility of the assay
and accuracy of measurement, such as sensitivity and specificity, relative to a gold
standard assay if one is available [3, 22]. Clinical validity refers to establishment
of the ability of the biomarker in predicting clinical outcomes in individual
patients [22]. For a prognostic biomarker, correlation between biomarker status and
a clinical endpoint, such as disease-free or overall survival, may indicate clinical
validity. For reliable clinical validation of a predictive biomarker for a survival
endpoint, a randomized clinical trial would be required to estimate treatment effects
(of a new treatment relative to a control treatment) unbiasedly and to assess whether
the treatment effects vary depending on the status of the biomarker, i.e., a treatment-
by-biomarker interaction.

The establishment of clinical utility of a biomarker or a new treatment based
on a biomarker is finally required as a phase III study before their clinical
applications [22]. Randomized clinical trials serve as a gold standard in this
phase [2, 7, 9, 13, 16, 17, 20, 23]. One category of biomarker-based designs is
to establish clinical utility for the developed biomarker itself. The biomarker-
strategy designs have such an objective. Another category is to establish clinical
utility of a new treatment with the aid of a biomarker. The enrichment designs
and randomize-all designs have such an objective. The former is to randomize
a biomarker-defined subpopulation of patients, while the latter is to randomize
the entire patient population, but entail a prospective analysis plan based on the
biomarker.

In this chapter, we provide an overview of various biomarker-based designs of
phase III clinical trials for personalized medicine. We emphasize again that the
two categories of the biomarker-based designs hold distinct objectives, although
they have often been discussed as if all of them can be options of biomarker-
based designs for a particular situation. We first outline the first category, i.e., the
biomarker-strategy designs, in Sect. 14.2. We then focus on the second category;
we outline the enrichment designs in Sect. 14.3 and the randomize-all designs in
Sect. 14.4. The randomize-all designs can be more complex, reflecting the fact
that the development and clinical validation of predictive biomarkers is generally
difficult before initiating a phase III clinical trial. Typically, they involve some
form of adaptive analysis that can demonstrate treatment efficacy for either the
overall population or a biomarker-defined subpopulation of patients based on the
observed performance of the biomarker. We provide a simulation study to assess
their ability to assert treatment efficacy for the right patient population in Sect. 14.5.
More complex adaptive designs with both developing and validating a predictive
biomarker or genomic signature are outlined in Sect. 14.6. We present concluding
remarks in Sect. 14.7.
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14.2 Biomarker-Strategy Designs

With a biomarker-strategy design, patients are randomized either to a strategy of
using the biomarker in determining their treatment or to a strategy of not using
the biomarker in determining treatment. The primary objective is thus to compare
two strategies with and without use of the biomarker in determining treatment.
An example is a randomized trial for recurrent ovarian cancer that compares the
strategy of determining treatment based on tumor chemosensitivity (predictive)
assays with a strategy of using physician’s choice of chemotherapy based on
standard practice [5] (see Fig. 14.1a). Another example is a randomized trial for
non-small cell lung cancer that compares a strategy of using a standard treatment
(cisplatin+docetaxel) exclusively with a biomarker-based strategy in which patients
diagnosed to be resistant to the standard treatment based on the biomarker are treated
with an experimental treatment (gemcitabine+docetaxel) and the rest are treated
with the standard treatment [4]. In these designs, the biomarker is evaluated only
for the patients assigned to the biomarker-based strategy arm.

Randomize

Biomarker-based treatment

Standard-of-care-based treatment

Randomize

Biomarker-based treatment

Randomize treatment

Measure biomarker

and identity

discordant cases

Randomize

Standard-of-care-based

treatment

Biomarker-based

treatment

a

b

c

Fig. 14.1 Biomarker strategy designs
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For the latter type of design with an experimental treatment, the biomarker-based
arm can perform better if the experimental treatment is efficacious, regardless of
whether the biomarker is predictive or not. Some authors proposed a modification
in which patients in the non-biomarker-based arm undergo a second randomization
to receive one of the same two treatments being used in the biomarker-based arm,
i.e., the control and experimental treatments [13,17] (see Fig. 14.1b). By measuring
the biomarker status in all of the patients, the modified design would allow clinical
validation of the biomarker as a predictive biomarker, through comparing treatment
effects across the biomarker-based subsets of patients.

The strategy-based designs fundamentally include patients treated with the same
treatment in both the biomarker-based and the non-biomarker-based arms, resulting
in a large overlap in the number of patients receiving the same treatment within the
two strategies being compared. Thus, a very large number of patients are required
to be randomized to detect a diluted, small overall difference in the endpoint
between the two arms. One modification is to randomize the two strategies to
only the patients for whom the two treatments guided by the two strategies differ
(see Fig. 14.1c). This modification requires measurement of the biomarker in all of
the patients before randomization. The modified design is generally much more
efficient than the original biomarker-strategy design. The modified design was
employed in a randomized clinical trial, called the MINDACT study. In this trial,
a biomarker-based strategy based on the MammaPrint prognostic signature was
compared to that based on standard clinical prognostic factors for determining
whether to utilize chemotherapy in women with node-negative estrogen receptor-
positive breast cancer, in which discordant cases between the two strategies were
subject to randomization [1].

14.3 Enrichment Designs

An enrichment or targeted design is based on a predictive biomarker and compares
a new treatment and a control treatment only in biomarker-“positive” (BC) patients
who are expected to be responsive to the new treatment based on the biomarker (see
Fig. 14.2). Thus, the enrichment design assesses treatment efficacy only in the BC
patients, and not in the entire patient population, including biomarker-negative (B�)
patients. In this design, all enrolled patients need to be screened for evaluating the
biomarker status.

The efficiency of the enrichment design relative to the standard approach
of randomizing all patients without using the biomarker at all depends on the
prevalence of the BC patients and on the effectiveness of the new treatment in the
B� patients [12, 18]. In particular, when fewer than half of the patients are BC
and the new treatment is relatively ineffective in the B� patients, the enrichment
design can be conducted with much smaller numbers of randomized patients. The
enrichment design was employed in the development of trastuzumab; metastatic
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Measure

biomarker

Randomize

Off study

B+ patients

B− patients

New treatment

Control treatment

Fig. 14.2 Enrichment design

breast cancer patients whose tumors expressed HER-2 in an immunohistochemistry
test were eligible for randomization [24].

The enrichment design is appropriate for contexts where there is compelling
biological evidence for believing that the B� patients will not benefit from the new
treatment and that including them would raise ethical concerns [20,23]. In addition,
before initiating the trial, the biomarker used for enrichment must be analytically
validated with established assay accuracy, reproducibility, and robustness.

When the biological basis is not compelling and/or assay accuracy is incomplete,
assessment of clinical validity of the biomarker as a predictive biomarker would
be needed. As the enrichment design does not allow it because of the absence of
comparison of the new treatment with the control in the B� patients, the following
designs with randomization of both BC and B� patients, i.e., randomize-all or
all-comers designs, are an alternative choice for such situations.

14.4 Randomize-All Designs

Randomization can be either unstratified or stratified on the basis of the predictive
biomarker. Unstratified randomization does not diminish the validity of inference
regarding treatment effects within the BC or B� subsets of patients with moderate-
to-large sizes. Under unstratified randomization, biomarker can be measured at the
time of analysis. This strategy may permit such situations where an analytically
validated biomarker is not available at the start of the trial but will be available by
the time of analysis [20, 23]. However, careful consideration for missing biomarker
data is needed for ensuring collection of sufficient numbers of patients with
observed status of biomarker. On the other hand, stratified randomization requires
determination and measurement of biomarker at the start of the trial, but ensures
that all randomly assigned patients have biomarker status observed (see Fig. 14.3).
For other practical considerations in randomized trials with biomarkers, see the
references [2, 7, 9, 13, 17, 19, 20, 25, 26, 28].
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Fig. 14.3 Randomized-all design with prestratification based on the biomarker

The randomize-all designs can demonstrate the efficacy of the treatment for
either the overall population or a biomarker-based subset of patients, through
inspecting the predictive capability of the biomarker candidate based on the
observed trial data. Various designs with a single biomarker candidate have
been proposed, including fixed-sequence (FS), fallback (FB), and treatment-by-
biomarker-interaction (TBBI) designs.

In what follows, we specifically consider these designs to compare a new
treatment and a control treatment based on survival outcomes using a log-rank
test. For a particular patient population, we assume proportional hazards between
treatment arms and use the asymptotic distribution of a log-rank test statistic S
under equal treatment assignment and follow-up, S � N.�; 4=E/ [27]. Here � is
the logarithm of the ratio of the hazard function under the new treatment relative to
that under the control treatment, and E is the total number of events observed.

For a clinical trial with a given number of events, we express a standardized test
statistic for testing treatment efficacy for the BC subset of patients as

ZC D O�C=
p
VC ;

where O�C is an estimate of �C, such as a log-rank statistic SC, and VC D 4=EC.
Similarly, we have a test statistic Z� D O��=

p
V� for testing treatment efficacy for

the B� subset, where V� D 4=E�. We consider the following standardized test
statistic for testing treatment efficacy for the overall population,

Zoverall D O�overall=
p
Voverall ;

where O�overall D .EC O�C C E� O��/=.EC C E�/ and Voverall D 4=Eoverall D
4=.EC C E�/. We assume that the aforementioned standardized statistics follow
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asymptotically normal distributions with variance 1, where the means of ZC; Z�;
and Zoverall are �C=

p
VC; ��=

p
V�, and

p
Voverall.�C=VC C ��=V�/, respectively.

14.4.1 FS (Fixed-Sequence) Designs

If evidence from biological or early trial data suggests the predictive ability of the
biomarker, it is reasonable to consider first testing treatment efficacy for the BC
subset of patients. In such a situation, one would not expect the treatment to be
effective in the B� patients unless it is effective in the BC patients. As such, the
following FS design is derived [20, 23]. In the first stage, we compare the treatment
versus control in the BC patients using the test statistic ZC at a significance level
of 5%. If this test is significant, we proceed to the second stage; otherwise, the
analysis is stopped. In the second stage, we compare the treatment versus control
in the B� patients using the test statistic Z� at a significance level of 5%. All tests
are two-sided. This sequential approach controls the experiment-wise Type I error
at 5%. When both the first test for the BC patients and the second test for the
B� patients are significant, one may assert treatment efficacy for the overall patient
population. When only the first test for the BC patients is significant, one may assert
treatment efficacy only for future patients who are biomarker positive. We refer to
this method as the FS-1 design.

A simple way for determining sample size in this design is to ensure the
prespecified level of power, such as 90%, for the first test, and calculate the required
number of events for the BC patients,EC. This coincides with the required number
of events for randomized patients in the enrichment designs. In this calculation, the
number of events for the B� patients,E�, is not determined at the design stage. The
B� patients are enrolled concurrently until sufficient numbers of the BC patients
with EC are enrolled. As such, E� can depend on the prevalence of BC, pC, and
the event rates �C and �� in the BC and B� control groups, respectively, at the
time that there are EC events in the BC subset. Specifically,

E� D EC
�
��
�C

��
1 � pC
pC

�

is held approximately [20]. We expect a small (large) E�, especially when pC
is large (small). A small E� can lead to a lack of power for detecting clinically
important treatment effects in the B� patients at the second stage. On the other
hand, a large E� can yield ethical and practical concerns about enrolling a large
number of the B� patients who are unlikely to benefit from the treatment [23].
Hence, sample size determination and/or planning of an interim futility analysis for
the B� patients would be warranted.

In another variation of the FS design, the second stage involves testing treatment
efficacy for the overall population rather than for the subset of B� patients [13].
With this approach, when only the test for the BC subset in the first stage is
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significant, one may assert treatment efficacy for the BC subset. When the second
overall test is significant (following a significant result in the first stage), one may
assert treatment efficacy for the overall population. We refer to this method as the
FS-2 design.

14.4.2 FB (Fallback) Designs

When there is limited confidence in the predictive biomarker, it is generally
reasonable to assess treatment efficacy for the overall patient population and prepare
the subset analysis as a fallback option. Specifically, in the first stage, the treatment
is compared with the control overall at a reduced significance level ˛1, such as 3%.
If this test is significant, the analysis is stopped. Otherwise, in the second stage, the
treatment is compared with the control for the BC patients at a reduced significance
level ˛2, such as 2%, in order to control the experiment-wise type I error rate within
5% in testing treatment efficacy for the overall population or BC subset [19,28]. All
tests are two-sided. The significance level ˛2 can be specified by taking into account
the correlation between the first test in the overall population and the second test in
the subset of BC patients [25, 26, 28]. Specifically, the covariance (or correlation)
between ZC and Zoverall reduces to

p
pC. As the test on treatment efficacy for

the overall patient population precedes the fallback test for the BC patients, it is
reasonable to set the significance values such that ˛1 � ˛2. When the first test is
significant, one may assert treatment efficacy in the overall population. On the other
hand, when only the second test for the BC patients is significant (following a non-
significant result of the first test for the overall population), one may assert treatment
efficacy only in future BC patients.

Sample size determination will be based on the first test on treatment efficacy
for the overall population, like in the traditional randomized trials, apart from the
use of the significance level ˛1.<0:05/. Because of possible treatment effects that
are clinically important in the BC patients, it is advisable to perform sample size
calculation for the second test for the BC patients and plan for the option of delaying
the second stage analysis until collection of the required number of events for the
BC patients when it is needed [23].

14.4.3 TBBI (Treatment-by-Biomarker Interaction) Designs

TBBI designs, like FB designs, are used when there is limited confidence in
the predictive biomarker. This approach involves deciding whether to compare
treatments overall or within the biomarker-based subsets based on a preliminary test
of interaction of treatment and biomarker [17, 20, 23]. Here the test of interaction is
to assess whether there is no difference in treatment effects (in term of the relative
hazards ratio between the two treatment arms) between the BC and B� subsets
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of patients. Specifically, we use the following standardized statistic for testing the
interaction:

Zint D
O�C � O��p
VC C V�

:

It is reasonable to consider a one-sided interaction test to detect larger treatment
effects in the BC subset [20, 23]. To be specific, we propose the following design:
a preliminary test of interaction is performed as the first stage using Zint at a
one-sided significance level of ˛int. If this test is not significant, the treatment is
compared with the control overall using Zoverall at a two-sided significance level
˛3. Otherwise, the treatment is compared with the control in the BC patients using
ZC at a two-sided significance level ˛4. Here the significance levels, ˛3 and ˛4, are
chosen such that the experiment-wise type I error rate in testing treatment efficacy
for the overall population or BC subset is less than or equal to 5% based on an
asymptotic distribution of Zint, Zoverall, and ZC, where the covariances between
Zint and Zoverall or ZC may reduce to cov.Zint; Zoverall/ D 0 or cov.Zint; ZC/ Dp
VC=.VC C V�/ D p

E�=.EC C E�/. Under the null hypothesis of no treatment
efficacy for the BC and B� patients (and thus indicating no effects for the overall
population), for which we will search for the significance level, ˛4, for ZC, given
˛int for Zint and ˛3 for Zoverall, to control the experiment-wise type I error rate
within 5%, we propose to set cov.Zint; ZC/ D p

1 � pC if the hazard rate in the
BC subset can be considered to be the same as that in the B� subset. When the
predictive biomarker is prognostic, a larger number of events is expected for the
BC patients, resulting in an overestimation of the correlation. This would lead to
use of a stringent significance level of ˛4 and thus a conservative design.

When the test for the BC patients is significant (following a significant result
of the preliminary interaction test), one may assert treatment efficacy only for BC
patients. When the overall test is significant (following a non-significant result of
the preliminary interaction test), one may assert treatment efficacy for the overall
population.

The TBBI designs have been discussed in the literature as a design for clinical
validation of the predictive biomarker based on a test on treatment-by-biomarker
interaction [17, 20, 23]. However, sizing the trial to have high power for the
interaction test may require a substantially large sample size, compared to sizing
trials with the other randomize-all designs. This cannot generally be justified as it
requires exposing an excessive number of B� patients to a treatment from which
they are unlikely to benefit [23].

On the other hand, the proposed TBBI design with strict control of the
experiment-wise type I error rate described above aims to assess the clinical utility
of a new treatment with the aid of the biomarker. As our simulation study indicated
(see Sect. 14.5.1), it could be more efficient compared with the other randomize-all
designs. An additional advantage of the proposed TBBI design is that even if the
interaction test is regarded as a preliminary test, a significant interaction could
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be regarded as relatively firm evidence for the clinical validity of the biomarker.
Further studies on the proposed TBBI design, including determination of optimal
levels of ˛int and ˛3 and sample size determination, would be worthwhile.

14.5 Probability of Asserting Treatment Efficacy

The randomize-all designs described in Sect. 14.4 can make either of two kinds of
assertions regarding treatment efficacy, one for the overall population and the other
for the BC subset of patients. Which of the two assertions is considered to be valid
may depend on the underlying treatment effects in the biomarker-based subsets.
Specifically, let HRC and HR� denote the hazard ratios of the treatment relative to
the control in the BC and B� subsets of patients, respectively. If the treatment truly
has clinically meaningful effects in all of the patients, e.g., HRC D HR� D 0:7,
the assertion of treatment efficacy for the overall population would be more valid
than that for the BC patients only because the latter assertion would deprive the
remaining B� patients of the chance of receiving the effective treatment. On the
other hand, if the treatment can exert a clinically important effect only in the
BC patients, e.g., HRC D 0:5, and no effect in the remaining B� patients, e.g.,
HR� D 1:0 (indicating a qualitative interaction between treatment and biomarker),
the assertion of treatment efficacy for the BC patients would be more valid than that
for the overall population because the latter assertion would yield overtreatment for
the remaining B� patients using the ineffective, even toxic treatment. Let Poverall

and Psubset denote the probability of asserting treatment efficacy for the overall
population and for the subset of BC patients, respectively.

However, there can be other scenarios in which it is not clear which of the
two assertions is valid. For example, the treatment can exert a clinically important
effect for the BC patients, e.g., HRC D 0:5, but some moderate or small
effects for the remaining B� patients, e.g., HR� D 0:8 (indicating a quantitative
interaction between treatment and biomarker). Such a treatment effect profile
could be explained by the treatment having multiple mechanisms of action, the
misclassification of responsive patients into the B� subset (low sensitivity of the
biomarker), and so on. Which of the two assertions is considered to be valid will
be determined on a case-by-case basis incorporating many factors, including the
size of the prevalence pC, possible adverse effects, treatment costs, prognosis of
the disease, availability of other treatment choices, and so on. In such situations,
the probability of asserting treatment efficacy for either the overall population or
the subset of BC patients could be another meaningful criterion. From the point
of view of treatment developers (e.g., pharmaceutical companies), this probability
would be always important, because it can be interpreted as the probability of
success in treatment development. Let Psuccess denote this probability. Apparently,
Poverall CPsubset D Psuccess for the randomize-all designs described in Sect. 14.4. As
such, there is a trade-off between the two probabilities Poverall and Psubset for a given
value of Psuccess.
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Table 14.1 Empirical probabilities of Poverall, Psubset, and Psuccess under null effects

TBBI
HR

C
HR

�
p

C
Prob. Traditional FS-1 FS-2 FB ˛int D 5% ˛int D 10%

1:0 1:0 0:1 Poverall 0:051 0:003 0:005 0:032 0:030 0:029

(null effect) Psubset 0:000 0:041 0:039 0:016 0:019 0:021

Psuccess 0:051 0:044 0:044 0:047 0:049 0:050

0:3 Poverall 0:050 0:002 0:010 0:031 0:029 0:028

Psubset 0:000 0:048 0:040 0:020 0:020 0:022

Psuccess 0:050 0:050 0:050 0:051 0:049 0:050

0:5 Poverall 0:052 0:002 0:018 0:031 0:029 0:028

Psubset 0:000 0:047 0:032 0:019 0:021 0:020

Psuccess 0:052 0:050 0:050 0:050 0:050 0:048

14.5.1 Simulations

We provide a comparison of the randomize-all designs in Sect. 14.4 in terms of
Poverall, Psubset, and Psuccess. We considered the prevalence of BC, pC D 0:1; 0:3, or
0:5. As to the underlying treatment effects within biomarker-based subsets, we con-
sidered the following scenarios: .HRC;HR�/ D .1:0; 1:0/; .0:7; 0:7/; .0:5; 1:0/, or
.0:5; 0:8/, i.e., null effects, constant effects, qualitative interaction, and quantitative
interaction. In the FB and TBBI designs, we specified the same significance levels
for the overall test, ˛1 D ˛3 D 3%, for a fair comparison of these designs. The
significance level for the one-sided interaction test, ˛int, in the TBBI designs was
specified as 5 or 10%. The significance levels for the BC subset tests, ˛2 and ˛4,
in the FB and TBBI designs were determined such that the experiment-wise type
I error rates were equal to 5%. We also evaluated the traditional design without
use of a biomarker as a reference, with Poverall D Psuccess and Psubset D 0 (because
there is no option for asserting treatment efficacy for the BC subset in this design).
We conducted 10;000 simulations (clinical trials) for each configuration to obtain
empirical values of the probabilities. We provide the results when 400 patients with
a baseline event rate of 0:2 (per year) are randomized and followed up for 5 years in
each clinical trial. For larger sample sizes, Poverall; Psubset, and Psuccess became large,
but similar conclusions in terms of the relative sizes of these probabilities across the
designs under comparison were obtained. R codes for conducting simulations are
available from author upon request. A web-based simulation program that provides
estimates of required sample size for biomarker-based analysis plans for time to
event or binary endpoints is also available [15].

We first confirmed control of the experiment-wise type I error rate, i.e., Psuccess �
5%, for all of the designs in Table 14.1. We also confirmed control of Poverall as the
specified significance levels for the overall tests, ˛1 D ˛3 D 3%, for the FB and
TBBI designs.

Table 14.2 summarizes the empirical values of Poverall; Psubset, and Psuccess for
scenarios with non-null treatment effects. For the scenarios with constant treatment
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Table 14.2 Empirical probabilities of Poverall, Psubset, and Psuccess under non-null treatment effects

TBBI

HR
C

HR
�

p
C

Prob. Traditional FS-1 FS-2 FB ˛int D 5% ˛int D 10%

0:7 0:7 0:1 Poverall 0:758 0:083 0:106 0:690 0:658 0:623

(constant Psubset 0:000 0:036 0:013 0:007 0:045 0:079

effect) Psuccess 0:758 0:120 0:120 0:698 0:703 0:702

0:3 Poverall 0:774 0:198 0:300 0:703 0:669 0:634

Psubset 0:000 0:124 0:022 0:020 0:052 0:098

Psuccess 0:774 0:322 0:322 0:723 0:721 0:732

0:5 Poverall 0:764 0:222 0:450 0:691 0:659 0:623

Psubset 0:000 0:252 0:025 0:027 0:049 0:097

Psuccess 0:764 0:474 0:474 0:717 0:708 0:720

0:5 1:0 0:1 Poverall 0:074 0:016 0:039 0:048 0:027 0:019

(qualitative Psubset 0:000 0:301 0:279 0:178 0:296 0:304

interaction) Psuccess 0:074 0:317 0:317 0:225 0:323 0:323

0:3 Poverall 0:301 0:038 0:281 0:230 0:053 0:031

Psubset 0:000 0:719 0:476 0:449 0:706 0:743

Psuccess 0:301 0:757 0:757 0:680 0:759 0:774

0:5 Poverall 0:688 0:047 0:682 0:607 0:102 0:052

Psubset 0:000 0:891 0:256 0:305 0:825 0:893

Psuccess 0:688 0:938 0:938 0:913 0:927 0:945

0:5 0:8 0:1 Poverall 0:519 0:115 0:205 0:432 0:326 0:266

(quantitative Psubset 0:000 0:192 0:102 0:077 0:222 0:278

interaction) Psuccess 0:519 0:307 0:307 0:509 0:548 0:544

0:3 Poverall 0:762 0:232 0:644 0:692 0:369 0:270

Psubset 0:000 0:532 0:119 0:124 0:455 0:584

Psuccess 0:762 0:764 0:764 0:816 0:824 0:854

0:5 Poverall 0:914 0:214 0:882 0:873 0:403 0:288

Psubset 0:000 0:722 0:054 0:073 0:533 0:666

Psuccess 0:914 0:936 0:936 0:946 0:937 0:954

effects, .HRC;HR�/ D .0:7; 0:7/, where Poverall would be a relevant criterion, the
traditional design provided the greatest values of Poverall, as was expected. The FB
and TBBI designs provided slightly reduced values of Poverall than those of the
traditional design. On the other hand, the FS designs, especially FS-1, provided
much smaller values of Poverall. Similar trends were observed for Psuccess.

For the scenarios with a qualitative interaction, .HRC;HR�/ D .0:5; 1:0/, where
Psubset would be relevant, the FS-1 and TBBI designs performed best. The FS-2
and FB designs provided much smaller values of Psubset when pC � 0:3. With
respect to Psuccess, all biomarker-based designs, except the FB design, generally
provided comparable Psuccess values, while the traditional design provided much
smaller values of Psuccess.



14 Biomarker-Based Designs of Phase III Clinical Trials 259

Lastly, for the scenarios with a quantitative interaction, .HRC;HR�/ D
.0:5; 0:8/, the characteristics of the respective designs became clearer. The FS-2
and FB designs tended to provide larger Poverall, while the FS-1 and TBBI designs
tended to provide larger Psubset values. With respect to Psuccess, the TBBI designs
provided the largestPsuccess values, followed by the FB design with slight reductions
in Psuccess.

In summary, the FS-1 design would be suitable for cases with qualitative
interactions between treatment and biomarker and large treatment effects in the BC
patients, but could suffer from a serious lack of power for nearly constant treatment
effects in the overall population. Interestingly, the FS-2 design has quite different
properties, but was not shown to be so efficient for various profiles of treatment
effects. In contrast, a FB design would be suitable for cases with nearly constant
treatment effects in the overall population, but could suffer from a serious lack
of power for qualitative interactions between treatment and biomarker. The TBBI
designs generally performed well for various patterns of treatment effects within
biomarker-based subsets in terms of all the probabilities, Poverall, Psubset and Psuccess.
This can be explained by the effectiveness of the preliminary interaction test in
selecting the appropriate population for testing treatment efficacy.

14.6 More Complex Adaptive Designs

When the biology of the target of a new treatment is not well understood because of
the complexity of disease biology, it is quite common that a completely specified
predictive biomarker is not available before initiating the definitive phase III
trial. One approach in such situations is to design and analyze the randomized
phase III trial in such a way that both developing a predictive biomarker and
testing treatment efficacy based on the developed biomarker are possible and
conducted validly. Apparently, this approach works with randomize-all designs
without prestratification based on any biomarkers, and careful prespecification of
the analysis plan is mandatory.

Jiang et al. [10] developed the adaptive threshold design for settings where a
single predictive biomarker candidate is available but no threshold of positivity
for the biomarker is predefined. The basic idea is, for a set of candidate threshold
values .b1; : : : ; bK/ , to search for an optimal threshold value through maximizing
a log likelihood ratio of treatment effect for the patients with biomarker value �bk
over possible threshold values .k D 1; : : : ; K/ . The maximum log likelihood ratio
at the optimal threshold value is used as the test statistic. Its null distribution is
approximated by repeating the whole analysis after randomly permuting treatment
levels several thousand times. This approach can be applied to searching for a
subset determined by a positive value of any single biomarker when there is a
set of candidate binary biomarkers [23]. This approach can be used as the second
stage analysis of the FB designs or as a stand-alone basis by incorporating the log
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likelihood statistic for testing the overall treatment effects in obtaining a maximum
test statistic [10].

Another adaptive design, called adaptive signature design, is to develop a
predictor or signature using a set of covariates x, possibly high-dimensional
genomic data [6,8]. As the second stage of the FB designs, the full set of patients in
the clinical trial is partitioned into a training set and a validation set. A prespecified
algorithmic analysis plan is applied to the training set to generate a predictor. This is
a function of x and to predict, for a given patient with a particular value of x, to be
responsive or not responsive to the new treatment. The predictor is used to make a
prediction for each patient in the validation set. Then, the treatment efficacy is tested
for the patient subset predicted as “responsive” to the treatment in the validation set.

This modified second stage analysis of the FB designs can be based on split-
sample [6] or cross-validation [8]. In the latter approach, at the end of the prediction
process, each of all the patients in the clinical trial is predicted as either responsive
or not. Again, the treatment efficacy is tested for the patient subset predicted as
“responsive” to the treatment. However, because this subset is determined by the
cross-validation using the all patient data, the standard asymptotic theory does not
apply. To address this issue, a permutation method that repeats the whole processes
of the cross-validated prediction analysis after randomly permuting treatment levels
is employed [8].

Recently, Matsui et al. [14] developed another framework designed to estimate
treatment effects quantitatively as a function of a continuous cross-validated
predictive score for the entire patient population, rather than qualitatively classifying
patients as in or not in a responsive subset. Average absolute treatment effects
for the entire population or a responsive subset of patients can be estimated
based on the estimated treatment effects function and tested using a permutation
method. In this framework, patient-level survival curves can be developed to predict
survival distributions of individual future patients as a function of the cross-
validated predictive score and a cross-validated prognostic score that is developed
independently from the development of the predictive score, through correlating
genomic data with survival outcomes without reference to treatment assignment.

14.7 Concluding Remarks

In this chapter, we have discussed a wide variety of biomarker-based designs of
phase III clinical trials to establish the clinical utility of a biomarker or a new
treatment with the aid of a biomarker. In biomarker-strategy, enrichment, and
prestratified randomize-all designs, collection of specimens and biomarker assays
are conducted prospectively for newly accruing patients. As these prospective
designs are highly resource-intensive and time-consuming, a study using archived
specimens is sometimes used as an alternative. This type of study is retrospective
with regard to using archived specimens, but should prospectively specify a
protocol. An unstratified randomize-all trial, possibly with the adaptive designs in
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Sect. 14.6, could be categorized to this type of study because specimens archived at
the beginning of the trial are analyzed. Simon et al. [21] proposed several conditions
for appropriately conducting such a study with archived specimens. In summary,

1. Archived specimen, adequate for a successful assay, must be available from a
sufficient large number of patients to permit appropriately powered analyses
in the pivotal trial and to ensure that the patients included in the biomarker
evaluation are representative of the patients in the trial.

2. Substantial data on the analytical validity of the biomarker must exist to ensure
that results obtained from the archived specimens will closely resemble those
that would have been obtained from analysis of specimens collected in real time.
Assays should be conducted blinded to the clinical data.

3. The analysis plan for the biomarker evaluation must be completely developed
before the performance of the biomarker assays. The analysis should focus on a
single diagnostic biomarker that is completely defined and specified. The analysis
should not be exploratory, and practices that might lead to a false-positive
conclusion (e.g., multiple analyses of different candidate biomarkers based on
archived specimens from the same trial) should be avoided.

4. The results must be validated in at least one or more similarly designed studies
using the same assay techniques.

These conditions are also applicable to previously conducted clinical trials (with
archived specimens) that evaluated the efficacy of the treatment of interest.
When substantial preliminary evidence that a new biomarker predicts treatment
responsiveness has been accumulated by the middle or completion of a phase
III trial of the treatment, one may consider assay of the biomarker in archived
specimens from this trial. As an example, an analysis based on a KRAS mutation
in a randomized trial for the anti-EGFR antibody, cetuximab, which was approved
for the treatment of advanced colorectal cancer, demonstrated that the treatment
was not effective for patients with KRAS mutations [11]. Another possibility is
to analyze archived specimens from a failed pivotal trial that showed no treatment
effect for the entire patient population using the methods for biomarker development
described in Sect. 14.6. The developed biomarker from such an analysis can provide
useful information for designing a second confirmatory trial of the same treatment,
possibly with an enrichment design with small sample sizes.

The recent advances in biotechnology and genomics have posed biostatisticians
further important roles and challenges in various phases of biomarker development
and validation, including systematic collection of specimens and measurement of
biomarker/clinical data, development of an analytically and clinically-validated
biomarker, and establishment of the clinical utility of the biomarker or biomarker-
based treatment, through utilizing archived or prospectively-collected specimens in
the context of clinical trials. Further biostatistical researches are required indeed
in this important field for accelerating modern clinical studies toward personalized
medicine.
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Chapter 15
Dose-Finding Methods for Two-Agent
Combination Phase I Trials

Akihiro Hirakawa and Shigeyuki Matsui

Abstract In this chapter, we discuss the toxicity-based dose-finding methods for
two-agent combinations in phase I oncology trials. The model-based approaches,
such as the continual reassessment method (CRM), have been gradually applied to
single-agent trials to determine the maximum tolerated dose (MTD). By contrast,
the rule-based approaches have commonly been applied to two-agent combination
trials, probably due to the absence of well-understood model-based methods for
two-agent combination trials. In developing a dose-finding method for two-agent
combination trials, we require a reasonable model that can adequately capture
joint toxicity probabilities for two agents, taking into consideration of possible
interactions of the two agents on toxicity probability (such as synergistic or
antagonistic effects). We provide an overview of two useful dose-finding approaches
based on Bayesian copula-type models and partial orderings across dose levels
for two-agent combination trials. We also supply examples of successful software
implementations and discuss the operating characteristics of these approaches.

15.1 Introduction

The purpose of many phase I trials in oncology is to determine the maximum
tolerated dose (MTD), defined as the highest dose that can be administered to a
population of subjects that will produce the desired effect at acceptable toxicity
levels. To determine MTD in phase I populations with limited sample sizes,
model-based approaches are generally efficient. When evidence regarding the dose-
response relationship is available from preclinical studies or previous clinical trials
for similar agents, the data can be effectively incorporated as prior information in
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the Bayesian framework. O’Quigley et al. [11] developed the continual reassessment
method (CRM) that functions as the prototype for such an approach. In recent years,
many investigators have studied on Bayesian dose-finding methods for phase I trials
under various conditions.

The rate of implementation of two-agent combination trials, involving dose
combinations of two currently marketed drugs where MTDs have already been
determined or of a single new investigational drug to be used in combination with
an approved drug, has rapidly increased. Furthermore, the concurrent development
of two novel agents intended for use in combination to treat a single disease has
attracted considerable attention.

In developing dose-finding methods for two-agent combination phase I trials,
an inherent difficulty exists in modeling the complex dose-toxicity relationship
characterized by the main effects of, and the interaction between, two agents on the
probability of toxicity. One approach toward address this issue is to apply models
that assume joint toxicity probabilities when two agents are co-administrated,
including an interaction term of the two agents, within the Bayesian framework.
Thall et al. [14] proposed a six-parameter model for the toxicity probabilities of the
dose combinations and a toxicity equivalence contour for two-agent combinations.
Wang and Ivanova [17] proposed a logistic-type regression for dose combinations
that used the doses of the two agents as the covariates. Yin and Yuan considered
a Bayesian adaptive design based on latent 2 � 2 tables [18] and copula-type
models [19] for two combinatorial agents.

Another dose-finding approach to two-agent combination phase I trials is the
introduction of a partial ordering for combinations of the dose levels of the two
agents and the application of CRM. Conaway et al. [2] distinguished the simple
and partial orders of the toxicity probabilities by defining the nodal and non-nodal
parameters. Wages et al. [15] proposed a two-dimensional dose-finding method that
simplifies CRM when the ordering of the toxicity probabilities is fully known,
known as CRM with partial ordering. Wages et al. [16] extended this method
to the case where there exist pairs of dose combinations for which the ordering
of the probabilities of toxicity cannot be known a priori. Wages et al. [15] also
demonstrated that their two methods were competitive with the Yin and Yuan
methods [18, 19].

In this chapter, we focus on examining the Bayesian method based on copula-
type models by Yin and Yuan [19] and the likelihood-based CRM with partial
orderings by Wages et al. [16], as one of the most effective methods from each
dose-finding approach to two-agent combination phase I trials [16]. These methods
are attractive because they can be simply implemented using publicly available
software.

This chapter is organized as follows. Section 15.2 provides an overview of the
(one-parameter Bayesian) CRM with some modifications to improve practical per-
formance, as well as a naive application of CRM to the two-agent combination trials.
Section 15.3 presents the Bayesian dose-finding method of Yin and Yuan [19] and
provides some discussion on the use of copula-type models. Section 15.4 presents
CRM with partial orderings by Wages et al. [16]. Sections 15.3 and 15.4 also
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include examples of successful software implementation. Section 15.5 examines the
operating characteristics of these two methods through simulation studies. Based on
the results of the simulations, we demonstrate the inherent limitations of the models
in recommending unacceptable toxicity dose combinations in certain instances by
applying these methods. A possible solution to address these limitations is presented
under the concluding remarks in Sect. 15.6.

15.2 CRM

15.2.1 Overview of Dose-Finding Approaches for a Single
Agent

CRM is based on dose-toxicity models and is used to estimate MTD. For patient
i , if a predefined toxicity is observed, primarily the dose limiting toxicity (DLT),
we denote Yi D 1; otherwise, Yi D 0. We let PrfYi D 1g be the probability that
Yi D 1, often modeling this probability using a one-parameter logistic regression
model with a fixed intercept ˇ0:

PrfYi D 1g D  .xjˇ1/ D exp.ˇ0 C ˇ1xi /

1C exp.ˇ0 C ˇ1xi /
; (15.1)

where xi is the dose levels of an agent for patient i , and ˇ1 is the regression
coefficient. O’Quigley et al. [11] have also introduced alternate models, including
power and hyperbolic tangent models. It should be noted that the numerical dose
label xi s in CRM is not necessarily the actual dose administered, but rather is
defined on a conceptual scale that represents an ordering of the risks of toxicity
based on initial guesses of toxicity probabilities, for example, skeleton [11].

In the original CRM, the first patient is allocated to the dose level initially
believed to have toxicity closest to the target toxicity probability � [11]. After
obtaining the data on the toxicity outcomes from the first j patients, Dj D
fy1; � � � ; yj g, CRM updates the posterior estimates of dose toxicity probabilities
through the estimation of the posterior probability distribution pjC1.ˇ1jDj / in
order to determine the dose level allocated to the .j C 1/th patient as follows:

pjC1.ˇ1jDj / D Lj .ˇ1jDj /p.ˇ1/R1
�1 Lj .ˇ1jDj /p.ˇ1/dˇ1

; (15.2)

where Lj .ˇ1jDj / is the likelihood function of Eq. (15.1) for j patients; that is,

Lj .ˇ1jDj / D
jY

iD1
f .xi jˇ1/yi gf1�  .xi jˇ1/g.1�yi / ; (15.3)

and p.ˇ1/ is the prior probability distribution for ˇ1. In this simple one-parameter
setting, the posterior estimate of ˇ1 may be most easily computed by using



268 A. Hirakawa and S. Matsui

a standard numerical quadrature method (e.g., trapezoidal rule), but computer-
intensive simulation-based methods, such as the Markov chain Monte Carlo method,
have been widely applied. Using the posterior mean of ˇ1, the posterior estimates of
dose toxicity probabilities were obtained. The dose level at which posterior toxicity
probability is closest to the target value � was then determined and the .j C 1/th
patient was allocated to that dose level. Thus, dose allocation based on the posterior
toxicity probability was subsequently performed until the maximum sample size
Nmax was reached. Conclusively, the dose level with a posterior toxicity probability
closest to the target value � at the end of trial was selected as MTD.

Practical performance of CRM can be improved by introducing a safety stopping
rule, limiting each dose escalation to one level and treating patients in cohorts [6].
When treating in cohorts of three using the same dose level within the cohort,
the first three patients are allocated to the lowest dose level in practice due to
ethical considerations. Cheung [1] provided comprehensive reviews and extensive
discussions on CRM.

15.2.2 Software Implementation

CRM can be implemented based on several dose-toxicity models using the R
package “dfcrm”. The function crmsim in this package can be used to examine the
operating characteristics of CRM when planning a trial. A simulation experiment
was conducted using the function crmsim with the following configurations: five
dose levels were set with true toxicity probabilities {0.01, 0.15, 0.30, 0.45, 0.65}.
A skeleton of {0.05, 0.10, 0.20, 0.30, 0.55} was specified, and the target toxicity
probability � was set as 0.30. The cohort size and total sample size were specified
as 3 and 30, respectively. The first three patients were allocated to the lowest
dose level. A one-parameter logistic model with a fixed intercept of 3, that is,
logit.p/ D 3 C exp.ˇ/ � dose, was assumed with a normal prior of mean 0 and
variance 1.34 for ˇ. Next, 1,000 simulations were conducted to obtain an empirical
selection rate for each dose level. The following is an R code for implementing the
simulations, followed by average selection rates for each dose level:

>## Simulation experiments for examining
the operating characteristics of CRM

>library(dfcrm)
>p<-c(0.01,0.15,0.30,0.45,0.65)

#true toxicity probabilities
>prior<-c(0.05,0.10,0.20,0.30,0.55) #skeleton
>target<-0.3 #target toxicity probability
>init<-1 #initial dose level
>sim<-crmsim(p,prior,target,n=30,x0=init,nsim=1000,
mcohort=3,model="logistic",intcpt=3,seed=19810314)
>sim$MTD
[1] 0.000 0.121 0.577 0.295 0.007
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Fig. 15.1 Two-agent dose
combination matrix

15.2.3 Application of CRM to Two-Agent Combination Trials

One simple way of applying CRM to a two-agent combination trial would be to fix
one agent at each given dose level and vary the dose level over the second agent.
For example, a two-agent combination trial with agents A and B at four dose levels,
that is, x1 D f1; 2; 3; 4g and x2 D f1; 2; 3; 4g, as displayed in Fig. 15.1, could be
converted into four one-dimensional trials to determine the dose level of agent A for
each of the four dose levels of agent B. When the total sample size is 60, one may
allocate 15 patients to each of the four one-dimensional trials. Obviously, restricted
CRM does not take into consideration the joint toxicity probabilities when the two
agents are used simultaneously. In this instance, restricted CRM would probably not
be used in practice.

15.3 Bayesian Dose-Finding Approach Using Copula Models

15.3.1 Copula-Type Regression Models

In this section, we introduce the Bayesian dose-finding approach using copula-type
regressions developed in [19]. We considered a two-agent combination trial using
agents A and B. In designing this trial, we first specified prior information obtained
from previous studies where each agent was administrated alone. Let pj be the
pre-specified toxicity probability corresponding to Aj , the j th dose level of agent
A, p1 < � � � < pJ . Similarly, we let qk be the pre-specified toxicity probability
corresponding to Bk , the kth dose level of agent B, q1 < � � � < qK . Since the
maximum dose level for each agent in the combination (i.e., AJ and BK ) is often
calculated using individual MTDs that have already been determined in the singe-
agent trials, the upper bounds pJ and qK are usually known, and are typically
defined as less than 30 % (or 40 %). The probabilities for the remaining dose levels
.p1; � � � ; pJ�1/ for agent A and .q1; � � � ; qK�1/ for agent B, are specified based
on prior information. In order to enhance the flexibility and to accommodate the
uncertainty of the prior information, Yin and Yuan [19] take p˛j and qˇk as the true
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probabilities of toxicity for agent A and agent B, respectively, where ˛ > 0 and
ˇ > 0 are unknown parameters with prior means centered at 1.0. In modeling the
joint toxicity probabilities �jks when both agents are combined as a treatment, Yin
and Yuan [19] reported that a reasonable model should satisfy the following criteria:
for j D 1; � � � ; J and k D 1; � � � ; K ,

1. If p˛j D 0 and qˇk D 0, then �jk D 0;

2. If p˛j D 0, then �jk D q
ˇ

k , and if qˇk D 0, then �jk D p˛j ; and

3. If either p˛j D 1 or qˇk D 1, then �jk D 1.

Motivated by the Clayton copula model [10], they proposed to use a copula-type
regression model to link the joint toxicity probability �jk with .p˛j ; q

ˇ

k / in the
form of

�jk D 1�
n
.1 � p˛j /�� C .1 � qˇk /�� � 1

o�1=�
; (15.4)

where � > 0 characterizes the interaction of two agents. limpj!1f.1 � p˛j /
��g D

1 and limqk!1f.1 � q
ˇ

k /
��g D 1, and thus �jk D 1 as pj or qk goes to 1. If

only one agent is tested, for example pj > 0 and qk D 0 for all k, model (15.4)
reduces to CRM with �j D p˛j .j D 1; � � � ; J /. Other copula models may also be
applied, depending on mathematical convenience and computational simplicity. For
example, Yin and Yuan [19] introduced the Gumbel-Hougaard copula as

�jk D 1 � exp
h
�
n
.� log.1 � p˛j //1=� C .� log.1 � qˇk //1=�

o�i
: (15.5)

The likelihood function can be constructed based on the binomial distribution
with probabilities �jk. If yjk out of njk patients treated at dose levels .j; k/ have
experienced toxicity, the likelihood is provided by

L.˛; ˇ; � j data/ /
JY

jD1

KY

kD1
�
yjk

jk .1 � �jk/
.njk�yjk/ ; (15.6)

and correspondingly, the posterior distribution is

p.˛; ˇ; � j data/ / L.˛; ˇ; � j data/p.˛/p.ˇ/p.�/ ; (15.7)

where p.˛/, p.ˇ/, and p.�/ are gamma prior distributions with a mean of 1 and
suitable variance.
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15.3.2 Dose-Finding Algorithm

We let ce and cd be the fixed probability cut-offs for dose escalation and de-
escalation, respectively. Next, ce and cd can be calibrated through simulation studies
such that the trial has desirable operating characteristics, and ce C cd > 1. Patients
are treated in cohorts of three. The target toxicity probability that is clinically
allowed is defined as �. To be conservative, dose escalation or de-escalation were
restricted to one dose level of change only, while not allowing a translation along
the diagonal direction (corresponding to simultaneous escalation or de-escalation of
both agents). For a trial involving two drugs, the dose-finding algorithm functions
as follows:

1. Patients in the first cohort are treated at the lowest dose combination (A1, B1).
2. If, at the current dose combination .j; k/, Pr.�jk < �/ > ce , the dose is

escalated to an adjacent dose combination with probability of toxicity higher
than the current value and closest to �. If the current dose combination is (AJ ,
BK ), the doses remain at the same levels.

3. If, at the current dose combination .j; k/, Pr.�jk > �/ > cd , the dose is de-
escalated to an adjacent dose combination with the probability of toxicity lower
than the current value and closest to �. If the current dose combination is (A1,
B1), the trial is terminated.

4. Otherwise, the next cohort of patients continues to be treated at the current dose
combination (doses staying at the same levels).

5. Once the maximum sample size has been achieved, the dose combination that has
the probability of toxicity that is closest to � is selected as the MTD combination.

As is common to model-based clinical trial designs, the dose-finding algorithm
is difficult to apply at the beginning of the trial, because very limited information
(except for prior knowledge) is available. Thus, the posterior estimates of the
probabilities of toxicity for dose combinations may not be reliable. To circumvent
this difficulty, the following start-up rules were applied: the first patients were
treated along the vertical dose escalation in the order of (A1, B1), (A1, B2), � � � until
the first toxicity was observed; the patients continued to be treated by escalating
doses in the horizontal direction (A2, B1), (A3, B1), � � � until the first toxicity occurs.
As long as one toxicity is observed in both the vertical and the horizontal directions
(e.g., if one patient experiences toxicity at (A1, Bk) and (Aj , B1) for some values
of j and k), the Bayesian dose-finding algorithm will be seamless in effect for the
remainder of the trial.

15.3.3 Discussion on the Use of Copula-Type Models

Yin and Yuan [19] have concluded that the method they proposed can fully evaluate
the joint toxicity profiles of the combined drugs, in addition to preserving their



272 A. Hirakawa and S. Matsui

single-agent properties. Furthermore, the drug-drug interactive effects are naturally
modeled through a copula-type model, which reduces to CRM if only one drug
is considered. However, Gasparini et al. [5] reported some concerns about the
limitations of the copula-type regression model. They pointed out that during
drug development of multi-agent therapies, investigators generally encounter the
following three cases: (i) no interaction applies if the two agents act independently:
they have no apparent effect on one another’s potential toxicity; (ii) two agents are
said to exhibit an antagonistic effect when one drug reduces or neutralizes the toxic
potential of the other; and (iii) two agents are said to exhibit a synergistic effect if
they exhibit greater toxicity when administered together than would be expected if
they functioned independently.

Following these arguments, Gasparini et al. [5] provided the following formula-
tion. They let p and q be the probabilities of toxicity when using only the first or
only the second agent, respectively, and let �.p; q/ be the probability of a toxicity
when both drugs are administered in combination. No interaction was observed if
the two drugs function independently, that is, if the probability of no toxicity is
equal to the product of the marginal probabilities of no toxicity. In terms of the
probabilities of toxicity, the no-interaction model is defined as

�.p; q/? D 1 � .1 � p/.1 � q/ D p C q � pq : (15.8)

Thus, the three instances of drug-drug interaction are: (a) antagonism, �.p; q/ <
pCq�pq; (b) no interaction, �.p; q/ D pCq�pq; and (c) synergy, �.p; q/ >
pCq�pq. Any model that is applied to dose finding in combination studies should
have the potential to allow for these situations, with the synergistic case being most
plausible, based on the often toxic nature of both treatments.

The prototype of the copula-type regression model in [19] can be displayed as
follows:

�C.p; q/ D 1 � f.1 � p/�� C .1 � q/�� � 1g1=� : (15.9)

Gasparini et al. [5] objected to the use of copulas for modeling the joint-probability
of toxicity, since the following double inequality holds

max.p; q/ � �.p; q/ � min.p C q; 1/ (15.10)

for any toxicity probability �.p; q/ obtained from copula arguments and for
�C.p; q/ [10]. The primary criticism by Gasparini et al. [5] is that there exists no
reason for the joint-probability of toxicity to satisfy these constraints. Under extreme
synergistic or extreme antagonistic effects (less likely with drug combinations),
the joint-probability of toxicity should be allowed to approach 1 or 0 without
restrictions. Assuming that, for two specific doses of agent A and agent B, the
marginal probabilities of toxicity are p D 0:1 and q D 0:2, respectively,
co-administration of both agents will cause any copula to confine the probability of
toxicity to the interval (0.2, 0.3), the upper bounds being very close to the probability
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of toxicity under no interaction, .0:1 C 0:2/ � .0:1 � 0:2/ D 0:28. Clearly, these
restrictions are too severe. In practice, synergy could lead to a probability of toxicity
that is much greater than 0.3.

Gasparini et al. [5] also argued that the Clayton copula with � > 0 in [19] is a
particularly poor choice since it can be shown that �C.p; q/ is a strictly decreasing
function of � > 0 for fixed p and q. Since � ! 0 represents no interaction,
this implementation of the joint-probability of toxicity cannot model a synergistic
effect, which is the most common effect for drug combinations. For example, in the
numerical example above with p D 0:1 and q D 0:2, if � D 1, the joint-probability
of toxicity reduces to approximately 0.265. To consider the synergistic effect with
the Clayton copula, Gasparini et al. [5] suggested that one could consider the extra
range �1 < � < 0, although that would not avoid the overly restrictive constraints
Eq. (15.10).

15.3.4 Software Implementation

In this section, we used the software released by Yin and Yuan [19] to implement
their method, downloading the .exe program from http://as.wiley.com/WileyCDA/.
In this program, we entered the following configurations: the number of dose levels
for two agents and their true joint toxicity probabilities for dose combinations; target
toxicity probability; prior estimate of toxicity probabilities for dose levels for each
agent; total number of cohorts; cohort size; and number of simulated trials.

For example, we obtain the following simulation results when two dose levels
for each agent were tested:

--------------------------------------------------
CPU time (hour)= 0.00190944 # of trials = 10
Number of cohorts = 10; cohort size = 2
Escalate if Pr(toxicity<0.3) > 0.8
De-escalate if Pr(toxicity<0.3) < 0.45

True toxicity probabilities:
0.20 0.50
0.05 0.15

Selection probabilities (%):
20.0 60.0
0.0 20.0

Number of patients treated at each dose:
3.4 8.0
5.2 3.4

Number of toxicities observed at each dose:
0.3 3.7
0.2 0.6

http://as.wiley.com/WileyCDA/
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Total number of observed toxicities: 4.8
Percentage of inconclusive trials: 0.0%
--------------------------------------------------

In the default setting, ce and cd were set to be 0.8 and 0.45, respectively. By
utilizing the CCC program (copula.cpp), we could change the values for ce and
cd . Furthermore, we could select a copula model (i.e., Clayton or Gumbel copula
model) and the prior distributions for their model parameters.

15.4 CRM Using Partial Orderings of Toxicity Probabilities

15.4.1 Partial Orderings

The assumption that the probability of toxicity increases monotonically with
dose level is generally reasonable in single-agent trials. Using the terminology
of Robertson et al. [13], Wages et al. [15, 16] introduced the concept that the
probabilities of toxicity with respect to dose level follow a “simple order,” that is,
the ordering of the toxicity probabilities between any two dose levels is known,
with the higher dose corresponding to a greater probability of toxicity. While the
assumption of a simple order will often appear reasonable in single-agent trials,
the monotonicity assumption may not hold in two-agent combination trials since
the ordering of the toxicity probabilities may be unknown for several of the dose
combinations. In order to address this limitation, Wages et al. [15] focused on the
fact that investigators may be able to identify the order of the toxicity probabilities
for only a subset of the available dose levels, resulting in a partial ordering. The
method of Wages et al. [15] relies, to some degree, upon the framework of Conaway
et al. [2], which identifies all possible simple orders for the toxicity probabilities
that are consistent with the known orderings among the dose combinations. Each
of these simple orders consistent with a partial order can be thought of as a model.
Readers are referred to [2, 15] and [16] for further details.

Wages et al. [16] introduced an example of a partially ordered trial using the dose-
finding trial for combinations of topotecan and irinotecan [9]. This trial consists
of eight dose combinations: d1; � � � ; d8 (Fig. 15.2). The toxicity ordering between
dose combinations d1 and d2 is known, since the dose of irinotecan remains the
same while the dose of topotecan increases. This is also the case for the ordering
between dose combinations d3 and d4. However, the order relationships between
dose combinations d2 and d3 and between d4 and d5 are unknown because the dose
of topotecan decreases while the dose of irinotecan increases. If the known and
unknown toxicity order relationships continue to be assessed in this manner, the
following known order relationships hold: (1) d1 ! d2; (2) d3 ! d4; (3) d5 ! d6;
and (4) d7 ! d8. In these diagrams, dose combinations whose orderings are known
are connected by arrows, with the dose combinations to the right being more toxic
(i.e., it is known that d8 is more toxic than d7, d6 is more toxic than d5, and so on).
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Fig. 15.2 Combination
matrix of Topotecan and
Irinotecan in mg=m2=wk

Table 15.1 Eight possible simple orders for a combination trial of topotecan and irinotecan

Ordering (m) Simple order

1 d1 ! d2 ! d3 ! d4 ! d5 ! d6 ! d7 ! d8

2 d1 ! d3 ! d2 ! d4 ! d5 ! d6 ! d7 ! d8

3 d1 ! d2 ! d3 ! d5 ! d4 ! d6 ! d7 ! d8

4 d1 ! d2 ! d3 ! d4 ! d5 ! d7 ! d6 ! d8

5 d1 ! d3 ! d2 ! d5 ! d4 ! d6 ! d7 ! d8

6 d1 ! d3 ! d2 ! d4 ! d5 ! d7 ! d6 ! d8

7 d1 ! d2 ! d3 ! d5 ! d4 ! d7 ! d6 ! d8

8 d1 ! d3 ! d2 ! d5 ! d4 ! d7 ! d6 ! d8

Escalation to a previously untried dose combination depends on the prior
specification of “possible escalation combinations” associated with each dose
combination. For example, the possible escalation combinations for d1 are d2 and
d3, indicating that if d1 were tested and found to be well tolerated, escalation could
proceed to the previously untried levels d2 or d3.

In general, we surmise that the dose combinations follow a partial order for
which there are M.m D 1; � � � ;M / possible simple orders consistent with the
partial order; therefore, there exists a class of M models of interest. In the
context of the aforementioned example, there exist eight possible simple orders
(Table 15.1). Supposing that we can account for any prior information concerning
the plausibility of each model (i.e., p.m/ D fp.1/; � � � ; p.M/g, where p.m/ > 0
and

PM
mD1 p.m/ D 1), these probabilities are determined by prior knowledge, and

equal probability on each model p.m/ D 1=M is used when there is no available
information. Given a particular ordering, the toxicity probabilities are modeled by a
parametric model from the CRM class of models.

15.4.2 Framework of Dose-Finding Based on CRM Using
Partial Orderings

Assuming that there are H dose combinations, d1; � � � ; dH . For a particular model,
m .m D 1; � � � ;M /, the simple power model can be assumed as follows:
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 .dh; a/ D ˛amh; h D 1; � � � ;H; (15.11)

where ˛mh for each model represents the skeleton of the model. After obtaining the
data on the toxicity outcome for dose combination, we estimate the model parameter
a and subsequently calculate the toxicity probability for each dose combination,
 .dh; a/. The estimates for the toxicity probabilities at each dose combination are
based on the likelihood approach of the CRM of O’Quigley and Shen [12]. If we
suppose that Lm.a j D/ is the log-likelihood for ordering m after obtaining data
D on toxicity outcomes with the administered dose combinations after treating a
certain number of patients, for each M orderings, Lm.a j D/ can be maximized in
order to obtain an estimate Oam for a. As the weight of evidence in favor of modelm,
Wages et al. [16] introduced

�.m/ D expfLm. Oam jD/g
PM

mD1 expfLm. OamjD/g : (15.12)

Furthermore, they incorporated prior probabilities p.m/ as follows:

�.m/ D expfLm. Oam jD/gp.m/
PM

mD1 expfLm. OamjD/p.m/g : (15.13)

Notably, the inclusion of p.m/ is not a true Bayesian approach, as indicated in [16].
A true Bayesian approach to model selection requires both the prior p.m/ on the
model and a prior distribution on the parameter a in model m for each model.
Thus, the partial order m� such that m� D arg maxm �.m/; m D 1; � � � ;M was
determined.

Given the partial order m�, the working model associated with this ordering
was taken and the likelihood approach of CRM was applied to obtain estimates
of the toxicity probabilities at each of the H available dose combinations. Using
the simple power model in Eq. (15.11), the estimated probability of toxicity at each
dose combination is provided by  m�.dh; Oam�/. Thus, the dose combination that
minimizes j m�.dh; Oam�/ � �j is allocated to the next patient.

15.4.3 Two-Stage Dose-Finding Algorithm

Wages et al. [16] have adopted a two-stage design for dose-finding. Supposing
that toxicity increases monotonically across the rows and up the columns of the
matrix of doses, we consider a two-agent combination trial using agents A and
B with four dose levels (Fig. 15.3). The 16 dose combinations were divided into
7 groups (or zones) (G1, � � � , G7) consisting of the diagonals of the combination
matrix, that is, the first group contains the single combination d1, the second group
contains the dose combinations d2 and d5, and so on. Toxicity is considered to
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Fig. 15.3 Two-agent dose
combination matrix
consisting of seven groups

increase monotonically with respect to treatment during translation from group 1
to group 7. The first patient (or cohort) is allocated to the lowest dose combination,
d1. If a predefined toxicity is observed for this patient (or cohort), the first stage
is closed and the second stage is opened. If toxicity is not observed, the patient
(or cohort) is escalated to the second group. If more than one dose combination is
contained within a particular group, the investigator can sample without replacement
from the dose combinations available because the ordering of the treatments is
unknown. Specifically, the next dose combination is chosen randomly from the
dose combinations within the current group. In addition, the trial is not allowed
to advance to the third group in the first stage until the patient (or cohort) is enrolled
into both d2 and d3. This procedure is continued until one DLT is observed or all
available groups have been exhausted.

In the second stage, the MTD combinations are found using the dose-finding
approach described in the previous section. Once the maximum sample sizeNmax (or
the pre-specified stopping rule is met) is achieved, the dose combination that should
be assigned to the next patient (or cohort) is selected as the MTD combination

15.4.4 Software Implementation

In this section, we report on the implementation of the method of Wages et
al. [15] using the R program downloaded from http://faculty.virginia.edu/model-
based_dose-finding/POCRM-06.12.txt. The function crm calculates the maximum
likelihood estimate (MLE) of parameter a in the simple power model and recom-
mends a dose combination for the next patient. The functions twostgcrm and
pocrm.sim return the results of a single simulated trial and multiple simulated
trials, respectively.

For simplicity, two dose levels are considered for each agent: the total number
of dose combinations is four. Two possible orderings are considered, d1 ! d2 !
d3 ! d4 and d1 ! d3 ! d2 ! d4. In implementing this program, we also
entered the following configurations: the true joint toxicity probability for each
dose combination; target toxicity probability; maximum sample size; number of
patients on a combination needed to stop the trial; and skeleton (generated using the

http://faculty.virginia.edu/model-based_dose-finding/POCRM-06.12.txt
http://faculty.virginia.edu/model-based_dose-finding/POCRM-06.12.txt
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getprior function of [8]). Thus, we obtained the result of the single simulated
trial as follows:

>d<-4 #number of dose combinations
>s<-2 #number of possible orderings
>orders<-matrix(nrow=s,ncol=d)

#specify the possible orderings
>orders[1,]<-c(1,2,3,4)
>orders[2,]<-c(1,3,2,4)

>zones<-list(z1=c(1),z2=c(2,3),z3=c(4))
#specify the zone for dose-finding

>ff<-function(x){
+ if(length(x)==1){
+ x
+ } else
+ sample(x)
+ }
>
> r<-c(0.05,0.15,0.20,0.50)

#true toxicity probabilities
> theta<-0.30 #target toxicity probability
> n<-20 # Maximum sample size
> stop<-21
# number of patients on a combination

needed to stop the trial

> library(dfcrm)
# skeleton generator by Lee and Cheung (2009)
> skeleton<-round(getprior(0.03,theta,2,d),2)
> skeleton
[1] 0.24 0.30 0.36 0.42

> alpha<-matrix(0,nrow=s,ncol=d)
# skeleton for each ordering
> for(j in 1:s){
+ alpha[j,]<-skeleton[order(orders[j,])]
+ }
>
> alpha

[,1] [,2] [,3] [,4]
[1,] 0.24 0.30 0.36 0.42
[2,] 0.24 0.36 0.30 0.42
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> fit<-twostgcrm(n,alpha,r,theta)
> fit
$trial

patient level tox a order
1 1 1 0 0.000000 99
2 2 2 0 0.000000 99
3 3 3 0 0.000000 99
4 4 4 1 1.361205 1
5 5 4 0 1.630720 1
.
.
.
19 19 2 0 1.084570 1
20 20 2 0 1.131424 1
21 21 3 0 0.000000 0

$MTD.rec
[1] 3

The R package “pocrm” for implementing the method of Wages et al. [16] was
released in December 2012, and can also be used. Wages et al. [16] reported that
their method was competitive with the method proposed in [15], and with the
methods of Conaway et al. [2] and Yin and Yuan [18, 19].

15.5 Comparison of Operating Characteristics

15.5.1 Simulation Setting

We performed a simulation study to compare the operating characteristics of the
methods of Yin and Yuan [19] and Wages et al. [16] in two-agent combination
trials under the some scenarios we selected. Four dose levels were considered for
both agents A and B: A D f1; 2; 3; 4g and B D f1; 2; 3; 4g. The target toxicity
probability that is clinically allowed, �, was set to 0.3. The maximum sample size
Nmax was set to 60 throughout.

We also performed the method of Yin and Yuan [19] with the following
specifications: the prior toxicity probabilities for 4 � 4 dose combinations (i.e.,
A D f1; 2; 3; 4g and B D f1; 2; 3; 4g) were set to be (0.075, 0.15, 0.225, 0.30).
Three patients were allocated to a single dose level at a single time. We performed
the method of Wages et al. [16] with the following specifications: (1) the skeletons
were generated using the getprior function; (2) the six possible orderings of the
drug combinations were used for 4�4 dose combinations trials; and (3) the number
of patients on a dose combination needed to stop the trial was 61 (i.e., we avoid
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Table 15.2 Four scenarios for a two-agent combination trial with the target probability of toxicity
0.3 (MTD combinations are in boldface)

A D 1 2 3 4 1 2 3 4

Scenario 1 Scenario 2

B D 4 0:30 0:50 0:55 0:60 0:30 0:50 0:60 0:70

3 0:12 0:30 0:50 0:55 0:15 0:35 0:50 0:55

2 0:10 0:15 0:30 0:45 0:08 0:30 0:45 0:50

1 0:08 0:12 0:16 0:18 0:05 0:10 0:20 0:30
Scenario 3 Scenario 4

4 0:20 0:50 0:55 0:70 0:08 0:55 0:60 0:75

3 0:15 0:30 0:50 0:60 0:05 0:50 0:55 0:65

2 0:10 0:18 0:30 0:50 0:03 0:30 0:40 0:50

1 0:06 0:08 0:10 0:15 0:01 0:10 0:15 0:45

Table 15.3 Recommendation rates for true MTD and unacceptable toxicity dose combinations in
all scenarios

Scenario 1 2 3 4

True MTD combinations (%)

Yin and Yuan [19] 47.0 39.0 36.0 11.9

Wages et al. [16] 60.6 46.1 42.1 30.1

Unacceptable toxicity dose combinations (%)

Yin and Yuan [19] 32.8 42.0 37.3 62.5

Wages et al. [16] 13.7 31.8 16.9 44.1

the use of this stopping rule). We compared the operating characteristics of the two
methods by simulating four scenarios as shown in Table 15.2. We conducted 1,000
simulation trials for each scenario.

15.5.2 Simulation Results

The primary simulation results are summarized in Table 15.3. In terms of recom-
mending true MTD combinations, the method of Wages et al. [16] outperformed
that of Yin and Yuan [19] under the scenarios we selected. The recommendation
rates for unacceptable dose combinations (i.e., the dose combinations with toxicity
probability greater than 0.3) of the two methods were greater than or equal to those
for true MTD combinations under some scenarios. According to the results from our
further simulation studies (data not shown), the two methods highly recommended
the unacceptable dose combination levels relative to the recommendation rates for
true MTD combinations in certain instances.
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15.6 Discussion

In this chapter, we have provided an overview of dose-finding approaches based on
toxicity for combinations of two agents. The approaches can be categorized into
two groups: (1) those using a flexible Bayesian model, including an interaction term
of the two agents; and (2) those that extend CRM, taking into consideration the
partial ordering of toxicity probabilities for dose combinations. The methods of Yin
and Yuan [19] and Wages et al. [16] represent these two categories, respectively.
Although these two methods employ substantially different dose-toxicity models
and dose-finding algorithms, their operating characteristics have been shown to be
competitive in [16]. Regarding the method of Yin and Yuan [19], the adequacy
and utility of the copula-type regression models should be further examined, as
discussed in Sect. 15.3.3.

The operating characteristics of the methods of Yin and Yuan [19] and Wages
et al. [16] can be varied depending on the implementation configurations (e.g., prior
toxicity specifications, cohort size, assumed toxicity scenarios, etc.), although we
displayed the results of simulation studies under several scenarios in Sect. 15.5. In
practice, it is important to determine the suitable configurations for investigational
agents through a simulation study. However, we were concerned that the two afore-
mentioned methods tended to yield a high recommendation rate of unacceptable
toxicity dose combinations in certain instances. Since the use of unacceptable
toxicity dose levels is one of the primary causes for the high attrition rate of
investigational drugs in confirmatory trials, as well as an increasing ethical concern,
it is therefore desirable to develop a dose-finding approach that can suppress
the recommendation of unacceptable dose combinations, while maintaining a
high probability of selecting true MTD combinations. To address this issue, it is
appropriate to tailor dose-finding methods to learn the zone of unacceptable dose
combinations more effectively at an early part of the dose-finding process and then
avoid unacceptable dose combinations later on. One promising approach is the
application of empirical Bayes shrinkage regression [3, 4]. A dose-finding method
using this approach is reported [7].

Acknowledgements This work was partially supported by JSPS KAKENHI Grant Number
25730015 (Grant-in-Aid for Young Scientists B).
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Chapter 16
Multi-state Models Used in Oncology Trials

Birgit Gaschler-Markefski, Karin Schiefele, Julia Hocke,
and Frank Fleischer

Abstract Among the surrogate endpoints for overall survival (OS) in oncological
trials, progression-free survival (PFS) is used as an important endpoint especially
in first or second line of cancer therapies. Basic formulae for the determination of
sample sizes based on time to event data can be found in the literature. Assumptions
about the distributions of the survival time for OS and PFS, the accrual time and the
censoring time are of key importance. Most often only uniformly distributed patient
accrual and no censoring are mentioned, whereas the event time is assumed to be
exponentially distributed. Considering the dependence between PFS and OS, we
will investigate how a three-state model that includes states of progression/response
and death can be used for a joint modelling of progression-free survival and overall
survival. Sample size/power calculations are discussed for the three-state model and
compared to the estimations based on exponentially distributed OS times. These
sample size calculations are based on the assumption of piecewise uniformly accrual
and exponentially distributed censoring time. The new three-state model approach
results in a 10–30 % lower sample size and a corresponding higher power. An
application to a Phase III lung cancer trial illustrates how the new approach can
be successfully applied to the planning of a trial and to the monitoring of the needed
events for the PFS and OS analyses.

16.1 Introduction

Oncological trials are often performed as event-driven trials, i.e. trial length and
analysis time points are tied to the occurrence of a specific number of events. The
most commonly used endpoint for new anticancer drug studies is overall survival
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(OS). If a patient develops progression of the tumor, then the therapy will be stopped
and the patient will be switched to another (probably new) anticancer therapy.
With regard to this, progression-free survival (PFS) is also used as a trial endpoint
especially in early stages of cancer therapy. We will analyse OS mathematically by
incorporation of the PFS information via a multi-state model. Multi-state models
are probabilistic models which allow for studying transitions of a subject (in this
context a person or patient) between different states over the course of time. In this
chapter, an introduction to the basic concepts of multi-state modelling will be given
and models commonly used in medical contexts, especially in oncology, will be
presented.

In oncology as well as other indications like stroke or asthma a time to
event outcome is often used as primary endpoint. For operational aspects it may
be important to plan the time points of the final analysis and possible interim
analyses. The time points of the interim analyses and final analysis in time to event
studies are in most cases driven by the needed number of events (landmark event
number). Therefore, a precise monitoring and prediction of the time point for the
landmark event number is needed. The estimation of this time point with respect
to OS can be derived based on different assumptions on the distribution of the
lost-to-follow-up and the overall survival. For estimation of the time to occurrence
of the landmark event number in this article an illness-death model, i.e. a three-state
model for OS, is applied instead of the frequently used but oversimplifying
assumption of exponentially distributed OS. An application to a phase III lung
cancer trial illustrates how the new approach can be successfully applied to monitor
event numbers for the OS analyses.

This chapter is structured as following: Different kinds of relevant multi-state
models will be defined and their application to different contexts given. Of
special interest is the three-state model for estimation of the time point of the
landmark event number. Therefore, in the second part, after introducing the model
assumptions as well as deriving relevant distributions, the expected number of
events depending on the current time point and the planned accrual period will
be derived. Based on this, the predicted landmark event time may be derived. We
will compare the three-state model with an alternative one, which is restricted to
exponentially distributed OS and does not account for progression. How the choice
of the model influences sample size and power calculations is shown in an example.
The performance of our new approach is demonstrated on real data of a non-small
cell lung cancer trial.

16.2 Background Information

This section is based on models for the analysis of data with the primary endpoint
being the time until occurrence of a certain event, which is also called failure. In the
following an overview about common multi-state models will be given, whereas the
kind of model is defined by the types of states it is consisting of.
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16.2.1 Overview of Multi-state Models

The nonnegative random variable T corresponds to the period of time lasting from
the initial time t0 (e.g. time point of birth, randomisation, etc., mostly t0 D 0) to
the occurrence of the event of interest. In accordance to common terminology T is
assumed to be continuous on RC. For analysis of discrete failure time distributions
see for example [20].

Definition 16.1. A right-continuous piecewise constant stochastic process X.t/;
t 2 Œ0;1/ with a finite state space S D f1; : : : ; ng; n 2 N; is called a multi-state
model (MSM).

The value of the process corresponds to the state occupied at time t and the initial
distribution of the stochastic process is noted by �s.0/ D P.X.0/ D s/ for s 2 S

(cf. [25]). The shift from one state to another is referred to as a transition or an
event.

The probability for being in state j 2 S at time t 2 RC given that the process
started in i 2 S at u 2 RC, u < t , is called the transition probability and is noted by

pi;j .t; u/ D P.X.u/ D j jX.t/ D i;Ht / ; (16.1)

whereas Ht denotes the history of the process X.:/ (a 
-algebra in mathematical
terms). Ht consists of all the information of the process from the initial time (mostly
time point 0) until t , i.e. all of the previous states and related times of transition in
the interval Œ0; t �. Based on (16.1), the state probabilities �j .t/ D P.X.t/ D j / are

�j .t/ D
X

i2S
�i .0/pi;j .0; t/ (16.2)

for j 2 S and t 2 RC. The transition intensity (also called transition rate, hazard
function or (age-specific) failure rate) is defined by

˛i;j .t/ D lim
�t&0

pi;j .t; t C�t/

�t
: (16.3)

The ˛i;j .t/ gives the instantaneous event (or failure) rate at time t , provided
the individual has been event-free until t . Consequently, the product ˛i;j .t/�t
corresponds to the approximate probability of an event in Œt; t C �t/, given there
has been no event until t (cf. [23]). A state i 2 S is called absorbing when it
is not possible to leave this state once it has been reached and therefore, it holds
˛i;j .t/ D 0 for all t 2 RC and j 2 S . The time point when the process has left state
i 2 S and first reaches j 2 S is called transition time.

Different kinds of models are defined by dependency of the transition intensity
on time (cf. [25]):
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1. Time homogeneous models have transition rates being constant over time, i.e.
pi;j .t; u/ depends only on u � t and so it holds pi;j .t; u/ D pi;j .0; u � t/.

2. Markov models have transition intensities only depending on the current state
and neither on more of the previous states nor on future states, i.e. for i; j 2 S

and t; u 2 RC with 0 � t < u

P.X.u/ D j jX.t/ D i;Ht / D P.X.u/ D j jX.t/ D i/ : (16.4)

3. Semi-(homogeneous) Markov models have transition intensities depending on
the current state i 2 S as well as on the time spent in state i .

In the following, only time-homogeneous Markov models will be analysed.
For further description and examples on semi-(homogeneous) Markov models see
e.g. [4] or [34].

A more detailed introduction to the theory of stochastic processes and multi-state
models may be found in [3] (Chapter I). Also a good overview about multi-state
models is given in [1, 25] and [18].

16.2.2 Types of Models

Uni-directional (or progressive) models allow for forward transitions only; once
a state has been left, it can not be returned to it again. On the other hand in bi-
directional (or alternating) models, the process can return to each state provided
that it does not enter an absorbing state. Alternating models are relevant for e.g.
reversible diseases but they would not be considered in detail in this chapter.

16.2.2.1 k-State Model

The k-state model is characterized by k � 1 transient but uni-directional passable
states (k 2 N, k � 2) and one absorbing state. Commonly, the first of the transient
states is the starting point and the absorbing state is reachable from each of the
transient states. Each of the following kinds of k-state models is Markovian. A
method for testing the Markov property for example in a three-state progressive
model is presented in [30].

Mortality Model

The simplest kind of the k-state model is the mortality model (two-state model)
consisting of only two states (cf. Fig. 16.1). The process starts in ‘0’ (alive) and stops
after reaching the absorbing state ‘1’ (dead). It holds ˛1;0.t/ D 0 for all t 2 RC and
the initial distribution is �0.0/ D 1. For example, Birnbaumer et al. apply this model
to the kinetics of an enzyme [7].
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0
alive

1
dead

Fig. 16.1 Mortality model

0
randomisation

2
death

1
progressive
disease

Fig. 16.2 Three-state model

Disability Model

The disability model (three-state model) is the specific multi-state model regarded
in more detail in the subsequent sections. It consists of one absorbing and two
transient states. Common applications of this model are state sequences like ‘healthy
– diseased – death’ or as illustrated in Fig. 16.2 ‘disease – progressive disease (PD)
– death’. The first mentioned setting enables inferences on the incidence of the
regarded disease as well as on health rate whereas the decision if death rates of
healthy subjects and patients differ may be problematic (cf. [25] p. 2). Andersen [2]
applied the three-state model to the setting ‘illness – comorbity – death’.

Obviously, for ˛0;1 D 0 the disability model corresponds to the mortality model
illustrated in Fig. 16.1. The transition probabilities introduced in (16.1) are for the
three-state model given by (cf. [1, 25])

p0;0.s; t/ D exp

�
�
Z t

s

˛0;1.u/C ˛0;2.u/ du

�
; (16.5)

p1;1.s; t/ D exp

�
�
Z t

s

˛1;2.u/ du

�
; (16.6)

p0;1.s; t/ D
Z t

s

p0;0.s; u�/˛0;1.u/p1;1.u; t/ du ; (16.7)

p2;2.s; t/ D 1 ; (16.8)

p1;2.s; t/ D
Z t

s

p1;1.s; u�/˛1;2.u/ du ; (16.9)

p0;2.s; t/ D
Z t

s

p0;0.s; u�/Œ˛0;2.u/C ˛0;1.u/p1;2.u; t/„ ƒ‚ …
D˛�

0;2.u;t /

� du : (16.10)
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Fig. 16.3 Four-state model

The probability to stay in state 0 from time s until t is equal to the probability that
the (random) time point of leaving this state is after t . It is well known that for a

random variable T with hazard rate h.:/ it holds P.T > t/ D exp
n
� R t

0
h.u/du

o
.

According to Fig. 16.2, leaving state 0 corresponds to switching into state 1 or 2 and
since these are exclusive events, the hazard of the time point leaving state 0 is given
by the sum of the single hazard rates. So Eq. (16.5) is verified, (16.6) can be shown
analogously. Since p0;1.s; t/ corresponds to staying in state 0 until an infinitesimal
time unit before u, with u an arbitrary time between s and t , switching to state 1 at
u and staying there until t , (16.7) is clear.

The overall transition rate ˛�
0;2.u; t/ corresponds in case of discrete time to the

probability P.X.t/ D 2jX.u/ D 0/ and is for continuous time equal to ˛0;2.u/ C
˛0;1.u/ p1;2.u; t/.

In some settings it is necessary to consider also the state ‘response’, leading to
a four-state model as shown in Fig. 16.3. Since patients having suffered progressive
disease are assumed not being able to respond to the treatment without adjustment
of dose/treatment, the state switches between ‘progression’ and ‘response’ are only
one-directional.

In oncological trials, in particular in the metastatic setting, commonly the
treatment is changed after occurrence of progressive disease in order to stop further
progression. This new or adopted therapy is called second line treatment or kth line
treatment in case of further previous switches. Modelling this proceeding leads to
the k-state model (cf. Fig. 16.4).

16.2.2.2 Further Models

The recurrent events model consists of k transient states and optionally an absorbing
state at the end of the line, whereas the transient ones only can be passed one
after another. This model is applied if the event of interest occurs repeatedly,
e.g. hospitalization, birth of a child, infections, recurrence of cancer, etc. A broad
overview about the analysis of recurrent events is given in the book of Nelson [24],
for further reading see also [21] or [8].
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1
1st line progr.

2
2nd line progr.

3
3rd line progr.

0
death

4
4th line progr.

...

Fig. 16.4 k-state model

Adding further mutually exclusive absorbing states to the mortality model (i.e.
death caused by different reasons) is called competing risks model. An introduction
to the theory of those models is for example given in Beyersmann et al. [6] as well as
in [28] and [13]. R. Chappell discusses in his manuscript two different methods for
analysing competing risks models [9]. When switching to an absorbing state censors
a non-terminal event, we are faced with semi-competing risks models which have
been studied in [15] or [26]. Some authors (cf. [1], Section 3.6) call those models
bone marrow transplantion model, since this setting is the common application.
The bivariate model is used for modelling bivariate failure times, e.g. the survival
of twins. For a more detailed description of this see for example [18], Section 5.2.

16.2.3 Recent Research in Multi-state Modelling

In recent research there are numerous applications of multi-stage modelling in the
medical context given. Especially for models of chronic diseases this approach
is frequently used. A three-state model for cognitive aging and suffering from
dementia, with a kind of ‘sub-state’ (the pre-diagnosis) between ‘healthy’ and
‘ill’ and an increased transition rate after this additional state, is given by Dantan
et al. [12]. They used a mixed-model approach and regarded non-informative
censoring. An informative censoring mechanism is given in the model of Sweeting
et al., which is a type of hidden Markov model for the analysis of disease progression
in hepatitis C [31]. Lan and Datta compare a semi-Markov five-state model to a
Markovian four-state model, both with assumption of log-normal as well as Weibull
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distributed transition times and an uniformly or rather Weibull distributed censoring
mechanism, in the context of measurement of sexual development of juvenile in
puberty [22]. A four-state model with Weibull distributed transition rates for survival
of dental fillings was developed by Joly et al. [19].

The most prominent area for multi-state modelling is the analysis of survival
time and time until non-fatal events in oncology. There are numerous extensions
and adjustments of the above basic modelling approaches. Only a few examples will
be given. Porta et al. [27] combine a three-state model, including the possibility of
disease recurrence, with a competing risk model and apply their dynamic model to
patient data on bladder cancer. In some cases, the patient history has an effect on the
transition rates and consequently the Markov property is no longer given. Putter and
van Houwelingen model this by introduction of frailties (i.e. unobservable random
interaction of survival times of different individuals). They apply this in the context
of a three-state model, a competing risks model, a recurrent event model as well as a
recurrent event model combined with mutually exclusive endpoints to breast cancer
patient data [29]. Different kinds of multi-state Markov models with consideration
of several progression stages are given in [35] and also applied to breast cancer data.

16.2.4 Questions to Be Solved=Data to Be Collected

Patients in oncological trials will typically receive several lines of treatment
because of treatment adjustment after suffering progressive disease. For the sake
of simplicity, in the following only a three-state model is investigated, i.e. each
of the patients considered receives at most one change of treatment regime after
progression. There are two endpoints being of interest in oncological trials, the
primary endpoint is progression-free survival (PFS) and the key secondary one is
overall survival (OS), both visualized gray-colored in Fig. 16.5. We are primarily

0
random.

2
death

0,1
1
PD 1,2

time • • •

0,2

PFS

OS

l

l l

Fig. 16.5 Three-state model with constant transition rate
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interested in information on overall survival. Instead of modelling OS via a single
random variable, we can also incorporate the information on PFS by use of a
three-state model for OS. A careful and precise definition of tumor progression
is crucial [16] for accurate determination of PFS. Since there are no standard
regulatory criteria, the RECIST criteria [14, 33] for solid tumours or other criteria
can be used, e.g. for specific hematologic indications see [10] or [11].

Definition 16.2. The time from randomisation until death from any cause is called
overall survival (OS).

Commonly, oncological trials are performed as event-driven trials, which means
the trial length as well as the analysis time points are related to the occurrence of
a specific number of events. So the study duration is a random quantity and the
estimation of the time point t� when the required number of events is observed is
in question. At the begin of the study the estimated duration will be calculated and
this value will be updated during the course of the trial. Furthermore, the time t�
of occurrence of the landmark event number is also relevant for planning of any
interim analysis.

16.3 Statistical Methods

16.3.1 Model Assumptions

In the following, we will concentrate on the three-state model as given in Figs. 16.2
and 16.5.

16.3.1.1 Modelling of PFS and OS

For simplicity reasons, the transition rates (as defined in Eq. (16.3)) are assumed to
be constant over time:

˛0;1.t/ D �0;1 ;

˛0;2.t/ D �0;2 ;

˛1;2.t/ D �1;2 ;

(16.11)

with �i;j 2 RC for i D 0; 1; j D 1; 2. From Eq. (16.11) follows that the random
time to progression (TTP), i.e. the period between randomization and occurrence
of progression, is exponentially distributed with parameter �0;1. Furthermore, the
random time between progression and death as well as between randomization
and dying directly is also exponentially distributed with parameter �1;2 and �0;2,
respectively.
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According to the definition of PFS, the PFS time corresponds to the waiting
time of the stochastic process in the initial state 0, i.e. the PFS time is given by
T0 D minft 2 RC W X.t/ ¤ 0g. Based on this, the PFS time is exponentially
distributed with parameter �0;1 C �0;2.

In the regarded context, death is termed event. Let f .t/ and g.t/ be the density
function of the event time and the lost to follow up time, respectively. The event
times as well as the censoring times are assumed to be stochastically independent
and identically distributed for all individuals i D 1; : : : ; N . Because of this, the
subscript i may be suppressed for the censoring and event times in order to shorten
expressions. The censoring process is assumed to follow an exponential distribution
with parameter � , i.e. g.t/ D � e�� t for t 2 RC. Note that the quantities derived
in the following may also be given in case that no censoring is assumed. Without
consideration of censoring it is � D 0.

Since OS is the event of interest, the overall survival time will be denoted by the
random variable T . The distribution of T is depending on the present state of the
process, so the distribution function of OS is for t 2 RC given by

FT;C .t/ D P.T � t; C > T / D P.C > T jT � t/ � P.T � t/

D �0;1�1;2

.�0;1 C �0;2 � �1;2/.�1;2 C �/

�
1 � e�.�1;2C�/t�

� .�1;2 � �0;2/.�0;1 C �0;2/

.�0;1 C �0;2 � �1;2/.�0;1 C �0;2 C �/

�
1 � e�.�0;1C�0;2C�/t� :

(16.12)

In case that there is no censoring regarded, the previous distribution function
simplifies to

FT .t/ D P.T � t/

D 1 � �0;1

�0;1 C �0;2 � �1;2 e��1;2t C �1;2 � �0;2

�0;1 C �0;2 � �1;2
e�.�0;1C�0;2/t :

(16.13)

A more detailed derivation of the above equations may be found in the appendix and
in Fleischer et al. [16]. For determination of corr.PFS;OS/ see Fleischer et al. [16].
Heng et al. applied these results and showed that the PFS time can be used as an
intermediate endpoint for OS [17].

For a patient being already progressive, the event time is the waiting time in
state 1 and therefore the distribution of overall survival in this case is

FT;C .t/ D �1;2

�1;2 C �

�
1 � e�.�1;2C�/t� : (16.14)
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16.3.1.2 Modelling the Accrual Process

It is assumed that all patients enrolled during the accrual period will also be
randomized, i.e. screening failures are not considered. The following derivations
will be done for an one-arm trial, whereas generalizations to multi-arm trials work
in an analogous manner (cf. [5]).

There are two different approaches for modelling the accrual process, the
common one is a Poisson-process. Especially in case of numerous randomized
patients, it is possible to loose restriction on randomized accrual by assumption
of a fixed accrual rate r 2 RC over the whole time period.

At start of the trial, we assume a linear randomization with rate r 2 RC.
Therefore, the number of patients randomized until the current calendar time tc
is given by N.tc/ D r � tc . In general, the observed randomization rate at time
t > tc will be different from r . Henceforth, from current time tc randomization of
the remainingN �N.tc/ patients is assumed with constant rate r.tc/, whereas

r.tc/ D
(
0; if N.tc/ � N ;
N�r �tc
a.tc /�tc ; else ;

(16.15)

for tc 2 RC and a.tc/ denoting the end of the randomization period. With
u � tc a future time-point, the density of the randomization rate for the remaining
randomization time is

r.tc ; u/ D N � r � tc
a.tc/ � tc I.0;a.tc /�tc /.u/ ; (16.16)

because of assumption of uniformly accrual in the remaining time interval.

16.3.2 Prediction of OS Events

In the following, we will derive a closed formula for the expected number of events
at a future time point t , depending on the current time point tc . Based on this, the
expected time point of the landmark number of events can be calculated. Let the
number of events (i.e. deaths) observed until a certain time t 2 RC be given by the
random variable D.t/. Then, EŒD.t/jN;Htc � is the conditional expectation of the
number of events that will be observed by calendar time t > tc , given the data up
to current calendar time tc . The value in question is the predicted calendar time t�
when the required number of events Od is expected, i.e. EŒD.t�/jN;Htc � D Od .

The expected number of events is given by

EŒD.t/jN;Htc � D d.tc/C EŒDR.t/jN;Htc �C EŒDNR.t/jN;Htc � ; (16.17)
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with d.tc/ 2 N0 the number of events until the current time tc , which is not a
random variable but rather an observed quantity. EŒDR.t/jN;Htc � is the number of
newly expected events between tc and t of patients being already randomized at
tc given the data up to tc and EŒDNR.t/jN;Htc � denotes the analogous quantity for
patients randomized between tc and t .

16.3.2.1 Calculation of EŒDR.t/jN;Htc
�

The conditional expectation EŒDR.t/jN;Htc � of the patients already randomized,
alive and on study at time tc who will have been observed to die by time t , has to be
distinguished between patients who have already progressed until time tc or not. Let
Yi.t/ D 0 if patient i has not progressed until t and is under observation and at risk
for an event at time t and Yi .t/ D 1 if the patient has already suffered progressive
disease. Therefore, EŒDR.t/jN;Htc � is

EŒDR.t/jN;Htc � D EŒDR.t/; Y.tc/ D 0jN;Htc �C EŒDR.t/; Y.tc/ D 1jN;Htc � ;
(16.18)

with EŒDR.t/; Y.tc/ D 0jN;Htc � the expected number of events of patients not
progressive until tc and EŒDR.t/; Y.tc/ D 1jN;Htc � the analogous quantity of
patients already progressive at time tc .

Let Ei , i D 1; : : : ; N denote the random variable for the randomization time of
the i th patient and let �i denote the observed randomization time of the i th patient.
It is assumed that the randomization time Ei of every individual is stochastically
independent from the associated event and censoring times. The randomization time
of each individual is measured from t D 0, the calendar date when the first patient
is randomized. The individual survival times (overall survival) and censoring times
are measured from the calendar date of a patients randomization. The probability
that the i th patient is at risk between tc � �i and t � �i , i.e. the probability that the
i th patient has the event time within the time interval .tc � �i ; t � �i / and does not
get censored before the event, given that the patient survived uncensored at tc � �i ,
is denoted by Pf;gi .tc; t/. It is

Pf;gi .tc; t/ D P.T < C; T 2 .tc � �i ; t � �i /jT > tc � �i ; C > tc � �i /

D
R t��i
tc��i f .u/

DP.C>u/‚ …„ ƒ
P.T < C jT D u/ du

.1 � F.tc � �i //.1 �G.tc � �i //

D F.t � �i / � F.tc � �i /� R t��i
tc��i f .u/G.u/ du

.1 � F.tc � �i //.1 �G.tc � �i //
:
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The dependency of Pf;gi .tc; t/ on the distribution of the event and censoring times
is symbolized by the indexes f and g, the corresponding density functions. By the
assumption of memoryless distributions for the event and the censoring time (i.e.
for F.:/ and G.:/) it holds

Pf;gi .tc ; t/ D P.T < C; T 2 .0; t � tc//

D
Z t�tc

0

f .u/P.C > u/„ ƒ‚ …
D1�G.u/

du

D F.t � tc/�
Z t�tc

0

f .u/G.u/ du ;

(16.19)

whereas the first transformation uses the definition of memoryless distributions.
Obviously, in this case the risk probability of patient i is independent of the
individual randomization time �i , i D 1; : : : ; N . In the following, we will provide
that event times and censoring times follow memoryless distributions.

For the expectation EŒDR.t/jN;Htc � we get

EŒDR.t/jN;Htc � D
N.tc/X

iD1
.1 � Yi.tc// � Pf0;gi .tc; t/C

N.tc/X

iD1
Yi .tc/ � Pf1;gi .tc; t/ :

Since Pf;gi .tc; t/ is independent of i (cf. (16.19)), we obtain

EŒDR.t/jN;Htc � D N0.tc/ � Pf0;gi .tc ; t/ � IY.tc /D0
C .N.tc/ �N0.tc// � Pf1;gi .tc; t/ � IY.tc /D1 ;

(16.20)

withN0.tc/ the number of patients not yet progressive andN.tc/�N0.tc/ the number
of randomized patients suffering progression until tc . In the above equations, the
index of the density f symbolises the corresponding distribution function of the
event time, i.e. f0.t/ denotes the density function of OS of a randomized patient
(cf. (16.12)) and f1.t/ is the density of OS time for a patient already progressive
(cf. (16.14)).

The probability of dying between tc � �i and t � �i given that PFS > tc � �i
equals the probability of dying before t � tc , irrespective of the randomization time.
By plugging Pf0;gi .tc ; t/ into formula (16.20) we get

EŒDR.t/jY.tc/ D 0;N;Htc � D N0.tc/

�0;1 C �0;2 � �1;2
	
�0;1�1;2

�1;2 C �

�
1 � e�.�1;2C�/.t�tc/�

� .�1;2 � �0;2/.�0;1 C �0;2/

�0;1 C �0;2 C �

�
1 � e�.�0;1C�0;2C�/.t�tc/�



:

(16.21)
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If the patient has already progressed his further survival follows the distribution
given in (16.14) and therefore

EŒDR.t/jY.tc/ D 1;N;Htc � D .N.tc/ �N0.tc// �1;2Œ1 � e�.�1;2C�/.t�tc/�
�1;2 C �

:

(16.22)

Altogether, the expected number of events of the patients already randomized is
given by

EŒDR.t/jN;Htc � D N0.tc/

�0;1 C �0;2 � �1;2

	
�0;1�1;2

�1;2 C �

�
1 � e�.�1;2C�/.t�tc/�

� .�1;2 � �0;2/.�0;1 C �0;2/

�0;1 C �0;2 C �

�
1 � e�.�0;1C�0;2C�/.t�tc/�




C .N.tc/�N0.tc//
�1;2Œ1 � e�.�1;2C�/.t�tc/�

�1;2 C �
:

(16.23)

So the expected number of events in the subset of patients being already randomized,
depends on the distribution parameters of the event times as well as on the number
of patients suffering progression until tc .

16.3.2.2 Calculation of EŒDNR.t/jN;Htc
�

For determination of the expected number of events of patients not yet randomized,
it has to be distinguished between three different scenarios.

Scenario 1 The randomization is finished, tc is after end of randomization period
a.tc/. Thus, no more patients will be recruited after tc and for 0 � a.tc/ � tc < t it
is EŒDNR.t/jN;Htc � D 0 (Fig. 16.6).

Scenario 2 The randomization is not yet finished, tc is before end of randomization
and the planned time of analysis t is after a.tc/.The expected number of events for
0 � tc < a.tc/ � t is

EŒDNR.t/jN;Htc � D
Z a.tc /�tc

0

r.tc; u/P.T < C; T 2 .0; t � tc � u// du

D
Z a.tc /�tc

0

r.tc; u/

	Z t�tc�u

0

f .s/.1 �G.s// ds



du ;

(16.24)

with r.tc ; u/ D N�r �tc
a.tc /�tc , G.s/ D e��s and f .s/ the density function of OS which

may be derived from (16.12) (Fig. 16.7).



16 Multi-state Models Used in Oncology Trials 297

Fig. 16.6 Scenario 1 | | | |
t = 0 a(tc) tc t

Fig. 16.7 Scenario 2 | | | |
t = 0 tc a(tc) t

Fig. 16.8 Scenario 3 | | | |
t = 0 tc t a(tc)

Scenario 3 The randomization is not yet finished. The planned time for interim
analysis t is after tc but before end of randomization (Fig. 16.8).

EŒDNR.t/jN;Htc � D
Z t�tc

0

r.tc; t/

	Z t�tc�u

0

f .s/.1 �G.s// ds



du;

with the analogous variables as given in scenario 2.
With regard on the definition of randomization rate (cf. (16.16)), assumption of

linear randomization and the above, EŒDNR.t/jN;Htc � may be given in closed form:

EŒDNR.t/jN;Htc � D

8
ˆ̂<

ˆ̂:

0; if a.tc/ � tc < t ;
N�N.tc /
a.tc /�tc

R a.tc /�tc
0

Pf;gi .u; t � tc/ du; if tc < a.tc/ � t ;

N�N.tc /
a.tc /�tc

R t�tc
0

Pf;gi .u; t � tc/ du; if tc < t � a.tc/ :

Insertion of the distribution function of the event and censoring times gives finally

EŒDNR.t/jN;Htc � D

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if 0 � a.tc/ � tc < t ;

.N �N.tc//
h

�0;1�1;2
.�0;1C�0;2��1;2/.�1;2C�/

�
1 � e�.�1;2C�/.t�a.tc //�e�.�1;2C�/.t�tc /

.�1;2C�/.a.tc/�tc /



�
� .�1;2��0;2/.�0;1C�0;2/

.�0;1C�0;2��1;2/.�0;1C�0;2C�/
�
1 � e�.�0;1C�0;2C�/.t�a.tc //�e�.�0;1C�0;2C�/.t�tc /

.�0;1C�0;2C�/.a.tc/�tc /

i
;

if 0 � tc < a.tc/ � t ;

N�N.tc/
a.tc /�tc

h
�0;1�1;2

.�0;1C�0;2��1;2/.�1;2C�/
�
t � tc � 1�e�.�1;2C�/.t�tc /

�1;2C�



�
� .�1;2��0;2/.�0;1C�0;2/

.�0;1C�0;2��1;2/.�0;1C�0;2C�/
�
t � tc � 1�e�.�0;1C�0;2C�/.t�tc /

�0;1C�0;2C�

i
;

if 0 � tc < t � a.tc/ :

(16.25)
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16.3.3 An Alternative Model

As mentioned in Sect. 16.2.1, if in the three-state model (cf. Fig. 16.5) the transition
rate ˛0;1.t/ is equal to 0, we are faced with the mortality model of Fig. 16.1. Since
˛0;2.t/ is assumed to be a constant, �0;2 2 RC, the transition time from state 0
to state 2 (death) is exponentially distributed. We will call this reduced model the
exponential model.

The quantities derived above can also be given for the exponential model by
assumption of �0;1 D �1;2 D 0 in Fig. 16.5. So the distribution function of overall
survival is

FT;C .t/ D �0;2

�0;2 C �

�
1 � e�.�0;2C�/.t/� ; (16.26)

with � the distribution parameter of censoring time. This distribution function
reduces to those of an exponentially distributed variable with parameter �0;2, when
there is no censoring considered. Furthermore, from the previous subsection follows
that it is

EŒDR.t/jN;Htc � D N.tc/ � �0;2

�0;2 C �

�
1 � e�.�0;2C�/.t�tc/� (16.27)

and

EŒDNR.t/jN;Htc �

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

0; if 0 � a.tc/ � tc < t ;

.N�N.tc //�0;2
�0;2C�

h
1 � 1

.�0;2C�/.a.tc/�tc /
�
e�.�0;2C�/.tc�a.tc // � e�.�0;2C�/.t�tc/�

i
;

if 0 � tc < a.tc/ � t ;

.N�N.tc//�0;2
.�0;2C�/.a.tc/�tc /

h
t � tc � 1

�0;2C�
�
1 � e�.�0;2C�/.t�tc/�

i
;

if 0 � tc < t � a.tc/ :

16.3.4 Landmark Event Time

According to the formula of Schoenfeld (cf. [32]) the required number of events for
a two-sided test (with significance level ˛ and power ˇ) may be calculated via

Od � .z1� ˛
2

C z1�ˇ/2

In2.HR/�1�2
; (16.28)
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with z1�i the i th quantile of the standard-normal distribution, HR the hazard ratio of
˛�
0;2.u; t/ between treatment groups and �j the proportion of patients in treatment

group j .
The value in question is the predicted calendar time t� when for a given sample

size N the required number of events is expected, i.e. EŒD.t�/jN;Htc � D Od . The
conditional expectation of events until time t > tc , given the data up to current
calendar time tc is

EŒD.t/jN;Htc � D d.tc/C EŒDR.t/jN;Htc �C EŒDNR.t/jN;Htc � ;

with d.tc/ the observed number of events until tc , EŒDR.t/jN;Htc � as given
in (16.23) and EŒDNR.t/jN;Htc � given in (16.25).

16.3.5 Sample-Size Calculations and Examples

On the other hand, for a fixed time point t (e.g. t the planned study duration) and Od
the required number of events until t , the required sample size can be calculated via

N D
Od

FT .t/
: (16.29)

This is based on the expected number of events corresponding to the overall number
of patients randomized until t times the event probability at t .

16.3.5.1 Example 1

Suppose the treatment effect gives a hazard ratio of 0.75 for overall survival and
of 0.67 for progression-free survival. The median OS time in the treatment and
placebo group is 12 and 9 months, whereas the median PFS time in treatment and
placebo group corresponds to 6 and 4 months, respectively. We assume an uniform
accrual rate of 40 patients per month and a 1W1 randomization between treatment and
placebo group. The significance level is 0.025 (one-sided) and the power is 80 %.
The maximum expected observation time is 23 months.

By use of the exponential model for OS, 600 patients are needed for getting a
power of 80 %. Based on this sample size, 380 events are expected at observation
time t D 23months. Using the three-state model, the above assumptions correspond
to hazard ratios in the treatment and control group of �0;1 D 0:078 and 0.116, �0;2 D
0:038 and 0.057 as well as �1;2 D 0:105 and 0.114, respectively. The expected
number of events after 23 months is 390, based on a sample size of 600. The power
in this scenario is 89 % due to the higher number of events. To get a power of 80 %
when modelling overall survival via the three-state model, a sample size of only 480
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patients is needed. On the other hand, 380 events will occur at observation time of
21.5 months, which saves 1.5 months of study duration.

16.3.5.2 Example 2

Our second example is based on data of a second line non-small cell lung cancer
trial with 1,000 patients randomized in total. The last data monitoring committee
DMC meeting has to occur after the 800th death event. A non-uniform accrual
process is observed for this trial. Eighteen months after start of randomization, the
event monitoring for this study is calculated by use of the exponential model as
well as the three-state model. Based on the time from randomization, the time from
randomization until the 800th death event is estimated for both models. We get
stable estimates for both models after about 150 randomized patients and about
40 PFS events and 15 death events observed. The exponential model gives an
estimation of 34 months and the three-state model an estimation of 29 months.
Since the target number of 800 death events has not been observed so far, we
run a simulation using the assumptions of the previous example to investigate until
when the both models will estimate the time to the 380th death event and what the
expected difference between the estimations is. The target of the 380th death event
occurred at 21.5 months (please compare Fig. 16.9).

As seen in Fig. 16.9, 240 patients were randomized, 37 death events, and 80 PFS
events were occurred after 6 months from randomization. The exponential model
gave an estimation of 25 months, and the three-state model showed an estimation
of 21.6 months (please compare Fig. 16.10). This is again a time difference of
4 months. Half of the required death events (190 OS events) were occurred after
14 months from randomization. Most of all patients were randomized and about half
of them had a PFS event. Then the exponential model gave a more exact estimation
of about 23.2 months, which is still 1.5 months more than the three-state model.

Fig. 16.9 The observed
cumulative number of events
over the time from
randomization. (Results from
the simulation example.) The
number of patients
randomised in (diamonds -
upper line), the observed
number of OS events (squares
- lower line)
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Fig. 16.10 Mean and
standard error of the
estimations of the time to
380th OS event from all
simulations. The squares and
the diamonds represent the
3-state model and the
exponential model,
respectively
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16.3.5.3 Software Available

There is several software available. Multi-state models need specialised software,
most of which are written in FORTRAN, R or SAS. The library survival available
as part of S-plus and R statistical packages can be used to implement these methods.
An R package msm was developed in 2002. In addition, an user-friendly R library,
tdc.msm, was generated for the analysis of multi-state survival data. Technical
description of this is provided in the independent article Meira-Machado et al. [25].

Appendix

Derivation of FT .:/ for the disability model by assumption of exponentially
distributed state times:

FT .t/ D P.T � t/

D
Z t

0

p0;0.0; u/˛
�
0;2.u; t/ du

D
Z t

0

exp

�
�
Z u

0

.˛0;1.v/C ˛0;2.v// dv

� �
�0;2 C �0;1

�
1 � e��1;2.t�u/

��
du

D
Z t

0

exp

�
�
Z u

0

.�0;1 C �0;2/ dv

� �
�0;2 C �0;1

�
1 � e��1;2.t�u/

��
du

D
Z t

0

e�.�0;1C�0;2/u ��0;2 C �0;1
�
1 � e��1;2.t�u/

��
du
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D �0;2

Z t

0

e�.�0;1C�0;2/u du C �0;1

Z t

0

e�.�0;1C�0;2/u du

� �0;1e
��1;2t

Z t

0

e�.�0;1C�0;2��1;2/u du

D ��0;2
�0;1 C �0;2

�
e�.�0;1C�0;2/t � 1

�C ��0;1
�0;1 C �0;2

�
e�.�0;1C�0;2/t � 1�

C �0;1e��1;2t

�0;1 C �0;2 � �1;2
�
e�.�0;1C�0;2��1;2/t � 1

�

D �0;2

�0;1 C �0;2
C �0;1

�0;1 C �0;2„ ƒ‚ …
D1

�e�.�0;1C�0;2/t
�
�0;2 C �0;1

�0;1 C �0;2

�

„ ƒ‚ …
D1

� �0;1

�0;1 C �0;2 � �1;2 e��1;2t C �0;1

�0;1 C �0;2 � �1;2
e�.�0;1C�0;2/t

D 1C e�.�0;1C�0;2/t
�
�0;1 � �0;1 � �0;2 C �1;2

�0;1 C �0;2 � �1;2
�

� �0;1

�0;1 C �0;2 � �1;2 e��1;2t

D 1C �1;2 � �0;2

�0;1 C �0;2 � �1;2 e�.�0;1C�0;2/t � �0;1

�0;1 C �0;2 � �1;2
e��1;2t :

A slightly different derivation of this formulae is given in Fleischer et al. [16].
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Chapter 17
Review of Designs for Accommodating Patients’
or Physicians’ Preferences in Randomized
Controlled Trials

Afisi S. Ismaila and Stephen D. Walter

Abstract The randomized controlled trial (RCT) is regarded as the principal way to
collect scientific data on the efficacy of health interventions. Despite the advantages
of RCT design in reducing extraneous variation that may confound interpretation
of intervention results, the design may not be suitable for interventions in which
patients are likely to have a strong preference for a particular treatment. Some
designs incorporating patients or physician preferences by allowing at least a
subgroup of them to choose their treatment have been proposed. In this chapter, we
review various randomized control trials designs for accommodating participants’
and professionals’ preferences. Specifically, we discuss the advantages, limitations,
applicability, ethical issues and statistical issues of each design. We also discuss the
estimation of treatment effect (a measure of the extent to which treatment difference
is attributable to treatments); selection effect (a measure of the extent to which
treatment response is influenced by self-selection of treatment by patients); and
preference effect (a measure of the extent to which treatment difference is caused by
an interaction between the patient’s choice of treatment and the treatment actually
received).

17.1 Introduction

The randomized controlled trial (RCT), defined as an experiment in which the
treatments under investigation are allocated by a chance (or random) mechanism,
is regarded as the principal way to collect scientific data on the efficacy of health
interventions [38]. With proper concealment of allocation and blinding of trial
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participants, one of the benefits of random assignment of therapies is that neither
the patient nor the outcome assessors knows the assigned treatment before the
patient is formally entered in the trial [38]. Furthermore, with sufficient sample
sizes, RCTs are capable of providing valid estimates of treatment benefits and
controlling extraneous variation [21] RCT designs are widely used with the intention
of producing comparable groups of patients who differ only in terms of their
exposure to the intervention under study [4, 7, 9].

Despite the advantages of RCT design in reducing extraneous variation that
may confound interpretation of intervention results, the design may not be suitable
for interventions in which patients are likely to have a strong preference for a
particular treatment [7, 8, 12, 34]. Patients’ motivation to comply with treatment
protocol is likely to be influenced by any preference before treatment began [8]. The
potential for a preference effect may be high in RCTs of skilled-based interventions
like health education, psychotherapy and surgery. Millat et al. [27] evaluated the
impact of RCT on decision-making and therapeutic policies among general and
gastrointestinal surgeons in France. They concluded that surgeons are rarely in a
state of “equipoise” about surgical interventions. Of the 152 surgeons sampled,
63 % rely on personal beliefs to assess the effectiveness of surgical procedures [27].
Since surgeons are rarely randomized to interventions in conventional RCTs, the
likelihood of producing comparable groups with similar surgeon preferences is
limited.

Some designs incorporating patients or physician preferences by allowing at least
a subgroup of them to choose their treatment have been proposed and reviewed [7,
27]. In general, random allocation of patients to a treatment they do not want may
reduce adherence to protocol, increase the dropout rate, restrict generalization of the
findings and thus reduce the external validity of the study [5,6,17]. Therefore, with
random allocation there will always be a risk that the groups will not be matched
for motivational factors [8].

The objective of this chapter is to review various randomized control trials
designs for accommodating participants’ and professionals’ preferences. Specifi-
cally, we will discuss the advantages, limitations, applicability, ethical issues and
statistical issues of each design.

17.2 Background

Suppose an investigator is interested in knowing the relative benefit of two
interventions (A or B) in a clinical trial, where A is the experimental treatment
and B is the control treatment. The control treatment could be the best standard
treatment or a placebo. Let NE denote the number of eligible patients who are
potential recipient of treatment A or B in the clinical trial. Ethically, every study
must begin with informed consent.
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17.2.1 Informed Consent

Informed consent lies at the heart of ethical research involving human subjects [10].
The giving of informed consent is a prerequisite to participation in most RCTs. The
informed consent procedure refers to the dialogue, information sharing and general
process through which prospective patients choose to participate in research [10].
This procedure requires the study investigators or physicians to inform the patient,
in his or her own language, about all risks and benefits associated with the trial, the
alternative treatments available and the patient’s right to withdraw at any time [10,
38]. The patients should also be informed about the procedure used for treatment
assignment [10, 38].

The conventional informed consent procedure is to fully inform the patients prior
to treatment allocation and then seek their consent to randomization [22]. Hence, the
process of informed consent is likely to generate preferences in patients, even if none
existed before [22]. Some researchers have suggested that these patient preferences
should be explicitly incorporated into the designs of clinical trial [22]. Two elements
are critical to the informed consent process. The first is its timing with respect
to treatment allocation; and the second is options it presents to the patients [22].
Schellings et al. [32] distinguished and ranked three types of informed consents:
single-consent, incomplete-double-consent and complete-double-consent (or con-
ventional informed consent). In the single-consent, only those in the experimental
arm learn about their assigned treatment. In the incomplete-double-consent, all the
patients learn about their assigned treatment. In the complete-double-consent, all
patients learn about all available interventions in the study. We will discuss some of
this later in Sect. 17.3.

17.2.2 Search Strategy

We searched Medline, Embase, PsyCINFO, CINAHL, and AMED databases for
articles published between 1950 and June 2010 on alternative parallel designs to
the conventional RCT for accommodating patients’ or physicians’ preferences. The
search terms include random allocation, clinical trials, preference(s), self selection,
choice behavior and patient participation. In addition, we reviewed the references of
relevant review articles [7, 26].

17.3 Clinical Trial Designs

In this section, we review the conventional RCT and some of the alternative designs
for accommodating patients’ or physicians’ preferences in randomized controlled
trials. We will also discuss the estimation of treatment effect (a measure of the
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extent to which treatment difference is attributable to treatments); selection effect
(a measure of the extent to which treatment response is influenced by self-selection
of treatment by patients); and preference effect (a measure of the extent to which
treatment difference is caused by an interaction between the patient’s choice of
treatment and the treatment actually received) [31].

17.3.1 The Conventional Randomized Controlled Trial

The conventional RCT design is illustrated in Fig. 17.1. In this design, all the NE
eligible patients learn about treatment A and B before being asked to consent
to random allocation to either treatment. This is described as complete-double-
consent [32]. Only those patients who agreed to treatment allocation, say NR
in number (where NE � NR), are enrolled as study participants and randomly
assigned to treatmentA orB . Eligible patients who do not consent to randomization
(say NE � NR in number) are not enrolled into the trial. The proportion of NE
patients willing to participate in the conventional RCT is � D NR=NE . For some
therapeutic areas � may be as low as 10 % if treatments A and B under evaluation
are qualitatively so different (e.g. surgery versus medical intervention) that the
proportion of patients having clear intervention preferences are high [29]. Since
the NR patients are usually not a random sample from the eligible NE patients, the
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Fig. 17.1 A schematic of the conventional randomization design
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generalizability of the results of the trial from the trial participants to the broader
patient population may be invalidated.

17.3.1.1 Estimating Treatment, Selection and Preference Effects

Let yik denote the response for the kth patient (k D 1; : : : ; ni ) randomized to the
i th treatment (i D A;B). Let �i denote the mean response of the i th subgroup in
the random group. The treatment effect, a measure of the extent to which treatment
difference is attributable to treatments themselves is defined by 
C

T D �A � �B .
The usual estimator of 
C

T is mean difference based on the sample sizes ni is given
by O
C

T D yA � yB . The variance of O
C
T is given by

var. O
C
T / D 
2

� 1
nA

C 1

nB



:

For a balanced design (nA D nB D n), the variance becomes var. O
C
T / D 2
2=n.

This effect can be tested for significance using a z-test or a Student’s t-test. Selection
effects and preference effects are not directly measurable in a conventional RCT but
they are assumed to be equal to zero in expectation.

17.3.2 Comprehensive Cohort Study (CCS)

Olschewski and Scheurlen [28] proposed the comprehensive cohort study as an
extension to the conventional randomized controlled trial by allowing patients not
consenting to randomization (say NE � NR in number) to choose their preferred
treatment (Fig. 17.2). This design is essentially a prospective cohort follow-up
study with a randomized sub-cohort [29]. The comprehensive cohort design is
recommended in clinical trials where full informed consent is mandatory and the
proportion of patients with a preference for treatment is high; that is, the proportion
of NE patients willing to participate in the conventional RCT (denoted by �) is
low [28].

This design should be prospective and is not applicable to situations in which data
from retrospective databases are combined with data from a prospective randomized
controlled trial [29]. For example, combining the results of a retrospective cohort
study with a randomized controlled trial does not constitute a comprehensive cohort
trial or design. The cohort study may not represent a true preference group because
some of the patients in the studies might have consented to randomization if
offered. Furthermore, heterogeneity may exist in patient selection criteria and study
management between the cohort study and clinical trial.
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Fig. 17.2 A schematic of the Comprehensive cohort randomized controlled trial [28]

17.3.2.1 Estimating Treatment, Selection and Preference Effects

We will denote the proportion of subjects in the non-random arm (preference group)
who expressed preference for interventionA andB by ˛ and ˇ, respectively. So that
from Fig. 17.2, the estimates of ˛ and ˇ are given by

Ǫ D n11

NE �NR

and

Ǒ D n22

NE �NR ;

where Ǫ C Ǒ D 1. Suppose �i (i D 1 for A, 2 for B) denotes the mean response
of the i th subgroup in the random arm of the design (see Fig. 17.2). The treatment
effect for the comprehensive cohort design is denoted by
CC

T and defined as
CC
T D

�1 � �2. The estimate of 
CC
T based on the observed n1 and n2 is O
CC

T D y1 � y2.
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This estimate is the same as the one obtained from the conventional randomized
controlled trial ( O
C

T ). The variance of O
CC
T is given by

var. O
CC
T / D S21

n1
C S22
n2
:

Suppose �ij denotes the mean response for treatment i (i D 1 for A, 2 for B)
and preference group j (j D 1 (preferA), 2 (preferB), and 3 (no preference)). The
selection effect and preference effect are not directly measurable from the design.
However, the influence of preference on outcome of treatment A and B could be
defined as
CCa

P�
D �11 ��1 and
CCb

P�
D �22 ��2 respectively. The corresponding

estimates are O
CCa
P�

D y11�y1 and O
CCb
P�

D y22�y2, respectively. When O
CCa
P�

> 0

and O
CCb
P�

> 0, then the influence of preference on outcome of treatments would
be seen as important. Because this estimation involves the preference arm of the
design, a regression approach taking all prognostic factors into consideration is
always recommended [28, 29]. The goal of this analysis is to adjust for the possible
effect of heterogeneity in baseline characteristics of the patients in the preference
groups compared to the randomly assigned group.

17.3.2.2 Advantages

The design has all the advantages of a conventional randomized controlled trial. In
addition to providing unbiased estimates of the treatment effects, the design allow
investigators to measure some influence of preference on outcomes by comparing
outcomes in patients not consenting to randomization with those who consented.
The external validity of the study is enhanced because almost all eligible patients
will enter the study whether or not they consent to randomization [29].

17.3.2.3 Limitations

The design reduces to an observational study if all patients expressed preference
for treatments by not consenting to randomization. Hence, an unbiased estimate
of treatment effect may be impossible from the preference group because of
the potential imbalance in the baseline characteristics of patients. Similarly, the
preference-arm of the design will not exist if all patients consented to randomization.
The design assumes that every non-consenting patient has a preference for one
intervention or the other. As a result it does not explicitly account for the fact that
some patients may refuse randomization for reasons other than preference [19].
Finally, the design uses fewer patients to estimate the treatment effect (i.e. only
patients in random group).
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Fig. 17.3 A schematic of the Zelen single consent design [38]

17.3.3 Single Consent Designs

The key feature of these designs is that the NE eligible patients are randomly
assigned to treatments before informed consent is sought. This design is illustrated
in Fig. 17.3. Only the patients in the experimental arm (say n1 in number) are
approached for consent. Informed consent is never sought from all the n2 patients
randomized to the standard treatment [38]. As a result these patients are not aware of
their inclusion in the trial. The thinking is that patients randomized to the standard
treatment are receiving the usual care, for which no consent is needed. Those
patients randomized to the experimental treatment that decline informed consent
(say n12 in number) are offered the standard treatment.

A variant of this design is the “modified single consent design” in which the NE
eligible patients are randomly assigned into two groups, choice and no choice arm,
with n1 and n2 patients respectively [38,39]. The patients allocated to the no choice
arm receive treatmentB (standard treatment). The patients randomized to the choice
arm are given the opportunity to choose between treatmentA orB after both options
are discussed with them.
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17.3.3.1 Estimating Treatment, Selection and Preference Effects

Suppose �i denotes the mean response for patients randomized to treatment i
(i D 1 for A, 2 for B). Furthermore, let �ij denote the mean response for patient
randomized to treatment i (i D 1 for A, 2 for B) and having preference treatment j
(j D 1, prefer A; and j D 2, prefer B).

Zelen [38, 41] suggests that the treatment effect should be estimated by com-
paring treatment A to treatment B as randomized irrespective of the treatment
they actually received. Therefore, the treatment effect for the single consent design
denoted by 
SC

T is defined as 
SC
T D �1 � �2. The estimate of 
SC

T based on the
observed n1 and n2 is O
SC

T D y1 � y2. The variance of O
SC
T is given by

var. O
SC
T / D S21

n1
C S22
n2
:

Selection effect and preference effects are not directly measurable in the single
consent designs. However, a comparison of outcomes and characteristics of patients
in subgroupG12 and G2 (see Fig. 17.3) may be useful in understanding the possible
effect of selection on the experimental treatment B .

Another parameter of interest in the single consent trial is �S , the proportion
of n1 patients randomized to the experimental treatment (A) who accepted the
treatment when offered [38]. From Fig. 17.3, �S can be estimated as O�S D n11=n1.
As the number of patients accepting treatmentA increases, �S approaches 1 and the
single consent design reduces to the conventional randomized design. As �S departs
from unity, the loss in statistical efficiency of the single consent design becomes
apparent [38].

Zelen [38, 41] derived the asymptotic relative efficiency of the single-consent
design relative to the conventional RCT as �2S . This derivation assumes that 50 %
of the subjects are randomized to each group in both the conventional RCT and the
single-consent RCT.

17.3.3.2 Advantages

The single consent design may increase patient enrollment into the study since
all the eligible patients (NE) are allowed to participate in the trial. Furthermore,
patients will be aware of the assigned treatment before giving consent or expressing
preference [38]. The design is very useful in situations in which experimental inter-
vention is highly attractive to potential subjects and when the control group receives
standard intervention [16, 38]. It is very attractive to physicians enrolling their
patients or parents enrolling their children because in contrast to the conventional
RCT, the single consent trial guarantees that subjects in the experimental arm can
receive their preferred treatment [38].
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17.3.3.3 Limitations

The design is limited in application because of the need for usual care arm. This
does not exist for many therapeutic areas. It is unethical to inform patients about
treatment options and randomization only after the results of pre-randomization are
known [27,38]. Furthermore, failure to fully inform the patients in the standard arm
of the alternative treatment options in the trial is also an ethical limitation of the
design [38]. Because the patients in the standard arm of the trial were not informed
of there participation in trial, only routinely collected data during regular clinical
visits could be obtained from patients. This limits the applicability of the design
to clinical trials in which more data collection and visits may be needed [2]. The
design cannot be used when there are important reasons for double-blinding in a
randomized controlled trial [38].

The design may result in loss of statistical efficiency compared to conventional
RCT if more patients in the experimental arm refuse their assigned treatment [3,
23, 38]. For example, if 70 % of the patients in a single consent design accept the
experimental treatment; the efficiency of the design relative to conventional RCT
will be 49 %. This means that twice as many subjects are needed to obtain the
same sensitivity in single consent design as in a conventional RCT [40]. Hence,
the validity of the estimates from the design may be affected by the proportion of
patients who accepted the new intervention.

17.3.4 Double-Consent Design

The double-consent design was introduced by Zelen as an extension of the single
consent design [40, 41]. The design is suitable for comparing two treatments in
which there is no best standard treatment. The set of NE eligible patients are
first randomized to treatments A and B with n1 and n2 patients respectively (see
Fig. 17.4). All the patients are asked if they accept the randomized treatment. If
they decline, they are allowed to switch to the alternative treatment or to another
treatment not under investigation in the study.

17.3.4.1 Estimating Treatment, Selection and Preference Effects

The double-consent design is an extension of the single consent design. Therefore,
the treatment effect for the double consent design denoted by 
DC

T is defined as

DC

T D �1 � �2. The estimate of 
DC
T based on the observed n1 and n2 is O
DC

T D
y1 � y2. The variance of O
DC

T is given by

var. O
DC
T / D S21

n1
C S22
n2
:
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Fig. 17.4 A schematic of the Zelen double-consent design [40, 41]

The selection effect and preference effects are not directly estimable from the
design. However, a comparison of patients’ characteristics and outcomes between
the four treatment subgroups (see Fig. 17.4) can provide some insights into the
possible biases associated with selection of treatments [38].

The proportion of patients in the double-consent randomized trial who accepted
their assigned treatment is denoted by �D . From Fig. 17.4, �D can be estimated
as O�D D .n11 C n22/=.n1 C n2/. As �D approaches unity, the double-consent
randomized trial converges to the conventional RCT. Hence, �D is a key parameter
in understanding of the statistical efficiency of the double-consent RCT relative
to conventional RCT. Zelen [41] derived the asymptotic relative efficiency of the
single-consent design relative to the conventional RCT as Œ2�D � 1�2.

17.3.4.2 Advantages

The patient will be aware of the assigned treatment before giving consent or
expressing his preference [38]. Furthermore, the design may increase enrolment of
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patients into the study if more physicians agree to enter patients [18]. The double
consent design avoids some of the ethical issues with the single consent design by
seeking consents from both arms of the treatment. This design has been widely used
in clinical trial across therapeutic areas to minimize cross-over rates in non-placebo
controlled trials [1].

17.3.4.3 Limitations

The design cannot be used when there are important reasons for conducting a
“double-blind” randomized controlled trial [38]. The design could result in low
statistical efficiency relative to conventional RCT if large proportion of subjects
rejects the treatment offered [41]. Overall, the sample size for double-consent trial
has to be inflated by a factor of Œ1=.2�D � 1/�2; where �D denotes the proportion of
patients who accepted their assigned intervention in a double-consent RCT [41].

17.3.5 Two-Stage Clinical Trial Design

Rucker [31] proposed a two-stage randomized clinical trial design for distinguishing
treatment effects from those resulting from choosing treatment. The design is illus-
trated in Fig. 17.5. At the first stage, the N eligible patients are randomly assigned
to one of two groups, the preference group and the random group [31]. Unlike the
Zelen designs, informed consent is sought at the first stage of randomization. At the
second stage, patients in the random group are further randomized to treatment A
or B after informed consent. Patients in the preference group are allowed to choose
their preferred treatments. The undecided patients in the preference group are further
randomized to treatment A or B .

17.3.5.1 Estimating Treatment, Selection and Preference Effects

Rucker [31] used a linear model approach to estimate the effects of selection,
preference and treatment. Rucker denotes the expected preference rates for treat-
ments A and B by ˛ and ˇ, respectively. Therefore, 1 � ˛ � ˇ is the proportion
of patients expressing no preference. These rates are directly estimable in the
preference arm of the design (see Fig. 17.5). Their estimates are Ǫ D n11=.N �m/

and Ǒ D n22=.N � m/. Suppose �i ( i D 1 for A, 2 for B) denotes the mean
response of the i th subgroup in the random arm of the design. The treatment effect
for the two-stage design is denoted by 
TS

T and defined as 
TS
T D �1 � �2. The

estimate of 
TS
T based on the observed n1 and n2 is O
TS

T D y1 � y2.
Let �ij denote the mean response for treatment i (i D 1 for A, 2 for B) and

preference group j (j D 1 (prefer A), 2 (prefer B), and 3 (no preference)). Only
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Fig. 17.5 A schematic of the two-stage trial design [31]

four (�11, �13, �22, �23) of the six response means are directly estimable from the
preference arm as O�11 D y11, O�13 D y13, O�22 D y22 and O�23 D y23. The mean
response of patients who received treatment A but prefer treatment B (�12) and the
mean response of patients who received treatment B but prefer treatment A (�21)
are not directly observable but defined by Rucker [31] as

�12 D �1 � ˛�11 � .1 � ˛ � ˇ/�13

ˇ
; �21 D �2 � ˇ�22 � .1 � ˛ � ˇ/�23

˛
:

Selection effect for the two-stage design (
TS
S ) was defined as [31]


TS
S D .�11 C �21/� .�12 C �22/

2
:

If higher values of �ij indicate better response, then 
TS
S > 0 implies that there is

selection effect in favor of patients preferring treatmentA. That is, patients who self-
select treatmentA tend to have better outcomes than those who selected treatmentB
[31]. The estimator of 
TS

S is given by
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O
TS
S D .y11 C y21/� .y12 C y22/

2
:

The preference effect for the two-stage design (
TS
P ) is defined as [31]


TS
P D .�11 C �22/� .�12 C �21/

2
:

This is the difference between the outcomes of patients receiving their preferred
intervention and patients not receiving their preferred intervention. Hence, 
TS

P
implies that patients who received their preferred treatment benefit greatly than
others [31]. The estimator of 
TS

P is given by

O
TS
P D .y11 C y22/� .y12 C y21/

2
:

17.3.5.2 Advantages

The design preserved randomization and allows an unbiased estimation of treatment
benefits. The design may increase trial enrolment because all eligible patients
are enrolled. Thus the external validity is enhanced. The design is capable of
distinguishing treatment effects from selection effects and preference effects.

17.3.5.3 Limitations

The design may be expensive to implement [25, 31]. A simulation result has
shown that at least 100 patients are required to ensure the reliability of the
statistical tests [31]. External validity may reduce because only patients accepting
randomization will enter the study [19]. Patients who have strong preference for
one treatment may refuse participation or elect to be in the preference arm of the
trial [19, 31]. Hence, the design may not be suitable for a clinical trial comparing
surgical and medical interventions [31]. Internal validity is enhanced because all
patients are randomized [19]. However, comparison of preference vs. random arm
is subject to confounding because patients characteristics may determine choice
of treatment [19]. Because of the random arm, all the problems associated with
conventional RCT designs like treatment refusal and non-compliance are still
present in the design. Furthermore, the design needs twice as many patients to
estimate the treatment effect.

17.3.6 Preference-Conventional RCT Design

Wennberg [36] and Wennberg et al. [37] proposed a clinical trial design in which
the N eligible patients who consent to randomization are assigned randomly to one



17 Designs for Accommodating Patients’ or Physicians’ Preferences 319

Randomize 

Randomize 

Random group

(n)

Preference group
(N-n)

Prefer A Prefer B

A B A B

Eligible patients

(N )

Treatment 

received

Treatment 
subgroups G11 G22 G1 G2

Number of 

subjects

n11 n22 n1 n2

Outcome 
means

µ11 µ22 µ1 µ2

Fig. 17.6 A schematic of the Preference-conventional RCT design [36, 37]

of two groups; the preference group and the random group. The design is illustrated
in Fig. 17.6. Patients in the random group are further randomized to treatment A
or B while patients in the preference group are allowed to choose their preferred
treatments. Those requiring additional information or advice before deciding on a
treatment are counseled by physicians operating under standard protocol who do not
administer treatments.

17.3.6.1 Estimating Treatment, Selection and Preference Effects

The preference-conventional RCT could be seen as a special case of the two stage
trial design in which all the patients randomized to the preference arm express
preference for one of the treatment and hence no undecided patient (�13 D �23 D 0

and ˛Cˇ D 1 ). Therefore, the treatment effect (
PC
T ) is defined as
PC

T D �1��2.
The estimate of 
PC

T based on the observed n1 and n2 is O
PC
T D y1 � y2.

Selection effect (
PC
S ) is defined as 
PC

S D �
.�11 C �21/ � .�12 C �22/

�
=2.

Substituting �12 and �21 implies that
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PC
S D 1

2

�
�11 C 1

˛
.�2 � ˇ�22 � ı�23/� 1

ˇ
.�1 � ˛�11 � ı�13/� �22



:

Then,


PC
S D 1

2

�
.˛ C ˇ/�11

ˇ
� �1

ˇ
� .˛ C ˇ/�22

˛
C �2

˛
C ı�13

ˇ
� ı�23

˛

�
:

Since, there are no undecided patients in the preference group of the design (�13 D
�23 D 0); hence, ˛ C ˇ D 1 and ı D 0. Therefore,
PC

S reduces to


PC
S D 1

2

� 1
ˇ
.�11 � �1/ � 1

˛
.�22 � �2/



:

The estimates of 
PC
S can be written as

O
PC
S D 1

2

� 1
Ǒ .y11 � y1/ � 1

Ǫ .y22 � y2/


:

Preference effects (
PC
P ) for the preference-conventional clinical trial is defined as


PC
P D �11 � �21 � �12 C �22

2
:

Substituting �12 and �21 implies that


PC
P D 1

2

�
.˛ C ˇ/�11

ˇ
� �1

ˇ
C .˛ C ˇ/�22

˛
C �2

˛
C ı�13

ˇ
C ı�23

˛

�
:

Since, there are no undecided patients in the preference group of the design (�13 D
�23 D 0); hence, ˛ C ˇ D 1 and ı D 0. Preference effects (
PC

P ) reduces to


PC
P D 1

2

� 1
ˇ
.�11 � �1/C 1

˛
.�22 � �2/



:

The estimates of 
PC
P can be written as

O
PC
P D 1

2

� 1
Ǒ .y11 � y1/C 1

Ǫ .y22 � y2/


:

17.3.6.2 Advantages

Wennberg [36] argues that reliance on preference trials alone without the random-
ized arm makes sense only if we can distinguish therapeutic effect from effect of
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preference, placebo, and compliance. The proposed design is capable of estimating
all these effects. The design may increase patient enrollment into the study [11,36].
The analysis of the random arm will allow relatively unbiased measurement of any
differential effects of treatments [11]. The preference arm of the design, which can
be viewed as a prospective cohort study may give information on the factors which
determine preference or refusal to be randomized and the effects of motivational
factors on outcome can be addressed by comparing those who are randomly
allocated to that treatment.

17.3.6.3 Limitations

The value of the preference arm of the design remains controversial because
comparison based on this arm will have all the potential limitations of observational
studies [11]. The availability of the random arm could reduce enrollment into the
random arm of the design. This may lead to loss of power and reduce external
validity of the study. The design may lead to sample size inflation [14]. Furthermore,
the design needs twice as many patients to estimate the treatment effect.

17.3.7 Partially Randomized Patient Preference (PRPP)
Designs

The Brewin and Bradley design was proposed to take into account patients’
preferences during treatment allocation [6, 8]. The design is illustrated in Fig. 17.7.
After informed consent, the preferences of all theN eligible patients are ascertained.
Patients with a strong preference for one treatment rather than another (sayN �m in
number) are allocated to treatment of their choice in an open label study arm, while
patients expressing no preferences (say m in number) are then randomly assigned
to treatment A or B (see Fig. 17.7).

17.3.7.1 Estimating Treatment, Selection and Preference Effects

The partially randomized patient-preference design could be seen as the choice
arm of the two stage design or as a two stage design with no random arm. Only
four response means (�11, �13, �21, �23) are directly estimable from the design.
Bradley [7] defined the treatment effects as 
P

T D �13 � �23. Therefore, 
P
T is the

treatment effect among patients with no strong preference for either treatment. The
estimate of 
P

T based on the observed n13 and n23 is defined as O
P
T D y13 � y23.

The design converges to the conventional RCT if no patient has a strong
preference for either of the treatment or if the preference rates (˛ and ˇ) approach
zero. Selection effect and preference effect are not directly measurable in the
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Fig. 17.7 A schematic of the partially randomized patient-preference design [6, 8]

design. However, a comparison of the outcomes and patient characteristics across
four treatment subgroups (see Fig. 17.7) could provide some information about
preferences in relation to each treatment.

17.3.7.2 Advantages

The design may increase enrollment into the study and thus achieve a high degree
of representation [8,17,18]. This is because physicians will have less explanation to
do as the treatment choices are more open [22]. Furthermore, motivational factors
will be optimized by letting patients select their preferred treatment [8]. The design
may yield results that are more relevant to decision making in a clinical setting [18].

17.3.7.3 Limitations

If patients are allowed to choose, by preference, the treatment arm they join, rather
than a random assignment, the differences in outcome may be explained by the
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differences in the baseline characteristics of patients in the randomized and non-
randomized groups [17, 26]. Hence, uncontrolled confounding factors may bias the
main results because patients are only partially randomized [15]. This weakens the
internal validity of the study and makes it impossible to measure the true treatment
effect [7, 18].

Partially randomized preference design is not feasible if all patients choose
a treatment [7, 18]. Furthermore, if only a small proportion of patients eligible
for the study accepts randomization, then the evaluation effectively becomes an
observational study [22]. The design is not applicable to many trials in which
participant blinding is important because two of the four arms are open label [15].

Patient preferences may change over time, both during the trial and subse-
quently [5, 17]. Hence, preference arms in trials may not reflect true, informed,
rigorously assessed preferences [5]. The results of the analyses of the effects of
preferences on outcome may be ambiguous [5].

17.3.8 Design with Clinician-Preferred Treatment

One of the ethical bases for conducting RCTs is that the clinicians delivering the
treatments are in a state of equipoise—unsure about which treatment is better [20,
30, 33]. This may be difficult to ascertain in a placebo controlled trial or an RCT of
new treatment against a standard treatment. Korn and Baumrind [20, 21] identified
two potential problems of not explicitly incorporating clinician preferences into
clinical trials. First, it may be difficult to obtain agreement on the eligibility criteria
if clinicians have personal preference for one treatment [20]. Second, how unsure
about the desirability of the one treatment over the other does a clinician has to be
for appropriate randomization of his patients [20].

On the basis of these two limitations of conventional RCTs, Korn and Baum-
rind [20, 21] proposed a design that takes clinician preferences into account (see
Fig. 17.8). First, patients are assessed for study eligibility. Second, informed consent
is obtained from all eligible patients (say N in size) to participate in the trial.
Third, medical history of each eligible patient is reviewed independently by each
clinician or panel of clinician to determine optimal treatment options for the patient.
Where there is a consensus, the patient receives the clinician-preferred treatment
(A or B). However, when the clinicians disagree on the choice of treatment, the
patient is randomly assigned to either treatment A or B and treated by a clinician
who preferred the treatment.

17.3.8.1 Estimating Treatment, Selection and Preference Effects

The RCT with clinician-preferred treatment could be seen as a variant of the
preference clinical trial in which physicians are making the choices rather than
patients. Hence four response means (�11, �13, �22, �23) are directly estimable
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Fig. 17.8 A simplified schematic of a clinician-preferred treatment design [20]

from the design. We define the treatment effects as 
CPT
T D �13 � �23. Therefore,


CPT
T is the treatment effect among patients whom clinicians disagree on the choice

of treatment. The estimate of 
CPT
T based on the observed n13 and n23 is defined as

O
CPT
T D y13 � y23.
Selection effect and preference effect are not directly measurable in the design.

However, a comparison of the outcomes and patient characteristics across four treat-
ment subgroups (see Fig. 17.8) could provide some information about preferences
in relation to each treatment.

17.3.8.2 Advantages

The design ensures that patients receive the best available care possible in the trial
because of the need for consensus among study physicians. Furthermore, clinicians
are allowed to participate only in the treatment arm that they preferred. This may
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Fig. 17.9 A schematic of the Four-arm, decision-support, randomized controlled trial design [24]

be beneficial in surgical trials where surgeons may have a strong preference for
participating in one arm of the trial.

17.3.8.3 Limitations

External validity of the study may be jeopardized. The applicability of the results
of the trials is limited because of the requirement for disagreement on treatment
before randomization [20,21]. The design reduces to an observational study if there
is agreement on the optimal choice of treatment for patients by clinicians. Hence,
an unbiased estimate of the treatment effect may be impossible because it may
be confounded by clinicians’ preferences. The design is not applicable in studies
requiring double-blinding.

17.3.9 Four-Arm, Decision-Support, Randomized Controlled
Trial Design

McCaffery, Irwig and Bossuyt [24] proposed a design for evaluating the long term
health impact of decision aids in which patients are randomly assigned to four
arms design (see Fig. 17.9). This design could be seen as a variant of the two-stage
design [31]. In the first two arms patients received their assigned treatments (A
or B) in a similar manner to conventional RCT. The last two arms represent the
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choice arms in which patients are allowed to choose their preferred treatments after
receiving guidance from a clinician or decision aid.

17.3.9.1 Estimating Treatment, Selection and Preference Effects

The treatment effect for the four-arm, decision-support RCT is denoted by 
FADS
T

and defined as 
FADS
T D �1 � �2. The estimate of 
FADS

T based on the observed
n1 and n2 is O
FADS

T D y1 � y2. This is equivalent to the estimates from a
conventional RCT with two arms. Selection effect and preference effect are not
directly measurable in the design.

17.3.9.2 Advantages

The design may increase enrollment because all eligible patients are included in the
study. The design will allow an unbiased estimation of the treatment effect.

17.3.9.3 Limitations

The design does not allow for the possibility that patients randomized to the choice
arm are likely to remain undecided even after consulting their physician or study
aids.

17.3.10 Design with Clinician or Patient-Preferred Treatment

Millat et al. [26] proposed a design for evaluating surgical intervention but could be
used for any skill-based interventions (see Fig. 17.10). First, all eligible patients are
randomized to treatments A or B . The results of the randomization are not known
to both physicians and patients. Next, patients are approached for consent to be
randomized to treatment A or B . If the patients give their consents, the results of
the randomization are revealed to both the patients and the physicians. Patients not
consenting to randomization are allowed to choose treatment A or B according to
their preferences or their physician’s preferences. The design was recommended for
use in surgical trials. The design is a special case of the comprehensive cohort since
preferences are being expressed in non-consenting patients who traditionally would
have been excluded from conventional RCTs.

17.3.10.1 Estimating Treatment, Selection and Preference Effects

The treatment effect for the clinician or patient-preferred RCT is denoted by 
CPP
T

and defined as
CPP
T D �1��2. The estimate of
CPP

T based on the observed n1 and
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Fig. 17.10 A schematic of the Design with clinician or patient-preferred treatment [26]

n2 is O
CPP
T D y1 � y2. This is equivalent to the estimates from a conventional RCT

with two arms. Selection effect and preference effect are not directly measurable in
the design.

17.3.10.2 Advantages

The design may increase enrollment because all eligible patients (both consenting
and non-consenting patients) are enrolled. The design allows both the measurement
of treatment. The design allows the calculation of randomization acceptable ratio
.n1Cn2/=.n11Cn12Cn21Cn22/, which could be an indicator of the external validity
of the results of an RCT [26]. Furthermore, the design could allow the estimation of
treatment acceptability ratio .n11 C n21/=.n12 C n22/ [26].

17.3.10.3 Limitations

Informed consent post-randomization is unethical. The design may not be practical
if all patients consented to randomization. In such case the design will reduce to
conventional RCT. Similarly, the design will reduce to an observational study in
extreme case in which no patient consented to randomization.
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17.4 Discussion and Conclusion

In this paper, we reviewed various randomized controlled trials for accommodating
patients and physician preferences. Ten designs were identified. We provided a
description of each design and methods of estimating various measures of treatment,
selection and preference effects. Furthermore, we looked at the merits and demerits
of each design in comparison with the conventional randomized controlled trial. The
results are summarized in Table 17.1.

Nine of the designs incorporated a choice arm, in which patients are allowed to
choose their preferred treatment on their own or in consultation with a clinician.
In one of the designs (design with clinician preference), the clinicians are the ones
selecting treatments for patients.

For all of the designs reviewed an unbiased estimate of the treatment effect is
possible. Four of the nine designs have a random group similar to a conventional
RCT. These designs are the comprehensive cohort design, two stage clinical
trial design, preference-conventional RCT and the four-arm decision-support, ran-
domized controlled trial design. As a result, estimates of treatment effects are
equivalent to the estimates from a conventional RCT with two arms. Two other
designs (partially randomized patient preference trial and design with clinician
or patient-preferred treatment) randomized patients who have no preference for
either intervention under study. While the estimate of treatment benefit from the
two designs may be unbiased, the generalization to the overall eligible patients
may be questionable. The remaining two designs (single-consent RCT and double-
consent RCT) allow patients randomized to a particular intervention to accept or
switch to an alternative intervention (sometimes the standard treatment). While
an unbiased estimate of the treatment effect is possible under the intention-to-
treat principle, the designs raise some important issues on whether such analysis
is the best for evaluating the efficacy of new intervention. Of particular concern
is the potential for loss of statistical power of the trial to detect a real treatment
difference due to dilution effect if a large proportion of patients reject their allocated
treatments [2,35]. Some studies have shown that this problem could be compounded
if the extent of crossover differs considerably between the intervention arms [3,23].

Of the nine designs that allow the incorporation of the preference arms, only
two designs (two-stage clinical trial design, preference-conventional RCT) provide
a good framework for estimating the selection and preference effects. In the other
six designs, some forms of preference measures are possible but mostly confounded
within treatments.

There are two main ethical issues: (1) type of informed consent and (2) timing
of informed consent. A complete-double-consent design in which all patients
learn about all available interventions in the study is the ethical gold standard
of informed consent. From Table 17.1, seven of the designs reviewed obtained
complete informed consent from patients prior to enrolling them into trials. In two
of the designs, informed consents were obtained post-randomization.
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Some of the designs are related to the two stage design. For example, the
preference-conventional RCT could be seen as a special case of the two stage
trial design in which all the patients randomized to the preference arm expressed
preference for one of the treatments and hence, no undecided patients. Similarly, the
partially randomized patient-preference design could be seen as the choice arm of
the two stage design or as a two stage design with no random arm. Furthermore, the
design with clinician-preferred treatment could be seen as a special case of the par-
tially randomized patient-preference design in which preferences are clinician-based
rather than patient-based. The four-arm, decision-support, randomized controlled
trial design is also a special case of the two stage trial design. Of all the designs
reviewed, the two-stage design provides a comprehensive framework for estimating
treatment effect, selection effect and preference effect while allowing a segment of
eligible patients to choose the intervention of their choice.

There are some debates on whether preference arms in the clinical trials
truly represent patients’ or physicians’ preferences [5]. This is because individual
preferences for treatment are affected by several factors including how the questions
for eliciting preferences were framed; participants’ understanding of concept of
risk; numeric description of risks and benefits; and varying expectations [5, 13].
Furthermore, education and socio-economic status of patients may affect his or her
preferences for treatment [19]. King et al. [19] find that well educated and employed
patients are more likely to refuse randomization because of preference. Hence the
methods for eliciting preference from patients have to be methodologically rigorous.
Compared to the traditional RCTs, the availability of the random arm could reduce
enrollment into the random arm of the design. This may lead to loss of power
and reduce external validity of the study. There are some conflicting evidences
from the literature regarding whether patients’ or physicians’ preferences affects
outcomes [17, 19]. This means that designs incorporating preferences may not be
ideal for evaluating all interventions. It should at least be considered in all RCTs in
which treatments and mode of administration are very different and where blinding
of patients may not be possible.
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Chapter 18
Dose Finding Methods in Oncology:
From the Maximum Tolerated Dose
to the Recommended Phase II Dose

Xavier Paoletti and Adélaide Doussau

Abstract Phase I oncology clinical trials are designed to identify the optimal dose
that will be recommended for phase II trials. This dose is typically defined as the
dose associated with a certain probability of dose limiting toxicity (DLT) during
the first cycle of treatment, although toxicity is repeatedly measured over cycles
on an ordinal scale. We present the main dose finding methods developed in the
era of cytotoxic agents. We illustrate their properties and limitations in different
scenarios. We also explore different implementations of these methods that have
been proposed in a Bayesian or likelihood framework or that can rely on several
dose-toxicity models. We highlight the fact that the binary nature of the primary
outcome (DLT or no DLT) drastically limits the performances of any methods.
We then present adaptive dose-finding designs that use toxicity measurements at
all cycles of treatment and not only the first one; some authors have proposed
to consider the DLT as a time to event variable while others have analyzed the
longitudinal measurements of toxic side events. This however raises the delicate
issue of the definition of the optimal dose. These approaches are illustrated on
two dose finding phase I trials; data are reanalysed and results are compared and
discussed. Integration of richer information appears appealing in phase I dose-
finding trials, as it gives more accurate estimates of the risk of toxicity and increases
the ability of selecting the correct dose. Use of longitudinal data in addition allows
for detecting cumulative or delayed effects of strong magnitude. Model-based
methods give a flexible framework for using more complete data.

X. Paoletti (�)
Department of Biostatistics/INSERM U900, Institut Curie, Paris, France
e-mail: xavier.paoletti@curie.fr

A. Doussau
USMR, Bordeaux University-Hospital, ISPED Centre INSERM
U897-Epidemiologie-Biostatistique, Bordeaux, France
e-mail: adelaide.doussau@isped.u-bordeaux2.fr

© Springer-Verlag Berlin Heidelberg 2014
K. van Montfort et al. (eds.), Developments in Statistical Evaluation of Clinical
Trials, DOI 10.1007/978-3-642-55345-5__18

335

mailto:xavier.paoletti@curie.fr
mailto:adelaide.doussau@isped.u-bordeaux2.fr


336 X. Paoletti and A. Doussau

18.1 Introduction

Phase I oncology clinical trials are designed to evaluate the toxicity profile of
several doses of a new treatment and to identify a dose that can be safely
recommended for phase II trials (RPIID). For decades, the fundamental underlying
assumption in oncology was “more is better”. According to this assumption, the
“optimal” dose, recommended for phase II, is defined as the maximum tolerated
dose (MTD). The main endpoint is toxicity. Severity of toxicity in cancer clinical
trials is graded according to the Common Terminology Criteria for Adverse Events
from the National Cancer Institute, which ranges from 1 (mild adverse event)
to 5 (death) [33]. Classically, the MTD is a dose associated with a predefined
probability of severe grade 3 or 4 toxicity, called dose-limiting toxicity (DLT)
evaluated on the first cycle of treatment. This target probability of toxicity ranges
from 20 to 30 % [53]. Two families of methods have been developed to find this
dose, sometimes called algorithmic and model-based dose escalation designs [26].
O’Quigley et al. [37] proposed a continual reassessment method, an adaptive design
based on continuous reestimation of the dose-DLT probability using Bayesian
(CRM) or likelihood inference (CRML) [39]. Numerous extensions have been
published [19]; all allow the trial to be started at the lowest dose with sequentially
increasing dose levels. As these designs (dose allocation, sample size) are modified
on the basis of previous observations, they are often described as adaptive methods.

Although model-based methods have been repeatedly shown to have better
operating characteristics than algorithm-based methods, the overall probability
to identify the correct dose remains low [42]. The performances of these trials
including small sample sizes are limited by the elementary binomial variability of
the main outcome. The design of these studies needs to be improved, as errors in
identification of the MTD are a major cause of failure of subsequent development
of new agents in oncology [4, 44]. Since the early 2000s, new classes of molecules
have been developed that raise specific issues that cannot be efficiently tacked with
basic methods. There is then a convergent need from both the statisticians and the
physicians to improve dose finding studies.

Molecularly targeted agents (MTA) have various mechanisms of action as they
target different signaling pathways specific to cancer cells. Among their various
specificities, it should be noted that: (i) an increasing relationship between dose
and activity has not been clearly established for most of agents [16]; an activity
plateau above a certain dose is likely; (ii) the toxicity profile is different, with more
milder non hematological toxic side events [24]; (iii) they are administered over
long periods (even until disease progression for treatment of advanced stages).

The limits of the usual definition of the MTD based on the occurrence of severe
toxicity during the first cycle of treatment have been frequently highlighted [57]:
moderate toxic side events, repeated measurements of toxicity throughout the trial,
activity endpoints are not considered. Not all forms of severe toxicity have the same
impact on the possibility to continue the treatment. Phase I trials provide much
more information than a simple binomial outcome. Methodological research has
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been very active; important axes of statistical developments include optimization of
the CRM, joint modeling of toxicity and activity endpoints, integration of time into
assessment of the endpoint.

It would be impossible to provide a comprehensive review of all methods and we
rather focus on the introduction of the time dimension n the dose finding process;
we will introduce two motivating examples in Sect. 18.2 and certain notations and
we will describe standard methods for dose finding in a single dimension (that is
when all doses can be ordered according to increasing toxicity) in Sect. 18.3; in
Sect. 18.3.4 we will try to provide an overview of the competing performances
of the various methods with particular emphasis on the CRM and the maximum
performances we can obtain; we describe methods accounting for temporal aspects
in Sect. 18.4 and the approaches used to incorporate longitudinal data and ordinal
outcomes in Sect. 18.5. Finally, in Sect. 18.6, we present the application of methods
using data obtained after the first cycle on motivating examples. We try to show that
although the MTD is still an important notion for clinical development, the dose
recommended for phase II should make better use of data collected during phase I.

18.2 Motivating Examples

Two motivating examples of phase I clinical trials of targeted agents are described
in this section and will be reanalyzed in Sect. 18.6.

18.2.1 The Erlotinib-Radiotherapy (RT) Trial

The European innovative therapies for children with cancer (ITCC) consortium
carried out a phase I trial of erlotinib, a tyrosine kinase inhibitor, in combination
with radiotherapy in children with glioblastoma [15]. An adaptation of the CRML
was used to identify the dose associated with a 20 % probability of DLT during the
first 6 weeks of treatment. A cycle was defined as a 21-day period. Twenty children
were evaluated at three increasing doses of erlotinib ranging from 75 to 125 mg=m2.
Two DLTs were observed over the two first cycles: fatal grade 5 seizures, grade
3 skin rash and pruritus. The probability of DLT at 125 mg=m2 after all patients
had been included was 16 % (95 % CI: 4–45 %), and this dose was recommended
for phase II studies. A total of 96 cycles were delivered to 20 patients; 12 children
completed the 6th cycle of treatment. Six children (26 cycles) received 75 mg=m2,
six children (34 cycles) received 100 mg=m2 and eight children (36 cycles) received
125 mg=m2. Nineteen cases of grade 2 toxicity and seven cases of grade 3-5 toxicity
were recorded during the first six cycles of treatment, including six cases of grade
3-5 after the first cycle.
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18.2.2 The R-Viscum Trial

The European organization for research and treatment of cancer (EORTC) carried
out a phase I trial of intravenous aviscumine, an Escherichia coli-derived recombi-
nant type II ribosome-inactivating protein, in adult patients with solid tumors [49].
The CRML was used to identify the dose associated with a 20 % probability of DLT
during the first 3 weeks cycle of treatment [40]. Forty-one patients were evaluated at
14 increasing doses ranging from 10 to 6,400 ng/kg. Four DLTs were observed: one
case of fatigue and three of hepatitis. The dose recommended for phase II studies
was 5,600 ng/kg. One patient was included at each of the following doses levels:
10; 20; 40; 100; 200; 400; 800; 1;600; 2;400ng/kg; 4 to 10 patients were included at
3;200, 4;000, 4;800, 5;600, 6;400 ng/kg. Ninety-seven cycles were administered;
three patients completed six cycles of treatment. We considered clinical toxicities
deemed related to treatment according to the investigators as well as laboratory
toxicities that worsened from baseline. The worst grades experienced at each cycle
were grade 2 in 38 cycles and grade 3 in 22 cycles, including 12 cases of grade 3
toxicity that occurred after the first cycle.

In both trials, data collected after cycle 1 were not formally included in the
process to recommend a dose for phase II. The impact of this complementary
information will be investigated.

18.3 Notations and Standard Methods

18.3.1 General Notations

Let us assume that n patients are to be sequentially enrolled in a dose finding trial
with K dose levels, d1; : : : ; dK . A patient j is treated at the dose Xj D dk and he
experiences the binary outcome Yj taking value 1 in case of DLT and 0 otherwise.
Each dose level dk is associated with a probability of toxicity Rk D Pr.Yj D
1jXj D dk/ that increases with the dose. Dose levels can be combination of several
agents but one assumes that they can be ordered according to increasing toxicity. The
MTD is defined as the dose with a probability of DLT closest to some predefined
percentile, denoted � . Note that in the following discussion, we use the “American”
definition of MTD, i.e. the dose with the highest acceptable probability of toxicity.
This should not be confused with the definition used in some European countries
where the MTD is the lowest dose with an unacceptable probability of toxicity,
typically greater than 33%.
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18.3.2 Algorithm-Based Methods

18.3.2.1 3 C 3 Designs

The most common method used in phase I clinical trials is the so-called 3C3 design.
Derived from up and down procedures developed by Robbins and Monro [46], it has
been adapted as follows: patients are sequentially entered in groups (often called
cohorts) of three patients. The outcomes of a group guide the escalation for the next
three patients; suppose dose dk has been administered to three patients:

• If 0 DLT, escalate to dkC1
• If 1 DLT, expand the dose level and recommend dk
• If more than 2 DLT out of 3 or 6 patients, recommend dk�1
The trial comes to a halt and dk is identified as the MTD when two DLT have been
observed at dkC1 and at most one out of 6 patients at dk . This method and some
variations have been investigated by several authors ([21, 22, 45, 52] among others).

The main conclusions are that the operating characteristics investigated both in
simulations and in probabilistic computations are disappointing with low statistical
efficiency, poor accuracy of the final recommendation, too many patients treated at
excessively low doses deemed to be ineffective, high risk of being conservative in
case of a DLT below the MTD [45].

18.3.2.2 Accelerated Titration Designs

This method has been further developed by Simon et al. [51]. An accelerated
escalation is obtained by including only one patient per dose level as long as only
mild (grade 0 or grade 1) adverse events are observed. As soon as moderate or severe
toxicity is experienced, one switches back to the 3C 3 design. Simon also proposed
including intra-patient dose escalation after the first cycle to maximize the chance
that a patient would receive an adequate dose. However information after the first
cycle is not taken into account in estimation of the MTD and the accelerated titration
design eventually cools down to one of the designs investigated by Storer [52]. In
these two papers, operating characteristics investigated in simulations were similar
to the 3 C 3; the probability of defining the correct dose was not modified except
when large number of doses were escalated before reaching the MTD, in which
case the accelerated titration design was more efficient. The risk of over toxicity
was slightly higher with the accelerated design, but the distribution of allocated
patients was more favorable with fewer patients allocated to very low dose levels.
The overall duration of the trial was not modified.
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18.3.3 Continual Reassessment Method (CRM) and Extensions

The basic principle behind CRM is to reassess the estimate of the dose toxicity
relationship after each observation or group of observations to allocate the dose
for which the current estimated probability of DLT is closest to � . Continual
reassessment of the dose-DLT relationship is obtained by fitting a model of
this relationship to all available data at the current timepoint. The usual CRM
uses an underparameterized working model; more specifically, in the case of a
homogeneous sample, a one-parameter working model: P.Yj D 1jXj D dk/ D
 .dk; a/ where a is the unknown parameter over the parameter space A. This
model, which is an increasing function of d and a monotonic function of a, must
be rich enough to ensure that for all � 2 .0; 1/ there exists a value a such that
 .d; a/ D � . The model is under-parameterized and may not provide an accurate
global fit to the true dose-toxicity relations. The only requirement is that it has
sufficient flexibility to provide a local fit, limited only by some simple technical
conditions which are described in Shen and O’Quigley [8, 50]. Several proposals
include the logistic model with one of the parameter fixed, the probit model or the
power model. They will be discussed in Sect. 18.3.4; reasons for not working with a
richer two-parameter model are outlined in Shen and O’Quigley [50], Cheung [8].

Originally, a Bayesian estimation procedure was proposed. Let us denote g.a/
the prior distribution and Lj .a/ the likelihood after the inclusion of j patients for
whom the paired data ˝j D f.x1; y1/; : : : ; .xj ; yj /g have been observed.

Lj .a/ D 1

j

jY

`D1

�
 .x`; a/

y` � .1 �  .x`; a//1�y`
�
:

Posterior distribution of a, fj .a/ is then

fj .aj˝j / D Lj .a/g.a/R
A
Lj .u/g.u/du

O’Quigley and colleagues [37] proposed to compute either the mean posterior
distribution

R
A
 .dk; a/f .a/da for all k or the less calculation intensive  .dk; Qa/

with Qa D R
A

af .a/da. The dose allocated to the next patient or group of patients
is the dose closest to the target, i.e. the current estimate of the MTD, denoted, � :
O� D j .dk; Qa/ � � j. The prior exp.�a/ was first introduced together with gamma
or normal prior depending on the parametrization of the model.

Alternatively, parameter estimate, Oa, can be obtained from the maximum
likelihood estimator [39]; the next recommended dose level then minimizes
j .dk; Oa/ � � j.

The derivative of the log-likelihood can be written:
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Ij .a/ D 1

j

jX

`D1

	
y`
 0

 
.x`; a/C .1 � y`/ � 0

1 �  .x`; a/



(18.1)

D 1

j

KX

kD1

	
tk
 0

 
.dk; a/C .nk � tk/

� 0

1 �  .dk; a/


: (18.2)

where tk denotes the number of DLT observed among the nk patients allocated at
dk . It is obvious that the maximum of the likelihood arises on the boundary of the
parameter space provided at least one DLT and one non DLT have been observed.
This is generally called the heterogeneity requirement. The design then consists in
two steps with a pre-DLT stage (or run-in) that can be driven either using a Bayesian
inference or a simple escalation rule; Paoletti et al. [40] used intermediate grade to
calibrate this pre-DLT stage so that doses are rapidly escalated after each new patient
when only mild toxicity are observed but more dose escalation is slowed down
when moderate (grade 2) events is observed. After the first DLT, dose allocations
are derived from the model estimates.

Shen and O’Quigley [50], followed by Cheung et al. [8] showed the good
asymptotic properties of the method under model misspecification. In particular,
the recommended dose XnC1 converges to the true MTD, and the estimate of the
risk of DLT O� converges to its true value � when n goes to infinity.

Although the decision to stop a trial includes considerations not integrated into
the statistical methods (toxicity profile, pharmacokinetic parameters etc.), several
stopping rules have been proposed that use either the converging property [38],
accuracy of confidence intervals [60] or fixed sample sizes at a dose. We refer the
reader to these publications for details.

18.3.3.1 Escalation with Overdose Control (EWOC)

Other authors [2] have suggested controlling for the expected risk that a patient
might receive a dose higher than the MTD, by selecting doses so that the posterior
probability of overdosing does not exceed some predefined value ˛. In practice, a
2-parameter logistic model is used,  .adk C b/ re-parameterized in terms of the
MTD (� ) and the probability of DLT at d1, p1 D Pr.Y D 1jX D d1/:

� D d1 C  �1.�/�  �1.p1/
a

:

The probability of DLT at dk is then expressed as:

 .�; �; dk/ D  

0

@
�� log

�
p1
1�p1



C d1 log

�
�
1��

�

d1 � �
C

log
�

p1
1�p1



� log

�
�
1��

�

d1 � �
dk

1

A

(18.3)
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The posterior density function (PDF) of (p1; � ) is denoted P.p1; � j˝/. The
marginal PDF of the MTD given the accumulated data until patient j is:

�.� j˝j / D
Z
P.p1; � j˝j /dp1

and the marginal cumulative distribution of the MTD at level dk 2 .d1; : : : ; dK/ is

�j .dk/ D
Z dk

d1

�.� j˝j /d�

In practice, the dose selected for the next patient has a posterior probability of
exceeding the MTD equal to ˛: xjC1 D ��1

j .˛/.
By extending this idea, Neuenschwander [34] computed the credibility intervals

for the probability of toxicity at each dose and identified the probability that a
dose may be too low, close to the target, higher or unacceptably high. The dose
recommended for the next patient should then have a high probability of being
close to the target and a low probability of overdosing and underdosing. However,
these two approaches require more flexible models and in both publications, a
two-parameter logistic model was used with slightly informative priors to coun-
terbalance the cost for estimating an extra parameter. Simulations show the good
operating characteristics with a tendency to be more conservative than the CRM
and to more often pick up dose lower than the MTD. In addition as pointed out by
Zhang et al. [59], prior distribution is difficult to calibrate in the context of first in
man trials for which no information on the toxicity profile is available. CRM can
become sensitive to the variance selected for the prior distribution, especially when
a small number of patients are enrolled or a large range of doses is explored.

18.3.4 Operating Characteristics of the Competing Methods

18.3.4.1 Softwares

Several software packages that implemented the CRM and 3C3 are freely available
from websites. A non exhaustive list is provided below.

• NP1: Kramar et al. [23] at A-Kramar@o-lambret.fr
• EPCT: Machin et al. at ukccsg@le.ac.uk or epct@cteru.comsg
• Piantadosi S at http://www.cancerbiostats.onc.jhmi.edu/software.cfm
• MD Anderson at http://biostatistics.mdanderson.org/SoftwareDownload/
• dfCRM (R package): K Cheung at http://cran.r-project.org/.

Nevertheless, statisticians are encouraged to develop their own programs as software
packages generally implement a single model for the dose-toxicity relationship,

http://www.cancerbiostats.onc.jhmi.edu/software.cfm
http://biostatistics.mdanderson.org/SoftwareDownload/
http://cran.r-project.org/
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a limited set of prior distributions, allocation or stopping rules etc.; none of the
softwares cover all of the various developments.

18.3.4.2 Simulation Evaluations

Although asymptotic convergence properties could be drawn for the CRM [50]
in contrast with the 3 C 3 method, evaluations with small sample sizes typical of
phase I trials are mandatory. Due to the adaptive nature of these designs, analysis
and dose allocation are intertwined; reanalysis of collected data using a competing
scheme is consequently impossible without further assumptions. Simulations are
therefore commonly used. Performances are described by the distribution of the final
recommended doses as well as the mean distribution of the allocated doses, the risk
of DLT, the distribution of duration of trials etc. As recalled in [9], these parameters
depend on the location of the recommended dose (the higher the MTD the lower
the probability to pick up the right dose), the shape of the dose toxicity curve
(flatter relations lead to poorer results), the sample size, the targeted probability.
Comprehensive review of all results is not possible as many authors have compared
different approaches [1, 17, 19, 22, 41, 48]. We will focus on the (i) the respective
merits of the methods described above, (ii) the operating characteristics of CRM
based on 2-parameter models versus 1-parameter models, the maximum value of
any method.

18.3.4.3 CRM vs 3 C 3

Iasonos et al [19] conducted simulations that showed that CRM-based methods
outperform the standard method by accurately finding the true MTD and by treating
more patients at optimal dose levels, which is consistent with the literature [1]. This
finding was reported for all scenarios, except when the first levels corresponded to
the MTD. Otherwise, CRM-based methods may reach the MTD in fewer patients
than the standard method by treating fewer patients at sub-optimal low doses.
However, even in situations in which the standard method comes to an halt with
a small number of patients, the risk of selecting the wrong dose is very high [38].
The standard method results in very similar number of DLT compared to the CRM.
This was confirmed by a review of phase I trials of targeted agents [25]. Across
the eight scenarios investigated by Iasonos, the absolute accuracy of CRM (that is
the probability to identify the correct dose) was higher by 7–20 % than the standard
method. More patients were systematically treated at the optimal dose. Although,
CRM-based methods reached the MTD faster, this did not imply that these methods
result in earlier termination of the trial. Patients accrual could be optimized by using
prospective decision tree, but the benefit in terms of trial duration would be only
limited.
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18.3.4.4 CRM Implementations

Inference methods (Bayesian or likelihood) for the CRM does not have strong
impact on performances provided the prior was correctly specified [39]. Cheung [8]
and Paoletti [41] found that prior distribution such as the exponential distribution,
may become overly conservative when more than 4 or 5 dose levels must be
escalated. It is crucial to carefully elicit the prior. Morita et al. [32] developed a
method to construct non informative priors in various scenarios.

The choice of model is a delicate issue that goes beyond the scope of this
chapter. The power model received lots of attention as a model with good operating
characteristics in this context;

 .dk; a/ D ˛ak

in which ˛k 2 .0; 1/ is a recoding of the dose dk with ˛1 < ˛k < ˛K . The adequate
choice of recoding to obtain consistent designs is described in Cheung [9] and the
impact on operating characteristics is studied in Paoletti and Kramar [41]. We refer
the reader to these documents for comprehensive review of the model properties.
The four points that we would like to emphasize are:

• A 1-parameter model (typically a power model or a logistic model with a fixed
slope) outperforms a 2-parameter model (such as a logistic model) when using
likelihood inference [41]; moreover in a substantial fraction of simulations, a 2-
parameter model was not identifiable due to lack of data (DLTs at 2 dose levels
are necessary);

• A 2-parameter model must be accompanied by Bayesian inference in order to
introduce some information and to facilitate the estimate of the risk of DLT. This
makes any comparison difficult as the amount of introduced information may
strongly bias the evaluation depending on the (mis)specification of the prior;

• If a logistic one-parameter model is chosen, it is preferable to fix the slope and
estimate the intercept as shown in [41], especially when the doses are increased
according to relative increments (a higher dose is a percentage of the previous
one);

• Although asymptotic convergence is obtained with a wide class of models
provided that the model is locally not excessively misspecified [50], operating
characteristics are strongly influenced by the choice of model [41]. Roughly,
models with a flat slope are associated with more rapid dose escalation, but with
more oscillations and slower convergence rate; conversely models with a steeper
slope are more stable but lead to more conservative escalation steps. No model
is uniformly superior; the choice of the model must be decided after evaluating
several scenarios in line with the agent under development. Cheung [9] proposed
some tools to help in building the model.
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18.3.4.5 Maximum Performances

The question “how well does any approach do?” begs another: “how well is it pos-
sible to do?”. Constructing optimal designs has been extensively investigated using
either information criterion (based on the variance-covariance matrix [6, 30, 58]).
Resulting designs are usually not put into practice in oncology due to the risk of
overdosing in absence of sequential escalation. They are more often applied in other
medical fields [6] for dose ranging phase II studies.

Alternatively, a so-called optimal method has been proposed by Paoletti and
O’Quigley [36, 42] to serve as a benchmark in simulations studies to quantify the
best performances that can be obtained given a dose toxicity relation and a sample
size. This approach relies on a notion of ‘complete’ information, as if a patient
could be independently treated at each dose level. Complete information can be
summarized with the lowest dose at which the toxicity outcome takes the value 1.
This threshold can be derived from a continuous random variable, which is similar
to a latent variable. Complete information can be generated if the true probability
of toxicity is known. Hence the method cannot be put into practice, but it can serve
in a simulation setting. Complete information for the full sample provides observed
frequency of DLT at each level dk. From this efficient non parametric estimate of
the discrete dose-toxicity relation, one can select the dose closest to the target as the
best estimate of the MTD given a sample size and given a dose-toxicity relation.

This optimal method shows the limits of the dose finding process. In a large set of
scenarios, the highest probability to pick up the right dose without any informative
prior after 25 patients was below 60 % [11]. Paoletti and Kramar [41] underlined that
the CRM with likelihood inference produce performances very close to the ones of
the optimal method. Any method of Phase I clinical trials is limited by the simple
binary variability induced by the outcome of interest. It is somehow surprising that
so much data is collected to be eventually so dramatically reduced.

Improvement of dose finding will result from the incorporation of more informa-
tion rather than refining existing methods.

18.4 Accounting for Temporal Aspects

18.4.1 Definition of the Phase II Recommended Dose

Current approaches use only a small fraction of the information collected. Tradi-
tional DLT definition, based on grade 3–4 toxicity data from cycle 1 only, has
been designed for cytotoxic chemotherapy, and may not be appropriate for new
molecularly targeted agents and chronic administration, for which late or moderate
toxicities also deserve attention. When the outcome may occur at different treatment
cycles, several definitions of the RPIID can be drawn. The time to occurrence of
DLT is a possible endpoint; the target is then to identify a dose associated with a
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predefined risk of cumulative toxicity over a given period T . A risk of DLT per
cycle is an alternative measure of the toxicity of a compound; the target is then to
identify a dose associated with a predefined risk of DLT per cycle. Furthermore, the
time-course of the risk of toxicity as measured by an ordinal variable over time may
be a quantity of interest in order to detect potential late or cumulative effects.

The definition of the RPIID may depend on the expected toxicity profile of
the compound under study. Definitions based on the probability per cycle may
be relevant for reversible adverse events while irreversible events are probably
better described by cumulative measures. We explore some methods adapted to this
context.

18.4.2 Methods for Time to Event Endpoints

18.4.2.1 Extending the Evaluation Period with the CRM

The risk of late or repeated toxic side events with non cytotoxic compounds is
increasingly feared [57]. The first attempt was to increase the duration of the DLT
assessment period; instead of 1 cycle (typically 3 weeks), 2 cycles of treatment
were used to define DLT. However, this approach raises numerous issues. The
waiting period before accruing new patients is twice as long as that of a 1-cycle
assessment; the second issue relates to the risk of missing (or censored) data; due to
progressive disease, 50 % of the patients go off-study after completing two cycles
of treatment [43]. Data are not missing completely at random as disease progression
is expected to depend on the dose (and probably also on baseline characteristics
such as the disease type). Simply replacing the patient with missing DLT evaluation
results in biased estimates; specific analysis methods are therefore required.

18.4.2.2 Time to Event Continual Reassessment Method (Tite-CRM)

Consider that the binary outcome Yj denoting DLT is now measured over a period T
irrespective of the cycle duration. At a given timepoint t < T of the trial, Yj may be
viewed as censored if no DLT has been observed. Cheung and Chappell [7] proposed
to extend the CRM by considering a model of the dose-toxicity relation weighted
by the individual follow-up of each patient without DLT; �.dk;w; a/ is now a
monotone increasing function in w with the constraint that �.dk; 0; a/ D 0 and
�.dk; 1; a/ D  .dk; a/. The authors investigated a simple linear weight function

�.dk;w; a/ D w .dk; a/ with w.t; T / D t

T
(18.4)

that assumes that the hazard of DLT is uniform over T . Weighted likelihood can
be easily obtained from (18.1). Maximization provides the parameter estimate once
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some heterogeneity in the response has been observed. Bayesian inference using
a prior distribution for parameter a can also be implemented. Design and analysis
are then very similar to those of CRM, except that incomplete data can be used
and new patients can be included even when some patients are still under study.
New allocations will rely on all available information collected up to the current
timepoint. The main assumption with this weight function is that the hazard is
constant over time. Adaptive weighting schemes independent of the dose effect are
presented as an alternative:

w.t; T / D �

z C 1
C 1

z C 1

�
t � t.�/

t.�C1/ � t.�/

�

where z is the total number of toxic observations, t.0/ < t.1/ � � � < t.zCl/ � T

are the ordered failure times, and � D max0�j�zfj W t � t.j /g. If most toxic
responses occur near the end of the follow-up period, less weight will be given
to patients free of DLT but with short follow-up. DLT is always given a weight
1. This approach follows the underlying idea behind CRM that a simple, possibly
under-parameterized, working model is efficient on very scarce data with adequate
sampling. Cheung and Chappell demonstrate the asymptotic convergence for weight
functions independent of the parameter a.

The authors initially presented the operating characteristics for finite sample sizes
of 25 patients allocated to a maximum of 6 dose levels and followed for up to T D
6months. These operating characteristics were compared to those of CRM with a 6-
month evaluation period. The MTD was the dose having a cumulative risk of DLT of
20%. No censoring before T was implemented. The authors reported probabilities
of picking up the correct dose comparable to the CRM, or slightly worse depending
on the scenario. Nevertheless the duration of the trial was dramatically reduced
compared to the CRM. Results were fairly robust to the choice of failure time
distributions in the absence of censoring at time earlier than T . If the censoring
rate is high, then the probability of toxicity would be more accurately estimated
by dynamic weighting [10]. As for the CRM evaluation, the likelihood inference
compared favorably to the Bayesian inference. In particular, with a sample size of
25, the inflexibility of the prior distribution limited the possibility of exploring the
highest dose levels.

The R-package dfcrm introduced earlier can be used to run simulations and to
conduct a trial.

18.4.2.3 Time to Event Escalation With Overdose Control (Tite-EWOC)

As previously described, the EWOC method attempts to control the proportion
of patients receiving a dose higher than the MTD. Mauguen et al. [29] explored
Cheung’s proposal [7] to combine the EWOC method with the weighting approach
used for time to event data, in order to decrease the duration of dose-finding trial,
without impairing the overdose control ability. The likelihood function after j
patients is then weighted as in (18.4)
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Lj .p1; �/ D
Y

`

w .p1; �; d1/
y` Œ1 � w .p1; �; d1/�

1�y`

where  .p1; �; d1/ is given in (18.3).
In a simulation study, the authors found similar performances when using EWOC

and Tite-EWOC, for various mean inter-patient arrival times and scenarios. In the
situations in which Tite-EWOC was slightly inferior to EWOC method, Tite-EWOC
more frequently recommended the dose immediately lower than the MTD. The
magnitude of reduction of trial duration was directly related to the mean inter-patient
arrival time.

18.5 Methods for Longitudinal Ordinal Data

18.5.1 Mixed Effect Proportional Odds Models

An alternative approach using repeated measurements of adverse events has also
been developed [12]. As follow-up is very regular in these first-in-man trials,
the treatment cycle was used as time scale. The patient was evaluated for toxic
side events at each cycle. Let Yij denote an ordinal variable with three levels g,
representing the severity of the worst toxic side events occurring for patient i at
cycle j of treatment. Yij takes value 1 if no toxicity or grade 1 toxicity is observed, 2
for moderate grade 2 toxicity and 3 for severe grade 3–5 toxicity. Yi1 D 3, the severe
toxicity at cycle 1, then corresponds to the usual definition of DLT. Let p2C.dk; tij/
and p3.dk; tij/ be respectively the probability of outcome 2 or 3 and the probability
of outcome 3 at time tij and at dose dk . The dose is considered to be constant for a
patient throughout the trial. p2C.dk; tij/ and p3.dk; tij/ are monotonically increasing
functions of the dose and are assumed to be related by a proportional odds model
(POM). The logistic proportional odds mixed effect regression model (POMM)
therefore constitutes a natural candidate [13]. A random intercept ui is introduced
to account for the expected correlation between repeated measurements for a given
patient treated at the same dose for several cycles, leading to the following model:

logitpg.dk; tij/ D logit.Pr.Yij � gjXi D dk// D ˛g � ˇ1 � dk � ui (18.5)

where ui � N .0; 
20 / and g D 1; 2. We denote � the vector of the four
parameters: � D .˛1;˛2;ˇ1; � 0/. According to the odds proportional assumption,
the association between the dose and the risk of severe toxicity is the same as the
association between the dose and the risk of moderate or severe toxicity. Of note,
we first assume that there is no time effect on the risk of toxicity. The marginal
probability of event g over all administered cycles can therefore be denoted by
p2C.dk/ and p3.dk/.
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Given the observations of the dose and event outcomes .xi ; yij/, at a given
timepoint of the trial, the likelihood for the parameter vector � , is

L.yijj�/ D
Y

i;j

.p1.xi jui //IyijD1 � .p2.xi jui //IyijD2 � .p3.xi jui //IyijD3 (18.6)

where IŒyijDg� takes value 1 if Yij D g and 0 otherwise. As the random effect is
unknown, evaluation of L must integrate the random effect distribution. No closed
form is available and maximization is obtained using Laplace approximation and
adaptive Gauss-Hermite quadrature.

Maximization of the full likelihood provides unbiased estimates in the case of
data missing at random according to Rubin’s classification [31]. In fact, patients
usually go off-study after severe toxicity or when their cancer progresses resulting
in missing data; if we assume that disease progression is largely independent of the
risk of toxicity given the dose level, the missing data are expected to be missing at
random.

Following the principle of adaptive design for dose finding trials, estimates
Opg.dk/ are used to conduct dose allocation; we call this method POMM-CRML.

A possible decision criterion consists of minimizing j Op3.dk/ � � j. Patients are
sequentially enrolled in the trial starting at the lowest dose. A new patient can
only be included when the previous patients have completed at least one cycle
of treatment. Extension to grouped inclusions is straightforward. Before each new
inclusion,

1. Fit a POMM to all collected data, i.e. to the outcomes at all cycles for all patients
previously included available at the time of the new inclusion. Simpler models
can be fitted when estimates of the model (18.5) cannot be obtained.

2. Evaluate the decision criteria and identify the dose whose estimate of the risk of
severe toxicity per cycle is closest to � .

3. The new patient is treated at this current recommended dose.
4. The trial is terminated when the maximum allowable number of patients has been

treated or after certain stopping rules have been verified [38, 60].

Time trend can be further investigated using a model with a time covariate.

logit.P.Yij � gjXi D dk; tij// D ˛g � ˇ1dk � ˇ2tij � ui (18.7)

where ui � N .0; 
20 / and g D 1; 2. Probabilities of outcomes are then assumed to
be related by a proportional odds model for both time and dose. Model (18.7) can be
used to test time effects as reflected by a significant ˇ2 parameter. As this situation
turns out to be very rare [43,51], it was proposed to test for this effect only at the end
of the trial to avoid decreasing the test power. Alternatively, a sequential probability
ratio test may be implemented. In case of increasing time trend, definition of the
RPIID can be challenging. Other characteristics of the compound would then be
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used to define the dose that should be further investigated, if any; they include the
pharmacokinetics, the possibility of changing the schedule, the toxicity profile etc.

18.5.2 Operating Characteristics

18.5.2.1 Identifying the RPIID

Operating characteristics were investigated in a simulation study assuming fixed
sample sizes of 30 patients who could receive up to 6 cycles and various dose-
toxicity relations; scenarios assumed eight dose levels (60, 120, 200, 300, 400,
600, 800, 1,000 mg) transformed on the log scale with increasing risk of toxicity
following either a proportional odds model or not; the MTD was either level 2, 4 or
6. Missing data were assumed to be due to severe toxicity or progression; time to
progression was independent of the risk of toxicity and of the dose [16]. Results
from one scenario are provided in Table 18.1. In all scenarios studied, fitting a
mixed effect POM appeared to be feasible for the sample sizes typically used in
phase I trials (models could be fitted in more than 97 % of simulations). The CRML
correctly identified the MTD based on the first cycle only in less than 50 % of the
simulations, regardless the explored dose-toxicity relation. In absence of increasing
risk of toxicity with time, the adaptive POMM-CRML allowed the probability of
a correct recommendation to be increased to more than 62 %. The mean number
of patients treated at the correct dose was systematically increased. These good
performances were also observed when using a retrospective longitudinal analysis
after all data had been collected using the CRML, resulting in the same level of
correct recommendations. Of note, in some simulations, overly toxic doses were
recommended after longitudinal reanalysis that would not have been recommended
with CRML (<1% of simulations). The two missing data processes displayed
similar results. When the dose-toxicity relationship violated the proportional odds
assumption, the results remained fairly robust. Even when the slope of the dose-
toxicity relationship was higher for G2-5 compared to G3 toxicities, it did not result
in an increased risk of recommendation of higher doses than the true RPIID or in an
increased risk of overtreatment.

18.5.2.2 Detection of Time Trend

The model including both time and dose could be estimated in more than 92 % of
simulations. The power to identify a time trend after treating 30 patients increased
with the strength of the time effect from 46 % (for OR D 1:33 at cycle i compared
to cycle i � 1) to 93% (OR D 1:79, i.e. receiving an additional cycle of treatment
was roughly equivalent to receiving the next higher dose level). The false-positive
rate in the absence of a time effect was 5% of simulations, indicating an adequate
type I error rate control despite the limited sample size.
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Table 18.1 Results of competing strategies using the CRM on the first cycle (CRM30), the CRM
on the first cycle together with a reanalysis of longitudinal data (CRM30 with POMM), and
the proposed method using longitudinal data for dose allocation (POMM-CRML); data may be
complete, or missing after G3C toxicity or after progression

Dose level dk 1 2 3 4 5 6 7 8 N cycles

log.dk/ 4.1 4.8 5.3 5.7 6 6.4 6.9, 7.2 mean (sd)

Probability G3 0.02 0.06 0.14 0.24 0.37 0.55 0.71 0.83

Probability G2C 0.07 0.21 0.4 0.58 0.71 0.84 0.91 0.95

Cycle 1
CRML30
Mean number of pts / dose 1.8 3.9 7.8 9.3 5.4 1.4 0.3 0.05 30 (0)

Distribution DR (%) 0.3 5.1 29.2 46.7 17.9 0.8 0 0

Longitudinal data
Complete data

Retrospective POMM analysis

Mean number of pts / dose 1.8 3.9 7.8 9.3 5.4 1.4 0.3 0.05 180 (0)

Distribution DR (%) 0.7 13.3 73.4 11.1 0.9 0.3 0

POMM-CRML adaptive design

Mean number of pts / dose 1.7 3.0 6.2 12.9 4.6 1.2 0.3 0.5 180 (0)

Distribution DR (%) 0.5 12.8 76.5 10.1 0.1 0 0

Missing data after the first severe toxicity

Retrospective POMM analysis

Mean number of pts / dose 1.8 3.9 7.8 9.3 5.4 1.4 0.3 0.05 111.3 (19.3)

Distribution DR (%) 0.2 1.9 18.5 62.3 15.4 1.0 0.0 0.6

POMM-CRML adaptive design

Mean number of pts / dose 1.8 3.4 7.0 11.1 4.9 1.2 0.3 0.2 110.1 (14.8)

Distribution DR (%) 0.2 1.3 20.9 62.7 14.5 0.1 0.2 0.1

Missing data after progression

Retrospective POMM analysis
Mean number of pts / dose 1.8 3.9 7.8 9.3 5.4 1.4 0.3 0.05 111.5 (19.3)

Distribution DR (%) 0.2 0.8 18.6 63.0 14.7 1.4 0.4 0.9

POMM-CRML adaptive design
Mean number of pts / dose 1.8 3.0 6.7 12.2 4.7 1.1 0.3 0.2 119.3 (9.1)

Distribution DR (%) 0.1 1.0 17.2 69.6 12.2 0 0 0

G3: Severe toxicity, G2C: Moderate or severe toxicity. DR dose recommended at the end of the
simulated trial, Bold entries correspond to the target dose

18.6 Applications

Data from the trials described in Sect. 18.2 were reanalyzed using both time to event
models (for the ITCC trial 1) and a proportional odds (PO) mixed effect model for
both examples. As reanalysis of adaptive designs is not directly feasible and requires
further assumptions, only estimates of the probability of toxicity at different time
points of the trials are provided, bearing in mind that if other methods had been
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Table 18.2 Final analysis of
the erlotinib C radiotherapy
with CRML

Dose level dk d1 d2 d3 d4

Dose in mg/m2 75 100 125 150

˛k 0.07 0.2 0.35 0.50

] pts at dk 6 6 8 0

] G3 at cycle 1 1 0 1 0

Op3.dk/ 0.02 0.06 0.16 0.35

G3: severe toxicity. ˛k is the code for dk

used, the dose allocation would not have been the same; analyzing data deriving
from a different design results in a certain degree of loss of efficiency.

18.6.1 The ITCC/ErlotinibCRT Trial

18.6.1.1 CRML

Results of the trial conducted with the CRML are summarized in the Table 18.2.
The final recommended dose was dose level 3 (125 mg=m2) with an estimated risk
of DLT of 0:16, 95 % confidence interval .0:04; 0:45/. After 20 patients had been
evaluated, the confidence interval was too large to provide any meaningful informa-
tion and could not be used to guide the decision to stop the trial. Nevertheless, the
probability to maintain the same dose level (d2) for the next 5 patients was higher
than 85% and the trial was stopped.

18.6.1.2 Tite-CRM

The cumulative risk of DLT over T D 6 cycles was estimated using the time-to event
CRM. A power 1-parameter model was chosen; the three dose levels of erlotinib
and radiotherapy were coded as previously: ˛1 D 0:07; ˛2 D 0:2 and ˛3 D 0:35. A
Bayesian inference was used with a non informative exponential prior distribution.

Table 18.3 gives three snapshots of the estimated risk of severe toxicity: on 28th
June 2006, just before patient 11 was to be included, the estimates ranged from
Op3.d1/ D 16% to Op3.d3/ D 49%. On 16th July, the same patients had longer

follow-up without DLT resulting in lower estimated risk of DLT. The last reanalysis
after all data have been collected indicated a much larger cumulative risk of DLT:
probability at d1 was 20% whereas probability at d3 was as high as 54%. This
should be compared to the results of the estimates based on the first cycle only
where d3 appeared to be tolerable with Op3.d3/ D 0:16. At completion, 13 patients
received 6 cycles or experienced DLT and had weight 1, whereas 7 had weights
ranging from 0.33 to 0.83. Dynamic weighting gave fairly similar results.
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Table 18.3
Erlotinib C radiotherapy
reanalysis with the
Tite-CRM: after six patients
have completed evaluation
and three are under evaluation
at two different timepoints;
and after trial completion

Patient j 1 2 3 4 5 6 7 8 9

Dose level dk 1 1 1 1 1 1 2 2 2

Yj 0 0 1 0 0 0 0 0 0

The 28th of June

]cycles 6 6 2 6 4 2 3 2 1

wj 1 1 1 1 0.67 0.33 0.5 0.33 0.17

Op3.dk/ Op3.d1/ D 0:16 Op3.d2/ D 0:33

The 16th of July

]cycles 6 6 2 6 4 2 4 3 2

wj 1 1 1 1 0.67 0.33 0.67 0.5 0.33

Op3.dk/ Op3.d1/ D 0:12 Op3.d2/ D 0:31

Final reanalysis after trial completion
Dose level dk d1 d2 d3 d4

]pat at dk 6 6 8 0
]G3 at any cycle 2 1 3 0
Op3.dk/ 0.21 0.38 0.54 0.70

G3: severe toxicity; #pat: number of patients; #cycles: number
of cycles

18.6.1.3 POMM-CRM

Data were then reanalyzed to identify the RPIID, defined as the dose associated with
20 % of DLT per cycle and to detect a trend time. Only retrospective analysis of the
data using a PO mixed effect model is considered. Models (18.5) and (18.7) were
estimated by adjusting for the log of the dose. Estimates of fixed intercepts, time
and dose were then O� D .˛1 D 4:64; ˛2 D 6:19; ˇ1 D 0:80; ˇ2 D �0:03/; variance
of the random effect, 
20 could not be estimated as it appeared to be excessively
large; time trend was not significant (p D 0:82); estimates of the model with dose
only gave O� D .˛1 D 4:69; ˛2 D 6:24; ˇ1 D 0:80/. The predicted probabilities of
toxicity per cycle at each dose are shown in Table 18.4. The risk of severe toxicity at
each cycle using a PO mixed effect model appears lower compared to the estimates
on the first cycle only using a logistic model. The risk of toxicity at the highest
visited dose d3 might have encouraged the investigators to explore d4.

In conclusion, incorporating evaluation of toxic side effects obtained from further
cycles of treatment can lead to radically different recommendations depending on
how we define the DLT and the RPIID. Were cumulative risk of DLT be the main
endpoint then the treatment appears quite toxic and lower dose levels should be
recommended. Conversely, the risk of severe toxicity per cycle is in line with what
had been observed on the first cycle. Some toxic side events are reversible and
manageable, while others are not, which may guide the modeling choice. Typically,
risk of skin rash observed with erlotinib C radiotherapy is probably well described



354 X. Paoletti and A. Doussau

Table 18.4
Erlotinib C radiotherapy
reanalysis with POMM:
observed and predicted per
cycle probability of graded
toxicity, according to the log
of the dose

Dose level dk d1 d2 d3

Number of pat 6 6 8

Number of cy. 26 34 36

Number of G2 4 8 7

Number of G3 2 1 4

Obs. G3 (per cy.), in % 7.7 2.9 11.1

Obs. G2C (per cy.), in % 23.1 26.5 30.6

Pred. G3 (per cy.),in % 5.8 7.2 8.5

Pred. G2C (per cy.),in % 22.6 26.9 30.5

G3: Severe toxicity, G2C: Moderate or severe toxicity,
cy.: cycle, Pred: Predicted, Obs: Observed. The four
smallest dose levels were collapsed in one column

as a risk per cycle. On the contrary, hemorrhages, another adverse event of this
combination, would be more appropriately assessed by cumulative risk. Combining
both modelings is a promising field of research.

18.6.2 The EORTC/R-Viscum Trial

18.6.2.1 CRML

Results of the trial conducted with the CRML are summarized in Table 18.5. 11 dose
levels were escalated after each new patient tolerated the treatment before the first
DLT, fatigue grade 3, was observed at d11 D 4;000 ng/kg. The levels were coded as
follows: 0:0035; 0:005; 0:009, 0:015; 0:024; 0:035, 0:05; 0:07; 0:11, 0:2; 0:33; 0:48,
0:62; 0:74. As no limit in the dose increase had been defined in the protocol, the
coding was set up when the first DLT was observed: d10, the dose at which the first
DLT was observed, was coded 0:2; other codes were constructed so that if dk is
the current estimate of the MTD (that is the dose closest to 20%) then  .dkC1; Oa/
was close to 0:33; in other words, the estimated slope around the MTD was stable
wherever the MTD was located.

After 27 patients have been included, the sponsor amended the protocol and
switched to the 3 C 3 design. Final estimates using the CRM model are displayed
in Table 18.5; columns of the first six doses levels have been collapsed; the final
recommended dose was d13 (5,600 mg/kg) with an estimated risk of DLT of 0:16,
95 % confidence interval .0:07; 0:37/. The probability to maintain the same dose
level for the next five patients was 90%, had we continued with the CRM.
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Table 18.5 Final analysis of the R-Viscum with the CRML

Dose level dk d1 � d8 d9 d10 d11 d12 d13 d14

Dose in mg/kg 10–1,600 2,400 3,200 4,000 4,800 5,600 6,400

˛k 0.0035–0.07 0.11 0.20 0.33 0.48 0.62 0.74

]pat at dk 8 1 4 4 10 7 5

]G3 at cycle 1 0 0 0 1 1 0 2

Op3.dk/ 0.0–0.0 0.0 0.0 0.02 0.06 0.16 0.31

G3: severe toxicity, #pat: number of patients

Table 18.6 r-Viscum trial reanalysis: observed and predicted probability of graded toxicity per
cycle, according to the dose

Dose (ng/kg)
10–100 200 400 800 1,600 2,400 3,200 4,000 4,800 5,600 6,400

Number of pat 4 1 1 1 1 1 4 6 10 7 5

Number of cy. 15 2 1 2 2 2 13 11 25 13 8

Number of G2 3 0 0 0 1 2 4 5 12 7 4

Number of G3 2 0 1 0 1 0 0 3 9 2 4

Obs. G3 (per cy.) % 20 0 100 0 50 0 0 27 36 15 50

Obs. G2C (per cy.) % 13 0 100 0 100 100 30 72 84 69 100

Pred. G3 (per cy.) % 4 4 4 5 5 6 8 14 24 37 50

Pred. G2C (per cy.) % 43 45 46 48 50 55 64 76 86 92 95

G3: Severe toxicity, G2C: Moderate or severe toxicity, #pat: number of patients, #cy.: number of
cycles. The four smallest dose levels were collapsed in one column

18.6.2.2 POMM-CRM

The data introduced in Sect. 18.2 were reanalysed to identify the RPIID and detect
a time trend. The targeted probability of severe toxicity per cycle was set at 20 %,
to match the target used in the trial. As before, retrospective analysis of the data
using a POMM is presented. Models (18.5) and (18.7) were estimated. Estimates
of fixed intercepts, time and dose and variance of the random intercept were O� D
.˛1 D 0:35; ˛2 D 3:33; ˇ1 D 4:48; ˇ2 D 0:04; 
20 D 3:44/; time trend was not
significant (pD0.88); estimates of the model with dose as the only covariate gave
� D .˛1 D 0:31; ˛2 D 3:28; ˇ1 D 4:42; 
20 D 3:35/; the dose effect as well
as the random intercept were both significant in this model (p D 0:01 and p <

0:001 respectively). The predicted probabilities of toxicity per cycle at each dose
are shown in Table 18.6. The first four columns were collapsed to form one column
labeled “10–100”. According to the POMM, the recommended dose would have
been d12 (4,800 ng/kg).

Analysis of all collected data improved the accuracy of the estimate of the risk of
DLT. As all toxic side effects were reversible, a longitudinal model is appealing. The
additional information from all cycles of treatment can then be easily interpreted and
are consistent with the usual estimates from the first treatment cycle.
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18.7 Conclusions

Following the introduction of the CRM in 1990, dose finding methods have been
the subject of numerous statistical developments. The main endpoint of the trial
was a binary variable (presence or absence of dose limiting toxicity) measured on
the first cycle of treatment; the objective of the trial was formalized as identifying
a pre-defined percentile of an unknown dose-toxicity relation. The introduction
of adaptive designs using simple “working” models to estimate the risk of DLT
improved the performance of the dose finding process and the flexibility of the
design. Building on this model, it was possible to account for heterogeneity
using covariates [42], to target different levels of risk etc. however, the operating
characteristics of these methods are very close to the maximum performance that
can be achieved. Performances are limited by the amount of information contained
in the binary variable used as primary endpoint.

In the last decade, new classes of agents have emerged. The very severe toxicity
at the first cycle may no longer be the most appropriate endpoint to identify the dose
recommended for phase II.

The approaches presented in Sect. 18.4 explore repeated measurements of toxic
side effects expressed either as cumulative risk or risk per cycle. Time to event
does not improve the ability to identify the correct dose, but reduces the overall
duration of a trial and more importantly provides a valid tool to account for late
toxic side events. Conversely, the longitudinal approach was associated with a net
improvement in terms of probability to identify the correct dose for a set of different
scenarios, compared to the CRML. A similar improvement would be obtained
by simply fitting the proportional odds mixed effect model to the final sample
collected by using the CRML. The conclusions were robust across scenarios, even
when the dose-toxicity relationship violated the proportional odds assumption. In
addition, this methods provided a simple tool to assess the time trend of the risk
of toxicity. Estimating the model was not straightforward, especially early in the
trial. A Bayesian approach, with prior information on the variance parameter for the
random effect, may increase the accuracy of the estimation.

Proportional odds models appear to be an interesting framework for modeling
graded toxicity; it is likely that the same mechanism is responsible for severe
toxicities and moderate toxicities, which makes the proportional odds assumption
reasonable. A hypothesis of proportionality over repeated cycles of treatment was
proposed by Simon, who used a proportional odds Kmax model to detect late
toxicity in NCI phase I trials of old agents [51] but he did not develop adaptive dose
finding methods in this framework. This was done by Legezda and Ibrahim [27]
who simplified the model of Simon that was not identifiable with limited sample
sizes. They proposed a mixed effect model for binary endpoint where the risk
of DLT at a given cycle results from the administered dose plus the cumulative
dose received since treatment initiation weighted by the clearance of the agent
under study. They further hypothesize that the clearance is known at the start of
the trial, and may vary from patients to patients (random effect). This model is
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directly drawn from PK-PD models developed for cytotoxic agents; this therapeutic
class, administered intravenously, commonly induces hematological toxicity as a
consequence of the concentration of the agent in the blood. The authors reported
good operating characteristics after 10 cycles of treatment. As they allowed intra-
patient dose adaptation (a patient may receive different doses throughout the trial)
and did not implement end of treatment after severe toxicity, their results cannot
be directly compared to those from Doussau et al. described above. More recently,
the PO model applied on the first cycle of treatment was evaluated but it failed to
improve the chance to pick up the correct level [56], probably due to the additional
parameters that must be estimated and due to the fact that the MTD is still defined
as a probability of DLT. It is therefore much more promising to use the ordinal scale
to increase the power to investigate time trends. Under the realistic assumption that
any time trend would be observed on the risk of both moderate and severe toxicity,
graded toxicity becomes a more informative variable.

Another very important axis of methodological research to exploit richer infor-
mation involves incorporating multiple endpoints into the dose finding process. In
particular, the joint distribution of the risk of severe toxicity as well as the chance
of clinical response, also measured as a binary [54] or a ternary endpoint (tumor
shrinkage, stabilization progression) [18] can serve to identify the dose with the
best trade-off between acceptable toxicity rate and response rate. This approach
transforms dose-finding trials from simple identification of the MTD to the more
stimulating objective of recommending the phase II dose. This topic, opened by
Thall and Russel [55], has been frequently explored: authors relied on conditional
probabilities [35] or copula [5] to obtain this joint estimation. Other authors have
taken advantage of the natural ordering between a toxic dose without and with
activity and a dose active without toxicity leading to the use of ordinal models [28].
The two major limitations to implement these methods in clinical practice are (i) the
statistical complexity requiring the use of priors and Bayesian inference as well as
extensive computations and (ii) the lack of sensitivity of the clinical outcome used
to measure agent activity; in fact, less than 5 % of patients in first-in-man trials of
new agents have a tumor response measured according to the usual RECIST [20,47]
making it challenging to model dose-activity relationship. More recent contributions
have explored the possibility of using continuous markers of activity [3, 14].

Although the transfer of these innovative designs to clinical practice has given
disappointing results up to now, model-based designs are tailored to the complexity
of dose finding trials of targeted agents and should meet the expectations of
clinicians and sponsors.
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