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Preface

It is widely believed that the twenty-first century will be the century of biotechnology, which,
in turn, will lead to unprecedented breakthroughs in the medical sciences revolutionizing every
aspect of medicine from drug discovery to healthcare delivery. The rapid advancement in high-
performance computing that took place in the last quarter of the twentieth century has indeed
been a driving force in this revolution, enabling us to generate, store, query, and transfer huge
amounts of medical data. As is well known, this is where statisticians come into the picture—
lending their expertise in extracting information from data and converting that information to
knowledge.

The key role that statisticians have been playing in this information revolution in the
medical sciences has created new challenges and posed difficult problems before our own dis-
cipline, whose solutions have often necessitated new statistical techniques, new approaches, or
even new modes of thinking. These have been the motivating force behind an astonishing flurry
of research activities in biostatistics since the mid-1990s, which have been well documented in
the contemporary journals and books. Since the involvement of statistics in the medical
sciences is almost always interdisciplinary in nature, there has been a surge of activities on
another front, namely, helping experts in the biomedical sciences (as well as practitioners in
related fields) learn the basic concepts of statistics quickly and familiarizing statisticians
with the medical parlance at the same time.

So a closer look at the books and monographs that have come out in these areas in the last 20
years will reveal four broad categories:

† Expository introductions to basic statistical methodology with examples and datasets
from the biomedical sciences (e.g., O. J. Dunn, Basic Statistics: A Primer for the
Biomedical Sciences, Wiley; B. Brown and M. Hollander, Statistics: A Biomedical
Introduction, Wiley; R. P. Runyon, Fundamentals of Statistics in the Biological,
Medical and Health Sciences, Duxbury; B. S. Everitt, Modern Medical Statistics: A
Practical Guide, Arnold Publishing Company, or R. F. Woolson and W. R. Clarke,
Statistical Methods for the Analysis of Biomedical Data, Wiley)

† Advanced monographs and textbooks on some special topics in statistics that are relevant
to special types of biomedical data (e.g., J. K. Lindsey, Nonlinear Models for Medical
Statistics, Oxford Statistical Science Series; W. J. Ewens and G. R. Grant, Statistical
Methods in Bioinformatics, Springer-Verlag; R. G. Knapp and M. C. Miller III,
Clinical Epidemiology and Biostatistics, Harwal Publishing Company; J. F. Lawless,
Statistical Models and Methods for Lifetime Data, Wiley; or E. Marubini and

xxi



M. G. Valsecchi, Analyzing Survival Data from Clinical Trials and Observational
Studies, Wiley)

† Encyclopedic collections or handbooks of concepts and methodology (e.g., B. S. Everitt,
Medical Statistics from A to Z: A Guide for Clinicians and Medical Students, Cambridge
Univ. Press; D. J. Balding, M. Bishop, and C. Cannings, eds., Handbook of Statistical
Genetics, Wiley; C. R. Rao and R. Chakraborty, eds., Handbook of Statistics 8:
Statistical Methods in Biological and Medical Sciences, Elsevier)

† Historical accounts (e.g., O. B. Sheynin, On the History of Medical Statistics, Springer-
Verlag).

In addition to these, there are a few examples of a fifth kind. These are edited volumes of peer-
reviewed articles encompassing several aspects of statistical applications in many areas of the
biomedical sciences (e.g., Y. Lu and J.-Q. Fang, eds., Advanced Medical Statistics, World
Scientific Publishers; B. S. Everitt and G. Dunn, eds., Statistical Analysis of Medical Data:
New Developments, Arnold Publishing Company; B. G. Greenberg, ed., Biostatistics:
Statistics in Biomedical, Public Health and Environmental Sciences, Elsevier). These edited
volumes, which are a “snapshot” of the contemporary developments in statistical methodology
for dealing with complex problems in the biomedical sciences, are neither introductory nor
encyclopedic in nature. However, they have some distinct advantages. Unlike the advanced
textbooks or monographs in certain specialized areas of biostatistics, they are not narrow in
their coverage—usually offering a “wide angle” view of the contemporary methodological
developments and technical innovations. Additionally, since they are not expected to cover
every single concept and every single innovation in the field (which encyclopedias and hand-
books try to do in a few hundred pages), they have a better opportunity of going in-depth and
showing real-life data analysis or case study examples. Finally, the articles they contain are
often firsthand accounts of research reported by the researchers themselves, as opposed to
secondhand accounts provided by the author(s) of a textbook or monograph.

So when we first contemplated bringing out a book that summarizes some of the major
developments in statistics in the biomedical context, this is the format we chose. A number
of eminent researchers in the four major areas of the modern-day biomedical sciences where
statistics has made its mark, namely, Clinical Trials, Epidemiology, Survival Analysis, and
Bioinformatics, have contributed 30 carefully prepared and peer-reviewed articles. In addition,
there are a few more that do not exactly fit into those areas but are strongly relevant to the
overall theme. Each of the three edited volumes mentioned in the preceding paragraph is a valu-
able resource to students, practitioners, and researchers. But each of them has its own limit-
ations. In proposing this volume, our motivation was to overcome many of the shortcomings
of its predecessors and to combine their best features. The contributors have been carefully
chosen so as to cover as much ground as possible in each broad area. Although the chapters
are independent of one another, the chapter sections have been organized so as to make the
thematic transition between them as smooth as possible. A structural uniformity has been main-
tained across all the chapters, each starting with an introduction that discusses the general con-
cepts and describes the biomedical problem under focus. The subsequent sections provide more
specific details on concepts, methods, and algorithms, with the primary emphasis on appli-
cations. Theoretical derivations and proofs are, for the most part, relegated to the appendix
in chapters that contain such items. Each chapter ends with a concluding section that summar-
izes the main ideas in the chapter or points to future research directions.

From the beginning, our intention has been to target this book to a broad readership. Not
only is it intended to be a useful reference or supplementary study material for doctoral or
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advanced master’s-level students in different areas of biostatistics and the medical sciences, but
also an informative resource guide to researchers in both academia and industry. Practitioners,
such as professional consultants or research support staff, will also get a lot out of this volume.
People with different backgrounds will probably benefit from different aspects of it. Medical
researchers will get to see the arsenal of statistical “weapons” available to them and be more
aware of how to collect information in the right way for these statistical techniques to be appli-
cable. They will receive valuable guidelines regarding what to expect and what not to expect
from statistics, that is, about proper interpretation and drawbacks of statistical methodology.
Statisticians, on the other hand, will get an opportunity to put their current research in the
broader perspective of the biomedical sciences and at the same time, pick up some useful sug-
gestions for their future applied research. Statistical consultants who work with clients from the
medical field or the pharmaceutical industry will gain a better understanding of the “party at the
other end of the table.” Even the hardcore mathematical statisticians may pick up some new
directions for their pathbreaking theoretical work. Any university or research institute with a
medical or public health program or a graduate-level statistics/biostatistics curriculum offers
advanced courses in one or more of the four major areas covered in our volume. We believe
that this volume will nicely supplement the primary textbooks used in those courses.

We admit that the 30 chapters included here are not all written at the same level of techni-
cality or clarity, but personally, we view this disparity positively. This allows a reader to
appreciate the great diversity in the training and expertise of people who are currently doing
research in biomedical statistics. Perhaps the reader will realize that routinely used phrases
such as “applied statistics,” “interdisciplinary research,” or “real-life datasets” are also
subject to interpretation.

In summary, when we first contemplated this project, our primary goals were to

† Come up with a well-organized and multifaceted presentation of cutting-edge research in
biomedical applications of statistics under one umbrella.

† Provide new directions of research or open problems in each area for future researchers
and a detailed list of references in order to facilitate self-study.

† Do all these in a way accessible to people outside academia as well.

How far we have succeeded in achieving these goals is for the reader to judge. But we thank the
contributing authors for trying their best to bring us closer to these goals by adhering to the
guidelines we provided and the deadlines we set. And we do believe that our volume will
be popular and will stand out among comparable pieces of work because:

† There have not been too many previous attempts to summarize contemporary research in
several aspects of a large interdisciplinary area such as this in a compact volume.

† In spite of the technical nature of the subject matter, the style of presentation in our book
maintains a certain degree of lucidity, aided by an informative introduction that explains
the problem in simple terms, a substantial literature survey that puts each topic in perspec-
tive, and an adequate number of real-life examples and/or case studies, which will make
this volume suitable for a wider audience.

† A great deal of care has been taken by the editors to avoid the usual “incoherent cut-and-
paste nature” of edited volumes and ensure smooth thematic transitions between chapters
within each of the five major parts.
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A project like this would never be successful without the unselfish and silent contributions
made by a number of distinguished colleagues who kindly accepted our invitations to
referee one or more chapters or shared their opinions and expertise with us at various stages
of the project—from proposal evaluation to proofreading. We deeply appreciate their contri-
butions and offer them our sincerest gratitude.

It has been a pleasure to work with the editorial and production staff at Wiley—from the
initial planning stage to the completion of the project. Susanne Steitz-Filler was patient and
encouraging right from the beginning, and so was Steve Quigley. Without Susanne’s editorial
experience and the technical prowess of the Wiley production team, it would be a much more
daunting task for us, and we are truly grateful to them. Also, one of the editors (Datta) would
like to thankfully acknowledge the support received in the form of a faculty grant and reduced
academic responsibilities from Northern Michigan University. At the same time, he is thankful
to the Texas A&M University for supporting project through an R25 grant from the National
Institutes of Health.

Both collectively and individually, we express indebtedness to our colleagues, students, and
staff at our home institutions. Last but not least, we would like to lovingly acknowledge the
never-ending support and encouragement from our family members that kept us going all
the way to the finish line.
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Phase I Clinical Trials
Anastasia Ivanova
Department of Biostatistics, University of North Carolina, Chapel Hill,
North Carolina

Nancy Flournoy
Department of Statistics, University of Missouri, Columbia, Missouri

1.1 INTRODUCTION

Phase I trials are conducted to find a dose to use in subsequent trials. They provide data on the
rate of adverse events at different dose levels and provide data for studying the pharmaco-
kinetics and pharmacology of the drug. Dose-finding studies that involve therapies with little
or no toxicity often enroll healthy volunteers and usually have a control group. Trials in onco-
logy and other life-threatening diseases such as HIV enroll patients because treatments are
usually highly toxic and to enroll healthy volunteers would not be ethical. The primary
outcome for phase I trials in oncology and HIV is typically dose-limiting toxicity. Such
studies require different design strategies.

In Section 1.2, we review dose-finding procedures used in healthy volunteers. In Section 1.3
we describe dose-finding procedures for trials with toxic outcomes enrolling patients. In
Section 1.4, we list some other design problems in dose finding.

1.2 PHASE I TRIALS IN HEALTHY VOLUNTEERS

Buoen et al. [7] reviewed designs that are used for studying first-time-in-human drugs by
looking at 105 studies published in five major pharmacology journals since 1995. In this
section we briefly summarize their findings. Bouen et al. found that first-time-in-human
studies usually enroll healthy volunteers; most are placebo-controlled and more than half are
double-blind. The placebo group is included to reduce observer bias and sometimes to

Statistical Advances in the Biomedical Sciences, edited by Atanu Biswas, Sujay Datta,
Jason P. Fine, and Mark R. Segal
Copyright # 2008 John Wiley & Sons, Inc.

3



enable comparison of the active drug with placebo. Usually three to eight dose levels are inves-
tigated. Doses are selected using linear, logarithmic, Fibonacci, modified Fibonacci dose esca-
lation patterns, or some combinations of these. The popular modified Fibonacci procedure
escalates doses in relative increments of 100%, 65%, 50%, 40%, and 30% thereafter.

The simplest pattern of dose administration being used in first-time-in-human studies is the
parallel single-dose design in which a single dose is administered once. Multiple adminis-
trations of the same dose are referred to as parallel multiple-dose design. Parallel dose admin-
istration was found to be the most frequently used procedure in first-time-in-human studies. In a
typical trial with parallel dose administration, subjects are assigned in cohorts consisting of
eight subjects, with six assigned to the active treatment and two assigned to a control. All
treated subjects in a cohort receive the same dose. Doses are increased by one level for each
subsequent cohort. The trial is stopped when an unacceptable number of adverse events is
observed, the highest dose level is reached, or for other reasons. The “target dose,” the dose
recommended for future trials, is usually determined on the basis of the rates of adverse
events at dose levels studied and/or on pharmacokinetic parameters.

More complex dose administration patterns were found to involve the administration of
several different dose levels to each patient. In such trials, the healthy subjects are given
some rest time between administrations to minimize the carryover effect. One such pattern is
referred to as an alternating crossover design. An example of an alternating crossover
design for a study with six doses is as follows:

Cohort 1: Dose 1 REST Dose 4

Cohort 2: Dose 2 REST Dose 5

Cohort 3: Dose 3 REST Dose 6

Another dose administration pattern is the grouped crossover escalation. An example of this
pattern for a trial with four dose levels is as follows:

Cohort 1

Subject 1 Placebo Dose 1 Dose 2

Subject 2 Dose 1 Placebo Dose 2

Subject 3 Dose 1 Dose 2 Placebo

Cohort 2

Subject 1 Placebo Dose 3 Dose 4

Subject 2 Dose 3 Placebo Dose 4

Subject 3 Dose 3 Dose 4 Placebo

Sheiner et al. [41] reviewed parallel and crossover designs and methods for analyzing the
data obtained in such studies. They point out ethical problems and a lack of representativeness
in these designs. Sheiner et al. [41] advocated using a dose administration pattern that they call
the dose escalation design:

According to the dose-escalation design all subjects are given a placebo dose first. If after
some predefined time period the response fails to satisfy a certain clinical endpoint and no
unacceptable toxicity is seen, the dose is increased by one level. This process is repeated at
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each dose level until either the clinical endpoint is reached or the highest dose is attained.
If the response is adequate at any dose, the dose is maintained at that level for the duration of
the study.

The main obstacle to using this design is the lack of formal statistical methods for
data analysis.

Girard et al. [17] studied the effects of several confounding factors on trials that use parallel
dose, crossover and dose escalation designs by simulations. They concluded that the presence
of nonresponders biases the estimate of the dose producing 50% of the maximum effect, in all
three designs. However, other confounders such as carryover effects only bias the results of
trials in which the dose escalation design is used.

Buoen et al. [7] conclude that, although “the development of study designs and evaluation
methods for cancer trials is extensive, . . . formal statistically based methods . . . are unusual in
phase I dose-escalation trials in healthy volunteers.” This lack and the recognition of need
present both challenges and opportunities to the statistical research community.

1.3 PHASE I TRIALS WITH TOXIC OUTCOMES
ENROLLING PATIENTS

In many phase I trials in which the subjects are patients, rather than healthy volunteers, the goal
is to find the dose that has a prespecified toxicity rate. This is particularly true in oncology. In
these trials, the primary outcome is typically binary: dose-limiting toxicity? Yes or no. For
example, the dose-limiting toxicity (DLT) in radiotherapy and chemotherapy studies is
usually defined as treatment-related nonhematological toxicity of grade 3 or higher or
treatment-related hematological toxicity of grade 4 or higher. The maximally tolerated dose
(MTD) is statistically defined as the dose at which the probability of DLT is equal to the
some prespecified rate G. The typical underlying model assumption is that the probability of
toxicity is a nondecreasing function of dose, even though decreasing toxicity rates at high
doses have been observed [43].

Preclinical studies in animals often attempt to determine the dose with approximately 10%
mortality (e.g., the murine LD10). In first-in-human toxicity studies, one-tenth or two-tenths of
the dose considered to be equivalent to the murine equivalent, expressed in milligrams per
meter squared (mg/m2), is generally used as a starting dose in escalation procedures. The start-
ing dose is anticipated to be 5–10-fold below the dose that would demonstrate activity in
humans. In trials with oral drugs, only certain doses can be used; therefore, the set of possible
doses is fixed in advance. The set of possible doses is often chosen according to the modified
Fibonacci sequence.

In dose-finding trials in oncology, patients may receive a single dose of a drug or multiple
administrations of the same dose. To address ethical concerns similar to those of Sheiner et al.
[41] and to shorten trial duration, Simon et al. [42] introduced acceleration titration designs.
Such designs allow intrapatient dose escalation if no toxicity is observed in a patient at the
current dose. A patient goes off study or the patient’s dose is reduced if toxicity is observed.
Although appealing from an ethical perspective, this approach is not widely used for the
same reason as in the hesitation to use Sheiner’s dose escalation design. In the rest of this
chapter, we review methods with parallel dose administration.

One cannot begin to detail all designs that have been used with parallel administration for
dose finding in patients with dose-limiting toxicity. Some popular procedures are ad hoc, as are
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the designs used in healthy volunteers. Others were developed with various desirable charac-
teristics. We discuss the most popular procedures, but our choice is admittedly biased by our
own interests.

1.3.1 Parametric versus Nonparametric Designs

Designs for dose finding can be classified as parametric or nonparametric. Non-parametric
designs are attractive because they are easy to understand and implement; the decision rules
are intuitive and their implementation does not involve complicated calculations. By nonpara-
metric, we mean that no parametric representation of the dose–response relationship is used in
the design’s treatment allocation rule. In this chapter, we discuss several Markovian and
Markovian-motivated non-parametric up-and-down designs and the A þ B designs of Lin
and Shih [31]. We also discuss non-parametric designs in which the treatment allocation rule
is based on isotonic estimates of the dose–response function. These are called isotonic designs.

Then we describe some parametric designs that assume one- or two-parameter models for
the dose–toxicity relationship. Popular parametric designs include the continual reassessment
method [33] and escalation with overdose control [2].

With the Markovian and Markovian-motivated designs, treatment assignments typically
cluster unimodally around a specific dose, and the key to their effectiveness is to select
design parameters so as to center the treatment distribution judiciously [11]. For example,
for toxicity studies with increasing dose–response functions, these designs can be constructed
to cluster treatments around the unknown dose with prespecified “target” toxicity rate G.

In other designs that allow multiple escalations and deescalations of dose, treatment assign-
ments first fluctuate around the MTD and then converge assignments to the MTD. Such designs
include, for example, the continual reassessment method [33] and isotonic designs [29].

1.3.2 Markovian-Motivated Up-and-Down Designs

In up-and-down designs, the next dose assigned is never more than one level distant from the
dose given to the current cohort of patients. Such designs are appealing in dose-limiting
toxicity studies because of the potentially devastating consequences of abruptly making
major changes in dosing. Many ad hoc up-and-down procedures exist, including the most
widely cited design in oncology, that is, the 3 þ 3 design [44,28]. The 3 þ 3 design is a
special case of the A þ B designs [31]. It is important in trials with patients who are critically
ill not to assign too many patients to low, ineffective doses. The A þ B designs address this
concern by assigning A patients to the lower doses and assigning A þ B patients to doses
closer to the target.

Before describing the A þ B designs, we review a fundamental theorem that is useful for
characterizing the Markovian up-and-down design. Let pk, qk, and rk denote the probability
of increasing, decreasing, and repeating dose dk, respectively. Assume that these probabilities
depend only on dk, k ¼ 1, . . . ,K. Furthermore, assume that pk decreases with dose, whereas qk
increases with dose. Let dk denote the largest dose such that pk21 � qk. The stationary distri-
bution for Markov chain designs with transition probabilities pk, qk, rk exists uniquely if the
Markov chain is recurrent, irreducible, and aperiodic. Under these conditions, Durham and
Flournoy [11] proved that the stationary distribution of the dose assignments is unimodal
and the mode occurs at dk. Additionally, if pk21 ¼ qk, then the mode spans dk21 as well as dk.

Convergence of the dose assignments to their stationary distribution is reached exponen-
tially rapidly, so asymptotic results apply well with a relatively small number of treatment
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assignments, regardless of the initial dose. Because of the discreteness of the dose space, as a
practical approximation, we say that a Markovian up-and-down design “targets” dk if pk ¼ qk;
treatments will cluster unimodally around this dose. Alternatively, we say that the design
targets the toxicity rate G, for which Pftoxicity j dk g ¼ G. Markovian up-and-down designs
can be characterized using this and other asymptotic and finite sample theory for Markov
chains. Techniques are given in Durham and Flournoy [12], Durham et al. [13], Giovagnoli
and Pintacuda [16], and Bortot and Giovagnoli [5].

A corollary of the Durham–Flournoy theorem is that treatments from the traditional up-and-
down design of Dixon and Mood [10] are distributed unimodally around dk ¼ LD50, regardless
of the underlying (increasing) dose–response model. In this procedure, the dose is decreased if
a toxicity is observed and increased otherwise. So pk ¼ Pftoxicity j dkg and qk ¼ 1 2 pk ¼
Pftoxicity j dkg (except at k ¼ 1 or K ). Solving pk ¼ qk yields pk ¼ 0.50.

Durham and Flournoy [11,12] generalized the Dixon–Mood decision rule by using a biased
coin, together with the Durham–Flournoy theorem, to provide a procedure that targets any
given toxicity rate G. This procedure was not well received in oncology trials because clinicians
were averse to using randomization in phase I treatment allocation rules.

Using cohorts at each dose, the Durham–Flournoy theorem was employed by Gezmu and
Flournoy [15] to devise treatment allocation rules without randomization that still target a given
toxicity rate G. However, the set of possible targets is limited by the group size. Some examples
they give of G that are possible with groups of size 2 are 0.29, 0.50, and 0.71; with groups of
size 3, they are 0.21, 0.35, 0.50, 0.65, and 0.79; and with groups of size 4, they are 0.16, 0.27,
0.38, 0.39, 0.50, 0.61, 0.62, 0.73, and 0.84. Procedures for values of G greater than 0.5 are
useful for efficacy studies, but not toxicity studies. Gezmu and Flournoy [15] show that
each of these target values can be found as a direct application of the Durham–Flournoy
theorem; details justifying this application are given by Ivanova et al. [25]. Antognini et al.
[1] generalize the Gezmu–Flournoy group procedure to target any G [ (0,1) by introducing
a randomization procedure. This is clever, but will probably not be any more attractive to
oncologists than was the biased coin design of Durham and Flournoy [11].

Ivanova et al. [25] take a different approach to adapting the group up-and-down design so
that it will target any given G [ (0,1). They call their procedure the cumulative cohort design,
which is as follows.

Cumulative Cohort Design Suppose that the most recent assignment was to dose dj. Let q̂ j

be the cumulative proportion of toxicities at dj, and let D. 0 denote a design parameter. Then

1. If q̂ j � G2D, the next group of subjects is assigned to dose djþ1.

2. If q̂ j � G þ D, the next group of subjects is assigned to dose dj21.

3. If G2 D , q̂ j , G þ D, the next group of subjects is assigned to dose dj.

Appropriate adjustments are made at the lowest and highest doses.
An intuitive choice of the parameter D. 0 in the cumulative cohort design is close to 0. For

example, with D ¼ 0.01 and moderate sample sizes, the dose will be repeated if the estimated
toxicity rate is exactly equal to G, and changed otherwise. Ivanova et al. [25] suggested choos-
ing D to maximize the total number of subjects assigned to the MTD over a set of dose–toxicity
scenarios. For example, for moderate sample sizes they recommended using D ¼ 0.09 if
G ¼ 0.10, 0.15, 0.20, or 0.25; D ¼ 0.10 if G ¼ 0.30 or 0.35; D ¼ 0.12 if G ¼ 0.40;
and D ¼ 0.13 if G ¼ 0.45 or 0.50. Ivanova et al. [25] demonstrated via simulations that
D ¼ 0.01 and choosing their recommended values of D yield similar frequency of correctly
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selecting the MTD. However, the cumulative cohort design with their recommended D values
assigns significantly more patients to the MTD.

TheA þ B designs as given by Lin and Shih [31] begin like the first run of aMarkovian group
up-and-down design, but the design is switched when the dose would otherwise be repeated and
stopped (for designs without deescalation) when the dose would otherwise be decreased.

A þ B Design : Let A and B be positive integers. Let cL, cU, and CU be integers such that
0 � cL , cU � A, cU 2 cL � 2, and cL � CU , A þ B. Let XA(dj) be the number of toxicities
in a cohort of size A assigned to dose dj, and let XAþB (dj) be the number of toxicities in a cohort
of size A þ B. Subjects are treated in cohorts of sizeA startingwith the lowest dose. Suppose that
the most recent cohort was a cohort of A subjects that has been treated at dose dj, j ¼ 1, . . . , K2

1. Then

1. If XA(dj) � cL, the next cohort of A subjects is assigned to dose djþ1.

2. If cL , XA(dj ) , cU, the cohort of B subjects is assigned to dose dj; then, if in the com-
bined cohort assigned to dj, XAþB (dj) � CU, the next cohort of size A receives dose
djþ1; otherwise the trial is stopped.

3. If XA(dj) � cU, the trial is stopped.

The dose that is one level below the dose where unacceptable numbers of toxicities are
observed (�cU toxicities in a cohort of size A or.CU toxicities in a cohort of size A þ B)
is the estimated MTD.

In an A þ B design, the frequency of stopping dose escalation at a certain level depends on
toxicity rate at this dose as well as on toxicity rate at all lower dose levels. Ivanova [21] used the
Durham–Flournoy theorem to derive recommendations for constructing escalation designs and
explains how to compute the toxicity rate G that will be targeted by any given A þ B design.
The algorithm for selecting parameters A, B, cL, cU, and CU for a given target quantile G is as
follows (where Bin ¼ binomial distribution):

1. FindA, cL, and cU, 0 � cL , cU � A, cU 2 cL � 2, so thatGA, the solution to the equation
PrfBin (A, GA) � cLg ¼ PrfBin (A, GA) � cUg, is equal to or slightly exceeds G.

2. Set B (the choice A � B yields more efficient designs), and given that GAþB is the sol-
ution to the equation PrfBin(A þ B, GAþB) � CUg ¼ 0.5, find CU such that CU/(A þ
B) , G, GAþB.

The 3 þ 3 design is a special case of the A þ B design with A ¼ B ¼ 3, cL ¼ 0, cU ¼ 2, and
CU ¼ 1 that target quantiles around G ¼ 0.2. Applying the algorithm above, we obtain

1. GA ¼ 0.35 is the solution of the equation PrfBin(3, GA) � 0g ¼ PrfBin(3,GA) � 2g;
GA ¼ 0.35 is slightly higher than G ¼ 0.2.

2. GAþB ¼ 0.26 is the solution of the equation PrfBin(3 þ 3, GAþB) � 2g ¼ 0.5, and
CU(A þ B) ¼ 0.17. Hence, approximate bounds for G targeted by the 3 þ 3 design
are 0.17 , G, 0.26.

Exact probability calculations and simulation studies for several dose–response scenarios
by Reiner et al. [39], Lin and Shih [31], Kang and Ahn [26,27] and He et al. [20] are consistent
with the theoretical calculation above establishing that the 3 þ 3 design selects a dose with
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toxicity rate near 0.2. He et al. [20] also showed that if dose levels are selected close to each
other, the mean toxicity rate at the dose selected by the 3 þ 3 design is slightly lower than the
dose selected by trials with a sparser set of possible dose levels.

1.3.3 Isotonic Designs

Isotonic designs assume that the dose–toxicity relationship is isotonic and use isotonic esti-
mates of the toxicity rates in the treatment allocation rule. We first review isotonic estimation
of the toxicity rates, which are maximum-likelihood estimates for the isotonic model of the
data. Let N (dj, n) be the number of patients assigned to dose dj, and let X(dj, n) be the
number of toxicities at dj after n patients have been treated. Define q̂ j ¼ X(dj, n)/Nj(n) for
all j [ f1, . . . ,Kg such that N(dj, n) . 0, and let (q̂1, . . . , q̂k) be the vector of these proportions.
The vector of isotonic estimates (q̃1, . . . , q̃K) can be obtained from (q̂1, . . . , q̂K) by using the
pool adjacent violators algorithm (see, e.g., Ref. 3). At the end of the trial the dose with the
value q̄i closest to G is the estimated MTD. If there are two or more such doses, the highest
dose with the estimated value below G is chosen. If all the estimated values at these doses
are higher than G, the lowest of these doses is chosen. The cumulative cohort decision rule
[25] described in Section 1.3.1 when used with isotonic estimates of toxicity rates is an isotonic
design. A few other isotonic designs have been proposed, including the isotonic design of
Leung and Wang [29]. Ivanova and Flournoy [24] compared several isotonic designs with
the cumulative cohort design via simulations for a number of target quantiles and dose–toxicity
models and concluded that the cumulative cohort design performs better than others.

1.3.4 Bayesian Designs

Parametric methods require assumptions about the model for the dose–toxicity relationship. In
addition, Bayesian methods require priors on the model parameters. The continual reassess-
ment method (CRM) is a Bayesian design proposed in 1990 [36]. The CRM starts with a
working model for the dose–toxicity relationship. Let yi ¼ 1 if the ith patient experiences toxi-
city and let yi ¼ 0 otherwise, i ¼ 1, . . . , n. For example

F(d,u) :¼ Pfyi ¼ 1 j dg ¼ [(tanh d þ 1)=2]u: ð1:1Þ

The CRM uses Bayes’ theorem to update a prior distribution g(S) of S, for example, g(u) ¼
exp(2u). After each patient’s response is observed, the mean posterior density of the parameter
is computed. Let xi [ D be the dose received by the ith patient. So after the nth patient’s
response, Vn ¼ f(x1, y1), . . . , (xn, yn)g are the accumulated data and

û(n) ¼ E(u jVn) ¼
ð1
0
u f (u jVn)du ð1:2Þ

is the posterior mean of u. Here f (u jVn) ¼ LVn(u)g(u)/
Ð1
0 LVn(u)g(u)du and LVn(u) is the like-

lihood function.
In the CRM, no prespecified set of doses is required and subjects are assigned one at a time.

However, doses can be restricted to a prespecified ordered set D ¼ fd1, . . . ,dKg [34]. In this
case, the model above can also be written as F(di,u) ¼ bi

u, where (b1, . . . ,bk) is a set of
constants, bi ¼ (tanh di þ 1)/2.
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The first patient receives the first dose level, x1 ¼ d1. Assume that n patients have been
assigned so far. The dose to be administered to the next patient is the dose xnþ1 such that
the absolute difference between Prfy ¼ 1 j xnþ1, û

(n)g and G is minimized. If a prespecified
set D is chosen, this quantity is minimized over D. Dose xnþ1 can be used as an estimate of
the MTD after n patients have been assigned. Other estimators were explored by O’Quigley
[35]. Necessary conditions for the CRM to converge to the target dose were given in
Shen and O’Quigley [40], and more relaxed conditions were given by Cheung and
Chappell [9]. Also, subjects can be assigned in groups [14,28,18] to shorten the total duration
of the trial.

The CRM is a special case of a Bayesian decision procedure with the next dose xnþ1

selected to maximize the gain function [47]:

G(û(n), d) ¼ (F(d,û(n))� G)�2: ð1:3Þ

Another Bayesian design for dose-finding studies is the escalation with overdose control
[2]. This design is from a class of Bayesian feasible designs. It uses a loss function to minimize
the predicted amount by which any given patient is overdosed. Bayesian decision procedures
for dose-finding studies were described in McLeish and Tosh [32], Whitehead and Brunier
[47], and Whitehead and Williamson [48]. Leung and Wang [30] point out that the CRM is
a myopic strategy and might not be globally optimal. A globally optimal strategy requires
comparison of all possible sets of actions that could be taken, and this remains computationally
formidable for designs having more than three dose levels [19].

1.3.5 Time-to-Event Design Modifications

If a follow-up time is required for each patient as, for example, in many radiation therapy trials,
the dose-finding trial can be impractically long. Cheung and Chappell [8] suggested a modifi-
cation of the CRM that allows treatment assignments to be staggered so as to shorten the trial
duration.

In the original CRM [33], the calculation of the posterior mean of u at the time when the
(n þ 1)th patient enters the trial is based on the likelihood

Ln(u) ¼
Yn
i¼1

F(xi, u)
yif1� F(xi, u)g1�yi , ð1:4Þ

where F(xi,u) is a working model as before. Cheung and Chappell [8] introduced the so-called
TITE-CRM for trials with long follow-up. They redefined the toxicity rate at dose di to be the
probability of observing toxicity at di during a time period of length T after initiation of therapy.
Data for the ith patient, i ¼ 1, . . . n, are fxi, yi,n, ui,ng when the (n þ 1)st patient enters the trial,
where xi is the dose, yi,n is the toxicity indicator, and ui,n is the time that has elapsed from the
moment when the ith patient entered the trial to the time (n þ 1)th patient enters the trial.

Cheung and Chappell [8] suggested using a weighted likelihood for TITE-CRM:

~Ln(u) ¼
Yn
i¼1

fwi,nF(xi,u)gyif1� wi,nF(xi,u)g1�yi , ð1:5Þ
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where wi,n is the weight assigned to the ith observation prior to entry of the (n þ 1)th patient.
For example, a weight of wi,n ¼ min(mi,n/T, 1) reflects an assumption that the density of time to
toxicity is flat in (0, T ). Other choices for weights can be considered [8].

Similar modifications can be applied to any treatment allocation rules that are based on the
likelihood function. In particular, the isotonic designs can be extended using this idea for trials
with long follow-up. Such extension of the cumulative cohort design is described in Ivanova
et al. [25].

1.4 OTHER DESIGN PROBLEMS IN DOSE FINDING

Below we list various other design problems that arise in the dose-finding context. We have not
included designs for bivariate outcomes, but note that dose-finding designs whose goals
combine toxicity with efficacy form a growing area of research. Otherwise, we apologize in
advance if we have overlooked one of your favorites.

Ordered Groups Sometimes patients are stratified into two subpopulations, for example,
heavily pretreated and not, where the first subpopulation is more likely to experience
toxicity. The goal is to find two MTDs, one for each subpopulation. One of the
subpopulations is often very small, rendering the running of two separate trials, one for each
subpopulation, unfeasible. O’Quigley and Paoletti [37] proposed a parametric design for this
problem. Their method is an extension of the CRM. Ivanova and Wang [22] proposed an
isotonic approach where bivariate isotonic regression is used to estimate toxicity rates in
both populations simultaneously.

Multitreatment Trials Multi-treatment trials are very common. The goal is usually to find
the maximum tolerated dose combination. Often only the dose of one agent is varied, with
doses of all the other agents held fixed. Thall et al. [45] propose a Bayesian design for trials
with two agents in which the doses of both agents are changed simultaneously.

Ivanova and Wang [22] and Wang and Ivanova [46] considered a two-agent trial where two
doses of one of the agents, say, the second agent, have already been selected. The problem is to
find two maximum tolerated doses of the first agent, one MTD for each dose of the second
agent. Ivanova and Wang [22] described an isotonic design, and Wang and Ivanova [46]
described a Bayesian design for the problem.

Ordinal Outcomes Toxicity in oncology, and many other settings, is measured as an
ordinal variable. Bekele and Thall [4] gave an example of a dose-finding trial where
different grades of toxicity are combined to obtain a toxicity score for each patient. The goal
was to find the dose with a certain weighted sum of probabilities of toxicity grades
corresponding to different toxicity types. They [4] suggested a Bayesian design for this
problem. Ivanova [21] described a trial where three grades of toxicity (none, mild, and
dose-limiting) are combined in a single score. A design in the spirit of the A þ B designs to
target the dose with the score of 0.5 was used in that trial [21].

Paul et al. [38] considered a different problem in which, target toxicity rates are specified
for each grade of toxicity. The goal is to find the vector of doses that have the prespecified
rates of toxicity. A multistage random-walk rule with a multidimensional isotonic estimator
is proposed.
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Finding a Maximum Tolerated Schedule In chemotherapy trials treatment is usually
administered in cycles. The goal is to find a maximum tolerated schedule for an agent
used in chemotherapy administration. Braun, et al. [6] presented a parametric design for
this problem.

1.5 CONCLUDING REMARKS

We have given an overview of dose-finding designs. There has been much progress in the area
of dose-finding designs; new dose-finding problem are being formulated and new methods
developed. Statistical methods for dose-finding designs are most advanced for trials in oncol-
ogy and other life-threatening diseases. Ad hoc designs, such as the 3 þ 3 or A þ B designs, are
often criticized for being inflexible with regard to their objectives. It is true that A þ B designs
do not converge to a certain quantile because they invoke the stopping rule and use small
sample size. Increasing the size of the second cohort or using an A þ B þ C design will
lead to better performance of these types of design. The major limitation of and A þ B
design is that no modifications of the design exist to use the design in trials with delayed toxi-
city outcome. The CRM had been shown to converge to the MTD under certain conditions. It
performs very well for small to moderate sample sizes. The CRM can be used for trials with
delayed outcomes [8]. However, attempts to design a stopping rule (for use with the CRM)
that performs very well have been unsuccessful. Therefore, one needs to specify the total
sample size in advance when the CRM is used. A number of publications on isotonic
designs or “model free” designs have appeared in the literature and are discussed by
Ivanova and Flournoy [24]. These designs do not use any assumption other then toxicity mono-
tonicity. As extension of nonparametric designs, isotonic designs allow using all the data avail-
able to obtain toxicity estimates. From the parametric design perspective, model-free designs
bring flexibility to modeling when needed.
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C H A P T E R 2

Phase II Clinical Trials
Nigel Stallard
Warwick Medical School, The University of Warwick, UK

2.1 INTRODUCTION

2.1.1 Background

This chapter is concerned with biostatistical aspects of the design and analysis of phase II
clinical trials. Although the nature of phase II clinical trials varies considerably between differ-
ent therapeutic areas and research institutions, such trials are usually small-scale studies
intended to help us decide whether to continue clinical evaluation of the experimental
therapy in further larger-scale trials. The small sample size and decision-making functions
are in contrast to the phase III clinical trials considered in the previous chapter, and it is
these features that mean that special statistical approaches are required. The development of
such approaches has been the focus of much statistical work since the mid-1970s. This
work will be described briefly below along with remaining challenges.

The main focus of the chapter will be phase II clinical trials of new drug therapies. In par-
ticular, many of the methods that are described below have been developed for the evaluation of
anticancer treatments. A review of earlier work in this area is given by Mariani and Marubini
[32]. Many of the issues and methods discussed, however, have wider relevance. Problems in
the conduct of phase II drug trials are similar to those found in other small clinical trials and
proof-of-concept studies, in which decisions are to be made on the basis of evidence from a
small number of experimental subjects [18]. The approaches described in these chapters are
thus also applicable in these areas.

The chapter starts with a discussion of the place of the phase II trial in the clinical
development program and a description of some of the types of phase II trial that are
commonly conducted.
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2.1.2 The Role of Phase II Clinical Trials in Clinical Evaluation
of a Novel Therapeutic Agent

Following preclinical development of a new therapeutic agent the first clinical trials, that is,
trials involving human subjects, are the phase I trials. As the experimental therapy under inves-
tigation has not previously been used in humans, the primary focus of these trials is the assess-
ment of tolerability and safety of the therapy. Phase I clinical trials are usually conducted using
healthy volunteers. The subjects are treated using a dose escalation design, so that the first
subjects are exposed to lower doses, and all subjects are closely monitored for adverse reac-
tions. Typically 10 or 20 subjects are enrolled in the study. In oncology and other areas in
which treatments may be associated with severe side effects, healthy volunteer subjects are
not used. In this case the subjects are typically patients for whom other treatments have
failed. These patients may have advanced disease, so in many cases successful treatment
with the experimental therapy is not anticipated, and the main objective of the trial is again
the investigation of tolerability. Whether based on healthy volunteers or patients, the aim of
the phase I study is to determine (1) whether the therapy can safely be used and (2) the
dose or range of doses that can be tolerated without leading to an unacceptably high level of
side effects, and so are suitable for use in further clinical studies.

At the other end of the clinical assessment program from phase I clinical trials are the
phase III clinical trials. These trials aim to provide definitive evidence of treatment efficacy
and are primarily intended to support a licence submission to regulatory authorities. A
large sample size is usually required, with some phase III clinical trials collecting data
from several thousands of patients. The trial will include a control treatment, which in
some cases may be a placebo control, and patients will be randomized to receive either the
experimental or control treatment. In order to minimize bias, randomization will usually be
double-blind, so that neither the patient nor the administering clinician or other clinical
staff know which treatment is being given to which patients. The setting of the trial is
chosen to match actual clinical practice as closely as possible, so that a typical patient popu-
lation will be chosen, often with the trial conducted in a number of clinical centers. Usually
two phase III clinical trials will be conducted, often with one conducted in North America and
one in Europe. The focus of the phase III trial is the assessment of efficacy, with the aim of
providing conclusive evidence via a hypothesis test of treatment effectiveness. Safety data and
often pharmacoeconomic data are also collected, however, to allow a full picture of the treat-
ment to emerge.

The phase I study is followed by one or more phase II studies. These studies may include the
first testing in patients, and are thus the first studies in which evaluation of treatment efficacy
can be made. The range of studies are described in more detail below, and in some cases a
number of phase II studies of the same therapy may be conducted in different patient popu-
lations and with different designs and objectives.

The large sample size needed to provide evidence of efficacy and safety in a phase III clini-
cal trial means that such trials are time-consuming and expensive. The phase II studies are typi-
cally much smaller-scale, with 50–100 subjects, and so can be conducted more quickly and
cheaply. The purpose of these studies, therefore, is to allow a relatively inexpensive evaluation
of treatment efficacy. Although this does not provide the definitive evidence obtained from the
larger phase III clinical trial, it does provide an indication of whether the allocation of resources
for further phase III evaluation is likely to be justified. The aim of the phase II clinical trial can
thus be seen as enabling a decision to be made regarding future evaluation of the therapy. This
is in contrast to the phase III trial, in which the main focus of statistical analysis is a hypothesis
test or estimation.
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In order to provide a decision regarding further evaluation to be made in a timely fashion,
the primary endpoint in the phase II trial will be a rapidly observable response. This may be a
surrogate for long-term endpoints that will be assessed in subsequent phase III trials. The end-
point used will very often be binary with a yes/no response, and it for this sort of endpoint that
the majority of statistical work on phase II trials has been conducted. The rapidly observable
endpoint in phase II enables the use of sequential methods in which the accumulating data
on treatment efficacy are monitored through the course of the trial. This monitoring will be
in addition to the monitoring of safety data, which remains important given the small
number of patients who have previously been treated with the experimental therapy.

2.1.3 Phase II Clinical Trial Designs

There is a considerable range in the types of phase II clinical trials that are conducted. In the
simplest trial design, all patients receive the same treatment, with no control group and no vari-
ation in dose, formulation, or treatment regimen. This type of design is common in phase II
clinical trials in oncology, where, for ethical reasons, a placebo control cannot be used, and
patients may already have received unsuccessful treatments with standard therapies. In the
remainder of this chapter, we will refer to this type of study as a single-treatment pilot
study. It is this type of study that has received the most attention from statistical researchers.
This is probably for two reasons: (1) the simplicity of this approach means that development
and evaluation of new methods is most straightforward, and (2) much of the statistical work
has been conducted in cancer centers where such approaches are most common. While the
demand for a concurrent control group in phase III can easily be justified in order to reduce
bias in treatment comparisons, the need for control groups in phase II clinical trials is less
clear. Given the small sample size, it may be more appropriate to collect as much data as poss-
ible on the experimental treatment and comparing these to historical control data that are often
available. Even in cases where use of a control group is not proscribed on ethical grounds,
therefore, a single-arm phase II trial might be considered preferable.

An increase in the complexity of the phase II clinical trial can come from the addition of a
concurrent control group in a randomized trial. Such designs are common in proof-of-concept
studies, in which an initial assessment of efficacy relative to a control treatment is sought, and
are also used in small clinical trials in areas other than drug development. Such trials resemble a
small-scale phase III clinical trial, and many of the statistical methods proposed for this type of
design are similar to those used in a phase III trial setting. Studies of this type will be termed
comparative studies below.

In both single-treatment pilot studies and comparative studies, as there is a single
experimental treatment included in the trial, the decision to be made at the end of the trial
is whether to continue with further development of the therapy in phase III. In a
sequential trial, at each interim analysis a decision must also be made as to whether the trial
should continue.

A further increase in complexity arises whenmore than one dose, formulation, or experimen-
tal treatment is included in the trial, either with or without a control treatment. In this case, in
addition to deciding whether evaluation should proceed with a phase III clinical trial, a decision
of which dose or treatment should be used must also be made. If interim analyses are conducted,
ineffective doses or treatments may also be dropped through the course of the trial.

In addition to the variation in phase II clinical designs, there are a number of different stat-
istical approaches that have been used in the development of approaches to the design and
analysis of phase II trials. In particular, researchers have developed methods based on the
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use of frequentist, Bayesian, and decision-theoretic paradigms. Approaches based on these
three viewpoints are described in the next three sections of this chapter. In each case, the
section starts with a short review of the statistical methodology used. As stated above, the
outcome of the phase II clinical trial is a decision of whether to proceed to phase III testing.
This means that the phase II trial designs may be seen as providing a decision rule defining
which observed datasets will lead to continuing to phase III and which to abandoning devel-
opment of the experimental therapy. For the Bayesian and decision-theoretic designs the
decision rule may be explicitly stated. For the frequentist designs the decision will be
assumed to be based on the result of the hypothesis test. This decisionmaking role means
that this chapter focuses on phase II trial designs, that is, on the decision rule, rather than
dealing specifically with the analysis of the data obtained in the trial.

2.2 FREQUENTIST METHODS IN PHASE II
CLINICAL TRIALS

2.2.1 Review of Frequentist Methods and Their Applications in
Phase II Clinical Trials

The frequentist, or classical, statistical approach, as described in considerably more detail else-
where (see, e.g., Ref. 29), focuses on hypothesis testing and the control of error rates. Inference
centers on some parameter, which in the phase II setting is chosen to summarize the efficacy of
the experimental treatment. We will denote this parameter by u, with larger values of u assumed
to correspond to improved efficacy of the experimental treatment, and suppose that we wish to
test some null hypothesis H0 that u is equal to some specified null value u0. In a comparative
study, u is usually taken to correspond to the difference in success rates on the experimental and
control treatments and u0 is taken to be zero so that H0 corresponds to the success rates being
equal. In a single-treatment study, u0 is chosen so that H0 corresponds to the success rate being
equal to some specified value judged to be barely acceptable. Rejection of the null hypothesis
in the direction of improved efficacy for the experimental treatment will lead to the conclusion
that the treatment is superior to the control or to the specified value, and so indicate that further
evaluation in phase III is warranted. If the parameter u is truly equal to u0, the rejection of H0 is
called a type I error. Also of concern is the type II error. This corresponds to failure to reject H0

when in fact u is equal to some alternative value u1. The value u1 is chosen to correspond to
some clinically relevant improvement in efficacy over the control treatment or target value. The
randomness of the data from the phase II trial means that it is impossible to avoid both type I
and type II errors. Well-known statistical tests have been constructed so as to control the
probability of type I errors to some specified level, generally denoted by a. The probability
of type II errors then depends on the sample size, and is usually controlled to be at most
some level denoted by b, with 12b called the power of the test.

Frequentist methods have received near-universal use in the analysis of phase III clinical
trials, where the need for definitive proof of efficacy is well-matched with the form of the
hypothesis test, and the objectivity of the frequentist method in contrast to the Bayesian
methods described below are considered appealing. In the phase III setting, it is common to
set the type I error rate to be 0.05. A power value of 0.9 is common, and values such as 0.8
or 0.95 are also used. As discussed above, the sample size required for phase III clinical
trials is often large. This is required to attain these error rates for values of u1 considered
clinically relevant. In a phase II setting, the need for a smaller sample size than usually required
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for phase III clinical trials means that some compromise must be made on either a, b, or both.
In a phase III setting if the calculated sample size is prohibitive it is most common to increase
the type II error rate b, that is, to reduce the power. The justification for this is that a type I error
corresponds to indication that a new treatment is superior to the controlwhen it is actually no better.
As drug registration relies on the results of this test, a type I error thus represents a risk to future
patients. The risk of such errors must thus be limited to an acceptable level. The type II error, in
contrast, can be viewed as a risk mainly to the trial sponsor, so that an increase in the rate of this
type of error is more acceptable. In the phase II setting the position is rather different. Errors of
type I now correspond to an ineffective treatment continuing to phase III. While this may lead to
a waste of resources, the fact that the phase III testing is likely to correct the type I error means
that it does not represent a consumer risk. The risk associated with a type II error might be con-
sidered greater, since this corresponds to erroneously abandoning development of an experimental
therapy that is actually effective. In this case there will be no further testing to reverse the incorrect
conclusion of the phase II trial. This contrast to phase III clinical trials was pointed out by
Schoenfeld [34]. He concluded that in the phase II setting the control of powerwasmore important
than the control of type I error rate, and suggested that, in order to reduce the sample size to an
acceptable level for a phase II clinical trial, a value of a as large as 0.25 could be considered.

It is described abovehow theuse of rapidlyobservable endpoints in phase II clinical trialsmeans
that sequential monitoring is possible, and how the small number of previously treated patients
makes sequential monitoring ethically desirable. In a frequentist setting, the inclusion of a
number of interim analyses in a clinical trial impacts on the error rates. Suppose that at each of a
series of interim analyses, a hypothesis test ofH0 is conductedwith the type I error rate for that indi-
vidual test controlled to bea. If, at anyone of these analyses,H0 is rejected, the trial will stop and be
judged to have yielded definitive evidence of a treatment effect. The chance to rejectH0 at any one
of the interim analysesmeans that the overall type I is increased above the planned levela. Tomain-
tain the overall type I error rate at a level of a requires adjustment of the individual hypothesis
tests. Methods for this adjustment have been developed following the seminal work on sequential
analysis by Wald [57] and Barnard [2]. Overviews are given by Whitehead [61] and Jennison
and Turnbull [23]. On the whole, the methods rely on assumptions of normality, and so are
most suitable for use with large samples. In the setting of phase II clinical trials, in which large
sample approximations may hold poorly, the sequential analysis methods must be modified.

2.2.2 Frequentist Methods for Single-Treatment Pilot Studies

As described above, in the single-treatment pilot study, all patients receive the same treatment.
Assuming a binary (success/fail) response, the data can thus be summarized by the number of
successes, which will be denoted by S with observed value s, and the number of patients n.
Inference will focus on the unknown success rate, which will be denoted by p. If responses
from individual patients are considered to be independent and identically distributed, S
follows a binomial distribution, S � Bin(n, p). As the sample size in phase II is relatively
small, it is generally feasible to work with this binomial distribution directly in development
of statistical methods rather than using large-sample approximations as might be more
common in a phase III clinical trial setting.

If the phase II clinical trial is conducted in a single stage, that is, without any interim analy-
ses, the decision rule at the end of the trial will be to continue clinical development in phase III
if S is sufficiently large, that is, if S � u for some u. In the frequentist setting, the decision will
be based on a test of the null hypothesis H0 : p ¼ p0, where p0 is chosen to be some value of
p that is of minimal clinical importance, such that if p ¼ p0, it would be desirable to abandon
development of the new therapy. The alternative value, p1, is chosen to be a value of p of clinical
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significance, so that if p ¼ p1, it would be desirable to continuewith development of the therapy.
The type I error rate and power of the hypothesis test are then given respectively by

Pr(S � u; p0) ¼
Xn
i¼u

n
i

� �
pi0(1� p0)

n�i,

and

Pr(S � u; p1) ¼
Xn
i¼u

n
i

� �
pi1(1� p1)

n�i:

Direct computation of these binomial probabilities allows values of n and u to be chosen to
control the error rates at chosen levels a and b, where, as discussed above, a may take a
value rather larger than conventionally used in a phase III clinical trial setting. The discrete
nature of the binomial distribution, particularly when the sample size is small, means that
the error rates may in some cases be smaller than a and b, giving a conservative test. The cal-
culations required can be performed using exact single-sample settings on sample size software
such as nQuery Advisor (ADALTA, www.CreActive.net).

Sequential, or multistage frequentist methods for single-arm studies extend the single-stage
exact binomial method just described. A very well known approach is the two-stage design due
to Simon [36]. Initially, the number of successes S1 from some n1 patients are observed. If S1 is
too small, say,S1 � l1, the trialwill stop at this point and development of the therapybe abandoned.
Otherwise, the trial will continue, with treatment of a further n22n1 patients, giving a total of n2 in
all. If, after continuation to include n2 patients, the total number of successes S2 is less than or equal
to some l2, development of the therapywill be abandoned.Otherwise, itwill continue intophase III.
The probability of continuing to phase III for a true success rate of p is given by

Pr(phase III; p) ¼ 1� Pr(abandon at first stage; p)

�Pr(continue at first stage and abandon at second; p):

The probability of abandoning at the first stage is equal to

Xl1
i¼0

n1
i

� �
pi(1� p)n1�i,

while the probability of continuing at the first stage and abandoning at the second is equal to

Xn1
i¼l1þ1

Pr(S1 ¼ i and S2 � S1 � l2 � i; p),

which is equal to zero if i . l2 as S2 2 S1 cannot then be less than or equal to l2 2 i, since this
is less than zero. Since S2 2 S1 � Bin(n2 2 n2, p), with S2 2 S1 independent of S1, the prob-
ability of continuing at the first stage and abandoning at the second is equal to

Xmin {n1, l2}

i¼l1þ1

Xl2�i

j¼0

n1
i

� �
pi(1� p)n1�i n2 � n1

j

� �
p j(1� p)n2�n1�j:

This expression allows calculation of the probabilities under p ¼ p0 and p ¼ p1 of proceeding
to phase III, that is, the type I error rate and the power of the sequential procedure considered as
an hypothesis test. Calculation of the probability of stopping at the end of the first stage also
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enables the expected sample size to be found for p equal to p0 or p1. Simon proposes a numeri-
cal search be conducted to find all designs, that is, sets of values of n1, n2, l1, and l2, that have
type I and type II error rates no greater than a and b, respectively, and among these to
find the design that minimizes the expected sample size when p ¼ p0. The increased
choice of sample sizes and critical values for two stages relative to a single stage means that
the planned error rates are typically much more closely attained for a two-stage design. This,
together with the chance to stop the trial early for poorly performing therapies, leads to an
expected sample size that is smaller than the sample size for the eqivalent single-stage design.

The rationale for minimizing the expected sample size for p ¼ p0 is that it is undesirable to
expose more patients than necessary to an ineffective treatment, but that if the treatment is
effective, for example, if p ¼ p1, a larger sample size is acceptable. An alternative view is
that it is desirable to reach a conclusion in phase III as quickly as possible for a range of
true values of p, since if the therapy is effective, it is desirable to proceed to phase III in as
timely a fashion as possible. This has led to suggestions to minimize the expected sample
size under ( p0 þ p1)/2, to minimize the average of the expected sample sizes under p0 and
p1, or to minimize the maximum expected sample size [35], in each case subject to constraint
of the error rates. A similar argument would suggest that an upper critical value u1 could be set
for the end of the first stage, with progression to phase III without continuation to the second
stage of the phase II clinical trial if S1 � u1.

The approach of the Simon design has been modified by Lin and Shih [28] to allow the
sample size for the second stage to depend on the results from the first. The approach has
also been extended to include three stages by Chang et al. [11], Ensign et al. [17], and
Chen [12], who suggest that the tables given by Ensign et al. are inaccurate.

If more than three stages are to be included in the phase II clinical trial, the search for
sample sizes and critical values to satisfy the error rate constraints and minimize the sample
size in the way proposed by Simon can become computationally prohibitive. An alternative
approach more suitable for a larger number of interim analyses can be based on the sequential
analysis methods more common in phase III clinical trials, such as the spending function
method proposed by Lan and DeMets [27] and described by Jennison and Turnbull [23].
An exact single-sample binomial spending function method was proposed by Stallard and
Todd [43], which, although developed for a large-sample test for small values of p0 and p1,
could be used in a phase II clinical trial setting. Alternatively, single-sample sequential
methods based on large-sample approximations have been proposed for use in phase II clinical
trials by Fleming [20] and by Bellisant et al. [5].

2.2.3 Frequentist Methods for Comparative Studies

As discussed above, a comparative phase II clinical trial, in which a single experimental
therapy is compared with a control treatment, is similar in design to a small-scale phase III
clinical trial. This means that much of the frequentist statistical methodology for trials of
this type reflects the “standard” methods that have been developed in that setting.

A common test for comparison of binary responses from two groups of patients is the x2

test. Although based on asymptotic theory, the x2 test has been shown to be accurate for rela-
tively small sample sizes, so that this test can be used in the analysis of comparative phase II
clinical trials as in phase III. For very small sample sizes, or for extreme observed success rates,
an exact alternative such as Fisher’s exact test can be used as an alternative. Details of the x2

test and Fisher’s exact test are given elsewhere (see, e.g., Ref. 6), and both tests are widely
implemented in statistical computer packages.
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Sample size determination for a trial comparing two groups in terms of a binary response is gen-
erally based on normal approximations to the binomial distribution. Formulas are given by, for
example,Machin et al. [31] and are available inmost commercially available sample size software.

2.2.4 Frequentist Methods for Screening Studies

In a screening study several experimental treatments, T1, T2, . . . , Tk , are compared, and poss-
ibly also compared with a concurrent control treatment, T0. In a sequential trial, treatments may
be dropped from the study at interim analyses. At the end of the trial, either all experimental
treatments will be abandoned or one will be selected to continue into phase III. The definition
of frequentist error rates is less straightforward than in the single-arm or comparative settings
discussed above. If all treatments are identical to the control, or in an uncontrolled trial have
success rate equal to some p0 chosen to represent a value for which further testing is unaccep-
table, it is desirable to discontinue any treatment. Denoting by pi the success rate for treatment
Ti, we thus wish to control the probability Pr(select any treatment to continue to phase III
j p1 ¼ � � � ¼ pk ¼ p0), and can view this as being analogous to a type I error rate.
Specification of a probability analogous to the power in a comparative trial is rathermore difficult.
A common formulation is to require a high probability of selecting some treatment, say, T1, to
proceed to phase III if the success rate for this treatment is superior to that for the control by
some specified margin d0 and the success rate for all the other treatments is not superior to
that for the control by more than some specified margin d1 less than d0. Controlling this prob-
ability is equivalent to controlling the probability Pr(select treatment T1 to continue to phase
III j p1 ¼ p0 þ d0, p2 ¼ � � � ¼ pk ¼ p0 þ d1). A single-stage procedure to control these error
rates was proposed by Dunnett [16], while Thall et al. [51,52] proposed two-stage procedures
in which all except the treatment seen to be most effective at the interim analysis are dropped
from the trial.

2.3 BAYESIAN METHODS IN PHASE II CLINICAL TRIALS

2.3.1 Review of Bayesian Methods and Their Application in
Phase II Clinical Trials

In the frequentist approach, the value of the parameter of interest, which was denoted above by
u, was fixed, for example, to be u0, and the resulting distribution of the random data was con-
sidered. Inference thus focuses on a comparison of the observed data with the distribution that
would be expected if the null hypothesis were actually true. In contrast, under the Bayesian
paradigm, the parameter u is itself considered to be a random variable, and inference
focuses on what can be said about the distribution of u. Thus we might obtain the expected
value of u, or the probability that it exceeds some specified value such as u0.

Since u is a random variable, it must have some distribution even before any data are
observed, and this prior distribution must be specified in advance. The prior distribution of
u, the density function of which will be denoted by h0(u), may be updated by observation
of data. If data x are observed, conditional on these data the distribution of u is given by
Bayes’ theorem to have density equal to

h(u j x) ¼ f (x;u)h0(u)Ð
f (x;u)h0(u)du0
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where f (x; u) is the likelihood (or probability for discrete data) of x given the value of u, so that
the the numerator is the joint density of x and u, and the integral in the denominator (which is
replaced by a sum for discrete data) runs over the range of u, giving the marginal density of x.
This distribution is called the posterior distribution of u given the observed data x.

Specification of the prior distribution for u is an essential part of the Bayesian approach, and
the choice of prior distribution influences the posterior distribution obtained and hence any
inference that is based on the posterior distribution. The method can thus be considered as com-
bining prior opinion with the observed data to update that opinion. This can be seen as either a
disadvantage or an advantage of the Bayesian method depending on the viewpoint taken. Many
researchers consider that the lack of objectivity makes the method inappropriate for use in the
analysis of phase III clinical trials, when a definitive result is sought. In phase I and phase II
clinical trials, or in phase III trial design, as opposed to analysis, however, incorporation of all
possible information, including prior opinion, in the decisionmaking process arising from the
analysis of the trial data may be considered more appropriate.

The calculations required to obtain the posterior distribution can be burdensome, and much
of the more recent progress in Bayesian methods in general has been due to advances in this
computation. In the phase II clinical trial setting, it is common to choose a form of prior dis-
tribution for which the computations can be completed using analytical methods. Assuming
that we have binary data, with the number of successes observed in a single group following
a binomial Bin(n, p) distribution, if the parameter p has a prior beta distribution, Beta(a, b),
that is, with prior density

h0( p) ¼
pa�1(1� p)b�1

B(a, b)

for some choice of a, b . 0, where B(a, b) is the beta function,
Ð 1
0 pa�1(1� p)b�1 dp, the pos-

terior distribution after observation of s successes is proportional to paþs21(12 p)n2sþb21,
and so is also of the beta form. The use of a beta prior is thus mathematically convenient. The
beta family includes a wide range of unimodal prior distributions on [0, 1], including flat,
J-shaped and U-shaped densities depending on the values of a and b. A prior distribution,
such as the beta prior for binomial data, that leads to a posterior distribution of the same form
is called a conjugate prior.

In a single-arm or comparative phase II clinical trial setting, the decision of whether to
proceed to phase III evaluation is based on comparison of the parameter p with either a
target value p0 in a single-arm trial or with the corresponding parameter for a control treatment,
which we will also denote by p0. From a Bayesian viewpoint, the distinction between compari-
son with a target p0 or the success rate for a control treatment is a fairly minor one. In either
case, p0 may be given a prior distribution. The only difference is whether this is updated by
data to give a posterior distribution. In either a single-arm or a comparative study, then, we
may focus on the difference between p and p0, and in particular on whether this difference
exceeds some target value, d. The posterior probability that p 2 p0 exceeds d is given by

ð1�d

p0¼0

ð1
p¼p0þd

h( p j s, n)h( p0 j s0; n0)dp dp0, (2:1)

where s0 denotes the number of successes out of n0 observations on the control arm in a
comparative study, or h( p0 j s0, n0) is taken to be h0( p0), the prior density for p0, in a
single-arm study.
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In Bayesian methods, inference is based on the posterior distribution, which depends on the
data through the likelihood function. Since the likelihood is unaffected by any stopping rule,
interim analyses can be conducted without any adjustment to the posterior distribution
obtained, or to any inference drawn from the data. Data monitoring in a phase II clinical
trial setting can thus be carried out by monitoring the posterior probability given by (2.1) at
a number of interim analyses as the data accumulate through the course of the trial. A
number of Bayesian methods that have been proposed for phase II studies are discussed in
the remainder of this section. These are all based on monitoring the probabilities of the
form given by (2.1).

Sequential monitoring of Bayesian posterior probabilities of a form similar to (2.1) for nor-
mally distributed data has also been proposed in the phase III clinical trial setting, for example,
by Spiegelhalter et al. [39]. In fact, the underlying principle is considerably older, discussed,
for example, by Novick and Grizzle [33] in 1965.

2.3.2 Bayesian Methods for Single-Treatment Pilot Studies,
Comparative Studies, and Selection Screens

Thall and Simon [50] proposed a Bayesian method for monitoring single-arm phase II clinical
trials. They assume a binary response, with the number of successes taken to follow a binomial
distribution, and propose that posterior probabilities of the form given by (2.1) be calculated at
a number of interim analyses through the course of the trial. They illustrate the method with an
example in which the posterior probabilities are calculated after the response from every patient
starting at the tenth patient and ending at the sixty-fifth, when the trial will be stopped. The first
analysis is made after the tenth patient to prevent stopping on the basis of data from a very small
number of patients. After each patient’s response is observed, the probability given by (2.1) is
calculated with d ¼ 0 and d ¼ d0, a value chosen to correspond to some desirable advantage of
the experimental therapy relative to the probability p0 corresponding to some notional control
treatment. If the probability for d ¼ 0 is sufficiently large, say, larger than some critical value
lU, it is judged that there is sufficient evidence to conclude that the experimental therapy is
superior to the control treatment. In this case the trial is stopped and development of the
therapy will continue in phase III. If the probability for d ¼ d0 is too small, say, less than or
equal to some lL, it is judged that there is sufficient evidence to conclude that the experimental
therapy is not superior to the control by the required margin d0. In this case the trial will be
stopped and development of the experimental therapy will be abandoned. If neither of these
criteria is met, the trial will continues and the next patient’s response is observed.

The properties of the Thall–Simon design depend on the choice of lU and lL as well as on
the prior distributions for p and p0 (the latter is also the posterior distribution since no patients
are randomized to receive the control treatment in this single-arm trial). They propose that the
prior distribution for p should be a beta distribution, since, as discussed above, this is the con-
jugate form and so enables analytical calculation of the posterior distribution, and suggest that
the sum a þ b should be small, say, with 2 � a þ b � 10 since this means that the prior dis-
tribution is relatively noninformative. A more informative beta prior distribution, that is, with
larger a þ b, is proposed for the control treatment success probability p0, reflecting the relative
abundance of information on the efficacy of a standard treatment. The values lU and lL deter-
mine how strong the evidence of efficacy or lack of efficacy for the experimental treatment must
be before the phase II trial is stopped. Thall and Simon suggest that the values of lU and lL
should be chosen by considering the frequentist properties of the decision-making procedure
for a range of values of p considered to be fixed.
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Since the probability (2.1) can be calculated in the single-arm setting using the prior distri-
bution for p0 and in the comparative setting using the posterior distribution updated with the
observed data from the control arm, the method proposed by Thall and Simon [50] can
be used in both single-arm and comparative phase II clinical trials. In comparative trials, the
posterior probabilities that the success rate for the experimental treatment either exceeds that
for the control treatment or exceeds it by a margin d0 are monitored in exactly the same way
as in the single-arm approach.

Thall and Estey [49] have proposed an approach similar to that of Thall and Simon [50] for
monitoring phase II selection screens. In this approach, patients are randomized between a
number of experimental treatments, T1, T2, . . . , Tk without a concurrent control treatment.
After every response the posterior probability, given all the observed data, that the success
rate for each treatment exceeds some target p0, which in this case is considered fixed, is calcu-
lated. Since the data from each treatment are independent, if the success rates for individual
treatments have independent priors, the posteriors are independent. For treatment Ti, with
success rate denoted by pi, it is thus sufficient to consider Pr( pi . p0 j sim,m) where sim
denotes the number of successes from the first m patients receiving treatment i. It can be
seen that this probability is of the same form as (2.1) except that p0 is now considered fixed
rather than given some prior distribution. Treatment Ti will be dropped from the trial unless
Pr( pi . p0 j sim,m) exceeds some specified critical value. At the end of the trial, after some
predetermined number of patients have been treated, the best remaining treatment will
proceed to phase III provided this treatment has Pr( pi . p0 j sim,m) sufficiently large.

2.4 DECISION-THEORETIC METHODS IN PHASE II
CLINICAL TRIALS

A number of biostatistical researchers, following from initial work in the 1960s [1,13], have
suggested the use of Bayesian decision-theoretic methods in the design and analysis of clinical
trials. The aim of such an approach is to model the decision-making process, leading to a
decision that is optimal in that it maximizes the value of some specified utility function that
expresses the preferences of the decisionmaker. The utility function is a function of the
unknown parameter of interest, in this case the success rate for the experimental therapy p,
and so has unknown value. Following observation of data, a posterior distribution for the par-
ameter can be obtained, and this can be used to calculate a posterior expected utility associated
with each possible action that can be taken. A rational decision-maker whose preferences
are accurately modeled by the utility function would then choose the action with the largest
posterior expected utility.

Early work on the integration of decision-theoretic methods into clinical trials [1,13] gen-
erally focused implicitly on phase III clinical trials, assuming that following a successful trial,
the new therapy would be immediately available for general use. Later work focused on phase
II, where, as discussed above, the outcome of the trial is a decision of whether to conduct
further trials with the new therapy. Since this is an action that is generally within the control
of the trial sponsor, the approach seems more appropriate in this setting. Decision-theoretic
methods for single-arm phase II clinical trials have been proposed by Sylvester and Staquet
[46], Sylvester [45] (see also the correction to this paper [21]), and Brunier and Whitehead
[8]. These authors based their utility function on the number of extra successes associated
with development of the experimental treatment relative to continuation with treatment with
the standard. A similar approach has been taken by Carlin et al. [10] for comparative studies.
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Whitehead [59] proposed a method for the design of selection screens based on optimiz-
ation of the expected success rate for the selected treatment. A similar method [60] considers
the phase II trial specifically in the context of a drug development program and aims to design
the phase II selection screen so as to maximise the probability of final success in subsequent
phase III evaluation.

An alternative view is to attempt to construct a utility function reflecting the financial gains
and losses associated with the drug development process. This has been attempted by Stallard
[40,41] and Leung and Wang [30] in the single-arm trial setting.

2.5 ANALYSIS OF MULTIPLE ENDPOINTS IN PHASE II
CLINICAL TRIALS

As described in the introduction to this chapter, although the primary endpoint in a phase II
trial is some measure of treatment efficacy, the fact that the therapy under investigation may
have been previously administered to a relatively small number of patients means that analysis
of safety data is also important. The monitoring of safety data in the trial is particularly import-
ant in oncology, where new treatments are often associated with severe, at times fatal, toxicity.
In this indication, a reduction in the rate of dose-limiting toxicity may be considered almost as
important as an improvement in efficacy.

Recognizing the importance of sequential monitoring of safety data in the phase II trial,
some biostatistical researchers have developed methods that formally combine the safety and
efficacy endpoints in a single analysis. This means that at interim analyses development of a
new treatment may be terminated because of toxicity problems, absence of evidence, or a com-
bination of the two.

Frequentist methods that allow monitoring of toxicity and efficacy were proposed by Bryant
and Day [9] and Conaway and Petroni [14]. They consider monitoring the number of patients
who respond, that is for whom the treatment is effective, and the number of patients experien-
cing toxicity. Their decision rules are of the form that lead to development of the therapy being
abandoned at interim analyses or at the final analysis if either the number of successes is too
low or the number of toxicities is too high. Extending the frequentist approach for a single end-
point described above, they assume that the number of responses and the number of patients
demonstrating toxicity both follow binomial distributions with probability parameters that
are denoted by pr and pt , respectively. Their aim is to construct a two-stage test in a similar
fashion to Simon [36]. The critical values for numbers of responses and toxicities are
chosen so as to control the type I error rate corresponding to the probability of proceeding
to phase III when pr and pt take some “unacceptable” values pr0 and pt0 , and the type II
error rate corresponding to the probability of not proceeding to phase III when pr and pt take
some “promising” values pr1 and pt1. A difficulty arises since the numbers of successes and
toxicities are not necessarily independent. If p00, p01, p10, and p11 denote respectively probabil-
ities of neither response nor toxicity, toxicity without response, response without toxicity, and
both response and toxicity, the lack of independence can be specified by the odds ratio p00p11/
p01p10. As the probability of proceeding to phase III depends on this odds ratio as well as the
marginal probabilities pr and pt, it must be considered when determining critical values for the
decision rule. Conaway and Petroni [14] propose specifying the value of the odds ratio in
advance. Bryant and Day [9] suggest ensuring that the error rates are controlled for all
values of the odds ratio, and also consider control of the probability of proceeding to phase
III over all sets of (pr, pt) values with pr � pr0 and pt � pt0 rather than just at (pr0, pt0).
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A criticism of the methods of Conaway and Petroni [14] and Bryant and Day [9] is that in
their division of the set of (pr, pt) values into those that are “acceptable” and those that are not,
they consider only pr and pt individually. In reality a small deterioration in safety might be
acceptable if it is accompanied by a large improvement in efficacy, and vice versa. This has
led to the development of frequentist methods that base control of error rates on more
complex null regions [15,47,48].

Bayesian methods for monitoring multiple endpoints such as safety and efficacy have also
been proposed [53,54]. In these methods a decision of whether to abandon development is
based on the posterior probabilities Pr(pr . pr0 þ d j x) and Pr(pt . pt0 þ d j x) where now
pr, pt, pr0, and pt0 are taken to be random variables with specified prior distributions. An
alternative approach is taken by Thall et al. [55], who use a utility function combining the prob-
ability of success and toxicity into a single measure of treatment performance, in this case in a
screening trial. Other authors have also considered combining endpoints in a single utility func-
tion, and obtained designs to optimize this using a decision-theoretic method in a single-arm
trial [42] or screening trial [19].

2.6 OUTSTANDING ISSUES IN PHASE II CLINICAL TRIALS

The ultimate aim of the phase II clinical trial is to provide reliable information on the safety and
effectiveness of the new therapy in as safe, timely, and cost-effective a manner as possible. This
information can then be utilized to aid in the decision of whether further clinical development
of the new therapy is justified. It is this aim that provides the motivation for the biostatistical
work on the design of phase II trials that has been described above. The continuing desire
to make phase II trials more informative, safer, or quicker through improved design means
that statistical methods in the area are not static. In this final section of the chapter a number
of areas of focus for current research are briefly described.

As described above, a large part of the work on phase II clinical trials has been directed
toward trials in cancer. This has led to methods in which a single treatment group is evaluated
in terms of a rapidly observable binary outcome such as response to treatment. Traditional cyto-
toxic anticancer drugs aim to kill the tumor cells. Unfortuately they may also be highly toxic to
other healthy cells, leading to severe side effects. This means that monitoring of safety data is
very important. More recent advances in the treatment of cancer have led to the increased
development of cytostatic drugs. In contrast to cytotoxic treatments, these are agents that do
not directly kill cancer cells but act to limit the growth of tumors, for example, by restricting
their blood supply. These drugs are typically much less toxic than conventional anticancer
treatments. This means that different phase II trial designs may be more appropriate [26].
The primary measure of efficacy in a phase II trial may no longer be a binary success/fail
outcome but some continuous measure such as tumor burden, and the formal monitoring of
toxicity may be less important. Phase II trials for cytotoxic drugs might thus more closely
resemble those for new therapies in other indications. As less attention has been focused
outside oncology, this is an area where there is a need for further biostatistical work.

An area of considerable recent interest has been the combination of phases II and III into a
single clinical trial. Such an approach would lead to an acceleration of the development
program of a new therapy both by essentially including the phase II patients in the definitive
phase III evaluation and by removing the hiatus necessary for administrative reasons
between the end of a phase II clinical trial and the start of a phase III program. Methods
have been proposed [3,44] to control the overall frequentist type I error rate of a clinical trial

2.6 OUTSTANDING ISSUES IN PHASE II CLINICAL TRIALS 27



that acts as both a selection screen and a comparison between the selected treatment and a
control. Much recent work in this area has been based on the adaptive design approach pro-
posed by Bauer and Köhne [4], since this enables control of the overall type I error rate
while allowing great flexibility in terms of design modification. A description of the application
of this methodology to combining phases II and III and a review of more recent work in this
area is given by Bretz et al. [7].

Adjusting for treatment selection is one of the problems that must be overcome to combine
phases II and III. Another is the common change in primary endpoint between the two clinical
development phases. Bayesian [22] and frequentist [56] methods to address this change of end-
point have also been proposed. In spite of the considerable recent work, there remain many stat-
istical and practical challenges in this area, including the incorporation of multiple endpoint
data and estimation of treatment effects at the end of the trial.

This chapter has followed the majority of the biostatistical literature in the area of phase II
clinical trial design in dividing the designs according to whether they are constructed using
frequentist, Bayesian, or decision-theoretic viewpoints. In practice, any phase II design pro-
vides a decision rule indicating whether development of the therapy under investigation
should be abandoned at an interim or final analysis or continue into phase III. As discussed
in detail by Wang et al. [58], the division into Bayesian or frequentist designs is artificial. It
is possible to calculate frequentist error rates for all designs. Similarly, given prior distributions,
it is possible to calculate posterior probabilities of the form (2.1) for a dataset at an interim or
final analysis in any phase II trial. In some cases [40] it is also possible to determine a utility
function with respect to which a given design is optimal. This suggests that however designs are
obtained, a broader view of their properties should be taken than is generally currently the
case. Such an approach would enable comparison of designs obtained using different statistical
paradigms and ensure that the properties of any designs used are fully understood.

The need for distinct biostatistical methodology for phase II clinical trials arises from their
unique position in the clinical testing process for an experimental therapy. As discussed above,
this means that the data generated by the phase II trial act to inform a decision that is generally
within the power of the trial sponsor. Appropriate designs for phase II clinical trials should thus
reflect a full knowledge of other parts of the clinical testing process. This is the aim of decision-
theoretic methods such as that proposed by Whitehead [60]. Extending this view further
suggests that rather than focusing on the phase II trial alone, optimal design approaches
should be used across the whole clinical development program for a product or even across
the whole portfolio of drugs under development by a large pharmaceutical company. While
such an approach has been discussed by a number of researchers (see, e.g., Refs. 37, 38
and 24), the enormous complexity of this problem means that a great deal of work remains
to be done.
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3.1 INTRODUCTION

Patients arrive sequentially, for a phase III clinical trial, and are to be randomized to one of the
existing treatments. The standard practice is to assign equal numbers of subjects to each treat-
ment arm. But this type of assignment ignores the effectiveness of the treatments reflected
through the available responses from both the treatments and hence results in subjecting
more patients to inferior treatments than what is ethically desired. These drawbacks can be
best illustrated by the results of a relatively recent clinical trial. For illustration, we consider
the zidovudine trial reported by Connor et al. [30]. The trial aimed to evaluate the hypothesis
that the antiviral zidovudine therapy (referred to by the trade name AZT) reduces the risk of
maternal-to-infant HIV transmission. A standard randomization scheme was used to ensure
equal numbers of patients in both AZT and placebo groups, resulting in 239 pregnant
women receiving AZT and 238 receiving placebo. Here the endpoint was whether the
newborn infant was HIV-infected. It was observed that 60 newborns were HIV-negative in
the placebo group and 20 newborns were HIV-positive in the AZT group. These statistics
revealed the harsh reality that 3 times as many infants on placebo were sentenced to death
by the transmission of HIV while in the womb. It seems, therefore, logical to think that
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more allocation to AZT could save more newborn lives. This compels the experimenter to
utilize the accrued data at each stage to set the assignment decision for the next stage.

Randomized clinical trials play a crucial role in experiments to determine which of the treat-
ments shows superiority. Since any medical experiment involves human beings, there is an
ethical imperative to provide the best possible medical care for the individual patient. This
compels to develop an allocation procedure where ethical and logistical considerations must
always drive the equation and the resulting mathematics. So whenever the accrued data
reveal the superiority of a treatment arm, the randomization procedure should be biased in
favor of this arm to ensure more allocation to this treatment. Allocation designs attempting
to achieve this goal are called response-adaptive designs or simply adaptive designs. These
designs were first formulated to identify the better treatment in the context of a two-treatment
clinical trial. The preliminary ideas can be found in Thompson [65] and Robbins [53]. These
works were followed by a flurry of activity, starting with studies by Anscombe [2] and Colton
[29]. More history, including later developments, can be found in Rosenberger and Lachin [56],
Rosenberger [55], and a book-length treatment by Rosenberger and Lachin [57].

The organization of this chapter is as follows. Section 3.2 describes several available adap-
tive designs for binary treatment responses. Note that most of the adaptive design literature is
given in this direction. Section 3.3 describes designs for binary responses in the presence of
covariates. Adaptive designs for categorical responses and continuous responses are discussed
in Sections 3.4 and 3.5, respectively. Optimal adaptive designs are provided in Section 3.6, and
delayed response in adaptive designs are described in Section 3.7. Biased coin designs are dis-
cussed in Section 3.8. The real adaptive clinical trials are outlined in Section 3.9 Section 3.10
illustrates and compares different designs using both real datasets and simulation. Section 3.11
ends the chapter with some concluding discussions.

3.2 ADAPTIVE DESIGNS FOR BINARY TREATMENT RESPONSES

3.2.1 Play-the-Winner Design

Adaptive designs perhaps started with the excellent work of Robbins [53] in the context of
designing a sequential trial. But it is Marvin Zelen who made the first significant contribution
in this direction by the pioneering concept of play-the-winner (PW) for binary response trial.
To be specific, suppose that we have two treatments and patients enter the clinical trial sequen-
tially, to be assigned to either treatment. The trial outcome is either a success or a failure, and
the response depends solely on the treatment given. Then PW rule assigns the opposite treat-
ment to the next patient if the previous patients’ response was a failure and the same treatment if
the previous patient was a treatment success. This rule is deterministic and hence carries with it
the selection bias. A practical drawback of this rule is that no clear-cut explanation is given on
how to proceed when patient’s responses are not immediate. However, one can use the finally
obtained response to determine the next patient’s allocation.

3.2.2 Randomized Play-the-Winner Design

A natural question following PW is whether it is ethically justified to repeat the successful treat-
ment blindly. The answer is in the negative, mainly because (1) the unpredictability of treat-
ment assignment, a fundamental requirement in any clinical trial [57] is not ensured; and (2)
the last successful treatment may have a lower success rate, so this response should not be
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given much importance to determine the next assignment. Wei and Durham [70] modified
Zelen’s [73] rule by using all the past information of allocation and responses in an appropriate
manner. They named the modified alocation procedure as randomized-play-the-winner (RPW)
rule. The allocation procedure starts with an urn with a fixed equal number of balls (say, a), for
each of the two treatments. To randomize an incoming subject, a ball is drawn, the correspond-
ing treatment assigned, and the ball replaced. An additional number (say, b) of balls of the
same type are added to the urn if the patient’s response is a success and the same number
of balls of the opposite kind are added if the patients’ response is a failure. This rule is referred
to as RPW(a, b). The intuitive idea behind the procedure is to favor the treatment doing better
and provide some ethical gain through it. Moreover, the allocation probability for each incom-
ing patient depends on all the previous response-and-allocation history and thus the ethical
drawback of PW is expected to be avoided. For RPW(0, 1), the limiting allocation proportion
of patients treated by one of the treatments, say, the kth, can be found to be (1/qk)/(1/q1 þ
1/q2), k ¼ 1, 2, with qk as the failure rate of the kth treatment. Therefore, the limiting
proportion is seen to be inversely proportional to the failure rate, indicating a lower number
of allocations to the treatment with higher failure rate. The same expression can be found
for the PW rule.

This procedure can be effectively applied for more than two treatments. Wei [69] provided a
multitreatment version of the RPW rule (called MRPW), with explanation facilitated by an urn
model. Here the urn starts with K types of balls, a balls of each type. An entering subject
is treated by drawing a ball from the urn with replacement. If success occurs, an additional
(K 2 1)b balls of the same type are added to the urn, whereas for a failure, b balls of
each of the remaining types are added to the urn. Bandyopadhyay and Biswas [13] obtained
the limiting allocation proportion to kth treatment for MRPW as

1
K
þ
PK

j¼1 pj=K �
PK

j¼1 pj=qj
� �

=
PK

j¼1 1=qj

Kqk

Ivanova et al. [47] also investigated the theoretical properties of the same rule through a
simulation study.

3.2.3 Generalized Pólya’s Urn (GPU)

Urn models have long been recognized as a valuable mathematical tool for assigning subjects
in a clinical trial. Among various urn models, the Pólya urn (also known as the Pólya–
Eggenberger urn) model is the most popular one. It was derived to tackle the problem of
contagious diseases [35]. Athreya and Karlin [3] successfully embed this urn scheme into a
continuous-time branching process to provide important limiting results. Wei [69] generalized
the abovementioned urn model to develop a response adaptive randomization procedure known
as the generalized Pólya urn (GPU) or generalized Friedmans urn (GFU) in the literature. This
rule provides a nonparametric treatment assignment procedure for comparing K � 2 treatments
in a clinical trial. A general description of the GPU model is as follows. An urn contains par-
ticles of K types representing K treatments. Patients arrive sequentially and are to be random-
ized to the treatments. At the outset, the urn contains a vector Y0 ¼ (Y01, Y02, . . . , Y0K) of balls
of type 1, 2, . . . , K. When an eligible subject arrives, a ball is selected from the urn and
replaced. If it was of type i, the ith treatment is assigned and the response is observed.
Depending on the response, a random number dij of additional balls are added to the urn of
type j ¼ 1, 2, . . . , K. This procedure is repeated sequentially up to n stages. Let Nk(n) be the
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number of times a type k ball being selected in the first n stages [i.e., in the context of a clinical
trial Nk (n)] denotes the number of subjects assigned to treatment k among the first n subjects.
Then first-order asymptotics of GFU are determined by the generating matrix H ¼ (E(dij)), i,
j ¼ 1, . . . , K. Under certain regularity conditions, it is proved that with probability 1, limn!1

Nk(n)/n ¼ vj, j ¼ 1,2, . . . , K, where v ¼ (v1, v2, . . . , vK) is the normalized left eigenvector of
H with respect to its largest eigenvalue [3,6,7]. The randommechanism for adding balls at each
draw is attractive.Allowing the numberof balls to be added to depend on past history of responses
and allocations, a variety of response adaptive procedures are developed fromGPU. It is interest-
ing to note that RPW(a, b) is a particular case of GPU for two treatments with generating matrix

H ¼ bp1 þ aq1 ap1 þ bq1
ap2 þ bq2 bp2 þ aq2

� �
,

where pk (¼ 1 2 qk) is the success rate of the kth treatment, k ¼ 1, 2.
Since the early 1990s, several generalizations toGPU (orGFU) have beenmade. Smythe [63]

defined an extended Pólya urn, where the expected number of balls added at each stage is held
fixed, that is, E(dij) ¼ d . 0 and dij � 0 for j= i. He suggested not replacing the type i ball
drawn and allowed removal of additional type i balls from the urn, of course satisfying the restric-
tion that one cannot removemore balls of a certain type that are present in the urn. Relaxing these
conditions, Durham and Yu [32] propose a rule (called “modified play-the-winner”) that adds
balls to the urn only if there is a success, but the urn remains unchanged if there is a failure.

The next major generalization of GFU is the introduction of a nonhomogeneous generating
matrix, where the expected number of balls added to the urn changes across the draws. Bai
and Hu [6] showed that under certain assumptions, the usual limiting results hold. The next gen-
eralization allows the number of balls added at a draw to depend on previous draws. Andersen
et al. [1] introduced the idea for a K-treatment clinical trial where a success on treatment i
results in the addition of a type i ball and a failure causes the addition of “fractional balls” of
remaining types, proportionate to the urn composition at the previous stage. They did not inves-
tigate the theoretical properties although. Then, Bai et al. [9] considered a similar nonhomoge-
neous urn model, and explored these theoretical properties. According to their formulation, a
success on treatment i results in the addition of a type i ball, whereas for a failure on the ith treat-
ment results in adding balls of the remaining types, proportionally on the basis of their previous
success rates.

3.2.4 Randomized Pólya Urn Design

Suppose that the performance of one of the K(� 2) treatments is relatively poor. Therefore it
seems unethical to add balls corresponding to this least favorable treatment as a result of
another treatment’s failure, as in RPW. Consequently Durham et al. [31] modified the RPW
rule by introducing what they called a randomized Pólya urn. Naturally the allocation
design is referred to as a randomized Pólya urn (RPU) design. This is a success-driven
design; that is, it allows the urn composition to change depending on the success on different
treatment arms. The allocation procedure starts with an urn containing balls of K types, repre-
senting K possibly unrelated treatments. When a subject arrives, a ball is drawn with replace-
ment, its type is noted, and the subject is assigned to the represented treatment arm. If the
response is a success, a ball of the same type is added to the urn, but for a failure the urn
remains unchanged. Thus a success on a particular treatment rewards the treatment by
adding balls of its corresponding color, while a failure on this treatment leaves the urn unal-
tered; thus, other treatments are not rewarded on the basis of a particular one’s failure. This
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design can be embedded in the family of continuous-time–pure birth process with linear birth
rate, and this embedding enables one to obtain limiting behavior of the urn with much ease.
Durham et al. [31] proved that if p� ¼ max1�k�K pk is unique, then, with probability 1

lim
n!1

Nk(n)
n

¼ 1 if p� ¼ pk

¼ 0 otherwise:
Therefore, the allocation procedure assigns the far-future patients to the treatment with

highest success probability.

3.2.5 Birth-and-Death Urn Design

As a logical extension of RPU, Ivanova et al. [47] developed a birth-and-death urn design
(BDU), which is the same as RPU except that whenever a failure occurs on treatment k, a
type k ball is removed from the urn. The term “birth” therefore refers to the addition of a
ball to the urn, and removal of a ball from the urn signifies “death.” BDU is an improvement
over RPW because, in case of a failure, it accounts not only for the number of balls correspond-
ing to the opposite treatments but also for the number of balls corresponding to the treatment
on which a failure just occurred. Detailed investigation of the distributional (both exact and
asymptotic) properties can be found in Ivanova et al. [47].

3.2.6 Birth-and-Death Urn with Immigration Design

A problem with the BDU is that when a particular treatment is harmful, the type of balls cor-
responding to the treatment will eventually become extinct. This immediately led to the gen-
eralization of the BDU with immigration (BDUI after Ivanova et al. [47]), where a random
mechanism is considered that adds balls to the urn at a constant rate. The rule can be described
as follows. The urn starts with balls of K types representing K treatments and aK, (a � 0),
immigration balls. Assignment of an entering subject is made by drawing a ball with replace-
ment from the urn. If it is an immigration ball, it is replaced and two additional balls, one ball of
each type, are added to the urn and the next ball is drawn. The procedure is repeated until a ball
other than the immigration ball is obtained. If a ball of a treatment type is obtained, the subject
is given that treatment and an outcome is observed. If a success is observed, a ball of
the selected type is returned to the urn, and for a failure, a ball of that type is removed.
The procedure continues sequentially with the entrance of the next subject. Ivanova et al.
[47] discussed the convergence properties of a BDUI.

3.2.7 Drop-the-Loser Urn Design

The latest addition in the family of BDUs with immigration is the drop-the-loser (DL) rule
developed by Ivanova and Durham [44] and Ivanova [42]. The urn initially contains balls of
K þ 1 types, balls of types 1, 2, . . . , K represent treatments, and balls of type 0 are called
“immigration balls.” As in BDUI, when a subject arrives, a ball is removed from the urn. If
it is an immigration ball, it is replaced and K additional balls, one of each treatment type is
added to the urn. The procedure is repeated until a ball representing a treatment is obtained.
If a success is observed, then the ball is returned to the urn; if a failure is observed, then
one ball of that type is withdrawn.
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The RPU, the BDUI, and the DL rules can all be regarded as special cases of an adaptive
urn scheme with immigration for ternary responses [45]. Given treatment i, let li be the prob-
ability of adding a type i ball to the urn, let hi be the probability that the urn composition
remains unchanged, and let mi be the probability of removing a type i ball from the urn,
where li þ hi þ mi ¼ 1 for i ¼ 1, 2, . . . , K. Whenever an immigration ball is selected, it is
replaced and one ball of each type is added to the urn. The number of immigration balls is
a. For all these designs, a type i ball is added to the urn following a success on treatment i
and a type i ball is removed from the urn following a failure on treatment i. We also admit
the possibility of no response. If li ¼ Pfsuccessjig ¼ pi, hi ¼ Pffailurejig ¼ qi, mi ¼ 0, and
a ¼ 0, we have the RPU rule considered by Durham et al. [31]. For li ¼ pi, hi ¼ 0, mi ¼ qi,
and a . 0, we have the BDUI rule with a common immigration process. When li ¼ 0, hi ¼

pi, mi ¼ qi, and a . 0, we have the DL rule developed by Ivanova and Durham [44].
Embedding these designs in a family of continuous-time birth-and-death processes with
common immigration, Ivanova and Flournoy [45] studied various urn characteristics, both
exact and asymptotic. Through a simulation study, these rules are compared in Ivanova and
Rosenberger [46]. They have noted that BDUI has the least proportion of failures and the
GPU has this proportion largest among all. However, these rules are always an improvement
over the equal allocation.

Limiting proportion of subjects assigned to a particular treatment is of fundamental interest in
any clinical trial. We provide the available proportions in Table 3.1 (where p� ¼ max1�j�K pj):

It is easily observed that these ratios are greater than 1
K if the kth treatment is the best.

Moreover, the ratios vary from 1
K according to the degree of superiority of the kth treatment

(except for RPU). For two treatments, the limiting allocation proportions for PW, RPW, and
DL rules are the same. Precise rates of divergence of allocation proportion for BDU/BDUI
when p� � 0.5 can be found in Ivanova et al. [47].

3.2.8 Sequential Estimation-Adjusted Urn Design

Zhang et al. [74] proposed a multitreatment allocation scheme targeting a prespecified
allocation proportion within the framework of an urn model [called the sequential
estimation-adjusted urn (SEU) model]. Let Q be the matrix of treatment parameters for the
K treatments. Also let rj(Q) be the target allocation proportion for treatment j. Then they
suggested adding rj(Q̂n21) particles of type j to the urn at stage n, j ¼ 1, 2, . . . , K where

Table 3.1 Limiting Allocation Proportion to kth Treatment
for Different Designs

Design Limiting Proportion of Allocation

MRPW
1
K þ

PK

j¼1
( pj=K)�

PK

j¼1
( pj=qj)=

PK

j¼1
(1=qj)

Kqk

RPU 1 or 0 according to whether p� is unique or not
BDU/BDUI 1=pk�qkPK

i¼1
l=pi�qi

if p� � 0:5

DL 1=qkPK

i¼1
1=qi
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Q̂n is the sample estimate of Q after n stages. Then, under certain conditions, it is shown that
almost surely

Nk(n)
n

! rk(Q)PK
j¼1 rj(Q)

:

The importance of this model is that it (1) can be used to target any specified allocation pro-
portion and (2) enjoys certain desired asymptotic properties under some widely satisfied con-
ditions. For example, suppose that we want to achieve the same allocation proportion as in a
two-treatment RPW rule. Then, the urn design will be as follows. At the (n þ 1)st stage, regard-
less of what the response of the nth patient is, we add q̂n2=(q̂n1 þ q̂n2) particles of type 1 and
q̂n1=(q̂n1 þ q̂n2) particles of the opposite kind to the urn, where q̂nk is the estimate of qk after n
responses, k ¼ 1, 2. Then, it is shown [74] that, almost surely, N1ðnÞ=n ! q1=(q1 þ q2), and
as n! 1, we obtain

ffiffiffi
n

p
ðN1n

n � q1
q1þq2

Þ ! N (0;ss
2)

in distribution, where s2
s ¼ q1q2ð12� 5q1 � 5q2Þ=(q1þ q2)3. We observe that s2

s can be
evaluated for any 0 � q1, q2 � 1 but the corresponding expression is not straightforward for
calculation of the RPW rule when q1 þ q2 � 0.5 [49]. Moreover, further investigation revealed
that s2

s is much smaller than that provided by RPW rule when q1 þ q2 � 0.5.

3.2.9 Doubly Adaptive Biased Coin Design

All the rules discussed so far, except that of Zhang et al. [74], were developed with an aim to
allocate more patients to the better treatment, and hence cannot target any prespecified allo-
cation proportion. Eisele [36] and Eisele and Woodroofe [37] propose a more complicated allo-
cation design for two treatments [called doubly adaptive biased coin design or DBCD] to target
any desired allocation proportion r to treatment 1. They defined a function g(x, y) from [0, 1]2

to [0,1] that bridges the current allocation proportion to the target allocation satisfying the fol-
lowing regularity conditions: (1) g is jointly continuous, (2) g(x, x) ¼ x, (3) g(x, y) is strictly
decreasing in x and strictly increasing in y on (0, 1)2, and (4) g has bounded derivatives in
both arguments. The procedure then allocates patient j þ 1 to treatment 1 with probability
g(N1j=j; r̂j), where r̂j is the estimated target allocation after the jth stage. However, the proper-
ties of the DBCD depend heavily on the choice of an appropriate allocation function g. Eisele
and Woodroofe [37] gave a set of conditions that the allocation function g should satisfy. These
conditions are very restrictive and are usually difficult to check. In fact, Melfi et al. [50] pointed
out that the suggested choice of g by Eisele and Woodroofe [37] violated their own regularity
conditions. Hu and Zhang [40] define the following family of allocation functions having nice
interpretative properties

g(a)(0, r) ¼ 1, g(a)(1, r) ¼ 0,

g(a)(x, r) ¼ rðr=xÞa

rðr=xÞa þ (1� r)ð1� r=1� xÞa
,

where a � 0. The parameter a controls the randomness of the procedure. Different choices of a
produce different allocation procedures. For a ¼ 0, we have g(a) (x, r) ¼ r, which leads to the
sequential maximum-likelihood procedure (SMLE) [58], where at each stage r is estimated,
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preferably by the method of maximum likelihood, and the next incoming subject is assigned to
treatment 1 with this probability. Properties of the SMLE procedure targeting two-treatment
Neyman allocation are explored in Melfi et al. [50]. On the contrary, a large value of a provides
an allocation design with smaller variance. Therefore, a should be chosen to reflect the tradeoff
between the degree of randomization and the variation. Hu and Zhang [40] have shown that,
under some favorable conditions, limn!1N1ðnÞ=n ¼ r, with probability 1 where r depends
on the success rates of the two treatments. A generalization of Eisele’s procedure together
with some related asymptotic results for K � 2 treatments can also be found in Hu and
Zhang [40].

To indicate the importance of this family of allocation rules, we provide an example. For
two treatments with success rates p1 and p2, the RPW rule maintains a limiting allocation pro-
portion (1� p2)=(2� p1 � p2) to treatment 1. Now, one can use DBCD to target the same allo-
cation proportion. Then r( p1, p2) ¼ (1� p2)=(2� p1 � p2), and the design is as follows. At
the first stage, n0 patients are assigned to each treatment. After m � (2n0) patients are assigned,
we let p̂mk be the sample estimator of pk, k ¼ 1, 2. At the (m þ 1)st stage, the (m þ 1)st patient
is given treatment 1 with probability g(N1m/m, p̂m) and to treatment 2 with the remaining
probability, where p̂m is the estimated value of r after m stages.

3.3 ADAPTIVE DESIGNS FOR BINARY TREATMENT
RESPONSES INCORPORATING COVARIATES

3.3.1 Covariate-Adaptive Randomized Play-the-Winner Design

Response-adaptive procedures are considered to be valuable statistical tools in clinical trials.
Even though the literature is vast in adaptive designs, the effort to incorporate covariate infor-
mation still lacks maturity. The treatment allocation problem in the presence of covariate can be
found in Begg and Iglewicz [18], where the optimum design theory is used to provide a deter-
ministic allocation rule. Quite naturally, when patients are heterogeneous, their responses to
treatment are influenced by the respective covariate information. For example, consider a
single covariate, suitably categorized with (G þ 1) ordered grades 0, 1, . . . , G. Grade 0 is
for the most favorable condition and grade G for the least favorable condition of a patient.
Then it seems reasonable to favor the treatment with a success in the least favorable condition,
and assign less subjects to the treatment with failure in the most favorable condition. Keeping
all these aspects in mind, Bandyopadhyay and Biswas [12] developed an RPW-type urn design
with covariate, called adaptive RPW (ARPW). They have considered a single nonstochastic
covariate with (G þ 1) ordered grades 0, 1, . . . , G, ordered as earlier. The allocation procedure
starts with an urn containing two types (say, 1 and 2) of treatment balls, a balls of each type. An
entering subject with grade u, is treated by drawing a ball from the urn with replacement. If
success occurs, an additional (u þ t)b balls of the same type and (G 2 u)b balls of the opposite
kind are added to the urn. On the other hand, when a failure occurs, an additional ub balls of
the same kind and (t þ G2 u)b balls of the opposite kind are added to the urn. Clearly, the
treatment with a success at u ¼ G, the least favorable condition, is rewarded by addition of a
higher number of balls of the same type, whereas a failure at u ¼ 0, the most favorable
condition, adds the smallest number of balls of the same type to the urn. This was the basic
motivation of the design. Starting from a particular response model involving covariates,
they [12] have set decision rules to identify the better treatment and established some related
asymptotic results. A guideline is also provided to accommodate more than one covariate.
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3.3.2 Treatment Effect Mappings

The next set of contributors in this field is Rosenberger et al. [60], who, using the approach of
treatment effect mappings, developed a covariate adjusted adaptive allocation rule for binary
responses. In their procedure, when the nth patient arrives to be randomized to the treatments,
the current treatment effect difference (effect of treatment 1 minus effect of treatment 2), com-
puted from patients who have responded thus far, is mapped to Pn [ [0, 1]. A random number
Un [ [0, 1] is generated and the nth patient is assigned to treatment 1 or 2 according to whether
Un � Pn or Un . Pn. They used logistic regression model and argued in favor of allocating a
patient to a treatment with probability proportional to estimated covariate adjusted odds ratio.
Through a simulation study they observed that, for greater treatment effects, the procedure will
have similar power to that of equal allocation with reduced rate of treatment failures.

3.3.3 Drop-the-Loser Design with Covariate

More recently Bandyopadhyay et al. [16] modified the DL rule of Ivanova [23] to consider the
heterogeneity of the subjects. A categorized ordinal covariate with levels 0,1, is introduced with
the abovementioned ordering. The urn setup is similar to that in DL rule except that the cov-
ariate information of any entering subject is reasonably used to determine the next patient’s
allocation. If a success occurs for patient j with covariate value 1(0), the ball is returned to
the urn with probability 1( p). However, if a failure occurs with covariate value 0(1), the
ball is replaced with probability 0(1 2 p). The same procedure is carried out for the next
entering patient. This is referred to as drop-the-loser with covariate (DLC) design. Thus the
allocation of an entering patient is skewed in toward the treatmentwith a success at the least favor-
able condition in the last assignment. Assuming the covariate to be random, generating functions
of various urn characteristics and related asymptotic results are developed by embedding this urn
scheme into a continuous-time Markov process.

Most of the urn designs discussed so far are birth processes, and accordingly the variability
is too high. In fact, the standard deviations of the proportion of allocation for these designs are
so high that an allocation that is less than one or two standard deviation(s) from the expectation
leads less than 50% of patients treated by the better treatment, in case of a two-treatment experi-
ment with binary outcomes. The more recently introduced DL rule is a death process, and con-
sequently the variation is quite low as it is known that death processes have less variability than
do birth processes. Hu and Rosenberger [39] observed that the DL rule has the least variability
among the available adaptive designs for binary responses. Starting from a covariate-involved
response model, it is shown that satisfying the ethical requirements, DLC is less variable than
the original DL rule.

3.4 ADAPTIVE DESIGNS FOR CATEGORICAL RESPONSES

In several biomedical studies the responses include pain and postoperative conditions, which
are often measured in an ordinal categorical scale such as nil, mild, moderate, or severe. In
real situations, categories are clubbed together to apply the available allocation procedures.
Yet, the adaptive designs using the categorical responses are more sensible than the designs
with transformed binary responses in any case, as the former use complete categorical
responses. In 2001 Bandyopadhyay and Biswas [13] provided an upgraded version of the
RPW rule to incorporate the categorical responses. This is an urn design where possible
responses are denoted by 0, 1, 2, . . . , l and the urn starts with a balls of both types 1 and 2.
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For a response j(¼ 0, 1, . . . , l ) from treatment 1(2), an additional jb balls of type 1(2) along
with (l 2 j)b balls of kind 2(1) are added to the urn. They have investigated the properties of
the allocation design both numerically and theoretically. However, this is a birth process and
hence suffers from high variability. To this end, Biswas et al. [26] proposed a categorical
version of the DL rule. The treatment-assigning procedure is same as the original rule except
that at the ith stage, the ball drawn is replaced with a probability pk(Zi), k ¼ 1, 2, where
the subjects’ response is Zi when assigned to treatment k. Because of the ordinal nature of
the responses, it requires pk( j) to be nondecreasing in j ¼ j/l, the authors have explored the
properties of such a design and observed the lower rate of variability than existing designs.

3.5 ADAPTIVE DESIGNS FOR CONTINUOUS RESPONSES

3.5.1 Nonparametric-Score-Based Allocation Designs

What we have discussed so far relies on the binary responses of the subjects. However, in many
clinical trials, the primary outcome is the length of time from treatment to an event of interest,
such as death, relapse, or remission. In most of the available works in the literature, there have
been suggestions as to how to make a continuous response dichotomous by setting some
appropriate threshold [11,66]. For outcomes with a continuous nature, Rosenberger [54] intro-
duced the idea of a treatment effect mapping, in which allocation probabilities are some func-
tions of the current treatment effect. Let g be a continuous function from R to [0,1], such that
g(0) ¼ 0.5, g(x) . 0.5 if x . 0, and g(x) , 0.5 otherwise. Let D be some measure of the true
treatment effect, and let D̂j be the observed value of D after j responses, where D̂j . (,0) if
treatment 1 is performing better (worse) than treatment 2, and D̂j ¼ 0 if the two treatments
are performing equally well after j responses. Then, Rosenberger [54] suggested assigning
the jth subject to treatment 1 with probability g(D̂j21). It is presumed (but not formally
proved) that for such an allocation procedure the limiting allocation procedure to treatment 1
would be g(D), for any function g. Rosenberger [54] formulated the idea of treatment effect
mapping in the context of a linear rank test, where D is the normalized linear rank test and
g(x) ¼ ð1þ xÞ=2. Rosenbeger and Seshaiyer [59] used the mapping g(x) ¼ (1 þ x)/2, with
D as the centered and scaled log-rank statistic to derive an adaptive allocation rule for survival
outcomes, but it was not studied explicitly. Another application of treatment effect mapping can
be found in Yao and Wei [72], with

g(x) ¼ 1
2
þ xr if jxrj � 0:4

¼ 0:1 if xr , �0:4

¼ 0:9 if xr . 0:4;

where r is a constant reflecting the degree to which one wishes to adapt the trial and D is the
standardized Gehan–Wilcoxon test statistic. The rule of Rosenberger et al. [58], considered
earlier, is also an example of treatment effect mapping for binary responses with g(x) ¼
1=(1þ x). The intuitive appeal of “treatment effect mapping” is that the patients are allocated
according to the currently available magnitudes of the treatment effect. Bandyopadhyay and
Biswas [15] developed a two-treatment allocation-cum-testing procedure using a nonpara-
metric methodology. They have used an urn mechanism where after each response the urn is
updated according to the value of a statistic based on an Wilcoxon–Mann–Whitney type
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[and subsequently called the Wilcoxon–Mann–Whitney-type adaptive design (WAD)]. They
have studied the design theoretically and obtained some asymptotic results together with an
exactly distribution free solution for generalized Behrens–Fisher problem.

3.5.2 Link-Function-Based Allocation Designs

The work of Bandyopadhyay and Biswas [13] is perhaps the first attempt where a response
adaptive randomization procedure has been developed for continuous responses in the presence
of prognostic factors. They considered a simple linear model with known error variance for the
responses. This two-treatment allocation rule can be viewed as a treatment effect mapping with
g(x) as the distribution function of a N(0,T2) random variable and D as the usual treatment
difference. Here T is referred to as a tuning constant. This rule assigns a larger proportion
of patients to the better treatment consistently. When a sufficiently large number of patients
are treated, Bandyopadhyay and Biswas [13] show that the limiting allocation proportion to
treatment 1 is FðD=TÞ. However, it is pointed out that use of this design amounts to some
loss in efficiency in estimation of the treatment difference. Nevertheless, this kind of loss is
general to any allocation design, where the allocation is skewed in favor of a particular
(obviously the better) treatment.

This rule considers only univariate responses but the reality is that the responses may be
multivariate in many situations (see Ref. 48, Ch. 15). Other limitations of this design are the
assumption of known error variance and lack of any treatment–covariate interaction.
Moreover, the design is not covariate-adjusted and is not straightforward to extend to multi-
treatment situations. In a more recent work, Biswas and Coad [21] generalized the earlier
design to develop a multitreatment, covariate-adjusted adaptive rule for multivariate continuous
responses. They have used an weighted treatment effect mapping of possible treatment differ-
ences. An extensive simulation study revealed that the proposed procedure successfully
assigned more patients to the better treatment without much sacrifice in power when testing
the equivalence of treatment effect vectors.

3.5.3 Continuous Drop-the-Loser Design

As indicated earlier, the error rate of allocation proportions is an important consideration in
evaluating the performance of a response-adaptive allocation design. Ivanova [42] introduced
the DL rule to reduce variability. However, it was based on the binary treatment responses.
Ivanova et al. [43] later developed a drop-the-loser-type design for continuous responses,
and subsequently called it a continuous drop-the-loser (CDL) design. The allocation is
carried out in the same way as in the two treatment binary response trial, except that the con-
tinuous response is categorized by means of some suitable cutoff value. A variation of this rule
is also provided that suggests replacing the ball drawn with probability depending on the
outcome observed. This maintains a lower rate of variability than the available competitors.
Simulations also show that the performance of the procedure is worth mentioning for
unequal treatment variances.

3.6 OPTIMAL ADAPTIVE DESIGNS

There are two competing goals in a clinical trial with an adaptive design. One is to optimize
some criteria given certain precision of estimation or certain power of the test; the other, to
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skew the allocation toward the treatment doing better. Hardwick and Stout [38] review several
criteria that one may wish to optimize. The list included the expected number of treatment fail-
ures, the total expected sample size, the expected number of allocations to the inferior treat-
ment, or the total expected cost. The idea is to find an optimal allocation ratio R� according
to the selected criterion by fixing the variance of the test statistic and then framing the ran-
domization procedure that targets R�. Therefore, any optimal rule assigns treatment 1 to the
( j þ 1)st patient with probability R�(ûj)=(1þ R�(ûj)), where ûj is any estimator of the
unknown parameter u after j patients have responded. This development is consistent with
the framework of Jennison and Turnbull [48, Ch. 17].

For binary treatment responses, Rosenberger et al. [58] derived the optimal allocation rule
[the Rosenberg–Stallard–Ivanova–Harper–Ricks (RSIHR) rule] for minimizing the expected
number of treatment failures under the fixed power. This rule targets the ratio R�( p1, p2) ¼ffiffiffiffiffiffiffiffiffiffiffiffi
p1=p2

p
, where pk is the success rate of the kth (k ¼ 1, 2) treatment. Again, the allocation mini-

mizing the sample size for fixed variance is the well-known Neyman allocation. Melfi et al. [50]
studied the randomized design that targets this proportion, namely, R�(s1, s2) ¼ s1=s2, where
sk is the variability of the kth treatment. Under certain regular assumptions, it is proved that the
optimal allocation ratio R�(u)=(1þ R�(u)), to treatment 1 is attained in the limit.

Hu and Rosenberger [39] conducted a simulation study to compare some of these optimal
rules. It is observed that the Neyman allocation assigns fewer patients to the better treatment
when the treatments are highly successful. Computing the overall failure proportions, it is
indicated that features of Neyman allocation are undesirable for highly successful treatments,
and RSIHR is the most effective allocation in terms of preserving power and protecting
patients.

Zhang and Rosenberger [75] developed an optimal allocation design for normal responses
that minimizes the total expected response maintaining a fixed variance of the estimated treat-
ment comparison. This is regarded as a DBCD procedure targeting a specified allocation pro-
cedure. This rule is compared with the DBCD procedure targeting the Neyman allocation, the
Bandyopadhyay–Biswas rule [13], and the failure-saving rule due to Biswas and Mandal [25],
and superiority of the procedure is claimed through a simulation study.

3.7 DELAYED RESPONSES IN ADAPTIVE DESIGNS

In much of the work concerning adaptively designed clinical trials, the authors have assumed
instantaneous patient responses. Typically, however, clinical trials do not result in immediate
responses and the usual urn models are simply inappropriate for today’s long-term survival
trials, where outcomes may not be ascertainable for many years. However, in many clinical
trials a particular patient’s response may not be obtained before the entry of the next subject
and we may experience a delayed response. Consequently, the adaptation is carried out
when outcomes become available, and this does not involve any additional logistical complex-
ities. Wei [71] suggested such an adaptation in the context of RPW(a, b) by introducing an
indicator 1ji, j , i, which takes the value 1 or 0 according to whether the response of patient
j occurs before patient i is randomized or not. But he did not explore the theoretical properties.
Later Bandyopadhyay and Biswas [11] explored the theoretical properties assuming P(1ji ¼
1) ¼ pi2j, a constant depending on the lag i2 j only. In real practice, however, the pattern of
delay varies for different treatments. Moreover, a failure may be obtained more quickly than a
success. Therefore the simple model for delay described above is no longer applicable in prac-
tice. Possible generalizations of the simple model can be found in Biswas [19]. Interestingly, it
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is observed that these limiting proportions are not affected by the presence of delay, that is, that
the limiting composition of the urn remains the same as that of a simple immediate-response
model. Bai et al. [8] also considered the possibility of delay for multinomial responses
within the framework of an urn model. It is established that the limiting distribution is not
affected if the patients have independent arrival times and that time to response has a distri-
bution that depends on both the treatment assigned and the patient’s response. The effect of
delayed responses in the context of binary outcome multitreatment clinical trials has also
been investigated [46] through a simulation study.

For continuous responses Bandyopadhyay and Biswas [13] briefly mentioned the possi-
bility of delayed responses and suggested performing the adaptation procedure with the avail-
able data. Biswas and Coad [21] gave a full mathematical treatment of this problem assuming
an exponential rate of entrance of patients in the context of a general multitreatment adaptive
design. Delay-adjusted procedures for two-treatment continuous clinical trials are also available
in Zhang and Rosenberger [75], where delays are assumed to be exponentially distributed. But
they relied on a simulation study to explore the effects of possible delays. In all the designs
discussed above, it is observed that presence of delay has little effect on the performances
of the clinical trials.

3.8 BIASED COIN DESIGNS

We now consider a class of sequential designs that are not response-adaptive, as the responses
are completely ignored while assigning the next patient. The purpose of such design is to
prevent potential biases as well as ensure that the trial will be approximately balanced when-
ever it is stopped. The origin of these designs can be found in the work of Efron [34], where it is
referred as the “biased coin design” (BCD). Atkinson [4] extended and modified BCD to
achieve balance over prognostic factors and subsequently studied by Smith [62] and Burman
[27]. All these rules were derived with the idea of reducing the variance of the estimated treat-
ment comparison using optimum design theory. Some randomization was also introduced, but
in an ad hoc manner. To include both these aspects, Ball et al. [10] suggested a biased-coin-
type design within a Bayesian framework that combines both the variability and randomness.
Their proposal was to maximize the utility U ¼ UV 2 gUR to determine different allocation
probabilities. The contribution of UV is to provide estimates with low variance, whereas UR

provides randomness. Here g is the tradeoff coefficient between the two aspects. To obtain
meaningful assignment proportions, Ball et al. [10] suggested taking UV as some function
of the posterior precision matrix and UR as the well-known entropy function. It is shown
that this design asymptotically provides equal allocation of all treatments.

Atkinson and Biswas [5] extended this approach to provide a skewed Bayesian design that,
in the long run, allocates a specified proportion of patients to a particular treatment. In a
numerical study, it is revealed that the extension to skewed allocations does not greatly increase
the loss due to imbalance.

3.9 REAL ADAPTIVE CLINICAL TRIALS

Some real-life applications of adaptive allocation designs are also cited in the literature,
although the number of real adaptive trials is very small to date. In phase I clinical trials, an
ad hoc adaptive design has been widely used for many years [67], even though the poor
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operating characteristics of this design have been well documented [52]. Iglewicz [41] reports
one use of data-dependent allocation in an unpublished application by Professor M. Zelen to a
lung cancer trial. The randomized play-the-winner (PW) rule of Wei and Durham [70] has been
used in at least three clinical trials: the Michigan ECMO trial [17] and two trials of fluoxetine in
depression to treat outpatients sponsored by Eli Lilly [66]. The Michigan ECMO was a trial of
extracorporeal membrane oxygenation (ECMO) to treat newborns of respiratory failure, where
12 patients were treated, and out of the 12 patients, only one infant was treated by the conven-
tional medical therapy (CMT) and the infant died. All the 11 infants treated by ECMO sur-
vived. But this trial created lot of controversy due to only one allocation to CMT, and it
might have pushed the application of adaptive design toward the back, to some extent.
Some description of the fluoxetine trial is given in the next section. Ware [68] described
another clinical trial based on ECMO using an outcome-dependent allocation conducted
with his medical colleagues at Boston’s Children’s Hospital Medical Center and Brigham
and Women’s Hospital. This was a two-stage clinical trial. Rout et al. [61] applied the PW
rule, and Muller and Schafer [51], also reported some adaptive clinical trials. Biswas and
Dewanji [22–24] reported an adaptive trial involving patients of rheumatoid arthritis in
which the observations were longitudinal and an extension of the randomized PW rule was
implemented. Although some other adaptive clinical trials have been carried out, the
number of real clinical trials in which adaptive allocation procedures have been used
remains small.

3.10 DATA STUDY FOR DIFFERENT ADAPTIVE SCHEMES

3.10.1 Fluoxetine Trial

Despite the attractive property of assigning a larger number of subjects to the better treatment
on an average, only a few real adaptive trials have been reported. For the illustration of the pro-
posed procedure, we consider the data from the fluoxetine trial of Tamura et al. [66], which
attempted to reveal the effect of an antidepressant drug on patients suffering from depressive
disorder. In this trial, the patients were classified according to their shortened rapid-eye-
movement latency (REML), which is presumed to be a marker for endogenous depression.
A primary measure of clinical depression was taken as the total of the first 17 items of the
Hamiltonian depression scale (HAMD17), where a higher value of HAMD17 indicates a
severe depression. Patients receiving therapy for at least 3 weeks who exhibited 50% or
greater reduction in HAMD17 were defined to have a positive response (i.e., a success).
However, patients’ responses were not readily available, and the adaptation was based on
surrogate outcomes using RPW rules.

As we consider homogeneity among the subjects, we apply the allocation methodology
on the patients correctly assigned to the shortened REML stratum. This will not result in
loss of generality, as separate adaptive allocation schemes were performed in each stratum.
Then we have 45 patients, where observing the final response (either a success or a
failure) is our study endpoint. We consider 39 patients and ignore patient numbers 56, 73 (mis-
classified), 57, 63, 79, and 88 (final response not yet available). In the study, we therefore have
data from 39 patients, 19 of whom are treated by fluoxetine and 20 by placebo. We find the
empirical distributions of treatment responses from the data and treat them as the true ones.
Then, we obtain p̂A ¼ (11=19) and p̂B ¼ (7=20), where pA( pB) is the success probability of
fluoxetine (placebo).
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The results of Table 3.2 came from a simulated clinical trial with 5000 repetitions consider-
ing various allocation designs. Thus we observe that the performance of all the adaptive
schemes is more or less similar, in terms of both allocation proportion and failure rate.

3.10.2 Pregabalin Trial

To illustrate the need of the adaptive procedures, we consider the real clinical trial conducted by
Dworkin et al. [33]. It was a randomized, placebo-controlled trial with an objective of evaluat-
ing the efficacy and safety of pregabalin in the treatment of postherpetic neuralgia (PHN).
There were n ¼ 173 patients, 84 of whom received the standard therapy placebo and 89
were randomized to pregabalin. The primary efficacy measure was the mean of the last
seven daily pain ratings, as maintained by patients in a daily diary using the 11-point numerical
pain rating scale (0 ¼ no pain, 10 ¼ worst possible pain); therefore, a lower score (response)
indicates a favorable situation. After the 8-week duration of the trial, it was observed that
pregabalin-treated patients experienced a higher decrease in pain score than did patients
treated with placebo. We use the final mean scores, specifically, 3.60 (with SD ¼ 2.25) for
pregabalin and 5.29 (with SD ¼ 2.20) for placebo as the true ones for our purpose with an
appropriate assumption regarding the distribution for pain scores.

The results listed in Table 3.3 were obtained as follows. Simulations with 5000 rep-
etitions of a response-adaptive trial were performed for n ¼ 173 patients with a N(3.60,
2.252) distribution for pregabalin and a N (5.29,2.202) distribution for placebo. Allocation
probabilities are updated according to the rule considered. Since a lower response is desir-
able, any response greater than the estimated simple combined mean of responses can be
regarded as a failure.

Table 3.2 Data Study for Different Adaptive Schemes

Design
Allocation Proportion of

Fluoxetine (SD) Overall Failure Proportion (SD)

PW 0.603 (0.072) 0.512 (0.083)
RSIHR 0.609 (0.130) 0.513 (0.088)
DL 0.582 (0.065) 0.519 (0.082)
RPW 0.591 (0.110) 0.515 (0.083)

Table 3.3 Data Study for Different Adaptive Schemes under Normal Assumption

Procedure
Allocation Proportion to

Pregabalin (SD)
Overall Failure Proportion

(SD)

BB (T ¼ 2) 0.703 (0.068) 0.441 (0.042)
CDL 0.581 (0.037) 0.478 (0.038)
Optimal 0.509 (0.10) 0.499 (0.04)
Rosenberger 0.554 (0.07) 0.486 (0.06)
Equal 0.500 (0.04) 0.500 (0.04)
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The CDL has the least variability, but the BB design is most ethical in terms of allocating a
larger proportion (almost 20% more than that of the competitors) of patients in favor of the
better treatment.

3.10.3 Simulated Trial

Consider a hypothetical clinical trial where patients enter sequentially and are to be randomized
to one of the two treatments 1 and 2. We assume that the response is binary and instanteneous
with pk as the success rate for treatment k, k ¼ 1, 2. Then, for different values of ( p1, p2), we
simulate the trial using different allocation procedures with trial size n ¼ 80. Results are given
in Table 3.4. We have chosen three pairs of values of ( p1, p2), reflecting different rates of
success, from highly successful to least successful, of the treatments. Treatment 1 is taken to
be the better; that is, we always considered combinations of ( p1, p2) with p1 . p2.

Except for optimal and equal allocation rules, the allocation proportion to treatment 1 is
always greater than 1=2, reflecting the benefit of a response adaptive procedure. It is observed
that the allocation proportion to the better treatment in optimal rule of Melfi et al. [50] is less
than 1=2 whenever the better treatment possesses lower variability. Therefore the rule is not
ethically attractive. RPW and DL rules generally maintained a lower rate of failure, even
lower than those of RSIHR! This is surprising because RSIHR is an optimal rule developed
with an aim to minimize overall failure proportion. Thus optimality may not ensure the absolute
fulfillment of the objective (e.g., minimization of treatment failures in this case). We also
observe that performance levels of RPW and DL are very similar except that the latter possesses

Table 3.4 Comparison of Different Binary Response-Adaptive Procedures

Procedure ( p1, p2)
Allocation Proportion to

Treatment 1 (SD)
Overall Failure Proportion

(SD)

RPW (0.9, 0.7) 0.658 (0.16) 0.167 (0.049)
(0.7, 0.5) 0.607 (0.103) 0.378 (0.059)
(0.3, 0.1) 0.561 (0.049) 0.788 (0.047)

PW (0.9, 0.7) 0.743 (0.097) 0.151 (0.045)
(0.7, 0.5) 0.624 (0.067) 0.375 (0.057)
(0.3, 0.1) 0.561 (0.028) 0.789 (0.047)

DL (0.9, 0.7) 0.631 (0.067) 0.174 (0.041)
(0.7, 0.5) 0.602 (0.058) 0.378 (0.056)
(0.3, 0.1) 0.558 (0.028) 0.789 (0.046)

Optimal (0.9, 0.7) 0.413 (0.077) 0.218 (0.046)
(0.7, 0.5) 0.478 (0.062) 0.404 (0.052)
(0.3, 0.1) 0.589 (0.078) 0.782 (0.047)

RSIHR (0.9, 0.7) 0.532 (0.059) 0.194 (0.043)
(0.7, 0.5) 0.541 (0.063) 0.390 (0.054)
(0.3, 0.1) 0.615 (0.083) 0.777 (0.049)

Equal (0.9, 0.7) 0.500 (0.054) 0.198 (0.044)
(0.7, 0.5) 0.500 (0.055) 0.397 (0.054)
(0.3, 0.1) 0.500 (0.054) 0.800 (0.044)
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the lower variability of allocation proportions. Thus we conclude that among the adaptive rules
for binary treatment responses, RPW seems to be the best ethical alternative.

3.11 CONCLUDING REMARKS

In this present chapter, we covered different directions of work in phase III response-adaptive
designs. We discussed the theoretical models, their properties, the applications, and tried to
provide a comparative discussion of various designs under different situations through simu-
lations and real data examples. We tried to provide a wide range of references that might
provide some guidance for the researchers and practitioners in this area. Note that we did
not discuss some topics in this context, due to space constraints. For example, there are
some more recent works demonstrating applications of adaptive designs in the longitudinal
response scenario. We did not discuss this. Any interested reader can go through the papers
by Sutradhar et al. [64] and Biswas and Dewanji [22–24] to get an overview of this. Again,
we restricted our discussions to allocations. Adaptive designs are now used for many real situ-
ations, such as for interim monitoring to decide on the trial or to decide on the ultimate sample
size. We did not discuss these issues here.

Although most of the work in the literature has been carried out from a frequentist viewpoint,
the essence of adaptive designs are basically Bayesian. Here, the data dictate the allocation
pattern at any stage, based on some prior weight on equivalence. This is what the Bayesian phil-
osophy says. In a Bayesian paradigm, the posteriors are obtained following some rules, but in the
adaptive designs the allocation probabilities are set ad hoc, based on the data. However, as yet no
attempt has been made to frame the adaptive design in a proper Bayesian way. Only Biswas and
Angers [20] considered a continuous-response two-treatment setup in the presence of covariates.
The setup is similar to that of Bandyopadhyay and Biswas [13]. They have suggested computing
the predictive density of a suitable link function that bridges the past history. In a simulation
study, they have indicated that the proposed design reaches the level of desirability.

Finally we note that although there has been a considerable amount of interest in adaptive
trials more recently, its use is still not adequate. We feel that some bridges should be built
between the statisticians and the experimenters to fill this gap. Moreover, the designs should
be developed in a simple way, but taking into account the realities faced by the practitioners.
This might result in more and more applications of adaptive designs in the near future.
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4.1 INTRODUCTION

Determination of sample size in a clinical trial is always an important issue as the samples are
quite costly. Particularly when there is significant treatment difference, an early stopping, poss-
ibly keeping a fixed power of the test, might result in substantial reduction in sample sizes, and
hence save precise administrative and ethical costs.

A fixed sample size trial sets a prefixed number of samples, say n0, and randomizes the
entering patients among the competing treatments by a sampling design. In contrast, an
inverse sampling prefixes a certain number of events from the trial, and stops sampling as
soon as the number of that events reaches that prefixed number. Such an “event” may be
“success”, “failure”, “responses below/above a certain threshold”, and so on. Thus the
sample size of the trial will be random, but of course we can look at the expectation and var-
iance of the sample size. Consider the following simple example. Suppose that we have a single
sample case, where the subjects are treated by a single treatment. The response X has Bernoulli
(p) distribution, 0, p , 1, and the successive responses are independent. Suppose that we
want to test

H0 : p ¼ p0 against H1 : p . p0,
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The fixed sample size test can be carried out by fixing the sample size n0, and using the
test statistic

Tn0 ¼
Xn0
i¼1

Zi,

where the Zi terms are independent copies of X, which takes the value 1 for a success and the
value 0 for a failure. Thus Tn0 denotes the number of successes from the n0 subjects, and Tn0
follows binomial (n0, p) distribution. As EH1(Tn0) . EH0(Tn0), a right-tailed test can be carried
out by using Tn0. Such a test is also a uniformly most powerful (UMP) test.

4.1.1 Inverse Binomial Sampling

Alternatively, for the Bernoulli situations described above, we can frame a test for H0 against
H1 using inverse binomial sampling [20,35] in the following way. Let r be a prefixed positive
integer. Observe X sequentially and stop sampling as soon as the number of successes reaches
r. Let Nr be the number of X terms observed. Naturally Nr has a negative binomial (r,p)
distribution, and hence

EH1 (Nr) , EH0 (Nr):

This suggests that a left-tailed test based on Nr is appropriate. It can also be seen that such a test
is UMP. Moreover, for every given positive integer c, there exists a random variable Tc having
the binomial (c,p) distribution with

[Nr � c] ,¼. [Tc � r],

and hence, for any p [ (0,1), we obtain

b( p) ¼ Pp(Nr � c) ¼ Pp(Tc � r):

This shows that, given size and power, we can always frame an Nr test and a fixed sample size
test assuming that Tc has the same size and the power. Moreover, the Nr test keeps smaller
expected sample size under H1. In practice we can get an Nr test in the following way.
Given r and c [or the level of significance a[ (0,1)], we stop sampling at that n for whichPn

i¼1 Zi � c or ¼ r, whichever is earlier. Then H0 is accepted or rejected according to
whether

Pn
i¼1 � c or

Pn
i¼1 Zi . c. This gives, for any p, the expected sample size for the

Nr test as

S( p) ¼ Ep(NrjNr � c)Pp(Nr � c)þ (cþ 1)Pp(Nr � cþ 1),

where

Pp(Nr) ¼
n� 1
r � 1

� �
pr(1� p)n�r , n ¼ r, r þ 1, . . . :
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Thus, whatever p [ [ p0, 1] may be, we always have S( p) � c. In a sequential testing procedure
a term such as S( p) is also called the average sample number (ASN) function.

In some applications, sometimes it would be appropriate to consider the problem of testing

H0 : p ¼ p0 against H0
1 : p = p0:

If we use binomial sampling, then a fixed size test based on n observations would be to reject
H0 if and only if Tn is too large or too small. Such a test, as in Lehmann [25], is UMP unbiased.
This test, as earlier, does not correspond to the inverse binomial two-sided test. Here we have to
modify the inverse binomial sampling in the following way. Let r and s be two prefixed positive
integers. Observe Xs sequentially, and stop sampling as soon as r successes or s failures, which-
ever is earlier, are obtained. Let N0 be the number of trials to meet such an objective. Then, for
any positive integer c0(� s), we have

[N 0 � c0] ,¼. [Tc0 � r]< [Tc0 � c0 � s],

and hence

b0( p) ¼ Pp(N
0 � c0) ¼ Pp(Tc0 � r)þ Pp(Tc0 � c0 � s):

Now, if we write

N 0 ¼ min(Nr; �Ns),

where Nr is as before and N̄s is the number of trials required to obtain the sth failure, we have,
for any p [ (0,1),

EH0 (N 0) , EH0 (N
0),

and hence, as before, a left-tailed test based on N0 is appropriate. If c0 is the level a[ (0,1)
cutoff point for this test, then c0 can be obtained from the relation

PH0 (N
0 � c0) � a:

The probability mass function (pmf) of N0 is

Pp(N
00) ¼

n0 � 1

r � 1

� �
pr(1� p)n

0�r þ
n0 � 1

s� 1

� �
(1� p)spn

0�s,

n0 ¼ min(r, s), . . . , (r þ s� 1):

Stopping rules play a central role in the theory of sequential analysis [30]. Here the variables
Nr and N0 can be interpreted as the stopping variables connected with renewal theory. Thus Nr
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and N0 can be written as

Nr ¼ min n : n � 1,
Xn
i¼1

Zi ¼ r

( )

and

N 0 ¼ min n : n � 1;
Xn
i¼1

Zi ¼ r or
Xn
i¼1

(1� Zi) ¼ s

( )
:

Hence all the asymptotic results related to these inverse binomial trials can follow from that of
renewal theory. Moreover, using Nr, the maximum-likelihood estimator (MLE) of p is r/Nr.
This is biased as

p , E
r

Nr

� �
,

r

r � 1

� �
p:

In fact, (r � 1)=(Nr � 1) is the minimum-variance unbiased estimator of p. In the subsequent
sections, we have provided various stopping rules as an extension or generalization of inverse
binomial sampling. Unlike renewal theory, the variables associated with those rules are, in
general, dependent, and hence the properties of renewal theory are not applicable here in a
straight forward manner.

4.1.2 Partial Sequential Sampling

Two-treatment comparisons are the most common in clinical trials, and hence we focus at the
two sample problems. There are many practical situations in which the observations from one
of these treatments are easy and relatively inexpensive to collect, while the sample observations
corresponding to the other population are costly and difficult to obtain. For example, in a clini-
cal trial, observations X on a standard treatment may be easily available, and the same Y for a
new treatment may be difficult to obtain. In such a situation, one would like to gather data (may
be large) on X and collect only enough observations necessary to reach a decision regarding the
problem under consideration. To achieve this goal, we consider collecting Y observations in a
sequential manner, with sampling terminated following some stopping rule.

We consider the following setup, where F1 and F2 may be two continuous univariate
distribution functions. We want to test the null hypothesis

H0 : F1 ¼ F2 (4:1)

against a class of one-sided alternatives H1. If we restrict F2 as (1) F2(x) ¼ F1(x 2 m), 21,

x, m , 1, or (2) F2(x) ¼ F1(x exp(2m)), x. 0, 21, m ,1, then the hypotheses can be
reduced to

H0 : m ¼ 0 against m . 0:
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In connection with the problem of testing the abovementioned null hypothesis against H1,
several partial sequential designs were proposed and studied [41,27,28,16]. For details, one
can also see the book by Randles and Wolfe [29].

4.2 TWO-SAMPLE RANDOMIZED INVERSE SAMPLING
FOR CLINICAL TRIALS

We consider a simple setup where we have two competing treatments A and B, having binary
responses, with success probabilities p1 and p2, respectively; that is, if the responses to A and B
are represented by X and Y, then X follows Bernoully ( p1) and Y follows Bernoulli ( p2).
Suppose that each patient is randomly (50 : 50) allocated to either A or B, by tossing a fair
coin. Here we want to test the null hypothesis H0 : p1 ¼ p2 against the one-sided alternative
H1 : p1 . p2. Here, for the ith patient, we define a pair of indicator variables (di, Zi), where
di is the indicator of assignment, which takes the value 1 if the ith patient is treated by A,
and 0 if the ith patient is treated by B, and where Zi is as in binomial sampling. A fixed-
sample-size test can be based on (

Pn0
i¼1 diZi,

Pn0
i¼1 (12 di) Zi), which are the number of suc-

cesses by A and B, respectively, for a prefixed total sample size n0. Clearly, for such random
sampling, di follows Bernoulli (0.5), independently of each other, which gives

Pn0
i¼1di follows

binomial (n0, 0.5). Hence, given
Pn0

i¼1di ¼ m, we have
Pn0

i¼1diZi � Bin (m, p1), and conse-
quently, E

Pn0
i¼1 diZi

� �
¼ n0p1=2. In a similar way, E

Pn0
i¼1 (1� di)Zi

� �
¼ n0p2=2. A suitable

test statistic may be based on

Tn0 ¼
Pn0

i¼1 diZiPn0
i¼1 di

�
Pn0

i¼1 (1� di)ZiPn0
i¼1 (1� di)

,

and a right-tailed test can be suggested.
For an inverse sampling, the stopping rule can be set as in using Nr as a test statistic.

Here EH0 (Zi) ¼ p1, regardless of whether the patient is treated by A or B. But EH1 (Zi j di) ¼
dip1 þ (12 di)p2, and EH1 (Zi) ¼ ( p1 þ p2)/2. Thus EH1 (Zi) EH0 (Zi). Consequently, Nr is
expected to be larger under H0 than under H1. A left-tailed test as earlier can be suitably
suggested.

In the group-sequential framework, inverse sampling was carried out by Bandyopadhyay
and Biswas [4,5].

4.2.1 Use of Mann–Whitney Statistics

The test can be carried out by inverse sampling using statistics different from the negative bino-
mial type. Here, under pairwise sampling, we consider a situation in a much simpler scenario
where the patients are taken in pairs and are randomly treated by the two treatments. Suppose
that we want to test the hypotheses of Section 4.1.2.

We restrict ourselves in pairwise sampling for the purpose of comparison, where the ith pair
is (Xi, Yi) with X � F1 and Y � F2.

For the ith pair, we define Zi ¼ 1 if Yi . Xi, and Zi ¼ 0 otherwise. Obviously, Zi are inde-
pendently and identically distributed as Bernoulli ( p) with

p ¼
ð
F1(x)dF2(x),
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which is equal to 1
2 under H0, and is greater than 1

2 under H1. There is substantial gain in sample
size over the fixed sample size (maintaining close power). The ASN of the inverse sampling
procedure is much less than the ASN for the fixed-sample-size procedure with the same power.

For inverse sampling, some improvement in power can be achieved by considering other
complicated score functions than simple Zi for the ith pair. For example, we can consider
the Mann–Whitney scores. Here, after drawing the ith pair, the differences Yj 2 Xk, (1 � j,
k � i), are observed instead of observing the differences Yi 2 Xi. The indicator Zjk takes the
value 1 if Yj 2 Xk . 0 and 0 otherwise. This leads to the following sequence of Mann–
Whitney statistics:

Un ¼
Xn
j¼1

Xn
k¼1

Zij, n � 1,

and the stopping variable Nq can be defined as

Nq ¼ min{n : Un � q(r)},

where q(r) is an integer-valued quadratic function of r. Clearly, Nq is stochastically smaller
under H1 than under H0, resulting in a gain in sample size. The power of a test will depend
on the statistic that we choose to carry out the test. However, for some suitably chosen test
statistic, the power will increase. Bandyopadhyay and Biswas [8] studied this in detail.

4.2.2 Fixed-Width Confidence Interval Estimation

Consider the following sequence of estimators

ûn ¼
Pn

i¼1diZiPn
i¼1di

�
Pn

i¼1(1� di)ZiPn
i¼1(1� di)

of some parameter umeasuring the treatment difference (e.g., the difference between two popu-
lation means). Thus ûn is only the difference in proportion of successes ( p1 2 p2) if the obser-

vations are binary. Otherwise, it is the difference in average responses. Suppose that ûn is
consistent for u, and, for some V2 . 0, as n! 1, we have

ffiffiffi
n

p
(bun � u) �!d N(0,V2):

Then, for some g, we can choose n � g, such that

lim
d#0

P(jûn � uj , d) � 1� a,

where g is the smallest integer exceeding (uV/d )2, and 12 F(u) ¼ a/2 withF(.) as the cumu-
lative distribution function of an N(0, 1) random variable. In practice, V2 is not known. Let V̂n2

be a sequence of strongly consistent estimators of V2 based on f(di, Zi), i ¼ 1, . . . , ng. We then
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introduce the stopping variable

t ¼ min n : n � m, n � u2V̂2
n

d2

� 	

with m as the initial sample size, which means that we always take a sample size greater than it.
Then we have (see Ref. 19, Ch. 10)

lim
d#0

P(jût � uj , d) � 1� a

provided, as d! 0, that

(i) t=v �!P 1,

(ii) V̂
2
t �!P V2,

(iii)
ffiffiffi
t

p
(ût � ûv) �!P 0:

This can be shown in many simple randomized clinical trial situations as well as for some
adaptive designs.

4.2.3 Fixed-Width Confidence Interval for Partial Sequential Sampling

Let Xm ¼ (X1, . . . , Xm)0 be a random sample of fixed size m (� 1) on X, and let fYn, n � 1g, be
a sequence of observations on Y. Let ûn be a sequence of estimators based on Xm and (Y1, . . . ,
Yn), n � 1. Suppose for each m that there is a positive integer r ¼ r (m) such that, as m! 1,
we have r !1. We also assume that as m !1

sup
n�r

jûn � uj �! 0

in probability. Then, for given d(. 0), the random variable

N(d) ¼ supfn � 1 : jûn � uj � dg

is related to a partially sequential fixed-width confidence interval of u in the sense that there
exists a positive integer v ¼ v(m) such that asymptotically, for given a[ (0, 1),

P(jûn � uj , d for all n � v) ¼ 1� a: (4:2)

The random variable of the type N(d ) is studied by Hjort and Fenstad [21] in connection with
sequential fixed-width confidence interval estimation. A terminal version of (4.2) is that there
exists a positive integer v� ¼ v�(m) (different from v) such that asymptotically

P(jûn � uj , d) � 1� a for all n � v�: (4:3)
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Under the sequential setup, (4.3) has been studied by many researchers. For details, one can
consult the book by Ghosh et al. [19]. Bandyopadhyay et al. [13] studied (4.3) under partial
sequential setup.

4.3 AN EXAMPLE OF INVERSE SAMPLING: BOSTON ECMO

This is a real clinical trial that employed inverse sampling effectively. Details on the trial and
data description with discussions were presented by Ware [36] followed by discussions by
quite a few experts in clinical trial statistics. The purpose of the trial was to evaluate extrac-
orporeal membrane oxygenation (ECMO) for treatment of persistent pulmonary hypertension
of the newborn (PPHN). The mortality rate among the infants with severe PPHN treated with
conventional medical therapy (CMT) was 80% or higher for many years. ECMO treatment of
PPHN was introduced in 1977, and by the end of 1985, several centers reported survival rates
of 80% or more in infants treated with ECMO. Bartlett et al. [14] reported a randomized trial for
ECMO versus CMT, which was an adaptive trial based on the randomized play-the-winner
(PW) rule [37,38]. In that trial, out of 12 patients, only one infant was treated by the
placebo, and later died. The other 11 infants, treated with ECMO, all survived. This trial
received lot of cristicism as, due to the adaptive sampling, only one patient was treated by
the CMT, and very little information on CMT was gathered.

To balance the ethical and scientific concerns, Dr. Ware and his colleagues designed a two-
stage trial. They considered a family of study designs where a maximum of prefixed r deaths
are allowed in either treatment group. The treatments were selected by a randomized permuted
block design with blocks of size 4. When r deaths occur in one of the treatment groups, ran-
domization ceases and all subsequent patients are assigned to the other treatment until r deaths
occur in that arm or until the number of survivors is sufficient to establish the superiority of that
treatment arm, using a test procedure based on the conditional distribution of the number of
survivors in one treatment given the total number of survivors.

In the trial, in the late 1980s, patients were randomized in blocks of 4, and treatments were
assigned randomly to the first 19 patients. Of these 19 patients, 10 received CMT, including
patient 19, and 4 died. Here r was taken as 4. In the second stage, all the remaining 9 patients
received ECMO and all survived.

For details of the trial and the analysis,we refer toWare [36].But at this pointwewant to empha-
size that inverse sampling can be carried out in real trials in someway following this fashion, poss-
ibly by modifying the design in an appropriate way, which might help in stopping the trial earlier
and saving the lives of some patients who are exposed to the inferior treatment during the trial.

4.4 INVERSE SAMPLING IN ADAPTIVE DESIGNS

Adaptive designs or response adaptive designs are used in clinical trials in order to allocate a
larger number of patients for the better treatment. This is done by choosing the allocation
probability of a patient to either treatment depending on the response and allocation history
of the patients allocated so far. Consider the setup described in Section 4.3. Here di takes
the values 1 or 0 with probabilities pi and 1 2 pi, where pi ¼ pi (d1, . . . , di21; Z1, . . . ,
Zi21). The functional form of pi depends on the particular adaptive design under consideration.
Some such designs are the randomized PW rule [37,38], the success-driven design [17], the
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drop-the-loser (DL) rule [23] for binary responses, and the link-function-based design [10]
optimal designs of Atkinson and Biswas [1,2] for continuous responses.

For such designs, the di terms are of dependent sequence, and quite naturally the Zi terms
are also dependent as they depend on di values. Thus one can use the same stopping rule as in
Nr, and a similar test as well. But the properties, the exact and the asymptotic distributions, will
be quite different in this dependent setup. Bandyopadhyay and Biswas [6,7] considered such
inverse-sampling-based analysis in the setup of the randomized PW rule.

For binary treatment responses, Sobel and Weiss [31] suggested the combination of the PW
rule [42], an adaptive design, and an inverse sampling scheme. The suggestion was to stop
sampling when a prefixed number of successes were observed from either of the two treat-
ments. Later Hoel [22] modified the sequential procedure of Sobel and Weiss [31], and intro-
duced another stopping variable, which takes both the number of successes and failures into
account. Specifically, they suggested stopping the experiment when the number of successes
of a treatment plus the number of failures by the other treatment exceeds a prefixed threshold.
Subsequently, Fushimi [18], Berry and Sobel [15], Kiefer and Weiss [24], and Nordbrock [26]
considered the PW allocation with more complicated stopping rules. Wei and Durham [38]
extended the PW rule of Zelen [42] to obtain the randomized PW rule. They studied the prop-
erties of this allocation rule for fixed sample size and also for the stopping rule proposed by
Hoel [22]. Bandyopadhyay and Biswas [6,7,9,11,12] considered the randomized PW allocation
and the stopping rule of Sobel and Weiss [31]. Baldi Antognini and Giovagnoli [3] considered
the estimation of treatment effects in sequential experiments for comparing several treatments
when the responses belong to the exponential family, suggesting that the experiment will be
stopped when the absolute value of the sum of responses to each treatment reaches a given
value. For two treatments, that rule becomes

N ¼ inf
n[N

Xn
i¼1

diXi












 � r1 and

Xn
i¼1

(1� di)Yi












 � r2

( )
: (4:4)

For binary responses, (4.4) becomes a lower threshold for the number of observed successes by
each treatment, and for one treatment only it reduces to the classical inverse binomial sampling.
For normal responses, (4.4) reduces to the sampling scheme of Tweedie [35]. Combining the
sequential ML design with this stopping rule (4.4), Baldi Antognini and Giovagnoli [3] showed
that strong consistency and asymptotic normality of the MLEs still hold approximately.

In adaptive design, the amount of research is still inadequate. Stallard and Rosenberger [32]
observed that “most of the theoretical development and practical implementation of adaptive
designs has assumed a fixed sample size.”

4.5 CONCLUDING REMARKS

Inverse sampling is designed specifically for the purpose of estimation, usually with the objec-
tive of attaining a confidence interval with fixed width. In the early–mid-1940s, inverse bino-
mial sampling was discussed by Haldane [20] and Tweedie [34] and inverse normal sampling,
by Stein [33]. Both these methods are discussed in the book of Wetherill and Glazebrook [39,
Ch. 8]; see also Whitehead [40, Ch. 5] for a note.

Inverse sampling for a multitreatment clinical trial can be similarly designed. It is true that
the number of real applications of inverse sampling is still not adequate. This can be
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successfully done if the gap between the statisticians working in this area and the practitioners
can be bridged. This can effectively reduce the sample sizes, especially in trials where there is
prior belief of substantial treatment difference, as in the Boston ECMO trial.
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C H A P T E R 5

The Design and Analysis Aspects of
Cluster Randomized Trials
Hrishikesh Chakraborty
Statistics and Epidemiology, RTI International, Research Triangle Park,
North Carolina

5.1 INTRODUCTION: CLUSTER RANDOMIZED TRIALS

In a simple randomized trial, an individual is the unit of randomization, but in acluster randomized
trial (CRT), a group is the unit of randomization. For example, in a simple drug trial or in a
vaccine trial, individual subjects are randomized to a drug/vaccine or placebo group or to
different competing drug arms. Also known as group randomized trials, CRTs randomize
groups such as hospitals, clinicians, medical practices, schools, households, villages, commu-
nities, or administrative boundaries. Cluster randomized trials, where clusters can be formed on
the basis of natural grouping or geographic boundaries, are accepted as the gold standard for the
evaluation of new health interventions [41] such as neonatal mortality rate, episiotomy rate, and
postpartum hemorrhage rate.

Hayes and Bennett [41] identified several reasons for adopting cluster randomized trials:

1. Some intervention trials, such as hospital intervention trials and educational intervention trials,
have to be implemented at the cluster level to avoid the resentment or contamination that could
occur if certain interventions were provided for some individuals but not others in a cluster.

2. CRTs are preferred to capture the mass effect on disease of applying an intervention to a
large proportion of community members, such as reduction of early neonatal mortality
by providing advanced training to birth attendants in a rural setting.

3. Cluster randomized trials are useful after efficacy has been established at the individual
level and there is a desire to measure intervention effectiveness at the community level.
Many of the difficulties encountered in the design and analysis of cluster randomized
trials arise from their dual nature, focusing, on both the individual and the cluster.
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There are several advantages to using a cluster randomized design, Clusters are physically
separated from each other and interventions are administered to the whole group; all group
members receiving the same treatment can help minimize contamination by stopping or redu-
cing the spread of an intervention to the control group [11,47,68]. Cluster randomized designs
can be used for convenience, to aid in cost reduction, to eliminate potential ethical problems, to
increase administrative efficiency, and to provide less intrusive randomization [20,26,68].
Cluster randomized trials can also be used for implementing interventions that can be
conducted only at the cluster level, such as the hospital or community level [41].

The main disadvantage of cluster randomized trials is that participants within a given cluster
often tend to respond in a similar manner, and thus their data can no longer be assumed to be
independent of one another. Therefore, there are two sources of correlation: between and within
clusters. Between-cluster (intercluster) correlation measures the variation in outcomes across
clusters (intracluster). Within-cluster correlation occurs when subjects in a cluster are
influenced by common factors, such as age, ethnicity, gender, geographic, socioeconomic,
and political factors [11,47].

Some studies have incorrectly analyzed trial data as though the unit of allocation had been
the individual participant. This incorrect analysis is often referred to as “unit of analysis error”
[87] because the unit of analysis is different from the unit of allocation. If the clustering is
ignored and CRTs are analyzed as though individuals had been randomized, resulting P
values will be artificially small, resulting in false-positive conclusions that the intervention
had an effect. Because individuals within clusters tend to be more alike, the independent infor-
mation contributed in a cluster randomized sample is usually less than that of an individually
randomized trial; thus, the power of the study is reduced [41,46].

Numerous studies have shown problems with the reporting of CRTs. Divine et al. [14]
reviewed 54 published papers on physicians’ behavior from a broad selection of journals and
found that 70% used the wrong unit of analysis. After reanalyzing the data, they found only
four statistically significant measures in the original analysis, whereas eight of nine studies
had reported statistically significant findings when they used the wrong unit of analysis. A
similar studyof 21 public health published papers showed that only 57% accounted for clustering
in their analyses [74]. Several other reviewers have found similar results [18,32]. Furthermore,
intraclass correlation (ICC) values are not reported in published literature. For example,
MacLennan et al. [54] found that ICCs were reported in only 6 out of 149 trials, Eldridge
et al. [30], in 13 out of 152 trials; and Isaakidis and loannidis [44] in only 1 out of 51 trials.

Two approaches are used in cluster randomized trials: one drawing cluster-level inferences
and the other drawing, individual-level inference. To draw cluster-level inferences for cluster
randomized trials, we need to assess outcomes only at the level of the cluster, keeping the
unit of analysis the same as the unit of randomization. We might measure a dichotomous
outcome (e.g., whether the practices hospital, or community, was a “success” or a “failure”)
or a continuous outcome (e.g., the percentage of individuals in the cluster who benefited).
In both scenarios, we obtain one outcome measurement from each randomized unit, and we
perform the analysis as if the groups were individuals by using the standard methods. This
approach has two major limitations:

1. we may end up with fewer data points than a simple trial involving substantially fewer
participants because cluster randomized trials are likely to randomize fewer clusters than
most simple trials and hence have lower statistical power. For example, a trial might ran-
domize 12 communities with a total of 12,000 inhabitants. Analyzing by community, we
end up with only 12 observations.
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2. Not all groups are the same size, and we would give the same weight to a village of 1000
inhabitants as to a village of 50 inhabitants.

The Guideline trial [35] is a more recently published CRT in which the unit of randomiz-
ation and the unit of analysis are the same. As an example, the Guideline trial is a two-arm
cluster randomized controlled trial using hospitals as units of randomization. Nineteen hospi-
tals in three urban districts of Argentina and Uruguay were randomized to either (1) a
multifaceted behavioral intervention to develop and implement guidelines about episiotomy
use and management of the third stage of labor, or (2) a control group that continued with
the usual in-service training activities. The main outcomes to be assessed were the use of
episiotomies and of oxytocin during the third stage of labor.

On the other hand, when we randomize by cluster and draw inferences similar to those
from the individually randomized trial, complications and statistical challenges arise in the
design and analysis of the trial. In this situation, we need to account for within- and
between-cluster correlation in the design and analysis of the cluster clinical trials. The
FIRST BREATH trial [9] is one such trial where randomization was done by community
and the inference will be drawn at the individual level. The FIRST BREATH trial is a
cluster randomized controlled trial to assess the effect of training and implementation of a
neonatal resuscitation education program for all birth attendants in intervention clusters on
7-day neonatal mortality in communities across six different countries. The primary hypoth-
esis is that, among infants with birth weights of 1500 g or more born in the selected commu-
nities, an educational intervention based on the Neonatal Resuscitation Program (NRP) will
decrease early neonatal mortality (7 days) by at least 20% (from 25 to 20 deaths per 1000
live births) compared to control communities. The clusters for this study are communities,
defined as geographic areas characterized by physical or administrative boundaries with an
average of 500 births per year. Each community within a research unit is randomized into
either the control or the intervention group. The birth attendants in all communities are
trained in the revised essential newborn care (ENC) training, and the birth attendants in
the intervention communities also receive additional training in the American Academy of
Pediatrics Neonatal Resuscitation Program.

The remainder of this chapter is organized as follows. Section 5.2 reviews the methods for
calculating the intracluster correlation coefficient for categorical and continuous variables and
the methods used to calculate the confidence interval for ICC. Section 5.3 discusses the sample
size calculation for cluster randomized trials. Section 5.4 discusses the analysis methods related
to cluster randomized trial data, and Section 5.5 discusses the major issues related to the cluster
randomized trial and future directions.

5.2 INTRACLUSTER CORRELATION COEFFICIENT AND
CONFIDENCE INTERVAL

When we randomize by cluster and draw inference, the individual level, we need to account
for the within- and between-cluster correlations. The intracluster correlation coefficient
(ICC) measures the degree of similarity between responses from subjects within the same
cluster. Because cluster members are similar, the variance within a cluster is less than
that expected from randomly assigned individuals. The degree to which the within-cluster
variance is less than would be otherwise expected can be expressed as ICC. For
example, when we randomize communities in the FIRST BREATH trial, residents in one
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community may share the same resources, nutrition, education, and healtcare, causing their
outcomes to more likely be similar to each other than to the outcomes of residents of a
different community. The ICC value describes the extent to which two members of a com-
munity are more similar than two people from different communities. There are several
different methods of calculating the ICC. The most popular is the analysis of variance
(ANOVA) method with a formula derived by Fleiss [36] that uses mean square values
from a one-way ANOVA to estimate the ICC. The ICC, denoted by r (rho), is calculated
by dividing the between-cluster variance by the total variance. If r ¼ 0, then individuals
within the same cluster are no more correlated with each other than with individuals in
different clusters. If r ¼ 1, then there is no variability within a cluster, and individuals
within the same cluster respond identically [11]. The ANOVA method was originally pro-
posed for continuous variables, but various authors have subsequently shown that the
method is valid for both categorical and continuous variables [31,61]. For the continuous
response, let Yijði ¼ 1, . . . , k; j ¼ 1, . . . , miÞ be the response for k clusters with the ith

cluster containing mi individuals and N ¼
Pk

i¼1 mi. The mean response for the ith group

is �Yi ¼
Pmi

j¼1 Yij=mi, and the grand mean of all observations is �Y ¼
Pk

i¼1

Pmi
j¼1 Yij=N.

The ANOVA estimator of ICC is defined as

r̂ ¼ MSB�MSW

MSBþ ðm� 1ÞMSW
,

where m is the cluster size, MSB is the mean square between clusters defined as

MSB ¼ 1
k�1

P
mið�Yi: � �Y::Þ2, and MSW is the mean square within clusters defined as

MSW ¼ 1
N�k

P P
ð�Yij � �Yi:Þ2 When cluster size varies, we can replace the cluster size m

with the average cluster size m0, where m0 ¼ �mþ f
P

iðmi � �mÞ2=NðN � 1Þ�mg.
For the binary response case, let us introduce the responses Xijði ¼ 1, . . . , k; j ¼ 1, . . . , miÞ

for k clusters with the ith cluster containing mi individuals. Then the total number of successes
in the ith cluster is Yi ¼

Pmi
j¼1 Xij. For binary data, MSB, MSW, and m0 can be defined as

follows:

MSB ¼ 1
k � 1

Xk
i¼1

Y2
i

mi
� 1
N

 Xk
i¼1

Yi

!2
8<
:

9=
;, MSW ¼ 1

N � k

Xk
i¼1

Yi �
Xk
i¼1

Y2
i

mi

( )
,

m0 ¼
1

k � 1
N � 1

N

Xk
i¼1

m2
i

( )
,

where K is the number of clusters, N is the total number of subjects in the sample, and mi is the
number of subjects in the ith cluster [21,68].

The average cluster size approximation tends to slightly underestimate the required sample
size, but the effect will be negligible if the resulting total sample size requirement in each group
is moderately large (�100). A conservative approach would be to replace average cluster size
with the largest expected cluster size in the sample [19].

For continuous variables, the intralcluster correlation r must satisfy the inequality r � 21/
(mmax 2 1), where mmax is the size of me largest group [69]. For binary variables, a much
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more stringent constraint [65] can be shown as

r � �1
ðmmax � 1Þ þ

wð1� wÞ
mmaxðmmax � 1Þpð1� pÞ ,

where Pr(Xij ¼ 1) ¼ p, w ¼ pmmax 2 int(pmmax), and int(pmmax) denotes the integer part.
In addition to the ANOVA method, several methods have been proposed and refined by

several authors to estimate the ICC for binary data. These include moment estimators
[48,80,86,90], estimators with direct probabilistic interpretation [37,55], estimators based on
direct calculation of correlation within each group [45,17,72,53], and extended quasilikelihood
and pseudolikelihood estimators [63,8,57]. Ridout et al. [69] performed an extensive simu-
lation to compare several of these methods. Their simulation study shows that the ANOVA
estimators, a few of the moment estimators, and an estimator with a direct probabilistic
interpretation all performed well with low bias and smaller standard deviations. There are
also additional common correlation models published by different authors who assumed beta
binomial distribution [49,65], correlated binomial distribution [49,1] and correlated probit
distribution [64]. ICC also has been applied to conduct a sensitivity analysis where ICC is
used to measure the effectiveness of an experimental treatment [3].

Although in theory the ICC could be negative, in practice this almost never occurs. If it
becomes negative, the researcher usually assumes it to be zero and analyzes the data using
the methods for simple randomized trials. In most human studies, ICC values are between 0
and 1 [47,2]. Chakraborty et al. [9,10] presented a simulation technique for calculating an
ICC estimate and its 95% confidence interval for various cluster size and number combinations
for binary responses when the ICC was unknown.

There are several ways to calculate confidence intervals for the ICC. These include the fol-
lowing methods based on approximation to the F distribution: a procedure based on modifying
the solution for the balanced case and the Thomas–HuItquist procedure [81,15], a procedure
based on Fisher’s transformation [25], a procedure based on the standard error of the ICC esti-
mate including the confidence limit based on Smith’s formula [77] and the formula derived by
Swiger et al. [78], and a confidence limit based on maximum-likelihood theory [27,75,76].
Donner and Koval [28] showed that the procedure based on Fisher’s transformation is a
highly accurate approximation of the true variance of ICC estimates in a broad range of circum-
stances in moderately large sample sizes. Dormer and Wells [29] conducted a Monte Carlo
simulation study under the one-way random-effect model to compare six different confidence
interval methods to obtain the two-sided confidence intervals; they conclude that the method
based on the large-sample standard error of the sample ICC derived by Smith provides consist-
ently good coverage for all ICC values and recommend its use over the other methods.

5.3 SAMPLE SIZE CALCULATION FOR CLUSTER
RANDOMIZED TRIALS

Designs commonly used in cluster randomized trials include completely randomized, stratified,
and matched pair. In a completely randomized design, interventions are allocated randomly to
clusters. This design is suitable when randomizing a large number of clusters. For a small
number of clusters, completely randomized designs are likely to produce unbalanced treatment
groups with respect to baseline characteristics. In a stratified design, clusters are grouped in
homogenous strata and are then randomly allocated to interventions. Stratification by cluster
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size is often regarded as advantageous, not only to achieve overall balance in the number of
individuals assigned to each arm of the trial but also because cluster size may be a surrogate
for within-cluster dynamics that are predictive of outcomes. Other common stratification
factors include geographic area and socioeconomic status. A matched-pair design is an
extreme form of stratification, where each stratum consists of only two clusters randomly
assigned to different arms. The main advantage of this design is its very tight and explicit
balancing of important baseline risk factors [16].

In a cluster randomized trial, groups of individuals are randomized together rather than indi-
vidually. The sample size required for a CRT depends on the magnitude of the ICC. To obtain
an accurate sample size estimate in any cluster design setting, one must account for the vari-
ation within and between clusters. The ICC is the amount of variation in the data that can
be explained by the variation between clusters [6,7]. Since the variance is affected by the
cluster design, the sample size required for a certain power and effect size is also affected.
Because the sample size is directly proportional to the variance, we can simply use the standard
methods and multiply the results by the appropriate variance inflation factor (VIF), also called
the design effect [1 þ (m 2 1)r], where m is the average cluster size and r is the estimate of the
ICC calculated on the basis of a presumed value for the ICC and estimated cluster size. If the
cluster size varies, then m can be replaced by the average cluster size m0 for a slight underes-
timate or the maximum cluster size for a conservative estimate [25]. The design effect accounts
for the similarities among clustered subjects, because there is a net loss of independent data.
The design effect is the ratio of the total number of subjects required using cluster randomiz-
ation to the number required using individual randomization [47]. The design effect will always
be greater than one, although it may take values close to one. The larger the ICC, the larger the
design effect and the more subjects are needed [46].

For example, in a two-arm simple randomized trial, let P1 and P2 indicate the population
proportions of interest for the intervention and control group, respectively. Then the required
number of subjects per group for a two proportion difference in a cluster trial is

n ¼
ðZa=2 þ ZbÞ2½P1ð1� P1Þ þ P2ð1� P2Þ�½1þ ðm� 1Þr�

ðP1 � P2Þ2
;

where Za and Zb correspond to the critical values for a normal distribution for error rates a and
b. However, if it is a cluster randomized trial, then the required sample size must be multiplied
by the quantity [1 þ (m 2 1)r] to account for the cluster trial.

During the design phase, an ICC value is often based on the most relevant estimate from
earlier studies or from pilot study data. Since those estimates are often imprecise, researchers
may use a more conservative upper 95% confidence limit for ICC, an extremely conservative
approach that usually requires a larger sample size. It has been shown using a Bayesian simu-
lation approach that allowances can be made for ICC imprecision when designing cluster ran-
domized trials [83]. In planning trials, the advantages of a design that randomizes clusters of
individuals must be weighed against the disadvantages in terms of statistical power, cross-
contamination, and cost.

Two major difficulties arise in a sample size calculation for clustered randomized studies:
(1) the number of units in each cluster, called cluster size, tends to vary with a certain distri-
bution; and (2) observations within each cluster are correlated. Dormer and Klar [25]
present a sample size formula for clustered binary data when cluster sizes are constant. Their
test statistic is based on the binary proportion estimator obtained by assigning equal weights
to all units Lee and Dubin [51] develop a sample size formula for clustered binary data with
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variablecluster sizes.Theyproposeestimating thebinaryproportionbyassigningequalweights to
clusters regardless of their sizes to simplify the derivation of their sample size formula.

It is well known that the application of standard sample size approaches to cluster randomiz-
ation designs may lead to seriously underpowered studies, and that the application of standard
statistical methods could lead to spurious statistical significance. The severity of this problem
increases not only with the magnitude of the intracluster correlation but also with the average
cluster size. Increasing the number of clusters is a more efficient.method of gaining statistical
power than is increasing total sample size. Sometimes it is easier to add observations to existing
clusters than to add more clusters; however, increasing the average cluster size can increase the
power only to a certain point [16].

Chakraborty et al. [9] explain how to use a simulation technique at the design phase of a trial
to estimate the required sample size by simulating the ICC estimate and its 95% confidence
interval for various cluster sizes and number of cluster combinations for binary responses. A
common design effect is usually assumed across intervention groups during the analysis of
CRT data. But it is not true in most cases after the end of the intervention period. To
combat this problem, Chakraborty et al. [10] used a simulation technique to show that the
ICC value depends on the effect size distribution in addition to the cluster size and number
of clusters. They also showed how to adjust for the ICC value at the design phase of the
trial according to the prediction that the overall effect size will change at the end of the trial.

Hayes and Bennett [41] published a different set of formulas for sample size calculation for
rates per person-year, proportions, and means for both unmatched and pair-matched trials
where they expressed the formulas in terms of the coefficient of variation (SD/mean) of
cluster rate, proportions, or means. The main limitations of this method are that they
assumed the observed cluster rates or means or proportions to be approximately normally dis-
tributed, all clusters to be of equal size, and the between-cluster coefficient of variation to be
equal in both treatment groups. If all of these assumptions hold for a given study, this may be a
simple alternative method to implement.

5.4 ANALYSIS OF CLUSTER RANDOMIZED TRIAL DATA

Statistical methods for the analysis of cluster randomized trials are not well established
compared to those for individually randomized trials. Fisher’s classical theory of experimental
design assumes that the experimental unit that is randomized is the unit of analysis [58]. The
statistical challenges of cluster randomization trials arise because inferences are frequently
applied at the level of individual subjects while randomization took place at the cluster
level. The discrepancy between the unit of randomization and the analytic unit means that
the standard statistical methods for analysis are not applicable [16]. Cornfield [12] brought
the analytical implications of cluster randomization to widespread attention in the health
research community. Donnar and Klar [22,23] have provided a review of the extensive
development that has occurred since.

While analyses of CRT data are more problematic than analyses of data from a straight-
forward individual randomization trial, in some situations cluster randomization is the only
practical option for addressing certain questions. When a cluster design is used, it is essential
that the analysis address the clustering approach appropriately [5]. If clustering is ignored
during data analysis, the within-cluster variance and between-cluster variance will be mixed,
leading to an underestimate of the overall variance and providing inaccurately small p values
and narrow confidence intervals [25,66,73]. This problem of erroneous statistical significance
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increases with the magnitude of the ICC and average cluster size [25]. As we know, the indi-
viduals within a cluster are not independen, and applying traditional statistical methods to
cluster randomized observations is not feasible without adjusting for the correlation.

There are statistical techniques for appropriate analyses of cluster randomized trials in
cluster-level and individual-level analyses. In cluster-level analysis, also called analysis by
allocation unit, we summarize individual observations within a cluster to a single summary
measure, such as the cluster mean or proportion, and then use standard statistical methods
to analyze these summary measures as if they were primary observations. This approach
reduces the sample size to the number of clusters, reducing statistical power and degrees of
freedom of the test. There is no ICC adjustment issue in this type of analysis because the ran-
domization unit and the analysis unit are both the same. Most of the standard statistical analy-
sis techniques can be used to draw cluster-level inference including a simple t test, weighted
and unweighted linear regression, and random-effects meta-analysis. For example, compare
two groups in a cluster randomized trial using the t test, applied to cluster-specific outcome
measures, and weighted by the number of patients in each cluster [22,23,46]. Continuous
outcome variables from a paired cluster randomized trial can be analyzed using the paired t
test at the cluster level. This analysis is fully efficient when there is no variability in cluster
size in a balanced design scenario [16]. Some researchers [39,56] prefer to use permutation
tests rather than the paired t test to avoid the normality and homogeneity assumptions. But
other researchers [24,42] found that in fairly small samples the t test is a remarkably robust
to departure from the underlying homogeneity of variance and normality assumptions.
Rosner and Hennekens [71] showed that a t test can be used to adjust for unaccounted baseline
differences between treatment groups for matching case–control and cohort studies.

CRTs have many parallels in meta-analysis since meta-analysis also involves combining
information from different units (trials) of varying sizes. Random effect meta-analysis pools
the summary statistics across clusters rather than across studies and uses a maximum-likelihood
estimation method [13,82]. The parameter estimates from different analyses are expected to
differ substantially only if there are large differences in cluster size and/or cluster-specific
outcome proportions.

When the randomization unit and the inference unit are different—when we randomize by
cluster and draw conclusions about individual characteristics—we must be very careful to
choose the correct analysis method. Any analysis method that accounts for clustering in some
waywould be appropriate for analyzing cluster clinical trial data. Parameter estimates, and in par-
ticular their standard errors, differ markedly depending on the choice of analysis method, even
when the analysis methods are based on a common underlying principle. The simple analysis
strategy is to ignore the clustering and apply a standard statistical approach, treating individual
data as independent observations but using the variance inflation factor [1 þ (m 2 1)r], where
m is the average cluster size and r is the estimate of the ICC, to adjust the variance before hypoth-
esis testing. If the cluster size varies,m can be replaced by the average cluster sizem0 to correct the
variance used in calculating the test statistics [60]. The degrees of freedom for the revised test
statistics are based on the number of clusters, not the total sample size.

Several different statistical methods allow analysis at the level of the individual while also
accounting for the clustering in the data. The ideal information to extract from a cluster rando-
mized trial is a direct estimate of the required effect measure (e.g., odds ratio with its
confidence interval) from an analysis that properly accounts for the cluster design:

1. Binary variable analysis might be based on a standard logistic regression with robust
standard errors, where the standard logistic regression model uses but adjusts the stan-
dard errors to allow for clustering, and the robust standard errors are calculated using
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the “sandwich” variance estimator [43,88] and modified by Rogers [70] to allow for
clustering. The regression coefficients (e.g., log odds ratios) estimators are identical to
those for the standard logistic regression model because those are unaffected by this
procedure.

2. Mixed-effects linear models are often used to analyze the continuous outcome data from
completely or stratified CRT using the generalized leas-square method [79,85,89].

3. Generalized estimating equations (GEEs) extend the standard logistic regression model
to allow for clustering. This is achieved by specifying a correlation matrix that describes
the association between different individuals in the same cluster in terms of additional
parameters [52].

Different correlationmatrix types can be assumed, and if the sample size is large enough, both
the regression coefficients and their standard errors are correct in the sense that they are con-
sistently estimated whether robust standard errors are specified. The parameter estimates
from GEE should not be interpreted as corresponding to the parameter estimates from
random-effects models. Parameter estimates from GEE are described as “population-averaged”
interpretations [86,91] because they are averaged across the values of the cluster-level random
effect in the context of longitudinal data analysis. Other types of analysis such as multilevel
modeling [40] or hierarchical linear modeling [4,67], and “variance components analysis”
can also be used to analyze cluster randomized trial data. In addition to specifying the
primary data analysis in advance, different sensitivity analysis methods can be considered
for cluster clinical trials including presenting results using different analysis methods.

5.5 CONCLUDING REMARKS

We all recognize that clusters are made up of individuals, that there may be more individuals in
one cluster than in another, and that the intralcluster correlation co-efficient plays an important
role in design and analysis of CRTs. Intracluster correlation may appear small compared with
other types of correlations, but small values can have a substantial impact on design and analy-
sis of CRTs. Ignoring the small correlation may lead to standard errors for intervention effects
that are too small, confidence intervals that are too narrow, and P values that are too small.
Calculating and reporting the ICC is another important aspect of the CRT because different
methods are available to calculate the ICC, and different software packages can provide differ-
ent ICC results [84]. Adjustments for covariates also play a very important role in calculating
ICC value; adjusting for covariates usually leads to smaller ICCs because some of the between-
cluster variation can be explained by cluster-level factors [34]. There is a need for more pub-
lications presenting the ICC values from different studies; different kinds of variables can be
stored in a central database, and an advanced computer interactive simulation program could
be required for an ICC estimate to design studies.

Despite the advanced and well-established principles of the design and analysis of CRT,
there remains considerable uncertainty about the relative merits of the different methods,
and further illustrations of the alternatives and their performance in different settings are
required. There are several ways to conduct CRT, and the choices regarding both the
method of analysis and the variables included in the model can make important differences
to the conclusions. In the context of estimating variance and covariance, parameters by differ-
ent procedures appear to perform better in certain situations and with certain types of outcome
variables [33]. Methodological studies fail to provide clear guidance as to the best approaches
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or methods to implement in different trial scenarios for planning and analyzing CRT for
individual-level inference. For example, we need methods to deal with covariate adjustments
for varying lengths of follow-up of subjects, to analyze ordinal, multinomial and time-to-
event data, and to implement analysis with missing values at both the individual and the
cluster levels. In the absence of proper methodological direction, we must check the sensitivity
of the conclusions and model assumptions very carefully before interpreting CRT results. For
Bayesian analysis, one needs to check the impact of changing the assumed priors. Murray
[61] reviewed the recent methodological developments regarding the design and analysts of a
CRTand concluded that themethods required for aCRTare not as simple as those for randomized
clinical trials but there are several readily available methods for the design and analysis of a CRT.
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6.1 INTRODUCTION

Avirological marker, the number of human immunodeficiency virus type 1 (HIV-1) RNA copies
in plasma (viral load), is currently used to evaluate anti-HIV therapies in AIDS clinical trials.
Antiretroviral treatment of HIV-1-infected patients with highly active antiretroviral therapies
(HAART), consisting of reverse transcriptase inhibitor (RTI) drugs and protease inhibitor (PI)
drugs, results in several orders of magnitude reduction of viral load. The rapid decay in viral
load can be observed in a relatively short term [24,25,34], and it either can be sustained or
may be followed by a resurgence of virus within months [19]. The resurgence of virus may be
caused by drug resistance, noncompliance, pharmacokinetics problems, and other factors
during therapy. Mathematical models, describing the dynamics of HIV and its host cells, have
been of essential importance in understanding the biological mechanisms of HIV infection,
the pathogenesis of AIDS progression, and the role of clinical factors in antiviral activities.

Many HIV dynamic models have been proposed by AIDS researchers [6,12,14,23–
25,32,34,29] since the mid-1990s to provide theoretical principles in guiding the development
of treatment strategies for HIV-infected patients, and have been used to quantify short-term
dynamics. Unfortunately, these models are of limited utility in interpreting long-term HIV
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dynamic data from clinical trials. The main reason is that few parameters of these models can be
estimated uniquely from viral load data, because simplified and linearized models have often
been used to characterize the viral dynamics based on observed viral load data
[12,23,24,32,34]. Although these models are useful and convenient for quantifying short-
term viral dynamics, they cannot be used to characterize more complex long-term virological
response. Huang et al. [15–17] developed a set of relatively simplified models, a system of
differential equations with time-varying parameters, to characterize long-term viral dynamics.
In the models, they considered several factors related to the resurgence of viral load, such as the
pharmacokinetics, and compliance with treatment and drug susceptibility, and thus these
models are flexible enough to quantify long-term HIV dynamics.

Bayesian statistics has made great progress in recent years. For various models, parameter
estimation and statistical inference are carried out via the Markov chain Monte Carlo (MCMC)
procedures [10,11,17,26,31]. The Bayesian method for HIV dynamic models was investigated
by Han et al. [11], Huang et al. [17], and Putter et al. [26]. Han et al. and Putter et al. considered
a dynamic model with the assumption that the number of uninfected target cells remained con-
stant during a treatment, and they used short-term viral load data only to estimate parameters. In
addition, they did not consider the fact of variability in drug susceptibility (resistance) and
adherence in the presence of antiretroviral therapy. Huang et al. [16,17] extended the model
to characterize long-term viral dynamics described by a system of nonlinear differential
equations with time-varying drug efficacy.

Although prediction methods for deterministic models have been proposed under the
Bayesian framework in other research fields such as prediction of whale populations [27],
those models are essentially different from HIV dynamic models. In this chapter, we consider
a model designed to characterize long-term viral dynamics developed by Huang et al. [16,17]
and combine the Bayesian analytic methods and mixed-effect modeling to investigate individ-
ual/population predictions of clinical outcomes based on the proposed model. Predictions of
clinical outcomes are very important for clinicians in developing individualized treatments,
making clinical decisions, and optimizing a treatment strategy.

The technical details on the Bayesian analysis of hierarchical nonlinear mixed-effect models
can be found in the literature [11,16,17,31]. We employ the model and estimation approach
proposed by Huang et al. [16,17] to address the predictions of clinical outcome in this
chapter the remainder of which is organized as follows. In Section 6.2, we briefly describe
the viral dynamic model and treatment effect models. The Bayesian modeling approach for
hierarchical nonlinear mixed-effect models for predictions of virological responses is discussed
in Section 6.3. A simulation study is presented to illustrate our methodology in Section 6.4. We
apply the proposed methodology to a clinical dataset and present the results in Section 6.5.
Finally, the chapter concludes with some discussions in Section 6.6.

6.2 HIV DYNAMIC MODEL AND TREATMENT
EFFECT MODELS

Details of the HIV dynamic models and treatment effect models are described in Huang et al.
[16,17]. For completeness, a brief summary of these models is given as follows.

6.2.1 HIV Dynamic Model

Mathematical models for HIV dynamics have been developed since the mid-1980s. The
detailed surveys can be found in Perelson and Nelson [25], Nowak and May [21], and
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Tan and Wu [29]. We consider a simplified HIV dynamic model with antiviral treatment as
follows [15–17]

d

dt
T ¼ l� dTT � [1� g (t)]k TV ,

d

dt
T� ¼ [1� g (t)]k TV � d T�,

d

dt
V ¼ NdT� � cV ,

ð6:1Þ

where the three differential equations represent three compartments: target uninfected cells (T ),
infected cells (T �), and free virions (V ). The parameter l (day21 mm23) represents the rate at
which new T cells are created from sources within the body, such as the thymus, dT (day

21) is
the death rate of T cells, k (day21 mm23) is the infection rate without treatment, d (day21) is the
death rate of infected cells, N is the number of new virions produced from each infected cell
during its lifetime, and c (day21) is the clearance rate of free virions. The time-varying par-
ameter g (t) is the antiviral drug efficacy at treatment time t, as defined in Section 6.2.2. In
this model, the difference between the RTI and PI drug actions is not considered, but is
expected to have only a small effect on long-term HIV dynamics and model predictions. If
we assume that the system of Equations (6.1) is in a steady state before initiating antiretroviral
treatment, then it is easy to show that the initial conditions for the system are

T0 ¼
c

k N
, T�

0 ¼ cV0

dN
, V0 ¼

lN

c
� dT

k
: ð6:2Þ

If the regimen is not 100% effective (does not provide perfect inhibition), the system of ordin-
ary differential equations cannot be solved analytically. The solutions to (6.1) then have to be
evaluated numerically. Let b ¼ (f, c, d, l, r, N, k)T denote a vector of parameters, where f is a
parameter in the treatment effect model presented below. In the estimation procedure, we only
need to evaluate the logarithmic difference between observed data and numerical solutions of
V(t), so there is no need for an explicit solution of Equation (6.1).

6.2.2 Treatment Effect Models

Within the population of HIV virions in a human host, there is likely to be genetic diversity and
corresponding diversity in sensitivity to the various antiretroviral (ARV) agents. In clinical
practice, genotypic or phenotypic tests can be performed to determine the sensitivity of
HIV-1 to ARV agents before a treatment regimen is selected. Here we use the phenotypic
marker, the median inhibitory concentration (IC50) [20] to quantify agent-specific drug
susceptibility. To model within-host changes over time in IC50 due to the emergence of new
drug-resistant mutations, we use the following function [16]

IC50(t) ¼
I0 þ

Ir � I0
tr

t for 0 , t , tr

Ir for t � tr ,

8<
: ð6:3Þ

where I0 and Ir are respective values of IC50(t) at baseline and timepoint tr at which the
resistant mutations dominate. If Ir ¼ I0, no new drug-resistant mutation is developed during
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treatment. Although more complicated models for median inhibitory concentration have been
proposed according to the frequencies of resistant mutations and cross-resistance patterns
[3,30], in clinical studies or clinical practice it is common to collect IC50 values only at baseline
and failure time as designed in A5055. Thus, this function may serve as a good approximation.
As examples, such functions for the ritonavir (RTV) and indinavir (IDV) drugs are plotted in
Figure 6.6.1a.

Poor adherence to a treatment regimen is one of the major causes of treatment failure [2,18].
Patients may occasionally miss doses, may misunderstand prescription instructions, or may
miss multiple consecutive doses for various reasons. These deviations from prescribed
dosing affect drug exposure in predictable ways. We use the following model to represent
adherence:

AdðtÞ ¼
1 for Tk , t � Tkþ1, if all doses are taken in [Tk ,Tkþ1]

Rd for Tk , t � Tkþ1, if 100Rd% doses are taken in [Tk ,Tkþ1],

�
ð6:4Þ

where 0 � Rd , 1 (d ¼ 1,2), with Rd indicating the adherence rate for drug d (in our study, we
focus on the two PI drugs of the prescribed regimen). Time Tk denotes the adherence evaluation
time at the kth clinical visit. As an example, Figure 6.6.1b shows the effect of adherence over
time for RTV and IDV drugs.

The HAART, containing two or more nucleoside/nonnucleoside reverse transcriptase
inhibitors (RTIs) and protease inhibitors (PI), has proved to be effective in reducing the
amount of virus in the blood and tissues of HIV-infected patients. In most viral dynamic

Figure 6.1 (a) The median inhibitory concentration curve [IC50(t)]; (b) the timecourse of
adherence [A(t)]; (c) the timecourse of inhibitory quotient [IQ(t)]; (d ) the timecourse of
drug efficacy [g (t)].
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studies [5,7,25,35], investigators assumed that the drug efficacy was constant over treatment
time. Drug efficacy may actually vary, however, because the concentrations of ARV drugs
and other factors (e.g., emergence of drug-resistant mutations) vary during treatment
[5,8,25], and thus the drugs may not be perfectly effective. Also, patients’ viral load may
rebound as a result of drug resistance, nonadherence, and other factors [9]. To model the
relationship of drug exposure and resistance with antiviral efficacy, we employ the following
modified Emax model [28] to represent the time-varying drug efficacy for two ARV agents
within a class (e.g., the two PI drugs IDV and RTV)

g(t) ¼ IQ1(t)A1(t)þ IQ2(t)A2(t)
fþ IQ1(t)A1(t)þ IQ2(t)A2(t)

, ð6:5Þ

where IQd (t) ¼ C12h
d /ICd

50(t) (d ¼ 1, 2) denotes the inhibitory quotient (IQ) [13]; C12h
d and

IC50
d (d ¼ 1, 2) are the trough levels of drug concentration in plasma (measured 12 h after

the doses had been taken) and the median inhibitory concentrations for the two agents, respect-
ively. Note that C12h could be replaced by other pharmacokinetic parameters such as the area
under the plasma concentration-time curve (AUC). Although IC50(t) can be measured by phe-
notype assays in vitro, it may not be equivalent to the IC50(t) in vivo. The parameter f is used to
quantify the conversion between in vitro and in vivo IC50 that can be estimated from clinical
data. The value of g (t) ranges from 0 to 1. If g(t) ¼ 1, the drug is 100% effective, whereas
if g(t) ¼ 0, the drug has no effect. Note that if C12h

d , Ad(t), and IC50
d (t) are measured from a

clinical study and f can be estimated from clinical data, then the time-varying drug efficacy
g (t) can be estimated for the whole period of antiviral treatment. Similarly, we can model
the combined drug efficacy of an HAART regimen with both PI and RTI agents. Lack of
adherence reduces the drug exposure, which can be quantified by Equation (6.4), and thus,
on the basis of formula (6.5), reduces the drug efficacy, which, in turn, can affect virological
response. The examples of the timecourses of the inhibitory quotients and the drug efficacy g(t)
with f ¼ 1, C12 h

1 ¼ 80 and C2
12 h ¼ 50 for two PI drugs are shown in Figures 6.1c and 6.1d,

respectively.

6.3 STATISTICAL METHODS FOR PREDICTIONS OF
CLINICAL OUTCOMES

6.3.1 Bayesian Nonlinear Mixed-Effects Model

A number of studies investigated various statistical methods, including Bayesian approaches, to
fit viral dynamic models using short-term viral load data [23,11,34,35,33]. Huang et al. [16,17]
extended the existing methods to model long-term HIV dynamics. In this chapter, we focus on
the predictions of virological response under the setting of a hierarchical Bayesian nonlinear
model.

We denote the number of subjects by n and the number of measurements on the ith subject
by mi. For notational convenience, let m ¼ (ln f, ln c, ln d, ln l, ln dT, ln N, ln k)

T, ui ¼ (ln fi,
ln ci, ln di, ln li, ln dTi, ln Ni, ln ki)

T, Q ¼ fui ¼ 1, . . ., ng Qfig ¼ ful, l = ig and Y ¼ fyij, i ¼
1, . . . , n; j ¼ 1, . . . , mig. Let fij (ui, tj) ¼ log10(Vi, (ui, tj)), where Vi (ui, tj) denotes the num-
erical solution of the differential equations (6.1) for the ith subject at time tj. Let yij(t) and ei(tj)
denote the repeated measurements of common logarithmic viral load and a measurement error
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with mean zero, respectively. The Bayesian nonlinear mixed-effects model can be written in the
following three stages [4,15–17]:

Stage 1: Within-Subject Variation:

yi ¼ f i(ui)þ ei, eijs 2,ui � N (0,s 2Imi ) ð6:6Þ

Here, yi ¼ ( yi1 (t1), . . ., yimi (tmi ))
T, fi(ui) ¼ ( fi1 (ui, t1) , . . ., fimi (ui, tmi ))

T, ei ¼ (ei (t1),
. . ., ei (tmi ))

T

Stage 2: Between-Subject Variation:

ui ¼ mþ bi, [bijS] � N (0,S) ð6:7Þ

Stage 3: Hyperprior Distributions:

s�2 � Ga(a, b), m � N (h,L), S�1 � Wi(V,n) ð6:8Þ

where the mutually independent Gamma (Ga), normal (N ), and Wishart (Wi) prior dis-
tributions are chosen to facilitate computations [4]. The values of hyper-parameters were
determined from previous studies and literature [11,12,21–25,32].

Following the studies by Davidian and Giltinan [4] and Gelfand et al. [10], we have shown
[16] from (6.6)–(6.8) that the full conditional distributions for the parameters s22, m, and S21

may be written explicitly as

[s�2jm,S�1,Q,Y] � Ga

 
aþ

Pn
i¼1 mi

2
,

(
1
b
þ 1
2

Xn
i¼1

Xmi

j¼1

�
yij � fij(u i,tj)

�2
)�1!

ð6:9Þ

[mjs�2,S�1,Q,Y] � N

 
(nS�1 þL�1)�1 S

�1
Xn
i¼1

ui þL�1h

 !
, (nS�1 þL�1)�1

!

ð6:10Þ

[S�1js�2,m,Q,Y] � Wi V�1 þ
Xn
i¼1

(u i � m)(u i � m)T
" #�1

, nþ n

0
@

1
A ð6:11Þ

Here, however, the full conditional distribution of each ui, given the remaining parameters and
the data, cannot be calculated explicitly. The distribution of [uijs22, m, S21, Qfig, Y] has a
density function that is proportional to

exp
�s�2

2

Xmi

j¼1

½ yij � fij(ui,tj)�2 �
1
2
(u i � m)TS�1(u i � m)

( )
ð6:12Þ
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The Markov chain Monte Carlo (MCMC) scheme for drawing samples from the posterior
distributions of all parameters in the three-stage model presented above is obtained by iterating
between the following two steps: (1) sampling from one of the conditional distributions (6.9)–
(6.11) and (2) sampling from the expression (6.12). To implement an MCMC algorithm, the
Gibbs sampler is used here to update s22, m, and S21, while we update ui (i ¼ 1, 2, . . . ,
n) using the Metroplis–Hastings algorithm. See Huang et al. [15–17] for detailed discussions
of the Bayesian modeling approach, including the choice of the hyperparameters and
implementation of the MCMC procedures [31].

6.3.2 Predictions Using the Bayesian Mixed-Effects
Modeling Approach

In this section, we propose the methods for predictions of virological responses. We apply the
proposed deterministic antiviral response model to characterize long-term viral dynamics and
use the Bayesian modeling approach for predictions. We investigate two prediction problems:
(1) predicting the virological response for a new subject, and (2) predicting future virological
responses for one of the individuals who has some data available. A method for doing this is to
calculate the posterior predictive distribution of responses based on the model specified by
(6.6)–(6.8) and the clinical data.

Let Y denote the data from all patients for which posterior distributions of all population and
individual parameters C ¼ (s22, m, S21) and ui (i ¼ 1, 2, . . . , n) are available. Denote by y�

the virological response (viral load in log10 scale) for an individual. Then the posterior predic-
tive distribution of interest is p( y�jY), which can be expressed as

p(y�jY ) ¼
ð
p(y�,u �,CjY )du � dC ¼

ð
pðy�ju�,C)p(u�jC)p(CjY )du� dC ð6:13Þ

where u� denotes the parameter vector for the patient of interest. If the patient is new and no
information is available, the population dynamic parameter m can be used. We denote the G
usable iterations from the MCMC sampler by

fuðgÞi ,CðgÞg ¼ fuðgÞi ,(s�2)ðgÞ,mðgÞ,(S�1)ðgÞg, g ¼ 1, . . . ,G: ð6:14Þ

For the prediction problem of a new patient, denote the conditional predictive distribution
by p( y�jC, Y). We can now obtain a Monte Carlo estimator of p ( y�jY) by using the iterations
of MCMC sampler in (6.14):

p̂(y�jY ) ¼ 1
G

XG
g¼1

p(y�jCðgÞ,Y ) ð6:15Þ

Let us now consider the second prediction problem, predicting future virological responses
for one of the n patients, for example, patient k. Denote the conditional predictive distribution
of y� by p( y�juk, C, Y). We can again obtain a Monte Carlo estimator of p( y�jY ) by using the
iterations of MCMC sampler in 6.14:

p̂(y�jY ) ¼ 1
G

XG
g¼1

p(y�juðgÞk ,CðgÞ,Y ): ð6:16Þ
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In (6.15) and (6.16), we used the MCMC iterations to compute the predictive distributions
using their known functional forms. We can also incorporate this step directly into the MCMC
sampler by adding either p( y�jC,Y) or p( y�juk, C,Y) to the set of conditional distributions
(6.9)–(6.11), from which we sample. We then obtain the MCMC iterations ( y�)(g), g ¼ 1, 2,
. . . ,G as part of the simulation output, and we can readily analyze them.

6.4 SIMULATION STUDY

In this section, we present a simulation example to illustrate the proposed Bayesian prediction
approach. The scenario we consider is as follows. We simulate a clinical trial with 20 HIV-1-
infected patients receiving long-term antiviral treatment. For each patient, we assume that
measurements of viral load are taken at 15–30 timepoints ranging from day 0 to day 200 of
follow-up. We consider the Bayesian nonlinear mixed-effects model (6.6)–(6.8), but for illus-
tration purposes and for computational convenience, we propose to estimate only the two par-
ameters log c and log d that are identifiable in our model [17], and assume that the other five
parameters (log f, log l, log r, log N, log k) are fixed to be (log f, log l, log r, log N, log k) ¼
(2.5, 4.6, 22.0, 6.9, 29.6). These values were chosen from previous studies in the literature
[7,21,25]. From the discussion in Section 6.3.1, the prior distribution for m ¼ (log c, log d)T

was assumed to beN (h, L), where L is a diagonal matrix. The details of the prior construction
for unknown parameters are discussed in Huang et al. [16]. Thus, the values of hyperpara-
meters are chosen as follow: a ¼ 4.5, b ¼ 9.0, n ¼ 5.0, h ¼ (1.1, 21.0)T, L ¼ diag(103,
103), V ¼ diag(2.5, 2.5).

Note that the noninformative priors are chosen for both log c and log d. The values of the
hyperparameters were determined based on several studies in the literature [11,23]. In addition,
the data for the pharmacokinetic factor (C12h), phenotype marker (baseline and failure IC50 s),
adherence and the baseline viral load (V0) were taken from an AIDS clinical trial study
(Section 6.5). The true individual dynamic parameters, log ci and log di, are generated by
log ci ¼ log c þ b1i and log di ¼ log d þ b2i, where log c ¼ 1.1 and log d ¼21.0 are the
true values of population parameters, and both b1i and b2i are random effects following a
normal distribution with mean 0 and standard deviation 0.2.

On the basis of the generated true individual parameters and five known constant par-
ameters, as well as clinical factor data [C12 h, IC50, and A(t)], the observations yij (the
common logarithm of total viral load) are generated by perturbing the solution to the differen-
tial equations (6.1) with a within-subject measurement error, yij ¼ log10(Vij) þ ei, where Vij is
the numerical solution for viral load obtained from the differential equations (6.1) for the ith
subject at time tj. It is assumed that the within-subject measurement error ei is normally distrib-
uted with N (0, 0.12). We apply the proposed Bayesian prediction approach to estimate the
dynamic parameters via the MCMC procedure.

We consider the following two prediction scenarios: (1) completely removing the data of a
simulated patient when estimating dynamic parameters, with the objective of predicting the
viral load responses of this patient; and (2) removing only some of the late measurements of
viral load, and trying to use the remaining data to predict the future viral load responses. As
an example, Figure 6.2 displays the predicted curves beginning at a point denoted by the
circle with generated viral load data in log10 scale (solid circles) for two subjects: subject 14
(21 viral load measurements generated) with viral rebound; subject 20 (30 viral load measure-
ments generated) with a rapid decay of viral load in the short term, followed by a rebound of
the virus. We show the predicted curve in the case of completely removing the data for the
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prediction subject in Figure 6.2 (corresponding to legend boxes (1)). In this case, we used the
estimated population parameters and the baseline viral load from this subject to predict future
virological responses. We can see that the prediction power is very poor in this case since no
subject-specific information is available and only population parameter estimates are used.

However, if some data from this subject (i.e., some observed viral load measurements) are
available after initiation of treatment, the subject-specific information can be combined with the
information from other subjects together to fit the model and to predict future virological
responses of this subject. The results indicate that the predictions have been greatly improved.
It is seen from Figure 6.6.2 that the more information from this subject is provided, the better
predictions are achieved. Note that the numbers in the legend denote the numbers of viral load
measurements available for predicting future virological responses.

6.5 CLINICAL DATA ANALYSIS

We apply the proposed methodology to the data from an AIDS clinical study. This study was a
phase I/II, randomized, open-label, 24-week comparative study of the pharmacokinetic, toler-
ability, and antiretroviral effects of two regimens of indinavir (IDV) and ritonavir (RTV), plus
two nucleoside analog reverse transcriptase inhibitors on HIV-1-infected subjects failing

Figure 6.2 Generated viral load data in log10 scale (solid circles) and individual prediction
curves beginning at the point denoted by the circle for the two representative subjects. The
values in the legend denote the number of viral load measurements used for predicting
future virological responses. The HIV-1 RNA measurements below a limit of detection of
25 copies/mL are imputed by 25 copies/mL (dashed horizontal line).
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protease inhibitor-containing antiretroviral therapies [1]. The 44 subjects were randomly
assigned to the two treatment arm A [IDV 800 mg twice daily (q12h) þ RTV 200 mg
q12h] and arm B (IDV 400 mg q12h þ RTV 400 mg q12h). Out of the 44 subjects, 42 sub-
jects are included in the analysis; of the remaining 2 subjects, 1 was excluded from the analysis
since the pharmacokinetic parameters were not obtained and the other was excluded since
PhenoSense HIV could not be completed on this subject because of an atypical genetic
sequence that causes the viral genome to be cut by an enzyme used in the assay. Plasma
HIV-1 RNA (viral load) measurements were taken at days 0, 7, 14, 28, 56, 84, 112, 140,
and 168 of follow-up. The data for pharmacokinetic parameters (C12h), phenotype marker
(baseline and failure IC50s) and adherence from this study were also used in our modeling.
The adherence data were determined from the pillcount data. More detailed description of
this study can be found in the publication by Acosta et al. [1].

Similar to the simulation study discussed in Section 6.4, the prior distribution for m ¼ (log
f, log c, log d, log l, log r, log N, log k)T is assumed to be N (h, L), where L is a diagonal
matrix. We chose the values of the hyperparameters [7,11,21,23] as follows:

a ¼ 4:5, b ¼ 9:0, n ¼ 8:0, h ¼ (2:5,1:1, � 1:0, 4:6, � 2:3,6:9,� 9:0)T ,

L ¼ diag(1000:0, 0:0025, 0:0025, 0:0025, 0:0025, 0:0025, 0:001),

V ¼ diag(1:25, 2:5, 2:5, 2:0, 2:0, 2:0, 2:0):

The MCMC techniques introduced in Section 6.3 were used to obtain the prediction results,
which are summarized below. Figure 6.3 presents the observed viral load data in log10 scale
(solid circles) and the predicted curves (solid) beginning at the point denoted by the circle
as well as the corresponding 95% prediction credible intervals (dotted curves) for two subjects:
one subject with viral rebound and one subject with virological success. We find the prediction
results to have patterns similar to what we observed in the simulation study: (1) the prediction
power for a new subject is very poor (see Fig. 6.3, legend boxes (1)) (2) we should notice in
Figure 6.3 that since the viral load measurements below a limit of detection of 25 copies/mL
are imputed by 25 copies/mL, while our method can predict the exact viral load values [i.e.,
those below the dashed horizontal line of log10(25)]. In this sense, when we predict future vir-
ological responses for one of the 42 subjects based on partial information about this subject, the
more the amount of information from this individual, the better the predictions. We find, not
surprisingly, that the predicted values are closer to the observed values when more information
from this subject is used. The 95% prediction credible interval associated with each predicted
value generally covers the observed value in almost all cases where enough information is
available. This suggests that the proposed Bayesian prediction approach under the framework
of the nonlinear mixed-effect model performs reasonably well.

6.6 CONCLUDING REMARKS

This chapter uses the MCMC techniques to estimate dynamic parameters in a hierarchical
nonlinear mixed-effects model and to make predictions of antiviral response. We have pre-
sented a simulation example and an actual AIDS clinical trial study to illustrate how the pro-
posed Bayesian procedure can be applied to HIV dynamic studies for predictions of antiviral
responses.
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We investigated two prediction problems for an individual patient. If a patient’s baseline
characteristics are available, the antiviral response model established from a similar patient
population can be used to predict the outcomes under the assumption of the same treatment.
However, as expected, our results reveal that the prediction power is low in this case since the

Figure 6.3 Observed viral load data in log10 scale (solid circles) and individual prediction
curves (solid) started at the point denoted by the circle as well as the corresponding 95% pre-
diction credible intervals (dotted curves) for the two representative subjects. The values in the
legend denote the number of viral load measurements used for predicting future virological
responses. The HIV-1 RNA measurements below a limit of detection of 25 copies/mL are
imputed by 25 copies/mL (dashed horizontal line).
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subject-specific information is limited. If the antiviral response data from the patient are par-
tially available in addition to the baseline information, the predictions for this particular
patient can be greatly improved since both the subject-specific information and the infor-
mation borrowed from other patients are used for predictions. In addition, the proposed
Bayesian approach can be employed to incorporate the prior information from existing clinical
studies to increase the prediction power. We can dynamically update the prediction results, as
soon as new additional data from this patient are available. Our results from both the simu-
lation example and real data analysis confirm these arguments. The dynamic predictions of
antiviral responses for individual patients will be useful for clinicians to develop individua-
lized treatments and to make clinical decisions.

We notice that there exist some limitations and difficulties in predicting antiviral response
for individual patients. In fact, patients’ behavior during treatment is difficult to predict, and
some unexpected events may occur during the treatment period. Thus, it is not easy to accu-
rately predict the antiviral response for a particular individual. For example, in many cases
we may not be able to predict viral load rebound until we have observed the rebound data.
This is one limitation of our current model in which not all the parameters are identifiable
on the basis of the measurements of viral load only. Although we have used the (informative)
prior information for some of the population parameters, it can only solve the unidentifiability
problem for the population parameters. For the parameters of individual patients, the identifia-
bility problem may still exist, which may result in poor prediction for individual response,
although it may still produce a good fit to the observed data. We believe that if there is no iden-
tifiability problem and there are enough data in the early stage of the treatment before viral
rebound, our method should be able to predict the viral load rebound (virologic response
failure). We are actively investigating this problem now. We hope to report more successful
prediction results in the near future.

In clinical practice or clinical studies, we may not have frequent measurements of viral load
and other data, which will make the prediction difficult. This is not only because we do not
have enough data and information in this case but also because many unexpected and unpre-
dictable events such as emergence of drug resistance, drug holidays, or other noncompliance to
the therapy may occur between two clinical visits or measurements. Even in this case, our
results suggest that more frequent clinical visits and monitoring are necessary in order to
prevent treatment failure.

In summary, we have proposed combining a mechanism-based mathematical model and the
Bayesian inference approach for antiviral response predictions for AIDS patients. Although the
basic models and methodologies are not new, the application of these methods in the new
model settings for this particular biomedical problem is innovative. However, further studies
are warranted in order to make the proposed approaches for practical use. We expect that
similar ideas and the developed Bayesian prediction methods can also be applied to other
biomedical fields.
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C H A P T E R 7

Spatial Epidemiology
Lance A. Waller
Emory University, Atlanta, Georgia

7.1 SPACE AND DISEASE

The spatial distribution of cases of disease often captures the imagination of health researchers
and the general public, based primarily on the notion that the observed pattern of incidence or
prevalence can provide insight into the underlying mechanisms driving disease incidence, its
progression, and the design and implementation of effective public health responses. Historical
examples include John Snow’s famous maps of cholera incidence in London neighborhoods
and early maps of yellow fever incidence in relation to features of cities and docks [57,27].
More recent examples include reports of clusters of cancer cases near hazardous-waste sites.
However, quantifying such hypotheses through statistical inference is a difficult task due to
often subtle signals within multiple layers of noisy, nonindependent, observational data from
multiple agencies collected for multiple purposes, typically other than the spatial
epidemiology issue at hand. As a result, few applications have the luxury of a research
design optimized for the questions of interest, or an experimental setting within which to
conduct inference controlling for potential confounding factors. For these reasons, spatial epi-
demiologic studies encounter many complications in addition to those in traditional studies,
including some unique to the geographic setting.

The field of spatial statistics involves the statistical analysis of observations with associated
locations in space. These observations rarely follow a Gaussian distribution and are not inde-
pendent, two mainstays in the development of statistical methods. In addition, asymptotic
results take on a different flavor depending on whether we consider an increasing number of
observations within a fixed study area (infill asymptotics) or an increasing number of obser-
vations in an increasing study area (increasing domain asymptotics). In response to these
issues, a wide variety of statistical techniques for spatial epidemiologic inference have
emerged more recently, coalescing into a collection of approaches addressing specific questions.
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The field of spatial epidemiology is the subject of several lengthy texts [22,23,34,54] and we
present only an overview of a few particular issues here, accompanied by brief examples. We
encourage the interested reader to follow up in the referenced material for more detailed devel-
opment and applications.

In the sections below, we provide an overview of statistical methods commonly applied
to gain insight on epidemiologic questions based on spatially referenced data. We begin
with an overview of relevant spatial questions typically addressed in spatial epidemiology
and of the typical data structures available, and then review and illustrate methods based on
general topics.

7.2 BASIC SPATIAL QUESTIONS AND RELATED DATA

Often, our main goals in the analysis of spatial data mirror those from nonspatial data; namely,
we seek to describe data patterns, measure associations, and assess variability. In the specific
case of epidemiology, this often falls to assessment of associations between exposure and
disease. For spatial epidemiology, we typically don’t have precisely the information we want
and we seek to use spatial information to fill in for data we cannot easily measure.

More specifically, consider the following basic inferential epidemiologic questions, each
with a spatial dimension:

Q1. Can we quantify spatial trends and/or patterns in the location of cases? Does the risk
of disease appear to vary over space?

Q2. Can we quantify spatial trends and/or patterns in regional counts of incidence or
prevalence (e.g., the number of cases reported within each of a set of census
regions)? Again, does the risk of disease appear to vary over space?

Q3. Can we predict ambient exposure levels at locations where no measurement is taken,
based on measurements from several point locations?

Q4. Can we measure associations between disease risk at particular locations, accounting
for residual spatial correlation in model error terms?

Next, consider the types of data typically accompanying each question:

D1. Residential locations of cases and controls.

D2. Reported counts of incident or prevalent cases and population sizes from census
regions.

D3. Continuous observations of exposure levels at each of a number of monitoring
locations.

D4. Local measures of disease incidence, prevalence, or risk and associated exposure
measures.

Texts on spatial statistics often categorize methods by the data type available, but Waller
and Gotway [54] note a close correspondence between the data structures D1–D4 and their
associated underlying inferential questions of interest Q1–Q4. In this chapter we consider
more recent developments addressing questions Q1 and Q3 (spatial point patterns and
spatial prediction, respectively), and comment on relationships to questions Q2 and Q4.
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7.3 QUANTIFYING PATTERN IN POINT DATA

We begin with question Q1, how we quantify the spatial pattern of observed events in space. If
we consider the locations of events as random variables distributed in space, we may use a
spatial point process to describe the pattern of events within our study area, denoted D.
Basic questions include whether events are clustered or regularly distributed in space, and a
spatial Poisson process offers a convenient reference model of spatial randomness. Diggle
[16, p. 50] and Stoyan et al. [48, p. 33] define a homogeneous spatial Poisson process according
to the following criteria:

(i) The number of events occurring within a finite region A # D is a Poisson random vari-
able with mean ljAj for some positive constant l and jAj denoting the area of A.

(ii) Given the total number of events n occurring within the area A, the locations of the
events represent an independent random sample of n locations within A, where each
point is equally likely to be chosen as an event location.

Cressie [13, p. 634] lists the following equivalent definition of a homogeneous spatial Poisson
process:

(a) The numbers of events in nonoverlapping regions are statistically independent,

(b) For any region A within the study area

lim
jAj!0

Pr[exactly one event in A]
jAj ¼ l . 0;

where jAj ¼ the area of the region A, and

(c)

limjAj!0
Pr[two or more events in A]

jAj ¼ 0:

These definitions rely on a distinction between a point (any location within the study area where
an event could occur) and an event (a location within the study are where an event did occur
within a particular realization of the process). Properties (i) and (a) provide motivation for
extensions for the models of regional counts for question Q2, leading to development of
spatial Poisson regression models with residual spatial correlation [54, Ch. 9; 4, Ch. 5].

A few features of spatial Poisson processes merit mention: (1) the constant l represents both
the intensity of the process and the expected number of events occurring per unit area; (2) a
Poisson process assumes that event locations are independent of one another, that is, that the
occurrence of an event at one location does not influence the probability of events occurring
at any other locations; (3) properties (i) and (ii) provide a recipe for simulating realizations
from a spatial Poisson process, enabling Monte Carlo assessments of deviations of observed
patterns from a null distribution defined by the Poisson process. For instance, if we want to
assess evidence of clustering of observations, we may define a test statistic summarizing
some pattern aspect, calculate its value in the observed data, and then compare this value to
a histogram of values obtained under repeated simulations under a Poisson process [8,54].
As a result, Monte Carlo methods are widely used in the analysis of spatial point processes,
as illustrated in the example below.
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If we wish to allow the intensity to vary over space, we may define a heterogeneous spatial
Poisson process with intensity l (s), a function that varies (typically smoothly) across locations
within the study area s [ D. Properties (i) and (ii) are revised to

(i0) The number of events occurring within a finite region A follows a Poisson distribution
with mean

Ð
Al(s) ds.

(ii0) Given the total number of events n occurring within an area A, the events are distrib-
uted according to a (spatial) probability distribution proportional to l(s).

Spatial Poisson processes provide a convenient framework for modeling spatial point
patterns, but are not the only set of models for doing so. The Poisson process assumes that
all events are independent of one another and models all spatial pattern via the hetero-
geneous intensity function; that is, we model all pattern through the first order (mean) proper-
ties of the process. Models assuming interdependence between event locations (e.g., contagion
processes) also allow pattern due to second-order properties of the process. It is mathemati-
cally impossible to distinguish first-order patterns from second-order patterns based on a
single realization of a point process as one could describe an aggregation equally well
through a locally increased mean number (intensity) of independent observations, through a
constant mean number (intensity) of dependent observations, or some combination of the
two [5; 54, p. 137].

In practice, one often assumes independence between events associated with chronic out-
comes (e.g., cancers) and seeks to identify spatial variation in the risk of disease by estimating
the underlying intensity function associated with cases. However, the intensity of cases alone
can be misleading without due consideration of the spatial distribution of the population at risk,
since more cases will be observed where more persons are at risk under the null model of a
constant risk of disease. As a result, most modern studies of spatial point patterns of disease
incorporate a set of “controls” or nondiseased individuals sampled from the population at
risk. The analyst then compares the spatial pattern of cases with that of the controls and quan-
tifies differences to identify case patterns of interest.

To illustrate this point, consider the following dataset originally presented in Cuzick and
Edwards [14]. Figure 7.1 represents the residential locations of 62 cases of childhood leukemia
diagnosed between 1974 and 1982 in the North Humberside region of the United Kingdom.
Also shown are the residential locations of 143 controls sampled at random from the birth reg-
ister for the same years. Note the concentration of cases and controls in the southern region
representing the higher population density found in the city of Hull. Without the controls,
the concentration of cases might seem suspicious, illustrating the importance of considering
a heterogeneous process with intensity adjusted for spatial patterns in the population at risk.
Additional analyses of these data appear in Lawson [34] and Diggle [18].

Since we wish to compare patterns between cases and controls, we begin by estimating the
intensity functions for each, denoted l1(s) for cases and l0(s) for controls. Here s ¼ (u,v)
denotes any location within our study area D illustrated by the polygon containing observed
case and control events in Figure 7.1.

Since an intensity function is simply a nonnormalized spatial density function, it is natural
to use kernel-based smoothing methods to provide nonparametric intensity estimates [56]. The
use of kernel-based intensity function estimates to identify regions of different patterns between
cases and controls have been proposed for some time [10,36] and developed in depth by Kelsall
and Diggle [27–29]. The approach provides both visual and inferential output addressing the
questions of interest, but applications in the literature are somewhat limited by software
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availability. The analyses below were implemented in the R language [43] using the libraries
splancs and KernSmooth.

To start, suppose we estimate l1(s) by

~l1ðsÞ ¼
1

jDjb
Xn1
i¼1

Kern
ks� sik

b

� �
, ð7:1Þ

where s is a location within D; si, i ¼ 1, . . . , n1 represent the locations of n1 cases; ks 2 sik
denotes the distance between a point location s and an observed event location si; Kern(.) is a
kernel function satisfying

Ð
D Kern(s)ds ¼ 1; jDj denotes the area ofD; and b denotes a smooth-

ing parameter (bandwidth). We define l̃0 (s) similarly.
A note on the scaling factor 1/jDj is in order. Scaling by 1/jDj results in a kernel estimate

that integrates to N/j Dj, the average number of events per unit area, and omitting the 1/jDj
term generates a kernel estimate integrating to N. Wand and Jones [56] suggest omitting the
scaling factor 1/jDj, and Diggle [17] suggests scaling by 1/jDj to provide an estimate
expressed as average event counts rather than a probability. Perhaps stricter notation would
define the estimate in Equation (7.1) as “proportional to” rather than “equal to” the estimated
intensity function, but, in a sense, scaling by 1/N (density), 1 (intensity), or 1/jDj (expected
events per area) is somewhat irrelevant for visualization of the local peaks and valleys for a
particular process.

Figure 7.1 Location of 62 leukemia cases (filled circles) and 143 controls (open circles) in
the North Humberside region of the United Kingdom (data originally from Cuzick and
Edwards [14]. Cases were diagnosed between 1974 and 1982 and controls sampled from the
birth register for the same years.
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Kelsall and Diggle [27,28] note that, under an assumption of independent heterogeneous
Poisson processes for cases and controls, when we condition on the observed numbers of
cases and controls, the data are equivalent to two independent random samples from
(spatial) density function

f (s) ¼ l1(s)

�ð
D
l1(s

�)ds�

for cases and

g(s) ¼ l0(s)

�ð
D
l0(s

�)ds�

for controls, where s� represents any location within D. Conditional on the observed case and
control totals (n1 and n0), Kelsall and Diggle [27,28] build inference based on the natural
logarithm of the ratio of the two spatial densities

r(s) ¼ logf f (s)=g(s)g,

a quantity related to the logarithm of the relative risk of observing a case rather than a control at
location s in D.

To illustrate the approach, Figure 7.2 gives the kernel density estimates for cases and con-
trols in the North Humberside data for a common bandwidth of 0.05 distance units. We note an
overall similarity between the general patterns in Figure 7.2. Taking the ratio of the two
elements, we obtain the (log) relative risk surface shown in Figure 7.3.

We see some spatial variation in the log relative risk surface, most notably a generally
decreasing west-to-east trend with a marked increase on the westernmost edge. For inference,
we need to assess the variability of the estimated log relative risk surface under a null hypoth-
esis of constant risk everywhere [i.e., a flat (log) relative risk surface]. Kelsall and Diggle [28]

Figure 7.2 Kernel density estimates of the North Humberside leukemia cases (a) and
controls (b) in North Humberside with bandwith set to 0.05.
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offer a convenient way to operationalize this null hypothesis, conditional on the observed case
and control locations, based on a “random labeling” of n1 of the n1 þ n0 observed locations as
cases. For a grid of points, we calculate the observed log relative risk surface illustrated in
Figure 7.3a. For each of a large number of random samples of n1 cases from the set of n1 þ
n0 observed locations (500 such relabelings in our examples below), we recalculate the log rela-
tive risk surface at the same grid of points, then compare the log relative risk estimate at each
location to those simulated under the random labelings.

We note that the random labeling inferences represent pointwise rather than simultaneous
confidence bounds across all grid locations, due to the large number of grid points where
we make comparisons.

For the North Humberside data, we mark grid locations in Figure 7.3b with the observed log
relative risk value falling above the 97.5th percentile of random labeling values by a “ þ ” and
those falling below the 2.5th percentile by a “2.” We note that the peak on the western side of
the study area and the troughs on the northern and eastern edges each fall outside the random
labeling tolerance intervals. Examination of the data in Figure 7.1 reveals that all three areas
represent low-density regions within the study area. In particular, the peak covers an area
with very few cases and no controls.

To investigate the robustness of the significant departures in Figure 7.3, we consider broader
bandwidths to incorporate more information in the sparsely represented regions of the study
area. Kelsall and Diggle [28] stress the theoretical and practical importance of a shared
bandwidth value to maintain comparability between the two density estimates and offer a
cross-validation algorithm for identifying the bandwidth minimizing the mean integrated
squared error between the estimate and the true (unobserved) density surface. While identifying
a single, optimal bandwidth has merit, Silverman [46] also notes the value of exploring the
stability of observed structures across bandwidth values, an approach that we take in our
illustrative example here. To illustrate the point, consider the density estimates and associated
log relative risk surfaces in Figures 7.4 and 7.5. As one would expect, we see the peaks

Figure 7.3 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.05 for both cases and controls.
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and valleys attenuated, but note that the western peak remains outside the range of values
obtained under 500 random labeling simulations, suggesting a “significant” increase in the
local relative risk.

The preceding example reveals several items meriting additional comments. First, we note
the impact of bandwidth selection on the general appearance and smoothness of the estimated
log relative risk surface. In addition, we note the impact of sparsely populated (or at least

Figure 7.4 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.07 for both cases and controls.

Figure 7.5 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.1 for both cases and controls.
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sparsely sampled) areas on the estimated surface, particularly when such areas are near the edge
of the study area. Kernel estimates are particularly variable near these edges since we do not
include information from any cases or controls falling outside of the study region boundary.
This issue of “edge effects” has seen some discussion in the spatial analysis literature [34],
but adjustments remain largely ad hoc and rarely (if ever) see different adjustments for
different sorts of edges (e.g., a coastline represents a true edge beyond which no cases can
occur, while a county or country boundary is purely a political distinction with little causal
association with local disease risk). Finally, the illustration also reminds us of the epidemiolo-
gic distinction between relative and attributable risks since the observed elevated estimate of
log relative risk corresponds to only a small number of actual cases.

The log relative risk surface represents one way of exploring spatially referenced point data
for local “clusters” of increased risk. Waller and Gotway [54, Chs. 6, 7] review a wide variety
of additional approaches for cluster detection, noting that each approach uses its own math-
ematical definition of a “cluster” and, as a result, different methods may detect differing evi-
dence of clusters (and, in fact, different clusters) within the same dataset.

To illustrate this point, we briefly describe the popular spatial scan statistic developed by
Kulldorff [31] and available in the freeware package SaTScan [32], and then apply it to the
North Humberside leukemia data. Scan statistics consist of a moving window where one cal-
culates the statistic of interest (here the local relative risk) inside and outside the window and
seeks to identify the window (or windows) providing the most extreme values. In the particular
instance of the spatial scan statistic developed by Kulldorff [31], we consider circular windows
of varying sizes (with windows ranging from those containing a single case or control to those
containing half of the sampled population), and for each window we calculate a likelihood ratio
statistic for the hypothesis of equal risk inside and outside of the window. More specifically, let
n1,in and nin ¼ (n1,in þ n0,in) denote the number of case locations and persons at risk (number of
case and control locations) inside a particular window, respectively, and similarly define n1,out
and nout ¼ (n1,out þ n0,out) for outside the window. The statistic of interest is the maximum of
the local likelihood ratio statistics, for the Poisson case

max
All windows

n1,in
nin

� �n1,in n1,out
nout

� �n1,out

I
n1,in
nin

.
n1,out
nout

� �
, ð7:2Þ

where I(.) denotes the indicator function, so we only maximize over windows where the
observed rate inside the window exceeds that outside the window.

We obtain a likelihood ratio via Equation (7.2) within each window and identify the
window(s) yielding the highest value. Rather than using distributional results for each likeli-
hood ratio statistic (which would result in multiple testing problems), Kulldorff [31] instead
proposes a Monte Carlo test addressing the following question: “How unusual is the highest
observed local likelihood ratio statistic?” For each of a large number of simulated assignments
of case locations, we again find the window (among those considered) and the largest local like-
lihood ratio statistic. The test statistic obtained from the original observed data is ranked against
those values obtained from the simulated data, thereby providing a Monte Carlo p value associ-
ated with the “most likely cluster.”

It is important to note two features:

1. We note that the observed likelihood ratio statistic for the most likely cluster is ranked
against the maximum statistic from each simulation, regardless of location. This
avoids the multiple comparison problem in a clever way, but requires careful explanation
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to understand what precisely is meant by significance statements regarding the most
likely cluster.

2. The qualifying phrase “among those considered” added above in reference to the spatial
window also defines an aspect of the proper context for interpretation.

Specifically, the set of windows considered defines a family of potential clusters and our analysis
assesses the most unusual case aggregation among these. As an example, consider a long, linear
cluster of increased risk. In order to “capture” the cluster within our circular windows, we will
either have a small circle containing part of the cluster or a large circle containing most of the
cluster but also a large area experiencing the null, background risk. The first example loses stat-
istical power due to a smaller local sample size; the second, due to the diluted relative risk aver-
aged over the larger window. More recent implementations of SaTScan allow elliptical clusters
to generalize the set of potential clusters. Other more recent developments include the upper level
set approach of Patil and Taillie [42] and an approach based on minimum spanning trees [2],
which broaden the class of potential clusters at the expense of increases in computation time.

We apply the spatial scan statistic (using SaTScan, version 3.0) [32] to the North
Humberside leukemia data presented in Figure 7.1. Figure 7.6 indicates the most likely
clusters by arrows (both having the same local relative risk value). These clusters are quite
small, both contain four cases out of four individuals at risk (with 1.22 cases expected
under a null hypothesis of constant risk), and the Monte Carlo p value associated with this
value is 0.648, based on 999 simulations.

Comparing the results of the spatial scan statistic to those of the log relative risk surface
brings home several conceptual issues. First, note that the basic question of interest is the

Figure 7.6 Most likely clusters identified by the spatial scan statistic for the North Humberside
leukemia data. Neither is statistically significant, based on 999 Monte Carlo simulations.
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same in both cases; namely, we wish to find areas (“clusters”) inconsistent with a null hypoth-
esis of equal risk. In this example, the data are the same, but the different methods operationa-
lize our question slightly differently. The most likely clusters for the scan statistic are much
smaller than the suspicious areas raised by the log relative risk surface. Both of the most
likely clusters are found in areas of higher population density. Because of their small size
and the concentration of nearby case and control event locations, these aggregations are unli-
kely to be detected by kernel smoothing methods, due to the use of a single, fixed bandwidth
across the entire study area. Regardless of the resulting statistical significance, the choice of a
bandwidth small enough to detect very local excesses is unlikely to be effective in summarizing
patterns in the more sparsely populated sections of the study area. In addition, the area most
suspicious for the log relative risk surface is unlikely to be detected by a circular scan statistic
due to its elongated shape along the edge of the study area.

To wrap up our discussion of point patterns in spatial epidemiologic literature and our North
Humberside example, we note that neither approach presented above (nor many other proposed
methods found in the literature) is necessarily more “correct” than any other. Rather, each test
examines a class of potential deviations from the null setting, and draws conclusions from that
examination. Our example presents two specific approaches, but the same general principle
applies to all methods for detecting clusters different methods define (explicitly or implicitly)
the sorts of deviations under consideration, and different methods may provide different
results based the types of clusters present; hence no single method will provide a comprehen-
sive assessment of the presence or absence of clusters. Rather, applying different methods to
the same dataset may provide insight into the type of clusters potentially found within the
data [53].

We conclude this section by noting that the field of spatial point process modeling is far
broader than the two methods presented here and direct interested readers to general surveys
in Lawson [34], Waller and Gotway [54, Chs. 5–8], and especially more recent texts by
Møller and Waagepetersen [40] and Baddeley et al. [3]. In addition, the subfield of cluster
detection includes many additional approaches. In particular, the text by Lawson and
Denison [35]; papers by Anselin [1], Getis and Ord [24], Ord and Getis [41], and Tango
[49]; and the comprehensive review by Kulldorff in 2006 [33] provide entrance to additional
families of analytic cluster detection techniques. These publications and the references therein
provide a wider examination of different classes of methods and inferential questions and tech-
niques than those presented here.

7.4 PREDICTING SPATIAL OBSERVATIONS

We next consider another important component of spatial epidemiology, namely, the prediction
of local exposures across the study area D , based on a finite number of observations taken at
point locations within D . Many methods central to spatial prediction have their roots in the
geology and mining literature, and the field of geostatistics is focused on the mathematics
and associated inferential methods of spatial prediction.

The basic elements of spatial prediction follow a very intuitive structure:

1. We assume that observations are spatially correlated with observations taken close
together to be more closely related than those taken far apart (also known in the geogra-
phy literature as “Tobler’s first law of geography,” after the eminent geographer Waldo
Tobler [50].
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2. An accurate estimate of spatial correlation as a function of distance should allow us to
combine information across sites and predict the outcome at any location relative to
the observed measurements and their locations relative to the prediction location.

Taken together, spatial prediction is a two-component process; we first estimate the corre-
lation (covariance) as a function of space and then use this covariance function to combine
observations and create a set of predictions across the study area. In the case of a linear predic-
tion of Gaussian data (a weighted average of observed measurements with weights dependent
on the covariance function), the process is often referred to as kriging in honor of D. G. Krige, a
South African mining engineer (Krige 1951).

The geostatistical literature is large and varied. Cressie [13] and Chilès and Delfiner [12]
offer comprehensive coverage of classical statistical inference in geostatistics, while Stein
[47] expands its theoretical basis, and Wackernagel [51] focuses on multivariate setting.
Webster and Oliver [58] give an applied introduction to geostatistics, and Waller and
Gotway [54, Ch. 8] explore results in the setting of predicting exposure values for public health.

More recent methodologic advances of particular interest to spatial epidemiology involve
the use of hierarchical models for spatial prediction, often in a Bayesian setting using
Markov chain Monte Carlo (MCMC) algorithms for inference. We focus attention on this for-
mulation here, drawing primarily from Diggle, Tawn and Moyeed et al. [19] and the text by
Banerjee et al. [4].

We illustrate the model development and application on a dataset involving soil samples
and dioxin contamination originally published in Zirschky and Harris [59] and used as a
case study in Waller and Gotway [54]. In 1971, a truck carrying dioxin-contaminated waste
dumped part of its load along a road in rural Missouri. In 1983, the United States
Environmental Protection Agency (USEPA) collected soil samples in a systematic manner
along the road at varying distances, and at a higher frequency in the immediate area of the
spill. Figure 7.7 shows the sampling locations with circles of area proportional to the measured
log concentration (with concentration measured in mg/kg of soil) of dioxin taken at that
location. As we might expect, concentrations are highest in the vicinity of the spill [near coor-
dinates (15,30)] and along the roadway (the line Y ¼ 30).

Several basic assumptions underly spatial prediction. Most of these may be generalized, but
we present a straightforward example here to illustrate the approach:

1. The first assumption is that of stationarity, specifically the assumption that the spatial
correlation structure is the same across the entire study area. This assumption provides
a sense of replication for estimation of the spatial covariance function, since we often
observe only one dataset in any particular application.

2. One often assumes isotropy, that is, that the spatial covariance declines with distance in
the same manner in all directions.

3. Spatial prediction often assumes Gaussian measurements taken at each location. Under
the Gaussian assumption, classical kriging methods provide the best linear unbiased
prediction (BLUP) for each location in the study area.

4. Finally, for simplicity, we will assume a constant mean for all observations in our devel-
opment, that is, that all spatial patterns are due to spatial covariance among the
observations.

In our dioxin example, we maintain these assumptions for ease of exposition. However, for
the assumptions to best apply, we transform the data, first dividing the original X coordinate by
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50 to better follow isotropy then considering the log concentrations to better meet the Gaussian
assumption. The latter transformation results in the BLUP of the transformed values and is no
longer a BLUP of the dioxin concentration itself. Related bias adjustments are provided by
Cressie [13], but we focus here on the basic approach and compare the classical and more
recent hierarchical formulations of spatial prediction using the transformed dataset for
illustration.

Let Z(s) denote the outcome of interest (dioxin in our example), measured at location swithin
study area D. Let Z(si) denote our n measured values taken at locations si, i ¼ 1, . . . , n.
In classical geostatistics we seek a BLUP; hence our goal is to obtain an unbiased prediction
Z̃(s0) for any location s0 in D, defined by a linear combination of observed values

~Z(s0) ¼
Xn
i¼1

hiZ(si),

with weights hi to minimize the prediction error [Z(s0) 2 Z̃(s0)], typically summarized in clas-
sical geostatistics by the mean square prediction error (MSPE):

MSPE ¼ E Z(s0)� ~Z(s0)
� �2h i

:

In short, we need to find the set of weights fhi, i ¼ 1, . . . , ng minimizing the MSPE under the
given unbiasedness constraint.

Figure 7.7 Location of dioxin measurements. The area of each symbol is proportional to the
natural logarithm of the concentration as measured in mg/kg of soil.
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Since we assume a constant mean, it should come as no surprise that the optimal weights
will depend on the spatial covariance between the observed locations and any prediction
location of interest. The standard classical approach typically considers the semivariogram,
denoted g (h), defined via

2g(ksi � sjk) ¼ VarðZ(si)� Z(sj)), (7:3)

for locations si and sj within D. In other words, the semivariogram is defined as one-half of the
variance of the contrast between observations taken at distance h ¼ ksi 2 sjk apart. If we
assume that this function is the same for distance h regardless of the locations and relative
orientation of si and sj, then the semivariogram is stationary and isotropic, respectively. The
semivariogram is related to the spatial covariance function, C(h), specifically

g(h) ¼ C(0)� C(h),

and, as such, the semivariogram must meet conditions necessary to ensure a positive–definite
variance–covariance matrix for all measurements (observed or not) within the study area. On
the basis of this relationship, and since we generally assume positive spatial correlation declin-
ing with distance, the semivariogram will typically be an increasing function of distance, often
rising to a “sill” value representing the variance between observations taken far enough apart to
be effectively independent. The semivariogram has been slightly preferred over the covariance
function in classical geostatistics, due primarily to ease and accuracy of estimation over those
for the covariance function, among other, more technical reasons.

Given the semivariogram g (h), we obtain the optimal prediction weights h1, . . . , hn as
solutions to the kriging equations

h ¼ G�1g, (7:4)

where

h ¼ (h1, . . . ,hn,m)
0,

g ¼ ðg(s0 � s1), . . . ,g(s0 � sn), 1)
0,

where the elements of G are

Gij ¼

g(si � sj) i ¼ 1, . . . , n;
j ¼ 1, . . . , n;

1 i ¼ nþ 1; j ¼ 1, . . . , n;
j ¼ nþ 1; i ¼ 1, . . . , n;

0 i ¼ j ¼ nþ 1:

8>>>><
>>>>:

So (7.4) becomes

h1
h2

..

.

hn

m

2
666664

3
777775
¼

g(s1 � s1) � � � g(s1 � sn) 1
g(s2 � s1) � � � g(s2 � sn) 1

..

. . .
. ..

. ..
.

g(sn � s1) � � � g(sn � sn) 1
1 � � � 1 0

2
666664

3
777775

�1
g(s0 � s1)
g(s0 � s2)

..

.

g(s0 � sn)
1

2
666664

3
777775
:
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The equations above derive from minimization of the MSPE with an additional Lagrangian
multiplier m included to guarantee an unbiased predictor.

Computationally, note that we must calculate h for each prediction location, s0. However,
only the vector g changes with the prediction location. Since G depends only on the data but not
the prediction locations, we need invert G only once and then multiply by the associated g

vector to obtain a prediction for any s0 in D.
The minimized MSPE, also known as the kriging variance, derives from the same elements

and is given by

s2
k (s0) ¼ h0g

¼
Xn
i¼1

lig(s0 � si)þ m

¼ 2
Xn
i¼1

lig(s0 � si)�
Xn
i¼1

Xn
j¼1

hihjg(si � sj);

(7:5)

From Equations (7.4) and (7.5) we see that if we have the semivariogram function, we have
all we need to provide BLUP predictions at any location. As a result, there is a considerable
literature on variography, or the estimation of the semivariogram from observed data. One typi-
cally estimates the semivariogram from the observed data contrasts, often averaging over pairs
of observations taken the same (or nearly the same) distance apart. Such averages often provide
an empirical semivariogram, to which one fits a theoretical semivariogram defined as a para-
metric function of distance. Commonly used parametric families are cataloged throughout the
spatial statistical literature, for example, in Cressie [13] and Waller and Gotway [54, Ch. 8].
Parametric semivariogram families are often defined in terms of the semivariogram’s limiting
value as distance approaches zero (the “nugget”), the semivariogram’s limiting value as dis-
tance increases (the “sill”), and the distance beyond which observations are effectively inde-
pendent (the “range”).

Figure 7.8 illustrates the empirical semivariogram for the dioxin data, shown with dots
representing one-half of the average variation between contrasts observed at given distances
apart. The lines represent the best-fitting theoretical semivariograms from the exponential semi-
variogram model defined by

g(h; c0, ce, ae) ¼
0 h ¼ 0
c0 þ ce 1� expð�h=aeÞf g h . 0,

�
(7:6)

where c0 � 0 denotes the nugget effect, ce � 0 denotes the partial sill, and ae . 0, where 3ae
denotes the effective range (traditionally defined as the distance at which the autocorrelation is
0.05). We fit the theoretical semivariograms using both least squares (ordinary and weighted)
and likelihood-based (maximum likelihood and restricted maximum likelihood) method in the
geoR library for R [45]. The observed difference between the two types of estimator suggest a
skewed likelihood across the parameter space.

At this point, one would select a “best” semivariogram from the estimates, and then con-
dition on this estimated function to define the vector g in the kriging equations to obtain
both the point predictions at a set of prediction locations as well as the associated kriging
variances. For Gaussian data, these will allow construction of pointwise prediction intervals
at each location.
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As noted above, the classical kriging approach is typically a two-stage process: estimating
the semivariogram and then solving the kriging equations. Common criticisms of the clas-
sical kriging approach include concern that the uncertainty associated with the estimation of
the semivariogram is not adequately reflected in the prediction errors expressed in the
kriging variances. In addition, the typical semivariogram estimation procedure outlined
above is itself a two-step procedure involving construction of the point estimates defining
the empirical semivariogram, and then estimation of the parameters in the selected theoreti-
cal semivariogram family. Finally, the asymptotic properties of semivariogram estimation are
nontrivial, depending on whether one uses infill [47] or increasing domain [13, pp. 100–
101] asymptotics.

More recently attention has turned toward an effort to express spatial prediction in a more
cohesive manner addressing the uncertainty in all components in such a way as to accurately
reflect the entire process. The preceding description of classical spatial prediction followed a
rather utilitarian approach, highlighting each step of the typical analytical process. The basic
theoretical construction underlying both classical and Bayesian kriging, on the other hand,
is rather elegant when expressed in a hierarchical fashion, but until relatively recently could
not be readily implemented as such. However, with the advent of Markov chain Monte
Carlo (MCMC) techniques, a general computational framework for addressing hierarchical
models now exists and more recent statistical publications move toward bringing these ideas
and algorithms to the field of spatial prediction. This is not to say that MCMC solves all pro-
blems, as its implementation is often slow and much more computationally demanding than the
classical approach outlined above.

Statistical prediction can be regarded in a Bayesian framework where the optimal predictor
is defined by the conditional expectation of Z(s0) given the observed data. In a more formal
Bayesian statement, the point prediction defined by the conditional expectation

Figure 7.8 Semivariograms for dioxin measurements. The circles denote the empirical semi-
variogram and the lines denote the best-fitting exponential semivariogram under maximum
likelhood (ML), restricted maximum likelhood (REML), ordinary least squares (OLS), and
weighted least squares (WLS).
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E[Z(s0)jZ (s1), . . . , Z(sn)] represents the posterior predictive expectation of Z(s0) marginalizing
over the posterior distribution of any model parameters. For Gaussian data, this conditional
expectation is a linear function of the data (motivating the BLUP formulation presented
above), but for non-Gaussian data this conditional expectation need not be linear in the data,
so the conditional expectation provides a more general framework for prediction, provided
the expectation (and appropriate uncertainty measures) can be calculated.

More specifically, one can briefly contrast classical and hierarchically specified spatial pre-
diction following exposition found in the literature [19,21,4,55]. Let Z denote the vector of
data, S the unobserved spatial random field of all observations in D, and u a vector of
model parameters, for our purposes the set of covariance parameters. In effect, S is the set
of values Z(S0) for all s0 in D. It is helpful to distinguish Z and S in model development,
since we model the stochastic structure of S and seek inference regarding model parameters
based on observations in Z. Our prediction goal is to obtain the conditional distribution of S
given Z and u, expressed in general notation as [SjZ, u]. Diggle and Ribeiro [21] note that
Bayes’ theorem provides

[SjZ,u] ¼ [Z,Sju]
½Zju� ¼ [ZjS,u][Sju]Ð

[ZjS,u][Sju]dS : ð7:7Þ

This development conditions on a known value of the set of covariance parameters u, and sum-
marizes the classical spatial prediction setting in a general and elegant hierarchical form. As
illustrated in the development above, in practice, one typically estimates u from the data,
and then calculates the conditional expectation above (conditional on both the data Z and
the parameter estimates) via the kriging equations.

The hierarchical structure in Equation (7.7) allows both frequentist and Bayesian implemen-
tation. A frequentist approach builds the likelihood from the hierarchical components and then
requires calculation of the associated predictive distribution for inference, allowing one to
incorporate the variability associated with the covariance function (or, equivalently, the semi-
variogram) into the likelihood at the cost of more complicated computation. In contrast, a
Bayesian view of Equation (7.7) assumes a prior distribution [u] for the unknown parameters,
and then marginalizes over the posterior distribution of the parameters given the data [ujZ],
yielding the posterior predictive distribution

½SjZ� ¼
ð
½Sju,Z�½ujZ�d u: ð7:8Þ

Bayesian kriging draws point and interval predictions from this posterior predictive distri-
bution. While simple in theory, application of the full Bayesian approach typically encounters
complicated or intractable integrals, and also relies on advanced computing through MCMC
sampling from the desired posterior distributions for inference. Both the frequentist and
Bayesian implementations require either advanced computing or simplifying assumptions
(e.g., treating the estimated semivariogram as fixed, as in the classical approach). We focus
here on the Bayesian implementation of the hierarchical structure because of its increasing
application in the literature and the advent of more generally available MCMC code for
such models, and we apply both Bayesian and classical kriging to the dioxin data to
compare results.
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For comparability with the classical development above, suppose that our data are Gaussian
with constant mean, b0; that is, suppose

Z � MVN b0,SZð Þ, ð7:9Þ

where b0 represents an n vector of the constant mean b0 and SZ the n � n variance–covariance
matrix of the Z terms. (We use the intercept notation b0 to highlight where one might add
additional parameters in a regression-type model of the mean.) Next, suppose that we have a
parametric covariance function C(h; u), defined up to the unknown model parameters u. For
our example, we will use the isotropic, stationary exponential covariance function family, cor-
responding to the exponential semivariogram defined above. The covariance function defines
the elements of SZ based on the distances between pairs of observation locations:

SZij ¼ C(jjsi � sjjj, u):

The latent random field S serves as a data generator for Z, in the sense that the covariance
function C(h, u) is defined for any location s in D. For any set of n locations, we obtain a vector
of observations Z with the multivariate normal distribution defined in Equation (7.9), with C(h,
u) and the relative locations of observations defining SZ. For simplicity, we assume no
measurement error and set Z(si) ¼ S(si).

The next step in the model definition is to define prior parameters for model parameters b0

and u ¼ (ce, c0, ae). In most applications, the likelihood structure for the mean parameter b0 is
quite strong, allowing very vague prior specifications. Prior specification for covariance par-
ameters in u is somewhat more complicated, reviewed by Waller [55] and summarized here.
One could ignore u by specifying a conjugate inverse Wishart prior for SZ [11, pp. 459–
470; 15], but note that the inverse Wishart does not limit attention to specifically spatial covari-
ance structures and, similar to discussions of clustering approaches in the preceding section,
may not focus attention on the set of models that we are particularly interested in exploring.
A more common practice is to define individual conjugate prior distributions for each par-
ameter within u. While practical, this approach still requires care as noted by Berger et al.
[6,7], who consider reference and Jeffreys’ priors for variance–covariance parameters in a
Gaussian random field. This setting provides one of the few examples where applying
Jeffreys’ prior independently to each element of u yields an improper posterior distribution,
suggesting a need for further work and especially for care in transferring seemingly sensible
priors from the nonspatial to the spatial setting.

For the dioxin example, we assign a flat prior to b0, assume a nugget effect of c0 ¼ 0, and a
prior proportional to the reciprocal of the sill ce (variance of independent observations). Rather
than consider the effective range parameter ae, directly, we instead model the rate of exponen-
tial decay in the covariance function, denoted f. We assign a discrete prior based on 51 equally
spaced values between zero and twice the maximum observed distance between sampling
locations. We fit the model using the R library geoR [45]. Samples from the posterior distri-
butions of all three parameters appear in Figure 7.9. We find a clear posterior signal for b0

(compared to the assumed flat prior). For f, Figure 7.9 includes a thin line illustrating the
assigned prior distribution and a thick line representing a kernel estimate of the posterior dis-
tribution. We see both the posterior moving away from the prior and tightening around its (pos-
terior) mean value.

Figure 7.10 shows the empirical semivariogram values from Figure 7.8 and the semivario-
grams corresponding to the exponential covariance function evaluated at the estimated pos-
terior mean, median, and mode. The similarity between the two figures is reassuring and
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suggests accurate implementation of the Bayesian approach. We note that the skewed posterior
distributions of the sill and f result in the difference between the curves based on posterior
mean and medians and those based on the posterior mode (which is, not surprisingly, quite
similar to the maximum-likelihood estimates shown in Fig. 7.8).

Figure 7.9 Posterior samples for semivariogram parameters.

Figure 7.10 Bayesian semivariograms for dioxin measurements.
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Figure 7.11 shows the posterior mean predicted levels of log(dioxin) (the posterior mean
surface S) as perspective plots (from two different orientations) in the top row and as a
contour plot in the lower left. The image plot in the lower right shows the spatial pattern in
the variance of the posterior predictive distribution. Predictive variance is higheset in areas
with few observations, in particular, note the band of high predictive variances along the
road (Y ¼ 30), representing the band of no observations.

Figure 7.12 illustrates the posterior predictive mean and associated 2.5th and 97.5th percen-
tiles drawn on the basis of 5000 samples from the posterior predictive distribution taken along
transects for four different values of X. Note the widening of the posterior predictive distri-
bution in the area near the road (Y ¼ 30) corresponding to the increased predictive variance
associated with the lack of data taken in this area. Also, note the “tightening” of the prediction
errors near the sampling rows near Y ¼ 10,20,40,50,60.

An interesting feature appears in Figure 7.12 for X ¼ 15, the predictions taken through the
area of highest observed dioxin concentration values. Note that the mean posterior prediction
dips down between the peak values taken on either side of the road. This is due to our basing
prediction on a distance–decay correlation function. If we move beyond the effective range

Figure 7.11 Kriged log(dioxin) measurements: (a) mean of predictive distribution; (b) mean
of predictive distribution; (c) mean of predictive distribution; (d) local variance of predictive
distribution.
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estimated by our covariance (or semivariogram) function, observations would be (nearly) inde-
pendent of one another and each would receive nearly the same weight, resulting in the sample
mean in the BLUP case or a posterior estimate of the overall (assumed fixed) mean b0. In short,
spatial prediction adjusts toward neighboring values according to how closely correlated we
expect those values to be to our desired prediction. If no observations are close, the method
resorts to an estimate of the background mean.

Results based on classical results (solving the kriging equations in terms of the variogram
estimates shown in Fig. 7.8) are quite similar to those shown here for Bayesian kriging. As a
result, one might wonder what we gain from the extra model specification (setting prior distri-
butions) and the extra computational effort required for MCMC implementation over the basic
matrix calculations required for classical kriging. For Gaussian data with a covariance structure
easily modeled by standard parametric covariance functions and satisfying the basic assump-
tions of stationarity and isotropy, there may be little gain other than a sense of completeness in
the definition of the full probability model incorporating both covariance estimation and
outcome prediction.

However, the Bayesian hierarchical framework also sets the stage for broader extensions
than does the classical framework. To see this, consider the descriptions above. Both the clas-
sical setting and the Bayesian setting derive from a basic definition of conditional probability in
Equation (7.7). At this point the two descriptions (above and in most of the spatial statistical
literature) diverge in a manner mirroring a contrast seen in the frequentist and Bayesian litera-
ture. At the risk of oversimplification, the classical (frequentist) description often builds on the

Figure 7.12 Posterior predictive values of natural logarithm of the local dioxin concentration
for selected transects perpendicular to the road. The thick line denotes the posterior predictive
mean value and the dashed lines represent the 2.5th and 97.5th percentiles of 5000 samples
from the posterior predictive distribution.
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basic framework in the following manner. Given the data are Gaussian with a fixed mean, we
know (or can derive) that the predictor will be a linear function of the observed data. We would
like the weights in this linear predictor to minimize the mean square prediction error, so we
define the MSPE as a function of the weights and optimize subject to an unbiasedness con-
straint, obtaining the MSPE as part of the optimization.

We find the optimal weights are a function of the semivariogram, and next seek to estimate
the semivariogram in a accurate and consistent manner in order to provide the best set of pre-
diction weights. The prediction goal has been achieved by a series of theoretical derivations and
accompanying calculations, effectively achieving the larger task by a series of focused smaller
tasks, each built on appropriate theoretical results. Again, at the risk of oversimplification, in
the Bayesian description the initial goal of prediction is again cast in the setting of a conditional
probability. This conditional probability is reexpressed as a marginalization of a hierarchical
probability model with parameters defining the overall mean and covariance function (or semi-
variogram if preferred). The inclusion of prior probabilities places prediction in the setting of a
posterior distribution, the primary inferential tool for Bayesian statistics. The details of interest
in development relate to the structure of the full probability model, such as defining the like-
lihood via the multivariate normal distribution given the covariance structure in Equation (7.9),
next specifying this covariance structure given its parameters, and finally specifying the prior
distributions for these parameters. The computational implementation falls to MCMC, perhaps
a complicated MCMC requiring care in setup and implementation, but an MCMC algorithm
nonetheless.

Here we note a subtle difference in value between the settings, specifically, a difference in
what is regarded as the “cool” part of the derivation. In the classical development, value is
placed on a deconstruction of the problem at hand into a series of steps motivated and validated
by statistical theory, each step with an accurate and efficient mode of calculation. Even in a fre-
quentist evaluation of a hierarchical likelihood, similar steps occur [38]. In the Bayesian devel-
opment however, value is placed on an accurate formulation of the problem in terms of a joint
posterior distribution defined through an interconnected set of hierarchical components, each
justified in its own right and fitting together in a manner that guarantees a proper posterior dis-
tribution incorporating all sources of potential information.

With this distinction in mind, an advantage of the Bayesian approach appears when we con-
sider changes to the components of the probabilistic structure. Suppose that we no longer have
Gaussian data, but rather observations following some other distribution. In the classical setting,
this impacts one of the first steps in the process, namely, the equivalence between the desired
conditional expectation and a linear combination of observations. One approach is to transform
the data to achieve a distribution closer to a Gaussian distribution (as in the dioxin example). The
problem is not insurmountable; in fact, log Gaussian (or more generally trans-Gaussian kriging)
is widely used, but it requires reconstruction of one of the key components of the classical
approach. For the Bayesian formulation, moving from a Gaussian distribution requires reformu-
lation of the likelihood function and can introduce complicated identifiability issues as the mean
and covariance parameters may no longer be orthogonal, yet the basic method is still in place.
This is not to say that the Bayesian approach is necessarily easier to adapt, but one can argue
that the required adjustments impact less of the basic structure than they do in classical kriging.

7.5 CONCLUDING REMARKS

In the discussion above, we focus attention on developing statistical issues for two of the four
general questions of interest in spatial epidemiology. The resulting examples illustrate
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important issues underlying the analysis of spatially referenced data ranging from the interpret-
ation of spatial cluster detection to contrasts between classical and Bayesian spatial prediction.
While the approaches and issues may seem very different at first glance, the two areas highlight
current converging directions of development in spatial epidemiology:

1. Note the similarity between the spatial intensity function l(s) in Section 7.3 and the
latent random field S in Section 7.4. The hierarchical structure outlined regarding spatial pre-
diction suggests extension to the point process setting, as discussed in Møller and
Waagepetersen [40] and Diggle et al. [20]. In particular, Diggle et al. [20] note that parametric
(often hierarchical) approaches to the analysis of spatial point processes often provide increased
accuracy, while nonparametric (e.g., the kernel-based approaches described above) are often
more robust to violations of the assumed parametric models.

2. While the definition of a spatial Poisson process motivates the construction of spatial
Poisson regression models popular in disease mapping [34,54,4,52], the hierarchical frame-
work also offers a way to build inference for aggregated counts of underlying (latent) point pat-
terns, even for data collected at differing levels of aggregation. Best et al. [9] provide an
example of such an approach.

The field of spatial epidemiology is much larger than the two detailed areas considered here,
and further classes of analytic methods appear in the literature addressing additional epidemio-
logic questions for additional forms of available data. A prime example is the use of remote
sensing data in epidemiologic investigations. Robinson [44] provides a thorough review of stat-
istical techniques for remote sensing data in public health, and Goovaerts et al. [25] define
methods linking both of the analytic areas considered above (geostatistical prediction and
cluster detection) within the setting of remote sensing data.

In conclusion, spatial epidemiology offers much opportunity for continued methodologic
development in order to provide accurate, reliable inference on important public health issues.
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8.1 INTRODUCTION

Disease dynamics are modeled at a population level in order to create a conceptual framework
to study the spread and prevention of disease, to make forecasts and policy decisions, and to ask
and answer scientific questions concerning disease mechanisms such as discovering relevant
covariates. Population models draw on scientific understanding of component processes,
such as immunity, duration of infection, and mechanisms of transmission, and investigate
how this understanding relates to population-level phenomena. There are several compelling
reasons to consider disease processes at this population scale:

1. Anthropogenic change, in land use, climate, and biodiversity has many potentially large
public health impacts [1]. Predicting the future effects of changes to a complex system is
difficult. Retrospective studies of the relationship between climate and disease pre-
valence over space [27] and over time [58] can facilitate predictions and inform
policy decisions [48]. A major challenge in retrospective studies is to disentangle the
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extrinsic effects of climate or other environmental drivers from the intrinsic disease
dynamics [46].

2. The effectiveness of medical treatment and vaccination strategies for certain infectious
diseases, such as malaria and cholera, is limited by drug resistance, genetic shift, and
poor medical infrastructure in affected regions. This leads to an emphasis of controlling
the disease by behavioral and environmental interventions. An ability to model the
disease dynamics can be used to forecast the danger of a major epidemic [65], a step
toward implementing effective interventions.

3. Emerging infectious diseases pose a significant public health threat. Many important
emerging infectious diseases are zoonotic, that is, endemic animal diseases that cross
over to humans. Examples include HIV/AIDS from chimpanzee and sooty mangabey
[28], severe acute respiratory syndrome (SARS) from bats [49], and avian flu [52].
Epidemics are best prevented by early containment of outbreaks. Containment strategies
may be evaluated using population models [52]. Alternatively, one can attempt to
monitor and control the disease in the animal population to reduce contact between
humans and infected animals. This can be facilitated by employing population models
to gain an understanding of the dynamics of the disease in the animal population.

Since the pioneering work of Ross [59] and Kermack and McKendrick [41], mathematical
modeling has been a mainstay of epidemiologic theory. It has also long been recognized that
disease models arising in epidemiology are closely related to population models arising in
ecology [7]; the population dynamics of an infectious disease arise from the interaction of
host and pathogen species in the context of their environment. This chapter explores some
new developments in statistical inference for nonlinear dynamical systems from time-series
data, using cholera in Bangladesh as a case study.

8.2 DATA ANALYSIS VIA POPULATION MODELS

A mainstay of population modeling is the compartment model, where the population is divided
into groups that can be considered homogeneous. The classical Susceptible-Infected-Removed
(SIR) compartment model [41,7] groups Nt individuals as susceptible (St), infected (It), and
recovered or removed (Rt). Exposed classes, age-structured classes, and geographically struc-
tured classes are just some of many possible extensions. Population models may use continuous
or discrete time, take continuous or discrete values, and be stochastic or deterministic. Real-
world processes are continuous-time, discrete-valued, and stochastic. Stochasticity arises
from demographic noise (variability due to uncertainty of individual outcomes, such as the
number of contacts made with an infected individual) and from environmental noise (such
as variability due to weather, or economic events affecting the whole population). To a first
approximation, demographic stochasticity has variance linear in population size, and environ-
mental stochasticity has variance quadratic in population size, although more subtle distinc-
tions can be made [22]. Models must also choose to be mechanistic or phenomenological,
really a continuous scale tradeoff between incorporating scientific understanding and aiming
for a simple description of relationships observed in data [20]. Developing techniques that
draw on understanding of population dynamics, while also permitting statistical inference
about unknown model parameters and exploration of relevant covariates, is a topic of
current research interest [9].

Data are often aggregated over time and space, such as weekly or monthly counts per
region. This has led to the use of discrete-time models for data analysis. Finkenstädt and
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Grenfell [24] and Koelle and Pascual [46] represent the state of the art for data analysis via dis-
crete-time mechanistic modeling, using a Taylor series to generate a log-linear model
with unobserved variables reconstructed via backfitting. There are several reasons to prefer
continuous-time models:

1. For discrete-time models, the sampling frequency affects the models available and the
interpretation of the resulting parameters. The underlying continuous-time processes
are most naturally modeled in continuous time.

2. Continuous-time modeling facilitates the inclusion of covariates measured at various
frequencies.

3. Continuous-time disease models have been studied much more extensively from the
mathematical perspective than for their discrete-time counterparts [5,3,30,17]. This
focus represents both that continuous-time models more accurately reflect the real pro-
perties of the systems and that such models are relatively easy to analyze. Most data
analysis, on the other hand, has made use of discrete-time formulations, which can be
fitted to discretely sampled data in a relatively straightforward fashion. However, the
dynamics of discrete-time nonlinear systems are frequently at odds with those of their
continuous-time analogs [53,25], a fact that can complicate the interpretation of the par-
ameters of discrete-time models.

Strategies appropriate for fitting continuous-time models to discretely observed data include
atlas methods [66], gradient matching [21], and approaches based on nonlinear forecasting
[39]. Likelihood-based analysis (frequentist or Bayesian) has largely been overlooked
because finding the likelihood involves the difficult task of integrating out unobserved vari-
ables. Maximum-likelihood estimates (MLEs) have some considerable advantages:

1. Statistical Efficiency—the MLE is typically efficient (makes good use of limited data).

2. Transformation Invariance—for example, estimates do not depend on whether the
model is written using a log or natural scale.

3. Asymptotic Results—the second derivative of the log likelihood at its maximum can be
used to give approximate standard errors. This means that simulations to understand the
variability in estimates are seldom necessary.

4. Model Selection—likelihoods are comparable between different models for the same
data. In particular, a x2 approximation is often appropriate: if p parameters are added
to a model and the increase in the log likelihood is large compared to a ð12Þx2p random
variable, then the fit is a statistically significant improvement.

Bayesian analysis is also attractive, since previous research may be available to provide an
informed prior. Bayesian methods have been used for population models [64,14]. For this
chapter we consider MLE methods, but the computational issue of integrating out unobserved
variables arises in a similar way with Bayesian methods.

Evaluation of the likelihood and determination of the conditional distribution of unobserved
variables given data are computationally approachable in a broad class of time-series models
known as state space models (SSMs). SSMs have been proposed as a unifying framework
for ecological modeling [64]. Likelihood based inference has been shown to outperform
other more ad hoc statistical model-fitting criteria for population models incorporating
process noise and observation error [16]. The linear, Gaussian SSM [38] became fundamental
to engineering, for signal processing and control theory [2], and found applications in eco-
nomics [29]. Early attempts to handle nonlinear SSMs were plagued by the lack of
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computational ability to evaluate the likelihood, so inference resorted to ad hoc methods [2].
Brillinger et al. [11] provides an early ecological application of nonlinear SSMs.

The development of Monte Carlo methods for nonlinear SSMs, combined with increases in
computational capability, has made likelihood-based inference feasible for increasingly general
nonlinear SSMs. This gives the modeler considerable freedom to write down an appropriate
model without undue concern for inferential feasibility. There are two main approaches to
Monte Carlo inference for SSMs: sequential Monte Carlo [26,18,4] and Markov chain
Monte Carlo (MCMC) [61]. This chapter focuses on sequential Monte Carlo (SMC), which
is more widely used for SSMs and simpler to implement. A careful comparison between
SMC and MCMC is still, to the authors’ knowledge, an unresolved problem.

8.3 SEQUENTIAL MONTE CARLO

An SSM is a partially observed Markov process. The unobserved Markov process, xt, called the
state process, takes values in a state space X. The observation process yt takes values in an
observation space Y, and yt is assumed to be conditionally independent of the past given xt.
Here, we take X to be <dx and Y to be <dy . There is also a vector of unknown parameters
u [ <du . We suppose that observations take place at discrete times, t ¼ 1, . . . , T. We further
suppose that all required densities exist, and we adopt a convention that f(. j .) is a generic
density that is then specified by its arguments. We write concatenated observations as
y1:t ¼1 , . . . , yt). For the case t ¼ 0; y1:0 is defined to be an empty vector. The properties of
a state space model are

fu(xt j x1:t�1, y1:t�1) ¼ fu(xt j xt�1), (8:1)

fu(yt j x1:t , y1:t�1) ¼ fu(yt j xt): (8:2)

The dependence on u will be written explicitly only when necessary for clarity. In principle,
the assumed Markov structure in (8.1) and (8.2) allows the likelihood, fu(y1:T ), to be found
recursively via the identities

f (xt j y1:t�1) ¼
ð
f (xt�1 j y1:t�1)f (xt j xt�1) dxt�1, (8:3)

f (xt j y1:t) ¼
f (xt j y1:t�1)f (ytj xt)Ð

f (xt j y1:t�1)f (yt j xt) dxt
, (8:4)

f (yt j y1:t�1) ¼
ð
f (yt j xt)f (xt j y1:t�1) dxt , (8:5)

f (y1:T ) ¼
YT
t¼1

f (yt j y1:t�1): (8:6)

In practice, this requires solving potentially challenging integrals. Following Kitagawa [43], de
Valpine and Hastings [16] showed how these integrals could be solved numerically for
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relatively simple population models. For more complex models, one may employ an SMC
method such as Algorithm 8.1.

Algorithm 8.1: Sequential Monte Carlo (SMC)

Initialize: Let {XF
0, j, j ¼ 1, . . . , J} be a sample draw from f (x0). These J realizations are

commonly termed “particles.” Each particle will give rise to a trajectory through the state
space with distribution f (xt j y1:t):

FOR t ¼ 1 to T

† Move particles according to unconditional state process: Make XP
t,j a draw from

f (xt j xt�1 ¼ XF
t�1, j). Then {XP

t, j} has approximate marginal distribution f (xt j y1:t�1).

{XP
t,j} is said to solve the prediction problem at time t.

† Calculate conditional likelihood of new observation: Estimate f (yt j y1:t�1) by

(1/J )
PJ

j¼1 f (yt j xt ¼ XP
t, j).

† Prune particles according to likelihood given data: Generate XF
t; j by resampling

from {XP
t, j} with probability proportional to wj ¼ f (yt j xt ¼ XP

t, j) using Algorithm

8.2 (below). Then {XF
t, j} has approximate marginal distribution f (xt j y1:t). Then

{XF
t, j} is said to solve the filtering problem at time t.

END FOR

Calculate Log Likelihood: log f (y1:T ) ¼
PT

t¼1 log f (yt j y1:t�1).

Algorithm 8.2: Systematic Resampling

Input: J particles {XP
t, j, j ¼ 1, . . . , J} with weights {wj ¼ f (yt j xt ¼ XP

t, j)}

Calculate Cumulative Sum of Normalized Weights: FOR j ¼ 1 to J set

c j ¼ (
P j

k¼1 wk)=(
PJ

k¼1 wk)

Resample Cumulative Sum at Intervals of 1/J:
Set i ¼ 1 and u � U[0, 1]

FOR j ¼ 1 to J

† WHILE ( j� u)=J . ci set i ¼ i þ 1
† Set XF

t, j ¼ XP
t, i. This resampling generates a tree structure, where XF

t, j is said to descend
from XF

t�1, i.

END FOR

Output: J particles {XF
t, j, j ¼ 1, . . . , J}
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The reader is referred to the literature [4,18,51] for extensive discussions of Algorithms 8.1
and 8.2, with many possible variations. Algorithm 8.1 can be fine-tuned to be computationally
more efficient in many ways. A more critical issue, in the authors’ opinion, is how to use the
output of Algorithm 8.1 for effective inference. Although Algorithm 8.1 is widely applicable
for calculating the likelihood at a fixed value of u, complications arise for both Bayesian and
MLE methods, which must compare likelihoods for different values of u.

Bayesian inference might appear straightforward; simply add u to the state space. The initial
particles are then drawn from f (x0, u), and the particle filter will then produce a sample from
f (u j y1:T ). Each particle at time t has exactly the same value of u as does its ancestor at
time t2 1, and the prior distribution on u is updated via the SMC algorithm, giving particles
with successful values of umore descendants. The catch is that the SMC algorithm degenerates
when there is no variability in the u component of the state process after t ¼ 0. Heuristically,
the particles in SMC evolve by natural selection according to their plausibility given the data.
Particles whose u component are fixed over time are analogous to natural selection without
mutation, which produces only limited scope for evolution. One solution to this is to allow
the parameter to vary slowly with time by adding noise [44]. In cases where this modification
to the model is considered unacceptable, Liu and West [50] showed how to add noise to the
parameters but balance this by simultaneously contracting the parameter distribution toward
its mean. The method of Liu and West [50] has been applied to ecological models by
Thomas et al. [64] and Newman and Lindley [54].

The difficulty for finding the MLE is that the likelihood is calculated with Monte Carlo
error. One useful tool for optimizing functions calculated via Monte Carlo is the method of
common random numbers [63, Sec. 14.4], which involves fixing the seed of the random-
number generator. This method requires synchronization of the Monte Carlo randomness,
which is not directly applicable to SMC techniques. General stochastic optimization
methods of the Robbins–Monro type [57,42,63] are not applicable for problems where there
are many unknown parameters and each function evaluation is a considerable computational
expense. The elegant method of Hürzeler and Künsch [33] for calculating local likelihood sur-
faces is also not readily applicable to relatively difficult problems—it is more computationally
intensive than standard SMC methods such as Algorithm 8.1. Ionides et al. [35] showed how to
find the MLE by taking a limit where the noise, added in a way similar to that in Kitagawa [44],
shrinks to zero. This novel method is described in Algorithm 8.3 and is applied to a cholera
population model in Section 8.4.

Algorithm 8.3 is appropriate when information about parameters arrives steadily throughout
a time series. Heuristically, it gains computational efficiency because the parameter estimate is
being constantly updated throughout each iteration. Each iteration would correspond to one
evaluation of the likelihood for a general-purpose optimization algorithm. In Section 8.4,
N ¼ 20 or N ¼ 30 iterations are sufficient to optimize a stochastic function of 13 variables,
without availability of analytic derivatives. This computational efficiency is critical when
each iteration takes around 30 min to compute.

In certain situations, such as estimating the initial value vector x0, information about a para-
meter does not arrive steadily throughout a time series. In this case, Algorithm 8.3 is not effec-
tive. If fxtg is stationary, then x0 can be drawn from the stationary distribution. If fxtg is not
stationary, one can either pick some more arbitrary distribution for x0 or treat x0 as an
unknown parameter (in the frequentist sense). We choose to do the latter, and estimate x0 by
maximum likelihood simultaneously with u by applying Algorithm 8.4, the theoretical justifi-
cation of which is similar to that for Algorithm 8.3 [35]. The value of T0 in Algorithm 8.4
should be as small as possible such that yT0þ1:T contains negligible additional information
about x0, beyond that contained in y1:T0 . This compromise is known as fixed-lag smoothing [2].
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Algorithm 8.3: MLE via Iterated Filtering

Initialize: Select uhi . u(1) . ulo to be vectors giving a plausible initial value and range
for the parameters. Select scalars 0, a, 1, C, and N.
FOR n ¼ 1 to N

†Apply SMC (Algorithm 8.1) with u included in the state space as a time-varying
parameter, evolving as

u0 � Ndu (u
(n),CSn),

ut j ut�1 � Ndu (ut�1,SnÞ for t ¼ 2, . . . , T ,

where the covariance matrix Sn is defined by ½Sn�1=2ii ¼ ½(uhi � ulo)=2
ffiffiffiffi
T

p
�ian�1 and

½Sn�ij ¼ 0 for i = j. Each particle is now a pair, e.g., (XF
t, j; u

F
t, j).

†Calculate Updated Estimate:

ût ¼ (1=J)
XJ
j¼1

uFt, j for 1 � t � T ,

V1 ¼ (C þ 1)Sn,

Vtþ1 ¼
PJ

j¼1 (uFt, j � ût)(uFt, j � ût)0

J � 1
þ Sn for 1 � t � T � 1,

u(nþ1) ¼ V1

XT�1

t¼1

(V�1
t � V�1

tþ1) ût þ V�1
T ûT

 !
:

END FOR

The MLE is estimated as û ¼ u(Nþ1).

Algorithm 8.4: MLE via Iterated Filtering, for Initial Values

Initialize: Select xhi0 . x(1)0 . xlo0 to be vectors giving a plausible initial value and range
for the initial values. Select scalars 0, a, 1, T0 and N.

FOR n ¼ 1 to N

†Apply SMC (Algorithm 8.1) with XF
0; j � Ndx (x

(n)
0 ,Fn) where ½Fn�1=2ii ¼[(x0

hi2x0
lo)/

2]ia
n21 and ½Fn�ik ¼ 0 for i= k. For each particle Xt,j

F , track label of the corresponding
initial value, denoted a(t, j). In the terminology of Algorithm 8.2, Xt,j

F descends from
XF
0;a(t;j).

†Calculate Updated Estimate: x(nþ1)
0 ¼ (1=J)

PJ
j¼1 X

F
0, a(T0 , j)

END FOR
The MLE is estimated as x̂0 ¼ x(Nþ1)

0

8.3 SEQUENTIAL MONTE CARLO 129



Algorithms 8.3 and 8.4 are different variations on the same theme of using limiting
Bayesian posterior distributions to find MLEs. Both algorithms can be combined, so that
one filtering iteration updates estimates of all estimated parameters, including initial
value parameters.

8.4 MODELING CHOLERA

Cholera is a diarrheal disease endemic to the Ganges delta region [60]. Global pandemics have
occurred throughout recent history. The current (seventh) pandemic started in 1960 and has
seen the O1 serogroup become established in various locations throughout South Asia,
Africa, and South America. Cholera is caused by virulent strains of Vibrio cholerae, a bacter-
ium that can live and grow in brackish, warm water. Human-to-human transmission can be
direct, through contact with stool from infected individuals; or indirect, via the environment.
There is not a clear distinction between these two paths; we separate them by supposing that
the increase in force of infection depending on the number of infected individuals is due to
human-to-human transmission. The environmental reservoir is taken to be responsible for
the background force of infection (extrapolating to a situation with no infected humans). A
compartment model describing the basic features of disease transmission is diagrammed in
Figure 8.1. Formally, the diagram in Figure 8.1 corresponds to a set of equations:

dSt ¼ dNBS
t � dNSI

t � dNSD
t þ dNRkS

t ,

dIt ¼ dNSI
t � dNIR1

t � dNID
t ,

dR1
t ¼ dNIR1

t � dNR1R2

t � dNR1D
t :

..

.

dRk
t ¼ dNRk�1Rk

t � dNRkS
t � dNRkD

t

Here, time is measured in months; St is the number of individuals in class S (susceptible) and
the infinitesimal dSt is defined such that St ¼ S0 þ

Ð t
0 dSu. For example, Nt

SI corresponds to the
total number of individuals who have passed from S to I by time t. The k recovered classes
allow for flexibility in modeling the time from infection to loss of immunity, at which
point an individual becomes newly susceptible. This temporary immunity, with a duration

Figure 8.1 Compartment model for cholera. Each individual is in S (susceptible), I (infected),
or one of the classes Rj (recovered). Transitions to B and D model birth and death, respectively.
The arrows show possible transitions, with superscripts showing transition rates.
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of 3–10 years, is believed to be a key feature of the population dynamics of cholera. We use a
model developed by Ionides et al. [35]:

dNSI
t ¼ mtStdt þ ctSt dWt ,

mt ¼ btIt=Pt þ w,

ct ¼ eIt=Pt :

(8:7)

Here, population size Pt is interpolated from available census data, and is presumed to be

accurately known; seasonal transmissibility is modeled as log (bt) ¼
P5

j¼0 b js j(t), where

{s j(t), j ¼ 0, . . . , 5} is a periodic cubic B-spline basis; e is an environmental stochasticity
parameter, modeling noise on the environmental scale (with infinitesimal variance propo-
tional to St); w corresponds to a nonhuman reservoir of disease; bt It=Pt is human-to-human
infection; 1/g gives the mean time to recovery; 1/r is the mean time to loss of immunity fol-
lowing recovery, with k giving the shape of this distribution; and m and mc are the death rates
among uninfected and infected individuals, respectively. The remaining transition equations
were modeled deterministically:

dNIR1

t ¼ gIt dt; dNRj�1Rj

t ¼ rkR j�1
t dt;

dNRkS
t ¼ rkRk

t dt; dNSD
t ¼ mSt dt;

dNID
t ¼ mcIt dt; dNRjD

t ¼ mRj
t dt;

dNBS
t ¼ dPt þ dNSD

t þ dNID
t þ

Xk

j¼1
dNRjD

t :

(8:8)

Defining Ct ¼ NID
t � NID

t�1 ¼
Ð t
t�1 dN

ID
8 , the number of cholera mortalities between monthly

observation times, the data on observations data on observed mortality were modeled con-
ditional on Ct as yt � N ½rCt , r(1� r)Ct þ t 2r2Ct� with reporting rate r. The variance com-
ponent r(12 r)Ct models demographic stochasticity via binomial sampling variation.
Environmental stochasticity is modeled via t 2r2C2

t , which dominates demographic variability
for large Ct and is found to be appropriate when fitting (8.10) and (8.11) to data. The domi-
nance of environmental stochasticity has been assumed implicitly in previous analyses of
similar data, by modeling additive noise of variance t2 in log (rCt) [24,46]. Demographic
variability is nonnegligible when Ct is small, and can be included in our framework without
adding any additional parameters.

Continuous-state population models, such as the model given by (8.7) and (8.8), are more
convenient for data analysis than discrete-state population models. Theoretical results and
simulation studies of population models often resort to demographic (Poisson) variability,
using the rates in Figure 8.1 to define a continuous-time Markov chain. Apart from the inherent
appropriateness of discrete populations, the Markov chain approach has the advantage that no
extra parameters, beyond the rates, are needed to describe the stochasticity. However, demo-
graphic stochasticity alone is not always sufficient to describe observed variations in data;
for cholera, demographic stochasticity is entirely inadequate. If extra variability has to be
introduced, stochastic differential equations (SDEs) provide a simple way to do this. SDEs
are a natural extension to the ordinary differential equation (ODE) systems already used for
describing population dynamics. Other examples of the use of SDEs to provide a framework
for modeling and data analysis include those by Kendall [40], Brillinger and Stewart [13],
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Brillinger et al. [12], and Ionides et al. [36]. There are several misconceptions about SDEs that
explain why they are not currently more widely used for modeling. These are listed below, with
refutations:

1. The theory of SDEs is inaccessible and obscure. However, numerical solutions to SDEs
are now well established [45,31]. This allows development and exploration of models
that would be difficult to investigate analytically. In particular, application of the infer-
ence methodology in Algorithms 8.3 and 8.4 for the models in (8.7) and (8.8) requires
only numerical solution of the system of SDEs.

2. There may be little reason to think that Gaussian white noise is a plausible stochastic
driver for the system under investigation. Supplying random coefficients to an ODE
or Markov chain adds lower-frequency “colored noise”. However, most practical time-
series models, such as the autoregressive moving average (ARMA) framework [62],
use white noise as the basic building block. This noise is often modeled as Gaussian,
for convenience, and the data may sometimes be transformed to increase the plausibility
of this assumption. Solutions to SDEs driven by Gaussian white noise include almost all
non-Gaussian continuous-time, continuous-sample-path Markov processes [55].
Smooth, low frequency noise can be modeled by adding white noise to a derivative
of the process of interest.

3. There has been much discussion in theoretical modeling literature concerning different
possible interpretations of an SDE. The two most popular interpretations are the Itô and
Stratonovich solutions [55]. The distinction, involving the exact way the SDE is solved
as a limit of finite sums, should have little scientific relevance. Meaningful scientific
conclusions should not depend on the choice of interpretation of SDE [36].
Numerical solution is most straightforward for the Itô solution, so that is the one
adopted here.

8.4.1 Fitting Structural Models to Cholera Data

Maximizing a nonconvex function of more than a few variables is seldom routine, especially
when the function is evaluated by Monte Carlo methods. Algorithm 8.3 provides a way to
leverage the special structure of an SSM for optimization, but diagnostic checks are necessary
before one has confidence in the results. Beyond the standard approach of trying various initial
values [u(1), ulo and uhi], one should assess the choice of the two variables a and C for
Algorithm 8.3. If a is too small, the rapid decrease in step size in Algorithm 8.3 may leave
the algorithm stranded, unable to reach the maximum. This is analogous to excessively rapid
cooling in simulated annealing [63]. If a is too large, insufficient cooling will occur within a
reasonable computation time. These issues can be diagnosed by plotting u(n) against n for
several values of a and u(1), looking for consistent convergence. The term C is a dimensionless
constant controlling the initial dispersion of the parameter values, relative to their random
perturbations through time. If C is too small, the algorithm converges slowly. If C is too
large, the algorithm is less stable and converges erratically. This can be assessed by the
same type of convergence plot as used for a, or by the observation that a good choice of C
is one which makes Vt fairly stable as a function of t.

The likelihood surface near the convergence point û can be further examined by “sliced
likelihood” plots. Setting l(u) ¼ log fu( y1:T), the sliced likelihood for ûi plots l(ûþ cdi)

against ûi þ c, where di is a vector of zeros with a one in the ith position. If û is at (or
near) the maximum of each sliced-likelihood plot, then û is (approximately) a local
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maximum of l(u). Computing sliced likelihoods requires moderate computational effort, linear
in the dimension of u. A smoothed fit (as suggested by Ionides [34]) is made to the sliced log
likelihood, because l(û þ cdi) is calculated with a Monte Carlo error. Figure 8.2 shows a con-
vergence and sliced-likelihood plot for a simulation study, presented in Ionides et al. [35], using

Figure 8.2 Examples of convergence plots for a simulation from (8.7) and (8.8) with four
different starting points, validating the convergence of Algorithms 8.3 with a ¼ 0.9 and C ¼

20. The dotted parabolic line corresponds to a sliced likelihood through û. (c,d ) Corresponding
closeups of the sliced likelihood. The dashed vertical line is at û and the solid vertical line is at
the true value of u. The simulation was carried out with r ¼ 0.43, e ¼ 0.289, b0 ¼ 21.48,
b1 ¼ 2.42, b2 ¼ 0.02, b3 ¼ 20.98, b4 ¼ 0.02, b5 ¼ 3.02, t2 ¼ 0.02, w ¼ 2.5 � 1026, mc ¼

1.19, g ¼ 1, k ¼ 4, 1/r ¼ 120, and 1/m ¼ 600. The last four of these parameters were treated
as known, and the remaining parameters were estimated, using Algorithm 8.3 with J ¼ 9000.
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the cholera model in (8.7) and (8.8). The deviation between the MLE and the true parameter
value is due to the finite length (50 years) of the simulated dataset. In some generality, the
MLE for state space models is consistent and asymptotically normally distributed [37].

Sliced likelihoods can be used to generate standard errors, since calculating l(ûþ cdi)
involves finding log fûþcdi

(yt j y1:t�1). Regressing log fûþcdi
(yt j y1:t�1) on c gives an estimate

of (@/@ui) log fû(yt j y1:t�1), giving rise to an estimate of the observed Fisher information

½ÎF �ij ¼
XT
t¼1

@

@ui
log fu(yt j y1:t�1)

@

@uj
log fu(yt j y1:t�1) (8:9)

where the derivatives are evaluated at u ¼ û. This leads to a corresponding estimate Î�1
F for the

covariance matrix of û.
A superior way to find confidence intervals is via a profile likelihood [6]. If u is partitioned

into two components z and h, then the profile log likelihood of h is defined [6] by
l( p)(h) ¼ supz l(z,h). The optimization required for the profile likelihood can be carried
out using Algorithm 8.3. Calculating the profile likelihood for each parameter therefore
requires approximately N times the computational effort of the sliced likelihood (typically, N
is between 20 and 30). The optimization also introduces additional Monte Carlo variability
over a simple likelihood evaluation. Figure 8.3 shows the profile likelihood for a parameter
of the model in (8.7) and (8.8). This parameter was selected because the profile likelihood con-
fidence interval constructed in Figure 8.3, of width 0.27, was considerably different from the
approximation using (8.9), of width 0.10. This rather large discrepancy arose because the quad-
ratic approximation in (8.9) is overly optimistic when some nonlinear combination of the par-
ameters is poorly estimable. The extra computation required to calculate a profile likelihood is

Figure 8.3 Profile log likelihood l( p)(b4) for the August seasonal parameter. The log likeli-
hood was maximized over all parameters excluding b4 (circles) and was then smoothed (dashed
line) using nonparametric regression [34,15]. The dotted lines show the construction of an

approximate 95% confidence interval, given by {b4 : 2½l( p)(b̂4)� l( p)(b4)� , x 2
0:95(1)},

where x0.95
2 is the 0.95 quantile of a x 2 random variable with one degree of freedom and

b̂4 ¼ argmax l( p)(b4).
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evidently worthwhile for a parameter of particular interest. The quadratic approximation can be
calculated more routinely, to get a general idea of the scale of uncertainty.

The model in (8.7) and (8.8) was fitted to historical data for Dhaka, Bangladesh, [10,58,46],
shown in Figure 8.4a. Our resulting estimate of the seasonal transmissibility bt is shown in
Figure 8.4b. Observed mortality is seen to have two seasonal peaks that appear later than
the peaks in transmissibility. The winter dip in mortality has been ascribed to reduced environ-
mental viability of V. cholerae in colder temperatures. The early January local minimum in
transmissibility is consistent with the early January minimum in mean temperature in
Dhaka. The summer dip in mortality has been ascribed to dilution of V. cholerae due to
monsoon rainfall. The monsoon season in Dhaka is from May to September, with greatest
average rainfall in July. Fitting (8.7) and (8.8), the transmissibility is seen to decrease too
soon to be explained fully by rainfall. Snowmelt from the Himalayas is one candidate to
explain this discrepancy.

Investigating residuals is a routine diagnostic check in time-series and regression analyses.
The most basic residuals to consider for SSMs are the standardized prediction residuals

ut(û) ¼ ½Varû(yt j y1:t�1)��1=2(yt � Eû(yt j y1:t�1)),

although there are other possibilities [35,19]. Checking whether the residuals are approxi-
mately uncorrelated is a way to test the goodness of fit of the model. Residuals also
have an important role in the search for covariates. Inasmuch as the model successfully cap-
tures the intrinsic dynamics of the disease, the residuals are left with the system noise plus
signal from the extrinsic variables, such as climate. From this point of view, features that
the intrinsic model cannot capture are as important as those that it can! A more flexible
model might fit the data better, but only by explaining variation that in fact has some

Figure 8.4 (a) Cholera mortality for Dhaka, Bangladesh, from 1891 to 1940; (b) monthly
averages of Dhaka cholera mortality (boxes) and the seasonal transmissibility bt (dotted
line) from fitting (8.7) and (8.8).
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extrinsic origin. The next step after identifying covariates is to include them in the model.
This is not necessarily an easy task—even explaining seasonality can be a challenge [56].
For example, both rainfall and drought can initiate cholera epidemics. The low-frequency
component of residuals from a time-series model fit to cholera data has been found to
match various plausible environmental drivers, such as rainfall, river discharge, and El
Niño indices [47]. Fitting the model of (8.7) and (8.8) results in less than perfectly
white residuals (see Fig. 8.5). The residuals nevertheless give evidence of increased
cholera infection in Dhaka after the monsoon during El Niño conditions [35], and this
association is not evident from the original time series. How best to include environmental
covariates in a mechanistic model is a topic for future investigation. However, the method-
ology in Section 8.3 provides both a tool to identify covariates and a flexible framework for
including them in a mechanistic way.

8.5 CONCLUDING REMARKS

Six key areas requiring further development for time-series analysis of population data were
identified by Bjørnstad and Grenfell [9]. They may be summarized as follows: (1) including
measurement error in mechanistic models, (2) mechanistic modeling of environmental
forcing, (3) employing ecologically realistic continuous-time models, (4) reconstructing unob-
served variables, (5) identifying interactions, and (6) spatiotemporal modeling. The cholera
modeling example in Section 8.4 demonstrates that the SSM approach in Section 8.3 can be
used to address issues 1–4. In addition, likelihood-based model comparison then provides
an approach to issue 5. In principle, one can write down a spatiotemporal SSM to address
issue 6. In practice, the dimension of the state space typically scales linearly with the
number of spatial locations considered, and high-dimensional state spaces increase the numeri-
cal burden on the SMCmethod. For large spatiotemporal problems, such as data assimilation in
atmospheric and oceanographic science, SMC is not feasible. Related techniques have been
developed for data assimilation [23,32], employing an ensemble of numerical solutions of a
spatiotemporal model to approximate the conditional distribution given data. Alternatively,
spatiotemporal variability can be incorporated through random-effect models [67,68,8].
More progress is necessary before SMC techniques can be routinely applied to spatiotemporal
data. However, SMC provides an effective and flexible tool for partially observed stochastic

Figure 8.5 Sample autocorrelation function for the standardized residuals when fitting (8.7)
and (8.8) to the data in Figure 8.4.
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nonlinear dynamical systems of moderate dimension, allowing freedom to develop models
based on scientific principles rather than on methodological constraints.
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9.1 INTRODUCTION

In standard regression analysis we assume that the predictors x are directly observable without
any errors. This is seldom true. Very often in epidemiologic studies, for some reason, the pre-
dictors are not directly observable. Instead, measurements on its surrogates z are available. The
true predictor x is a perturbation of z. In the measurement error literature this is known as the
Berkson error model. In such cases it is usually assumed that x is a linear function of z plus an
error. The classical measurement error model, on the other hand, assumes that x is directly
observable and z is a perturbation of x, that is, that measurements of x are subject to errors.
Thus z is x plus the measurement error. The substitution of z for x complicates the analysis
of the observed data when the purpose of analysis is inference about a model defined in
terms of x. Finding statistical models and methods for analyzing data that arise in either of
these ways is known as a measurement error problem. In epidemiologic studies, most often
we encounter the Berkson error model. In this chapter we would mostly be concerned with
this model.

Until the late 1970s, measurement error models were developed mostly for continuous
responses. Excellent introductions to linear measurement errors involving continuous
responses are provided by Madansky [33], Kendall and Stuart [29, Ch. 29], and Fuller [20].
Historically, early research in measurement error problems was driven by applications in
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physical sciences, especially in astronomy, and soon thereafter by applications in econometrics,
whereas today much of the current research in this area is driven by applications in health
sciences. The seminal article by Carroll et al. [11] on measurement error in binary regression
marks the shift in emphasis from linear to nonlinear modeling. The article is noteworthy for
breaking ground in the applications of measurement errors in health sciences in particular
and in the study of generalized linear models with measurement error in general. This article
literally opened the floodgate and was followed by a spate of contributions in this area by a
host of researchers.

A classical measurement error model is specified in terms of three submodels: (1) an
outcome model connecting the response y to the true predictor x, (2) a measurement error
model specifying the distribution of z (the perturbed value of x) given the true predictor
x, and (3) the assumptions that are made regarding x itself. Two types of assumption
are usually made about x; in a functional model, x is assumed to be fixed but unknown and
in a structural model, it is assumed to have a probability distribution. However, in the
Berkson model we have only two submodels: an outcome model and a model giving the
conditional distribution of x denoted by the surrogate z. We refer the reader to Fuller [20]
for an extensive discussion of linear measurement error models; for nonlinear models, to
Carroll et al. [12,13]. It is found that ignoring measurement errors in both linear and nonlinear
models in general results in attenuation of the estimates of regression parameters
[33,20,49,50,5,45,12,47,53]. Consequently, different methods under different model assump-
tions have been proposed to remove the bias in the estimates. Likelihood-based methods
[58,56,57] methods based on instrumental variables [1–3,52], the estimating-equation-based
method [7,9,10,26], the Nakamura method [35,51,55], and the simulation extrapolation
(SIMEX) method [58,59,31,60] are the major ones. Compared to the classical framework, rela-
tively few works have been done from the Bayesian point of view [15,21,32,39,40,23,25,6].
Also there are a few papers that consider either the effect of measurement errors in covariates
on nonparametric regression [18,61,16] or a nonparametric method to adjust for mismeasured
covariate data [37].

Besides the measurement errors in the predictors, in epidemioiogic studies, very often the
binary responses y are subject to classification errors and are not observable. Instead, the
manifest response ỹ is observable. However, the model is defined in terms of y. Thus, replacing
y with ỹ makes the analysis of data more difficult. We refer to Gustafson [24] for a detailed
discussion of the impact of these errors on the parameter estimates and its Bayesian
adjustments.

In this chapter, instead of discussing the existing methods, we choose to discuss
the likelihood-based adjustments in some interesting models arising in epidemiologic
studies, most of which are yet to be published. The primary reason is that the three books
mentioned above have extensive discussions on most of the existing problems and the
methods for circumventing them. Also, in a restricted space, we find it difficult to do
justice to our task as reviewers if we at all attempt to discuss the existing methods in some
detail.

We begin with a few examples of epidemiologic studies just to illustrate the situations where
models that we discuss in Sections 9.3–9.5 may be applied. In Section 9.3, we consider a
regression model that incorporates substitution of ( y, x) by ( ỹ, z). This model is then extended
to bivariate binary responses in Section 9.4. In practice, in certain situations we may get mixed
binary and continuous outcomes. In Section 9.5 we extend our discussion to such models. The
methodology developed in Section 9.3 is illustrated with atom bomb survivor data in
Section 9.6. Finally, in Section 9.7 we give the concluding remarks.
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9.2 A FEW EXAMPLES

9.2.1 Atom Bomb Survivors Data

In a lifespan study among 86,520 survivors of atom bomb explosion in Hiroshima and
Nagasaki, data are collected on the number of deaths due to cancer among the survivors cor-
responding to different dose groups of radiation exposure. Clearly the true radiation dose is
unobservable; instead an estimate of this dose is obtained using DS86, a dosimetry system
that acts as a surrogate. A close inspection of the data shows an unexpected pattern in the pro-
portion of cancer deaths, which suddenly decreases in the last two dose categories, contrary to
what is expected [46]. This is due to the misclassification of cancer deaths as noncancer deaths
on death certificates. Thus the data are contaminated not only with measurement errors in pre-
dictors but also with classification errors in binary responses. This example is considered in
more detail in Section 9.6.

9.2.2 Coalminers Data

A cohort of 18,282 coalminers aged 20–64 years are examined for the presence of wheeze
and breathlessness. The data are collected from a short questionnaire where each respondent
was classified as suffering or not suffering from breathlessness and wheeze. In this instance
each response factor has two levels and all four combinations are possible. Data are provided
corresponding to different age groups, which are at intervals of 4 years. Here the covariate is
the actual age of the miner. However, as a surrogate, we take the midpoint of the age interval
to which the miner happens to belong. Clearly, in addition to the x values being affected
by grouping errors—a specific kind of measurement error [30], they may also be affected
by recording errors, which does not sound unrealistic considering the poor awareness
among the educationally disadvantaged people about their exact ages. Also, in this study,
misclassification of the bivariate binary response is likely. Ekholm and Palmgren [17]
pointed out that the coalminer data were contaminated with classification errors. Thus, the
data are contaminated by both measurement errors in covariates and classification errors in
the bivariate response.

9.2.3 Effect of Maternal Dietary Habits on Low
Birth Weights in Babies

The study of the effect of dietary habits of mothers on low birth weight (LBW) of babies in a
given population is an important health research problem. Suppose that, for a newborn baby,
the mixed binary continuous responses are the household income ( y2) and whether the
newborn baby is LBW or not LBW ( y1). The covariates affecting the binary response may
include the dietary habits of the mother, the mother’s age at childbirth, age at marriage,
smoking status of mother, and whether the mother suffered from any major disease during
pregnancy. In particular, some of the covariates related to dietary habits (e.g., daily protein
intake) may not be observable, but their estimates may be obtained by personal interview.
These estimates would work as surrogates. In this case we would be interested in estimating
the regression coefficients of dietary habits on the occurrence of LBW ( y1) and also its ( y1)
correlation with income ( y2).
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9.3 BINARY REGRESSION MODELS WITH TWO
TYPES OF ERROR

In this section, a binary regression model is developed using a general link function that incor-
porates two important and independent sources of error, namely, measurement errors in covari-
ates and classification errors in the binary response. Suppose that y denotes the latent or true
binary response, ỹ the manifest binary response, Xp�1 the true predictor, and Zp�1 its surrogate.
Let 10 and 11 denote the probabilities of misclassification, which are assumed to be indepen-
dent of the covariate values:

P(~y ¼ 1 j y ¼ 0) ¼ 10; P(~y ¼ 0 j y ¼ 1) ¼ 11: (9:1)

For a fixed X ¼ x, it is assumed that

P(y ¼ 1 j x) ¼ g�1(b0 þ xTb), (9:2)

where g(.) is an appropriate link function and (b0, b
T) are the regression parameters. Now a

simple probability calculation yields

P(~y ¼ 1 j x) ¼ P(~y ¼ 1 j y ¼ 0)P(y ¼ 0 j x)þ P(~y ¼ 1 j y ¼ 1)P(y ¼ 1 j x)

¼ 10 þ (1� 10 � 11)g
�1(b0 þ xTb): (9:3)

Note that if 10 þ 11 ¼ 1, Equation (9.3) becomes independent of (b0, b
T) and thus the manifest

response does not contain any information about the regression parameters. Thus it would be
unreasonable to use this model if the probability of either kind were greater than 0.5. Neuhaus
[36] has shown that for scalar b, ignoring errors on responses produces biased covariate effect
estimates. If b̃ denotes the naive estimate of b and b̃ the estimate obtained under the correct
model, then it can be shown that ~b ffi b̂H0(0), where H0(0) is given by

(1� 10 � 11)f(b0)

f½F�1f10 þ (1� 10 � 11)F(b0)g�
,

(1� 10 � 11) exp (b0)
f10 þ (1� 11) exp (b0)gf1� 10 þ 11 exp (b0)g

for probit and logit link functions, respectively. Here F and f denote the cumulative distri-
bution function (cdf) and the probability distribution function (pdf) of a standard normal dis-
tribution, respectively. Clearly, 0 � H0(0) � 1. Besides these link functions, the result also
holds for any link function based on the inverse of a cdf. Thus for such links, ignoring
errors in response leads to attenuated estimates of the regression coefficients and the attenuation
factor is given by H0(0).

Notice that the correct model incorporating the classification errors is given by (9.3). Now
we need to incorporate measurement errors. Since we have assumed a Berkson model, the
measurement error process in our case is represented by f (x j z). Assuming nondifferential
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measurement error, we obtain

P(y ¼ 1 j z) ¼
ð
P(y ¼ 1 j x) f (x j z)dx ¼

ð
g�1(b0 þ xTb)f (x j z)dx: (9:4)

The multiple integral in (9.4) is not tractable analytically in all situations. In the case of a probit
link function and under the assumption that x j z � Np(z,S(z)), it can be shown that

P(y ¼ 1 j z) ¼ F(g0 þ gT z), (9:5)

where

g0 ¼
bT
0

(1þ bTS(z)b)1=2
and gT ¼ bT

(1þ bTS(z)b)1=2
: (9:6)

In the case of a logistic regression model, the integral has no closed-form solution.
However, a simple technique often works just as well. The technique is to approximate the
logistic by the probit. For c ffi 1:70, it is well known that H(v) ¼ F(v=c) [28,63,34]. For esti-
mating the regression parameters the maximum-likelihood estimate (MLE) of g0, g

T is first
derived and then the MLE of (b0, b

T) is obtained from it by inverting the relationships
given by (9.6). Also, it is to be noted that the MLE of (b0, b

T) exists provided that
gTS(z)g , 1. It is also evident from expression (9.6) that ignoring measurement error attenu-
ates the estimate of the regression coefficients. Now, combining models (9.3) and (9.5), the
conditional probability of the manifest response given the surrogates is given by

P(~y ¼ 1 j z) ¼ 10 þ (1� 10 � 11)
ð
g�1(b0 þ xTb)f (x j z)dx (9:7)

For the parameters in Equation (9.7) to be identifiable, validation, replication, or instrumen-
tal data will typically be required to estimate [12]. It should also be mentioned here that if all the
observations lie in the central part of the probit or logit function, then simultaneous estimation
of 10,11 and (g0,g

T), and hence of (b0, b
T), clearly falls through since, in that case, g21(g0 þ

gTz) can be well approximated by a linear function. In such situations, estimation of the
regression coefficients is possible only when independent estimates of 10 and 11 are available
from external validation studies.

An extensive simulation study was carried out with xi terms generated from univariate
N(zi,s

2), i ¼ 1, 2, . . ., n, where s2 is a prefixed value of the measurement error variance.
The results are reported for a number of such prefixed choices of s2 such as 0.01, 0.5, and
1.0 and for varying (10, 11). For the purpose of simulation study, b0 is taken to be 0 and
b1 ¼ 1. Samples of size n ¼ 10,000 were selected and the simulation was repeated 500
times. The average of the estimated values of the parameters was obtained along with the stan-
dard errors (given in parentheses), calculated from the inverse of the Fisher information matrix.
In Table 9.1 we list one such result corresponding to (s2, 10, 11) ¼ (0:5, 0:05, 0:05) for the
naive model (MN), the model incorporating measurement errors only (MM), the model incor-
porating classification errors only (MC) and the model incorporating both the errors (MMC).

The results show that the classification error dominates in terms of its effect on the esti-
mates. One can also observe that the joint effect of die errors measured by the attenuation of
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the estimates of the regression coefficients is less than the sum effect of the errors. Finally, the
study reveals that the model incorporating both the classification errors and measurement errors
works best in all the situations. For details and further results of the simulation study, we refer
the reader to Roy et al. [44].

A bivariate extension of this model is discussed in the next section. The interesting new
feature of this model is that it involves too many error probabilities as unknown parameters.
To make the model parsimonious, modeling the error probabilities as functions of a fewer
number of parameters is found to be all die more essential.

9.4 BIVARIATE BINARY REGRESSION MODELS WITH
TWO TYPES OF ERROR

Here we discuss bivariate binary regression models with measurement errors in the covariates
and classification errors in the responses. Let yi ¼ (yi1, yi2)T denote the ith observation
(i ¼ 1, 2, . . . n) on the bivariate binary response vector. The response depends on a set of
(m � 1) covariates xi ¼ (xTi1, x

T
i2)

T , where Xij is the (mj � 1) predictor of
yij( j ¼ 1, 2; m ¼ m1 þ m2). Let us define Gaussian latent variables wi ¼ (wi1,wi2)T such
that wi � N2(b01 þ bT

1 xi1,b02 þ bT
2 xi2, 1, 1, r). The binary response yij is related to the latent

variable as follows:

yij ¼ 1 if wij . 0; otherwise yij ¼ 0( _j ¼ 1, 2): (9:8)

Simple probability calculation yields

P( yi1 ¼ 1, yi2 ¼ 1 j xi) ¼ F2(b01 þ bT
1 xi1,b02 þ bT

2 xi2), (9:9)

where F2(. , .) is the cdf of a bivariate normal distribution with parameters (0, 0, 1, 1, r). The
model represented by (9.10) will be called the “naive model” (MN). In this case the xi terms are
not observable; however, observations on the surrogate zi ¼ (zTi1, z

T
i2)

T are available. It is further
assumed that

xi j zi � Nm(zi, S), (9:10)

where S is a matrix consisting of the diagonal blocks S11,S22 and the off-diagonal blocks
S12,S21. For the purpose of identifiability, S is completely specified. Assuming nondifferential

Table 9.1 (s2, 10, 11) 5 (0.5, 0.05, 0.05)

Estimate Model MN Model MC Model MM Model MMC

b̂0 0.0003 (0.016) 0.002 (0.029) 0.000 (0.024) 0.001 (0.036)
b̂1 0.558 (0.009) 0.820 (0.029) 0.608 (0.012) 1.000 (0.055)
1̂0 — (—) 0.050 (0.005) — (—) 0.050 (0.006)
1̂1 — (—) 0.050 (0.005) — (—) 0.050 (0.006)
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measurement errors, we obtain

P(yi1 ¼ 1, yi2 ¼ 1 j zi) ¼
ð
P( yi1 ¼ 1, yi2 ¼ 1 j xi) f (xi j zi)dxi

¼ F2(g01 þ gT1 zi1,g02 þ gT2 zi2):

(9:11)

Here F2(. , .) is the cdf of a bivariate normal distribution with parameters (0, 0, 1, 1, r�)

g0j ¼ b0j(1þ bT
j S jjbj)

�0:5; gTj ¼ bT
j (1þ bT

j S jjbj)
�0:5 ( j ¼ 1,2) (9:12)

and

r� ¼ rþ bT
1S12b2

(1þ bT
1S11b1)

0:5(1þ bT
2S22b2)

0:5 : (9:13)

The model represented by (9.11) incorporates measurement errors. For estimating the par-
ameters, the MLEs of g0j, g

T
j , r

� are first derived, and then the MLEs of b0j,b
T
j , r are obtained

by inverting the relationships (9.12) and (9.13). However, the MLEs of (b0j,b
T
j ) exist provided

that gTjS jjg j , 1 and that of r exists, provided in turn that

�1þ bT
1S12b2

(1þ bT
1S11b1)

0:5(1þ bT
2S22b2)

0:5 , r� ,
1þ bT

1S12b2

(1þ bT
1S11b1)

0:5(1þ bT
2S22b2)

0:5 :

It is clear from (9.12) that ignoring measurement error causes attenuation of the regression coef-
ficients. However, the effect of measurement error on the correlation coefficient does not follow
any pattern. It can be observed that in the case of a scalar b, if b1 ¼ b2 . 0 (or ,0), then the
naive estimate of r becomes inflated.

In this case, in addition to measurement error in covariates, the data may also be contami-
nated with classification errors in binary responses. Suppose that ~yi ¼ (~yi1,~yi2)

T denotes the ith
manifest response corresponding to the true response yi. The probabilities of misclassification
are given by

P(~yi1 ¼ j,~yi2 ¼ k j yi1 ¼ l, yi2 ¼ m) ¼ 1( j, k j l,m), say, j, k, l,m [ f0, 1g, (9:14)

where j = l or k= m. The misclassification probabilities in (9.14) are treated as unknown con-
stants and, to keep the treatment simple, are assumed to be independent of the true covariates xi.
Clearly, there are 12 misclassification probabilities corresponding to different choices of ( j, k)
and (l, m). Moreover, ( j, k) ¼ (l, m) gives a correct classification. To avoid excessive error
probabilities, one meaningful assumption may be that of conditional independence. More
specifically, it is assumed that

P(~yi1 ¼ j,~yi2 ¼ k j yi1 ¼ l, yi2 ¼ m) ¼ P(~yi1 ¼ j j yi1 ¼ l)� P(~yi2 ¼ k j yi2 ¼ m): (9:15)

This model involves only four unknown classification errors that are relatively easy to esti-
mate along with the regression parameters. Now, the conditional probability of the manifest
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response given the surrogates is given by

P(~yi1 ¼ j,~yi2 ¼ k j zi) ¼
X
(i,m)

1( j, k j l,m)P(yi1 ¼ l, yi2 ¼ m j zi), (9:16)

where ( j, k) [ f(1, 1), (1, 0), (0, 1), (0, 0)g. Note that Equation (9.16) gives the model incor-
porating both measurement errors and classification errors and will be denoted by MMC.

A simulation study is carried out with b1 ¼ b2 ¼ 1.0 (no intercept terms are involved), r ¼
0.6, and for varying choices of measurement error variances and misclassification probabilities.
In particular, the measurement error distribution is chosen to be univariate normal with mean
equal to the value of the surrogate and for some prefixed choices of the measurement error
variance, such as s2 ¼ 0.01, 0.5, 1.0. It is further assumed that

Pf~yi1 ¼ 1 j yi1 ¼ 0g ¼ Pf~yi2 ¼ 1 j yi2 ¼ 0g ¼ 10,

Pf~yi1 ¼ 0 j yi1 ¼ 1g ¼ Pf~yi2 ¼ 0 j yi2 ¼ 1g ¼ 11,

where 10 and 11 are some prefixed numbers. Samples of size n ¼ 10000 were selected, and the
simulation was repeated 500 times. The average of the estimated values of the parameters was
obtained along with the standard errors calculated from the inverse of the Fisher information
matrix (given in parentheses). The results show that ignoring classification errors results in
attenuation of the estimates of the regression parameters as well as that of r. However, no theor-
etical justification could be given for this phenomenon. As noted before, ignoring measurement
errors attenuates the estimates of the regression coefficients. However, for the choice of the
parameters considered in the simulation, ignoring measurement errors causes inflation of
the estimate of r. Thus, in the presence of both these errors, the effect of ignoring these
errors on the estimate of r works in opposite directions. As a result, we might chance upon
a situation where the estimate of r is close to the true value under MN. For instance, when
s2 ¼ 0.5, the estimate of r is 0.511 and 0.599 under models MN and MMC, respectively.
Throughout the simulation it is observed that classification errors dominate small or moderate
measurement errors. For completeness, we list the results in Table 9.2 corresponding to a
specific choice of (s2, 10, 11) and for the models MN and MMC. For further details, we refer
the reader to Roy [42].

Table 9.2 (s2, 10, 11) 5 (0.5, 0.05, 0.05)

Estimate Model MN Model MMC

b̂1 0.546 (0.009) 1.002 (0.099)
b̂2 0.547 (0.009) 1.008 (0.120)
r̂ 0.511 (0.017) 0.599 (0.031)
1̂0 — 0.050 (0.003)
1̂1 — 0.950 (0.004)
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9.5 MODELS FOR ANALYZING MIXED MISCLASSIFIED
BINARY AND CONTINUOUS RESPONSES

In this formulation, let yi ¼ (y1i, y2i)T denote the bivariate response, where y1i is binary and y2i
is continuous. Suppose that y�1i is the unobserved latent variable associated with the binary
response y1i such that

y1i ¼ 1 if y�1i . 0; otherwise y1i ¼ 0: (9:17)

Associated with each observation there is a p1 � 1 covariate vector x1i thought to predict y�1i
(and hence y1i) and a p2 � 1 covariate vector x2i believed to predict y2i. Further, it is assumed
that

y�1i, y2i j xi ¼ (xT1i, x
T
2i)

T � N2(b01 þ bT
1 x1i,b02 þ bT

2 x2i, 1,s
2
2, r): (9:18)

In the case of measurement errors in covariates, let zT1i(1� p1) and z2i(1� p2) be
the surrogates for xT1i and xT2i, respectively. With the strength of Equation (9.18),
and assuming that (x1i, x2i) j (z1i, z2i) � Npf(z1i, z2i),Sg, where p ¼ p1 þ p2 and S is a

completely specified matrix consisting of the blocks S11,S12,S21 ¼ S
T
12 and S22, it can be

shown that

y�1i, y2i j zi � N2(b01 þ bT
1 z1i,b02 þ bT

2 z2i, 1þ bT
1S11b1,s

2
2 þ bT

2S22b2, r
�), (9:19)

where

r� ¼ rs2 þ bT
1S12b2

(1þ bT
1S11b1)

0:5(s2
2 þ bT

2S22b2)
0:5 : (9:20)

In this situation, in addition to measurement errors in covariates, the binary response y1i is
subject to classification errors and hence is not observable. Suppose that y1i denotes the ith
manifest response corresponding to the true response y1i. We assume a simple probability
model in terms of misclassification probabilities given by

P(~y1i ¼ 1 j y1i ¼ 0, y2i, xi) ¼ P(~y1i ¼ 1 j y1i ¼ 0) ¼ 10,

P(~y1i ¼ 0 j y1i ¼ 1, y2i, xi) ¼ P(~y1i ¼ 0 j y1i ¼ 1) ¼ 11:
(9:21)

We treat the misclassification probabilities in (9.21) as unknown constants independent of
the true covariates xi and the continuous response y2i. Now, some simple probability
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calculations yield

P(~y1i ¼ 1 j y2i, xi) ¼ (1� 11)F
m1i

(1� r2)0:5

� �
þ 10 1�F

m1i

(1� r2)0:5

� �� �

¼ 10 þ (1� 10 � 11)F
(m1i)

(1� r2)0:5

� �
¼ p2i (say),

P(~y1i ¼ 1 j y2i, zi) ¼ 10 þ (1� 10 � 11)

�F
g01 þ gT1 z1i
(1� r�2)0:5

þ r�

s�
2(1� r�2)0:5

(y2i � b02 � bT
2 z2i)

( )
(9:22)

¼pi (say), where r* is given by (9.20) and

g01 ¼
b01

(1þ bT
1S11b1)

0:5 , g
T
1 ¼ bT

1

(1þ bT
1S11b1)

0:5 : (9:23)

Also, s�
2 is given by

s�2
2 ¼ s2

2 þ bT
2S22b2: (9:24)

Thus, the joint distribution of the manifest binary response ~y1i and the continuous response
y2i given the surrogates zi is

f (~y1i, y2i j zi) ¼ f (~y1i j y2i, zi) f (y2i j z2i)

¼ p
~y1i
i (1� pi)

1�~y1i 1

s�
2(2p)

1=2
exp � 1

2
(y2i � b02 � bT

2 z2i)
2

s�2
2

� �
: (9:25)

The bivariate model given in (9.25) incorporates both the classification errors in binary
responses and measurement errors in covariates.

Using the observed data d0 ¼ f(~y1i, y2i, zT1i, zT2i)T , i ¼ 1, 2, . . . , ng, the MLEs of the par-
ameters j1 ¼ (g01, g

T
1 , r

�)T , j2 ¼ (b02,b
T
2 ,s

�2
2 )T , 10, and 11 are obtained. Let us also define

u1 ¼ (b01,b
T
1 , r)

T and u2 ¼ (b02,b
T
2 ,s

2
2)

T . As a consequence of the invariance property of

MLEs, the MLE of u1 and u2 are obtained from ĵ1 and ĵ2 by using the relations (9.20),
(9.23), and (9.24). It is to be noted that the first p2 þ 1 components of u2 and j2 are the
same. Hence b02 and b2 remain unchanged because of the incorporation of measurement
error. However, the scale parameter of the continuous response is affected. According to the
assumption that s�2

2 . bT
2S22b2, it follows from (9.24) that ignoring measurement error

inflates the estimate of s2
2. The estimates of b01 and b1 are obtained from (9.23), assuming

that gT1S11g1 , 1. Also equation (9.23) clearly shows that ignoring measurement errors
causes attenuation of the estimates of the regression coefficients. Equation (9.20) shows that
the estimate of the correlation coefficient is also affected; however, the effect of measurement
errors in this case does not follow any clear pattern.

It is significant that for fixed u2, ignoring classification error causes attenuation of the esti-
mates of u1. To be specific, the estimates of b01,b1, and r are attenuated under the naive model
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MN. The effect of classification errors on the estimates of, b02,b2, and s2
2 is not quite

clear. However, in the special but important case of x1i ¼ x2i ¼ xi (say), the estimates of u2
remain unaffected because of the incorporation of classification errors.

An extensive simulation study was carried out for varying choices of the misclassification
probabilities and measurement error variance such as S ¼ s2 ¼ 0:01, 0:5, 1:0. Here the sample
size is chosen to be 10,000, and the simulation is repeated 500 times. The true values of the
parameters are as follows: b01 ¼ b02 ¼ 0,b1 ¼ b2 ¼ 1:0, r ¼ 0:6, and s2

2 ¼ 1:0. The
average values of the estimates of the parameters along with their standard errors calculated
from the inverse of the Fisher information matrix (shown within parentheses) are reported
for a specific choice of the measurement error variance (s2 ¼ 0:5) and misclassification prob-
abilities (0.10, 0.10). The results are listed in Table 9.3 for the naive model (MN) and the model
incorporating measurement errors and classification errors (MMC). The findings support the
theoretical justifications given above. For further details, we refer the reader to Roy [42],
and Roy and Banerjee [43].

9.6 ATOM BOMB DATA ANALYSIS

About 5 years after the dropping of atomic bombs on Hiroshima and Nagasaki, a lifespan study
(LSS) was begun at the behest of the Radiation Effect Research Foundation (RERF) that led to
the establishment of a fixed study cohort of survivors who have been followed since October
1950. A major purpose of the study was to assess the effect of radiation exposure on cancer
mortality. This cohort of 86,520 survivors includes both an exposed group and a nonexposed
group, distinguished by distance (,2 km, 2–10 km) from the bursting locations of the bombs.
For those in the exposed group, interviews and other efforts were made to determine the sur-
vivor location and shielding at the time of explosion. On the basis of this information, elaborate
physical computations were made to estimate the individual radiation exposures by using DS86
dosimetry [41,19]. The true dose for a person is represented by the absorbed radiation,
measured in gray units (Gy), to his/her intestine at the time of exposure. For our purpose it
is useful to think of the dosimetry system as a formula that would provide negligible error
for a survivor’s radiation exposure given the exact location and shielding condition. Thus
the sources of error in dose measurements result not only from errors in location and shielding
information but also from the fact that the two individuals receiving the same amount of intes-
tinal exposures may absorb different amounts of radiation, possibly due to biological factors.
For illustrative purpose here, it is assumed that the latter is the cause of measurement error.

Table 9.3 (s2, 10, 11) 5 (0.5, 0.10, 0.10)

Estimates M1 M2

b̂01 0.0014 (0.0147) 00.0019 (0.0438)
b̂1 0.4305 (0.0081) 1.2336 (0.0692)
b̂02 20.0002 (0.0124) 20.0002 (0.0124)
b̂2 0.9997 (0.0054) 0.9997 (0.0054)
r̂ 0.3191 (0.0147) 0.5781 (0.0312)
ŝ2
2 1.5013 (0.0226) 1.0016 (0.0230)

1̂0 — 0.1000 (0.0061)
1̂1 — 0.1000 (0.0055)
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Thus the true dose (x) for a person is a function of the estimated dose (z) obtained by using
DS86. In other words, z is considered as a surrogate to x. It is assumed that given the surrogate
(z), the distribution of the true dose (x) is normal with mean equal to z and variance equal to cz2,
where c is a known number representing the constant coefficient of variation. The choice of this
model is motivated partly by the study of Pierce et al. [38]. However, the normal model is one
of the several possible choices for measurement error distribution.

A close inspection of the data [48] shows an unexpected pattern in the proportion of cancer
deaths. It suddenly decreases in the last two dose categories, contrary to what is expected.
Shimizu et al. [46] pointed out that the observed dose response in noncancer mortality was
due to the misclassification of cancer deaths as noncancer deaths on death certificates.
Sposto et al. [48] estimated the misclassification probabilities by using a validation dataset
obtained from a subset of deaths in the cohort for which autopsies were carried out. They
found the overall crude misclassification rate of cancer deaths to be 22% and of noncancer
deaths, 3.5%. From the study they concluded that the misclassification rates do not change
significantly with change in dose categories although they significantly depend on age.

Thus the data are contaminated by both measurement error in covariate and classification
error in response. In this analysis, for all practical purposes, it is assumed that the misclassifi-
cation probabilities are all known and equal to the overall misclassification rates estimated by
Sposto et al. [48]. The analysis is carried out with the data for different choices of c. It is found,
for values of c lying between 0.1 and 0.8, that the estimates of neither the regression parameters
norits standard error change significantly. The results are furnished below in Table 9.4, for
c ¼ 0:5 and for the two models, namely, the naive model (MN) and the model incorporating
measurement errors and classification errors (MMC). The figures in parentheses indicate the
standard errors. The study reveals that the presence of measurement error does not affect
the results significantly. On the other hand, the results of the analysis in presence of response
misclassification in the data significantly affect the estimates of regression parameters. This
is expected, as the misclassification probabilities are quite high. Ignoring misclassification
probabilities may result in significant underestimation of the regression parameters.

9.7 CONCLUDING REMARKS

This study considers the effect of measurement errors in binary regression models where the
binary responses are subject to classification errors. The concepts are extended to correlated
binary outcomes and mixed binary–continuous outcomes. It is possible to extend the work
to random effects probit and logit models [22] as well as to ordered probit models when the
responses are ordinal [14]. Finally, in binary regression models, in addition to misclassified
responses, some of the responses may be missing as well. The responses depend on a set of
covariates, discrete or continuous, which are subject to measurement error or classification
error. In such a situation, investigating the joint effect of the missing mechanism, the

Table 9.4 (s2, 10, 11) 5 (0.5, 0.22, 0.035)

Estimates Model MN Model MMC

b̂0 20.778 (0.000071) 20.688 (0.000114)
b̂1 0.291 (0.000778) 0.381 (0.001470)
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missing proportions, the classification errors, and the measurement errors on the estimates of
regression coefficients through some efficiency criteria is worth considering.
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Likelihood Inference in
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Department of Biostatistics, University of North Carolina, Chapel Hill,
North Carolina

10.1 INTRODUCTION

Survival analysis techniques are widely used in biostatistics, econometrics, and many other
areas where time-to-event data occur. Semiparametric versions of survival models have
proved to be extremely useful in practice because of their meaningful blending of both inter-
pretability (through the parametric regression component) and flexibility (through the nonpara-
metric nuisance component). There are many classic references to this area that can help
provide a thorough introduction (see, e.g., Refs. [24,3, and 26]). We will assume that the
reader has had exposure to the basic semiparametric models and estimation techniques used
in survival analysis.

Semiparametric survival models have both a parametric index u and a nonparametric index
h. Often, inference about u is the primary interest and h is a nuisance parameter. The prototypic
example is the Cox [11] regression model, where the components in u are the hazard ratios for
the covariates (the regression parameter vector) and h is the baseline hazard function. A
broader example is the class of transformation models [49], which includes the odds-ratio
family [12,46], the proportional odds model [39], and the Cox model as special cases. The
parameter defining the odds-ratio transformation can also be considered unknown, resulting
in the univariate proportional hazards frailty regression model family [28]. In all these settings,
the parameter of interest u is usually the regression parameter (but may also include other
parameters), while the nuisance parameter h is usually related to the baseline survival function
but may also include nonparametric covariate effects.
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We use the adjective “regular” to designate a parameter that is
ffiffiffi
n

p
-consistently estimable.

Note that in many of our examples one or more of the nuisance parameters may also be regular
(as happens, e.g., with the baseline hazard in the Cox model for right censoring). In addition to
right censoring, other kinds of censoring may be involved, including current status data [21,34]
or panel data [56,5], although the use of time-dependent covariates may not be feasible in some
cases. Other models for survival data include additive hazards regression models [1,33], accel-
erated failure-time models [50,55], time-varying coefficient models [45], and other complex
models for addressing departures from proportionality [4,19]. Correlated failure times may
also be involved, as happens with multivariate frailty models both without correlation
[37,38] and with correlation [42,57].

For simplicity of exposition, this chapter focuses on certain transformation models for inde-
pendent and identically distributed univariate failure-time data under either right censoring or
current status censoring (case 1 interval censoring), although the techniques we develop can be
extended to more general situations.

We begin the chapter by a presenting several examples that will be used to illustrate the
main inferential techniques. We will then briefly review some basic asymptotic theory
needed for our results. The bootstrap inferential technique, both the nonparametric and
weighted versions, will be presented next. We will then present the profile sampler, followed
by the piggyback bootstrap. At that point, we will briefly review other inferential techniques,
and the chapter will conclude with a brief discussion.

10.2 EXAMPLES OF SURVIVAL MODELS

We now introduce the key examples that will be used for illustration. We note that this is far
from an exhaustive list; it is intended only for illustration. Here are the examples.

Example 10.1: The Cox Model for Right-Censored Data. A single observation consists of
X ¼ (U, d, Z ), where U ¼ T ^ C is the minimum of a failure time T and censoring time C, d ¼
1 fT � Cg is the indicator of observing a failure time, and Z is a covariate vector in <d. We
assume that T and C are independent given Z and that censoring is uninformative. The survival
function for T given the possibly time-dependent covariates Z has the form

SZ (t) ¼ exp �
ðt
0
eb

0Z(s) dA(s)

� �
, ð10:1Þ

where A is a continuous, unknown increasing function with A(0) ¼ 0. We will assume for
simplicity that the time-dependent covariates are external (see Sec. 6.3.1 of Ref. 24). This
model has been widely studied.

Example 10.2: The Proportional Odds Model for Right-Censored Data. The data have
the same form as in Example 10.1, but the survival function for T has the form

SZ (t) ¼ 1þ
ðt
0
eb

0Z(s) dA(s)

� ��1

ð10:2Þ

Efficient estimation for this model was studied in Murphy et al. [39].
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Example 10.3: The Odds-Ratio Model for Right-Censored Data. The data are the same as
in the previous two examples, but the model has the following form for the survival function
given the possibly time-dependent covariates Z

SZ (t) ¼ 1þ g

ð t
0
eb

0Z(s) dA(s)

� ��1=g

, ð10:3Þ

where g � 0 is a specified constant. Taking the limit g # 0 results in the Cox model of Example
10.1, while setting g ¼ 1 results in the proportional odds model of Example 10.2. Efficient
estimation for this family of models was considered in Scharfstein et al. [46].

Example 10.4: The Odds-Ratio Model for Right-Censored Data, with g Known and a
Change Point Based on a Covariate Threshold. A single observation consists of X ¼

(U, d, Z, W ), where (U, d, Z ) is as in the previous examples, but W [ < is a time-independent
covariate (which may or may not be a component of Z ). The survival function in this case is the
same as (10.3) but with b0Z(s) replaced by

rb,a,z(s) ¼ b0Z(s)þ 1fW . zga0Z(s), ð10:4Þ

where a[ <d and z [ <. Here u ¼ (b, a) are the regular parameters and h ¼ (z, A) are the
“nuisance” parameters. The special case of this model with g # 0 (the Cox model case) was
considered in Pons [44]. A more general version for general transformation models was
considered in Kosorok and Song [29].

Example 10.5: The Odds-Ratio Model for Right-Censored Data with g Unknown. For
this model, u ¼ (g, b0)0 are the regular parameters of interest. A slightly more general
version of this model was considered in Kosorok et al. [28].

Example 10.6: The Cox Model for Current Status Data. A single observation consists of
X ¼ (U, d, Z ), whereU is the random current status time, d ¼ 1fT � Ug is the event status indi-
cator at U, and Z[ <d is a time-independent covariate. T and U are assumed to be independent
given Z. The survival function of T is assumed to have the form given in (10.1). Since Z is
time-independent, the survival function simplifies to

SZ (t) ¼ exp �eb
0ZA(t)

� �
: ð10:5Þ

This model was considered by Huang [21] (see also Ref. 20).

Example 10.7: The Partly Linear Cox Model for Current Status Data. A single obser-
vation consists of X ¼ (U, d, Z,W ), where U, d and Z are as defined above but W[ < is a
single additional time-independent covariate. Both T and U are assumed to be independent
given both Z and W. The survival function has the form

SZ (t) ¼ exp �eb
0Zþh(W)A(t)

� �
, ð10:6Þ
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where h is an unknown smooth function assumed to be in a Sobolev space [34] and A is a base-
line integrated hazard. In this case the nuisance parameter is the composite h ¼ (h, A). A gen-
eralization of this example for transformation models was studied in Ma and Kosorok [34].

10.3 BASIC ESTIMATION AND LIMIT THEORY

For Examples 10.1–10.5, semiparametric maximum-likelihood estimation (SPMLE) involves
a hazard function (the derivative a of A). Maximizing over this a results in assigning mass to
each observed failure time, and the resulting maximizer is no longer a continuous hazard as
assumed in model (10.3). This is a well-known issue [39], and the solution is to utilize an
empirical likelihood that replaces a with DA and assigns mass only at observed failure
times. The maximizer for A(t) is then just the sum of the maximizers for DA(s) for all s � t.
The profile likelihood pLn(u), obtained by profiling the empirical likelihood over A, is used
for estimation in these examples, although additional profiling over z is needed in Example
10.4. For Example 10.1, this profiling results in the celebrated partial likelihood, which does
not involve A at all. The full MLE in this instance consists of ûn obtained from the partial
likelihood and the Breslow estimator

ĥn(t) ¼
ðt
0

Pn
i¼1 dNi(s)Pn

i¼1
~Yi(s)eû

0
nZi(s)

,

where Ni(t) ¼ 1fUi � tgdi and Ỹi(t) ¼ 1fUi � tg, for the sample observations i ¼ 1, . . . , n.
The remaining MLEs are more complex.

In general, what is required for Examples 10.2–10.7 is to maximize over the infinite-
dimensional nuisance parameter A before maximizing over the other parameters. For
Examples 10.2–10.5, this maximization leads to a stationary point equation that can be
solved iteratively to obtain an estimator Âu depending on u. For Example 10.2, this stationary
point equation has the form

Âu(t) ¼
ðt
0

Pn

~Y(s)eu
0Z(s)(1þ d)

1þ
ÐU
0 eu

0Z(v)dÂu(v)

" # !�1

Pn½dN(s)�, ð10:7Þ

where Pn is the empirical measure of the sample, for instance,
Pnh(~Y , Z, d,N) ¼ n�1Pn

i¼1 h(~Yi, Zi, di,Ni). For Examples 10.6 and 10.7, profiling over A is
still needed but is accomplished by using an iterative convex minorant algorithm [17,21].
For Example 10.7, additional complexity is present since some form of penalization is required
to ensure proper maximization of the likelihood over h [34].

This maximizer Âu is used to compute the profile likelihood pLn(u), which is then further
maximized to obtain the SPMLE estimates ûn and ĥn. In Example 10.7, as mentioned earlier,
this may require penalized maximization. In all of these examples, the estimators have been
shown to be consistent. In the case of the infinite-dimensional nonregular parameters, this
consistency may be in terms of an L1 norm or some other nonuniform norm. All regular
parameters—all parameters in Examples 10.1–10.5 except for the threshold parameter z, and
the b parameter in Examples 10.6 and 10.7—have been shown to be

ffiffiffi
n

p
-consistent, asympto-

tically normal, and fully efficient (even for the infinite-dimensional regular parameters).
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For Example 10.4, ẑn is n-consistent (more rapidly converging than the regular parameters) and
converges to the argmax of an interesting Poisson process that is asymptotically independent of
the other parameter estimates. For Examples 10.6 and 10.7, A and h are n1/3-consistent.

We note that establishing consistency, existence, and rates of convergence are typically the
most technically challenging steps in developing inference for semiparametric models. While
we are not dwelling on these steps in this chapter, we acknowledge their importance and
complexity. Establishing existence and consistency is especially challenging for infinite-
dimensional parameter estimators, as highlighted in Murphy and van der Vaart [41], although
the general approach used in Murphy [37] can often be successfully adapted for right-censored
survival data settings. Establishing rates of convergence for nonregular parameter estimators,
regardless of whether they are infinite-dimensional, is also quite difficult. While there are
some general results and strategies available to help, highly specific methods are often
needed for each new situation.

The focus of the remainder of the chapter is on inference for the regular parameters based on
the limiting normal distributions. For Example 10.1, simultaneous inference for the regression
parameter can be accomplished by using closed-form variance estimators that have by now
become standard (for an overview, see Sec. 4.3 of Ref. 16). Because the limiting variances
from the remaining examples involve complex operators, direct estimation of the variances
in these settings is seldom not feasible, and inference can be quite challenging. We will not
discuss inference for the nonregular parameters, except briefly in Section 10.8, although
some progress has been made in this area (see, e.g., the discussion on inference for the
threshold parameter in Ref. 29).

10.4 THE BOOTSTRAP

The bootstrap has a long and successful history as a general method of statistical inference. The
use of the bootstrap for infinite-dimensional regular parameters or for finite-dimensional
regular parameters in the presence of nonregular parameters is a more recent phenomenon.
In both cases, empirical process theory plays an important role. The reason for this is that
all the estimators from all our examples can be expressed as smooth functionals of an empirical
process. We now briefly review empirical processes and the associated bootstrap results. As
part of this, we will introduce a useful alternative to the nonparametric bootstrap, the weighted
bootstrap. (For additional information on the empirical process bootstrap, see Sec. 3.6 of
Ref. 54) and Ch. 10 of Ref. 27.)

The empirical probability measure Pn was introduced in Section 10.310.3 (above). Let X be
the sample space for the random observation X. Then, for any measurable function
f : X 7! <,Pn f ¼ n�1Pn

i¼1 f (Xi) (this is sometimes called the empirical “expectation”
of f ). We let P denote the true probability distribution of X and define Pf ¼

Ð
X
f (x)P(dx).

Also let Gnf ¼
ffiffiffi
n

p
(Pn � P) f . General empirical process theory involves a collection F of

measurable functions f : X 7! <. We say that F is P-Glivenko–Cantelli if
sup f[F j(Pn � P) f j ! 0, outer almost surely, where the “outer” here invokes a high level
of generality (see Sec. 1.2 of Ref. 54) that is quite useful in survival analysis. We say that
F is P-Donsker if Gn converges weakly to a tight Gaussian process G uniformly over all
f [ F , that is, all Gn f G f with an appropriate level of continuity over f [ F . We drop
the prefix P in P-Glivenko–Cantelli and P-Donsker if the choice of P is contextually clear.

Consider Example 10.2. Much of the theory we now review comes from Lee [30], which
differs some from the approach in Murphy et al. [39]. Using the form of Âu given in
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Equation 10.7, it is not difficult to establish that the profile empirical likelihood is composed of
several empirical expectations. Thus the SPMLE is a functional of an empirical process over a
suitable choice of F . Consistency will essentially follow from F being P-Glivenko–Cantelli
combined with the identifiability of the proportional odds model, although some verification of
the existence of the estimators involved is also needed. The SPMLEs can also be expressed as
the solution (b̂n, Ân) of the Z-estimating equation PnU(b;A)(h) ¼ 0, where U(b, A) (h) ¼

ðt
0
[Z 0(s)h1 þ h2(s)]dN(s)� (1þ d)

Ð t
0
~Y(s)eb

0Z(s)[Z 0(s)h1 þ h2(s)]dA(s)

1þ
Ð t
0
~Y(s)eb

0Z(s)dA(s)
, ð10:8Þ

h ¼ (h1, h2) ranges over H ¼ <d � BV1 [0,t], BV1 [0,t] is the space of functions
on [0,t] with total variation bounded by 1, and t is the fixed upper limit of the censoring
times.

Once we have consistency of (b̂n, Ân), we can usually obtain asymptotic normality provided
the class of functions F ¼ {U(b)(h) : b [ B0,A [ A0, h [ H}, where B0 and A0 are open
neighborhoods of the true parameter values b0 and A0, respectively, is P-Donsker. (The
basic theory for Z estimators of this kind can be found in Sec. 3.3 of Ref. 54). It turns out
that once a class of functions is determined to be Glivenko–Cantelli or Donsker, there is an
automatic corresponding validity of the bootstrap. This makes ensuring that the bootstrap esti-
mator is consistent (as an estimator) and that its conditional distribution is also consistent (as an
estimator of the limiting probability distribution) both somewhat automatic. Before we explain
this in more detail, we need to define the bootstraps that we are interested in. The nonparametric
bootstrap is obtained by sampling without replacement from the sample X1, . . . , Xn to obtain
the bootstrapped sample X1

�, . . . , Xn
�. It is not difficult to see that the empirical measure of the

resulting bootstrapped sample is P�
n f ¼ n�1Pn

i¼1 Win f (Xi), where the Wn ¼ (W1n, . . . ,Wnn)
are independent multinomial vectors with n categories (one for each sample value) and prob-
ability n vector (1/n, . . . ,1/n)0. Thus the nonparametric bootstrap of a functional of the empiri-
cal distribution can be viewed as the functional of a weighted empirical distribution.

An alternative bootstrap is the weighted bootstrap. This also can be expressed as the func-
tional of a weighted empirical but with different weights. Let j1, . . . , jn be an independent
identically distributed (i.i.d.) collection of positive “preweights” independent of the data
with 0 , E[j1] ¼ m,1, 0, Var[j1] ¼ s2 , 1, and

Ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P[j1 . u]

p
du , 1. The latter

moment condition is a little stronger than the existence of a second moment but not as
strong as requiring E[jj1j2+[] ,1 for some [ . 0. Let j̄ be the sample mean of these pre-
weights. The proposed weighted bootstrap is then based on the weighted empirical measure
P��

n f ¼ n�1Pn
i¼1 (ji=�j) f (Xi). Let G

�
n ¼

ffiffiffi
n

p
(P�

n � Pn) and G
��
n ¼

ffiffiffi
n

p
(m=s)(P��

n � Pn). We
have the following useful Glivenko–Cantelli result.

Theorem 10.1. Let F be a class of measurable functions f : X 7! <: The following are
equivalent:

1. F is P-Glivenko–Cantelli.

2. Sup f[F j(P�
n � P) f j ! 0 outer almost surely and sup f[F j f � Pf j < 1:

3. Sup f[F j(P��
n � P) f j ! 0 outer almost surely and sup f[F j f � Pf j < 1:

The proof follows from Theorem 10.8 and Corollary 10.2 of Kosorok [27]. A
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We also have a similar result for Donsker classes. First, however, we need to define what
it means for the conditional bootstrap distributions to be consistent for the true limiting dis-
tribution. This is accomplished through bounded Lipschitz classes of functions. Specifically,
let BL1(F ) be the collection of all Lipschitz continuous functions h : ‘1ðF Þ 7! < with
khk1 � 1 and jh( f ) 2 h(g)j � kf 2 gk1, where k . k1 is the uniform norm. Let G be a
mean zero Gaussian process indexed by f [ F such that the correlation between Gf and Gg
is P( fg) 2 PfPg. We say that the bootstrapped process G

�
n is consistent for G if

suph[BL1(F ) EWh(G�
n)� Eh(G)

�� ��! 0 in outer probability, where EW denotes expectation over
the weights W given the sample data. This reduces to the standard consistency definition for
the bootstrap when F is finite-dimensional.

The following theorem tells us that bootstrap conditional distribution consistency is an auto-
matic consequence of the class F being Donsker in the first place.

Theorem 10.2. Let F be a class of measurable functions f : X 7! <. The following are
equivalent:

1. F is P-Donsker.

2. suph[BL1(F ) EWh(G
�
n)� E(G )

�� ��! 0 in probability and h(G�
n) is asymptotically measur-

able for all h [ BL1(F ).

3. suph[BL1(F ) Ejh(G
��
n )� E(G )

�� ��! 0 in probability and hðG��
n Þ is asymptotically measur-

able for all h [ BL1(F ).

Note that the asymptotic measurability condition in Theorem 10.2 is discussed in van der Vaart
Wellner [54, Sec. 1.3]; however, it poses no difficulties for the examples that we are consider-
ing and for most other practical survival analysis examples (and can be essentially ignored by
the reader). The proof of Theorem 10.2 follows from Theorem 2.6 of Kosorok [27]. There is
also a continuous mapping result for the bootstrap that converts the above results to validity of
the bootstrapped estimators.

We will now apply these results to two settings where inference focuses on regular
parameters. In the first setting, if there are any nonregular parameters, we assume that they con-
verge at a rate faster than

ffiffiffi
n

p
. In the second setting, inference focuses on the finite-dimensional

parameter u but the nuisance parameter estimators are allowed to converge at a slower thanffiffiffi
n

p
rate.

10.4.1 The Regular Case

For Examples 10.1–10.3 and 10.5, all parameters are regular. In these settings, Theorems 10.1
and 10.2 enable verification of bootstrap validity to follow almost automatically from consist-
ency of (ûn, ĥn) and asymptotic normality of

ffiffiffi
n

p
[(ûn, ĥn) 2 (u0, h0)]. The proof of Corollary 1

in Kosorok et al. [28] illustrates this principle for (our) Example 10.5. For Example 10.4, the
only nonregular parameter is the change point z. Since the MLE for z, ẑn, converges at the n
rate, one can hold the value of z fixed at ẑn while maximizing over the other parameters for each
bootstrap realization. The resulting bootstrap is valid for all the regular parameters [29]. We
note that confidence bands for infinite-dimensional parameters, such as the baseline hazard,
cannot be obtained from simply knowing the covariance structure of the involved limiting
Gaussian processes, except for very simple processes such as Brownian motion or standard
Brownian bridges, and that some sort of sampling is required.
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10.4.2 When Slowly Converging Nuisance Parameters are Present

The validity of the bootstrap when the nuisance parameters converge at a rate slower than
ffiffiffi
n

p
is

significantly more difficult to establish. The issue is that the convergence of the bootstrapped

estimators û
�
n or û

��
n (for the nonparametric and weighted bootstraps, respectively) must be

established in essentially the same fashion as the weak convergence of ûn. Usually, establishing
the asymptotic normality of

ffiffiffi
n

p
(ûn 2 u0) in this setting requires calculations of the entropy of

the log-likelihood components from the full model. For the bootstrap calculations to be valid,
these entropy calculations must be preserved in the bootstrap likelihood. This is quite complex
to evaluate for the nonparametric bootstrap since the weights are dependent. However, since the
weights j1, . . . , jn are not dependent, this issue is more easily evaluated for the weighted boot-
strap. In some cases, it may also be necessary to require the ji terms to be bounded. The general
theory for this approach is given in Ma and Kosorok [35] and can be shown to apply to infer-
ence on u in both Examples 10.6 and 10.7. This means that the theory is applicable to penalized
nonparametric maximum-likelihood estimation. It turns out to be generally valid for obtaining
inference for the u component in general semiparametric M-estimators, including least-squares,
least-absolute-deviation, and misspecified likelihood estimation, in addition to correctly
specified likelihood estimation and penalized likelihood estimation.

10.5 THE PROFILE SAMPLER

The material for this section comes mostly from Lee et al. [31]. As mentioned earlier, there are
special cases where the profile likelihood for u does not involve h, as occurs with Example
10.1. Unfortunately, most often the form of the profile likelihood is quite complicated and h

is not easily eliminated. Inferences about u have been studied for specific survival analysis
models, including Example 10.6 [21] and Murphy and van der Vaart [40] have provided a
general justification for such practices. Under mild structural conditions, the profile likelihood
for u has an asymptotic quadratic expansion that resembles that of a parametric likelihood.
Furthermore, the maximum profile likelihood estimator ûn for u is asymptotically normal
with mean u0, the true value of u, and covariance matrix n21 times the inverse of the efficient
Fisher information matrix ~I0, which is corrected for the presence of the infinite-dimensional
nuisance parameter [9,53].

Inferences about u may be obtained without ûn. The quadratic expansion of the profile like-
lihood permits the construction of confidence sets by inverting the log-likelihood ratio.
Translating this elegant theory into practice has been limited by computational difficulties.
Even if the log profile likelihood ratio can be successfully inverted for a multivariate parameter,
this inversion does not enable the construction of confidence intervals for each parameter sub-
component separately, as is standard practice in data analysis. For such confidence intervals, it
would be necessary to further profile over all remaining components in u. A related problem for
which inverting the log likelihood is not adequate is the construction of rectangular confidence
regions for u, such as minimum volume confidence rectangles [13] or rescaled marginal con-
fidence intervals. For many practitioners, rectangular regions are preferable to ellipsoids, for
ease of interpretation.

In principle, having an estimator of u and its variance simplifies these inferences consider-
ably. However, the computation of these quantities using the semiparametric likelihood poses
stiff challenges relative to those encountered with parametric models. Finding the maximizer of
the profile likelihood is done implicitly and typically involves numerical approximations.
When the nuisance parameter is not

ffiffiffi
n

p
-estimable, nonparametric functional estimation of h
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for fixed u may be required, which depends heavily on the proper choice of smoothing
parameters. Even when h is estimable at the parametric rate, and without smoothing, Ĩ0 does
not ordinarily have a closed form. When it does have a closed form, it may include linear oper-
ators that are difficult to estimate well, and inverting the estimated linear operators may not be
straightforward. The validity of these variance estimators must be established on a case-by-case
basis.

The bootstrap is a possible solution to some of these problems, but, as mentioned in the
10.4previous section, theoretical justification is not guaranteed for semiparametric models
where the nuisance parameter is not

ffiffiffi
n

p
-consistent. The results in van der Vaart and

Wellner [54] apply only to estimators converging at the parametric rate. Even when the boot-
strap can be shown to be valid, the computational burden is quite substantial, since maximiza-
tion over both u and h is needed for each bootstrap sample. A different approach to variance
estimation may be based on Corollary 3 of Murphy and van der Vaart [40], which demonstrates
that the curvature of the profile likelihood near ûn is asymptotically equal to Ĩ0. In practice, one
can perform second-order numerical differentiation by evaluating the profile likelihood on a
hyperrectangular grid of 3p equidistant points centered at ûn, taking the appropriate differences,
and then dividing by 4h2, where p is the dimension of u and h is the spacing between grid
points. While the properties of h for the asymptotic validity of this approach are well
known, there are no clear-cut rules on choosing the grid spacing in a given dataset. Thus, it
would seem difficult to automate this technique for practical usage.

Prior to the paper by Lee et al. [31], there does not appear to exist in the statistical literature a
general theoretically justified and automatic method for approximating Ĩ0. They [31] propose an
application of Markov chain Monte Carlo to the semiparametric profile likelihood. The method
involves generating a Markov chain fu(1), u(2), . . . g with stationary density proportional to
pu, n(u) ¼ pLn(u)q(u), where q(u) ¼ Q(du)/(du) for some prior measure Q. This can be accom-
plished by using, for example, the Metropolis–Hastings algorithm [36,18]. Begin with an
initial value u(1), for the chain. For each k ¼ 2, 3, . . . , obtain a proposal q(kþ1) by random
walk from u(k). Compute ĥq

(kþ1) and pq(kþ1), n(q
(kþ1)), and decide whether to accept q(kþ1)

by evaluating the ratio pq(kþ1), n(q
(kþ1))=pu (k) n(u

(k) ) and applying an acceptance rule. After
generating a sufficiently long chain, one may compute the mean of the chain to estimate the
maximizer of pLn(u) and the variance of the chain to estimate Ĩ0

21. The output from the
Markov chain can also be directly used to construct various confidence sets, including
minimum volume confidence rectangles.

Part of the computational simplicity of this procedure is that pLn(u) does not need to be
maximized; it only needs to be evaluated. As mentioned earlier, the profile likelihood is
fairly easy to compute as a consequence of algorithms such as the stationary point algorithm
for maximizing over the nuisance parameter. In Example 10.2, as a case in point, Equation
(10.7) can be iteratively solved by starting with an initial guess on the right side, obtaining
Âu on the left, and then plugging this in on the right and repeating until the change in value
is below a prespecified threshold. The procedure’s validity is established in Theorem 1 of
Lee et al., and the arguments rest on a careful analysis of the stationary distribution of the
chain, which involves an extension of the theory of Murphy and van der Vaart [40]. This exten-
sion enables the quadratic expansion of the log likelihood around û to be valid in a fixed,
bounded set, rather than only in a shrinking neighborhood. The conclusion of these arguments
is that the “posterior” distribution of the profile likelihood with respect to a prior on u is
asymptotically equivalent to the distribution of ûn.

One requirement for the profile sampler to be useful is for the profile likelihood to be
reasonable easy to compute. When this is not the case, the numerical differentiation method
mentioned previously may be advantageous since it requires fewer evaluations of the profile
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likelihood. However, numerical evidence in Lee et al. [31] seems to indicate that, at least for
moderately small samples, numerical differentiation does not perform as well as the profile
sampler. This observation is supported by theoretical work on the profile sampler in Cheng
and Kosorok [10], which indicates that the profile sampler yields frequentist inference that is
second-order accurate.

Note that inferences about umight also be based on the marginal posterior of u from the full
likelihood with respect to a joint prior on (u, h). Shen [48] has shown that this approach yields
valid inferences for ûn when u is estimable at the parametric rate. The profile likelihood sampler
greatly simplifies the theory and computations, since a prior is not explicitly specified for h. At
the very least, the profile sampler is a useful alternative to fully Bayesian computations when h
is strictly a nuisance parameter. It may also enable an exact Bayesian inference that comp-
lements the asymptotic frequentist inference, if one accepts the use of the profile likelihood
for Bayesian analysis.

It is not difficult to verify the theoretical assumptions for the validity of the profile sampler
for Examples 10.1–10.3, 10.5, and 10.6. Lee et al. [31] explicitly verify the assumptions for
Examples 10.5 and 10.6. The validity of Examples 10.1–10.3 follow since these are essen-
tially special cases of Example 10.5. Data analysis and simulation studies in their paper [31]
verify that this method works well for moderate sample sizes. Note that the profile sampler
is widely applicable for semiparametric models in general, not just for survival models. It is,
however, unclear how the procedure will work when parameters faster than root n are involved,
as in Example 10.4, but it is probably the case that, as with the bootstrap, the change point par-
ameter ẑn can be held at its MLE value and then the algorithm can proceed as though z were
known. Unfortunately, it is known that the profile sampler cannot be applied to many penalized
maximum likelihoods [35], such as is used for Example 10.7 [34].

10.6 THE PIGGYBACK BOOTSTRAP

The material presented in this section comes mostly from Dixon et al. [15]. The focus in this
section is on survival analysis settings where the MLEs ûn and ĥn are both

ffiffiffi
n

p
consistent, as is

the case for Examples 10.1–10.3 and 10.5. The difficulty is that
ffiffiffi
n

p
(ĥn 2 h0), where a zero

subscript denotes the true value, usually converges weakly to an infinite-dimensional Gaussian
process, and constructing confidence bands usually requires the ability to sample from good
approximations of this limiting process. As mentioned above in Section 10.4.1, having a uni-
formly consistent estimate of the covariance will seldom lead to a shortcut, except when the
form of the covariance is extremely simple.

Bootstrap methods can circumvent this difficulty by using the information from a sample of
size n to generate random draws that accurately approximate the desired Gaussian process.
Valid bootstrap draws are realizations of random variables un and hn that satisfy the following
asymptotic property:

ffiffiffi
n

p
(un 2 ûn, hn 2 ĥn) converges weakly, given the sample data,

to the same distribution that
ffiffiffi
n

p
(ûn 2 u0,ĥn 2 h0) does unconditional on the sample data,

as n!1. A challenge with the bootstrap is that for each set of bootstrap weights, one must
maximize the likelihood over the parametric and nonparametric components. Thus both the
nonparametric and weighted bootstraps are computationally intense.

We now introduce an alternative to these bootstrap methods, the “piggyback bootstrap”. Let
Ln(u,h) be the full log likelihood associated with the profile likelihood pLn(u) ¼
Ln(u,ĥu),where ĥu ¼ argmaxhLn(u, h). As mentioned earlier, the required computations are fre-
quently facilitated by the existence of fixed-point algorithms for computing ĥu. We assume in
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this section that draws for the parametric component un are readily available and that
ffiffiffi
n

p
(un 2

ûn), given the sample data, converges in distribution to the unconditional limiting distribution
of

ffiffiffi
n

p
(ûn 2 u0). Such draws can be achieved, for example, via the profile sampler discussed in

the 10.5previous section. A key feature of the piggyback bootstrap, however, is that it doesn’t
matter how the draws un are obtained, provided they have the appropriate conditional limiting
distribution. Let L�n (u, h) be the bootstrapped log likelihood. Then, for each parametric draw
un, the piggyback bootstrap draw is hn ¼ argmaxhL�i (un, h), resulting in the pair (un, hn).
Hence, given un, only one maximization over h is required. This approach results in a manyfold
decrease in computational intensity over the full bootstrap, since the full bootstrap requires sim-
ultaneous maximization over both u and h for each set of bootstrap weights.

The proposed approach is useful for several survival analysis models, including Examples
10.1–10.3 and 10.5 as mentioned earlier. In the case of clustered survival data, the procedure
also applies to the shared frailty model and the correlated gamma frailty model. The method
also applies to the Cox model for doubly censored survival data. There are also a number of
applications not arising in survival analysis, such as certain biased sampling models, for
which this procedure works. For several of these examples, there are existing methods to sim-
plify the computations. For the Cox proportional hazards model, Kim and Lee [25] propose a
novel Bayesian method for obtaining asymptotically valid random draws. In the proportional
odds model, Hunter and Lange [23] provide an accelerated bootstrap algorithm for maximiza-
tion of the likelihood so that an ordinary or weighted bootstrap can be employed with relatively
low computational cost. For the proportional hazards random-effects regression model, Vaida
and Xu [51] consider using the EM algorithm to obtain maximum-likelihood estimates. A dis-
advantage of these procedures is that they are applicable only to certain families of models,
whereas the piggyback bootstrap applies in general to a fairly large class of semiparametric effi-
cient estimators. The proposed piggyback bootstrap has the additional advantage of reducing
the dimension of the set over which maximization is needed.

We will now present the piggyback bootstrap in greater detail. The main idea is to first
obtain valid random draws for the parametric component of the model. Usually, it is possible
to do this in a manner that is computationally much less intense than maximizing the profile
likelihood, such as is the case, for example, with the profile sampler. The second step is to pig-
gyback the draws for the nonparametric component onto the parametric draws, by plugging the
parametric draws into a bootstrapped likelihood and maximizing over the nonparametric com-
ponent holding the parametric part fixed; that is, for each u(k)n drawn, k ¼ 1, . . . ,m, we generate
i.i.d. random bootstrap weights j1, . . . , jn, and compute ĥ�u(k)n ¼ argmaxhL

�
n(u

(k)
n ;h), where

L�n is the bootstrapped log likelihood using the given bootstrap weights. We assume that
these bootstrap weights are nonnegative, with mean and variance 1 and withÐ
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½j1 . x�dx

p
, 1. As with the weighted bootstrap of Section 10.4 10.4, some variations

in the mean and variance of the weights are possible after suitable adjustments. We also define
An � Bn to mean that An has a limit law conditional on the data equal to the limit law of Bn. The
following theorem, where we let un denote a representative from un

(1), . . . , un
(m), establishes the

validity of the new approach.

Theorem 10.3. Under regularity conditions,
ffiffiffi
n

p
ðun � ûn, ĥ

�
un � ĥûn

Þ �
ffiffiffi
n

p
ðûn � u0,ĥûn

� h0Þ

The regularity conditions and proof are given in Dixon et al. [15].
A key assumption is that both ûn and ĥn are efficient estimators. This implies that the effi-

cient score for u (adjusted for not knowing h) is uncorrelated with the score for h, where the
score for h is computed under the assumption that u is known. This property yields a simple
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expression for the joint distribution of ûn and ĥn that is utilized in the piggyback bootstrap.
Fortunately, establishing efficiency is rarely a problem for semiparametric MLEs.
Furthermore, obtaining the MLE of h corresponding to a specific u is simplified in many of
the examples considered in Dixon, including Examples 10.1–10.3 and 10.5 through the use
of a fixed-point algorithm.

Before utilizing this result, it is necessary to obtain draws un
(k), k ¼ 1, . . . ,m, that have the

right conditional distribution. Because ûn is efficient,
ffiffiffi
n

p
(ûn 2 u0) is asymptotically zero-mean

normal with variance Ĩ0
21, where Ĩ0 is the efficient Fisher information for u. Thus one way to

obtain the desired draws is to estimate Ĩ0
21 with a consistent estimator V̂0, and then let un

(k) ¼

ûn þ n21/2V̂0
1/2Z(k), k ¼ 1, . . . , m, where the Z(k) are independent standard normal vectors of

length p, where p is the dimension of u. In some settings, such as Example 10.1, a consistent
estimator of V̂0 is not difficult to construct, but in many other settings finding such an estimator
can be quite challenging. An alternative is to utilize the quadratic expansion of the profile log
likelihood pLn(u) given in Murphy and van der Vaart [40] as mentioned earlier in this chapter.
As we have mentioned several times, the profile sampler is also an extremely useful and com-
putationally efficient approach to accomplishing this, and it is the approach we most readily
recommend.

10.7 OTHER APPROACHES

Important alternative approaches to the above procedures include the m within n bootstrap [8]
and subsampling [43]. Since

ffiffiffi
n

p
(ûn 2 u0) is known to have a continuous limiting distribution

L, Theorem 2.1 of Politis and Romano [43] yields that the m out of n subsampling bootstrap
converges—conditionally on the data—to the same distribution L, provided m/n! 0 and
m !1 as n!1. Because of the requirement that m !1 as n!1, the subsampling boot-
strap potentially involves many calculations of the estimator. Fortunately, the asymptotic line-
arity of the SPMLE ûn [as asserted, e.g., in expression (5) of Ref. 40] can be used to formulate a
computationally simpler alternative as described in Ma and Kosorok [34].

Let ũn be any asymptotically linear estimator of a parameter u0 [ <d, based on an i.i.d.
sample X, . . . , Xn, having square-integrable influence function f for which E[ffT] is nonsin-
gular. Let m be a fixed integer .d, and, for each n � m, define km,n to be the largest integer
satisfying mkm,n � n. Also define Nm,n ; mkm,n. For the data X1, . . . , Xn, compute the estimator
ũn and randomly sample Nm,n out of the n observations without replacement, to obtain
X�
1, . . . ,X

�
Nm,n

. Note that we are using the notation ũn rather than ûn to remind ourselves that

this estimator is a general, asymptotically linear estimator and not necessarily an SPMLE.
For j ¼ 1, . . . ,m, let ũ�n,j be the estimate of u based on the observations X1

�, . . . , X�
Nm,n after

omitting Xj
�, X�

mþj, X�
2mþj, . . . , X�

ðkm, n�1 Þmþj. Compute ū
�
n ; m21P

j¼1
m ũ�n.j and Sn� ; (m 2

1)km,n
P

j¼1
m (ũn,j� 2 ū

�
n) (ũn,j� 2ū

�
n)
T. The following lemma provides a method of obtaining

asymptotically valid confidence ellipses for u0.

Lemma 10.1. Let ũn be an estimator of u0 [ <d, based on an i.i.d. sample X1, . . . , Xn which
satisfies n1=2ð~un � u0Þ ¼

ffiffiffi
n

p
Pnfþ opð1Þ, where E[ffT] is nonsingular. Then n(ũn 2

u0)
T[Sn�]

21 (ũn 2 u0) converges weakly to d(m 2 1)Fd,m2d/(m 2 d), where Fr,s has an F
distribution with degrees of freedom r and s.

The key to the proof of Lemma 10.1 is the simultaneous validity of the asymptotic lin-
earity expansion for all the jackknife estimates. The details of the proof are given in Ma and
Kosorok [34].
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The fact that m remains fixed as n!1 in the proposed approach results in a potentially
significant computational savings over subsampling that requires m to grow increasingly
large as n!1. A potential challenge for the proposed approach is in choosing m for a
given dataset. The larger m is, the larger the denominator degrees of freedom in Fd,m2d and
the tighter the confidence ellipsoid. On the other hand, m cannot be so large that the required
asymptotic linearity does not hold simultaneously for all jackknife components. The need to
choose m makes this approach somewhat less automatic than the profile sampler.
Nevertheless, that fact that this “block jackknife” procedure requires fewer assumptions than
does the profile sampler makes it a potentially useful alternative.

We have already mentioned fully Bayesian alternatives to the frequentist approaches that we
have discussed. This is an important area of research with much current activity. Of particular
interest are those methods that have demonstrated good frequentist properties such as the
general results of Shen [48] and the special results of Kim and Lee [25] for Example 10.1
that we mentioned earlier and that we now briefly review. The basic idea is to use a specially
designed prior for both parameters. This prior, when applied to the empirical likelihood
discussed previously for the Cox model, results in a posterior with a very convenient form.
Kim and Lee [25] prove that the output of this sampling scheme has the desired asymptotic
properties. Unfortunately, this technique relies on the special structure of the Cox partial
likelihood, a feature not shared by other semiparametric survival models.

Another general approach when all parameters are regular is to accurately estimate the influ-
ence function f with some f̂n satisfying n21P

i¼1
n kf(Xi) 2 f̂n(Xi)k12 ¼ oP(1). One then

samples from n21/2P
i¼1
n Zif̂n(Xi), where Z1, . . . , Zn are i.i.d. standard normals, to construct

confidence intervals. This is essentially the approach taken by Lin, et al. [32] for Example 10.1.
They [32] utilize the nice structure of the SPMLE for the full Cox model to obtain a nice esti-
mate of the full influence function. A key challenge of this approach for the other examples we
have discussed is that the influence function generally involves complex operators and is thus
not practical to estimate in many situations. There are a number of other important specialty
approaches to inference in survival analysis that apply to specific situations but do not
appear to be widely generalizable. Recall, for example, the accelerated bootstrap of Hunter
and Lange [23] and the modified EM algorithm of Vaida and Xu [51] mentioned earlier.

10.8 CONCLUDING REMARKS

In this chapter, we have endeavored to present general methods for semiparametric survival
analysis inference based on nonparametric maximum likelihood estimation. While the
methods we have discussed apply to many survival analysis models, there are many addition
models, such as the correlated gamma frailty model [42], which we have not examined here but
for which the methods presented are applicable [14]. It is important to note that empirical pro-
cesses are very important in all this development, and we encourage the interested reader to
become well acquainted with empirical process theory and techniques.

We also note that the greatest challenges appear to occur when one or more of the para-
meters converge at a rate different than

ffiffiffi
n

p
. Most open research questions appear to be in

this direction. The use of sieved and penalized log likelihoods can be very useful in some
of these situations, although inference based on these procedures can still be technically chal-
lenging as mentioned previously regarding penalization for Example 10.7 (see also Ref. 34).
Huang [22] applies sieves to estimation in the partly linear Cox model for right-censored
data, while Shen [47] studies sieved estimation for Example 10.2. A deeper discussion of
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sieved and penalized estimation is beyond the scope of the present chapter, but a useful intro-
duction to these approaches can be found in of van de Geer [52, Ch. 10].

Note that we have not even started to discuss inference for nonregular parameters. This area
is very challenging and is also a very active area of research. An interesting development in this
area is the asymptotically pivotal distribution results for certain cube-root-consistent estimators
as described in Banerjee [6]. This approach has been applied successfully to inference for the
survival function evaluated at a chosen timepoint in the current status data setting of example 6
[7]. On the other hand, the problem of constructing uniform confidence bands for the survival
function in this setting remains unsolved.

Yet another challenging, open area in survival analysis is inference under model misspeci-
fication. Some results in this direction for regular parameters can be found in Kosorok et al.
[28], and research on inference under misspecification in the presence of nonregular parameters
is currently underway.
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4. Bagdonavičius, V. B. and Nikulin, M. S., Generalized proportional hazards models based
on modified partial likelihood, Lifetime Data Anal. 5, 329–350 (1999).

5. Balshaw, R. F. and Dean, C. B., A semiparametric model for the analysis of recurrent-
event panel data, Biometrics, 58, 324–331 (2002).

6. Banerjee, M., Likelihood based inference for monotone response models, Ann. Statist.
(2006).

7. Banerjee, M., Biswas, P., and Ghosh, D., A semiparametric binary regression model
involving monotonicity constraints, Scand. J. Statist. 33(4), 673–697 (2006).

8. Bickel, P. J., Götze, F., and van Zwet, W. R., Resampling fewer than n observations:
Gains, losses, and remedies for losses, Statistica Sinica 7, 1–31 (1997).

9. Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A., Efficient and Adaptive
Estimation for Semiparametric Models, Springer-Verlag, New York, 1997.

10. Cheng, G. and Kosorok, M. R., Higher order semiparametric frequentist inference with the
profile sampler, Ann. Statist. Tentatively accepted.

SEMIPARAMETRIC MAXIMUM-LIKELIHOOD INFERENCE IN SURVIVAL ANALYSIS172



11. Cox, D. R., Regression models and life-tables (with discussion), J. Roy. Statist. Soc. Ser. B
34, 187–220 (1972).

12. Dabrowska, D. M. and Doksum, K. A., Estimation and testing in a two-sample generalized
odds-rate model, J. Am. Statist. Assoc. 83, 744–749 (1988).

13. Di Bucchiano, A., Einmahl, J. H. J., and Mushkudiani, N. A., Smallest nonparametric
tolerance regions, Ann. Statist. 29, 1320–1343, (2001).

14. Dixon, J. R., The Piggyback Bootstrap for Functional Inference in Semi Parametric
Models, Ph.D. dissertation, Dept. Statistics, Univ. Wisconsin—Madison, 2003.

15. Dixon, J. R., Kosorok, M. R., and Lee, B. L., Functional inference in semiparametric
models using the piggyback bootstrap, Ann. Inst. Statist. Math. 57, 255–277 (2005).

16. Fleming, T. R. and Harrington, D. P., Counting Processes and Survival Analysis, Wiley,
New York, 1991.

17. Groeneboom, P. and Wellner, J. A., Information Bounds and Nonparametric Maximum
Likelihood Estimation, Birkhäuser, Basel, 1992.
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11.1 INTRODUCTION

The semi–competing risks problem was first introduced by Fine et al. [15] to refer to the situation
in which an event time can be censored by another event time but not vice versa. It often occurs
in chronic disease studies and clinical trials involving both terminating events and nonterminating
events. A terminating event potentially censors a nonterminating event, but the nonterminating
event does not prevent subsequent observation of the terminating event. In contrast, the classic
competing risks setting allows only for the observation of the event that occurs first.

Semi–competing risks data may arise in the following two scenarios. The first scenario
involves two kinds of endpoints—time to morbidity and time to mortality. For example, in a
multicenter clinical trial of allogeneic bone marrow transplants in patients with acute leukemia
[10], the primary endpoint was death and the secondary endpoints were relapse and graft-
versus-host disease (GVHD). Both relapse and GVHD may lead to death but death caused
by GVHD is not directly leukemia-related. Since mortality is quite complicated, a good
measure of the biological efficacy might be based on the endpoint of relapse. Relapse was
observable if it occurred earlier, but only mortality was observable otherwise. In this
example, time to relapse and time to death formed the special bivariate structure of semi–
competing risks data.
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The second scenario is frequently encountered in clinical trials in which the primary
outcome is some nonterminating event, including a case of a surrogate endpoint. Mortality
is not an important issue because the death rate may be quite low during the course of
study. However, there exists a terminating event: dropout. A good example comes from
AIDS Clinical Trial Group (ACTG) 364 Study [2]. The first virologic failure (confirmed
HIV RNA � 200 copies/mL) is one intermediate endpoint of interest. Many patients withdrew
before the end of the study for disease-related reasons such as complications or excessively
high viral load. This setting falls into the semi–competing risks paradigm, because the occur-
rence of virologic failure did not prevent subsequent follow-up so that the time to dropout was
still potentially observable.

An instructive graph of semi–competing risks data was provided by Jiang et al. [23] to
compare these data with bivariate right-censored data and with classic competing risks data.
In Figure 11.1, (T1, T2) denote a pair of event times. Both failure times can be observed in
the whole quadrant for bivariate right-censored data, but the semi–competing risks data are
observable only in the upper wedge. With competing risks data, T1 and T2 are never observed
together and all the information lies on the diagonal line.

Inferences with semi–competing risks data are generally focused on the development of the
nonterminating event and the association between the nonterminating event and the terminating
event. There are two distinct types of approach to analyzing semi–competing risks data. One
may use crude quantities, including cause-specific hazard and cumulative incidence functions,
which account for the presence of the terminating event and are nonparametrically identifiable.
The other type of approach is based on net quantities, such as the marginal distribution of the
nonterminating event, which hypothesize the removal of the terminating event and are not
identifiable without further assumptions [44]. In practice, these two kinds of approach aid in
addressing different scientific questions. For example, in the ACTG 364 study, the marginal
distribution of virologic failure corresponds to the setting where there is no dropout, while
the cumulative incidence function does not remove the effect of dropout and reflects the obser-
vational process, not the underlying biology of the disease. The cumulative incidence of viro-
logic failure is therefore less relevant than the corresponding marginal distribution. In the
leukemia example, estimating the marginal distribution of time to relapse may be useful in
describing the behavior of morbidity as a process distinct from mortality due to other
causes. However, it posits a hypothetical setting in which censoring of relapse time by death
does not exist. The appropriateness of the counterfactual interpretation of the marginal

Figure 11.1 Illustration of semicompeting risks data; [a dot indicates that T1 and T2 are
observed; an arrow in the direction of T1 (T2) means that T1 (T2) is censored]: (a) bivariate
right-censored data; (b) semi–competing risks data; (c) competing risks data.
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distribution has been scrutinized by the medical community [4, 5, 12, 6, 7]. In alike scenarios,
analyses are often oriented to cause-specific hazard and cumulative incidence functions that
characterize the progression of disease in the presence of death.

Because of lack of appropriate methodology, semi–competing risks data were previously
analyzed as competing risks data, pretending as if only the time and cause of the first event
had been recorded. The inferences involve either (1) restricting the joint distribution using
either semiparametric or parametric models [29,14] or (2) performing a sensitivity analysis
[37,42,26,49,40], in which bounds on the marginal distributions are obtained via estimation
under various assumed dependence structures. Multistate modeling is an alternative approach,
in which the data are viewed as a multistate process with finite state space, say f0,1,2g, with
states 1 and 2 representing the occurrences of the nonterminating event and the terminating
event, respectively. Transition probabilities between different states can be estimated by
Aalen–Johansen estimators [1,3]. However, they provide limited information regarding the
dependence structure as well as the distribution of the nonterminating event in the absence
or presence of the terminating event.

The goal of this chapter is to provide an overview of the more recent methodology advances
for semi–competing risks data. In Section 11.2 we first revisit the classic nonparametric
inference based on crude quantities and outline nonparametric techniques for dealing with
left truncation of the terminating event as often occurs in observational studies.
Semiparametric one-sample inference based on net quantities are reviewed in Section 11.3,
focusing on the work by Fine et al. [15] and its current extensions. In Section 11.4 we introduce
regression methods for semi–competing risks data that have been developed under accelerated
failure-time modeling and a class of functional regression models. Some concluding remarks
are provided in Section 11.5.

Throughout this chapter, let T1 be the time to the nonterminating event (e.g., morbidity,
surrogate endpoint), and let T2 be the time to the terminating event (e.g., mortality,
dropout), which may dependently censor T1. Let C be an independent censoring time for
both T1 and T2, which often occur as the administrative censoring. Define T ¼ T1 ^ T2.
In the semi–competing risks setting, observables include n i.i.d. replicates of
{X ¼ T ^ C, d ¼ I{T1�T2^C}, Y ¼ T2 ^ C, j ¼ I{T2�C}}, denoted by {Xi, di, Yi, ji}

n
i¼1. Here

and in the sequel, ^ is the minimum operator and IA(.) is the indicator function.

11.2 NONPARAMETRIC INFERENCES

Without considering covariates, the observed semi–competing risks data consist of n i.i.d.
replicates of (X, Y, d, j), denoted by {(Xi, Yi, di, ji), i ¼ 1, . . . , n}.

In the semi–competing risks setting, nonparametric analyses of identifiable quantities,
including cause-specific hazard and cumulative incidence functions, have been widely
adopted [38]. The cause-specific hazard and cumulative incidence functions for the nontermi-
nating event are defined as

l1(t) ¼ limh!0 h
�1Pr(t � T1 , t þ h, T2 . tjT1 � t, T2 � t),

F1(t) ¼ Pr(T1 � t, T2 . T1):

In words, l1(t) and F1(t) represent the instantaneous rate and the distribution of the
nonterminating event in the presence of the terminating event, respectively.
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With semi–competing risks data, the estimation of L1(t) ¼
Ð t
0 l1(s)ds and F1(t) resembles

that with classic competing risks data. To define the estimators, we use the counting process
notation Yi(t) ¼ I{Xi�t},N1, i(t) ¼ I{Xi�t,di¼1}, N2,i(t) ¼ I{Xi�t,di¼0,ji¼1}, �Y(t) ¼

Pn
i¼1 Yi(t), �Nj(t)

¼
Pn

i¼1 Nj,i(t), j ¼ 1, 2: The Nelson–Aalen-type estimator for L1(t) is

L̂1(t) ¼
ð t
0

d�N1(s)
�Y(s)

¼
Xn
i¼1

I{Xi�t, di¼1}Pn
l¼1 I{Xi�Xl}

:

Let ST (t) ¼ Pr(T . t) and ŜT (t) be the Kaplan–Meier estimator for ST (t) based on

{(Xi, I{Xi,Ci}), i ¼ 1, . . . , n}; that is, ŜT (t) ¼
Q

Xi�t [1� {d�N1(t)þ d�N2(t)}=�Y(Xi)]. Using

the fact that F1(t) ¼
Ð t
0 ST (u

�)dL1(u), an estimator for F1(t) is obtained as

F̂1(t) ¼
Ð t
0 ŜT (u

�)dL̂1(u):
In observational studies, complications may arise when T2 is left truncated at time L. One

example is the Denmark diabetes registry [3], consisting of insulin-dependent diabetes patients
referred to the Steno Memorial Hospital in Greater Copenhagen between 1931 and 1988. The
cumulative incidence of diabetic nephropathy, a common morbidity, is helpful in characterizing
the disease progression. The analysis must account for the facts that time to death T2 may
dependently censor time to nephropathy T1. Another complication is administrative left trunca-
tion; specifically, only patients living long enough to enter the registry provided data.

With truncation, the observed data consist of n replicates of (X�,Y�,d�,j�,L�), denoted by
{(X�

i , Y
�
i , d

�
i , j

�
i , L

�
i )}

n
i¼1, where (X�,Y�,d�,j�,L�) follows the conditional distribution of (X, Y,

d, j, L) given Y � L. It is assumed that (L, C) is independent of (T1, T2).
Andersen et al. [3] suggested using the Nelson–Aalen estimator with appropriately defined

risk sets to estimate L1(t) and F1(t). To do so, the semi–competing risks data must be
“forced” into a competing risks setup, where only (Xi, I{Ti�Ci}) are observed conditional
on Xi � Li, i ¼ 1, . . . , n. The nonterminating event is then artificially truncated by L, the trun-
cation time for the terminating event. Huang and Wang [22] give an account of estimation of
L1(t) and F1(t) with independent left truncation and right censoring of T. Their estimators are

essentially L̂1(t) and F̂1(t) with �N1(t), �N2(t), �R(t) replaced by �N�
1(t) ¼

Pn
i¼1 I{L�i �X�

i �t, d�i ¼1},
�N�
2(t) ¼

Pn
i¼1 I{L�i �X�

i �t, d�i ¼0, j�i ¼1}, �Y
�(t) ¼

Pn
i¼1 I{L�i �t�X�

i }
, respectively. The naive competing

risk procedure employs data only with X�
i � L�i . The removal of X�

i terms that are smaller than
the left truncation times for Y�

i may incur considerable information loss.
Peng and Fine [34] proposed simple nonparametric estimators for F1(t) and L1(t) that better

utilize semi–competing risks information. The strategy is to examine the connection between
the transformed bivariate subsurvival function F�(x, y) ¼ Pr(X . x, Y . y,j ¼ 1jL � Y) and
the underlying bivariate survival function ~H(x,y) ¼ Pr(T . x, T2 . y). Weighting F�(dx, dy)
inversely by the probability of observing complete uncensored (T ¼ x, T2 ¼ y) under a left
truncation mechanism, one can transform F� into H̃. Using F� in place of H̃ facilitates the

estimation of F1(t) ¼
Ð t
0

Ð1
v

~H(dv,du). Let t . t be a constant defined to be slightly smaller

than the upper bound of Y, and let ŜT2 be the Lynden–Bell product limit estimator [30]
for left-truncated right-censored data using {(Y�

i ,h
�
i , L

�
i ), i ¼ 1, . . . , n}. Define Cn(y) ¼

n�1 Pn
i¼1 I{L�i �y�Y�

i }
and C2, n(y, x) ¼ n�1 Pn

i¼1 I{L�i �y�Y�
i , X

�
i .X}. The estimators derived in

[34] are given by

�F1(t) ¼ n�1
Xn
i¼1

ŜT2 (Y
��
i )

Cn(Y�
i )

I{X�
i �t,X�

i ,Y�
i �t, j�i ¼1} þ ŜT2 (t) 1� C2,n(tþ,t)

Cn(tþ)

� �
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and �L1(t) ¼
Ð t
0 {�R(s)}

�1d�F1(s), where Ř(t) is an estimator of H̃(t, t) and equals

n�1
Xn
i¼1

ŜT2 (Y
��
i )

Cn(Y�
i )

I{t�Y�
i �t,X�

i �t, j�i ¼1} þ
ŜT2 (t)
Cn(t)

I{L�i �t,Y�
i ,X

�
i �t}

( )
:

Unlike F1̂(t) and L̂1(t), the estimators F̌1(t) and Ľ1(t) do not require artificial truncation.
Under mild regularity conditions, they are shown to be uniformly consistent and to weakly con-
verge to tight zero-mean Gaussian processes. Given that F̌1(t) and Ľ1(t) have simple closed
forms and plug-in variance estimators are available, it would be reasonable to recommend
them for practice use. In an analysis [34] of the Denmark diabetes registry, cumulative inci-
dence rates were calculated separately for male and female patients who were diagnosed
before age 31 and between 1933 and 1972. The variance estimates of F̂1(t) are always larger
than those of F̌1(t), with the variance reductions ranging from 24% to 67% for males and
from 19% to 38% for females.

11.3 SEMIPARAMETRIC ONE-SAMPLE INFERENCE

With semi–competing risks data, studying the marginal distribution of the nonterminating
event is plagued by the nonparametric nonidentifiability of the bivariate model for (T1, T2)
[44]. The naive Kaplan–Meier estimator for ST1 (x) ¼ Pr(T1 . x) based on
{(Xi, di), i ¼ 1, . . . , n} is usually invalid because of the correlation between T1 and T2. For
instance, relapse and death in the leukemia example are believed to be associated, while
dropout in the AIDS example may be informative for the virologic endpoint. It is recognized
that extra information on T2 in the semi–competing risks is helpful in nonparametric estimation
of the marginal distribution of T2. However, the marginal distribution of T1 cannot be identified
without further assumptions. Methods that fully use the semi–competing risks data may better
address these difficulties.

Fine et al. [15] exploited the special features of semi–competing risks data and developed
inferences for a novel semiparametric model, avoiding extrapolations in the lower wedge of
(T1,T2). Let H(x, y) ¼ Pr(T1 . x, T2 . y) and STj (x) ¼ Pr(T j . x), j ¼ 1, 2. The dependence
structure of (T1, T2) is formulated via the gamma frailty model [8,33] in the upper wedge
where T1 � T2. Thus, for u � 1 and 0 � x � y � 1, we obtain

H(x, y) ¼ ST1 (x)
1�u þ ST2 ( y)

1�u � 1g1=(1�u),
ST1 (x)ST2 (y),

� �
u . 1;
u ¼ 1:

(11:1)

With the usual bivariate right-censored data, estimating the association parameter in copula
models has been widely studied. For example, Shih and Louis [41] suggested estimating the
association parameter on the basis of the likelihood function with plug-in marginal distribution
estimators. The possibility of extending this two-stage estimation procedure in the presence of
semi–competing risks seems very unlikely because of the nonidentifiability of ST1 . Under
model (11.1), Fine et al. [15] cleverly adapted Oakes’ nonparametric estimator of predicative
hazard ratio for bivariate survival data and proposed a closed-form estimator for u without
involving either ST1 or ST2 for semi–competing risks data. The main idea is that the concor-
dance indicator Dij ¼ I{(T1i�T1j)(T2i�T2j).0} of two independent pairs of failure times (T1i, T2i)
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and (T1j, T2j) has expectation u0/(1 þ u0) under the assumed model, where u0 is the true value
of u, i, j ¼ 1, . . . , n. In the semi–competing risks setting, Dij is determinable only when
~Xij , ~Yij , ~Cij, where ~Xij ¼ T1i ^ T1j, ~Yij ¼ T2i ^ T2j, ~Cij ¼ Ci ^Cj. Let Dij ¼ I{~Xij,~Yij,~Cij},

~X
0
ij ¼ Xi ^ Yj, and ~Y

0
ij ¼ Xi ^ Y j. A closed-form estimator for u0 is given by

û ¼
P

i,j W(~X
0
ij, ~Y

0
ij)DijDij

W(~X
0
ij, ~Y

0
ij) Dij(1� Dij)

,

where W(u,v) is an appropriate random weight function. It has been shown that û is consistent

for u0 and n1=2(û� u0) has a limiting normal distribution N(0, S). The variance S can be

consistently estimated by Ŝ ¼ Î�2Ĵ, where

Î ¼ n�2
X
i, j

W(~X
0
ij, ~Y

0
ij)Dij(1þ û)�2,

Ĵ ¼ 2n�3
X
k<l<m

(Q̂klQ̂km þ Q̂klQ̂lm þ Q̂lmQ̂km),

and Q̂kl ¼ W(~X
0
kl, ~Y

0
kl)Dkl{Dkl � û=(1þ û)}.

A simple plug-in estimator of ST1 can be constructed by plugging a consistent estimator

for u in model (11.1). A closed-form estimator is obtained as ŜT1 (x) ¼ {ŜT (x)1�û�
ŜT2 (x)

1�û þ 1}1=(1�û), where ŜT2 and ŜT are the Kaplan–Meier estimators for ST2 and ST
using {(Yi, ji), i ¼ 1, . . . , n} and {(Xi, di þ ji � diji), i ¼ 1, . . . , n}. The continuous

mapping theorem gives the uniform convergence of ŜT1 (x) to ST1 (x). It is also shown that

n1=2{ŜT1 (x)� ST1 (x)} converges weakly to a Gaussian process. As a result of censoring, in

small samples, ŜT (t) � ŜT2 (t) may be violated and hence Ŝt1 (t) may not be monotone at all time-

points. A simple variant Ŝ�T1 (t) ¼ mins�t ŜT1 (s) is proposed that is always decreasing and is

asymptotically equivalent to ŜT1 (t).
Fine et al. [15] illustrated the semiparametric method with the leukemia example. Estimates,

with standard errors in parentheses, for u with W(u, v) ¼ 1 and W(u; v) ¼ n�1 Pn
i¼1 I{Xi�u,Yi�v}

are ûu ¼ 8.79 (2.15) and ûw ¼ 8.61 (2.15). Both estimates indicate that relapse is highly

predictive of death. Figure 11.2 plots Ŝ�T1 (t) employing ûw and the Kaplan–Meier estimator

using {(Xi, di), i ¼ 1, . . . , n}, along with the 0.95 confidence intervals for ŜT1 (t). The naive

Kaplan–Meier estimator is uniformly above the upper 0.95 limit of Ŝ�T1 (t), which may be
explained by the substantial association between death and relapse.

General dependence structures were investigated by Wang [47] for semi–competing
risks data. One extension is based on the predicative hazard ratio function
u(x, y) ¼ l2(y jT1 ¼ x)=l2(y j T1 . x) [11], where l2(t j A) is the hazard function of T2 given
that event A occurs. In the upper wedge, u(x, y) is parameterized as ua,h(x, y), where a is a
one-dimensional parameter of interest and h denotes the nuisance parameter. Note that the
gamma frailty model is a special case in which u(x, y) reduces to a constant. The other associ-
ation model considered by Wang [47] is the general parametric copula model, in which

H(x, y) ¼ Ca{ST1 (x), ST2 ( y)}, where Ca(u, v) : ½0, 1�2 ! ½0, 1� is a known copula function
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with an unknown parameter a. Two types of estimating equation are proposed for a, by gen-
eralizing the work by Day et al. [11] or utilizing the Doob–Meyer decomposition [17]. The
resultant estimator under either dependence model is shown to be consistent and asymptotically
normal. The asymptotic variance may be complicated but can be estimated via bootstrap-based
approaches.

As the dependence structure is still formulated via the gamma frailty copula on the upper
wedge, Jiang et al. [25] studied the estimation of ST1 according to the principle of pseudo–
self-consistency. The self-consistent estimator is superior to the simple closed-form estimator

ŜT1 (t), which may not be monotone and may jump at times other than the observed T1. The idea
of “self-consistency” was used by Efron to derive the Kaplan–Meier estimator under right cen-
soring [13]. Similar techniques have also been used for interval censored data and for doubly
censored data (e.g., see Refs. 46, 18, 31, and 43). The challenge in the current setting is that u0
is unknown. Under the full gamma frailty model, the self-consistency estimating equations
have the following specific forms:

ST1 (t) ¼
Xn
i¼1

I{Xi.t} þ
X
Xi�t

(1� ji)di
ST1 (t)

1�u þ ST2 (Yi)
1�u � 1

ST1 (Xi)1�u þ ST2 (Yi)
1�u � 1

� �u=(1�u)
(

þ
X
Xi�t

(1� ji)(1� di)
ST1 (t)

1�u þ ST2 (Yi)
1�u � 1

ST1 (Xi)1�u þ ST2 (Yi)
1�u � 1

� �1=(1�u)
)

� n�1 (11:2)

Figure 11.2 Leukemia example. Estimates of the survivor function for time to relapse. The
solid line represents the point estimate from Ŝ�T1 ; the dashed lines, the limits of the correspond-
ing 0.95 intervals; and the dotted line, the Kaplan–Meier estimate.
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ST2 (t) ¼
Xn
i¼1

I{Yi . t}þ
X
Yi�t

ji(1� di)
ST1 (Xi)1�u þ ST2 (t)

1�u � 1

ST1 (Xi)1�u þ ST2 (Yi)
1�u � 1

� �u=(1�u)
(

þ
X
Yi�t

(1� ji)(1� di)
ST1 (Xi)1�u þ ST2 (t)

1�u � 1

ST1 (Xi)1�u þ ST2 (Yi)
1�u � 1

� �1=(1�u)
)

� n�1: (11:3)

Given that û converges almost surely to u0, one can either first plug û, ŜT2 , and an initial
estimate of ST1 in Equation (11.2) and update the estimator of ST1 on the basis of Equation
(11.2) iteratively until it converges, or estimate ST1 and ST2 simultaneously using both
Equations (11.2) and (11.3) with u ¼ û. The theory in Jiang et al. [25] shows that the
pseudo–self-consistent estimator for ST1 exists and is robust to model misspecification in the
lower wedge. Uniform consistency and weak convergence of the pseudo–self-consistent
estimator are also established.

A conditional version of the gamma frailty model was considered by Jiang et al. [24] in the
presence of left truncation of the terminating event. In the Denmark diabetes registry described
in Section 11.2, the observations of time to nephropathy (T1) and time to death (T2) on each
enrolled patient was left-truncated at the time of first contact at the Steno (L). The marginal dis-
tribution of T1 may be used to evaluate the net effect of care on nephropathy, independent of its
effects on other aspects of diabetes that lead to dependent censoring via mortality prior to
nephropathy. With truncation, the unconditional distribution may not be identifiable, but
one can typically estimate the conditional survival function given the event time greater
than a certain timepoint a, where a satisfies Pr(L � a) . 0. Define Ha(x, y) ¼ Pr(T1 . x,
T2 . y jT2 . a), ST1, a(x) ¼ Pr(T1 . x j T2 . a), and ST2,a(x) ¼ Pr(T2 . x jT2 . a). For
0 � max (a, x) < y � 1, a conditional version of Clayton copula assumes

Ha(x,y) ¼ {ST1,a(x)
1�u þ ST2 ,a(y)

1�u � 1}1=(1�u): (11:4)

Note that the model (11.4) is satisfied if the gamma frailty model holds on the upper wedge.
The conditional Clayton model preserves the nice interpretation of the association parameter
u as the predicative hazard ratio in the observable region. Under the model (11.4), u can be
estimated by using û with Oij in place of Dij, where Oij ¼ I{max (~Lij , a, ~Xij),~Yij,~Cij} and
~Lij ¼ max (Li, L j). The validity of this new estimator is ensured by the fact that the concordance
probability is not affected by conditioning on event times larger than a. The closed-form esti-
mator of ST1,a can be constructed as in the semi–competing risks setting without truncation.

11.4 SEMIPARAMETRIC REGRESSION METHOD

In clinical studies involving semi–competing risks, covariate effects on the occurrence of
the nonterminating event are often of scientific interest. For example, in the ACTG 364
study, the primary interest is in evaluating the effects of treatment and other baseline charac-
teristics on the marginal distribution of virologic failure. The literature on regression analysis
tailored to semi–competing risks data is rather limited, with such data typically analyzed as
competing risks data. Heckman and Honore [20] established the identifiability of bivariate pro-
portional hazards and accelerated lifetime models with competing risks data; however, the
complexity of maximum-likelihood estimation has hindered their practical development in
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the competing risks setup. Fully utilizing the semi–competing risks data leads to more practical
methodology.

Let Z denote a p � 1 covariate vector of interest, and let fZi, i ¼ 1, . . . , ng be n i.i.d.
replicates of Z. In this section, two types of regression model are introduced and inference
procedures with semi–competing risks data are outlined.

11.4.1 Functional Regression Modeling

In the semi–competing risks setting, {Yi, di, Zi}
n
i¼1 can be viewed as independently right-

censored data so that one can easily adopt standard censored regression models for T2. The
real challenge in analyzing semi–competing risks data with covariates is the inference on
T1, which needs to properly account for dependent censoring by T2.

To formulate covariate effects on T1, it is tempting to employ the popular proportional
hazards model, that is

l(t jZ) ¼ l0(t) exp(b
T
0Z),

where l(t j Z) denotes the hazard function of T1 conditional on Z, l0(t) is an unspecified base-
line hazard function, and b0 is a p � 1 coefficient vector. In practice, restricting the hazard
functions associated with two sets of covariates to be proportional over time may be unrealistic.
Motivated by the fact that the proportional hazards model can be equivalently represented as

Pr (T1 . t j Z) ¼ S(t jZ) ¼ exp½� exp{logL0(t)þ bT
0Z}�,

where L0(t) ¼
Ð t
0 l0(s)ds, Peng and Fine [36] proposed accommodating time-varying covariate

effects on the survival function of T1 via a generalized functional linear model

Pr (T1 . t j Z) ¼ g{u0(t)
T ~Z}, (11:5)

where g(.) is a known monotone function, ~Z ¼ (1,ZT )T , and u0(t) is a ( p þ 1) � 1 vector of
unknown time-dependent coefficients. The parameter u0(t) is completely unspecified in t but
is assumed to be “cadlag”, that is, a right-continuous function with left-hand limits. This
model defines a rich family of varying-coefficient regression models. Choosing
g ¼ exp{� exp ( � )} and g ¼ exp=(1þ exp), the model (11.5) accommodates respectively
the standard proportional hazards model and the proportional odds model. The survival-
based functional regression modeling facilitates estimation without involving smoothing. It
also renders straightforward interpretations of the time-varying parameter u0(t) via the gener-
alized linear model representation, namely, g�1{S(t j Z)} ¼ u0(t)TZ. For example, with g ¼
exp/(1 þ exp), the components of u0(t) are log odds ratios of surviving beyond t per unit
change in the corresponding covariates.

With semi–competing risks, estimation of u0 requires a model for the dependence structure
of (T1, T2), since T2 may dependently censor T1. Peng and Fine [36] proposed linking the joint
distribution of (T1, T2) to its marginal distributions through a known time-independent copula
function C(u, v,w), where for fixed w, C satisfies the definition of a copula. It is assumed that in
the observable region of the data

Pr (T1 . s, T2 . t j Z) ¼ C{ Pr (T1 . s j Z), Pr (T2 . t jZ),a0(s, t)}, for

0 � s � t,
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where a0(s, t) is an unknown time-varying parameter, which is also cadlag like u0(t). The
model (11.6) generalizes the class of parametric copula models [9,21,33,19]. As an
example, when C(u, v,w) ¼ ½u1�w þ v1�w � 1�1=(1�w) and a0(s, t) ¼ a� for 0 � s � t, the
model (11.6) reduces to the gamma frailty copula restricted to the upper wedge. In general,
a0(s, t) can be interpreted as the standard odds ratio based on the binary random variables
I(T1 . s) and I(T2 . t). This odds ratio is widely reported in biomedical studies for assessing
association between two binary variables. Depending on the parameterization, larger values of
a0(s, t) generally correspond to either increasing positive or negative association defined by
Pr(T1 . s, T2 . t)=Pr(T1 . s)Pr(T2 . t) . 1 or ,1, respectively [32]. Unlike parameteriza-
tions based on hazard association measures (e.g., Ref. 42), the copula parameterization in
(11.6) yields an explicit form for the joint distribution.

Since T2 is subject to censoring only by C, the regression model for T2 can be chosen
among existing models for standard independently right-censored data. To simplify the
developments, the model for Pr(T2 . t j Z) is assumed to take the form

Pr (T2 . t j Z) ¼ h{h0(t)
T ~Z}, (11:7)

where h is a known link function and h0(t) is estimable with existing methods. The estimator of
h0(t) is denoted by ĥ0(t).

Under models (11.5)–(11.7), the covariate effects on T1 and the dependence parameter can
be estimated simultaneously on the basis of a set of nonlinear estimating equations, which
adopts a “working independence” assumption across time [27]. Let a(t) ¼ a(t, t). The estimator
fâ(t), û(t)g is obtained as the solution of U{a(t),u(t), ĥ(t), t}¼ n�1=2Pn

i¼1Ai{a(t),u(t),
ĥ(t), t}¼ 0, where Ai{a(t),u(t),h(t), t} equals Vi{a(t),u(t), t}Di{a(t),u(t),h(t)} [I(Xi . t)

�I(Yi. t), C{a(t),u(t)T ~Zi,h(t)T ~Zi}�, Di{a(t),u(t),h(t)}¼ @C{a(t),u(t)T ~Zi,h(t)T ~Zi}=@
a(t)
u(t)

� �
and Vi is a scalar weight function, i ¼ 1, . . . , n. One can show that â(t) and û(t) are step func-
tions that jump only at observed failure and censoring times. The estimating equation needs to
be solved only at finitely many timepoints.

Under certain regularity conditions including restrictions on ĥ(t), as n approaches infinity,
there exists a unique solution to U{a(t), u(t), ĥ(t), t} ¼ 0 in a neigborhood of (a0,u0) that con-

verges to a0(t)
u0(t)

� �
in probability, uniformly in t [ [l, u]. It is further shown that

n1=2½{â(t)T , û(t)T}T � {a0(t)T , u0(t)T}
T � converges weakly to a tight Gaussian process. The

conditions on ĥ(t) for validity of â(t) and û(t) are verified under proportional hazards models.
On the basis of the desirable properties of {â(t); û(t)}, nonparametric tests are developed for

the null hypothesis H0 : C(t) a0(t)
u0(t)

� �
¼ c(t), where C(t) is a r � ( p þ 2) matrix and c(t) is a r �

1 vector. To explore the parametric forms of covariate effects and association parameters, para-
metric submodels for (a0,u0) are also considered: L(t)T{a0(t)T , u0(t)T}

T ¼ q(z0, t), where L(t)
is a ( p þ 2) � 1 vector, q is a known function, and z0 is finite-dimensional parameter. The
estimator of z0, ẑ, is defined as the minimizer of the least-squares criterionÐ u
l {L(t)T â(t)

û(t)

� �
� q(z, t)}2 ~J(t)dt, where ~J is a nonnegative weight function. Under mild

assumptions, ẑ is consistent and asymptotically normal. Goodness-of-fit tests for the
assumed submodel are developed accordingly.

The functional regression method was applied to ACTG364 data with h ¼ g ¼ exp(�exp)

and C(u, v,w) ¼ {u1�exp (w) þ v1�exp (w)}�1=(1�exp (w)) [36]. Four covariates are considered: Z1
andZ2 are indicator variables for treatment armsEFVandNFV þ EFV, respectively;Z3 indicates
whether the patient received 3TCas a newNRTI in theACTG364 studyand 0otherwise; andZ4 is
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equal to log10 baseline RNA. Figure 11.3 displays estimates for time-varying copula parameter
and covariate effects with 95% pointwise confidence intervals. It is observed that â(t) decreases
linearly to one year and then plateaus at 0.4 at later t. The goodness-of-fit test rejects the constant-
dependencemodel and suggests that the association between virologic failure and dropout on the
observable wedge is strong at early timepoints but noticeably diminished at later timepoints. It is
suggested that time-independent coefficients may be adequate. Hypothesis testing on whether
covariate effects differ from zero shows that the combination therapy may be superior to NFV,
whereas EFV is the better of the two single-line treatments. Patients taking 3TC as a new
NRTI have better prognoses then do patients with lower baseline RNA levels.

11.4.2 A Bivariate Accelerated Lifetime Model

Without loss of generality, suppose that T1, T2, and C are logarithm transformations of raw
event times. The bivariate AFT model for (T1, T2) assumes that

T1 ¼ uT0Z þ ex, T2 ¼ hT
0Z þ ey, (11:8)

Figure 11.3 The ACTG364 study. Point estimates and 0.95 pointwise confidence intervals
for time-varying copula parameter and covariate effects. The ragged solid lines represent the
point estimates; the dashed lines, the 0.95 pointwise confidence intervals; the dotted lines, a
lowess smoothing curve from the estimated parameters; and the horizontal solid lines, the
fitted covariate effects from constant models. (a) Copula parameter; (b) EFV versus NFV;
(c) EFVþNFV versus NFV; (d) New3TC; (e) log10 baseline RNA.
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where u0 and h0 are p � 1 vector of regression coefficients and e ¼ (ex, ey)T has an unspecified
joint survival function H not depending on Z. The inference on b0 ¼ (uT0 ,h

T
0 )

T discussed later
requires only that the model hold in the upper wedge where T1 , T2. Formally, for
x , y, Pr(X . x, Y . y j Z) ¼ H(x� uT0Z, y� hT

0Z).
Interestingly, it is more convenient to adjust for dependent censoring of T1 by T2 under

accelerated failure-time assumptions. Lin et al. [28] first estimated the AFT model for T2
using the standard rank procedures and then used an artificial censoring technique in rank esti-
mation of the model for T1. The estimating function for h0 is a weighted log-rank test Sn(h)
based on ~eyi (h) ¼ Yi � hTZi. An estimator ĥ is obtained as the solution of Sn(h) ¼ 0
[45,48]. Simply substituting {~eyi (h), ji} with {~exi ¼ Xi � uTZi, di} in Sn does not yield an
unbiased estimator for u0 since the cause-specific hazard function may deviate from the net
hazard function when exi and e

y
i are correlated. Let b ¼ (uT ,hT )T . The artificial censoring tech-

nique employed by Lin et al. [28] is to trim Yi by a quantity d(b) so that
(Xi � uTZi) ^ {Yi � hTZi � d(b)} can be viewed as censored analogs of exi and share a

common distribution at b ¼ b0. A rank estimator ũ is obtained by solving ~Sn{(
u
ĥ
)} ¼ 0,

where S̃n(b) is a log-rank statistic constructed based on these residual analogs. The estimator
ũ has nice asymptotic properties such as consistency and asymptotic normality. However,
when Z has several components or the components have wide ranges, d(b) may be large
and lead to excessive artificial censoring. Substantial rank information may be lost, and ũ

may be very inefficient.
The M-estimators studied by Robins [39] also permit dependent censoring and thus are

valid under the model (11.8). An semiparametric efficient estimator was derived when X
and Y are conditionally independent. Robins argued that this estimator is “nearly efficient”
under heavy dependent censoring. However, nonparametric estimation of certain hazard func-
tions is needed. The efficiency properties of the nearly efficient estimator are unclear with
light/moderate dependent censoring.

Peng and Fine [35] developed a new artificial censoring technique using pairwise ranking.
This approach avoids excessive artificial censoring by trimming separately within pairs of
observations, {(Xi, Yi, di, ji, Zi), (Xj, Y j, d j, j j, Z j)}. The data transformation within the (i, j)

pair is {~Xi( j)(b), ~di( j)(b); ~Xj(i)(b), dj(i)(b)}, where

~Xi( j)(b) ¼ (T1i � uTZi) ^ {T2i � hTZi � dij(b)} ^ {Ci � hTZi � dij(b)},

~di( j)(b) ¼ I(T1i�uTZi)�{T2i�hTZi�dij(b)}^{Ci�hTZi�dij(b)},

and dij(b) ¼ max {0,(u� h)TZi,(u� h)TZ j}. The choice of dij(b) ensures that both X̃i( j)(b)
and d̃i( j)(b) are determinable. Unlike the parameter in S̃n(b), the artificial censoring parameter
is not fixed and a different value is determined for each pair using the covariate vectors Zi and
Zj. Because dij(b) is always � d(b), large reductions in artificial censoring can be expected
relative to that of Lin et al. [28].

Define cij(b) ¼ ~di(j)(b)I{~Xi(j) (b)�~X j(i)(b)} � ~d j(i)(b)I{~X j(i)(b)�~Xi(j) (b)}. Because (T1i � uT0Zi,
T2i � hT

0Zi) and (T1j � uT0Z j, T2j � hT
0Z j) are independent and with common H on the upper

wedge, (Zi 2 Zj)cij(b) also has zero mean at the true value b0 ¼ (u0
T, h0

T)T. It is observed that
(Zi 2 Zj)cij(b) is symmetric in i and j. This suggests a U-statistic-based estimating function

Un(b) ¼ 2
ffiffiffi
n

p X
1�i,j�n

(Zi � Z j)cij(b)={n(n� 1)}:
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It can be shown that EfUn(b0)g ¼ 0 by using the exchangeability of the observations. A
reasonable estimator for u0, denoted by ûPW, can be obtained by solving Un{(uT , ĥT )T} ¼ 0.
Since Un is discontinuous in u, similar to Sn, an exact solution may not exist in practice. The
estimator ûPW can alternatively be defined as argminukUn{

u
ĥ
}k. The pairwise estimator b̂ ¼

(ûPW
T ,ĥT)T is shown to be consistent and asymptotically normal under mild regularity conditions.
Simulation studies reported by Peng and Fine [35] showed that with realistic sample sizes,

the pairwise estimator ûPW may achieve large reductions in artificial censoring (58–65%) and
large efficiency gains over ũT. When T1 and T2 are conditionally independent, ûPW is slightly
less efficient than Tsiatis’ efficient estimator [45] using the known hazard of the residual for T1,
while the Tsiatis estimator may be somewhat less efficient than the pairwise estimator (15–
20%) when the hazard is estimated, as is needed in practice. This may suggest that the pairwise
estimator has better small-sample performance than does Robins’ estimator [39]. When T1 and
T2 are dependent with light to moderate censoring, there are large reductions in MSE with the
pairwise approach, with threefold to fivefold improvements over the approach of Lin et al. [28]
seen in some scenarios.

11.5 CONCLUDING REMARKS

Semi–competing risks data have received increased attention as distinct from classic compet-
ing risks data. Such data are frequently encountered in biomedical studies. In this chapter, we
review major inferential techniques for semi–competing risks data, including nonparametric
estimation, semiparametric one-sample inference, and semiparametric regression models.

In practice, analysis of semi–competing risks data should be planned carefully in order to
better address scientific questions of interest and yield interpretable results. Analysis oriented to
cause-specific hazard and cumulative incidence function may be more sensible when the elim-
ination of the terminating event prior to the nonterminating event is not possible or is expected
to alter the mechanism of the nonterminating event. Inference based on the marginal distri-
bution of the nonterminating event is controversial under some circumstances but may have
meaningful practical implications in settings such as the ACTG364 study. Our opinion takes
the middle ground that the estimated marginal distribution of the nonterminating event is some-
times useful.

Future research on semi–competing risks data may be directed to the multivariate case
rather than current bivariate structure. It corresponds to a more complicated but rather realistic
situation involving multiple terminating and nonterminating events. The foremost issue in this
complex setting is to determine which quantities are identifiable. Investigation of this identifia-
bility problem may require delicate theoretical developments. Regarding the inference, multi-
state modeling [3] seems to be a natural approach attached to the multiendpoint scenario. The
key issue with this approach is the translation of multistate transition intensities into relevant
practical context. When an appropriate mapping between the estimable transition intensities
and the quantities of interest is lacking, different joint modeling of terminating and nontermi-
nating endpoints is warranted and merits future research.
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Tests for Time-Varying Covariate
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12.1 INTRODUCTION

The Aalen additive hazards model [4] is a useful alternative to the Cox model when
analyzing survival data. A particularly useful aspect of the Aalen additive hazards model
is that it allows for time-varying covariate effects. In many biomedical applications there
will often be important time-varying effects. A typical example is a treatment effect that
varies over time, and two important examples are that (1) treatment efficacy fades away
over time, due to, for example, tolerance developed by the patient, or in the case of infec-
tious diseases due to resistance developed by the targeted bacteria; and (2) a treatment with
many side effects will lead to an initial adverse effect that is compensated by a beneficial
effect for those surviving the initial phase. Below we analyze data on time to death for
acute myocardial infarction (AMI) heart patients and for these data some risk predictors
show highly time-varying effects. The strongest time-varying effect was found for patients
with ventricular fibrillation that lead to an increased risk only for the first 30 days after
AMI. In this period, however, the risk was strongly increased and the excess risk was at
a level of �5 on the intensity in years.
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Even for a relatively small dataset it is possible to say something about such time-varying
effects, and inferential procedures that account for these effects have been developed [8] on the
basis of the semiparametric version of the Aalen model [9]; where the intensity a(t) has the
specific form

a(t) ¼ XTb(t)þ ZTg, (12:1)

where X and Z are p-dimensional and q-dimensional covariate vectors, respectively. The time-
varying regression function b(t) is a vector of locally integrable functions, and g is a q vector of
unknown parameters. Apart from its use for testing time-varying effects, this model is useful in
its own right because it is then possible to make a sensible bias-variance tradeoff, where effects
that are almost constant can be summarized as such and effects that are strongly time-varying
can be described as such. Lin and Ying [7] considered a special case of (12.1), where only the
intercept term is allowed to depend on time.

In this chapter we develop and study two types of test of time-varying effects within
Aalen’s additive model. The first test uses only information from one model fit of the semipara-
metric additive model and is simple to calculate and implement. The second test applies infor-
mation from two semiparametric additive model fits and is more difficult to calculate. For both
test statistics we give an asymptotically i.i.d. representation, which is used to approximate
relevant limit distributions by applying a certain resampling technique [6].

In the next section, we describe the inferential procedures and give the i.i.d. representations of
the test processes. In Section 12.3, we report the results of a simulation study and provide an illus-
tration with real data from a study concerning myocardial infarction. Some remarks follow in
Section 12.4 and some technical details are given in Appendix 12A (at the end of this chapter).

12.2 MODEL SPECIFICATION AND INFERENTIAL PROCEDURES

Let T̃ be the survival time of interest with conditional hazard function a(t; X, Z) given the cov-
ariate vectors X and Z. In practice T̃ may be right-censored by U so that we observe
((T ¼ ~T ^ U, D ¼ I(~T � U),X, Z)). Let (Ti, Di, Xi, Zi) be n i.i.d. replicates so that the ith
counting process Ni(t) ¼ I(Ti � t,Di ¼ 1) has intensity

li(t) ¼ Yi(t)[XT
i b(t)þ ZT

i g],

where Yi(t) ¼ I(t � Ti) is the at-risk indicator. Usually, the Xi will have 1 as its first component
allowing for an intercept in the model. The intensity li(t) models the risk of a jump in the ith
counting process Ni(t) at time t. We assume that all counting processes are observed in the time

interval [0, t], where t ,1. Each counting process has compensator Li(t) ¼
Ð t
0 li(s)ds such

that Mi(t) ¼ Ni(t) 2 Li(t) is a martingale. Define the n-dimensional counting process N ¼

(N1 , . . . ,Nn)
T and the n-dimensional martingale M ¼ (M1 , . . . ,Mn)

T. Let also X ¼ (Y1X1 ,
. . . , YnXn)

T, Z ¼ (Y1Z1 , . . . , YnZn)
T. We assume the set of conditions listed in Appendix 12A.

The (unweighted) estimators of fB(t) ¼
Ð t
0 b(s) ds, gg [9] are

ĝ ¼
ðt
0
ZTHZ dt

� ��1 ðt
0
ZTHdN(t),

B̂(t) ¼
ð t
0
X�dN(t)�

ðt
0
X�Z dtĝ,
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where X2 denotes the generalized inverse (XT X)21 XT and H ¼ I 2 XX2. We assume that the
required inverses exist. It is quite obvious that these simple and direct estimators will work.
First, considering ĝ, the counting process integral can be written as

ðt
0
ZTH dN(t) ¼

ðt
0
ZTH dfX dB(t)þ Zg dtg þ

ðt
0
ZTH dM(t)

¼
ðt
0
ZTHZ dtgþ

ðt
0
ZTH dM(t)

since HX ¼ 0, and therfore ĝ is an essentially unbiased estimator of g. Similarly, if we consider
B̂(t), we find that the first term can be written as

ðt
0
X�dN(t) ¼

ð t
0
X�dfX dB(t)þ Zg dtg þ

ðt
0
X�dM(t)

¼ B(t)þ
ðt
0
X�Z dtgþ

ðt
0
X�dM(t)

since X2 X ¼ Ip. The second term of this expression is estimated by the ĝ term of the estimator
of B̂(t), and we therefore see that B̂(t) is a sensible estimator.

The limit distributions of the estimators are

n1=2fĝ� gg ¼ C�1(t)n�1=2
ðt
0
ZTH dM(t),

n1=2fB̂(t)� B(t)g ¼ n1=2
ðt
0
X�dM(t)� P(t)n1=2fĝ� gg,

where

C(t) ¼ n�1
ðt
0
ZTHZ ds, P(t) ¼

ðt
0
X� Z dt:

It is useful to note that these limit distributions may be written as sums of essentially
i.i.d. terms:

n1=2fĝ� gg ¼ n�1=2
Xn
i¼1

1
g
i þ oP(1),

n1=2fB̂(t)� B(t)g ¼ n�1=2
Xn
i¼1

1Bi (t)þ oP(1),

where

1
g
i ¼ c�1(t)

ðt
0
fZi � (zTx)(xTx)�1Xig dMi(t),

1Bi (t) ¼
ðt
0
(xTx)�1Xi dMi(t)� p(t)1gi ,
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where c(t) and p(t) denote the limits in probability of C(t) and P(t), respectively. Also, xT x
is used as notation for the limit in probability of n21 XT X, and similarly with zT x. The
limit distributions may be simulated as described by Lin et al. [6] in a Cox model setting
(see Appendix 12A for some details on this)

n1=2fĝ� gg � n�1=2
Xn
i¼1

1̂
g
i Gi, n1=2fB̂(t)� B(t)g � n�1=2

Xn
i¼1

1̂Bi (t)Gi,

where G1 , . . . ,Gn are independent standard normals and 1̂
g
i is obtained from 1

g
i by replacing

deterministic quantities with their empirical counterparts and by replacingMi(t) with M̂i(t), i ¼
1 , . . . , n, and similarly with 1̂Bi (t). The result is that, conditional on the data

n�1=2
Xn
i¼1

1̂
g
i Gi, n

�1=2
Xn
i¼1

1̂Bi (t)Gi

 !

will have the same limit distribution as

n1=2fĝ� gg, n1=2fB̂(t)� B(t)g
� �

:

We thus let � indicate that two quantities have the same limit distribution.
We wish to develop inferential procedures for the following hypothesis

H0 : bp(t) ¼ bp,

focusing without loss of generality on the pth regression coefficient. The hypothesis may be
reformulated in terms of the cumulative regression function Bp(t) ¼

Ð t
0 bp(s) ds as

H0 : Bp(t) ¼ bp � t:

Martinussen and Scheike [8] studied the test process

Vn(t) ¼ n1=2 B̂p(t)� B̂p(t)
t

t

� �
, (12:2)

which is very easy to compute, and considered the test statistics

sup
t�t

jVn(t)j:

It is clear that the test will be consistent, but it cannot be expected to be optimal against any
alternative since the estimator itself is not efficient. One might also take the variance of
Vn(t) into account. Note that Vn(t) ¼ 0 by construction. Under H0, we have

Vn(t) ¼ n1=2f(B̂p(t)� Bp(t))� (B̂p(t)� Bp(t))
t

t
g:
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Clearly, the limit distribution of Vn(t) cannot be a martingale because of the term B̂p(t), but one
may use the resampling technique of [6] to approximate its limit distribution. Alternatively, one
may also simulate the limit distribution by a more classical bootstrap, and it is not clear which
of these approaches lead to the best approximation. We find, however, that the conditional
multiplier approach tends to have quite good small-sample properties. The limit distribution
of Vn(t) may be approximated by

V̂n(t) ¼ n�1=2
Xn
i¼1

f1̂Bi (t)gp � f1̂Bi (t)gp
t

t

h i
Gi,

where vk is the kth element of a given vector v and where we are fixing the data.
An alternative test process is

Wn(t) ¼ n1=2(B̂p(t)� b̂p � t), (12:3)

where b̂p is the estimator of bp under the null. Again, under H0, we have

Wn(t) ¼ n1=2 (B̂p(t)� Bp(t))� (b̂p � bp) � t
� �

:

Contrary to Vn(t), we do not have Wn(t) ¼ 0. To write down the simulation technique for this
test process, we need some notation for the design and the parameters under the null. Let X̃ and
Z̃ be the design matrices under the null, that is, X̃ and Z̃ have ith row Yi (Xi1 , . . . , Xip21) and Yi
(Zi1 , . . . , Ziq, Xip), respectively, and let b̃(t) ¼ (b1(t) , . . . , bp21 (t))

T and g̃ ¼ (g1 , . . . , gq, bp).
Then we have (ignoring lower-order terms)

Wn(t) ¼ n�1=2
Xn
i¼1

f1Bi (t)gp � f1~gi gqþ1 � t
h i

,

where 1~gi are the i.i.d. terms corresponding to n1/2fĝ̃2 g̃g and computed under the null. The
limit distribution of Wn(t) may thus be simulated by generating samples from

Ŵn(t) ¼ n�1=2
Xn
i¼1

f1̂Bi (t)gp � f1̂~gi (t)gqþ1 � t
h i

Gi

while fixing the data.

12.2.1 A Pseudo–Score Test

In this section we consider a test statistic that is based directly on the underlying estimating
equation, and we need some additional notation in this case. We start by partitioning X into
X1 and X2 of dimensions n � ( p 2 1) and n � 1, respectively. Similarly, we write B(t) ¼
(B1(t), B2(t)) with B1(t) a ( p 2 1) vector and B2(t) a scalar, and let V(t) ¼ (X2, Z) and u ¼

(bp, g) and H1 ¼ I 2 X1 (X1
T X1)

21 X1
T. Note that this partitioning of X may be completely

general, but for simplicity we let X2 be one-dimensional.
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First, under the model

li(t) ¼ Yi(t)½XT
i b(t)þ ZT

i g�,

the estimating function for B(t) ¼
Ð
0

t

b(s) ds is given by

U(t) ¼
ðt
0
XT (dN � X dB� Zg dt) ¼

ðt
0
XTdM, t [ ½0, t�,

thus giving the solution

dB ¼ X�(dN � Zg dt),

as pointed out above.
Under the null hypothesis H0 : bp(t) ¼ bp, the model can then be written as

dN(t) ¼ X1 dB1(t)þ Vu dt þ dM(t):

Then the estimating function for B(t), computed under the null, becomes

~U(t) ¼
ðt
0
XT (dN � X1 dB̂1 � V û dt)

¼
ðt
0
XTH1(dN � V û dt):

Since H1 X1 ¼ 0, it follows that XT H ¼ (0, X2)
T H1 and the first ( p 2 1) components of Ũ(t) is

zero, we need to consider only the pth component of the estimating function, which we denote
as Ũp(t). We obtain

~Up(t) ¼
ðt
0
XT
2H1(dN � V û dt)

¼
ðt
0
XT
2H1 dM � P2(t)C2

ðt
0
VTH dM,

where

P2(t) ¼
ðt
0
X2H1Vdt, C2 ¼

ðt
0
VTH1Vdt

� ��1

:

We suggest using the test statistic supt�tj Ũp(t)j. This estimating function or pseudo–score
function, may then be resampled as in the previous section by making an i.i.d. decomposition
of Ũp(t).
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12.3 NUMERICAL RESULTS

12.3.1 Simulation Studies

To evaluate the finite sample performance of the proposed tests processes (12.2) and (12.3), we
did a simulation study, investigating whether the correct nominal level is attained and whether
the power of the tests based on the two test processes differs. In addition to the simple supre-
mum tests

sup
t�t

jVn(t)j, sup
t�t

jWn(t)j,

we also computed the integrated squared errors over the following time interval:

ðt
0
V2
n (t)dt,

ðt
0
W2

n (t)dt:

In Table 12.1 we denote these tests as sup Vn and
Ð
Vn
2 and similarly with Wn. The simple test

statistic based on Vn has the advantage of being insensitive to the increased variation at the end
of the time interval. In order to remedy this problem for the Wn(t) test process, we also com-
puted a weighted version of the test process

~Wn(t) ¼ t � (t� t) �Wn(t),

which also has the property that it starts in 0 and ends in 0 in the same way as does Vn(t).
Finally, we also computed the pseudo–score test

supt�tj~Up(t)j,

which we denote as PS in the tables below. Note that the pseudo–score test also starts and ends
in 0.

Table 12.1 Performance of Two Estimators of g for
Different Censoring Times (3, 5 and 8)a

ĝ g̃

n
Censor
Time

Mean
Censoring Mean

Emp
SE Mean

Emp
SE

100 3 0.43 0.191 0.166 0.220 0.122
200 3 0.43 0.194 0.118 0.202 0.080
100 5 0.23 0.198 0.145 0.208 0.114
200 5 0.23 0.198 0.092 0.201 0.081
100 8 0.10 0.195 0.162 0.275 0.364
200 8 0.10 0.194 0.100 0.203 0.100

aMean of estimates (mean) and empirical standard error of estimates (emp SE) for ĝ
and g̃ (see text).
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We generated data from the additive hazards model:

ai(t) ¼ 0:2þ 0:2 � Xi1 þ (0:2þ u � (t , 1)) � Xi2:

The effect of X2 is increased by u in the first time unit (values of 0.2 and 0.4 of u are con-
sidered). The covariates are drawn as independent standard uniform variables.

We generated samples of 100 and 200 and censored the data at three different points in time
(3, 5, and 8).

The performance of the tests depend on how well behaved the cumulative regression coef-
ficient is toward the end of the period. We start by considering one direct consequence of this.
Recall that ĝ is the estimate of the constant effect under the semiparametric model, and denote
similarly the estimator g̃j ¼ Bj(t)/t, an estimator based on the additive Aalen model. This esti-
mator is also discussed in Martinussen and Scheike [8], and it is more unstable because the
matrix inverse (ZHZ) needs to be computed for all timepoints, in contrast to the estimator ĝ,
where only the matrix inverse of

Ð
ZHZ dt needs to be computed.

In Table 12.1 we compare the performance of these two estimators for estimating the effect
of X2 in the model where this effect is equal to 0.2.

Note that g̃ is as good as and even slightly better than ĝwhen we do not use the unstable part
of the tail of the cumulative regression coefficient.When the estimate becomes unstable, as is the
case for censoring time 8 and with only 100 observations, ĝ is clearly more precise than g̃.

Table 12.2 Observed Power for 1000 Repetitions for
Tests for Time-Varying Effectsa

Test n X1 X2

sup Vn 100 0.07 0.09
int Vn 100 0.06 0.09
sup Wn 100 0.06 0.08
int Wn 100 0.07 0.08
sup W̃n 100 0.07 0.09
int W̃n 100 0.06 0.07
PS 100 0.05 0.09

sup Vn 200 0.05 0.12
int Vn 200 0.05 0.11
sup Wn 200 0.05 0.10
int Wn 200 0.06 0.09
sup W̃n 200 0.06 0.11
int W̃n 200 0.05 0.10
PS 200 0.05 0.10

sup Vn 400 0.05 0.12
int Vn 400 0.05 0.12
sup Wn 400 0.06 0.11
int Wn 400 0.05 0.13
sup W̃n 400 0.06 0.12
int W̃n 400 0.05 0.13
PS 400 0.05 0.16

aSee text for details. Test computed for data censored at time 3. The nonlinear
effect was given by 0.2.
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We now carried out a test with significance level at 5% for constant effect of X1 and X2 for the
different censoring times. In Tables 12.2 and 12.3 we show the results based on censoring time 3.
Censoring time 5 led to somewhat similar results, but the level was a bit too high for the lower
sample sizes. Censoring at time 8 led to tests where the level was severely skewed and much
too high due to the instability toward the end of the time period for the tests to work, and this
is reflected in Table 12.1. It is noteworthy, however, that the pseudo–score test was unaffected
by the censoring times and in fact improved only whenmore of the datawas used (see Table 12.4).

We first considered u ¼ 0.2. The test for constant effect of X1 attained the nominal 5% level
for all tests. The nonconstant effect of covariate X2 led to powers that were quite low, �8–9%
for all tests. When the sample size increased to 200 and 400, we found that the PS test had the
best power improvement, and all other tests behaved similarly, with the simple Vn being com-
petitive. Note, however, that the time-varying effect is quite minor and present only on the first
part of the time interval, and the low powers simply reflect that the time-varying effect is really
difficult to observe.

We then increased the time-varying effect by setting u ¼ 0.4. This improved the perform-
ance of all tests, and we found that the simple Vn now showed a power that increased from 0.14
to 0.32 over the sample sizes.Wn showed an increased power compared to its weighted version.
Again, PS showed the best improvement in power over the sample sizes.

The pseudo–score test is as good as any of the other tests and showed the best performance
overall. The test also showed an ability to work even in the tail of the data where there is little

Table 12.3 Observed Power from 1000 Repetitions for
Tests of Time-Varying Effectsa

Test n X1 X2

sup Vn 100 0.07 0.14
int Vn 100 0.06 0.12
sup Wn 100 0.05 0.12
int Wn 100 0.05 0.12
sup W̃n 100 0.06 0.14
int W̃n 100 0.06 0.13
PS 100 0.05 0.13

sup Vn 200 0.07 0.22
int Vn 200 0.06 0.20
sup Wn 200 0.05 0.20
int Wn 200 0.06 0.22
sup W̃n 200 0.07 0.20
int W̃n 200 0.06 0.20
PS 200 0.05 0.23

sup Vn 400 0.06 0.32
int Vn 400 0.05 0.32
sup Wn 400 0.06 0.34
int Wn 400 0.05 0.38
sup W̃n 400 0.06 0.33
int W̃n 400 0.05 0.34
PS 400 0.05 0.40

aSee text for details. Test computed for data censored at time 3. The nonlinear
effect was given by 0.4.
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information. We illustrate this in Table 12.4, where we show the observed levels for censoring
times 5 and 8.

We see that the PS test improves when more of the data is used to investigate the time-
varying effects of the covariates. This is in contrast to all other tests that did not perform
well when regions with little information were used.

The pseudo–score test gave the highest power and also was unaffected by the censoring
time, and is thus to be preferred when testing for time-varying effects. If the esimates are
stable, however, all tests considered lead to similar performance levels.

12.3.2 Trace Data

The TRACE study group [5] studied the prognostic importance of various risk factors on mor-
tality for approximately 6600 patients with acute myocardial infarction (AMI). In this illus-
tration we consider 1000 of these patients who were randomly selected. The data are part of
the Glostrup cohort, and consist of consecutive admissions of patients with AMI to one hospital
between 1979 and 1983. Additional details about the data are given in Martinussen and
Scheike [8].

It was expected that ventricular fibrillation (VF) had a strongly time-varying effect and that
other covariates such as clinical hear failure (CHF) and diabetes might have smaller time-
varying effect. All covariates are measured at time 0, and as such it is expected that covariates
such as VF, which give a condition that is very specific for time 0, will wear off with time. This
may be in contrast to covariates such as diabetes, which refer to a more chronic condition of the
patient. The VF covariate, for example, refers to a specific condition of the heart. Here we
consider covariates for diabetes, sex, VF, CHF, and age.

Table 12.4 Observed Power for 1000 Repetitions for
Pseudo–Score Test Time-Varying Effectsa

Test n u X1 X2

Censoring at Time 5

PS 100 0.2 0.06 0.09
PS 200 0.2 0.06 0.11
PS 400 0.2 0.06 0.17

PS 100 0.4 0.07 0.14
PS 200 0.4 0.05 0.26
PS 400 0.4 0.05 0.46

Censoring at Time 8

PS 100 0.2 0.07 0.08
PS 200 0.2 0.06 0.11
PS 400 0.2 0.05 0.18

PS 100 0.4 0.05 0.15
PS 200 0.4 0.05 0.25
PS 400 0.4 0.05 0.51

aPower for censoring at times 5 and 8.
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We first fitted the nonparametric additive Aalen model and obtained the cumulative esti-
mates shown in Figure 12.1 with 95% pointwise confidence bands and 95% Hall–Wellner
bands (dotted lines).

The tests for time-varying effects based on Vn and PS yielded the p values listed in Table 12.5.
This suggests that diabetes and sex have effects that may be constant. The P-values are

based on the resampling processes, and Figure 12.2 shows the test processes for diabetes
and VF along with 50 realizations under the hypothesis of a constant effect.

We simplified the model by successively testing the hypothesis of time-invariant covariate
effect. In the model where the time-varying effect is allowed in all covariates, we conclude that
the effect of diabetes may be constant ( p ¼ 0.48). The model where all effects are allowed to
be time-dependent except for the effect of diabetes, which is taken to be constant, now forms
the basis for further testing to determine whether the allowed time-varying effects could be
taken as constant. This is acceptable for sex ( p ¼ 0.17). Finally, in this simplified model all

Figure 12.1 Estimated cumulative regression coefficients with 95% confidence intervals
(solid lines).

Table 12.5 P-Values for Testing Time-Constant Effect Based on Vn Test Process
and Pseudo–Score Testa

Parameter sup Vn PS sup Vn PS sup Vn PS

Age 0.006 0.000 0.002 0.000 0.002 0.000
Sex 0.218 0.252 0.170 0.315 — —
Diabetes 0.484 0.434 — — — —
CHF 0.098 0.024 0.024 0.022 0.032 0.020
VF 0.012 0.004 0.006 0.007 0.002 0.007

aSuccessive testing leading to stepwise model reduction to model with constant effects [indicated by dashes
(—) in blank tabular cell].
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remaining effects are significantly time-varying. The p values for constant effects of VF, CHF,
and age within this simplified model are 0.002, 0.032, and 0.002, respectively. This leads to a
model in which the effects of VF, CHF, and age are time-varying and the other effects are sum-
marized by constant excess risk (se): sex 0.0412 (0.0178), and diabetes 0.0617 (0.0350). The p
values for constant effect of VF, CHF, and age within this simplified model are 0.002, 0.032,
and 0.002, respectively.

12.4 CONCLUDING REMARKS

We have shown how the flexible additive hazards model may be used as a starting point for
model reduction techniques, which, in the first step considered here, attempt to reduce the
time-varying nonparametric regression effects to a parametric form (referred to as the constant
effect here). This leads to a step-by-step model reduction that allows flexibility in the model if
this is found in the data, and on the other hand gives a precise summary if this is reasonable
according to the data. Another advantage of stepwise modeling is that the degrees of
freedom at each test is kept low.

The reported simulations indicate that the tests based on the simple test process Vn per-
formed reasonably well, but that the pseudo–score tests has the best performance and
highest power. All tests but the pseudo–score test are highly sensitive to unstable behavior
toward the end of the time-period.

12.5 SUMMARY

A useful alternative to the Cox model is the Aalen additive hazards model [1], which can easily
accommodate time-varying covariate effects. For this model it is possible to test whether

Figure 12.2 Test process for test for constant effect (solid dark line) and 50 resample realiz-
ations reflecting performance of text process under the null.
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covariate effects significantly vary with time. If not all effects are time-varying, it is of interest
to find the most useful model for summarizing the data. In this chapter we study different types
of tests for time-varying effects within the additive hazards model. Large-sample results are
obtained and a resampling technique for evaluating limit distributions is developed. The
finite-sample properties of the proposed inference procedures are assessed through a simulation
study. The methods are further applied to a dataset concerning myocardial infarction.
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APPENDIX 12A: UNDERLYING ASSUMPTIONS AND
JUSTIFICATION OF RESAMPLING

The following set of conditions are assumed throughout the chapter:

1. P(Yi(t) ¼ 1, for all t [ [0, t]) . 0.

2. The covariates are bounded.

3. E(Yi(t)Xi Xi
0) is nonsingular for all t [ [0, t].

4. As n!1, n21C̃(t) converges in probability to an invertible matrix.

Here we justify the resampling approach suggested in Section 12.2 following the line of
Spiekerman and Lin of (Ref. 10, App. B). We consider only the case of n1/2fĝ 2 gg. By
the martingale central-limit theorem it follows that n1/2fĝ 2 gg converges in distribution
toward a normal distribution. It also follows that n1/2fĝ2 gg is essentially a sum of n i.i.d.
terms replacing terms like (n21 ZT X) (n21 XT X)21 by their limits in probability using the
fact that we have uniform convergence due to condition 2. (Ranga Rao’s SLL; see App. III
of Ref. 3) and then applying Lenglart’s inequality [2]. Thus

n1=2fĝ� gg ¼ n�1=2
Xn
i¼1

1
g
i þ oP(1)

Now, by the conditional multiplier central-limit theorem [11], we obtain

n�1=2
Xn
i¼1

1
g
i Gi

converges weakly (in probability) toward the same limit distribution as n1/2fĝ2 gg con-
ditional on the data. The argument is completed by showing that

jn�1=2
Xn
i¼1

1̂
g
i � 1

g
i

� �
Gij)

P
0 (12A:1)
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We have that the left-hand side of (12A.1) is bounded above by

jn�1=2
Xn
i¼1

GiC
�1(t)

ðt
0
YifZi � (ZTX)(XTX)�1Xig

� f(ZT
i � XT

i X
�Z)(ĝ� g)dt þ XT

i X
�dM(t)gj

þ jn�1=2
Xn
i¼1

Gi

ðt
0
fC�1(t)(Zi � (ZTX)(XTX)�1Xi)

� c�1(t)(Zi � (zTx)(xTx)�1Xi)gdMij (12A:2)

The first term of (12A.2) is bounded above, using the triangular inequality, by

����n�1=2
ðt
u

Xn
i¼1

fiGi dt(~g1 � g1)

����þ
����n�1=2

ðt
u

(n�1
Xn
i¼1

giGi)(n
�1XTX)�1XTdM

����

where the expressions for fi and gi are easily worked out. The first term of the latter display
converges to 0 in probability by Ranga Rao’s SLL, and since the Gi terms are independent
of the data with EGi ¼ 0. The latter term also converges to 0 in probability using similar argu-
ments and the inequality of Lenglart. Similarly the second term of (12A.2) is seen to converge
to 0 in probability.
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C H A P T E R 13

Analysis of Outcomes Subject to
Induced Dependent Censoring: A
Marked Point Process Perspective
Yijian Huang
Department of Biostatistics, Emory University, Atlanta, Georgia

13.1 INTRODUCTION

For chronic diseases including cancer and HIV/AIDS, a time-to-event, such as overall survival,
has been the typical primary outcome in clinical studies. However, such a single outcome is
often inadequate to capture all the impacts that a treatment (and/or other covariates) might
have on the disease process. For more comprehensive treatment assessment as being increas-
ingly advocated, a number of secondary outcomes characterizing other features of the
disease process toward the event of interest are often simultaneously evaluated. Examples
include

1. Lifetime Medical Cost. Cost evaluation has become an accepted, and often required,
adjunct to the standard effectiveness and safety assessment in today’s medical research.
This is due largely to the fact that demands on our healthcare system continue to outgrow
the resources available. For example, lung cancer being the leading cause of cancer-
related deaths in the United States, is estimated to cost the society $4.7 billion annually
in direct medical costs [5]. The need to effectively control medical care cost becomes
increasingly urgent.

2. Quality-Adjusted Survival Time. A treatment may affect not only the quantity but also
the quality of life. Furthermore, tradeoffs may occur between these two aspects of life.
The notion of quality-adjusted survival time offers a synthesis measure of the two, which
has received great interest and attention in the health care community [18].
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3. Sojourn Times in Various Clinical Stages. The course of a disease may comprise a
series of successive states representing progressive clinical stages. For example, longi-
tudinal cancer studies often involve patients experiencing disease-free and disease-
relapse states before death. Sometimes more states are defined for better resolution of
the disease course; Gelber et al. [6] split the disease-free state further into two states,
with and without toxicity. The vector of state-specific sojourn times is clinically more
informative than the overall survival time.

Unfortunately, these secondary outcomes pose significant statistical challenges. Although there
are outcome-specific issues, one common difficulty arises from incomplete follow-up data as
typically obtained in clinical studies. Although censoring is nothing new in survival analysis,
the pattern associated with these endpoints turns out to be distinctive as being induced depen-
dent censoring. In this chapter, we provide a review of a unified and effective approach to these
outcomes under the statistical framework of marked point process.

In Section 13.2, we elaborate on the phenomenon of induced dependent censoring and discuss
its associated identifiability issues. The concept of marked point process is introduced in Section
13.3, alongwith results on the one-sample nonparametric estimation. These results provide build-
ing blocks for the development of two-sample testing and regression analysis methods, which are
presented in Section 13.4. Section 13.5 concludes the chapter with final remarks.

13.2 INDUCED DEPENDENT CENSORING AND ASSOCIATED
IDENTIFIABILITY ISSUES

Censoring occurs when a participant is lost to follow-up prior to the event of interest, due to
study termination or participant dropout. Denote time to the event by T, and the censoring
time by C. As a result of censoring, these underlying random variables are observed only
through follow-up time and censoring indicator

X ¼ T ^ C; D ¼ I(T � C);

where ^ is the minimization operator and I(.) is the indicator function. To make inference on T,
standard survival analysis techniques require a basic but critical assumption that T and C are
independent, possibly conditioning on covariates if applicable as in the regression setup.
Albeit not necessarily testable, this assumption is often plausible and widely accepted in
many practical situations. This is how the primary analysis on T is typically carried out.

Now, for a secondary endpoint described in Section 13.1, there exists an accumulation
process U(.) indexed by time. For lifetime medical cost, U(t) is the accumulated cost at time
t. Similarly, in the case of quality-adjusted survival time, U(t) corresponds to the accumulated
quality-adjusted life years (QALYs). These two examples involve scalar U(.). When state
sojourn times of a multistate process are under consideration, U(t) is the vector of sojourn
times accumulated at time t. The secondary outcome of interest is U ; U(T ). However, in
the presence of censoring, it is observed through

W ¼ U(X):

Given T as a measure of the event on the timescale, U may be viewed as a measure on a new
scale: cost to event, QALY to event, or state-specific sojourn times to event. This viewpoint
may suggest applying standard survival analysis techniques to such a new scale, that is,
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analyzing the sample of fW, Dg in a fashion similar to the standard survival analysis with that
of fT, Dg. Unfortunately, such an analysis is inappropriate since the induced censoring pattern
is in general dependent. This phenomenon has long been recognized; for example, see Glasziou
et al. [8] and Lin et al. [15].

The induced dependence is due to the randomness nature of the accumulation process U(.),
which is the transformation map from the timescale to the new scale. Since U(.) is nondecrea-
sing, we obtain

W ¼ U(T) ^ U(C) ¼ U ^ U(C);

where U(C) is the censoring measured on the new scale. If U(.) is deterministic, the indepen-
dence between T and C leads to that between U(T) and U(C). But this is no longer the case in
general for stochastic U(.), which becomes apparent with the following special cases.

Example 13.1: Lifetime Medical Cost or Quality-Adjusted Survival Time. To reveal
the induced dependent censoring, we consider the special case where the accumulation rate,
say, B, is time-independent. Nevertheless, B is a random variable. Thus, U ¼ BT and
U(C) ¼ BC are not independent in general. Indeed, higher lifetime medical cost or quality-
adjusted survival time tends to be censored later on cost or QALY scale, respectively.

Example 13.2: State Sojourn Times in a Progressive Multistate Process. For simpli-
city, consider a two-state process and denote the two underlying sojourn times by G1 and
G2, with overall survival time T ¼ G1 þ G2. In this case

U(t) ¼ t ^ G1

(t � G1)þ ^ G2

�
;

�

where aþ ¼ max(a, 0). Clearly

W ¼ C ^ G1

(C � G1)þ ^ G2

� �
:

The censoring pattern for the two states is serial in that the censoring on G1 would preclude the
observation of G2. The censoring pattern for the first state is still independent. However, unless
G1 and G2 are independent, the censoring pattern on G2 by (C 2 G1)

þ becomes dependent. For
a general progressive multistate process, the censoring pattern on any sojourn time beyond the
first one is typically dependent.

As mentioned before, one implication of induced dependent censoring is that standard
survival analysis techniques cannot be applied to the new scale. In addition and even more trou-
blesome, the distribution of lifetime medical cost, quality-adjusted survival time, or any
sojourn time but the first one in a progressive multistate process may be nowhere identifiable.
In a typical clinical study, the duration is limited to, say, 3 years. This means that censoring
time C is bounded by 3 years. In the cases of lifetime medical cost and quality-adjusted survival
time, if a certain portion of the target population may incur little medical cost or QALYs within
3 years, then no information can be observed for their lifetime medical cost or quality-adjusted
survival time. Therefore, the corresponding distribution function for the population is not ident-
ifiable away from 0. Similarly, for the second sojourn time in a progressive two-state process,
its distribution is nowhere identifiable if the first sojourn time may exceed the study duration.
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It is well known that limited study duration also causes identifiability issues in standard
survival analysis. But the nonidentifiability is restricted only to the tail portion of the survival
distribution, that is, beyond the study duration. In contrast, for outcomes subject to induced
dependent censoring, nonidentifiability may be everywhere for the marginal distribution of
interest.

13.3 MARKED POINT PROCESS

The issues described in the previous section plague the analysis of those secondary endpoints.
To further complicate the analysis, the structure of observed data may vary not only from one
endpoint to another but also from one study to another even for the same secondary endpoint.
Taking lifetime medical cost as an example, the observation of U(.) on [0, X ] may exhibit a
wide spectrum of patterns:

1. One less informative pattern corresponds to the observation of U(X) only. Such data col-
lection is often retrospective, that is, after the follow-up is complete.

2. The observation of U(.) may have an intermittent pattern on [0, X ]. When cost data col-
lection is driven by study visits, cost accumulated from the previous visit is recorded at
each visit. Study participants may or may not share the same visit schedule.

3. Apparently the most informative pattern involves the continuous observation of U(.) on
[0, X ]. This is often the case when cost of interest is due to hospitalizations, by which the
cost collection is driven.

Despite all these differences from one situation to another, there exists a common basic data
structure with the observation of the following random variables [11]:

X; D; Y ¼ U I(T � C):

Thus, in addition to fX,Dg as in the standard survival data, the secondary endpointU is observed
among uncensored individuals. A random variable likeU that is observed only on the occurrence
of an event is termed themarkof the event, and the process counting the event alongwith themark
is referred to as the marked point process [2, Sec. II.4.1]. A simpler and better-known marked
point process involves cause of death as a discrete mark. Both lifetime medical cost and
quality-adjusted survival time are continuous marks of death. Meanwhile, a mark may also be
a random vector as in the case of sojourn times in a multistate process.

The marked point process is a natural extension of the counting process. Not surprisingly,
classical results and martingale theory with counting processes can be generalized to marked
point processes [11]. In this section, we introduce some of them in the one-sample setup.

13.3.1 Hazard Functions with Marked Point Process

Write FTU(t, u) ¼ Pr(T � t, U � u) and its marginal for time to event FT (t) ¼ 1 2 ST (t) ¼
FTU(t, 1). The cumulative hazard function of T is given by

LT (t) ¼
ð
½0;t�

FT (ds)
ST (s�)

:
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The one-to-one mapping between the survival function and the hazard function is a central idea
in univariate survival analysis [1,7]

ST (t) ¼
Y

½0;t�f1� LT (ds)g;

where
Q

is product integral. Correspondingly, with marked point process, define the cumul-
ative mark-specific hazard function

LTU(t; u) ¼
ð
½0;t�

FTU(ds; u)
ST (s�)

:

The following representation plays an important role in the estimation with marked point
process

FTU(t; u) ¼
ð
½0;t�

ST (s�)LTU(ds; u)

¼
ð
½0;t�

Y
½0;s�f1� LTU(dv;1)gLTU(ds; u);

(13:1)

where the mapping from LTU to FTU is continuous and compactly differentiable.

13.3.2 Identifiability

To deal with censored data, we assume the random censorship mechanism; to be more specific,
the pair fT, Ug is independent of C. In addition, we impose a standard assumption in the one-
sample survival problem that the distributions of T and C do not have jump points in common
[21]. Note that this assumption does not exclude the possibility that either function is discrete.

Let FXY,D¼1(t, u) ¼ Pr(X � t, Y � u, D ¼ 1), SX(t) ¼ Pr(X. t), and SC(t) ¼ Pr(C. t).
Denote the maximum support of SX(t) by t ¼ supft : SX(t) . 0g. Under the given assumptions,
we obtain

FXY ;D¼1(dt; u) ¼ FTU(dt; u)SC(t�); SX(t) ¼ ST (t)SC(t):

Therefore

LTU(t; u) ¼
ð
½0;t�

FXY;D¼1(t; u)
SX(s�)

; 8t , t: (13:2)

With this representation of LTU in terms of the joint distribution of observed random variables
fX, D, Yg, LTU and thus FTU are identifiable up to the support [0, t)�(21, 1) as shown in
Figure 13.1. This identifiability result on the joint distribution is important since the marginal
distribution of U may be nowhere identifiable, which is due to the nonidentifiability of FTU

on [t, 1) � (21, 1).

13.3.3 Nonparametric Estimation

The data consist of fXi, Di, Yig, i ¼ 1, . . . , n, as n i.i.d. replicates of fX, D, Yg. Define processes

Ni(t; u) ¼ I(Xi � t; Yi � u;Di ¼ 1); Ri(t) ¼ I(Xi � t);
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where Ri is often referred to as an “at-risk process.” Let N(t, u) ¼
P

Ni( t, u) and R(t) ¼P
Ri(t). Note that N/n and R/n are the empirical versions of FXY,D¼ 1 and SX(.2), respectively,

in identity (13.2). This motivates an estimator for LTU.

L̂TU(t; u) ¼
ð
½0;t�

N(ds, u)
R(s)

,

which is a generalization of the Nelson–Aalen estimator. Indeed, L̂T ( � ) ¼ L̂TU( � ,1) is the
Nelson–Aalen estimator for LT. Subsequently, with mapping of (13.1), a natural estimator
of the joint distribution FTU emerges as

F̂TU(t, u) ¼
ð
½0, t�

Y
½0, s)f1� L̂TU(dv;1)g L̂TU(ds, u):

Similar to the relationship between L̂TU and the Nelson-Aalen estimator, F̂TU is a generaliz-
ation of the Kaplan–Meier estimator.

13.3.4 Martingales

In standard survival analysis, martingales prove to be powerful in not only finite- and large-
sample investigations but also modeling with counting processes. It is not surprising that mar-
tingales can also be identified with marked point processes.

Define a filtration fFt : t � 0g with

F t ¼ s I(Xi � s,Di ¼ 1), I(Xi � s,Di ¼ 0),f
YiI(Xi � s,Di ¼ 1) : 0 � s � t, i ¼ 1, � � � , ng:

(13:3)

Figure 13.1 The shaded area is the support on which FTU is identifiable in the one-sample
problem.
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For any given u

Mi(t, u) ¼ Ni(t, u)�
ð
½0, t�

Ri(s)LTU(ds, u)

is a martingale with respect to fFt : t � 0g. This facilitates the finite- and large-sample inves-
tigations of L̂TU and F̂TU , similar to the studies of the Nelson–Aalen and Kaplan–Meier
estimators [11].

Furthermore, define

N(m)
i (t) ¼ Ym

i I(Xi � t)Di, L(m)(t) ¼
ð
(�1,1)

umLTU(t, du), m ¼ 0, 1:

With respect to fFt : t � 0g

M(m)
i (t) ¼ N(m)

i (t)�
ð
½0;t�

Ri(s)L
(m)(ds) (13:4)

is a martingale for m ¼ 0, 1. When m ¼ 0, N(0)
i is a counting process, L(0)(t) ¼ LT(t), and the

martingale result is well known. But the extension to m ¼ 1 will be useful in the following
section for testing and regression analysis involving a mark.

13.4 MODELING STRATEGY FOR TESTING AND REGRESSION

The secondary analyses mentioned in Section 13.1 are typically concerned with scientific
questions such as

1. Does the intervention improve quality-adjusted survival time over the standard care?

2. How do the baseline demographics affect lifetime medical cost?

3. Are the cancer-free and cancer-relapse times in the intervention arm different from those
in the standard arm?

Unfortunately, such issues may not be addressed on the basis of the marginal distribution of
interest due to limited study duration. In light of the identifiability result in Section 13.3.2,
one reasonable strategy is to formulate these questions in terms of the joint distribution
with time to event. Such a joint distribution strategy appears to fit in well with the relation-
ship between the primary and secondary analyses. In the following, we describe testing
and regression analysis procedures with lifetime utility or cost, and a testing procedure
with a progressive multistate process in line with this strategy. With each procedure, the
marked point process data structure is considered and the one-sample results in Section
13.3 serve as a building block. The focus is on main ideas; details may be found in the
references provided.
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13.4.1 Two-Sample Test for Lifetime Utility or Cost

In many clinical trials, survival time is the primary endpoint and lifetime utility or cost is a sec-
ondary endpoint. One example is a randomized clinical trial conducted by the Southwest
Oncology Group (SWOG), comparing vinorelbine plus cisplatin versus paclitaxel plus carbo-
platin therapies in earlier untreated patients with advanced non-small-cell lung cancer [13]. In
addition to survival data, resource utilization data were collected for each participant, and com-
paring medical cost associated with the two treatments was a secondary objective. Such a com-
parison is not trivial not only because of the issues associated with incomplete follow-up data
as discussed before but also because the two treatments may affect survival time differently.

With the two samples under consideration, we use the notation introduced in Section 13.3
for one sample and add an asterisk to indicate the other. Huang and Lovato [12] suggested
testing the difference between U and U� on the basis of the joint distributions of fT, Ug and
fT�, U�g. It is acknowledged that T and T� may not share the same marginal distribution,
and their difference is a nuisance for the test under consideration. Therefore, a calibration of
this potential and irrelevant difference is in order. For this purpose, an accelerated failure-
time model may be adopted: T � exp(b)T�. Then, the null hypothesis is specified as

H0 : (T ;U)T � fexp(b)T�;U�gT :

Apparently,U � U� underH0.Writingm(t) ¼ E(UjT ¼ t) andm�(t) ¼ E(U�jT� ¼ t), we consider
the alternative hypothesis HA :m(t) � m�fexp(2b)tg or m(t) � m�fexp(2b)tg, with strict
inequality for at least some t. Clearly,HA implies different marginal distributions of U and U�.

For the test, we build on and extend the weighted log-rank statistics

jm(b) ¼
ð
½0;1)

wm(t; b)
dN(m)(t)
R(t)

� dN(m)�fexp(�b)tg
R�fexp(�b)tg

� �
; m ¼ 0; 1;

wherewm is a nonnegative weight function. Note that j0 is the familiar rank statistic for survival
time, where w0(t, b) ¼ R(t)R�fexp(2b)tg/[R(t) þ R�fexp(2b)tg] and w0(t, b) ¼ R(t)
R�fexp(2b)tg correspond to the log-rank and Gehan statistics, respectively. These statistics
are justified by the martingales given in (13.4): j0(b) and j1(b) have mean 0 under H0. Of
course, b is a nuisance parameter and unknown. Louis [17] and Wei and Gail [24] suggested
using a consistent estimator of b, say, b̂, as the zero-crossing of j0(b). Therefore, j1(b̂) may
serve as a test statistic, which is asymptotically normal with mean 0 under H0.

13.4.2 Calibration Regression for Lifetime Medical Cost

In the previous section, we were concerned with the relationship between, say, lifetime medical
cost and a binary covariate, such as the treatment indicator. More generally, the relationship
between the lifetime medical cost U and the covariate vector, say, Z, is of interest as in a
regression problem. For example, with such a regression analysis in the SWOG study, one
may address the treatment effect after adjustment for baseline patient characteristics and/or
effects of baseline characteristics, on lifetime medical cost.

With censored data, it is necessary to model the covariate effect on the joint distribution of T
and U, instead of the marginal distribution of U. Huang [10] generalized the univariate
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accelerated failure-time model for the joint distribution of fT, Ug

log
T
U

� �
¼ aT

bT

� �
Zþ 1;

where a and b are regression coefficient vectors and the bivariate error term 1 has a completely
unspecified bivariate distribution. Evidently this regression model is rooted in the two-sample
model for the testing procedure in Section 13.4.1. Furthermore, the following conditional inde-
pendence censoring mechanism is adopted

C ? fT;Ug jZ;

where ? represents independence.
The data consist of fXi, Yi, Di, Zig, i ¼ 1, . . . , n, as n i.i.d replicates of fX, Y, D, Zg. To draw

inference on a and b, estimating functions have been constructed. For a, the standard log-rank
estimating function (or a weighted version of it) for the univariate accelerated failure-time
model [20] is adopted

S0(a) ¼
Xn
i¼1

ð
(�1,1)

Zi �
Pn

j¼0 ZjRj(t; a)Pn
j¼0 Rj(t; a)

( )
dN(0)

i (t; a),

where Ri(t; a) ¼ I(log Xi 2 aTZi � t) is an at-risk process and N(0)
i (t;a) ¼

I(logXi � aTZi � t)Di is a counting process. For the estimation of b, the above log-rank esti-
mating function is generalized to the marked point process framework. Define process

N(1)
i (t;a, b) ¼ I(logXi � aTZi � t)Di(log Yi � bTZi), which differs from the counting process

N(0)
i in jump size. An estimating function (or a weighted version of it) for a and b has been

proposed as follows:

S1(a, b) ¼
Xn
i¼1

ð
(�1,1)

Zi �
Pn

j¼0 ZjRj(t; a)Pn
j¼0 Rj(t; a)

( )
dN(1)

i (t; a, b):

Both S0(a) and S1(a, b) have mean 0, which is a result of the martingales given in (13.4). An
estimator of a; â, can be obtained as a zero-crossing of S0(a). Then, the zero-crossing of
S1(â;b) gives a reasonable estimator b̂ for b.

13.4.3 Two-Sample Multistate Accelerated Sojourn-Time Model

We now turn to the problem of multistate process representing various clinical stages, and use
the International Breast Cancer Study Group (IBCSG) trial V as a motivating example. This
study investigated the effectiveness of short-duration (1 month) perioperative systemic treat-
ment compared with long-duration adjuvant therapy (6 or 7 months) in node-positive breast
cancer patients [22]. Cancer relapse and death were monitored, and the disease progression
can be characterized as a progressive two-state process with cancer-free and cancer-relapse
states. While treatments potentially have differential, sometimes even opposite, effects on
different states, comparison with respect to individual-state sojourn times is of interest and
importance.
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Let g ¼ 0,1 indicate the control and treatment groups. Suppose that K consecutive states end
at times Tg1 � . . . � TgK from the start of follow-up. We assess the treatment effect on the K
sojourn times Gg1 ¼ Tg1, Gg2 ¼ Tg2 2 Tg1, . . . , GgK ¼ TgK 2 Tg(K21). This process is
subject to censoring by time Cg, and these underlying random variables are observed through

Xgk ¼ Tgk ^ Cg; Dgk ¼ I(Tgk � Cg); k ¼ 1; . . . ;K:

The observed censored sojourn times are Hg1 ¼ Xg1, Hg2 ¼ Xg2 2 Xg1, . . . ,HgK ¼ XgK 2

Xg(K21). Assume that, given g ¼ 0, 1, Cg is independent of fTgk : k ¼ 1, . . . , Kg.
As discussed before, the marginal distribution of any sojourn time beyond the first state may

be nowhere identifiable for each group. Therefore, a marginal model may not be identifiable.
Huang [9] proposed the multistate accelerated sojourn-time model such that (G11, . . . , G1K)

T

has the same distribution as fexp(b1)G01, . . . , exp(bK)G0KgT for some b ¼ (b1, . . . , bK)
T.

The estimation of b1 can be carried out with standard methods for the univariate accelerated
failure-time model including those proposed by Louis [17] and Wei and Gail [24]. However,
the challenge lies in the estimation of bk for k � 2. The result described in Section 13.3 is
useful for this purpose. Given g, any function of fGgj : j ¼ 1, . . . , kg is a mark of the
kth transition. In particular, we are interested in the linear function

Pk
j¼1 exp(bj)Ggj for

some bk ¼ (b1, . . . , bk)
T. Define its joint distribution with Tgk as Fgk(t; u;bk) ¼

PrfTgk � t;
Pk

j¼1 exp(b j)Ggj � ug, which is identifiable except for large t. Write bk ¼

(b1,. . .,bk)
T. The multistate accelerated sojourn-time model implies

F1k(t; u;�bk) ¼ F0k(u; t;bk); k ¼ 2; . . . ;K:

This key identity, along with the estimation procedure for Fgk given in Section 13.3, leads to
estimation equations for b.

13.5 CONCLUDING REMARKS

This chapter provides a review of the marked point process approach to the analysis of out-
comes subject to induced dependent censoring. The marked point process is a natural extension
of the counting process, and many classical results for counting process can be generalized.
Meanwhile, this perspective reveals identifiability of the joint distribution of mark and time
to event except for the tail region on the timescale. One-sample estimation, two-sample
testing, and regression analysis procedures on the basis of the joint distribution are discussed.

Many investigations exist in the literature for the problems under consideration here, includ-
ing those by Zhao and Tsiatis [26], Lin et al. [15], Lin [14], Zhao and Tian [25], Strawderman
[20], and Bang and Tsiatis [3,4]. However, these methods differ from our approach in
two aspects:

1. In order to address the identifiability issue, the time-restricted mark is considered in these
investigations instead of the mark itself. For example, 3-year-restricted medical cost is the cost
accumulated up to 3 years or death, whichever occurs earlier. If the maximum support of the
censoring distribution is longer than 3 years, the marginal distribution for 3-year-restricted
medical cost is identifiable. Nevertheless, such a time-restricted mark depends on the time
limit, which is typically artificial. Consequently, results on a time-restricted mark may not
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be easy to interpret, especially in the two-sample and regression problems. In contrast, our
approach in this chapter targets the mark of interest. To overcome the marginal identifiability
issue, the strategy is to consider joint modeling with time to event.

2. The aforementioned investigations in the literature motivated their approach to induced
dependent censoring by the Horvitz–Thompson method for missing data. The essence of this
method is to weight each complete case inversely by its (estimated) probability of being com-
plete, so as to eliminate the biased sampling due to missingness [16]. Indeed, censored data can
be viewed as a special type of missing data. In the one-sample problem, perspectives from the
Horvitz–Thompson approach and marked point process provide complementary insights.
Specifically, the Horvitz–Thompson approach may be used to obtain F̂TU [3]. On the other
hand, the framework of marked point process may also facilitate the marginal estimation of
a time-restricted mark. Note that the time-restricted mark is a mark associated with the event
of interest and the time limit, whichever comes first. Nevertheless, the premise of the
Horvitz–Thompson approach is that the estimated probability of being complete is readily
available. In the regression setup, this requires a censoring mechanism more restrictive than
the conditional independence censoring mechanism as considered in Section 13.4.2, as
suggested by, for example, Lin [14] and Bang and Tsiatis [4]. In this respect, exploiting the
marked point process may be advantageous.

We have approached these various problems by attempting a general solution on identifying
a common data structure. When additional data are available, more efficient estimation might
be possible. Robins et al. [19] developed general efficiency theories for estimation with missing
data by augmenting the Horvitz–Thompson estimator. Along this line, Zhao and Tsiatis [27]
and Bang and Tsiatis [3] identified the semiparametric efficiency bound and developed prac-
tical strategies for efficiency improvement when U(.) is continuously observed on [0, X ], in
one-sample problems for time-restricted quality-adjusted survival time and lifetime medical
cost. Extending these results to the estimation on the basis of the joint distribution of U and
T requires further investigation.
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C H A P T E R 14

Analysis of Dependence in
Multivariate Failure-Time Data
Li Hsu and Zoe Moodie
Biostatistics and Biomathematics Program, Public Health Sciences
Division, Fred Hutchinson Cancer Research Center, Seattle, Washington

14.1 INTRODUCTION

Multivariate failure times, or times to response, are natural outcomes in many studies when
each unit in the data is a cluster of multiple outcomes. Examples of such data include the
time to multiple infections after bone marrow transplantation in a clinical trial, the ages at
onset of some disease in a twin or family study, and the time to occurrences of multiple
events for an individual in a cohort study. In these examples, the time to infection, age at
onset, or the time to occurrence of an event is a failure time and is subject to independent
right censoring. (By “right censoring” we mean that the individual had been under observation
until a particular time and after that time we do not know what happened to that individual.)
Moreover, the time to multiple infections on the same individual or the ages at onset of multiple
individuals from the same family could be correlated with each other because they occur to the
same individual or the same family.

When researchers are primarily interested in the effects of covariates on the marginal hazard
function of an individual failure time, the dependence among these failure times is, to some
degree, a nuisance even though it needs to be considered in order to draw valid statistical infer-
ence and/or increase the efficiency of parameter estimation. However, there are situations
where dependences among correlated failure times are of main interest, too. For example, in
a family study of a particular disease, if the parent–offspring or sibling–sibling age depen-
dence at onset is greater than that between spouses, the pattern may suggest a possible
genetic contribution in addition to environment to the etiology of the disease. In this case,
the familial resemblance pattern sheds light on the disease etiology.
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This chapter is concerned with the non- and semiparametric estimation of dependences
among failure times. An important aspect of studying the dependences among multivariate
failure times is by nonparametric estimation of its joint survivor distribution, which has the dis-
tinct advantage of not requiring any distributional assumptions. It is a useful quantity not only
by itself but also for purposes such as identifying the appropriate parametric form and nonpara-
metric estimation of summary measures of dependences over a finite follow-up region. Various
approaches to the nonparametric estimation of the joint survival distribution are reviewed in
this chapter.

A perhaps more common approach to estimation of dependence is through semiparametric
modeling of the joint survival function in that the marginal hazard function is non- or semipara-
metric and the dependence is quantified by a finite number of parameters. The non- or
semi-parametric marginal hazard functions allows for flexible modeling of an often skewed
age-at-onset distribution. Because of the inclusion of an infinite-dimensional component in
the marginal hazard function, the estimation of the dependence parameters is often termed semi-
parametric as well. This chapter will review two main approaches, frailty-model-based and par-
tially specified model-based, to the semiparametric estimation of dependence parameters.

Two data examples will be used to illustrate the methods.

Example 14.1: Danish Twin Data. This example includes all twins born in Denmark
between 1870 and 1910 and all same-sex twins born between 1911 and 1930, where both
members were known to be alive at age 15 years. The data include follow-up of survival
status up until January 1, 1980. Further details are found in Hauge [21]; analyses of these data
can be found in Hougaard [24,25]. In this chapter we will use a subset of this data, selecting a
random sample of 100 pairs from the 1366 monozygotic male twins in the computerized
portion of the registry of same-sex twins born between 1911 and 1930 to illustrate the relative
performance of bivariate survival function estimators. The methods can also be applied to the
full dataset, but differences are best revealed in small to moderate-sized samples.

Example 14.2: Case–Control Family Data of Breast Cancer. This dataset includes two
case–control studies conducted between 1983 and 1990 (white women only) and between
1990 and 1992 (all races) [37]. All women who were diagnosed before age 45 years were
obtained through the Cancer Surveillance System, a member of the National Cancer
Institute–sponsored Surveillance, Epidemiology, Endpoint and End Result program.
Controls were selected through random digit dialing, and matched with cases on gender, age
at diagnosis, and county of residence. In this chapter we will use a subset of these data—
cases and controls and their mothers—to illustrate the semiparametric methods for estimating
the dependence between paired ages at onset.

The rest of the chapter is organized as follows. The next section reviews nonparametric estima-
tors of the joint survivor function mainly for the setting of bivariate survival data with a brief
discussion of extension to multivariate survival data. The leading estimators are applied to a
subset of the Danish Twin Data, as an illustrative example of their performances with real
data. In Section 14.3, a class of weighted dependence measures that employs a nonparametric
estimator of the bivariate survivor function is described. In the same section, two main
approaches for semiparametric estimation of dependence parameters are reviewed. As an
example, these procedures are applied to a case–control family study of breast cancer with a
discussion of modifications of current methods to accommodate the retrospective sampling
of the data. The chapter ends with a few final remarks.
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14.2 NONPARAMETRIC BIVARIATE SURVIVOR FUNCTION
ESTIMATION

In this section we will review various approaches to nonparametric estimation of the bivariate
survivor function. Under univariate censoring, the estimation problem is relatively straightfor-
ward and several good estimators exist [36,63,59,58]. Each of these estimators is strongly con-
sistent, weakly convergent to a Gaussian process whose covariance function can be estimated.
The estimator proposed by Tsai and Crowley has the smallest asymptotic variance of all the
path-dependent estimators, including that of Lin and Ying. However, at present there is no
fully satisfactory solution to the estimation problem for bivariate right-censored data. In
what follows, various approaches are reviewed for this situation. First, some notation are intro-
duced. Let (T1, . . . , TK ) and (C1, . . . ,CK) be K-variate correlated failure times and censoring
times, respectively. The corresponding failure and censoring survival functions are denoted by
F and G, respectively. Furthermore define observed time Xk ¼ Tk ^ Ck and disease status
dk ¼ I(Tk � Ck) for k ¼ 1, . . . ,K, where ^ is minimum and I(.) is the indicator function.
For bivariate failure times discussed here, K ¼ 2.

14.2.1 Path-Dependent Estimators

One of the earliest approaches, path-dependent estimators, express the survivor function at a
point (t1, t2) as a “path” of conditional and marginal survivor functions
P(T1 . t1, T2 . t2) ¼ P(T2 . t2jT1 . t1)P(T1 . t1). The Campbell–Földes estimator is one
of the first examples of this type of approach [6]. Campbell and Földes showed that under
certain smoothness conditions of the failure and censoring survivor functions, F andG, respect-
ively (F, G continuous such that 2log F is absolutely continuous with partial derivatives exist-
ing almost everywhere), the estimator is uniformly almost surely consistent with rate

O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n�1( log log n))

p
as n goes to infinity. Their estimator can be generalized to more than

two dimensions with uniform almost sure consistency at the same rate. However, the estimator
is not guaranteed to be monotonic, and its finite sample properties can vary depending on the
selected path. It is also worth noting that interchanging the role of T1 and T2 results in a differ-
ent estimator.

In general, the properties of estimators in this class are path-dependent. The estimators often
have poor efficiency properties and make negative point mass assignments in the presence of
censored observations.

14.2.2 Inverse Censoring Probability Weighted Estimators

Inverse censoring probability weighted estimators make direct use of estimates of the censoring
probabilities by expressing the survivor function as

F(t1, t2) ¼ F1(t1)þ F2(t2)� 1þ
ð t1
0

ðt2
0
fG(u�1 , u�2 )g

�1Huc(du1, du2)

where Huc(du1, du2) ¼ P(X1 [ ½u1, u1 þ du1),X2 [ ½u2, u2 þ du2), d1 ¼ 1, d2 ¼ 1) and
G(u1, u2) ¼ P(X1 � u1,X2 � u2).

Since the Kaplan–Meier estimator for univariate data can be cast as an inverse probability
weighted estimator, it was hoped that an extension of these methods might yield a good
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bivariate estimator. One of the earliest estimators in this class [4] is based on an adaptation of
the Campbell–Földes estimator [6]; Burke imposed monotonicity while achieving the same
rate of consistency.

His estimator has poor efficiency but is uniformly strongly consistent, computationally
simple, and a monotonic estimator for F. Burke proposed that the survivor function be calcu-
lated from the marginal and joint distribution functions, F̂(t1; t2) ¼ 1� F̂(t1;1)� F̂(t2;1) þ
F̂(t1; t2); however, the use of marginal estimators over the whole plane is problematic given the
limited range of the support of the data.

14.2.2.1 Plug-In Estimators These explicit estimators express F as a function of the
marginal survivor function, F1 and F2, and the bivariate (double failure) hazard function.
The Dabrowska [9] and Prentice–Cai [49] estimators are the two most commonly cited
plug-in estimators. Both estimators reduce to the usual empirical estimator in the absence of
censoring and have similar asymptotic properties—strong consistency and asymptotic
Gaussian distributions—and achieve nonparametric efficiency for the special case of
complete independence of all failure and censoring times and continuity of the survivor
function. Under more general conditions, however, the asymptotic efficiency is less than full
[16]. Another drawback is the estimators’ lack of monotonicity due to the incorporation of
negative point mass. Pruitt studied the negative mass assignments of the Dabrowska
estimator and found that although the amount of negative mass at each point decreases as n
!1, the number of points assigned negative mass actually increases at rate n2 [52]. Also
troubling, is the observation that the total amount of negative mass assigned does not
decrease as n! 1, despite the estimator’s strong consistency. The poor correspondence
between the Kaplan–Meier marginal estimators and the hazard rate estimator is believed to
be in part responsible for the negative properties of the Dabrowska and Prentice–Cai
estimators [51]. The estimators are nevertheless appealing. They are easy to calculate,
readily generalize to more than two dimensions, and have good performance in moderate-
sized samples (n � 50) and under heavy censoring.

14.2.3 NPMLE-Type Estimators

In the univariate setting, the nonparametric MLE procedure yields the successful Kaplan–
Meier estimator; however, difficulties are encountered in higher dimensions despite convexity
of the likelihood function [5]. Censored observations often correspond to flat spots that prevent
the definition of a unique NPMLE. Numerous attempts have been made to address this
problem, primarily by reducing the number of parameters to be estimated. For example,
smoothness assumptions can be imposed followed by kernel estimation [59,52,1].
Alternatively, data reduction can be done by coarsening or grouping the data [61,39].
NPMLE-type estimators are generally monotonic nonincreasing, not assigning any negative
mass. Also, they do not use the Kaplan–Meier estimator for the marginal survivor functions
and therefore may improve on this estimator when the failure times are correlated and censoring
is heavy.

The nonparametric likelihood can be maximized by assigning mass at points of uncensored
observations, at points of intersection of singly censored observations with later uncensored
observations, and at points of intersections of doubly censored observations with either uncen-
sored observations or singly censored observations. The NPMLE is unique for rare cases where
the latter includes only points and not regions. The procedure does not specify how to opti-
mally allocate mass along the half-lines or upper right quadrants resulting from the intersection
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of censored observations. In addition to the nonuniqueness issue, NPMLE procedures are
computationally challenging, often involving high-dimensional iterative procedures. Mass
assignments at grid points in the failure-time region are often mutually highly dependent.

Van der Laan’s approach was to coarsen the data so that the mass redistribution along half-
lines is specified by the likelihood function for the “reduced” or coarsened data. Singly cen-
sored observations (represented by half-lines) are interval-censored so that they intersect
with later uncensored observations. The mass corresponding to each singly censored obser-
vation (1/n) can then be redistributed to later uncensored observations in the strip so that
mass is placed at points rather than along half-lines. The censoring times are also discretized
so that they lie on the same grid as the interval-censored failure times to recover orthogonality
of the likelihood. Censoring times must be known or simulated if unknown. The EM algorithm
[60,10] is iterated to find a solution to the self-consistency equation [11] for the reduced data:
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where t11, t12, . . . , t1I denote the uncensored T1 observations in a sample of size n and
t21, t22, . . . , t2J , the uncensored T2 observations. The total number of observations at (t1i, t2j)
is denoted ne1e2ij , where ek ¼ 1 indicates failure and ek ¼ 0 indicates censoring in the kth com-

ponent; T1 strip membership of an observation at t1i is denoted by S1i, where S1i ¼ S1l if t1i and
t1l fall in the same strip. Similarly, T2 strip membership is denoted by S2j. Prentice et al. [51]
showed that the estimator can also be obtained by Newton–Raphson iteration, which is simpler
and noniterative for certain special cases. They also suggest likelihood-based variance and
covariance estimators in lieu of bootstrap variance estimates.

Van der Laan’s repaired NPMLE has many nice asymptotic properties: strongly consistent
and convergent at

ffiffiffi
n

p
rate to a Gaussian process. In addition, the estimator is nonparametric

efficient if the bandwidth goes to zero at a sufficiently slow rate (,n21/18) as the sample
size increases [61,62]. Its practical performance, however, is less desirable. It is somewhat sen-
sitive to the choice of bandwidth, and its performance is typically not as good as the simpler
Dabrowska and Prentice–Cai estimators in moderate-sized samples [51]. It also suffers from
nonuniqueness when there are interval censored observations that do not intersect with later
uncensored observations, and the mass must be placed at some arbitrary later point (e.g., on
the boundary of the truncated risk region).

Moodie and Prentice [39] proposed an adjustment to van der Laan’s repaired NPMLE that
improves the estimator’s small-sample behavior, reduces sensitivity to bandwidth choice, and
has smaller variance estimates when the bandwidth is large. The estimator is termed reassigned
NPMLE. They argue that the procedure is closer to the conventional NPML procedure than the
repaired NPMLE in that mass is assigned not only in the support of uncensored observations
but also in the support of the singly censored observations along half-lines. For example, the
conventional NPMLE procedure places mass along the half-line implied by a singly censored
observation but does not specify the exact coordinate if there is no later uncensored observation
along the half-line. The repaired NPMLE places the mass at the next (original or created)
uncensored observation in the strip; if the bandwidth is large, this may result in mass placement
far from the half-line along which the underlying failure time occurred. For the reassigned
NPMLE, information is borrowed in the same manner as the repaired NPMLE but the mass
is retained along the half-line. The different mass placements of the two procedures for calcu-
lating repaired and reassigned NPMLEs are illustrated in Figure 14.1.
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For fixed n, van der Laan’s repaired NPMLE and the reassigned NPMLE are equivalent in
the limit as bandwidth goes to zero, the area of the grid regions decreases and the amount of
mass assigned to each region is the same for both estimators. Hence, if h! 0 as n!1, both
estimators have the same asymptotic properties.

The reassigned NPMLE and van der Laan’s repaired NPMLE can be generalized to higher
dimensions as both can be expressed using the representation described in Prentice et al. [51].
The representation expresses the bivariate survivor function as a mapping of the hazard func-
tion for truncated failure-time variables and involves bivariate Peano series [15]. Extension to
multivariate survival times follows in a straightforward manner with the definition of hyperrec-
tangles for the partition grid elements and a multivariate hazard function over the hyper-
rectangles [51].

14.2.4 Data Application to Danish Twin Data

For illustration, the two plug-in estimators [9,49] and the two NPMLE-type estimators (van der
Laan’s repaired NPMLE [61] and Moodie and Prentice’s reassigned NPMLE [39]) were
applied to a subset of the Danish twin data with age at death as the outcome. Example 14.1
contains further details about the data. A random sample of 100 monozygotic male twins
was selected, conditional on survival to 15 years of age to compare the performance of the
four estimators in a moderate-sized sample. No discernible differences could be seen in the
full dataset of 1366 twins (recall the estimators are all consistent). Censoring times were
known for all twins in the study; the censoring pattern was typical of end-of-study censoring.
The data were truncated at 84.72 years (30944 days, denoted by the solid lines in Fig. 14.2)
to provide an appropriate risk region for the NPMLE-type estimators that require
F(t1� , t2� )G(t1, t2) . 0. Few points (4%) fell outside the truncated risk region.

Figure 14.1 Van der Laan’s repaired NPMLE (a) and Moodie and Prentice’s reassigned
NPMLE (b) approaches to the mass redistribution of singly censored observations (denoted
by arrows). Crosses denote uncensored observations, circles denote the location of mass redis-
tribution from singly censored observations, and dashed lines define the partition strips.

ANALYSIS OF DEPENDENCE IN MULTIVARIATE FAILURE-TIME DATA226



Plots of the bivariate survivor function estimators for fixed failure times of one coordinate
are shown in Figure 14.3. The Dabrowska estimator is denoted by F̂d, the Prentice–Cai esti-
mator by F̂pc, the reassigned estimator by F̂re, and van der Laan’s estimator by F̂vdl. The
two plug-in estimators were indistinguishable. The NPMLE-type estimators were very
similar, although some minor differences could be noted. The same bandwidth (h ¼ 2500)
was used for both estimators. Other bandwidths (h ¼ 1000, 1500, 2000) were considered
but did not differ markedly from h ¼ 2500. The joint survivor function estimates were slightly
larger toward the tail of the distribution for the smaller bandwidth, and variance estimates were
slightly smaller at some points. For the most part, all four estimators gave similar results, with
the exception of the functions at 80 years of age, where estimated survival was higher for the
plug-in estimators. By convention, the NPMLE-type estimators place the singly censored mass
at the boundary of the risk region when the mass cannot be redistributed to later uncensored

Figure 14.2 Danish twin study: monozygotic males (n ¼ 100). The truncated risk region is
delimited by the solid lines; dashed lines indicate the coarsening partition for the NPMLE-type
estimators. Crosses denote uncensored observations, horizontal arrows denote T1 singly
censored observations, vertical arrows denote T2 singly censored observations, and diagonal
arrows denote doubly censored observations.
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observations. The plug-in estimators also encounter difficulties at these points; their nonmono-
tonicity is most pronounced here. The marginal survivor functions of the NPMLE-type estima-
tors were similar to the Kaplan–Meier estimators used by the plug-in estimators, and virtually
identical to each other.

Bootstrap variances were obtained for the joint and marginal survivor function estimators
(Tables 14.1 and 14.2, respectively). The marginal survivor function estimators from the
plug-in estimators are Kaplan–Meier estimators, which are denoted by F̂km in Table 14.2.
To ensure an appropriate risk region for the NPMLE-type estimators, the point (t1, t2) ¼
(84.72, 84.72) was sampled with probability 1 for each of the 500 bootstrap samples.
Greenwood-like variance estimates (denoted by “Grn” in the table) for the NPMLE-type esti-
mators are also provided; they are slightly smaller than the bootstrap variances. Larger sample
sizes may be needed for good agreement between the bootstrap and Greenwood-like estimates
(n � 250) [51].

Figure 14.3 F̂(t1, t2) at t1 ¼ 0, 60, 80 as a function of t2 (a) and at t2 ¼ 0, 60, 80 as a function
of t1 (b) for the plug-in estimators—Dabrowska estimator F̂d and the Prentice–Cai estimator
F̂pc; NPMLE-type estimators—reassigned estimator F̂re and van der Laan’s estimator F̂vdl.

Table 14.1 Bootstrap Variance Estimates (31023) for Select Ages of
Prentice–Cai Estimator F̂pc, Dabrowska Estimator F̂d, Moodie and Prentice
reassigned NPMLE F̂re, van der Laan Repaired NPMLE F̂vdl for Danish Twin
Data, and Greenwood-Like Variance Estimates (Grn)

(t1, t2) (40,40) (40,60) (40,80) (60,40) (60,60) (60,80)

V̂(F̂pc) 1.062 1.977 5.901 1.732 2.340 5.375
V̂(F̂d) 1.062 1.978 5.960 1.732 2.332 5.516
V̂(F̂re) 1.062 2.022 7.062 1.749 2.408 6.345
V̂(F̂vdl) 1.162 2.022 7.457 1.866 2.408 6.716
Grn 1.131 1.859 6.599 1.946 2.464 6.151
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In short, all four of the estimators exhibited fairly similar performances. The plug-in esti-
mators suffer from nonmonotonicity but have slightly smaller variance estimates than do the
NPMLE-type estimators. There were no appreciable differences between the two NPMLE-
type estimators in this dataset. The reassigned NPMLE did not considerably outperform van
der Laan’s repaired NPMLE for any of the bandwidths studied. This is likely due to the con-
figuration of the singly censored and uncensored failure times. Many of the singly censored
observations merely placed mass at the boundary given the absence of later uncensored obser-
vations in the strips. Therefore the choice of bandwidth did not have much effect on the mass
redistribution. Computation time is not an issue for any of the estimators; for the twin data, each
were calculated in less than a second in R. Computation is simpler and faster for the plug-in
estimators in that a bandwidth needs not be chosen, but the NPMLE estimators have the poten-
tial of direct calculation of Greenwood-like variance estimates.

14.3 NON- AND SEMIPARAMETRIC ESTIMATION OF DEPENDENCE
MEASURES

Various nonparametric dependence measures that require no assumption of joint survival dis-
tribution have been proposed in quantifying the degree of dependence between paired failure
times. They can be used in characterizing the changes in the strength of dependence over the
support for T1 and T2 in the cohort setting. Semiparametric modeling, in that the dependence is
quantified by one or a few parameters while the marginal hazard function is non- or semipara-
metric, provides a flexible approach to estimation of dependence parameters under a variety of
settings. In what follows, we will describe both approaches to dependence estimation.

14.3.1 Nonparametric Dependence Estimation

Global dependence measures assess the overall strength of dependence of failure times over
(0,1). Commonly used ones, such as the Kendall’s t [31] and Spearman’s r [57], are typically
rank-based because the failure-time distribution is skewed and the dependence is usually non-
linear. The generalization of the Kendall’s t to the censored survival data was studied by Brown
et al. [3] and later by Oakes [45]. For non-rank-based measures such as the Pearson’s corre-
lation coefficient, the failure time can be first transformed by, for example, the cumulative
hazard function. Under the Cox proportional hazards model, such transformation would
yield unit exponential distributed random variables [29]. The correlation is then assessed for
the transformed variables. The text by Hougaard [24] and references cited therein gave a com-
prehensive review of various global measures and compared them in real datasets, including the
Danish twin data. While the global measures are intuitive to interpret and straightforward to
calculate, they are not suitable for correlated failure times that have restricted support and
are subject to right censoring.

Local dependence measures that take a snapshot of the dependence at a single timepoint can
capture the varying degree of strength over time. One particular useful such measure is the
cross-ratio function [7,46], which is defined as

C(t1, t2) ¼
F(11)(t1, t2)=F(01)(t1, t2)
F(10)(t1, t2)=F(t1, t2)

,
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where F(10)(t1, t2),F(01)(t1, t2), and F(11)(t1, t2) are partial derivatives with respect to the first
variate, the second variate, and both, respectively. It is the ratio of conditional hazard rates
for the first subject of the pair at time t1 given the second subject failing at time t2 and
given the second subject disease-free until time t2. When the cross-ratio function is expressible
as a function of F(t1, t2), the joint survival function F(t1, t2) takes the Archimedean model with
the functional form determined implicitly [46]. One can therefore directly focus on C(t1, t2), or
any function of C(t1, t2), instead of F(t1, t2) when assessing the strength of the dependence.
For example, the conditional version of the commonly used Kendall’s t [46] for con-
cordance measure given the componentwise minima can be equivalently written as
fC(t1, t2)� 1g=fC(t1, t2)þ 1g.

Fan et al. [14] proposed a class of weighted dependence measures based on C(t1, t2), which
can be written as

D(B1,B2) ¼
Ð
B1

Ð
B2

ffC(S1, S2g)w(ds1, ds2)Ð
B1

Ð
B2

w(ds1, ds2)
,

where f is a continuous function, w is a weight function, and B1 and B2 are the intervals for the
region of the bivariate failure times over which the dependence is assessed. The weight func-
tion can take the function of the joint survivor function and its partial differentiations. The non-
parametric estimators of bivariate survival function described in Section 14.2 can be used to
estimate the weight functions w(t1, t2) and C(t1, t2). The caveat, as pointed out by Fan et al.
[14], is that ffC(S1, S2 )g w(ds1, ds2) and w(ds1, ds2) should not have an unintegrated differ-
ential function in the denominator because such functions are nonzero only at the uncensored
observations. In this situation, D̂(B1, B2) with plug-in nonparametric estimators F̂(t1, t2) is not
consistent with the true dependence measure.

There is a wide choice in the functional form f of C(t1, t2) as well as the weight function
w(t1, t2). For example, one can choose the weight function w(t1, t2) to give greater weight to
early or late dependence measured by ffC(t1, t2)g. One also need not necessarily use only
the cross-ratio function C(t1, t2) for measuring the association. Yan and Fine [66] proposed
a local odds ratio (LOR)

LOR(t1, t2) ¼
F(t1, t2)f1� F(t1)� F(t2)� F(t1, t2)g
fF(t1)� F(t1, t2)gfF(t2)� F(t1, t2)g

,

as a time-varying dependence measure. A class of weighted dependence measure can be con-
structed using LOR(t1, t2) in the same fashion as in D(B1, B2). Large-sample properties and
caveats should follow similarly to D(B1, B2).

The weighted measure D(B1, B2) can be extended to include covariates by transforming the
failure times T1 and T2 with the cumulative hazard function L(.) and then calculate D(B1,B2)
using the transformed failure times [13]. The estimators L̂(.) can be obtained through the gen-
eralized estimating equations approach, which treats the dependency as nuisance and only
adjusts it in the variance estimators [65].

Generally speaking, the nonparametric dependence estimation is appealing because the esti-
mation procedure is noniterative and is distribution-free. However, it is rather restrictive in
dealing with complex sampling situations such as the case–control design in the family
study of breast cancer of Example 14.2. In this situation, it is not even clear whether a nonpara-
metric bivariate survival function estimator is identifiable from case–control family data.
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14.3.2 Semiparametric Dependence Estimation

In this section, we focus on the broad class of the copula model for the multivariate survival
distribution. The copula model includes two elements: the marginal hazard function for each
of the failure times in the cluster and the correlation function of these failure times. It is
given by

F(t1, . . . , tK ) ; Pr(T1 . t1, . . . , TK . tK )

¼ gfF(t1),F(t2), . . . ,F(tK ); ug,

where g(.) is a fixed function, F(tk) is the marginal survival function for the kth failure time in a
cluster, and u is a vector of a finite-dimensional parameter that governs the dependence among
F(t1),F(t2), . . . , and F(tK ). When the marginal distributions F(tK ), k ¼ 1, . . . ,K, include an
unspecified function such as the unspecified baseline hazard function in the Cox proportional
hazards model, the resulting joint survivor distribution is semiparametric. The estimation of
dependence parameters is termed semiparametric, even though the dependence parameters
themselves are of only finite dimension. This term is somewhat misleading and used here
simply for conforming to the conventional usage in the literature. The copula model is a
very general model and encompasses many commonly used multivariate survival models,
such as the Clayton model [7], the positive stable model [22,23], and the more complicated
survival model that accounts for multiple levels of clustering [2]. Further details about the
copula model can be found in the books by Nelson [43] and Hougaard [24].

There are two main approaches to semiparametric modeling: the frailty model and the par-
tially specified model. Before describing these approaches, we will first introduce some nota-
tion. Consider n independent clusters. Let Tik and Cik be the failure time and censoring time,
respectively, for the kth member in the ith cluster, k ¼ 1, . . . ,Ki, i ¼ 1, . . . , n. We assume
that Ki is relatively small compared to n, and that K ¼ maxi Ki is bounded. For each individual,
one can observe only Xik ¼ Tik ^ Cik and dik ¼ I(tik � Cik). Let Zik be a p � 1 vector of
bounded covariates. For simplicity, we assume that each family has the same set of relatives
K. The presence or absence of any particular type of relative is assumed to be independent
of the observed data. The absence of these members can be denoted by setting Cik ¼ 0.
Naturally, such members will not contribute to any of the likelihoods. In the counting
process notation, Yik(t) ¼ I(Xik � t) and Nik(t) ¼ dikI(Xik � t), t [ ½0, t�, where t is the
maximum follow-up time.

14.3.2.1 Frailty-Model-Based Approach A frailty model, or a random-effects model
for failure time, extends the univariate hazard function by allowing unobserved random
variables or frailties in addition to the fixed effects of covariates. The frailties are used to
describe part of the risk shared by the individuals within the cluster and reflect some
unmeasured influences on the disease risk. In family studies, the frailties can be either
common genetic material or a shared environment. The parameters in the frailty distribution
therefore measure the strength of dependences among multivariate failure times.

A simple shared frailty model extends the Cox proportional hazards model by having frailty
v acting multiplicatively on the hazard function

lc(t; Zik ,vi) ¼ lc0(t) expf(bc)TZikgvi, (14:2)
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where l0
c (t) is an unspecified conditional baseline hazard function, Zik is a vector of fixed cov-

ariates, bc is the corresponding regression coefficient, and vi follows a frailty distribution hu (.)
with dependence parameter u. The superscript T refers to transpose. Conditional on vi and all
Zik terms, the failure times Ti1, Ti2, . . . , Tik are independent of each other.

Clayton and Cuzick [8] were perhaps the first ones to consider the joint estimation of par-
ameters in the hazard function and in the frailty distribution by using order statistics and
imputed frailties. In the discussion that accompanied the Clayton–Cuzick paper, Richard
Gill proposed a nonparametric maximum-likelihood method by using the expectation–
maximization (EM) algorithm. In that the latent frailties are estimated given the current par-
ameter estimates in the E-step and the M-step updates the parameter estimates by maximizing
the likelihood with latent frailties substituted with estimated ones obtained in the E-step. The
expectation and maximization steps are iterated until all parameter estimates converge. It was
not, however, until 1992 that Nielsen et al. [44] and Klein [32] formalized the approach for the
semiparametric gamma frailty model. Murphy [41,42] provided consistency and asymptotic
normality for this model without covariates. Parner [47] further extended the asymptotic
results to a more general correlated gamma frailty model with covariates. He also presented
a consistent estimator of the limiting covariance matrix of the estimator, based on inverting
a discrete observed information matrix. Since the dimension of the observed information
matrix is the number of the regression coefficients plus the number of observed failure
times, inverting the matrix is practically infeasible for a large dataset with many distinct
failure times. He proposed another covariance estimator based on solving a discrete version
of a second-order Sturm–Liouville equation. This covariance estimator requires substantially
less computational effort, but is still difficult to implement.

Another approach to estimating the parameter is by using the stochastic intensity process for
the counting process Nik(t) conditional on the preceding observed information for all members
within the ith cluster up to time t [53]. The observed history for all members up to time t
denoted by filtration Ft. The Ft intensity of Nik(t) can be obtained by replacing vi with its con-
ditional expectation with respect to Ft:

lFik (t) ¼ Yik(t)l
c
0(t) expf(bc)TZikgE(vijF t)

A natural estimator of Lc
0(t) is a Nelson–Aalen-type estimator, where the jump size at time t

is the ratio of the number of failures at time t and the summation of exp f(bc)TZikE(vijF t)g
over at-risk individuals at time t. The estimators b̂c and û can be obtained by maximizing
the likelihood function with plug-in L̂0

c (t) estimator [20]. Gorfine et al. [20] showed that the
parameter estimates were consistent and asymptotically normal with a consistent covariance
estimator that could be easily computed. Since a plug-in estimator L̂0

c(t) is used for parameter
estimation, some efficiency loss is expected. However, the simulation study [20] showed that
there was little efficiency loss compared to the nonparametric MLE. The correlations of the
estimates between the two methods for 1000 simulated datasets were �0.95 for the situations
considered.

14.3.2.2 Partially Specified Model A partially specified model assumes only the
selected features of the joint distribution. The selected features are typically the first few
moments of the data. In survival analysis, this could simply be the marginal survival
functions and/or pairwise dependences of failure times. For example, one can use the
widely used Cox proportional hazards model to postulate the effects of covariates on the
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hazard function, which can be written as

lm(t;Zik) ¼ lm0 (t) expf(bm)TZikg, (14:3)

where l0
m (t) is an unspecified marginal hazard function and bm is a vector of regression

coefficients. Note that the superscript “m” refers to marginal to distinguish from the
conditional hazard function (14.2) given the latent frailty v, where the superscript “c” refers
to conditional. The interpretation for bm and bc are different in that bm measures the
population-averaged effects of the covariates, whereas bc measures the cluster-specific
effects of the covariates. Wei et al. [65] proposed an approach for estimating L0

m (t) and bm

assuming the independence among the correlated failure times and incorporated the
correlation in the covariance estimators of the parameter estimates by a “sandwich” type of
estimator. In this approach, the parameter estimates are solution to the equations

Xn
i¼1

XK
k¼1

ðt
0
ZT
ik½Nik(dt)� Yik(t) expf(bm)TZikgL̂0(dt)� ¼ 0,

where L̂0(dt) ¼
P

i

P
k Nik(dt)=½

P
i

P
k Yik(t) expf(bm)TZikg�. An intuitive view of the left

side of this equation is that it is the weighted difference between the observed events and
the expected events under the assumed Cox proportional hazards model with the weight
being the individual covariate vector.

Prentice and Hsu [50] generalized this approach in a similar manner for estimating pairwise
dependencies, in that the estimating function U(u) takes the differences between the empirical
pairwise conditional covariance rate or the A function defined in Prentice and Cai [49] and the
corresponding conditional covariance rate function under an assumed copula model. The A
function is an analog of the marginal hazard rate function of the univariate failure time in
the bivariate failure times for measuring the dependence function. It is a rate of concurrence
of events for both members of the pair conditional on the pair being at risk. Similar to the pro-
cedure due to Wei et al. [65], the dependence parameter estimators can be obtained by setting
the estimating function equal to 0, U(u) ¼ 0.

Another approach to estimating dependence parameters in a copula model is to construct a
likelihood for u assuming the marginal survival functions to be known

L1 ¼
Yn
i¼1

g(di1di2 ���diK )fF(Xi1),F(Xi2), . . . ,F(XiK); ug, (14:4)

where g(di1di2...diK ) takes the corresponding partial derivatives of g with respect to the com-
ponents for which dik ¼ 1, k ¼ 1, . . . ,K. Since F(Xik) involves unknown cumulative marginal
hazard functionLm

0 (Xik) and b, the generalized estimating equation estimators proposed byWei
et al. [65] may be used to substitute these unknown parameters [55].

The cluster f1, . . . , Kg can be further decomposed into subsets within which the members
share the same dependence. For example, in family studies, one may decompose a family into
subsets of spouse, parent–offspring, and sibling–sibling to examine the patterns of familial
resemblance in age at onset. It is worth noting that the dependences between subsets need
not be different. The decomposition of a large cluster into smaller units can be merely for
the simplicity of calculations and for the robustness against the misspecification of a higher-
dimensional joint distribution. One may construct a pseudolikelihood function by taking the
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product of all subset contributions, each of which takes the form of (14.4). Glidden [17] estab-
lished a large-sample theory for such maximum pseudolikelihood estimators.

14.3.2.3 Frailty versus Partly Specified Models. The two types of model differ in
several aspects:

1. The interpretation of parameters in the partly specified model is population-averaged,
whereas the parameter interpretation in the frailty model is cluster-specific. In family
studies, the marginal hazard function lm(t; Z) is the averaged hazard of developing a
disease for an individual with covariates Z. In the frailty model, the conditional
hazard function lc(t; Z, v) is the hazard function for an individual with covariates Z
given the family-specific frailty v.

2. The partly specified model-based approach is more robust to model misspecification
because the higher-order dependences are often left unspecified. On the other hand,
the frailty model assumes a distribution for the frailties and can be restrictive for the
higher-order dependences. Our and others’ experiences [19] are that the parameter esti-
mates are actually quite robust to the misspecification of the frailty distribution.

3. While the partly specified approach is more robust to model specification, it may suffer
some efficiency loss in parameter estimates compared to the frailty approach. The extent
of loss likely depends on the strength of the dependences and the cluster sizes: the stron-
ger the strength and/or the larger the size, the greater the loss.

4. The frailty model provides a natural framework for estimating the individualized disease
risk, as in the counseling situation. The frailty for a particular family can be calculated
from the posterior distribution conditional on the data from the family. The predicted
disease risk incorporates the familial heterogeneity through the latent frailty, as the
failure time of a member is completely independent of that of others when conditional
on the frailty and covariates. Under the partly specified model, one may similarly obtain
the family-specific disease risk by calculating the survival function conditional on the
observed failure times and disease status of all other members in the same family
under a copula model. However, the complexity of fitting the joint distribution, including
all the partial derivatives, in calculating the conditional distribution increases exponen-
tially with the number of the family size, posing significant feasibility issues in
implementation.

Despite these differences, one can obtain the marginal survival function estimates by integrat-
ing

Ð1
0 lc(t;Zik,vi)hu(vi)dvi. The marginal survival function after integrating out the frailty

depends on the dependence parameters and may not be desirable if the main interest is in
the marginal hazard function. In this situation, in order to take advantage of the frailty-
model-based approach, one can derive the frailty model such that the marginalized hazard
function, after integrating out the latent frailty, follows a model that is free of dependence
parameters. Glidden and Self [18] and Pipper and Martinussen [48] developed statistical
methods for linking the marginal hazard function to the frailty model. For example, under a
gamma frailty model, the conditional hazard function

lcik(t; Zik ,vi) ¼ lm0 (t) expf(bm)TZik þ u expf(bm)TZikgLm
0 (t � )gvi (14:5)

yields a marginalized hazard function that follows the Cox proportional hazards model (14.3).
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In this formulation, an added bonus is that one can obtain both the population-averaged lm(t)
and the cluster-specific hazard function lc(t) simultaneously.

14.3.3 An Application to a Case–Control Family Study of Breast Cancer

In this section, we illustrate the semiparametric dependence estimation methods by analyzing a
subset of a case–control family study of early-onset breast cancer (see Example 14.2 for
description of the study). We will first describe the aspects that are specific to retrospective cor-
related failure times and the modifications of current methods for accommodating such a
design.

14.3.3.1 Methods for Retrospective Correlated Failure Times. There are two
assumptions that may be unique to retrospective correlated failure times arising from family
studies: (1) the baseline hazard function is common for all family members and (2) family
members are interchangeable with respect to dependences. The interchangeability
assumption could be relaxed by specifying relation-specific frailty such as mother–daughter,
sister–sister, or grandmother–granddaughter. However, the common baseline hazard
function for all family members cannot be relaxed as it is the basis for using the
information from the relatives of cases and controls to estimate the baseline hazard function.
Otherwise, the baseline hazard function would be confounded with the dependence
parameters. This is different from the prospective correlated data, in which each individual
in a cluster could have a different baseline hazard function.

Let the correlated age-at-onset data from the ith (i ¼ 1, . . . , n) family be denoted by
Xi ¼ (Xi1, . . . ,XiK), dk ¼ (di1, . . . , diK), and Zi ¼ (Zi1, . . . , ZiK ) for the relatives, and
fXi0, di0, Zi0g for the case or control of the ith family. The likelihood function for case–
control family data can be written as follows:

L2 ¼
Yn
i¼1

f (Xi, di,Zi, Zi0 j Xi0, di0): (14:6)

The extension of the frailty-based approach to accommodate this design is straightforward
because, conditional on the frailty and all other covariates, the failure times of the relatives are
independent among themselves as well as from that of cases and controls. The parameter esti-
mates fb̂c, L̂c

0(t)g can simply be obtained from the relatives by using the standard software
routine for the Cox proportional hazards model with an offset term of log (frailty). Since
the frailties are unknown for all families, they are estimated by the posterior expectations con-
ditional on the observed data, for which the retrospective case–control design is naturally
accommodated. Dependence parameter estimates û are updated by maximizing the profile like-

lihood function L in (14.6) with plug-in estimates for b̂c and L̂c
0(t). This procedure is iterated

among all of these steps until all estimators b̂c, L̂0 (t), and û converge. For further details of this
method, readers are referred to Hsu et al. [27] and Hsu and Gorfine [28].

To use the partially specified model-based approach for case–control family data, the key is
to obtain a proper estimate of the baseline hazard function in the presence of oversampling
cases. Shih and Chatterjee [54] proposed a Nelson–Aalen-type estimator for the baseline
hazard function

bLm
0 (t) ¼

ðt
0

Pn
i¼1

PK
k¼1 Nik(ds)Pn

i¼1

PK
k¼1 Yik(s)rik(b, s)hikfFi0(Xi0), di0,Fik(s)g

(14:7)

ANALYSIS OF DEPENDENCE IN MULTIVARIATE FAILURE-TIME DATA236



where rik(b, s) ¼ exp½(bm)TZik � Lm
0 (s� ) exp {(bm)TZikg�, and

hik(u1, di0, u2) ¼
g(11)(u1, u2)
g(10)(u1, u2)

� �di0 g(01)(u1, u2)
g(u1, u2)

� �1�di0

under an assumed copula function g. Note that the function hik(.) involves the marginal survival
function Fi0(Xi0) at the case or control observational time Xi0. It requires looking ahead of the
baseline hazard function at Xi0 if the observational time Xi0 for the case or control is greater than

time s. An iterative procedure is thus needed to obtain the estimate L̂m
0 (t). Once an estimate for

the cumulative baseline hazard function is obtained, a likelihood function can be constructed

for b and u by plugging in L̂m
0 (t). Standard maximum-likelihood theory and numerical routines

can be applied to the likelihood function, yielding the maximum-likelihood estimators b̂ and û.

It is worth noting that L̂m
0 (t) is a function of both the joint distribution g(.) and the dependence

parameter u, which is quite different from the generalized estimating equation approach [65] for
prospective correlated failure-time data. In that sense, the partially specified approach is no
different from the frailty approach as both need to make an assumption of a joint distribution
in order to identify Lm

0 (t). The difference between the two approaches lies in that the partially
specified approach only needs to assume pairwise joint distributions, whereas the frailty
approach would need to specify the full joint distribution of all family members.

14.3.3.2 Generalization to Multivariate Dependencies In family studies, family
members have different strength of dependences in ages at onset because they share varying
degrees of genes and environment. Such patterns have been useful for providing first clues
to the etiology of the disease. In what follows we will discuss possible generalizations for
the frailty and the partially specified approaches, respectively.

The frailty-model-based approach provides a natural framework to dissect genetic and
environmental contributions to the observed aggregation of disease occurrence in families.
For example, Li and Thompson [33] and Siegmund and McKnight [56] introduced an extended
Cox proportional hazards model that included two random-effects components: individual-
specific and family-specific. For individual-specific random effects, they assume that a
single major Mendelian diallelic locus governs the disease susceptibility, whereas the
family-specific random effect is used to accommodate risk heterogeneity over families that
may be due to shared environmental risk factors or disease loci or mutations other than the
major locus considered in the individual-specific random effects. This modeling makes it poss-
ible, at least in theory, to separate the major gene effect from the shared family-specific random
effect and thus provides important evidence for future gene discovery efforts through the
linkage analysis [34].

There are also other approaches for generalizing to include multivariate dependences
among family members. Yashin et al. [67] and Wienke et al. [64] studied a correlated
gamma frailty model. Under this model, individual family members can carry different, poss-
ibly dependent, random effects. Bandeen-Roche and Liang [2] proposed a recursive nesting of
univariate frailty-type distribution through which Archimedean copula forms were determined
for all bivariate margins. Unfortunately, because the joint distribution is fully specified, some
of these approaches may impose constraints on the dependences. For example, under
Bandeen-Roche and Liang’s nested model, between-subcluster associations are not allowed
to exceed the associations within subclusters.
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The partially specified model, on the other hand, is flexible in assessing the aggregation
pattern because it only needs to specify the lower-dimensional joint distribution among a
subset of family members. For example, in case–control family data, family members could
be grouped by their relations (e.g., father, mother, sibling) to the case or control, or simply
by their individual relation to the case or control. For each subset, one could assume a joint
distribution that involves only the relatives within each subset. The dependence parameters
can be different for different relationships to account for varying strength of dependences
among family members. Furthermore, even the joint distributions can differ as long as the mar-
ginal survival function of the case or control remains the same regardless of which subset that
individual is in. Obviously such simplification gains robustness against the misspecification of
a higher-dimensional joint distribution, albeit with the price of efficiency loss in some situ-
ations. Moreover, it lacks a proper full joint distribution that permits arbitrary specification
of distributions for the subclusters. One possible remedy for this problem is to use a multi-
variate normal transformation model [35]. In this model, a failure time T is transformed margin-
ally to a standard normal variateW ¼ F�1f1� e�L(T)g, whereF is the cumulative distribution
function for N(0, 1). Then the transformed (W1, . . . ,WK) for a family are assumed to follow a
K-variate normal distribution N(0, S), where the off-diagonal elements of S measure the cor-
relations of family members. The correlation structure may be modeled by either following a
genetic model [26] or setting the correlations same for all those having the same relationship.
The most general form of S is to let each paired relatives have a different correlation coefficient,
leaving S completely arbitrary.

Other than modeling different dependences among family members, efforts have also been
made to generalize the joint survival distribution to accommodate the often complex depen-
dence over time. These include, but are not limited to, the power variance function [24], piece-
wise constant cross-ratio function [30,42], and compound Poisson distribution [38].

In principle, estimation procedures for the dependence parameters in these distributions
could largely follow the procedures described in this section. However, these procedures are
complicated and often require special programming to implement them. This, unfortunately,
limits their usage in a general data setting.

14.3.3.3 Analysis Results Because of the lack of software for conducting a
comprehensive analysis, we will illustrate the methods using only paired relatives,
specifically, mother–daughter pairs. In this subset of the dataset, there are 820 cases, 942
controls, and their mothers. Among these, 110 (13.4%) case mothers have breast cancer
with mean age at diagnosis about 52 years, and 45 (14.8%) control mothers have breast
cancer with mean about 56 years.

In order to facilitate the comparison of the two approaches, we modify the partially specified
approach to estimate L̂c

0(t) and b̂
c by using the conditional hazard function (14.2), deriving the

bivariate distribution, and obtaining corresponding baseline hazard function estimator similar
to (14.7). The gamma frailty model, equivalently, the Clayton–Oakes model, is assumed for
the joint survivor distribution. Since there is no covariate in the breast cancer data,

Table 14.3 shows only the estimates of L̂c
0(t) and û. Fifty bootstrap samples with families as

resampling units were used to estimate the standard errors of these parameter estimates. One
can see that both methods yield very similar parameter estimates and the standard error esti-
mates. In these data, the mothers of cases have an �2.7-fold increase in the risk of developing
breast cancer compared to the mothers of controls.

We also modify the frailty-model-based approach to estimate marginal L0
m(t) and bm

instead of conditional cumulative hazard function and regression coefficients. Under the
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gamma frailty model, a closed form such as that described in (14.5) for the conditional hazard
function would yield a marginalized hazard function that obeys the Cox proportional hazards
model and is free of the dependence parameter u. Table 14.4 presents the results for L̂0

m and û

under the Cox proportional hazards model with gamma frailty distribution. Again both
approaches yield very similar parameter estimates with comparable efficiency. The mothers
of cases again have about a 2.9-fold increased risk of developing breast cancer compared to
the mothers of controls. Using the estimates from the frailty model approach, the probability
of a woman developing breast cancer by age 70 is exp(20.05732) ¼ 5.6% with the 95% con-
fidence interval (3.6%, 7.5%).

14.4 CONCLUDING REMARKS

Nonparametric estimation of the bivariate survivor function has proved difficult; relatively few
estimators have been proposed since the early 1980s. The first viable options were the plug-in
estimators of Dabrowska and Prentice–Cai. Despite their theoretical asymptotic inefficiency,
they offer good practical performance with variance estimators that are hard to beat in small

Table 14.3 Summary of Conditional Cumulative Hazard Function Estimate

L̂c
0(t)(� 10�2) and Dependence Parameter Estimate û(� 10�2) for Frailty-

Model-Based and Partially Specified Model-Based Approaches

Frailty Partially Specified

Function Estimate SE Estimate SE

L0
c(40) 0.815 0.193 0.820 0.194

L0
c(50) 2.348 0.397 2.354 0.397

L0
c(60) 4.108 0.639 4.115 0.639

L0
c(70) 7.249 1.240 7.257 1.240

u 1.715 0.560 1.711 0.559

aIn these estimates, age index t ¼ 40, 50, 60, and 70 years; also, 50 bootstrap samples were used to calcu-
late bootstrap standard deviations as standard error (SE) estimates.

Table 14.4 Summary of Conditional Cumulative Hazard Function Estimate

L̂c
0(t)(� 10�2) and Dependence Parameter Estimate û(� 10�2) for Frailty-

Model-Based and Partially Specified Model-Based Approaches

Frailty Partially Specified

Function Estimate SE Estimate SE

L0
m(40) 0.749 0.157 0.749 0.157

L0
m(50) 1.983 0.315 1.984 0.315

L0
m(60) 3.742 0.587 3.745 0.587

L0
m(70) 5.732 1.050 5.738 1.050

u 1.898 0.589 1.894 0.594

aIn these estimates, age index t ¼ 40, 50, 60, and 70 years; also, 50 bootstrap samples were used to calcu-
late bootstrap standard deviations as standard error (SE) estimates.
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to moderate-sized samples [62,51]. They are, however, nonmonotonic. Prentice and Cai [49]
suggested a simple correction to impose a monotonicity requirement, but asymptotic properties
of the resulting estimator have not been proved. In theory, the NPMLE-type estimators offer
significant advantages (monotonic and efficient under a condition on the bandwidth);
however, the sample sizes may need to be very large for the estimators to improve on the
simply calculated plug-in estimators [62,51]. The reassigned estimator shows some advantage
over van der Laan’s repaired NPMLE, but the improvement is not dramatic. With the exception
of large sample sizes and very strong dependence between the two failure times, the Dabrowska
and Prentice–Cai estimators may be preferred.

There has been considerable progress in the methodologic and theoretical development in
the semiparametric estimation of dependencies of the multivariate failure time data since the
mid-1980s. Both frailty-model-based and partially specified model-based approaches have
stable numerical properties in the finite sample sizes. The frailty model describes a cluster-
specific hazard function, whereas the partially specified model typically focuses on the popu-
lation-averaged hazard function. One can, however, use the frailty-model-based approach to
estimate the population-averaged hazard function and the partially specified model-based
approach to estimate cluster-specific hazard function. The choice of which approach to use
will depend on the actual application and the primary quantities of interest.

Applications of these methods to real datasets often require substantial modifications, exten-
sions, and theoretical developments. This chapter describes one particular application to case–
control family data, where the non-cohort-based sampling scheme needs to be adjusted in order
to yield consistent parameter estimates. In this situation, even though the methods appeared to
work well in both the simulated and real datasets, the large sample theory for these methods is
largely unavailable. Further work in this area is warranted.
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Robust Estimation for Analyzing
Recurrent-Event Data in the
Presence of Terminal Events
Rajeshwari Sundaram
Biometry and Mathematical Statistics Branch Division of Epidemiology,
Statistics and Prevention Research National Institute of Child Health
and Human Development, National Institutes of Health
Rockville, Maryland

15.1 INTRODUCTION

In many biomedical studies, subjects may experience multiple failure events of the same type;
outcomes of this type are referred to as recurrent events. Recurrent events occur in varied fields
of study, ranging from medical studies and actuarial studies to sociology, and reliability engin-
eering. For example, patients with cerebrovascular disease may experience repeated transient
ischemic attacks [11]; HIV patients may experience recurrent opportunistic infections [16].
In addition, patients often die during the study period as a result of repeated occurrences of
severe diseases. In these studies, the investigators are often interested in assessing the effects
of covariates on the recurrent-event process.

In analyzing recurrent failure-time data, the majority of the work has focused on Anderson
and Gill’s [1] intensity-based models. Under the Anderson–Gill model, a nonhomogeneous
Poisson process structure is assumed for the counting process denoting the recurrent-event
process; time-dependent covariates are used to model the dependence between recurrent
events. Various generalizations of the Anderson–Gill model to more arbitrary counting pro-
cesses have been studied by, for example, Pepe and Cai [23], Lawless et al. [15], and Lin
et al. [19]. More recently, a general class of models have been suggested by Peña and
Hollander [22] that also incorporates the intervention effect. An extensive survey of different
models used in recurrent-event analysis can be found in Cook and Lawless [5]. In these
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models, the effect of covariates is taken to be multiplicative on the baseline rate or the baseline
mean function. However, in certain instances such an assumption may not be valid.

Lin et al. [20] introduced semiparametric transformation models for modeling the mean
function of the recurrent-event process. These semiparametric transformation models offer
great flexibility in modeling the effect of covariates on the mean function of the recurrent-
event processes without specifying the underlying stochastic structure, and the effect of covari-
ate need not be assumed multiplicative. Under the transformation model, the conditional mean
mZ (t) of the recurrent events process N�(t) given the covariates Z satisfies

mZ (t) ¼ g(m0(t)e
b0Z ), (15:1)

where the link function g(.) is a twice continuously differentiable and strictly increasing func-
tion, m0(.) is an increasing function, and b is the unknown regression parameter of interest.
Here, m0(t) ¼ E(N�(t)jZ ¼ 0) ¼ g(m0(t)) is the unknown baseline means function. The
model introduced in (15.1) includes a very rich class of models through the link function

g(.). A very important special case occurs when g(x) ¼ x, which yields mZ (t) ¼ m0(t)e
b0Z

This is known as the proportional means model and has been studied in the context of time
to event as well as recurrent event data by several authors. Some other common choices for
the link function g are the Box–Cox transformations:

g(x) ¼ ((1þ x)r � 1)=r; r . 0; log (1þ x), r ¼ 0:

See Lin et al. [20] for more examples. The choice of time-dependent covariates Z(.) should be
restricted to external covariates, that is, those covariates whose value may influence the rate of
recurrence over time, but its future path up to any time s . t is not affected by the occurrence of
a recurrent event at time t [12, p. 196]. The choice of time-dependent covariates is also
restricted to be monotonic to ensure that mZ (.) is nondecreasing.

Much of the effort in recurrent-event analysis has focused on independent censoring.
Attention is now focusing on dealing with the regression analysis of recurrent events in
the presence of death [9,10,26]. In the case of the transformation model for the recurrent-
event processes, Lin et al. [20] have adapted the generalized estimation equation procedure
developed by Liang and Zeger [17] and have focused only on independent censoring.
In this chapter, we propose a class of (easily computable) minimum L2 distance
estimators for the regression parameter b in (15.1) and extend the methodology to
deal with terminal events. Such an estimating procedure appears to be novel in dealing
with recurrent-event data.

Minimum-distance (MD) estimation is well known to be “automatically robust”; that is, MD
estimates remain consistent even when the model is only approximately valid and have good
finite sample property [6,7]. Donoho and Liu further demonstrated certain additional advan-
tages of using Cramér–von Mises L2 distance. These estimators are usually consistent and
n1/2-consistent under minimal conditions in the valid model. Also, the minimum L2 distance
estimators are highly efficient in the case of some familiar parametric models for proper choices
of the integrating measures [14,13,21]. Yang and Prentice [29] and Sundaram [27] have studied
these estimators for various semiparametric models with censored data.

The chapter is organized as follows. In the next section, we develop the estimation pro-
cedure for a class of robust minimum-distance estimators for the regression parameter b and
the baseline function m0(t). In Section 15.3, the large-sample properties of the proposed
estimators are discussed. In Section 15.4, results from extensive numerical studies are reported.
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We conclude with an illustration of the proposed methods to the rhDNase data discussed in
Therneau and Hamilton [28] and to the well-known bladder cancer data [3].

15.2 INFERENCE PROCEDURES

Let N�(t) be the number of recurrent events in the time interval [0, t] pertaining to a subject,
and let D be the survival time of the subject. Obviously, subjects who die cannot experience
any further recurrent events, so N�(.) is unobservable after D. In practice, the subject
is usually followed for a limited period of time, so N�(.) is typically right-censored. Let C
denote the follow-up or censoring time. So, in the presence of censoring C and terminal
event D, we get to observe only N(t) ¼ N�(t ^ X), where X ¼ D ^ C. Let d ¼ IfD � Cg.
We assume that C is independent of N�(.), and is independent of D. However, we do
not make any such assumption regarding the dependence structure between the recurrent
events and survival time. Let Z(.) denote a p-dimensional covariate process. For a
random sample of n subjects, the observable data consist of fXi; di,Ni(t),
Zi(t), t � Xig (i ¼ 1, � � � , n):

15.2.1 Estimation in the Presence of Only Independent Censoring
(with All Censoring Variables Observable)

Define

Mi(t) ¼ Yi(t)½Ni(t)� g(m0(t)e
bZi(t))�, i ¼ 1, . . . , n, (15:2)

where Yi(t) ¼ IfCi � tg. Under the transformation model (15.1), Mi(t) are zero mean
stochastic processes. Let wi0(�) ; 1 and wij(t) ¼ fj(Zij, t), j ¼ 1, . . . , p be nonnegative,
subject-specific weights that may depend on the covariates through adequate functions fj.
We observe that

E(wij(t)Mi(t)) ¼ 0, j ¼ 0, 1, . . . , p: (15:3)

For instance, under the assumption that the covariates Z(�) � 0,wij(�) ¼ Zij(�)a;a . 0 is a
common choice in regression.

Thus, consulting (15.3), for a given b one may obtain estimates m̂0j, j ¼ 0, 1, . . . , p of m0(t)
by solving the equation

Xn
i¼1

wij(t)Yi(t)½Ni(t)� g(m̂0j(t)e
b0Zi(t))� ¼ 0, j ¼ 0, 1, . . . , p: (15:4)

When w�j ; 1, this type of estimating equation has been used by Lin et al. [20] to estimate
m0(.). Here, we have a class of estimators for m0, one for every j. We can show, analogous
to A.1 of Lin et al. [20], that (15.4) has a unique solution for m̂0j. In the case of proportional
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means model [i.e., g(x) ¼ x], m̂0j has an explicit formula:

m̂0j(t;b) ¼

Pn
i¼1

wij(t)Yi(t)Ni(t)

Pn
i¼1

wij(t)Yi(t)eb
0Zi(t)

, j ¼ 0, 1, . . . , p:

Observe that this estimator is the well-known Aalen–Breslow estimator when wij ; 1.
So, one can view the estimator displayed above as a (covariate) weighted version of the
Aalen–Breslow estimator. In general, one can solve (15.4) for every given t and b relatively
easily since the equation reduces to a scalar equation with a negative slope. So, any root
solving method can be used.

Next, we outline our estimation procedure for the unknown regression parameter b in
(15.1). As mentioned before, equation (15.4) yields a unique solution m̂0j(t, b) for any b.
We will show in the next section that under certain regularity conditions, m̂0j(., b) con-
verges (in supnorm) to a nonrandom function m0j(., b) almost surely. Moreover,
m0j(�, b) ¼ m0(�) 8 j ¼ 0, 1, . . . , p if and only if b ¼ b. Motivated by this, we can
obtain an estimator for b by minimizing the L2 distance between m̂0j and m̂00. In
other words, our proposed estimator b̂ of b is the minimizer of the Cramér–von
Mises distance

Dn(b) ¼
ð1

0

Xp
j¼1

(m̂0j(t; b)� m̂00(t; b))
2Fn(dt; b): (15:5)

Here, Fn is a finite, compactly supported integrating measure that may be data-dependent.
In fact, by varying the integrating measure Fn, we can get a class of estimators for the
regression parameter.

15.2.2 Estimation in the Presence of Terminal Events

Under this situation, Ci is unknown if the ith subject dies before being censored. Consequently,
Yi(t) ¼ IfCi � tg, and hence (15.4) is not calculable. In fact, Yi(t ^ Di) can only be calculated.

One can then modify (15.4) by replacing Yi(t) by a quantity Ŷi(t), which can be computed
according to the observed sample and has the same expectation as Yi(t) Observe that
E(Yi(t ^ Di)) ¼ E(E(Yi(t ^ Di)jDi)), and note that Yi(t ^ Di)G(t)=G(t ^ Di) has the same
expectation as Yi(t), where G(t) ¼ P(Ci � t). As G is unknown, we can replace G by the

Kaplan–Meier estimator Ĝ. This gives us the choice Ŷi(t) ¼ Yi(t ^ Di)Ĝ(t)=Ĝ(t ^ Di), which

is the same as Yi(t ^ Di)Ĝ(t)=Ĝ(t ^ Xi). This method is similar to the inverse probability of
censoring weighing scheme suggested by Robins and Rotnitzky [25], which has been used
successfully in various contexts by Lin and Ying [18], Cheng et al. [4], Fine and Gray [8],
and Ghosh and Lin [9], among others. In fact, Ghosh and Lin [9] have used the same
weight in dealing with terminal events in their context.
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Hence, in the presence of terminal events, for a given b one may obtain estimates
m̂0j, j ¼ 0; 1, . . . , p of m0(t) by solving the equation

Xn
i¼1

wij(t)Ŷi(t)½Ni(t)� g(m̂0j(t)e
b0Zi(t))� ¼ 0, j ¼ 0, 1, . . . , p: (15:6)

The estimation method for the regression coefficients remains the same as before.

15.3 LARGE-SAMPLE PROPERTIES

We begin by introducing some notation and state some sufficient assumptions under which the
large-sample properties are established. Recall that N�

i (t) denotes the number of events that
occur by time t, and Ci and Di respectively denote the censoring time and the survival time
for the ith individual. Also, recall that

Xi ¼ Ci ^ Di, di ¼ IfDi � Cig,Ni(t) ¼ N�
i (t ^ Xi), Yi(t) ¼ IfCi � tg:

Denote by _g(x) ¼ ½dg(x)=dx�:
We prove our large-sample results under some standard regularity assumptions (15A.1)–

(15A.4), presented in a rigorous form in the end-of-chapter appendix. The assumptions
include the independence and identical distribution of the recurrent event process and censor-
ing and survival times. Our results hold when the recurrent event process is independent of the
censoring variable. The results can be shown to hold true even when the recurrent-event
process is independent of the censoring variable, conditionally on the covariates when the indi-
vidual is subject only to independent censoring. We further assume that the covariates are
bounded and sufficiently smooth. The integrating measure F is assumed finite over an interval
½0; t�, where t is such that the recurrent-event process has finite second moment and that
P(C . t) . 0 to avoid tail instability under right censoring.

Let

s(1)j (t; b) ¼ G(t)E(w1j(t)Z1j(t)e
b0Z1(t) _g(m0j(t; b)e

b0Z1(t)));

sj(t; b) ¼ G(t)E(w1j(t)e
b0Z1(t) _g(m0j(t; b)e

b0Z1(t))) (15:7)

for j ¼ 0, 1, . . . , p. Define the p-dimensional column vectors s(1)(t; b); s(t; b) by

s(1)(t; b) ¼ ½s(1)1 (t; b) � � � s(1)p (t; b)�0; s(t; b) ¼ ½s1(t; b) � � � s p(t; b)�0:

Also, for a column vector a, let a�2 ¼ aa0. Let the p� p matrix C(t) ¼ ((ckj(t))), where

ckj(t) ¼
@

@bk
(m0j(t;b)� m00(t;b)), j, k ¼ 1, . . . , p: (15:8)
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Also we will denote the column vector ½c1j � � �c pj�0 by C.j. We further denote

A ¼
ðt

0

C(t)0C(t)F(dt;b)

0
@

1
A: (15:9)

Wefirst establish the strong consistencyof the proposed estimators m̂0j, j ¼ 0, 1, . . . , p, and b̂.
The proof of strong consistency of m̂0j is similar to the discussion in A.1 of Lin et al. [20]. Hence

m̂0j(t; b) ! m0j(t; b) (15:10)

almost surely and uniformly in t [ ½0; t� and b [ N(b), where m0j(t; b) is the unique solution of
the equation

E w1j(t) g(m0(t)e
b0Z(t))� g(m0j(t; b)e

b0Z(t))
h i� �

¼ 0, t � t

and m0j(t; b) ¼ m0(t) when b ¼ b. Using assumption (15A.4), we obtain

Dn(b) ¼
ð1

0

(m̂0j(t; b)� m̂00(t; b))
2Fn(dt; b) ! D(b) ¼

ð1

0

(m0j(t; b)� m00(t; b))
2F(dt; b);

almost surely and uniformly in b [ N(b) and that D(b) ¼ 0. So, if

D(b) = 0 for b [ N(b)nfbg; (15:11)

any minimizer of Dn(b) is strongly consistent.

Theorem 15.1. Suppose that assumptions (15A.1)–(15A.4) hold. Let b̂ be the minimum
L2 distance estimator of b defined in (15.5). Then, under (15.11), with probability 1, we
obtain

b̂ ! b, as n ! 1: (15:12)

Remark 15.1: In case of the proportional means model [i.e., g(x) ¼ x], (15.11) can be
restated as follows. For all b [ N(b)nfbg, there exists a j [ f1, . . . , pg such that

E½w1j(t)eb
0Z1(t)�

E½w1j(t)eb
0Z1(t)� =

E½eb0Z1(t)�
E½eb0Z1(t)�

for t in a subset of ½0; t� with positive F measure. In the general transformation model, one can
show that (15.11) holds true in the k-sample setup. It can also be verified that (15.11) holds true
for time-dependent covariates that are step functions with random jumps and/or random jump
points. These types of time-dependent covariates are quite general.
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The weak convergence of
ffiffiffi
n

p
(b̂� b) is established in Appendix 15A through the following

steps. In the first step, we establish the asymptotic linearity of m̂0j(t; b) near b. Next, we estab-

lish the asymptotic distribution of
ffiffiffi
n

p
(m̂0j(t;b)� m0(t)). Combining these two, we further

show that the distance Dn(b) can be approximated by a quadratic function of b. This quadratic

function has a unique minimizer
ffiffiffi
n

p
(b̂� b), and that its asymptotic distribution is normal with

covariance S that can be consistently estimated.

Theorem 15.2. Assume that assumptions (15A.1)–(15A.4) and (15.11) are satisfied, and let

b̂ be the estimator of b defined in (15.5). Then

ffiffiffi
n

p
(b̂� b) �! N(0;S);

where S is

S ¼ A�1E

ðt

0

M(t)
Xp
j¼1

C�j(t;b)
w1j(t)
sj(t;b)

� 1
s0(t;b)

� �
F(dt;b)

2
4

3
5
�2

A�1: (15:13)

Remark 15.2: Consistent Estimator for the Asymptotic Variance of b̂. The covariance
matrix S can be consistently estimated by replacing all unknown quantities by their empirical
counterparts. The resulting estimator is easily computable.

Remark 15.3: Choice of Weight Functions w�j ,F. In defining the estimating equations for
m0, the weights wij have been taken to be positive, smooth functions of the covariate. In practice
the weights should be chosen in an optimal way in the sense that it leads to minimum asymptotic
variance for the proposed estimators. The choice of weight functions as the covariate process,
specifically, wij(t) ¼ Zij(t), often results in minimum asymptotic covariance [14].

The performance of the minimum-distance estimator also depends on the integrating
measure Fn. The role of the integrating measure Fn is similar to that of the weight function
for the weighted log-rank statistics. Ideally, Fn should be chosen in an optimal way, for

example, by minimizing the variance of b̂. However, in general it is difficult to find such an
optimal integrating measure analytically as the asymptotic variance is a function of the covari-
ate, as well as the underlying distribution of the censoring variable and event times. We will
consider some integrating measures in the simulation study in the next section that perform
reasonably well.

We also compared the asymptotic variance of the proposed estimators with those of the
existing estimators [20] for the case of independent censoring. In fact, by choosing wij ¼ Zij
and making appropriate choices of the integrating measure Fn, one may achieve exactly

the same asymptotic variance as that of b̂LWY (where the subscript “LWY” denotes Lin–
Wei–Ying). To see this, restricting our attention to a single covariate, the asymptotic variance

of b̂LWY is given by

SLWY ¼ A�1
LWYE

ðt

0

M(t) Z1(t)�
s1(t;b)
s0(t;b)

� �
dH(t)

0
@

1
A

�2

A�1
LWY,
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where H(�) is any integrating measure satisfying assumption (15A.2), and

ALWY ¼
ðt
0

s(1)1 (t;b)s0(t;b)� s21(t;b)
s0(t;b)

 !
m0(t)dH(t):

It is easy to verify that for the choice

F(t) ¼
ðt
0

s1(s;b)
C11(s;b)

dH(s), (15:14)

the asymptotic variance of the proposed minimum-distance estimators b̂ is precisely the same

as that of b̂LWY. It is conceivable that by optimizing the choice of w and/or F, one may obtain

an estimator b̂ in the class of estimators proposed here with asymptotic variance lower than that

of b̂LWY. However, such an optimal choice does not seem to be analytically tractable. One may
instead use resampling techniques to obtain an optimal choice within a large (finite) class of
estimators.

15.4 NUMERICAL RESULTS

15.4.1 Simulation Studies

Simulation studies were conducted to examine the finite sample properties of the proposed
minimum-distance estimators. Our primary interest was in investigating their performance at
different levels of correlation between recurrent event times and survival time within an indi-
vidual. In absence of terminal events, we also compared them with the estimators proposed by
Lin et al. [20] for proportional as well as nonproportional means models. (Henceforth, the Lin–
Wei–Ying estimators will be referred to as LWY estimators.) The proportional means model
(model 1) was generated under the following scheme. We generated gap times between recur-
rences from the following model:

l(tjZ,c) ¼ cl0(t)e
b0Z ,

where c is a gamma variable with mean 1 and variance s2 and Z is a 0/1 treatment indicator
(0 for placebo, 1 for treatment). When s2 ¼ 0, recurrent events for an individual are indepen-
dent and nonzero values of s2 induces correlation between the recurrent times. It can be shown
that this regression model implies a proportional means model:

mZ (t) ¼ m0(t)e
b0Z :

We set l0(t) ¼ 1,b ¼ 0:5, and s2 ¼ 0, 0:25, 0:5, 1. The censoring variable C was generated
from uniform [2,3], which results in an average of 3.3 recurrences per individual. These
parametric values were used in simulation studies in Lin et al. [20]. The simulation results
for model 1 are presented in Table 15.1.

Next, we also compared the performance of the proposed estimators with b̂LWY in non-
proportional means model. The events times T1 , T2 , � � � were generated from a unit
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intensity Poisson process, and

N�(t) ¼
X
k�1

IfTk � cg(m0(t)e
bZ)g:

Hence, mZ (t) ¼ g(m0(t)e
bZ ), as c is a gamma variable with mean 1 and variance s2. The

following parametric values were chosen (model 2):

g(�) ¼ f1þ �g2 � 1; m0(t) ¼ t; b ¼ 0:5; s2 ¼ 0; 0:25; 0:5; 1; C 	 U(0:6; 0:9):

Table 15.1 Simulation Results for Model 1

MDEsa LWY Estimators

s2 Fn Bias SE Bias SE H

0.0 F̂nt 20.0011 0.1307 0.0004 0.1312 Ht

F̂nF 20.0007 0.1338 0.0007 0.1343 HF

F̂nG 20.0004 0.1269 0.0002 0.1272 HG

0.25 F̂nt 20.0008 0.1681 0.0008 0.1688 Ht

F̂nF 20.0002 0.1696 0.0013 0.1703 HF

F̂nG 20.0011 0.1728 0.0005 0.1733 HG

0.5 F̂nt 20.0004 0.1937 0.0008 0.1966 Ht

F̂nF 20.0006 0.1942 0.0011 0.1949 HF

F̂nG 20.0014 0.2032 0.0004 0.2041 HG

1.0 F̂nt 20.0011 0.2462 0.0010 0.2477 Ht

F̂nF 20.0008 0.2458 0.0012 0.2469 HF

F̂nG 20.0002 0.2626 0.0029 0.2641 HG

aMinimum-distance estimators.

Table 15.2 Simulation Results for Model 2

MDEs LWY Estimators

s2 Fn Bias SE Bias SE H

0.0 F̂nt 20.0015 0.1183 0.0030 0.1189 Ht

F̂nF 20.0004 0.1189 0.0031 0.1195 HF

F̂nG 20.0006 0.1093 0.0019 0.1095 HG

0.25 F̂nt 0.0005 0.1432 0.0034 0.1440 Ht

F̂nF 0.0010 0.1439 0.0042 0.1441 HF

F̂nG 0.0012 0.1395 0.0039 0.1400 HG

0.5 F̂nt 20.0025 0.1653 0.004 0.1665 Ht

F̂nF 0.0000 0.1652 0.0046 0.1661 HF

F̂nG 0.0017 0.1618 0.0033 0.1625 HG

1.0 F̂nt 20.0040 0.2065 0.0042 0.2079 Ht

F̂nF 20.0010 0.2057 0.0046 0.2068 HF

F̂nG 20.0017 0.2081 0.0057 0.2091 HG
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The choice of parameters for the censoring variable were such that they resulted in an average
of 3.5 recurrences per individual. Table 15.2 lists the simulation results for model 2. Lin et al.
[20] have suggested the following choices of integrating measures:

Ht(t) ¼ t, HF ¼

Pn
i¼1

Ni(t)

n
, HG ¼

Pn
i¼1

IfCi � tg

n
:

Recall from the previous section that the choice of the integrating measure F of the form
(15.14) leads to an asymptotic variance of the minimum-distance estimators equal to that of
the LWY estimators. We replace the terms s1 and C11 by their estimates as follows:

S1(t; b) ¼
Xn
i¼1

ZiŶi(t)e
bZi

Ĉ11(t; b) ¼

Pn
i¼1

Z2
i Ŷi(t)e

bZi

Pn
i¼1

ZiŶi(t)ebZi
�

Pn
i¼1

ZiŶi(t)ebZi

Pn
i¼1

Ŷi(t)ebZi

0
BB@

1
CCAm̂00(t; b):

Using these estimates, we choose the following integrating measures

Fnt(t; b) ¼
ðt
0

S1(s; b)

Ĉ11(s; b)
dHt(s); FnF(t; b) ¼

ðt
0

S1(s; b)

Ĉ11(s; b)
dHF(s);

FnG(t; b) ¼
ðt
0

S1(s; b)

Ĉ11(s; b)
dHG(s)

to make our comparisons. Recall that our proposed class of estimators for b is obtained by
minimizing the distance Dn defined in (15.5). In practice, this optimization is very easy to
implement as any standard optimization method can be used. The results reported in Tables
15.1 and 15.2 are based on 5000 replications and the sample size n ¼ 100. The bias is the

average of the difference between estimated b̂ and the true b, and SE is the sampling standard
deviations. The bias of the minimum distance estimators are negligible across all combinations
of the parameters investigated here. In fact, the bias of the minimum distance estimators are
much smaller than that of Lin et al. [20] for nonproportional means model. The standard
errors of the proposed minimum-distance estimators are comparable to (slightly lower than)
those of Lin et al. [20], thus confirming the appropriateness of the empirical approximation
of (15.14). The performance of the minimum-distance estimators seems to be comparable

for the integrating measures considered here with F̂nG performing a little better in terms of

the standard error, and F̂nF performing better for the power models considered in the simu-
lation studies reported here.

We further conducted simulations to investigate the performance of the proposed minimum-
distance estimators in the presence of terminal events.

In both models (1 and 2), we introduced the survival time D with a hazard rate of
lD(t) ¼ 0:25c and in the presence of D, the recurrent events process is observed only up to
X ¼ C ^ D instead of C. Under this setup, we are only specifying the marginals of D and
N�(.) and the dependence between the recurrence times and the survival time is captured
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through the frailty term c. Under this setup, 30% of individuals were observed only until the
terminal event D. Tables 15.3 and 15.4 report the simulation results based on 1000 replications
for sample sizes n ¼ 100 and n ¼ 200. In addition to bias and standard error, these tables also

report estimated values of the standard error of b̂ and the observed coverage probabilities of
95% confidence intervals. The results indicate that the minimum-distance estimators have
very small bias. The standard error estimators are very close the standard error of the replica-
tions indicating the appropriateness of the proposed estimators for the asymptotic standard
deviation of the parameter estimators. Also, the coverage probabilities of the considered
95% confidence intervals are very good, with the performance improving with increasing
sample size.

15.4.2 rhDNase Data

We now illustrate the proposed methods used in the rhDNase trial analyzed in Therneau and
Hamilton [28]. Cystic fibrosis patients often suffer from repeated exacerbations of respiratory
symptoms. The randomized clinical trial was conducted to assess the efficacy of rhDNase, a

Table 15.5 Summary of Recurrent Pulmonary Exacerbations in the rhDNase Trial

Treatment

Number of Recurrent Events

0 1 2 3 4 5 Total

rhDNase 218 65 30 6 3 0 322
Placebo 186 97 24 13 4 1 325

Table 15.6 Summary of Regression Analysis of rhDNase Trial

Model: g(m0(t)e
bZ ) F̂n b̂ SE(b̂) b̂=SE(b̂) p-Value

Model 1:

m0(t) e
b0Z

F̂nt 20.330 0.136 22.42 0.016

F̂nF 20.331 0.137 22.42 0.016

F̂nG 20.305 0.129 22.36 0.018

Model 2:

log (m0(t)e
b0Z þ 1)

F̂nt 20.389 0.162 22.40 0.016

F̂nF 20.390 0.162 22.40 0.016

F̂nG 20.373 0.159 22.35 0.018

Model 3:

log ( log (m0(t)e
b0Z þ 1)þ 1)

F̂nt 20.482 0.199 22.42 0.016

F̂nF 20.482 0.199 22.42 0.016

F̂nG 20.459 0.194 22.37 0.018

Model 4:

log (0:3 log (m0(t)e
b0Z þ 1)þ 1)

F̂nt 20.714 0.297 22.40 0.016

F̂nF 20.709 0.295 22.40 0.016

F̂nG 20.782 0.328 22.38 0.017
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highly purified recombinant enzyme, in treating such patients. There were 647 patients in the
study, and most of them were followed for about 170 days. Out of the 647 patients, 322
received rhDNase and the remaining 325 received placebo. By the end of the study, 104 of
the 322 patients on rhDNase and 139 of the 325 placebo patients had developed pulmonary
exacerbations. In fact, many of them had experienced multiple exacerbations. The recurrent
events are summarized in Table 15.5.

These data were analyzed using the treatment as the only covariate based on four models:
the proportional means model and certain log transformation models advocated by Lin et al.
[20]. In Table 15.6 we report the point estimate of the regression parameter signifying the
effect of treatment and estimates for the asymptotic standard deviation and the p value for
the two-sided test b ¼ 0 of the regression parameter.

Under all the four models, the regression analysis indicates that the effect of treatment is
significant in reducing the recurrence of pulmonary exacerbation events in cystic fibrosis
patients. This is in agreement with the findings of previous analysis of Lin et al. [20].

Now, to choose an appropriate model, we propose the following sum of squared residuals as
a measure of overall lack of fit:

Sn ¼
Xp
j¼1

Xm
l¼1

m̂0j(tl; b̂)

max
l

m̂0j(tl; b̂)
� m̂00(tl; b̂)

max
l

m̂00(tl; b̂)

0
@

1
A

2

:

This is motivated by the fact that the proposed estimating procedure gives a class of estimators
m̂0j(�;b), j ¼ 0, 1, . . . , p for the baseline function m0(.). So, if the model is appropriate, the

m̂0j(�; b̂) terms estimate the same function m0(�). Hence, their squared differences can be
used as residuals indicating departure from the proposed model.

The values of Sn based on minimum-distance (MD) estimators with respect to integrating
measure Fnt for the four models are 1.2901, 1.9300, 1.0645, and 0.1749 for the four
models considered. The value of Sn is smallest for model 4 (last model listed in Table 15.5),
which agrees with the findings of Lin et al. [20]. In fact, one can plot the residuals Sn(t) as
a function of t (Fig. 15.1) for a graphical check for validity of the model for the data presented

Figure 15.1 Plot of Sn(t) against time.
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above. As can be seen, the last model in Table 15.6 is a good fit for the rhDNase data analyzed
here. Another point to be noted from Table 15.6 is that the p values for the regression coeffi-
cient under the four models are close. This attests to the well-known robustness of the MD esti-
mation procedure, namely, that this procedure performs well even when the model is only
approximately valid.

15.4.3 Bladder Tumor Data

We also applied our proposed method to a well-known cancer trial conducted by the Veterans
Administration Cooperative Urological Research Group [3]. In this trial, 117 patients were
randomized to placebo, pyridoxine (Vitamin B6), or intravesical Thio-Tepa (triethylenetri-
phosphamide) and were followed for subsequent recurrences of superficial bladder tumors.
Following previous authors, we will focus on the 85 patients on Thio-Tepa and placebo.
During the study, 11 of the patients on placebo and 12 patients on Thio-Tepa died. So, we
have the presence of terminal events in addition to the usual censoring. We will consider a pro-
portional means model with the treatment type and the number of tumors and the size of the
largest tumors measured at the baseline as the time-invariant covariates. It has been shown
in the literature that the proportionality assumption in the proportional means model is a reason-
able assumption. In addition, the baseline covariates do not significantly affect the censoring
distribution [9]. Hence it is appropriate to use our weight Ŷi for Yi, which involves estimating
the censoring distribution. For the purpose of illustrating our method, we used the integrating
weight F(t) ¼ t. In Table 15.7 we report the point estimate of the regression parameters: treat-
ment (covariate coded as Thio-Tepa—1 vs. placebo—0), number of tumors at baseline, size of
the largest tumor, estimate for the asymptotic standard deviation, and the p value for the two-
sided test b ¼ 0 of the regression parameters.

The findings of this regression analysis are in agreement with those of previous authors
[12, p. 293] that Thio-Tepa significantly (highly in this case) reduces the mean number of
recurrences.

15.5 CONCLUDING REMARKS

We have proposed a new method for estimation based on a marginal means model for recurrent
events. As evidenced in the numerical study section, the estimators have performed very
competitively. The numerical methods used to perform these studies involved random
search techniques such as simulated annealing and/or a combination of grid search and the
box-constrained quasi-Newton method for optimization, which are all available in popularly
used software such as S-Plus/R and MATLAB.

Table 15.7 Summary of Regression Analysis
of Bladder Tumor Trial

Variable Estimate SE p Value

Treatment 0.5804 0.1321 ,0.0001
Number 0.1658 0.1048 0.0568
Size 0.005 0.0545 0.4635
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In the presence of terminal events, we have proposed a method for estimation that entails
estimation of the censoring distribution. This is appropriate when the censoring distribution
is independent of the covariates. As the transformation model for the mean recurrent process
is inherently marginal, this approach cannot discriminate between (for example) a treatment
that reduces the recurrent event mean through reducing the rate of events while the subject
is alive or by decreased survival probability. To address this issue, one may estimate the sur-
vival function via modeling the death hazard and use a weight similar to Inverse Probability of
Survival Weighting (IPSW) approach used in Ghosh and Lin [9]. This approach is worth inves-
tigating in the future. The models studied here are inherently marginal; however, it may be
worthwhile also to study the recurrence process and mortality simultaneously to properly ascer-
tain the effect of covariates on these two phenomena.

APPENDIX 15A

We begin by first presenting the assumptions under which our asymptotics hold true.

Assumptions

15A.1 fN�
i (�),Ci(�),Di, Zi(�)gni¼1 are independent and identically distributed, where

Zi ¼ ½Zi1 � � �Zip�0 denotes the p-dimensional column vector of covariates.

15A.2 Zij(0)þ
Ð t
0 jdZij(t)j , M , 1 almost surely, for j ¼ 1, . . . , p, that is, Zij(�) is uni-

formly bounded and is of uniform bounded variation on ½0; t�. Here, t is a prespe-
cified positive constant. Also, the weights wij(�) ¼ fj(Zij(�), � ) are assumed to be
uniformly bounded and of uniform bounded variation.

15A.3 Let t be such that E(N�2
1 (t)) , 1;G(t) ¼ P(C . t) . 0 and

inf
0�t�t, b[N(b)

E(w1j(t)e
b0Z1(t)) . 0, j ¼ 0, 1, . . . , p,

where N(b) is a compact neighborhood containing b.

15A.4 F(t; b) ¼ lim
n
Fn(t; b) exists uniformly for all b in a compact set N(b) and t in

(0, t] and where Fn is as in (15.5) with support in (0, t].

Proof of Theorem 2: Weak Convergence of
ffiffiffi
n

p
(b̂ 2 b) In the first step, we prove the

weak convergence of
ffiffiffi
n

p
(m̂0j(t;b)� m0(t)). Using the mean value theorem for g(m̂0j(t;b)) at

m0(t) and assuming that m̂0j(t; b) is the unique solution of (15.4), one can express

m̂0j(t;b)� m0(t) ¼

Pn
i¼1

wij(t)Mi(t)þ
Pn
i¼1

wij(t)(Ŷi(t)� Yi(t))½Ni(t)� g(m0(t)e
bZi(t))�

Pn
i¼1

wij(t)Ŷi(t) _g(m�
j (t)e

b0Zi(t))eb0Zi(t)
;

where m�
j (t) lies between m̂0j(t;b) and m0j(t). Furthermore, by the uniform strong law of large

numbers, the almost sure convergence of m̂0j(.;b) to m0(.), the strong consistency of the
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Kaplan–Meier estimator and the continuity of ġ(.) ensure that

n�1
Xn
i¼1

wij(t)(Ŷi(t)� Yi(t)) ! 0; j ¼ 0; 1; . . . ; p; (15A:1)

and

n�1
Xn
i¼1

wij(t)Ŷi(t) _g(m
�
j (t)e

b0Zi(t))eb
0Zi(t) ! s j(t;b), j ¼ 0, 1, . . . , p, (15A:2)

almost surely and uniformly in t [ [0, t], where sj(t; b) is as in (15.7).
Consequently, recalling wi0 ; 1, for i ¼ 1, . . . , n, we have

ffiffiffi
n

p
(m̂0j(t;b)� m̂00(t;b)) ¼

ffiffiffi
n

p Xn
i¼1

wij(t)Pn
i¼1

wij(t)Ŷi(t) _g(m�
j (t)e

b0Zi(t))eb
0Zi(t)

0
BB@

� 1
Pn
i¼1

Ŷi(t) _g(m�
0(t)e

b0Zi(t))eb
0Zi(t)

1
CCAMi(t)

¼
ffiffiffi
n

p Xn
i¼1

wij(t)
s j(t;b)

� 1
s0(t;b)

� �
Mi(t)þ oP(1)

(15A:3)

where the second equality follows from the almost sure convergence of (15A.1), (15A.2), and
the fact that

Pn
i¼1 Mi(t) ¼ OP(n1=2). Note the first term in (15A.3) is sum of n independent and

identically distributed (i.i.d.) terms for every t. By the multivariate central-limit theorem, it con-
verges in finite-dimensional distributions to a zero mean Gaussian processWZ. ObviouslyMi(t)
is the difference between two monotone functions in t. By assumption (15A.4) and the fact that
wij(.) is of bounded variation, it follows that wij(t)=sj(t;b), j ¼ 0, 1, . . . , p is of bounded vari-
ation. Hence, it can be expressed as a difference of two monotonically increasing functions in t.
Combining this with the fact that Mi(t) can be written as a difference between two monotonic
functions in t, each summand of (15A.3) can be expressed as the sum of monotonic functions in
t. Hence, they have pseudodimension 1. This in turn implies that they are manageable [see
Lemma A.2 in Ref. 2]; hence

ffiffiffi
n

p
(m̂0j(t;b)� m̂00(t;b)) is tight. By the functional central-

limit theorem [24, p. 53], we have

ffiffiffi
n

p
(m̂0�(t;b)� m̂00(t;b) 1) ¼) WZ (t;b);

where WZ is a zero mean Gaussian process with covariance matrix G(s, t) ¼ ((Gjk (s, t))) given
by

Gkj(s, t) ¼ E

�
M(s)M(t)

w1j(s)
sj(s;b)

� 1
s0(s;b)

� �
w1k(t)
sk(t;b)

� 1
s0(t;b)

� �0�
(15A:4)

for 1 � k, j � p, and 0 � s, t � t. In the convergence displayed above, m̂0 ¼ ½m̂01 . . . m̂0p�
0 and

1 ¼ [1. . .1]0.
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To establish the asymptotic normality of the MD estimators b̂, in the next step we exhibit
the asymptotic linearity of m̂0j (t; b) near b. Recall from (15.4) that m̂0j(t; b) is the unique
solution to the equation

Xn
i¼1

wij(t)Ŷi(t) Ni(t)� g(m̂0j(t; b)e
b0Zi(t))

� �
¼ 0:

So, differentiating this equation with respect to b, we obtain

@

@b
m̂0j(t; b) ¼ �

Pn
i¼1

wij(t)Ŷi(t)Zi(t) _g(m̂0j(t; b)e
b0Zi(t))

Pn
i¼1

wij(t)Ŷi(t) _g(m̂0j(t; b)eb
0Zi(t))eb0Zi(t)

m̂0j(t; b): (15A:5)

Furthermore, by the almost sure convergence of m̂0j, the strong consistency of the Kaplan–
Meier estimator Ĝ, the continuity of ġ, and the uniform strong law of large numbers, we obtain

@

@b
m̂0j(t; b) !

@

@b
m0j(t; b) ¼ �

s(1)j (t; b)

sj(t; b)
m0j(t; b); (15A:6)

almost surely and uniformly in t [ [0, t], b [ N(b). For kbnk ! 0, using once again the mean
value theorem for m̂0j(t, b þ bn) at b, we have

m̂0j(t;bþ bn)� m̂0j(t;b) ¼
@

@b
m̂0j(t; b

�)bn;

where b� is on the line segment joining b and b þ bn. Hence, using (15A.6), as n ! 1, we
obtain

m̂0j(t;bþ bn)� m̂00(t;bþ bn) ¼ (m̂0j(t;b)� m̂00(t;b))

þ @

@b
(m0j(t;b)� m00(t;b))þ o(1)

� �
bn; (15A:7)

almost surely and uniformly in t [ [0, t]. Recall that C�j is the column vector [c1j . . . cpj]0,
where Ckj is as in (15.8). Define D̃(b) as

~D(b) ¼
ðt
0

Xp
j¼1

(m̂0j(t;b)� m̂00(t;b)þC�j(t)
0b)2F(dt;b):

Observe that D̃(b) is quadratic in b and has the minimizer

A�1
ðt
0

Xp
j¼1

C�j(t;b)(m̂0j(t;b)� m̂00(t;b))F(dt;b); (15A:8)
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where A is as in (15.9). Furthermore, for some 0 , B, 1, we have the following:

sup
kbk�B

jDn(bþ n�1=2b)� ~D(n�1=2b)j ¼ oP(1): (15A:9)

This follows from some algebra, the asymptotic linearity of m̂0j(t; b) near b given in (15A.7),
and the convergence of the measures Fn to F in assumption (15A.4).

Hence, the minimizer of Dn(bþ n�1=2b) with respect to b is given by

ffiffiffi
n

p
(b̂� b) ¼ A�1 ffiffiffi

n
p ðt

0

Xp
j¼1

C�j(t;b)(m̂0j(t;b)� m̂00(t;b))F(dt;b)þ oP(1)

¼ A�1 ffiffiffi
n

p ðt
0

Xp
j¼1

C�j(t;b)
wij(t)
s j(t;b)

� 1
s0(t;b)

� �
Mi(t)F(dt;b)þ oP(1); (15A:10)

where the first equality follows from (15A.9) and the fact that the minimizer of D̃ is given
by (15A.8) and the second equality follows from (15A.3). Observe that the first term of
(15A.10) is a sum of n i.i.d. terms. Using the multivariate central-limit theorem, it now

follows that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðb̂ � b

q
) converges in distribution to a zero mean normal vector with covari-

ance matrix S as defined in (15.13).
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Tree-Based Methods for Survival
Data
Mousumi Banerjee and Anne-Michelle Noone
Department of Biostatistics, University of Michigan, Ann Arbor,
Michigan

16.1 INTRODUCTION

Tree-based methods have become one of the most flexible, intuitive, and powerful data analytic
tools for exploring complex data structures. The applications of these methods are far-reaching.
The best documented, and arguably most popular uses of tree-based methods are in biomedical
research, where classification is a central issue. For example, a clinician may be very interested
in whether a patient with chest pain is suffering from a heart attack or simply has a strained
muscle [15]. To answer this question, information on the patient must be collected, and a
good diagnostic test utilizing such information must be in place. Tree-based methods
provide one solution for constructing such diagnostic tests. Some interesting applications of
tree-based methods are described by Zhang et al. [45] and Segal et al. [38].

Original tree-based methods, introduced by Morgan and Sonquist [31], were used in
classification and regression. Advances in the practical and theoretic aspects of tree-based
methods were developed by Breiman et al. [5] in their monograph on classification and
regression trees. Generally, tree-based methods recursively partition the covariate space into
disjoint regions and the corresponding data into groups (nodes). For each node to be split,
some measure of separation in the response distribution between the two daughter nodes result-
ing from a split is calculated. All possible splits for each covariate are evaluated, and the
variable and corresponding split point that best separates the daughter nodes is chosen. The
same procedure is applied recursively to increase the number of nodes until each contains
only a few subjects. The resulting model can be represented as a binary tree. After a large
tree is grown, there are rules for pruning and for readjusting the size of the tree.
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Interest in tree-based methods for survival data naturally came from the need of clinical
researchers to define interpretable prognostic classification rules both for understanding the
prognostic structure of data (by forming a small number of groups of patients with differing
prognoses) and for designing future clinical trials. Several authors have studied extensions
of original tree-based methods in the setting of censored survival data [16,10,11,35,12,26,
27,21,43]. Some applications of tree-based survival analyses are given by Albain et al.
[1,2], Banerjee et al. [3,4], Freedman et al. [13], and Katz et al. [23].

In this chapter, we discuss general methodological aspects of tree-based modeling for sur-
vival data. Although several splitting criteria have been proposed in the literature for survival
data, the choice of an appropriate criterion is not obvious. Thus, we focus on comparing and
contrasting different splitting criteria. On the basis of a simulation study and analyses of a clini-
cal dataset, we compare five different splitting rules that use either a measure of within-node
error or between-node separation.

Another exciting more recent development is the expansion of trees into forests or ensemble
of trees [6,7]. Growing an ensemble of trees and aggregating is a way to improve predictive
performance and address the problem of instability that is recognized to be inherent in a
single tree. In this chapter, we present a method for growing survival forests by using the
null deviance residuals from a Cox proportional hazards model as the outcome variable for
growing trees in the forest. This approach is easy to implement, and circumvents the complexity
induced by censoring. Ensemble predictions are computed by aggregating across different trees
in the forest.

The chapter is organized as follows. In Section 16.2, we present a review of classification
and regression of trees (CART). Section 16.3 describes algorithms for growing and pruning
trees in the survival data setting. In Section 16.4 we describe the design and results of the simu-
lation study to compare different splitting rules. Section 16.5 presents analyses of data from a
cohort study of breast cancer, based on single tree methods employing various splitting rules.
Section 16.6 presents the methodology for growing a survival forest, and survival forest ana-
lyses of the breast cancer data are presented in Section 16.6.1. Finally, Section 16.7 contains
some concluding remarks.

16.2 REVIEW OF CART

The literature on tree-based methods dates from work in the social sciences by Morgan and
Sonquist [31] and Morgan and Messenger [30]. In statistics, Breiman et al. [5] had a
seminal influence in both bringing the work to the attention of statisticians and proposing
new algorithms for constructing trees. At around the same time decision tree induction was
beginning to be used in the field of machine learning and in engineering.

The terminology of trees is graphic; a tree T has a root that is the top node, and observations
are passed down the tree, with decisions made at each node (also called “daughters”) until a
terminal node or leaf is reached. Each nonterminal node (also called internal node) contains
a question on which a split is based. The terminal nodes of a tree T are collectively denoted
by T̃, and the number of terminal nodes is denoted by jT̃j. Each terminal node contains the
class label (for a classification problem) or an average response (for a least-squares regression
problem). The branch Tt that stems from node t includes t itself and all its daughters. A subtree
of T is a tree with root a node of T; it is a rooted subtree if its root is the root of T.

In the CART paradigm, the covariate space is partitioned recursively in a binary fashion.
The partitioning is intended to increase within-node homogeneity, where homogeneity is deter-
mined by the dependent variable in the problem. There are three basic elements for constructing
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a tree under the CART paradigm: (1) tree growing, (2) finding the “right-sized tree,” and (3)
testing. The first element is aimed at addressing the question how and why a parent node is
split into daughter nodes. CART uses binary splits, phrased in terms of the covariates, that par-
tition the predictor space. Each split depends on the value of a single covariate. For ordered
(continuous or categorical) covariates Xj, only splits resulting from questions of the form “Is
Xj � c?” for c [ domain(Xj) are considered, thereby allowing at most n 2 1 splits for a
sample of size n. For nominal covariates no constraints are imposed on possible subdivisions.
Thus, for a nominal covariate with M categories, there are 2M21 2 1 splits to examine.

Using the covariates univariately entails that all splits are orthogonal to the coordinate axes.
Methods extending the allowable splits to (1) linear combinations of covariates and (2) Boolean
combinations of binary covariates have been proposed in the literature. The price for this
improved flexibility is reduced interpretability and a greater computational burden. In
particular, use of linear combination splits can be very computer-intensive. Thus, at least for
regression, CART advises against use of linear combination splits.

The question that logically comes next is: How do we select one or several preferred splits
from the pool of allowable splits? Before selecting the best split, one must define the goodness
of split. The objective of splitting is to make the two daughter nodes as homogeneous as
possible. Therefore, the goodness of a split must weigh the homogeneities in the two daughter
nodes. Extent of node homogeneity is measured quantitatively using an impurity function.
Potential splits are evaluated for each covariate, and the covariate and split value resulting in
the greatest reduction in impurity is chosen.

Corresponding to a split s at node t into left and right daughter nodes tL and tR, the reduction
in impurity is given by

DI(s; t) ¼ i(t)� P(tL)i(tL)� P(tR)i(tR);

where i(t) is the impurity in node t and P(tL) and P(tR) are the probabilities that a subject falls in
nodes tL and tR, respectively. For classification problems, i(t) is measured in terms of entropy or
Gini impurity. For regression problems, i(t) is typically themean residual sumof squares. The prob-
abilitiesP(tL) and P(tR) are estimated via corresponding sample proportions. The splitting rule that
maximizes DI(s, t) over the set S of all possible splits is chosen as the best splitter for node t.

A useful feature of CART is that of growing a large tree and then pruning it back to find the
right-sized tree. During the early development of recursive partitioning, stopping rules were pro-
posed to quit the partitioning process before the tree becomes too large. For example, the auto-
matic interaction detection (AID) program proposed by Morgan and Sonquist [31] declared a
terminal node based on the relative merit of its best split to the quality of the root node.

Breiman et al. [5] argued that depending on the stopping threshold, the partitioning tends to
end too soon or too late. Accordingly, they made a fundamental shift by introducing a second
step, called pruning. Instead of attempting to stop the partitioning, they propose to let the
partitioning continue until it is saturated or nearly so. Beginning with this generally large
tree, they prune it from the bottom up. The point is to find a subtree of the saturated tree
that is most “predictive” of the outcome and least vulnerable to the noise in the data.

Let c(t) be the misclassification cost of a node t. Now define C(T) as the misclassification
cost of the entire tree T: C(T) ¼

P
t[T̃ P(t)c(t). Note that C(T) is a measure of the quality of the

tree T. The purpose of pruning is to select the best subtree of an initially overgrown (or satu-
rated) tree, such that C(T) is minimized. In this context, an important concept introduced by
Breiman et al. [5] is the concept of tree cost–complexity. It is defined as

Ca(T) ¼ C(T)þ aj~T j;
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where a (�0) is a penalty parameter for the complexity of the tree. The total number of term-
inal nodes jT̃j is used as a measure of tree complexity. Note that the total number of nodes in a
tree T (i.e., its size) is twice the number of its terminal nodes minus 1. Thus, tree complexity is
really another term for the size of the tree. The difference between Ca(T) and C(T) as a measure
of tree quality resides in that Ca(T) penalizes a large tree.

For any tree, there are many subtrees, and therefore many ways to prune. The challenge is
how to prune, that is, which subtrees to cut first. Breiman et al. [5] showed that (1) for any value
of the penalty parameter a, there is a unique smallest subtree of T that minimizes the cost–
complexity; and (2) if a1 . a2, the optimal subtree corresponding to a1 is a subtree of the
optimal subtree corresponding to a2. The use of tree cost–complexity therefore allows one
to construct a sequence of nested optimal subtrees from any given tree T. This is done by
recursively pruning the branch(es) with the weakest link; that is, the node t with the smallest
value of a such that Ca(t) � Ca(Tt).

Having obtained a nested sequence of pruned optimal subtrees, one is left with the
problem of selecting a best tree from this sequence. Using the learning sample (resub-
stitution) estimate of misclassification cost results in selecting the largest tree.
Breiman et al. [5] suggest using a test sample or cross-validation to obtain honest esti-
mates of C(T). The subtree with the smallest estimate of misclassification cost is chosen
as the final tree. Details of the cross-validation method are described in Breiman et al.
[5] and Zhang and Singer [44].

16.3 TREES FOR SURVIVAL DATA

Consider the usual setting for censored survival data that includes a measurement of time under
observation and covariates that are potentially associated with the survival time. Specifically,
an observation from a sample of size n consists of the triple (yi, di,Xi), i ¼ 1, . . . ,n, where yi
is the time under observation for individual i, di is the event indicator for individual i [i.e.,
di ¼ 1 if the ith observation corresponds to an event (“failure”), and ¼ 0 if the ith observation
is censored], and Xi ¼ (Xil, . . . , Xip) is the vector of p covariates for the ith individual. For sim-
plicity, we will assume that there are no tied events.

Several authors have proposed extensions of CART in the setting described above,
[16,10,11,35,12,26,27,43]. Algorithms for growing trees for survival data can be broadly
classified under two general approaches. One approach is to measure the within-node homo-
geneity with a statistic that measures how similar the subjects in each node are and choose
splits that minimize the within-node error. The alternative is to summarize the dissimilarity
in survival experiences between two groups induced by a split and choose splits that maximize
this difference.

16.3.1 Methods Based on Measure of Within-Node Homogeneity

Tree growing and pruning based on measures of within-node homogeneity adopt the CART
algorithm directly, since the measures defined are all subadditive, allowing comparisons
between subtrees. Gordon and Olshen [16] presented the first extension of CART to censored
survival data, which involved a distance measure (the Wasserstein metric) between Kaplan–
Meier curves and certain point masses. Their approach amounts to assuming a piecewise
exponential model with one data-determined knot. When L2 Wasserstein distances are used,
the homogeneity corresponds to the variance of the Kaplan–Meier estimate. Another
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method proposed by Ciampi et al. [10] is based on a parametric model and likelihood ratio stat-
istics. Below we briefly describe methods based on within-node homogeneity that are most
commonly used in practical settings.

16.3.1.1 Using Martingale Residuals Therneau et al. [40] proposed using the null
martingale residuals from a Cox proportional hazards model as the outcome variable in a
regression tree. In the absence of time-dependent covariates these residuals are given by

bMi ¼ di � L̂0(yi);

where L̂0(.) is the Breslow estimator [9] of the baseline cumulative hazard. Since this
transforms the censored data into uncensored values in the form of the martingale
residuals, they can be used directly as continuous outcome in CART without
modification to the regression tree algorithm. The same authors further established
that improved results could be attained by including the covariate of interest in the
Cox model prior to obtaining martingale residuals as opposed to using null martingale
residuals [17].

A drawback of this approach is that the use of martingale residuals does not provide an
easily interpretable summary measure for the terminal nodes. As is standard with regression
trees, node summaries are simply averages. The root node average in this case is zero by
definition. But it is not possible to confer any meaning to the terminal node averages from a
survival analysis perspective. This can be easily remedied, though, by simply obtaining
survival-based plots and summaries for the terminal nodes. However, an additional drawback
of using the martingale residuals is that there is no guarantee that minimizing the residual sums
of squares improves fit to the survival data [41].

16.3.1.2 Likelihood-Based Methods A likelihood-based splitting criterion was
proposedby Davis and Anderson [12], who assumed that the survival function in a node is
exponential with a constant hazard. The measure for within-node homogeneity is based on the
negative log likelihood of the exponential model at a node; for node h, this is given by

R(h) ¼ Dh 1� log
Dh

yh

� �� �
,

where Dh ¼
P

i[h di is the total number of events and yh ¼
P

i[h yi is the sum of observation
times for all subjects in node h. An advantage of this method is that each terminal node can be
summarized by the hazard ratio of that node. This is a meaningful and easily interpretable
description of the subgroups identified by the tree. A disadvantage, however, is the
assumption of a constant underlying hazard in each node, which may not hold true and may
degrade the performance of the method.

LeBlanc and Crowley [26] developed a splitting method based on the popular semipara-
metric proportional hazards model, where the hazard at time y for an individual i with covariate
vector xi is the product of a baseline hazard that depends only on time and a structural com-
ponent that depends on the individual through that person’s covariates. Consequently, their
splitting criterion is also based on the assumption that the hazard functions in each daughter
node are proportional. LeBlanc and Crowley define the within-node homogeneity measure
based on the deviance residual. For this, the full likelihood function under the proportional
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hazards model for a tree T must be constructed. Under the assumption that the proportional
hazards model

lh(y) ¼ l0(y)uh

is true, where uh is a structural nonnegative parameter that depends on an individual’s covari-
ates and l0 is the baseline hazard, the full likelihood can be written as

L ¼
Y
h[~T

Y
i[h

(l0(yi)uh)
di e�L0(yi)uh ,

where T̃ is the set of terminal nodes and L0(.) is the baseline cumulative hazard function. The
full tree likelihood must be computed every time a node is split, and since all possible splits are
under consideration, the computation quickly becomes burdensome. Furthermore, the baseline
cumulative hazard must be estimated for each node. LeBlanc and Crowley [26] proposed using
the Nelson [32] estimator for L0. This is the Breslow [9] estimator in a Cox model without cov-
ariates. LeBlanc and Crowley [26] referred to this as their “one-step estimator,” denoted by L̂0

1.
In growing the tree, they propose splitting based on the deviance residual

di ¼ 2 di log
di

L̂
1

0(yi)û
1
h

 !
� di � L̂

1

0(yi)û
1
h

� �" #
,

where

û1h ¼
P

i[h diP
i[h L̂

1
0(yi)

,

which can be interpreted as the number of failures divided by the expected number of failures in
node h under the assumption of no structure in survival times. The deviance for a node h is
R(h) ¼

P
i[h di, which is the log-likelihood ratio test statistic when the null is the saturated

model at h. This method of splitting provides meaningful and interpretable node summaries.
Specifically, the node summary is the ratio of observed to expected events in that node
under the proportional hazards model.

For the likelihood-based splitting rules, improvement for split s at a node h into left and
right daughter nodes hL and hR is given by

DR(s, h) ¼ R(h)� ½R(hL)þ R(hR)�,

where R(h) is the node deviance under an exponential or proportional hazards model. The tree
is split by the variable at s so as to lead to the largest value DR(s, h).

16.3.1.3 Weighted Impurity Function Zhang [43] proposed a method in which the
node impurity is determined by the observed times and the proportion of censored versus
uncensored observations in the node. He argues that a homogeneous node should consist of
subjects whose event times are close and who are either mostly censored or mostly
uncensored. Since this within-node homogeneity is based on the observed times and the
censoring status, the impurity at node h can simply be written as a weighted combination of
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the impurity in these two quantities

i(h) ¼ w1iy(h)þ w2id(h);

where w1 and w2 are weights and iy(h) and id(h) are the impurities for the observed time and
censoring, respectively. The impurity for the observation time y is given by

iy ¼
P

i[h (yi � �y(h))2P
y2i

;

where ȳ(h) is the average of y in node h. The sum in the denominator can be over the subjects in
node h (adaptive normalization), or over the entire sample (global normalization). The impurity
of the censoring indicator id(h) is given by

id(h) ¼ �ph log ( ph)� (1� ph) log (1� ph);

where ph is the proportion of censored subjects in node h.
In simulations performed by Zhang [43], three different pairs of weights (1:2, 1:1, and 2:1)

with each normalization method were tested. Adaptive normalization outperformed global
normalization, and the most reliable weight choice for this was 1:2. As noted by Zhang,
since global normalization is easier to implement and retains the subadditivity it should still
be considered. Under global normalization, simulation results revealed that equal weighting
(1:1) was better than the other two weighting schemes.

Benefits of this approach are that it provides an intuitive impurity measure and is easily
implemented. Once the weighted sum is calculated, it can be used as a continuous outcome
in a regression tree using CART engineering. A potential drawback of this approach is that
it may not perform well under heavy censoring.

16.3.2 Methods Based on Between-Node Separation

A different approach to splitting is to recursively partition the data by maximizing the dissim-
ilarity of the two daughter nodes resulting from a split [35]. One such algorithm was proposed
by LeBlanc and Crowley [27], who use the two-sample log-rank statistic to measure the sep-
aration in survival times between two daughter nodes. The two-sample log-rank statistic was
chosen because of its extensive use in the survival analysis setting, and also because it is an
appropriate measure of dissimilarity in survival between two groups. The numerator of the
log-rank statistic can be expressed as a weighted difference between estimated hazard functions

G ¼
ð1
0
w(u)

n1(u)n2(u)
n1(u)þ n2(u)

ðdL̂1(u)� dL̂2(u)Þ,

where w(.) ¼ 1, n1(u), and n2(u) are the number of subjects at risk in each group at time u and
L̂1 and L̂2 are the Nelson cumulative hazard estimators for each group. In general, other
weights could be chosen to have greater sensitivity to early or late differences in the hazards
of the two groups. LeBlanc and Crowley [27] propose using the ratio of G squared divided
by an estimate of its variance as the splitting statistic. Partitioning at node h involves finding
the split s among all variables that maximizes the standardized two-sample log-rank statistic.
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16.3.3 Pruning and Tree Selection

In the survival data setting, two general approaches have been proposed for pruning and sub-
sequent tree selection. As stated earlier, methods that are based on a measure of within-node
homogeneity directly adopt the CART algorithm. This includes cost–complexity pruning,
which efficiently yields subtrees that perform best in terms of residual error (deviance for
the likelihood-based splitting) for their size. In addition, cross-validation can be used to
select the final tree from the sequence of pruned subtrees. Thus, the entire CART engineering
of Breiman et al. can be adopted in this approach.

For the log-rank-based splitting aimed at maximizing between-node separation, LeBlanc
and Crowley [27] developed an optimal pruning algorithm analogous to the cost–complexity
pruning algorithm of CART. Their algorithm uses a measure of the tree’s performance accord-
ing to the dissimilarity in survival between daughter nodes in the tree. LeBlanc and Crowley
[27] define the split complexity of a tree as

Ga(T) ¼ G(T)� ajSj;

where S ¼ T2 T̃ is the set of internal nodes of the tree T and G(T) is the sum over the stan-
dardized splitting statistics G(h) in the tree T, specifically G(T ) ¼

P
h[S G(h), and a � 0 is

the complexity parameter. One can interpret G(T ) as the amount of prognostic structure in
the tree T. A tree T1 is an optimally pruned subtree of T for complexity parameter a if
Ga(T1) ¼ maxT 0WTGa(T

0), where the symbol “W” means “is a subtree of.” Furthermore, T1
is the smallest optimally pruned subtree if T1 W T0 for every optimally pruned subtree T0 of
T. The algorithm repeatedly prunes off branches with smallest average log-rank statistics in
the branch. Thus the pruning algorithm borrows the idea of weakest link cutting from the
cost–complexity algorithm of CART.

Having obtained a sequence of optimally pruned subtrees, the next step is to select the best
tree from this sequence. Since the same data are used to select the split point and variable, as
well as to calculate the statistic, LeBlanc and Crowley [27] suggest using a bias-corrected
version of the split complexity for the final tree selection, using the bootstrap method to esti-
mate the bias.

16.4 SIMULATIONS FOR COMPARISON OF DIFFERENT
SPLITTING METHODS

Several authors have compared different splitting methods for growing survival trees. In par-
ticular, Keles and Segal [24] provided an analytic relationship between log-rank and martingale
residual-based splitting. Zhang [43] compared the weighted-impurity-based splitting [43] with
the splitting rules proposed by Davis and Anderson [12], Gordon and Olshen [16], and Segal
[35]. LeBlanc and Crowley [26] compared their one-step full-likelihood-based splitting method
with the methods proposed by Davis and Anderson [12].

In this section, we describe findings from our simulation experiments to compare the
various splitting rules discussed in Section 16.3. Our interest lies in contrasting the splitting
rules, as opposed to entire tree architectures derived from repeated splitting. Thus, we con-
sidered only a single covariate (x) generated from a uniform(0,1) distribution. Survival distri-
butions were Weibull—S(t; l, a) ¼ exp(2lta)—with the following choices of the shape
parameter: (1) a ¼ 0.5, (2) a ¼ 1 (exponential survival), and (3) a ¼ 2. We considered
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three different survival models for l: (a) l ¼ 1; (b) l ¼ 1 if x . 0.6, and ¼ exp(1) (¼2.72) if
x � 0.6; and (c) l ¼ exp(4x). We assumed uniform censoring with censoring proportions of
0%, 25%, 50%, and 75%. For each simulation design scenario, we generated samples of
size n ¼ 250. We calculated the following five split statistics for all possible split values:
martingale-residual-based split statistic (M), Davis and Anderson’s [12] exponential-model-
deviance-based splitting (ED), LeBlanc and Crowley’s [26] proportional hazards model
(based on one-step full likelihood) splitting (PH), Zhang’s [43] weighted-impurity-based
splitting (WI), and log-rank statistic-based splitting (LR).

Figure 16.1 presents line graphs of the five split statistics versus covariate cutpoint in the
25% censoring scenario. For the null case (model A), the line graphs of M, ED, PH, and
LR exhibit strong tracking for all three survival distributions. The correlations between the
split statistics M, ED, PH, and LR range from 0.91 to 0.99. Although local features for
these four split statistics were very similar, the maxima did not always coincide, since there
were competing splits that had comparable values of the split statistics. The line graph of
WI, on the other hand, exhibits only moderate tracking with the line graphs of the other
four splitting statistics in the a ¼ 0.5 scenario, but poor tracking for the other two survival dis-
tributions. All five statistics exhibit end-cut preference. Although not presented here, the results
obtained in the 50% and 75% censoring scenarios are consistent with the general patterns men-
tioned above. For 0% censoring, as expected, all five statistics exhibit strong tracking with cor-
relations between split statistics ranging from 0.83 to 0.99.

Figure 16.1 Simulation results: line graphs of the five split statistics versus covariate cutpoint
in the 25% censoring scenario. The first column corresponds to model A, the second column
corresponds to model B, and the third column corresponds to model C for l. The first row cor-
responds to a ¼ 0.5, the second row corresponds to a ¼ 1, and the third row corresponds to
a ¼ 2 in the Weibull model.
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For model B, the line graphs of all five split statistics track very closely for all three survival
distributions, with correlations between split statistics ranging from 0.92 to 0.99. Given that tree
methods are especially adept at picking the covariate threshold-type structure such as inmodel B,
this result is reassuring. It is interesting to note that, for theWeibull survival distributionwitha ¼

0.5, M, ED, PH, and LR were all optimized by the same split (0.64) and WI was optimized at
0.66. For the exponential survival distribution, M, ED, PH, and LR were optimized at 0.61
and WI was optimized at 0.63. For the Weibull survival distribution with a ¼ 2, M and LR
were optimized at 0.6 and WI, ED, and PH were optimized at 0.59. Thus the split statistics M,
ED, PH, and LR were largely comparable in their ability to pick the target cutpoint of 0.6.
Once again, the results obtained (not shown here) in the 0%, 50%, and 75% censoring scenarios
are consistent with the general patterns mentioned above, although the concordance betweenWI
and the other four split statistics seems to somewhat decline with higher censoring.

For model C, the line graphs of the split statistics fail to show clear optimal cutpoints for all
three survival distributions. This is because tree methods are not particularly suited for unco-
vering smooth covariate survival association such as in model C. Correlations between the split
statistics are generally in the range 0.12–0.63.

16.5 EXAMPLE: BREAST CANCER PROGNOSTIC STUDY

As an illustrative example, we present tree-based analyses of data from a cohort study of breast
cancer patients. Women eligible for this study were newly diagnosed patients with stage I, II, or
III breast cancer, diagnosed between January 1990 and December 1996 at the Harper Hospital
in Detroit, Michigan. Detailed demographic, clinical, pathological, treatment, and follow-up
data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database,
hospital, and clinic records. Recurrence-free survival (RFS) was the primary endpoint of the
study, defined as the interval between diagnosis and documented regional/local or distant
recurrence. The goals of the study were to analyze the relative contributions of patient and
tumor-related prognostic factors on RFS, and to identify patient subgroups with homogeneous
RFS within a group but different RFS between groups (i.e., prognostic grouping of patients).

The analysis cohort consisted of 1055 patients. A total of 10 covariates were considered for
the analysis. These included sociodemographic variables (age, race, marital status, and socio-
economic status), factors characterizing tumor [tumor size, number of positive lymph nodes,
tumor differentiation, estrogen receptor (ER), and progesterone receptor (PR) status], and
body mass index (BMI) as a comorbid factor. Patients were classified as obese if their BMI
was. 30, per the standard guideline recommended by the World Health Organization.
Number of positive lymph nodes was categorized as: 0, 1–3, 4–9, and .10 positive nodes.
Tumor differentiation was categorized as well, moderate, and poor. Estrogen and progesterone
receptors are binary categorical variables (positive/negative).

Figure 16.2 shows the survival tree based on log-rank splitting. At each level of the tree, we
show the best splitter (covariate with cutpoint), and the corresponding LR split statistic. The
permutation sampling method was used to add an approximate p value to each split conditional
on the tree structure above the split to facilitate the interpretation of individual splits. Circles
denote terminal nodes in the tree. Within each terminal node, n denotes the number of patients,
R denotes the (crude) number of recurrences, and 5Yr is the 5-year RFS rate. Competitor splits
(i.e., covariate with cutpoint that had the second largest value of the LR split statistic) were also
generated at each step of the tree to assess the relative strength of the chosen best splitter.
Knowledge of such splits also enables the elucidation of alternate, competing models.
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The root node was split by the number of positive nodes, with the best cutoff fewer than four
versus at least four positive nodes (LR ¼ 76.61; permutation p , 0.0001). The competitor at
this step was tumor size (�2 cm vs. .2 cm), and the corresponding LR statistic was 50.39.
The subgroup with at least four positive nodes was next split by PR status (LR ¼ 7.39; p ¼
0.04), and the competitor at this step was differentiation (well or moderately vs. poorly differ-
entiated; corresponding LR ¼ 6.3), followed by ER status (LR ¼ 3.33). Patients with positive
PR status had significantly better outcome than did the PR-negative patients (estimated 25th
percentile RFS, 31 months and 16 months, respectively). None of these subgroups were
further split and formed terminal nodes VII and VIII in the tree. Of note, PR-negative patients
with at least four positive nodes (i.e., terminal subgroup VIII) had the worst prognosis among
all subgroups. On the opposite side of the tree, the subgroup with fewer than four
positive nodes was next split by tumor size (best cutoff �2 vs. .2 cm; LR ¼ 29.73; p ,
0.0001). The competitor was differentiation (well or moderately vs. poorly differentiated;
LR ¼ 20.3). The subgroup with fewer than four positive nodes and tumor size �2 cm was sub-
sequently split by PR status (LR ¼ 14.33; p , 0.0001), and the competitor was ER status
(LR ¼ 8.7). Patients with PR-positive tumors had significantly better outcome compared
with the PR-negative patients. The latter formed terminal node III in the tree; the 25th percen-
tile RFS of patients in this group was 57 months. The subgroup with fewer than four positive
lymph nodes, tumors �2cm, and positive PR status was further split by tumor differentiation
(well or moderately vs. poorly differentiated; LR ¼ 11.06; p , 0.0001). The competitor at this
step was tumor size (�1cm vs. 1–2cm), and the corresponding LR was 3.7. None of the
resulting subgroups had any further split and formed terminal nodes I and II in the tree.
Notably, patients with fewer than four positive nodes, tumor size �2cm, positive PR status,
and well or moderately differentiated tumors (i.e., terminal node I) had the best prognosis,
with a 5-year RFS of 97%.

Figure 16.2 Survival tree based on log-rank splitting. At each level of the tree, the best
splitter (covariate with cutpoint), along with the corresponding LR split statistic, and permu-
tation p value are presented. Circles denote terminal nodes in the tree.
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The patient subgroup with fewer than four positive nodes and tumor size .2cm was then
split by race (LR ¼ 6.12; p , 0.0001). The competitor at this step was age (,50 vs. �50
years), and the corresponding LR was 4.1. White patients had significantly better RFS than
did African-American patients. The latter formed terminal node VI in the tree; the 25th percen-
tile RFS of these patients was 30 months. The white subgroup with fewer than four positive
nodes and tumor size .2cm was further split by marital status (LR ¼ 7.29; p , 0.0001),
with married patients having better prognosis. The competitor at this step was socioeconomic
status (LR ¼ 3.7). None of these subgroups had any other significant split and formed terminal
nodes IV and V in the tree.

We also constructed survival trees based on the other splitting criteria discussed earlier
(Figs. 16.3–16.5). The purpose was to illustrate the similarities and differences in survival
trees grown on the basis of the other split statistics. Using WI, the root node splitter
was,10 versus �10 positive nodes (Fig. 16.3). The resulting daughter nodes were terminal
nodes, yielding a simple tree structure with only two terminal nodes. The competitor for the
root node splitter was tumor size �2cm versus .2cm. Using M, the root node was split by
,4 versus �4 positive nodes (Fig. 16.4). The resulting left daughter node was split by
tumor size �2cm versus.2cm, and the right daughter node was split by SES. All the resultant
nodes were declared terminal nodes, thereby resulting in a tree with four terminal nodes.
Structurally, the trees grown using PH (Fig. 16.5) and LR (Fig. 16.2) as splitting statistics
were most similar. In fact, the optimal splitters (covariate with cutpoint) at each level of the

Figure 16.3 Survival tree based on weighted impurity (WI).

Figure 16.4 Survival tree based on martingale residual (M).
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PH- and LR-based trees were identical. The number of terminal nodes in the PH-based tree was
five, yielding once again a smaller sized tree than the LR-based tree.

Prognostic grouping of the patients was based on further amalgamation of the terminal
nodes in Figure 16.2. Since only a small number of prognostic groups was of interest,
further amalgamation of the terminal nodes with similar prognosis was performed. We

Figure 16.5 Survival tree using proportional hazards model–based splitting (PH).

Figure 16.6 Recurrence-free survival for the four prognostic groups derived from amalgama-
tion of terminal nodes in Figure 16.2. Group A (best prognostic group) corresponds to terminal
node I; group B corresponds to terminal nodes II, III, and IV; group C corresponds to terminal
nodes V, VI, and VII; and group D (worst prognostic group) corresponds to terminal node VIII.
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chose the 5-year RFS rate as a measure of prognosis, and ranked each terminal node in the tree
according to that measure. After ranking the nodes, there are several options for amalgamation
[25]. One option would be to grow another tree on the ranked nodes and only allow the second
tree to select three or four nodes. A second option would be to divide the nodes according to the
quantiles of the data. Yet another option would be to evaluate all possible amalgamations of
nodes into K groups and choose the partition that yields the largest partial likelihood or
largest K sample log-rank test statistic. The result of amalgamation to yield the largest
partial likelihood for a four-group combination of the breast cancer tree given in Figure 16.2
is presented in Figure 16.6. Terminal nodes II, III, and IV in Figure 16.2 were amalgamated
to form prognostic group B; and nodes V, VI, and VII were amalgamated to form prognostic
group C. These, together with subgroups I and VIII, resulted in four distinct prognostic groups
for RFS, designated A–D in Figure 16.6. The 5-year RFS rates for patients in groups A, B, C,
and D were 97%, 78%, 58%, and 27%, respectively ( p ¼ 0.0001).

16.6 RANDOM FOREST FOR SURVIVAL DATA

The mechanism of selecting a best split and the recursive partitioning of data leads to smaller
and smaller datasets. This can lead to instability [6] in the tree structure, whereby small changes
in the data and/or algorithm inputs can have dramatic effects on the nature of the solution (vari-
ables and splits selected). Another major shortcoming of tree-based methods is their modest
prediction performance, attributable to algorithm greediness and constraints that, while enhan-
cing interpretability, reduce flexibility of the fitted functional forms. Growing an ensemble of
trees and aggregating is a way to fix these problems. The advantage in growing many trees and
using an aggregated estimate is that it is a way to reduce variance [7]. It also leads to classifiers
and predictors that are drawn from a richer class of models [18]. Ensemble methods such as
bagging [6,33], boosting [14,33], and random forest [7] yield substantial performance improve-
ment over a single tree, and are known to be stable.

Bagging involves bootstraping the training data. A large number of pseudodatasets are
generated by resampling the original observations with replacement, and a tree grown on
each pseudodataset. This results in an ensemble of trees. In boosting, instead of random
resampling, the data are iteratively reweighted. The algorithm alternates between fitting a
tree and reweighting the data. The weights are adaptively chosen, with more weight given
to observations that the tree models poorly. Again, an ensemble of trees result. The simple
mechanism whereby bagging and boosting reduce prediction error, is well understood in
terms of variance reduction resulting from averaging [18]. Such variance gains can be
enhanced by reducing the correlation between the quantities being averaged. It is this principle
that motivates random forest.

Random forest [7] is an ensemble of unpruned classification or regression trees, induced
from bootstrap samples of the training data, using random feature selection in the tree induction
process. Correlation reduction is achieved by the random feature selection. Instead of determin-
ing the optimal split of a given node of a tree by evaluating all allowable splits on all covariates,
as is done with growing a single tree, a subset of the covariates drawn at random is employed.
Prediction is made by aggregating (majority vote for classification or averaging for regression)
the predictions of the ensemble. Random forests demonstrate exceptional prediction accuracy
[7], comparable to artificial neural networks and support vector machines.

The published literature on ensemble techniques for survival data is sparse owing to the dif-
ficulties induced by censoring. Hothorn et al. [19] studied an aggregation scheme for bagging
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survival trees. Breiman [8] introduced a software implementation of a random forest variant for
survival data; however, it does not come with a formal description of the methodology.
Ishwaran et al. [22] proposed a method that combines random forest methodology with survival
trees grown using Poisson likelihoods. In a more recent article, Hothorn et al. [20] proposed a
unified and flexible framework for ensemble learning in the presence of censoring.

In this section, we present an adaptation of Breiman’s [7] random forest methodology to the
survival data setting. The strategy involves substituting suitably chosen residuals for the survi-
val endpoint, and enabling inheritance of the random forest algorithm applicable to continuous
outcomes, thereby bypassing difficulties that result from censoring. This general strategy has
been employed to adapt additive (Cox) models [17,37], multivariate adaptive regression
splines (MARS) [28], regression trees [26,24], and least-angle regression–lasso [39] to cen-
sored survival outcomes.

For growing random forest in the survival data setting, we propose using the null deviance
residuals from a Cox proportional hazards model as the outcome variable in the random forest
algorithm. Therneau et al. [40] had advocated the use of null martingale residuals from a Cox
proportional hazards model in growing a regression tree for censored data. However, Therneau
and Grambsch [41] later described pitfalls surrounding the minimization of sums of squared
martingale residuals. Moreover, it has been shown in other contexts [39] that it is via use of
deviance residuals that methods devised for uncensored outcomes are best extended to survival
settings.

For growing the trees in the forest, we substitute the null deviance residuals from a Cox pro-
portional hazards model for the survival endpoint, and adopt the random forest algorithm
directly. This approach is easy to implement, and circumvents the complexity induced by cen-
soring. Ensemble predictions are computed by aggregating across different trees in the forest.
This reduces variance and avoids the instability of working with a single tree. We illustrate this
approach using data from the breast cancer prognostic study.

Following Breiman [7], the idea is to grow trees by injecting two types of randomness into
the process. To grow the trees in the forest, the following steps are recommended:

1. Bootstrap the training data. Grow each tree on an independent bootstrap sample using
null deviance residuals from a Cox proportional hazards model as the outcome variable.

2. At each node, randomly selectm covariates out of allM possible covariates. Find the best
split on the selected m covariates.

3. Grow the tree to maximal depth under the restriction of minimum node size ¼ 5 (i.e.,
splitting is stopped when a node has fewer than five subjects). No pruning is performed.

4. Repeat for each bootstrap sample.

5. Average the trees to get predictions.

Steps 1 and 2 introduce randomness. To ensure that random forests have good prediction prop-
erties, it is important to ensure that the correct amount of randomization has been introduced.
This means that we need to determine an appropriate number of randomly selected covariates m
to be used in step 2 of the procedure. If we select too few covariates, the trees might be too
sparse, and the ensemble estimator will have suboptimal properties. Choosing too many cov-
ariates will make the trees highly correlated, which can also degrade performance. As discussed
in Breiman [7], one method for assessing the accuracy of a forest is through its generalization
error. As m increases, the strength of a tree increases, which contributes to a lower forest gen-
eralization error; at the same time, however, the correlation between residuals increases, which
increases error.
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An estimate of the prediction error rate is obtained, based on the training data, as follows:

1. At each bootstrap iteration, predict the data not in the bootstrap sample (Breiman calls
these “out-of-bag data”) using the tree grown with the bootstrap sample.

2. Average the out-of-bag predictions. Calculate the error rate, and call it the “out-of-bag
estimate of error rate.”

Given that enough trees have been grown, the out-of-bag estimate of error rate is an accurate
estimate of test set prediction error rate [7].

In addition to excellent prediction performance, random forests possess a number of advan-
tages. These include the distinction of forests from so-called blackbox methods (e.g., neural
nets), and accurate, internal estimates of test set prediction error. Furthermore, a byproduct
of forests is a collection of variables that are frequently used in the forests, and the frequent
uses are indicative of the importance of these variables. Zhang et al. [46] examined the frequen-
cies of the variables in a forest and used them to rank the variables. We illustrate these in our
analysis of the breast cancer data.

16.6.1 Breast Cancer Study: Results from Random Forest Analysis

In view of the potential improvement in predictive performance afforded by random forest over
a single tree, we performed a random forest analysis of the breast cancer data discussed in
Section 16.5. We used the random forest software, available as an R interface [29], to grow
regression forests, based on using the null deviance residuals from a Cox proportional
hazards model as the outcome variable. Null deviance residuals are obtained simply in R by
specifying residual type and zero iterations in the call to coxph(). The same 10 covariates
used in growing a single tree in Section 16.5 were used for the random forest analysis as
well: age, race, marital status, socioeconomic status, tumor size, number of positive lymph
nodes, tumor differentiation, ER, PR status, and BMI. We grew 500 trees in a forest. The
size of the individual trees constituting the forest is controlled by a tuning parameter, which
specifies the number of cases in a node below which the tree will not split. This was set to
the default value of 5, which is claimed to give generally good results.

Table 16.1 shows the prediction errors from the forest as a function of varying the primary
tuning parameter m. The entries are out-of-bag estimates of prediction error variance. For the
single tree, the estimate of prediction error variance is based on 10-fold cross validation.

Table 16.1 Tree and Forest Prediction Error
Variances for Breast Cancer Data

Method m

Prediction
Error

Variance

Random forest 2 697.51
3 734.13
4 754.07
5 769.19

Single tree (unpruned) 743.92
Single tree (pruned) 735.39
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Note that the best prediction error achieved by m ¼ 2 among the range of forests examined is
only a marginal improvement over the prediction error attained from a single pruned tree. A
possible reason for this is the strong correlation between the covariates in this study.
Roughly 65% of all possible pairwise correlations between covariates were significant. This
could have potentially hindered the effectiveness of the random forest variance reduction
strategy.

Variable important factors corresponding to the forest with minimal prediction error are
depicted in Figure 16.7. Note the consistency with the tree results in terms of the prominence
of differentiation, PR status, number of positive lymph nodes, and tumor size.

16.7 CONCLUDING REMARKS

In this chapter, we discussed methodological and practical aspects of tree-based modeling for
survival data. Our focus was on comparing and contrasting different splitting criteria that affect
tree growth. The splitting criteria based on M, ED, PH, and LR were found to be largely com-
parable on the basis of the simulations, as well as the data example. In all our simulations,
Zhang’s weighted impurity criterion demonstrated at best only moderate concordance with
the four split statistics described above, and the concordance seemed to decline with higher
censoring. The weighted impurity criterion decouples the link between survival time and cen-
soring indicator. In our simulations, censoring was assumed to be uniform and independent of
survival. However, for the Cox proportional hazards model, under conditional (on covariates)
independence, the weighted impurity criterion may break down.

In our simulations, we considered only a single covariate since our focus was on contrasting
the splitting functions. However, with multiple covariates, ultimately the interest may lie on
how the various splitting functions affect the entire tree architecture derived from repeated split-
ting. In that context, all that matters is the upper ranks of the split functions, so the extent of

Figure 16.7 Plot of variable importance in the random forest with minimal prediction error.
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tracking or concordance may be excessively stringent measures. We also did not consider the
subsequent pruning procedure in our simulations. Because tree growing and pruning are two
independent processes, the existing pruning procedures can be applied to any large tree that
is grown by any of the splitting rules discussed in this chapter. Further simulations are war-
ranted to study the abovementioned aspects in terms of their effects on the tree architecture.

It is well recognized that the mechanism of selecting a best split and the recursive partition-
ing of data leading to smaller and smaller datasets to be considered can lead to instability in the
tree structure. Ensemble methods such as random forests can be useful in understanding the
stability of tree structures and improving predictive performance. However, the published lit-
erature on ensemble techniques for survival data is sparse because of the difficulties
induced by censoring. Breiman’s [8] software implementation of a random forest variant for
survival data comes with no formal description of the methodology, and needs to be evaluated
before it can be widely used.

In this chapter, we presented a simple method for growing survival forests based on using
the null deviance residuals from a Cox proportional hazards model. Our approach is easy to
implement, and circumvents the difficulties induced by censoring. Variable importance sum-
maries derived from the forest can be used to assess the relative importance of the covariates.
However, the predictions obtained are not amenable to easy interpretation in the survival analy-
sis setting. Methods that directly control the censoring are therefore warranted. For boosting-
based ensemble approaches, such direct control has been described by Hothorn et al. [20].
An area of future investigation involves handling of time-dependent covariates under
ensemble methods.

There are many versions of freewares implementing tree-based methods for survival data.
Most of these are available through Statlib (http://lib.stat.cmu.edu) and CRAN (http://cran.
r-project.org/). In particular, the RPART program [42] could be used to implement the
method of LeBlanc and Crowley [26], the martingale-residual-based method of Therneau
et al. [40], and Zhang’s [43] weighted impurity approach. Software programs implementing
log-rank-statistic-based splitting [38,27] are available from the first authors. Free, open-
source code for random forests is available from http://www.stat.berkeley.edu/users/
breiman/RandomForests. There is also an R implementation of random forests [29]. Finally,
a commercial version is available through Salford Systems.
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17.1 INTRODUCTION

For survival analysis in medical research, it is useful to have clear summaries of the data for
clinicians, and, as advocated by Efron [16], this can often be achieved by a graphical presen-
tation of the hazard function. The data may consist solely of observed survival times, or with
each time there may be associated a vector of covariates. In the latter case the hazard is often
modeled as a product of a hazard function that depends only on time and a function of the cov-
ariates that is presumed independent of the time. In analyzing such data the two components are
often analayzed separately, and such an analysis is called semiparametric. For an excellent
review of Bayesian semiparametric analysis for even more complex models, we cite Sinha
and Dey [55]. Here we prefer to concentrate on the problem of estimating the hazard function
without covariates, although indications will be given on how the methodology can be
extended to the semiparametric model.

Our purpose here is threefold: (1) to give an overview of the relevant literature concerning
both Bayesian and frequentist nonparametric estimation of the hazard rate, mainly in the case
without covariates; and (2) to introduce a new nonparametric Bayesian method using monotone
wavelets; and (3) to compare our estimators with both a frequentist estimator and a Bayesian
nonparametric estimator.
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We first briefly review the frequentist approaches to this problem. Various authors have used
splines for estimating the survival function and the hazard rate in the random right-censorship
model. We cite, in particular, Bloxom [9], Klotz and Yu [33], Whittemore and Keller [58],
Efron [16], O’Sullivan [46], Jarjoura [30], Kooperberg and Stone [34], and Kooperberg
et al. [35]. Senthilselvan [54] proposed penalized likelihood methods, and Loader [42] used
local likelihood methods for hazard rate estimation with censored data. Kernel estimation of
the hazard rate has also proved to be a useful method [50,52,53,27,21]. For frequentist esti-
mation of a monotone hazard rate with randomly right-censored data, we cite the original
work of Grenander [20] and that of Prakasa Rao [49] for uncensored data and for censored
data, that of Padgett and Wei [47], Huang and Wellner [25], and MacGibbon et al. [44],
which is based on least concave majorants (greatest convex minorants).

Some researchers have previously used orthogonal series methods; in particular, Patil [48]
used orthogonal wavelet methods for hazard rate estimation in the uncensored case, and
Antoniadis et al. [5] in the random right-censorship model. We also cite the theoretical research
on wavelet density and hazard estimation by Li [37,38] and Liang et al. [39].

Early Bayesian research in survival analysis concentrated mainly on the estimation of the
survival function. Susarla and Van Ryzin [56] used Dirichlet priors [17] to estimate the survival
function with censored data. Ferguson and Phadia [18] extended this work to include prior dis-
tributions that are neutral to the right, previously studied by Doksum [14]. Kalbfleisch [31]
used a gamma process prior for survival function estimation. Kuo and Smith [36] found
Bayes estimators of the survival function with censored data using the Gibbs sampler. We
also cite other interesting Bayesian research related to hazard rate estimation such as Arjas
and Liu [7] and Berger and Sun [8].

Among the first to estimate the hazard directly were Dykstra and Laud [15] and Broffitt
[11]. Dykstra and Laud [15] defined an appropriate prior stochastic process called an extended
gamma process whose sample paths are hazard rates, and obtained the posterior distribution of
the hazard rates for both exact and censored data. Bayesian nonparametric hazard function esti-
mation methodology in Dykstra and Laud [15] was generalized in different ways by Ammann
[1], who used conditional Laplace transforms, and by Thompson and Thavaneswaran [57].
Hjort [22] used beta process priors to estimate the cumulative hazard rate process. Further gen-
eralizaitons by Lo and Weng [41], Ho and Lo [24], and James [28,29], culminated in the
characterization given by Ho [23] of the posterior distribution of the mixture hazard model
of a monotone hazard rate via a finite mixture of S paths.

One of the most interesting methods, perhaps, for estimating the hazard rate, influenced by
Dykstra and Laud [15] is that proposed by Arjas and Gasbarra [6]. Using a hierarchical model
structure, they modeled the hazard rate nonparametrically as a jump process having a martin-
gale structure with respect to the prior distribution. They describe an algorithm that generates
sample paths from the posterior by a dynamic Gibbs sampler and illustrate the method in simu-
lated examples. We have chosen here to compare our proposed method with theirs.

Angers and MacGibbon [3] developed a Bayesian adaptation of the Antoniadis et al. [5]
method by employing Bayesian nonparametric estimation techniques with Fourier series
methods in order to obtain a procedure that is easier to implement. Their method did not
perform as well as the method of Antoniadis et al. [5] for estimation of the subdensity, but
in simulations, it was shown to be as good or superior to the method of Antoniadis et al. [5]
for estimation of the hazard rate. Here we propose the use of monotone wavelet approximation
introduced by Anastassiou and Yu [2] to estimate the subdensity and hazard function.

We proceed as in Antoniadis et al. [5] to estimate the number of events and the survival
functions separately. In order to describe our method here, in Section 17.1.1 we follow the
description given by Antoniadis et al. [5]. For ease of presentation, Section 17.1.2 is
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devoted to recalling the Bayesian approach to linear models. In Section 17.2, the Bayesian
model using monotone wavelet approximation is introduced. In Section 17.3 we develop our
method of Bayesian functional estimation for the hazard rate problem with right-censored
data. Section 17.4 contains a simulation study and the comparison of our results with those
of Antoniadis et al. [5]. Section 17.5 presents an application of our method as well as those
of Antoniadis et al. [5] and Arjas and Gasbarra [6] to a bone marrow transplantation dataset
and to the Standford heart data. Section 17.6 consists of some concluding remarks.

17.1.1 The Random Right-Censorship Model

Survival analysis is usually based on study of a group of individuals of size n for which we
assume their failure times, where the nonnegative random variables T1, . . . , Tn are independent
and identically distributed (i.i.d.) with distribution function F(t), survival function S(t) ¼ 1 2
F(t), and density f (t). However, one feature that distinguishes the analysis of survival data from
classical statistical analysis is the possibility that the data may be incomplete; that is, some indi-
viduals may not be observed until failure. For example, some patients will survive to the end of
a clinical trial, and thus their failure times cannot be observed. If this happens in a random
fashion, then this type of incompleteness is modeled by assuming that there exist C1, . . . ,
Cn, i.i.d. random variables with distribution function G and density g representing the censor-
ing mechanism. Instead of observing the complete data T1, . . . , Tn, we observe Xi ¼ min(Ti,
Ci), i ¼ 1, . . . , n and an indicator function di ¼ 1 if Ti � Ci and ¼ 0 if not.

Since the density function of T exists, the hazard rate function can also be defined a

l(t) ¼ f (t)
1� F(t)

, F(t) , 1:

With Tj, Cj, dj defined as above, the observed random variables are then Xj and dj. Henceforth
we assume that

1. T1, T2, . . . , Tn are nonnegative and i.i.d. with distribution function F and density f.

2. C1, C2, . . . ,Cn are nonnegative, i.i.d. with distribution function G and density g.

3. The T and C terms are independent.

In the censored case, if G(t) , 1, we have

l(t) ¼ f (t)f1� G(t)g
f1� F(t)gf1� G(t)g : F(t) , 1:

If we let L(t) ¼ P(Xi � t), then

1� L(t) ¼ f1� F(t)gf1� G(t)g:

Letting

f �(t) ¼ f (t)f1� G(t)g
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be the subdensity of those observations that are still to fail, clearly

l(t) ¼ f �(t)
1� L(t)

, L(t) , 1:

17.1.2 The Bayesian Model

The estimator for the hazard rate proposed in the next section is obtained by writing the esti-
mation problem using a Bayesian linear model. Hence, for ease of presentation, we first recall
the Bayesian linear model as found in Lindley and Smith [40] and Robert [51]. Let

Y ¼ Xuþ e,

where Y ¼ n � 1 vector of observations
X ¼ n � p known matrix
u ¼ p � 1 vector of regression coefficients
e � Nn(0, s

2 In)

Note that X is assumed to be of full rank, but even if X is singular, the theory holds.
Furthermore, s2 might be known or unknown. If s2 is unknown, it will also be considered
as a random variable.

Given this model, the likelihood function is given by

‘(u;s2) ¼ 1

(2ps2)n=2
exp � 1

2s2
(Y � Xu)0(Y � Xu)

� �
:

The loss function typically used is

L(u, û) ¼ (u� û)0Q(u� û), (17:1)

where Q is a positive-definite matrix.
Letting

uLS ¼ (X0X)�1X0Y

S ¼ (Y � XuLS)
0(Y � XuLS),

the likelihood function can be rewritten as

‘(u, s2)/
1

(s2)n=2
exp � 1

2s2
(u� uLS)

0X0X(u� uLS)þ S½ �
� �

¼ 1

(s2) p=2
exp � 1

2s2
(u� uLS)

0X0X(u� uLS)

� �� �

� 1

(s2)(n�p)=2
exp � S

2s2

� �� �

¼ ½u js2, Y � Np(uLS, s
2(X0X)�1)�

� ½s2 j Y � IG((n� p� 2)=2, S=2)�, (17:2)
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where Np(m, S) denotes the multivariate normal density with mean m and covariance matrix
S while IG(a, b) represents the inverse gamma density with shape parameter a and scale par-
ameter b. Note that if l � IG(a; b), then

p(l) ¼
ba

G(a)laþ1 e
�b=l if l . 0,

0 otherwise:

8<
:

Now a conjugate prior for (u;s2) is given by

u js2 � Np(h;s
2C); (17:3)

s2 � IG(a=2;g=2); (17:4)

where h, C, a, and g are assumed to be known.
With the prior model given in Equations (17.3) and (17.4) and the likelihood function given

in Equation (17.12), the posterior density of (u;s2) and the marginal of the least-squares
estimator uLS are

u js2;Y � Np(u�;s
2C�); (17:5)

s2 j Y � IG
nþ a

2
;
g�
2

� �
;

uLS � Tp nþ a� p; u0;
Sþ g

nþ a� p
A�

� �
;

where

u� ¼ uLS � C�C
�1(uLS � h);

C� ¼ (X0X þ C�1)�1 ¼ C � C(C þ (X0X)�1)�1C;

g� ¼ Sþ gþ (uLS � h)0A�1
� (uLS � h);

A� ¼ (X0X)�1 þ C:

Then, under the loss function given in Equation (17.1), the Bayes estimator of u is given by

û ¼ E½u j Y� ¼ uLS � C�C
�1(uLS � h):

Another intersting loss function is given by

L((u, s2), (û, ŝ2)) ¼ (u� û)0Q(u� û)þ (s2 � ŝ2)2:
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The associated Bayes estimators of b and s2 are given by

û ¼ u� ¼ uLS � (XtX þ C�1)�1C�1(uLS � u0);

ŝ2 ¼ g�
nþ a� 2

¼ Sþ gþ (uLS � u0)0A�1
� (uLS � u0)

nþ a� 2
:

Remark 17.1. If we use the reference prior p(u;s2)/ 1=s2, the posterior densities become

u js2;Y � Np(uLS;s
2(X0X)�1),

s2 jY � IG
n

2
,
S

2

� �
:

(The reference prior is the limit case of Equations (17.3) and (17.4) with C�1 ! 0, a ! 0 and
g ! 0.)

17.2 BAYESIAN FUNCTIONAL MODEL USING MONOTONE
WAVELET APPROXIMATION

We first consider the estimation of the cumulative distribution function L(t) and F�(t), which
are monotone functions. Let us consider the general case and assume that H(t) is a monotone
nondecreasing function. [The term H(t) stands for L(t) or F�(t) depending on the observations
considered.] Now, we can develop this Bayesian functional estimation model using the
Bayesian linear model described in the previous section as a basis. As many authors including
Antoniadis et al. [5] have indicated, wavelet estimators are ideal for estimating functions with
inhomogeneous spatial smoothness. This is often the case with hazard functions. Here we intro-
duce the terminology from Anastassiou and Yu [2].

Let w(x) denote a bounded right-continuous function on R with compact support, that is,
supp w(x) # ½�a, a�, 0 , a , þ1 and define

wkj(x) :¼ 2k=2w(2kx� j) for k, j [ Z:

If H is continuous, then define

Bk(H)(x) :¼
X
j

H(2�kj)wkj(x) for k [ Z: (17:6)

Since w(x) is compactly supported, for any fixed x [ R the summation in (17.6) involves
only a finite number of terms (see Appendix 17A). So Bk(H)(x) is well defined on R, that is

Bk(H)(x) ¼
Xj1
j¼j0

H(2�kj)wkj(x):

Theorem 6 of Anastasiou and Yu [2] states that if w(x) satisfies conditions C1–C4 given
below and if H(x) [ C(R) is a nondecreasing function, then the linear wavelet
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operator Bk(H)(x) given by Equation (17.6) is also nondecreasing on R satisfying

jBk(H)(x)� H(x) j � Cv2(H, 2�kþ1a) for x [ R, k [ Z,

where C is an absolute constant and

v2(H; d) ¼ sup
h,d

sup
x

jH(xþ 2h)� 2H(xþ h)þ H(x) j :

The conditions on w(x) are

C1:
P

j[Z w(x� j) ¼ 1 8x [ R.

C2: There exists a number b such that w(x) is nondecreasing if x � b and is non-increasing
if x � b.

C3:
Ð1
�1

w(x) dx ¼ 1.

C4:
P

j[Z jw(x� j) ¼ x 8x [ R.

Note that if a ¼ 1, then conditions C1 and C4 can be written as

C1:
w(x)þ w(xþ 1) ¼ 1 if � 1 � x � 0;

w(x)þ w(x� 1) ¼ 1 if 0 , x � 1;

(

C4:

xþ w(xþ 1) ¼ 0 if � 1 � x � 0;

x� w(x� 1) ¼ 0 if 0 , x � 1:

(

It can be easily shown that the only function satisfying these two conditions is

w(x) ¼ 1þ x if � 1 � x � 0;
1� x if 0 , x � 1

�
(17:7)

Since H( � ) is unknown, we cannot compute H(2�kj) directly. Consequently, let fujg j1
j¼j0

be
a sequence of real numbers. Hence, renumbering the uj, Bk(H) can be written as

Bk(H)(x) ¼
Xj1
j¼j0

ujwkj(x)

¼
Xj1
j¼j0

uj2
k=2w(2kx� j)

¼ 2k=2
Xj1�j0

l¼0

ulw(2
kxþ j0 � l):

(17:8)

However, since H(x) is a nondecreasing function, the uj terms should also be non-decreasing.
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Hence, given u0, ulðl ¼ 1, 2, . . . , j1 � j0Þ can be written as

u1 ¼ u0 þ z1;

..

.

ul ¼ u0 þ z1 þ � � � þ zl

¼
Xl

q¼0

zq,

where z0 ¼ u0 and zl � 0 for l ¼ 1, 2, . . . , j1 � j0. Consequently, Equation (17.8) can be
written as

Bk(H)(x) ¼ 2k=2
Xj1�j0

l¼0

Xl

q¼0

zq

" #
w(2kxþ j0 � l )

¼ 2k=2
Xj1�j0

q¼0

zq

Xj1�j0

l¼q

w(2kxþ j0 � l )

" #

¼ 2k=2
Xj1�j0

q¼0

zqFq(2
kxþ j0);

(17:9)

where

Fq(2
kxþ j0) ¼

Xj1�j0

l¼q

w(2kxþ j0 � l):

Using standard techniques, we can obtain a linear model as in Equation (17.2) with

Y ¼ (H(x1), H(x2), . . . ;H(xn))
0,

(X)i;j ¼ 2k=2F j�1(2
kxi) for i ¼ 1, 2, . . . ; n and j ¼ 1, 2, . . . , j1 � j0 þ 1;

z ¼ (z0, z1, . . . , z j1�j0 )
0:

However, the prior on z is different from that in equation (17.3). To account for the non-
negativity of zq for j ¼ 1, 2, . . . , j1 � j0, the prior is then

z0 � N(h0;s
2=n0);

zq � N(hq;s
2=n0)I½0;1)(zq) for q ¼ 1, 2, . . . , j1 � j0,

s2 � IG(a=2;g=2);

where I½0;1)(zq) represents the indicator function of the set ½0;1). The posterior density
of z is similar to that in Equation (17.5) but we have to account for the nonnegativity of
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z1, z2, . . . , zj1 � j0 : The Bayes estimator of z is then given by

ẑ ¼
ð1
0

ð1
0

. . .

ð1
0

ð1
�1

z� ½z js2, Y � Nj1�j0þ1(z�,s
2C�)

Yj1�j0

q¼1

I½0,1)(zq)�

� s2 j Y � IG
nþ a

2
,
g�
2

� �h i
dz0dz1 . . . dz j1�j0ds

2: (17:10)

17.3 ESTIMATION OF THE SUBDENSITY F�

To obtain the estimator of f �(t), we start by estimating the cumulative distribution function
(cdf) F� using Equation (17.10) based only on the uncensored observations (values of i
such that di ¼ 1). The vector Y, described at the beginning of Section 17.1.2, will then be
based on the empirical cdf of the uncensored observations; that is

Y ¼ 1
no þ 1

(1, 2, . . . , no � 1, no)
t ,

where no represents the number of uncensored observations. Referring to Equation (17.9), it is
clear that the estimator of Y is also an estimator of the subdistribution, which we denote as F̂�(x)
given by

F̂�(x) ¼ 2k=2
Xj1�j0

q¼0

ẑqFq(2
kxþ j0),

where ẑ is defined by Equation (17.10). To obtain the estimator of f �(t), we proceed as
follows:

f̂ �(x) ¼ @

@x
F̂�(x)

¼ 23k=2
Xj1�j0

q¼0

ẑqF
0
q(2

kxþ j0):

To estimate L(x) ¼ P(Xi � x), we proceed as for F�(x) in order to obtain L̂(x), but this time
all the observations (censored and uncensored) are used. The estimator of the hazard function is
then given by

l̂(x) ¼ f̂ �(x)

1� L̂(x)
:

Remark 17.2. This method is easy to adopt for hazard estimation in more general models such
as the Cox proportional risk model

l(t) ¼ l0(t)expf�b0xg,
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where x is a vector of covariates, b a vector of parameters, and l0(t) is the baseline hazard
function, and the usual assumption of noninformative censoring [19] is made. We proceed
with the usual semiparametric Bayesian approach to find an estimator b̂ of b. The vector Y,
described in Section 17.2, will now be based on the empirical cumulative hazard function
given by

L̂(t) ¼
X
ti�t

di=
X

k[R(ti)

exp �
Xp
m¼1

b̂m xkm

( )
,

where ti represent the observed “event” times and di, the observed number of events occurring
at time ti and R(ti), the risk set associated with ti [32].
Again, referring to Equation (17.9), the estimator of Y is also an estimator L̂ of the cumu-

lative hazard function L, the survival function is estimated by expf�L̂(t)g, and an estimator
of the density function is found by differentiation. Proceeding in a manner analogous to that

described above, we obtain an estimator of the baseline hazard function l̂0(t) and consequently
of l(t).

Remark 17.3. We conjecture that in an analogous way, the methodology presented here can
be extended to include more general situations such as some of those mentioned in Sinha and
Dey [55]. In particular, we feel that our methodology can be extended to such models as a Cox
model with informative censoring or one with a cure fraction as in Ibrahim et al. [26].

17.4 SIMULATIONS

We consider here the first simulation study proposed by Antoniadis et al. [5]. Samples of size n,
fTi, 1 � i � ng, from the gamma distribution with shape parameter 5 and scale parameter 1,
denoted by f1, and an independent sample Ci; 1 � i � n, from the exponential distribution
with mean 6 (the mean was chosen to yield �50% censoring) were generated. The perform-
ance measure used to compare the different estimators is the average mean-squared error
obtained by averaging the mean-squared errors given by

ASE( f �) ¼ n�1
�

Xn�
i¼1

½ f̂ �(xi)� f �(xi)�2;

ASE(l) ¼ n�1
�

Xn�
i¼1

½ l̂(xi)� l(xi)�2;

where n� represents the number of observations with xi � 6. Two values of n are considered,
that is, n ¼ 200 and n ¼ 500.

The simulation results are given in Table 17.1. The true function along with the proposed
estimator and the one given in Antoniadis et al. [5] are given in Figure 17.1. Because w0(x) is a
step function [see Eq. (17.7)], the estimator of the subdensity is also a step function. Hence, we

did a linear interpolation based on the center of each interval to smooth f̂
�
. In Table 17.1, the

results for this interpolation is denoted by linear Bayes, that is, “Lin–Bayes” in the different
figures.
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Table 17.1 Average Mean-Squared Errors (31025 for subdensity and
31023 for Hazard Function) in First Simulation Setup of Antoniadis et al. [5]
Based on 200 Repeitions

f1� l1

Source n ¼ 200 n ¼ 500 n ¼ 200 n ¼ 500

Antoniadis [14.6; 20.5] [5.2; 13.6] [2.5; 5.8] [1.6; 5.9]
Bayes 50.1 38.6 11.6 7.0
Linear Bayes 33.4 21.9 3.9 2.0

Figure 17.1 Estimate of the subdensity f̂1 (a) and the hazard l1 (b).
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From the table, it can be seen that our proposed estimators are not as efficient as the one
proposed [5] for the subdensity. However, the linear interpolation performs as well as the
Antoniadis estimator for the hazard function.

17.5 EXAMPLES

In this section, two real datasets are considered and the subdensities along with the correspond-
ing hazard functions are estimated using the monotone wavelet estimator described here as well
as the estimators proposed by Antoniadis et al. [5] and Arjas and Gasbarra [6].

We have chosen to illustrate our method on a dataset consisting of a follow-up study of acute
leukemia patients after allogenic bone marrow transplantion. The survival times are given in
months. The dataset consist of 162 patients (including 63 deaths). For a more complete descrip-
tion of these data, see Brochstein et al. [10].

Various subsets of these data have been used [45,4] to illustrate different change points
methods. Here, as a preliminary step in a more complete data analysis to be pursued elsewhere,
we have chosen to use the complete dataset with death due to any cause as the endpoint and
leukemic relapse or end of study as the censoring mechanism.

Figure 17.2 illustrates our estimate of the subdensity along with the estimator proposed in
Antioniadis et al. [5]. [This estimator has been computed using Rice Wavelet Toolbox, version
2.4, with 64 bins and hard thresholding, resolution set at k ¼ 6, and threshold level chosen to
yield the smoother graph of f � (threshold level at 0.0032) and l (0.023).] Figure 17.3 gives our
estimate of the actual hazard rate for this example, the one using wavelets proposed by
Antioniadis et al. [5] and the Bayesian one of Arjas and Gasbarra [6].

From Figure 17.2 it can be seen that the linearized Bayesian estimator is similar to the
one obtained using the Antoniadis et al. [5] approach, althougth theirs gives more weight to
shorter survival times. However, there is much less data manipulation required in order to

Figure 17.2 Estimate of the subdensity f̂
�
for the bone marrow transplantation example.
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obtain our estimator. From Figure 17.3, all estimators of the hazard function except the one
from Arjas and Gasbarra [6], are similar for x � 50. Starting from this point, the direct
Bayes estimator is similar to that of Antoniadis et al. [5], while the linearized version yields
a smaller hazard.

The second dataset that we consider here is the February 1980 version of the Stanford heart
transplant data, published in Cox and Oakes [12]. This dataset has been analyzed by many

Figure 17.3 Estimate of the hazard rate function l̂ for the bone marrow transplantation
example.

Figure 17.4 Estimate of the subdensity f̂
�
for the Standford heart transplant example.
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authors, including Loader [42] and Antoniadis et al. [4], who considered a change point model
for it. Figure 17.4 shows the graphs of the subdensity functions given by our methods (Bayes
and linear Bayes) and that of Antoniadis et al. [5]. It should be noted that the subdensity func-
tion of Antoniadis et al. [5] is negative over a small interval and then increases dramatically
after that. The linear Bayes graph seems a more reasonable representation of a subdensity.
Figure 17.5 compares the four different hazard function estimators: those of Arjas and
Gasbarra [6], and Antoniadis et al. [5], and our Bayes and linear Bayes estimators. Up to
t ¼ 2400, the four estimators are similar with the Bayes and the linear Bayes representing a
compromise between Antoniadis et al. [5] and Arjas and Gasbarra [6]. The estimator of
Antoniadis et al. [5] does have the disadvantage of being negative for long survival times,
while ours have a sharp peak between 2500 and 3000. The estimator of Arjas and Gasbárra
[6] is the most stable.

17.6 CONCLUDING REMARKS

Our objective here, in addition to reviewing some of the relevant literature on frequentist and
Bayesian nonparametric hazard estimation, was to use Bayesian functional estimation tech-
niques combined with the monotone wavelet approximation methods of Anastassiou and Yu
[2] to estimate the hazard rate with randomly right-censored data by a relatively easy
method to implement. This has been accomplished.

Although our model is not as effective in the simulation study as is the frequentist method of
Antoniadis et al. [5] for the subdensity estimation, the performance of the linear Bayes estimator
for the hazard function is comparable, and ours is much easier to implement and extremely
flexible. Because of the monotonicity of the wavelet approximation, our estimators of the sub-
density are theoretically always positive. This is not the case for the estimator of Antoniadis
et al. [5]. In fact, in one of the real data examples (see Fig. 17.4), it is negative.

Figure 17.5 Estimate of the hazard rate function l̂ for the Standford heart transplant
example.
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We have also chosen the Bayesian nonparametric method of Arjas and Gasbarra [6] for
purposes of comparison. Arjas and Gasbarra [6] have an excellent Bayesian nonparametric
method that performs very well on the examples here. It is more stable than ours or that of
Antoniadis et al. [5]. However, it does not provide an estimate of the subdensity, which we
consider an interesting function in its own right. We, therefore conclude that ours, that is,
the linear Bayes one, is a good compromise method between the fully frequentist wavelet
one and that of Arjas and Gasbarra [6]. It is our hope, however, to somehow combine ours
with the latter and have a fully Bayesian nonparametric method that combines the good
qualities of both.

ACKNOWLEDGMENT

The authors wish to acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada and to thank the referees for their helpful comments, which
improved this manuscript. They are also grateful to Dr. R. J. O’Reilly of the Sloan Kettering
Memorial Cancer Center and to Dr. Susan Groshen of the University of Southern
California, Keck School of Medicine for making available to us the bone marrow transplant
data [10] that we used to illustrate our method here.

APPENDIX 17A: CHOICE OF RESOLUTION LEVEL

In this appendix, we will discuss the choice of k and the bounds j0 and j1. Suppose that the
observed times are 0 , x1 � x2 � � � � � xn , T . Since the support of w is ½�a; a�, then, for
a fixed k, we obtain

wk;j(t) ¼ 0 , 2k=2w(2kx� j) ¼ 0

, 2kx� j , �a or 2kx� j . a

, 2kxþ a , j or j , 2kx� a:

Since x [ ½0, T�, then

wk;j(t) ¼ 0 ) j � ½2kx� a; 2kxþ a�

) j � ½�a; 2kT þ a�:

Hence j0 ¼ �a and j1 ¼ 2kT þ a.
To choose k, we proceed as follows. For each value of j, we want a series of m observations

such that wk, j(xi) . 0, wk, j(xiþ1) . 0, . . . ,wk, j(xiþm�1) . 0. Since the support of w is ½�a; a�,
k should be such that

j� a

2k
� xi � xiþ1 � xiþm�1 �

jþ a

2k
:

APPENDIX 17A: CHOICE OF RESOLUTION LEVEL 301



Let Dm ¼ maxi (xiþm�1 � xi). This condition is satisfied if

Dm � jþ a

2k
� j� a

2k

) Dm � a

2k�1

) 2k�1 � a

Dm

) k � 1þ log(a=Dm)
log(2)

) k � 1þ log2
a

Dm

� �
:
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The Effects of Intergene
Associations on Statistical
Inferences from Microarray Data
Kerby Shedden
Department of Statistics, University of Michigan, Ann Arbor, Michigan

18.1 INTRODUCTION

Gene expression measurements obtained from microarrays provide a detailed picture of relative
messenger RNA (mRNA) abundances in a cell population, one important facet of biological
state [7]. While it is now technically possible to measure the expression levels for tens of thou-
sands of genes, the amount of information present in such large measurement sets is limited by
the degree of statistical correlation among the gene expression levels. To the extent that the
number of analyzed mRNA transcript types exceeds the number of independently varying cel-
lular characteristics, it is possible to substantially overstate the level of evidence in the data sup-
porting apparent associations between gene expression and clinical or other high-level
biological characteristics.

For example, use of microarrays in clinical studies often focuses on identifying prognostic
or diagnostic markers (e.g., see Ref. 9). Such markers are identified by testing large numbers of
mRNA candidates in order to identify a subset of transcripts showing an apparent correlation
between their expression levels, and the medical trait or outcome of interest. This analysis often
involves directly testing each mRNA for an association with the trait. As will be demonstrated
below, intergene correlations can greatly exaggerate the evidence supporting a candidate
marker. Later on, we will argue that if the association is identified in a timecourse experiment,
or is supported through the use of meta-analysis to combine the results of several studies, the
problem of overstating significance levels is accentuated.

Several physical mechanisms for intergene correlations can be proposed. One important
mechanism is that the target on a microarray designed to detect a single type of mRNA probe

Statistical Advances in the Biomedical Sciences, edited by Atanu Biswas, Sujay Datta,
Jason P. Fine, and Mark R. Segal
Copyright # 2008 John Wiley & Sons, Inc.

309



may actually respond to multiple mRNA types, a phenomenon known as cross-hybridization. In
addition, most microarrays contain replicate targets for the same gene, or for closely related
mRNA transcripts. This replication is rarely accounted for explicitly in analysis. At a more bio-
logical level, the control elements governing changes in gene expression often sit at the end of
signaling pathways that have wide-ranging effects on a cell. Critical factors such as whether the
cells are actively growing, or are responding to environmental stress are also likely to have
widespread effects on many mRNA types.

While the systematic mapping of the pathways and control mechanisms regulating changes
in gene expression is a major long-term scientific goal [1,19], the effects of intergene corre-
lations on the analysis of microarray measurements in routine clinical and biomedical research
are less well appreciated. As a simple illustration, suppose that 104 genes are assessed indivi-
dually using some statistical test, and 130 are deemed interesting based on having p values less
than 0.01. This is 30% more than the expected number of 104 � 1022 ¼ 100, supposing that
the individual tests are properly calibrated. The question of whether any of these 130 genes are
actually responding to the treatment reduces to asking whether it is likely to obtain 130 signifi-
cant tests by chance. If the genes are independent, the standard deviation of the number of affir-
mative tests is around 10, so the observed value 130 is well beyond the 99th null percentile for
the number of successful tests. However, suppose, as a simple illustration, that there are 103

gene clusters containing 10 genes each, and the clusters respond identically to a change in cel-
lular state. This is an extreme form of the block correlation structure used by Storey [17], and in
many other investigations. In this setting, the expected number of affirmative tests remains 100,
but the standard deviation for the number of significant 10-gene blocks is around 3.15. The
standard deviation for the number of affirmative tests is more than 30. Observing 130 affirma-
tive tests is no longer inconsistent with replicate observations of a constant system.

In this chapter, we will explore the effects of intergene correlations on several simple analy-
sis strategies that are commonly used in routine biomedical and clinical research using micro-
arrays. First, in Section 18.2 we introduce a summary measure to empirically quantify the level
of intergene correlation in a cell population. Sections 18.3, 18.4, and 18.5 look at three
common data analysis settings, considering the effects of intergene correlation in each.
Section 18.6 summarizes the chapter, and more difficult issues are briefly discussed.

18.2 INTERGENE CORRELATION

As noted above, it is expected that pairwise correlations between mRNA transcripts measured
with a microarray will show a wider range of intergene correlations than will an equivalent
number of paired data vectors drawn from a pairwise independent population. This is demon-
strated for two experimental datasets in Figure 18.1. The distribution of Pearson correlation
coefficients between randomly selected gene pairs across 40 independent samples is shown.
Results are given for two solid tumor datasets, denoted “OV” and “UVA” (further discussion
of the data and references are given below). The distribution of correlation coefficients
between simulated independent Gaussian “genes” is shown as broken lines. Both experimen-
tal sets show a relative increase of correlations at both the positive and negative end of the
correlation scale compared to independent, identically distributed (i.i.d.) data. The OV set
shows a greater number of positive associations, whereas the UVA set is balanced
between positive and negative associations. This is notable since some of the technical
sources of intergene correlation, such as cross-hybridization, can give rise to positive but
not negative associations.
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Figure 18.1 Comparison of Pearson correlation coefficients in experimental data with those
in simulated i.i.d. data. The empirical distribution of Pearson correlation coefficients in two real
datasets (solid lines) are shown compared to the distribution of Pearson correlation coefficients
in simulated i.i.d. sets of the same size (broken lines). Plot (a) shows the UVA data; plot (b), the
OV data (see text for details).
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An elementary way to quantify the presence of intergene correlations in a dataset is through
the average pairwise population correlation coefficient

R ¼
X
i,j

r2ij= n
2

� �
;

where n is the number of measured genes and rij is the population correlation coefficient
between the expression levels of genes i and j. This is far from a complete description. For
example, it fails to capture whether the most highly correlated gene pairs tend to contain a
few key genes in common, a situation that has been exploited to identify gene coexpression
“modules” [21]. Nevertheless, it captures one important component of the correlation structure,
and in Section 18.5, we will see that it contains all relevant correlation information for an
important inference problem. To estimate R, we can use the bias-corrected average of
sample pairwise correlation coefficients. Suppose that p independent experimental conditions
are studied (the dependent case will be considered below). Since

E
X
i,j

r̂2ij= n
2

� �
�

X
i,j

(r2ij þ varr̂ij)= n
2

� �
�

X
i,j

r2ij= n
2

� �
þ 1=p;

where the first approximation is due to the small bias in r̂ij relative to rij and the second is due
to the use of the asymptotic sampling variance for r̂ij. It follows that

R̂ ;
X
i,j

r̂2ij= n
2

� �
� 1=p

can serve as an estimate of R. In practice the average over all pairs will be replaced with an
average over 104 randomly sampled pairs.

Table 18.1 contains the value of R̂ for seven experimental datasets. These sets were obtained
using several microarray platforms, and include studies of both human cell lines and human

Table 18.1 Calculated R̂ Values for Eight
Experimental Datasetsa

Dataset R̂

UVA 0.019
OV 0.020
CO 0.027
LU 0.021
NCI60a 0.011
NCI60b 0.018
NCI60c 0.015
NCI60d 0.014

Null 0.002 (20.001, 0.005)

aThis study included 2000 genes and 40 samples randomly selected
from each set. The “Null” line gives the average and 95% range for
R̂ values calculated from i.i.d. Gaussian data of the same size.
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tissue sample biopsies. To improve comparability, 2000 genes and 40 samples were randomly
selected from each dataset. The set denoted “UVA” [18] contains 141 solid tumors of various
types assayed on Affymetrix HG-U95Av2 microarrays. The three sets denoted “OV” (ovary),
“CO” (colon), and “LU” (lung) contain tumor samples assayed on Affymetrix HuGeneFL
arrays (see Ref. 8 for more details and primary references). The four datasets denoted
“NCI60” measure gene expression in the human tumor cell line screening panel used by the
Developmental Therapeutics Program at the National Cancer Institute for studying small mol-
ecule growth inhibitory activity. The NCI60a [15] experiment used the Affymetrix HuGeneFL
array, while sets NCI60b, NCI60c, and NCI60d (available from dtp.nci.nih.gov/mtargets/
download.html) are replicated measurements on Affymetrix U95A arrays contributed by the
Novartis Foundation. For the eight experimental datasets, the data were log-transformed and
genes with sample standard deviation on the log2 scale less than 1024 were removed.

The R̂ values for experimental datasets in Table 18.1 are substantially similar across mul-
tiple array platforms and specimen types. There is some trend for the tissue samples to have
higher levels of intergene correlation than the cell lines, which would be consistent with cor-
relation arising from certain signaling pathways operating more efficiently in tissue compared
to cultured cells. However, since the cell line experiments all represent the same cell line panel,
this phenomenon may have other explanations. The values of R̂1/2, which is on the correlation
scale, range from 0.10 to 0.16, suggesting that most gene pairs are only weakly associated.
Nevertheless, we will see below that this level of intergene correlation can have substantial
effects on the sampling behavior of important statistics. The line labeled “Null” shows the
result of calculating R̂ for 1000 independent Gaussian datasets, each with 2000 “genes” and
40 “samples” (all simulated values are i.i.d.). The interval is the 95% empirical range of the
resulting R̂ values. Clearly the experimental sets have R̂ values that are inconsistent with a com-
plete lack of intergene correlation.

We conclude this section by pointing out an interesting characteristic of the R̂ values reflect-
ing the extensiveness of intergene correlations in microarray data. Table 18.2 lists the calculated
R̂ values for 40 samples randomly selected from each of the nine experimental sets. The values
were calculated based on different numbers of randomly selected genes (500, 1000, 2000, and
4000). Notably, the R̂n values (where n denotes the number of sampled genes) are nearly con-
stant within each dataset across the different numbers of sampled genes. To better understand
the possible implication of this, consider the grossly simplistic model in which the n genes can
be partitioned into q mutually independent blocks, such that the r ¼ n/q genes within each

Table 18.2 Estimated Values of R for Nine Experimental Datasets Based
on Four Different Values for Number of Genes Considered

Number of Genes

Dataset 500 1000 2000 4000

UVA 0.021 0.020 0.019 0.018
OV 0.021 0.020 0.020 0.019
CO 0.027 0.027 0.027 0.024
LU 0.023 0.024 0.021 0.022
NCI60a 0.015 0.014 0.011 0.011
NCI60b 0.017 0.017 0.018 0.018
NCI60c 0.014 0.015 0.015 0.014
NCI60d 0.011 0.013 0.014 0.012
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block are exchangeably correlated with correlation coefficient r. A simple calculation shows
that the value of R based on n genes (denoted Rn) varies with q according to

Rn ;
X
i=j

r2ij= n
2

� �
� r=q:

Under this simple model, the observation that Rn is constant in n suggests that after 500 genes
have been sampled, additional genes fit into already-seen blocks, rather than founding new
blocks. Because of the simplicity of the model used to characterize the pattern in the R̂n

values, we must be cautious in overstating the implications of this analysis. But these findings
are consistent with the number of “effective degrees of freedom” in a gene expression dataset
being far smaller than the number of measured genes.

18.3 DIFFERENTIAL EXPRESSION

Identifying genes that are differentially expressed between two experimentally controlled or
naturally observed conditions is often a major goal of analysis. Calculating a test statistic Ti
for each measured gene and ranking the genes accordingly is a starting point, but fails to
characterize the evidence level for reproducible differential expression in the top scoring
genes. Aiming to control the familywise error rate using Bonferroni or stepdown procedures,
while sometimes useful, is not consistent with the goals of a screening study in which a mod-
erate proportion of false-positive calls is tolerable and expected.

A major development was the formalization of the concept of “false discovery rate” (FDR)
(e.g., see Refs. 4 and 6). Several definitions have been proposed. For simplicity we will use the
definition

FDR ¼ E0 N(t)
N(t)

;

where N(t) is the number of measured genes with test statistics greater than or equal to the
number t, and E0 is the expected number of positive calls when all the null hypotheses are
true. This definition is most suitable when it is very likely that at least one null hypothesis
is false, but the number of false null hypotheses is a small fraction of the total number of
hypotheses considered.

The fact that FDR is defined in terms of single-gene expectations minimizes the effect of
intergene correlations. However, FDR is not completely insensitive to intergene correlations,
as has been explored in several papers [2,3,10].

A matter of practical importance is that the standard definitions of FDR do not account for
the possibility that by chance, the number of actual false positives can be much greater than
E0N(t). The null variance of N(t) is influenced by intergene correlations; therefore, the prob-
ability of a large excess of false positives occurring by chance is also increased. To quantify
this type of event, we will consider conservative false discovery rates of the form

FDRq ¼
Qq

0N(t)
N(t)

;

where Qq
0N(t) is the qth percentile of the null distribution. Specifically, we will consider

q ¼ 0.75 and q ¼ 0.9. The ratio FDRq/FDR depends only on the null hypothesis, so it
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can be estimated using permutations of the samples in the eight experimental datasets
studied above, along with the i.i.d. Gaussian set. Table 18.3 shows these ratios based on
various thresholds for a test of differential expression based on the two-sample Z statistic.

In most practical settings, a test statistic threshold between 2.5 and 3.5 will be used.
According to Table 18.3, the actual FDR could easily be 1.5–2 times higher than that given
by the standard definition (FDR0.75), and could possibly be 2–3 times higher than the standard
definition (FDR0.9). The multipliers are fairly consistent across the datasets, with the exception
of the OV dataset. Since that set did not have an unusual R̂ value, there may be some unusual
pattern of correlations in the OV set that is not detected by R̂. Also of note is that the “null”
(i.i.d. Gaussian) data have much smaller multipliers than do those in the experimental datasets.
The discrepancy is the result of intergene correlations.

In many cases, an increase by a factor of 2–3 in the FDR is tolerable. For example, if
FDR, 0.05 is used as the gene selection criterion, a true FDR of 0.15 is generally worth pur-
suing. However, examples exist where the goal is to identify genes predictive of a subtle trait,
for example, differential treatment response to two fairly similar treatments. In such cases, it is
not uncommon to be forced to consider genes at the 0.1–0.2 FDR level. Genes at a true FDR of
0.2 may sometimes be of genuine interest, but clearly a threefold inflation of the FDR value in
this situation is not tolerable. This discussion is related to the more general issue of variance
and sampling behavior of the various empirical FDR measures.

18.4 TIMECOURSE EXPERIMENTS

Many important questions in biology rest on the pattern of gene expression changes over time.
In a typical experiment, a cell culture is treated in a certain way, then cells are removed from the
culture at a sequence of timepoints for measurement on microarrays. The key question for infer-
ence is the probability that the pattern of interest (e.g., a cycling pattern, or a particular timing
of peak expression) occurs by chance. In most timecourse experiments, a single cell culture is
maintained, and a small subset of cells are removed from the culture at each timepoint for
analysis. Therefore, small perturbations such as changes in temperature or humidity may

Table 18.3 Ratio Between Conservative and Standard FDR, for Four
Threshold Levels of the Test Statistic

Q75/Q50 Q90/Q50

jTj Threshold: 2 2.5 3 3.5 2 2.5 3 3.5

UVA 1.3 1.5 1.7 1.7 1.7 2.0 2.4 2.9
OV 1.5 1.9 2.3 2.7 2.4 3.3 4.7 6.0
CO 1.3 1.5 1.7 1.8 1.8 2.4 2.9 3.3
LU 1.3 1.4 1.5 1.8 1.8 2.0 2.3 2.8
NCI60a 1.2 1.3 1.3 1.5 1.4 1.6 1.8 2.0
NCI60b 1.3 1.5 1.6 1.7 1.8 2.2 2.6 3.0
NCI60c 1.3 1.4 1.6 1.8 1.6 1.9 2.3 3.0
NCI60d 1.3 1.4 1.5 1.7 1.6 1.9 2.4 2.9

Null 1.0 1.0 1.1 1.2 1.1 1.1 1.2 1.4
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affect all subsequent measurements. The slowly varying dynamical patterns deriving from such
perturbations can increase the chances of a spurious match to the pattern of interest.

To be concrete, we focus here on the detection of genes showing coordinated gene
expression with the cell cycle (e.g., see Ref. 13). In this type of experiment, a synchronized
cell culture is obtained either by arresting the cells at a common cell cycle stage and then releas-
ing them to grow in unison, or selecting cells from an unsynchronized culture that are at a
similar size. Gene expression is then measured at a set of timepoints, usually over two gener-
ations of growth. Typically 5–10 timepoints per generation (10–20 measurements overall) are
used. A cell-cycle-coordinated gene will show defined peaks of expression that are reproduced
in both observed passages through the cell cycle. One way to quantify the presence of such a
pattern is to look at the proportion of variance explained (PVE) when regressing the measured
timecourse of gene expression on a three-component basis (constant, sine wave, cosine wave),
where the sine and cosine waves have period equal to the doubling time in the experiment
(which is known).

The goal of this section is to look at how serial correlations and intergene correlations jointly
affect the sampling properties of statistics such as the PVE.Wewill begin by quantitatively asses-
sing the degree of serial correlation in microarray data from timecourse experiments and then
consider how this affects the sampling properties of the statistic R̂ discussed earlier. Finally,
we will demonstrate how permutation approaches may be misleading in this type of problem.

We will work with the fission yeast data described in Rustici et al. [13]. Around 5000 genes
(essentially the entire yeast genome) were measured using two-color cDNA arrays. Cells were
synchronized and then assayed on arrays every 15min following release for 300min. This gives
data for two complete generations, 10 experimental points per generation. The entire process
was replicated 3 times independently.

Our first goal is to quantify the autocorrelation in the data due to factors other than cell cycle
coordination, that is, the level of autocorrelation that would be observed in an unperturbed,
exponentially growing cell population. Since a gene that truly is coordinated with the cell
cycle will yield a smooth pattern under the dense sampling scheme used in the experiment,
such genes must be excluded from this analysis as they would upwardly bias the autocorrelation
measure. We removed all genes with PVE . 0.3 and calculated the first-order autocorrelation
coefficient for the remaining genes. The PVE threshold 0.3 was selected since this gives neg-
ligible visible appearance of cell-cycle-coordinated expression. The results of this calculation
for the three replicates are 0.30(0.25), 0.20(0.25), and 0.19(0.25), where the average over all
selected genes is given, followed by the standard deviation.

The occurrence of three similar average autocorrelation coefficients (0.30, 0.20, 0.19) in
triplicated experiments strongly suggests that positive serial correlation is a reproducible
feature of the “background signal” of this system—apart from any correlation induced by
cycling genes. The standard deviations are somewhat more difficult to interpret. A simple ques-
tion is whether the observed standard deviation is consistent with a constant population value of
the autocorrelation coefficient being shared by all genes. The probability of getting a large
average autocorrelation coefficient by chance is increased by intergene correlation, but intui-
tively the standard deviation should not be affected. To address this question, we considered
a simple model with 1000 simulated genes over 20 “timepoints.” We considered the situation
in which expression levels at a given timepoint were identical within each of n blocks contain-
ing m genes. Smaller values of n give greater intergene correlation.

Table 18.4 gives the results of this analysis, showing several characteristics of the null
sampling distribution of the average autocorrelation coefficient over all genes on the array.
The average value (Avg) over replicates is slightly negative owing to the small bias in the
sample autocorrelation coefficient. As expected, the 97.5 null percentile increases with
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increasing intergene correlation, but remains well below the experimental values. The standard
deviation s of sample autocorrelation coefficients across genes on the array is nearly invariant
with intergene correlation, as expected, and is slightly below the experimental value. Thus there
is a small extra dispersion of the sample autocorrelation coefficients in the experimental data,
indicating that most genes are similar in their serial correlation levels, with some degree of
small differences.

The statistic R used above to quantify intergene correlation must be modified if serial
correlations are present. Specifically, the bias correction must be larger since it is easier to
get large sample r̂ij values in the presence of autocorrelation. The approximately unbiased
estimate of R is given by

X
i,j

r2ij= n
2

� �
�

X
i=j

r̂2ij= n
2

� �
� 1=p� 2p�1t2=(1� t2):

Table 18.4 Characteristics of the Null Sampling Distribution of the
Average First-Order Autocorrelation Coefficienta

n m Avg 2.5% 97.5% s

1000 1 20.05 20.06 20.04 0.21
100 10 20.05 20.09 20.01 0.20
50 20 20.05 20.11 0.01 0.20
10 100 20.05 20.18 0.08 0.19

aThe expected value (Avg) and 2.5 and 97.5 percentiles are given, along with the standard deviation of first-
order autocorrelation coefficients across all genes on the array. The rows correspond to population struc-
tures with different levels of intergene correlation; see text for details.

Figure 18.2 The expected value plus two standard deviations of the null distribution of
the statistic N, given for a range of different intergene correlation levels and serial autocor-
relation levels.
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The values of this statistic for the three datasets under consideration are 0.11, 0.04, and 0.03,
where the estimated autocorrelation values t ¼ 0.3, 0.2, 0.2 are substituted into the bias term.
All of these values are substantially greater than the values for eight datasets of independent
samples shown in Table 18.1, with the value 0.11 for the first replicate being grossly out of
place. Given that these experiments were carried out on a different organism, using two-
color cDNA arrays, it is unclear whether these results are anomalous.

Next we consider how intergene and serial correlations interact in their effects on
the sampling properties of the statistic N, defined as the number of genes with PVE
greater than a given threshold. To generate data with controlled levels of intergene and serial
correlation, first simulate independent “cluster centers” Xi(t) i ¼ 1, . . . , n, t ¼ 1, . . . , p as
stationary Gaussian processes with mean zero and correlation structure given by cor(Xi(t),
Xi(t þ d)) ¼ rd. Next, simulate m correlated versions of each cluster center using

Figure 18.3 The null expected value (a) and standard deviation (b) of the statistic N.
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Zm(i21)þj(t) ¼ Xi(t) þ eij(t), j ¼ 1, . . . ,m, where the eij(t) are i.i.d. N(0, s2) and mn is the
number of observed genes. Values of r, s, m, and n were adjusted so that the distribution of
intergene correlations in the resulting simulated data matched the distribution in the NCI60b
dataset discussed above. Quantile–quantile plots of the sample intergene correlation distri-
bution showed a nearly perfect match.

Figure 18.2 shows the null expected value of N plus two standard deviations (which we will
refer to as Q) under different levels of serial correlation and intergene correlation. Increasing
intergene correlation increases Q up to a point, after which it declines. The reason for this is
that a perfect sinusoidal pattern that maximizes the PVE has autocorrelation around 0.3
under the sampling scheme used here. Since the experimental autocorrelation is in the range
0.2–0.3, we are operating near the most unfavorable point in this range. The value of Q
also increases with intergene correlation. The “medium” level of intergene correlation in the
plot is close to the experimentally observed level.

Variation in the value of Q can be decomposed in terms of the effect on the mean and the
effect on the standard deviation, which are shown separately in Figure 18.3. As expected, inter-
gene correlation has no effect on the mean, but has a substantial effect on the standard devi-
ation. Serial correlation affects both the expected value and standard deviation. Notably, the
slopes in Figure 18.3b become steeper as intergene correlation increases. This indicates a
synergy between serial and intergene correlation in which their joint effects are greater than
the sum of their individual contributions.

As a concluding comment, we note that it is not straightforward to use permutation
approaches for calibrating the statistic N. The standard approach for independent samples
would be to randomize whole arrays over the time points. This preserves intergene correlation
but destroys serial correlations. From Figure 18.2, it is clear that this substantially understates
the minimal value of N needed to conclude that at least some genes are cell cycle regulated. A
reasonable threshold from Figure 18.2 would be N ¼ 35 (an autocorrelation value of 0.2 with
“medium” intergene correlation). The permutation method forces the serial correlation to be
zero, hence gives a threshold of around N ¼ 12 for “medium” intergene correlation.

18.5 META-ANALYSIS

When similar treatments are applied in different experimental settings, it is natural to askwhether
the same genes are affected. A common example occurs when the expression of a gene of inter-
est, say,G, is rendered experimentally controllable in a genetically modified cell line. The genes
that respond to changes in the expression of G are putative targets of G (commonly G is a tran-
scription factor or an upstream regulator of one or more transcription factors). For comparison,
one can consider a large collection of tissue samples in which variation in the expression of G is
uncontrolled. If the cell line model is realistic, and if the action of G on its targets is not con-
founded with the actions of other regulatory elements, then the set of genes having expression
correlated with G in tissue samples should be similar to the set of genes that are differentially
expressed in the cell line model as the levels of G are experimentally varied.

Concretely, suppose that Sik, k ¼ 1, 2 are test statistics applied to measurements of gene i in
either the cell line model (k ¼ 1) or the set of tissue samples (k ¼ 2), quantifying the associ-
ation between the levels of genes G and i. Since gene G is assumed directly measured in
both cases, the test statistic can be a simple correlation coefficient or Z statistic. We will
also assume that the Sik are transformed so that under the null hypothesis for gene i in exper-
iment k, the test statistic’s expected value is zero and its variance is one. This would be true of
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the Z statistics, and of the Fisher transformed correlation coefficient. The association between
test statistics in the two experiments can be quantified by

T ¼ n�1
X
i

Si1Si2:

Under the null hypothesis, T estimates the correlation coefficient between Si1 and Si2.
Rejecting the null hypothesis ET ¼ 0 in favor of ET. 0 is weak support for the claim that

the cell line model captures the biological effects of variation in G in the tissue environment.
Nevertheless it is a starting point. Moreover, the test can be inverted to form a confidence
interval for ET. If ET is greater than, say, 0.2 with 95% confidence, claims that the cell line
model is valid are justified.

The variance of T is easily seen to be

var T ¼ 1
n2

X
ij

ESi1Sj1 � ESi2Sj2:

For test statistics that are linear in the data, cor(Si1, Sj1) is equal to rij (the correlation
between expression measurements for the two genes). Consider either a two-sample Z-test
statistic of the expression levels of gene i (comparing samples at the high and low experimental
levels of gene G) or the correlation coefficient between the expression levels of gene i and the
naturally varying expression levels of gene G. Both of these statistics have a numerator that is
linear in the data, and a standard deviation term in the denominator that also involves
the data. Simulation studies (not shown) indicate that if the sample size is not too small, the
relationship cor(Si1, Sj1) � rij holds for these statistics. Furthermore, using standardized
statistics yields

ESikSjk ¼ cov(Sik; Sjk)

¼ cor(Sik; Sjk)

� rij:Thus

var T �
X
i,j

r
(1)
ij r

(2)
ij = n

2

� �
;

where r(k)ij denotes the population correlation coefficient between genes i and j in either the cell line
data (k ¼ 1) or the tissue data (k ¼ 2). If we are willing to assume that these intergene correlations
are equal, then var T � R, as defined earlier. Taking two standard deviations as the significance
threshold, we find that for the eight human datasets studied here, the value of T would need to
exceed a threshold of 0.2–0.32 to be deemed significant. By contrast, if the genes were indepen-
dent, the significance threshold would be around 0.03. This 10-fold discrepancy on the standard
deviation scale corresponds to a 100-fold discrepancy on the variance scale. Since the variance
scale is inverse linear with sample size (the number of genes), the data are behaving as if the
sample size were 100 times smaller than the number of measured genes.

We conclude this section with a note about permutation tests. A natural way to obtain a
significance level for T would be to permute samples within the cell line and tissues datasets
separately, recalculate all the Sik values, and then recalculate T. A set of T values obtained in
this way could be considered as an empirical null distribution for T. However, it is important to
note that under this permutation scheme, not only is there no systematic trend between the test
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statistics in the cell line and tissue experiments; in addition, there is no systematic signal within
either of the experiments—that is, each Sik has mean zero (all the null hypotheses are true). This
is a strong assumption, since it is reasonable to assume that even if G has completely different
effects in cell lines and in tissue, it is likely to have separate systematic effects in one or both
environments. It can be easily shown [14] that under weak conditions the approximation
var T � R holds whenever there is no association between the test statistic values in the two
experiments, even if within one or both experiments there are nonnull genes.

18.6 CONCLUDING REMARKS

A number of papers have appeared in the literature utilizing intergene expression associations
to understand pathways and networks involving gene expression (e.g., see Refs. 6 and 20).
Ultimately, the structures of these pathways and networks encode the “degrees of freedom”
inherent in the variation of cellular gene expression. Here we have provided some evidence,
consistent with other published reports, that the degrees of freedom in gene expression is
rather limited, especially in comparison to the number of genes measured.

For some of our simulation work, and also for conceptual illustration, we have used a
“blockwise” correlation pattern among the genes as a working model. Such correlation struc-
tures have been previously used in similar work (e.g., Ref. 17). An alternative view has been
developed more recently [11,12], claiming that intergene correlations arise from long chains
consisting of hundreds or even thousands of genes that are correlated serially. To the extent
that an estimable quantity such as the “R statistic,” discussed in Section 18.2, can be used to
determine sampling distributions, the precise nature of intergene correlations (blockwise,
serial, or neither) does not directly impinge on the inference problems discussed here. As
shown in Section 18.5, this is the case in at least one type of meta-analysis. However, it is poss-
ible that a pairwise statistic such as our R is not sufficient to address many important inferential
questions, in which case the higher-order pattern of intergene correlation may become critical.

It is already well known that inferences involving the relationship between gene expression
and other biological traits are sensitive to intergene correlations [16,10]. In the case of false
discovery rates, various mixing conditions have been invoked to justify the validity of the
empirical FDR in the presence of intergene correlations. As noted above, since FDR is
defined in terms of expectations rather than variances, the impact of intergene correlations in
that setting is limited. On the other hand, the effects of intergene correlations on other types
of analyses including timecourse and metagene analyses have not been as widely studied.
Since permutation methods preserve intergene correlations, it is generally assumed that they
are safe to use in this regard. As demonstrated here, if there is additional structure in the exper-
iment that is not respected when permuting whole arrays, problems can potentially arise. On the
positive side, we have shown in one example that a test statistic can be constructed that is easily
calibrated on the basis of an aggregated measure of the intergene correlation structure of the
data. Whether this is a particularly powerful test has not been addressed, but would be import-
ant to determine before the test can be considered for routine use.
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Meta-Analysis of Gene
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19.1 INTRODUCTION

With the development of microarray technology, it has become possible to globally monitor the
biochemical activity of populations of cells. Microarrays are being increasingly used in medical
and scientific research and have allowed for characterization of biological activity on a high-
throughput basis. A major resource that has made the use of microarray technology feasible
is large-scale genome sequencing projects, such as the Human Genome Project [14,32].
Having such sequence data available allows for the characterization of the probes on the
microarray.

While transcript mRNA microarrays have received much attention in the literature, there has
been work on other types of microarrays. Examples include chromatin–immunoprecipitation
(ChIP-chip) microarrays, which measure transcription factor–DNA binding expression [21]
and methylation microarrays Yan et al. [35], which assess DNA methylation on a global
scale. In addition, there has also been much attention on high-throughput assays that
measure protein–protein interactions, such as yeast two-hybrid systems [31]. Because of the
various large-scale datasets that are being generated, there is much interest in attempting to inte-
grate them in order to provide a more complete understanding of the biological mechanisms
that are at play. This type of analysis has been termed systems biology in the bioinformatics
literature [13].

For the statistician, this area brings many interesting and challenging problems. The particu-
lar problem we will be addressing in this chapter is meta-analysis of microarray data. We are
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dealing with data from multiple studies in which the same biological activity is measured using
microarrays, including transcript mRNA activity. While the term meta-analysis is familiar
among most statisticians [22], the term takes a very different meaning here. The situation
that statisticians are familiar with involves attempting to combine information from relatively
homogeneous data structures from multiple similar experiments. There are technical challenges
that make meta-analysis of gene expression data more challenging; we discuss them in Sections
19.2 and 19.3. The number of available microarray studies is the most for gene expression, but
we anticipate that there will be increasing studies done for assessing epigenetic and copy
number using microarrays in the future. The methods described in the chapter will potentially
be applicable to meta-analysis of other types of microarray.

Our goal here is to outline the major issues involved in such analyses and describe some
solutions that have been proposed. It is not our intent to provide an up-to-date listing of all
methodologies that have been used, as the literature is constantly changing. Given the
dynamic nature of the field, an important component will be benchmarking of methods to
see which should be used in practice.

19.2 BACKGROUND

19.2.1 Technology Details and Gene Identification

In this chapter, we consider multiple microarray studies in which the same comparison was
considered. For measuring gene expression, different technologies might be used. The two
dominant technologies currently being used are the two-color microarrays and Affymetrix
arrays. We now provide a brief description of each type of technology. For the spotted
array, each spot represents a cDNA (complementary DNA) fragment, which represents the
complement of a messenger RNA molecule that has been transcribed from an individual’s
DNA. The length of a cDNA is between 500 and 5000 bases.

Affymetrix arrays for measuring gene expression employs 11–20 different and sometimes
overlapping 25-mer oligonucleotides per gene. In addition to perfect-match oligonucleotides,
Affymetrix microarrays also contain mismatch oligonucleotides. The mismatch oligonucleo-
tides carry a mutation at position 13 of the 25 mers. While their initial purpose was to serve
as negative controls, there has been much controversy as to what is actually being measured
with the mismatches. Many preprocessing algorithms avoid using this information (e.g., the
robust multisample average method of Irizarry et al. [16]), and Affymetrix is planning to
make arrays in the future that do not have any mismatch probes.

There are several issues that must be considered when attempting such an analysis. First,
one must consider the problem of study-specific artifacts, such as collection of available
samples, variations in experimental protocols, and differences in laser scanners. However,
there are two bigger issues in the analysis of such data. The first is that of matching genes
from studies that use different platforms. This is where the availability of large-scale
genomic data is important. Each spot on a microarray corresponds to a DNA sequence.
What one can do is to match up each spot to a putative gene in the National Centers of
Biotechnology Information (NCBI) Database. The LocusLink identifier from NCBI can then
be used to identify common genes across multiple datasets. Such a task can be done for
Affymetrix chips from their Website (http://www.netaffx.com/) or for two-color cDNA
microarrays using the SOURCE tool at Stanford University [8].

Some work has been done on using the sequence data for the spots on microarrays and
reperforming database searches in order to determine the genetic identity of spots [7]. These
authors found a variety of annotation issues with the probe sequences on the Affymetrix
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GeneChip arrays and estimate between 30% and 50% discrepancy between the genes ident-
ified by their method versus those given by the Affymetrix website. Dai et al. [7] point out
that many probes may not be grouped into the appropriate probeset or that probesets may
not map to the “correct” gene. Another sequence-based method was proposed by Carter
et al. [4]. In their approach, the short oligoprobes of the Affymetrix platform were
mapped to the cDNA clones of the Stanford microarray platform. Affymetrix probes were
reassigned to redefined probe sets if they mapped to the same cDNA clone sequence,
regardless of the original manufacturer-defined grouping. Even when the probes across plat-
forms are appropriately mapped to the same gene, probes in one platform may hybridize to
the 50 end, where probes in a different platform may hybridize at the 30 end. Discordance
between the two platforms may then be a result of alternative splicing, where the different
probes bind to different isoforms (translation variants) of a gene. Another approach to
understanding the behavior across different platforms is through studies of the same
samples [28,16].

While determining the genetic identity of the spots is important, there is still the issue of
attempting to combine expression measurements from diverse data platforms. Because of the
differing technologies, expression values from different microarray platforms are on different
scales. For example, an expression value of 200 from a cDNA two-color microarray is very
different from an expression value of 200 measured on an Affymetrix array. The two-color
microarrays typically use a reference sample for one of the color channels so that the measure-
ment represents relative hybridization of two samples. By contrast, the Affymetrix microarrays
contain only one sample per slide, so the intensity measurement represents an absolute
expression of the sample. Thus, it is important to have tools that can enhance comparability
across arrays of different platforms.

One such technique that has proved useful as a filtering device is known as the integrative
correlation coefficient or correlation of correlation coefficients [21,24]. Integrative correlation
coefficients presume that while raw expression values vary from study to study, the intergene
correlations do not vary as much. Thus, one would consider combining genes that have similar
intergene correlations across the studies. A nice of example of this technique was presented in
the study by Lee et al. [21]. In this study, Affymetrix and two-color microarrays were used to
profile the National Cancer Institute 60 cell line data. While the correlation between expression
between the two technologies was reported to be poor in a previous study [18], by using the
integrative correlation of correlation, Lee et al. [21] found that a subset of genes has correlation
above 0.8 between the two technologies. A caveat of the technique is that the filtered set of
genes may not be a random sample of genes on the microarray so that the generalizability
of resulting gene signatures may be limited.

19.2.2 Analysis Methods

In terms of meta-analysis methods put forward, many have been based on the fact that the stan-
dardized effect size is combinable across studies. This is the approach advocated by Parmigiani
et al. [24] after filtering based on the integrative correlation coefficient. In Rhodes et al. [25],
the t statistic was transformed into a p value, a transformation of which was combined across
multiple studies. By contrast, in Ghosh et al. [11], the t statistic was combined directly. A large-
scale comprehensive meta-analysis of 40 independent datasets (.3700 array experiments) was
performed by Rhodes et al. [26], who found a universal profile of 67 genes that could differ-
entiate cancer versus noncancer tissue for a variety of cancers. In addition, they determined 36
cancer-specific signatures for determining a tissue-specific cancer. The signatures also demon-
strated good discrimination performance on three independent datasets.
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Another approach more in line with classification or supervised learning analyses is to build
a classifier or find a gene expression signature on one dataset and to see how well it predicts in
an independent microarray dataset. Such approaches were taken by Beer et al. [1], Wright et al.
[34], and Jiang et al. [17]. An alternative method using hierarchical clustering, which is an
unsupervised learning procedure, was taken by Sorlie et al. [30], who found a gene expression
signature that defined molecular subtypes in breast cancer; they found through interrogation of
other datasets that the subtypes were present there as well. Given the increasing availability of
publicly available large-scale gene expression datasets, it is increasingly important that results
found by one investigator on a particular dataset be validated using other datasets as well.

Much of the meta-analysis methods have studied differential expression across multiple
studies. A notable exception is the study by Lee et al. [20], in which intergene correlations
across multiple studies was considered. The authors sought pairs of genes that were consistently
coexpressed across several datasets.

19.3 EXAMPLE

We now discuss the application of various meta-analysis methodologies to a study looking at
metastatic cancer. Generally speaking, cancer is either nonmetastatic (nonaggressive) or meta-
static (aggressive). The latter type of cancer tends to be much more lethal. It is thus important
from the point of view of treatment to determine whether a cancer detected at early stage will
become indolent or metastatic. As one step toward this goal, we would like to determine
whether there is a gene signature that can discriminate metastatic cancer from nonmetastatic
cancer. We will use these data to illustrate the various methodologies that are available for
meta-analysis of microarray data.

While the purpose of the chapter is to illustrate the meta-analysis methods, it should also be
noted that the goal of the analysis, classification of metastasis, is a tricky issue. First, there are
many statistical limitations and misconceptions in developing a classifier; a reference on these
issues is the paper by Simon [29]. Moreover, metastasis is a clinically detectable event, and it is
rather a dichotomization of an underlying process that is likely to be a continuum.

The datasets were obtained from publicly available data sources [19,10,5]. They were
selected according to the presence of both localized and metastatic samples, as well an
overlap of a sufficiently large number of genes. In general, only a small number of metastatic
samples are profiled in all datasets. We also note that the organ sites are different. We are pos-
tulating that there is a common profile separating localized from metastatic cancer across the
three sites. Similar evidence for this type of hypothesis has been suggested before [26]. The
LaTulippe et al. data include 23 nonmetastatic and 9 metastatic samples; the Garber et al.
data, 54 nonmetastatic and 6 metastatic; and the Chen et al. data, 99 nonmetastatic and 9 meta-
static samples. The LaTulippe study used Affymetrix arrays, while the other two studies used
two-color microarrays.

The microarray platforms differ by studies, so we mapped clone/probeset IDs to Unigene
cluster IDs (UG ID) in its most recent build through SOURCE [8]. When multiple clones were
mapped to the same UG ID, we averaged the expression values over the clones within each
sample. Such a mapping produced 1633 common UG IDs.

Note that the sample size of metastatic tumors is relatively small in the three studies. For this
reason, it is important to validate study-specific metastasis signatures externally, or perform a
meta-analysis across multiple experiments that reported features of cancer metastasis, which
would result in a more robust set of genes relevant to metastasis.
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19.4 CROSS-COMPARISON OF GENE SIGNATURES

In this section, we describe how to select optimal gene signatures for classification of metastatic
tumors versus primary tumors in each study separately. We first obtain study-specific signatures
and estimate the misclassification error rate for each signature in all three studies.
Misclassification errors were estimated for all tumors and for each type of tumor (primary/
metastatic) separately as well. We emphasize that metastatic tumors often represent only a
small fraction of the samples in individual studies; thus the gene signature specific to a
single study generally requires external validation. The signature selection was based on the
“leave-one-out cross-validation” (LOOCV) risk index method that was used in Shen et al.
[27]. We extract the top k� genes that are significant in univariate logistic regression, where
k� is the optimal sample size. The size of the optimal signatures varies between the studies.
The signature sizes are tabulated in Table 19.1.

Using the risk index approach, each study-specific signature predicts the tumor types in the
other studies, as can be seen in Table 19.1. The Garber et al. lung study profiles gene expression
in blocks of different subclasses of adenocarcinoma; hence the classification between
metastatic and primary tumors is not noticeably clear.

Although the classification performance is acceptable when study-specific signatures are
applied to independent datasets, one drawback is the poor overlap between signatures. Only
3 genes are shared by all three signatures, and 10 genes are shared between the signatures
from the Chen et al. [5] liver study and the LaTulippe et al. [19] prostate study. No genes
are shared by the other two pairs of studies. This suggests that using study-specific analyses
fails to identify generalizable genes. Therefore, we consider more integrative approaches for
signature selection. In the following sections, we apply three meta-analytic methods: best
common mean difference (BCMD) [33], effect size (ES) [6], and probability of expression
assimilation (POEA) [27]. We describe their application and compare the results.

19.5 BEST COMMON MEAN DIFFERENCE METHOD

The BCMD method involves calculation of differential expression across multiple studies
based on a classic calculation of best common mean estimator that minimizes the variance
among all linear estimators [3]. The estimated mean difference in individual studies is weighted
by the reciprocal of the variance and combined into a single statistic that asymptotically follows
standard normal distribution. The BCMD approach was applied to the multiple microarray
study context by Wang et al. [33]. Before forming the univariate statistic, they stabilize the

Table 19.1 Misclassification Rates Using Classifiers Constructed from Individual
Studiesa

Signature from/Error in Chen Garber LaTulippe

Chen [5] 50 genes 0% (0/0) 15% (10/67) 9% (13/0)
Garber [10] 30 genes 1% (0/11) 21% (13/67) 6% (4/11)
LaTulippe [19] 80 genes 6% (6/11) 15% (7/50) 3% (4/0)

aTable entries are error rates using classifier from study defined in column 1. The error rates in parentheses
are percentage of primary tumors and metastatic tumors misclassified, respectively.
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mean and variance relationship of the gene expression values using locally weighted
regression.

We applied BCMD to our three datasets to select differentially expressed genes. Genes with
a false discovery rate (FDR)–corrected p value less than 0.05 were used to form the signature.
FDR correction on the p value was done using the step-down procedure of Benjamini and
Hochberg [2]. The final number of genes selected was 286. Assigning significance based on
permutation versus the normal-based null did not alter the signature profoundly.

The gene signature has some overlap with the study-specific signatures (23/50 in Chen
et al. [5], 11/30 in Garber et al. [10], 46/80 in LaTulippe et al. [19]). See Figure 19.1 for
the heatmap of the signature. A drawback of this signature is that there is discordance in the
direction of differential expression for some genes in the signature. The horizontal rectangular

Figure 19.1 Heatmap of raw expression data in the BCMD signature of 286 genes. Within
each study, arrays were scale-normalized and then genes were centered at the median of
primary tumors. After centering, all three datasets were juxtaposed for visualization. Black
and white tabs on the top denote primary and metastatic tumors, respectively.
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boxes in Figure 19.1 show examples of such genes. For many of these cases, a large difference
in one direction for one study contrasts with the direction for the effects in the other two studies.

Annotation of the 20 genes includes general molecular functions such as apoptosis
(MYBL2, RAD21), cell cycle (CCNB1), and cell differentiation (INHBB). When the signature
was used in each study, the corresponding risk index classifiers reduced classification error rela-
tive to the study-specific signatures described in Table 19.1. In the Garber study, the signature
yielded an overall misclassification error of 9%; it gave perfect classification in the other two
studies.

19.6 EFFECT SIZE METHOD

The effect size (ES) method entails a direct application of traditional meta-analytic methods
[12] to microarray data. This approach resembles BCMD in that it pools the standardized t stat-
istic for differential expression of a single gene from all studies. The ES approach directly
models expression levels with gene-specific mean and variance parameters. Since the
models are gene-specific, there is no information pooled across all genes as in BCMD. Choi
et al. [6] suggested modeling the effect size using a Bayesian framework based on incorporat-
ing the study effect as random effects. Such an approach might potentially improve the per-
formance of the ES procedure by pooling information across genes, information on which is
specified through the prior distribution.

Applying the ES method to the three datasets results in a 90-gene signature that has a
60-gene overlap with the BCMD-derived signature. See Figure 19.2 for the heatmap of the
signature. The selection criterion is that all the genes must have an estimated empirical FDR
of ,0.05. This signature has few genes in common with the study-specific signatures: 4/50
with the Chen, 3/30 with the Garber, and 9/80 with LaTulippe. Classification using this sig-
nature shows performance worse than that of BCMD in the individual studies.

However, it is clear from Figure 19.2 that the genes in the signature show more consistent
directionality of differential expression between the two tumor types than do those found using

Figure 19.2 Heatmap of raw expression data in the ES signature of 90 genes. Note that the
directionality of differential expression is consistent across all studies.

19.6 EFFECT SIZE METHOD 331



BCMD. If one wishes to look for genes that show concordance in expression across studies, the
ES approach finds more genes with this behavior than does BCMD.

19.7 POE ASSIMILATION METHOD

In the POEA method, expression data are combined after the raw expression has been trans-
formed into the probability of over/underexpression, making it possible to treat the transformed
expression as independent observations regardless of the source of the data. The estimation pro-
cedure borrows strength from all genes in each study.

The concept of probability of expression (POE), proposed in a single-study setting by
Parmigiani et al. [23], is to treat expression of a sample relative to a baseline group as a
scale-free quantity using a latent variable model. This leads to a three-component mixture
model for the preprocessed microarray data, from which one transforms the data to a POE
scale. POE is then the difference between the posterior probability of overexpression minus
that of underexpression. We refer the reader to Shen et al. [27] for mathematical and compu-
tational details of POE.

The transformation sets the mean gene expression values of one class (primary tumors in
our example) close to zero and normalizes the expression values of the other class (metastatic
tumor) relative to the distribution of the former. This is done using a scale within [21,1]. It
helps single out over- or underexpressed genes in metastatic tumors based on a relative strength
of differential expression of one class to the other. The resulting transformation produces an
expression profile where the contrast of between the two tumor types is more noticeable
than in that using expression values.

To illustrate the behavior of the POE transformation, two examples are graphically pre-
sented in Figures 19.3 and 19.4. Figure 19.3 shows the distribution of POE values for the
gene Hs.69771, a complement factor that localizes to major histocompatibility complex
class III on chromosome 6. The three panels are histograms of raw expression in three
studies, and the last panel is the histogram of POE values. This gene is the top ranked gene
using POEA but is ranked 83rd in BCMD and does not appear in the ES signature.
Figure 19.4 is the same plot for the gene Hs.79088, RCN2. This gene is ranked 82nd in the
POEA signature but is 2nd in the ES signature and 19th in the BCMD signature.

After the POE transformation had been applied to each study separately, the datasets were
combined into a single dataset. To construct an optimal cutoff point and signature size, we used
leave-one-out cross-validation. Supplementary Figure 19.1, available from the companion
Website, shows a contour plot of misclassification errors for a wide range of signature size
and risk index cutoff pairs in the risk index approach. The error rate is lowest at several
points; we chose a signature of size 110 with risk index dichotomized at the 60th percentile
was deemed to be the optimal choice.

The POEA signature shares 90 out of 110 genes with BCMD signature, and 19 genes with
ES signature. Like the BCMD signature, it tends to select genes that have discordant differential
expression across studies. Supplementary Figure 19.2 shows three blocks of genes that show
discordance with respect to differential expression. A possible remedy is to filter out the
genes whose expression pattern is inconsistent with respect to the other genes in each study
using the integrative correlation coefficient [21,24].

Regarding the classification performance of this signature, Figure 19.5 shows the risk index
for all samples.

The classifier does not achieve good classification results in the Garber et al. study but suc-
cessfully identifies the tumor types in the other two studies.
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One novel feature of the POEA method is that it shows the contrast between the two tumor
types to be less strong in the Garber et al. data than it is in the other two studies. The ES sig-
nature still misclassifies 50% of the metastatic samples in the Garber et al. data (Table 19.2).
However, it classifies samples worse in the other two studies relative to the the BCMD and
POEA signatures.

Figure 19.3 POE transformation of gene with Unigene cluster ID Hs.69771. This gene is the
top-ranked gene in POEA signature. Unfilled and filled bars mark the expression of primary
and metastatic tumors for this gene, respectively.
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19.8 COMPARISON OF THREE METHODS

In this section we characterize the signatures obtained by each method and compare them.
Supplementary Figures 19.3–19.5 visualize the signatures using a heatmap. For the BCMD
and ES signatures, the raw expression of each gene was centered at the median of primary
tumors to highlight the contrast between the two tumor types. For POEA, the modal expression
values of primary tumors are centered near zero automatically by the estimation procedure.

Figure 19.4 POE transformation of gene with Unigene cluster ID Hs.79088. This gene is the
second-ranked gene in the ES signature.
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19.8.1 Signatures

The BCMDmethod by Wang et al. [33] has the largest signature size. The ES signature was con-
structed based on the same rule of FDR being 0.05 or less, which led to a signature size of 90
genes. Finally, all 110 genes in POEA signature are significant predictors in univariate logistic
regression with p value , 0.0001 and will thus still be strongly significant after FDR correction.

In addition to the varying sizes of the signatures, the variability of gene expression profiles
for the genes included in the signatures is also diverse. In our three-dataset example, the results
from the POEA method resemble those of BCMD more than those of the ES method. POEA
and BCMD select more genes that display discordant differential expression.

19.8.2 Classification Performance

The classification results do not vary widely among the three methods. All classifiers applied to
the Chen et al. and LaTulippe et al. datasets have nearly perfect separation of the two tumor
types. In those two studies, ES signature produces relatively weaker separation of risk

Figure 19.5 Misclassification performance of metasignature of size 110 dichotomizing at the
60th percentile.
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indices (plot not shown). Table 19.2 tabulates the misclassification of each signature across the
three studies.

19.8.3 Directionality of Differential Expression

Although the ES method selects a signature with genes displaying concordant differential
expression, it is highly sensitive to the heterogeneity of of expression levels across studies.
The heterogeneity is quantified in Cochran’s Q statistic, which follows an approximately
xk21
2 distribution under the null hypothesis of absence of heterogeneity, with k being the

number of studies included. A large Q statistic indicates substantial heterogeneity in expression
level and variability across studies.

The ES signature keeps concordant differentially expressed genes at the cost of losing
highly significant genes with discordant expression, while the BCMD and POEA signatures
appear to behave in an opposite manner. One remedy is to apply the integrative correlation
coefficient [21,24] as a filter. One can use it to filter genes out in the beginning of the analysis,
or apply it on the chosen signature. Since throwing out genes will reduce information for the
POE transformation, we take the former approach and obtain new signatures for the POEA
method. We eliminated the genes whose average integrative correlation across three studies
is less than 0.1 and reanalyzed the data using all three methods. Using this criterion leaves
884 out of 1633 genes.

The correlation filter results in better agreement among the three methods. Many of the
genes with discordant differential expression across studies disappear from the signatures of
the three methods. This can be seen in Supplementary Figures 19.3–19.5. Note that there
remains a large block of discordant genes in the BCMD signature. The classification perform-
ance of the POEA signature is much better than the previous signature in the Garber et al. study,
which shows the impact of integrative correlation filter.

19.9 CONCLUSIONS

In this chapter, we have compared three approaches to the analysis of microarray data from mul-
tiple studies. One criterion for their use is ease of implementation. The ES method was
implemented using the GeneMeta package available at the Bioconductor Project Website
(http://www.bioconductor.org). The BCMD and POEA methods are available in a package
that we developed, called MetaArray, which is also available through Bioconductor.

For the example presented here, we found that all methods gave very similar classification
performance. The major reason for this is the fact that the phenotype under consideration (meta-
static vs. nonmetastatic) is very visibly different. In addition, the number of candidate genes

Table 19.2 Misclassification Rates Using Classifiers Obtained from BCMD, ES,
and POEAa

Method Chen (99/9) Garber (54/6) LaTulippe (23/9) Remarks

BCMD (286 genes) 0/0 4/3 0/0 Raw scale
ES (90 genes) 8/0 3/3 0/2 Raw scale
POEA (110 genes) 2/0 1/6 0/0 POE scale

aEach entry lists the number of misclassified primary tumors/metastatic tumors.
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(1633) is much larger than the sample size (200). Thus, because of the gross phenotypic differ-
ence, several gene signatures will provide good classification. This was seen in breast cancer
recently by Ein-Dor et al. [9]. However, the genes selected by the various methods had
some variation. In particular, there was more concordance between the BCMD and POEA
methods than with the ES signature. Concordance increased with the use of the integrative cor-
relation coefficient. We do expect that for more subtle phenotypic changes, the BCMD and
POEA will provide better classification than will the ES approach. However, we should also
note that because metastatic cancers are heterogeneous, the nonoverlapping gene lists might
also be more a reflection of the biological heterogeneity in the samples.

More broadly, we have attempted to describe a problem in genomic data analysis that we
expect to become more common in the future, that of genomic data integration. With the devel-
opment of new large-scale functional genomic technologies in full bloom, how to combine
these datasets is an important analytical problem. This is an enterprise that will require substan-
tial statistical input and is an area open to further development.
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Statistical Methods for Identifying
Differentially Expressed Genes in
Replicated Microarray Experiments:
A Review
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Department of Statistics, University of Connecticut, Storrs, Connecticut

20.1 INTRODUCTION

A common task in microarray analysis is to compare the expression levels of thousands of
genes in samples collected under two different conditions to determine which genes are upre-
gulated, downregulated, or unchanged in their expression levels. Research on the statistical
methods for microarray analysis has been very active recently. Too many genes and not
enough replications have also complicated the problem. Give the huge body of literature, we
list only a few of the most relevant works in our study. Dudoit et al. [12], Cui et al. [7], and
Pan [28] provide easy overviews on some of the methods. Tusher et al. [39] and Storey and
Tibshirani [36] discuss significance analysis of microarrays (SAM). Benjamini and Hochberg
[2], Westfall and Young [42], and Dudoit et al. [11] discuss issues on multiple comparisons.
More in-depth developments in multiple testing can be found elsewhere in the literature
[10,40,41] Efron and Tibshirani [17] provide an empirical Bayes justification for the
Benjamini–Hochberg procedure of controlling the false discovery rate (FDR). Efron [13–16]
provides a gene-specific measure called local FDR to bound the global FDR and to estimate
the false negative rate. He also introduces the concept of empirical null distribution that may
be more dispersed than the usual theoretical null distribution. It is particularly applicable
when there are correlations across arrays or across genes. Lönnstedt and Speed [25] provide
an alternative empirical Bayes method that combines information across genes based on
odds ratios for detecting differentially expressed (DE) genes. Wright and Simon [45]
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propose a model where the gene variances are drawn from an inverse gamma distribution,
whose parameters are estimated across all genes. Microarray ANOVA methods and linear
regression methods can be found in Kerr et al. [22], Wolfinger et al. [44], Smyth [31], and
Gottardo et al. [19,20]. McLachlan et al. [26] propose a simple two-component normal
mixture model for a transformed score for detecting DE genes. Yu et al. [51] propose calibrated
Bayes factor methods for selecting DE genes. The books by Speed [33], Wit and McClure [43],
and Lee [24] provide more details on microarray data analysis.

Historically, the fold change method was used by Schena et al. [30], DeRisi et al. [8], Chen
et al. [4], and Draghici [9] for identifying DE genes. The method calls for a gene to be upre-
gulated (down-regulated) if, for example, the mean fold change ratio for the treatment over
control is at least 2 (at most 1

2). This method is not adopted any more, because it ignores the
variability of the expression levels over replicates, it is biased toward genes with low expression
levels, and it provides no assessment of false-positive rates. Numerous alternative methods
have been studied. They include various versions of the two-sample t test, two-sample nonpara-
metric test, hierarchical and Bayesian versions of the two-sample comparison, ANOVA, gen-
eralized linear models, and principal-component reduction techniques. Practitioners are often
faced with the question of which method to adopt. In this chapter, we focus on five
methods: the Benjamini–Hochberg (BH) procedure [1] applied to the two-sample t tests
(abbreviated BH-T), the significance analysis of microarray (SAM) by Tusher et al. [39], the
semiparametric hierarchical (SPH) method by Newton et al. [27], the linear models for micro-
array (LIMMA) by Smyth [31], and the microarray ANOVA (MAANOVA) by Cui et al. [6].
The primary reason for selecting these five methods is the ease in implementing them. The
software programs are available via the Internet, and the methods can be implemented and
interpreted fairly easily by practitioners. We will review each method in detail, and evaluate
the performance of these methods with reference to two simulated data cases.

The statistical procedures here consist of determining a test statistic, a rejection region (a
cutoff value or values), calling all the genes in the rejection region to be upregulated (down-
regulated, or expressed). Finally, the procedures assess the rate of false discovery (FDR).

For each gene g, we are testing Hg,0: gene g is EE (equivalently expressed), versus Hg,a:
gene g is DE. Similarly, to discover upregulated (downregulated) genes, the Hg,0 versus Hg,a

are changed to nonupregulated (nondownregulated) versus upregulated (downregulated) for
gene g. For the rejection region, let us first define two concepts: (1) the familywise error
rate (FWER) that is the probability of at least one false positive in the simultaneous testing
of G genes; and (2) the false discovery rate (FDR) that is the false-positive rate among the
rejected hypotheses. It is a less stringent criterion than the FWER. In Kuo et al. [23], we
review two FWER controlling methods: one uses the Westfall–Young [42] stepdown max-T
permutation adjusted p values; the other, called the cyber-T method, uses a Bayesian
version of the two-sample t procedure and the Bonferroni procedure for adjusting p values.
In this chapter, we are focusing on the five methods mentioned earlier that restrict the estimated
FDR to be �a. The BH-T method estimates this by using Benjamini and Hochberg adjusted p
values computed from two-sample t statistics. SAM controls the median of the estimated FDR,
and MAANOVA controls the estimated FDR. Both achieve this by bootstrap methods via the
null distribution that the gene is hypothesized to be EE. The SPH method calculates a Bayesian
version of the FDR based on the posterior distribution. The LIMMA procedure estimates the
FDR using the BH adjustment of its p value calculated from its modified t test statistics.

On the test statistics, BH-T uses the two-sample t statistics for each gene. The SAM method
uses a modified two-sample t statistics for each gene with the standard error corrected by a more
stable variance estimate incorporating information from all the genes; SPH is an empirical
Bayes procedure with a hierarchical structure. The level 1 model consists of an individual
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gene-specific gamma model that is used to explain replicated experiments for each gene. The
level 2 model is the common population average model for each unknown latent pair of mean
intensities with the first coordinate for the control and the second coordinate for the treatment.
Newton et al. [27] assume a mixture distribution with three components (corresponding to
upregulated, downregulated, and nonregulated genes) with each component consisting of a
nonparametric bivariate density. Both mixing weights and nonparametric densities are esti-
mated from the data. The test statistics are the empirical Bayes estimates of the posterior prob-
abilities for each gene to be upregulated, downregulated, or nonregulated. Both MAANOVA
and LIMMA use generalized linear models on simultaneously testing many contrasts to
select DE genes. The LIMMA, SPH, and MAANOVA methods are all hierarchical in
nature, each with a baseline density assumed for all the latent mean intensities for each
gene. Therefore, they allow a mechanism for sharing information among genes. The other
two methods are not hierarchical: BH-T makes decisions from the marginal information,
that is, just the information for each gene; and the SAM “fudge” correction factor is determined
from all the genes, so the link that combines information across genes is subtle, not as direct as
the hierarchical structures in the other three methods. The only method restricted to two inde-
pendent samples for comparison is SPH; all the other four methods allow paired-t comparisons.
Moreover, MAANOVA and LIMMA allow for more complicated designs, including loop
designs.

Performance evaluation for the five methods is based on simulated data, and we use the
receiver operating characteristics (ROC) curves that plot sensitivity versus (1-specificity) for
each method. The sensitivity is the probability of correctly calling a DE gene. The specificity
is the probability of correctly calling an EE gene. A good procedure should have large partial
area under the curve, and it should have large sensitivity for small (1- specificity) up to a
bounded limit. The partial area is desired because investigators are interested only in genes
exhibiting strong evidence of differential expression. In addition to the ROC curves that evalu-
ate the five methods using frequentist measures, we evaluate them in terms of their predictive
power. As an analog to the ROC curve, for each method, we plot the positive predictive value
(PPV) against the negative predictive value (1-NPV; NPV scenario in this case). The better
method should have larger partial area under the curve. The PPV is the conditional probability
of a gene being DE given that it is claimed to be DE, and NPV is the conditional probability of
a gene being EE given that it is claimed to be EE.

We simulated two data cases. Both mimic a four-array, two-channel dye-swap experiment
comparing 5000-gene expressions in control and treatment conditions. The array effect on the
log intensity is a random draw from a normal distribution. So is the dye effect. The two simu-
lation scenarios differ mainly in how the treatment effects are simulated and which distribution
is used to describe the variation of intensities. For gene expression intensities, scenario 1 uses
gamma distributions while scenario 2 utilizes lognormal distributions. Regarding generation of
treatment means, scenario 1 uses inverse gamma distributions for the raw treatment means.
Scenario 2 simulates the log2 treatment means through its relationship with the log ratio inten-
sities M and the log average intensities A, with M and A simulated from two uniform distri-
butions, respectively. In each case, we consider both 5% and 10% of DE prevalence; that is,
we simulate 250 and 500 DE genes. Among the four F-like statistics in the MAANOVA
package, we use FS only, because it is most robust and has a good power. In the first simulation
study, we compare the five methods by varying target FDR levels from 0.005 to 0.655 with an
increment of 0.05. The results in both ROC and predictive power comparison given in Figures
20.3–20.3 indicate that the direct or indirect information-sharing methods, SPH, SAM,
LIMMA, and FS, are superior to the BH-T procedure. In scenario 1, SPH performs slightly
better than do SAM, LIMMA, and FS, but vice versa for scenario 2.
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Instead of controlling FDR, the second simulation study evaluates these methods by fixing
the same number of claimed DE genes, for instance, 50–250 with an increment of 50, and
300–1000 with an increment of 100 for claimed DE genes. In this case, we are essentially con-
trolling cFDR [38], which is defined as the FDR conditioning on the observed number of rejec-
tions. The BH-T method reduces to the two-sample t tests and all methods are performed
without the FDR adjustments. Figures 20.7 and 20.8 display the evaluations for the two simu-
lated data cases with 5% DE genes. We observe results very similar to those for controlling
FDR. The procedure of using two-sample t tests to rank and select DE genes is inferior to
those in the other four methods, because the latter methods take the advantage of hierarchical
structures directly or indirectly to borrow information across genes.

We also provide meanMA plots in Figures 20.4–20.6 to give a snapshot of selected DE genes
for each controlling FDR method. As we increase the FDR, more DE genes are called by each
method.TheBH-Tmethod is conservative in that it tends to select the smallest numberofDEgenes.

20.2 NORMALIZATION

There are several computational issues associated with microarray analysis. The first is to
process the data to produce a result that reflects either absolute amounts of transcripts in
cells or the ratios of these amounts under two different experimental conditions. This
process is called the normalization that adjusts data to remove bias from dye labeling or
other instrumental errors. The second process involves interpretation of the intensity data to

Figure 20.1 Performance evaluation of the five methods for controlling FDR, using ROC
curves and predictive power curves for scenario 1 simulated data with 5% prevalence of DE
genes.
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Figure 20.2 Performance evaluation of the five methods for controlling FDR, using ROC
curves and predictive power curves for scenario 2 with 5% prevalence of DE genes.

Figure 20.3 Performance evaluation of the five methods for controlling FDR, using ROC
curves and predictive power curves for scenario 1 with 10% prevalence of DE genes.
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provide biological insight. It includes statistical methods for selecting DE genes, clustering,
principal-component analysis, and prediction. We will discuss normalization first in this
section, and then some statistical methods for selecting DE genes in the next section.

Suppose that we have equal concentrations of each species and no dye bias or other systema-
tic errors; we would expect a plot of Cy5 intensity versus Cy3 intensity for spots in a micro-
array to fall on a straight line having a slope of 1.0. In fact, Cy5 intensities are systematically
lower than Cy3 intensities when equal amounts of sample are present. If we indicate Cy5 inten-
sities by R (“red”) and Cy3 intensities by G (“green”), a regression of R against G would
produce a slope k below 1.0. If the regression is linear, then R ¼ kG, for k , 1.0. So, to
correct the R values, we would multiply R by 1/k; that is, Rcorrected ¼ k21R. This is called a
global normalization. The constant k can be estimated by linear regression of R against G
for all the genes. This is valid because most genes are not DE, and among the small number
of genes that are DE, roughly the same number of genes will be upregulated as downregulated.

However, it often occurs that the dye bias in log2(R/G) is not constant, but varies as a func-
tion of intensity. An MA plot [49] that plots M ¼ log2(R/G) ¼ log2R2 log2G versus A ¼

(log2R þ log2G)/2 would usually show this. So it calls for an intensity-dependent

Figure 20.4 Display of simulated truly DE genes and selected DE genes by each method for
controlling FDR at 0.05 for scenario 2 with 5% prevalence of DE genes: (a) black stars rep-
resent truly 250 DE genes; (b– f ) black stars indicate correctly selected genes; X symbols
denote false negative; other symbols, false positive.
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normalization. We can use locally weighted scatterplot smoother (lowess) or locally polynomial
scatterplot smoother (loess) to correct the M values. After the intensity-dependent normaliza-
tion, we would expect the average value of the M values to be 0.0 for all pairs of intensities
with the same A value.

The dependence of log ratios on fluorescent intensities is often depicted in MA plots as
either a curvature trend or a large variance of M values at the low- or high-intensity regions.
MAANOVA includes curvature-adjusting methods such as shift and intensity-based lowess,
linlog (log-linear) transformation for stabilizing variance, linlogshift (log-linear with shift)
transformation for both straightening curvature, and stabilizing variance as discussed in Kerr
et al. [22] and Cui et al. [6]. The shift method adds a constant to the intensities of one
channel and subtracts the same constant from the intensities in the other channel prior to the
logarithmic transformation. This constant is chosen so that the absolute deviation of each
log ratio from the median log ratio of the array is minimized. The intensity-based lowess
method corrects the M values by using the residuals from the fitted values of lowess or
loess on an MA plot. Since linear transformation works better for low intensities and logarith-
mic transformation is more appropriate for high intensities, linlog transformation combines
them. Below the channel-specific intensity cutoff, the linlog transformation is linear, while

Figure 20.5 Display of simulated truly DE genes and selected DE genes by each method for
controlling FDR at 0.01 for scenario 2 with 5% prevalence of DE genes: (a) black stars rep-
resent truly 250 DE genes; (b– f ) black stars indicate correctly selected genes; X symbols
denote, false negative; other symbols, false positive.
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above this cutoff it is logarithmic. The value of the cutoff is chosen to minimize the absolute
deviation of the variance of M values in each bin from the median variance in an MA plot.
Linlogshift is a combination of linlog and shift methods. MAANOVA also incorporates the
joint-lowess method to remove spatial bias due to lack of uniformity in array printing or hybrid-
ization. The joint-lowess transformation modifies the intensity-based lowess method by adding
the grid locations as predictors in the lowess or loess fit on an MA plot.

Different from MAANOVA, LIMMA provides normalization not only within an array but
also between arrays. The normalization within arrays will normalize the expression log ratiosM
so that the M values average to zero within each array. The normalization between arrays will
render the expression data comparable across different arrays.

There are two different between-array normalization options in the LIMMA package: the
scale normalization [49,50,32] and the quantile normalization [3,50]. The scale normalization
stems from the idea of scaling the M values to ensure the same median absolute deviation
(MAD) across arrays. The quantile normalization normalizes the M values from each array
to end up with the same distribution.

The LIMMA package also includes numerous methods for normalization within arrays
[49,50,32]. The median normalization subtracts the weighted median from the M values for

Figure 20.6 Display of simulated truly DE genes and selected DE genes by each method for
controlling FDR at 0.15 for scenario 2 with 5% prevalence of DE genes: (a) black stars rep-
resent truly 250 DE genes; (b– f ) black stars indicate correctly selected genes; in star, X
symbols denote false negative; other symbols, false positive.

STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES348



each array. The loess normalization, the print-tip loess normalization, and the composite nor-
malization are three different loess-based normalization methods, which use the residuals from
the fittedM values of the loess curves. The loess normalization works similarly to the intensity-
based lowess normalization under the MAANOVA package. The print-tip loess normalization
fits loess curves for each print-tip group. The composite normalization uses a compromise
between the loess curves fit for each print-tip group and the global MSP (specially designed
microarray sample pool) titration series curve. The purpose of the composite loess is to
conduct normalization based on the global MSP curves rather than the individual tip-group
curves when the intensities are low and unreliable.

The BH-T, SAM, and SPH methods assume that data have been normalized and converted
to gene expression matrix with foci on selecting DE genes.

20.3 METHODS FOR SELECTING DIFFERENTIALLY
EXPRESSED GENES

In this section, we review the five statistical methods for determining DE genes.

Figure 20.7 Performance evaluation of the five methods for controlling cFDR, using ROC
curves and predictive power curves for scenario 1 with 5% prevalence of DE genes.
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20.3.1 BH-T

Let yg,c ¼ ðyg, 1, . . . , yg,mÞ denote the normalized log intensities of the m replicates for gene g
in the control condition, and let yg,t ¼ ðyg,mþ1, . . . , yg,mþnÞ represent that of the n replicates of
the treatment condition. Typically, m ¼ n, and ðyg,j, yg,mþjÞ for j ¼ 1, . . . ,m is the pair of (R, G)
or (G, R) discussed earlier. So the gth row of the gene expression matrix consists of yg,c and
yg,t , a vector of m þ n dimension of the log intensities for the replicated experiment. We
compute the t statistic from each row:

tg ¼
�yg,t � �yg,c
s2g,t
n þ s2g,c

m

� �1=2 , (20:1)

where �yg,c denotes the sample mean of yg,c and s2g,c denotes the sample variance of yg,c Similarly

for yg,t.
To select DE (versus EE) genes, we first evaluate the p value associated with test statistics

jtgj obtained from (20.1) for the two-sided t test. For discovering the up-regulated genes, we
evaluate the p value by Pr(T. tg). Similarly, for discovering the downregulated genes, we
evaluate the p value by Pr(T, tg).

Now we describe the BH procedure. We first order the p values so that pr1 � pr1 . . . � prG .
Let k be the largest integer i for which pri � i

Ga for all i. Then we declare all the genes with
labels r1, . . . , rk to be DE.

Figure 20.8 Performance evaluation of the five methods for controlling cFDR, using ROC
curves and predictive power curves for scenario 2 with 5% prevalence of DE genes.
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Note that the value pri
G
i for each i is referred to as the adjusted p value. Benjamini and

Hochberg [1] used a sequential p-value method so that on the average FDR � a for some pre-
specified a. However, the BH method controls FDR at a level too low by a factor of G0/G,
where G0 and G are the number of truly EE genes and the total number of genes, respectively.
The adaptive BH procedure [2] incorporates an estimate of G0 into their 1995 procedure [1],

and uses a� ¼ aðĜ0=GÞ instead of a to gain more power. So the adaptive procedure performs
better only by using the difference between G0/G and 1. As prevalence of DE increases, the
adaptive procedure will offer a more detectable advantage.

Let us note that both the BH and adaptive BH methods can be applied to certain dependent
test statistics and p values, including the modified t statistics in LIMMA and the F statistics in
MAANOVA.

20.3.2 SAM

The input to SAM [5] is a set of gene expression measurements from a set of microarray exper-
iments, as well as a response variable from each experiment. The response variable may be a
grouping such as untreated, treated (either unpaired or paired), a multiclass grouping (e.g.,
breast cancer, lymphoma, colon cancer), a quantitative variable (e.g., blood pressure), or a
possibly censored survival time. The SAM method computes a statistics dg for each gene g.
It uses repeated permutations of the group labels to determine whether the expression of any
gene is significantly related to the response. The cutoff for the significance is determined by
a tuning parameter D chosen by the user on the basis of the false-positive rate. The SAM pro-
cedure can also choose a fold change parameter to ensure that the called genes are with fold-
changes at least at a prespecified amount. In this chapter, we are considering only the unpaired
two-group comparison.

For each gene, we compute the d statistics

dg ¼
�yg,t � �yg,c
sg þ s0

, (20:2)

with sg ¼
1
m
þ 1
n

� �1=2 ðm� 1Þs2g,c þ ðn� 1Þs2g,t
mþ n� 2

 !1=2

,

where s0 is a “fudge” factor that is chosen as a percentile of the sg values in order to make
the coefficient of variation (CV) of dg approximately constant as a function of sg. It has
the effect of dampening large values of dg that arise from genes whose expressions are
near zero.

The SAM method can be summarized in the following steps:

1. Compute the order statistics dr1 � dr2 � � � � � drG .

2. Take B sets of permutation of the expression levels, where each permutation b consists of
relabeling the two conditions for the columns of the gene expression matrix. Then
compute the corresponding order statistics dbr1 � dbr2 � � � � � dbrG . From the set of B per-
mutations, estimate the expected order statistics by �drg ¼ 1

B

P
b d

b
rg for g ¼ 1 , 2, . . . ,G.

3. Plot drg versus �drg for each g. For a fixed threshold D, moving up to the right, finding the
first index such that drg � �drg . D. Then call all the genes with larger d to be upregu-
lated. This d is called the cutup point, denoted by Cu. Similarly, move down to the
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left, find the first index such that �drg � drg . D. Then call all the genes with smaller d to
be downregulated. This d is called the cutdown point, denoted by Cd. If Cd . Cu, then
set Cd ¼ Cu ¼ 0.

4. Estimate the FDR in two steps by the permutation method. For a fixed grid of D values,
SAM first computes the total number of DE genes and the median number of falsely
called genes by computing the median number of values among each of the B sets of
db that fall above the Cu or below the Cd. This estimated FDR number is computed treat-
ing all the genes as not expressed, so SAM further adjusts this number downward by
estimating the total number of genes that are truly not expressed.

20.3.3 SPH

Unlike the other methods modeling the log intensities, the SPH method models the intensities
on the raw scale by gamma distributions. This is referred to as a level 1 gene-specific model that
explains the variations within the replicated experiments for each gene. Specifically, the repli-
cates for the control yg,c ¼ ðyg,1, . . . , yg,mÞ are considered as a random sample from a
gamma distribution with shape parameter ac and rate parameter ac

mg,c
, so that Eðyg,jÞ ¼ mg,c

for j ¼ 1, . . . ,m. Likewise, the replicates in the treatment, yg,t ¼ ðyg,mþ1, . . . , yg,mþnÞ, form a
random sample from a gamma distribution with shape at and rate at

mg,t
. The SPH method clas-

sifies the latent gene expression profiles by the following three hypotheses:
Hg,0 : mg,c ¼ mg,t , Hg,1 : mg,c , mg,t , and Hg,2 : mg,c . mg,t , respectively. They are respect-
ively called equivalently expressed, underexpressed, and overexpressed in the first condition
(for control). The joint density f of ðmg,c, mg,tÞ for all g, referred to as the baseline density,
is assumed to be

f ðmg,c,mg,tÞ ¼ p0f0ðmg,c,mg,tÞ þ p1f1ðmg,c,mg,tÞ þ p2f2ðmg,c,mg,tÞ,

where f0, f1, and f2 are the densities of m values within the preceding hypotheses Hg,0, Hg,1, and
Hg,2, respectively. Scalars p0, p1, and p2 are the marginal proportions of genes satisfying each
of the three hypotheses. So the parameters ( p0, p1, p2, f0, f1, f2) with p0 þ p1 þ p2 ¼ 1.0
describe the level 2 population-average model that describes the variation of mean intensities
among genes. Newton et al. [27] make further assumptions on the nonparametric joint
densities f0, f1, and f2 using just a univariate density p for estimability. In their setup, p rep-
resents a probability vector on the support of equally spaced finite grids of log mean
expressions. To generate the m values of gene g, two independent draws, Ug and Vg, arise
from p. A three-sided die with the outcome of Zg being 0, 1, or 2 with probabilities ( p0, p1,
p2) is tossed once. If the die comes up with Zg ¼ 0, then mg,c ¼ mg,t ¼ Ug and Vg is
ignored. If the die comes up with Zg ¼ 1, then mg,c ¼ min(Ug,Vg) and mg,t ¼ max(Ug, Vg)
and vice versa if the die comes up with Zg ¼ 2. Consequently

f0ðmg,c,mg,tÞ ¼ pðmg,cÞ1½mg,c ¼ mg,t�

f1ðmg,c,mg,tÞ ¼ 2pðmg,cÞpðmg,tÞ1½mg,c , mg,t �

f2ðmg,c,mg,tÞ ¼ 2pðmg,cÞpðmg,tÞ1½mg,c . mg,t �:

Regarding estimation, the common shape parameter within the control in the gamma distri-
bution is estimated by the method of moments, where ac is estimated as âc ¼ 1=meanðCV2

g,cÞ;
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the mean is over g, where CVg,c ¼ SDðyg,cÞ=meanðyg,cÞ. Similarly, we estimate at for the
treatment. A nonparametric EM algorithm using all the data is employed to estimate the base-
line mixture distribution indexed by the mixing proportions ( p0, p1, p2) and the density p. Then
gene-specific posterior probabilities for each of the three hypotheses are computed by the Bayes
rule using the baseline mixture distribution and the expression for the gth gene. The details are
given below.

1. EM starts with equally spaced grids on the log intensities as initial values for p(u), where
u denotes the grid values. Use equal probabilities

�
1
3,

1
3,

1
3

�
as crude guesses for ( p0, p1,

p2)

2. For iteration t ¼ 0, 1, 2, . . . :

a. E-step: We need to evaluate the expected value of the missing log likelihood given
the current parameter estimates. Therefore we need to evaluate the conditional expec-
tations of the gene-specific indicator functions 1[Zg ¼ j] for each j ¼ 0, 1, 2 and
1[Ug ¼ u] þ 1[Vg ¼ u] given the observed data (yg,c, yg,t), respectively. Let f ¼

( p0, p1, p2, p(u)) and f
(0) denote the initial values. So for each j, we need to evaluate

EfðtÞ f1½Zg ¼ jjyg,c, yg,t�g ¼ P
fðtÞ ðZg ¼ jjyg,c, yg;tÞ

and

E
fðtÞ f1½Ug ¼ ujyg,c, yg,t� þ 1½Vg ¼ ujyg,c, yg,t�g

¼ P
fðtÞ ðUg ¼ ujyg,c, yg,tÞ þ P

fðtÞ ðVg ¼ ujyg,c, yg,tÞ

Note that by Bayes’ rule, we obtain

P
fðtÞ ðZg ¼ jjyg,c, yg,tÞ/ pðtÞj pfðtÞ ðyg,c, yg,tjZg ¼ jÞ

The quantity p
fðtÞ ðyg,c, yg,t jZg ¼ jÞ is the predictive probability whose value involves

calculating pðtÞðuÞ. Similarly, P
fðtÞ ðUg ¼ ujyg,c, yg;tÞ þ P

fðtÞ ðVg ¼ ujyg,c, yg,tÞ is pro-
portional to

pðtÞ0 pðtÞðyg,c, yg,tÞ½pðujyg,c, yg,tÞ þ pðtÞðuÞ�

þ2pðtÞ1 pðtÞðyg,cÞpðtÞðyg,tÞ½pðtÞðujyg,tÞpðtÞðUg � ujyg,cÞ

þpðtÞðujyg;cÞpðtÞðVg . ujyg,tÞ�

þ2pðtÞ2 pðtÞðyg,cÞpðtÞðyg,tÞ½pðtÞðujyg,cÞpðtÞðVg � ujyg,tÞ

þpðtÞðujyg,tÞpðtÞðUg . ujyg,cÞ�

where the marginal probability p(yg,c) ¼
P

u[grid p(yg,cju)p(u), and the posterior
p(ujyg,c) ¼ p(yg,cju)p(u)/p(yg,c). Similar relationship exists for p(yg,t) and p(ujyg,t).
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b. M-step: The maximum-likelihood estimates on the (t þ 1)th iteration are derived as

p̂ðtþ1Þ
j ¼

P
g PfðtÞ ðZg ¼ jjyg,c, yg,tÞ

G
, j ¼ 0,1,2

p̂ðtþ1ÞðuÞ ¼
P

g½PfðtÞ ðUg ¼ ujyg,c, yg,tÞ þ P
fðtÞ ðVg ¼ ujyg,c, yg,tÞ�

2G

where G is the number of genes. Thus, in forming the estimates of ( p0, p1, p2) and
p(u), there is a contribution from each gene intensity.

The EM algorithm iterates between the E-step and M-step until convergence. Using the esti-
mates obtained by the EM algorithm, the posterior probabilities of the three hypotheses,Hg,j for
j ¼ 0,1,2, are calculated respectively as

PðHg,jjyg,c, yg,tÞ ¼ PðZg ¼ jjyg,c, yg,tÞ ¼ p jpðyg,c, yg,tjZg ¼ jÞ=pðyg,c, yg,tÞ:

These genewise marginal posterior probabilities measure the evidence of differential
expression for each gene. More specifically, a gene manifests stronger evidence of being DE
if it has smaller PðHg,0jyg,c, yg,tÞ. Therefore, genes will be declared as DE if they are located
at the top of the ordered gene list obtained by ranking from smallest to largest by
PðHg,0jyg,c, yg,tÞ. SPH decides on the size of the DE gene-list by controlling FDR through a
direct posterior probability approach. To report a list of upregulated genes, genes are ranked
according to the increasing values of bg with bg ¼ 1� PðHg,1jyg,c, yg,tÞ. bg is interpreted as
the conditional probability that placing gene g on the upregulated list creates a type I error.
The expected FDR given the data is estimated by the average of the conditional probabilities
bg in the reported list. To bound FDR at the target level of a is equivalent to ensuring the
expected FDR less than or equal to a. Similarly, a list of downregulated genes is selected
with now bg ¼ 1� PðHg,2jyg,c, yg,tÞ.

20.3.4 LIMMA

The LIMMA method [31] (linear models for microarray data), constructs hierarchical linear
models for the intensity data in microarray experiments with an arbitrary number of treatments.
In this section, we focus only on the situation with two conditions: control and treatment. Let
the column vector yg represent the normalized log intensities with the first m replicates from the
control sample and the remaining n replicates from the treatment sample. Assume that yg has
expectation E(yg) ¼ Xag and variance var(yg) ¼ Wgsg

2. The matrix X here is a design matrix of
full rank. In our case, we have:

XT ¼ 1 � � � 1 0 � � � 0
0 � � � 0 1 � � � 1

� �
2�ðmþnÞ

:

The vector aT
g ¼ ðag1,ag2Þ, where ag1 and ag2 represent the effect from the control and the

treatment group, respectively, for gene g. The term Wg is a known non-negative definite
weight matrix. LIMMA conducts a test of the hypotheses that the difference ag2 2 ag1 is
zero. Let cT ¼ ð�1,1Þ and bg ¼ cTag; then LIMMA tests H0 : bg ¼ 0 vs: Ha : bg = 0.
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The LIMMA method fits the linear model on each gene to obtain the coefficient estimate
âg, the variance estimate s2g for s2

g, and the covariance matrix cvarðâgÞ ¼ s2gVg, where Vg is
a positive-definite matrix not depending on s2g. Define vg ¼ cTVgc, then the contrast estimator

b̂g ¼ cT âg ¼ âg2 � âg1 and its estimated variance varðb̂gÞ ¼ vgs2g. With the normal assump-

tion in the linear model, the distribution of the parameters can be summarized as

bbgjbg,s
2
g � Nðbg,vgs

2
gÞ and s2gjs2

g �
s2
g

dg
x2dg ,

where dg is the residual degree of freedom for the linear model on gene g.
Since a large number genes share the same latent structure, LIMMA proposes prior distri-

butions (level 2 information) on the parameters bg and s2
g as follows:

Pðbg = 0Þ ¼ p, bgjs2
g,bg = 0 � Nð0, v0s2

gÞ and
1
s2
g

� 1

d0s20
x2d0 :

Under this hierarchical model, the posterior mean of s2
g given s2g is

es2g ¼ d0s20 þ dgs2g
d0 þ dg

:

The LIMMA method tests the hypotheses using a moderated t statistic defined as

tg ¼
bbg

esg ffiffiffiffiffi
vg

p :

Note that under the null hypothesis, tg � td0þdg , while under the alternative hypothesis

tg � ð1þ v0
vg
Þ1=2td0þdg . According to the distribution of tg under each hypothesis, LIMMA cal-

culates the p value and the adjusted p value using the BH method. LIMMA selects the genes
with adjusted p values less than some prespecified level a to be DE, so that it can control the
FDR at the targeted a level. LIMMA also calculates the posterior log odds ratio Bg for each
gene. The user can also select the genes with larger Bg to be DE. The results based on the
adjusted p values or the posterior odds ratios Bg agree with each other when there are no
missing values in the observed intensities.

20.3.5 MAANOVA

The MicroArray ANalysis Of VAriance (MAANOVA) package provides a collection of func-
tions that visualize gene expression quality, transform intensities through various normalization
methods to diminish extra noise, discover DE genes, and cluster genes by bootstrapping. In this
subsection, we focus on how MAANOVA finds DE genes. It applies the following gene-
specific general linear mixed model structure on the normalized log-transformed intensities
for gene g, denoted by yg:

yg ¼ Xbg þ Zug þ eg,
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where the matrix X denotes the design matrix of fixed effects bg, Z is the design matrix of
random effects ug, and eg is the residual vector. Since this linear mixed model is fit to the
expression data one gene at a time, the design matrices, X and Z remain the same for all
genes. In the cDNA experiments, for example, the array effect and biological replicates of
samples, if any, which account for inherent biological variation, are usually considered as
random factors. The cellular conditions (treatment effect) and dye effect are viewed as fixed
factors. Depending on experimental designs, covariates can also be built into the fixed-effect
part of the model to reduce the estimate of the systematic errors. The flexibility of the gener-
alized linear model enables MAANOVA to adapt to multifarious experimental designs such as
simple two-array dye-swap experiments or elaborate loop designs. In mixed-effect models, the
variance components are estimated by restricted maximum-likelihood method (REML).
Generalized least-square techniques are applied for estimation of the fixed-effect coefficients
and prediction of random effects.

Identification of a list of DE genes is achieved by testing linear combinations of treatment
effects for each gene. For instance, in a four-array dye-swap experiment in which per gene
is singled-spotted within a slide to compare control versus treatment samples, let Ai, Dj,
and Tk represent array, dye, and treatment effects, respectively. Then the fixed-effect
vector can be written as bg ¼ ðm,D1,D2, T1, T2ÞT and the random-effect vector as

ug ¼ ðA1,A2,A3,A4ÞT . Note that the array effects are not necessarily always assumed to be
random; they can be modeled as fixed effects in some experiments if the variation of array
effects are not significant. Detecting DE genes involves testing H0 : T1 ¼ T2 versus
H1 : T1 = T2 for each gene. For this hypothesis testing, there are four types of F statistics
in MAANOVA. Let Dg denote the estimate of the treatment effect for gene g. Use the notation
rssg,0 for the residual sum of squares for the null model that gene g is EE across cellular con-
ditions and df0 for the corresponding degrees of freedom. Similarly, rssg,1 and df1 represent the
alternative model of gene g being DE across conditions. The design matrices, X and Z, are the
same across genes, and so is the number of replicates. Consequently, the degrees of freedom are
equal across genes, and we can suppress the subscript g for them. Then
Dg ¼ ðrssg,0 � rssg,1Þ=ðdf0 � df1Þ. Let ŝ2

g ¼ rssg ,1=df1 be the residual mean square error for

gene g, and let ŝ2
pool be the mean of ŝ2

g across genes, which estimates the common variance.

The four types of F statistics are as follows:

F1 ¼
Dg

ŝ2
g

F2 ¼
Dg

1
2 ðŝ2

g þ ŝ2
poolÞ

F3 ¼
Dg

ŝ2
pool

FS ¼ Dg

~s2
g

,

where ~s2
g is the shrinkage estimator for s2

g. The derivation of ~s2
g involves first obtaining the

James–Stein (JS) estimator [21] for lnðs2
gÞ, then transforming it back to the original scale

for estimating s2
g. In deriving the JS estimator for lnðs2

gÞ, it is assumed that the ratios of the

residual sum of squares to the true variance rssg,1=s2
g, are independent, each following a x

2 dis-

tribution with n degrees of freedom; that is, rssg,1 � s2
gx

2ðnÞ. Taking the natural logarithmic
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transformation on rssg,1 transfers the problem to that of estimating a common location
parameter. We have

ln
rssg,1
n

� lnðs2
gÞ þ ln

x2ðnÞ
n

: (20:3)

Both sides of Equation (20.3) are centered by m, the mean of lnðx2n=nÞ. Let X0
g be

lnðrssg,1=nÞ � m. Using varðlnðx2ðnÞ=nÞÞ � varðx2ðnÞ=nÞ ¼ 2=n, which is a direct result of
the first order Taylor expansion of ln(x2(n)/n), the JS estimator shrinks X0

g toward the
common mean X̄0 ¼

P
g¼1
G X0

g/G. It was argued in [6] that the shrinkage estimator performs
best in the construction of the test statistics.

The null distributions of the F statistics are obtained through permutation. MAANOVA pro-
vides residual shuffling and sample shuffling. Residual shuffling applies to fixed-effect models
only because of its assumption of homogeneous variance. In residual shuffling, the residuals
obtained from fitting the null hypothesis model are shuffled globally among all genes to get
a new dataset, then we compute the test statistics for the new dataset. The permuted p
values are attained by repeating these steps of fitting models, generating new datasets, and com-
puting the test statistics. In mixed-effect models, variation of a gene’s expression consists of
residual error and variances of random components such as array and biological replicates.
Therefore the sample-shuffling method should be applied in order to construct the test statistics
based on the proper variation. There are two key aspects of sample shuffling. One is to ensure
that the shuffle base is the random term nested within the test term. For instance, in the Paigen’s
experiment in the MAANOVA manual [47], data were collected on mice of three strains that
were administered low- or high-fat diets. Two mice were selected from each strain–diet com-
bination, and the biological replicates (mice) are nested within the strain–diet interaction. The
interaction is the test term, and the shuffle base is the biological replicates. If there are more than
one random terms nested within the test term, the shuffle base should be the random term with
the lowest level. The other is to preserve the array structure specified in the model. However, as
pointed out in the MAANOVA manual, the number of possible permutations will be limited if
the experiment size is small. In this case, users have to rely on the tabulated p values, which are
obtained using F distributions to approximate the null distributions of F1 and FS, with x2 dis-
tributions for F2 and F3.

The four F statistics hence differ solely in the estimation of the true variance. The statistic
F1 is simply the ordinary F statistic, which uses the mean-squared error, ŝg

2, to estimate the
gene-specific variance. However, because of the usual case of small sample size per gene,
F1 is not a very good choice. The statistic F3 works best in the situation of homogeneous var-
iance, which does not occur often in microarray experiments with many sources of noise. As a
hybrid of F1 and F3, F2 gives ŝg

2 and ŝpool
2 an equal (uniform) weight of 1/2. The shrinkage

estimator s̃g
2 enhances the performance of FS by borrowing strength from all genes. By

varying the CV of residuals and n in their simulation studies, Cui et al. [6] show that FS is
robust to changes in CV values and has a good power of detecting DE genes. We therefore
focus only on FS in our simulation studies. To adjust for multiple comparisons,
MAANOVA also provides Šidák’s [34] stepdown procedure, the BH [1] stepup procedure,
and their adaptive procedure [2].

20.4 SIMULATION STUDY

To assess the performance of these five methods, we conduct simulation studies consisting of
two simulation scenarios. In both scenarios, we mimic a four-array, two-channel dye-swap
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experiment comparing 5000-gene expressions under control and treatment conditions. Since it
is reasonable to assume that the experimental environment is independent of genes, in both
scenarios, we simulate the array effect on the log2 intensities Ai from a N(0, 0.62) density
for i ¼ 1, 2, 3, 4. Similarly, the dye effect Dj for j ¼ 1, 2, is randomly drawn from N(0,0.32)
for each gene.

In scenario 1, let Zg,k represent the raw expressions attributed to the treatment effect for gene
g. We suppose that Zg,k are random draws from G(20,mg,k/20) so that the expected raw
expressions are mg,k, where k ¼ 1 represents control and k ¼ 2, treatment. Suppose that we
set the prevalence of DE genes at 5%. For the first 125 genes (g ¼ 1, . . . ,125), the upregulated
ones, mg,1 ¼ min(Ug,Vg) and mg,2 ¼ max(Ug,Vg) and vice versa for the downregulated genes
(g ¼ 126, . . . ,250). For EE genes (g ¼ 251, . . . , 5000), we set mg,1 ¼ mg,2 ¼ Ug and Vg ¼

0. Here Ug and Vg are randomly drawn from G21(2, 1/200). Let Yg,ijk denote the log2 intensity
of gene g from array i, dyed in color j and under the cellular condition k. Then Yg,ijk ¼ Ai þ
Dj þ log2(Zg,k). This indicates that the array and dye effects influence the expected raw inten-
sity through a multiple of mk.

In scenario 2, we assume that the expected value of Yg,ijk is a linear combination of array,
dye, and treatment effects. Let Tg,k denote the treatment effect on the log2 scale. We simulate
Tg,k through its relationship with log intensity ratio Mg ¼ Tg,2 2 Tg,1 and log average intensity
Ag ¼ 1/2(Tg,1 þ Tg,2). Let Ag � U(4, 8) for all genes, and

Mg

� Uð1, 2Þ for upregulated genes
� Uð�2,� 1Þ for downregulated genes
¼ 0 for EE genes:

8<
:

In other words, we assume that the DE genes have at least one- to two fold change due to the
treatment effect. Then

Yg,ijk � Nðm ¼ Ai þ Dj þ Tg,k , s ¼ ðAi þ Dj þ Tg,kÞ=12Þ

We set s this way so that CV values within one cellular condition remain constant across genes,
which is a crucial assumption for the SPH method.

Each method presumes normalized expressions as the input. We thus apply the quantile nor-
malization provided in the LIMMA package. This method ensures the same empirical distri-
bution of intensities across arrays and across channels. Since MAANOVA factors array and
dye effects into the modeling, we use the original data as its input while other methods use
normalized data. In MAANOVA, users need to specify the general linear model according
to their experiments. In our simulation studies, we fit a fixed-effect model by considering
array, dye, and treatment as fixed factors, because we observe that the variance of array
effects is very small relative to that of the residuals in the variance component plots. We
have also explored fitting the mixed-effect model by treating the array as a random effect.
The performance of the MAANOVA is not satisfactory. Both MAANOVA and LIMMA
allow us to fit more complex models. However, caution is also needed in fitting the correct
model. Finally let us note that the appropriateness of SPH relies on the assumption of constant
CV in each condition across genes as pointed out by its authors. So we simulate our data to
mimic this condition. Our following comparison results are based on this condition. In other
cases, we have seen situations where SPH may not be as competitive as SAM, LIMMA,
and MAANOVA. Therefore, it is important to caution users to check that the constant CV con-
ditions are satisfied before using the SPH.
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20.4.1 Results of Simulation Studies

We apply the five methods to the simulated data, one is for FDR control and the other, for
cFDR control. In both studies, we consider both the 5% and the 10% DE prevalence rates
and run 10 simulations for each scenario. We measure the classification accuracy of these
five methods using ROC curves. The predictive power is also evaluated through the plots of
PPV versus (1-NPV).

While SPH and BH-T propose their own method of controlling FDR, the LIMMA and
MAANOVA packages incorporate some popular FDR-controlling procedures and leave the
options to users. We use the BH [1] procedure to adjust the p values for the moderated t stat-
istic in LIMMA, and the adaptive BH procedure [2] for the permuted p values of FS. The
SAM package offers estimated median FDR, 90th percentile FDR, and local FDR. It gives
q values as a measure of pFDR as well. To put the methods on equal ground for comparison,
we estimated the median FDR for SAM. Figures 20.1–20.3 evaluate these five methods by
controlling FDR at 0.005–0.655 with increments of 0.05 and using both ROC curves and pre-
dictive curves. Figure 20.1 shows that in scenario 1, SPH has a slight edge over SAM,
LIMMA, and FS regarding classification accuracy, while these four methods are very compar-
able in terms of predictive power. As shown in Figure 20.2 of scenario 2 with uniform data
generation mechanisms, these three methods slightly surpass SPH. In both scenarios, BH-T
has the lowest sensitivity and PPV, and its setback in predictive power is more dramatic.
This results from the fact that SPH, SAM, LIMMA, and FS combine all information
among genes, whereas BH-T is merely a gene-specific classifier with no borrowing infor-
mation among genes. As the prevalence of DE genes increases, the adaptive BH procedure
[2] will offer a more detectable advantage. So at 10% DE prevalence of scenario 1 as
shown in Figure 20.3, at the same set of a values, the p values of the FS statistic adjusted
by the adaptive BH procedure indicate more DE genes than at 5% prevalence. Figure 20.3
reflects the fact that the ROC curve for FS does not terminate as soon as that in
Figure 20.1. Moreover, it shows that the superiority in predictive power of SPH and FS relative
to SAM and LIMMA becomes slightly more pronounced at 5% prevalence.

In order to observe the selected DE genes from each method, we draw a meanMA plot for a
simulation data of scenario 2 with 250 genes being truly DE. The meanMA plot basically plots
the average ofM values and the average of A values for replicates ofM and A for the same gene.
As shown in Figure 20.4, when FDR is controlled at 0.05, SPH, SAM, FS and LIMMA identify
a large proportion of truly DE genes. However, BH-T correctly selects only �20% of truly DE
genes. Moreover, it does not always prefer genes with large log intensity ratios; on the contrary,
it picks up some genes having small log ratios and yet very small standard deviations.
Combined with Figures 20.5 and 20.6, as a increases to 0.1 and 0.15, BH-T correctly calls
genes less than 50% of the times. This suggests that the BH procedure is conservative. We
also note that the other four methods tend to select genes with large M values.

In the FDR control studies we have discussed so far, we fix the acceptable FDR a before-
hand and estimate a significance threshold to obtain this target FDR. The true but unknown
data-generating distribution affects the quantity that measures the evidence against a gene
being EE given all genes involved, such as adjusted p values. Often, biologists are interested
in finding a list of DE genes to investigate, but are not as concerned as finding the strength of
evidence against being EE. So we investigate the methods in terms of ranking genes in the
second simulation study. We compare the methods by letting them declare the same number
of DE genes. So the evaluation is equivalent to controlling the conditional false discovery
rate (cFDR) at the same level. By varying the cFDR at different levels, we do not need
to obtain the adjusted p values in the BH method. Consequently, we indeed compare the
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two-sample t test with the other four methods without FDR adjustments. Both Figures 20.7 and
20.8 evaluate the five methods by choosing the same number of claimed DE genes with 5%
prevalence of DE genes for the two simulated data cases. Figure 20.7 shows that SPH performs
moderately better than SAM, LIMMA, and FS with respect to both accuracy and predictive
power, but vice versa for scenario 2, as shown in Figure 20.8. The two-sample t tests
perform worst in both scenarios.

20.4.2 Other Considerations

In addition to accuracy and predictive power, experimental designs and computation time
should be considered as comparison criteria as well. Note that SPH and two-sample t tests
manage two independent conditions only, while SAM can extend to multiple conditions.
Both MAANOVA and LIMMA can manage loop designs. In addition, covariates can be
incorporated in MAANOVA to reduce the residual errors. Both SAM and LIMMA can
analyze timecourse data. Since MAANOVA uses permutation to obtain the null distributions
and REML for variance components estimation in mixed effects models, the computing time
becomes much longer than the other methods as the number of genes increases. The SNOW
parallel computing package [29,37] alleviates this problem, however, it is not so easily set up
by users.

20.5 CONCLUDING REMARKS

We have reviewed some computational methods associated with microarray analysis. We
first briefly described the normalization procedure to reduce instrumental bias. Then we
reviewed five statistical methods for selecting and ranking differentially expressed (DE)
genes in replicated microarray experiments. These five methods are the Benjamini–
Hochberg procedure for controlling the false discovery rate (FDR) applied to two-sample
t tests, the significance analysis of microarray, the semiparametric hierarchical method,
the linear models for microarray data, and the microarray analysis of variance. We simu-
lated two data cases. Then we evaluated the performance of these methods controlling the
FDR at the same levels using (1) the receiver operating characteristic curves and (2) the
predictive powers. Our simulation results show that the first method of applying the
Benjamini–Hochberg procedure to two-sample t tests is inferior to the other four
methods. The other four methods are comparable with the advantage of sharing infor-
mation across genes. Moreover, we also compared the five methods with the same
numbers of claimed DE genes using the same criteria. In this study, the first method
reduces to using two-sample t tests without the FDR adjustment. We have essentially com-
pared the five methods on their abilities in ranking genes without the FDR adjustments.
Our simulation study revealed much the same results as before.
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21.1 INTRODUCTION

The widespread use of DNA microarray technology [15] to perform experiments on thousands
of gene fragments in parallel has led to an explosion of expression data. A variety of multi-
variate analysis methods have been used to explore these data for relationships among the
genes and the tissue samples. Cluster analysis has been one of the most frequently used
methods for these purposes. It is an exploratory technique that attempts to find groups of obser-
vations that have similar values on a set of variables. Sometimes emphasis is placed on the dis-
tinction between the search for naturally occurring clusters and the division of the entities into a
given number of groups, where there is no implication that the resulting groups are in any sense
a natural division of the data; see, for example, Hand and Heard [23]. But often there is no
emphasis, particularly as most methods for finding natural clusters are also useful for segment-
ing the data.

Agglomerative hierarchical clustering (encompassing single-, complete-, and average-
linkage variants), k-means clustering, and self-organizing maps (SOMs) have been the most
widely used methods. Eisen et al. [14] was the first to apply cluster analysis to microarray
data, using an agglomerative hierarchical method using average linkage with a correlation-
based metric, or equivalently, the Euclidean metric after standardization of the data.
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More recently, increasing attention has focused on model-based methods of clustering
microarray data (e.g., see Refs. 21,60,39, and 43).

A useful way to think about the different clustering procedures is in terms of the shape of the
clusters produced [53]. Many clustering methods assume that the appropriate distance function
(metric) is known (e.g., they may use Euclidean distance). But clearly, it would be more appro-
priate to use a metric that depends on the shape of the clusters. As pointed out by Coleman et al.
[8], the difficulty is that the shape of the clusters is not known until the clusters have been
found, and the clusters cannot be effectively identified unless the shapes are known. The
majority of the existing clustering methods assume that a similarity measure or metric is
known a priori; often the Euclidean metric is used. In particular, k means effectively uses
the Euclidean metric, as it can be viewed as being a “hard” version of the mixture clustering
procedure based on a mixture in equal proportions of multivariate normal components with
a common spherical covariance matrix. In the absence of any prior knowledge on the
metric, it is reasonable to adopt a clustering procedure that is invariant under affine transform-
ations of the data; that is, invariant under transformations of the data y of the form

y ! Cyþ a, (21:1)

where C is a nonsingular matrix. One attractive feature of adopting mixture models with ellip-
tically symmetric components such as the normal or t densities is that the implied clustering is
invariant under affine transformations of the data (i.e., under operations relating to changes in
location, scale, and rotation of the data). Thus the clustering process does not depend on irre-
levant factors such as the units of measurement or the orientation of the clusters in space. If the
clustering of a procedure is invariant under (21.1) for only diagonal C, then it is invariant under
change of measuring units but not rotations. But as mentioned by Hartigan [25], this form of
invariance is more compelling than affine invariance.

In this chapter, we shall focus on a model-based approach to the clustering of microarray
data using mixtures of normal distributions, which are commonly used in statistics; see, for
example, Ganesalingam and McLachlan [19], McLachlan and Basford [38], Banfield and
Raftery [2], Fraley and Raftery [16,17], and McLachlan and Peel [42]. As noted by Aitkin
et al. [61], “Clustering methods based on such mixture models allow estimation and hypothesis
testing within the framework of standard statistical theory.” Previously, Marriott [35, p. 70] had
noted that the mixture likelihood-based approach “is about the only clustering technique that is
entirely satisfactory from the mathematical point of view. It assumes a well-defined mathemat-
ical model, investigates it by well-established statistical techniques, and provides a test of sig-
nificance for the results.” More recently, Yeung et al. [60] noted that “in the absence of a well-
grounded statistical model, it seems difficult to define what is meant by a ‘good’ clustering
algorithm or the ‘right’ number of clusters.”

The normal mixture model-based approach is to be applied here in a nonhierarchical
manner, as there is no reason why the clusters of tissues or genes should be hierarchical in
nature. It is true that if there is a clear, unequivocal grouping, with little or no overlap
between the groups, any method will reach this grouping. But as pointed out by Marriott
[35], “hierarchical methods are not primarily adapted to finding groups.” For instance, if the
division into g ¼ 2 groups given by some hierarchical method is optimum with respect to
some criterion, then the subsequent division into g ¼ 3 groups is unlikely to be so. This is
due to the restriction that one of the groups must be the same in both the g ¼ 2 and g ¼ 3 clus-
terings. As explained by Marriott [35], this restriction is not a natural one to impose if the
purpose is to find a natural grouping of the data. As advocated by Marriott [35, p. 67], “it is
better to consider the clustering problem ab initio, without imposing any conditions.”
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Another attractive feature in using mixture models for clustering is that the number of clus-
ters can be formulated in terms of a criterion or a test for the smallest number of components in
the mixture model compatible with the data. One such criterion is the Bayesian information
criterion (BIC) of Schwarz [55], while a test can be carried out on the basis of the likelihood
ratio statistic l.

One potential drawback with the normal mixture-model-based approach to clustering is that
normality is assumed for the cluster distributions. However, this assumption would appear to
be reasonable for the clustering of microarray data after appropriate normalization.

In practice, the problem of relatively large local maxima that occur as a consequence of a fitted
component having a very small (but nonzero) variance for univariate data or generalized variance
(the determinant of the covariance matrix) for multivariate data deserves consideration. Such a
component corresponds to a cluster containing a few data points either relatively close together
or almost lying in a lower-dimensional subspace in the case of multivariate data. There is thus
a need to monitor the relative size of the fitted mixing proportions and of the component variances
for univariate observations, or of the generalized component variances for multivariate data, in an
attempt to identify these spurious local maximizers. One situation where an apparent spurious
solution would be of practical interest is where one (or more) of the fitted components correspond
to a small number of points that are distant from the remaining points.

21.2 CLUSTERING OF MICROARRAY DATA

There are two distinct but related clustering problems with microarray data: (1) clustering of
tissues on the basis of genes and (2) clustering of genes on the basis of tissues. This duality
is quite common. One may be interested in grouping tissues (patients) with similar expression
values or in grouping genes on patients with similar types of tumors or similar survival rates.

In clustering microarray data, the clusters of tissues can play a useful role in the discovery and
understanding of new subclasses of diseases. The clusters of genes obtained can be used to search
for genetic pathways or groups of genes that might be regulated together. Also, in problem 1, we
may wish first to summarize the information in the very large number of genes by clustering them
into groups (of hyperspherical shape), which can be represented by some metagenes, such as the
group-sample means. We can then carry out the clustering of the tissues in terms of these meta-
genes. As noted by Pollard and van der Laan [52], in most research these two problems have been
considered separately rather than simultaneously. They [52] propose a statistical framework for
two-way clustering; see also Getz et al. [20] and the references cited therein for earlier approaches
on this problem.

We first consider the clustering of tissue samples, using the EMMIX-GENE procedure of
McLachlan et al. [39]. For the clustering of gene profiles, we shall describe a mixture model
with random effects, EMMIX-WIRE (EM-based mixture analysis with random effects), as
developed in 2006 by Ng et al. [46]. More information on these programs can be found at
the Web addresses http://www.maths.uq.edu.au/~gjm/emmix-gene/ and http://www.maths.
uq.edu.au/~gjm/emmix/emmix.html.

21.3 NOTATION

Although biological experiments vary considerably in their design, the data generated by
microarray experiments can be viewed as a matrix of expression levels. For M microarray
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experiments (corresponding toM tissue samples), where we measure the expression levels of N
genes in each experiment, the results can be represented by the N � M matrix. For each tissue,
we can consider the expression levels of the N genes, called its expression signature.
Conversely, for each gene, we can consider its expression levels across the different tissue
samples, called its expression profile. The M tissue samples might correspond to each of M
different patients or, say, to samples from a single patient taken at M different timepoints.

The expression levels are taken to be the measured (absolute) intensities for Affymetrix oli-
gonucleotide arrays, whereas for the spotted arrays (cDNA or oligonucleotide arrays) are taken
to be the ratios of sample versus control intensities, represented by the Cy5-channel (red) and
Cy3-channel (green) images (see, e.g., Ref. 12). It is assumed that one starts the clustering
process with preprocessed (relative) intensities, such as those produced by RMA (for
Affymetrix data), loess-modified log ratios, or differences of logged/generalized-logged
data; see, for example, Parmigiani et al. [50], Huber et al. [28], Irizarry et al. [30], Rocke
and Durbin [54], and Speed [57]. The N � M matrix is portrayed in Figure 21.1, where each
sample represents a separate microarray experiment and generates a set of N expression
levels, one for each gene.

In the sequel, we shall use the vector yj to represent the measurement (feature observation)
on the jth entity to be clustered. In the context of the classification of the tissues on the basis of
the gene expressions, we can represent the N � M matrix A of gene expressions as

A ¼ (y1; . . . ; yM); (21:2)

where the feature vector yj (the expression signature) contains the expression levels on the N
genes in the jth experiment ( j ¼ 1, . . .,M). The latter is a nonstandard problem in parametric
cluster analysis because the dimension of the feature space (the number of genes) is typically
much greater than the number of observations (the number of tissues).

In the context of the clustering of the genes on the basis of the tissues, we can represent the
transpose of the matrix A in terms of the feature vectors as

AT ¼ (y1; . . . ; yN ); (21:3)

Figure 21.1 Gene expression data fromM microarray experiments represented as a matrix of
expression levels with the N rows corresponding to the N genes and the M columns to the M
tissue samples.
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where the feature vector yj (the expression profile) contains the expression levels on the M
tissues on the jth gene ( j ¼ 1, . . ., N). For this clustering problem, the number of observations
(the number of genes) is very large relative to the dimension of the feature space (the number of
tissues), and so in this sense it falls in the standard framework. However, it is not really a stan-
dard problem, as not all the genes are independently distributed.

21.4 CLUSTERING OF TISSUE SAMPLES

In the standard setting of a model-based cluster analysis, the n observations y1, . . ., yn to be
clustered are taken to be independent realizations where the sample size n is much larger
than the dimension p of each vector yj:

n .. p: (21:4)

It is also assumed that the sizes of the clusters to be produced are sufficiently large relative to p
to avoid computational difficulties with near-singular estimates of the within-cluster covariance
matrices.

In the cluster analysis of the M tissue samples on the basis of the N genes, we have n ¼ M
and p ¼ N. Thus the sample size n will be typically small relative to the dimension p, causing
estimation problems under the normal mixture model

f (y; C) ¼
Xg
i¼1

f(y; mi;Si); (21:5)

where f (y; mi, Si) denotes the p-dimensional normal density function with mean mi and
covariance matrix Si and C is the vector of unknown parameters. This is because the
g-component normal mixture model (21.5) with unrestricted component–covariance matrices
is a highly parameterized model with 1

2 p(pþ 1) parameters for each component–covariance
matrix Si(i ¼ 1, . . ., g).

An obvious way to handle the very large number of genes is to perform a principal-
component analysis (PCA) and carry out the cluster analysis on the basis of the leading com-
ponents. The shortcomings of a PCA in such a context is that the leading components need not
necessarily reflect the direction in the feature space best for revealing the group structure of the
tissues. This is because it is concerned with the direction of maximum variance, which is com-
posed of variance both within and between the clusters. If the latter are relatively large, then the
leading components may not be so useful for the purposes of cluster analysis. But with the
analysis of microarray data, this problem is compounded by the very large number of genes
and their associated noise. Thus artificial directions can result from noisy genes and highly
correlated ones. Consequently, a potential problem with a PCA is the determination of an
appropriate number of principal components (PCs) useful for clustering. A common practice
is to choose the first few leading components. But it may not be clear where to stop and
whether some of these components are caused by some artifact or noises in the data. An
excellent account of these problems may be found in Liu et al. [33]. They have developed a
Bayesian approach to model-based clustering that after an initial PCA simultaneously clusters
the observations and selects “informative” variables or components for the cluster analysis.
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21.5 THE EMMIX-GENE CLUSTERING PROCEDURE

The EMMIX-GENE procedure handles the problem of a high-dimensional feature vector by
using mixtures of factor analyzers whereby the component correlations between the genes are
explained by their conditional linear dependence on a small number q of latent or unobservable
variables specific to each component. In practice we may wish to work with a subset of the avail-
able genes, particularly as the fitting of a mixture of factor analyzers will involve a considerable
amount of computation time for an extremely large number of genes. Indeed, the simultaneous
use of too many genes in the cluster analysis may serve only to create noise that masks the effect
of a smaller number of genes. Also, the intent of the cluster analysis may not be to produce a
clustering of the tissues on the basis of all the available genes, but rather to discover and
study different clusterings of the tissues corresponding to different subsets of the genes; see
the papers of Pollard and van der Laan [52] and Friedman and Meulman [18] on this point.
As explained in Belitskaya-Levy [3], the tissues (cell lines or biological samples) may cluster
according to cell or tissue type (e.g., cancerous or healthy) or according to cancer type (e.g.,
breast cancer or melanoma). However, the same samples may cluster differently according to
other cellular characteristics, such as progression through the cell cycle, drug metabolism,
mutation, growth rate, or interferon response, all of which have a genetic basis.

Therefore, the EMMIX-GENE procedure has two optional steps before the final step of
tissue clustering. The first step considers the selection of a subset of relevant genes from the
available set of genes by screening the genes on an individual basis to eliminate those that
are of little use in clustering the tissue samples in terms of the likelihood ratio test statistic.
The second step clusters the retained genes No into groups on the basis of Euclidean distance
so that highly correlated genes are clustered into the same group. The third and final step of the
EMMIX-GENE procedure considers the clustering of the tissues by fitting mixtures of normal
distributions or factor analyzers. It can be implemented by considering the groups of genes
either simultaneously on the basis of their means or individually on the basis of all or a
subset of the genes in a given group. We now describe these three steps in more detail.

21.5.1 Step 1. Screening of Genes

In step 1 of EMMIX-GENE, we screen the genes by attempting to delete those genes that indi-
vidually are of little use in clustering the tissue samples into two groups. This screening is
undertaken in the absence of tissue samples that are of known classification. The relevance
of a gene for clustering the tissue samples can be assessed on the basis of the value of 22
logl, where l is the likelihood ratio statistic for testing g ¼ 1 versus g ¼ 2 components in
the mixture model. In order to reduce the effect of atypically large observations on the
value of l, we fit mixtures of t components with their degrees of freedom inferred from the
data. However, the use of t components in place of normal components still does not eliminate
the effect of outliers on inference of the number of groups in the tissue samples. For example,
suppose that for a given gene there is no genuine grouping in the tissues, but that there are a
small number of gross outliers. Then a significantly large value of l might be obtained,
with one component representing the main body of the data (and providing robust estimates
of their underlying distribution) and the other representing the outliers. In other words,
although the t mixture model may provide robust estimates of the underlying distribution, it
does not provide a robust assessment of the number of groups in the data.

In light of the above, the EMMIX-GENE software automatically assesses the relevance of
each of the N genes by fitting one- and two-component t mixture models to the expression data
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over the M tissues for each gene considered individually. If 22 logl is greater than a specified
threshold b1

�2 log l . b1, (21:6)

then the gene is taken to be relevant provided that

smin � b2, (21:7)

where smin is the minimum size of the two clusters implied by the two-component t mixture
model and b2 is a specified threshold. If (21.6) holds but (21.7) does not for a given gene,
then the three-component t mixture model is fitted to the tissue samples on this gene, and
the value of 22 logl calculated for the test of g ¼ 2 versus g ¼ 3. If (21.6) holds for this
value of 22 logl, the gene is selected as being relevant (provided at least two of the three clus-
ters implied by the g ¼ 3 solution have sizes not less than b2). Although the null distribution of
22 logl for g ¼ 2 versus g ¼ 3 is not the same as for g ¼ 1 versus g ¼ 2 components, it would
appear to be reasonable here to use the same threshold (21.6). The null distribution of 22 logl
for the test of the null hypothesis H0 : g ¼ g0 versus the alternative hypothesis H1 : g ¼ g1 is
unknown (for finite sample sizes) for normal or t components [42, Ch. 6]. In our applications
of EMMIX-GENE, we have taken

b1 ¼ b2 ¼ 8: (21:8)

The majority of genes in microarray datasets tend to exhibit near-constant expressions
across samples [11], and so many methods preselect genes by eliminating those with small var-
iance. For example, the gene-shaving methodology of Hastie et al. [26] is concerned with the
identification of small, homogeneous subsets of genes that have maximal variance across the
tissue samples. As noted by Pollard and van der Laan [52], genes with low variance can be
equally interesting biologically, and so their two-way clustering procedure using hierarchical
PAM (partitioning around medoids) is aimed at identifying clusters of genes with both low
and high variance across tissues. The gene selection procedure in EMMIX-GENE aims to
identify genes whose distributions are not consistent with a single normal distribution, and
so it can identify potentially valuable genes for clustering that can have both small and high
variances across the tissues.

21.5.2 Step 2. Clustering of Genes: Formation of Metagenes

Concerning the end problem of clustering the tissue samples on the basis of the genes con-
sidered simultaneously, we could examine the univariate clusterings provided by each of the
selected genes taken individually. But this would be rather tedious when a large number of
genes have been selected. Thus with the EMMIX-GENE approach, there is a second (optional)
stage for clustering the genes into a user-specified number (No) of groups by fitting a mixture in
equal proportions of g ¼ No normal distributions with covariance matrices restricted to being
equal to a multiple of the (M � M) identity matrix. That is, if the mixing proportions were fixed
at 0.5, then it would be equivalent to using a soft version of k means and grouping the genes in
terms of the Euclidean distance between them. Since the gene profiles have been normalized,
they lie on the surface of the unit hypersphere. Thus, after each M-step of the EM algorithm, we
normalize the updated estimates of the component means so that they lie on the surface of the
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unit hypersphere. More precisely, we could fit mixtures of von Mises–Fisher distributions as in
Banerjee et al. [1].

Each group (cluster) of genes can be represented by one or more M-dimensional profile
vectors over the M tissues. We follow Huang et al. [27] in referring to these cluster represen-
tatives as metagenes. In EMMIX-GENE, we take the sample mean of the genes within a cluster
to be the metagene representing the cluster. This strategy of using a linear combination of the
genes within a cluster to represent it and thereby reducing the dimension of the feature (gene)
space also helps smooth out gene-specific noise through the aggregation within a cluster.

The groups of genes are ranked in terms of the likelihood ratio statistic calculated on the
basis of the fitted mean of a group over the tissues for the test of single versus two t com-
ponents. This is provided that the minimum cluster size is greater than a specified threshold.
Otherwise, such a group of genes would be placed at the end of the list.

A heatmap of genes in a group versus the tissues is provided for each of the groups where, in
each group, the tissues can be left in their original order or rearranged according to their cluster
membership obtained by fitting a univariate t mixture model on the basis of the group mean.
Alternatively, one could cluster the tissues by fitting a two-component mixture of factor ana-
lyzers on the basis of the genes within the group. Heatmaps present a grid of colored points
where each color represents a gene expression value for a gene in the tissue sample. They
are used here primarily to exhibit similarities between groups or clusters of the tissue
samples. Thus they are most effective in this role when the tissue samples have been
grouped according to their group (cluster) memberships. Of course, heatmaps are also useful
in revealing similarities between the genes.

21.5.3 Step 3. Clustering of Tissues

If a clustering is sought on the basis of the totality of the genes, then it can be obtained by fitting
a mixture model to these group means. However, it may be that the number of group means No

is too large to fit a normal mixture model with unrestricted component–covariance matrices. In
this circumstance EMMIX-GENE has the option on the third step that allows for the fitting of
mixtures of factor analyzers. The use of mixtures of factor analyzers reduces the number of para-
meters by imposing the assumption that the correlations between the genes can be expressed in
a lower space by the dependence of the tissues on q (q , N) unobservable factors. In addition
to clustering the tissues on the basis of all the genes, there may be interest in seeing whether the
different groups of genes lead to different clusterings of the tissues when each is considered
separately. For example, a subset of the genes may be all that is required to identify certain
subtypes of the cancer being studied.

It can be seen from above that with the EMMIX-GENE procedure, the genes are being
treated anonymously; that is, we do not incorporate existing biological information on the func-
tion of genes into the selection procedure. Spang [56] infuses some biological context into an
otherwise unsupervised learning task. He structures the feature space by using a functional grid
provided by the gene ontology annotations.

21.6 CLUSTERING OF GENE PROFILES

In the remainder of this chapter, we consider the clustering of gene profiles with or without
replication across some experimental conditions of interest. For this clustering problem, the
number of observations n to be clustered is the number of genes (n ¼ N), which will usually
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be very large relative to the dimension p of the feature space (p ¼M). In this sense it falls in the
standard framework. However, this clustering problem is not straightforward as the profiles of
the genes are not all independently distributed and the expression levels may have been
obtained from an experimental design involving replicated arrays. Thus the standard normal
mixture model (21.5) cannot directly be applied to cluster the gene profiles. This is because
in unmodified form, this approach does not incorporate experimental design information
such as disease status of the tissue samples in which the genes are measured in cross-sectional
studies, covariate information such as the time ordering of the gene measurements in time-
course studies, or the structure of the replicated data as in longitudinal studies. Pan [48] has
proposed to incorporate known gene functions as prior probabilities in model-based clustering.
But there is a need to develop further clustering procedures that are applicable to data from a
wide variety of experimental designs. For example, microarray experiments are now being
carried out with replication for capturing either biological or technical variability in expression
levels to improve the quality of inferences made from experimental studies [32,51]. Replicated
measurements from each tissue sample (subject) are often interdependent and tend to be more
alike in characteristics than are data chosen at random from the population as a whole.
Similarly, in timecourse studies [59], where expression levels are measured under various con-
ditions or at different timepoints, gene expressions obtained from the same condition (subject)
are correlated.

Ng et al. [46] have developed a random-effect model that provides a unified approach to the
clustering of genes with correlated expression levels measured in a wide variety of experimen-
tal situations. Their model is an extension of the normal mixture model (21.5) to account for the
correlations between the gene profiles and to enable incorporation of covariate information into
the clustering process. Hence the model is applicable to longitudinal studies with or without
replication, for example, timecourse experiments by using time as a covariate, and to cross-
sectional experiments by using categorical covariates to represent the different experimental
classes. Ng et al. [46] have shown that their random-effect model EMMIX-WIRE can be
fitted by maximum likelihood via the expectation–maximization (EM) algorithm for which
the E- and M-steps can be implemented in closed form. Hence their model can be fitted deter-
ministically without the need for time-consuming Monte Carlo approximations.

In related work, Ng et al. [47] have applied this method of clustering to two real timecourse
datsets from the budding yeast (Saccharomyces cerevisiae) genome. They showed that the pro-
posed method provided clusters of cell-cycle-regulated genes that are supported by existing
gene function annotations, and hence enables inference on regulatory interactions for the
genetic network. Their approach was to search for regulatory control elements (activators
and inhibitors) shared by the clusters of coexpressed genes, based on time-lagged correlations.

As noted by Bryan [5] with the clustering of gene profiles, any clustering structure found
may not be directly reflective of biological realities, but might be more due to the preprocessing
of the data, which can create sparsely populated areas in the profile space as an artifact. In such
situations, the clustering may still be of interest in terms of which genes are put together in the
same cluster for various choices of the number of clusters.

21.7 EMMIX-WIRE

The EMMIX-WIRE procedure of Ng et al. [46] formulates a (multilevel) linear mixed-effect
model (LMM) for the mixture components in which covariate information can be incorporated.
It can be used for the clustering of correlated genes, based on expression microarray data obtained
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from various experimental designs such as repeated measurement data and timecourse data. Their
proposed general random-effect model is formulated by incorporating both “gene” effects and
“tissue” effects in the mixture modeling of the microarray data. This is in contrast to the
mixed-effect models approaches in Celeux et al. [6], Luan and Li [34], and McLachlan et al.
[40] that involve only gene-specific random effects. Their methods thus require the independence
assumption for the genes, which, however, will not hold in practice for all pairs of genes [40].

With the EMMIX-WIRE procedure, it is assumed that the observedM-dimensional vectors
y1, . . ., yN are assumed to have come from a mixture of a finite number, say, g, of components in
some unknown proportions p1, . . .,pg, which sum to one. Conditional on its membership of
the hth component of the mixture, the vector yj for the jth gene follows the model

yj ¼ Xbh þ Ubhj þ Vch þ 1hj, (21:9)

where the elements of bh (an M-dimensional vector) are fixed effects (unknown constants)
modeling the conditional mean of yj in the hth component and bhj (a qb-dimensional vector)
and ch (a qc-dimensional vector) represent the unobservable gene- and cluster-specific
random effects, respectively. The random effects bhj and ch, and the measurement error
vector 1hj, are assumed to be mutually independent. In (21.9), X, U, and V are known
design matrices of the corresponding fixed or random effects. The specification of (21.9)
covers many general random-effect models for the clustering of correlated gene expression
data arising from various microarray experiments, including those with replications. For
example, let t be the number of distinct tissues in the experiment. We are given for the jth
gene a feature vector yj ¼ (y1j

T , . . ., y tj
T)T, where ylj ¼ (yl1j, . . . , ylrj)

T contains the r replications
on the jth gene from the lth tissue (l ¼ 1, . . . , t). With respect to (21.9), bh is a M-dimensional
vector (M ¼ t) modeling the conditional mean of yj in the hth component. Moreover, con-
ditional on membership of the hth component, it is assumed that the random effects are
shared among the repeated measurements of expression on the same gene from the same
tissue [bhj in (21.9) with qb ¼ t], along with the random effects that are shared among gene
expressions from the same tissue [ch in (21.9) with qc ¼ M ¼ tr]. The component-specific
effects ch for the tissues induce dependence among the gene expression levels of genes from
the same component and from the same tissue (correlated genes). By allowing the expression
levels of the genes in a cluster to have their own and cluster-specific random-effect terms,
greater individual and collective variation, respectively, can be exhibited by the genes in the
same cluster than would otherwise be possible under a fixed-effects model without gene-
and cluster-specific random effects.

With the LMM, the distributions of bhj and ch are taken to be multivariate normal, Nqb(O,ubh
Iqb) and Nqc(O, uchIqc), respectively, where Iqb and Iqc are identity matrices with dimensions being
specified by the subscripts. The measurement error vector 1hj is also taken to be multivariate
normal NM (O, Dh), where Dh ¼ diag(Wfh) is a diagonal matrix constructed from the vector
(Wfh) with fh ¼ (s2

h1, . . . , s
2
hqe

)T and W a known M � qe zero–one design matrix. Thus,
we allow the hth component variance to be different among the M microarray experiments.

21.8 MAXIMUM-LIKELIHOOD ESTIMATION VIA THE EM
ALGORITHM

We letC ¼ (c1
T, . . ., cg

T, p1, . . ., pg21)
T be the vector of all the unknown parameters, where ch

is the vector containing the unknown parameters bh, ubh, uch, and fh of the hth component
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density (h ¼ 1, . . . , g). Ng et al. [46] showed that the estimation of C can be obtained by
maximum-likelihood (ML) via the EM algorithm of Dempster et al. [9]. The implementation
of the E-step is straightforward for mixture models provided that the data can be treated as
being independently distributed. In their model (21.9), the gene profile vectors yj are not all
independently distributed as genes within the same cluster (i.e., from the same component
in the mixture model) are allowed to be dependent due to the presence of the random-effect
term ch for the hth component in (21.9). However, this problem can be circumvented by pro-
ceeding conditionally on the random cluster effects ch, as, given these terms, the gene profile
vectors yj are all conditionally independent. In this way, Ng et al. [46] showed that the E- and
M-steps can be carried out in closed form. In particular, we do not have to approximate the
E-step by carrying out time-consuming Monte Carlo approximations.

Within the EM framework, each yj is conceptualized to have originated from one of the g
components. We let z1, . . ., zN denote the unobservable component indicator vectors, where the
hth element zhj of zj is taken to be one or zero according to whether yj originates from the hth
component or not given c, where c ¼( c1

T, . . ., cg
T)T. We let y ¼ (y1

T, . . . , yN
T)T denote the observed

data and, correspondingly, put zT ¼ (z1
T, . . ., zTN). The ML estimation of the normal mixture of

LMMs via the EM algorithm can be formulated by treating the unobservable component indi-
cator variables z and the random effects b ¼ (b1

T, . . . , bg
T)T and c as missing data in the EM fra-

mework [45], where bh ¼ (bh1
T , . . . , bhN

T )T for h ¼ 1, . . ., g. Let 1h ¼ (1h1
T , . . ., 1hn

T )T for h ¼ 1,
. . . , g. With

(yT , zT , bT , cT )T

taken to be the complete data, it follows that the complete data log likelihood is given, apart
from an additive constant, by

log Lc(C) ¼
Xg
h¼1

Xn
j¼1

zhj logph �
1
2

Xn
j¼1

zhjqb log ubh þ qc log uch

("

þ
Xn
j¼1

zhj log jAhj þ
bThbh
ubh

þ cTh ch
uch

þ 1ThVh1h

)#
, (21:10)

where

bThbh ¼
Xn
j¼1

zhjb
T
hjbhj

and

Vh ¼ In � A�1
h

for h ¼ 1, . . . ,g, and hence

1ThVh1h ¼
Xn
j¼1

zhj1
T
hjA

�1
h 1hj:

In the above, the sign � denotes the Krönecker product of two matrices. By consideration of
(21.10), Ng et al. [46] showed that the E- and M-steps can be implemented in closed form.
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To effect a probabilistic or an outright clustering of the genes into g components, we can
condition on the cluster random-effect vector ch. As the latter is unobservable, we use its esti-
mated conditional expectation given the observed data

ĉh ¼ E
Ĉ
(chjy); (21:11)

where EĈ denotes taking expectation using the ML estimate Ĉ for the vector C of unknown
parameters. Since the genes within a cluster are independently distributed given ch, it suffices
to effect a clustering with each gene considered individually in terms of its estimated posterior
probabilities of component membership given its profile vector and ch, for h ¼ 1, . . . , g and j ¼
1, . . ., n. Using Bayes’ theorem, the posterior probability that the jth gene belongs to the hth
component given yj, and c, t(yj, c; C) can be expressed as

t(yj, c; C) ¼ PrfZhj ¼ 1jyj; cg

¼
ph f (yjjzhj ¼ 1; ch; ch)Pg
i¼1 pi f (yjjzij ¼ 1; ci; ci)

, (21:12)

where f (yj j zhj ¼ 1, ch; ch) denotes the hth component density of yj given the random effect ch.
The log of this density is given by

log f (yjjzhj ¼ 1; ch; ch) ¼ �1
2

n
log jBhj

þ (yj � Xbh � Vch)
TB�1

h (yj � Xbh � Vch)
o
,

apart from an additive constant, is the log of the hth component density of yj conditional on ch,
where Bh ¼ Ah þ ubh UU

T.

21.9 MODEL SELECTION

Specification of the random-effect components in the model (21.9) needs careful consideration.
An identifiability problem could arise if the random-effect model is specified so that the design
matrix V for the random effects ch is the same as the X for the fixed effects bh. In their study,
Ng et al. [46] were concerned with situations where the emphasis is on the grouping of the
genes rather than the number of clusters and their link with externally existing groups; that
is, they were concerned primarily in finding which genes are put together in the same
cluster for plausible choices of the number of components g in the mixture model. A guide
to plausible values of g can be obtained using the Bayesian information criterion (BIC) of
Schwarz [55], whereby the number g of components in the mixture model is taken to minimize
22 log L (Ĉ) þ d log n, where d denotes the number of parameters in the model. In the EM
framework, L(C) is the incomplete-data likelihood function forC. However, as the gene profile
vectors yj are not all independently distributed, this likelihood function L(C) is unable to be
calculated directly by taking the product of the (marginal) densities of the yj. Ng et al. [46]
suggested that L(C) be approximated by forming it as if all the yj were independent.
Another approach would be to use resampling methods [13,37,41].
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21.10 EXAMPLE: CLUSTERING OF TIMECOURSE DATA

To illustrate the EMMIX-WIRE approach to the clustering of gene profiles, Ng et al. [46]
applied it to three representative datasets, each arising from different kinds of microarray exper-
iments: timecourse data as in the yeast cell cycle study of Spellman et al. [58], data with
repeated measurements as in the yeast galactose study of Ideker et al. [29], and finally cross-
sectional data involving two groups of tissues (tumuor and normal) as in the study of
human colorectal carcinomas of Muro et al. [44].

We report here their first example. By analyzing cDNAmicroarrays from yeast cultures syn-
chronized by three independent methods over approximately two cell cycle periods, Spellman
et al. [58] identified 800 yeast genes that meet an objective minimum criterion for cell cycle
regulation. In their study, Ng et al. [46] considered the 18a-factor (pheromone) synchroniza-
tion where the yeast cells were sampled at 7-min intervals for 119 min. They worked with a
subset of 612 genes that had no missing expression data across any of the 18 timepoints.
Their aim was to cluster the cell-cycle-regulated genes on the basis of the microarray expression
data matrix of N ¼ 612 rows (genes) and M ¼ 18 columns (timepoints). They then analyzed
the clusters so formed for common regulatory elements, as described by Spellman et al.
[58]. With reference to (21.9), they took the design matrix X to be an 18 � 2 matrix with
the (l þ 1)th row (l ¼ 0, . . . ,17)

�
cos

� 2p(7l)
v

þF
�
, sin

� 2p(7l)
v

�
þF

�
,

where v is the period of the cell cycle and F is the phase offset. They adopted here the least-
squares estimation approach considered by Booth et al. [4] to obtain the cell cycle period v ¼

53 and the initial phase F ¼ 0 from the dataset. For the design matrices of the random-effect
parts, they took U ¼ 118 and V ¼ I18; that is, it is assumed that there exist random gene effects
bhj with qb ¼ 1 and random temporal effects (ch1, . . . , chqc ) with qc ¼ m ¼ 18. The latter intro-
duce interdependence among expression levels within the same cluster obtained from the same
timepoint. Also, they took W ¼ 118 and fh ¼ sh

2 (qe ¼ 1) so that the component variances
were common among the m ¼ 18 experiments. The mixture model of LMMs was fitted
to the data with g ¼ 4 to g ¼ 15 components. The number of components g was
determined using BIC for model selection. These experiments indicated that there are 12
clusters.

The clustering results for g ¼ 12 as obtained by Ng et al. [46] are given in Figure 21.2,
where the expression profiles for genes in each cluster are presented. From Figure 21.2, it
can be seen that the genes have very similar expression patterns within each cluster, except
in clusters 4 and 7, where there is greater individual variation in some of the genes. This clus-
tering result is different from Spellman’s clustering, which was based on time of peak
expression only.

For clusters 1, 3, 10, 11, and 12, which show clear periodic expression patterns, Ng et al.
[46] searched through the 700-bp (basepair) upstream region of the start codon of each gene for
the presence of binding site sequences for any known yeast cell cycle transcription factors such
as MBF, SBF, Mcm1p-containing factors, and Swi5p factors. The results are summarized in
Table 21.1. They found that the majority of the genes in these clusters share common promoter
elements; furthermore, they correspond to known cell cycle transcription factor binding sites
relevant to the time of peak expression.
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Figure 21.2 Clustering results for the yeast cell cycle data. For all the plots, the x axis
(abscissa) is the timepoint and the y axis (ordinate) is the gene expression level.
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21.11 CONCLUDING REMARKS

As an increasing number and variety of high-throughput datasets become available, cluster
analysis is playing an ever-increasing role in the analysis of these biological data.
Hierarchical methods have been the primary clustering tool employed to date. The hierarchical
algorithms have been applied mainly heuristically to these cluster analysis problems. Also,
there is no reason why the clusters of tissues (or genes) should belong to a hierarchy such
as in the evolution of species. Further, a major limitation of these methods is their inability
to determine the number of clusters. Thus there is a need for a model-based approach to this
clustering problem. Concerning the clustering of tissue samples, a clustering of some
tumors, for example, will reveal whether tumors that have traditionally been lumped together
as one type should be divided into a number of distinct subtypes, and whether these subtypes
have different prognoses and respond differently to specific therapies. For this clustering
problem, we have described the EMMIX-GENE procedure, which is a model-based approach
to the clustering of high-dimensional independent observations.

The EMMIX-GENE procedure fits a mixture of multivariate normals without regression
structure on the component means and without constraints on the covariance matrices that
arise in experimental designs with structure, including replications taken over time. Thus it
is not directly applicable to the other clustering problem of grouping the gene profile vectors
as in longitudinal or cross-sectional studies. This problem arises where, say, the interest is in
studying the changes in gene expression of entire groups of (correlated) genes as a means to
finding possible functional relationships among them, the identification of transcription
factor binding sites, and the elucidation of biological pathways. The biological rationale under-
lying the clustering of the gene profiles is the fact that often many coexpressed genes are also
coregulated, which is supported by an immense body of empirical observations as well as a
detailed mechanistic explanation [62]. However, it has been observed that genes with similar
profiles sometimes do not share biological similarity [7,22,10]. Thus clustering does not
provide proof of relationships between the genes, but it does provide suggestions that help
to direct further research. The idea is that we can establish a guilt by association—that is,
genes with similar expression patterns are more likely to have similar biological function.
For this clustering problem, we have described the EMMIX-WIRE procedure, which provides
a unified approach to the clustering of genes with correlated expression levels measured in a
wide variety of experimental situations. This procedure is applicable to longitudinal studies
with or without replication, for example, timecourse experiments by using time as a covariate,
and to cross-sectional experiments by using categorical covariates to represent the different
experimental classes.

Table 21.1 Promoter Elements (Yeast Cell Cycle Data)

Cluster
Number
of Genes Binding Site Regulator

Peak
Expression

1 35 ACGCGT MBF, SBF G1
3 40 MCM1 þ SFF Mcm1p þ SFF G2/M
10 11 ACGCGT MBF, SBF G1
11 48 Unknown Unknown G1
12 17 ATGCGAAR Unknown S
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Most clustering algorithms require that one gene be assigned to one cluster, adding an arbi-
trary element to the analysis. Mixture modeling provides one way to reduce this arbitrariness
and to handle the clustering of the borderline cases. It gives a probabilistic or “soft” clustering
through the posterior probabilities of component membership of each gene. An overlapping
clustering can be obtained by making a hard assignment of each gene to one or more of the
components (clusters) using a threshold on the posterior probabilities of component member-
ship; for example, the jth gene with profile vector yj belongs to the hth component if its pos-
terior probability of membership of the hth component is greater than some specified
threshold c.
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C H A P T E R 22

Censored Data Regression in
High-Dimensional and
Low-Sample-Size Settings for
Genomic Applications
Hongzhe Li
Department of Biostatistics and Epidemiology, University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania

22.1 INTRODUCTION

High-throughput technologies generate many types of high-dimensional genomic and proteomics
data. Important examples include DNA microarray technology, which permits simultaneous
measurements of expression levels for thousands of genes, array-based comparative genomic
hybridization (aCGH) data that measure the change of DNA copy numbers, array-based single-
nucleotide polymorphism (SNP) data, and mass spectrometry data to measure protein expression
levels. Such high-throughout genomic data offer the possibility of a powerful, genomewide
approach to the genetic basis of different types of tumors and can be used for molecular classifi-
cation of cancers, for studying varying levels of drug responses in the area of pharmacogenomics,
and for predicting different patients’ clinical outcomes. The problem of cancer class prediction
using the gene expression data, which can be formulated as predicting binary or multicategory
outcomes, has been studied extensively and has demonstrated great promise [21,42]. There has
also been active research ofmethods development in relating gene expression profiles to other phe-
notypes, such as quantitative continuous phenotypes or censored survival phenotypes such as time
to cancer recurrence or time to death. Because of the wide variability in time to certain clinical
events such as cancer recurrence among cancer patients, and in age of onset of many complex dis-
eases, studying possibly censored survival phenotypes can be more informative than treating the
phenotypes as binary or categorical variables.
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The goal of linking genomic data to censored survival data is twofold: to identify genes that
are involved in the risk of a clinical event and to build a predictive model for future patients’
survival based on both genomic data and patient-specific covariates. These two goals are
related but not equivalent, although a good predictive model often implies that the variables
used in the model are relatively important or predictive. Owing to the problem of censoring,
survival analysis models are obviously relevant to this problem. The Cox regression model
[7] is the most popular method in regression analysis for censored survival data. Alternately,
one can consider the accelerated failure-time (AFT) model [6,48] and the additive hazard
model [34]. For a given censored data regression model, because of the very high-dimensional
space of the predictors (i.e., where the genes with expression levels measured by microarray
experiments), the standard estimation method cannot be applied directly to obtain the par-
ameter estimates. Besides the high-dimensionality, the expression levels of some genes are
often highly correlated, which creates the problem of high collinearity. Finally, we should
also expect complex interactions between genes to affect the risk of survival. To deal with
these problems, Li and Luan [31], Li and Gui [30], Li and Li [33], Gui and Li [22,23], and Li
and Luan [32] were the first to investigate the use of penalized estimation procedures for the
Cox model in the high-dimensional and low-sample-size settings. These regularized estimation
methods were subsequently extended for the AFT models and the additive hazard models by
Huang et al. [26] and Ma and Huang [35,36] by using appropriately defined loss functions.

The focus of this review is to present some more recently developed statistical and compu-
tational methods for relating high-throughout genomic data to censored survival outcomes,
including both the methods for identifying genes related to such survival outcomes and the
methods for building predictive models for future patient survival. The remainder of the
chapter is organized as follows. We first review some commonly used censored data regression
models. We then present a class of penalized estimation procedures for various models. We
also present ensemble boosting methods for censored data regression models and briefly
mention methods based on dimension reduction and Bayesian variable selection. We present
a comparison of some of these methods using a real dataset of diffuse large B-cell lymphoma
(DLBCL) survival times and gene expression data [40]. Finally, we briefly discuss the methods
and present several important problems for future research.

22.2 CENSORED DATA REGRESSION MODELS

Suppose that we have a sample size of n from which to estimate the relationship between the
survival time T and the gene expression levels X ¼ fX1, . . . , Xpg of p genes. In addition, let Z
be the vector of other patient-specific covariates. As a result of censoring, for i ¼ 1, . . . , n, the
ith datum in the sample is denoted by (ti, di, xi1, xi2, . . . , xip, zi), where di is the censoring indi-
cator and ti is the survival time if di ¼ 1 or censoring time if di ¼ 0, and xi ¼ fxi1, xi2, . . . ,xipg0
is the vector of the gene expression level of p genes for the ith sample. In this section, we briefly
review the three most commonly used censored data regression models, including the Cox pro-
portional hazards model, the AFT model, and the additive hazards model.

22.2.1 The Cox Proportional Hazards Model

The Cox proportional hazards model is the most commonly used censored data regression
model in survival analysis. The model assumes the following hazard function for cancer
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recurrence or death at time t

l(tjX;Z) ¼ l0(t) exp(F(X; Z))

¼ l0(t) exp(b1X1 þ b2X2 þ � � � þ bpXp þ g0Z)

¼ l0(t) exp(b
0X þ g0Z), (22:1)

where l0(t) is an unspecified baseline hazard function and F(X, Z) is the function that links the
(X, Z) to the hazard function. If this function is assumed to be linear, then b ¼ fb1, . . . , bpg is
the vector of the regression coefficients related to the p genomic data, and X ¼ fX1, . . . , Xpg is the
vector of gene expression levels with the corresponding sample values of xi ¼ fxi1, . . . , xipg
for the ith sample. Finally, g is the risk ratio parameter associated with covariate vector Z.

Using the available sample data, the Cox’s partial likelihood [7] can be written as

L(b;g) ¼
Y
r[D

exp (b0xr þ g0zr)P
j[Rr

exp (b0xj þ g0zj)
,

where D is the set of indices of the events (e.g., deaths) and Rr denotes the set of indices of the
individuals at risk at time tr 2 0. Note that when p . n, there is no unique b to maximize this
partial likelihood function, and therefore some regularization is required (see Sections 22.3.1–
22.3.3). Even when p � n, some regularization may still be required in order to reduce the var-
iances of the estimates and to improve the prediction performance.

22.2.2 Accelerated Failure-Time Model

Let T be the random variable of time to event. For the ith individual, let ti be the respective
random variable. Let ci be the censoring times, assumed to be i.i.d and following a survival
function G(t) ¼ Pr (ci . t). The linear AFT model assumes

g(T) ¼ aþ b0X þ g0Z þ 1, (22:2)

where g is some prespecified monotone function (e.g., log function) and 1 is (heteroscedastic)
unobservable error, assumed to be independent with zero means and bounded variances across
n individuals. Because of censoring, for i ¼ 1, . . . , n, the ith datum in the sample is denoted
by (yi, di, xi1, xi2, . . . , xip), where di is the censoring indicator and yi is g transformation of the
survival time if di ¼ 1 or g transformed of the censoring time if di ¼ 0:

yi ¼ min(g(ti), g(ci)), di ¼ I½ti � ci�, i ¼ 1, . . . , n:

Wei [48] discussed some advantages of using such AFT models over the popular Cox
regression model, including easy interpretation of the model parameters and better fits for
some datasets. One approach for estimating the parameter b is the Buckley–James (BJ) [6] pro-
cedure. In Section 22.3.4, we present simple modification of the BJ procedure to deal with the
problem of large p. Alternatively, one can estimate b by minimizing the inverse probability of
censoring weighted (IPCW) loss function introduced in Robins and Rotnitsky [39]. On the
basis of this loss function, one can develop regularized estimation procedures for b and
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extend the random forests and boosting procedure to censored survival data (see Section
22.4.2). For simplicity, we consider only model (22.3.2) without covariate Z.

22.2.3 Additive Hazard Regression Models

The additive risk model as described in Lin and Ying [34] assumes the following conditional
hazard at time t

l(tjX;Z( � )) ¼ l0(t)þ b0X þ g0Z(t), (22:3)

given a p-dimensional vector of genomic data X and patient-specific covariate Z(.), which can
be time-dependent. Here b, g, and l0(t) denote the unknown regression parameter and
the unknown baseline hazard function. In the following discussion, we simply assume that
there is no covariate Z in the model (22.3). Denote fNi(t) ¼ I(ti � t,di ¼ 1); t � 0g and
fYi(t) ¼ I(ti � t); t � 0g as the observed event process and the at-risk process. Lin and Ying
[34] proposed the following estimation equation for b

U(b) ¼
Xn
i¼1

ð1
0
XfdNi(t)� Yi(t)dL0(b, t)� Yi(t)b

0X dtg ¼ 0,

where

L0 ¼
X
i¼1

ðt
0

fdNi(u)� Yi(u)b0Xi dugPn
i¼1 Yi(u)

is the estimate of the baseline hazard function. As noted by Lin and Ying [24] and Ma and
Huang [35,36], the resulting estimation of b is obtained by solving the equation

Xn
i¼1

ð1
0
Yi(t)fX � �X(t)g�2dt

" #
b ¼

Xn
i¼1

ð1
0
fX � �X(t)gdNi(t)

" #
, (22:4)

where �X(t) ¼
Pn

i¼1 Yi(t)Xi=
Pn

i¼1 Yi(t). As noted by Ma and Huang [35,36], the estimate of
b by this equation is equivalent to minimizing a loss function of b (see Section 22.3.6). On
the basis of this loss function, the lasso or threshold gradient descent procedure can be devel-
oped for estimating the b in the additive hazard model (22.10).

22.3 REGULARIZED ESTIMATION FOR CENSORED
DATA REGRESSION MODELS

In this section, we review several regularized estimation procedures for estimating the censored
data regression models reviewed in previous sections. Most of these procedures are based on
extensions of the procedures developed for linear regression and classification, with appropriate
definitions of the loss functions.
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22.3.1 L2 Penalized Estimation of the Cox Model Using Kernels

Since the dimension of the xi vector is usually far exceeds that of sample size n, standard
methods such as the Cox partial likelihood for estimating the unspecified function f are unfea-
sible. In addition, to deal with the problem of collinearity, the most popular approach is to use
the penalized partial likelihood, including the L2 penalized estimation, which is often called the
ridge regression. Li and Luan [31] investigated the L2 penalized estimation of the Cox model in
the high-dimensional low-sample-size settings and applied their method to relate the gene
expression profile to survival data. To avoid the inversion of large matrix, they used the
kernel tricks to reduce the computation to involve only the inversion of a matrix of the
size of the sample size. In the model (22.1) with no covariate Z, a regularized formulation
of the Cox regression is considered as a variational problem in reproducing kernel Hilbert
space H

min f[HRreg( f ) ¼
1
n

Xn
i¼1

V(ti, di, f (xi))þ jkf k2H ,

where V(ti, di, f (xi)) is the loss function which is a function of f depending on only the values of
f(x) at the data points, f f (xi)gni¼1: For the general Cox model (22.1), we propose to use the
negative log partial likelihood as the loss function and reformulate the problem as finding func-
tion f (x) such that

Rreg ¼ � 1
n

Xn
i¼1

di f (xi)� log
X
j[Ri

exp ( f (xj)

( )" #
þ jk f k2H (22:5)

is minimized, where Ri ¼ f j ¼ 1, . . . , n, xj � xig is the set of individuals who were at risk at
time xi.

The solution to this problem was given by Kimeldorf and Wahba [29], and is known as the
representer theorem. By this theorem, the optimal f (x) has the form

f (x) ¼ bþ
Xn
i¼1

aiK(x, xi) (22:6)

where K is a positive definite reproducing kernel, which gives the inner product in the transform
space. Since b can be absorbed into the baseline hazard function in model (22.1), we can omit
b in the following discussion. For the simplest case of inner product kernel with K(xi, xj) ¼
kxi, xjl, the function f (x) can be expressed as a linear function of xi terms. In cases where
the data are not linearly separable, one can choose a more general kernel such as the
polynomial kernels with K(xi, xj) ¼ (kxi, xj l þ1)d or the Gaussian kernels with K(xi, xj) ¼
exp(kxi � xjk=s2

d), where d and s2
d are the kernel parameters. From the representer formula

(22.6), it can be shown that minimizing equation (22.5) is equivalent to the finite-dimensional
form

Ra ¼ �d0(Kaa)þ d0 log

�X
j[Ri

exp(Kaa)

�
þ ja0Kqa, (22:7)
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where a0 ¼ (a1, . . . , ang, the regressor matrix Ka ¼ [K(xi, xj)]n�n, and the regularization matrix
Kq ¼ Ka. Here the matrix Ka is called the kernel matrix. One can use the Newton–Raphson
method to minimize the loss function over a, which is n-dimensional.

This procedure can be simply modified to include other covariates Z. For example, we can
estimate g in model (22.1) by maximizing a profile partial likelihood.

22.3.2 L1 Penalized Estimation of the Cox Model Using Least-Angle
Regression

One limitation of the L2 penalized estimation of the Cox model is that it uses all the genes in the
prediction and does not provide a way of selecting relevant genes for prediction. However, from
a biological perspective, one should expect that only a small subset of the genes is relevant to
predicting the phenotypes. Including all the genes in the predictive model introduces noise and
is expected to lead to poor predictive performance. Owing to the high-dimensionality, the stan-
dard variable selection methods such as stepwise and backward selection cannot be applied.
The lasso method was proposed by Tibshirani [44] for variable selection for linear models
and was further extended for variable selection for the Cox proportional hazard models [45].
For the model (22.1) with no covariate Z, let l(b) ¼ logL(b) be the log of the partial likelihood
function; then the lasso estimate of b [44,45] can be expressed as

b̂(s) ¼ argmax l(b); subject to
Xp
j¼1

jbjj � s,

where s is a tuning parameter determining how many covariates with coefficients are zero.
Tibshirani [45] proposed the following iterative procedure for reformulating this optimiz-

ation problem with constraint as a lasso problem for linear regression models. Specifically,
let h ¼ b0X, m ¼ @l/@h, A ¼ 2@2l/@h hT, and z ¼ h þ A2m. With this reparameterization,
a one-term Taylor series expansion for l(b) has the form of

(z� h)TA(z� h):

Although there are multiple choices of A2, it is easy to show that if rank(A) ¼ n 2 1, for
any A2 that satisfies AA2A ¼ A and z ¼ h þ A2m, (z2 h)TA(z 2 h) is invariant to the
choice of the generalized inverse of A. The iterative procedure of Tibshirani [45] involves
the following four steps:

1. Fix s and initialize b̂ ¼ 0.

2. Compute h, m, A, and z on the basis of the current value of b̂.

3. Minimize (z2 b0X)TA(z 2 b0X) subject to
P

jbjj � s.

4. Repeat steps 2 and 3 until b̂ does not change.

Tibshrani [45] proposed using quadratic programming for solving step 3. However, in the
high-dimensional and low-sample-size setting (i.e., where p� n), the quadratic programming
algorithm cannot be directly applied. Gui and Li [22] proposed a simple modification of the
LARS algorithm of Efron et al. [8] for step 3. Specifically, Gui and Li [22] apply the
Choleski decomposition to obtain T ¼ A1/2 such that T 0T ¼ A; then step 3 of the iterative
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procedure can be rewritten as step 3: minimize (y 2 b0X̂)T(y 2 b0X̂) subject to
P

jbjj � s,
where y ¼ Tz and X̂ ¼ TX. This can be efficiently solved by using the LARS–lasso
procedure as presented in Efron et al. [8].

Segal [41] proposed using LARS to minimize a residual-based loss function for the Cox
model, in which the IRWLS iterations are not required. Park and Hastie [38] proposed a gen-
eralization of the LARS algorithm for the Cox model using the predictor–corrector algorithm
of convex optimization. Finally, for a given tuning parameter s, one can estimate g in model
(22.1) by maximizing a profile partial likelihood in g. For a given g and s, the LARS procedure
can be used for estimating the b, denoted as b(g, s). Then we can maximize the partial like-
lihood over g.

22.3.3 Threshold Gradient Descent Procedure for the Cox Model

Treating the negative log partial likelihood function (2l(b)) as the loss function, Gui and Li
[22] presented a threshold gradient descent (TGD) regularization procedure for estimating
the b in the Cox model following the key idea presented in Friedman and Popescu [17].
The main idea of the TGD is that during the gradient descent minimization, a thresholding is
imposed to the absolute values of the gradients. Specifically, for any threshold value 0 � t � 1,
the threshold gradient descent algorithm for Cox model involves the following five steps:

1. b(0) ¼ 0, n ¼ 0.

2. Calculate h, m, g(n) ¼ @l/@b for the current b.

3. fj(n) ¼ I[jgj(n)j � t . max0�k�njgk(n)j]
4. Update b(n þ Dn) ¼ b(n) þ Dn . g(n) . f (n), n ¼ n þ Dn.

5. Repeat steps 2–4 until the b terms converge.

This procedure involves two tuning parameters t and n, both of which control the sparsity of
the estimates of b. Compared to the lasso estimate of the Cox model, this TGD procedure is
computationally fast and does not involve matrix inversion. Simulations and applications to
real datasets indicated that when t ¼ 1, the TGD procedure performs very similarly to the
Lasso procedure. Note that this procedure is quite general and can be applied to essentially
any convex loss function. Finally, if covariate Z is included in model (22.1), one can estimate
g by maximizing a profile partial likelihood or by iteratively updating g and b during the TGD
iterations.

Although empirical evidence indicated that the TGD procedure works well in selecting vari-
ables and in building predictive models [22,26], it is not clear precisely what the corresponding
penalty function is. The procedure, which is similar in spirit to the LARS, indeed provides a
way to regularize the parameter estimates and is therefore expected to perform well in high-
dimensional settings.

22.3.4 Regularized Buckley–James Estimations for the AFT Model

Buckley and James [6] used the transformation f on the observed responses yi, where f(yi) ¼
diyi þ (12 di) E(tijti � yi) and proposed simultaneously updating f(yi) and b at each step and
proceed iteratively:

1. Select an initial estimate b0, and let t̃i ¼ b0 xi.
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2. Compute the residuals ei ¼ yi 2 t̃i and estimate transformation

f̂(yi) ¼ diyi þ (1� di) ~ti � fŜe(ei)g�1
ð1
ei

sdfŜe(s)g
� �

¼ diyi þ (1� di) ~ti þ
Pu

k nk~tkI(ei , ek)

Ŝe(ei)�1

� �
,

where Ŝe(s) is the Kaplan–Meier estimator of the survival function based on fei, digni¼1, nk
is the probability mass assigned to uncensored residual ek, and

Pu denotes summation
over uncensored values only.

3. Apply least-squares estimation to ff̂(yi), xig and update b.

4. Stop if b converges or oscillates. Otherwise, go to step 2.

When p . n, one cannot implement the least-squares estimation in step 3 of the BJ pro-
cedure. However, one can perform LARS–lasso or the threshold gradient descent procedure
for step 3 to obtain a regularized estimation of b. Alternatively, one can perform L2 penalization
or partial least-squares (PLS) methods for estimating the b in step 3 [25], which provides a PLS
procedure for linear models with censoring on the responses.

22.3.5 Regularization Based on Inverse Probability of
Censoring Weighted Loss Function for the AFT Model

If there are no censoring in the data, the most commonly used method for estimating the model
(22.3) is by minimizing a quadratic loss function

l(b) ¼
Xn
i¼1

(yi � b0xi)
2

over b. However, such a loss function cannot be evaluated at the censored observations. One
solution to this problem is to use the inverse probability of censoring weighted (IPCW) loss
function introduced in Robins and Rotnitsky [39], who showed that for any loss function
l(T, F(x)), one has

E(l(T ,F(x))DG(T jx)) ¼ E(l(T ,F(x))),

where the T is the random variable of time to event, F(x) is an estimator, and G(Tjx) is the sur-
vival function of the censoring variable, which may be dependent on x. This suggests the use of
the following loss function to estimate the AFT model (22.2)

lipcw(b) ¼
Xn
i¼1

(yi � bxi)
2 di

G(yi)

� �
, (22:8)

where G(t) is the survival function of the censoring variable. This loss function can be regarded
as the weighted squared loss function with weight wi ¼ di/G(yi) for the ith individual. In prac-
tice, G(t) is, of course, unknown and must be estimated by the Kaplan–Meier estimator G(t)
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from the observation (ti, di, xi). Notice for the purpose of estimating G(t), a di ¼ 0 means a
complete observation and di ¼ 1 means a censored observation.

Alternatively, we can use the robust Huber [27] loss function as

lHipcw(b) ¼
Xn
i¼1

lHi (yi, xi; b)
di

G(yi)
, (22:9)

where lHi (.) is the Huber loss function for the ith observation defined as

lHi (yi, xi,b) ¼
(yi � bxi)2=2 jyi � bxij , t

t(jyi � bxij � t=2) jyi � bxij , t

(
,

where t is the transition point, the value of which is often taken to be ath quartile of the current
absolute residuals t(b) ¼ quantileafjyi 2 bxijgi[D. Here 1 2 a is a specified fraction of the
observations that are treated as outliers, subject to absolute loss.

On the basis of the loss function defined by Equation (22.8), Huang et al. [26] developed L1
penalized estimation or lasso by using the LARS, namely, min lipcw(b) subject toPp

i¼1 jbij , s, and a TGD procedure. For the Huber version of the loss function (22.9), one
can similarly perform a gradient boosting procedure or the threshold gradient descent procedure
[14,17]. Finally, on the basis of loss functions defined in Equation (22.8) or (22.9), one can
easily develop principal-components or partial least-square components analysis for the AFT
models.

22.3.6 Penalized Estimation for the Additive Hazard Model

In the estimation Equation (22.4) for b in the additive hazard model (22.3), we denote

Hi ¼
Ð1
0 Yi(t)fXi � �X(t)g�2 dt, and Ri ¼

Ð1
0 fXi � �X(t)g dNi(t), and Hi

s,l as the (s, l) element

of Hi and the sth components of Ri and b as Ri
s and bs, then Equation (22.4) is equivalent

to the following p equations:

Xn
i¼1

Hi
s, 1

 !
b1 þ � � � þ

Xn
i¼1

Hi
s, p

 !
bp ¼

Xn
i¼1

Ri
s, i ¼ 1, . . . , p:

Ma and Huang [35,36] further note that the estimate defined by this equation is the same as
minimizing the following loss function L(b),

b ¼ argminb l(b) ¼
Xp
s¼1

Xn
i¼1

Hi
s;1

 !
b1 þ � � �

((
þ
Xn
i¼1

Hi
s;p

 !
bp �

Xn
i¼1

Ri
s

)2
9=
;:

On the basis of this loss function, Ma and Huang [35,36] proposed using the lasso or TGD
procedure to obtain regularized estimates of b.
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22.3.7 Use of Other Penalty Functions

Besides the L2 and L1 penalty functions, one can also consider penalized estimation of various
censored data survival models using other penalties. One attractive alternative is the smoothly
clipped absolute deviation (SCAD) penalty proposed in Fan and Li [10]. The SCAD penalty
pj(b) is defined by its derivative as

p0j(b) ¼ j
I(b � j)þ (aj� b)þ

(a� 1)j
I(b . j)

� �

for some a . 2 and b. 0, where j is a tuning parameter. The corresponding penalty pj(b) is a
nonconcave function and is continuously differentiable. This penalty function is constructed to
ensure that the resulting estimator has unbiasedness, sparsity, and continuity properties. In
addition to ensuring less biased estimates of the coefficients for large true values, the SCAD
estimators also possess an oracle property for both the finite-dimensional cases [10] and the
cases with a diverging number of parameters [11]. The oracle property of the SCAD estimators
is very attractive for variable selection. The SCAD penalty has also been applied to the Cox’s
proportional hazards model [10] and can, of course, be applied to other censored data
regression models in the finite-dimensional settings. Because of the computational difficulty
in implementing the SCAD penalization in very high-dimensional settings, its application in
linking genomic data to censored survival data has not been seen in the literature. However,
research along this line should be promising.

22.4 SURVIVAL ENSEMBLE METHODS

Since the early 1990s, ensemble methods such as random forests [2] and boosting procedures [12–
14,4,5] have gained much popularity in classification and linear regression analysis because of
their superior predictive performances. In addition, Bühlmann [4] demonstrated the applicability
of the boosting procedure in the high-dimensional settings. In this section, we first review two
extensions of the gradient boosting procedure to the Cox model and the AFT model.

22.4.1 The Smoothing-Spline-Based Boosting Algorithm for the
Nonparametric Additive Cox Model

Li and Luan [32] proposed to use the boosting procedure for estimating the function F(X) in
model (22.1) nonparametrically. Boosting essentially is an iterative procedure to update func-
tion estimators successively. Friedman [14] developed a novel general framework, called the
“gradient boosting machine,” to obtain additive expansions adapted to any fitting criterion.
The framework is quite general and works for various models. For linear regression with no
censoring, Bühlmann and Yu [5] show that the L2 boosting achieves the optimal rate of
convergence.

Following Friedman [14] and Bühlmann and Yu [5], Li and Luan [32] proposed a compo-
nentwise boosting procedure using cubic smoothing splines as base learner. At the kth boosting
step, they obtain the estimate of the function F(k)(X), which is a nonparametric additive function
of each component of X, some of which are identically zero. It should be noted that when the
iteration k increases by 1, one more term is added to the fitted procedure; however, this term
may have already been in the model. Owing to the dependence of this new term on the previous
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terms, the complexity of the fitted model is not increased by a constant amount. The final model
provides an estimate of possible nonlinear effects of gene expression levels on the risk of an
event.

22.4.2 Random Forests and Gradient Boosting Procedure
for the AFT Model

Hothorn et al. [28] presented a random forests algorithm and a gradient boosting algorithm for
the construction of prognostic and diagnostic AFT models by using the IPCW loss function
(22.8). Using the IPC weights, they [28] proposed modifying the original random forests pro-
cedure of Breiman [2] in two ways: in the bootstrap (or bagging) step, the case samples are
weighted by their IPC weights to obtain the case counts, and in the base learner step, the
tree is built using the learner sample with case counts obtained from the bootstrap step.
Similarly, using this IPCW loss function, the generic gradient descent boosting procedure of
Friedman [14] can be directly applied to develop a boosting procedure for a linear model
with censoring. The base learner can be a regression tree, univariate splines, or componentwise
least squares. One benefit of using the componentwise least squares as base learner is that there
is a closed-form definition of the AIC score, which can be used for selecting the boosting step.

22.5 NONPARAMETRIC-PATHWAY-BASED REGRESSION MODELS

For many complex diseases, especially for cancers, there are many types of metadata available
that are related to biological pathways. Currently, information derived from metadata such as
known biological knowledge has been used primarily to select promising candidates for
genetic characterization and for studying gene–gene and gene–environment interactions.
Such information has hardly been utilized in the modeling step for identifying such interactions
or for identifying genes or pathways that are related to the phenotypes.

Wei and Li [49] proposed a pathways-based boosting procedure for estimating a nonpara-
metric-pathway-based regression model. Suppose that we have K pathways whose activities
may be related to the phenotype of interest. Assume that there are pk genes involved in the
kth pathway. We allow that some genes belong to multiple pathways and let p be the total
number of genes involved in the K pathways and therefore p ,

PK
k¼1 pk . Suppose that we

have n independent individuals and let yi ¼ (ti, di), where ti is time to event or censoring and

di is an event indicator. Let x(k)ij be the genomic measurement of the jth gene in the kth

pathway for the ith patient, let x(k)i ¼ fx(k)i1 , . . . , x
(k)
ipkg be the vector of the genomic measures

of the genes in the kth pathway for the ith patient, and let xi ¼ (x(1)i , . . . , x(K)i ) be the vector
of the genomic measurements of all the p genes. Here the genomic measurements can
be SNP data or gene expression data. Our goal is to relate the phenotype data Y to X ¼

fX(1), . . . , X(K)g in order to identify the pathways that are related to the phenotype and to ident-
ify genes and their interactions that determine the pathway activities.

Here we assume that the phenotype is related to the total activity level across multiple path-
ways through an additive pathway activity function

F(X) ¼
XK
k¼1

Fk(X
(k)), (22:10)
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where Fk(X
(k)) can be interpreted as the activity level associated with the kth pathway as deter-

mined by the genomic measurements of the pk genes in this pathway. We assume that con-
ditioning on the genes of the pathways, the pathway activities across the K pathways are
additive. For the censored survival phenotype, we can assume that the hazard function at
time t given the observed genomic data X is modeled as

l(t jX, Z) ¼ l0(t) exp(F(X)þ gZ), (22:11)

where l0(t) is the baseline hazard function, F(X) is the pathway activity function as defined in
(22.10), Z is a covariate vector, and g is the corresponding risk ratio parameter. The main
motivation of these models is that we aim to model complex interactions between genes
within pathways nonparametrically, rather than assume particular parametric forms for func-
tions Fk(X

(k)). We use the term “nonparametric pathway-based regression” (NPR) to particu-
larly emphasize this point, that the genetic and pathways effects are modeled
nonparametrically. It is obvious that without any constraints on the functions Fk(X

(k)), model
(22.11) is not identifiable.

Wei and Li [49] proposed a general pathway-based gradient descent boosting procedure to
identify such NPR models with the particular form of (22.11). The key idea of our proposed
extension of the boosting procedure of Friedman [14] is that instead of performing gradient
boosting over all the p genes, we perform gradient descent boosting over genes in each of
the K pathways separately. We first consider the case where no other covariates are included
in model (22.11). Let L(yi, F(xi)) be a loss function for the ith observation, which can be
defined as negative of the partial likelihood based on model (22.11). During each boosting iter-
ation, one pathway is selected that gives the best fit of the negative gradients using the base
learner. This effectively utilizes the known pathway information and reduces the dimensional-
ity from considering all the genes to considering only those genes in a given pathway. Then
the functions are updated by adding the tree corresponding to the k	th pathway selected. In
order to model interactions between genes in a given pathway, Wei and Li [49] proposed
using a J-terminal node regression tree [3] as the base learning procedure. The boosting
procedure with regression trees as base procedures inherits the favorable characteristics
of trees such as robustness and flexibility in modeling interactions [3]. In addition, trees
tend to be quite robust against the addition of irrelevant input variables and therefore serve
as internal feature selection [14,3]. J controls the size of the tree, which is often chosen to
be small.

22.6 DIMENSION-REDUCTION-BASED METHODS AND
BAYESIAN VARIABLE SELECTION METHODS

There have also been some attempts to generalize the dimension reduction procedures to cen-
sored survival data. Li and Gui [30] and Park et al. [37] generalized the partial least squares
(PLS) method to the Cox model taking into account censoring. Li and Li [33] extended the
sliced inverse procedure to censored data. Similarly, one can also develop PLS procedures
for the AFT models [25] and the additive hazard models. One limitation of such extensions
is that these procedures do not provide a rigorous way of selecting genes in the model. As
we expect that only a small set of genes might be related to survival endpoints, these procedures
may introduce too much noise to the estimation, and therefore may have relatively low predic-
tive performance. Bair and Tibshirani [1] proposed a supervised principal-components analysis
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(PCA), where genes are selected by univariate Cox regression analysis and the selected genes
are used to define several principal components. The number of genes and the number of com-
ponents used in the final model are selected by cross-validation. While this is a step forward
beyond the use of PCA on all the genes, selecting genes by univariate analysis may not
capture possible joint effects of genes.

Bayesian variable and model selection procedures for linear regression models and for clus-
tering analysis [19,20,50] in high-dimensional settings can also be extended for censored data
regression models (M. G. Tadesse, personal communication, 2006). However, we have seen
publications of such extensions in the literature.

22.7 CRITERIA FOR EVALUATING DIFFERENT PROCEDURES

The goal of linking genomic data to censored survival outcomes is twofold: to identify the
genes that are related to the outcome and to build a model for predicting future outcomes.
Since genomic data such as microarray gene expression often include many highly correlated
features, it should not be surprising that different methods may identify different sets of genes.
Because of the complexity of biological systems, it is almost impossible for a method to ident-
ify all the “correct” or “relevant” genes. It is therefore crucial to link the genes identified to
biological functions or pathways such as those listed in gene ontology [18]. If the genes ident-
ified by two different procedures are not exactly the same but most of these genes belong to the
same functional groups, we can conclude that the two procedures perform similarly in terms of
selecting genes.

In order to assess how well the model predicts the outcome, we applied the concept of the
time-dependent receiver operating characteristics (ROC) curve for censored data and area under
the curve (AUC) as our criteria. For a given score function f (X), we can define time-dependent
sensitivity and specificity functions as

Sensitivity(c, tjf (X)) ¼ Prf f (X) . cjd(t) ¼ 1g,
Specificity(c, tjf (X)) ¼ Prf f (X) � cjd(t) ¼ 0g,

and define the corresponding ROC(tj f(X)) curve for any time t as the plot of sensitivity
(c, tj f (X)) versus 1 2 specificity(c, tj f (X)) with cutoff point c varying, and the AUC as the
area under the ROC(tj f(X)) curve, denoted by AUC(tj f(X)). Here d(t) is the event indicator
at time t. Note that larger AUC at time t based on a score function f (X) indicates better predict-
ability of time to event at time t as measured by sensitivity and specificity evaluated at time t.
The time-dependent AUCs should be compared in both the means and variances or even their
complete distributions [47] using cross-validation analysis or independent test samples.

22.8 APPLICATION TO A REAL DATASET
AND COMPARISONS

We demonstrate the utility of some of these procedures using a published dataset of DLBCL by
Rosenwald et al. [40]. This dataset includes a total of 240 patients with DLBCL, including 138
patient deaths during the follow-ups with median death time of 2.8 years. Rosenwald et al.
divided the 240 patients into a training set of 160 patients and a validation set or test set of
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80 patients and built a multivariate Cox model. The gene expression measurements of 7399
genes are available for analysis.

For the Cox model, we applied several methods to build a predictive model using the train-
ing dataset and we used zero as a cutoff point of the risk scores and divided the test patients into
two groups according to whether they had positive or negative risk scores. Using the L1 pena-
lized estimation, the two groups of patients showed very significant differences (p value ¼
0.0004) in overall survival between the high-risk and low-risk groups. We observe that the
two risk groups defined by the LARS–Cox estimated model showed more significant differ-
ences in risk of death than did the groups defined by the other three models: p value of
0.0004 versus 0.003, 0.003, and 0.034 for the partial Cox regression method of Li and Gui
[30], the L2 penalized method of Li and Luan [31], and the supervised PCA method of
Bair and Tibshirani [1], respectively Finally, the AUCs based on the risk scores estimated
by the LARS–Cox procedure were also higher than those from the other three procedures.

Owing to computational difficulty with the penalized estimation procedures for the AFT
model and the additive hazard model, 1656 genes out of 7399 with large correlation coeffi-
cients (with the uncensored event times) were chosen for the AFT and the additive hazard
model analysis. The results are summarized as follows. For the AFT model, the modified
Lasso identified 37 genes and resulted in a test set p value of 0.05, the TGD procedure ident-
ified 91 genes with a test set p value of 0.776; for the additive hazard model, the modified lasso
selected 7 genes with a test set p value of 0.331, and the TGD procedure identified 10 genes
with a test set p value of 0.13. These results indicate that at least for this particular dataset, the
AFT or the additive hazard models did not provide as good predictive results as the
Cox regression models.

Finally, analysis by Li and Luan [32] using the splines-based boosting procedure
indicated that some genes indeed show strong nonlinear effects on the risk of death from
lymphoma.

22.9 DISCUSSION AND FUTURE RESEARCH TOPICS

It is clinically relevant and very important to predict a patient’s time to cancer relapse or time to
death due to cancer after treatment using gene expression profiles of the cancerous cells prior to
treatment. Powerful statistical methods for such prediction allow microarray gene expression
data to be used most efficiently. Because of the high-dimensionality of the genomic data, stan-
dard estimation and test methods for various censored data regression models cannot be applied
directly to analyze such data. In this chapter, we have reviewed the latest developed regularized
estimation procedures for several classes of the most commonly used censored survival data
regression models, including the Cox proportional hazards model, the accelerated failure-
time model, and the additive hazard models. The methods reviewed include penalization esti-
mation, threshold gradient-based regularization, and gradient boosting procedures. These
methods have been evaluated by simulation studies and found effective in identifying relevant
genes and in building predictive models [22,32,35,36].

Among the methods reviewed, most of the penalized estimation procedures were developed
for censored data regression models with simple linear functional forms (i.e., b0X). The kernel-
based L2 penalization [31] and extensions of the boosting procedure or random forests to cen-
sored data regression [32,51] allow for nonlinear effects and potential gene–gene interaction
effects on the risk of event. In general, in the published results in the papers we reviewed,
we observed that the methods with variable selection often perform better in prediction than
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do the dimension-reduction-based procedures. In addition, we should expect that the ensemble
methods such as boosting and random forests perform better in prediction than other methods,
especially in high-dimensional and low-sample-size settings. However, we should not expect
one model or method to always perform better than the others. One useful avenue of research
is to comprehensively compare these methods by simulations and application to many different
datasets. Besides empirical results, theoretical results are also required in order to gain insight
into the methods and to provide theoretical basis for the methods proposed. Currently, little is
known about the theoretical properties of these penalized estimators in high-dimensional and
low-sample-size settings.

While the emphasis of this review is on the methods for identifying genes that are related to
censored survival outcome and building predictive models for future patients’ survival using
gene expression, there are several other interesting topics related to censored data regression
in the high-dimensional and low-sample-size settings that deserve further research. In the fol-
lowing section we present some of the problems and possible solutions and some possible
extensions of the methods presented in this chapter.

22.9.1 Test of Treatment Effect Adjusting for High-Dimensional
Genomic Data

Consider the clinical trial setting where a treatment effect is evaluated with time to clinical
event as an endpoint. In standard analysis of the data obtained from the clinical trials, the treat-
ment effect is often tested using the Cox model adjusting for other low-dimensional covariates.
It is becoming common practice that high-dimensional genomic data are often collected for
such clinical trials. How to adjust for the genomic heterogeneity when testing for the treatment
effect deserves further research. For example, in model (22.1), where Z is the treatment
indicator in randomized clinical trials, the null hypothesis is

g ¼ 0,

where the effect of genomic data b is treated as a high-dimensional nuisance parameter. A valid
test for such a null hypothesis is required. A related problem is to identify a subset of patients
who respond to treatment differently.

22.9.2 Development of Flexible Models for Gene–Gene and
Gene–Environment Interactions

Most of the models and methods reviewed in this chapter assume a simple linear functional
form to relate genomic data to the phenotypes. However, most phenotypes are expected to
be affected by the interplay of different genes and environments, and therefore simple linear
functional form cannot capture the complexity of the genomic effects on phenotypes.
Ensemble methods using trees offer one way of modeling potential interactions between the
variables. However, new methods are required for identifying and assessing such complex
interactions. This is especially challenging in the high-dimensional and low-sample-size set-
tings. For example, the patient rule induction method (PRIM) [15] provides an alternative to
the tree method, which may capture the genomic interactions better.
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22.9.3 Methods for Other Types of Genomic Data

The methods presented in this chapter are developed mainly for microarray gene expression
data, where the data structures are relatively simple. Since genes usually function in coordi-
nated modules, it is often observed that the expression levels of some genes are highly corre-
lated. Methods that can account for such clusters of genes in the models are expected to predict
well. In addition, special features of other types of genomic data such as aCGH data, mass spec-
trometry data and genomewide SNP/haplotype data need to be accounted for when building
predictive models. For example, to build a predictive model using aCHG data, one needs to
account for local dependence of the measurements. Similarly, to identify SNPs that are
related to censored survival phenotypes, one has to account for linkage disequilibrium for
the SNPs. Tibshirani et al. [46] proposed a fused-Lasso procedure, which provides a way of
accounting for such local dependency.

22.9.4 Development of Pathway- and Network-Based Regression
Models for Censored Survival Phenotypes

Since genes and proteins almost never work alone, they interact with each other and with other
molecules in highly structured but incredibly complex ways. Understanding this interplay of
human genome and environmental influences is crucial to developing a systems understanding
of human health and disease. An important avenue for future research is to develop methods
that can incorporate known biological knowledge such as pathways and networks into statisti-
cal modeling in order to limit the search space for gene–gene and gene–environment inter-
actions. Wei and Li [49] attempted to incorporate known biological pathways and networks
information into the censored data regression model in order to reduce the dimensionality of
the problem. However, how to best identify genes and pathways that are related to censored
survival phenotypes clearly deserves future research.

22.10 CONCLUDING REMARKS

High-throughput genomic and proteomic data provide a unique opportunity for dissecting
genes and pathways that are related to risk of complex diseases or the responses to treatments.
Because of the variation in disease onset or time to clinical event, studying censored survival
data can significantly facilitate the identification of the genes and pathways involved. As user-
friendly software packages implementing these methods become available, we should expect to
see more applications of these methods in identifying genes and pathways involved in complex
diseases. We should also expect more new method developments in this important area.
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Analysis of Case–Control Studies
in Genetic Epidemiology
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Maryland

23.1 INTRODUCTION

Case–control studies retrospectively sample subjects on the basis of their disease status to
obtain an efficient way of collecting covariate information for epidemiological studies of
rare diseases. The standard method for estimating the odds-ratio parameters from this
design involves prospective logistic regression analysis of the data, ignoring the retrospective
nature of the design. The validity of this approach relies on the classic results by Cornfield [3],
who showed the equivalence of prospective and retrospective odds ratios. The efficiency of
the approach was established in two other classic papers by Anderson [1] and Prentice and
Pyke [13], who showed that the prospective logistic regression of case–control data yields
the proper maximum-likelihood estimates of the odds-ratio parameters under a “semipara-
metric” model that allows the covariate distribution to remain completely unrestricted.
More recently, Rabinowitz [14] and Breslow et al. [2] used modern semiparametric
theory to show that the prospective logistic regression analysis of case–control data is
efficient in the sense that it achieves the variance lower bound of the underlying semi-
parametric model.

Case–control studies are now increasingly used to study the role of genetic susceptibility
and gene–environment interactions in the etiology of rare complex diseases. A special
feature for studies in genetic epidemiology is that it often may be reasonable to assume
certain parametric or semiparametric models for the population distribution of covariates of
interest. The assumptions of Hardy–Weinberg equilibrium (HWE) and gene–environment

Statistical Advances in the Biomedical Sciences, edited by Atanu Biswas, Sujay Datta,
Jason P. Fine, and Mark R. Segal
Copyright # 2008 John Wiley & Sons, Inc.

405



independence are examples of such models. The HWE model, which specifies the simple
relationship between allele1 and genotype2 frequencies at a given chromosomal locus, is a
natural law for a randomly mating large stable population in the absence of new genetic
mutation, inbreeding, and selective survivorship among genotypes [see, e.g., Ref. 6, Ch. 3].
Often, it is also natural to assume that a subject’s genetic susceptibility, a factor that is deter-
mined at birth, is independent of that person’s subsequent environmental exposures. Standard
logistic regression analysis, which is the semiparametric maximum-likelihood (ML) solution
for the problem that allows an arbitrary covariate distribution, clearly remains a valid option
for analyzing case–control data under these assumptions. The method, however, may not be
efficient because it fails to exploit the natural model constraints.

Piegorsch et al. [12] proposed a method for exploiting gene–environment independence in
case–control studies. Assuming gene–environment independence and rare disease, the authors
noted that the interaction odds ratio between a genetic and an environmental exposure can be
simply estimated as the association odds ratio between these two factors in cases alone.
Estimates of interactions obtained from this method can be much more efficient than those
obtained from standard logistic regression analysis, which uses both cases and controls. This
case-only analysis, however, is limited. It discards all the information from controls and
hence loses the ability to estimate the main effect parameters of the logistic regression
model that are required for deriving various alternative scientific parameters of interest.
Assuming rare disease and categorical exposures, Umbach and Weinberg [23] showed that
under gene–environment independence, the ML estimates of all the parameters of a logistic
regression model can be obtained in a fairly general setting by fitting a suitably constrained
log-linear model to the case-control data. For a rich model, with a large number of covariates,
however, the log–linear modeling approach can easily become cumbersome. Moreover, the
method cannot handle continuous covariates.

This chapter reviews some more recent developments for ML analysis of case–control
studies of genetic epidemiology. Section 23.2 assumes a setting where complete information
on both genetic and environmental exposures of interest is available on all subjects in the
study. Section 23.3 considers the problem of haplotype-based analysis of genetic data where
haplotype-phase information may be missing on certain study subjects. In each section, two
classes of methods, namely, “prospective” and “retrospective,” are presented. The connections
and the differences between the alternative methods are pointed out to shed light on their rela-
tive merits. Applications of the methodologies are illustrated using numerical examples. In
Section 23.4, the chapter concludes with a short discussion on potential pitfalls of the novel
methodologies and some practical recommendations are for their applications.

23.2 MAXIMUM-LIKELIHOOD ANALYSIS OF CASE–CONTROL
DATA WITH COMPLETE INFORMATION

Here we discuss ML analysis of case–control data in the case where complete information on
both genetic and environmental factors is available.

1Genetic variant at a given locus on a single chromosome.
2The pair of genetic variants possessed by an individual at a given locus on the paternally and maternally
inherited chromosomes.
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23.2.1 Background

Let D be the binary indicator of the presence (D ¼ 1) or absence (D ¼ 0) of a disease.
Suppose that the prospective risk model for the disease given a subject’s genetic risk
factors G and environmental risk factors X is given by the logistic regression model

Pr(D ¼ 1 jG;X) ¼ Lfb0 þ m(G,X;b1)g, where L(w) ¼ f1þ exp (�w)g�1 is the logistic dis-
tribution function andm(.) is a known but arbitrary function that parameterize the joint odds ratios
forG andX in terms of the regression parametersb1. LetH(g, x) denote the joint distribution ofG
and X in the underlying population. We assume that N0 controls and N1 cases are sampled from
the conditional distributions Pr(G, X jD ¼ 0) and Pr(G, X jD ¼ 1), respectively, and let

(Gi,Xi)
N0þN1
i¼1 denote the corresponding covariate data of the N0 þ N1 study subjects.

In the above model setting, the fundamental “retrospective” likelihood for the data is given by

LR1 ¼
YN0þN1

i¼1

Pr(Gi;Xi j Di)

¼
YN0þN1

i¼1

Prb0,b1
(Di j Gi;Xi)dH(Gi,Xi)Ð

Prb0 ,b1
(Di j g; x)dH(g, x)

From the classic results of Prentice and Pyke [13], it is well known that neither the intercept
parameter b0 nor the nonparametric distribution function H(g, x) is uniquely identifiable from
LR1 . There is, however, a unique value of b1 that maximizes LR1 , and the corresponding estimate
of b1 can be obtained by simple maximization of the “prospective likelihood” of the data

LP1 ¼
YN0þN1

i¼1

Prb0,b1
(Di j Gi;Xi):

Notably, the estimate of the intercept parameter obtained by maximization of LP1 yields unbiased
estimate for, not b0, but

k ¼ b0 þ log (N1=N0)� log p=(1� p)f g,

where p ¼ Pr(D ¼ 1) denotes the marginal probability of the disease in the underlying
population. More recently, Roeder et al. [15] presented a number of elegant results regarding
equivalence of the retrospective and prospective likelihoods in a very general setting.

An alternative angle to the prospective analysis is useful. Consider the “randomized recruit-
ment” sampling approach for case–control studies [24], where subjects, given their disease
status D ¼ d, are individually randomized to be recruited or not with the recruitment/selection
probability being proportional to cd ¼ Nd/Pr(D ¼ d). Under this sampling scheme, if a
total of N ¼ N1 þ N0 subjects are sampled into the study, then in expectation there will be
Nd(¼N � Pr(D ¼ d) � cd) subjects with D ¼ d in the sample. Let R ¼ 1 denote the indicator
of whether a subject is selected in the case–control sample. Then, under the case–control
sampling scheme described above, the distribution of the disease given covariates can be
derived as

Prb0 ,b1
(D ¼ 1jG,X,R ¼ 1) ¼ Pr(R ¼ 1jD ¼ 1)Pr(D ¼ 1jG,X)P

d¼0;1 Pr(R ¼ 1jD ¼ d)Pr(D ¼ djG,X) ,

23.2 MAXIMUM-LIKELIHOOD ANALYSIS OF CASE–CONTROL DATA 407



which, with some algebra, can be written in the logistic form

exp kþ m(G;X;b1)f g
1þ exp kþ m(G;X;b1)f g

In words, under case–control selection, the probability distribution of D given G and X main-
tains the same structure of the original logistic regressionmodel, except that the original intercept
parameter b0 is replaced by k. Thus, prospective analysis of case–control data essentially cor-
responds to maximization of the likelihood

L�1 ¼
YN0þN1

i¼1

Prb0 ,b1
(Di j Gi,Xi,R ¼ 1):

23.2.2 Maximum-Likelihood Estimation Under HWE and
Gene–Environment Independence

Assume that the joint distribution of G and X in the underlying population is given by the
product form H(g, x) ¼ Q(g) F(x), where Q and F are the marginal distribution functions for
G and X, respectively. Also assume that for a subject the genetic factor G can take values in
a fixed set fg1, . . . , gJg. Thus the distribution Q can be parameterized by the corresponding
probability masses fq1, . . . , qJg. Moreover, using population genetics theory, in many situ-
ations the probabilities qj, j ¼ 1, . . . , J, can be further modeled as qj ¼ qj(u), for some
known functions qj and some parameter vector u. For example, if A/a denote the major/
minor allele at a given biallelic loci, then under HWE, the population frequency of three geno-
types AA, Aa, and aa can be written as fAA ¼ (1� pa)2, fAa ¼ 2pa(1� pa), and faa ¼ p2a, where
pa denotes the allele frequency of a. If no population genetics model assumptions are made,
one can assume in the notation above that u represents the vector of qj values themselves.
The covariate distribution F(x) is left completely nonparametric and is allowed to have a
mass point at each distinct value of X in the observed sample.

Under the new model, the retrospective likelihood of the case–control data is given by

LR2 ¼
YN0þN1

i¼1

Pr(Gi, Xi j Di)

¼
YN0þN1

i¼1

Prb0, b1
(Di j Gi, Xi)qu(Gi)dF(Xi)Ð

x

P
gj
Prb0, b1

(Di j gj, x)qu(gj)dF(x)

Chatterjee et al. [4] considered joint maximization of LR2 with respect to g ¼ (b0, b1, u) and the
nonparametric distribution function F(.). They showed that here, unlike in the classical setting
of Prentice and Pyke [13], the intercept parameter of the logistic regression model b0 is
theoretically identifiable from the retrospective likelihood, except for some boundary parameter
settings. They assumed that the nonparametric ML estimator of F can allow positive masses
only within the set x ¼ fx1, . . . , xKg, which represents the unique values of X that are
observed in the case–control sample of N0 þ N1 study subjects. Thus, to obtain the ML esti-
mator, it is sufficient to consider the class of discrete F that have support points within the set
x. Any F in this class can be parameterized with respect to the probability masses fd1, . . . , dKg
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that it assigns to the points fx1; . . . ; xKg. The authors then derived a profile likelihood of the
data by maximizing the likelihood LR2 with respect to d, the probability masses associated
with F(.), for fixed values of g ¼ (b0,b1, u). If d̂(g) denotes the value of d that maximizes

LR2 for fixed g, the profile log likelihood is then given by LR2fg; d̂(g)g. They derived a
number of key results to simplify the computation of the profile likelihood. Below is a
lemma summarizing the results.

Lemma 23.1. Define the parameters md¼Nd/fNPr(D¼d)g for d ¼ 0, 1 and k¼m1/m0.
Define a conditional distribution function for (D, G) given X as

P�
g,k(D,G jX) ¼ Prb0 ,b1

(D jG,X)kDqu(G)P
d¼0;1

P
j Prb0 ,b1

(d j gj,X)kdqu(gj)
:

The profile log likelihood log LR2fg, d̂(g)g can be computed as l�fg, k̂(g)g, where

l�(g;k) ¼
XN0þN1

i¼1

logP�
g;k(Di;Gi j Xi),

and k̂(g) is obtained by solving the score equations @l�=@k ¼ 0 for each fixed value of g.

The main consequence of Lemma 23.1 is that the profile likelihood LR2 fg, d̂(g)g can be com-
puted without having to maximize numerically the likelihood LR2 with respect to the potentially
high-dimensional nuisance parameter d. Instead, the profile likelihood LR2fg, d̂(g)g can be
obtained in closed form up to only one additional parameter k, which in turn is defined as
the solution of a single score equation. By recalling the definition of the sampling indicator
variable R ¼ 1 from Section 23.2.1, we further observe that

P�
DG(E) ¼ Pr(D,G jX,R ¼ 1)

¼ Pr(D jG,X,R ¼ 1)� Pr(G jX,R ¼ 1): (23:1)

Standard logistic regression analysis corresponds to maximization of Pr(D jG, X, R ¼ 1),
which is only the first part of the likelihood given in formula (23.1). Intuitively, if it is
known that G and X are independently distributed in the population, then any association
between G and X in the case–control sample, which is enriched by the diseased subjects,
would indicate that both G and X are associated with D, under some mechanism or the
other. Similarly, when HWE is known to hold in the population, departure of the case–
control sample from HWE would be indicative of genetic association. Thus, in general, if
certain model assumptions can be made to specify Pr(G j X) in the underlying population,
then, under case–control sampling, the conditional distribution Pr(G j X, R ¼ 1) contains infor-
mation about the association parameters b1. Prospective logistic regression analysis loses effi-
ciency by ignoring this piece of information from the case–control data.

Chatterjee et al. [4] used the abovementioned result to derive the asymptotic theory for the
ML estimator of the odds-ratio parameters in a “semiparametric” setting that allows the dimen-
sion of the nuisance parameter d to potentially increase with sample size, as would be the case
for dealing with continuous covariates. They showed how one can incorporate information on
marginal probability of the disease in the population to further enhance the efficiency of the
methodology. They described simplification of the methodology under a rare disease
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approximation. They extended the methodology for dealing with “population stratification” that
may cause G and E to be related at a population level even when they are independent within
subpopulations. A MATLAB program for implementing these methods is available under the
software link from the Website www://dceg.cancer.gov/people/ChatterjeeNilanjan.html.

23.2.3 An Example

Chatterjee et al. [4] illustrated an application of their proposed methodology on a case–control
study of ovarian cancer designed to investigate how the high-risk BRCA1-2 genetic mutations
interact with various reproductive risk factors, such as oral contraceptive use and parity.
Table 23.1 shows the analysis of the data using three different methods: (1) standard logistic
regression, (2) the case-only method, and (3) ML assuming independence of BRCA1-2
mutations and the reproductive risk factor conditional on certain stratification factors.
Clearly, the ML method assuming gene–environment independence yielded more precise esti-
mates of the interaction parameters than did logistic regression. The case-only approach was
also precise in estimating the interaction parameters, but could not yield estimates of the
main effect parameters, which were key in addressing one of the main scientific questions of
the study, that is, whether oral contraceptive (OC) use, a factor that is known to reduce the
risk of ovarian cancer in the general population, decreases the risk of the disease among the
high-risk women who carry BRCA1-2 mutations. Based on the maximum-likelihood
method, the odds ratio for OC use among BRCA1-2 carriers can be computed as
exp(20.051 þ 0.089) ¼ 1.034, with an associated 95% confidence interval of (0.977,
1.095). These calculations suggested that unlike noncarriers, the risk of ovarian cancer for car-
riers did not decrease with increasing OC use. The original study by Modan et al. [11], which
used yet another alternative method, had reached a similar conclusion.

23.3 HAPLOTYPE-BASED GENETIC ANALYSIS WITH
MISSING PHASE INFORMATION

23.3.1 Background

Often, the goal of a genetic epidemiologic study involves studying the association between a
disease and a candidate genomic region of biologic interest. Typically, in such studies,

Table 23.1 Odds-Ratio Estimates and 95% Confidence Intervals from the
Israeli Ovarian Cancer Study

Parameter Logistic Regression ML Assuming G n X j Sa Case-Only

BRCA1-2 3.58 (2.27, 4.89) 3.15 (2.51, 3.79) —

OC useb 20.05 (20.10, 0.00) 20.05 (20.10, 0.00) —
Parityc 20.06 (20.12, 0.00) 20.06 (20.13, 0.00) —
OC�BRCA1-2 0.06 (20.15, 0.26) 0.09 (0.02, 0.15) 0.056 (20.01, 0.12)
Parity�BRCA1-2 20.20 (20.63, 0.23) 20.04 (20.14, 0.07) 20.014 (20.12, 0.09)

aStratification variables include age, ethnicity, personal history of breast cancer, and family history of
breast/ovarian cancer.
bYears of oral contraceptive use.
cNumber of children.
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genotype information is obtained on multiple loci that are known to harbor genetic variations
within the region(s) of interest. An increasingly popular approach for analysis of such multi-
locus genetic data has been the haplotype-based regression methods where the effect of the
genomic region on disease-risk is modeled through “haplotypes,” the combinations of
alleles (gene variants) at multiple loci along individual homologous chromosomes. It is
believed that association analysis based on haplotypes, which can efficiently capture interloci
interactions as well as “indirect association” due to linkage disequilibrium3 of the haplotypes
with unobserved causal variant(s), can be more powerful than the more traditional locus-
by-locus methods for analysis of association [18].

A technical problem for haplotype-based regression analysis is that in traditional epidemio-
logic studies the haplotype information for the study subjects is not directly observable.
Instead, locus-specific genotype data are observed, which contain information on the pair of
alleles that a subject carries on his/her pair of homologous chromosomes at each locus, but
does not provide the “phase information,” that is, which combinations of alleles appear
across multiple loci along the individual chromosomes. Figure 23.1 shows an example of gen-
otype and haplotype data for a subject involving three biallelic loci. In general, the genotype
data of a subject will be phase-ambiguous whenever the subject is heterozygous4 at two or
more loci. Statistically, the lack of phase information can be viewed as a special missing
data problem.

Suppose that there areM loci of interest within a genomic region. Let Hdi ¼ (H1, H2) denote
the corresponding diplotype status for an individual, that is, the two haplotypes that the indi-
vidual carries in his/her pair of homologous chromosomes. Given the diplotype status Hdi and
environmental covariate X, assume that the risk of disease for a subject is given by the logistic
regression model

logitfPr(D ¼ 1jHdi;X)g ¼ b0 þ m(Hdi;X;b1): (23:2)

Typically, the main interest is in estimating the regression parameters b1. In the model pre-
sented above, the effect of the diplotypes could be further specified in terms of the effect of

Figure 23.1 An example of genotype and haplotype data for a subject involving three bial-
lelic loci. In truth, the subject carries the haplotype (A-B-c) ad (a-B-C) on the two chromo-
somes. When only locus-specific genotype data are observed, the phase information, that is,
which combinations of alleles arise in the same chromosome, is lost. The dotted lines in the
figure represent this loss of information. In the absence of the phase information, the genotype
data cannot distinguish between two possible haplotype configurations: f(A-B-C), (a-B-c)g
and f(A-B-c), (a-B-C)g.

3Association among alleles at physically nearby loci of a chromosome due to their tendency of
co-inheritance.
4Carries two different alleles on the given locus of a pair locus of a pair of homologus chromosomes.
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the constituent haplotypes assuming different mode of effects such as dominant,5 recessive,6 or
additive7 [21]. These modeling assumptions may be necessary for identifiability purpose when
only genotypes, and not the diplotypes, are directly observed [5]. LetG ¼ (G1, . . . ,GM) denote
the genotype data atM loci. As explained above, the same genotype data G could be consistent
with multiple diplotypes. We denote byHG the set of all possible diplotypes that are consistent
with the genotype data G. Assume that Hdi and environmental factors X are independent in the
population, with a parametric form

Pr(Hdi ¼ hdi j X) ¼ Pr(H ¼ hdi) ¼ q(hdi, u)

where the model q(hdi; u), in turn, could be specified according to HWE or some of its exten-
sions as considered by Satten and Epstein [16] and Lin and Zeng [9]. In particular, under HWE

Pru Hdi ¼ (hi, hj)
� �

¼ u2i if hi ¼ hj
¼ 2uiuj if hi = hj,

(23:3)

where ui denotes the population frequency for haplotype hi. Let Nd, d ¼ 0, 1 denote the number
of controls and cases in the observed sample. Let Di, Gi, and Xi be the value of D, G, and X for
the ith subject in the sample.

In the more recent past, a number of researchers have developed methods for analysis of
case–control data using the regression model (23.2). The methods can be broadly classified
into two types: (1) prospective and (2) retrospective. A brief review of these methods follows.

23.3.2 Methods

Lake et al. [8] proposed jointly estimating the haplotype frequencies u and the regression par-
ameters b ¼ (b0,b1), by maximization of the prospective likelihood

LPhaplo ¼
YN0þN1

i¼1

Pr(Di j Gi;Xi)

¼
YN0þN1

i¼1

X
Hdi[HGi

Prb(Di j Hdi;Xi)Pru(H
di)

via an expectation–maximization (EM) algorithm. Unfortunately, use of this purely prospec-
tive method for case–control data has not been justified on theoretical grounds. In fact,
Spinka et al. [19] showed that the standard argument for unbiasedness of the prospective
score functions under the case–control design may not hold in the current setting because
of the constraints on the covariate distribution. Nevertheless, for practical purposes, the bias
in estimates of the odds-ratio parameters from the purely prospective method tends to be
quite small unless there is a large amount of phase ambiguity and the haplotype effects are
large [20]. Zhao et al. [22] assumed a rare disease to propose a modification of the prospective

5Effect of the haplotype is the same whether one two copies are carried.
6Effect of the haplotype exists only if two copies are carried.
7Effect of carrying two copies of the haplotype is twice that of carrying one copy.
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score equations that is theoretically unbiased under the case–control design. They proposed
estimating u in a separate step by using genotype data only from the controls. Spinka et al.
[19] proposed an alternative modification of the prospective score functions that remain
unbiased even without requiring the rare disease assumption.

Had there been no phase ambiguity, that is if Hdi was directly observed, all the different pro-
spective methods would be equivalent to the standard logistic regression analysis, which, as dis-
cussed in Section 23.2, does not rely on any covariate distributional assumptions. In the presence
of phase ambiguity, however, estimation under a completely nonparametric model for the joint
distribution of (Hdi, X) is not possible because of the lack of parameter identifiability.
Assumptions such as HWE or/and gene–environment independence are typically needed.
The prospective methods, however, rely on those assumptions rather weakly in the sense that
they utilize the covariate models only in the “expectation” steps of the respective EM-type algor-
ithms to assign a probability distribution for the possible diplotypes of the subjects given their
genotype, environmental covariates, and outcome data. Once these probabilities are assigned,
the “maximization” steps of the methods do not rely on the assumptions; they involve simply
fitting weighted prospective logistic regression model to the data. Thus, the prospective
methods gain robustness against violations of HWE or/and gene–environment independence
assumptions. Retrospective methods, on the other hand, can fully exploit the assumptions to
gain efficiency.

Ignoring environmental covariates X, Epstein and Satten [5] described an algorithm for joint
estimation of b and u by maximization of the proper retrospective likelihood

LRhaplo ¼
YN0þN1

i¼1

Pr(Gi j Di)

¼
YN0þN1

i¼1

X
Hdi[HGi

Prb;u(H
di j Di):

Assuming a rare disease, the authors approximated the diplotype distribution for the disease-
free subjects as Pr(Hdi jD ¼ 0) ¼ Pru(Hdi). They further expressed Pr(Hdi jD ¼ 1), the diplo-
type distribution for diseased subjects, in terms of Pr(Hdi jD ¼ 0) and the odds-ratio par-
ameters of the logistic regression model using formulas derived in Satten and Kupper [17].
An EM-type algorithm was described for maximization of the retrospective likelihood.
Satten and Epstein [16] conducted extensive simulation studies to illustrate the efficiency
advantage of the retrospective over the prospective methods.

Spinka et al. [19] described methods for incorporating environmental covariates X in the
retrospective approach based on the likelihood

LRhaplo ¼
YN0þN1

i¼1

Pr(Gi,Xi j Di)

¼
YN0þN1

i¼1

X
Hdi[HGi

Prb, u(H
di;Xi j Di):

Assuming a completely nonparametric form for F(x), the authors obtained results similar to
those described in Lemma 23.1 to show that estimates of b and u that maximize the retro-
spective likelihood LRhaplo can be obtained by the maximization of an alternative

23.3 HAPLOTYPE-BASED GENETIC ANALYSIS WITH MISSING PHASE INFORMATION 413



pseudolikelihood of the form

log (L�h aplo) ¼
XN0þN1

i¼1

logfPr(Di,Gi j Xi,Ri ¼ 1)g

¼
XN0þN1

i¼1

log

� X
hdi[HGi

Prb, u(Di,H
di
i ¼ hdi j Xi,Ri ¼ 1)

�
, (23:4)

where conditioning on the event R ¼ 1 reflects the nonrandom “ascertainment” mechanism of
the case–control design. The analytic formula for Pr(Di, Hdi

i j Xi, Ri ¼ 1) is the same as that of
PDG
* shown in Lemma 23.1, withG simply replaced byHdi. Computationally, the maximization

of Lhaplo
* is relatively simple because it, unlike LRhaplo, does not depend on the distribution of the

environmental covariates X. When no environmental covariates are involved, Stram et al. [20]
had previously proposed use of an “ascertainment corrected joint-likelihood” of the form
Laschaplo ¼ Pi Pr(Di, Gi j Ri ¼ 1). The representation of the pseudolikelihood Lhaplo

* given in

(23.4) suggests that when F(x) is treated completely nonparametrically, the efficient retrospec-
tive ML estimator can be obtained by simply conditioning on X in the approach of Stram et al.

23.3.3 Application

Spinka et al. [19] illustrated the bias–efficiency tradeoffs between the retrospective and pro-
spective methods using a simulated case–control study. The study involved a population con-
sisting of two strata, with frequencies 0.40 (S ¼ 1) and 0.60 (S ¼ 2), which differ in their
distribution of both haplotypes and environmental factors. They assumed a simple scenario
involving four haplotypes constructed from two binary SNPs, with the haplotypes f(0,0),
(0,1), (1,0), (1,1)g having frequencies (0.35, 0.30, 0.15, 0.20) and (0.35, 0.20, 0.30, 0.15) in
strata 1 and 2, respectively. They generated the environmental covariate from a lognormal dis-
tribution with the mean and variance for the underlying normal distribution to be 0.67 and 1 for
S ¼ 1 and 0 and 1 for S ¼ 2. Additionally, they assumed that the stratification variable S is a
risk factor for the disease. In particular, the disease status for each subject was generated
according to the model

logit Pr(DjHdi,X, S)
� �

¼ b0 þ bX þ bHN2(H
di)þ bHXN2(H

di)X

þ bSI(S ¼ 2)þ bHSN2(H
di)I(S ¼ 2),

where N2 (H
di) denotes the number of copies of h2 ¼ (0,1) contained in Hdi. The true value of

(b0, bX, bH, bHX, bS, bHS) was (23.5, 0.1, 0.15, 0.20, 0.69, 1.10). The results given in Spinka
et al. are replicated in Table 23.2.

Several key observations can be made. When the true model assumed that Hdi and X are
independent conditional on S, but the data were analyzed using the retrospective method
that assumes Hdi and (X, S) are independent in the entire population, substantial bias was intro-
duced in estimating the parameters bH, bS, and bHS. Neither the prospective method nor the
retrospective method, which explicitly accounts for the conditional independence model, suf-
fered from such bias. The prospective method had the largest variance of the three methods,
while the retrospective method under the unconditional independence model had the smallest.
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The retrospective method, which assumed the correct conditional independence model, pro-
vided both small bias and relatively small variance.

23.4 CONCLUDING REMARKS

Case–control studies with modest sample size often have very little power for studying reces-
sive genetic effects and gene–environment interactions using prospective logistic regression
analysis. Efficiency of such investigations can be dramatically improved by use of retrospective
ML methods that can exploit gene–environment independence and HWE assumptions.
Caution, however, is needed because retrospective methods can produce large bias in estimates
of odds-ratio parameters when the underlying covariate distributional assumptions are violated.
The assumptions of HWE and gene–environment independence can be violated in a number of
different ways. A common source for the problem could be a phenomenon called population
stratification, which arises if there are underlying substrata in the population across which geno-
type or/and exposure distribution varies. In these situations, the assumptions of HWE and
gene–environment independence are likely to hold within the substrata, but not in the entire
population. Satten and Epstein [16] considered using the so-called fixation index model to
account for violation of HWE toward excess homozygosity, a consequence of hidden popu-
lation stratification (see, e.g., Ref. 6, Ch. 4). Chatterjee et al. [2] and Spinka et al. [19], on
the other hand, proposed explicitly accounting for population stratification by using conditional
models for HWE or/and gene–environment independence when information on the source of
population stratification, such as ethnicity, is available in the study. Lin and Zeng [9] described
methods for haplotype analysis of case–control data allowing for genotype–environment
association with the constraint that haplotypes and environmental exposures are independent
given the genotypes. For family-based case–control studies, Chatterjee et al. [2] have described
methods that require the assumption of gene–environment independence to hold only within
families, but not necessarily for the underlying population.

Methods for exploiting the gene–environment independence assumption could be practi-
cally useful without concerns about bias in many important situations. For “randomized

Table 23.2 Results from 500 Simulated Case–Control Studiesa

(1) Unconditional RML (2) Conditional RML (3) Modified PSE

Parameter Bias Empirical SE Bias Empirical SE Bias Empirical SE

bX 20.0050 0.0403 0.0012 0.0395 0.0047 0.0496
bH 0.4951 0.2000 0.0209 0.2009 20.0039 0.2370
bHX 20.0021 0.0389 0.0018 0.0388 0.0060 0.0567
bS 0.1266 0.2155 0.0287 0.2299 20.0377 0.2386
bHS 21.1509 0.1971 20.0151 0.2395 20.0214 0.2561

aThese results are from a population where HWE and the independence between haplotype (H) and
environmental covariate (X) hold within strata defined by S. Each replicate contains 1000 cases and
1000 controls and is analyzed using (1) the unconditional retrospective maximum-likelihood (RML)
method, assuming that HWE and H2 X independence hold in the entire population; (2) the conditional
RML method assuming HWE and H2 X independence hold conditional on S; and (3) the modified pro-
posed modified prospective score equation (PSE) method described in Spinks et al. [19].
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exposure” such as the treatment assigned in a randomized trial, the gene–environment indepen-
dence assumption would be satisfied by definition of randomization. The phenomenon of inde-
pendence due to randomization was utilized in a case-only study of interaction between
BRCA1-2 mutation and tamoxifen, conducted within the Breast Cancer Prevention Trial [7].
The assumption of gene–environment independence is also very likely to be satisfied for exter-
nal environmental agents, exposure to which is not directly controlled by an individual’s own
behavior. Some examples of such exposure are radiation exposure among the cohort of atom
bomb survivors in Japan, carcinogenic exposure from a chemical factory to employees or
nearby residents, and pesticide exposure in an agricultural community. When an exposure
depends on a subject’s individual behavior, on the other hand, the independence assumption
should be used more cautiously. There could be spurious association between G and E for
established risk factors such as smoking because family history of lung cancer, which is associ-
ated withG, may also influence a subject to change his/her smoking behavior. There could also
be direct association. Genetic polymorphisms in the smoking metabolism pathway, for
example, not only can modify a subject’s risk from smoking but may also influence a subject’s
degree of addiction to smoking.

When violation of the gene–environment independence or/and HWE seems plausible,
effort should be made to validate the assumption empirically. Tests for these assumptions
within a given study, however, may have very little power and empirical evidence from external
data sources should be investigated. Marcus et al. [10], for example, have demonstrated the
independence of smoking behavior and NAT2 genotype that are believed to be involved in
smoking metabolism using a meta-analysis approach that employs data on controls from a
series of different case–control studies. When substantial uncertainty remains regarding the
validity of the assumption because of lack of empirical data or for other reasons, positive find-
ings based on the retrospective methodologic should be considered as a preliminary screen,
which should be pursued with high priority in future studies.
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24.1 INTRODUCTION

High-throughput experimental procedures such as affinity purification–mass spectrometry
(AP-MS) and yeast two-hybrid (Y2H) systems have allowed the collection of genomewide
protein interaction data. Such data typically indicate the presence or absence of specific
protein–protein physical interactions and complex comemberships. One major emphasis in
data-generated biological networks has been the description of their overall network topology.
Many biological networks have been described as both small-world and scale-free (to be
defined in Section 24.4). Proposals for the biological implications of these topologies
include the relative robustness of biological graphs to random perturbations, but tremendous
breakdown in response to targeted disruption of central hub nodes [16].

The data used to generate these graphs are experimentally obtained and hence are subject to
a variety of errors and incompleteness. They are subject to experimental errors that can result in
both false-positive (FP) and false-negative (FN) observations. Furthermore, the observed data
are limited to the set of tested edges induced by the sampling scheme. The remaining untested
edges are fundamentally different from tested edges, which yield a negative result. Standard
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graph statistics are commonly applied to such data, and subsequent biological conclusions are
often made without regard to the errors or incompleteness of the data on which they are based.
There is therefore a need to assess the performance of these statistics, and the inference that can
be drawn, when these data are imperfect.

In this chapter we consider the analysis of biological network data that are subject to
measurement error. We identify particular issues that can profoundly affect inference on the
true underlying graph structures. We also identify a number of specific network models and
carry out simulation studies of the properties of global graph statistics and their biological
interpretations in the presence of stochastic and systematic sources of measurement error.

24.2 GRAPHS OF BIOLOGICAL DATA

Graphs and networks have become foundational data structures for representing high-
throughput genomics and proteomics data. Huber et al. [13] give a good review of graph
types often used in computational biology, and Gentleman et al. [9] describe a few specific
applications. Generally speaking, graphs consist of a set of nodes V and a set edges E can
be represented as G(V, E). Nodes represent objects of interest, and edges represent relationships
between those objects. In this chapter, we focus on data pertaining to protein–protein relation-
ships. Nodes represent proteins, and edges represent either protein complex comembership or
physical interactions depending on the technology being discussed. A multigraph is a graph in
which multiple edges between nodes are permitted. One useful type of multigraph is the super-
position of graphs from different data sources in which each edge set represents a different sort
of binary relationship. One can use a multigraph to combine binary interaction data together
with protein complex comembership data while still allowing the different data types to be
extracted and manipulated separately.

We will discuss two large-scale affinity purification–mass spectrometry (AP-MS) datasets
published by Gavin et al. [7] and Ho et al. [12]. These two groups used slightly different tech-
niques, and call their methods tandem affinity purification (TAP) and high-throughput mass
spectrometry–protein complex identification (HMS-PCI), respectively. While different in
analytical details, both of these AP-MS technologies gather data on protein complex comem-
bership. In AP-MS experiments a set of bait proteins are specified, and each bait is used for a
separate purification. In each purification, proteins that are comembers with the bait in at least
one, but possibly more than one, complex are reported as hits for that bait. The set of hits for a
particular bait may all belong to the same complex, or if the bait is involved in multiple com-
plexes, the hits may represent these multiple complexes.

“Spoke” and “matrix” models are frequently used to represent complex comembership data
detected by the AP-MS technology [2]. In “spoke” graphs, nodes represent proteins and edges
are drawn from bait proteins to the hits that they detect as complex comembers in their respect-
ive purifications. In “matrix” graphs, additional edges connect all pairs of hits for a given bait
protein. We will use the spoke representation since the matrix model often assumes edges
between pairs of hit proteins for which complex comembership was never directly tested [22].

We will also discuss the physical interactions between proteins detected using the yeast two-
hybrid (Y2H) system reported by Ito et al. [14] and Uetz et al. [28]. Y2H technology is also a
bait–hit system in which the set of tested edges consists of those originating at bait proteins and
extending to the set of proteins detected by each bait as physically interacting partners. Strictly
speaking, if a common set of baits were used, Y2H data should be a subset of AP-MS data since
complex comembers should bind to at least one other protein in the complex, but need not
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physically interact with all complex comembers. Furthermore, any proteins that physically
interact under the experimental conditions form a complex and should be detected as
complex comembers. The veracity of this relationship depends on similarity of experimental
conditions and high sensitivity and specificity of the technology, none of which are guaranteed.

For accurate data representation, edges between proteins in both AP-MS and Y2H graphs
should be directed from baits to hits. Directionality is useful in tracking the number of times
each edge is tested, which edges result from common purifications, and potential reciprocity
of the tested relationships. Generally only the underlying undirected versions of these graphs
are used for analysis, and unfortunately, some of the resolution is lost.

We will also make use of protein complex estimates reported by Scholtens et al. [22]. These
estimates use the statistical penalized likelihood approach described in Scholtens and
Gentleman [21] to estimate protein complex membership using both the TAP and HMS-PCI
data. This algorithm effectively estimates the presence or absence of untested edges given
the set of tested edges, and results in the prediction of the true underlying set of protein com-
plexes. In particular, we will focus on the set of estimated complexes that contain more than one
bait protein and more than one edge; these are referred to as the multibait–multiedge (MBME)
complexes and are believed to be the most reliable estimates.

24.2.1 Integrating Multiple Data Types

While we have chosen to focus on protein–protein interactions, graphs have also been used to
model other systems biology data, including coregulation of gene expression [3], synthetic leth-
ality [27], and metabolic and signal transduction networks [16,20,23]. The graph-theoretic fra-
mework has facilitated joint analyses of multiple biological data types. For example, Ge et al.
[8] show that interacting proteins tend to be coregulated, and Balasubramanian et al. [3] trans-
late these analyses into a graph-theoretic framework, providing permutation techniques for
appropriate evaluation of statistical significance. Similar integrative approaches combine data
from multiple sources to determine which experimentally observed edges are most likely to
be true [15,30,6,25]. Wong et al. [32] use multiple data types to predict synthetic lethal inter-
actions, and Ye et al. [33] note the significant overlap between genetic congruence graphs with
protein interaction graphs. Qi et al. [19] merge AP-MS data from Gavin et al. [7] with the syn-
thetic lethal data from Tong et al. [27] and develop a genetic interaction motif finding (GIMF)
algorithm. Kelley and Ideker [17] combine several data types to form a loose definition of
pathway, and investigate the relative abundance of inter- and intrapathway pairs of synthetic
genetic interactions.

These analyses study the overlap of different graph types and often rely on the global graph
statistics, discussed in this chapter, to make biological conclusions. All of these data are subject
to the sources of measurement error discussed in this chapter, hence it will be of interest to
explore, in the future, the extent to which the observations made here apply when simul-
taneously studying multiple graphs.

24.3 STATISTICS ON GRAPHS

Three of the most commonly discussed statistics on graphs are the average path length between
any pair of nodes, the average clustering coefficient for all nodes in a graph, and the distribution
of node degree. While not formally model-based from a statistical likelihood perspective,
various values of these statistics have been associated with different graph types.
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The average path length L between any pair of nodes in a graph is designed to measure
global connectivity within the graph. For all pairs of nodes, the length of the shortest path
from one node to the other is computed, and the lengths of all shortest paths are averaged
together. In an undirected graph, the path length from node vi to vj will necessarily equal the
path length from vj to vi; hence the path length for each pair is symmetric. In a directed
graph, however, path lengths may differ depending on which node is the starting node since
a path must always follow the direction of the edges. Theoretically, L pertains only to con-
nected graphs in which a path exists between all pairs of nodes. If a graph is unconnected,
then the path length between pairs of nodes that belong to separate connected components is
reported by most algorithms to be infinite. Many report the global L statistic for unconnected
graphs by ignoring the infinite values or by reporting values computed only for the largest con-
nected component. Further research into appropriate analogs for L in unconnected graphs is
warranted if this statistic is of general interest for all graph types.

Designed to measure local density of the network, the clustering coefficient C measures
the extent to which neighbors of a node are also neighbors of each other. In an undirected
graph, if a node v is connected to kv other nodes, Cv is the fraction of kv(kv 2 1)/2 possible
edges between the kv neighbors that exist, and C is the average of all Cv. The coefficient C
tends to be reported only for undirected graphs, although its directed graph analog is straight-
forward to compute. Calculation of C is not complicated by a lack of connectivity of the
entire graph.

Node degree distribution is generally plotted on a log–log scale and checked for linearity.
Scale-free graphs (to be discussed in Section 24.4) are characterized by a node degree distri-
bution that follows a power law with f (x) � cx2(1þa), where x is degree, 0, c ,1, and
a. 0. On a log–log scale, f (x) should follow a straight line, hence scale-freeness is often diag-
nosed using log–log plots. Li et al. [18] note problems with inference made on network struc-
ture on the log–log scale for the probability density function (pdf) for node degree, and instead
suggest diagnosis of linearity on a log–log scale for the complementary cumulative distri-
bution function (ccdf). In this case, the ccdf is 1 2 F(x), where F(x) is the cumulative
distribution function (cdf). Hence the ccdf is 1 2 F(x) � cx2a. A plot of x versus 12 F(x)
on the log–log scale should also be approximately linear. Li et al. [18] note that Erdös–
Renyı́ random graphs can misleadingly look scale-free if the pdf is plotted on a log–log
scale, whereas this is less likely using the ccdf. We will use the R2 statistic to assess the fit
of a straight line to the ccdf on the log–log scale.

24.4 GRAPH-THEORETIC MODELS

Perhaps the most widely studied family of graphs are the Erdös–Renyı́ random graphs (ER
graphs). In this graph model, a prespecified number of undirected edges are randomly
assigned to connect a prespecified number of nodes. An alternate construction begins with
the prespecified number of nodes and edges generated at random with a fixed probability
p. Two of the most widely cited characterizations of ER graphs in the biological world
are the relatively short path lengths connecting any two pairs of nodes and the observation
that node degree follows a Poisson distribution. Erdös–Renyı́ graphs often serve as the start-
ing point for discussions of global network topologies as a contrast to the nonrandom beha-
vior of cellular networks. Figure 24.1a illustrates an example of a random graph with 15
nodes and 29 edges.
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Figure 24.1 Examples of ER (a), scale-free (b), and overlapping (c), cluster graphs.
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Watts and Strogatz [31] describe “small-world networks” as lying somewhere between the
two extremes of random graphs and regular ring lattices. Regular ring lattices contain n nodes
each with degree m. The nodes are arranged in a ring configuration and each node is connected
to its m nearest neighbors. Nodes that are next to each other in the ring share m2 2 common
neighbors. Two statistics, L and C, measure the small-world properties of networks. For small-
world networks L � Lrandom but L� Llattice, where Lrandom and Llattice are the average path
lengths for a random graph and a regular lattice with the same number of nodes and edges,
respectively. In small-world networks, C � Crandom but C � Clattice.

Barabási and Albert [4] and Amaral et al. [1] describe a particular class of small-world net-
works in which the distribution of node degree follows a power law. These graphs are termed
“scale-free” since there is no ‘typical’ node characterizing all nodes in the sense that mean node
degree could typify a Poisson degree distribution. Barabási and Albert [4] further characterize
scale-free networks by noting that they can be generated by continuously adding new nodes to
the network, and with each addition, connecting the new node preferentially to nodes that are
already highly connected. This mechanism creates the hubs characteristic of scale-free graphs
and confers linearity on the log–log plot of node degree versus frequency that is often used to
diagnose scale-freeness. In Figure 24.1b, an example of a scale-free graph, node n4 is a highly
connected hub node.

Our working definition of a scale-free graph will be the preferential attachment model of
Barabási and Albert [4], but we do note that scale-freeness is not always a straightforward
characterization of a graph. For example, Barabási and Oltvai [5] point out the contradiction
that some biological networks that appear to be scale-free also contain modular features in
which collections of nodes are highly connected to each other but loosely connected to
other collections of nodes in the graphs. This contrasts with the scale-free concept in that
node degree can be typified by an “average” with relatively little variability and contradicts
the scale-free metric due to Li et al. [18]. Ravasz et al. [20] synthesize these concepts into a
hierarchical graph model in which central nodes that connect to their own local neighbors
also connect with centers of other local neighborhood clusters. Their specific algorithm,
while limited in terms of cluster size and overall topological organization, does retain
both scale-free and modular properties. Several diagnostic statistics confirm that this
network structure is applicable at least to metabolic networks, if not other biological net-
works as well.

Keeping to the modular theme, we also consider cluster graphs that frequently arise in bio-
logical data, although their existence is not always recognized. Cluster graphs consist of sets of
nodes that are connected to all other nodes within their set, and are not connected to any other
nodes in the graph. Microarray expression data are frequently explored using clustering algor-
ithms, and the sets of clusters then form mutually exclusive sets of genes that are often said to
be differentially expressed. In a graph of all genes on the microarray, edges can be drawn
between all pairs of nodes in the same expression cluster, resulting in a series of completely
connected subgraphs. In fact, any partition on a set of objects can be represented in this
manner. Balasubramanian et al. [3] demonstrate the uses of this type of cluster graph for asses-
sing coregulation of interacting proteins.

Overlapping cluster graphs occur when the nodes are not strictly partitioned but can instead
be members of more than one set. An example is the protein complex comembership graph
induced by the MBME complex estimates. This graph consists of a series of clusters containing
all proteins forming distinct complexes, some of which share common proteins as members and
thus are connected to each other. Figure 24.1c shows an example of an overlapping cluster
graph involving 15 nodes and 5 clusters.
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24.5 TYPES OF MEASUREMENT ERROR

In this section we discuss two types of measurement error, namely, stochastic and systematic
errors. While not formally treated, we also briefly describe sampling issues in networks and
point out how misinterpretation of experimental design can lead to large-scale systematic
error. In Section 24.7, we note the influence of various sources of measurement error on the
commonly used graph statistics. Measurement error is a noted problem for biological
network data and will be shown to greatly influence graph statistics; however, it is not generally
accounted for in analyses of biological graphs.

24.5.1 Stochastic Error

Network data, like most biological data, are subject to stochastic measurement error. Stochastic
error refers to mistakes made in the observation of relationships that are not attributable to a
particular source, or “random noise.” Both false-positive (FP) and false-negative (FN) obser-
vations may occur as a result of stochastic error mechanisms. As a simple example,
Figure 24.2 shows the complex comemberships detected in three purifications in the TAP
data for the baits Apl5, Apl6, and Apm3. Because protein–protein interactions should be reci-
procated with perfectly sensitive and specific technology, the unreciprocated edge from Apl5 to
Apm3 is either a FP or a FN observation between these two proteins. Either Apl5 errantly
detected Apm3 as a hit, or Apm3 errantly failed to detect Apl5 as a hit.

The interpretation of FP and FN depends entirely on the relationship under investigation and
must be treated with care, particularly when jointly analyzing related data types. For example,
for AP-MS data, a FN will occur when an edge is observed as missing between two proteins
that are in fact complex comembers, and a FP will occur when an edge is observed between two
proteins that do not share complex membership. For Y2H-detected physical interactions, a FN
AP-MS observation could be a true negative (TN) Y2H observation since a pair of proteins can

Figure 24.2 All directed edges represent detected complex comemberships and extend from
the shaded bait proteins to the hits (either other baits or hit-only proteins) that they find.
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be complex comembers without physically interacting. For the same reason, a FP Y2H obser-
vation could be a true positive (TP) AP-MS observation.

24.5.2 Systematic Error

Systematic error refers to errors that are consistently made for some particular reason. Both FN
and FP observations can result from systematic error mechanisms. For example, AP-MS and
Y2H FPs may arise systematically for certain bait proteins as a result of extra “stickiness” in
the purification process. In this case, sticky baits will detect their neighbors as hits, as well
as a set of FP hits at rates exceeding that of stochastic FPs. These extra hits may consist of
a random sample of proteins in the cell, or they may tend to include neighbors of a sticky
bait protein’s true neighbors.

Similarly, FNs may arise systematically for AP-MS and Y2H data. Depending on the tech-
nology being used, some bait proteins experience enough conformational deformity when the
experimental construct is attached to prevent interaction with their complete set of true neigh-
bors. In this case, the rate of FNs for the deformed bait will exceed the rate of stochastic FN
errors.

There is one important difference between systematic FPs and FNs. Systematic FPs may
extend either globally to the entire set of proteins in the cell, or locally to the neighbors of a
sticky bait’s true neighbors. Systematic FNs, on the other hand, are restricted to the local set
of relationships for the bait in question. While we have explained some sources of systematic
errors for AP-MS and Y2H data, we note that similar errors can be made in the case of other
technologies for unique biological and experimental reasons.

24.5.3 Sampling

Often, especially in high-dimensional settings, not all edges are tested, but rather only a subset
are queried using the technology of interest. Both Y2H and AP-MS experiments use a “neigh-
borhood sampling” scheme in which a subset of nodes is specified to be baits and all edges
extending from those nodes are tested. Note that this implies that all edges that connect
pairs of nodes that were not used as baits are in fact untested. This is different from a “subgraph
sampling,” scheme in which all edges in the subgraph induced by a subset of nodes are tested.

Misinterpretation of a sampling scheme can be the source of large-scale systematic error. In
particular, Scholtens et al. [22] point out that most graph analyses errantly treat untested edges
as missing, thereby inducing large-scale systematic FNs. This problem can be resolved by
restricting attention only to the set of tested edges, but unfortunately, the global graph statistics
are relatively underdeveloped for this purpose. Hakes et al. [10], Han et al. [11], and Stumpf
et al. [24] deal with other important aspects of sampling in a graph-theoretic paradigm.

24.6 EXPLORATORY DATA ANALYSIS

Some very basic exploratory data analysis (EDA) techniques can diagnose the extent to which
measurement error is a problem in network data. Here we discuss three very basic techniques
involving reciprocity, sampling, and underlying network structure.
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24.6.1 Reciprocity

In all bait–hit technologies, edges between pairs of baits are tested twice since each bait can
potentially find the other as a hit. Edges between baits and hit-only proteins are only tested
once since a hit-only protein is never given a chance to reciprocate the detected relationship
or lack thereof. Simple inspection of the doubly tested relationships indicates very high
levels of both FNs and FPs in AP-MS data. For the subgraph of all doubly tested edges in
the TAP data induced by the 358 bait proteins that find at least one other bait as a hit,
Figure 24.3 demonstrates the number of reciprocated and unreciprocated edges connected to
each bait. If FNs and FPs did not exist, all edges would be reciprocated. Instead, only 43 of
the 358 baits have exclusively reciprocated edges in the bait-induced subgraph. Of the 43,
30 have 1 reciprocated edge, 12 have 2, and 1 has 5. The lack of reciprocity is likely due to
both stochastic and systematic FNs and FPs, although the exact mechanism and compilation
of these errors are not obvious from this plot.

24.6.2 Sampling

As discussed previously, large-scale systematic error can arise when sampling of the network is
misinterpreted. Specifically, when all untested edges are treated as missing, a substantial
number of FNs may occur.

For the TAP data [7], of the 1364 reported proteins, 455 are baits and 909 are hit-only pro-
teins. Consequently, in the graph restricted to all baits and observed hits and excluding self-
edges, 455 � 454/2 ¼ 103,285 edges were tested twice, 455 * 909 ¼ 413,595 edges were

Figure 24.3 Summary of unreciprocated and reciprocated edges connected to bait proteins in
the TAP data. The existence of unreciprocated edges indicates the presence of FP and FN
observations.
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tested once, and 909 * 908/2 ¼ 412,686—close to half of the edges in the graph—were never
tested. Similar figures apply to the AP-MS data published by Ho et al. [12], in which 493 baits
were used and 1085 proteins were found as hits but not used as baits.

Treating untested edges as missing forces FNs for all pairs of hit-only proteins that are
indeed complex comembers. If the proportion of true edges in the untested set is consistent
with the tested set, then in our case roughly half of the true positives would be treated as
FNs. Simple calculation of the number of tested and untested edges, given the sampling
scheme, highlights the potentially high number of systematic FNs resulting from misinterpreta-
tion of experimental design.

24.6.3 Underlying Network Structure

Comparison of data sources with other related data can also be very helpful in uncovering the
extent of measurement error in a graph. In our case, AP-MS data can be very informative about
error rates for Y2H data. In particular, we assume that a multiprotein complex is connected so
that all complex comembers must physically bind to at least one other protein in the complex. If
we use the MBME complex estimates and combine the Ito et al. [14] and Uetz et al. [28] data,
then we can make some assumptions regarding requirements for physical connectivity and
explore a range of FP and FN rates for Y2H data. For a complex containing N proteins,
there must be at least N21 Y2H edges connecting them. Figure 24.4 demonstrates that
this is largely untrue for Y2H data. For the large majority of MBME complex estimates,
only a fraction of the minimum number of required edges are observed in a simple union of
the Ito–Uetz Y2H data. This indicates a large number of FNs in the Y2H data.

Figure 24.4 Observed fraction of the minimum number of Y2H edges necessary to connect
all MBME complex members to one other complex comember.
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24.7 INFLUENCE OF MEASUREMENT ERROR ON
GRAPH STATISTICS

In this section, we use simulation to study the influence of stochastic and systematicmeasurement
error on L, C, and node degree distribution for three different types of graphs: ER graphs, scale-
free graphs, and overlapping cluster graphs (all simulation parameters are described sub-
sequently). We introduce stochastic FN errors at rates of 0.05, 0.15, and 0.25, and stochastic
FP rates corresponding to half of all edges being FPs. Note that the rate of FP errors corresponds
to a positive predictive value (PPV) of an observed edge of 0.5. These values are guided by esti-
mates of sensitivity for AP-MS technology [7] as well as the claim that up to half of the total
number of observed interactions may be FPs [29]. For systematic errors, we simulate the
sticky bait situation by selecting 0.05, 0.15, and 0.25 of all nodes to be “sticky” and then con-
necting them to the neighbors of their neighbors with probability 0.5. In reality, baits could
also be sticky with respect to the entire hit population; we choose to work with neighbors of
neighbors as just one example. We assume that the entire graph has been tested. Since
methods for treatment of measurement error on tested edges will necessarily differ from those
that address sampling, we leave the treatment of systematic FNs induced by errant interpretation
of sampling schemes for further research. We connect results from these simulation studies back
to their biological counterparts, noting areas of concern formaking biological conclusions on the
basis of these data. For each simulation, 100 graphs of a particular size and structure were gen-
erated and measurement error was introduced for each graph according to the rates just listed.

ER Graphs. We generate ER graphs with 50, 500, and 1000 nodes, each with approxi-
mately 5 edges per node for a total of 250, 2500, and 5000 edges, respectively. These
graph sizes were chosen to reflect a range of potential networks of interest. The use
of ER graphs is not necessarily intended to represent a particular type of biological
network, but is instead to be used as a benchmark for comparison of the other graph
types.

Scale-Free Graphs. We generate scale-free graphs with 50, 500, and 1000 nodes according
to the preferential attachment model of Barabási and Albert [4] again with approxi-
mately five edges per node. Scale-free graphs have been noted in several biological set-
tings and are included as the most likely structure for Y2H graphs.

Overlapping Cluster Graphs. Overlapping cluster graphs are intended to resemble AP-MS
data since a set of complex comemberships should form a series of connected cluster
graphs. We generate overlapping cluster graphs of approximately 50, 500, and 1000
nodes, using a Poisson distribution with l ¼ 6 to generate cluster sizes. We then ran-
domly specifyied one node within a cluster as a member of the next cluster as well,
thereby constructing a chain of clusters.

24.7.1 Path Length: L

The effects of stochastic false negatives and false positives and systematic false positives on
path length are described here.

Stochastic False Negatives. As depicted in Figure 24.5, stochastic FN errors consistently
increase path length for both random and scale-free graphs of all sizes under
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consideration. Data are also depicted for 1000-node graphs, but the patterns appear
similar for smaller graphs as well. The increase in path length is somewhat expected;
since edges are randomly eliminated, this will necessarily extend the lengths of paths
between pairs of nodes. Path length in the cluster graph is somewhat surprising at the
first glance. For higher FN rates, average path length in fact decreases. This can be
explained by a simple mistake that is often made in the calculation of L for unconnected
graphs. Path lengths for pairs of nodes between which no path exists are generally
excluded from the mean calculation. In this case, since the data are so highly clustered,
eliminating edges tends to splinter the graph into unconnected components. Path lengths
for node pairs that were once distant from each other in the original connected graph are
now ignored in the overall mean calculation, and the shorter path lengths between
nodes that remain connected decrease the mean. This situation shows the bias that
can be introduced by computing L on unconnected graphs without accounting for
unconnected pairs.

Stochastic False Positives. In general, stochastic FPs behave similarly for all three graph
families by consistently decreasing L as shown in Figure 24.5. For overlapping
cluster graphs, the reduction is particularly drastic. Variability in the L estimates
drastically reduces; this may be an effect of the addition of a rather large number of
FPs to the graph, and the consequent reduction in the variation of L due to increased
saturation of the graph.

Systematic False Positives. Systematic FPs also tend to decrease estimates of L, but with
more variability than observed for stochastic FPs. As illustrated in Figure 24.6, in ER
graphs, systematic FPs cause consistent underestimates of L. For cluster graphs at
lower stickiness rates, some values of estimated L are often quite close to the true
values, but this trend decreases as stickiness rates increase. For scale-free graphs, the
pattern of estimates of L under systematic FP error fall somewhere in between the
range of values for random and cluster graphs.

24.7.2 Clustering Coefficient: C

Before discussing the influence of measurement error on C, we make special note that both the
numerator and denominator of C are potentially subject to measurement error. In particular, Cv

is the fraction of kv (kv21)/2 possible edges between the kv neighbors of node v that exist, and
C is the average of all Cv. For a node v, if an error is made in the observation of an edge from v

to another node, this will alter both the denominator and the numerator. A FP edge will increase
the denominator by kv, a FN edge will decrease it by kv21, and the numerator will change to
include the number of edges observed given the set of edges between all pairs of neighbors
observed for node v. Alternatively, errors made in the observation of edges between neighbors
of vwould change only the numerator. Note that an error in the observation of an edge from v to
another node v0 would affect both the numerator and denominator for Cv and Cv0, but would
affect the numerator for Cv0 0 only, if both v and v0 were neighbors of v0 0.

Stochastic False Negatives. For all three types of graphs, stochastic FNs will tend to lead
to underestimates of C (Fig. 24.7). For random and scale-free graphs at lower FN rates,
occasional overestimates of C may be due to a reduction of the denominator, but pro-
portionately less reduction in the numerator. For cluster graphs in our simulation, C is
always underestimated in the presence of stochastic FNs. Since C is so high in the
cluster graph, if the denominator decreases as a result of FNs, the numerator tends to
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decrease proportionately. The greater influence on C tends to be due to FNs between
neighbors of nodes, thus decreasing the overall C.

Stochastic False Positives. Stochastic FP errors have different effects on C depending on
the structure of the graph (see Fig. 24.8). For ER graphs, stochastic FPs increase C,
and in general the estimates are less variable. In smaller scale-free graphs, C is overes-
timated and in fact closely resembles the random phenomenon. Interestingly, for larger
scale-free graphs, stochastic FPs cause underestimates of C. The overestimates in the
smaller graph may be due to general saturation of the graph edges. Stochastic FPs in
overlapping cluster graphs dramatically decrease estimates of C. In general, nodes
now have more neighbors, but the number of edges between their neighbors does not
increase at the same rate conferred by their original clustering coefficient.

Systematic False Positives. For both random and scale-free graphs, systematic FPs cause a
drastic increase in C. The plots in Figure 24.9 demonstrate the results for 1000-node
graphs, but the plots look largely the same for 50-and 500-node graphs. Our definition
of stickiness connects sticky nodes to neighbors of their neighbors with probability 0.5,
and hence we expect such an increase in C. The rate of stickiness works oppositely for
overlapping cluster graphs, however, since the true clustering coefficients are so high to
begin. If the denominator of Cv is increased because of a FP observation, only half of the
neighbors of the neighbors of v will be connected to v, and this rate is much lower than
the true Cv. Thus, even very high FP probabilities (e.g., 0.5) for a very low proportion of
sticky baits (e.g., 0.05) will in fact decrease C for overlapping cluster graphs.

Figure 24.8 Plots of C estimated under stochastic FPs versus true C for 50-, 500-, and 1000-
node graphs of each type. Note that the x axes have quite different scales. Scales were set so that
the x-axis range is the same as the y-axis range, with points above the 458 line indicating that the
estimate was upwardly biased, and points below the line indicating a downward bias.
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24.7.3 Node Degree Distribution

Node degree distribution is generally used to diagnose scale-free characteristics of graphs.
Common practice is to plot the frequency distribution of degree versus degree on a log–log
scale and then assess the fit of a straight line. Li et al. [18] note that log–log plots on the fre-
quency scale can lead to mistaken diagnoses of ER graphs as scale-free and suggest the use of
the ccdf instead. Noting their results, we will examine the effect of systematic and stochastic
errors on R2 for the fit of a straight line to the log–log plot of the cdf.

Stochastic False Negatives. Neither ER graphs nor cluster graphs are expected to have
scale-free characteristics, and both are affected similarly by systematic FN observations.
In particular, FN observations will tend to cause underestimates of R2. This observation
is the same in scale-free graphs (Fig. 24.10).

Stochastic False Positives. Stochastic FP observations again behave similarly for random
and cluster graphs, this time increasing estimates of R2. In contrast, although the bias
is not tremendously large, estimates of R2 are low for scale-free graphs (Fig. 24.10).

Systematic False Positives. Systematic FPs have a drastic effect on R2 for ER graphs. Scale-
free graphs are known to have a small number of “hub” nodes, and even very small
numbers of sticky nodes result in an adequate number of hubs to make a ER graph
look scale-free (see Fig. 24.11). On the contrary, R2 estimates actually decrease even
for very small sticky rates in scale-free graphs, possibly owing to the creation of too
many hubs. In the cluster graph, stickiness tends to have a variable effect with estimates
that are fairly consistent with the true R2 values.

24.8 BIOLOGICAL IMPLICATIONS

24.8.1 Experimental Data

Table 24.1 reports L, C, and R2 statistics for the bait-induced subgraphs for the TAP, HMS-PCI,
Ito, and Uetz data. The L statistic was computed on the largest connected components of these
graphs, and C and R2 were connected using the entire bait-induced subgraph. All three statistics
were computed on the underlying undirected graphs for these data. Since we know neither the
FP and FN probabilities for these data, nor the combination of stochastic and systematic mech-
anisms by which they arise, we are unable to say how different these statistics are from their

Table 24.1 Table of L, C, and R2 Values for Bait-Induced Subgraphs (BI)
and Their Largest Connected Components (LCCs)

Number of Nodes
BI/LCC

Number of Edges
BI/LCC L C R2

TAP 358/302 725/685 5.26 0.433 0.778
HMS-PCI 379/362 665/656 4.53 0.161 0.913
Ito 1096/994 1602/1545 4.83 0.0586 0.984
Uetz 228/83 190/87 7.79 0.0953 0.951
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underlying true values. Here, we simply make a few observations on how these statistics reflect
our simulation results.

By nature of the complex comembership relationships that they measure, we know that the
TAP and HMS-PCI data have an overlapping cluster graph structure. Note that the values of C
for these two graphs are commensurate with those observed in the stochastic FP simulations.
Presumably the effects of stochastic FNs are not as prevalent since we are looking at the under-
lying graph; not the directed graph, and perhaps the effects of systematic FPs are ameliorated by
treating only the bait-induced subgraph. In any event, the true values of C are likely higher than
those based strictly on the observed data.

The overall topology of the Ito and Uetz Y2H data is not a direct result of the relationships
considered; hence special attention should be paid to the implications of the calculated stat-
istics. If the Y2H data are not subject to systematic FPs, then the reported values of C are
likely lower than the true values. If, on the other hand, sticky baits are prevalent in these
data, then the true values of C could well be lower. Classification of these Y2H graphs as
small-world depends on the C statistic; hence the acknowledgment that the true value could
vary in either direction is important to consider.

All four data graphs show fairly high values of R2, suggesting scale-freeness for all four
graphs. While these are consistent with values for true scale-free and overlapping cluster
graphs, they are also consistent with random graphs that include even a very low percentage
of sticky baits. The structure of the true TAP and HMS-PCI graphs is not so much in question,
but this is an important consideration for the Y2H graphs.

Figure 24.11 Plots of R2 estimated under systematic FPs versus true R2 for 500-node graphs
of each type.
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24.8.2 Simulation Data

Our simulation studies suggest that stochastic FN observations tend to have similar implications
for all three families of graphs under consideration. In particular, they tend to increase values of
L, and decrease values of C and R2 for the fit of a straight line to a log–log plot of the ccdf of
node degree. Stochastic and systematic FPs, on the other hand, consistently affect L, but have
different and often opposite effects on C and R2 for ER, scale-free, and cluster graphs.

As discussed in Section 24.1, both small-world and scale-free graphs are thought to be
important in biology since they are largely robust to random perturbations. For the three
graph families discussed in this chapter, sources of error, both stochastic and systematic,
tend to make ER and cluster graphs look more scale-free than they ought, and scale-free
graphs less so. Graphs of protein–protein interactions have often been described as scale-
free, and these simulations shed light on the potential involvement of measurement error in
those claims.

For ER graphs, FP observations, in particular systematic FPs, tend to make ER graphs look
both scale-free and small-world. False positives decrease L, increase C, and greatly increase R2.
It is of some interest to note that these effects occur even at very small rates of FP nodes. Many
biological networks have been characterized as both scale-free and small-world and have not
accounted for potential sources of measurement error. Our studies suggest the possibility that
these networks could in reality behave like random networks, with scale-free characteristics
merely as artifacts of measurement error.

Scale-free graphs are a subtype of small-world networks according to Amaral et al. [1], and
therefore they should be characterized by small L, high C, and high R2. For scale-free graphs,
FN observations appear to be a larger problem than FPs since FNs increase L, decrease C, and
decrease R2.

Overlapping cluster graphs tend to be more robust to sources of error than the other two
graphs, possibly because their highly structured nature dominates random noise. The estimates
of L, C, and R2 certainly do change in the presence of error, but not necessarily enough to infer
scale-free or small-world behavior inappropriately. While this is a positive feature for overlap-
ping cluster graphs, it does not necessarily provide much new information about the graph. If a
particular technology is employed to probe coaffiliation relationships such as complex comem-
bership, then the resultant graph would necessarily be a cluster graph and an investigator should
already recognize this.

24.9 CONCLUSIONS

Global graph statistics have been used in several settings to characterize network topologies and
make biological conclusions about the nature of these data. The simple simulation studies in
this chapter illustrate the large impact of measurement error on graph statistics, and the resultant
potential for misinterpretations of these data. Further rigorous research is warranted in several
directions. Of perhaps primary importance is the identification of the underlying quantities that
are important and the development of reliable estimates of those quantities. It remains unclear
whether L relates to any important biological concept, but if it does, then better estimation pro-
cedures are badly needed. Other directions include the joint modeling of multiple types of error
and development of model-based graph statistics to augment those that have already been
observationally associated with different graph types. We also believe that careful characteriz-
ation of sampling schemes and appropriate estimators of the relevant quantities that account for
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the nature of the data (e.g., using only tested edges) are required. While graphs have been suc-
cessfully applied in many biological settings, more work is warranted to increase the level of
statistical sophistication for drawing inference using graphs.
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C H A P T E R 25

Prediction of RNA Splicing Signals
Mark R. Segal
Department of Epidemiology and Biostatistics, University of California,
San Francisco, California

25.1 INTRODUCTION

An organism extracts information from its genome via the recognition and processing of
signals contained in the constituent primary nucleotide sequence. When these signals pertain
to a common function, they exhibit some degree of similarity. The search for, and identification
of, such characteristic sequence motifs constitutes one of the foremost, yet most challenging,
problems in computational biology. For example, the tasks of detecting transcription factor
binding sites (TFBSs) or RNA splice sites (ss), are of this flavor. The difficulties derive
from the fact that these motifs are short [,25 nucleotides (nt)] and (despite the abovemen-
tioned similarity) variable. Further, in some settings, they must be isolated from lengthy
(�10326-nt) background sequences. That these difficulties can be (partially) overcome reflects
the ability of more recently available, large-sequence databases to furnish compensatory infor-
mation, and the emergence of sophisticated and customized algorithms to effectively analyze
these databases.

There are two broad analysis strategies that have been employed for motif finding. The first
searches for novel motifs among a set of sequences that share common biologic functionality.
Such methods typically build from assumptions about both signal (the motif) and nonsignal
(background) sequence. They have been widely used in eliciting TFBS. The second uses the
information content of experimentally verified motifs, often coupled with judiciously selected
instances of negative or decoy sequences, to search for and/or characterize putative signals.
This approach has been extensively used in the context of splice site recognition. It is to
both such methods, and such applications, that this chapter is dedicated.

The chapter is organized as follows. A brief overview of the background biology pertaining
to splicing rounds out this introductory section. Section 25.2 briefly surveys more recently
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available analytic approaches for identifying splice sites. These are distinguished by the
manner in which they pursue modeling the joint distribution of a splice site sequence. The
methods are reunited in using likelihood ratios to gauge performance and select models.
These likelihood ratios result from applying the modeling procedure separately to real and
decoy sequence databases. It is the inherent comparative nature of the splice site identification
problem, coupled with the existence of these databases, that motivates our attacking it as a
classification problem. Accordingly, Section 25.3 outlines some contemporary classification
techniques—boosting, support vector machines, and random forests—that we subsequently
apply. Section 25.4 provides results from these analyses. These serve to suggest refinements
to some of the classification procedures. Comparisons and evaluations are made in terms of
predictive accuracy, computational considerations, and interpretative yield. Section 25.5
contains some concluding discussion and possibilities for future work.

25.1.1 Biologic Overview of Splicing

Usually, human genes are transcribed as long precursors, with alternating long (non-coding)
introns and short (�50–250 nt) internal exons. Precision on the part of the RNA splicing
machinery is required in both excising introns from these primary transcripts, and ligating
flanking exons, in order to produce proper messenger RNAs for subsequent protein synthesis.
Approximately 15% of the point mutations that result in human genetic disease have been
attributed to errors in this splicing process [37]. Further, more than 50% of human genes
undergo alternative splicing [38], which confers a major source of protein diversity. These con-
siderations underscore the importance of splicing regulation, which remains poorly understood.

A protein-coding gene in humans contains, on average, 9 exons of length 145 nt. Introns
are, on the average, an order of magnitude longer and a typical gene spans 27 kilobases
(1kb ¼ 103 nt) [38]. There are three short and degenerate splice site sequences at, or near,
the intron–exon boundary: (1) the donor or 50 splice site (50ss) marking the exon–intron junc-
tion at the intron’s 50 end, (2) the acceptor or 30 splice site (30ss) marking the junction between
the intron and the downstream exon, and (3) the branch site of lariat formation located 20–50 nt
upstream of the 30ss. The consensus sequence motif for the 30ss and 50ss features fully con-
served (essential) dinucleotides at the splice junction, coupled with base preferences at flanking
positions. During or shortly following transcription, components of the nuclear splicing
machinery bind to the ss. This triggers formation of a macromolecular complex, the spliceo-
some, which consists of five small nuclear ribonucleoproteins and �145 additional proteins
[53]. Through a dynamic and complex series of interactions the spliceosome recognizes
boundaries and catalyzes the precise excision and ligation steps [14].

This precision, when considered in the context of the complex machinery and limited con-
servation of 30 and 50 splice sites, is surprising. If we measure information content in relative (to
a uniform background) entropy “bits” (i.e., the number of binary 0/1s needed to code the
signal), which here is 2-H for H given in (25.2), then the 30ss and 50ss each contain �8–9
bits. Thus, we expect a decoy splice site every 28–29 (�200–500) bases, whereas actual
50ss are on average 3000 bases apart. Hence, either the characterization of ss via bits is insuffi-
cient and/or other factors are involved in splicing. The calculation of bits does not capture the
strong between-position dependences known to exist in splice signals. Current attempts at more
sophisticated splice signal identification, described next, seek to exploit these dependences.

One of the primary motivations for improved splice signal identification is to improve gene-
finding algorithms that employ resultant exon recognition strategies. We do not address that
aspect of the problem here, beyond some brief remarks in Section 25.5.
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25.2 EXISTING APPROACHES TO SPLICE SITE IDENTIFICATION

There has been considerable activity in advancing methods and algorithms for splice site
identification. Representative of this work are five papers published since 2000:
[15,51,17,18,52]. There are some basic commonalities shared by these approaches. As men-
tioned above, the starting point is to employ between-position dependences to provide
refined splice signal identification. Next comes recognition that the full joint probability
model for a splice site sequence is inestimable because of the vast number of parameters.
The methods then diverge in using differing approximation strategies that hopefully capture
important dependences. However, they are reunited by common use of likelihood ratio thresh-
olding as a means for evaluating and selecting models. These likelihood ratios are obtained by
applying the model to real and decoy sequence databases.

We establish some notation that pertains to the shared features. Let X be a sequence of
n random variables: X ¼ fX1, X2, . . . , Xng corresponding to n consecutive DNA sequence pos-
itions. Thus, each Xi takes values from the four letter nucleotide (base) alphabet fA, C, G, Tg.
An observed sequence is designated by x ¼ fx1, x2, . . . , xng. Let p(X ¼ x) denote the joint
probability mass function. The state space for X has 4n elements. In attempting to identify
the (acceptor) 30ss, we are dealing with n ¼ 21. So, it is evident here, and even for shorter
motif recognition problems, that (extensive) restrictions on the allowed probability models
will need to be imposed. After framing a set of restrictions that define a family of estimable
probability models, the methods proceed by applying such to both real splice signal and
decoy sequence data. Then, in order to arbitrate whether a given sequence x is real or decoy,
appeal is made to the likelihood ratio:

LR(X ¼ x) ¼ p(X ¼ x j real signal model)
p(X ¼ x j decoy signal model)

: (25:1)

By thresholding LR at a series of cutpoints a receiver operating characteristics (ROC) curve
characterizing the classification performance of the model is obtained. These ROC curves
are used to compare performance within model families and between approaches.

25.2.1 Maximum-Entropy Models

Yeo and Burge [51] develop a framework for modeling sequence motifs based on maximum
entropy. Their central idea is to approximate short sequence motif distributions with the
maximal entropy distribution (MED) constrained to satisfy select marginal nucleotide frequen-
cies, as estimated from available data. For example, so-called first-order constraints are the
empirical frequencies of each nucleotide at each position of the sequence. Imposing solely
first-order constraints does not capture any between-position dependences and reduces to the
weight matrix model (WMM [13]). By virtue of not allowing for higher-order dependences,
including those between nonadjacent sequence positions, the simplistic WMM is generally
inadequate. The various more recently devised methods seek to overcome this deficiency,
but adopt differing strategies to do so.

The strategy underscoring the MED approach has a compelling, information-theoretic basis;
if the chosen constraints are “correct,” complete, and well estimated, then the resultant MED is
optimal. However, this is a big “if” as we describe below, after sketching the construction of an
MED model.
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The (related) principles of maximum entropy and minimum relative (or cross-) entropy date
back to around the mid-1950s and have been widely used since. Briefly, the principle of
maximum entropy asserts that of all candidate distributions p satisfying a set of constraints,
the one that best approximates the true distribution is that with the largest Shannon entropy
H, as given by

H( p) ¼ �
X

p(x) log2 ( p(x)) (25:2)

where the sum is over all possible sequences x. In appealing to this principle, it is clear that
specification of constraints is critical. While it is possible to avoid incompatible constraints
by using only marginal frequencies derived from the empirical distribution, there are few
guidelines or search strategies for constraint selection. Rather, Yeo and Burge rely on exhaus-
tive evaluation where possible. The flavor of the constraints entertained, and how they capture
between-position dependences, is outlined next.

Two classes of constraints—complete and specific—are employed. Complete constraints
correspond to sets of lower-order marginal distributions of the full distribution p and can be
used to capture general between-position dependences. To establish (the slightly abused) nota-
tion we illustrate for the case n ¼ 3; X ¼ (X1, X2, X3). There the set of all lower-order marginal
distributions, obtained via summing over all omitted indices, is

SX ¼ fp(X1), p(X2), p(X3), p(X1,X2), p(X2;X3), p(X1,X3)g: (25:3)

Let Sms # SX be lower-order marginals of order m and skip s. In (25.3), the first three elements
are first-order (m ¼ 1), the last three are second-order (m ¼ 2), and only the last element
has nonzero skip (s ¼ 1). The term S10 (i.e., all first-order marginals) is included in Sms
when m . 1. So, for the n ¼ 3 example, we have S10 ¼ f p(X1), p(X2), p(X3)g; S20 ¼
fS10, p(X1,X2), p(X2,X3)g; S21 ¼ fS10, p(X1,X3)g.

Using standard (multinomial likelihood-based) estimates, the first-order constraints (Ŝ
1
0) are

just the empirical frequencies of each nucleotide (A, C, G, T) at each sequence position. The
maximum entropy distribution consistent with these constraints is the weight matrix model
(WMM [45,13]), in which there are no between-position dependences. Alternatively, if

second-order zero-skip (i.e., nearest-neighbor) constraints (Ŝ
2
0) are imposed, the maximum

entropy distribution is an inhomogeneous first-order Markov model, also termed a weight
array model (WAM [54]). Thus, prescribing differing constraints equates to specifying differ-
ing models. Indeed, in view of the finite sample space, all possible models can potentially be
so constructed.

Specific constraints are just observed frequencies for a particular member of a set of com-
plete constraints. So, continuing with n ¼ 3, there are 4 specific constraints (corresponding
to each nucleotide) for each member of S10 and 16 specific constraints for each second-
order marginal.

Framing constraints in this fashion readily allows specification of allowed orders of
between-position dependence while not imposing that such dependence pertains to adjacent
positions. It is this desire to permit nonadjacent dependence that motivates position permu-
tation as described in Section 25.2.2. Central to the approach of Yeo and Burge [51] is an itera-
tive scaling technique [9] that provides a computationally tractable algorithm that converges to
the MED satisfying a given set of constraints. Armed with this means for estimating the MED
subject to constraints, a maximum entropy model (MEM) is constructed by separately fitting
MEDs to aligned sequences corresponding to real and decoy splice signals. The classification
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performance of the MEM is assessed by thresholding the LR (25.1), constructed from the ratio
of the respective MEDs at a series of cutpoints, thereby generating an ROC curve. Yeo
and Burge [51] display a multitude of such ROC curves corresponding to differing constraint
specifications. We make comparisons against the best of these in Section 25.4.

Despite the existence of results proving convergence [34] of the iterative scaling algorithm,
and the optimality of constrained MED approximations and likelihood ratio thresholding, there
are issues surrounding the MEM approach that invite entertaining alternate methods. Foremost
are the previously mentioned concerns pertaining to constraint selection. Beyond the need for
exhaustive examination thereof (absent a search strategy) and the associated computational
limits, there are more basic computational barriers that arise when dealing with moderately
sized motifs. These arise when tackling the 30ss; see Section 25.3 Questions relating to the
separate modeling of real and decoy sequences are discussed in Section 25.3.

25.2.2 Permuted Variable-Length Markov Models

The motivation for allowing skip constraints in pursuing MED fitting derives from the recog-
nition that there are frequently strong nonlocal dependences within short motifs, in addition to
local (nearest-neighbor) dependences. This nonlocal dependence reflects the fact that various
interactions between DNA, RNA, and proteins are determined by three-dimensional confor-
mations and so involve nucleotides that are not adjacent in the primary sequence. Zhao
et al. [52] seek to capture these more distant dependences by permuting the primary signal
sequence so that strongly dependent positions are moved together and can thereby be fitted
using low(er)-order Markov models.

This balancing of the need to contain the order of (Markov) models and thereby avoid the
(exponential) proliferation of parameters, while simultaneously retaining nonlocal depen-
dences, underscores the various methods brought to bear on splice signal recognition. Part
of the purpose of this chapter is to contrast these approaches that explicitly try to
model distant dependence—via skip constraints, permutation, or Bayesian networks
(Section 25.2.3)—with flexible, yet generic, classifiers that attempt no such modeling.

Permutation of signal sequence is undertaken in the context of variable-length Markov
models (VLMM). Allowing differing model orders (memory) for different sequence positions
also serves to contain the number of parameters. Construction of a permuted VLMM
(PVLMM) proceeds as follows. The joint probability mass function can be factored into a
product of conditional probabilities

p(X ¼ x) ¼ p(X1 ¼ x1)
Yn
j¼2

p(Xj ¼ xjjX( j�1)
1 ¼ x( j�1)

1 ) (25:4)

where, for i , j, xji denotes the (reverse) sequence ðxj, x j�1, . . . , xiÞ. In this formulation the
current sequence position depends on all preceding positions. However, if lower orders of
dependence are selectively sufficient, then the abovementioned parameter savings can
be attained by correspondingly lower-order modeling. Zhao et al. [52] represent this by their
use of the context function cj, which maps the sequence preceding position j to a (possibly)
shorter string. Thus, (25.4) can be reformulated as a VLMM:

p(X ¼ x) ¼ p(X1 ¼ x1)
Yn
j¼2

p(Xj ¼ xjjcj(X( j�1)
1 ) ¼ cj(x

( j�1)
1 )): (25:5)
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For example, when cjðxð j�1Þ
1 Þ ¼ xð j�1Þ

ð j�kÞ_0, for each position j, the VLMM corresponds to a kth-

order Markov model. The VLMM attempts to choose the appropriate context at a given pos-
ition. This is effected by representing the context functions as decision trees, and determining
which sequence positions, and which amino acid(s) at those positions, should constitute the
splits. Imposing constraints on the allowed depth of these trees or, equivalently, the order of
the Markov model, helps with regard computational feasibility. Comparisons between compet-
ing models, resulting from different context functions, take recourse to penalized likelihood.
The probability model (25.5) provides the likelihood, with penalties corresponding to the
Akaike information criterion [1] and Bayesian information criterion [42] being entertained.

Permutation is overlaid by applying a permutation p to positions f1, 2, . . . , ngsuch that

p(X ¼ x) ¼ p(Xp(1) ¼ xp(1) )
Yn
j¼2

p(Xp( j) ¼ xp( j) jcj(Xp( j�1)
p(1)

) ¼ cj(x
p( j�1)
p(1)

)): (25:6)

The objective behind introducing such permutation is to bring important nonadjacent positions
together, while at the same time preserving consequential local dependence. However, it should
be noted that these goals may be irreconcilable since a given position may simultaneously have
local and distant dependences that cannot be captured by a one-to-one permutation mapping.
Furthermore, since the number of permutations grows as n! with sequence length n, finding the
optimal permutation, which could be tackled by enumeration for the (donor) 50 splice site
(n ¼ 7 effective, i.e., not conserved positions), becomes challenging for the (acceptor) 30 splice
site (n � 21 effective positions). Zhao et al. [52] propose tackling this difficulty via simulated
annealing to obtain a ‘near-optimal’ solution by trying different starting permutations.
However, aside from problems associated with sampling from the vast permutation space, run-
times become prohibitively slow, even for low-order models.

The PVLMM approach, like the MEM approach, performs separate modeling for the real
and decoy splice signal data. Having determined optimal permutation and context functions
for each dataset, the same thresholded likelihood ratio approach [cf. Eq. (25.1)] is used to
construct an ROC curve. Additionally, biological interpretation based on components of the
optimal permutation for the real splice signal data is attempted. These aspects of the
PLVMM are discussed further in Section 25.4.

25.2.3 Bayesian Network Approaches

An alternate approach to simplifying the joint probability mass function is via Bayesian net-
works. A Bayesian network [41] can be viewed as a family of multinomial probability distri-
butions conforming to a set of conditional independence (CI) restrictions, which, in turn, can be
encoded with a directed acyclic graph (DAG). A DAG, G, is defined by the pair (V, E) where V
is a set of vertices and E is a set of directed edges joining (select) vertices. Generally, vertices
correspond to random variables; in applications to motif identification each vertex corresponds
to a sequence position Xi. Fundamental to the DAG representation is that the absence of an edge
between two vertices i and j corresponds to a CI restriction between Xi and Xj.

For a given DAG, say, G, applying the CI restrictions using the chain rule of probability
gives the (unique) factorization of the probability mass function [cf. (25.5)]

p(X ¼ x) ¼
Yn
j¼1

p(Xj ¼ xj jXpa( j) ¼ xpa( j)); (25:7)
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where pa( j) are the “parent” vertices of j in G, that is the set of vertices with directed edges
pointing to j. Once a DAG has been determined, subsequent estimation of model parameters
is relatively straightforward. The challenge is, given a training dataset, to estimate G—this is
referred to as “learning the structure of the Bayesian network”. Various approaches to such esti-
mation have been devised. Here we very briefly describe some that have been used for splice
site prediction.

Cai et al. [15] generalize first-order Markov models by allowing position i to depend on any
other (single) position j, rather than restricting to position i–1. This class of models represents a
very simple Bayesian network referred to as a “tree network” since the associated graph can be
depicted as a tree. Thus, jpa( j)j ¼ 18j. The essential ingredients of splice site prediction using
tree networks are as follows. Starting from a database of aligned splice signal sequences a
weighted, undirected graph G is constructed. The weight for the edge between vertices i and
j is the mutual information, Mij, between the corresponding pair of sequence positions:

Mij ¼
X
u

X
v

p(Xi ¼ u;Xj ¼ v) log p(Xi ¼ u;Xj ¼ v)=p(Xi ¼ u)p(Xj ¼ v) (25:8)

where u, v [ fA,C, T,Gg. From this graph a maximal spanning tree is computed. This is the
acyclic graph containing all vertices that maximizes the sum of edge weights. It can be readily
computed using established algorithms [20]. The tree is then oriented by specification of a root
node that yields a factorization along the lines of (25.7). Cai et al. compute attendant con-
ditional probabilities using (multinomial) maximum likelihood, which equates to using
empiric frequencies. This enables computation of the right-hand-side (RHS) numerator in
(25.1). Repeating this procedure for the decoy signal database provides the denominator of
(25.1) with subsequent generation of an ROC curve as described previously.

The ROC results reported by Cai et al. [15] show that tree networks, while superior to the
WMM (independence model), did not provide improvement over the simpler first-order
Markov model. Chen et al. [18] use this to motivate consideration of more elaborate
Bayesian networks. The initial steps are somewhat similar to those of Cai et al. Instead of
using Mij (25.8) to create a graph, they use the (approximately equivalent for large sample
sizes) Pearson x2 statistic X2

ij for testing independence between sequence positions i and j,
as computed from the associated 4 � 4 contingency table. Then, instead of including all
(weighted) edges between vertices, only select edges are used. These are chosen by threshold-
ing the X2

ij values corresponding to a prescribed (type I) significance level a and appealing to a

referent x29 distribution. As an aside, it is well known that the x
2 approximation can be poor for

large values of the statistic as arise here [3]. However, if a is regarded solely as a tuning
parameter this is immaterial.

The resulting undirected dependence graph is then converted into a DAG in the following
ad hoc fashion. For every sequence position i, calculate Si ¼

P
j[N ðiÞ X

2
ij , whereN(i) is the set

of neighbors of position i as defined by there being an edge connecting them to the vertex i
in the dependence graph. The position with the largest S value, say, Sk, is assigned as root
(zeroth layer) of the Bayesian network. The first layer contains all positions in N(k).
Neighboring positions of each position in the first layer then constitute the second layer and
so on. Note that in this network construction the same position (variable) can appear more
than once as nominally distinct vertices. The process is constrained, again to combat parameter
proliferation, by restricting t ¼ jpa(.)j � 3 and treating t [ f1, 2, 3g as another tuning par-
ameter. With the network so established, the same procedure as used by all previously
described approaches to conditional probability estimation (empiric frequencies) and ROC con-
struction [(LR thresholding per (25.1)] is applied.
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Perhaps the most principled approach taken to DAG estimation in this setting is that
employed by Castelo and Guigó [17], in that no a priori constraints (tree-network [15], con-
verted constrained dependence graph [18]) on the DAG structure are imposed. Rather,
armed with a scoring metric and search procedure, the DAG is learned automatically. Of
course, assumptions are now embodied in the scoring metric, and searches necessarily
require heuristics as searching the space of all DAGs is NP-hard. However, some compelling
choices for these ingredients are available (Refs [31] and [16], respectively) and these are
employed in Castel and Guigó [17]. Adopting a Bayesian framework, the score for a given
DAG is the marginal likelihood using an uninformative Dirichlet prior that satisfies equival-
ence requirements (differing DAGs encoding identical conditional independence assertions
have the same score). While conditional probabilities are now estimated as posterior means,
the same LR thresholding is used to generate ROC curves.

25.3 SPLICE SITE RECOGNITION VIA
CONTEMPORARY CLASSIFIERS

No matter how sophisticated the approach taken to modeling splice signal structure or compo-
sition, the task of evaluating the performance of such models is inherently and inescapably one
of classification and/or discrimination. That is, in order to measure the success of any model in
identifying real splice sites it is essential to calibrate by its performance when applied to decoy
sites. The attendant summaries, for example, sensitivity and specificity, are the targets of classi-
fication analysis. Other facets of the calibration, beyond sensitivity and specificity, also deserve
attention. These include computational and interpretational considerations.

As has been emphasized in Section 25.2, existing methods tackle the problem by develop-
ing separate models for real and decoy splice signal sequences and then thresholding resultant
likelihood ratios. In advocating such an approach, widespread appeal is made to the Neyman–
Pearson lemma and accompanying optimality results. However, this casts the problem as one of
hypothesis testing about underlying model parameters, as opposed to directly targeting the
abovementioned predictive accuracy measures.

There has been little bywayof application of conventional classification approaches. An excep-
tion is provided byZhang et al. [55],whoobtaingood results using support vectormachines. This is
despite the more recent emergence of a variety of flexible and powerful classification techniques.
While some conventional classifiers can be obtained from up front, separately constructed, within-
class models, these are either simplistic (e.g., nearest neighbors) or rely on hidden between-class
attributes [e.g., pooled (over classes)within-class covariancematrix in Fisher’s linear discriminant;
shrinkage parameter determination in nearest shrunken centroids [47].

To showcase that classification based on separate class modeling can be suboptimal com-
pared to procedures that engage both classes (and all data) simultaneously, consider the follow-
ing illustrative problem. It is desired to discriminate between two disease subtypes based on a
gene expression microarray study. Typical in this setting is a wealth of covariates and/or fea-
tures (genes) and a paucity of samples and/or cases (arrays) [22,43]. By pursuing separate
modeling of the subtypes, we forfeit the opportunity to detect gene sets that are ( jointly) dis-
criminatory. Rather, under this scheme, selected genes or models may afford good character-
ization of the parent disease but be useless for identifying subtypes. Further detail is provided
in the Discussion.

Additionally, the theoretic ability to develop highly refined, within-class models is
often compromised in practice by computational considerations. We have seen examples of
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simplifications needed to estimate DAGs in Section 25.2.3. For MEM analyses of the 21 nt
30ss, the sequences are partitioned into nine shorter, overlapping fragments in order to avoid
the prohibitive task of storing and iterating over 421 sequences. As a consequence, long-range
(�7) between-position dependences are lost. No results are presented for PVLMM analyses of
the 30ss, nor could we obtain such using the software provided.

With this motivation we apply several contemporary classifiers—support vector machines
(SVMs), boosting, and random forests—to the splice signal recognition. Background on
random forests is provided in Section 25.3.1, where some issues pertinent to splice signal rec-
ognition are discussed. Rather than recapitulate the underpinnings of SVMs and boosting we
cite some key references and provide comments on these techniques Sections 25.3.2 and
25.3.3, respectively. Regardless of the attained prediction performance of these methods,
they have some appealing attributes relative to the custom splice site modeling approaches
detailed in Section 25.2. These include readily available, stable, and efficient algorithms that
are frequently bestowed with a variety of bells and whistles: covariate importance measures,
built-in prediction error estimation, missing data-handling capabilities, and, occasionally, pro-
vision of diagnostics. This is presumably counterbalanced by the custom approaches conferring
enhanced interpretational insight. We evaluate this aspect in Section 25.4.3.

25.3.1 Random Forests

We devote additional attention to detailing some of the particulars surrounding random forests
since their classification performance, when applied to the 30 splice signal data, was somewhat
anomalous, with respect to both the other classifiers considered and their reputation as highly
accurate classifiers. An explanation of, and attendant remedy for, this behavior is advanced.

In a series of recent papers, Breiman has demonstrated that consequential gains in classifi-
cation or prediction accuracy can be achieved by using ensembles of trees, where each tree in
the ensemble is grown in accordance with the realization of a random vector. Final predictions
are obtained by aggregating (voting) over the ensemble, typically using equal weights. Bagging
[5] represents an early example whereby each tree is constructed from a bootstrap [24] sample
drawn with replacement from the training data. The simple mechanism whereby bagging
reduces prediction error for unstable predictors, such as trees, is well understood in terms of
variance reduction resulting from averaging [6,29]. Such variance gains can be enhanced by
reducing the correlation between the quantities being averaged. It is this principle that motiv-
ates random forests.

Random forests seek to effect such correlation reduction by a further injection of random-
ness. Instead of determining the optimal split of a given node of a (constituent) tree by evalu-
ating all allowable splits on all covariates, as is done with single tree methods or bagging, a
subset of the covariates drawn at random, is employed. Breiman [7,8] argues, based on a com-
prehensive empirical evaluation employing numerous benchmark datasets excerpted from the
UCI repository, that (1) random forests enjoy exceptional prediction accuracy, and (2) this
accuracy is attained for a wide range of settings of the single tuning parameter employed.
After describing the essentials of random forest construction, we indicate how the 30 splice
signal data differ from almost all the classification benchmark datasets in the repository and,
indeed, why the repository is unduly narrow in scope. A related and simple refinement to
the random forest algorithm is proposed.

A random forest is a collection of tree predictors h(x;uk), k ¼ 1, . . . ,K where x represents
the observed input (covariate) vector of length n (here sequence positions) with the associated
random vector X and the uk are independent and identically distributed (i.i.d.) random vectors.
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For expository purposes we illustrate the formulation for the regression setting for which
we have a numerical outcome, Y. However, identical considerations pertain to classifi-
cation (categorical outcome) problems. The observed (training) data are assumed to be inde-
pendently drawn from the joint distribution of (X, Y ) and comprise N (n þ 1)-tuples
(x1, y1), . . . , (xN, yN).

For regression, the random forest prediction is the unweighted average over the collection:
�hðxÞ ¼ ð1=KÞ

PK
k¼1 hðx; ukÞ.

As k!1, the law of large numbers ensures

EX;YðY � �hðXÞÞ2 ! EX;YðY � EuhðX; uÞÞ2: ð25:9Þ

The quantity on the right is the prediction (or generalization) error for the random forest, desig-
nated PEf

�. The convergence in (25.9) implies that random forests do not overfit.
Now define the average prediction error for an individual tree h(X; u) as

PE�
t ¼ EuEX;YðY � hðX; uÞÞ2: ð25:10Þ

Assume that for all u the tree is unbiased, namely, EY ¼ EX h(X; u). Then

PE�
f � �rPE�

t ; ð25:11Þ

where r̄ is the weighted correlation between residuals Y2h(X; u) and Y2h(X; u0) for inde-
pendent u, u0.

The inequality (25.11) pinpoints what is required for accurate random forest regression: (1)
low correlation between residuals of differing tree members of the forest and (2) low prediction
error for the individual trees. Further, the random forest will, in expectation, decrease the indi-
vidual tree error PEt

�, by the factor r̄. Accordingly, the randomization injected strives for low
correlation.

The strategy employed to achieve these ends is as follows:

1. To keep individual error low, grow trees to maximum depth.

2. To keep residual correlation low randomize via

a. Grow each tree on a bootstrap sample from the training data.

b. Specify m � n (the number of covariates/sequence positions). At each node of every
tree select m covariates and pick the best split of that node based on these covariates.

Now consider Figures 25.1 and 25.2, which display two very distinct prediction error (stan-
dardized binomial deviance) profiles. Both profiles are obtained from fitting classification trees
[4], with prediction error (PE) being estimated via cross-validation. The data used in
Figure 25.1 are the 30ss data as further described and analyzed in Section 25.4 The
minimum PE is attained at about 100 splits. The minimum occurs in a plateau region, after
which there is an appreciable rise in error. This increase is such that the PE at the maximal
number of splits is “significantly” greater than the minimum PE; the vertical segments (con-
tained within each circular plotting symbol) represent +1 standard error. Such profiles
where, as a function of increasing model size and complexity (here number of splits), PE
initially decreases, plateaus, and then increases are common. Indeed, prototypic depictions
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of the relationship between PE and model complexity have this form [4 p. 87; 29, p. 38]. The
presence of noise and/or redundant covariates are factors that can contribute to such profiles.

Figure 25.2 differs in that the PE at the maximal number of splits is the global minimum.
That is to say, no matter how large a tree-structured predictor we fit, we don’t overfit the data.
This behavior is arguably unusual. The (letter recognition) data used to generate Figure 25.2
were obtained from the UCI Repository of Machine Learning Databases as converted to R

Figure 25.1 Cross-validated error profiles for classification trees grown to maximal size on
the 30ss training data.

Figure 25.2 Cross-validated error profiles for classification trees grown to maximal size on
the letter recognition data from mlbench.
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[33], and available from the mlbench package at (http://cran.r-project.org/src/contrib/
PACKAGES.html#mlbench). What is remarkable, and seemingly not appreciated, is that
almost every dataset in the mlbench package exhibits this same behavior.

Our central concern, then, is that the strategy prescribed in item 1 above controls bias but not
variance; such maximal trees may be highly unstable, and this instability will be reflected in
inflated prediction errors. While variance control is achieved via averaging over the ensemble,
there are situations, including as we show in Section 25.4 the 30 splice signal data, where this is
not sufficient to counteract the maximal tree effect. That this behavior was not observed in
empirical evaluations of random forests using the UCI repository is potentially attributable
to the abovementioned property of the repository constituents.

For the R package randomForest (as with its standalone precursor), the size of the individual
trees constituting the forest is controlled by a tuning parameter, nodesize. This specifies the
number of cases in a node below which the tree will not split, and so determines maximal
tree size. For classification forests, the default is nodesize ¼ 1, asserted to always give good
results. For data of the dimension of the 30 splice signal data, the maximally sized trees so
created are very large indeed (.5000 splits). Also, for data of such dimensions, effecting
control over tree size by varying this parameter is akward. Preferably, top-down rather than
bottom-up control could be exercised. Accordingly, we introduce a new tuning parameter,
anticipated to be helpful in these large sample size settings, and/or in situations where deep
trees overfit. The new parameter simply controls the number of splits allowed.

25.3.2 Support Vector Machines

Detailed descriptions of support vector machines (SVMs) can be found in the literature [21,29].
A key component of SVM methodology is basis expansion, effected by transforming input
vectors x, x0, here (indicator representations of) real or decoy 30ss sequences, into a high-dimen-
sional feature space via use of a prescribed kernel K, namely, K(x, x0) ¼ kh(x), h(x0)l. There are
some standard choices for the kernel including polynomial (K(x, x0) ¼ (1 þ kx,x0l)d) or radial
basis function (RBF, K(x, x0) ¼ exp(2kx2x0k2/g)). Since RBF kernels have been rec-
ommended as a good default [32], we adopt this choice in applying SVMs to predicting
30ss. It is important to note that we do not attempt to optimize kernel choice, nor do we
pursue optimization of kernel parameters.

While SVMs are typically formulated as maximal margin classifiers, it is straightforward to
recast them as optimizing a penalized (hinge) loss function [29].

min
b0 ,b

XN
i¼1

½1� yi f ðxiÞ	þ þ lkbk2 ð25:12Þ

where yi [ f21,1g indicates whether the ith (i ¼ 1, . . . ,N ) sequence xi is decoy or real; f (x) ¼
h(x)Tb þ b0 and the subscript “þ” denotes positive part. This focuses attention on the import-
ant tuning (penalty) parameter l, for which we did undertake a limited optimization. More
comprehensive evaluations await improvements of the R package SvmPath, which efficiently
provides SVM solutions (for two-class problems as here) for all possible values of l [30] but,
unfortunately, cannot handle the large sample sizes of our 30ss data.

25.3.3 Boosting

Boosting has enjoyed considerable recent success as an effective off-the-shelf classifier. While
boosting was originally presented as a procedure that combines outputs from many so-called
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weak classifiers (learners) to produce an ensemble, it is fundamentally distinct from bagging
and random forests [29]. Insights into the basis for the success of boosting, including its resist-
ance to overfitting, have been provided by viewing the method as additive modeling [28] and
stagewise functional gradient descent [27,10].

We employ the R package gbm to classify real versus decoy 30ss using (shallow) classifi-
cation trees as the weak learner and binomial log likelihood as the loss function. Parameters that
need to be specified include number of trees (iterations), tree depth, and learning rate. As was
the case for SVMs, we did not perform a comprehensive optimization for these inputs.

25.4 RESULTS

25.4.1 Data Generation

As indicated, our focus in applying contemporary classifiers is on the 30 (acceptor) splice site.
This is motivated by the difficulties encountered by some of the modeling strategies outlined in
Section 25.2 in handling the longer motifs, in contrast to the shorter 50ss. We used transcript
datasets as constructed by Yeo and Burge [51]. Since use of computationally predicted
genes could create circularities, human cDNAs were used as the starting point.
Nonredundant transcripts that could be definitively aligned across the entire coding region
and were not subject to alternative splicing were selected. This yielded some 12,700 introns
and hence the same number of 30ss and 50ss. Real sequences were then excerpted as the
sequences at positions f220 to þ3g of the 30ss, with the consensus AG dinucleotide at pos-
itions f22,21g. These were then partitioned into training (N ¼ 8465) and test (N ¼ 4233)
datasets. Decoy 30ss were excerpted as sequences in the exons and introns of these genes
matching a minimal consensus, Z18 AGZ3, where Z is any nucleotide. There were N ¼

180,957 training and N ¼ 90,494 test decoys.

25.4.2 Predictive Performance

The essence of our results for predicting real 30ss is conveyed by Figure 25.3. Depicted are
ROC curves corresponding to four methods: the (modified) MEM approach using the best con-
straint as obtained (on the same data) by [51]; random forests; boosting and support vector
machines. In each case, modeling was performed using the training data and the ROC curve
derived by applying selected models to the test data. The fact that only two curves are
readily discerned reflects the near-identical performance of all methods except random
forests. Some comments are in order.

At least as compared with SVMs and boosting, the approximation employed by MEM in
order to handle sequences of length n ¼ 21 by partitioning into nine shorter, overlapping
sequences (see Section 25.3), does not incur any loss of predictive accuracy. On the other
hand, not only could putatively superior performance be attained by SVMs and boosting
since they were only cursorily optimized but also the comparison is against a highly selected
and optimized MEM. That said, the performance of all methods is good. We comment on
implications regarding gene finding in Section 25.5. We were unsuccessful in attempts to fit
PVLMMs (using accompanying software) to the 30ss, presumably because of their length.

Next we turn to random forests in light of issues raised in 25.3.1 regarding growing indi-
vidual trees to maximal depth. Figure 25.4 showcases prediction gains that can be realized
by constraining the number of splits to 100. As noted in Section 25.3.1, it may be possible
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to effect similar improvement by manipulating the existing tuning parameter nodesize.
However, in light of the sample sizes listed in Section , this is clearly a less direct strategy.
To the extent that there is still a gap in predictive performance between random forests and
SVMs/boosting/MEM it is possible to speculatively ascribe this to between-position

Figure 25.3 ROC curves obtained from four differing approaches applied to the 30ss test
data.

Figure 25.4 ROC curves contrasting predictive performance of random forests when
individual tree size is controlled by number of splits vs size of terminal nodes.
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dependence. Recall from (25.11) that random forests strive for low correlation between
residuals from trees constituting the forest. This may be difficult to attain in settings where
the covariates (sequence positions) are highly dependent. And, as described in Section 25.2,
it was precisely the goal of exploiting such dependences that motivated the crop of existing
techniques. Similar instances of random forests failing to realize gains in managing
sequence-based predictors have been noted elsewhere [44].

By way of summary, it is apparent that off-the-shelf classifiers, employed with little optim-
ization, are competitive with the most highly optimized, custom MEM approach. A nonopti-
mized MEM was, in turn, competitive with the most principled DAG approach [17]. We
next address whether the class-specific approaches, by virtue of their striving for models of
a (real) splice signal, confer any interpretative advantage.

25.4.3 Interpretational Yield

Several of the approaches outlined in Section 25.2 proclaim that the modeling procedure
employed furnishes biological insight into the splicing process. We evaluate these claims in
light of the fact that these approaches do not bestow improved predictive performance when
compared with off-the-shelf classifiers.

For MEMs, it is asserted that the performance of a model informs about the set of con-
straints that was used. While this is collectively the case, their remain issues in interpreting
and ranking the individual constraints. Conversely, the results presented for both 50ss and
30ss [51] indicate near-identical performance for models with differing complete constraint
sets, which complicates attempts at ascribing importance to particular constraints. Further, in
order to proffer biological interpretation (e.g., which positions interact with which components
of the spliceosome), it is necessary to invoke specific, rather than complete, constraints. Some
rankings are provided for the 50ss; however, once again differing constraints are ranked highly
by similarly fitting models. No rankings of specific constraints are given for the 30ss. Indeed, it
is not immediately obvious that the convergence results for the iterative scaling algorithm that
obtains the MED while ensuring that constraints are satisfied [9] extend to the 30ss case for
specific constraints that straddle differing factors of the (overlapping) partitioned likelihood.

Similarly, for PVLMMs, only results for 50ss are presented [52]. Biological interpretation is
based on the selected permutation. Focus is placed on a subset of 50ss sequence positions that
are permuted into adjacent positions. For this subset, a series of sequence logo displays—
bargraphs of information “bits” (22H ) at each sequence position—for the real 50ss are pre-
sented conditioning on complete conservation at select (permuted) adjacent positions. On
the basis of differences between these plots, an attempt at interpreting spliceosome component
action is made. However, there are a number of limitations surrounding this effort: (1) PVLMM
barely improves on VLMM, so overinvesting in the selected permutation p̂ is questionable; (2)
only a subset of p̂ adjacencies are used, followed by conditioning on conservation (consensus)
at a further subset—the extent of this conditioning, that is, the proportion of sequences exhibit-
ing the prescribed consensus, is unclear; and (3) perhaps most importantly, the entire approach
pertains only to real 50ss sequences. What is essential for interpretative purposes are character-
izations that discriminate between real and decoy ss. That only VLMMwas used for decoys not
only underscores this point, but also impacts determination of p̂.

The contemporary classifiers employed admit varying degrees of interpretability. SVM
outputs do not include measures of variable importance. While postprocessing to attain such
has been proposed, [35], the approach is problematic in the context of splice signal prediction
since it relies on covariate (sequence position) independence. Variable importances for
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boosting (using trees as base learners), as provided by the gbm package, build on related con-
structs for individual classification trees [27]. In particular, empirical improvements correspond-
ing to splits performed on each respective covariate are summed within each tree, then averaged
over all trees generated by the boosting algorithm. However, by not accommodating surrogate
splits, this measure is vulnerable to masking [4]. More importantly, these importances are
univariate, and don’t capture joint covariate effects.

Random forests do provide variable importance summaries. Briefly, for each tree in the col-
lection, prediction accuracy is computed for those (so-called out-of-bag) cases not included in
the bootstrap sample used to construct that tree. A parallel computation is performed using per-
muted covariate values. The variable importance measure is then obtained as the difference
between the two accuracies averaged over all trees, and normalized by the standard error. As
with boosting, the resultant importances are univariate. However, by effecting pairwise permu-
tation of covariate values it is possible to obtain bivariate importances, albeit at the cost of
increased computation [12]. A heatmap depiction of such bivariate importances for the 21
(non-conserved) positions (omitting the AG dinucleotide at f22, 21g) constituting the 30ss
is presented in Figure 25.5. The most striking feature is the long-range extent of bivariate
importances involving the 23 position. Burge [13] makes a similar observation, based on
straightforward thresholding of Pearson x2 tests of independence. Interestingly, he provides
additional insight not in terms of interactions with the spliceosome, but rather compositional
biases.

25.4.4 Computational Considerations

As indicated in Section 25.3, one of the compelling attributes of the classification procedures
employed is the ready availability of stable algorithms, often replete with additional features,
such as out-of-bag prediction error estimation. That is not to say that improvements aren’t

Figure 25.5 Bivariate variable (sequence position) importances as obtained from random
forests.
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required; some instances have already been identified such as streamlining SVM penalty
parameter optimization by extension of SvmPath, and refining variable importance measures
for gbm. The large sample sizes involved here do not pose computational difficulties for boost-
ing or random forests. However, since many SVM algorithms involve O(N3) operations,
alternative approaches are desirable. Several such possibilities, including interior point
methods with (approximating) low-rank kernels that require O(Nk2) operations (where k is
the rank of the kernel), have emerged [23]. That said, runtimes using the R function svm
were not prohibitive, even for the large sample sizes discussed here.

Conversely, as has been indicated, many of the existing approaches that seek to capture the
dependency relationships of real and decoy sequences struggle as the length of the sequence
increases. So, for example, we were unable to obtain results using the companion PVLMM
software for the 30ss of effective length n � 21. Similarly, the companion MEM software
does not accommodate n . 8.

25.5 CONCLUDING REMARKS

Despite the problem of formulating precise, predictive models of RNA splicing being branded
as one of the top 10 bioinformatics challenges, it is unclear whether further investment along
the lines examined here—both dependence modeling and classifier application—is warranted.
There are several reasons for adopting this stance. First, the predictive performance of the best
approaches is already good. Additional, incremental gains will likely have a minor impact on
downstream gene finding. Further, as has been illustrated here and argued elsewhere [19], the
biological interpretative yield flowing from these approaches is limited. Moreover, and more
importantly, the information content of the classical splice site signals has been shown to be
generally modest for higher eukaryotes, and about half what is required for humans [39].
Accordingly, other factors including exonic splicing enhancers [26] and silencers [25] are
known to contribute to the splicing process and ensure its high fidelity. There is also compel-
ling evidence that splice site/exon/intron identification is such that splice sites are recognized
in pairs [55], and this imparts additional information and constraints. Technological advances
such as the advent of splicing specific microarrays have fueled considerable activity relating to
identification of factors impacting splicing and alternative splicing [11,36,40,50], and there are
numerous associated data analytic challenges. Thus, the originally stated problem of devising
accurate predictive models warrants further work from this broader perspective. Additionally,
there are many opportunities for further methodologic developments surrounding the tech-
niques described herein, several having already been identified.

The suite of off-the-shelf contemporary classifiers now available afford appreciably
improved predictive performance over their simpler forerunners. However, as indicated, these
gains have not always been accompanied by retention of interpretability. Some more recently
devised approaches that warrant further development and application with respect to gauging
variable importance include the formal influence curve approachs [49] and the 1-norm SVM
[56]. The latter replaces the L2 penalty lkbk2 in (25.12) with an L1 penalty l kbk. As
shown for the lasso method [46], the geometry of the L1 penalty has the effect of inducing vari-
able selection as l increases. In the context of splice signal recognition, it would be of interest
to determine the predictive accuracies of successively selected sequence positions, and to con-
trast this with the performance of existing, dependence-based modeling approaches.

Promising developments with respect to generative approaches (see below) are variable-
order Bayesian networks [2]. These constitute generalizations of both (permuted)
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variable-length Markov models and Bayesian networks as described in Sections 25.2.2 and
25.2.3, respectively, and are accordingly correspondingly flexible. A Web-based implemen-
tation is available, and further investigation as to predictive performance for splice signal rec-
ognition is warranted.

We conclude with some comments surrounding distinctions between what we have branded
separate and comparative modeling approaches, the former developing (unrelated) parametric
probability models for both real and decoy sequences as a prelude to classification, and the
latter pursuing classification directly and (here) nonparametrically. Ulintz et al. [48] term
these approaches generative and discriminative, respectively. They opine that generative
methods work well when the models are accurately specified and can then be effective even
with small training set sizes. However, they further note that if data diverge from modeled dis-
tributions, classification suffers. Consequently, nonparametric discriminative methods are
viewed as safer and more readily generalizable. Further, for the data of the dimensions in
our splice sequence problem, these approaches will be competitive even if generative
models are correctly specified.
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C H A P T E R 26

Statistical Methods for Biomarker
Discovery Using Mass
Spectrometry
Bradley M. Broom and Kim-Anh Do
University of Texas M. D. Anderson Cancer Center, Houston, Texas

26.1 INTRODUCTION

A mass spectrometer is a precise tool for obtaining an accurate and detailed signature of a
sample’s constituent components. Mass spectrometers are used in industry and academia for
both routine and research purposes, for both biological and non-biological analyses, although
we concern ourselves only with the former in this chapter. Major applications of mass spec-
trometry in the biological sciences include the analysis of proteins, peptides, and oligonucleo-
tides; and drug discovery, pharmacokinetics, and drug metabolism. Our focus in this chapter is
on the use of mass spectrometry in proteomics, where it is now the method of choice for the
analysis of complex protein samples [2]. Proteomics applications of mass spectrometry include
measurement of protein abundance, detection of trace amounts of specific proteins, identifi-
cation of an unknown sample, and determination of an unknown protein’s amino acid sequence
and folding pattern.

Mass spectrometer results are presented in the form of a molecular mass spectrum.
Figure 26.1 shows a mass spectrum obtained from a study of serum proteomic features for
ovarian cancer [9]. The mass spectrometer separates ionized sample molecules according to
their mass (m): charge (z) ratios (m/z), so this is actually an m/z spectrum in which the hori-
zontal axis (abscissa) represents the m/z ratio and the vertical axis (ordinate), the relative
abundance. From the location and height of peaks in this spectrum, the number and relative
abundance of components in the sample can be determined, as can the molecular mass of
each component.
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By convention, molecular masses are expressed in unified atomic mass units (uamu),
although in proteomic applications daltons (Da), named in honor of John Dalton (1766–
1844), are often used. An atomic mass unit is defined as exactly one-twelfth the mass of
one atom of carbon-12, or approximately 931.49 MeV/c2.

As diagrammed in the cartoon shown in Figure 26.2, mass spectrometers consist of three
fundamental parts: an ionization source, an analyzer, and a detector. A variety of technologies
can be used to implement each of these fundamental components, giving rise to a wide variety
of mass spectrometers, each with its unique properties, advantages, and disadvantages. We will
discuss those technologies of greatest relevance to biological studies later in the chapter. The

Figure 26.1 Mass spectrum of proteomic features in serum from an ovarian cancer study.
The horizontal axis is m/z ratio and the vertical axis is relative abundance.

Figure 26.2 Cartoon showing the three fundamental components of a mass spectrometer: the
ionizer, the analyzer, and the detector. Sample ions generated by the ionizer are directed
through the analyzer, where they are separated according to their m/z ratios, and into the
detector.
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core of the mass spectrometer (the analyzer and the detector) is maintained under high vacuum
(1027–1028 torr) so that ions can be moved throughout the machine, with little chance of that
movement being prevented or disrupted by other molecules. Some ionization sources also
operate under high vacuum, while others operate at atmospheric pressure.

Although simple samples can be analyzed directly, the vast range of abundances in complex
samples usually requires the samples to be fractionated into a series of components, each of
which is analyzed individually. For example, the abundance of identified protein species in
blood spans more than 10 orders of magnitude [24], with the few most abundant proteins,
such as albumin, transferrin, and immunoglobin, accounting for up to 80% of the serum’s
total protein content. To obtain informative spectra for trace proteins in a sample containing
such a wide range of protein abundances, a very stringent selection process must first be
applied to significantly reduce the sample complexity. Depending on the mass spectrometer’s
ionization source, the fractionation device or process can be coupled directly to the mass
spectrometer.

After fractionation (if required), the sample under investigation is placed into the instru-
ment’s ionization source, where molecules from the sample are ionized. Depending on the
specific analysis to be conducted, the samples may be either negatively or positively
ionized. For example, since proteins and peptides readily accept a proton, positive ionization
is appropriate, whereas negative ionization is more suitable for the analysis of saccharides
and oligonucleotides, which readily lose a proton.

A voltage differential accelerates the ions from the ionizer, through the analyzer, and into
the detector. As the ionized molecules traverse the analyzer, they are separated according to
their m/z ratios. In tandem mass spectrometers, more than one analyzer, not necessarily all
of the same kind, are connected in tandem. Although it is possible to use other types of
mass spectrometers, tandem mass spectrometers are frequently used to conduct fragmentation
experiments for studying sequence and structural properties.

The detector measures the ion current and determines the abundance of the separated ions,
which is recorded for subsequent analysis. Common types of detectors include photomulti-
pliers, electron multipliers, and microchannel plate detectors. The specific type of detector
used depends on the type of analyzer.

The following section describes sample ionization in more detail, with an emphasis on
matrix-assisted laser desorption ionization (MALDI). Section 26.1.2 describes mass analysis,
focusing specifically on time-of-flight (TOF) mass analyzers. Section 26.2 summarizes the role
of mass spectrometry in biomarker discovery. Sections 26.3 and 26.4 describe the preproces-
sing and analysis of mass spectrometry data. Section 26.5 discusses potential statistical devel-
opments, and Section 26.6 concludes the chapter.

26.1.1 Sample Ionization

A large variety of ionization methods are used in other fields of mass spectrometry, including
atmospheric-pressure chemical ionization (APCI), chemical ionization (CI), electron impact
(EI), fast-atom bombardment (FAB), field desorption/field ionization (FD/FI), inductively
coupled plasma (ICP), and thermospray ionization (TSP). These are not, or no longer,
widely used in proteomics. For instance, ICP operates at 7000K, a temperature at which
complex biomolecules quickly decompose into their atomic components, rendering it unsuita-
ble for most proteomics applications. We will not explore these methods further in this chapter.

For the majority of biochemical analyses, two relatively new techniques are the ionization
methods of choice: electrospray ionization (ESI) and MALDI. In this chapter, we focus
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exclusively on MALDI. Although proteomic studies were performed before MALDI and ESI
became available, using FAB, for instance, these studies were slow and expensive, and it was
the development of MALDI and ESI that enabled proteomics to achieve its current popularity.
Since fragmentation of large biomolecules rarely occurs in either method, both ESI and
MALDI are classed as “soft” ionization methods.

In MALDI [18], a sample is dissolved in an appropriate volatile solvent, mixed with a large
excess of a supporting “matrix” compound, applied to a sample plate, and dried. The sample
plate is placed into the vacuum region of the mass spectrometer, where it is bombarded with
pulsed laser light. The matrix compound is carefully matched to the laser’s frequency, ensuring
that absorption of the laser’s energy by the matrix will be highly efficient. A common combi-
nation consists of sinapinic acid for the matrix compound in conjunction with a 337-nm nitro-
gen laser. The matrix absorbs energy from the laser, vaporizing the mixture and creating a
plume of matrix and sample molecules that then form ions suitable for analysis. The highly
absorbing matrix absorbs the laser energy very efficiently, protecting the analyte molecules
from direct exposure to the laser energy, and hence reducing decomposition of the sample.

Surface-enhanced laser desorption/ionization (SELDI) [20] is a variant of MALDI that
employs chips spotted with protein capture baits such as small molecules, antibodies, DNA,
or enzymes. The analyte is applied to the chip, where proteins with affinities to the capture mol-
ecules will bind strongly to the surface. Any impurities or loosely bound proteins can then be
washed away. The chip is placed into the ionization source, and the bound analytes released
and ionized directly from the chip by laser desorption. Since the processes typically used to
reduce sample complexity, such as affinity purification and concentration, are applied directly
to the chip surface, total processing times and variability are reduced, making SELDI an attrac-
tive method for proteomics research.

The MALDI method deals well with thermolabile, nonvolatile organic compounds,
especially those of high mass. It is used successfully in biochemical areas for the analysis
of proteins, peptides, glycoproteins, oligosaccharides, and oligonucleotides. It is relatively
straightforward to use and reasonably tolerant to buffers and other additives. The mass accuracy
depends on the type and performance of the analyzer of the mass spectrometer, but most
modern instruments should be capable of measuring masses to within 100 ppm, at least up
to approximately 70 kDa.

As MALDI generates predominantly singly charged ions, the spectra obtained are relatively
easy to interpret. For large biomolecules, the singly charged ions generated by MALDI require
an analyzer that can accept the large m/z ions produced.

26.1.2 Mass Analysis

The main function of the mass analyzer is to separate, or resolve, the ions formed in the ion-
ization source of the mass spectrometer according to their mass: charge (m/z) ratios. There are
several types of mass analyzers currently available, including magnetic sector analyzers, quad-
rupole analyzers, quadrupole ion traps, Fourier transform analyzers, and TOF analyzers. Each
type has its distinctive features and performance, including the m/z range that can be covered,
the mass accuracy, and the achievable resolution. In this chapter, we consider only TOF ana-
lyzers in detail.

The TOF analyzer separates ions by simultaneously applying a fixed potential to each ion
such that similarly charged ions acquire the same kinetic energy (approximately 20 keV).
Consequently, the acquired velocity depends only on the ion’s mass; lighter ions are acceler-
ated more rapidly, and hence travel faster. The ion’s m/z ratio can therefore be determined by
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measuring the time it takes for the accelerated ions to reach a detector at the end of a field free
region known as the “flight” (or “drift”) tube (typically 1–2 m long).

Although conceptually simple, high-resolution TOF analyzers require sophisticated design.
Ideally, the ions in a TOF analyzer would start their travel through the analyzer at the same
time, at the same distance from the detector, and with the same energy. In practice these con-
ditions are not met exactly. If not corrected, these effects would cause ions of the same m/z
ratio to arrive over a finite time interval, limiting resolution.

For pulsed ionization sources, such as laser ionization, time-of-flight secondary-ion mass
spectrometry (TOF-SIMS), laser desorption and laser ablation, the ions can be created in a
static electric extraction field within a sufficiently short time interval (a few nanoseconds).
However, if the ions are extracted immediately, they will traverse the still dense plume of
ions and neutral molecules desorbed by the laser. Collisions with this plume will increase
both the spread of ion energies and the amount of fragmentation. In delayed ion extraction,
both of these effects are mitigated by allowing the plume to expand before the ions are extracted
by the application of a high-voltage pulse with a fast risetime (less than, say, 10 ns). For con-
tinuous ionization processes, such as EI, however, the ions must be collected over a time inter-
val (e.g., several microseconds). After sufficient ions have been collected, the ionization
process can be stopped and a high-voltage pulse applied to inject the collected ions into the
TOF analyzer. Alternatively, a continuous stream of slow-moving ions can be converted into
pulses of rapidly moving ions by applying the accelerating voltage pulse in a direction orthog-
onal to the stream.

The length of the flight path is not identical for all ions, since ion creation takes place in a
finite volume. Wiley and McLaren [47] showed that by carefully shaping the potential distri-
bution of the ion extraction field, ions with further to travel could be given slightly more
kinetic energy so that an ion’s arrival time at the detector is independent of its starting position.
This is known as spatial focusing.

Ions can also have different initial energies, due to space charge effects and processes such
as fragmentation, desorption, and ablation. A reflectron TOF spectrometer compensates for this
initial energy distribution by reflecting the ions from a repelling electric field called an ion
reflector or reflectron. Faster ions travel further into the repelling electric field, and hence
take longer to reach the detector. A single-stage reflector produces an homogeneous electro-
static field that can provide only a first-order correction of the initial energy spread. A
multiple-stage reflector with a carefully designed quadratic field can correct for all aberrations
caused by the initial energy distribution such that all the ions (of the same m/z ratio) arrive at
the detector at the same time. This is known as energy focusing.

Time-of-Flight analyzers place strong demands on the detector and data acquisition
systems. After each laser pulse, ions from the complete mass distribution will arrive at the
detector within a very short time interval. To obtain a detailed mass spectrum, the detector
and data acquisition system must have very fast response and recovery times, and very high
data throughput rates. Most TOF spectrometers employ multichannel plate (MCP) detectors,
which can detect many ions at the same time. To reduce statistical uncertainties, TOF
spectra are obtained by averaging the results of hundreds to thousands of individual laser
pulses. The lasers are typically pulsed between 10 and 100 times per second.

Time-of-Flight analyzers are ideal for pulsed or spatially confined ionization sources,
do not require ion beam scanning, and can provide a complete mass spectrum for
each ionization event. They offer mass resolutions greater than 10,000, a mass range up
to 500 kDa, high ion transmission (greater than 10%), and large acceptance volumes, and
can obtain spectra for extremely small sample amounts; TOF analyzers also are relatively
inexpensive.
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26.2 BIOMARKER DISCOVERY

High-resolution mass spectrometry of the proteome is a promising approach to the identifi-
cation of novel biomarkers. In this approach, mass spectrums are obtained from many cases
and controls, and then compared to identify peaks that differ significantly between the two
groups. Any peak so identified is then isolated and characterized (probably using mass
spectrometry methods).

Researchers have recently begun to explore the potential diagnostic utility of this
approach, and, specifically, to determine whether such peaks can serve as biomarkers of
the early stages of diseases such as cancer [1,28,21,22,35,46,49]. These explorations have
focused on spectra obtainable from readily available biological fluids such as blood, urine,
or saliva.

Although the approach itself is conceptually simple, the biomarkers to be found (if any) are
expected to be present in extremely small amounts relative to the components of the normal
proteome. Consequently, biomarker discovery studies are challenging statistically. Specific
challenges of such studies include precisely aligning the multiple spectra obtained, and separ-
ating true differences between the cases and controls from normal sample variability and from
minute variations in sample handling. In the following section, we survey a number of statisti-
cal methods for addressing these challenges.

Mass spectrometry data from several biomarker discovery studies is publicly available. The
best known is probably the Clinical Proteomics program, jointly run by the NCI and FDA [21].
The databank consisting of various SELDI and Qstar datasets is currently located at http://
home.ccr.cancer.gov/ncifdaproteomics/. However, researchers should be cautioned about
the quality of these data [4]. Both SELDI data and MATLAB scripts for processing and analy-
sis are also made available at M. D. Anderson Cancer Center; see http://bioinformatics.
mdanderson.org.

26.3 STATISTICAL METHODS FOR PREPROCESSING

Many mass spectrometry instruments have associated software that will perform peak detection
and quantification automatically, but these may not address all the necessary preprocessing
steps. Processing issues involve a partial list of important steps, including

† Spectral calibration
† Correcting for matrix noise
† Spectral denoising
† Baseline estimation and subtraction
† Peak detection and quantification
† Normalization
† Identifying harmonics or common patterns and modifications

A common problem in practice is that the same peak may drift slightly over time due to
changes in the instrument. For all analyses, it is essential to calibrate the instrument’s m/z
scale using a standard sample of a type similar to that of the sample being analyzed (e.g., a
protein calibrant for a protein sample). Possible factors affecting the sampling conditions of
the mass spectrometer, include, but are not necessarily limited to
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† Variations in ionization efficiency
† Possible clogging or erosion of internal apertures, resulting in altered interface transport
efficiency

† Different matrix or matrix concentration in the samples, resulting in possible matrix
suppression

† Environmental temperature or humidity fluctuations

To address this problem, one can run a “calibration sample” consisting of only a small number
of proteins with a priori known identities. Since the masses of the peptides are known, the flight
times are empirically observed, and one can thus fit a quadratic model

m=z ¼ at2 þ bt þ c:

The model parameters are the least-square solution to this equation and are assumed to hold for
several samples. As these parameters can change over time, investigators should perform visual
checks that some of the larger peaks align across samples [23].

A problem unique to MALDI spectra is matrix noise, resulting from the breaking free of
other material besides the peptide of interest when a sample is laser-blasted. This occurs at
the very low m/z end of the spectrum, producing an unstable effect [29]. Although this
problem can be addressed by imposing a threshold m/z cutoff value, excluding values
below some chosen m/z cutoff, such a threshold can be affected by other machine settings
such as the laser intensity.

The spectra can be modeled mathematically as

YiðtÞ ¼ kiSiðtÞ þ BiðtÞ þ eit ;

where Yi ( j) is the intensity of spectrum i at time index t, ki is a normalization factor, Si is the
protein signal of interest (a set of peaks), Bi is a smooth underlying baseline, and e � N(0,
s2(t)) is some high-frequency noise. One particular problem is simply that peaks can have
different shapes in different parts of the m/z range; higher m/z peaks are broader. Some
factors that can contribute to this broadening are uncertainty in the initial velocity of the
peptide, isotopic spread, and the nonlinearity of the clock tick to m/z mapping.

There are a number of lowpass denoising filters for spectra (e.g., Savitzky–Golay [39], least
squares [16], DISPO [50]). Bioinformatics researchers at M. D. Anderson Cancer Center prefer
the wavelet-based denoising filter, which adapts naturally to the multiscale nature of the data.
The overall denoising algorithm involves mapping spectra to the wavelet domain, applying
hard thresholding of the wavelet coefficients, and subsequently performing an inverse
mapping back to the spectral domain [10].

Following the spectra smoothing process is baseline estimation. Often, simple ad hoc
methods suffice, such as fitting a local maximum to avoid negative-valued intensities from sub-
traction, adapting the moving window to increasing m/z values.

Spectra also need to be normalized before comparing peak intensities across spectra. One
common method is to use the summed intensities for the entire spectrum, after denoising
and baseline subtraction [37,30]

Finally, if the analysis method to be used (see text below) operates on specific features, such
as peaks, within the spectra, these features must be identified and their (relative) magnitude
determined. Peaks, for example, can be identified using a maximum finder. Feature detection
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can be facilitated by considering a set of spectra rather than a single spectrum. Assuming that
the spectra have been roughly aligned, one can perform peak detection on the average spectrum
within a group [33].

We will now review the preprocessing of Wu’s ovarian cancer dataset [48] by Tibshirani
et al. [44]. The dataset consists of MALDI-MS spectra collected from serum samples of 89 sub-
jects (42 noncancer controls and 47 cancer cases) measured at 91,360 sites with a range of
800–3500 Da with 0.019-Da intervals. For the first step of peak extraction, a simple peak-
finding method was used, looking for m/z values (sites) whose intensity is higher than that
of the surrounding 100 sites and also higher than the estimated average background at that par-
ticular site. A supersmoother with a span of 0.002 was applied to the raw spectra, and the esti-
mated peak widths in the smoothed spectra were approximately 0.5% of the corresponding m/z
value. The m/z values were then log-transformed, rendering the peak widths approximately
constant across the m/z range. The peak extraction process resulted in 14,067 peaks from
the individual spectra. Next, to perform peak alignment, complete linkage hierarchical cluster-
ing was applied to the set of extracted peaks. The centroid or mean position of each cluster is
viewed as the representative position for the peak. For this particular dataset, pruning the den-
dogram at the height of log(0.005) produced 192 clusters, where the distance between any two
peaks within a cluster is at most log(0.005). The next step is the search for common peaks in
individual spectra and any simple ad hoc method suffices to produce a summary of spectrum
peak heights yij for i m/z values and j observations.

For a second example of preprocessing, we will consider a motivating dataset from the First
Annual Proteomics Data Mining Conference. This dataset consists of MALDI-MS spectra of
serum for 24 individuals with lung cancer and 17 normal individuals (without cancer). For
each subject (sample), the raw data contained recordings of 20 fractions. Each such spectrum
had readings for 60,831 m/z values. Thus there were 41 subjects, each with 20 fractions,
consisting of 60,831 observations for each fraction.

The research challenge was group comparison experiments with data from samples under
two biologic conditions, in this case lung cancer and normal samples, and the ultimate goal
was to identify protein biomarkers that distinguish between samples from the different con-
ditions. Assuming the concept that the upregulation or downregulation of certain proteins is
the consequence of a transformed cancerous cell and its clonal expansion, an early detection
research project may focus on the identification of such early molecular signs of lung cancer
via the assessment of protein profiles from specific biological specimens. Researchers can
thus analyze the collected protein profiles and identify signature fingerprints for the classifi-
cation between lung cancer and normal states. Thus researchers can ultimately study the bio-
logical significance of those specific proteins or peptides associated with the identified
signature profiles. Such advances can eventually lead to a clinical detection tool. Different
research groups attempt to develop techniques to classify or cluster the same dataset.

Baggerly et al. [3] preprocessed this dataset as follows:

1. Baseline subtraction—a baseline, computed using a windowed local minimum tech-
nique, is subtracted from the data. This baseline correction has to be performed separ-
ately for each fraction in each sample. Thus, this is a crucial step in the preprocessing,
as the fractions cannot otherwise be combined meaningfully.

2. Sinusoidal noise removal—using a Fourier transform, a periodic noise most likely
associated with electrical activity is removed.

3. Current normalization—this was effected by dividing by the total current over all the
readings.
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4. Defractionation—the normalized fractions were combined to generate one spectrum per
patient.

5. Windowed dimension reduction—taking the maximum intensity in each window (of
200 readings) and taking windows in which at least 8 of the samples contained a
peak, the dimensionality was reduced from 60,381 to 506, to generate a 506-peak
dataset.

The same preprocessing steps were used by Muller et al. [34] in their later analysis of the same
dataset.

26.4 STATISTICAL METHODS FOR MULTIPLE TESTING,
CLASSIFICATION, AND APPLICATIONS

In this section we review current methodologies, including some complex Bayesian and func-
tional methods for analyzing mass spectrometry data. These methods can be divided into two
broad categories: (1) methods that first identify features, such as peaks, in the mass spec-
trometry data and then analyze the variation in the values of those features, and (2) methods
that directly analyze the entire spectrum as functional data.

26.4.1 Multiple Testing and Identification of Differentially
Expressed Peaks

Most applications are motivated by the goal to select m/z values that are significantly associ-
ated with some phenotypic trait; thus, using a multiple testing procedure, we would identify
proteins that are truly different in mean intensities between two groups or more. The overall
testing procedure involves creating reasonable test statitics relative to some parameter of interest
(e.g., quantiles or means) and determining how to derive joint inference for these that uses the
known dependence structure in the data. The investigator makes specific choices on the para-
meters on interest, null hypotheses, test statistic, and specific type I error rate. The different
types of type I error rates allow investigators different controls such as

† Controlling the probability of making at least one false-positive decision is known as the
familywise error rate (FWER). This is a stringent method and produces error rates that are
too conservative to be useful in high-throughput data analyses.

† Controlling the probability of making more than a predefined number of false-positive
decisions is known as the generalized familywise error rate.

† Controlling the expected proportion of false positives amongst all positives is called false
discovery rate (FDR). This method does not provide a probabilistic bound that the pro-
portion of false positives is smaller than a predefined threshold, for instance, 0.05.

† Controlling the proportion of false positives among all positives at a user-defined value q
is called the tail probability of the proportion of false positives, TPPFP(q). This method
is favorable to the FDR method, particularly in the setting where the test statistics are
highly dependent, thus inducing high variability in the expected number of false
positives.

Benjamini and Hochberg [5] first introduced a Bonferroni-like method to control the FDR.
Storey [43] subsequently argued that the FDR is interesting only when positive decisions have
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occurred, thus introducing a procedure to control the conditional FDR or the positive FDR.
Extensions of this work are described in Storey and Tibshirani [42], including methods to esti-
mate the positive FDR and simulation studies conducted under various stages of coregulation.
Other authors [25,38] provide comparison studies of selected methods where procedures con-
trolling FDR exhibit higher power than do those controlling FWER. Bayesian FDRs have also
been discussed in Genovese and Wasserman [12,13] and Do et al. [11], among others. Scheid
and Spang [40] introduced a binwise FDR method to separate two overlapping score distri-
butions by estimating their proportions after binning and evaluating its performance in a simu-
lation study. Their estimator utilized prior probabilities for gene classes. The binwise FDR
results in a discretized estimation of mixture probabilities conditional on the chosen binning.
Many authors have developed TPPFP multiple testing procedures; for example, Lehmann
and Romano [26] discussed marginal stepdown procedures, Genovese and Wasserman
[12,13] described the inversion method for independent test statistics and its conservative
version for general dependence structures under a Bayesian framework, and van der Laan
et al. [45] proposed a new resampling-based multiple testing procedure to asymptotically
control the TPPFP(q) by fitting an empirical Bayes two-component mixture model to the
data to obtain an upper bound for marginal posterior probabilities of the null being true, con-
ditional on the data. Birkner et al. [7] applied this method to SELDI-TOF mass spectrometry
proteomic data. User-friendly tools for differerential expression analysis in R can be found in
OOMPA, at the Website bioinformatics.mdanderson.org/Software. Methods implemented in
the latest release include two-sample t test, fixed-effect linear models with ANOVA,
beta-uniform mixture model controlling for FDR, Wilcoxon rank-sum test with empirical
Bayes, significance analysis of microarrays (SAM), and Dudoit’s adjustment of p values to
control the FWER.

26.4.2 A Peak Probability Contrast (PPC) Procedure for
Sample Classification

For pattern classification from protein spectra, Tibshirani et al. [44] proposed an algorithm in
which the optimal discriminating split point for the height of each peak depends on the quan-
tiles of all measurements at a peak position. After defining pik(a) to be the proportion of spectra
in group k (control or cancer case) with a peak at site i larger than the a quantile of all the peaks
at this site, the critical step is to choose â (i) that maximizes Di ¼ jpi,case 2 pi,controlj. The result-
ing class probabilities are p̂ik at the maximized value. To perform class prediction for a new
spectrum, a binary profile can be created for each patient using the optimal discriminating
split points, and compared to each probability centroid vector corresponding to the case and
control groups, based on some kind of distance measure. To assess the sensitivity and speci-
ficity of this discrimination procedure, cross-validation can be carried out coupled with this
whole process. Further, the significance of each peak can also be assessed by an adaptation
of the FDR concept to this method.

26.4.3 A Semiparametric Model for Protein Mass Spectroscopy

Müller et al. [34] developed a mixture-of-Beta model for protein mass charge spectra.
Their model includes a hierarchical prior with indicator parameters related to differential

expression of proteins. The mass spectrometry data may be viewed as frequencies of detector
events reported on a grid mi, i ¼ 1, . . . , M of mass/charge values. Typically M is large, say,
50,000. Let yti denote the observed count for sample t at grid value mi. The main assumption
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is that the recorded counts (empirical spectrum) arise partially from the proteins of interest
( protein spectrum) and noise (baseline). The baseline corresponds to counter events from
protein fragments, matrix dispersed by the laser impact, detector noise, and other artifacts of
the experiment unrelated to the proteins of interest. Let ft denote the latent protein spectrum
for sample t, with Bt for the baseline, and pt ¼ (1 2 p0t) ft þ p0t Bt, for the mean spectrum
for sample t. Further, let Beta(x; m, s) denote a Beta distribution on the random variable x
with mean m and standard deviation s, using a nonstandard parameterization of the Beta
model. Thus ft can be represented as a mixture of Beta kernels. Let x ¼ xt index the biologic
condition of sample t, with xt [ f0,1g for a two-group comparison, and assume

ftðmÞ ¼
XG
g¼1

wxg Betaðm; eg;agÞ: ð26:1Þ

The weights are indexed by x; that is, equal weights are assumed for all samples under the same
biologic condition. The size of the mixture G defines the number of proteins. It is part of the
unknown parameter vector, making (26.1) a random size mixture of Beta kernels. A similar
mixture of Beta kernels parameterizes the baseline functions Bt. A hierarchical prior can be
defined with a positive prior probability for ties of weights wxg across biologic conditions.
An indicator lg ¼ I(w0g ¼ w1g) is introduced to allow easy posterior inference about proteins
with differential expression across the two biologic conditions. Posterior inference can be
implemented by setting up Markov chain Monte Carlo (MCMC) posterior simulation. A com-
plication arises from the random size of the mixture (26.1) because changing the mixture size G
induces changes in the dimension of the parameter vector. Reversible jump MCMC
(RJMCMC) simulation methods can be used to define the posterior simulation across the
variable-dimension parameter space, facilitated by split/merge and birth/death moves. The
birth/death moves make use of a reference solution obtained by some ad hoc method up
front, before initiating the posterior simulation. Figure 26.3 shows some aspects of the posterior
inference.

Figure 26.3 (a) Imputed mean spectrum E( ft j xt ¼ 0, data) for normal tissue; (b) and pos-
terior probability of nondifferential expression for each protein, E (lg j y) versus kernel mean
mass eg. Peaks with marginal posterior probability of differential expression beyond 0.5 are
marked as solid dots.
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26.4.4 Smoothed Principal-Component Analysis (PCA) for
Proteomic Spectra

Methodological aspects of functional data analysis (FDA) for a family of observed curves have
been considered by a number of authors [36,15,17,27].

Concurrently, Dean Billheimer (Vanderbilt University) [6] and Kim-Anh Do have con-
sidered methods for analyzing mass spectrometry utilizing the concept of smoothed principal
components, exploiting the nature of proteomics spectra as functional data. The mass spec-
trometry process may be viewed as a process generating data through time or continuous
m/z values. The motivation for FDA is to treat the entire measured function not as a
single observation, but rather as a closely spaced sequence of measurements. The advantage
of this approach is that we may incorporate continuity and smoothness constraints if known
for the data-generating process. With FDA, one needs to perform two main steps before data
analysis:

† Representing the data via basis functions—this plays the key role in defining smoothness
and continuity conditions of the resulting data.

† Data registration or feature alignment—this transforms the functional argument axis to
align key features of the response. The transformation may entail a linear shift to correct
for an arbitrary starting time, or a nonlinear transformation for more complicated cases. A
MALDI-TOF spectrum consists of measurements of a continuous intensity process at
discretely sampled timepoints, subsequently converted to an equivalent m/z axis
through an analytically derived transformation. The m/z axis is more precisely calibrated
using peaks with known mass values. We adapt and implement the methods of Ramsay
and Silverman [36].

First, a dimension reduction step can be performed via a smoothed PCA. Once dimension
has been appropriately reduced, there are at least two ways of estimating population densities
and formalizing the discrimination. One is nonparametric and based, for example, on kernel
methods; another is parametric and founded, for example, on fitting a Gaussian density. The
latter approach is generally preferable for real-time classification of future proteomics profiles,
since it summarizes empirical training sample information using a relatively small number of
parameters. The overall approach can be summarized as follows:

1. Start with the G � N data matrix X. Here G is the number of peaks of proteins and N is
the total number of normal and tumor samples, and xgt denotes the observed response in
sample t for peak g, that is xgt is the weight of identified peak g. Subtract the column
means, so that

P
gxgt ¼ 0 in each column.

2. Fourier transform each sample of the data, choosing m basis functions. The transformed
data matrix is still denoted as X, now with dimension (m � N ).

3. Let S ¼ (I þ aQ)20.5, where a is a given smoothing parameter and Q is the derivative
operator. Operate by S on the transformed data.

4. For each sample (column) t, perform PCA on the smooth Fourier transform to obtain
eigenfunctions fvjg and eigenvalues fejg, leaving one sample (xs, say) out from the data.

5. Estimate C2s by eigenvalues and eigenfunctions obtained from step 4: C2s ¼
P

j ej . vj .

vj
T.

6. Applying the general idea of quadratic discriminant analysis, define a discriminant score
for sample s as follows. Let mk (k ¼ 1, 2) denote the smoothed mean curves under the
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two biologic conditions of interest, and let dk ¼ (Xs 2 mk)
T C2s

21 (Xs 2 mk) þ lnjC2sj
22lnpk, where pk is a prior probability (as default, use 0.5).

7. Sample s is assigned to the class k ¼ 1 if d1 , d2; otherwise it is assigned to class 2.

8. Calculate the sensitivity and specificity fractions.

The sensitivity of the combined method can be assessed with respect to (1) the choice of (1)
basis functions or (2) discriminant function: linear, quadratic (with a full or shrunken covari-
ance matrix), or a kernel-based nonparametric method. One can identify intervals on the func-
tional curve that exhibit extreme variation and use proteins corresponding to these intervals in a
subsequent peak selection procedure to identify important peaks.

26.4.5 Wavelet-Based Functional Mixed Model and Application

The methodologies described above consist of two steps: peak detection followed by differen-
tial peak comparison. Although conceptually simple, this approach may miss important
low-intensity differences between the spectra if the peak detection method is not sufficiently
sensitive. In addition, proteomic spectra are notoriously sensitive to sample preparation and
handling and the precise environmental conditions under which the spectra are obtained.
Even when these factors are not confounded with the outcomes of interest (by good experimen-
tal design), modeling their effects is still important.

Morris et al. [31,32] address both of these issues in a single framework by applying
Bayesian functional modeling to the spiky proteomic data, represented by wavelet-based func-
tional mixed models. Their method yields posterior estimates for both the overall mean spec-
trum and the fixed-effect functions, each of which can be used to identify differentially
expressed peaks associated with that effect, while adjusting for the potentially nonlinear
effects of the other factors.

The application dataset to which Morris et al. applied their method was a SELDI-TOF
experiment, conducted at M. D. Anderson Cancer Center, to study proteins in the serum of
mice implanted with cancer tumors. Each mouse was implanted with a tumor from one of
two cancer cell lines: A375P, a human melanoma cancer cell line with low metastatic potential;
or PC3MM2, a highly metastatic human prostate cancer cell line. Each tumor was implanted
into one of two organs (brain or lung). Later, serum samples were extracted from the mice
and placed on SELDI chips. The primary goals of this study were to assess whether differential
protein expression was more tightly coupled to the host organ site or to the donor cell line type,
and to identify any protein peaks differentially expressed by organ site, by cell line, and/or by
their interaction.

For each mouse, two spectra were obtained, one at low laser intensity and one at high inten-
sity, measuring low- and high-molecular-weight proteins, respectively. Instead of indepen-
dently modeling the spectra obtained at the different laser intensities, Morris et al. combined
information across the two laser intensities and modeled an additional fixed-effect function
to account for the change in laser intensity.

Since the experiment involved 16 nude mice with two spectra per mouse, the dataset is rep-
resented by 32 spectra, Yi(t), i ¼ 1, . . . , 32.

The functional mixed model to fit these spectra is given by

YiðtÞ ¼
X4
j¼0

XijbjðtÞ þ
X16
k¼1

ZikUkðtÞ þ EiðtÞ: ð26:2Þ
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In the first term, bj, j ¼ 0, . . . , 4 represent the overall mean spectrum and the four fixed-effect
functions and Xij represent covariates that model the correspondence between the samples i and
the fixed-effect functions j. Specifically

† Xi0 ¼ 1 and corresponds to the overall mean spectrum b0(t).
† Xi1 corresponds to the cell line main effect function b1(t) and equals 1 or 21 correspond-
ing to whether the mouse was injected with the A375P or PC3MM2, respectively.

† Xi2 corresponds to the organ main effect function b2(t).
† Xi3 ¼ Xi1

� Xi2 corresponds to the organ–cell line interaction function b3(t).
† b4(t) models the laser intensity effect, with corresponding covariate Xi4 ¼ 1 or 21 if the
spectrum came from low- or high-intensity scans, respectively.

The second term consists of random-effect functions Uk(t) for each mouse, to model the
correlation between repeatedly measured spectra. Thus Zik ¼ 1 if and only if spectrum i
came from mouse k. The third term models residual errors.

Before fitting this model, the covariance matrices associated with U and E must be con-
strained. Morris et al. use wavelet shrinkage regularization because it allows more flexible
structures that are better suited to spiky proteomic spectra than do earlier models based on
smoothing splines. Briefly, a wavelet series approximation consists of a sum of wavelet
basis functions over a series of scales J, where larger J represent exponentially coarser
levels of detail. For fitting this model, Morris et al. used the Daubechies wavelet with vanishing
fourth moments and performed the discrete wavelet transform down to J ¼ 11 levels. A modi-
fied empirical Bayes procedure with appropriate constraints was used to estimate the regulari-
zation parameters that determine the relative tradeoff between variance and bias in the
nonparametric estimation. The MCMC procedure was implemented in MATLAB with 1000
burn-in iterations, followed by 20,000 iterations, retaining every tenth iteration for final
analyses.

Figure 26.4 contains the posterior means and 95% posterior credible bands for the organ
and cell line main effect functions, the interaction function, and the laser intensity effect func-
tion. The organ main effect function b1(x) can be interpreted as the difference between the
mean spectra for lung and brain-injected animals at m/z value x, after adjusting for the func-
tional effects of cell line, cell line–organ interaction, and laser intensity. The spiky nature of
these fixed-effect functions indicate that differences in spectra between treatment groups are
localized, and highlights the importance of using adaptive regularization methods with these
data. To identify locations within the curves at which there is strong evidence of significant
effects, one may employ plots of pointwise posterior probabilities Pr(bj(x) . 0jY).

Peak detection can be performed by using the posterior mean estimate of the overall mean
spectrum b0(t). Morris et al. first applied the first difference operator r to the regularized esti-
mate of the mean spectrum G0(t) ¼ rb0(t) ¼ b0(t þ 1)2 b0(t). A location t was considered to
be a peak if its first difference and the first difference immediately preceding it were positive
(G0(t 2 1). 0 and G0(t) . 0) and the first differences for the two locations immediately
following it were negative (G0(t þ 1) , 0 and G0(t þ 2), 0). This condition ensured that
this location was a local maximum, and the left and right slopes of the peak were monotone
for at least two adjacent points.

This procedure yields a small subset of peaks from the total number of observations within
the spectrum. The resulting peaks can be tentatively identified by searching for their estimated
m/z values in TagIdent, a database (available at http://us.expasy.org/tools/tagident.html)
containing the molecular masses and pH for proteins observed in a variety of species. It is
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possible to search for proteins emanating from either the source (human) or the host (mouse)
whose molecular masses are within the estimated mass accuracy (0.3%) of the SELDI instru-
ment from the peak concerned. If required, each specific peak can be definitively identified by
performing an additional MS/MS experiment.

In summary, the Bayesian wavelet-based functional mixed model may be used to model pro-
teomic spectra since it results in adaptive regularization of the fixed-effect functions, avoids
attenuation of the effects at the peaks, and is reasonably flexible in modeling the between-
curve covariance structures, accommodating autocovariance structures induced by peaks and
heteroscedasticity allowing different between-spectrum variances for different peaks.

26.4.6 A Nonparametric Bayesian Model Based on Kernel Functions

Clyde et al. [8] describe nonparametric statistical models for spectra that permit simultaneous
filtering of noise and removal of baseline trends in conjunction with peak identification, quanti-
fication, and, ultimately, classification.

The model is described for a single spectrum, which may be either a raw spectrum or the
average of spectra from several laser shots or individuals. The raw data consist of a time series
of intensities of ions striking the detector at recorded time intervals (each clock tick is 4 ns).
Clyde et al. [8] develop the model for intensity as a TOF function rather than with m/z,

Figure 26.4 Fixed-effect curves: posterior mean and 95% pointwise posterior credible bands
for (a) organ main effect function, b1(x); (b) cell line main effect function, b2(x); (c) organ–
cell line interaction function, b3(x); (d) laser intensity effect function, b4(x).
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denoting the observed intensity measurement at observed TOF t [ T ; [t0, tn] as Yt, with
expected intensity E[Yt] given by the function f (t). The mean intensity is expressed through
a linear combination of kernel functions

f ðtÞ ¼ bðtÞ þ
XJ
j¼1

kðt; tj;vjÞgj; ð26:3Þ

where k(t;t;v) is proportional to a nonnegative density, such as a Gaussian or Cauchy kernel,
and b(t) represents the systematic background process; J represents the number of kernels or
peaks or proteins in the spectrum. The kernel basis functions can incorporate variations in
peak shapes, including spikiness in the time domain. We may interpret tj as the expected
TOF for protein j; gj (the area under the curve) as a measure of the concentration or abundance
of protein j; the parameter vj controls the width of peaks. A specific mass spectrometer is
characterized by its resolution, which directly affects one’s ability in determining whether a
given peak in the spectrum corresponds to a single protein or more. For a symmetric single
ion peak with expected TOF tj, the resolution rj at peak j is defined as

rj ¼
tj

Dtj
ð26:4Þ

where Dtj is the full peak width at 50% of the maximum height [41]. Available prior infor-
mation about resolution can be translated into prior knowledge about vj, which will aid in
resolving the number of proteins in a peak.

Prior functions need to be proposed for subsequent posterior inference about the unknown
function f. For example, one may choose any positive number nþ . 0 and let J � Poisson (nþ)
with mean nþ. Conditionally on J, let (gj, tj, vj) be i.i.d. following p (dg, dt, dv), where p is a
probability distribution on Rþ�T�Rþ. Thus f (t) can be represented as a convolution of
kernels

f ðtÞ ¼ bðtÞ þ
ð
T�Rþ

kðt; t;vÞGðdt; dvÞ; ð26:5Þ

where

Gðdt; dvÞ ¼
XJ
j¼1

gjdtjðdtÞdvjðdvÞ

is a discrete random Borel measure on T � Rþ with a random number J jumps of random
heights gj at the random points (tj, vj).

The gamma random field can be used to construct a prior for f (t), ensuring that prior beliefs
are specified coherently across all possible partitions of time of flight. The joint distribution for
tj and vj may be specified by (1) taking tj uniform over Twhen there is no prior information on
the distribution of the mass/charge of expected proteins and (2) utilizing existing databases of
proteins and associated masses to construct a more informative prior for tj.

A hierarchical representation of the priors is as follows:

f ðtÞ ¼ b

�
b0 þ kbðt; t0;v0Þg0 þ

XJ
j¼1

kðt; tj;vjÞgj
�
;
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where

gj j J; e i.i.d truncated Gammað0; 1; eÞ for j ¼ 0; . . . ; J;

tj j J i.i.d uniformðTÞ for j ¼ 1; . . . ; J;

rj j J i.i.d lognormalð@;0:05Þ for j ¼ 1; . . . ; J;

vj ¼ gkðtj; rjÞ for j ¼ 1; . . . ; J;

J ja; e � Poissonðnþe ða; 1ÞÞ:

The next step is to specify an appropriate likelihood in order to conduct posterior inference
about parameters in the model. Exploratory analysis can aid in subsequent modeling of the
intensities, for example, a gamma model for intensities Yt. The posterior distribution of all
unknowns is proportional to the likelihood of the data based on the gamma model hierarchy.
Since marginal posterior distributions for most quantities of interest are not available analyti-
cally, investigators can resort to simulation of the posterior distribution via a RJMCMC algo-
rithm [14], implemented by birth/death or split/merge moves. Efficient computation is
possible since the specification of the likelihood described above can avoid the inversion of
large matrices that often arise in Gaussian approaches and memory requirements can be econ-
omized by computing the kernels only as needed.

In summary, the kernel model of Clyde et al. [8] can capture the asymmetry features of MS
peaks and can differentiate between single-protein peaks versus multiple-protein peaks. The
tradeoff for this flexibility is that investigators will need to specify (1) prior information on
resolution, particularly for peaks that are wider than expected, suggesting that multiple
kernels or proteins will be required for a good model fit; and (2) the minimum peak size to
prevent overfitting.

26.5 POTENTIAL STATISTICAL DEVELOPMENTS

A future goal in statistical developments at M. D. Anderson Cancer Center is to develop infer-
ence for protein mass/charge spectra that includes protein identity as part of the model. Models
can be developed for protein mass/charge spectra that replace stepwise inference by joint infer-
ence in a single model. In particular, this includes baseline subtraction, denoising, peak detec-
tion, comparison across biologic conditions, and identification of peaks as specific proteins.
The latter is a critical bottleneck of current methods. The problem is common to many appli-
cations of mixture models; one aspect is known as the mode-matching problem. The problem
arises whenever it is desired to make inference about specific terms in a mixture model. The
problem is easiest described in the context of summarizing MCMC output. Assume that we
want to report inference on unique terms in the mixture (26.1) and the corresponding locations
eg. Trying to report ergodic averages of eg across MCMC iterations, it is unclear how different
terms should be matched across iterations. When should two imputed values eg be counted as
arising from the same protein, and when should they be considered two separate proteins [19]?
The problem can be avoided by explicitly including protein identity in the model, by defining a
prior on eg as a distribution on the list of, for example, human proteins (e.g., see http://us.
expasy.org). The approach cannot deterministically resolve questions of allocating a specific
peak to two proteins with very similar masses. However, it will attach appropriate probabilities
to possible ways of allocation. Typically, known functions and descriptions allow us to set
informative weights; otherwise, uniform prior weights may be used.
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Current work by Kim-Anh Do and Peter Mueller can be described in the context of building
the model for two-group comparison, the primary goal of the experiment is to identify proteins
with differential abundance under x ¼ 0, 1. Recall the notation from Section 26.4.3; the
observed spectrum for sample t at mass grid mi is denoted yti; the mean spectrum, without
sampling noise, is

pt ¼ ð1� p0tÞft þ p0tBt ;

consisting of a sum of protein peaks ft and a baseline Bt. The protein peaks ft are represented as
a mixture of Beta kernels (26.1); indicator parameters lg ¼ I(wg0 ¼ wg1) record whether the
gth protein is equally abundant under both biologic conditions. Assuming a multinomial
sampling model, the observed counts yti are considered as a histogram of samples generated
from the unknown mean spectrum pt. Alternatively, one could consider a regression likelihood
by assuming that the observed yti arise as the true pt plus a random residual noise. The latter is
implicitly assumed in methods that define some variation of smoothing. The former more
closely corresponds to an idealized description of the experimental setup. Conditional on lg,
a Dirichlet prior can be defined for the weights wgx. Let G1 ¼ fg : lg ¼ 1g denote the set of
nondifferentially expressed proteins, and let W1 ¼ SG1wg0 and W0 ¼ 1 2W1. Independent
Dirichlet priors can be assumed for (wg0/W1; g [ G1) and (wgx/W0; g � G1), x ¼ 0 and 1;
that is, for the subsets of weights for nondifferentially and differentially expressed proteins,
rescaled to sum to one. Posterior inference can be carried out by posterior MCMC simulation.
Changing G, and changing lg the dimension of the parameter vector, requiring
RJMCMC. Some moves, including changing a single wgx and changing eg in the generalization
with multiple charges, require deterministic adjustment of other parameters when proposing a
change in one parameter, but involve no dimension change. For example, when a change in wgx

is proposed, the remaining wg 0x need to be rescaled to maintain the unit sums. MCMC tran-
sition probabilities can be developed that include a deterministic transformation. The nature
of the transition probability is like RJMCMC, but without the dimension change and auxiliary
variables. The transition probabilities are straightforward, but to our knowledge current litera-
ture does not include any discussion of such moves. Hierarchical extensions that explicitly
allow for sample-to-sample variations can also be considered. The Dirichlet prior on the
weights gives rise to awkward implications in the implementation of the MCMC. These
could be avoided by dropping the conditioning on the total number of events, that is, by repla-
cing the multinomial sampling model with a Poisson sampling model. The weights would then
be replaced by Poisson means.

Another future goal is to develop a centered model: a simplified, computationally efficient
version of the model in Section 26.4.3. Recall the notation yti denoting the recorded count in
sample t for mass mi, and ft(m) and Bt(m) denoting the cleaned protein spectrum and the base-
line for sample t, evaluated at mass/charge m. Let ȳxi denote the average spectrum under con-
dition x, and let ȳi ¼ 1

2( ȳ0i þ ȳ1i) denote the average across conditions. Now consider the
transformed data yt� ¼ yt 2 ȳ, where lg ¼ I(w0g ¼ w1g) is an indicator for nondifferential
expression of protein g. Assuming a representation of ft as in (26.1), in the centered data,
terms corresponding to peaks arising from nondifferentially expressed proteins cancel out,
and we are left with modeling only differentially expressed genes. A model similar to (26.1)
can be specified

f �t ðmÞ ¼
XG�

g¼1

w�
xg Betaðm; eg;agÞ;
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where G� is the number of proteins with differential abundance. The terms in ft� now corre-
spond only to proteins that are differentially expressed. Further, for the transformed data it is
more convenient to use a regression likelihood, with mean function ft�. The weights for differ-
entially expressed proteins g under the two conditions x ¼ 0, 1 show up with opposite signs,
w�
0g ¼2w�

1g.

26.6 CONCLUDING REMARKS

In this chapter, we have seen that, relative to the components of the normal proteome, potential
proteomic biomarkers are expected to be present in extremely small amounts. Consequently,
their identification—specifically, separating true differences between cases and controls from
normal sample variability and fromminute variations in sample handling—is a significant statis-
tical challenge. In this chapter, we reviewed the statistical preprocessing and analysis of
proteomic datasets, with an emphasis on the analytic rigor required. We also reviewed
several more recent statistical methods for the analysis of proteomic data, including
Bayesian functional data approaches.

In the near future, molecular profiling will likely become a routine adjunct to the pathological
reporting of most human diseases such as cancer. The challenge of translating proteomic
pathway profiling to the bedside is to develop technology that can efficiently use small
volumes of tumor tissue, routinely obtained at biopsy, to assess multiple cell signaling pathways
simultaneously. Future research in mass spectrometry, driven by the more recent National
Institute of Health initiative in clinical proteomics, will focus on multidisciplinary consortia
to develop improved methods in standardization, reproducibility, and comparability within
and among research institutions. In particular for mass spectrometry, new methods and platforms
such as liquid chromatography mass spectrometry and protein arrays will be further investigated.

For the full potential for these new methods and platforms to be fully realized, new statisti-
cal methods will need to be developed. Additional intricate and difficult issues to study will
also arise from the complex interactions within the human proteome, including multiple post-
translational protein modifications.
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C H A P T E R 27

Genetic Mapping of Quantitative
Traits: Model-Free Sib-Pair
Linkage Approaches
Saurabh Ghosh and Partha P. Majumder
Human Genetics Unit, Indian Statistical Institute, Kolkata, India

27.1 INTRODUCTION

Most common genetic disorders such as cardiovascular disease, type 2 diabetes, and asthma are
complex in nature. Unlike simple Mendelian disorders (e.g., cystic fibrosis, which can be
explained by mutations in a single gene), complex disorders are controlled by multiple loci,
each with minor gene effects and possibly interacting epistatically. Thus, no single locus is
either necessary or sufficient to explain the pathogenesis of a complex disorder. Hence, com-
pared to Mendelian disorders, it is statistically more challenging to develop methods to identify
loci that control complex disorders.

With the availability of densely spaced polymorphic DNA markers, there has been an active
interest in developing statistical methods for linkage mapping of complex traits using data on
nuclear families or larger pedigrees. Linkage analyses identify regions on the genome that
exhibit increased sharing of alleles among relatives with similar phenotypes. Most complex dis-
orders have binary endpoints defined by the affectation status of an individual. Thus, the phe-
notypic variation between individuals is minimal. For example, in a genetic study on type 2
diabetes, all individuals diagnosed with the disease were indistinguishable in the analyses.
However, these clinical endpoint traits are typically determined on the basis of values of a
set of heritable quantitative characters. For example, increased body mass index (BMI),
fasting blood sugar levels, and insulin levels are precursors of type 2 diabetes. These precursor
variables are continuous in nature and contain more information on interindividual variablity
than binary clinical endpoints. Thus, it has been argued that analyzing quantitative precursors,
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including mapping genes controlling them, may be statistically a more powerful strategy for
deciphering the architecture of a complex disease.

Binary traits can be completely modeled using allele frequencies and genotypic pene-
trances, defined as the conditional probabilities of affectation given the genotypes. However,
quantitative traits require a stronger layer of modeling: the probability distribution of the
trait values. There are currently two popular classes of statistical methods for mapping quan-
titative trait loci (QTL): (1) Haseman–Elston regression [12] and its extensions implemented
in the statistical package SAGE, and (2) likelihood-based methods such as variance com-
ponents [3,1] implemented in the statistical package SOLAR and score tests [21,22]. The
first class of methods is essentially distribution-free; that is, it does not require specification
of the probability distribution of trait values, but can use only small families. The second
class of methods can use data on large pedigrees but is parametric in nature; that is, it requires
strong statistical assumptions, such as multivariate normality of trait values for different
members of a pedigree. The statistical tradeoff between the two classes of methods is that
while the parametric methods are statistically more powerful when the distributional assump-
tions are valid, the distribution-free methods are more robust to violations in the underlying
assumptions. However, it is often very difficult to verify the distributional assumptions, particu-
larly for high-dimensional data. Hence, model-free methods have gained popularity given that
the data demand is less and the probability of a false-positive inference is low.

The focus of this chapter is restricted to analyses of sib-pair data. We discuss the basic fra-
mework of the distribution-free linkage approaches motivated by the classical Haseman–Elston
regression [12] for independent sib-pairs and show that even the Haseman–Elston approach
and its extensions (e.g., the incorporation of relative pairs other than sibs [2], simultaneous ana-
lyses of data on different types of relative pairs [14], multipoint interval mapping [13], squared
sums instead of squared differences [6], a weighted combination of squared sums and squared
differences [24], population mean-corrected cross-products based on larger sibships [7], and a
reverse regression strategy [20]) make certain model assumptions, which can be relaxed to
improve on linkage inferences. Although these methods do not make any prior assumptions
on the probability distribution of the quantitative trait values, they are not nonparametric in
the strict statistical sense because they assume a linear relationship between a suitable function
of the quantitative traits of a relative pair and the estimated identity-by-descent (i.b.d.) score at a
marker locus. However, the true nature of relationship between these variables is governed by
various biological parameters such as the recombination distance between the QTL and the
marker locus, interference, and dominance at the QTL. Hence, it is of interest to explore for
appropriate nonparametric alternatives that are robust with respect to these parameters. In par-
ticular, we propose a modified version of the nonparametric regression approach suggested by
us earlier [11] and compare its performance, using Monte Carlo simulations, with some of the
methods belonging to the Haseman–Elston class of regression. We also discuss one application
[10] of the proposed nonparametric regression to real data.

27.2 THE BASIC QTL FRAMEWORK FOR SIB-PAIRS

The smallest family structure appropriate for linkage analyses is a nuclear family comprising a
pair of parents and two offspring. Linkage studies based on such family structures are called
independent sib-pair analyses. The basic QTL paradigm for sib-pairs is that siblings inheriting
similar QTL alleles from their parents will have similar quantitative trait values. Since data are
available at marker loci and not at the QTL, the paradigm extends to any marker locus that is
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linked to the QTL, that is, physically close to the QTL. On the other hand, marker loci unlinked
to the QTL will not exhibit such property. This forms the basis of the linkage tests. For para-
metric sib-pair linkage methods, the allelic similarity is modeled via the genotypic probabilities
of the parents and the transmission probabilities of the parental alleles to the two sibs. For non-
parametric sib-pair methods, the allelic similarity is measured by a parameter termed the i.b.d.
score, defined as the proportion of parental alleles shared by the two siblings.

27.3 THE HASEMAN–ELSTON REGRESSION FRAMEWORK

Assume that a quantitative trait Y is controlled by an autosomal biallelic locus with alleles A1

and a1. No assumption is made as to the nature of the probability distribution of the trait values.
The underlying population is assumed to be in Hardy–Weinberg equilibrium with respect to
the trait locus. Suppose that f(yj1, yj2) : j ¼ 1, 2, . . . , ng are the quantitative trait values of n
sib-pairs. It is assumed that the conditional expectations of Y given the genotypes A1A1,
A1a1 and a1a1 are a, b, and 2a, respectively, the variance of Y conditioned on any genotype
is equal, s2, and the correlation coefficient between the trait values of any sib-pair is r. The
parameter b is known as the dominance parameter. If b is equal to 0 (i.e., the expectation
of the quantitative trait values conditioned on the heterozygous genotype A1a1 is equal to
the mean of the expectations conditioned on the two homozygous genotypes A1A1 and
a1a1), we say that there is no dominance at the QTL. Define yj ¼ (yj1 2 yj2)

2, that is, the
squared difference in trait value for the jth sib-pair. We note here, that yj is not affected by
location shifts of Y, and hence the structure of the conditional expectations of Y given the differ-
ent QTL genotypes can be assumed without loss of generality.

Suppose that we have genotype data onM ordered marker loci located on the same chromo-
some. Letpmj denote the proportion of alleles shared i.b.d. at themth marker locus for the jth sib-
pair, m ¼ 1, 2, . . .,M; j ¼ 1, 2, . . . , n. If f (r)mj denotes the probability that the jth sib-pair shares r

alleles i.b.d. at themth marker locus, r ¼ 1, 2, then the estimator of pmj is given by p̂mj ¼ f (2)mj þ
1
2 f

(1)
mj . Haseman and Elston [12] have explicitly calculated f (r)mjil for different parental mating types

and in the case of missing parental information, they have suggested an algorithm considering
phenosets [5]. Haseman and Elston [12] showed that, if b ¼ 0 (i.e., if there is no dominance
at the trait locus), the conditional expectation of yj given p̂mj (i.e., the expected square difference
in sib-pair quantitative trait values conditioned on the estimated i.b.d. score at a marker locus) is
b0 þ b1p̂mj, where b1 ¼ c0 � (1 2 2u)2; c0 is a negative constant and u is the recombination
fraction between the QTL and the marker locus. Hence, b1 ¼ 0 implies u ¼ 0.5 (i.e., the
marker is not linked to the QTL) and b1 , 0 implies u , 0.5 (i.e., the marker is linked to the
QTL). Thus, the test for linkage between the QTL and a marker locus can be performed on
the basis of a linear regression of yj on p̂mj. With increase in doinance at the QTL, the overlap
between the distributions of trait values for the major homozygous genotype and the heterozy-
gous genotype increases and leads to departures from the abovementioned linear regression of yj
on p̂mj. Thus, the power of this test decreases with increase in dominance at the QTL.

27.4 NONPARAMETRIC ALTERNATIVES

Because the Haseman–Elston method, in spite of being distribution-free, is adversely affected
by the presence of dominance at the QTL, we [11] proposed a two-stage nonparametric
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approach. In the first stage, a statistic based on Spearman’s rank correlation between yj and p̂mj

[17] was used on coarsely spaced markers to identify regions showing significant correlation
between the variables; in the second stage, a nonparametric regression based on kernel smooth-
ing [19] was used to empirically estimate the nature of functional relationship between the two
variables using data on densely spaced markers in regions identified in the first stage. The
marker interval yielding the lowest residual sum of squares in the nonparametric regression
was identified in the second stage, but no statistical test was performed. However, we found
that since the computation of the rank correlation involves summarization of the squared
sib-pair trait differences into ranks, the test is not very powerful and leads to a high rate of
false negatives. This prompted us to explore whether we could develop a method based entirely
on the nonparametric regression step. Moreover, with the availability of densely spaced poly-
morphic markers such as single-nucleotide polymorphisms (SNPs), it is more meaningful to
use multipoint i.b.d. scores (i.e., use simulataneous information on all the available markers)
instead of two-point scores as used in our original method.

27.5 THE MODIFIED NONPARAMETRIC REGRESSION

Following Ghosh and Majumder [11], we assume a nonparametric regression model of yj and
p̂jp at any arbitrary point p on the genome

yj ¼ c(p̂jp)þ ej; j ¼ 1, 2, . . . , n,

where c is a real-valued function of p̂jp and the ej terms are homoskedastic random errors with
mean 0.

The estimated i.b.d. score at any arbitrary point p of the genome p̂jp is a multipoint score
based on genotypic information simultaneously on all available markers on that chromosome.
We use the linear regression method of Fulker et al. [9] to estimate the multipoint i.b.d. scores.

The functional form of c is estimated using a kernel-smoothing technique [19]. The kernel
function used is

k(t) ¼
3
4 (1� t2), if jtj , 1;
0 otherwise

�
(27:1)

The estimator of yj is given by:

byj ¼ bc(bpjp)

¼

Pn
i¼1 k

�bpjp � bpip

h

�
yi

Pn
i¼1 k

�bpjp � bpip

h

� ,

where h is the “optimal” window length in the kernel smoothing procedure obtained by mini-
mizing the residual sum of squares in the preceding regression. Since nonparametric regression
tends to overfit data, we use a “leave one out” technique for computing the residual sum of
squares [i.e., leave out yj when predicting c(p̂jp)].
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27.5.1 Evaluation of Significance Levels

Because of the complex asymptotic behavior of the nonparametric regression estimator based
on kernel smoothing, it is difficult to assess the performance of the proposed estimator in
detecting linkage. For this purpose, we develop a diagnostic measure using an analog of R2,
the square of the correlation coefficient between the response variable and the explanatory vari-
able. For linear regression, we know that

R2 ¼ explained sum of squares by regression

total variation in y

¼ 1� residual sum of squares by regression

total variation in y

Our proposed diagnostic measure is:

D ¼ 1�
Pn

j¼1fyj � bc( bpj)g
2

Pn
j¼1(yj � y)2

We note that, like R2, D is also a location- and scale-invariant measure. Under no linkage (the
null hypothesis), D is expected to be close to 0. However, it is not easy to obtain either the exact
or even the asymptotic sampling distribution of D under the null. While it is clear that the upper
bound for D is 1, a sharp lower bound is not very obvious. However, a crude lower bound can
be obtained as

1�
Pn

j¼1maxf( yj � ym)2; ( yj � yM)2gPn
j¼1(yj � �y)2

;

where ym and yM are respectively the minimum and the maximum squared sib-pair trait values
observed in the data. One has to use Monte Carlo resampling techniques to obtain empirical
thresholds under the null hypothesis of no linkage. We generate estimated i.b.d. scores using
a multinomial random-number generator with cell probabilities equal to the marginals of esti-
mated i.b.d. proportions at the marker locus nearest to the point p of interest, but preserve the
quantitative trait values observed in the original dataset. We note that the marginal probabil-
ities of estimated i.b.d. scores are provided in Table V of Haseman and Elston [12] for bial-
lelic markers and can be easily generalized for polymorphic markers. The statistic D is
computed for each resampled set, and the proportion of replications in which D exceeds
the observed value of D, computed from the dataset, is an empirical estimator of the p
value of the test.

Since the proposed D statistic does not consider the direction of the relationship between
squared sib-pair trait differences and estimated i.b.d. scores, there may be concern that the
rate of false positives is inflated owing to a random positive relationship between the variables
under the null hypothesis of no linkage. One way to circumvent this problem is to ensure that
the product moment (or rank) correlation between the variables is negative at the significant
linkage regions.
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27.6 COMPARISON WITH LINEAR REGRESSION METHODS

Elston et al. [7] suggested that instead of squared sib-pair differences, it may be statistically
more powerful to use the population-mean-corrected cross-products of sib-pair trait values
as the response variable in the linear regression setup. They showed that, as in the classical
Haseman–Elston regression [12], the expected population-mean-corrected cross-product of
sib-pair trait values conditional on the estimated i.b.d. score at a marker locus is a linear func-
tion of the estimated i.b.d. score with the slope parameter equal to 0 if and only if the QTL and
the marker locus are unlinked. We note that the population-mean-corrected cross-product is
also unaffected by location shifts in trait values. We compare, using simulated data, the
powers of the two proposed nonparametric methods (based on ranks and kernel smoothing)
with the two linear regression methods discussed in Elston et al. [7]: one using the squared
differences of sib-pair trait values and the other using the population mean corrected cross-
products of sib-pair trait values.

We consider three probability distributions for the quantitative trait values: normal,
location-shifted x2, and location-shifted Poisson. Under the assumption that the QTL is bialle-
lic, the distribution of trait values is a mixture of three components. When each component dis-
tribution is symmetric, a normal distribution is a good fit to the data. When the distributions of
the components are skewed, a x2 distribution may be appropriate. For data involving counts
(e.g., number of symptoms associated with a clinical manifestation), a Poisson distribution
may be a good fit.

We generate data on a quantitative trait for 200 sib-pairs and marker genotypes at 10 ordered
markers on a chromosome. We assume that the recombination distance between two consecu-
tive marker loci is 0.05 and the quantitative trait locus is in between the third and fourth
markers at a recombination distance 0.02 from the third marker. We also assume that the
each of the odd-numbered markers has four equifrequent alleles, while each of the even num-
bered markers has three equifrequent alleles. The steps are as follows:

1. We generate the trait i.b.d. scores of the sib-pairs using a trinomial random-number
generator with cell probabilities ð14, 12, 14Þ.

2. We generate the trait genotypes of the sib-pairs using a 9-variate random-number
generator with cell probabilities given by the conditional trait genotype distribution of
sib-pairs given their trait i.b.d. score as provided in Table I of Haseman and Elston [12].

3. We generate the marker i.b.d. scores of the sib-pairs for the two marker loci flanking the
trait locus using the conditional distribution of marker i.b.d. score given trait i.b.d. score
as provided in Table IV of Haseman and Elston [12].

4. We sequentially generate the i.b.d. scores of the sib-pairs for each nonflanking marker
conditioned on the i.b.d. score at the last marker generated using Table IV of
Haseman and Elston [12].

5. We generate the estimated i.b.d. score of each sib-pair at each marker using the con-
ditional distribution of the estimated marker i.b.d. score given the marker i.b.d. score
using Table V of Haseman and Elston [12].

6. We generate the quantitative trait values of the sib-pairs from (a) a bivariate normal
distribution, (b) a bivariate distribution with location-shifted x2 marginals, and (c) a
bivariate distribution with location-shifted Poisson marginals such that the mean
vector has components a b, or 2a, according to whether the trait genotype is A1A1,
A1a1, or a1a1, respectively, and the dispersion matrix is given by s2 f(1 2 r)I2 þ r110g.

GENETIC MAPPING OF QUANTITATIVE TRAITS: MODEL-FREE SIB-PAIR LINKAGE APPROACHES492



We use the linear regression method of Fulker et al. [9] to estimate the multipoint i.b.d.
scores at arbitrary points on the genome based on information on all the marker loci generated.
The 5% thresholds for the tests are obtained from a standard normal distribution for the rank-
based method and the two linear regression procedures of Elston et al. [7] and via 1000
resampled datasets based on D for the non-parametric regression method. We perform
10,000 replications to obtain empirical powers for our test procedures. In all our simulations,
we used fixed parameter values a ¼ 3, s2 ¼ 1, and r ¼ 0.5.

27.7 SIGNIFICANCE LEVELS AND EMPIRICAL POWER

Since the significance levels of our proposed test procedure are determined emprically based on
resampled datasets, it is of interest to evaluate the rate of false positives. For this purpose, we
generate 1000 replications of estimated i.b.d. scores at a hypothetical marker locus with four
equifrequent alleles using the probability distribution provided in Table V of Haseman and
Elston [12]. Using the empirical 5% thresholds (provided in Tables 27.1–27.3 in parentheses)
based on the ordered D values from the 1000 resampled datasets, we find that for all our simu-
lation parameter values and probability distributions, the rates of false positives (i.e., obtaining
a significantly positive D value under the null hypothesis of no linkage) are between 0.045 and
0.054 (details omitted for brevity). Thus, the resampling strategy maintains an appropriate rate
of false positives.

We evaluate the empirical powers of our proposed test procedures for a point in between the
third marker and the trait locus, at a recombination distance 0.01 from the trait locus, for differ-
ent frequencies ( p) of A1, and different levels of dominance (b) such that the heritability of the

Table 27.1 Empirical Powers of Different Test Procedures for a Normally
Distributed Trait and Simulation Parameter Values of a5 3, s2 5 1, r5 0.7, u 5 0.01;
and Varying Trait Allele Frequency ( p) and Degree of Dominance at Trait Locus (b)a

Empirical Power

p b R E1 E2 KS

0.5 (21.645) (21.645) (1.645) (0.118)
0 0.702 0.899 0.912 0.878
1 0.681 0.825 0.838 0.852
2 0.635 0.685 0.702 0.769

0.7 (21.645) (21.645) (1.645) (0.121)
0 0.666 0.817 0.833 0.804
1 0.615 0.757 0.768 0.779
2 0.579 0.658 0.670 0.728

0.9 (21.645) (21.645) (1.645) (0.125)
0 0.613 0.754 0.770 0.749
1 0.572 0.705 0.719 0.733
2 0.538 0.627 0.634 0.703

aSymbols key: R—rank correlation; E1—Elston et al. [7] with squared sib-pair trait difference; E2—Elston
et al. [7] with population mean-corrected cross-product of sib-pair trait values; KS—nonparametric
regression based on kernel smoothing. Figures in parentheses indicate 5% thresholds for the test
procedures.
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Table 27.2 Empirical Powers of Different Test Procedures for a x2 Distributed
Trait and Simulation Parameter Values of a5 3, s2 5 1, r5 0.7, u5 0.01; and Varying
Trait Allele Frequency (p) and Degree of Dominance at Trait Locus (b)a

Empirical Power

p b R E1 E2 KS

0.5 (21.645) (21.645) (1.645) (0.124)
0 0.692 0.890 0.902 0.876
1 0.662 0.817 0.823 0.846
2 0.600 0.671 0.677 0.765

0.7 (21.645) (21.645) (1.645) (0.129)
0 0.664 0.805 0.819 0.801
1 0.628 0.738 0.744 0.772
2 0.574 0.650 0.648 0.724

0.9 (21.645) (21.645) (1.645) (0.135)
0 0.607 0.743 0.747 0.745
1 0.583 0.694 0.695 0.730
2 0.541 0.616 0.611 0.698

aSymbols key: R—rank correlation; E1—Elston et al. [7] with squared sib-pair trait difference; E2— Elston
et al. [7] with population mean-corrected cross-product of sib-pair trait values; KS—nonparametric
regression based on kernel smoothing. Figures in parentheses indicate 5% thresholds for the test
procedures.

Table 27.3 Empirical Powers of Different Test Procedures for a Poisson Distributed
Trait and Simulation Parameter Values of a 5 3, s2 5 1, r5 0.7, u 5 0.01; and
Varying Trait Allele Frequency ( p) and Degree of Dominance at Trait Locus (b)a

Empirical Power

p b R E1 E2 KS

0.5 (21.645) (21.645) (1.645) (0.136)
0 0.684 0.872 0.881 0.873
1 0.659 0.805 0.802 0.841
2 0.593 0.652 0.645 0.760

0.7 (21.645) (21.645) (1.645) (0.141)
0 0.658 0.788 0.786 0.792
1 0.615 0.720 0.703 0.768
2 0.572 0.629 0.613 0.715

0.9 (21.645) (21.645) (1.645) (0.149)
0 0.604 0.727 0.724 0.744
1 0.575 0.673 0.659 0.720
2 0.527 0.600 0.582 0.691

aSymbols key: R—rank correlation; E1—Elston et al. [7] with squared sib-pair trait difference; E2— Elston
et al. [7] with population mean-corrected cross-product of sib-pair trait values; KS—nonparametric
regression based on kernel smoothing. Figures in parentheses indicate 5% thresholds for the test
procedures.
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trait varies between 33% and 82%. The results are provided in Table 27.1 (normal distribution),
Table 27.2 (x2 distribution), and Table 27.3 (Poisson distribution). The four analyses are
referred to as follows: the rank correlation (R), the nonparametric regression based on kernel
smoothing (KS), Elston [7] with squared sib-pair trait difference (E1), and Elston [7] with
mean-corrected cross-product of sib-pair trait values (E2). We note here that the empirical
powers for the KS procedure are computed with the additional restriction that the product–
moment correlations are negative. This, as mentioned in a previous section, is done to avoid
false positives arising from random positive correlation between the underlying variables
under the null hypothesis of no linkage. From Tables 27.1 and 27.2, we find that for normal
and x2 trait values E2 and E1 yield more power than R and KS when there is no dominance
at the trait locus (b ¼ 0). However, the power of KS is only marginally less than the two
linear regression procedures of Elston [7]. On the other hand, as dominance increases (i.e.,
b ¼ 1), KS outperforms both E1 and E2, although R is still less powerful than E1 and E2.
When dominance is high (i.e., b ¼ 2), KS has a much higher power than do E1 and E2.
This is expected because there is deviation in the underlying linear relationship in the
regression strategies of Elston [7] as dominance increases at the trait locus. We also find that
these inferences are valid for different levels of heterozygosity at the trait locus. However,
E1 and E2 are more adversely affected by decrease in heterozygosity than are R and KS.
We note here that E2 is more powerful than E1, except for high dominance (b ¼ 2) and low
heterozygosity at the trait locus. From Table 27.3, we find that for Poisson trait values, KS
is more powerful than E1 and E2, even in the absence of dominance, except when heterozyg-
osity is very high ( p ¼ 0.5). The difference in power increases with increase in dominance.
The rank correlation R is uniformly less powerful than both E1 and E2 for all levels of dom-
inance, although the difference decreases as dominance increases. We also find that E1 is more
powerful than E2 except for no dominance and high heterozygosity at the trait locus. We note
here that compared to normal trait values, x2 trait values yield less powers of all the procedures.
Similarly for Poisson trait values, the powers of all the procedures are lower than those for x2

trait values. However, the decrease is much more pronounced for E1 and E2, while it is mar-
ginal for R and KS.

27.8 AN APPLICATION TO REAL DATA

The Collaborative Study on the Genetics of Alcoholism (COGA) is a multicenter research
program established to detect and map susceptibility genes for alcohol dependence and
related phenotypes. Oscillations of brain activity play an important role in the functional organ-
ization of neuronal activity that unlies sensory and cognitive processing. Electroencephalogram
(EEG) waves reflect the mean excitation of the pool of neurons and are considered to be an
ideal endophenotype in the genetic study of alcoholism. Ghosh et al. [10] used the nonpara-
metric regression method to perform a genomewide linkage scan on Beta 2 EEG Waves (fre-
quency range 16–20 Hz) using genotype dataon 405 microsatellite markers with average
heterozygosity 0.74 and average intermarker distance 10.9 cm. The analysis was based on
99 independent sib-pairs. The nonparametric regression was performed at every 1 cm on the
genome, resulting in a large number of tests over the genome. Hence, 100,000 Monte Carlo
resampled sets (as described in Section 27.5.1) were generated to obtain the empirical
p values. Significant linkage evidence ( p , 0.00001) was obtained on chromosomes 1, 4, 5,
and 15 very close to potential candidate gene clusters such as GABRA, GABRB, ADH, and
CHRNA7. We note here that a variance components analysis using the SOLAR software [16]
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on entire pedigrees of the COGA dataset has also provided a significant linkage finding near the
GABRA receptor gene on chromosome 4. The regions harboring these genes are being followed
up with association and functional studies to assess the roles of these genes for regulating
Beta 2 EEG waves.

27.9 CONCLUDING REMARKS

The regression procedure of the classical Haseman–Elston method [12] and its extensions such
as Elston et al. [7] assume a linear functional relationship between squared sib-pair trait differ-
ences or population-mean-corrected cross-product of sib-pair trait values and the estimated
i.b.d. score at a marker locus. While this assumption holds good when the dominance at the
trait locus is low, there is increasing deviation from a linear relationship with increase in domi-
nance at the trait locus. Thus, the proposed nonparametric regression, which does not assume
any such functional relationship, outperforms the linear regression procedures as dominance
increases. While the rank correlation procedure is also completely model-free, it suffers
from the inherent limitation of excessive summarization. The observed trait values are not
directly utilized in the test statistic and contribute indirectly via ranks. This leads to loss of
information and hence reduction in power. However, despite this limitation, it still performs
better than do the linear regression procedures in the presence of high dominance.

Elston et al. [7] observed that a linear regression with population-mean-corrected cross-
products of sib-pair trait values as the response variable is sometimes more powerful than
the squared sib-pair trait differences as used in the traditional Haseman–Elston [12] approach.
Although, for brevity, we are not presenting the results, we performed some simulations and
found that for both the rank correlation and kernel smoothing procedures, the squared sib-
pair trait values yielded more power than did the population-mean-corrected cross-product
for all our simulation parameters.

Current methods use LOD scores as a diagnostic to evaluate the significance of linkage
peaks. Since our proposed rank correlation and kernel smoothing methods are nonparametric,
a direct comparison with likelihood-based LOD scores is not possible. However, if we consider
the p values of our linkage peaks, we can theoretically obtain the LOD scores that would yield
these p values. For example, a p value , 0.0001 can be attained for a LOD score greater than
3.29, while a p value , 0.001 can be attained for a LOD score greater than 2.35.

Studies have shown that larger sibships are more informative on linkage than are indepen-
dent sib-pairs. Most model-free sibship methods, such as those of Elston et al. [7], divide each
sibship into all possible sib-pairs and perform a weighted regression. The weights must be esti-
mated on the basis of the correlation of squared differences (or mean-corrected cross-products)
of sib-pair trait values between different sib-pairs. Ghosh and Reich [25] developed a method
to integrate sibship data into a so-called “contrast function” which circumvents the problem of
assigning a priori weights to different sib-pairs. Their linkage method was based on a linear
regression of the squared contrast function of a sibship on a quadratic function of the matrix
of i.b.d. scores at a marker locus for the different sib-pairs within the sibship and can be
viewed as a direct extension of the sib-pair based classical Haseman–Elston regression [12]
to larger sibships. However, since the method is based on a linear regression approach, it is
susceptible to the presence of dominance at the QTL. Thus, it is of interest to compare the per-
formance of a nonparametric regression of the squared contrast function on the matrix of
marker i.b.d. scores based on kernel smoothing with the linear regression approach.
Moreover, analytic and simulation studies have shown that squared differences do not carry
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sufficient linkage information [23], and inclusion of other transformations of sib-pair trait
values [24,8,22] results in increase of statistical power to detect linkage. In particular,
Ghosh and Reich [25] showed that the simultaneous use of the mean quantitative trait value
of a sibship and the contrast function was a more powerful strategy compared to only the con-
trast function. We are currently exploring a nonparametric regression-based test incorporating
both the mean and the contrast functions.

There is increasing evidence [4,18,15] that sib-pairs ascertained through extreme phenoty-
pic values carry more linkage information compared to unselected samples. However, the
availability of such data is rare, and it may be more practical to ascertain sib-pairs through
one proband having an extreme phenotypic value. Likelihood-based methods that require expli-
cit specification of the probability distribution of the underlying quantitative trait may provide
misleading linkage inferences since the likelihood needs to be computed using an appropriate
truncated distribution under ascertainment. On the other hand, the model-free methods are
more robust with respect to any bias due to selected sampling. In particular, since we obtain
empirical p values using resampled datasets, our method is not likely to be affected by ascer-
tainment bias. However, extensive simulations need to be carried out to validate this
hypothesis.

We emphasize that many currently used distribution based and distribution free linkage
methods are theoretically valid under conditions like normality of trait values and/or the
absence of dominance at the trait locus. Quantitative traits such as age of disease onset and
number of symptoms associatedwith disease diagnosis are likely to have skewed and kurtotic dis-
tributions. Deviation from normality induces skewness and/or kurtosis in the quantitative trait
distribution conditioned on the genotypes, thereby lowering the powers of these test procedures.
Amajor advantage of our nonparametric regressionmethod is that it does not involvemodeling of
trait parameters or assumption a specific functional relationship between quantitative trait values
and marker i.b.d. scores, and hence is more robust to violations in model assumptions.
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C H A P T E R 28

Robustness Issues in Biomedical
Studies
Ayanendranath Basu
Indian Statistical Institute, Kolkata, India

28.1 INTRODUCTION: THE NEED FOR ROBUST PROCEDURES

The science of statistics deals primarily with the collection, analysis, and interpretation of data.
However, the inferential part of statistical theory depends not only on the observed data but also
on the assumed scenario under which inference is performed. In classical parametric theory the
models are generally formulated under an exact set of conditions. The optimal statistical pro-
cedures in this context are derived under this set of conditions. When some of these conditions
fail to hold, their impact may be quite drastic on the abovementioned optimal procedures. In
this sense classical parametric inference can be somewhat limited in scope in spite of its tech-
nical richness. Even slight deviations from the assumed conditions can seriously damage the
inference procedure. For real-life data all parametric models are only approximations to
reality, and minor deviations from the parametric assumptions are never entirely unexpected.
Thus modifications of the procedures that are optimal or near-optimal at the model should
also be considered that retain reasonable inferential properties even when the true distribution
is close to but not exactly in the model. This is the main motivation for generating “robust”
procedures. The word “robustness” may have similar but slightly different meanings to
different individuals; in an intuitive sense we will take this word to mean insensitivity of the
procedure to minor deviations from the assumed set of conditions. According to Hampel
et al. [31], “Robust statistics, as a collection of related theories, is the statistics of approximate
parametric models.”

One branch of statistics that deals with the issue of minimizing parametric assumptions and
performing statistical inference in a more general setup is nonparametric statistics. As non-
parametric models are usually based on a minimal set of assumptions, the chances of model
violations are low. Thus the robustness issue is automatically resolved, at least in part.
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However, the use of nonparametric statistics also does not satisfactorily resolve the robustness
issue. Nonparametric models may have more general applicability than parametric models but
cannot match the efficiency of the latter when the parametric model correctly describes the
data-generating distribution. Parametric methods are simple to use and allow the imposition
of nice, smooth, and mathematically tractable structures on the model under which the data
are analyzed; the vast and rich literature on parametric models, including fundamental and
powerful procedures such as sufficiency reduction and maximum-likelihood estimation,
make parametric estimation a very attractive tool for the statistician. Robust methods are in
fact closer in spirit to classical parametric methods than nonparametric ones. However,
nonparametric methods are often included in the robustness literature, and we will provide
appropriate references for the same at several places in this chapter.

Ironically, the properties of parametric inference, which are useful in demonstrating the effi-
ciency of the methods under model conditions, are often themselves responsible for their lack
of robustness when the model conditions fail. Sufficiency, for example, is a highly nonrobust
concept. The maximum-likelihood estimator (MLE) is notoriously nonrobust for many para-
metric models. The ideas of efficiency and robustness are often viewed as conflicting concepts.
Many common robust procedures essentially represent attempts to robustify the method based
on maximum likelihood.

The basic ideas of robust statistics have been in use for a long time (see, e.g., Ref. 68), but
the mathematical framework was developed only between the late 1950s and the early 1970s.
The pioneering works of Hodges and Lehmann [32] and Tukey [72] helped demonstrate the
nonrobustness of several classical procedures. The fundamental work done by Huber [36–
39] and Hampel [27–30] laid the theoretical foundation of “robust statistics.” The Princeton
Robustness Study of Andrews et al. [2] also deserves special mention, especially from the
computational point of view.

The rest of the chapter is organized as follows. In Section 28.2 we discuss some of the basic
robustness tools such as the M-estimators and influence function, and also provide some refer-
ences for alternative approaches to robustness. In Section 28.3 we provide a survey of the more
recent literature dealing with the use of robust methods in biomedical applications. In Sections
28.4–28.6 we choose three important topics in biomedical research and discuss a selected
robust method appropriate for handling each such case. Concluding remarks are given in
Section 28.7.

28.2 STANDARD TOOLS FOR ROBUSTNESS

In this chapter our discussion will remain mostly intuitive and expository. In this section we
will focus on some of the basic robustness tools such as M-estimators, influence function,
and breakdown point. We will discuss their interpretations and in which situations they are
relevant. We will generally refrain from making specific distinctions between terms such
as qualitative robustness, quantitative robustness, B-robustness, and “the minimax approach
to robustness,” although they are closely related to the tools that we will discuss in this section.

Let F represent the unknown, underlying true distribution; we will denote our parameter of
interest by T(F), where T(.) is a function from F to the real line R (or the p-dimensional real
plane if T(F) is a vector of order p), and F is a convex set of distribution functions containing
all plausible models and all empirical distribution functions. We will refer to T as a statis-
tical functional. See Fernholz [20] for a nice discussion of statistical functionals; also see
Serfling [64].
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28.2.1 M-Estimators

Estimators Tn (X1, . . . , Xn) of the parameter u ¼ T(F) obtained as minimizers of objective func-
tions of the form

Xn
i¼1

r(Xi; u) (28:1)

over u, or as the solutions of the corresponding estimating equations
Xn
i¼1

c(Xi,u) ¼ 0, (28:2)

are calledM-estimators (maximum-likelihood-type estimators) of u where X1, . . . , Xn represent
a random sample from the true distribution F and fFu : u [ Qg represents the parametric form
modeling it. The particular choice r(x, u) ¼ 2log fu(x), or c (x, u) ¼ (@/@u) log fu(x),
generates the negative of the log likelihood and the maximum-likelihood score equation,
respectively; the relevant estimator in this context is the MLE. It is intuitively obvious that
if one has control over the functions r or c, one can choose them in a way to limit the
impact of large residuals.

Occasionally, the expression in Equation (28.1) may not have a minimum, but in such cases
there would usually be an equivalent formulation of r(., .) where one will not encounter this
problem. Equation (28.2), on the other hand, may have more than one solution depending
on the local minima of the minimization problem so that the correct solution has to be
chosen with care. See Huber [42] for more discussion on these issues.

28.2.2 Influence Function

Huber [36,40] considered and demonstrated the existence of M-estimators of location and
regression with minimax asymptotic variance over a specified neighborhood of a given distri-
bution. This generated the minimax approach to robustness. Hampel [27,30] assessed the
robustness of an estimator by examining the behavior of the first Gateaux derivative of the
corresponding functional at the underlying model distribution. This has led to the infinitesimal
approach to robustness and the concept of the influence function.

We say that a functional T is Gateaux-differentiable [41,60] at the distribution F (which is in
the domain of the functional T) if there exists a real function b such that for all G in the domain
of T the relation

@

@a
T((1� a)F þ aG)½ �a¼0 ¼

ð
b(x) dG(x) (28:3)

holds. The left-hand side (LHS) of this equation is the directional derivative of T at F in the
direction of G. By putting G ¼ F in (28.3), it can be easily seen that

ð
b(x) dF(x) ¼ 0;

so that dG(x) may be replaced with d(G 2F)(x) in Equation (28.3). This function b(x) is inde-
pendent of G, and is called the influence function of the functional T at the distribution F.
However, Equation (28.3) only defines the influence function implicitly. An explicit
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formulation of the influence function can be obtained if, in particular, one chooses G ¼ Dy (the
probability measure that puts all its mass on point y). Denoting the value of the influence func-
tion of the functional T for the distribution F at the point y by IF( y, T, F), it can be explicitly
defined as

IF( y, T ,F) ¼ @

@a
T((1� a)F þ aDy)
� �

a¼0: (28:4)

The influence function represents the asymptotic effect of an infinitesimal contamination at
point y on the estimate; it is a measure of the effect of the contamination on the asymptotic bias.
Small values of the influence function IF(y, T, F) are preferable, since that would mean that
such contaminations do not seriously affect the estimate. Boundedness of the influence func-
tion is often cited as a desirable property for robustness. The influence function is also closely
related to the asymptotic variance of the estimator. See Reeds [60], Fernholz [20], and Hampel
et al. [31] for more discussions on this issue.

In actual practice, the existence of the influence function requires a condition weaker than
Gateaux differentiability, as has been demonstrated by Huber [41]; this makes its range of appli-
cability very large, as it can be calculated in most realistic conditions without having to worry
about complicated regularity conditions. And despite the technical nature of its definition, the
actual evaluation of the influence function via Equation (28.4) is often a routine matter.

28.2.3 Breakdown Point

While the influence function quantifies the impact of an infinitesimal contamination on a func-
tional, the breakdown pointmeasures the proportion of data contamination that the functional can
withstand before being arbitrarily perturbed. When a sample of fixed size n is under consider-
ation, the finite sample breakdownpoint e�n of an estimator is the smallest fraction of these n obser-
vations that,when replaced byarbitrary numbers, can completely destroy the estimator and render
it meaningless. Thus for the sample mean the finite sample breakdown point is 1/n, while for the
a-trimmed mean (see Section 28.2.4) the finite sample breakdown point is e�n ¼ ([an] þ 1)/n,
where [.] represents the box function.

As a measure of global stability, it may be more meaningful and sometimes easier to deter-
mine the asymptotic breakdown point of the functional. Given a functional T(.), its asymptotic
breakdown point quantifies the separation between G and F before T(G) is arbitrarily far from
T(F). Normally the breakdown point does not depend on F; in this sense it is essentially a
global property of T. The asymptotic breakdown point is usually the limit of the finite
sample breakdown point e�n. Thus the asymptotic breakdown point of the median is 1

2, while
the asymptotic breakdown point of the a-trimmed mean is a. Since the asymptotic breakdown
point represents the maximum permitted percentage of the perturbation minority such that it has
only limited impact on the functional, the upper bound of the asymptotic breakdown point is 1

2.

28.2.4 Basic Miscellaneous Procedures

Given the data X1, . . . , Xn, the sample mean is in general the most common estimator of the
population mean in statistical literature. Often it is the minimum varianced unbiased estimator,
although there are models where the sample mean is not sufficient for the population mean
parameter. The sample mean can be used for estimating other parameters as well, such as
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the scale parameter of the exponential model. However, since the estimator needs only one bad
value to be arbitrarily perturbed, from the robustness viewpoint the sample mean is generally an
unsatisfactory estimator.

The sample median, on the other hand, enjoys an inherent robustness property. If the order
statistics of the data are represented by X(1), . . . , X(n), the sample median is X(mþ1) when n ¼
2m þ 1 is odd, and equals (X(m) þ X(mþ1))/2 when n ¼ 2m is even. The finite sample break-
down point of the sample median is approximately 1

2; the median functional at the distribution
function F, defined by

Tmedian(F) ¼ F�1 1
2

� �
,

has asymptotic breakdown point equal to 1
2. For the mean functional Tmean(F), the influence

function is given by

IF( y, Tmean, F) ¼ y� Tmean(F)

and hence is an unbounded function of the argument y unless the distribution of F has bounded
support. On the other hand, under the assumption that F has a density f that is continuous and
positive at Tmedian(F), it is quite easy to show that the influence function of the median func-
tional is bounded (so is, in fact, the influence function of any of the other quantiles under
similar assumptions).

Other common and elementary procedures include the trimmed mean and the winsorized
mean. The 100a% trimmed mean is the mean of the remaining observations after having
deleted the largest 100a/2% observations as well as the smallest 100a/2% observations. In
a sample of size n, this amounts to discarding the smallest and the largest [na/2] observations.
One can consider one-sided trimmed means also, where only the largest (or smallest) obser-
vations constitute potential outliers. The 100a% winsorized mean is similar in spirit to the
trimmed mean, except that in the winsorized case the values in the lower tail that would
have been discarded by the trimmed mean are replaced by the smallest value that is retained,
while the values in the upper tail that would have been discarded by the trimmed mean are
replaced by the largest value that is retained. Thus, given n observations, any observation
larger than X(m) is replaced by X(m), where m ¼ n 2 [na/2]. Similarly in the lower tail.

28.2.5 Alternative Approaches

There are some interesting and useful alternative approaches to the mainstream robust tech-
niques represented by the M-estimators and their variants. We will briefly touch on these in
this subsection, but applications of some of these methods will be illustrated in detail for
some specific cases in the later sections.

The first such approach is the one based on adaptive procedures. Such procedures adjust to
the current knowledge about the unknown distribution and its parameters. See Hogg [33] and
Welsch [77] for some representative—if old—descriptions of adaptive procedures.

A second approach is that based on minimum-distance procedures where one chooses an
estimator based on the minimization of a “distance” between the members of a parametric
family and a nonparametric estimate of the population distribution. This approach itself
branches into two related but substantially different approaches; one is based on the minimiz-
ation of a distance between the model distribution function and the empirical distribution func-
tion (see, e.g., Ref. 53), while the other is a density-based approach that minimizes a measure of
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discrepancy between the model density and a nonparametric estimate of the true density (see,
e.g., Refs. 6, 49, and 66).

Another approach is to modify Bayesian techniques in order to impart a certain amount of
robustness in these methods (see, e.g., Refs. 12 and 43).

28.3 THE ROBUSTNESS QUESTION IN BIOMEDICAL STUDIES

Robustness is an active research area and has traveled a long way since its infancy in the early
1960s. Scores of subspecializations have now cropped up within the main theme of robustness.
Clearly it is not possible to present a comprehensive description of all these within the short
span of the present chapter. In this section we will present a brief literature survey of the
more recent robustness literature specifically in the context of biomedical studies.

Application of robust methods in the biomedical literature is extensive and varied. Since
biomedical data are hardly, if ever, available from controlled laboratory settings, they are
almost always subject to noise. Robust methods try to model the bulk of the data after discount-
ing for the contamination, which is assumed to be a small and insignificant portion of the data.
Discounting the aberrant portion may be done in many innovative ways and depends on the
field of application.

Most robust techniques guard against the influence of outliers. Outliers that are incorporated
into a multivariate calibration model can significantly reduce the performance of the model.
However, in the case of multiple outliers, the standard methods of outlier detection may some-
times fail. Pell [54] examined the use of robust principal-component regression and iteratively
reweighted partial least squares for multiple outlier detection.

Nonparametric methods that do not give undue weight to observations inconsistent with a
parametric model have also received their share of attention. An interesting application of non-
parametric analysis of recurrent events in the presence of a terminal events such as death has
been developed by Ghosh and Lin [24]. They considered the marginal mean of the cumulative
number of recurrent events over time and presented a simple nonparametric estimator with
some optimum asymptotic properties. They also developed nonparametric statistics for com-
paring two mean frequency functions and for combining data on recurrent events and death.
The asymptotic null distributions of all the statistics have also been developed.

A common scenario in biomedical studies is multistate events data in which a single
subject is at risk for multiple events. Subjects are followed over a period of time and may
experience events of multiple types. Survival analysis, repeated-events data, competing
risks data, and the illness–death model are all examples of multistate events data that can
be represented as a stochastic process X(t) with its value at time t denoting a subject’s
state. The analysis of multistate events data is complicated by multiple events within a
subject. Glidden [25] considered nonparametric estimation of the vector of probabilities of
state membership at time t and developed robust confidence bands for these curves, taking
into account possibly non-Markov transitions.

Another novel application of a nonparametric method is the estimation of gap-time survival
functions for ordered multivariate failure data. Times between sequentially ordered events or
gap times are of much interest in biomedical studies. Gap times are usually right-censored,
and within-subject failure times are not independent. For example, in a cancer study an indi-
vidual’s times from incidence to remission and from remission to recurrence cannot be
assumed to be independent. Hence analyses of second and subsequent gap times include
induced dependent censoring and nonidentifiability of marginal distributions. Schaubel and
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Cai [63] constructed one-sample estimators of conditional gap-time-specific survival functions
through a nonparametric approach and proposed methods for confidence bands. Their estima-
tors are uniformly consistent, and standardized estimators converge weakly to a zero mean
Gaussian process whose covariance function can be consistently estimated.

Sometimes very simple robust estimators can be used to derive attractive results in a com-
plicated case. Kafadar and Prorok [44] developed a technique to estimate the difference in
location parameters of two survival curves that is robust to the assumptions of duration of pre-
clinical disease. This is useful in evaluating the effect of a cancer screening program. In this
evaluation the important measures are the average lead time (time by which diagnosis is
advanced by detection before onset of clinical trials) and average benefit time (time by
which survival is extended). Randomized clinical trials allow the separation of these effects
so that lead time and benefit time can be estimated for the population offering screening.
Here treatment means the invitation to participate in a screening program. In screening trials
a population of ostensibly healthy individuals is recruited from which cases evolve as the
trial proceeds. The estimation of average lead time and average benefit time is conducted on
cases that arise only after the trial has started. Because of length-biased sampling, the cases
in the two groups may not be comparable. The identification of comparable cases in estimating
the mean difference between survival curves adds a component of substantial variability, to the
estimators for average lead time and average benefit time. To reduce the variability, one of the
proposed strategies is to use 100a%-trimmed means.

Robust methods are also useful in comparing case–cohort estimators of survival data. A
case–cohort sample of adoptees was collected to investigate genetic and environmental influ-
ence on premature death. Petersen et al. [55] compared six regression coefficient estimators and
two different estimators of their variances, of which the robust variance estimator showed a
better overall performance.

In many applications the precise form of the model underlying the data may not be known,
but several plausible choices designated by a familyCmay be available. Often optimal tests for
each member of the model exist, but these tests may have poor power under another model.
Several approaches have been developed to obtain a single test with good power properties
over the range of the models. Tarone [71], Fleming and Harrington [22], and Friedlin et al.
[23] investigate this issue from different angles.

To avoid making any assumptions about the distribution of baseline and posttest responses,
semiparametric estimation of treatment effects has been proposed by Leon et al. [48]. Rank-
based procedures for testing noninferiority and equivalence hypotheses for continuous data
arising from multicenter clinical trials have been developed for mixed models [59].
Silvapulle [65] developed a robust test to evaluate a treatment in comparison to a placebo in
two or more groups of patients. In the presence of qualitative interaction or crossover inter-
action between patient groups and treatments, Silvapulle developed a test using M-estimators
that is power-robust against long-tailed error distributions.

Some of the methods to analyze longitudinal data in medical studies has also been subject to
heavy-tailed distributions. A model fit by generalized estimating equations has been used
extensively for this purpose. Since the generalized estimating equation (GEE) tries to minimize
a quadratic form of residuals, the method is not robust. To rectify this deficiency, Hu and
Lachin [35] introduced a family of truncated robust estimating equations. Like GEE, their
equations also assess the covariate effects in the generalized linear model in the complete popu-
lation of observations and both are approximately unbiased. GEE, as expected, is more efficient
with normal data, but efficiency decreases rapidly when data become contaminated or are
heavy-tailed. Also, GEE may be sensitive to the working correlation specification; different
working correlation structures may lead to different conclusions about the effect of
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the treatment. In such cases robust estimating equations perform much better, and in the
applications considered by Hu and Lachin, it was observed that robust estimating equations
consistently conclude that treatment effect is highly significant.

Robust procedures have also been used in the analysis of mean and covariance structures.
Several robust methods have been proposed by Yuan and Bentler [81] for model fitting and
testing. These include direct estimation of structured parameters using M-estimation and a
two-stage procedure based on M- and S-estimators of population covariances. Two distri-
bution-free test statistics have also been proposed to judge the adequacyof a hypothesizedmodel.

Robust estimates of location and scale have been used in determining a prediction interval
by Horn et al. [34]. They compared four reference intervals, and the robust estimator showed
the best performance for small sample sizes. Simple robust procedures have been proposed by
Emerson et al. [19] for meta-analyses. Meta-analyses often use a random-effect model to incor-
porate unexplained heterogeneity of study results. When combining risk differences in sets of
2 � 2 tables, it was found that a 20% trimmed weighted version of the DerSimonian–Laird
[17] procedure is attractive as it offers resistance against the impact of highly anomalous results.

In the following three sections we discuss selected robust methods in the areas of logistic
regression, censored survival data, and adaptive estimation in clinical trials.

28.4 ROBUST ESTIMATION IN THE LOGISTIC
REGRESSION MODEL

Case–control or retrospective studies are commonly used to investigate effects of covariates on
target disease outcomes. If the disease outcome is binary, logistic regression is a natural choice
as an analytical tool. Maximum-likelihood methods are generally applied to obtain estimates of
the logistic regression parameters. However, since atypical observations may have dramatic
impacts on the maximum-likelihood fits, several robust alternative methods of estimation
have been proposed in the literature. Here we provide a brief review of some robust methods
in logistic regression followed by a detailed description of a selected method.

Besag [8] has discussed some resistant alternatives to the MLE for the generalized linear
model. Another approachwas taken by Pregibon [56], who defined a robust estimator as themini-
mizer of a certain loss function of the sum of deviances of the observations. In an important paper
Copas [15] contrasts two forms of robust estimates for logistic regression parameters and
concluded that a misclassification maximum-likelihood estimate is preferable over the robust
estimates due to Pregibon [56], as the latter is inconsistent at the logistic model. In another
paper Kunsch et al. [47] proposed the downweighting of aberrant observations through elliptical
contours. Carroll and Pederson [13] developed robust estimates of logistic regression parameters
that belong to the Mallows class. Bianco and Yohai [9] also proposed a corrected version of
Pregibon’s estimator that they showed to be consistent and asymptotically normal.

Prentice and Pyke [57] showed that one can get the MLE of the logistic slope parameter
with case–control sampling from a standard prospective logistic regression program and that
the resulting standard errors are asymptotically correct. Wang and Carroll [74] extended this
idea to produce robust estimators of the case–control parameters via prospective methodology.
They focus specifically on estimates that downweight observations on the basis of one of
the following three factors: (1) leverage, (2) extreme fitted values, and (3) likelihood of mis-
classification. These estimators are consistent and asymptotically normally distributed under
the case–control sampling scheme, and the prospective formulas for asymptotic covariance
estimates may be used without modification in case–control studies.
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However, none of the downweighting techniques, either by using elliptical contours or in
terms of extreme predicted probabilities, are highly effective for case–control studies. This
is mainly because the marginal distribution of the covariates is a mixture of two distinct distri-
butions: one for the cases and the other for the controls. In the extreme case where the cases
indicate rare diseases and their number is very small compared to the controls, and if
the cases and the controls have sufficiently separated centers, the entire group of cases may
be considered as outliers and receive little or no weight.

Estimation of logistic regression parameters in the presence of outliers using minimum
distance methods provides an attractive alternative. Bondell [11] considered a robust estimation
procedure based on the minimization of the weighted Cramer–von Mises procedure. The
minimum distance idea can also be used to construct a natural class of goodness-of-fit statistics
for testing the validity of the logistic regression model.

In the following we discuss in detail another estimator that is also closely linked to the mini-
mization of a distance (although in a different sense) and can be very useful in some specific
logistic regression problems. The approach is based on a study by Markatou et al. [51], and is
useful when the covariate X is discrete with multiple Y observations at each level combination
of X. The approach constructs weighted maximum-likelihood score equations and studies the
corresponding M-estimators for discrete distributions. The method borrows heavily from
Simpson [66] and Lindsay [49], as well as the minimum Hellinger distance and related
ideas of Beran [5–7]. Other related approaches in weighted likelihood estimation include
the work of Green [26], who extensively discussed the theory and use of iteratively reweighted
least squares for maximum likelihood, and suggested the replacement of the usual maximum-
likelihood score equations with weighted score equations. Field and Smith [21] also suggested
another weighted likelihood estimation method. The concepts of minimum distance and
weighed likelihood have also been used to develop robust tests of hypotheses. Simpson
[67] proposed the Hellinger deviance test, a robust alternative to the likelihood ratio test.
Agostinelli and Markatou [1] proposed robust tests of hypothesis based on the weighted
likelihood ideas.

To explain the proposed weighted likelihood method in a general setting, let X1, . . . , Xn be a
random sample from a discrete distribution with probability mass function fu(x); without loss of
generality, let the sample space be x ¼ f0, 1, . . . , g or a subset of it. Let uu(x) ¼ ru log fu(x) be
the maximum-likelihood score function, ru representing the gradient with respect to u. Under
standard regularity conditions, the weighted MLE of u will be obtained as a solution of the
estimating equation

Xn
i¼1

w(Xi,Fu,Fn)uu(Xi) ¼ 0, (28:5)

where Fu is the model distribution function and Fn is the empirical distribution function. The
weight function w(X, ., . ) is selected in such a way that it has a value close to 1 if there is no
evidence of model violation at X from the empirical distribution function. It has a value close to
zero or exactly zero at X if the empirical cumulative distribution function indicates lack of fit at
X. Thus the weight function downweights observations that are inconsistent with the model. If
the assumed model is correct, the weight assigned to each observation should be asymptotically
equal to 1, which is necessary for the estimator to be asymptotically efficient at the model.

In determining which observations to downweight, the abovementioned method uses a
probabilistic approach instead of a geometric interpretation; in the latter a point is labeled as
an outlier if it is geographically well separated from the bulk of the data. In the probabilistic
interpretation an observation is an outlier if it is very unlikely to occur if the fitted model
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were true. Davies and Gather [16] have also defined outliers in terms of their position relative to
the model that most of the observations follow.

For any value x in the sample space x, we define the Pearson residual as

d(x) ¼ d(x)
fu(x)

� 1,

where d(x) is the relative frequency of the value x in the sample and fu (x) is the corresponding
value under the model when the parameter value is u. If the model is correctly specified, then
the residuals d(x) converge to 0 almost surely. Wherever convenient, we will simply write d for
d(x) unless there is a scope for confusion. Probabilistic outliers will manifest themselves
through large positive values of d at the corresponding x, since here the observed d(x) will
be much larger than the expected model probability fu(x).

Minimum-disparity estimators of the parameter u are obtained by minimizing a disparity—a
density-based divergence between the empirical density d(.) and the model density fu(x). Such
a measure is defined by

rG(d, fu) ¼
X
x

G(d(x)) fu(x),

where G is a real-valued, convex, thrice-differentiable function on [21,1) with G(0) ¼ 0.
Under differentiability and appropriate regularity conditions, the minimum-disparity estimating
equation has the form

X
x

A(d(x))ru fu(x) ¼ 0, (28:6)

where A(d) ¼ (1 þ d)G0(d)2G(d), Where G0 is the derivative of G. Without changing the esti-
mating properties of the disparity, it may be recentered and scaled so that the functionA(d) satisfies
A(0) ¼ 0 and A0(0)¼ 1. Thus when the assumed model is correct, A(d) converges to 0 almost
surely. The function A(d) is called the residual adjustment function (RAF) of the disparity.

The estimating equation (28.6) can be rewritten as

X
x

A(d(x))þ 1
d(x)þ 1

uu(x) d(x) ¼ 0:

Rewriting the sum on the left-hand side (LHS) as the sum over the sample index i rather than
over the sample space, this estimating equation turns out to be exactly in the form of (28.5) with
w(x, Fu, Fn) ¼ (A(d(x)) þ 1)/(d(x) þ 1). Clearly the weights converge to 1 under the model for
all x since A(d) and d both converge to 0 for all x; thus the estimating equation resembles the
likelihood score equation when the sample size is large. On the other hand, if there are dis-
parities for which the residual adjustment function has a strong downweighting effect on the
large positive d outliers—such as the Hellinger distance or the negative exponential disparity
[49]—outlying observations will have a substantially reduced weight in Equation (28.5).

Under the model, the weighted likelihood estimators obtained as the solution of Equation
(28.5) where the weights are constructed in the manner described above are asymptotically
fully efficient. The estimators also have the same influence function as that of the MLE
under the model. However, this implies that the influence function of the weighted likelihood
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estimator can be potentially unbounded. In this case the influence function turns out to be a
misleading indicator of the robustness properties of the weighted likelihood estimators. The
appropriate analysis using higher-order terms (viewing the influence function approach as
the first-order analysis) correctly captures the robustness properties of these estimators [49].

Now consider the logistic regression scenario. Suppose that there are m different covariate
patterns and multiple observations at each covariate pattern xi. Thus there are ni binary obser-
vations corresponding to xi, and let Yi be the number of observations among them that are equal
to 1. Hence Yi has a binomial distribution with parameters (ni, pi). Let di ¼ yi/ni, where yi
represents the observed value of Yi, and let

pi ¼
exp (xTi b)

1þ exp (xTi b)
:

We will define the Pearson residual as

d1(xi) ¼
di
pi
� 1: (28:7)

The estimation procedure should downweight the ith case if the corresponding Pearson residual
d1(xi) is a large positive value. However, any observation corresponding to a given covariate
pattern xi generates a two-cell Bernoulli distribution, and negative Pearson residuals for the
“1-cells” (successes), actually indicate positive residuals for the “0-cells” (failures). Thus it
is also necessary to define

d0(xi) ¼
1� di
1� pi

� 1

as the residual for the “0-cell.” The estimators are then obtained by minimizing a weighted sum
of distances. For a given function G with the requisite properties, we minimize, with respect to
b, the objective function

Xm
i¼1

ni
exp (xiTb)

1þ exp (xiTb)
G(d1(xi))þ

1
1þ exp (xiTb)

G(d0(xi))

� �
:

By equating the derivative to 0, one gets the corresponding estimating equation as

Xm
i¼1

ni½A(d1(xi))� A(d0(xi))�rb

exp (xiTb)
1þ exp (xiTb)

� �
¼ 0, (28:8)

which differs from the corresponding maximum-likelihood score equation

Xm
i¼1

ni½d1(xi)� d0(xi)�rb

exp (xiTb)
1þ exp (xiTb)

� �
¼ 0

only through the form of the RAF A(d). Equation (28.8) can be rewritten as

Xm
i¼1

½w1(xi)yi(1� pi)� w0(xi)(ni � yi)pi�xi ¼ 0, (28:9)

where

w1(xi) ¼ ½A(d1(xi))þ 1�=½d1(xi)þ 1�
w0(xi) ¼ ½A(d0(xi))þ 1�=½d0(xi)þ 1�
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and rbpi ¼ pi(12pi)xi. Equation (28.9) can be solved iteratively as a weighted likelihood
procedure. At every stage, the current values of b may be used to construct new weights
w1,w0, and the equation can be solved to obtain new estimates of the parameters treating the
weights as fixed constants. The process is repeated until convergence. The method generates
fully efficient estimators of the parameter vector b; additionally, the estimators are endowed
with strong robustness properties.

In the following we present an example to illustrate the performance of the method
described above in real situations. The data analysis presented here has been reproduced
from Markatou et al. [51] with the kind permission of Elsevier. The example involves
data that were generated from a toxicological experiment and are presented in O’Hara
Hines and Carter [52, p. 13]. Six different concentrations of the toxicant potassium
cyanate (KSCN) were applied to 48 vials of trout fish eggs. Each vial contained 61–179
eggs. For half of the vials, the eggs were allowed to water-harden for several hours
before the toxicant was applied. For the others, the toxicant was applied just after fertiliza-
tion. The number of dead eggsin each vial was counted after 19 days of the start of the
experiment.

The proportion of dead eggs in each vial is treated as the response, and a logistic regression
model is fitted to the data with covariates for water hardening (0 if the toxicant was applied
before and 1 if it was applied after water hardening), and for a linear and quadratic term in
log concentration of the toxicant. The quadratic term in log concentration is used to describe
a sharp increase in mortality caused by the two highest concentrations. Weighted likelihood
estimation is used to fit the model with weight functions based on the RAFs of the negative
exponential disparity and the Hellinger distance, respectively. Table 28.1 gives the weights
of those cases that did not receive a weight of nearly or exactly 1. We have two columns of
weights; column 1 corresponds to the weights of the response cells and column 0, to those
of the nonresponse cells, for any given xi. The parameters a, b1, b2, and b3 are the intercept,

Table 28.1 Weights for KSCN Example

Negative Experimental Weights Hellinger Weights

Case Column 1 Column 0 Column 1 Column 0

12 0.8905032 1.0000000 0.8552530 0.9965012
13 — — 0.0000000 0.9977647
14 — — 0.3279548 0.9982219
28 — — 0.4098746 0.9993424
32 — — 0.0000000 0.9993965
34 0.8940925 1.0000000 0.8541044 0.9973958
35 — — 0.2994592 0.9996005
36 — — 0.7742827 0.9997611
37 0.8532178 1.0000000 0.8281611 0.9836277
38 0.6217503 1.0000000 0.7023431 0.8955089
39 0.7126061 1.0000000 0.7485037 0.9477368
40 — — 0.0000000 0.9973932
41 — — 0.8588582 0.9943002
42 — — 0.3038337 0.9886016
43 — — 0.0000000 0.9866767
44 — — 0.0000000 0.9828289
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and the slope parameters associated with water hardening, log concentration and squared log
concentration, respectively.

The negative exponential RAF downweights observations 12, 34, 37, 38, and 39. After
inspection of the data, it is seen that observation 12 with weight 0.8905 and observation 34
with weight 0.8940 have, respectively, the highest numbers of dead eggs at concentration
level 360, after and before water hardening. Observations 37, 38, and 39 at concentration
level 720, prior to water hardening, are also downweighted as having high mortality.
Notice that observations 38 and 39 received lowest weights. Examination of these obser-
vations showed that the mortality was high compared to all four replicates at the next
higher concentration level at the same water hardness level. O’Hara Hines and Carter
[52] have considered observations 38, 39, and 26 as possible outliers. The weighted likeli-
hood method gives observation 26 a weight of nearly 1, indicating that it is consistent with
the fitted model. An analog of Cook’s statistic also identified observations 38 and 39 as
potential outliers.

When the Hellinger RAF is used for the construction of the weights, observations 13, 32,
40, 43, and 44 received a weight of 0. Examination of those observations reveals that obser-
vation 32 has a 0 response, while observations 40, 43, and 44 have the lowest mortality at con-
centration levels 720 and 1440, respectively, at the same water-hardening level. For similar
reasons observation 42 receives a weight of 0.3038, while observation 41 receives a weight
of 0.8588. Observation 13, having the lowest number of dead eggs at concentration level
720 after water hardening is applied, receives a weight of 0, suggesting its incompatibility
with the fitted model.

28.5 ROBUST ESTIMATION FOR CENSORED SURVIVAL DATA

In biomedical and industrial settings the statistician routinely encounters survival data. The
problem with such data is that they are seldom fully observed and their analysis is complicated
by various censoring mechanisms that come into play. Here we will describe the method pro-
posed by Basu et al. [3], one of the more recent methods of estimating the model parameters
robustly under censored survival data.

The method is an adaptation of the approach of Basu et al. [4], which considered robust
estimation of the parameters when independent and identically distributed (i.i.d.) observations
are available from the true distribution, which is modeled by a parametric family. Basu et al. [4]
minimize a family of density-based divergences; the divergences are indexed by a single tuning
parameter a, and represent data-based measures of discrepancy between the true density and
the assumed model density. A major advantage of the method is that it does not require
additional accessories such as kernel density estimation or other forms of nonparametric
smoothing to produce nonparametric density estimates of the true underlying density function.
The empirical distribution function itself is sufficient for the purpose of constructing the diver-
gence in the case of i.i.d. data. For the right-censoring scenario, one can replace the empirical
distribution function with the corresponding estimate of the cumulative distribution function
based on the Kaplan–Meier estimate [45] of the survival curve. Thus in this situation one
can also construct the data-based estimate of the divergence measure without having to take
recourse to nonparametric smoothing techniques.

First we discuss in brief the method proposed by Basu et al. [4] for i.i.d. data. Let the para-
metric model fFug be indexed by an unknown p-dimensional parameter u [ Q,Rp. We will
assume that Fu has a density fu with respect to the dominating measure; let G represent the class
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of all distributions having densities with respect to this dominating measure. Basu et al. [4]
defined the density power divergence da(g, f) between two density functions g and f as

da(g; f ) ¼
ð

f 1þa(x)� 1þ 1
a

	 

g(x) f a(x)þ 1

a
g1þa(x)

� �
dx for a . 0: (28:10)

In this form the divergence is not directly defined if a equals 0, but can be defined in the limit-
ing sense as

d0(g, f ) ¼ lim
a!0

da(g, f ) ¼
ð
½g(x) log ( g( x)=f (x))þ ( f (x)� g(x))�dx (28:11)

Since
Ð
( f (x)� g(x)) dx ¼ 0, the RHS of Equation (28.11) represents a version of the Kullback–

Leibler divergence [46]. On the other hand, a ¼ 1 leads to the squared L2 distanceÐ
f(g(x)� f (x))g2dx. The density power divergence is a nonnegative measure for all a � 0.
Under the parametric model fFug, the minimum-density power divergence estimator of u

corresponding to the tuning parameter a at the target density g is obtained by minimizing
da(g, fu) over u [ Q. However, when f is replaced by fu on the RHS of Equation (28.10),
the third term of the integral is independent of the parameter, and the minimization of the diver-
gence with respect to u is equivalent to the minimization of

ð
f 1þa
u (x)dx� 1þ 1

a

	 
ð
f au (x)dG(x): (28:12)

Thus, given a random sample X1, . . . ,Xn from the true unknown distribution G, one can mini-
mize a data-based estimate of the expression in (28.12) given by

ð
f 1þa
u (x)dx� 1þ 1

a

	 
ð
f au (x)dGn(x) ¼

ð
f 1þa
u (x)dx

� 1þ 1
a

	 

n�1

X
f au (Xi),

(28:13)

where Gn is the empirical distribution function. Under differentiability conditions on the model
and other regularity conditions, the minimum-density power divergence estimating equation
has the form

ð
uu(x) f

1þa
u (x) dx� n�1

Xn
i¼1

uu(Xi)f
a
u (Xi) ¼ 0, (28:14)

where uu( � ) ¼ (@=@u) log fu( � ) is the likelihood score function. Thus if fFug is a location
model, the estimating equation becomes

Xn
i¼1

uu(Xi) f
a
u (Xi) ¼ 0,

and observations that are less likely under the model are subjected to greater downweighting
through the presence of the f au ( � ) term. Notice also that the minimum-density power
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divergence estimating equation is unbiased under the model. One gets the maximum-likelihood
score equation for a ¼ 0. Larger values of a lead to greater robustness, but efficiency decreases
with a also. We will refer to these estimators as minimum-divergence estimators (MDEs).

In case of the right-censoring problem, each random observation Xi from the target distri-
bution G is associated with a random observation Ci from the censoring distribution H, and one
observes only Yi ¼ min(Xi, Ci) together with di (which is the indicator of the event Xi , Ci) but
not the Xi. It is assumed that the variable of interest X and the censoring variable C are inde-
pendent. It is also necessary to assume that the distribution G and the censoring distribution H
have no common points of discontinuity. Under this, and some other appropriate regularity
conditions, the Kaplan–Meier estimate [45] of the survival function Ŝn(x) converges almost
surely to the true survival function S(x). Thus in the right-censoring problem one can

replace Gn in (28.13) with Ĝn ¼ 1� Ŝn, which provides a consistent estimator of the true dis-
tribution function in this context.

The best-fitting parameter is then the minimizer of

D(u) ¼
ð
f 1þa
u (x)dx� 1þ 1

a

	 
ð
f au (x)dĜn(x) ¼

ð
Vu(x)dĜn(x)

where Vu(x) ¼
Ð
f 1þa
u (x)dx� (1þ 1

a
)f au (x) and Ĝn is the Kaplan–Meier estimate of the cumu-

lative distribution function G. The minimum density power divergence estimators of the par-
ameter u are obtained as the solution of the equation

ð
cu(x)dĜn(x) ¼ 0,

where the elements of cu( � ) represent the partial derivatives of Vu(x) with respect to the com-
ponents of u. Thus, to determine the asymptotic distribution of the minimum-density power
divergence estimator in the case of censored survival data, one needs a law of large

numbers and central-limit theorem-type results for general functionals
Ð
f(x)dĜn(x) of the

Kaplan–Meier estimator. Fortunately, a series of papers in the 1990s by W. Stute and J. L.
Wang [69,70,75] provided just this theoretical structure, including strong consistency and
asymptotic normality results. When aided by these results, it is a fairly routine task to show
that the proposed estimator of Basu et al. [3] has an asymptotic normal distribution with a
limiting covariance matrix depending, among other things, on the true distribution G and
the censoring distribution H. See Basu et al. [3] for details on the theoretical derivations.

Next we provide an example illustrating the application of this method on some real-life
data presented in Efron [18]. Analysis of these data has been reproduced here from Basu
et al. [3] under the kind permission of the Institute of Statistical Mathematics. The data
relate to a study comparing radiation therapy alone (arm A) and radiation therapy and che-
motherapy (arm B) for the treatment of head and neck cancer. There were 51 patients assigned
to arm A of the study, 9 of which were lost to follow-up and, therefore, censored; 45 patients
were assigned to arm B of the study of which 14 were lost to follow-up. The censoring levels
are quite high in these datasets, be equal to approximately 20% and 30%, respectively. Efron
[18] makes various analyses of these data, which show radiation and chemotherapy B to be
more effective in terms of survival times. In this example the fit of the Weibull model to
these data is studied.

The MLEs and the MDEs of the two Weibull parameters (where a represents the scale par-
ameter and b represents the shape parameter) are given for various values of the tuning par-
ameter a in Tables 28.2 and 28.3. There are very significant changes in both parameter
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estimates, with a including a change from b̂ , 1 (MLE and small a MDE) to b̂ . 1 (larger a
MDE). Figures 28.1 and 28.2 illustrate the results for arms A and B, respectively. A kernel
density estimate, formed by kernel smoothing the Kaplan–Meier estimator (e.g., see
Ref. 73, Sec. 6.2.3) is shown in each figure; the bandwidth is subjectively chosen not to over-
smooth the data. It is clearly shown by the kernel density estimates that in each case there is a
main body of data to the left, together with some much more long-lived individuals to the right.

The MLE Weibull fits are monotone decreasing because b̂ , 1, providing an unacceptable
compromise between accommodating the main body and the long tail of the data, and conse-

quently failing to capture either. The robust Weibull fits, with b̂ . 1, provide a wholly better fit
to the main body of the data at the expense of essentially ignoring the long tail. As such, this is
entirely successful in terms of robust fitting.

It may perhaps be argued that the contamination is in fact of interest and should also be
modeled. The results of fitting two-component Weibull mixtures to the data by maximum
likelihood are, therefore, also shown on Figures 28.1 and 28.2. (The corresponding parameter
estimates, in an obvious notation, are given in Table 28.4.) In Figure 28.1, the Weibull
mixture confirms the robust Weibull fit as being appropriate for the main body of data

Table 28.3 Analysis of Efron Data Assuming
Weibull Model: Arm B

a Scale â Shape b̂

MLE 0 925.45 0.76
MDE 0.001 789.23 0.91

0.01 790.07 0.91
0.1 791.81 0.90
0.2 789.26 0.90
0.25 785.13 0.90
0.5 726.72 0.93
0.75 551.53 1.03
1.0 343.07 1.31

Table 28.2 Analysis of Efron Data Assuming
Weibull Model: Aim A

a Scale â Shape b̂

MLE 0 399.24 0.91
MDE 0.001 418.18 0.98

0.01 417.72 0.98
0.1 412.72 0.99
0.2 402.51 1.00
0.25 395.31 1.02
0.5 321.90 1.16
0.75 252.85 1.44
1.0 249.47 1.47
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and adds a small second component to cover the tail. In Figure 28.2, the Weibull mixture
takes a rather different form, that of a narrow peak to the left and a long flat tail to the
right. Further alternative parametric models with heavier tails might be a betterway to
model in this case.

Figure 28.1 Kernel density estimate (dotted line), MLE Weibull fit (dashed line), MDE
a ¼ 1 Weibull fit (dotted–dashed line), and MLE two-component mixture Weibull fit (solid
line) for arm A of the Efron [18] data.

Figure 28.2 Kernel density estimate (dotted line), MLE Weibull fit (dashed line), MDE
a ¼ 1 Weibull fit (dotted–dashed line), and MLE two-component mixture Weibull fit (solid
line) for arm B of the Efron [18] data.
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28.6 ADAPTIVE ROBUST METHODS IN CLINICAL TRIALS

Here we provide an example of a situation—within the clinical trials framework—where the
aim is not to theoretically develop an advanced robust estimator specific to the situation but
to demonstrate that the use of very elementary robust estimators can lead to substantial gains
from the ethical angle. In clinical trials, where the interest of the experimenter is in comparing
two drugs, A and B, it is important from the ethical standpoint that as few individuals be allo-
cated to the poorer treatment as possible during the course of decisionmaking. Since the stat-
istical determination of the better treatment is not available prior to the experiment (after all,
that is what the clinical trial is trying to determine), to conform to the abovementioned
ethical view, it is imperative that one follow an adaptive design that specifies a higher allocation
probability for the treatment currently considered superior when allocating the next subject. In
the following we will describe such an adaptive design following Biswas and Basu [10]. Notice
that such a goal cannot be achieved with a fixed-sample-size trial, which predetermines the
number of subjects allocated to each treatment.

There are several examples of adaptive allocation designs based on a dichotomous
response, but the work of Biswas and Basu is among the rare few that consider an adaptive
allocation design based on the actual measurements of a continuous response. Here we
discuss the method in brief. Let the responses under treatments A and B possess absolutely
continuous distribution functions FA and FB, with respect to the Lebesgue measure. Our
interest is in the mean parameters mA and mB, and we wish to choose between the following
hypotheses:

H1 : mA ¼ mB, H2 : mA � mB, H3 : mA � mB:

We consider the treatment with the larger mean to be superior.
The design proposed by Biswas and Basu deterministically assigns the first subject to treat-

ment A and the second subject to treatment B. However, starting from the third, the incoming
subjects are allocated to one of the treatments based on an adaptive design described below
which utilizes the entire information on the continuous responses for the previously allocated
subjects up to that point. Let Wi be the response for the ith subject, and let di be the indicator
that takes the value 1 if the ith subject is allocated to treatment A and is 0 otherwise. The
number of subjects NAj and NBj treated by treatments A and B, respectively, after the entry
of the jth subject can be expressed as

NAj ¼
Xj

i¼1

di, NBj ¼
Xj

i¼1

(1� di) ¼ j� NAj :

Table 28.4 Maximum-Likelihood Parameter Estimates for
Efron Data Assuming Two-Component Weibull Mixture Model

Component p̂ Arm A 0.82 Arb B 0.35

First Scale â 241.53 156.00
Shape b̂ 1.47 4.08

Second Scale â 1428.11 1800.00
Shape b̂ 9.17 0.90
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The rule for allocating the ( j þ 1)th patient after having observed the responsesW1, . . . ,Wj and
the corresponding indicators d1, . . . , dj are as follows:

1. Choose a continuous cumulative distribution function G(.) that is symmetric about 0, i.e.
G(0) ¼ 1

2, and G(� x) ¼ 1� G(x) for all real x. The N(0,1) distribution function F( � )
is the most prominent example.

2. Determine the observed sample means for the two populations at this stage as

m̂Aj
¼

Pj
i¼1 diWiPj
i¼1 di

, m̂Bj
¼

Pj
i¼1 (1� di)WiPj
i¼1 (1� di)

:

3. Allocate the ( jþ 1)th patient to treatment Awith probability G((m̂Aj
� m̂Bj

)=c) and treat-
ment B with probability 1� G((m̂Aj

� m̂Bj
)=c). The parameter c is a tuning parameter.

The allocation should favor the treatment that has led to larger average responses in
the past. This scheme is able to achieve that.

4. One could also chooseG as a function of j. In that case the decision rule can be framed in
such a way that the same magnitude of difference between the means is treated as more
significant for larger j and the allocation probability to the currently better treatment can
be suitably magnified.

On the basis of a targeted n observations, one can choose the hypothesis H2 or H3 to be
the plausible one if the the observed difference of means (or a scaled version of it) is
greater or smaller, respectively, than a prespecified cutoff. Otherwise one chooses the
hypothesis H1. Clearly, one can also use an early stopping criterion that will allow termi-
nation of the experiment prior to observing n subjects if the accumulated information at the
point of termination is considered to provide sufficient evidence in support of one of the
hypotheses.

The ACTG 076 trial conducted by the AIDS Clinical Trial Group (see, e.g., Ref. 14) pro-
vides a case in question where the use of an adaptive design could have provided a substantial
improvement over the conventional design from the ethical standpoint. The aim was to deter-
mine whether the drug zidovudine (AZT) could reduce vertical HIV transmission from the
infected mother to the child, and out of 476 pregnant women who had enrolled for the
study, an equal number (238) of women and their infants were allocated to both the AZT
group and the placebo group. Yao and Wei [78] showed that an appropriate adaptive
design based on the “randomized play the winner rule” could have done the allocation in
the ratio 300–176 and about 11 newborns could have been saved during the course of
decisionmaking without significant loss in efficiency. This provides a quite compelling
argument in favor of the use of adaptive designs in clinical trials. Although we will be
dealing with continuous rather than dichotomous responses, it is obvious that such ethical
gains are likely in this case as well.

In the discussion above, the adaptive designed proposed by Biswas and Basu has been
presented entirely in terms of the sample means m̂Aj

and m̂Bj
of the two treatments. However

since in this approach one makes a direct comparison of the sample means on the basis of
the observations of the continuous responses, the robustness question deserves consideration;
it is especially important in view of the fact that the sample mean can be a notoriously non-
robust estimator of the population mean. A few outlying observations may be sufficient to
alter the hierarchy between the two means and hence lead to larger allocations to the poorer
treatment than are ethically desirable. A few extreme outliers can, in fact, move the
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allocation proportion in the wrong direction in comparison with the conventional fixed
sample size design, unlike the ACTG076 trial described above. In case of adaptive
designs involving dichotomous responses, it is not possible to identify an observation as
an outlier by looking at the corresponding indicator function. But in case of the continuous
responses, where the actual magnitudes of the responses have been observed, the robustness
question is a very pertinent one. Biswas and Basu have used two simple estimators of the
mean parameter under two different models: the M-estimator based on Huber’s c function
(see, e.g., Ref. 31) for the normal model, and the weighted likelihood estimator of Field and
Smith [21], and demonstrated through their simulations that small proportions of data con-
tamination can lead to substantially larger allocations to the poorer treatment through this
adaptive scheme. Adaptive designs—in the context of clinical trials—is a double-edged
sword; a few bad observations can completely ruin its entire purpose. Adaptive designs
should always be used in conjunction with robust procedures, which is the point Biswas
and Basu try to establish.

Here we present an example of the application of this continuous adaptive design (CAD) on
a dataset that is a part of the fluoxetine trial, a famous real-life adaptive trial. This example is
reproduced from Biswas and Basu [10] under the kind permission of Sankhya. A particular per-
mutation of the first 20 observations from each of the two treatments, A and B, generates the
following observations:

A: 4, 2, 220, 0, 221, 23, 216, 29, 3, 0, 26, 27, 23, 23, 24, 216, 26, 211,
23, 216

B: 2 1, 21, 212, 22, 211, 217, 25, 212, 210, 221, 27, 28, 220, 24, 2,
214, 21, 28, 216, 215.

For each treatment a response from the top of the stack of that treatment is chosen whenever an
observation from that treatment is required. For illustration, we consider the normal model with
equal variances and estimate the means using the M-estimators with Huber’s c function for
several different values of the tuning parameter b (see, e.g., Ref. 10, p. 31). The results
(number of allocations to treatment A) are presented in Table 28.5 along with the allocation
obtained by using the sample mean. The experiment was terminated when 20 individuals
had entered the study. Notice that the robust methods generally allocated more observations
to treatment A, the treatment with the larger mean, compared to the method based on
sample mean, probably because of the latter’s inability to deal with the three very small
values, 220, 221, and 216, early on in the chain of treatment A values.

Table 28.5 Number of Allocations to Treatment A Under Different Estimates

Estimates

Scaling
Constant

M-Estimates with Tuning Parameter b

c b¼1.25 b¼ 1.50 b¼ 2.00 Sample Mean

2.5 12 10 10 10
5.0 11 11 11 10
7.5 11 11 10 10
10.0 11 10 10 9
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28.7 CONCLUDING REMARKS

In this chapter we have tried to give a flavor of the importance of the robustness question in
biomedical studies. This is too large a research area to be satisfactorily covered in the short
span of this chapter, and many important areas have been left untouched or mentioned only
superficially. In particular, we have not discussed the linear model in any great detail
(except in the case of logistic regression); the rich literature in this area includes the works
of Yohai and his colleagues [79,80] and Rousseeuw and his colleagues [61,62]. Two other
useful resources that cover different angles of the robustness question in the biomedical
setup are Rao and Chakraborty [58] and Maddala and Rao [50]. The references cited therein
give substantial material for future reading pertinent to the theme of this chapter.
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29.1 INTRODUCTION

Many questions that are important to investigators make the analysis of hormonal time series
data challenging. Typical questions are

1. How many pulses occur per unit time in healthy individuals? In diseased individuals?

2. How much hormone is released during each episode? During the data collection period?

3. How rapidly is the hormone eliminated from the bloodstream?

4. Do pulses occur uniformly throughout the day, or does the event rate follow some non-
homogeneous process?

In order to answer these questions, the first thing one must usually do is distinguish between
a pulse and noise. This is perhaps the most challenging issue facing an analysis.

Hormone secretion can be broadly classified into two categories: episodic (or pulsatile) and
rhythmic. Episodic secretion is characterized by the release of large masses of hormone in a
short period of time. These secretion events can have either regular or irregular periods.
Rhythmic hormone secretion is characterized by a slowly varying ebb and flow of hormone
release much like the ocean tide. The period of secretion may be diurnal or it may occur
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over shorter or longer periods of time. Here we concentrate on two new statistical methods
developed for the analyses of hormones that display both components of episodic and
(basal) rhythmic secretion, such as that displayed in Figure 29.1.

One difficulty associated with the analyses of hormone secretion is that it is not a directly
observable phenomenon. Rather, plasma concentrations of hormone are observed. A common
assumption is that plasma concentration is the convolution of the secretion of hormone into the
circulatory system and the elimination of hormone from this system. Further, in most exper-
iments, hormone elimination is not directly observable and a functional form is assumed,
usually exponential. If both secretion and elimination were independently observable, then
the direct convolution of these two observed phenomena would be possible. Since they are
not, we have an inverse problem. Inverse problems typically arise when one only has indirect
observations of a quantity of interest. Furthermore, inverse problems are most often nonlocal;
dependence of the functional value at a particular point depend on physical conditions distant
to that point [15]. In the present case we wish to glean information about the secretion and elim-
ination functions given the concentration. This is known as deconvolution and is a well-known
ill-posed problem [37].

This ill-posed problem can be handled by two methods. The first is to simply analyze the
observed concentration profile and assume that patterns found in the concentration can be used
as a surrogate for secretion patterns. This is most likely a fair assumption; however, only a
limited amount of information about the secretion can be gleaned. The second method
assumes a model for the secretion of hormone into the circulatory system and a model for
the elimination of hormone from the system. However, even in this case, the problem of decon-
volution is ill-posed and methods to deal with it must be used, such as regularization.

Many methods have been developed to analyze pulsatile hormone data. A primary focus of
each is on the identification of the number and location of pulses. These methods have been
categorized into criterion-based methods and model-based methods [24]. From a historical
standpoint, criterion-based methods were the first methods developed. In general, criterion-

Figure 29.1 An example of cortisol (hydrocortisone) concentrations from a female subject
suffering from depression over a 24-h time period. Note the pulsatile nature of the concen-
tration. Plasma concentration levels of cortisol were obtained at 10-min intervals.
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based methods use test statistics to identify “pulses” in the observed concentration profile.
Typically, criterion-based methods use the coefficient of variation (CV) from the assay as
the true CV, which ignores other sources of variation. Pulses are identified as locations in
the data where the relative variability (relative to the assay CV) is higher than some threshold.
Hence estimated quantities related to variation are biased, such as the number of pulses. This
leads to overidentification of the true number of pulses [24]. Mauger and Brown identify seven
criterion-based methods: the Goodman–Karsch rule [8], ULTRA [34], PULSAR [25], the
cycle detector [3], CLUSTER [35], DETECT [29], and Pulsefit [27]. Technically, Pulsefit
has an underlying model associated with it. However, since it requires the complete decay
of a pulse to baseline before another event occurs, which is an oversimplification, Mauger
and Brown include it in their list of criterion-based methods.

One of the earliest models developed is due to O‘Sullivan and O‘Sullivan [30], who model
the hormone concentration in blood as the convolution of a pulse function and a point process
plus an error term. However, their estimation procedure is rather ad hoc and they assume a zero
basal concentration. Diggle and Zeger [5] entertain a non-Gaussian autoregressive model.
Their model is a mixture of zero mean Gaussian noise and gamma-shaped pulses. The
mixing probability is allowed to depend on past observations, thus incorporating feedback
into their model. Kushler and Brown [21] develop a model that assumes no functional form
for hormone secretion; instead, they assume instantaneous hormone secretion. Veldhuis and
Johnson [36] develop a model where hormone concentration is the convolution of exponential
decay and Gaussian-shaped secretion events. Their model is conditional on the number of
pulses. Thus, they rely on a criterion-based method to preselect pulses. Their model
assumes constant basal concentration. Komaki [20] develops a state space representation of
a non-Gaussian time-series model. His model assumes a zero mean basal concentration.
Keenan et al. [18] develop a stochastic differential equation model, the solution of which is
a stochastic version of the Veldhuis–Johnson deconvolution model. However, they entertain
a generalized gamma family of densities for the shape of the pulsatile events as opposed to
Gaussian-shaped events. They also assume a constant basal concentration and estimate
parameters conditional on pulse number and location. Thus, their method also relies on
criterion-based methods to identify pulse number and location. Guo et al. [10] also entertain
a state space model; more precisely, a multiprocess dynamic linear model. Their model is
the first one to include a changing basal concentration. They model it using the smoothing–
spline approach to function estimation. Johnson [12] is the first attempt at a fully Bayesian
approach to this problem. He assumes the deconvolution model of Veldhuis and Johnson
[36] with constant basal concentration. However, the number of events and their locations
are assumed to be random variables and are jointly estimated along with all other model para-
meters. Further, his method appears to be the first model that allows random variation of indi-
vidual pulse parameters to account for biological variation between pulses within a subject that
may be of scientific interest. Johnson [12] models these pulse parameters in a hierarchical
fashion. The posterior number of pulses, or secretion events, is taken to be the mode of the mar-
ginal posterior distribution of this number. All further analyses are conditional on this number
of pulses.

The two most recent methods, both of which incorporate a changing basal secretion func-
tion, are those due to Yang et al. [42] and Johnson [13]. Yang et al. [42] fit a nonlinear mixed-
effect partial spline model to pulsatile hormone data. Their model relies on some external
method to identify an initial number of pulses along with their locations. The basal concen-
tration is assumed to be a nonconstant function and is considered a nuisance. Nevertheless,
it must be accounted for in the analysis of hormones that suggest a nonconstant basal concen-
tration. They suggest the use of the Bayesian information criterion (BIC) as a model selection
procedure for final selection of the number of pulses. The most recent approach is that of
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Johnson [13]. His approach generalizes the early fully bayesian model to include a varying
basal concentration. Further, he does not condition on the mode of the number of events, as
he did earlier [12]. Rather, he takes the more germane Bayesian approach of model averaging
(over the number and location of pulse functions) to obtain a better overall fit to the data and to
account for variation across models.

The remainder of this chapter outlines and compares these last two models. Both models are
based on a general biophysical model outlined in Section 29.2 Section 29.3 outlines the
Bayesian modeling approach and is applied to a real dataset. The nonlinear mixed-effect
partial spline model is introduced in Section 29.4 and is applied to the same dataset. We con-
clude with a comparison of the two methods, including each method’s strengths and weak-
nesses, in Section 29.5 as well as a brief discussion on directions for future research.

29.2 A GENERAL BIOPHYSICAL MODEL

In this section we present two model-based methods for the analysis of episodic release of
hormone. One of the methods is Bayesian, while the other takes a frequentist stance. Both
methods are more or less based on the same model. Only the statistical paradigm used in esti-
mation differs. The biophysical model presented follows that in Yang et al. [42].

Both in vivo and in vitro studies of the endocrine system suggest the existence of two
physiologically distinct modes of hormonal secretion: basal secretion, which is characterized
by a slowly varying (perhaps constant) release or granule leakage of hormone, and episodic
or pulsatile secretion, which is characterized by a large amount of hormone released into the
circulatory system in a relatively short time. This release is typically caused by some type of
signaling mechanism, such as another hormone, that triggers the release of the hormone in
question [2].

To this end, let s(t) denote the secretion rate. Then s can be written as

s(t) ¼ b(t)þC(t),

where b(t) is the basal component andC(t) is the pulsatile component of the hormone secretion
rate. The pulsatile component will take a parametric form and is made up of piecewise additive
pulse functions,Ck(t; tk, gk), where tk is the location, or occurrence time, of the pulse and gk is
a vector of pulseshape parameters:

C(t) ¼
XK
k¼1

Ck(t; tk , gk): (29:1)

Typically the number of pulses K is unknown and is to be estimated along with the tk and gk.
There are several mechanisms for the clearance of hormone from the circulatory system,

including cellular binding of hormone to target cells, enzymatic cleavage, and glomerular
filtration. Typically these mechanisms cannot be modeled individually, and a single elimination
function is used to model the overall clearance rate. This elimination or “decay function” E,
which describes the removal of hormone from the circulatory system, is typically chosen to
be exponential or biexponential unless experimentation suggests some other form.
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Let c(t) denote the true concentration level at time t. A standard model for the true concen-
tration level at time t is [18]

c(t) ¼ c(0)E(t)þ g(t)þ (s �E)(t)
¼ c(0)E(t)þ g(t)þ (b �E)(t)þ (C �E)(t),

(29:2)

where the asterisk (*) represents the convolution operator defined by (u * v)(t) 0 ¼Ð
0
t v(s)v(t 2 s)ds, c(0) is the initial concentration at time zero (the beginning of the experiment),

and g represents microscopic biological variation.
In many experiments the main interest lies in the number of episodic secretion events and

the amount of hormone secreted during each event. Thus we treat each of the first three sum-
mands on the right-hand side (RHS) of (29.2) as a nuisance and write them as a single function

f (t) ¼ c(0)E(t)þ g(t)þ (b �E)(t): (29:3)

Function f is unobservable, and we approximate it using a spline representation. Details of how
this is accomplished are given in Sections 29.3 and 29.4.

Let Yt denote the observed concentration at time t (neither method described below requires
that the observed times series be equally spaced in time). Let 1t denote the error at time t. Let n
denote the number of observations in the time series. Then our model, for j ¼ 1, . . . , n, is

Yj ¼ c(tj)þ 1j ¼ f (tj)þ (C �E )(tj)þ 1j

¼ f (tj)þ
XK
k¼1

ðtj
0
Ck(v; tk , gk)E(tj � v)dvþ 1j: (29:4)

It is common to assume that the 1t �i:i:d: N(0, s). However, in this work we allow for more
general error structures. In particular, let 1 ¼ (11, . . . , 1n)

T. Then we assume 1 � Nn (0, s
2L).

Model (29.4) is the starting point for both the Bayesian and frequentist methods. There are
several challenging issues in fitting this model to data, including the following:

1. The number of episodic events K is unknown, as is the location of these events.

2. Deconvolution is an ill-posed problem.

3. The function f (t) is latent and must be approximated.

29.3 BAYESIAN DECONVOLUTION MODEL (BDM)

One of the biggest challenges to overcome when modeling (29.4) is determination of the
number of episodic events and their locations. From the frequentist perspective, deconvolution
of episodic hormone profiles is a two-stage process: (1) the number and approximate locations
of episodes is determined; and (2) conditional on the number of episodes K, parameters in
model (29.4) are estimated. Thus an error in the first stage carries over to the second. From
the Bayesian perspective, this is not a problem. The quantity K can be assumed to be an
unknown random variable and estimated from the data in a fully Bayesian model simul-
taneously with all other parameters. However, as K varies, so do the number of parameters gk
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and locations tk. Thus, by allowing K to change, we have a variable-dimension parameter
space. Standard MCMC techniques, such as Gibbs sampling [10] and the Metropolis–
Hastings algorithm [26,11], require fixed parameter spaces. There have been, however, more
recent advances in MCMC simulation that allow for variable-dimension parameter spaces.
Two of these are the reversible jump Markov chain Monte Carlo (RJMCMC) [9] and the
birth–death Markov chain Monte Carlo (BDMCMC) [32].

We begin by making a slight modification to the deconvolution model introduced in
Equation (29.4). The modification is motivated by the fact that the observed concentration
must be nonnegative. Hence, the error term 1j is strictly nonnegative and the normality of
the error may be called into question. Further, any symmetric error structure may be inappropri-
ate [31]. Here we allow the error term to depend on the mean by taking a log transformation of
the data:

ln(Yj þ 1) ¼ ln f (tj)þ
XK
k¼1

ðtj
0
Ck(v; tk , gk)E(tj � v)dv

 !
þ 1j: (29:5)

Note that we have added 1 to the observed concentration prior to taking the natural logarithm.
This is done to help with model fit [13]. Further, K will no longer have the interpretation of the
number of episodic secretion events. Rather, we think of it as the number of component func-
tions that, when summed or superimposed, make up the pulse functionC(t). This interpretation
allows for an episodic secretion event to be made up of the superposition of two or more com-
ponent functions Ck(t; tk, gk), thereby allowing more flexibility in model fitting (analogous to
the way a mixture distribution of normal densities can be used to fit arbitrarily shaped densities,
including multimodal densities).

We assume that hormone elimination is exponential: E(t) ¼ exp(2dt). Further, we assume
that the component functions are Gaussian-shaped: Ck(t; tk, gk) ¼ ak exp[20.5(t2 tk)

2/nk
2]/ffiffiffiffiffiffiffiffiffiffi

2pn2k

q
, hence the parameter set gk ¼ fak, nk

2g. Each ak is the amount of hormone secreted that

is attributable to the kth component function and
P

k¼1
K ak is thus the total amount of hormone

released from all functions, hence from all episodic events. Further we assume that the errors
1j � N(0, s) independently of one another. Johnson [13] considers other forms for the error
structure, allowing correlated errors, but found that this error structure gave the best overall
fit to the data.

Thus the likelihood formulation of our model is

ln (Yj þ 1) jQ
� �

� N½ln½c(tj)�;s�, (29:6)

where Q is the collection of all model parameters.
Johnson [12] considers a model similar to that in Equation (29.5). However, he considers

only a constant function f(tj) ; c. Here, we consider a more general approximation of f (tj) by
using a cubic B-spline approximation [4]. In particular, let P denote the number of interior
knots at locations fjigPi¼1. We consider both P and fjig to be unknown quantities to be esti-
mated. Further, conditional on P, let fbigi¼1

(Pþ4) denote the set of B-spline coefficients and
X(fjig) be a design matrix whose rows are the basis functions for the B-spline representation
of the function f. Note that X depends on both the number and locations of the knots. For nota-
tional clarity, we henceforth drop the dependence of X on the number and locations of the
knots. The dimension of X is N � (P þ 4) where N is the number of observations. Note that
eight additional knots (in addition to the interior knots) must be specified for a cubic
B-spline. Four of the knots are placed at 0, the beginning of the data, and the other four are
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placed at 24, the end of the data. Then f can be approximated at the observation times tj by
f(tj) � kXj

T, bPl, where Xj
T, is the jth row of X and bP ¼ (b1, . . . , bPþ4)

T.
We are now in a position to specify priors on all model parameters Q. We present priors

based on the factorization of the full joint prior distribution given at the end of this section.
We begin with parameters of the B-spline approximation to f. The number of knots P is

assigned a negative binomial (Negbin) prior with mean 3 and variance 6: P � Negbin(3, 1).
The number of knots can be regarded as a smoothing parameter in a B-spline representation
[4] with fewer knots resulting in smoother approximations to f. Since we believe that f
should be a rather smooth function, we choose to assign P a negative binomial prior with a
small mean. Conditional on P, the a priori locations fjig of the knots are assumed independent
and uniformly distributed over the support of the sample space ([0,24]). The conditional joint
prior density is thus p(j1, . . . , jPjP) ¼ 242P.

The last set of parameters that require a prior distribution, for the specification of f, is fbig.
Each summand that contributes to the function f in Equation (29.3) is necessarily nonnegative
as each summand represents a component of the overall concentration. Therefore, it is natural to
approximate the nonnegative function f, with a nonnegative approximation. Further, the basis
functions of the B-spline representation of any function are nonnegative. Hence a sufficient
condition for a B-spline function to be nonnegative is that each B-spline coefficient bi,
i ¼ 1, . . . , P, is nonnegative [4]. We handle this constraint by modeling the natural log of
the B-spline coefficients hierarchically: ln(bi) j P, b, c � N(b, c), with b � N(3, 1) and c2 �
IG(2.1, 2). (Our simulation studies show that results are rather insensitive to the choice of
these priors. However, the acceptance rate in the reversible jump MCMC step is quite sensitive.
These priors were chosen to give reasonable acceptance rates.) Furthermore, the offset of 1
added to the observed concentration must be accounted for in the estimation of the function
f; otherwise the estimate of f can include negative values—an impossibility. We do so by
adding 1 to the estimate of the function f.

The priors on the parameters of the component functions Ck(t, tk, gk) are specified hier-
archically. We begin with the number of components K, which we give a negative binomial
prior with mean 10 and variance 20: K � Negbin(10, 1). This prior reflects our belief that
the number of secretion events should be about 10 in a 24-h period. However, it is also suffi-
ciently variable to allow fewer events and allow for the possibility that secretion events may be
made up of several component functions. Given K, the locations of the component functions,
ftkg are assumed to be independently distributed as uniform random variables on the support
of the sample space. Their joint prior density, conditional on K, is p(t1, . . . , tK j K) ¼ 242K.

The other parameters necessary for specification of the K component functions are the ak

and nk
2, k ¼ 1, . . . , K. Since the nk

2 . 0, we place a normal distribution on the log of the nk
2:

ln(n2k ) jK, n, z � N( ln(n), z), k ¼ 1, . . . ,K,

ln(n) � N(�1, 1), z2 � IG(5, 2):

The mass secreted from each component k, namely, ak, must also be positive. We also specify
this prior hierarchically:

ln(ak) jK,a,q � N( ln(a),q), k ¼ 1, . . . ,K,

ln(a) � N(3, 1), q2 � IG(5, 2):

These prior and hyperprior distributions are based partly on mathematical convenience and on
satisfying the positivity constraints. The parameter values of these distributions were derived
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according to what we believe to be biologically relevant values. Simulation studies (unpub-
lished) show that the results are only modestly sensitive to the variances of these distributions.
However, uninformative priors are not sensible here, because of the ill-posed nature of the
problem. The last two parameters that require prior distributions are the decay rate d and the
model error variance s2. We choose to model the decay function in terms of the hormone
half-life instead of the decay rate d. The two are related by t1/2 ¼ ln(2)/d. During MCMC
simulation of the posterior, we found that modeling the removal of hormone from the
system in terms of the half-life resulted in better simulation performance. When the decay
rate d was used, it often happened that both d and the ak would simultaneously escape to
very large numbers—numbers that are biologically impossible—never to return. The most
likely reason for this phenomenon is the ill-posed nature of the problem. A large ak can be
counteracted by a large decay rate in the convolution model with very little change in the con-
centration. This does not happen when we use the half-life because as d! 1, t1/2 ! 0. Since
the half-life is a strictly positive number, we assign it a lognormal prior: ln(t1/2) � N(21, 1).
This prior has 90% of it’s mass between 0.07 and 1.9, while only 1.6 � 1024 of the mass is less
than 0.01, thus controlling the half-life from becoming too small (for cortisol, half-lives are
typically in the range of 30min–1h). The model error variance is given a vague, proper
prior: s2 � IG(0.001, 0.001).

Given these prior distributions, we can write the full joint prior distribution as the product of
the marginal and conditional prior factors given above:

p fbig;b;c2, fjig,P, ftjg, fn2j g, n, z2, fajg,a,q2,K, t1=2,s
2

h i

¼
YP
i¼1

p(fbigP,b,c2)p(fjig jP)
� �

�
YK
j¼1

p(tj jK)p(aj jK,a,q2)p(n2j jK; n, z2)
h i

� p(P)p(b)p(c2)p(K)p(n)p(z2)p(a)p(q2)p(t1=2)p(s
2):

29.3.1 Posterior Processing

All our analyses are based on marginalizing over the number of component functions; that is,
we average over all models indexed by the number of component functions, K. To effect a one-
to-one correspondence between the number of component functions and the number of
secretion events, a conditional analysis may be more appropriate. In this case, we suggest
that the conditional prior on the location of the component functions, that is, p(t1, . . . , tK j K),
be changed. In this situation we might expect that the secretion events are somewhat spread
out over time, and the prior should reflect this belief. Therefore, a suitable prior might be
every third-order statistic from 3K þ 2 uniform random variables over the range of the data.
This is the prior chosen by Johnson [12].

We approach the problem from a different angle and believe that it is reasonable to assume
that several component functions could possibly make up a secretion event, giving the model
more flexibility in fitting the data. However, this approach causes another problem: determi-
nation of the number and locations of secretion events, which in many studies is of primary
interest. One solution to this problem is to use the estimated marginal posterior distribution
of the locations of the component functions. The estimated density of this distribution is
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given in Figure 29.2. The density is multimodal, and it is reasonable to assume that each mode i
represents the most likely position of secretion event i [i.e., its maximum a posteriori (MAP)
estimate]. The arrows at the bottom of the figure show where all the modes occur (some of the
modes are too small to be detected in the graph). The modes are located by first smoothing the
histogram using a mixture of Dirichlet process (MDP) priors to estimate the density [7,1,6,28]
with a smooth, continuous curve. Details can be found in Johnson [13]. The MDP density esti-
mate is shown in Figure 29.2 as the solid black line. The modes of the density estimate can be
obtained by analytical differentiation of the MDP density estimate on a fine grid and a numeri-
cal search for those times where the first derivative is zero and the second derivative is negative
(see Johnson [13] for a justification of this approach).

One nice feature of the Bayesian approach, and this method of determining locations of
“candidate” secretion events, is that we can estimate the probability that a secretion event
SEi occurs in a neighborhood surrounding its MAP estimate Mi. Define the probability of an
event occurring in the neighborhood around the MAP estimate of secretion event i as the
ratio of the number of iterations that contain at least one component function in the neighbor-
hood to the total number of iterations. Note that we do not take the ratio of the total number of
component functions within the neighborhood because more than one component function
might make up a secretion event. In fact, a closer examination revealed that two or more com-
ponent functions are used to make up the secretion event whose MAP estimate is at 12:12 p.m.
roughly 50.6% of the time, where the neighborhood is defined as the interval whose endpoints
are the two surrounding minima. All probabilities given in Figure 29.2 (where the heights of the
arrows indicate probabilities) and Table 29.1 are defined on intervals that have the surrounding
local minima, Mi [ (mi21, mi), as their endpoints.

Figure 29.2 Estimate of the marginal posterior distribution of ftjg. The arrows at the bottom
denote candidate locations for secretion events as obtained by a model-based clustering algor-
ithm. The probabilities of an event for the 23 candidate locations (intervals) are given in
Table 29.1 and are shown above by the height of the arrows. The “rug” at the bottom of the
figure demarcates the endpoints of the intervals on which probabilities are calculated.
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29.3.2 An Example

The cortisol time series shown in Figure 29.1 is fitted with the Bayesian deconvolution model.
We run the MCMC sampler for 525,000 iterations with a burn-in of 25,000. The final Markov
chain is thinned by saving every 250th iteration. Thus the final posterior is estimated with 2000
samples. The sampler is coded in the C programming language. The simulation takes approxi-
mately 28min on a PowerPC G5, 2.7-GHz computer. The estimated posterior predictive mean
and the spline approximation to f (t) are displayed along with the data in Figure 29.3, from

Table 29.1 Posterior Probabilities of Event Candidates (Cand.)a

Cand. Time Pr Mass Cand. Time Pr Mass

1 9:06a 0.103 1.123 11 9:54p 0.037 0.124
2 9:26a 0.237 2.362 12 12:00a 0.027 0.079
3 10:50a 0.004 0.023 13 12:20a 0.999 7.250
4 12:16p 0.996 22.424 14 1:56a 0.410 1.858
5 1:41p 0.391 3.998 15 3:41a 0.020 0.046
6 3:20p 0.032 0.184 16 4:15a 0.999 22.323
7 5:25p 0.999 15.682 17 5:57a 0.999 21.191
8 6:07p 0.210 2.555 18 7:17a 0.959 25.561
9 7:15p 0.001 0.003 19 8:21a 0.163 1.857
10 8:00p 0.015 0.060 20 8:35a 0.257 3.153

aTimes correspond to location modes, and probabilities correspond to the intervals (mi21, mi), i ¼ 1, . . . ,
20, shown in Figure 29.2.

Figure 29.3 The posterior predictive mean concentration profile (black solid line) is dis-
played on top of the data (open circles and dotted line). The dashed line is the estimated pos-
terior mean of the nuisance function: E( f (t) j Y ). The arrows at the bottom indicate the MAP
estimates of all candidate secretion events, those at the top indicate the MAP estimates for all
events whose probability of occurring between two local minima is greater than 50%.
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which it appears that the model fits the data well. Bayesian deleted residuals (not shown) verify
this conclusion. Also, the Bayesian x2 goodness-of-fit statistic further verifies that there is no
overall lack of fit or evidence of overfitting [14]. The arrows at the top of the figure indicate the
most probable locations of the major secretion events (a major secretion event location is
defined as a location that is detected in our modeling procedure over 50% of the time). Our
method detected six major secretion events in this dataset.

The marginal estimated posterior density of the locations tk of the component functions
Ck(t; tk, gk) is shown in Figure 29.2. We note that this density estimate is marginal over all
other parameters, including K, the number of component functions. The arrows under the
density indicate the MAP estimate of each candidate secretion event, based on our posterior
processing described in Section 29.3.1. The heights of the arrows indicate the probabilities
that an event has occurred in the intervals whose endpoints are demarcated by the “rug” at
the bottom of the figure.

The posterior probability of each of the 20 candidate secretion events, their MAP estimates,
and the mean mass of hormone secreted are tabulated in Table 29.1. It is interesting to compare
the times given in Table 29.1 for all 20 candidate secretion locations and the concentration
pattern in Figures 29.3. Note that the times appear prior to the peaks in concentration as a
result of the convolution. Further, one can see that each candidate event appears to be associ-
ated with a peak, spike, or bulge in the concentration. For example, consider the sixth candidate
that occurs at 3:20 p.m. It is detecting a small spike in concentration near that same time, as can
be clearly seen in Figure 29.1. However, it appears in only 3% of the posterior samples; the rest
of the time the model considers it noise. Another example is candidate 14, which has a
posterior probability of 0.41. It is picking up the bulge in the data that is evident at about
2:00 a.m. The other 59% of the time it is considered noise. However, because of model aver-
aging, the overall fit to the data around 2:00 a.m. is better than it would be if we had con-
ditioned on the number of secretion events detected with a threshold of 0.5.

29.4 NONLINEAR MIXED-EFFECTS PARTIAL-SPLINES MODELS

Again, we assume the model (29.4) and letCk(v; tk, gk) ¼ ak C (v; tk, gk), where ak is referred
to as amplitude. Define a pulseshape function as p(t; t, g) ¼

Ð
0

t
C (v; t, g)E(t 2 v)dvwhere t is

a pulse location and g are pulseshape parameters. We model f nonparametrically using a
polynomial spline

Wm ¼ f : f , f 0, . . . , f (m�1) absolutely continuous,

ð1
0
( f (m))2dt , 1

� �
: (29:7)

A common choice of the order m is m ¼ 2, which corresponds to a cubic spline.
All frequentist approaches except Yang et al. [42] treat the amplitudes as deterministic

parameters and ignore variations in pulseshape parameters. More recent studies indicate that
the amplitudes and pulseshape parameters vary during the day [18,19,17], and it is of scientific
interest to model the variation between pulses.

Let a ¼ (a1, . . . , aK)
T, g ¼ (g1

T, . . . , gK
T)T, and f ¼(aT, gT)T. To model variation between

pulses, we assume the following linear mixed model

f ¼ Abþ Bb, b � N(0,s2D), (29:8)
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where b and b are fixed and random effects and A and B are design matrices for the fixed and
random effects, respectively. Note that the form of (29.8) is general, which may be used to con-
struct various second-stage models.

Let Y ¼ (Y1, . . . , Yn)
T, f ¼ ( f (t1), . . . , f (tn))

T, 1 ¼ (11, . . . , 1n)
T, and h ¼ (

P
k¼1
K akp(t1; tk,

jk), . . . ,
P

k¼1
K ak p(tn; tk, jk))

T. A NMPSM is the combination of the first-stage model (29.4)
and the second stage model (29.8)

y ¼ f þ hþ 1; 1 � N(0,s2L),

f ¼ Abþ Bb, b � N(0,s2D): (29:9)

Here, L and D are assumed to depend on an unknown parameter vector u.
The pulse detection analysis involves estimation of the following parameters: the number of

pulses K, pulse locations t ¼ (t1, . . . , tK)
T, b, f, u, s2, and b. Since the total number of para-

meters depends on the unknown parameter K, it is difficult to estimate all the parameters simul-
taneously in a frequentist framework. Yang et al. [42] propose the following algorithm:

1. Initialize—identify potential pulse locations and provide initial values. Denote the
total number of potential pulses as Kmax. Specify a lower bound for the number of
pulses Kmin.

2. Pulse detection:

a. For K ¼ Kmax Kmax 2 1, . . . ,Kmin, repeat

i. Fit the model (29.9) and compute t statistics tk, k ¼ 1, . . . ,K.

ii. Delete the location with the smallest jtkj.
b. Select the final model using one of the AIC, BIC, RIC, and GCV criteria.

3. Parameter estimation—fit the final model.

At step 1, we focus on finding all possible pulses and are less concerned with false identifi-
cations. Quantity Kmin may be taken as zero. When K and t are fixed in steps 2 and 3, we
fit the corresponding NMPSM to estimate parameters b, f, u, s2, and b. The estimation pro-
cedure iterates between (a) fixing s2 and u as their current estimates, estimate b, f, and b by
minimizing a double-penalized log likelihood; and (b) fixing b, f, and b as their current esti-
mates, estimate u and s2 by maximizing an approximate profile likelihood. Details can be
found in Yang et al. [42] and Ke and Wang [16].

We now provide more details about step 2 in the algorithm above. The t statistic is defined as
tk ¼ âk/

p
vâr(âk), k ¼ 1, . . . , K, where vâr(âk) is the approximate variance of âk after linear-

ization (Theorem 1 in Ref. 38). Step 2a creates a nested sequence of pulse locations with their
corresponding models denoted as MKmax ; . . . ,MKmin . We define the total degrees of freedom
for MK as

dfK ; trH̃(l̂)þ IDF� dfP(K), (29:10)

where H̃(l̂) is the smoother matrix for the nonparametric function f, l̂ is an estimate of the
smoothing parameter l by the GCV or the GML method [37,39], dfP(K) is the number of par-
ameters associated with pulses, and IDF (inflated degrees of freedom) accounts for the extra
cost involved in selecting pulse locations [23]. A good choice of IDF is around 1.2.

RECENT ADVANCES IN THE ANALYSIS OF EPISODIC HORMONE DATA538



We estimate K as the minimizer of K̂ of the following criterion:

rss(K)þ as2dfK ; (29:11)

where rss(K) is the residual sum of squares of model MK and a is a constant that balances the
tradeoff between goodness-of-fit and model complexity; a ¼ 2, a ¼ log n, and a ¼ 2 log dfKmax

correspond to the AIC, BIC, and RIC criteria, respectively. We estimate s2 based on the biggest
model MKmax

. We may also use the GCV criterion

rss(K)

(1� dfK=n)2
:

We estimate pulse locations t̂ as those pulse locations in the final modelMK. Simulations show
that all four model selection procedures work very well [42]. Models BIC and RIC perform
slightly better. The whole procedure is quite stable, and there is no sign of overfitting. We
used a fixed IDF to correct bias incurred by the adaptive pulse selection. One potential
future research topic is to estimate the total degrees of freedom dfK in (29.10) by a data-
driven procedure such as the generalized degrees of freedom [43], or to replace the penalty
to model complexity [second term in (29.11)] by the covariance penalty [33].

We have developed an R package called PULSE for pulse detection based on NMPSMs.
The package is available at http://www.pstat.ucsb.edu/faculty/yuedong/software.html. It
consists of three main functions, pulini, puldet, and pulest, for the three steps in
the algorithm presented above and other pulse detection and utility functions. Information
about the utility functions pul.control, summary.puldet, and summary.pulest
can be found in Yang et al. [41].

So far we have left the form of the pulseshape function p unspecified. Several prototype
pulseshape functions are used in the literature. One simple and useful pulseshape function is
the following double-exponential pulse function

p(t; t, g) ¼ expfg1(t � t)g, t , t,
expf�g2(t � t)g, t � t,

�
(29:12)

where t is the pulse location, g1 is the infusion rate, and g2 is the decay rate. The double-
exponential pulseshape function is specified by type ¼ c(“dblexp”) in our R functions.
We have various options for each of the three parameters: infusion rate, decay rates, and ampli-
tudes. Because of fast infusion relative to the sampling rate, the infusion rates are usually dif-
ficult to estimate since there are very few observations providing information about them.
Furthermore, the parameters of interest are usually the decay rates and amplitudes. To
improve numerical stability, we usually assume a common parameter for all infusion rates.
The decay rates and amplitudes can be specified as common, fixed, random, or mixed, depend-
ing on the purpose of a fit. For example, to obtain initial values for fixed parameters, we may
specify both of them as common. To detect pulse locations among the initial locations, we may
specify amplitudes as random. For the final fit, we may use the most general model by specify-
ing both of them as mixed.

We now use the same cortisol data to illustrate R functions in the PULSE package. We first
load the ASSIST library (available at http://cran.r-project.org) and PULSE functions into R:

> library(assist)
> source(“ssrfuns.R”)
> source(“puldet.R”)
> source(“pulest.R”)
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> source(“pulini.R”)
> source(“baseini.R”)

The data frame cort consists of two variables, time and conc. Our first step is to detect poten-
tial pulse locations using pulini. Many existing pulse detection and change point detection
methods may be used. When pulse locations are peaks of the double-exponential function,
the mean function has change points in the first derivative at these positions. We use one
method called “pcp” in Yang [40] to detect change points in the first derivative:

> pl <- pulini (time, conc, data=cort, method=“pcp”, alpha=0.6)

This method identifies 10 potential pulse locations, which are marked at the bottom of
Figure 29.4. One may also use the CLUSTER method in Veldhuis and Johnson [35] by spe-
cifying method="CLUSTER".

Before fitting a NMPSM, we need initial values for the baseline function and parameters
that can be derived by baseini and pulest, respectively:

> bl ,- baseini(time, conc, data=cort, puloc=pl,
method=“shift”, smooth=“spline”)

> fix.ini , - pulest(time, conc, data=cort, baseline=0, puloc=pl,
start=list(fixed=c(1,1,1), Inif=bl), type=c(“dblexp”),
params=list(infrate=“common”, decrate=“common”,
amplitude=“common”), control=list(pul=list(TOLr=0.005,
IDF=1, trace=F)))$coef$ fixed

Alternative options for method and smooth in the baseini function are method ¼ “select” and
smooth ¼ “loess”. We only need initial values for fixed parameters. Therefore, we fit a simple
fixed-effect model with common parameters for the infusion rate, decay rate, and amplitude.

Figure 29.4 The fitted concentration profile (solid line) is displayed on top of the data (open
circles and dotted line). The estimate of the baseline function f is displayed as the dashed line.
Initial and final pulse locations are marked below and above, respectively.
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Now we are ready for the second step: pulse detection. We use cubic spline to model the
baseline function. Note that we set puloc ¼ pl, the initial locations selected by the change
point method. It is a good practice to check these locations before calling puldet to find
obvious omissions and/or false locations. Among the initial locations, we need to detect
those that have amplitudes significantly different from zero. For this purpose, we specify ampli-
tudes as random, which is equivalent to shrinking them toward zero:

> det ,- puldet(time, conc, data=cort, type=c(“dblexp”),
baseline=list(nb=~ time, rk=cubic(time)),
start=list(puloc=pl, kmin=5, fixed=fix.ini[1:2], Inif=bl),
params=list(infrate=“common”, decrate=“mixed”,
amplitude=“random”))

> det
...

Fitting Table:

BIC RIC AIC GCV DROP DF
10 480.2258 598.1166 317.0249 361.0692 10 34.23649
9 460.2917 569.9182 308.5313 344.0252 4 31.83649
8 443.9538 545.3161 303.6339 333.8710 1 29.43649
7 431.7511 524.8492 302.8717 330.6114 3 27.03649
6 414.8130 499.6468 297.3740 320.3573 6 24.63649
5 423.5102 500.0799 317.5118 346.8865 9 22.23649

Initial location(s): 0.691 3.626 4.489 6.388 8.633 15.885
19.683 21.237 22.446 23.827

Location(s) selected:
with AIC, 6 pulse(s): 3.626 8.633 15.885 19.683 21.237 22.446
with GCV, 6 pulse(s): 3.626 8.633 15.885 19.683 21.237 22.446
with BIC, 6 pulse(s): 3.626 8.633 15.885 19.683 21.237 22.446
with RIC, 6 pulse(s): 3.626 8.633 15.885 19.683 21.237 22.446

All criteria select the same six locations. The final step is to fit the final model and derive
estimates of the parameters. Since the estimation does not involve a selection process, we
set IDF ¼ 1:

> fit ,- pulest(time, conc, data=cort, type=c(“dblexp”),
puloc=det$ detloc$ BIC$ puloc, start=list(fixed=fix.ini,
Inif=bl), params=list(infrate=“common”, decrate=“mixed”,
amplitude=“mixed”), control=list(pul=list(IDF=1)))

> summary(fit)
...

Estimation at the selected model:

Parametric component
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Fixed effects:
Value Std.Error t-value p-value

l 1.1545492 0.1322566 8.729613 1.294610e-14
r 0.7369978 0.2435994 3.025450 3.009351e-03
a 2.3750959 0.1964722 12.088710 8.060218e-23
Random effects:

A1 A2 A3 A4 A5 A6
0.0412 0.0540 -0.4386 0.2153 0.0822 0.0457

R1 R2 R3 R4 R5 R6
-0.7072 -0.6738 0.7370 0.7228 0.5071 -0.5858

Non-parametric
estimate of smoothing parameter: 7.14286e-06
Degrees of Freedom of the baseline (df(base)): 7.836487

Residual standard deviation: 1.328 on 126.164 degrees
of freedom

29.5 CONCLUDING REMARKS

The statistical analyses and models used to analyze pulsatile hormone time series have become
more sophisticated over the years. In this chapter we have presented two new methods for ana-
lyzing a general, realistic biophysical model. For rather clean datasets, such as the one pre-
sented, the two approaches often lead to similar results. Both methods give reasonable
results for the dataset analyzed, and there are only minor differences in the fit that can be
seen in Figures 29.3 and 29.4. These differences may be attributable to the differences in
the pulseshape function, the fact that a log transformation of the concentration was applied
prior to model fitting in the BDM method, and differences in the baseline function approxi-
mation. The two most apparent differences are in the shape and height of the fitted concen-
tration pulses. The NMPSM has sharper peaks that are higher than the corresponding peaks
fitted with the BDM. The sharp peaks are due to the double-exponential waveform (29.12)
assumed in the NMPSM. This form may also account for the relatively higher peaks. The
difference in peak height may also be partially due to the log transformation used in the
BDM analysis. Another minor difference occurs in the shape around 2 a.m. Around this
time there is a shoulder in the BDM fitted concentration profile that is absent in the
NMPSM fitted profile. This shoulder is due to the marginal approach taken in the BDM.
The advantage of marginalizing is that it results in a better overall fit to the data than taking
a conditional approach (within the Bayesian framework).

One advantage of the Bayesian approach over the frequentist approach is that it is more
coherent. All parameters are estimated simultaneously (in the full posterior distribution),
while the frequentist approach divides estimation into two stages: (1) pulse detection (esti-
mation of K and t) using a model selection procedure and (2) estimation of the parameters
b, f, u s2, and b conditional on detected pulses. Therefore, the uncertainty in the first-stage
analysis is ignored. A second advantage is that it provides posterior probabilities, not only a
number of pulses together with their locations. Further, the Bayesian approach does not rely
on initial pulse detection by some ad hoc model selection procedure.
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A disadvantage of the Bayesian approach is that is it rather difficult to elicit prior infor-
mation and to implement the advanced MCMC simulation (code is available from the first
author). Further, because of the ill-posed nature of the deconvolution problem and its associ-
ated instability, uninformative prior specification and an objective Bayesian approach may not
be feasible. Finally, the Bayesian approach is computationally intensive. The MCMC simu-
lation of the cortisol dataset takes about 28 minutes on a Dual 2.7-GHz PowerMac G5.
Further the MDP postprocessing takes an additional 15min. The NMPSM method takes
approximately 3min on a PC with Dual Xeon 2.4-GHz processors.

Although great strides have been made in the modeling and analysis of pulsatile hormone
data, there remains much room for future research. We have identified several areas where
future research is welcome. First, many model-based approaches have appeared since 1992
or so. However, there has been no systematic evaluation and comparison of these models. It
is time to take a step back and compare the relative merits of these different approaches.

Looking forward, as statistical methods and procedures have advanced, more realistic
models have been entertained. As these methods continue to advance, even more realistic
models will be plausible. These models may include feedback mechanisms, both autofeedback
and feedback from other hormones and the central nervous system.

Pulse detection is only the initial step toward answering scientific and clinical questions
raised at the beginning of this chapter. All current methods are based on a two-stage analysis.
At the first stage, one models each subject separately to derive summary statistics such as
frequencies, locations, and masses of pulses, half-lives, pulseshape parameters, and basal
secretion rates. At the second stage, one analyzes each summary variable as a function of cov-
ariates. We are currently working on building integrated Bayesian/frequentist models for all
subjects to provide coherent inference for the population. Pooling data from all subjects, we
expect the integrated approach to be more efficient and robust. It will allow us to investigate
covariate effects and variation between subjects as well as variation between pulses within a
subject. See Liu and Wang [22] for an alternative approach that does not require pulse
detection.
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C H A P T E R 30

Models for Carcinogenesis
Anup Dewanji
Indian Statistical Institute, Kolkata, India

30.1 INTRODUCTION

In the past few decades (as of 2007) a vast biostatistical literature has appeared on
exposure–response or dose–response analyses for experimental (or, toxicological) and epide-
miological studies in which the endpoint of interest is cancer. Along with the development of
sophisticated statistical tools for the analyses of such data, there was also significant develop-
ment in the area of modeling the cancer process, or carcinogenesis [53,39]. The ultimate inter-
est lies, of course, in modeling the dose–response relationship between a disease outcome (i.e.,
cancer) of interest and exposure level of a primary agent under study, so that a cancer risk
assessment can be carried out [38].

Ideally, risk assessments should be based on epidemiological studies involving human sub-
jects, since the risk on their health and well-being is of primary interest and also the estimates of
risk for levels of exposure, that are close to those of human living conditions, can be directly
obtained. However, the exposure levels and disease outcomes are often measured with less pre-
cision in epidemiological studies than in experimental studies, leading to possible bias in risk
estimates. Also, exposure to multiple agents (confounders) makes it difficult to investigate the
effect of a single primary agent. When appropriate epidemiological studies are not available,
one has to rely on experimental data in which the levels of exposure are typically higher
than those in the general population. Although the problem of precision in the measurement
of exposure and disease outcome and that of potential confounders can be largely controlled
in experimental studies with laboratory animals, the twin problems of low dose and interspecies
extrapolation become difficult issues. These two are among the most contentious scientific
issues of the day.

An appropriate modeling of the relationship between the different exposure levels and the
disease under study may be able to address the issues in a meaningful way, but there always
remains the question of validity of a particular model being used. While purely standard
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statistical models have been used to address them [23,29], the consensus now appears to be
moving toward the use of models with strong biological underpinnings, referred to as biologi-
cally based models. For example, physiologically based pharmacokinetic (PBPK) models
[1,54] have been developed by consideration of the uptake, distribution, and disposal of
agents of interest by the subjects (human or animal). Interspecies differences in response to
exposure to environmental agents can often be explained, at least partially, in terms of differ-
ences in uptake and distribution of the agents. Thus, the PBPK models have advanced broadly
our understanding of differential species toxicology, and these models are important tools in
risk assessment [55].

Cancer models for dose–response studies span a hierarchy that reflects the ability to incor-
porate different kinds of information regarding carcinogenesis. Early attempts to model carci-
nogenicity studies using simple statistical models indicate the modest amount of data that were
available; these models do not incorporate any information about the mechanism of action. In
most cases, there were no supplementary studies that could be used to identify a mechanism of
action. These models were fitted to available data in order to describe the apparent dose–
response relationship without reference to any specific mechanism of action. The next are bio-
logically based models that are developed with parameters associated with specific biological
mechanisms of action based on information from laboratory studies. Such models generally
require extensive data, which also helps determine how well they conform with the model
characteristics. A step further is to include the pharmacokinetic information in developing
the models for carcinogenic risk assessment. In this case, the model and the dose–response
shape are determined not only by the characteristics of the carcinogenic mechanism taking
place at the target tissue but also by the pharmacokinetic processes involving absorption and
distribution of the exposure dose, which are seldom accounted for by models of carcinogenesis.
This is an important and essential step, as discussed before.

When discussing exposure– or dose–response relationship, it is important to define clearly
what response one is referring to. It is also important to have a clear idea of the various
commonly used measures of disease frequency. The two fundamental measures used in
epidemiology and toxicology are the incidence (or hazard) rate and the probability of
disease. The incidence or hazard rate measures the rate (per person per unit of time) at
which new cases of a disease appear in the population under study. Because the incidence
rates for many chronic diseases, including cancer, vary strongly with age, a commonly used
measure of frequency in epidemiologic studies is the age-specific incidence rate, usually
reported in 5-year age categories. For example, the age-specific incidence rate per year in
the 5-year age group of 35–39 may be estimated as the ratio of the number of new cases of
cancer occurring in that age group in a single year and the number of individuals in that age
group who are cancer-free at the beginning of the year. This rate may depend on the single
year of interest reflecting the effect of a particular cohort. Strictly speaking, the denominator
of the ratio should be the person-years at risk during the year to account for individuals who
do not contribute fully during the year. Mathematically, incidence rate is an instantaneous
concept defined as

hðtÞ ¼ lim
D!0

P½t � T , t þ DjT � t�,

where T denotes the time of response for a subject. The dependence of h(t) on the exposure
level and other history is suppressed here to simplify notation. The other commonly used
measure is the probability that an individual will develop cancer in a specified period of
time. For risk assessment, interest is most often focused on the lifetime probability, often
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called lifetime risk of developing cancer. Although the lifetime can be arbitrarily defined, let us
denote this by L. The relationship between the lifetime risk R and the incidence rate can be
expressed by the equation

R ¼ 1� exp �
ðL
0
hðsÞds

� �
:

In general, the probability P(t) of developing the disease of interest by age t, can be
expressed as

PðtÞ ¼ 1� exp �
ðt
0
hðsÞds

� �
:

When the incidence rate is small, as is true for most chronic diseases, P(t) can be approximated
by

Ð t
0 hðsÞds, the cumulative incidence function. Usually, in epidemiological studies, there is

direct information on h(t) and, in toxicological studies, there is direct information on P(t) or
R. It is, therefore, convenient to model the cancer process in terms of h(t) or P(t), as a function
of the exposure history. Simple statistical models exist for the lifetime risk R as a function of the
exposure level, say, d, assumed constant throughout the lifetime.

In the following sections, we describe the different classes of cancer models, depending on
the ability to incorporate information, and also indicate the commonly used statistical methods
to analyze data using these models. In Section 30.2, we describe some standard simple statisti-
cal models for cancer. Section 30.3 slowly builds on with the description of multistage models,
followed by a description of two-stage models incorporating cell kinetics in Section 30.4. The
models of these two sections can be called biologically based models, although the one of
Section 30.4 is biologically more realistic. Section 30.5 briefly discusses the PBPK models
and Section 30.6 describes the different statistical methods for analysis. Section 30.7 ends
with some discussion.

30.2 STATISTICAL MODELS

Quantal response data relates to the final incidence of cancer (binary) for each individual at each
dose level requiring models for the lifetime risk R. Early models for this were tolerance distri-
bution models, which are based on the assumption that each individual in a population has a
tolerance for the carcinogenic agent. If the dose of the agent exceeds an individual’s tolerance,
a tumor will develop; otherwise, no tumor will develop. Tolerances are assumed to vary from
individual to individual across the population following a standard probability distribution,
such as the normal distribution. Normal tolerance distribution, known as the probit model,
assumes that the tolerances have a normal distribution with mean m and standard deviation
s. Therefore, the probability that an individual at exposure level d developes cancer (a
tumor), R(d ), is the probability that the individual’s tolerance is lower than d, which is
given by

RðdÞ ¼
ððd�mÞ=s

�1

1ffiffiffiffiffiffi
2p

p exp
�z2

2

� �
dz ¼ F

d � m

s

� �
,
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whereF(.) denotes the standard normal cumulative distribution function. The log-probitmodel
assumes lognormal distribution for the tolerances (i.e., the logarithms of tolerances have a
normal distribution with mean m and standard deviation s). In this case, the lifetime risk at
exposure level d is given by

RðdÞ ¼
ððlog d�mÞ=s

�1

1ffiffiffiffiffiffi
2p

p exp
�z2

2

� �
dz ¼ F

log d � m

s

� �
:

Another common model is the logit model in which the tolerances are assumed to follow a
logistic distribution leading to the model for lifetime risk as

RðdÞ ¼ exp½aþ bd�
1þ exp½aþ bd� :

There are some mechanistic models, so called because they would postulate a hypothetical
mechanism of action not validated by laboratory information. The one-hitmodel is the simplest
such model postulating that cancer is the result of a single event in a single cell. The model has
only one parameter and describes a dose–response relationship with a fixed shape that is vir-
tually linear in the low and middle dose ranges. The lifetime risk is given by R(d ) ¼ 1 2
exp[2qd], q . 0. Note that this can be derived by assuming an exponential distribution for
the tolerances. This model is typically fitted to a single dose point, usually the lowest dose
with an increased incidence of cancer. The one-hit model should not be used to fit a dataset
with more than one doses if the responses do not follow the model’s fixed linear shape [56].
A general expression for the one-hit model is given by

RðdÞ ¼ 1 � exp½�ðq0 þ q1dÞ�, q0, q1 . 0,

which can also be obtained from tolerance distribution.
The multihit model postulates that cancer is the result of a fixed number of identical events

(or “hits”) in a tissue [51]. The shape of the model is governed by the number of hits assumed
necessary for the induction of cancer. The more hits required, the lower the probability of
cancer at low doses, but the faster that probability rises at higher doses. If k hits are required,
the probability of developing cancer is

RðdÞ ¼
ðqd
0
zk�1 expð�zÞ=ðk � 1Þ!dz,

with the general expression given by

RðdÞ ¼
ðq0þq1d

0
zk�1 expð�zÞ=ðk � 1Þ!dz:

The Weibull model [48], given by R(d ) ¼ 1 2 exp[2qdk], q, k . 0, exhibits a dose–
response relationship that is either sublinear (shape parameter k , 1), linear (k ¼ 1), or supra-
linear (k . 1). A quantal response model currently in wide use by regulatory agencies, the lin-
earized multistage (LMS) model, has been derived from the multistage model (see the next
section) after making a number of approximations. The lifetime risk at exposure d is given
by RðdÞ ¼ 1� exp½�ðq0 þ q1d þ � � � þ qkdkÞ�. The approximations for this expression are,
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however, unlikely to hold with experimental data when the probability of cancer is kept high.
Statistically, the polynomial function of dose permits the description of nonlinear dose–
response relationships. A special case of the LMS model is the one-hit model in which k ¼ 1.

In some studies, information on the ages at which the tumor responses (e.g., time to tumor
onset, time to death with or without tumor) were observed may be available. Incorporation of
this information has been shown to improve the analysis by removing certain bias due to pre-
mature deaths of study individuals without developing tumor. This can be achieved by the use
of time-to-event models [23] usually through the modeling of hazard rates. Probably the most
widely used in the statistical literature is the Weibull model [25]. A time-to-event version of the
LMS model is also widely used for analyses. Some important examples of time-to-event
models are described in the following:

1. Multievent Models. Suppose that a tumor arises as a result of the occurrence of a
number (say, k) of biological events so that the time to tumor T can be written as T ¼

maxfT1, . . ., Tkg, where the Ti values are independent random variables representing
the times at which the k independent biological events occur. Then, denoting the cumu-
lative hazard function of Ti at dose d by Li(t, d), we have the probability of tumor by
time t at dose d as

Pðt, dÞ ¼
Yk
i¼1

1� expf�Liðt, dÞg½ �

�
Yk
i¼1

Liðt, dÞ, for small d and t

¼
Yk
i¼1

cðdÞ
( )

tk ,

where li(t, d ) ¼ c(d ) is the hazard rate of Ti (assumed constant) at dose d, for i ¼ 1, . . . ,
k. This leads to a Weibull distribution for T with hazard rate at dose d given by

k
Qk

i¼1 cðdÞ
h i

tk�1.

2. Relative and Additive Risk Models. We introduced the concept of incidence or hazard
rate h(t) in Section 30.1 as being the appropriate statistical concept that captures the epi-
demiological idea of an incidence and can relate to an individual’s risk of developing
cancer, given his/her history. It, therefore, makes sense to model individual’s risk in
terms of the hazard rate. It is necessary to express the possible dependence of h(t) on
the exposure level d and other history, referred to collectively as the vector of covariates
for an individual at time t and denoted by z(t). Hence, h(t) may be denoted by h(t, z(t)); if
z(t) includes only the exposure level d, it may be denoted by h(t, d). Let z0(t) represent
some standard (known) covariate history; for example, when z(t) includes only exposure
level, z0(t) could be just fd ¼ 0g. Relative risk models attempt to describe risks in popu-
lations by focusing on the ratio of h(t, z(t)) and h(t, z0(t)), termed the relative risk func-
tion [of time t as well as the covariate history z(t)] and denoted by RR(t, z(t)); that is,
RR(t, z(t)) is the relative risk of an individual with covariate history z(t) over an indivi-
dual with covariate history z0(t) at time t. Commonly, the various forms of RR(t, z(t))
assume it to be independent of time t, leading to the well-known class of proportional
hazards models of Cox [9]. A general class of models will consider dependence on
time t through z(t) only. The most commonly used forms of RR(t, z(t)) consider
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multiplicative and additive functions of the covariates. The multiplicative model is given
by RRðt, zðtÞÞ ¼ exp½b1z1 þ � � � þ bmzm�, and the additive model by
RRðt, zðtÞÞ ¼ 1þ b1z1 þ � � � þ bmzm, where z1, . . . , zm are the covariates of interest
(including the exposure level d ) and b1, . . . , bm are the corresponding parameters to
be estimated from data. Quite often the relative risk cannot be adequately described
by either a multiplicative or an additive model. For example, when the incidence rate
is obtained from the TSCE model of Section 30.4, the expression for RR(t, z(t)) is
neither multiplicative nor additive; in fact, it depends on both t and z(t) in a very com-
plicated way. In contrast, the hazard rate for the additive risk model has the general form

lðt, dÞ ¼ l0ðtÞ þ gfzðtÞbg,

where g(.) is a suitable chosen function; for example, g(x) ¼ x.

3. General Product Hazards Models. The cumulative hazard function is of the proportional
hazards form

Lðt, dÞ ¼ gðdÞHðtÞ,

where g(.) is a positive convex function of dose and H(.) is a positive nondecreasing
function of time.

4. Log-Linear Models. The event time T can be written as

log T ¼ zðtÞbþ sW ,

where s. 0 andW is an error variable. When z(t) is time-independent and, for example,
W follows a standard normal distribution, the corresponding event time T follows a
log-normal distribution; when W follows an extreme-value distribution, the correspond-
ing event time T follows a Weibull distribution.

Around the 1980s, the limitations of many of these models became apparent. Risk estimates
spanning a wide range could be computed with different models, which give reasonably good
fit to data, but there was no biological information to help in selecting one of these models over
another. Several of these models were severely constrained in shape and were not adequate to
empirically describe some datasets with multiple doses showing a nonlinear dose–response
relationship. Multistage models, which had been undergoing mathematical development,
came into use as they were able to fit the newer animal carcinogenicity studies that tested
several dose groups. It is to be noted that the biologically based models, described in the
next two sections, are time-to-event models; however, they can also be used for quantal
response data when time-to-tumor information is not available.

30.3 MULTISTAGE MODELS

The Armitage–Doll multistage model was developed in the 1950s [47,3–5] with the aim of
mathematically describing the basic processes leading to the development of cancer and
may be said to be the first significant step toward biologically based modeling [30]. The
purpose of proposing the multistage model was to appropriately take into account several
factors: the rapid increase of cancer mortality and incidence rates with age and the principle
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that a specific number of changes are needed before the induction of a tumor, as well as some
other findings resulting from cancer epidemiology, animal carcinogenicity studies, and in vitro
studies [2]. During the last few decades, a large number studies have provided important con-
tributions to the development of mathematical theory of the model and of computational
methods; the model implications have also been investigated in detail [16,17,56,13,30]. The
multistage model has been widely used for risk assessment by the USEPA and FDA, as
well as by many international cancer agencies, including the International Agency for
Research on Cancer (IARC) and the World Health Organisation (WHO).

This model is based on the assumption that a single normal cell may become fully malig-
nant only after it has undergone a sequence of k (where k � 1) irreversible and heritable
changes. It is assumed that the probability of each change is very low and that the tissue
under study is initially formed by a large number of normal cells. The sequence of changes
is generally assumed to take place, according to a specific order, spontaneously or when
induced by the environmental exposure. The malignancy (the first malignant cell) arises
when one single susceptible cell sustains a number (k) of critical changes to take it from a
normal tissue cell to a malignant cell, which then grows (after a short lag of time, usually
assumed to be negligible) into a malignant tumor (see Fig. 30.1).

Suppose that there are N normal cells susceptible to malignant transformation in the tissue
of interest, and let us assume that these N cells act independently. Let p(t) be the probability
that a specific susceptible cell is malignant by time t. Then the overall hazard for malignancy
is given by hðtÞ ¼ Np0ðtÞ=½1� pðtÞ�. Assuming the rate of change (transition) from ith stage to
(i þ 1)th stage, for i ¼ 0, . . . , k 2 1, with the 0th stage meaning normal and the kth stage
meaning malignant, to be li, independent of time t, we have the waiting-time distribution
from stage i to stage (i þ 1) as exponential with rate parameter li. Let pi(t) be the probability
that a cell is in stage i at time t. Then, we have p(t) ¼ pk(t) and hðtÞ ¼ Np0kðtÞ=½1� pkðtÞ�. If
we now assume that malignancy at the cell level is a rare event [i.e., pkðtÞ � 0], we may
approximate the hazard rate by hðtÞ � Np0kðtÞ. In this case, Taylor series expansion [36,39]
leads to the approximation

hðtÞ � Np0kðtÞ ¼
Nl0 � � � lk�1

ðk � 1Þ! tk�1 1� �lþ f ðl; tÞ½ �,

where �l ¼
Pk�1

i¼0 li=k is the mean of the transition rates and f ðl; tÞ involves the second-
and higher-order terms of the transition rates. Retention of only the first term in this series
expansion leads to the Armitage–Doll approximation:

hðtÞ � Nl0 � � �lk�1

ðk � 1Þ! t k�1:

Therefore, with the two approximations—(1) pkðtÞ � 0 and (2) ½�lþ f ðl, tÞ� is negligibly small
compared to 1—this model predicts an age-specific incidence curve that increases with a power

Figure 30.1 Pictorial representation of the multistage model.
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of age that is one less than the number of distinct stages involved in malignant transformation.
Note that the age-specific incidence rate (or hazard rate) is a measure of the rate of appearance
of malignant tumors in a previously tumor-free tissue. It has indeed been observed that for
many human carcinomas, the age-specific incidence rate increases roughly like a power of
the age, and the Armitage–Doll model, as already mentioned, was originally proposed to
explain this observation. For k ranging from 2 to 6, this model is in agreement with many
age-specific incidence curves derived from epidemiologic data available for many types of
tumor [2]. This particular form of hazard rate is known as the Weibull model with corres-
ponding survival function (probability of remaining tumor-free) at time t is given by
SðtÞ ¼ exp½�Atk�, where A ¼ Nl0 � � �lk�1=k!

Since the Armitage–Doll model does not allow for cell death, it is immediately clear that
any susceptible cell eventually becomes malignant with probability 1. Further, since the time to
malignant transformation is the sum of k exponential waiting-time distributions, it follows that
h(t) is a monotone increasing function even without the approximation. Since the probability
pkðtÞ satisfies the Kolmogorov equation p0kðtÞ ¼ lk�1pk�1ðtÞ (from the theory of pure birth
process), the hazard rate can also be written as

hðtÞ ¼ Np0kðtÞ
1� pkðtÞ

¼ Nlk�1E Xk�1ðtÞjXkðtÞ ¼ 0½ �,

where Xi(t) is a sequence of random variables associated with each cell such that Xi(t) ¼ 1 if
the cell is in stage i at time t and 0 otherwise. When pkðtÞ � 0, this conditional expectation may
be approximated by the corresponding unconditional expectation and hðtÞ � Np0kðtÞ ¼
Nlk�1E½Xk�1ðtÞ�. Expressions similar to these can be written for the hazard function of the
two-stage clonal expansion model in the next section.

For the Armitage–Doll model to hold, the transition rates li have to be constant and very
small. An example of how poorly this approximation may do is discussed in Moolgavkar
[36,39]. In addition, in animal experiments, precisely where this model has been widely
used, the probability of tumor may be too large (because of usually higher levels of exposure)
for pkðtÞ � 0 to hold, in which case this approximate model should be avoided altogether.

In order to describe the dose–response relationship, the dose dependence of the transition
rates is commonly assumed to be linear with liðdÞ ¼ ai þ bid, for i ¼ 0; � � � ; k � 1, where the
coefficients ai . 0; bi � 0. As a consequence, the survival function at dose d can be written as

Sðt, dÞ ¼ exp �Nða0 þ b0dÞ � � � ðak�1 þ bk�1dÞtk=k!
� �

so that the probability of tumor by time t at dose d can be written as

Pðt, dÞ ¼ 1� Sðt, dÞ ¼ 1� exp �ðq0 þ q1d þ � � � þ qkd
kÞtk=k!

� �
,

where qi are the coefficients of the kth-degree polynomial resulting from the product of the k
transition rates ðai þ bidÞ. One can write P(t, d ) as 1� exp½�gðdÞtk�, or the hazard rate as
hðt, dÞ ¼ gðdÞtk�1, where g(d ) is a kth-degree polynomial in dose d. If the data to which the
model have to be fitted refer to lifetime exposure, the factor tk in P(t, d ) reduces to a constant
(t ¼ lifetime), so that the lifetime risk is given by RðdÞ ¼ 1� exp ½�gðdÞ� ¼ 1� exp½�
ðq0 þ q1d þ � � � þ qkdkÞ�, where the constant tk is absorbed in the qi coefficients (see the
LMS model in Section 30.8).
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It is worthwhile to mention that in the above model, the function
gðdÞ ¼ q0 þ q1d þ � � � þ qkdk is restricted only to those polynomials that can be factored
into the product of linear terms ai þ bid with ai . 0 and bi � 0. However, if this restriction
is replaced by a weaker condition that each qi � 0 with q0 . 0, the resulting generalized multi-
stage model is more flexible and can fit more datasets.

Generally of interest is the excess risk, or the risk above the background, defined as

EðdÞ ¼ RðdÞ � Rð0Þ
1� Rð0Þ ¼ 1� exp �ðq1d þ � � � þ qkd

kÞ
� �

:

As d approaches zero (for low-dose extrapolation), the marginal increase in the cancer risk for a
small increment of exposure can be determined by the slope (or first derivative) of E(d ). Thus,
at low doses, the incremental risk for a small dose sufficiently close to zero is approximately
EðdÞ � q1d. For more details on this linearizing at low doses, referred to as the linearized
multistage model, see Cogliano et al. [8].

Note that the transition rates li terms are so far assumed to be independent of time; in par-
ticular, when the rates depend on the exposure d of a specific agent as liðdÞ ¼ ai þ bid, the
value of the exposure d is usually considered to be substantially constant over time. This
assumption is generally valid in the case of carcinogenic experiments, in which the experimen-
tal animals are exposed to a constant exposure for approximately the whole duration of the
study (usually, the lifetime of the species), and may also hold for some patterns of human
exposure to environmental carcinogens. This is not generally valid for all human exposures.
The time-dependent exposure patterns may be specified by a function d(t) that can very well
be approximated by a piecewise constant function leading to piecewise constant transition
rates [11]. The use of the multistage model has been extended to consider such time-dependent
exposure patterns, and the consequences have been investigated in detail by several authors
[11,26,45].

30.4 TWO-STAGE CLONAL EXPANSION MODEL

One notable feature of the Armitage–Doll multistage model is that the incidence rate is always
increasing in age. Many adult human cancers do exhibit increasing incidence rate and, hence,
can be adequately described by the multistage model. However, there are some with non-
increasing incidences (e.g., breast and also some childhood cancers such as retinoblastoma)
that cannot be explained by this model [41,37]. This model is also not suitable for analyzing
data from animal experiments for reasons stated in the previous section. The two-stage clonal
expansion (TSCE) model, by introduction of cell kinetics such as cell growth and death or
differentiation, provides an alternative that is biologically more plausible and, at the same
time, can explain many of these exceptional incidences.

The TSCE model posits that malignant transformation of a normal susceptible cell is the
result of two specific, rate-limiting, hereditary (at the level of the cell) and irreversible
events. This model is best interpreted within the initiation–promotion–progression paradigm
of chemical carcinogenesis. Initiation, which confers a growth advantage on the cell, is a rare
event and can be regarded as the first rate-limiting step. Mathematically, the process of
initiation (arrival of normal cells into the initiated compartment) can reasonably be modeled
by a time-dependent Poisson process (details to follow). The TSCE model also posits that pro-
motion consists of the clonal expansion of these initiated cells by a stochastic birth–death
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process. Finally, one of the initiated cells may be converted into a malignant cell, and this con-
version (progression) may involve one or more mutations (see Fig. 30.2). A number of works
[40,41,43,21] discuss the biology underlying the model and develop the mathematical and stat-
istical tools required to fit the model to data. The model also conforms with observed inci-
dences from many epidemilogic studies on different types of cancer [37]. When more
biological information on the pathway to malignancy (e.g., on the intermediate lesions) is avail-
able, the model can be extended to include this information [14,15]. Slightly different versions
of the model have been considered in the past by Kendall [24], Neyman and Scott [46], and
more recently by Portier and Kopp-Schneider [49].

Because the TSCE model explicitly considers both genomic events and cell proliferation
kinetics, it provides a flexible tool for incorporating both genotoxic and nongentoxic carcino-
gens in cancer risk assessment. Within the framework of the model, an environmental agent
acts by affecting one or more of its parameters. An agent may affect the rate of one or both
stages (initiation and progression) or of cell proliferation kinetics of normal or initiated cells.
A purely genotoxic agent would be expected to increase the rates of initiation or progression
or both, while a purely promoting agent might increase the cell division rate or decrease the
rate of death or differentiation (known as apoptosis) of initiated cells (and possibly also of
normal cells, but this would be expected to have less effect on cancer incidence). Because
the TSCE model explicitly considers initiation and promotion, it can be used for analyses of
the intermediate lesions. For the purpose of quantitative risk assessment, analysis of
intermediate lesions allows the dose–response curve to be extended to lower doses than
would be possible with consideration of malignant lesions alone because intermediate

Figure 30.2 Pictorial representation of the two-stage clonal expansion model.
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lesions generally develop at doses that are too low for the appearance of malignant lesions with
typical experimental protocol.

Although stochastic growth of normal susceptible cells can, in theory, be accommodated, it
is convenient and mathematically simpler to assume the growth of normal cells to be determi-
nistic. This is a reasonable assumption because the number of normal cells is large and prob-
ably still under tight homeostatic control, whereas intermediate or initiated cells are assumed to
undergo a stochastic process because their numbers are small compared to the number of
normal cells in the tissue. Furthermore, the process of initiation likely results in the loosening
of homeostatic control leading to the positive net growth of intermediate lesions with rates that
are typically increased over background growth rates of normal cells. As a result, statistical fluc-
tuations become more important in the intermediate compartment and need to be considered.

Here we summarize the basic assumptions required for the mathematical development of the
model. Let X(t) be the number of normal susceptible cells at time t. Then, initiated cells arise
from normal cells according to a nonhomogeneous Poisson process with intensity v

(t)X(t),where v(t) is the first mutation rate per cell at time t. Intermediate cells then either
divide at rate a(t), die (or differentiate) at rate b(t), or divide into one intermediate and one
malignant cell at rate m(t). Note that the rate parameters may depend on time, in particular,
through the time-dependent exposure pattern, which may affect the rate parameters in a, say,
piecewise constant manner. Because of the presence of cell death, however, intermediate cells
or their clones may become extinct before giving rise to malignant progeny, thereby removing
the corresponding initiation at the tissue level.

Here, only an outline of the mathematical steps is given. More details can be found in the
review article by Moolgavkar and Luebeck [43]. Let Y(t) and Z(t) represent the number of inter-
mediate and malignant cells, respectively, at time t, and let

Cðy; z; tÞ ¼
X
j;k

P j;kðtÞy jzk

be the corresponding joint probability generating function with

Pj;kðtÞ ¼ Pr½YðtÞ ¼ j, ZðtÞ ¼ k jYð0Þ ¼ 0, Zð0Þ ¼ 0�:

Noting that the process YðtÞ, ZðtÞð Þ is Markovian, C satisfies the Kolmogorov forward differ-
ential equation

C0ðy, z; tÞ ¼ @Cðy, z; tÞ
@t

¼ ðy� 1ÞvðtÞXðtÞCðy, z; tÞ

� fmðtÞyzþ aðtÞy2 þ bðtÞ � ½aðtÞ þ bðtÞ þ mðtÞ�yg @C
@y

,

ð30:1Þ

with initial condition C(y, z; 0) ¼ 1. Note thatCð1, 0; tÞ ¼ Pr½ZðtÞ ¼ 0� is the survival function
S(t) for time T of appearance of the first malignant cell, while P(t) ¼ 12 S(t) is the probability of
tumor (first malignancy) by time t for this model. The hazard (incidence) function is then given by

hðtÞ ¼ P0ðtÞ
1� PðtÞ ¼

�C0ð1, 0; tÞ
Cð1, 0; tÞ :
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It follows immediately from the Kolmogorov equation (30.1) that

C0ð1, 0; tÞ ¼ �mðtÞ @C
@y

ð1, 0; tÞ,
and thus

hðtÞ ¼ mðtÞE½YðtÞZðtÞ ¼ 0�,

where E denotes the expectation and where we have used the relationship

E½YðtÞ j ZðtÞ ¼ 0� ¼ @C

@y

ð1, 0; tÞ
Cð1, 0; tÞ :

As in the previous section, this conditional expectation, for rare tumors when
Pr½ZðtÞ ¼ 0� � 1, can be replaced by the corresponding unconditional expectation to get an
approximate expression for the hazard rate as given by

hðtÞ � mðtÞE½YðtÞ� ¼ mðtÞ
ðt
0
nðsÞXðsÞ exp

ðt
s
aðuÞ � bðuÞð Þdu

� �
ds,

where the expression for E½YðtÞ� can be easily obtained from (30.1). However, this approximate
form, besides being inapplicable in animal carcinogenicity studies as discussed before, lacks in
flexibility in the sense that it essentially depends on two parameter combinations: (1) the net
cell proliferation rate (a 2 b) and (2) the product m�nX. From this nothing can be learned
about the roles of a or b alone. This constitute a serious shortcoming. We shall see that the
computation of the exact hazard can be carried out as a recursive procedure in the case of pie-
cewise constant rate parameters. This situation of piecewise constant exposure pattern, which in
effect leads to piecewise constant rate parameters, is indeed most frequently encountered
among epidemiologic and experimental data.

The exact solution of the Kolmogorov equation (30.1) involves solving the characteristic
equations associated with it [43], which are as given by

dy

ds
¼ �fmðsÞyzþ aðsÞy2 þ bðsÞ � ½aðsÞ

þ bðsÞ þ mðsÞ�yg ¼ �Rðy, sÞ, say, ð30:2Þ
dz

ds
¼ 0 ðz is constant along characteristicsÞ

dt

ds
¼ 1,

dC

ds
¼ ðy� 1ÞnðsÞXðsÞC:

The ordinary differential equation for C may be solved along characteristics to yield

CðyðtÞ, z; tÞ ¼ C0 exp

ðt
0
½yðs, tÞ � 1�nðsÞXðsÞds

� 	
,

whereC0 ¼ C( y(0), z; 0) ¼ 1 is the initial value ofC, and the explicit dependence of y on both
s and t is acknowledged. We are interested in computing C(1, 0; t) for any t, and thus we need
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to find the values of y(s, t) along the characteristic through ( y(0), 0, 0), where y(0) is the
initial value of y, and ( y(t), 0, t) with y(t) ¼ 1. Now, along the characteristic, y satisfies
the differential equation dy/ds ¼ 2R( y, s), and this is just a Ricatti equation, which can be
readily integrated in closed form if the parameters of the model are piecewise constant. To
be precise, the Ricatti equation for y can be solved to yield a value for y(u, t) for any u,
with initial condition y(t, t) ¼ 1. Then, the survival function is

SðtÞ ¼ Cð1; 0; tÞ ¼ exp

ðt
0
½yðs, tÞ � 1�nðsÞXðsÞds

� 	
; ð30:3Þ

and the exact hazard rate is given by

hðtÞ ¼ �C0ð1; 0; tÞ=Cð1, 0; tÞ ¼ �
ðt
0
nðsÞXðsÞytðs, tÞds,

where yt denotes the derivative of y with respect to t.
Assume that there are n intervals ½ti�1; ti� with i ¼ 1, 2, . . . , n, covering the time period

[t0 ¼ 0, tn ¼ t]. Then the solution of (30.2), y(s, t), can be computed recursively starting
from s ¼ t ¼ tn using the boundary condition y(t, t) ¼ 1. For s [ ½ti�1, ti�, we have [43]

yðs, tÞ ¼
Bi � Ai

yðti, tÞ � Bi

yðti, tÞ � Ai
exp½aiðAi � BiÞðs� tiÞ�

1� yðti, tÞ � Bi

yðti, tÞ � Ai
exp½aiðAi � BiÞðs� tiÞ�

,

where Ai(Bi) are the lower (upper) root of the quadratic form aix2 � ½ai þ bi þ mi�xþ bi. The
constant parameters ai, bi, and mi refer, respectively, to the cell division, cell death, and second
mutation rate in the time interval ½ti�1; ti�. When nðsÞXðsÞ is also piecewise constant over time
(nXi in the ith interval, say), the time integral in (30.3) can be computed in explicit form. For
s [ ½ti�1; ti�, we can rewrite the integrand ½yðs, tÞ � 1� as

yðs, tÞ � 1 ¼ Ci

1� ri exp½diðs� tiÞ�
þ ðAi � 1Þ,

where Ci ¼ Bi � Ai; ri ¼ ðyðti; tÞ � BiÞ=ðyðti; tÞ � AiÞ and di ¼ aiðAi � BiÞ. The survival
function (30.3) can then be computed as

SðtÞ ¼ exp½�
Xn
i¼1

Hi� with

Hi ¼ �nXi

ðti
ti�1

½yðs, tÞ � 1�ds

¼ �nXi ðBi � 1Þðti � ti�1Þ þ ln
1� ri

1� ri exp½�diðti � ti�1Þ�

� �

ai

� �
:

It is to be noted that the hazard rate for this TSCE model, unlike that of the Armitage–Doll
multistage model, approaches a finite asymptote as a function of age [43]. It is interesting to

30.4 TWO-STAGE CLONAL EXPANSION MODEL 559



note that for constant rate parameters, the hazard rate is dependent on only three combinations
of the four parameters a, b, nX and m [21]. Thus, for instance, in the case of constant
exposures, tumor incidence data alone are not sufficient to estimate all the biological
parameters of the model. To see this, consider the solution of yðs, tÞ of the Ricatti
equation (30.2). Obviously, yðs, tÞ solves an equation of the form y0 ¼ �aðA� yÞðB� yÞ,
where A and B are the two roots of the Ricatti equation. It is easy to see that the trans-
form w ¼ aðy� 1Þ solves a similar equation when a is constant, that is,
w0 ¼ �½aðA� 1Þ � w�½aðB� 1Þ � w�. Therefore, the solution w depends only on the two
modified roots aðA� 1Þ and aðB� 1Þ and the hazard rate on these two roots and nX=a. Of
course, other parametrizations can be given that are merely combinations of the three given
here. This TSCE model has been applied to data from many epidemiologic and toxicological
studies. For a comprehensive discussion of some of those, see Moolgavkar and Luebeck [44].

30.5 PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS

The pharmacokinetic processes that govern the absorption, distribution, accumulation, detoxi-
fication, excretion, as well as the chemical transformation of the exposure dose in the target
tissue, may largely influence the shape of carcinogenic dose–response relationship. The incor-
poration of this mechanism, the model, and the associated data in carcinogenic risk assessment
is considered today as an essential step. This is because the dose–response shape is determined
not only by the characteristics of the carcinogenic processes taking place at the target tissue,
which are expected to be described by the models of the previous sections, but also by the
parameters of the pharmacokinetic processes, generally not accounted for by the models of
carcinogenesis. In the case of multistage model, for example, this implies that the dose–
response shape is determined not only by the number and types of the different carcinogenic
stages but also by the characteristics of the pharmacokinetic mechanism. As is well known,
reference to pharmacokinetic theory and data has made it possible to give a suitable and satis-
factory explanation and interpretation of the shape of some specific classes of dose–response
curves, as well as to appropriately extend the application of multistage and other mathematical
models to the analysis [1].

Pharmacokinetics may be accounted for in cancer risk modeling by considering it within a
model for carcinogenesis (therefore, by modifying the model). In practice, the exposure (or,
administered) dose d of the model is substituted by a function g(d ) of d, up to some known
or unknown parameters, describing the concentration of the substance that is estimated or
modeled to be active at the target tissue. The form of this function depends on the pharmaco-
kinetics of the involved agent in the tissue under study. In other words, pharmacokinetics is
simply accounted for by making reference to the doses effectively active at the target tissue
that are estimated through pharmacokinetic data and models. This class of models describing
the relationship between the administered dose d and the effective dose g(d ) at the target tissue
is called the physiologically based pharmacokinetic (PBPK) models since we are concerned
with the effective dose in terms of the administered dose. These models are important
because the effective dose at a target tissue is more closely related to incidence of cancer
than is the external dose. It is to be noted that the pharmacokinetics, and hence the models,
depend on the chemical agent under study and also the target tissue.

As an example, inclusion of pharmacokinetics in one-hit and multistage models has allowed
satisfactory fitting of these models to observed dose–response relationships in experiments,
whose downward curvature (convexity) and supralinear trend could be explained by the

MODELS FOR CARCINOGENESIS560



hypothesis that a main carcinogenic agent was an active metabolite of the administered dose,
which was produced by a saturable metabolic process [19,51]. The metabolic process, whose
final product is an active carcinogenic metabolite, is described by a Michaelis–Menten process
that, under steady-state conditions, is assumed to lead an exposure dose d to a concentration of
the active metabolite in the target tissue given by gðdÞ ¼ K1d=ð1þ K2dÞ, where K1 and K2 are
constants. In order to appropriately take the metabolic processes into account through the multi-
stage model, say, the exposure dose dmay simply be substituted by gðdÞ ¼ d=ð1þ K2dÞ, while
the constant K1 in the numerator is absorbed by the constants of the multistage model.

It is interesting to note that this modification of the model needed by the saturation processes
taking place generally at high doses (present in some animal experiments) may not be expected
to cause significant nonlinearities at very low doses, if the saturation process is governed by the
Michaelis–Menten law. This is because, in the low-dose region when d is far lower than 1=K2,
the function g(d ) is substantially linear and, therefore, does not change the low-dose mathe-
matical form of the original multistage or other models that are being used.

Whenever appropriate epidemiologic data is not available, cancer risk assessments need to
rely on the use of animal data to predict the risk of chemical exposures to the human population.
Interspecies extrapolation is a necessary element in this process and has been performed by
scaling the doses used in a dose–response relationship according to body weight or surface
area. Thus, a dose represented in the appropriate units, mg kg21 day21 (body weight
scaling) or mg/m2 (surface area scaling), is assumed to result in the same cancer incidence
across species. As an improvement to the risk assessment process, the PBPK models have
been used to estimate target tissue doses and facilitate interspecies extrapolation by investi-
gating how the pharmacokinetic parameters (of the PBPK models) vary over the species.

There have been several studies utilizing PBPK models in risk assessment. The twofold role
of a PBPK model has been to (1) predict a measure of animal tissue (effective) dose g(d ) to be
used in the dose–response curve and (2) determine the human administered dose correspond-
ing to a tissue dose at a given level of risk. Inherent in role 2 is the assumption that the PBPK
model is valid at the low dose identified by the cancer model. The underlying question is
whether the model, parametrized under higher-dose conditions, provides a reasonable represen-
tation of the kinetics at low doses. To answer this question, kinetic data obtained at low admi-
nistered doses are required and would improve the risk assessment process by eliminating the
uncertainty introduced by the high- to low-dose extrapolation of the PBPK model. The follow-
ing steps outline the use of a PBPK model in cancer risk assessment:

1. The PBPK model is used to calculate the effective dose in the animal tissue.

2. A cancer model is fitted to the cancer incidence (bioassay data) versus effective dose
(from PBPK model) in animals.

3. The value of the effective dose in the animal tissue at a specified risk level is determined
from the cancer model. It is assumed that the effective dose has the same effect across
species or scales allometrically to determine the effective dose value in human.

4. The PBPK model for human is used to determine the administered dose corresponding
to the effective dose value at the specified risk level.

Variations of this basic methodology has been employed in many examples dealing with differ-
ent chemical agents. The reader is referred to Luebeck et al. [33, Sec. 6.8] for a comprehensive
discussion of many of these applications.

Interspecies extrapolation is also an important issue in implementing the third step of the
methodology described in the previous paragraph. Many of the physiologic and metabolic
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parameters used in pharmacokinetic modeling are directly correlated with the body weight
of the particular organism. These physiologic parameters generally vary with body weight
(BW) according to a power function expressed as y ¼ aðBWÞb, where y is a physiologic
parameter of interest and a and b are constants [12,31]. If b equals 1, the physiologic parameter
y correlates directly with body weight. If b equals two-thirds, the parameter y correlates with
surface area. Travis et al. [55] assume that certain physiologic and metabolic processes scale
across species with the 0.75 power of body weight. While there is a substantial body of
empirical data to suggest that this assumption is at least approximately correct, it is far from
universally accepted.

Another concept is the presence of a biologically variable timescale between species. Hill
[22] first suggested that body size served as the regulating mechanism for an internal biological
clock, making the rate of all biological events constant across species when compared with per
unit physiologic time. His conclusions have been supported by many authors [31], who have
shown that breath duration, heartbeat duration, longevity, pulse time, breathing rates, and blood
flow rates are approximately constant across species when expressed in internal time units.
This time unit has been termed physiologic time (t0) and can be defined in terms of chronologi-
cal time (t) and body weight (BW) as, for example, t0 ¼ t=ðBWÞ0:25. Thus, while chronologic
time is the same for all species, physiologic time differs for each species. The value of this
concept is that all species have approximately the same physiologic and metabolic rates
when measured in the physiologic timeframe.

Interspecies extrapolation of toxic effects attempts to find a measure of administered dose
(i.e., mg kg21 day21 or mg m22 day21) that produces the same measure of effect in all species.
It is understood that any such extrapolation procedure is only approximately correct and should
be used only when species-specific data are unavailable. Historically, it has been assumed that a
single extrapolation procedure would work for all chemicals regardless of their action mechan-
isms. Travis et al. [55] demonstrated that, regardless of action mechanism, the appropriate
metric was dose (mg/kg) per unit of physiological time, which, at low doses, is equivalent
to mg kg20.75 day21.

30.6 STATISTICAL METHODS

We will discuss here some of the main statistical tools that have been developed over the last
few decades (as of 2007) for analyses of epidemiologic and toxicologic data. Important issues
like sampling and data analysis in epidemiologic studies to ensure appropriate interpretation of
results in the presence of possible confounding will not be discussed here as that will be outside
the scope of this work. Any book on epidemiology (e.g., see Ref. 52) will discuss these issues
in detail.

For analysis of epidemiologic data, there are two broad classes of models, namely, relative
risk models and Poisson models. When information is available on each individual in an epi-
demiologic study, the relative risk models are widely used, whereas the Poisson models are
used when data are available at a group level, generally cross-tabulated by age groups and
exposures of interest. For analysis of toxicologic data also, there are two broad classes of
models. The first is the class of quantal response models, which are used to investigate the
relationship between exposure (or dose) d and lifetime risk R(d ) or lifetime probability of
response (or tumor, if the experiment under consideration is a cancer bioassay). In some experi-
ments, particularly if serial sacrifices are performed, information may be available not only on
whether a particular animal has response (or, tumor) or not but also on when (age of the animal)
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the response is observed. In this case, this extra piece of information can be accommodated by
using one of the time-to-response (or time-to-tumor) models. As mentioned before, incorpor-
ation of this extra information reduces bias induced by mortality from other causes. In the fol-
lowing paragraphs, we discuss briefly the statistical methods used for the four broad classes of
models as mentioned above.

1. Relative Risk Models. Since the relative risk is defined in terms of hazard rates, and data
are available on each individual in the study cohort, the standard techniques of analyzing
survival data with covariates can be employed for specific parametric models. For more
general models, special methods of analysis also exist, including Cox’s partial likelihood
method [10] for proportional hazards model with arbitrary baseline hazard. There is a
vast biostatistics literature on the application of relative risk models to the analyses of
various study designs encountered in epidemiology, including cohort and case–
control studies, with adjustment for confounding, [6,7]. It is to be noted that the analysis
of such data at the individual level need not rely on relative risk models alone. In fact,
any model for the hazard rate h(t) with identifiable parameters should suffice.

2. Poisson Models. Quite often information is available, not on individual members of a
study cohort, but on subgroups that are reasonably homogeneous with respect to import-
ant characteristics, including exposure level, determining disease (cancer) incidence. A
well-known example is provided by the British Doctors’ study of tobacco smoking and
lung cancer [18]. For the cohort of individuals in this study, information on the number
of lung cancer deaths is cross-tabulated by daily level of smoking (reported in fairly
narrow ranges) and 5-year age categories. For Poisson regression, the number of cases
(the number of lung cancer deaths in the example of the British Doctors’ study) in
each cell of the cross-tabulated data is assumed to have a Poisson distribution with
expectation that it is a function of the covariates of interest, including exposure level.
The number of cases in different cells of the cross-tabulated data are assumed to be inde-
pendent. Suppose that the data are cross-tabulated in I distinct cells, and let Ei be the
expectation of the number of cases in the ith cell with the corresponding observed
number Oi. Then, the usual Poisson likelihood can be written down for the ith cell,
and the total likelihood is the product of all these likelihood contributions over the I
cells. The expectations Ei are made functions of the covariates of interest involving
some unknown parameters that are to be estimated. Generally log(Ei) is modeled as a
linear function of the covariates, where the coefficients are unknown parameters.
More elaborate functions can also be used in terms of the hazard function derived
from the biologically based models mentioned in the previous sections. Moolgavkar
et al. [42] modeled this expectation by the hazard function derived from the TSCE
model to analyze the British Doctors’ data.

3. Quantal Response Models. There is a whole class of models, the tolerance distribution
models, as discussed in Section 30.2. There is also the linearized multistage
(LMS) model with its basis in biological considerations. More generally, any time-
to-tumor model based on biological considerations (multistage, TSCE, and/or PBPK
models) leads to an expression for lifetime risk R(d ) by computing the probability of
tumor by time t, P(t, d), at a constant lifetime t. The quantal response models can be
fit to quantal response data using the maximum-likelihood approach provided that the
number of dose groups is larger than the number of unknown parameters. The likelihood
is of the product binomial form, that is, a product of binomial likelihoods, which corre-
spond to the binomial observations from the different dose groups. Formally, if there are
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ni observations in the ith dose group with dose level di having yi number of cases, for i ¼
0,1, . . . , k, then the likelihood is proportional to

Qk
i¼0 ½RðdiÞ�

yi ½1� RðdiÞ�ni�yi . If there
are individual specific covariates, in addition to the exposure or dose level, the likelihood
will be a product of Bernoulli terms contributed by each individual [27].

4. Time-to-Event Models. In some bioassay data, information on the ages at which tumors
were observed may be available. As discussed at the end of Section 30.2, this infor-
mation can be incorporated in the analyses by using time-to-event or time-to-tumor
models (including the biologically based ones). The fundamental concept required to
fit these models to such data is that of the hazard rate, which we discussed before. A
number of standard time-to-tumor models were reviewed by Kalbfleisch et al. [23].
The form of the likelihood depends on the amount of information available on tumor
onset times, on whether the tumor is rapidly fatal, and on the relationship between
tumor mortality and death due to other causes [28].

30.7 CONCLUDING REMARKS

In this work, we present a summary of models (not necessarily an exhaustive one) used to
describe the carcinogenic process, particularly for the purpose of carcinogenic risk assessment
based on data from epidemiologic and experimental studies. Starting from a more standard
purely statistical models to the biologically based TSCE model, possibly with incorporation
of pharmacokinetic considerations, there is a wide range of models that exists at this time.
We also discuss the different common statistical methods to analyze different kinds of data
using these models.

The multistage model has a long history and has been used largely in low-dose risk assess-
ment and carcinogen regulation. It has been studied, discussed, criticized, and applied for more
than 30 years, and theoretical and practical developments of the various details and related
aspects have continued for so long that a large body of knowledge has accumulated on the
subject. Its limitations, however, have been understood only recently relatively. For example,
although this model can adequately explain most adult tumors, the risk of which usually
increases with age, it fails to account for nonmonotonic risk as observed in, for example,
any childhood cancer or breast cancer. Also, it is difficult to incorporate time-dependent
exposure patterns, which is only too common in most epidemiologic studies. Since the devel-
opment of the TSCE model incorporating cell proliferation, it is now possible to amend most of
these inadequacies, including the time-dependent exposure patterns. A number of applications
of biologically based models in the analysis of epidemiologic and experimental data have been
reported and discussed in Luebeck et al. [34] and Moolgavkar and Luebeck [44].

Although the multistage and the TSCE models are based on biological considerations, they
do not entirely capture the complex biological reality of the carcinogenic process. For example,
the multistage model ignores cell proliferation, whereas the TSCE model posits only a single
intermediate stage with altered cell kinetics. Furthermore, there may be more than a single
pathway to malignancy in a tissue. Attempts have been made to develop more general
models that accommodate some of these possibilities [49,32,35,20]. The problem with such
general models is that there is little quantitative information for estimation of the model para-
meters. Unfortunately, quantitative risk assessment using a biologically based model requires
more data than are usually available, in order to circumvent he problem of parameter identifia-
bility. Nonetheless, use of models based on current understanding of carcinogenesis does iden-
tify data gaps that need to be filled up. The use of such models can also suggest plausible
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explanations for observed exposure–response relationship. For example, in 1999 Lutz and
Kopp-Schneider proposed a mechanism for the J-shaped exposure–response relationship
reported for some carcinogens.
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proportional hazards regression, 169
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Receiver operating characteristic (ROC)

curve, 343, 397, 445, 448, 449
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binary, 144, 152
bivariate binary, 146
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logistic, 74, 75, 145, 405, 508,
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Regular parameter, 160, 165
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Renewal theory, 57, 58
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systematic, 127
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Hellinger, 513
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trial, 47

Retrospective, 123, 405, 508
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RIC, 538, 539
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attributable, 105
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RNA, 91, 92, 93
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adaptive methods in clinical trials, 518
B-, 502
estimating equations, 507, 508
infinitesimal approach to, 503
minimax approach to, 502, 503
qualitative, 502
quantitative, 502

Rosenberg-Stallard-Ivanova-Harper-Ricks
(RSIHR) rule, 44, 48
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Sampling
inverse, 55, 59, 60, 62
inverse binomial, 56, 57, 58, 63
inverse normal, 63
partial sequential, 58

“Sandwich” variance estimator, 75
SaTScan, 105, 106
Scan statistic, 105, 107
circular, 107
spatial, 105

Screening study, 22
Seasonal transmissibility, 135
Seasonality, 136
Semi-competing risks problem, 177
Semiparametric, 159, 352, 405, 474, 507
maximum likelihood estimation

(SPMLE), 162, 164
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Semivariogram, 110, 111, 112, 113, 114,
115, 117, 118

empirical, 111, 112, 114
exponential model for, 111, 113
isotropic, 110
parametric families, 111
stationary, 110
theoretical, 111, 112

Sensitivity analysis, 75
Sequence data, 326, 443
Sequential, 17, 20, 21, 22, 24, 57, 58,

62, 63
estimation-adjusted urn (SEU), 38
maximum likelihood estimation, 39, 40
ML design, 63
Monte Carlo (SMC), 126, 127, 128,

129, 136
S-estimator, 508
Severe acute respiratory syndromes (SARS),

124
Signature, 327, 368, 472
Sill, 110, 111, 114
posterior distribution of, 115

Simon design, 21
Simulated annealing, 132
Simulation extrapolation (SIMEX), 142
Single-arm, 20, 22, 23, 24, 25, 27
Single nucleotide polymorphism (SNP), 385,

400, 414, 490
Single-stage
design, 21
procedure, 22

Single-treatment pilot study, 17
Sliced likelihood, 132, 133, 134
plot, 132, 133

Smoothing, 347, 471, 490
kernel-based, 100
parameter, 101

Sobolev space, 162
Spanning trees
minimum, 106

Spatial
cluster, 119
correlation, 98, 99, 108, 110
covariance, 108, 110, 114
data, 98
density function, 100, 102
epidemiology, 97, 98, 107, 108, 118, 119

information, 98
intensity function, 119
pattern, 98, 99, 100, 116
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point process, 99, 107, 119
Poisson process, 99, 100, 119
Poisson regression models, 99, 119
prediction, 98, 107, 108, 109, 113, 117,

119
random field, 113
scan statistic, 105, 106
statistics, 97, 117
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Spatiotemporal
data, 136
model, 136
problem, 136
variability, 136

Spending function method, 21
Standardized prediction residuals, 135
State process, 126, 127
State space, 126
State space model (SSM), 125, 126, 132,

134, 135, 136
Gaussian, 125
linear, 125
nonlinear, 125, 126

Stationarity, 108, 117
Stationary distribution, 128

for Markov chain designs, 6
of dose assignments, 6

Stationary point equation, 162
Statistical functional, 502
Stochastically smaller, 60
Stochastic differential equation model, 529
Stochasticity

demographic, 124, 131
environmental, 124, 131

Stochastic optimization
Robbins-Monro type, 128

Stopping rule/criterion, 24, 57, 58,
59, 519

Stratified design, 71
Strongly consistent, 60
Structural model, 132, 142
Success-driven design, 62
Sufficiency, 502
Supervised learning. See Classification
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Support vector machine (SVM), 454
Surrogate, 141, 143, 144, 146, 148, 149,

150, 152
Survival analysis, 159, 506
Survival curve, 507, 513
Survival data
case-cohort estimators of, 507
censored, 508
doubly censored, 169

Survival function, 161
baseline, 159

Survival model
semiparametric, 159

Susceptible, 124, 130
Susceptible-Infected-Removed (SIR), 124

Taylor series, 125
T cells, 85
Thall-Simon design, 24
Thomas-Hultquist procedure, 71
Thymus, 85
Timecourse experiment. See Microarrays
Time-series, 135, 136
data, 124
hormonal data, 527
models, 125

Time-to-event, 10, 76
Time-to-event models
general product hazards models, 552
log-linear models, 552
multi-event models, 552
relative and additive risk models, 552

Time-varying, 84, 85, 87
coefficient model, 160

TITE-CRM, 10
Tolerance distribution model, 549
log-probit, 550
logit, 550
normal (probit), 549

Tobler’s first law of geography, 107
Toxicity, 26
rate, 7, 8, 9
monotonicity, 12

Toxicology, 512, 548
Transcription factor binding sites, 377, 443
Transformation invariance, 125
Transformation model, 159

Transmissibility, 135
seasonal, 135

Transmission, 123
human-to-human, 130
vertical, 519

Treatment effect
mapping, 41, 42
models, 84, 85

Trimmed mean, 505, 507
Two-stage
design, 21
procedure, 22, 508

Type I error, 18, 19, 20, 21, 22, 26, 27, 28
Type II error, 18, 19, 21, 26

ULTRA, 529
Unbiasedness, 118
Uniformly most powerful (UMP), 56
unbiased, 57

Unimodal prior, 23
Unit of analysis error, 68
United States Environmental Protection

Agency (USEPA), 108
Unsupervised learning. See Clustering
Up-and-down designs
Markovian, 6
Markovian-motivated nonparametric, 6
Markovian group, 8

Upper level set approach, 106
Utility function, 25

Variance components, 75, 131
Variance-covariance matrix, 110, 114
positive definite, 110

Variance inflation factor, 72, 74
Variation
between-subject, 88
within-subject, 88

Variogram, 117
Variography, 111
Vibrio cholerae, 130, 135
Viral
dynamics, 84, 86, 87, 89
load, 83, 84, 87, 89, 90, 91, 92, 94
rebound, 90, 92, 94

Virion, 85
Virological marker, 83
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Weibull, 515
MLE fit, 516, 517
model, 550
robust (MDE) fit, 516, 517
two-component mixture, 516, 517, 518

White noise
Gaussian, 132

Wilcoxon-Mann-Whitney, 42, 43
Winsorized mean, 505

Within-cluster correlation, 68, 69
Within-cluster variance, 73

Yeast two-hybrid (Y2H), 325, 419
Yellow fever, 97

Zidovudine, 33, 519
Zoonotic, 124
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