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Preface

It is widely believed that the twenty-first century will be the century of biotechnology, which,
in turn, will lead to unprecedented breakthroughs in the medical sciences revolutionizing every
aspect of medicine from drug discovery to healthcare delivery. The rapid advancement in high-
performance computing that took place in the last quarter of the twentieth century has indeed
been a driving force in this revolution, enabling us to generate, store, query, and transfer huge
amounts of medical data. As is well known, this is where statisticians come into the picture—
lending their expertise in extracting information from data and converting that information to
knowledge.

The key role that statisticians have been playing in this information revolution in the
medical sciences has created new challenges and posed difficult problems before our own dis-
cipline, whose solutions have often necessitated new statistical techniques, new approaches, or
even new modes of thinking. These have been the motivating force behind an astonishing flurry
of research activities in biostatistics since the mid-1990s, which have been well documented in
the contemporary journals and books. Since the involvement of statistics in the medical
sciences is almost always interdisciplinary in nature, there has been a surge of activities on
another front, namely, helping experts in the biomedical sciences (as well as practitioners in
related fields) learn the basic concepts of statistics quickly and familiarizing statisticians
with the medical parlance at the same time.

So acloser look at the books and monographs that have come out in these areas in the last 20
years will reveal four broad categories:

¢ Expository introductions to basic statistical methodology with examples and datasets
from the biomedical sciences (e.g., O. J. Dunn, Basic Statistics: A Primer for the
Biomedical Sciences, Wiley; B. Brown and M. Hollander, Statistics: A Biomedical
Introduction, Wiley; R. P. Runyon, Fundamentals of Statistics in the Biological,
Medical and Health Sciences, Duxbury; B. S. Everitt, Modern Medical Statistics: A
Practical Guide, Arnold Publishing Company, or R. F. Woolson and W. R. Clarke,
Statistical Methods for the Analysis of Biomedical Data, Wiley)

¢ Advanced monographs and textbooks on some special topics in statistics that are relevant
to special types of biomedical data (e.g., J. K. Lindsey, Nonlinear Models for Medical
Statistics, Oxford Statistical Science Series; W. J. Ewens and G. R. Grant, Statistical
Methods in Bioinformatics, Springer-Verlag; R. G. Knapp and M. C. Miller III,
Clinical Epidemiology and Biostatistics, Harwal Publishing Company; J. F. Lawless,
Statistical Models and Methods for Lifetime Data, Wiley; or E. Marubini and

xxi
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M. G. Valsecchi, Analyzing Survival Data from Clinical Trials and Observational
Studies, Wiley)

» Encyclopedic collections or handbooks of concepts and methodology (e.g., B. S. Everitt,
Medical Statistics from A to Z: A Guide for Clinicians and Medical Students, Cambridge
Univ. Press; D. J. Balding, M. Bishop, and C. Cannings, eds., Handbook of Statistical
Genetics, Wiley; C. R. Rao and R. Chakraborty, eds., Handbook of Statistics 8:
Statistical Methods in Biological and Medical Sciences, Elsevier)

« Historical accounts (e.g., O. B. Sheynin, On the History of Medical Statistics, Springer-
Verlag).

In addition to these, there are a few examples of a fifth kind. These are edited volumes of peer-
reviewed articles encompassing several aspects of statistical applications in many areas of the
biomedical sciences (e.g., Y. Lu and J.-Q. Fang, eds., Advanced Medical Statistics, World
Scientific Publishers; B. S. Everitt and G. Dunn, eds., Statistical Analysis of Medical Data:
New Developments, Arnold Publishing Company; B. G. Greenberg, ed., Biostatistics:
Statistics in Biomedical, Public Health and Environmental Sciences, Elsevier). These edited
volumes, which are a “snapshot” of the contemporary developments in statistical methodology
for dealing with complex problems in the biomedical sciences, are neither introductory nor
encyclopedic in nature. However, they have some distinct advantages. Unlike the advanced
textbooks or monographs in certain specialized areas of biostatistics, they are not narrow in
their coverage—usually offering a “wide angle” view of the contemporary methodological
developments and technical innovations. Additionally, since they are not expected to cover
every single concept and every single innovation in the field (which encyclopedias and hand-
books try to do in a few hundred pages), they have a better opportunity of going in-depth and
showing real-life data analysis or case study examples. Finally, the articles they contain are
often firsthand accounts of research reported by the researchers themselves, as opposed to
secondhand accounts provided by the author(s) of a textbook or monograph.

So when we first contemplated bringing out a book that summarizes some of the major
developments in statistics in the biomedical context, this is the format we chose. A number
of eminent researchers in the four major areas of the modern-day biomedical sciences where
statistics has made its mark, namely, Clinical Trials, Epidemiology, Survival Analysis, and
Bioinformatics, have contributed 30 carefully prepared and peer-reviewed articles. In addition,
there are a few more that do not exactly fit into those areas but are strongly relevant to the
overall theme. Each of the three edited volumes mentioned in the preceding paragraph is a valu-
able resource to students, practitioners, and researchers. But each of them has its own limit-
ations. In proposing this volume, our motivation was to overcome many of the shortcomings
of its predecessors and to combine their best features. The contributors have been carefully
chosen so as to cover as much ground as possible in each broad area. Although the chapters
are independent of one another, the chapter sections have been organized so as to make the
thematic transition between them as smooth as possible. A structural uniformity has been main-
tained across all the chapters, each starting with an introduction that discusses the general con-
cepts and describes the biomedical problem under focus. The subsequent sections provide more
specific details on concepts, methods, and algorithms, with the primary emphasis on appli-
cations. Theoretical derivations and proofs are, for the most part, relegated to the appendix
in chapters that contain such items. Each chapter ends with a concluding section that summar-
izes the main ideas in the chapter or points to future research directions.

From the beginning, our intention has been to target this book to a broad readership. Not
only is it intended to be a useful reference or supplementary study material for doctoral or
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advanced master’s-level students in different areas of biostatistics and the medical sciences, but
also an informative resource guide to researchers in both academia and industry. Practitioners,
such as professional consultants or research support staff, will also get a lot out of this volume.
People with different backgrounds will probably benefit from different aspects of it. Medical
researchers will get to see the arsenal of statistical “weapons” available to them and be more
aware of how to collect information in the right way for these statistical techniques to be appli-
cable. They will receive valuable guidelines regarding what to expect and what not to expect
from statistics, that is, about proper interpretation and drawbacks of statistical methodology.
Statisticians, on the other hand, will get an opportunity to put their current research in the
broader perspective of the biomedical sciences and at the same time, pick up some useful sug-
gestions for their future applied research. Statistical consultants who work with clients from the
medical field or the pharmaceutical industry will gain a better understanding of the “party at the
other end of the table.” Even the hardcore mathematical statisticians may pick up some new
directions for their pathbreaking theoretical work. Any university or research institute with a
medical or public health program or a graduate-level statistics/biostatistics curriculum offers
advanced courses in one or more of the four major areas covered in our volume. We believe
that this volume will nicely supplement the primary textbooks used in those courses.

We admit that the 30 chapters included here are not all written at the same level of techni-
cality or clarity, but personally, we view this disparity positively. This allows a reader to
appreciate the great diversity in the training and expertise of people who are currently doing
research in biomedical statistics. Perhaps the reader will realize that routinely used phrases
such as “applied statistics,” “interdisciplinary research,” or ‘“real-life datasets” are also
subject to interpretation.

In summary, when we first contemplated this project, our primary goals were to

¢ Come up with a well-organized and multifaceted presentation of cutting-edge research in
biomedical applications of statistics under one umbrella.

¢ Provide new directions of research or open problems in each area for future researchers
and a detailed list of references in order to facilitate self-study.

¢ Do all these in a way accessible to people outside academia as well.

How far we have succeeded in achieving these goals is for the reader to judge. But we thank the
contributing authors for trying their best to bring us closer to these goals by adhering to the
guidelines we provided and the deadlines we set. And we do believe that our volume will
be popular and will stand out among comparable pieces of work because:

¢ There have not been too many previous attempts to summarize contemporary research in
several aspects of a large interdisciplinary area such as this in a compact volume.

¢ In spite of the technical nature of the subject matter, the style of presentation in our book
maintains a certain degree of lucidity, aided by an informative introduction that explains
the problem in simple terms, a substantial literature survey that puts each topic in perspec-
tive, and an adequate number of real-life examples and/or case studies, which will make
this volume suitable for a wider audience.

A great deal of care has been taken by the editors to avoid the usual “incoherent cut-and-
paste nature” of edited volumes and ensure smooth thematic transitions between chapters
within each of the five major parts.
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A project like this would never be successful without the unselfish and silent contributions
made by a number of distinguished colleagues who kindly accepted our invitations to
referee one or more chapters or shared their opinions and expertise with us at various stages
of the project—from proposal evaluation to proofreading. We deeply appreciate their contri-
butions and offer them our sincerest gratitude.

It has been a pleasure to work with the editorial and production staff at Wiley—from the
initial planning stage to the completion of the project. Susanne Steitz-Filler was patient and
encouraging right from the beginning, and so was Steve Quigley. Without Susanne’s editorial
experience and the technical prowess of the Wiley production team, it would be a much more
daunting task for us, and we are truly grateful to them. Also, one of the editors (Datta) would
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CHAPTER1

Phase I Clinical Trials

Anastasia Ivanova

Department of Biostatistics, University of North Carolina, Chapel Hill,
North Carolina
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1.1 INTRODUCTION

Phase I trials are conducted to find a dose to use in subsequent trials. They provide data on the
rate of adverse events at different dose levels and provide data for studying the pharmaco-
kinetics and pharmacology of the drug. Dose-finding studies that involve therapies with little
or no toxicity often enroll healthy volunteers and usually have a control group. Trials in onco-
logy and other life-threatening diseases such as HIV enroll patients because treatments are
usually highly toxic and to enroll healthy volunteers would not be ethical. The primary
outcome for phase I trials in oncology and HIV is typically dose-limiting toxicity. Such
studies require different design strategies.

In Section 1.2, we review dose-finding procedures used in healthy volunteers. In Section 1.3
we describe dose-finding procedures for trials with toxic outcomes enrolling patients. In
Section 1.4, we list some other design problems in dose finding.

1.2 PHASE I TRIALS IN HEALTHY VOLUNTEERS

Buoen et al. [7] reviewed designs that are used for studying first-time-in-human drugs by
looking at 105 studies published in five major pharmacology journals since 1995. In this
section we briefly summarize their findings. Bouen et al. found that first-time-in-human
studies usually enroll healthy volunteers; most are placebo-controlled and more than half are
double-blind. The placebo group is included to reduce observer bias and sometimes to

Statistical Advances in the Biomedical Sciences, edited by Atanu Biswas, Sujay Datta,
Jason P. Fine, and Mark R. Segal
Copyright © 2008 John Wiley & Sons, Inc.
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enable comparison of the active drug with placebo. Usually three to eight dose levels are inves-
tigated. Doses are selected using linear, logarithmic, Fibonacci, modified Fibonacci dose esca-
lation patterns, or some combinations of these. The popular modified Fibonacci procedure
escalates doses in relative increments of 100%, 65%, 50%, 40%, and 30% thereafter.

The simplest pattern of dose administration being used in first-time-in-human studies is the
parallel single-dose design in which a single dose is administered once. Multiple adminis-
trations of the same dose are referred to as parallel multiple-dose design. Parallel dose admin-
istration was found to be the most frequently used procedure in first-time-in-human studies. In a
typical trial with parallel dose administration, subjects are assigned in cohorts consisting of
eight subjects, with six assigned to the active treatment and two assigned to a control. All
treated subjects in a cohort receive the same dose. Doses are increased by one level for each
subsequent cohort. The trial is stopped when an unacceptable number of adverse events is
observed, the highest dose level is reached, or for other reasons. The “target dose,” the dose
recommended for future trials, is usually determined on the basis of the rates of adverse
events at dose levels studied and/or on pharmacokinetic parameters.

More complex dose administration patterns were found to involve the administration of
several different dose levels to each patient. In such trials, the healthy subjects are given
some rest time between administrations to minimize the carryover effect. One such pattern is
referred to as an alternating crossover design. An example of an alternating crossover
design for a study with six doses is as follows:

Cohort 1: Dose 1 REST Dose 4
Cohort 2: Dose 2 REST Dose 5
Cohort 3: Dose 3 REST Dose 6

Another dose administration pattern is the grouped crossover escalation. An example of this
pattern for a trial with four dose levels is as follows:

Cohort 1
Subject 1 Placebo Dose 1 Dose 2
Subject 2 Dose 1 Placebo Dose 2
Subject 3 Dose 1 Dose 2 Placebo
Cohort 2
Subject 1 Placebo Dose 3 Dose 4
Subject 2 Dose 3 Placebo Dose 4
Subject 3 Dose 3 Dose 4 Placebo

Sheiner et al. [41] reviewed parallel and crossover designs and methods for analyzing the
data obtained in such studies. They point out ethical problems and a lack of representativeness
in these designs. Sheiner et al. [41] advocated using a dose administration pattern that they call
the dose escalation design:

According to the dose-escalation design all subjects are given a placebo dose first. If after
some predefined time period the response fails to satisfy a certain clinical endpoint and no
unacceptable toxicity is seen, the dose is increased by one level. This process is repeated at
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each dose level until either the clinical endpoint is reached or the highest dose is attained.
If the response is adequate at any dose, the dose is maintained at that level for the duration of
the study.

The main obstacle to using this design is the lack of formal statistical methods for
data analysis.

Girard et al. [17] studied the effects of several confounding factors on trials that use parallel
dose, crossover and dose escalation designs by simulations. They concluded that the presence
of nonresponders biases the estimate of the dose producing 50% of the maximum effect, in all
three designs. However, other confounders such as carryover effects only bias the results of
trials in which the dose escalation design is used.

Buoen et al. [7] conclude that, although “the development of study designs and evaluation
methods for cancer trials is extensive, ... formal statistically based methods ... are unusual in
phase I dose-escalation trials in healthy volunteers.” This lack and the recognition of need
present both challenges and opportunities to the statistical research community.

1.3 PHASE I TRIALS WITH TOXIC OUTCOMES
ENROLLING PATIENTS

In many phase I trials in which the subjects are patients, rather than healthy volunteers, the goal
is to find the dose that has a prespecified toxicity rate. This is particularly true in oncology. In
these trials, the primary outcome is typically binary: dose-limiting toxicity? Yes or no. For
example, the dose-limiting toxicity (DLT) in radiotherapy and chemotherapy studies is
usually defined as treatment-related nonhematological toxicity of grade 3 or higher or
treatment-related hematological toxicity of grade 4 or higher. The maximally tolerated dose
(MTD) is statistically defined as the dose at which the probability of DLT is equal to the
some prespecified rate I'. The typical underlying model assumption is that the probability of
toxicity is a nondecreasing function of dose, even though decreasing toxicity rates at high
doses have been observed [43].

Preclinical studies in animals often attempt to determine the dose with approximately 10%
mortality (e.g., the murine LD;). In first-in-human toxicity studies, one-tenth or two-tenths of
the dose considered to be equivalent to the murine equivalent, expressed in milligrams per
meter squared (mg/ m?), is generally used as a starting dose in escalation procedures. The start-
ing dose is anticipated to be 5—10-fold below the dose that would demonstrate activity in
humans. In trials with oral drugs, only certain doses can be used; therefore, the set of possible
doses is fixed in advance. The set of possible doses is often chosen according to the modified
Fibonacci sequence.

In dose-finding trials in oncology, patients may receive a single dose of a drug or multiple
administrations of the same dose. To address ethical concerns similar to those of Sheiner et al.
[41] and to shorten trial duration, Simon et al. [42] introduced acceleration titration designs.
Such designs allow intrapatient dose escalation if no toxicity is observed in a patient at the
current dose. A patient goes off study or the patient’s dose is reduced if toxicity is observed.
Although appealing from an ethical perspective, this approach is not widely used for the
same reason as in the hesitation to use Sheiner’s dose escalation design. In the rest of this
chapter, we review methods with parallel dose administration.

One cannot begin to detail all designs that have been used with parallel administration for
dose finding in patients with dose-limiting toxicity. Some popular procedures are ad hoc, as are
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the designs used in healthy volunteers. Others were developed with various desirable charac-
teristics. We discuss the most popular procedures, but our choice is admittedly biased by our
own interests.

1.3.1 Parametric versus Nonparametric Designs

Designs for dose finding can be classified as parametric or nonparametric. Non-parametric
designs are attractive because they are easy to understand and implement; the decision rules
are intuitive and their implementation does not involve complicated calculations. By nonpara-
metric, we mean that no parametric representation of the dose—response relationship is used in
the design’s treatment allocation rule. In this chapter, we discuss several Markovian and
Markovian-motivated non-parametric up-and-down designs and the A + B designs of Lin
and Shih [31]. We also discuss non-parametric designs in which the treatment allocation rule
is based on isotonic estimates of the dose—response function. These are called isotonic designs.

Then we describe some parametric designs that assume one- or two-parameter models for
the dose—toxicity relationship. Popular parametric designs include the continual reassessment
method [33] and escalation with overdose control [2].

With the Markovian and Markovian-motivated designs, treatment assignments typically
cluster unimodally around a specific dose, and the key to their effectiveness is to select
design parameters so as to center the treatment distribution judiciously [11]. For example,
for toxicity studies with increasing dose—response functions, these designs can be constructed
to cluster treatments around the unknown dose with prespecified “target” toxicity rate I'.

In other designs that allow multiple escalations and deescalations of dose, treatment assign-
ments first fluctuate around the MTD and then converge assignments to the MTD. Such designs
include, for example, the continual reassessment method [33] and isotonic designs [29].

1.3.2 Markovian-Motivated Up-and-Down Designs

In up-and-down designs, the next dose assigned is never more than one level distant from the
dose given to the current cohort of patients. Such designs are appealing in dose-limiting
toxicity studies because of the potentially devastating consequences of abruptly making
major changes in dosing. Many ad hoc up-and-down procedures exist, including the most
widely cited design in oncology, that is, the 3 + 3 design [44,28]. The 3 + 3 design is a
special case of the A + B designs [31]. It is important in trials with patients who are critically
ill not to assign too many patients to low, ineffective doses. The A + B designs address this
concern by assigning A patients to the lower doses and assigning A + B patients to doses
closer to the target.

Before describing the A + B designs, we review a fundamental theorem that is useful for
characterizing the Markovian up-and-down design. Let py, g, and r; denote the probability
of increasing, decreasing, and repeating dose d;, respectively. Assume that these probabilities
depend only on d;, k=1, ..., K. Furthermore, assume that p, decreases with dose, whereas ¢,
increases with dose. Let d,. denote the largest dose such that p.—; > g.. The stationary distri-
bution for Markov chain designs with transition probabilities py, gx, 1 exists uniquely if the
Markov chain is recurrent, irreducible, and aperiodic. Under these conditions, Durham and
Flournoy [11] proved that the stationary distribution of the dose assignments is unimodal
and the mode occurs at d,.. Additionally, if p,.—; = ¢, then the mode spans d,.— as well as d,.

Convergence of the dose assignments to their stationary distribution is reached exponen-
tially rapidly, so asymptotic results apply well with a relatively small number of treatment
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assignments, regardless of the initial dose. Because of the discreteness of the dose space, as a
practical approximation, we say that a Markovian up-and-down design “targets” d, if p. = g
treatments will cluster unimodally around this dose. Alternatively, we say that the design
targets the toxicity rate I', for which P{toxicity | d, } = I'. Markovian up-and-down designs
can be characterized using this and other asymptotic and finite sample theory for Markov
chains. Techniques are given in Durham and Flournoy [12], Durham et al. [13], Giovagnoli
and Pintacuda [16], and Bortot and Giovagnoli [5].

A corollary of the Durham—Flournoy theorem is that treatments from the traditional up-and-
down design of Dixon and Mood [10] are distributed unimodally around d,, = LDs, regardless
of the underlying (increasing) dose—response model. In this procedure, the dose is decreased if
a toxicity is observed and increased otherwise. So p;, = P{toxicity | d;} and gy =1 — p, =
P{toxicity | di} (except at k =1 or K). Solving p; = g; yields p,, = 0.50.

Durham and Flournoy [11,12] generalized the Dixon—Mood decision rule by using a biased
coin, together with the Durham—Flournoy theorem, to provide a procedure that targets any
given toxicity rate I". This procedure was not well received in oncology trials because clinicians
were averse to using randomization in phase I treatment allocation rules.

Using cohorts at each dose, the Durham—Flournoy theorem was employed by Gezmu and
Flournoy [15] to devise treatment allocation rules without randomization that still target a given
toxicity rate I'. However, the set of possible targets is limited by the group size. Some examples
they give of I that are possible with groups of size 2 are 0.29, 0.50, and 0.71; with groups of
size 3, they are 0.21, 0.35, 0.50, 0.65, and 0.79; and with groups of size 4, they are 0.16, 0.27,
0.38, 0.39, 0.50, 0.61, 0.62, 0.73, and 0.84. Procedures for values of I" greater than 0.5 are
useful for efficacy studies, but not toxicity studies. Gezmu and Flournoy [15] show that
each of these target values can be found as a direct application of the Durham—Flournoy
theorem; details justifying this application are given by Ivanova et al. [25]. Antognini et al.
[1] generalize the Gezmu—Flournoy group procedure to target any I' € (0,1) by introducing
a randomization procedure. This is clever, but will probably not be any more attractive to
oncologists than was the biased coin design of Durham and Flournoy [11].

Ivanova et al. [25] take a different approach to adapting the group up-and-down design so
that it will target any given I € (0,1). They call their procedure the cumulative cohort design,
which is as follows.

Cumulative Cohort Design Suppose that the most recent assignment was to dose d;. Let §;
be the cumulative proportion of toxicities at d;, and let A > 0 denote a design parameter. Then

1. If §; <T'—A, the next group of subjects is assigned to dose d;, ;.
2. If g; > T" + A, the next group of subjects is assigned to dose d;_;.
3. IfI' = A < g; <T + A, the next group of subjects is assigned to dose d;.

Appropriate adjustments are made at the lowest and highest doses.

An intuitive choice of the parameter A > 0 in the cumulative cohort design is close to 0. For
example, with A = 0.01 and moderate sample sizes, the dose will be repeated if the estimated
toxicity rate is exactly equal to I', and changed otherwise. Ivanova et al. [25] suggested choos-
ing A to maximize the total number of subjects assigned to the MTD over a set of dose—toxicity
scenarios. For example, for moderate sample sizes they recommended using A = 0.09 if
I'=0.10, 0.15, 0.20, or 0.25; A=0.10 if I'=0.30 or 0.35; A=0.12 if I'=0.40;
and A=0.13 if I' =0.45 or 0.50. Ivanova et al. [25] demonstrated via simulations that
A = 0.01 and choosing their recommended values of A yield similar frequency of correctly
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selecting the MTD. However, the cumulative cohort design with their recommended D values
assigns significantly more patients to the MTD.

The A + B designs as given by Lin and Shih [31] begin like the first run of a Markovian group
up-and-down design, but the design is switched when the dose would otherwise be repeated and
stopped (for designs without deescalation) when the dose would otherwise be decreased.

A + B Design: Let A and B be positive integers. Let cp, cy, and Cy be integers such that
0<cL<cy<A,cy—cL>2,and ¢ < Cy <A + B. Let X5(d) be the number of toxicities
in a cohort of size A assigned to dose d;, and let X, , (d;) be the number of toxicities in a cohort
of size A + B. Subjects are treated in cohorts of size A starting with the lowest dose. Suppose that
the most recent cohort was a cohort of A subjects that has been treated atdose d;, j = 1,...,K —
1. Then

1. If X4(d)) < cy, the next cohort of A subjects is assigned to dose d; ;.

2. If ¢;, < X4(d; ) < cy, the cohort of B subjects is assigned to dose dj; then, if in the com-
bined cohort assigned to d;, X4 g(d;) < Cy, the next cohort of size A receives dose
d; 1; otherwise the trial is stopped.

3. If X4(d)) > cu, the trial is stopped.

The dose that is one level below the dose where unacceptable numbers of toxicities are
observed (>cy toxicities in a cohort of size A or > Cy; toxicities in a cohort of size A + B)
is the estimated MTD.

In an A + B design, the frequency of stopping dose escalation at a certain level depends on
toxicity rate at this dose as well as on toxicity rate at all lower dose levels. Ivanova [21] used the
Durham-Flournoy theorem to derive recommendations for constructing escalation designs and
explains how to compute the toxicity rate I" that will be targeted by any given A + B design.
The algorithm for selecting parameters A, B, ¢i, cy, and Cy for a given target quantile I is as
follows (where Bin = binomial distribution):

1. FindA, cp,and ¢y, 0 < ¢ < cy <A, cy — ¢ > 2, so that Iy, the solution to the equation
Pr{Bin (A4, I'y) < c.} = Pr{Bin (4, I'4) > cy}, is equal to or slightly exceeds I".

2. Set B (the choice A < B yields more efficient designs), and given that I'4, p is the sol-
ution to the equation Pr{Bin(4 + B, Iy, 3) < Cy} = 0.5, find Cy such that Cy/(A +
B <I'<T4,s

The 3 + 3 design is a special case of the A + B design withA =B =3,¢. =0, cy = 2, and
Cy = 1 that target quantiles around I" = 0.2. Applying the algorithm above, we obtain

1. Ty =0.35 is the solution of the equation Pr{Bin(3,T"4) <0} = Pr{Bin(3,I'4) > 2};
I'4y = 0.35 is slightly higher than I" = 0.2.

2. 'y, 5=0.26 is the solution of the equation Pr{Bin(3 + 3, 'y, 5) <2} =0.5, and
Cy(A + B) = 0.17. Hence, approximate bounds for I' targeted by the 3 + 3 design
are 0.17 <1 < 0.26.

Exact probability calculations and simulation studies for several dose—response scenarios
by Reiner et al. [39], Lin and Shih [31], Kang and Ahn [26,27] and He et al. [20] are consistent
with the theoretical calculation above establishing that the 3 + 3 design selects a dose with
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toxicity rate near 0.2. He et al. [20] also showed that if dose levels are selected close to each
other, the mean toxicity rate at the dose selected by the 3 + 3 design is slightly lower than the
dose selected by trials with a sparser set of possible dose levels.

1.3.3 Isotonic Designs

Isotonic designs assume that the dose—toxicity relationship is isotonic and use isotonic esti-
mates of the toxicity rates in the treatment allocation rule. We first review isotonic estimation
of the toxicity rates, which are maximum-likelihood estimates for the isotonic model of the
data. Let N (d;, n) be the number of patients assigned to dose d;, and let X(d;, n) be the
number of toxicities at d; after n patients have been treated. Define §; = X(d;, n)/N;(n) for
allj € {1,..., K} such that N(d;, n) > 0, and let (4, . . ., gi) be the vector of these proportions.
The vector of isotonic estimates (g, . . ., §x) can be obtained from (g, . . . ,§x) by using the
pool adjacent violators algorithm (see, e.g., Ref. 3). At the end of the trial the dose with the
value g; closest to I' is the estimated MTD. If there are two or more such doses, the highest
dose with the estimated value below I' is chosen. If all the estimated values at these doses
are higher than I', the lowest of these doses is chosen. The cumulative cohort decision rule
[25] described in Section 1.3.1 when used with isotonic estimates of toxicity rates is an isotonic
design. A few other isotonic designs have been proposed, including the isotonic design of
Leung and Wang [29]. Ivanova and Flournoy [24] compared several isotonic designs with
the cumulative cohort design via simulations for a number of target quantiles and dose—toxicity
models and concluded that the cumulative cohort design performs better than others.

1.3.4 Bayesian Designs

Parametric methods require assumptions about the model for the dose—toxicity relationship. In
addition, Bayesian methods require priors on the model parameters. The continual reassess-
ment method (CRM) is a Bayesian design proposed in 1990 [36]. The CRM starts with a
working model for the dose—toxicity relationship. Let y; = 1 if the ith patient experiences toxi-
city and let y; = O otherwise, i = 1, ..., n. For example

F(d9) := P{y; = 1|d} = [(tanhd + 1)/2]". (1.1)

The CRM uses Bayes’ theorem to update a prior distribution g(%) of X, for example, g(6) =
exp(—0). After each patient’s response is observed, the mean posterior density of the parameter
is computed. Let x; € D be the dose received by the ith patient. So after the nth patient’s
response, ), = {(x1,y1), - . .,(x,, y,)} are the accumulated data and

80 = E@|Q,) = Jw 0f(0]Q,)do (1.2)
0

is the posterior mean of 6. Here f(6 | ) = Lq,(0)g(0)/ fgo Lo,(u)g(u)du and Lg,,(0) is the like-
lihood function.

In the CRM, no prespecified set of doses is required and subjects are assigned one at a time.
However, doses can be restricted to a prespecified ordered set D = {dy, . ..,dx} [34]. In this
case, the model above can also be written as F(d,0) = b?, where (by,...,by) is a set of
constants, b; = (tanh d; + 1)/2.
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The first patient receives the first dose level, x; = d;. Assume that n patients have been
assigned so far. The dose to be administered to the next patient is the dose x,,, ; such that
the absolute difference between Pr{y = 1|x, 1,0} and T is minimized. If a prespecified
set D is chosen, this quantity is minimized over D. Dose x,,, can be used as an estimate of
the MTD after n patients have been assigned. Other estimators were explored by O’Quigley
[35]. Necessary conditions for the CRM to converge to the target dose were given in
Shen and O’Quigley [40], and more relaxed conditions were given by Cheung and
Chappell [9]. Also, subjects can be assigned in groups [14,28,18] to shorten the total duration
of the trial.

The CRM is a special case of a Bayesian decision procedure with the next dose x,,,
selected to maximize the gain function [47]:

GO, d) = (F(d,p"™) —T)2. (1.3)

Another Bayesian design for dose-finding studies is the escalation with overdose control
[2]. This design is from a class of Bayesian feasible designs. It uses a loss function to minimize
the predicted amount by which any given patient is overdosed. Bayesian decision procedures
for dose-finding studies were described in McLeish and Tosh [32], Whitehead and Brunier
[47], and Whitehead and Williamson [48]. Leung and Wang [30] point out that the CRM is
a myopic strategy and might not be globally optimal. A globally optimal strategy requires
comparison of all possible sets of actions that could be taken, and this remains computationally
formidable for designs having more than three dose levels [19].

1.3.5 Time-to-Event Design Modifications

If a follow-up time is required for each patient as, for example, in many radiation therapy trials,
the dose-finding trial can be impractically long. Cheung and Chappell [8] suggested a modifi-
cation of the CRM that allows treatment assignments to be staggered so as to shorten the trial
duration.

In the original CRM [33], the calculation of the posterior mean of 6 at the time when the
(n + 1)th patient enters the trial is based on the likelihood

Ly(0) = [ F@xi, 0)" {1 — Fxi, )}, (1.4)
i=1

where F(x;,0) is a working model as before. Cheung and Chappell [8] introduced the so-called

TITE-CRM for trials with long follow-up. They redefined the toxicity rate at dose d; to be the

probability of observing toxicity at d; during a time period of length T after initiation of therapy.

Data for the ith patient, i = 1,. .. n, are {x;, y; ,, u;,,} When the (n + 1)st patient enters the trial,

where x; is the dose, y;,, is the toxicity indicator, and u; , is the time that has elapsed from the

moment when the ith patient entered the trial to the time (n + 1)th patient enters the trial.
Cheung and Chappell [8] suggested using a weighted likelihood for TITE-CRM:

L,(0) = [ [{winF i)} {1 — winF(xi,0)} 7, (15)

i=1
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where w; , is the weight assigned to the ith observation prior to entry of the (n + 1)th patient.
For example, a weight of w; ,, = min(,; /T, 1) reflects an assumption that the density of time to
toxicity is flat in (0, 7). Other choices for weights can be considered [8].

Similar modifications can be applied to any treatment allocation rules that are based on the
likelihood function. In particular, the isotonic designs can be extended using this idea for trials
with long follow-up. Such extension of the cumulative cohort design is described in Ivanova
et al. [25].

1.4 OTHER DESIGN PROBLEMS IN DOSE FINDING

Below we list various other design problems that arise in the dose-finding context. We have not
included designs for bivariate outcomes, but note that dose-finding designs whose goals
combine toxicity with efficacy form a growing area of research. Otherwise, we apologize in
advance if we have overlooked one of your favorites.

Ordered Groups Sometimes patients are stratified into two subpopulations, for example,
heavily pretreated and not, where the first subpopulation is more likely to experience
toxicity. The goal is to find two MTDs, one for each subpopulation. One of the
subpopulations is often very small, rendering the running of two separate trials, one for each
subpopulation, unfeasible. O’Quigley and Paoletti [37] proposed a parametric design for this
problem. Their method is an extension of the CRM. Ivanova and Wang [22] proposed an
isotonic approach where bivariate isotonic regression is used to estimate toxicity rates in
both populations simultaneously.

Multitreatment Trials Multi-treatment trials are very common. The goal is usually to find
the maximum tolerated dose combination. Often only the dose of one agent is varied, with
doses of all the other agents held fixed. Thall et al. [45] propose a Bayesian design for trials
with two agents in which the doses of both agents are changed simultaneously.

Ivanova and Wang [22] and Wang and Ivanova [46] considered a two-agent trial where two
doses of one of the agents, say, the second agent, have already been selected. The problem is to
find two maximum tolerated doses of the first agent, one MTD for each dose of the second
agent. Ivanova and Wang [22] described an isotonic design, and Wang and Ivanova [46]
described a Bayesian design for the problem.

Ordinal Outcomes Toxicity in oncology, and many other settings, is measured as an
ordinal variable. Bekele and Thall [4] gave an example of a dose-finding trial where
different grades of toxicity are combined to obtain a toxicity score for each patient. The goal
was to find the dose with a certain weighted sum of probabilities of toxicity grades
corresponding to different toxicity types. They [4] suggested a Bayesian design for this
problem. Ivanova [21] described a trial where three grades of toxicity (none, mild, and
dose-limiting) are combined in a single score. A design in the spirit of the A + B designs to
target the dose with the score of 0.5 was used in that trial [21].

Paul et al. [38] considered a different problem in which, target toxicity rates are specified
for each grade of toxicity. The goal is to find the vector of doses that have the prespecified
rates of toxicity. A multistage random-walk rule with a multidimensional isotonic estimator
is proposed.
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Finding a Maximum Tolerated Schedule In chemotherapy trials treatment is usually
administered in cycles. The goal is to find a maximum tolerated schedule for an agent
used in chemotherapy administration. Braun, et al. [6] presented a parametric design for
this problem.

1.5 CONCLUDING REMARKS

We have given an overview of dose-finding designs. There has been much progress in the area
of dose-finding designs; new dose-finding problem are being formulated and new methods
developed. Statistical methods for dose-finding designs are most advanced for trials in oncol-
ogy and other life-threatening diseases. Ad hoc designs, such as the 3 + 3 or A + B designs, are
often criticized for being inflexible with regard to their objectives. It is true that A + B designs
do not converge to a certain quantile because they invoke the stopping rule and use small
sample size. Increasing the size of the second cohort or using an A + B + C design will
lead to better performance of these types of design. The major limitation of and A + B
design is that no modifications of the design exist to use the design in trials with delayed toxi-
city outcome. The CRM had been shown to converge to the MTD under certain conditions. It
performs very well for small to moderate sample sizes. The CRM can be used for trials with
delayed outcomes [8]. However, attempts to design a stopping rule (for use with the CRM)
that performs very well have been unsuccessful. Therefore, one needs to specify the total
sample size in advance when the CRM is used. A number of publications on isotonic
designs or “model free” designs have appeared in the literature and are discussed by
Ivanova and Flournoy [24]. These designs do not use any assumption other then toxicity mono-
tonicity. As extension of nonparametric designs, isotonic designs allow using all the data avail-
able to obtain toxicity estimates. From the parametric design perspective, model-free designs
bring flexibility to modeling when needed.
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CHAPTER 2

Phase II Clinical Trials

Nigel Stallard
Warwick Medical School, The University of Warwick, UK

2.1 INTRODUCTION

2.1.1 Background

This chapter is concerned with biostatistical aspects of the design and analysis of phase II
clinical trials. Although the nature of phase II clinical trials varies considerably between differ-
ent therapeutic areas and research institutions, such trials are usually small-scale studies
intended to help us decide whether to continue clinical evaluation of the experimental
therapy in further larger-scale trials. The small sample size and decision-making functions
are in contrast to the phase III clinical trials considered in the previous chapter, and it is
these features that mean that special statistical approaches are required. The development of
such approaches has been the focus of much statistical work since the mid-1970s. This
work will be described briefly below along with remaining challenges.

The main focus of the chapter will be phase II clinical trials of new drug therapies. In par-
ticular, many of the methods that are described below have been developed for the evaluation of
anticancer treatments. A review of earlier work in this area is given by Mariani and Marubini
[32]. Many of the issues and methods discussed, however, have wider relevance. Problems in
the conduct of phase II drug trials are similar to those found in other small clinical trials and
proof-of-concept studies, in which decisions are to be made on the basis of evidence from a
small number of experimental subjects [18]. The approaches described in these chapters are
thus also applicable in these areas.

The chapter starts with a discussion of the place of the phase II trial in the clinical
development program and a description of some of the types of phase II trial that are
commonly conducted.
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2.1.2 The Role of Phase II Clinical Trials in Clinical Evaluation
of a Novel Therapeutic Agent

Following preclinical development of a new therapeutic agent the first clinical trials, that is,
trials involving human subjects, are the phase I trials. As the experimental therapy under inves-
tigation has not previously been used in humans, the primary focus of these trials is the assess-
ment of tolerability and safety of the therapy. Phase I clinical trials are usually conducted using
healthy volunteers. The subjects are treated using a dose escalation design, so that the first
subjects are exposed to lower doses, and all subjects are closely monitored for adverse reac-
tions. Typically 10 or 20 subjects are enrolled in the study. In oncology and other areas in
which treatments may be associated with severe side effects, healthy volunteer subjects are
not used. In this case the subjects are typically patients for whom other treatments have
failed. These patients may have advanced disease, so in many cases successful treatment
with the experimental therapy is not anticipated, and the main objective of the trial is again
the investigation of tolerability. Whether based on healthy volunteers or patients, the aim of
the phase I study is to determine (1) whether the therapy can safely be used and (2) the
dose or range of doses that can be tolerated without leading to an unacceptably high level of
side effects, and so are suitable for use in further clinical studies.

At the other end of the clinical assessment program from phase I clinical trials are the
phase III clinical trials. These trials aim to provide definitive evidence of treatment efficacy
and are primarily intended to support a licence submission to regulatory authorities. A
large sample size is usually required, with some phase III clinical trials collecting data
from several thousands of patients. The trial will include a control treatment, which in
some cases may be a placebo control, and patients will be randomized to receive either the
experimental or control treatment. In order to minimize bias, randomization will usually be
double-blind, so that neither the patient nor the administering clinician or other clinical
staff know which treatment is being given to which patients. The setting of the trial is
chosen to match actual clinical practice as closely as possible, so that a typical patient popu-
lation will be chosen, often with the trial conducted in a number of clinical centers. Usually
two phase III clinical trials will be conducted, often with one conducted in North America and
one in Europe. The focus of the phase III trial is the assessment of efficacy, with the aim of
providing conclusive evidence via a hypothesis test of treatment effectiveness. Safety data and
often pharmacoeconomic data are also collected, however, to allow a full picture of the treat-
ment to emerge.

The phase I study is followed by one or more phase II studies. These studies may include the
first testing in patients, and are thus the first studies in which evaluation of treatment efficacy
can be made. The range of studies are described in more detail below, and in some cases a
number of phase II studies of the same therapy may be conducted in different patient popu-
lations and with different designs and objectives.

The large sample size needed to provide evidence of efficacy and safety in a phase III clini-
cal trial means that such trials are time-consuming and expensive. The phase II studies are typi-
cally much smaller-scale, with 50—100 subjects, and so can be conducted more quickly and
cheaply. The purpose of these studies, therefore, is to allow a relatively inexpensive evaluation
of treatment efficacy. Although this does not provide the definitive evidence obtained from the
larger phase III clinical trial, it does provide an indication of whether the allocation of resources
for further phase III evaluation is likely to be justified. The aim of the phase II clinical trial can
thus be seen as enabling a decision to be made regarding future evaluation of the therapy. This
is in contrast to the phase III trial, in which the main focus of statistical analysis is a hypothesis
test or estimation.
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In order to provide a decision regarding further evaluation to be made in a timely fashion,
the primary endpoint in the phase II trial will be a rapidly observable response. This may be a
surrogate for long-term endpoints that will be assessed in subsequent phase III trials. The end-
point used will very often be binary with a yes/no response, and it for this sort of endpoint that
the majority of statistical work on phase II trials has been conducted. The rapidly observable
endpoint in phase II enables the use of sequential methods in which the accumulating data
on treatment efficacy are monitored through the course of the trial. This monitoring will be
in addition to the monitoring of safety data, which remains important given the small
number of patients who have previously been treated with the experimental therapy.

2.1.3 Phase II Clinical Trial Designs

There is a considerable range in the types of phase II clinical trials that are conducted. In the
simplest trial design, all patients receive the same treatment, with no control group and no vari-
ation in dose, formulation, or treatment regimen. This type of design is common in phase II
clinical trials in oncology, where, for ethical reasons, a placebo control cannot be used, and
patients may already have received unsuccessful treatments with standard therapies. In the
remainder of this chapter, we will refer to this type of study as a single-treatment pilot
study. It is this type of study that has received the most attention from statistical researchers.
This is probably for two reasons: (1) the simplicity of this approach means that development
and evaluation of new methods is most straightforward, and (2) much of the statistical work
has been conducted in cancer centers where such approaches are most common. While the
demand for a concurrent control group in phase III can easily be justified in order to reduce
bias in treatment comparisons, the need for control groups in phase II clinical trials is less
clear. Given the small sample size, it may be more appropriate to collect as much data as poss-
ible on the experimental treatment and comparing these to historical control data that are often
available. Even in cases where use of a control group is not proscribed on ethical grounds,
therefore, a single-arm phase II trial might be considered preferable.

An increase in the complexity of the phase II clinical trial can come from the addition of a
concurrent control group in a randomized trial. Such designs are common in proof-of-concept
studies, in which an initial assessment of efficacy relative to a control treatment is sought, and
are also used in small clinical trials in areas other than drug development. Such trials resemble a
small-scale phase III clinical trial, and many of the statistical methods proposed for this type of
design are similar to those used in a phase III trial setting. Studies of this type will be termed
comparative studies below.

In both single-treatment pilot studies and comparative studies, as there is a single
experimental treatment included in the trial, the decision to be made at the end of the trial
is whether to continue with further development of the therapy in phase III. In a
sequential trial, at each interim analysis a decision must also be made as to whether the trial
should continue.

A further increase in complexity arises when more than one dose, formulation, or experimen-
tal treatment is included in the trial, either with or without a control treatment. In this case, in
addition to deciding whether evaluation should proceed with a phase III clinical trial, a decision
of which dose or treatment should be used must also be made. If interim analyses are conducted,
ineffective doses or treatments may also be dropped through the course of the trial.

In addition to the variation in phase II clinical designs, there are a number of different stat-
istical approaches that have been used in the development of approaches to the design and
analysis of phase II trials. In particular, researchers have developed methods based on the
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use of frequentist, Bayesian, and decision-theoretic paradigms. Approaches based on these
three viewpoints are described in the next three sections of this chapter. In each case, the
section starts with a short review of the statistical methodology used. As stated above, the
outcome of the phase II clinical trial is a decision of whether to proceed to phase III testing.
This means that the phase II trial designs may be seen as providing a decision rule defining
which observed datasets will lead to continuing to phase III and which to abandoning devel-
opment of the experimental therapy. For the Bayesian and decision-theoretic designs the
decision rule may be explicitly stated. For the frequentist designs the decision will be
assumed to be based on the result of the hypothesis test. This decisionmaking role means
that this chapter focuses on phase II trial designs, that is, on the decision rule, rather than
dealing specifically with the analysis of the data obtained in the trial.

2.2 FREQUENTIST METHODS IN PHASE 1I
CLINICAL TRIALS

2.2.1 Review of Frequentist Methods and Their Applications in
Phase II Clinical Trials

The frequentist, or classical, statistical approach, as described in considerably more detail else-
where (see, e.g., Ref. 29), focuses on hypothesis testing and the control of error rates. Inference
centers on some parameter, which in the phase II setting is chosen to summarize the efficacy of
the experimental treatment. We will denote this parameter by 0, with larger values of 6 assumed
to correspond to improved efficacy of the experimental treatment, and suppose that we wish to
test some null hypothesis H, that 0 is equal to some specified null value 6. In a comparative
study, 0 is usually taken to correspond to the difference in success rates on the experimental and
control treatments and 6 is taken to be zero so that Hy corresponds to the success rates being
equal. In a single-treatment study, 6, is chosen so that H, corresponds to the success rate being
equal to some specified value judged to be barely acceptable. Rejection of the null hypothesis
in the direction of improved efficacy for the experimental treatment will lead to the conclusion
that the treatment is superior to the control or to the specified value, and so indicate that further
evaluation in phase III is warranted. If the parameter 9 is truly equal to 8y, the rejection of Hj is
called a rype I error. Also of concern is the type II error. This corresponds to failure to reject Hy
when in fact 0 is equal to some alternative value 0. The value 0, is chosen to correspond to
some clinically relevant improvement in efficacy over the control treatment or target value. The
randomness of the data from the phase II trial means that it is impossible to avoid both type I
and type II errors. Well-known statistical tests have been constructed so as to control the
probability of type I errors to some specified level, generally denoted by «. The probability
of type II errors then depends on the sample size, and is usually controlled to be at most
some level denoted by 3, with 1 —f3 called the power of the test.

Frequentist methods have received near-universal use in the analysis of phase III clinical
trials, where the need for definitive proof of efficacy is well-matched with the form of the
hypothesis test, and the objectivity of the frequentist method in contrast to the Bayesian
methods described below are considered appealing. In the phase III setting, it is common to
set the type I error rate to be 0.05. A power value of 0.9 is common, and values such as 0.8
or 0.95 are also used. As discussed above, the sample size required for phase III clinical
trials is often large. This is required to attain these error rates for values of 6; considered
clinically relevant. In a phase II setting, the need for a smaller sample size than usually required
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for phase III clinical trials means that some compromise must be made on either o, 3, or both.
In a phase III setting if the calculated sample size is prohibitive it is most common to increase
the type II error rate (3, that is, to reduce the power. The justification for this is that a type I error
corresponds to indication that a new treatment is superior to the control when it is actually no better.
As drug registration relies on the results of this test, a type I error thus represents a risk to future
patients. The risk of such errors must thus be limited to an acceptable level. The type II error, in
contrast, can be viewed as a risk mainly to the trial sponsor, so that an increase in the rate of this
type of error is more acceptable. In the phase II setting the position is rather different. Errors of
type I now correspond to an ineffective treatment continuing to phase III. While this may lead to
a waste of resources, the fact that the phase III testing is likely to correct the type I error means
that it does not represent a consumer risk. The risk associated with a type II error might be con-
sidered greater, since this corresponds to erroneously abandoning development of an experimental
therapy that is actually effective. In this case there will be no further testing to reverse the incorrect
conclusion of the phase II trial. This contrast to phase III clinical trials was pointed out by
Schoenfeld [34]. He concluded that in the phase II setting the control of power was more important
than the control of type I error rate, and suggested that, in order to reduce the sample size to an
acceptable level for a phase Il clinical trial, a value of « as large as 0.25 could be considered.
Itis described above how the use of rapidly observable endpoints in phase Il clinical trials means
that sequential monitoring is possible, and how the small number of previously treated patients
makes sequential monitoring ethically desirable. In a frequentist setting, the inclusion of a
number of interim analyses in a clinical trial impacts on the error rates. Suppose that at each of a
series of interim analyses, a hypothesis test of Hy is conducted with the type I error rate for that indi-
vidual test controlled to be a. If, at any one of these analyses, Hj is rejected, the trial will stop and be
judged to have yielded definitive evidence of a treatment effect. The chance to reject Hy at any one
of the interim analyses means that the overall type I is increased above the planned level . To main-
tain the overall type I error rate at a level of « requires adjustment of the individual hypothesis
tests. Methods for this adjustment have been developed following the seminal work on sequential
analysis by Wald [57] and Barnard [2]. Overviews are given by Whitehead [61] and Jennison
and Turnbull [23]. On the whole, the methods rely on assumptions of normality, and so are
most suitable for use with large samples. In the setting of phase II clinical trials, in which large
sample approximations may hold poorly, the sequential analysis methods must be modified.

2.2.2 Frequentist Methods for Single-Treatment Pilot Studies

As described above, in the single-treatment pilot study, all patients receive the same treatment.
Assuming a binary (success/fail) response, the data can thus be summarized by the number of
successes, which will be denoted by S with observed value s, and the number of patients n.
Inference will focus on the unknown success rate, which will be denoted by p. If responses
from individual patients are considered to be independent and identically distributed, S
follows a binomial distribution, S ~ Bin(n, p). As the sample size in phase II is relatively
small, it is generally feasible to work with this binomial distribution directly in development
of statistical methods rather than using large-sample approximations as might be more
common in a phase III clinical trial setting.

If the phase II clinical trial is conducted in a single stage, that is, without any interim analy-
ses, the decision rule at the end of the trial will be to continue clinical development in phase III
if S is sufficiently large, that is, if § > u for some u. In the frequentist setting, the decision will
be based on a test of the null hypothesis Hy : p = po, where py is chosen to be some value of
p that is of minimal clinical importance, such that if p = p,, it would be desirable to abandon
development of the new therapy. The alternative value, py, is chosen to be a value of p of clinical
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significance, so thatif p = py, it would be desirable to continue with development of the therapy.
The type I error rate and power of the hypothesis test are then given respectively by

PdSzmnﬂ:§:(?>%ﬂ—pw“5

i=u

and

Pr(S > u; p1) = Z(r;)p’;(l —p)'

i=u

Direct computation of these binomial probabilities allows values of n and u to be chosen to
control the error rates at chosen levels a and (3, where, as discussed above, a may take a
value rather larger than conventionally used in a phase III clinical trial setting. The discrete
nature of the binomial distribution, particularly when the sample size is small, means that
the error rates may in some cases be smaller than o and (3, giving a conservative test. The cal-
culations required can be performed using exact single-sample settings on sample size software
such as nQuery Advisor (ADALTA, www.CreActive.net).

Sequential, or multistage frequentist methods for single-arm studies extend the single-stage
exact binomial method just described. A very well known approach is the two-stage design due
to Simon [36]. Initially, the number of successes S; from some 7, patients are observed. If S is
too small, say, S; < [;, the trial will stop at this point and development of the therapy be abandoned.
Otherwise, the trial will continue, with treatment of a further n, —n; patients, giving a total of n, in
all. If, after continuation to include n, patients, the total number of successes S, is less than or equal
to some l,, development of the therapy will be abandoned. Otherwise, it will continue into phase 1.
The probability of continuing to phase III for a true success rate of p is given by

Pr(phase III; p) = 1 — Pr(abandon at first stage; p)

—Pr(continue at first stage and abandon at second; p).

The probability of abandoning at the first stage is equal to

1
}:(T)ﬁufpwﬁ,

i=0
while the probability of continuing at the first stage and abandoning at the second is equal to

n

Z Pr(S; =i and S, — 81 < b —1i; p),
i=h+1

which is equal to zero if i > [, as S, — S cannot then be less than or equal to /, — 7, since this
is less than zero. Since S, — S| ~ Bin(ny — ny, p), with S, — S; independent of S}, the prob-
ability of continuing at the first stage and abandoning at the second is equal to

min {n, b} L—i
> Z(nl' )pi(l —p)”"’(n2 ;nl )p-’(l —pye,

i=h+1 =0

This expression allows calculation of the probabilities under p = py and p = p; of proceeding
to phase 111, that is, the type I error rate and the power of the sequential procedure considered as
an hypothesis test. Calculation of the probability of stopping at the end of the first stage also
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enables the expected sample size to be found for p equal to py or p;. Simon proposes a numeri-
cal search be conducted to find all designs, that is, sets of values of ny, ny, [;, and b, that have
type I and type II error rates no greater than o and [, respectively, and among these to
find the design that minimizes the expected sample size when p = po. The increased
choice of sample sizes and critical values for two stages relative to a single stage means that
the planned error rates are typically much more closely attained for a two-stage design. This,
together with the chance to stop the trial early for poorly performing therapies, leads to an
expected sample size that is smaller than the sample size for the eqivalent single-stage design.

The rationale for minimizing the expected sample size for p = py is that it is undesirable to
expose more patients than necessary to an ineffective treatment, but that if the treatment is
effective, for example, if p = p,, a larger sample size is acceptable. An alternative view is
that it is desirable to reach a conclusion in phase III as quickly as possible for a range of
true values of p, since if the therapy is effective, it is desirable to proceed to phase III in as
timely a fashion as possible. This has led to suggestions to minimize the expected sample
size under (po + p1)/2, to minimize the average of the expected sample sizes under p, and
p1, or to minimize the maximum expected sample size [35], in each case subject to constraint
of the error rates. A similar argument would suggest that an upper critical value u; could be set
for the end of the first stage, with progression to phase III without continuation to the second
stage of the phase II clinical trial if S; > u;.

The approach of the Simon design has been modified by Lin and Shih [28] to allow the
sample size for the second stage to depend on the results from the first. The approach has
also been extended to include three stages by Chang et al. [11], Ensign et al. [17], and
Chen [12], who suggest that the tables given by Ensign et al. are inaccurate.

If more than three stages are to be included in the phase II clinical trial, the search for
sample sizes and critical values to satisfy the error rate constraints and minimize the sample
size in the way proposed by Simon can become computationally prohibitive. An alternative
approach more suitable for a larger number of interim analyses can be based on the sequential
analysis methods more common in phase III clinical trials, such as the spending function
method proposed by Lan and DeMets [27] and described by Jennison and Turnbull [23].
An exact single-sample binomial spending function method was proposed by Stallard and
Todd [43], which, although developed for a large-sample test for small values of py and py,
could be used in a phase II clinical trial setting. Alternatively, single-sample sequential
methods based on large-sample approximations have been proposed for use in phase II clinical
trials by Fleming [20] and by Bellisant et al. [5].

2.2.3 Frequentist Methods for Comparative Studies

As discussed above, a comparative phase II clinical trial, in which a single experimental
therapy is compared with a control treatment, is similar in design to a small-scale phase III
clinical trial. This means that much of the frequentist statistical methodology for trials of
this type reflects the “standard” methods that have been developed in that setting.

A common test for comparison of binary responses from two groups of patients is the x>
test. Although based on asymptotic theory, the x2 test has been shown to be accurate for rela-
tively small sample sizes, so that this test can be used in the analysis of comparative phase II
clinical trials as in phase III. For very small sample sizes, or for extreme observed success rates,
an exact alternative such as Fisher’s exact test can be used as an alternative. Details of the x*
test and Fisher’s exact test are given elsewhere (see, e.g., Ref. 6), and both tests are widely
implemented in statistical computer packages.
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Sample size determination for a trial comparing two groups in terms of a binary response is gen-
erally based on normal approximations to the binomial distribution. Formulas are given by, for
example, Machin et al. [31] and are available in most commercially available sample size software.

2.2.4 Frequentist Methods for Screening Studies

In a screening study several experimental treatments, 71, T, ..., T}, are compared, and poss-
ibly also compared with a concurrent control treatment, 7. In a sequential trial, treatments may
be dropped from the study at interim analyses. At the end of the trial, either all experimental
treatments will be abandoned or one will be selected to continue into phase III. The definition
of frequentist error rates is less straightforward than in the single-arm or comparative settings
discussed above. If all treatments are identical to the control, or in an uncontrolled trial have
success rate equal to some pq chosen to represent a value for which further testing is unaccep-
table, it is desirable to discontinue any treatment. Denoting by p; the success rate for treatment
T;, we thus wish to control the probability Pr(select any treatment to continue to phase III
|p1 =+ =px =po), and can view this as being analogous to a type I error rate.
Specification of a probability analogous to the power in acomparative trial is rather more difficult.
A common formulation is to require a high probability of selecting some treatment, say, T, to
proceed to phase III if the success rate for this treatment is superior to that for the control by
some specified margin 8, and the success rate for all the other treatments is not superior to
that for the control by more than some specified margin 8, less than 8,. Controlling this prob-
ability is equivalent to controlling the probability Pr(select treatment 7' to continue to phase
I |py =po+ 80, p2 =+ = pr = po + d1). A single-stage procedure to control these error
rates was proposed by Dunnett [16], while Thall et al. [51,52] proposed two-stage procedures
in which all except the treatment seen to be most effective at the interim analysis are dropped
from the trial.

2.3 BAYESIAN METHODS IN PHASE II CLINICAL TRIALS

2.3.1 Review of Bayesian Methods and Their Application in
Phase II Clinical Trials

In the frequentist approach, the value of the parameter of interest, which was denoted above by
0, was fixed, for example, to be 6, and the resulting distribution of the random data was con-
sidered. Inference thus focuses on a comparison of the observed data with the distribution that
would be expected if the null hypothesis were actually true. In contrast, under the Bayesian
paradigm, the parameter 0 is itself considered to be a random variable, and inference
focuses on what can be said about the distribution of 6. Thus we might obtain the expected
value of 0, or the probability that it exceeds some specified value such as 6.

Since 0 is a random variable, it must have some distribution even before any data are
observed, and this prior distribution must be specified in advance. The prior distribution of
0, the density function of which will be denoted by h(8), may be updated by observation
of data. If data x are observed, conditional on these data the distribution of 6 is given by
Bayes’ theorem to have density equal to

J(x;0)ho(0)

MO 1X) = T oo )d0
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where f(x; 0) is the likelihood (or probability for discrete data) of x given the value of 0, so that
the the numerator is the joint density of x and 6, and the integral in the denominator (which is
replaced by a sum for discrete data) runs over the range of 0, giving the marginal density of x.
This distribution is called the posterior distribution of 6 given the observed data x.

Specification of the prior distribution for 8 is an essential part of the Bayesian approach, and
the choice of prior distribution influences the posterior distribution obtained and hence any
inference that is based on the posterior distribution. The method can thus be considered as com-
bining prior opinion with the observed data to update that opinion. This can be seen as either a
disadvantage or an advantage of the Bayesian method depending on the viewpoint taken. Many
researchers consider that the lack of objectivity makes the method inappropriate for use in the
analysis of phase III clinical trials, when a definitive result is sought. In phase I and phase II
clinical trials, or in phase III trial design, as opposed to analysis, however, incorporation of all
possible information, including prior opinion, in the decisionmaking process arising from the
analysis of the trial data may be considered more appropriate.

The calculations required to obtain the posterior distribution can be burdensome, and much
of the more recent progress in Bayesian methods in general has been due to advances in this
computation. In the phase II clinical trial setting, it is common to choose a form of prior dis-
tribution for which the computations can be completed using analytical methods. Assuming
that we have binary data, with the number of successes observed in a single group following
a binomial Bin(n, p) distribution, if the parameter p has a prior beta distribution, Beta(a, b),
that is, with prior density

Pl —p)!

ho(p) = 5

for some choice of a, b > 0, where B(a, b) is the beta function, fol Pl — p)l”l dp, the pos-
terior distribution after observation of s successes is proportional to p®™* (1 — py* sT¢~!
and so is also of the beta form. The use of a beta prior is thus mathematically convenient. The
beta family includes a wide range of unimodal prior distributions on [0, 1], including flat,
J-shaped and U-shaped densities depending on the values of a and b. A prior distribution,
such as the beta prior for binomial data, that leads to a posterior distribution of the same form
is called a conjugate prior.

In a single-arm or comparative phase II clinical trial setting, the decision of whether to
proceed to phase III evaluation is based on comparison of the parameter p with either a
target value pq in a single-arm trial or with the corresponding parameter for a control treatment,
which we will also denote by p,. From a Bayesian viewpoint, the distinction between compari-
son with a target p, or the success rate for a control treatment is a fairly minor one. In either
case, po may be given a prior distribution. The only difference is whether this is updated by
data to give a posterior distribution. In either a single-arm or a comparative study, then, we
may focus on the difference between p and py, and in particular on whether this difference
exceeds some target value, 8. The posterior probability that p — py exceeds 8 is given by

s

1-3 1
j J h(p |5, mh(po | 50 no)dp dpo, @.1)
Po=0 J p=po+d

where s, denotes the number of successes out of n, observations on the control arm in a
comparative study, or h(po | so, no) is taken to be ho(po), the prior density for py, in a
single-arm study.
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In Bayesian methods, inference is based on the posterior distribution, which depends on the
data through the likelihood function. Since the likelihood is unaffected by any stopping rule,
interim analyses can be conducted without any adjustment to the posterior distribution
obtained, or to any inference drawn from the data. Data monitoring in a phase II clinical
trial setting can thus be carried out by monitoring the posterior probability given by (2.1) at
a number of interim analyses as the data accumulate through the course of the trial. A
number of Bayesian methods that have been proposed for phase II studies are discussed in
the remainder of this section. These are all based on monitoring the probabilities of the
form given by (2.1).

Sequential monitoring of Bayesian posterior probabilities of a form similar to (2.1) for nor-
mally distributed data has also been proposed in the phase III clinical trial setting, for example,
by Spiegelhalter et al. [39]. In fact, the underlying principle is considerably older, discussed,
for example, by Novick and Grizzle [33] in 1965.

2.3.2 Bayesian Methods for Single-Treatment Pilot Studies,
Comparative Studies, and Selection Screens

Thall and Simon [50] proposed a Bayesian method for monitoring single-arm phase II clinical
trials. They assume a binary response, with the number of successes taken to follow a binomial
distribution, and propose that posterior probabilities of the form given by (2.1) be calculated at
a number of interim analyses through the course of the trial. They illustrate the method with an
example in which the posterior probabilities are calculated after the response from every patient
starting at the tenth patient and ending at the sixty-fifth, when the trial will be stopped. The first
analysis is made after the tenth patient to prevent stopping on the basis of data from a very small
number of patients. After each patient’s response is observed, the probability given by (2.1) is
calculated with 8 = 0 and & = 9§, a value chosen to correspond to some desirable advantage of
the experimental therapy relative to the probability p, corresponding to some notional control
treatment. If the probability for & = 0 is sufficiently large, say, larger than some critical value
Ay, it is judged that there is sufficient evidence to conclude that the experimental therapy is
superior to the control treatment. In this case the trial is stopped and development of the
therapy will continue in phase III. If the probability for & = 9 is too small, say, less than or
equal to some Ay, it is judged that there is sufficient evidence to conclude that the experimental
therapy is not superior to the control by the required margin 8. In this case the trial will be
stopped and development of the experimental therapy will be abandoned. If neither of these
criteria is met, the trial will continues and the next patient’s response is observed.

The properties of the Thall—Simon design depend on the choice of Ay and A as well as on
the prior distributions for p and p, (the latter is also the posterior distribution since no patients
are randomized to receive the control treatment in this single-arm trial). They propose that the
prior distribution for p should be a beta distribution, since, as discussed above, this is the con-
jugate form and so enables analytical calculation of the posterior distribution, and suggest that
the sum a + b should be small, say, with 2 < a + b < 10 since this means that the prior dis-
tribution is relatively noninformative. A more informative beta prior distribution, that is, with
larger a + b, is proposed for the control treatment success probability p, reflecting the relative
abundance of information on the efficacy of a standard treatment. The values Ay and A deter-
mine how strong the evidence of efficacy or lack of efficacy for the experimental treatment must
be before the phase Il trial is stopped. Thall and Simon suggest that the values of Ay and Ap
should be chosen by considering the frequentist properties of the decision-making procedure
for a range of values of p considered to be fixed.



2.4 DECISION-THEORETIC METHODS IN PHASE II CLINICAL TRIALS 25

Since the probability (2.1) can be calculated in the single-arm setting using the prior distri-
bution for py and in the comparative setting using the posterior distribution updated with the
observed data from the control arm, the method proposed by Thall and Simon [50] can
be used in both single-arm and comparative phase II clinical trials. In comparative trials, the
posterior probabilities that the success rate for the experimental treatment either exceeds that
for the control treatment or exceeds it by a margin 8y are monitored in exactly the same way
as in the single-arm approach.

Thall and Estey [49] have proposed an approach similar to that of Thall and Simon [50] for
monitoring phase II selection screens. In this approach, patients are randomized between a
number of experimental treatments, 7}, 75,...,T; without a concurrent control treatment.
After every response the posterior probability, given all the observed data, that the success
rate for each treatment exceeds some target po, which in this case is considered fixed, is calcu-
lated. Since the data from each treatment are independent, if the success rates for individual
treatments have independent priors, the posteriors are independent. For treatment 7;, with
success rate denoted by p;, it is thus sufficient to consider Pr(p; > po | sim, m) where s;,,
denotes the number of successes from the first m patients receiving treatment i. It can be
seen that this probability is of the same form as (2.1) except that p, is now considered fixed
rather than given some prior distribution. Treatment 7; will be dropped from the trial unless
Pr(p;i > po | sim, m) exceeds some specified critical value. At the end of the trial, after some
predetermined number of patients have been treated, the best remaining treatment will
proceed to phase III provided this treatment has Pr(p; > po | sim, m) sufficiently large.

2.4 DECISION-THEORETIC METHODS IN PHASE II
CLINICAL TRIALS

A number of biostatistical researchers, following from initial work in the 1960s [1,13], have
suggested the use of Bayesian decision-theoretic methods in the design and analysis of clinical
trials. The aim of such an approach is to model the decision-making process, leading to a
decision that is optimal in that it maximizes the value of some specified utility function that
expresses the preferences of the decisionmaker. The utility function is a function of the
unknown parameter of interest, in this case the success rate for the experimental therapy p,
and so has unknown value. Following observation of data, a posterior distribution for the par-
ameter can be obtained, and this can be used to calculate a posterior expected utility associated
with each possible action that can be taken. A rational decision-maker whose preferences
are accurately modeled by the utility function would then choose the action with the largest
posterior expected utility.

Early work on the integration of decision-theoretic methods into clinical trials [1,13] gen-
erally focused implicitly on phase III clinical trials, assuming that following a successful trial,
the new therapy would be immediately available for general use. Later work focused on phase
II, where, as discussed above, the outcome of the trial is a decision of whether to conduct
further trials with the new therapy. Since this is an action that is generally within the control
of the trial sponsor, the approach seems more appropriate in this setting. Decision-theoretic
methods for single-arm phase II clinical trials have been proposed by Sylvester and Staquet
[46], Sylvester [45] (see also the correction to this paper [21]), and Brunier and Whitehead
[8]. These authors based their utility function on the number of extra successes associated
with development of the experimental treatment relative to continuation with treatment with
the standard. A similar approach has been taken by Carlin et al. [10] for comparative studies.
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Whitehead [59] proposed a method for the design of selection screens based on optimiz-
ation of the expected success rate for the selected treatment. A similar method [60] considers
the phase II trial specifically in the context of a drug development program and aims to design
the phase 1II selection screen so as to maximise the probability of final success in subsequent
phase III evaluation.

An alternative view is to attempt to construct a utility function reflecting the financial gains
and losses associated with the drug development process. This has been attempted by Stallard
[40,41] and Leung and Wang [30] in the single-arm trial setting.

2.5 ANALYSIS OF MULTIPLE ENDPOINTS IN PHASE II
CLINICAL TRIALS

As described in the introduction to this chapter, although the primary endpoint in a phase II
trial is some measure of treatment efficacy, the fact that the therapy under investigation may
have been previously administered to a relatively small number of patients means that analysis
of safety data is also important. The monitoring of safety data in the trial is particularly import-
ant in oncology, where new treatments are often associated with severe, at times fatal, toxicity.
In this indication, a reduction in the rate of dose-limiting toxicity may be considered almost as
important as an improvement in efficacy.

Recognizing the importance of sequential monitoring of safety data in the phase II trial,
some biostatistical researchers have developed methods that formally combine the safety and
efficacy endpoints in a single analysis. This means that at interim analyses development of a
new treatment may be terminated because of toxicity problems, absence of evidence, or a com-
bination of the two.

Frequentist methods that allow monitoring of toxicity and efficacy were proposed by Bryant
and Day [9] and Conaway and Petroni [14]. They consider monitoring the number of patients
who respond, that is for whom the treatment is effective, and the number of patients experien-
cing toxicity. Their decision rules are of the form that lead to development of the therapy being
abandoned at interim analyses or at the final analysis if either the number of successes is too
low or the number of toxicities is too high. Extending the frequentist approach for a single end-
point described above, they assume that the number of responses and the number of patients
demonstrating toxicity both follow binomial distributions with probability parameters that
are denoted by p, and p,, respectively. Their aim is to construct a two-stage test in a similar
fashion to Simon [36]. The critical values for numbers of responses and toxicities are
chosen so as to control the type I error rate corresponding to the probability of proceeding
to phase III when p, and p, take some “unacceptable” values p, and p,, and the type Il
error rate corresponding to the probability of not proceeding to phase III when p, and p, take
some “promising” values p,; and p,;. A difficulty arises since the numbers of successes and
toxicities are not necessarily independent. If poo, po1, P10, and py; denote respectively probabil-
ities of neither response nor toxicity, toxicity without response, response without toxicity, and
both response and toxicity, the lack of independence can be specified by the odds ratio poop11/
Po1P10o- As the probability of proceeding to phase III depends on this odds ratio as well as the
marginal probabilities p, and p,, it must be considered when determining critical values for the
decision rule. Conaway and Petroni [14] propose specifying the value of the odds ratio in
advance. Bryant and Day [9] suggest ensuring that the error rates are controlled for all
values of the odds ratio, and also consider control of the probability of proceeding to phase
IIT over all sets of (p,, py) values with p, < p,o and p, > p rather than just at (p,o, pio)-
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A criticism of the methods of Conaway and Petroni [14] and Bryant and Day [9] is that in
their division of the set of (p,, p,) values into those that are “acceptable” and those that are not,
they consider only p, and p, individually. In reality a small deterioration in safety might be
acceptable if it is accompanied by a large improvement in efficacy, and vice versa. This has
led to the development of frequentist methods that base control of error rates on more
complex null regions [15,47,48].

Bayesian methods for monitoring multiple endpoints such as safety and efficacy have also
been proposed [53,54]. In these methods a decision of whether to abandon development is
based on the posterior probabilities Pr(p, > p,o + 3 |x) and Pr(p; > p, + 8| x) where now
Drs Pv Pro, and py are taken to be random variables with specified prior distributions. An
alternative approach is taken by Thall et al. [S5], who use a utility function combining the prob-
ability of success and toxicity into a single measure of treatment performance, in this case in a
screening trial. Other authors have also considered combining endpoints in a single utility func-
tion, and obtained designs to optimize this using a decision-theoretic method in a single-arm
trial [42] or screening trial [19].

2.6 OUTSTANDING ISSUES IN PHASE II CLINICAL TRIALS

The ultimate aim of the phase II clinical trial is to provide reliable information on the safety and
effectiveness of the new therapy in as safe, timely, and cost-effective a manner as possible. This
information can then be utilized to aid in the decision of whether further clinical development
of the new therapy is justified. It is this aim that provides the motivation for the biostatistical
work on the design of phase II trials that has been described above. The continuing desire
to make phase II trials more informative, safer, or quicker through improved design means
that statistical methods in the area are not static. In this final section of the chapter a number
of areas of focus for current research are briefly described.

As described above, a large part of the work on phase II clinical trials has been directed
toward trials in cancer. This has led to methods in which a single treatment group is evaluated
in terms of a rapidly observable binary outcome such as response to treatment. Traditional cyfo-
toxic anticancer drugs aim to kill the tumor cells. Unfortuately they may also be highly toxic to
other healthy cells, leading to severe side effects. This means that monitoring of safety data is
very important. More recent advances in the treatment of cancer have led to the increased
development of cyfostatic drugs. In contrast to cytotoxic treatments, these are agents that do
not directly kill cancer cells but act to limit the growth of tumors, for example, by restricting
their blood supply. These drugs are typically much less toxic than conventional anticancer
treatments. This means that different phase II trial designs may be more appropriate [26].
The primary measure of efficacy in a phase II trial may no longer be a binary success/fail
outcome but some continuous measure such as tumor burden, and the formal monitoring of
toxicity may be less important. Phase II trials for cytotoxic drugs might thus more closely
resemble those for new therapies in other indications. As less attention has been focused
outside oncology, this is an area where there is a need for further biostatistical work.

An area of considerable recent interest has been the combination of phases II and III into a
single clinical trial. Such an approach would lead to an acceleration of the development
program of a new therapy both by essentially including the phase II patients in the definitive
phase III evaluation and by removing the hiatus necessary for administrative reasons
between the end of a phase II clinical trial and the start of a phase III program. Methods
have been proposed [3,44] to control the overall frequentist type I error rate of a clinical trial
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that acts as both a selection screen and a comparison between the selected treatment and a
control. Much recent work in this area has been based on the adaptive design approach pro-
posed by Bauer and Kohne [4], since this enables control of the overall type I error rate
while allowing great flexibility in terms of design modification. A description of the application
of this methodology to combining phases II and III and a review of more recent work in this
area is given by Bretz et al. [7].

Adjusting for treatment selection is one of the problems that must be overcome to combine
phases II and III. Another is the common change in primary endpoint between the two clinical
development phases. Bayesian [22] and frequentist [56] methods to address this change of end-
point have also been proposed. In spite of the considerable recent work, there remain many stat-
istical and practical challenges in this area, including the incorporation of multiple endpoint
data and estimation of treatment effects at the end of the trial.

This chapter has followed the majority of the biostatistical literature in the area of phase II
clinical trial design in dividing the designs according to whether they are constructed using
frequentist, Bayesian, or decision-theoretic viewpoints. In practice, any phase II design pro-
vides a decision rule indicating whether development of the therapy under investigation
should be abandoned at an interim or final analysis or continue into phase III. As discussed
in detail by Wang et al. [58], the division into Bayesian or frequentist designs is artificial. It
is possible to calculate frequentist error rates for all designs. Similarly, given prior distributions,
it is possible to calculate posterior probabilities of the form (2.1) for a dataset at an interim or
final analysis in any phase II trial. In some cases [40] it is also possible to determine a utility
function with respect to which a given design is optimal. This suggests that however designs are
obtained, a broader view of their properties should be taken than is generally currently the
case. Such an approach would enable comparison of designs obtained using different statistical
paradigms and ensure that the properties of any designs used are fully understood.

The need for distinct biostatistical methodology for phase II clinical trials arises from their
unique position in the clinical testing process for an experimental therapy. As discussed above,
this means that the data generated by the phase II trial act to inform a decision that is generally
within the power of the trial sponsor. Appropriate designs for phase II clinical trials should thus
reflect a full knowledge of other parts of the clinical testing process. This is the aim of decision-
theoretic methods such as that proposed by Whitehead [60]. Extending this view further
suggests that rather than focusing on the phase II trial alone, optimal design approaches
should be used across the whole clinical development program for a product or even across
the whole portfolio of drugs under development by a large pharmaceutical company. While
such an approach has been discussed by a number of researchers (see, e.g., Refs. 37, 38
and 24), the enormous complexity of this problem means that a great deal of work remains
to be done.
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3.1 INTRODUCTION

Patients arrive sequentially, for a phase III clinical trial, and are to be randomized to one of the
existing treatments. The standard practice is to assign equal numbers of subjects to each treat-
ment arm. But this type of assignment ignores the effectiveness of the treatments reflected
through the available responses from both the treatments and hence results in subjecting
more patients to inferior treatments than what is ethically desired. These drawbacks can be
best illustrated by the results of a relatively recent clinical trial. For illustration, we consider
the zidovudine trial reported by Connor et al. [30]. The trial aimed to evaluate the hypothesis
that the antiviral zidovudine therapy (referred to by the trade name AZT) reduces the risk of
maternal-to-infant HIV transmission. A standard randomization scheme was used to ensure
equal numbers of patients in both AZT and placebo groups, resulting in 239 pregnant
women receiving AZT and 238 receiving placebo. Here the endpoint was whether the
newborn infant was HIV-infected. It was observed that 60 newborns were HIV-negative in
the placebo group and 20 newborns were HIV-positive in the AZT group. These statistics
revealed the harsh reality that 3 times as many infants on placebo were sentenced to death
by the transmission of HIV while in the womb. It seems, therefore, logical to think that
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more allocation to AZT could save more newborn lives. This compels the experimenter to
utilize the accrued data at each stage to set the assignment decision for the next stage.

Randomized clinical trials play a crucial role in experiments to determine which of the treat-
ments shows superiority. Since any medical experiment involves human beings, there is an
ethical imperative to provide the best possible medical care for the individual patient. This
compels to develop an allocation procedure where ethical and logistical considerations must
always drive the equation and the resulting mathematics. So whenever the accrued data
reveal the superiority of a treatment arm, the randomization procedure should be biased in
favor of this arm to ensure more allocation to this treatment. Allocation designs attempting
to achieve this goal are called response-adaptive designs or simply adaptive designs. These
designs were first formulated to identify the better treatment in the context of a two-treatment
clinical trial. The preliminary ideas can be found in Thompson [65] and Robbins [53]. These
works were followed by a flurry of activity, starting with studies by Anscombe [2] and Colton
[29]. More history, including later developments, can be found in Rosenberger and Lachin [56],
Rosenberger [55], and a book-length treatment by Rosenberger and Lachin [57].

The organization of this chapter is as follows. Section 3.2 describes several available adap-
tive designs for binary treatment responses. Note that most of the adaptive design literature is
given in this direction. Section 3.3 describes designs for binary responses in the presence of
covariates. Adaptive designs for categorical responses and continuous responses are discussed
in Sections 3.4 and 3.5, respectively. Optimal adaptive designs are provided in Section 3.6, and
delayed response in adaptive designs are described in Section 3.7. Biased coin designs are dis-
cussed in Section 3.8. The real adaptive clinical trials are outlined in Section 3.9 Section 3.10
illustrates and compares different designs using both real datasets and simulation. Section 3.11
ends the chapter with some concluding discussions.

3.2 ADAPTIVE DESIGNS FOR BINARY TREATMENT RESPONSES

3.2.1 Play-the-Winner Design

Adaptive designs perhaps started with the excellent work of Robbins [53] in the context of
designing a sequential trial. But it is Marvin Zelen who made the first significant contribution
in this direction by the pioneering concept of play-the-winner (PW) for binary response trial.
To be specific, suppose that we have two treatments and patients enter the clinical trial sequen-
tially, to be assigned to either treatment. The trial outcome is either a success or a failure, and
the response depends solely on the treatment given. Then PW rule assigns the opposite treat-
ment to the next patient if the previous patients’ response was a failure and the same treatment if
the previous patient was a treatment success. This rule is deterministic and hence carries with it
the selection bias. A practical drawback of this rule is that no clear-cut explanation is given on
how to proceed when patient’s responses are not immediate. However, one can use the finally
obtained response to determine the next patient’s allocation.

3.2.2 Randomized Play-the-Winner Design

A natural question following PW is whether it is ethically justified to repeat the successful treat-
ment blindly. The answer is in the negative, mainly because (1) the unpredictability of treat-
ment assignment, a fundamental requirement in any clinical trial [57] is not ensured; and (2)
the last successful treatment may have a lower success rate, so this response should not be
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given much importance to determine the next assignment. Wei and Durham [70] modified
Zelen’s [73] rule by using all the past information of allocation and responses in an appropriate
manner. They named the modified alocation procedure as randomized-play-the-winner (RPW)
rule. The allocation procedure starts with an urn with a fixed equal number of balls (say, o), for
each of the two treatments. To randomize an incoming subject, a ball is drawn, the correspond-
ing treatment assigned, and the ball replaced. An additional number (say, ) of balls of the
same type are added to the urn if the patient’s response is a success and the same number
of balls of the opposite kind are added if the patients’ response is a failure. This rule is referred
to as RPW(a, ). The intuitive idea behind the procedure is to favor the treatment doing better
and provide some ethical gain through it. Moreover, the allocation probability for each incom-
ing patient depends on all the previous response-and-allocation history and thus the ethical
drawback of PW is expected to be avoided. For RPW(0, 1), the limiting allocation proportion
of patients treated by one of the treatments, say, the kth, can be found to be (1/qy)/(1/q; +
1/q»), k=1,2, with gk as the failure rate of the kth treatment. Therefore, the limiting
proportion is seen to be inversely proportional to the failure rate, indicating a lower number
of allocations to the treatment with higher failure rate. The same expression can be found
for the PW rule.

This procedure can be effectively applied for more than two treatments. Wei [69] provided a
multitreatment version of the RPW rule (called MRPW), with explanation facilitated by an urn
model. Here the urn starts with K types of balls, a balls of each type. An entering subject
is treated by drawing a ball from the urn with replacement. If success occurs, an additional
(K — 1)B balls of the same type are added to the urn, whereas for a failure, 3 balls of
each of the remaining types are added to the urn. Bandyopadhyay and Biswas [13] obtained
the limiting allocation proportion to kth treatment for MRPW as

1, Sk = (Shan/e)/ T /e

K Kqx

Ivanova et al. [47] also investigated the theoretical properties of the same rule through a
simulation study.

3.2.3 Generalized Polya’s Urn (GPU)

Urn models have long been recognized as a valuable mathematical tool for assigning subjects
in a clinical trial. Among various urn models, the Pélya urn (also known as the Pdlya—
Eggenberger urn) model is the most popular one. It was derived to tackle the problem of
contagious diseases [35]. Athreya and Karlin [3] successfully embed this urn scheme into a
continuous-time branching process to provide important limiting results. Wei [69] generalized
the abovementioned urn model to develop a response adaptive randomization procedure known
as the generalized Polya urn (GPU) or generalized Friedmans urn (GFU) in the literature. This
rule provides a nonparametric treatment assignment procedure for comparing K > 2 treatments
in a clinical trial. A general description of the GPU model is as follows. An urn contains par-
ticles of K types representing K treatments. Patients arrive sequentially and are to be random-
ized to the treatments. At the outset, the urn contains a vector Yy = (Yo1, Yoo, . . ., Yox) of balls
of type 1,2, ..., K. When an eligible subject arrives, a ball is selected from the urn and
replaced. If it was of type i, the ith treatment is assigned and the response is observed.
Depending on the response, a random number d;; of additional balls are added to the urn of
type j=1,2,..., K. This procedure is repeated sequentially up to n stages. Let N,(n) be the
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number of times a type k ball being selected in the first n stages [i.e., in the context of a clinical
trial Ny (n)] denotes the number of subjects assigned to treatment k among the first n subjects.
Then first-order asymptotics of GFU are determined by the generating matrix H = (E(dj)), i,
j=1, ..., K. Under certain regularity conditions, it is proved that with probability 1, lim,, .
N(n)/n=v;,j=12, ..., K, where v = (vy, v, ..., Ug) is the normalized left eigenvector of
H with respect to its largest eigenvalue [3,6,7]. The random mechanism for adding balls at each
draw is attractive. Allowing the number of balls to be added to depend on past history of responses
and allocations, a variety of response adaptive procedures are developed from GPU. It is interest-
ing to note that RPW(a, B) is a particular case of GPU for two treatments with generating matrix

g — (Britaqr api+Bg
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where p; (=1 — ¢p) is the success rate of the kth treatment, k = 1, 2.

Since the early 1990s, several generalizations to GPU (or GFU) have been made. Smythe [63]
defined an extended Pdlya urn, where the expected number of balls added at each stage is held
fixed, that is, E(d;;) =d > 0 and d;; > 0 for j # i. He suggested not replacing the type i ball
drawn and allowed removal of additional type 7 balls from the urn, of course satistying the restric-
tion that one cannot remove more balls of a certain type that are present in the urn. Relaxing these
conditions, Durham and Yu [32] propose a rule (called “modified play-the-winner”) that adds
balls to the urn only if there is a success, but the urn remains unchanged if there is a failure.

The next major generalization of GFU is the introduction of a nonhomogeneous generating
matrix, where the expected number of balls added to the urn changes across the draws. Bai
and Hu [6] showed that under certain assumptions, the usual limiting results hold. The next gen-
eralization allows the number of balls added at a draw to depend on previous draws. Andersen
et al. [1] introduced the idea for a K-treatment clinical trial where a success on treatment i
results in the addition of a type i ball and a failure causes the addition of “fractional balls” of
remaining types, proportionate to the urn composition at the previous stage. They did not inves-
tigate the theoretical properties although. Then, Bai et al. [9] considered a similar nonhomoge-
neous urn model, and explored these theoretical properties. According to their formulation, a
success on treatment 7 results in the addition of a type i ball, whereas for a failure on the ith treat-
ment results in adding balls of the remaining types, proportionally on the basis of their previous
success rates.

3.2.4 Randomized Polya Urn Design

Suppose that the performance of one of the K(> 2) treatments is relatively poor. Therefore it
seems unethical to add balls corresponding to this least favorable treatment as a result of
another treatment’s failure, as in RPW. Consequently Durham et al. [31] modified the RPW
rule by introducing what they called a randomized Pdlya urn. Naturally the allocation
design is referred to as a randomized Pélya urn (RPU) design. This is a success-driven
design; that is, it allows the urn composition to change depending on the success on different
treatment arms. The allocation procedure starts with an urn containing balls of K types, repre-
senting K possibly unrelated treatments. When a subject arrives, a ball is drawn with replace-
ment, its type is noted, and the subject is assigned to the represented treatment arm. If the
response is a success, a ball of the same type is added to the urn, but for a failure the urn
remains unchanged. Thus a success on a particular treatment rewards the treatment by
adding balls of its corresponding color, while a failure on this treatment leaves the urn unal-
tered; thus, other treatments are not rewarded on the basis of a particular one’s failure. This
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design can be embedded in the family of continuous-time—pure birth process with linear birth
rate, and this embedding enables one to obtain limiting behavior of the urn with much ease.
Durham et al. [31] proved that if p* = max, <;< px is unique, then, with probability 1
i N
im——=

n—oo n

L if p"=p

= 0 otherwise.

Therefore, the allocation procedure assigns the far-future patients to the treatment with
highest success probability.

3.2.5 Birth-and-Death Urn Design

As a logical extension of RPU, Ivanova et al. [47] developed a birth-and-death urn design
(BDU), which is the same as RPU except that whenever a failure occurs on treatment &, a
type k ball is removed from the urn. The term “birth” therefore refers to the addition of a
ball to the urn, and removal of a ball from the urn signifies “death.” BDU is an improvement
over RPW because, in case of a failure, it accounts not only for the number of balls correspond-
ing to the opposite treatments but also for the number of balls corresponding to the treatment
on which a failure just occurred. Detailed investigation of the distributional (both exact and
asymptotic) properties can be found in Ivanova et al. [47].

3.2.6 Birth-and-Death Urn with Immigration Design

A problem with the BDU is that when a particular treatment is harmful, the type of balls cor-
responding to the treatment will eventually become extinct. This immediately led to the gen-
eralization of the BDU with immigration (BDUI after Ivanova et al. [47]), where a random
mechanism is considered that adds balls to the urn at a constant rate. The rule can be described
as follows. The urn starts with balls of K types representing K treatments and ak, (a > 0),
immigration balls. Assignment of an entering subject is made by drawing a ball with replace-
ment from the urn. If it is an immigration ball, it is replaced and two additional balls, one ball of
each type, are added to the urn and the next ball is drawn. The procedure is repeated until a ball
other than the immigration ball is obtained. If a ball of a treatment type is obtained, the subject
is given that treatment and an outcome is observed. If a success is observed, a ball of
the selected type is returned to the urn, and for a failure, a ball of that type is removed.
The procedure continues sequentially with the entrance of the next subject. Ivanova et al.
[47] discussed the convergence properties of a BDUL

3.2.7 Drop-the-Loser Urn Design

The latest addition in the family of BDUs with immigration is the drop-the-loser (DL) rule
developed by Ivanova and Durham [44] and Ivanova [42]. The urn initially contains balls of
K + 1 types, balls of types 1,2,..., K represent treatments, and balls of type O are called
“immigration balls.” As in BDUI, when a subject arrives, a ball is removed from the urn. If
it is an immigration ball, it is replaced and K additional balls, one of each treatment type is
added to the urn. The procedure is repeated until a ball representing a treatment is obtained.
If a success is observed, then the ball is returned to the urn; if a failure is observed, then
one ball of that type is withdrawn.
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The RPU, the BDUI, and the DL rules can all be regarded as special cases of an adaptive
urn scheme with immigration for ternary responses [45]. Given treatment £, let \; be the prob-
ability of adding a type i ball to the urn, let m; be the probability that the urn composition
remains unchanged, and let w; be the probability of removing a type i ball from the urn,
where \; +m; + ;=1 fori=1,2, ..., K. Whenever an immigration ball is selected, it is
replaced and one ball of each type is added to the urn. The number of immigration balls is
a. For all these designs, a type i ball is added to the urn following a success on treatment i
and a type i ball is removed from the urn following a failure on treatment i. We also admit
the possibility of no response. If \; = P{success|i} = p;, m;, = P{failure|i} = g;, n.; = 0, and
a = 0, we have the RPU rule considered by Durham et al. [31]. For \; = p;, ;= 0, w; = ¢,
and a > 0, we have the BDUI rule with a common immigration process. When A\; =0, m; =
Di» i =¢q;, and a >0, we have the DL rule developed by Ivanova and Durham [44].
Embedding these designs in a family of continuous-time birth-and-death processes with
common immigration, Ivanova and Flournoy [45] studied various urn characteristics, both
exact and asymptotic. Through a simulation study, these rules are compared in Ivanova and
Rosenberger [46]. They have noted that BDUI has the least proportion of failures and the
GPU has this proportion largest among all. However, these rules are always an improvement
over the equal allocation.

Limiting proportion of subjects assigned to a particular treatment is of fundamental interest in
any clinical trial. We provide the available proportions in Table 3.1 (where p* = max; <;j<g p;):

It is easily observed that these ratios are greater than % if the kth treatment is the best.
Moreover, the ratios vary from % according to the degree of superiority of the kth treatment
(except for RPU). For two treatments, the limiting allocation proportions for PW, RPW, and
DL rules are the same. Precise rates of divergence of allocation proportion for BDU/BDUI
when p* > 0.5 can be found in Ivanova et al. [47].

3.2.8 Sequential Estimation-Adjusted Urn Design

Zhang et al. [74] proposed a multitreatment allocation scheme targeting a prespecified
allocation proportion within the framework of an urn model [called the sequential
estimation-adjusted urn (SEU) model]. Let ® be the matrix of treatment parameters for the
K treatments. Also let p;j(®) be the target allocation proportion for treatment j. Then they
suggested adding p;(0®,_,) particles of type j to the urn at stage n, j=1,2, ..., K where

Table 3.1 Limiting Allocation Proportion to kth Treatment
for Different Designs

Design Limiting Proportion of Allocation
MRPW Ly S /-5 el 35 (g

K Kqr
RPU 1 or 0 according to whether p* is unique or not
BDU/BDUI 1/pe—qi if * < 0.5

Z,K:l I/pi—ai p=
DL 1/gy

Zf—l 1/ai
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@n is the sample estimate of ® after n stages. Then, under certain conditions, it is shown that
almost surely

Ne(m) p(®) .
n PO (C)

The importance of this model is that it (1) can be used to target any specified allocation pro-
portion and (2) enjoys certain desired asymptotic properties under some widely satisfied con-
ditions. For example, suppose that we want to achieve the same allocation proportion as in a
two-treatment RPW rule. Then, the urn design will be as follows. At the (n 4 1)st stage, regard-
less of what the response of the nth patient is, we add §,2/(gn1 + Gn2) particles of type 1 and
Gn1/(@m + Gu2) particles of the opposite kind to the urn, where g, is the estimate of g, after n
responses, k = 1, 2. Then, it is shown [74] that, almost surely, Ny (n)/n — q1/(q1 + q2), and
as n — 00, we obtain

V(e — 40 — N, 07)

1+q2

in distribution, where 02 = ¢1¢2(12 — 5q; — 5q2)/(q1 + q2)*. We observe that o> can be
evaluated for any 0 < gy, g, < 1 but the corresponding expression is not straightforward for
calculation of the RPW rule when ¢; + ¢, > 0.5 [49]. Moreover, further investigation revealed

that of is much smaller than that provided by RPW rule when ¢; + ¢» < 0.5.

3.2.9 Doubly Adaptive Biased Coin Design

All the rules discussed so far, except that of Zhang et al. [74], were developed with an aim to
allocate more patients to the better treatment, and hence cannot target any prespecified allo-
cation proportion. Eisele [36] and Eisele and Woodroofe [37] propose a more complicated allo-
cation design for two treatments [called doubly adaptive biased coin design or DBCD] to target
any desired allocation proportion p to treatment 1. They defined a function g(x, y) from [0, 1]
to [0,1] that bridges the current allocation proportion to the target allocation satisfying the fol-
lowing regularity conditions: (1) g is jointly continuous, (2) g(x, x) = x, (3) g(x, y) is strictly
decreasing in x and strictly increasing in y on (0, 1)?, and (4) g has bounded derivatives in
both arguments. The procedure then allocates patient j + 1 to treatment 1 with probability
g /J, p,;). where p; is the estimated target allocation after the jth stage. However, the proper-
ties of the DBCD depend heavily on the choice of an appropriate allocation function g. Eisele
and Woodroofe [37] gave a set of conditions that the allocation function g should satisfy. These
conditions are very restrictive and are usually difficult to check. In fact, Melfi et al. [50] pointed
out that the suggested choice of g by Eisele and Woodroofe [37] violated their own regularity
conditions. Hu and Zhang [40] define the following family of allocation functions having nice
interpretative properties

§90,p) =1, g91,p) =0,

p(p/x)" ’
p(p/x)* + 1 —p)(1—p/1 —x)*
where o > 0. The parameter o controls the randomness of the procedure. Different choices of o

produce different allocation procedures. For o = 0, we have g(“) (x, p) = p, which leads to the
sequential maximum-likelihood procedure (SMLE) [58], where at each stage p is estimated,

g, p) =
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preferably by the method of maximum likelihood, and the next incoming subject is assigned to
treatment 1 with this probability. Properties of the SMLE procedure targeting two-treatment
Neyman allocation are explored in Melfi et al. [5S0]. On the contrary, a large value of o provides
an allocation design with smaller variance. Therefore, o should be chosen to reflect the tradeoff
between the degree of randomization and the variation. Hu and Zhang [40] have shown that,
under some favorable conditions, lim,,_.«N;(n)/n = p, with probability 1 where p depends
on the success rates of the two treatments. A generalization of Eisele’s procedure together
with some related asymptotic results for K > 2 treatments can also be found in Hu and
Zhang [40].

To indicate the importance of this family of allocation rules, we provide an example. For
two treatments with success rates p; and p,, the RPW rule maintains a limiting allocation pro-
portion (1 — p»)/(2 — p; — p») to treatment 1. Now, one can use DBCD to target the same allo-
cation proportion. Then p(py, p2) = (1 — p2)/(2 — p1 — p2), and the design is as follows. At
the first stage, ng patients are assigned to each treatment. After m > (2n) patients are assigned,
we let P, be the sample estimator of p;, k = 1, 2. At the (m + 1)st stage, the (m + 1)st patient
is given treatment 1 with probability g(N,,,/m, p,,) and to treatment 2 with the remaining
probability, where p,, is the estimated value of p after m stages.

3.3 ADAPTIVE DESIGNS FOR BINARY TREATMENT
RESPONSES INCORPORATING COVARIATES

3.3.1 Covariate-Adaptive Randomized Play-the-Winner Design

Response-adaptive procedures are considered to be valuable statistical tools in clinical trials.
Even though the literature is vast in adaptive designs, the effort to incorporate covariate infor-
mation still lacks maturity. The treatment allocation problem in the presence of covariate can be
found in Begg and Iglewicz [18], where the optimum design theory is used to provide a deter-
ministic allocation rule. Quite naturally, when patients are heterogeneous, their responses to
treatment are influenced by the respective covariate information. For example, consider a
single covariate, suitably categorized with (G + 1) ordered grades 0, 1,..., G. Grade O is
for the most favorable condition and grade G for the least favorable condition of a patient.
Then it seems reasonable to favor the treatment with a success in the least favorable condition,
and assign less subjects to the treatment with failure in the most favorable condition. Keeping
all these aspects in mind, Bandyopadhyay and Biswas [12] developed an RPW-type urn design
with covariate, called adaptive RPW (ARPW). They have considered a single nonstochastic
covariate with (G + 1) ordered grades 0, 1, ..., G, ordered as earlier. The allocation procedure
starts with an urn containing two types (say, 1 and 2) of treatment balls, o balls of each type. An
entering subject with grade u, is treated by drawing a ball from the urn with replacement. If
success occurs, an additional (# + )P balls of the same type and (G — u)[3 balls of the opposite
kind are added to the urn. On the other hand, when a failure occurs, an additional uf3 balls of
the same kind and (t + G — u)B balls of the opposite kind are added to the urn. Clearly, the
treatment with a success at u = G, the least favorable condition, is rewarded by addition of a
higher number of balls of the same type, whereas a failure at u = 0, the most favorable
condition, adds the smallest number of balls of the same type to the urn. This was the basic
motivation of the design. Starting from a particular response model involving covariates,
they [12] have set decision rules to identify the better treatment and established some related
asymptotic results. A guideline is also provided to accommodate more than one covariate.
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3.3.2 Treatment Effect Mappings

The next set of contributors in this field is Rosenberger et al. [60], who, using the approach of
treatment effect mappings, developed a covariate adjusted adaptive allocation rule for binary
responses. In their procedure, when the nth patient arrives to be randomized to the treatments,
the current treatment effect difference (effect of treatment 1 minus effect of treatment 2), com-
puted from patients who have responded thus far, is mapped to P,, € [0, 1]. A random number
U, € 10, 1] is generated and the nth patient is assigned to treatment 1 or 2 according to whether
U, < P,or U, > P, They used logistic regression model and argued in favor of allocating a
patient to a treatment with probability proportional to estimated covariate adjusted odds ratio.
Through a simulation study they observed that, for greater treatment effects, the procedure will
have similar power to that of equal allocation with reduced rate of treatment failures.

3.3.3 Drop-the-Loser Design with Covariate

More recently Bandyopadhyay et al. [16] modified the DL rule of Ivanova [23] to consider the
heterogeneity of the subjects. A categorized ordinal covariate with levels 0,1, is introduced with
the abovementioned ordering. The urn setup is similar to that in DL rule except that the cov-
ariate information of any entering subject is reasonably used to determine the next patient’s
allocation. If a success occurs for patient j with covariate value 1(0), the ball is returned to
the urn with probability 1(p). However, if a failure occurs with covariate value 0(1), the
ball is replaced with probability O(1 — p). The same procedure is carried out for the next
entering patient. This is referred to as drop-the-loser with covariate (DLC) design. Thus the
allocation of an entering patient is skewed in toward the treatment with a success at the least favor-
able condition in the last assignment. Assuming the covariate to be random, generating functions
of various urn characteristics and related asymptotic results are developed by embedding this urn
scheme into a continuous-time Markov process.

Most of the urn designs discussed so far are birth processes, and accordingly the variability
is too high. In fact, the standard deviations of the proportion of allocation for these designs are
so high that an allocation that is less than one or two standard deviation(s) from the expectation
leads less than 50% of patients treated by the better treatment, in case of a two-treatment experi-
ment with binary outcomes. The more recently introduced DL rule is a death process, and con-
sequently the variation is quite low as it is known that death processes have less variability than
do birth processes. Hu and Rosenberger [39] observed that the DL rule has the least variability
among the available adaptive designs for binary responses. Starting from a covariate-involved
response model, it is shown that satisfying the ethical requirements, DLC is less variable than
the original DL rule.

3.4 ADAPTIVE DESIGNS FOR CATEGORICAL RESPONSES

In several biomedical studies the responses include pain and postoperative conditions, which
are often measured in an ordinal categorical scale such as nil, mild, moderate, or severe. In
real situations, categories are clubbed together to apply the available allocation procedures.
Yet, the adaptive designs using the categorical responses are more sensible than the designs
with transformed binary responses in any case, as the former use complete categorical
responses. In 2001 Bandyopadhyay and Biswas [13] provided an upgraded version of the
RPW rule to incorporate the categorical responses. This is an urn design where possible
responses are denoted by 0, 1,2, ..., [ and the urn starts with o balls of both types 1 and 2.
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For a response j(=0, 1, ... ,[) from treatment 1(2), an additional jB balls of type 1(2) along
with (I — j)B balls of kind 2(1) are added to the urn. They have investigated the properties of
the allocation design both numerically and theoretically. However, this is a birth process and
hence suffers from high variability. To this end, Biswas et al. [26] proposed a categorical
version of the DL rule. The treatment-assigning procedure is same as the original rule except
that at the ith stage, the ball drawn is replaced with a probability m(Z;), k= 1,2, where
the subjects’ response is Z; when assigned to treatment k. Because of the ordinal nature of
the responses, it requires () to be nondecreasing in j = j/I, the authors have explored the
properties of such a design and observed the lower rate of variability than existing designs.

3.5 ADAPTIVE DESIGNS FOR CONTINUOUS RESPONSES

3.5.1 Nonparametric-Score-Based Allocation Designs

‘What we have discussed so far relies on the binary responses of the subjects. However, in many
clinical trials, the primary outcome is the length of time from treatment to an event of interest,
such as death, relapse, or remission. In most of the available works in the literature, there have
been suggestions as to how to make a continuous response dichotomous by setting some
appropriate threshold [11,66]. For outcomes with a continuous nature, Rosenberger [54] intro-
duced the idea of a treatment effect mapping, in which allocation probabilities are some func-
tions of the current treatment effect. Let g be a continuous function from R to [0,1], such that
2(0)=0.5, g(x) > 0.5 if x > 0, and g(x) < 0.5 otherwise. Let A be some measure of the true
treatment effect, and let Aj be the observed value of A after j responses, where Aj > (<0) if
treatment 1 is performing better (worse) than treatment 2, and Aj = 0 if the two treatments
are performing equally well after j responses. Then, Rosenberger [54] suggested assigning
the jth subject to treatment 1 with probability g(ﬁj,]). It is presumed (but not formally
proved) that for such an allocation procedure the limiting allocation procedure to treatment 1
would be g(A), for any function g. Rosenberger [54] formulated the idea of treatment effect
mapping in the context of a linear rank test, where A is the normalized linear rank test and
g(x) = (1 + x)/2. Rosenbeger and Seshaiyer [59] used the mapping g(x) = (1 + x)/2, with
A as the centered and scaled log-rank statistic to derive an adaptive allocation rule for survival
outcomes, but it was not studied explicitly. Another application of treatment effect mapping can
be found in Yao and Wei [72], with

1
gx) = 3 +xr if  |xr| <04

=0.1 if xr<-04
=09 if xr>04,

where r is a constant reflecting the degree to which one wishes to adapt the trial and A is the
standardized Gehan—Wilcoxon test statistic. The rule of Rosenberger et al. [58], considered
earlier, is also an example of treatment effect mapping for binary responses with g(x) =
1/(1 + x). The intuitive appeal of “treatment effect mapping” is that the patients are allocated
according to the currently available magnitudes of the treatment effect. Bandyopadhyay and
Biswas [15] developed a two-treatment allocation-cum-testing procedure using a nonpara-
metric methodology. They have used an urn mechanism where after each response the urn is
updated according to the value of a statistic based on an Wilcoxon—Mann—Whitney type



3.6 OPTIMAL ADAPTIVE DESIGNS 43

[and subsequently called the Wilcoxon—Mann—Whitney-type adaptive design (WAD)]. They
have studied the design theoretically and obtained some asymptotic results together with an
exactly distribution free solution for generalized Behrens—Fisher problem.

3.5.2 Link-Function-Based Allocation Designs

The work of Bandyopadhyay and Biswas [13] is perhaps the first attempt where a response
adaptive randomization procedure has been developed for continuous responses in the presence
of prognostic factors. They considered a simple linear model with known error variance for the
responses. This two-treatment allocation rule can be viewed as a treatment effect mapping with
g(x) as the distribution function of a N(0,T?) random variable and A as the usual treatment
difference. Here T is referred to as a funing constant. This rule assigns a larger proportion
of patients to the better treatment consistently. When a sufficiently large number of patients
are treated, Bandyopadhyay and Biswas [13] show that the limiting allocation proportion to
treatment 1 is ®(A/T). However, it is pointed out that use of this design amounts to some
loss in efficiency in estimation of the treatment difference. Nevertheless, this kind of loss is
general to any allocation design, where the allocation is skewed in favor of a particular
(obviously the better) treatment.

This rule considers only univariate responses but the reality is that the responses may be
multivariate in many situations (see Ref. 48, Ch. 15). Other limitations of this design are the
assumption of known error variance and lack of any treatment—covariate interaction.
Moreover, the design is not covariate-adjusted and is not straightforward to extend to multi-
treatment situations. In a more recent work, Biswas and Coad [21] generalized the earlier
design to develop a multitreatment, covariate-adjusted adaptive rule for multivariate continuous
responses. They have used an weighted treatment effect mapping of possible treatment differ-
ences. An extensive simulation study revealed that the proposed procedure successfully
assigned more patients to the better treatment without much sacrifice in power when testing
the equivalence of treatment effect vectors.

3.5.3 Continuous Drop-the-Loser Design

As indicated earlier, the error rate of allocation proportions is an important consideration in
evaluating the performance of a response-adaptive allocation design. Ivanova [42] introduced
the DL rule to reduce variability. However, it was based on the binary treatment responses.
Ivanova et al. [43] later developed a drop-the-loser-type design for continuous responses,
and subsequently called it a continuous drop-the-loser (CDL) design. The allocation is
carried out in the same way as in the two treatment binary response trial, except that the con-
tinuous response is categorized by means of some suitable cutoff value. A variation of this rule
is also provided that suggests replacing the ball drawn with probability depending on the
outcome observed. This maintains a lower rate of variability than the available competitors.
Simulations also show that the performance of the procedure is worth mentioning for
unequal treatment variances.

3.6 OPTIMAL ADAPTIVE DESIGNS

There are two competing goals in a clinical trial with an adaptive design. One is to optimize
some criteria given certain precision of estimation or certain power of the test; the other, to
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skew the allocation toward the treatment doing better. Hardwick and Stout [38] review several
criteria that one may wish to optimize. The list included the expected number of treatment fail-
ures, the total expected sample size, the expected number of allocations to the inferior treat-
ment, or the total expected cost. The idea is to find an optimal allocation ratio R* according
to the selected criterion by fixing the variance of the test statistic and then framing the ran-
domization procedure that targets R*. Therefore, any optimal rule assigns treatment 1 to the
(j+ Dst patient with probability R*(é_/-)/ 1+ R*(é_,-)), where éj is any estimator of the
unknown parameter 0 after j patients have responded. This development is consistent with
the framework of Jennison and Turnbull [48, Ch. 17].

For binary treatment responses, Rosenberger et al. [58] derived the optimal allocation rule
[the Rosenberg—Stallard—Ivanova—Harper—Ricks (RSIHR) rule] for minimizing the expected
number of treatment failures under the fixed power. This rule targets the ratio R*(py, po) =
\/P1/p2, where p; is the success rate of the kth (k = 1, 2) treatment. Again, the allocation mini-
mizing the sample size for fixed variance is the well-known Neyman allocation. Melfi et al. [S0]
studied the randomized design that targets this proportion, namely, R*(o', 02) = 0 /07, where
0y is the variability of the kth treatment. Under certain regular assumptions, it is proved that the
optimal allocation ratio R*(8)/(1 + R*(8)), to treatment 1 is attained in the limit.

Hu and Rosenberger [39] conducted a simulation study to compare some of these optimal
rules. It is observed that the Neyman allocation assigns fewer patients to the better treatment
when the treatments are highly successful. Computing the overall failure proportions, it is
indicated that features of Neyman allocation are undesirable for highly successful treatments,
and RSIHR is the most effective allocation in terms of preserving power and protecting
patients.

Zhang and Rosenberger [75] developed an optimal allocation design for normal responses
that minimizes the total expected response maintaining a fixed variance of the estimated treat-
ment comparison. This is regarded as a DBCD procedure targeting a specified allocation pro-
cedure. This rule is compared with the DBCD procedure targeting the Neyman allocation, the
Bandyopadhyay—Biswas rule [13], and the failure-saving rule due to Biswas and Mandal [25],
and superiority of the procedure is claimed through a simulation study.

3.7 DELAYED RESPONSES IN ADAPTIVE DESIGNS

In much of the work concerning adaptively designed clinical trials, the authors have assumed
instantaneous patient responses. Typically, however, clinical trials do not result in immediate
responses and the usual urn models are simply inappropriate for today’s long-term survival
trials, where outcomes may not be ascertainable for many years. However, in many clinical
trials a particular patient’s response may not be obtained before the entry of the next subject
and we may experience a delayed response. Consequently, the adaptation is carried out
when outcomes become available, and this does not involve any additional logistical complex-
ities. Wei [71] suggested such an adaptation in the context of RPW(a, 8) by introducing an
indicator g, j < i, which takes the value 1 or 0 according to whether the response of patient
J occurs before patient i is randomized or not. But he did not explore the theoretical properties.
Later Bandyopadhyay and Biswas [11] explored the theoretical properties assuming P(gj; =
1) = m;_;, a constant depending on the lag i — j only. In real practice, however, the pattern of
delay varies for different treatments. Moreover, a failure may be obtained more quickly than a
success. Therefore the simple model for delay described above is no longer applicable in prac-
tice. Possible generalizations of the simple model can be found in Biswas [19]. Interestingly, it
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is observed that these limiting proportions are not affected by the presence of delay, that is, that
the limiting composition of the urn remains the same as that of a simple immediate-response
model. Bai et al. [8] also considered the possibility of delay for multinomial responses
within the framework of an urn model. It is established that the limiting distribution is not
affected if the patients have independent arrival times and that time to response has a distri-
bution that depends on both the treatment assigned and the patient’s response. The effect of
delayed responses in the context of binary outcome multitreatment clinical trials has also
been investigated [46] through a simulation study.

For continuous responses Bandyopadhyay and Biswas [13] briefly mentioned the possi-
bility of delayed responses and suggested performing the adaptation procedure with the avail-
able data. Biswas and Coad [21] gave a full mathematical treatment of this problem assuming
an exponential rate of entrance of patients in the context of a general multitreatment adaptive
design. Delay-adjusted procedures for two-treatment continuous clinical trials are also available
in Zhang and Rosenberger [75], where delays are assumed to be exponentially distributed. But
they relied on a simulation study to explore the effects of possible delays. In all the designs
discussed above, it is observed that presence of delay has little effect on the performances
of the clinical trials.

3.8 BIASED COIN DESIGNS

We now consider a class of sequential designs that are not response-adaptive, as the responses
are completely ignored while assigning the next patient. The purpose of such design is to
prevent potential biases as well as ensure that the trial will be approximately balanced when-
ever it is stopped. The origin of these designs can be found in the work of Efron [34], where it is
referred as the “biased coin design” (BCD). Atkinson [4] extended and modified BCD to
achieve balance over prognostic factors and subsequently studied by Smith [62] and Burman
[27]. All these rules were derived with the idea of reducing the variance of the estimated treat-
ment comparison using optimum design theory. Some randomization was also introduced, but
in an ad hoc manner. To include both these aspects, Ball et al. [10] suggested a biased-coin-
type design within a Bayesian framework that combines both the variability and randomness.
Their proposal was to maximize the utility U = Uy — yUg to determine different allocation
probabilities. The contribution of Uy is to provide estimates with low variance, whereas Ur
provides randomness. Here vy is the tradeoff coefficient between the two aspects. To obtain
meaningful assignment proportions, Ball et al. [10] suggested taking Uy as some function
of the posterior precision matrix and Uy as the well-known entropy function. It is shown
that this design asymptotically provides equal allocation of all treatments.

Atkinson and Biswas [5] extended this approach to provide a skewed Bayesian design that,
in the long run, allocates a specified proportion of patients to a particular treatment. In a
numerical study, it is revealed that the extension to skewed allocations does not greatly increase
the loss due to imbalance.

3.9 REAL ADAPTIVE CLINICAL TRIALS

Some real-life applications of adaptive allocation designs are also cited in the literature,
although the number of real adaptive trials is very small to date. In phase I clinical trials, an
ad hoc adaptive design has been widely used for many years [67], even though the poor
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operating characteristics of this design have been well documented [52]. Iglewicz [41] reports
one use of data-dependent allocation in an unpublished application by Professor M. Zelen to a
lung cancer trial. The randomized play-the-winner (PW) rule of Wei and Durham [70] has been
used in at least three clinical trials: the Michigan ECMO trial [17] and two trials of fluoxetine in
depression to treat outpatients sponsored by Eli Lilly [66]. The Michigan ECMO was a trial of
extracorporeal membrane oxygenation (ECMO) to treat newborns of respiratory failure, where
12 patients were treated, and out of the 12 patients, only one infant was treated by the conven-
tional medical therapy (CMT) and the infant died. All the 11 infants treated by ECMO sur-
vived. But this trial created lot of controversy due to only one allocation to CMT, and it
might have pushed the application of adaptive design toward the back, to some extent.
Some description of the fluoxetine trial is given in the next section. Ware [68] described
another clinical trial based on ECMO using an outcome-dependent allocation conducted
with his medical colleagues at Boston’s Children’s Hospital Medical Center and Brigham
and Women’s Hospital. This was a two-stage clinical trial. Rout et al. [61] applied the PW
rule, and Muller and Schafer [51], also reported some adaptive clinical trials. Biswas and
Dewanji [22-24] reported an adaptive trial involving patients of rheumatoid arthritis in
which the observations were longitudinal and an extension of the randomized PW rule was
implemented. Although some other adaptive clinical trials have been carried out, the
number of real clinical trials in which adaptive allocation procedures have been used
remains small.

3.10 DATA STUDY FOR DIFFERENT ADAPTIVE SCHEMES

3.10.1 Fluoxetine Trial

Despite the attractive property of assigning a larger number of subjects to the better treatment
on an average, only a few real adaptive trials have been reported. For the illustration of the pro-
posed procedure, we consider the data from the fluoxetine trial of Tamura et al. [66], which
attempted to reveal the effect of an antidepressant drug on patients suffering from depressive
disorder. In this trial, the patients were classified according to their shortened rapid-eye-
movement latency (REML), which is presumed to be a marker for endogenous depression.
A primary measure of clinical depression was taken as the total of the first 17 items of the
Hamiltonian depression scale (HAMD,;), where a higher value of HAMD,; indicates a
severe depression. Patients receiving therapy for at least 3 weeks who exhibited 50% or
greater reduction in HAMD,; were defined to have a positive response (i.e., a success).
However, patients’ responses were not readily available, and the adaptation was based on
surrogate outcomes using RPW rules.

As we consider homogeneity among the subjects, we apply the allocation methodology
on the patients correctly assigned to the shortened REML stratum. This will not result in
loss of generality, as separate adaptive allocation schemes were performed in each stratum.
Then we have 45 patients, where observing the final response (either a success or a
failure) is our study endpoint. We consider 39 patients and ignore patient numbers 56, 73 (mis-
classified), 57, 63, 79, and 88 (final response not yet available). In the study, we therefore have
data from 39 patients, 19 of whom are treated by fluoxetine and 20 by placebo. We find the
empirical distributions of treatment responses from the data and treat them as the true ones.
Then, we obtain g4 = (11/19) and pg = (7/20), where pa(pp) is the success probability of
fluoxetine (placebo).
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Table 3.2 Data Study for Different Adaptive Schemes

Allocation Proportion of

Design Fluoxetine (SD) Overall Failure Proportion (SD)
PW 0.603 (0.072) 0.512 (0.083)
RSIHR 0.609 (0.130) 0.513 (0.088)
DL 0.582 (0.065) 0.519 (0.082)
RPW 0.591 (0.110) 0.515 (0.083)

The results of Table 3.2 came from a simulated clinical trial with 5000 repetitions consider-
ing various allocation designs. Thus we observe that the performance of all the adaptive
schemes is more or less similar, in terms of both allocation proportion and failure rate.

3.10.2 Pregabalin Trial

To illustrate the need of the adaptive procedures, we consider the real clinical trial conducted by
Dworkin et al. [33]. It was a randomized, placebo-controlled trial with an objective of evaluat-
ing the efficacy and safety of pregabalin in the treatment of postherpetic neuralgia (PHN).
There were n = 173 patients, 84 of whom received the standard therapy placebo and 89
were randomized to pregabalin. The primary efficacy measure was the mean of the last
seven daily pain ratings, as maintained by patients in a daily diary using the 11-point numerical
pain rating scale (0 = no pain, 10 = worst possible pain); therefore, a lower score (response)
indicates a favorable situation. After the 8-week duration of the trial, it was observed that
pregabalin-treated patients experienced a higher decrease in pain score than did patients
treated with placebo. We use the final mean scores, specifically, 3.60 (with SD = 2.25) for
pregabalin and 5.29 (with SD = 2.20) for placebo as the true ones for our purpose with an
appropriate assumption regarding the distribution for pain scores.

The results listed in Table 3.3 were obtained as follows. Simulations with 5000 rep-
etitions of a response-adaptive trial were performed for n = 173 patients with a N(3.60,
2.25%) distribution for pregabalin and a N (5.29,2.20%) distribution for placebo. Allocation
probabilities are updated according to the rule considered. Since a lower response is desir-
able, any response greater than the estimated simple combined mean of responses can be
regarded as a failure.

Table 3.3 Data Study for Different Adaptive Schemes under Normal Assumption

Allocation Proportion to Overall Failure Proportion
Procedure Pregabalin (SD) (SD)
BB (T'=2) 0.703 (0.068) 0.441 (0.042)
CDL 0.581 (0.037) 0.478 (0.038)
Optimal 0.509 (0.10) 0.499 (0.04)
Rosenberger 0.554 (0.07) 0.486 (0.06)

Equal 0.500 (0.04) 0.500 (0.04)
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The CDL has the least variability, but the BB design is most ethical in terms of allocating a
larger proportion (almost 20% more than that of the competitors) of patients in favor of the
better treatment.

3.10.3 Simulated Trial

Consider a hypothetical clinical trial where patients enter sequentially and are to be randomized
to one of the two treatments 1 and 2. We assume that the response is binary and instanteneous
with p; as the success rate for treatment k, k = 1, 2. Then, for different values of (p, p,), we
simulate the trial using different allocation procedures with trial size n = 80. Results are given
in Table 3.4. We have chosen three pairs of values of (p;, p,), reflecting different rates of
success, from highly successful to least successful, of the treatments. Treatment 1 is taken to
be the better; that is, we always considered combinations of (py, p,) with p; > p,.

Except for optimal and equal allocation rules, the allocation proportion to treatment 1 is
always greater than 1/2, reflecting the benefit of a response adaptive procedure. It is observed
that the allocation proportion to the better treatment in optimal rule of Melfi et al. [50] is less
than 1/2 whenever the better treatment possesses lower variability. Therefore the rule is not
ethically attractive. RPW and DL rules generally maintained a lower rate of failure, even
lower than those of RSIHR! This is surprising because RSIHR is an optimal rule developed
with an aim to minimize overall failure proportion. Thus optimality may not ensure the absolute
fulfillment of the objective (e.g., minimization of treatment failures in this case). We also
observe that performance levels of RPW and DL are very similar except that the latter possesses

Table 3.4 Comparison of Different Binary Response-Adaptive Procedures

Allocation Proportion to Overall Failure Proportion

Procedure (p1> P2) Treatment 1 (SD) (SD)
RPW 0.9, 0.7) 0.658 (0.16) 0.167 (0.049)
0.7, 0.5) 0.607 (0.103) 0.378 (0.059)
0.3,0.1) 0.561 (0.049) 0.788 (0.047)
PW 0.9, 0.7) 0.743 (0.097) 0.151 (0.045)
0.7, 0.5) 0.624 (0.067) 0.375 (0.057)
0.3,0.1) 0.561 (0.028) 0.789 (0.047)
DL 0.9, 0.7) 0.631 (0.067) 0.174 (0.041)
0.7, 0.5) 0.602 (0.058) 0.378 (0.056)
0.3,0.1) 0.558 (0.028) 0.789 (0.046)
Optimal 0.9, 0.7) 0.413 (0.077) 0.218 (0.046)
0.7, 0.5) 0.478 (0.062) 0.404 (0.052)
0.3,0.1) 0.589 (0.078) 0.782 (0.047)
RSIHR 0.9, 0.7) 0.532 (0.059) 0.194 (0.043)
(0.7, 0.5) 0.541 (0.063) 0.390 (0.054)
(0.3,0.1) 0.615 (0.083) 0.777 (0.049)
Equal 0.9, 0.7) 0.500 (0.054) 0.198 (0.044)
0.7, 0.5) 0.500 (0.055) 0.397 (0.054)

(0.3, 0.1)

0.500 (0.054)

0.800 (0.044)
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the lower variability of allocation proportions. Thus we conclude that among the adaptive rules
for binary treatment responses, RPW seems to be the best ethical alternative.

3.11 CONCLUDING REMARKS

In this present chapter, we covered different directions of work in phase III response-adaptive
designs. We discussed the theoretical models, their properties, the applications, and tried to
provide a comparative discussion of various designs under different situations through simu-
lations and real data examples. We tried to provide a wide range of references that might
provide some guidance for the researchers and practitioners in this area. Note that we did
not discuss some topics in this context, due to space constraints. For example, there are
some more recent works demonstrating applications of adaptive designs in the longitudinal
response scenario. We did not discuss this. Any interested reader can go through the papers
by Sutradhar et al. [64] and Biswas and Dewanji [22—24] to get an overview of this. Again,
we restricted our discussions to allocations. Adaptive designs are now used for many real situ-
ations, such as for interim monitoring to decide on the trial or to decide on the ultimate sample
size. We did not discuss these issues here.

Although most of the work in the literature has been carried out from a frequentist viewpoint,
the essence of adaptive designs are basically Bayesian. Here, the data dictate the allocation
pattern at any stage, based on some prior weight on equivalence. This is what the Bayesian phil-
osophy says. In a Bayesian paradigm, the posteriors are obtained following some rules, but in the
adaptive designs the allocation probabilities are set ad hoc, based on the data. However, as yet no
attempt has been made to frame the adaptive design in a proper Bayesian way. Only Biswas and
Angers [20] considered a continuous-response two-treatment setup in the presence of covariates.
The setup is similar to that of Bandyopadhyay and Biswas [13]. They have suggested computing
the predictive density of a suitable link function that bridges the past history. In a simulation
study, they have indicated that the proposed design reaches the level of desirability.

Finally we note that although there has been a considerable amount of interest in adaptive
trials more recently, its use is still not adequate. We feel that some bridges should be built
between the statisticians and the experimenters to fill this gap. Moreover, the designs should
be developed in a simple way, but taking into account the realities faced by the practitioners.
This might result in more and more applications of adaptive designs in the near future.
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4.1 INTRODUCTION

Determination of sample size in a clinical trial is always an important issue as the samples are
quite costly. Particularly when there is significant treatment difference, an early stopping, poss-
ibly keeping a fixed power of the test, might result in substantial reduction in sample sizes, and
hence save precise administrative and ethical costs.

A fixed sample size trial sets a prefixed number of samples, say n,, and randomizes the
entering patients among the competing treatments by a sampling design. In contrast, an
inverse sampling prefixes a certain number of events from the trial, and stops sampling as
soon as the number of that events reaches that prefixed number. Such an “event” may be
“success”, “failure”, “responses below/above a certain threshold”, and so on. Thus the
sample size of the trial will be random, but of course we can look at the expectation and var-
iance of the sample size. Consider the following simple example. Suppose that we have a single
sample case, where the subjects are treated by a single treatment. The response X has Bernoulli
(p) distribution, 0 < p < 1, and the successive responses are independent. Suppose that we
want to test

Hy:p=po against H;:p > po,
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The fixed sample size test can be carried out by fixing the sample size no, and using the
test statistic

no
T =Y Z
i=1

where the Z; terms are independent copies of X, which takes the value 1 for a success and the
value O for a failure. Thus 7,  denotes the number of successes from the n, subjects, and T,
follows binomial (n, p) distribution. As Eg (T}, ) > Epo(T),,), a right-tailed test can be carried
out by using T}, . Such a test is also a uniformly most powerful (UMP) test.

4.1.1 Inverse Binomial Sampling

Alternatively, for the Bernoulli situations described above, we can frame a test for H, against
H, using inverse binomial sampling [20,35] in the following way. Let r be a prefixed positive
integer. Observe X sequentially and stop sampling as soon as the number of successes reaches
r. Let N, be the number of X terms observed. Naturally N, has a negative binomial (r,p)
distribution, and hence

Ey, (N;) < Epy(Ny).

This suggests that a left-tailed test based on N, is appropriate. It can also be seen that such a test
is UMP. Moreover, for every given positive integer c, there exists a random variable 7, having
the binomial (c,p) distribution with

[N, < ] <=> [T, > r],
and hence, for any p € (0,1), we obtain
B(P) = Pp(Nr <o = Pp(Tc >r).

This shows that, given size and power, we can always frame an N, test and a fixed sample size
test assuming that 7, has the same size and the power. Moreover, the N, test keeps smaller
expected sample size under H;. In practice we can get an N, test in the following way.
Given r and c [or the level of significance o € (0,1)], we stop sampling at that n for which
> ,Z;<c or =r, whichever is earlier. Then H, is accepted or rejected according to
whether Y, <c or Y1, Z > c. This gives, for any p, the expected sample size for the
N, test as

S(p) = Ey(N:IN, < ¢)Pp(N, < ¢) + (c + D)P,(N, > ¢ + 1),
where

—1 _
P,(N,) = <:_1>py(lfp)" on=rr41,....
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Thus, whatever p € [ po, 1] may be, we always have S( p) < c. In a sequential testing procedure
a term such as S(p) is also called the average sample number (ASN) function.
In some applications, sometimes it would be appropriate to consider the problem of testing

Ho:p=po against Hj:p # po.

If we use binomial sampling, then a fixed size test based on n observations would be to reject
H, if and only if 7,, is too large or too small. Such a test, as in Lehmann [25], is UMP unbiased.
This test, as earlier, does not correspond to the inverse binomial two-sided test. Here we have to
modify the inverse binomial sampling in the following way. Let r and s be two prefixed positive
integers. Observe Xs sequentially, and stop sampling as soon as r successes or s failures, which-
ever is earlier, are obtained. Let N’ be the number of trials to meet such an objective. Then, for
any positive integer ¢’(> s), we have

[N <1 <=>[Te > rlU [T, < =],
and hence
B(p)=Py(N" <) =Py(Te 2 1)+ Pp(Te < ' ).
Now, if we write
N' = min(N,, Ny),

where N, is as before and N is the number of trials required to obtain the sth failure, we have,
for any p € (0,1),

Ex(N') < Eny(N'),

and hence, as before, a left-tailed test based on N’ is appropriate. If ¢’ is the level a € (0,1)
cutoff point for this test, then ¢’ can be obtained from the relation

Py, (V' < ) < a.

The probability mass function (pmf) of N’ is

/

r—1

1" n r n'—r n'—1 s n'—s
Pp(N):( )p(l—p) +<s_1)(1—p)p )

n' = min(r,s), ...,r+s—1).

Stopping rules play a central role in the theory of sequential analysis [30]. Here the variables
N, and N’ can be interpreted as the stopping variables connected with renewal theory. Thus N,
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and N' can be written as

n
N, —min{n:nz I,ZZ,-—r}

i=1

and

n n
N’min{n:nzl,zzir or Z(l—Zi)s}.
i=1 i=1

Hence all the asymptotic results related to these inverse binomial trials can follow from that of
renewal theory. Moreover, using N,, the maximum-likelihood estimator (MLE) of p is r/N,.
This is biased as

p<E(1§r) = (ril)p‘

In fact, (r — 1)/(N, — 1) is the minimum-variance unbiased estimator of p. In the subsequent
sections, we have provided various stopping rules as an extension or generalization of inverse
binomial sampling. Unlike renewal theory, the variables associated with those rules are, in
general, dependent, and hence the properties of renewal theory are not applicable here in a
straight forward manner.

4.1.2 Partial Sequential Sampling

Two-treatment comparisons are the most common in clinical trials, and hence we focus at the
two sample problems. There are many practical situations in which the observations from one
of these treatments are easy and relatively inexpensive to collect, while the sample observations
corresponding to the other population are costly and difficult to obtain. For example, in a clini-
cal trial, observations X on a standard treatment may be easily available, and the same Y for a
new treatment may be difficult to obtain. In such a situation, one would like to gather data (may
be large) on X and collect only enough observations necessary to reach a decision regarding the
problem under consideration. To achieve this goal, we consider collecting Y observations in a
sequential manner, with sampling terminated following some stopping rule.

We consider the following setup, where F; and F, may be two continuous univariate
distribution functions. We want to test the null hypothesis

H()IF[ZFQ (41)

against a class of one-sided alternatives H,. If we restrict F, as (1) Fo(x) = Fi(x — ), —00 <
X, < 00, or (2) Fr(x) = Fi(x exp(—w)), x >0, —oo < n < oo, then the hypotheses can be
reduced to

Hy:p =0 against p > 0.
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In connection with the problem of testing the abovementioned null hypothesis against Hj,
several partial sequential designs were proposed and studied [41,27,28,16]. For details, one
can also see the book by Randles and Wolfe [29].

4.2 TWO-SAMPLE RANDOMIZED INVERSE SAMPLING
FOR CLINICAL TRIALS

We consider a simple setup where we have two competing treatments A and B, having binary
responses, with success probabilities p; and p,, respectively; that is, if the responses to A and B
are represented by X and Y, then X follows Bernoully (p;) and Y follows Bernoulli (p5).
Suppose that each patient is randomly (50 :50) allocated to either A or B, by tossing a fair
coin. Here we want to test the null hypothesis Hy : p; = p, against the one-sided alternative
H, : p; > p,. Here, for the ith patient, we define a pair of indicator variables (;, Z;), where
9, is the indicator of assignment, which takes the value 1 if the ith patient is treated by A,
and O if the ith patient is treated by B, and where Z; is as in binomial sampling. A fixed-
sample-size test can be based on (3.2, 8;Z;, > i*; (1 — 8,) Z;), which are the number of suc-
cesses by A and B, respectively, for a prefixed total sample size ng. Clearly, for such random
sampling, §; follows Bernoulli (0.5), independently of each other, which gives » ;°,3; follows
binomial (ng, 0.5). Hence, given Y 8, = m, we have > ;°,8,Z; ~ Bin (m, p;), and conse-
quently, E (Z:’il SiZi) = ngp1 /2. In a similar way, E (Z:’i] 1 - 8,~)Zi) = ngpz/2. A suitable
test statistic may be based on

S 8iZi 3R (1 =8)Z;
Yo s (=87

and a right-tailed test can be suggested.

For an inverse sampling, the stopping rule can be set as in using N, as a test statistic.
Here Ep,(Z;) = p, regardless of whether the patient is treated by A or B. But Ey, (Z;|8,) =
d:p1 + (1= 3)py, and Ey,(Z) = (p1 + p2)/2. Thus Ey (Z;) En,(Z). Consequently, N, is
expected to be larger under H, than under H;. A left-tailed test as earlier can be suitably
suggested.

In the group-sequential framework, inverse sampling was carried out by Bandyopadhyay
and Biswas [4,5].

Tng =

4.2.1 Use of Mann—Whitney Statistics

The test can be carried out by inverse sampling using statistics different from the negative bino-
mial type. Here, under pairwise sampling, we consider a situation in a much simpler scenario
where the patients are taken in pairs and are randomly treated by the two treatments. Suppose
that we want to test the hypotheses of Section 4.1.2.

We restrict ourselves in pairwise sampling for the purpose of comparison, where the ith pair
is (X;, Y;) with X ~ F| and Y ~ F,.

For the ith pair, we define Z; = 1 if ¥; > X, and Z; = 0 otherwise. Obviously, Z; are inde-
pendently and identically distributed as Bernoulli ( p) with

p= [Fl(x)sz(X)»
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which is equal to % under Hy, and is greater than % under H,;. There is substantial gain in sample
size over the fixed sample size (maintaining close power). The ASN of the inverse sampling
procedure is much less than the ASN for the fixed-sample-size procedure with the same power.

For inverse sampling, some improvement in power can be achieved by considering other
complicated score functions than simple Z; for the ith pair. For example, we can consider
the Mann—Whitney scores. Here, after drawing the ith pair, the differences Y; — X, (1 <},
k <'i), are observed instead of observing the differences ¥; — X;. The indicator Z takes the
value 1 if ¥; — X, > 0 and O otherwise. This leads to the following sequence of Mann—
Whitney statistics:

n n

U= Y Zj n>1,

j=1 k=1
and the stopping variable N, can be defined as
Ny = min{n : U, > q(r)},

where ¢g(r) is an integer-valued quadratic function of r. Clearly, N, is stochastically smaller
under H; than under Hy, resulting in a gain in sample size. The power of a test will depend
on the statistic that we choose to carry out the test. However, for some suitably chosen test
statistic, the power will increase. Bandyopadhyay and Biswas [8] studied this in detail.

4.2.2 Fixed-Width Confidence Interval Estimation

Consider the following sequence of estimators

n S8z B =38z
! er'l:lgi Z?:l(l —8)

of some parameter 6 measuring the treatment difference (e.g., the difference between two popu-
lation means). Thus 6,, is only the difference in proportion of successes (p; — p) if the obser-

vations are binary. Otherwise, it is the difference in average responses. Suppose that 0, is
consistent for 0, and, for some V2 > 0, as n — oo, we have

Vi®, —8) - NO,V?).
Then, for some vy, we can choose n > v, such that

limP(|6, — 8] <d)>1—a,
dlo

where 7y is the smallest integer exceeding (uV/d Y,and 1 — &) = « /2 with ®(-) as the cumu-

lative distribution function of an N(0, 1) random variable. In practice, V2 is not known. Let V.
be a sequence of strongly consistent estimators of V2 based on {(®sZ),i=1,...,n}. We then
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introduce the stopping variable

— 1 . > >M2‘A/3
T—mmqn:n-m,n = P2

with m as the initial sample size, which means that we always take a sample size greater than it.
Then we have (see Ref. 19, Ch. 10)

1 0 — < > —
l‘hmo P(|6T 9| d)>1—-«
provided, as d — 0, that

M v 1,
aiy V25 ov2
i) 70, —8,) 2 0.
This can be shown in many simple randomized clinical trial situations as well as for some
adaptive designs.

4.2.3 Fixed-Width Confidence Interval for Partial Sequential Sampling

LetX,, = Xy, ...,X,,) be arandom sample of fixed size m(> 1) on X, and let {Y,,, n > 1}, be
a sequence of observations on Y. Let f,bea sequence of estimators based on X,,, and (Y1, ...,
Y,), n > 1. Suppose for each m that there is a positive integer r = r (m) such that, as m — o,
we have r — oo, We also assume that as m — o0

sup |6, —6] — 0

n>r
in probability. Then, for given d(> 0), the random variable
N(d) =sup{n>1:10, — 6| >d}

is related to a partially sequential fixed-width confidence interval of 6 in the sense that there
exists a positive integer v = v(m) such that asymptotically, for given o € (0, 1),

P(|6, —6| <d forall n>v)=1—a. (4.2)

The random variable of the type N(d) is studied by Hjort and Fenstad [21] in connection with
sequential fixed-width confidence interval estimation. A terminal version of (4.2) is that there
exists a positive integer v* = v*(m) (different from v) such that asymptotically

P(6,—0|<d)>1—a forall n>v". (4.3)
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Under the sequential setup, (4.3) has been studied by many researchers. For details, one can
consult the book by Ghosh et al. [19]. Bandyopadhyay et al. [13] studied (4.3) under partial
sequential setup.

4.3 AN EXAMPLE OF INVERSE SAMPLING: BOSTON ECMO

This is a real clinical trial that employed inverse sampling effectively. Details on the trial and
data description with discussions were presented by Ware [36] followed by discussions by
quite a few experts in clinical trial statistics. The purpose of the trial was to evaluate extrac-
orporeal membrane oxygenation (ECMO) for treatment of persistent pulmonary hypertension
of the newborn (PPHN). The mortality rate among the infants with severe PPHN treated with
conventional medical therapy (CMT) was 80% or higher for many years. ECMO treatment of
PPHN was introduced in 1977, and by the end of 1985, several centers reported survival rates
of 80% or more in infants treated with ECMO. Bartlett et al. [14] reported a randomized trial for
ECMO versus CMT, which was an adaptive trial based on the randomized play-the-winner
(PW) rule [37,38]. In that trial, out of 12 patients, only one infant was treated by the
placebo, and later died. The other 11 infants, treated with ECMO, all survived. This trial
received lot of cristicism as, due to the adaptive sampling, only one patient was treated by
the CMT, and very little information on CMT was gathered.

To balance the ethical and scientific concerns, Dr. Ware and his colleagues designed a two-
stage trial. They considered a family of study designs where a maximum of prefixed r deaths
are allowed in either treatment group. The treatments were selected by a randomized permuted
block design with blocks of size 4. When r deaths occur in one of the treatment groups, ran-
domization ceases and all subsequent patients are assigned to the other treatment until r deaths
occur in that arm or until the number of survivors is sufficient to establish the superiority of that
treatment arm, using a test procedure based on the conditional distribution of the number of
survivors in one treatment given the total number of survivors.

In the trial, in the late 1980s, patients were randomized in blocks of 4, and treatments were
assigned randomly to the first 19 patients. Of these 19 patients, 10 received CMT, including
patient 19, and 4 died. Here r was taken as 4. In the second stage, all the remaining 9 patients
received ECMO and all survived.

For details of the trial and the analysis, we refer to Ware [36]. But at this point we want to empha-
size that inverse sampling can be carried out in real trials in some way following this fashion, poss-
ibly by modifying the design in an appropriate way, which might help in stopping the trial earlier
and saving the lives of some patients who are exposed to the inferior treatment during the trial.

44 INVERSE SAMPLING IN ADAPTIVE DESIGNS

Adaptive designs or response adaptive designs are used in clinical trials in order to allocate a
larger number of patients for the better treatment. This is done by choosing the allocation
probability of a patient to either treatment depending on the response and allocation history
of the patients allocated so far. Consider the setup described in Section 4.3. Here 9, takes
the values 1 or O with probabilities m; and 1 — m;, where w; = m;®,...,8,—1; Z,...,
Z;—1). The functional form of ; depends on the particular adaptive design under consideration.
Some such designs are the randomized PW rule [37,38], the success-driven design [17], the
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drop-the-loser (DL) rule [23] for binary responses, and the link-function-based design [10]
optimal designs of Atkinson and Biswas [1,2] for continuous responses.

For such designs, the 9, terms are of dependent sequence, and quite naturally the Z; terms
are also dependent as they depend on §; values. Thus one can use the same stopping rule as in
N,, and a similar test as well. But the properties, the exact and the asymptotic distributions, will
be quite different in this dependent setup. Bandyopadhyay and Biswas [6,7] considered such
inverse-sampling-based analysis in the setup of the randomized PW rule.

For binary treatment responses, Sobel and Weiss [31] suggested the combination of the PW
rule [42], an adaptive design, and an inverse sampling scheme. The suggestion was to stop
sampling when a prefixed number of successes were observed from either of the two treat-
ments. Later Hoel [22] modified the sequential procedure of Sobel and Weiss [31], and intro-
duced another stopping variable, which takes both the number of successes and failures into
account. Specifically, they suggested stopping the experiment when the number of successes
of a treatment plus the number of failures by the other treatment exceeds a prefixed threshold.
Subsequently, Fushimi [18], Berry and Sobel [15], Kiefer and Weiss [24], and Nordbrock [26]
considered the PW allocation with more complicated stopping rules. Wei and Durham [38]
extended the PW rule of Zelen [42] to obtain the randomized PW rule. They studied the prop-
erties of this allocation rule for fixed sample size and also for the stopping rule proposed by
Hoel [22]. Bandyopadhyay and Biswas [6,7,9,11,12] considered the randomized PW allocation
and the stopping rule of Sobel and Weiss [31]. Baldi Antognini and Giovagnoli [3] considered
the estimation of treatment effects in sequential experiments for comparing several treatments
when the responses belong to the exponential family, suggesting that the experiment will be
stopped when the absolute value of the sum of responses to each treatment reaches a given
value. For two treatments, that rule becomes

n

> a-8)y

i=1

>r and

zn: 8,'X,‘
i=1

N = inf > . 4.4
f S

For binary responses, (4.4) becomes a lower threshold for the number of observed successes by
each treatment, and for one treatment only it reduces to the classical inverse binomial sampling.
For normal responses, (4.4) reduces to the sampling scheme of Tweedie [35]. Combining the
sequential ML design with this stopping rule (4.4), Baldi Antognini and Giovagnoli [3] showed
that strong consistency and asymptotic normality of the MLE:s still hold approximately.

In adaptive design, the amount of research is still inadequate. Stallard and Rosenberger [32]
observed that “most of the theoretical development and practical implementation of adaptive
designs has assumed a fixed sample size.”

4.5 CONCLUDING REMARKS

Inverse sampling is designed specifically for the purpose of estimation, usually with the objec-
tive of attaining a confidence interval with fixed width. In the early—mid-1940s, inverse bino-
mial sampling was discussed by Haldane [20] and Tweedie [34] and inverse normal sampling,
by Stein [33]. Both these methods are discussed in the book of Wetherill and Glazebrook [39,
Ch. 8]; see also Whitehead [40, Ch. 5] for a note.

Inverse sampling for a multitreatment clinical trial can be similarly designed. It is true that
the number of real applications of inverse sampling is still not adequate. This can be
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successfully done if the gap between the statisticians working in this area and the practitioners
can be bridged. This can effectively reduce the sample sizes, especially in trials where there is
prior belief of substantial treatment difference, as in the Boston ECMO trial.
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CHAPTERS

The Design and Analysis Aspects of
Cluster Randomized Trials
Hrishikesh Chakraborty

Statistics and Epidemiology, RTI International, Research Triangle Park,
North Carolina

5.1 INTRODUCTION: CLUSTER RANDOMIZED TRIALS

In asimple randomized trial, an individual is the unit of randomization, but in acluster randomized
trial (CRT), a group is the unit of randomization. For example, in a simple drug trial or in a
vaccine trial, individual subjects are randomized to a drug/vaccine or placebo group or to
different competing drug arms. Also known as group randomized trials, CRTs randomize
groups such as hospitals, clinicians, medical practices, schools, households, villages, commu-
nities, or administrative boundaries. Cluster randomized trials, where clusters can be formed on
the basis of natural grouping or geographic boundaries, are accepted as the gold standard for the
evaluation of new health interventions [41] such as neonatal mortality rate, episiotomy rate, and
postpartum hemorrhage rate.
Hayes and Bennett [41] identified several reasons for adopting cluster randomized trials:

1. Some intervention trials, such as hospital intervention trials and educational intervention trials,
have to be implemented at the cluster level to avoid the resentment or contamination that could
occur if certain interventions were provided for some individuals but not others in a cluster.

2. CRTs are preferred to capture the mass effect on disease of applying an intervention to a
large proportion of community members, such as reduction of early neonatal mortality
by providing advanced training to birth attendants in a rural setting.

3. Cluster randomized trials are useful after efficacy has been established at the individual
level and there is a desire to measure intervention effectiveness at the community level.
Many of the difficulties encountered in the design and analysis of cluster randomized
trials arise from their dual nature, focusing, on both the individual and the cluster.
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There are several advantages to using a cluster randomized design, Clusters are physically
separated from each other and interventions are administered to the whole group; all group
members receiving the same treatment can help minimize contamination by stopping or redu-
cing the spread of an intervention to the control group [11,47,68]. Cluster randomized designs
can be used for convenience, to aid in cost reduction, to eliminate potential ethical problems, to
increase administrative efficiency, and to provide less intrusive randomization [20,26,68].
Cluster randomized trials can also be used for implementing interventions that can be
conducted only at the cluster level, such as the hospital or community level [41].

The main disadvantage of cluster randomized trials is that participants within a given cluster
often tend to respond in a similar manner, and thus their data can no longer be assumed to be
independent of one another. Therefore, there are two sources of correlation: between and within
clusters. Between-cluster (intercluster) correlation measures the variation in outcomes across
clusters (intracluster). Within-cluster correlation occurs when subjects in a cluster are
influenced by common factors, such as age, ethnicity, gender, geographic, socioeconomic,
and political factors [11,47].

Some studies have incorrectly analyzed trial data as though the unit of allocation had been
the individual participant. This incorrect analysis is often referred to as “unit of analysis error”
[87] because the unit of analysis is different from the unit of allocation. If the clustering is
ignored and CRTs are analyzed as though individuals had been randomized, resulting P
values will be artificially small, resulting in false-positive conclusions that the intervention
had an effect. Because individuals within clusters tend to be more alike, the independent infor-
mation contributed in a cluster randomized sample is usually less than that of an individually
randomized trial; thus, the power of the study is reduced [41,46].

Numerous studies have shown problems with the reporting of CRTs. Divine et al. [14]
reviewed 54 published papers on physicians’ behavior from a broad selection of journals and
found that 70% used the wrong unit of analysis. After reanalyzing the data, they found only
four statistically significant measures in the original analysis, whereas eight of nine studies
had reported statistically significant findings when they used the wrong unit of analysis. A
similar study of 21 public health published papers showed that only 57% accounted for clustering
in their analyses [74]. Several other reviewers have found similar results [18,32]. Furthermore,
intraclass correlation (ICC) values are not reported in published literature. For example,
MacLennan et al. [54] found that ICCs were reported in only 6 out of 149 trials, Eldridge
et al. [30], in 13 out of 152 trials; and Isaakidis and loannidis [44] in only 1 out of 51 trials.

Two approaches are used in cluster randomized trials: one drawing cluster-level inferences
and the other drawing, individual-level inference. To draw cluster-level inferences for cluster
randomized trials, we need to assess outcomes only at the level of the cluster, keeping the
unit of analysis the same as the unit of randomization. We might measure a dichotomous
outcome (e.g., whether the practices hospital, or community, was a “success” or a “failure”)
or a continuous outcome (e.g., the percentage of individuals in the cluster who benefited).
In both scenarios, we obtain one outcome measurement from each randomized unit, and we
perform the analysis as if the groups were individuals by using the standard methods. This
approach has two major limitations:

1. we may end up with fewer data points than a simple trial involving substantially fewer
participants because cluster randomized trials are likely to randomize fewer clusters than
most simple trials and hence have lower statistical power. For example, a trial might ran-
domize 12 communities with a total of 12,000 inhabitants. Analyzing by community, we
end up with only 12 observations.
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2. Not all groups are the same size, and we would give the same weight to a village of 1000
inhabitants as to a village of 50 inhabitants.

The Guideline trial [35] is a more recently published CRT in which the unit of randomiz-
ation and the unit of analysis are the same. As an example, the Guideline trial is a two-arm
cluster randomized controlled trial using hospitals as units of randomization. Nineteen hospi-
tals in three urban districts of Argentina and Uruguay were randomized to either (1) a
multifaceted behavioral intervention to develop and implement guidelines about episiotomy
use and management of the third stage of labor, or (2) a control group that continued with
the usual in-service training activities. The main outcomes to be assessed were the use of
episiotomies and of oxytocin during the third stage of labor.

On the other hand, when we randomize by cluster and draw inferences similar to those
from the individually randomized trial, complications and statistical challenges arise in the
design and analysis of the trial. In this situation, we need to account for within- and
between-cluster correlation in the design and analysis of the cluster clinical trials. The
FIRST BREATH trial [9] is one such trial where randomization was done by community
and the inference will be drawn at the individual level. The FIRST BREATH trial is a
cluster randomized controlled trial to assess the effect of training and implementation of a
neonatal resuscitation education program for all birth attendants in intervention clusters on
7-day neonatal mortality in communities across six different countries. The primary hypoth-
esis is that, among infants with birth weights of 1500 g or more born in the selected commu-
nities, an educational intervention based on the Neonatal Resuscitation Program (NRP) will
decrease early neonatal mortality (7 days) by at least 20% (from 25 to 20 deaths per 1000
live births) compared to control communities. The clusters for this study are communities,
defined as geographic areas characterized by physical or administrative boundaries with an
average of 500 births per year. Each community within a research unit is randomized into
either the control or the intervention group. The birth attendants in all communities are
trained in the revised essential newborn care (ENC) training, and the birth attendants in
the intervention communities also receive additional training in the American Academy of
Pediatrics Neonatal Resuscitation Program.

The remainder of this chapter is organized as follows. Section 5.2 reviews the methods for
calculating the intracluster correlation coefficient for categorical and continuous variables and
the methods used to calculate the confidence interval for ICC. Section 5.3 discusses the sample
size calculation for cluster randomized trials. Section 5.4 discusses the analysis methods related
to cluster randomized trial data, and Section 5.5 discusses the major issues related to the cluster
randomized trial and future directions.

5.2 INTRACLUSTER CORRELATION COEFFICIENT AND
CONFIDENCE INTERVAL

When we randomize by cluster and draw inference, the individual level, we need to account
for the within- and between-cluster correlations. The intracluster correlation coefficient
(ICC) measures the degree of similarity between responses from subjects within the same
cluster. Because cluster members are similar, the variance within a cluster is less than
that expected from randomly assigned individuals. The degree to which the within-cluster
variance is less than would be otherwise expected can be expressed as ICC. For
example, when we randomize communities in the FIRST BREATH trial, residents in one
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community may share the same resources, nutrition, education, and healtcare, causing their
outcomes to more likely be similar to each other than to the outcomes of residents of a
different community. The ICC value describes the extent to which two members of a com-
munity are more similar than two people from different communities. There are several
different methods of calculating the ICC. The most popular is the analysis of variance
(ANOVA) method with a formula derived by Fleiss [36] that uses mean square values
from a one-way ANOVA to estimate the ICC. The ICC, denoted by p (rho), is calculated
by dividing the between-cluster variance by the total variance. If p =0, then individuals
within the same cluster are no more correlated with each other than with individuals in
different clusters. If p =1, then there is no variability within a cluster, and individuals
within the same cluster respond identically [11]. The ANOVA method was originally pro-
posed for continuous variables, but various authors have subsequently shown that the
method is valid for both categorical and continuous variables [31,61]. For the continuous
response, let Y;(i=1,...,k;j=1,...,m;) be the response for k clusters with the ith
cluster containing m; individuals and N = Zf;l m;. The mean response for the ith group
is ¥; =", Y;/m, and the grand mean of all observations is ¥ = S > Yi/N.
The ANOVA estimator of ICC is defined as

_ MSB-—MSW
" MSB + (m — 1)MSW’

o>

where m is the cluster size, MSB is the mean square between clusters defined as
MSB = 5 S mi(¥; — ¥..)>, and MSW is the mean square within clusters defined as
MSW = 315" S7(¥; — ¥;)> When cluster size varies, we can replace the cluster size m

with the average cluster size mg, where my = i + {3;(m; — m)>/N(N — 1)i}.

For the binary response case, let us introduce the responses X;;(i = 1,..., k;j=1,..., m;)
for k clusters with the ith cluster containing m; individuals. Then the total number of successes
in the ith cluster is Y; = Z;."‘:l Xjj. For binary data, MSB, MSW, and m can be defined as

follows:

where K is the number of clusters, NV is the total number of subjects in the sample, and m; is the
number of subjects in the ith cluster [21,68].

The average cluster size approximation tends to slightly underestimate the required sample
size, but the effect will be negligible if the resulting total sample size requirement in each group
is moderately large (>100). A conservative approach would be to replace average cluster size
with the largest expected cluster size in the sample [19].

For continuous variables, the intralcluster correlation p must satisfy the inequality p > —1/
(Mmax — 1), where my,,y is the size of me largest group [69]. For binary variables, a much
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more stringent constraint [65] can be shown as

-1 w(l —w)

> 9
P (mmax - 1) mmax(mmax - l)ﬂ(l - 77)

where Pr(X;; = 1) = m, w = Wiy — int(MMymay), and int(mmg.,) denotes the integer part.

In addition to the ANOVA method, several methods have been proposed and refined by
several authors to estimate the ICC for binary data. These include moment estimators
[48,80,86,90], estimators with direct probabilistic interpretation [37,55], estimators based on
direct calculation of correlation within each group [45,17,72,53], and extended quasilikelihood
and pseudolikelihood estimators [63,8,57]. Ridout et al. [69] performed an extensive simu-
lation to compare several of these methods. Their simulation study shows that the ANOVA
estimators, a few of the moment estimators, and an estimator with a direct probabilistic
interpretation all performed well with low bias and smaller standard deviations. There are
also additional common correlation models published by different authors who assumed beta
binomial distribution [49,65], correlated binomial distribution [49,1] and correlated probit
distribution [64]. ICC also has been applied to conduct a sensitivity analysis where ICC is
used to measure the effectiveness of an experimental treatment [3].

Although in theory the ICC could be negative, in practice this almost never occurs. If it
becomes negative, the researcher usually assumes it to be zero and analyzes the data using
the methods for simple randomized trials. In most human studies, ICC values are between 0
and 1 [47,2]. Chakraborty et al. [9,10] presented a simulation technique for calculating an
ICC estimate and its 95% confidence interval for various cluster size and number combinations
for binary responses when the ICC was unknown.

There are several ways to calculate confidence intervals for the ICC. These include the fol-
lowing methods based on approximation to the F distribution: a procedure based on modifying
the solution for the balanced case and the Thomas—Hultquist procedure [81,15], a procedure
based on Fisher’s transformation [25], a procedure based on the standard error of the ICC esti-
mate including the confidence limit based on Smith’s formula [77] and the formula derived by
Swiger et al. [78], and a confidence limit based on maximum-likelihood theory [27,75,76].
Donner and Koval [28] showed that the procedure based on Fisher’s transformation is a
highly accurate approximation of the true variance of ICC estimates in a broad range of circum-
stances in moderately large sample sizes. Dormer and Wells [29] conducted a Monte Carlo
simulation study under the one-way random-effect model to compare six different confidence
interval methods to obtain the two-sided confidence intervals; they conclude that the method
based on the large-sample standard error of the sample ICC derived by Smith provides consist-
ently good coverage for all ICC values and recommend its use over the other methods.

5.3 SAMPLE SIZE CALCULATION FOR CLUSTER
RANDOMIZED TRIALS

Designs commonly used in cluster randomized trials include completely randomized, stratified,
and matched pair. In a completely randomized design, interventions are allocated randomly to
clusters. This design is suitable when randomizing a large number of clusters. For a small
number of clusters, completely randomized designs are likely to produce unbalanced treatment
groups with respect to baseline characteristics. In a stratified design, clusters are grouped in
homogenous strata and are then randomly allocated to interventions. Stratification by cluster
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size is often regarded as advantageous, not only to achieve overall balance in the number of
individuals assigned to each arm of the trial but also because cluster size may be a surrogate
for within-cluster dynamics that are predictive of outcomes. Other common stratification
factors include geographic area and socioeconomic status. A matched-pair design is an
extreme form of stratification, where each stratum consists of only two clusters randomly
assigned to different arms. The main advantage of this design is its very tight and explicit
balancing of important baseline risk factors [16].

In a cluster randomized trial, groups of individuals are randomized together rather than indi-
vidually. The sample size required for a CRT depends on the magnitude of the ICC. To obtain
an accurate sample size estimate in any cluster design setting, one must account for the vari-
ation within and between clusters. The ICC is the amount of variation in the data that can
be explained by the variation between clusters [6,7]. Since the variance is affected by the
cluster design, the sample size required for a certain power and effect size is also affected.
Because the sample size is directly proportional to the variance, we can simply use the standard
methods and multiply the results by the appropriate variance inflation factor (VIF), also called
the design effect [1 + (m — 1)p], where m is the average cluster size and p is the estimate of the
ICC calculated on the basis of a presumed value for the ICC and estimated cluster size. If the
cluster size varies, then m can be replaced by the average cluster size my for a slight underes-
timate or the maximum cluster size for a conservative estimate [25]. The design effect accounts
for the similarities among clustered subjects, because there is a net loss of independent data.
The design effect is the ratio of the total number of subjects required using cluster randomiz-
ation to the number required using individual randomization [47]. The design effect will always
be greater than one, although it may take values close to one. The larger the ICC, the larger the
design effect and the more subjects are needed [46].

For example, in a two-arm simple randomized trial, let P, and P, indicate the population
proportions of interest for the intervention and control group, respectively. Then the required
number of subjects per group for a two proportion difference in a cluster trial is

_ (Zapp 4+ Z3)'[Pi(1 = P1) + Po(1 = Pa)][1 + (m — 1)p]
(P — P2)2

)

where Z, and Zg correspond to the critical values for a normal distribution for error rates o and
. However, if it is a cluster randomized trial, then the required sample size must be multiplied
by the quantity [1 4+ (m — 1)p] to account for the cluster trial.

During the design phase, an ICC value is often based on the most relevant estimate from
earlier studies or from pilot study data. Since those estimates are often imprecise, researchers
may use a more conservative upper 95% confidence limit for ICC, an extremely conservative
approach that usually requires a larger sample size. It has been shown using a Bayesian simu-
lation approach that allowances can be made for ICC imprecision when designing cluster ran-
domized trials [83]. In planning trials, the advantages of a design that randomizes clusters of
individuals must be weighed against the disadvantages in terms of statistical power, cross-
contamination, and cost.

Two major difficulties arise in a sample size calculation for clustered randomized studies:
(1) the number of units in each cluster, called cluster size, tends to vary with a certain distri-
bution; and (2) observations within each cluster are correlated. Dormer and Klar [25]
present a sample size formula for clustered binary data when cluster sizes are constant. Their
test statistic is based on the binary proportion estimator obtained by assigning equal weights
to all units Lee and Dubin [51] develop a sample size formula for clustered binary data with
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variable cluster sizes. They propose estimating the binary proportion by assigning equal weights to
clusters regardless of their sizes to simplify the derivation of their sample size formula.

It is well known that the application of standard sample size approaches to cluster randomiz-
ation designs may lead to seriously underpowered studies, and that the application of standard
statistical methods could lead to spurious statistical significance. The severity of this problem
increases not only with the magnitude of the intracluster correlation but also with the average
cluster size. Increasing the number of clusters is a more efficient.method of gaining statistical
power than is increasing total sample size. Sometimes it is easier to add observations to existing
clusters than to add more clusters; however, increasing the average cluster size can increase the
power only to a certain point [16].

Chakraborty et al. [9] explain how to use a simulation technique at the design phase of a trial
to estimate the required sample size by simulating the ICC estimate and its 95% confidence
interval for various cluster sizes and number of cluster combinations for binary responses. A
common design effect is usually assumed across intervention groups during the analysis of
CRT data. But it is not true in most cases after the end of the intervention period. To
combat this problem, Chakraborty et al. [10] used a simulation technique to show that the
ICC value depends on the effect size distribution in addition to the cluster size and number
of clusters. They also showed how to adjust for the ICC value at the design phase of the
trial according to the prediction that the overall effect size will change at the end of the trial.

Hayes and Bennett [41] published a different set of formulas for sample size calculation for
rates per person-year, proportions, and means for both unmatched and pair-matched trials
where they expressed the formulas in terms of the coefficient of variation (SD/mean) of
cluster rate, proportions, or means. The main limitations of this method are that they
assumed the observed cluster rates or means or proportions to be approximately normally dis-
tributed, all clusters to be of equal size, and the between-cluster coefficient of variation to be
equal in both treatment groups. If all of these assumptions hold for a given study, this may be a
simple alternative method to implement.

5.4 ANALYSIS OF CLUSTER RANDOMIZED TRIAL DATA

Statistical methods for the analysis of cluster randomized trials are not well established
compared to those for individually randomized trials. Fisher’s classical theory of experimental
design assumes that the experimental unit that is randomized is the unit of analysis [58]. The
statistical challenges of cluster randomization trials arise because inferences are frequently
applied at the level of individual subjects while randomization took place at the cluster
level. The discrepancy between the unit of randomization and the analytic unit means that
the standard statistical methods for analysis are not applicable [16]. Cornfield [12] brought
the analytical implications of cluster randomization to widespread attention in the health
research community. Donnar and Klar [22,23] have provided a review of the extensive
development that has occurred since.

While analyses of CRT data are more problematic than analyses of data from a straight-
forward individual randomization trial, in some situations cluster randomization is the only
practical option for addressing certain questions. When a cluster design is used, it is essential
that the analysis address the clustering approach appropriately [S]. If clustering is ignored
during data analysis, the within-cluster variance and between-cluster variance will be mixed,
leading to an underestimate of the overall variance and providing inaccurately small p values
and narrow confidence intervals [25,66,73]. This problem of erroneous statistical significance
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increases with the magnitude of the ICC and average cluster size [25]. As we know, the indi-
viduals within a cluster are not independen, and applying traditional statistical methods to
cluster randomized observations is not feasible without adjusting for the correlation.

There are statistical techniques for appropriate analyses of cluster randomized trials in
cluster-level and individual-level analyses. In cluster-level analysis, also called analysis by
allocation unit, we summarize individual observations within a cluster to a single summary
measure, such as the cluster mean or proportion, and then use standard statistical methods
to analyze these summary measures as if they were primary observations. This approach
reduces the sample size to the number of clusters, reducing statistical power and degrees of
freedom of the test. There is no ICC adjustment issue in this type of analysis because the ran-
domization unit and the analysis unit are both the same. Most of the standard statistical analy-
sis techniques can be used to draw cluster-level inference including a simple ¢ test, weighted
and unweighted linear regression, and random-effects meta-analysis. For example, compare
two groups in a cluster randomized trial using the 7 test, applied to cluster-specific outcome
measures, and weighted by the number of patients in each cluster [22,23,46]. Continuous
outcome variables from a paired cluster randomized trial can be analyzed using the paired ¢
test at the cluster level. This analysis is fully efficient when there is no variability in cluster
size in a balanced design scenario [16]. Some researchers [39,56] prefer to use permutation
tests rather than the paired ¢ test to avoid the normality and homogeneity assumptions. But
other researchers [24,42] found that in fairly small samples the 7 test is a remarkably robust
to departure from the underlying homogeneity of variance and normality assumptions.
Rosner and Hennekens [71] showed that a 7 test can be used to adjust for unaccounted baseline
differences between treatment groups for matching case—control and cohort studies.

CRTs have many parallels in meta-analysis since meta-analysis also involves combining
information from different units (trials) of varying sizes. Random effect meta-analysis pools
the summary statistics across clusters rather than across studies and uses a maximum-likelihood
estimation method [13,82]. The parameter estimates from different analyses are expected to
differ substantially only if there are large differences in cluster size and/or cluster-specific
outcome proportions.

When the randomization unit and the inference unit are different—when we randomize by
cluster and draw conclusions about individual characteristics—we must be very careful to
choose the correct analysis method. Any analysis method that accounts for clustering in some
way would be appropriate for analyzing cluster clinical trial data. Parameter estimates, and in par-
ticular their standard errors, differ markedly depending on the choice of analysis method, even
when the analysis methods are based on a common underlying principle. The simple analysis
strategy is to ignore the clustering and apply a standard statistical approach, treating individual
data as independent observations but using the variance inflation factor [1 + (m — 1)p], where
m is the average cluster size and p is the estimate of the ICC, to adjust the variance before hypoth-
esis testing. If the cluster size varies, m can be replaced by the average cluster size mj to correct the
variance used in calculating the test statistics [60]. The degrees of freedom for the revised test
statistics are based on the number of clusters, not the total sample size.

Several different statistical methods allow analysis at the level of the individual while also
accounting for the clustering in the data. The ideal information to extract from a cluster rando-
mized trial is a direct estimate of the required effect measure (e.g., odds ratio with its
confidence interval) from an analysis that properly accounts for the cluster design:

1. Binary variable analysis might be based on a standard logistic regression with robust
standard errors, where the standard logistic regression model uses but adjusts the stan-
dard errors to allow for clustering, and the robust standard errors are calculated using
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the “sandwich” variance estimator [43,88] and modified by Rogers [70] to allow for
clustering. The regression coefficients (e.g., log odds ratios) estimators are identical to
those for the standard logistic regression model because those are unaffected by this
procedure.

2. Mixed-effects linear models are often used to analyze the continuous outcome data from
completely or stratified CRT using the generalized leas-square method [79,85,89].

3. Generalized estimating equations (GEEs) extend the standard logistic regression model
to allow for clustering. This is achieved by specifying a correlation matrix that describes
the association between different individuals in the same cluster in terms of additional
parameters [52].

Different correlation matrix types can be assumed, and if the sample size is large enough, both
the regression coefficients and their standard errors are correct in the sense that they are con-
sistently estimated whether robust standard errors are specified. The parameter estimates
from GEE should not be interpreted as corresponding to the parameter estimates from
random-effects models. Parameter estimates from GEE are described as “population-averaged”
interpretations [86,91] because they are averaged across the values of the cluster-level random
effect in the context of longitudinal data analysis. Other types of analysis such as multilevel
modeling [40] or hierarchical linear modeling [4,67], and “variance components analysis”
can also be used to analyze cluster randomized trial data. In addition to specifying the
primary data analysis in advance, different sensitivity analysis methods can be considered
for cluster clinical trials including presenting results using different analysis methods.

5.5 CONCLUDING REMARKS

We all recognize that clusters are made up of individuals, that there may be more individuals in
one cluster than in another, and that the intralcluster correlation co-efficient plays an important
role in design and analysis of CRTs. Intracluster correlation may appear small compared with
other types of correlations, but small values can have a substantial impact on design and analy-
sis of CRTs. Ignoring the small correlation may lead to standard errors for intervention effects
that are too small, confidence intervals that are too narrow, and P values that are too small.
Calculating and reporting the ICC is another important aspect of the CRT because different
methods are available to calculate the ICC, and different software packages can provide differ-
ent ICC results [84]. Adjustments for covariates also play a very important role in calculating
ICC value; adjusting for covariates usually leads to smaller ICCs because some of the between-
cluster variation can be explained by cluster-level factors [34]. There is a need for more pub-
lications presenting the ICC values from different studies; different kinds of variables can be
stored in a central database, and an advanced computer interactive simulation program could
be required for an ICC estimate to design studies.

Despite the advanced and well-established principles of the design and analysis of CRT,
there remains considerable uncertainty about the relative merits of the different methods,
and further illustrations of the alternatives and their performance in different settings are
required. There are several ways to conduct CRT, and the choices regarding both the
method of analysis and the variables included in the model can make important differences
to the conclusions. In the context of estimating variance and covariance, parameters by differ-
ent procedures appear to perform better in certain situations and with certain types of outcome
variables [33]. Methodological studies fail to provide clear guidance as to the best approaches
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or methods to implement in different trial scenarios for planning and analyzing CRT for
individual-level inference. For example, we need methods to deal with covariate adjustments
for varying lengths of follow-up of subjects, to analyze ordinal, multinomial and time-to-
event data, and to implement analysis with missing values at both the individual and the
cluster levels. In the absence of proper methodological direction, we must check the sensitivity
of the conclusions and model assumptions very carefully before interpreting CRT results. For
Bayesian analysis, one needs to check the impact of changing the assumed priors. Murray
[61] reviewed the recent methodological developments regarding the design and analysts of a
CRT and concluded that the methods required for a CRT are not as simple as those for randomized
clinical trials but there are several readily available methods for the design and analysis of a CRT.
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6.1 INTRODUCTION

A virological marker, the number of human immunodeficiency virus type 1 (HIV-1) RNA copies
in plasma (viral load), is currently used to evaluate anti-HIV therapies in AIDS clinical trials.
Antiretroviral treatment of HIV-1-infected patients with highly active antiretroviral therapies
(HAART), consisting of reverse transcriptase inhibitor (RTI) drugs and protease inhibitor (PI)
drugs, results in several orders of magnitude reduction of viral load. The rapid decay in viral
load can be observed in a relatively short term [24,25,34], and it either can be sustained or
may be followed by a resurgence of virus within months [19]. The resurgence of virus may be
caused by drug resistance, noncompliance, pharmacokinetics problems, and other factors
during therapy. Mathematical models, describing the dynamics of HIV and its host cells, have
been of essential importance in understanding the biological mechanisms of HIV infection,
the pathogenesis of AIDS progression, and the role of clinical factors in antiviral activities.
Many HIV dynamic models have been proposed by AIDS researchers [6,12,14,23—
25,32,34,29] since the mid-1990s to provide theoretical principles in guiding the development
of treatment strategies for HIV-infected patients, and have been used to quantify short-term
dynamics. Unfortunately, these models are of limited utility in interpreting long-term HIV
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dynamic data from clinical trials. The main reason is that few parameters of these models can be
estimated uniquely from viral load data, because simplified and linearized models have often
been used to characterize the viral dynamics based on observed viral load data
[12,23,24,32,34]. Although these models are useful and convenient for quantifying short-
term viral dynamics, they cannot be used to characterize more complex long-term virological
response. Huang et al. [15—17] developed a set of relatively simplified models, a system of
differential equations with time-varying parameters, to characterize long-term viral dynamics.
In the models, they considered several factors related to the resurgence of viral load, such as the
pharmacokinetics, and compliance with treatment and drug susceptibility, and thus these
models are flexible enough to quantify long-term HIV dynamics.

Bayesian statistics has made great progress in recent years. For various models, parameter
estimation and statistical inference are carried out via the Markov chain Monte Carlo (MCMC)
procedures [10,11,17,26,31]. The Bayesian method for HIV dynamic models was investigated
by Han et al. [11], Huang et al. [17], and Putter et al. [26]. Han et al. and Putter et al. considered
a dynamic model with the assumption that the number of uninfected target cells remained con-
stant during a treatment, and they used short-term viral load data only to estimate parameters. In
addition, they did not consider the fact of variability in drug susceptibility (resistance) and
adherence in the presence of antiretroviral therapy. Huang et al. [16,17] extended the model
to characterize long-term viral dynamics described by a system of nonlinear differential
equations with time-varying drug efficacy.

Although prediction methods for deterministic models have been proposed under the
Bayesian framework in other research fields such as prediction of whale populations [27],
those models are essentially different from HIV dynamic models. In this chapter, we consider
a model designed to characterize long-term viral dynamics developed by Huang et al. [16,17]
and combine the Bayesian analytic methods and mixed-effect modeling to investigate individ-
ual /population predictions of clinical outcomes based on the proposed model. Predictions of
clinical outcomes are very important for clinicians in developing individualized treatments,
making clinical decisions, and optimizing a treatment strategy.

The technical details on the Bayesian analysis of hierarchical nonlinear mixed-effect models
can be found in the literature [11,16,17,31]. We employ the model and estimation approach
proposed by Huang et al. [16,17] to address the predictions of clinical outcome in this
chapter the remainder of which is organized as follows. In Section 6.2, we briefly describe
the viral dynamic model and treatment effect models. The Bayesian modeling approach for
hierarchical nonlinear mixed-effect models for predictions of virological responses is discussed
in Section 6.3. A simulation study is presented to illustrate our methodology in Section 6.4. We
apply the proposed methodology to a clinical dataset and present the results in Section 6.5.
Finally, the chapter concludes with some discussions in Section 6.6.

6.2 HIV DYNAMIC MODEL AND TREATMENT
EFFECT MODELS

Details of the HIV dynamic models and treatment effect models are described in Huang et al.
[16,17]. For completeness, a brief summary of these models is given as follows.

6.2.1 HIV Dynamic Model

Mathematical models for HIV dynamics have been developed since the mid-1980s. The
detailed surveys can be found in Perelson and Nelson [25], Nowak and May [21], and
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Tan and Wu [29]. We consider a simplified HIV dynamic model with antiviral treatment as
follows [15-17]

d
T =N —drT — [ =y (KT,

d_, \

ST =1y OkTV —3T", (6.1)
Ly NoT — eV,

dt

where the three differential equations represent three compartments: target uninfected cells (T'),
infected cells (7*), and free virions (V). The parameter A (day_l mm ™ >) represents the rate at
which new T cells are created from sources within the body, such as the thymus, dy (day ") is
the death rate of T cells, k (da)f1 mm ) is the infection rate without treatment, & (day 1y is the
death rate of infected cells, N is the number of new virions produced from each infected cell
during its lifetime, and ¢ (day ') is the clearance rate of free virions. The time-varying par-
ameter <y (7) is the antiviral drug efficacy at treatment time ¢, as defined in Section 6.2.2. In
this model, the difference between the RTI and PI drug actions is not considered, but is
expected to have only a small effect on long-term HIV dynamics and model predictions. If
we assume that the system of Equations (6.1) is in a steady state before initiating antiretroviral
treatment, then it is easy to show that the initial conditions for the system are

C CVO AN dT
To=—\) Ti=—0 yy=ont 2T 6.2
OTkN O TeN YT e Tk (6.2)

If the regimen is not 100% effective (does not provide perfect inhibition), the system of ordin-
ary differential equations cannot be solved analytically. The solutions to (6.1) then have to be
evaluated numerically. Let B = (&, ¢, 8, A, p, N, k)T denote a vector of parameters, where ¢ is a
parameter in the treatment effect model presented below. In the estimation procedure, we only
need to evaluate the logarithmic difference between observed data and numerical solutions of
W(t), so there is no need for an explicit solution of Equation (6.1).

6.2.2 Treatment Effect Models

Within the population of HIV virions in a human host, there is likely to be genetic diversity and
corresponding diversity in sensitivity to the various antiretroviral (ARV) agents. In clinical
practice, genotypic or phenotypic tests can be performed to determine the sensitivity of
HIV-1 to ARV agents before a treatment regimen is selected. Here we use the phenotypic
marker, the median inhibitory concentration (ICsg) [20] to quantify agent-specific drug
susceptibility. To model within-host changes over time in ICs, due to the emergence of new
drug-resistant mutations, we use the following function [16]

I, —1I
<t <
1Cso(t) = Ip + . t for 0<tr<i, (6.3)

1, for t>1t,

where Iy and [, are respective values of ICso(r) at baseline and timepoint ¢, at which the
resistant mutations dominate. If 7, = I, no new drug-resistant mutation is developed during
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Figure 6.1 (a) The median inhibitory concentration curve [ICso(¢)]; (b) the timecourse of
adherence [A(?)]; (c) the timecourse of inhibitory quotient [I1Q(#)]; (d) the timecourse of
drug efficacy [y(?)].

treatment. Although more complicated models for median inhibitory concentration have been
proposed according to the frequencies of resistant mutations and cross-resistance patterns
[3,30], in clinical studies or clinical practice it is common to collect ICs, values only at baseline
and failure time as designed in A5055. Thus, this function may serve as a good approximation.
As examples, such functions for the ritonavir (RTV) and indinavir (IDV) drugs are plotted in
Figure 6.6.1a.

Poor adherence to a treatment regimen is one of the major causes of treatment failure [2,18].
Patients may occasionally miss doses, may misunderstand prescription instructions, or may
miss multiple consecutive doses for various reasons. These deviations from prescribed
dosing affect drug exposure in predictable ways. We use the following model to represent
adherence:

1 for T, <t < Ty, if all doses are taken in [T}, Ty 1]

Aglt) = 6.4
alt) {Rd for Tp <t < Ty, if 100R,% doses are taken in [T¢,Tis1], (6:4)

where 0 < R; < 1 (d = 1,2), with R, indicating the adherence rate for drug d (in our study, we
focus on the two PI drugs of the prescribed regimen). Time T} denotes the adherence evaluation
time at the kth clinical visit. As an example, Figure 6.6.1b shows the effect of adherence over
time for RTV and IDV drugs.

The HAART, containing two or more nucleoside/nonnucleoside reverse transcriptase
inhibitors (RTIs) and protease inhibitors (PI), has proved to be effective in reducing the
amount of virus in the blood and tissues of HIV-infected patients. In most viral dynamic
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studies [5,7,25,35], investigators assumed that the drug efficacy was constant over treatment
time. Drug efficacy may actually vary, however, because the concentrations of ARV drugs
and other factors (e.g., emergence of drug-resistant mutations) vary during treatment
[5,8,25], and thus the drugs may not be perfectly effective. Also, patients’ viral load may
rebound as a result of drug resistance, nonadherence, and other factors [9]. To model the
relationship of drug exposure and resistance with antiviral efficacy, we employ the following
modified E,,x model [28] to represent the time-varying drug efficacy for two ARV agents
within a class (e.g., the two PI drugs IDV and RTV)

'Y(f) — IQ]([)AI(I) + IQz(t)Az(l)
¢ +1Q, (DA (1) + 1Qy(DAL (1)

(6.5)

where 1Q,(t) = Ci’Zh/ICéio(t) (d =1, 2) denotes the inhibitory quotient (IQ) [13]; Cc%y, and
ICY, (d=1, 2) are the trough levels of drug concentration in plasma (measured 12 h after
the doses had been taken) and the median inhibitory concentrations for the two agents, respect-
ively. Note that C,}, could be replaced by other pharmacokinetic parameters such as the area
under the plasma concentration-time curve (AUC). Although ICs(#) can be measured by phe-
notype assays in vitro, it may not be equivalent to the ICs(?) in vivo. The parameter ¢ is used to
quantify the conversion between in vitro and in vivo 1Csq that can be estimated from clinical
data. The value of v (¢) ranges from O to 1. If y(r) = 1, the drug is 100% effective, whereas
if y(r) = 0, the drug has no effect. Note that if C{iz}], Ay(t), and IC%lo(t) are measured from a
clinical study and ¢ can be estimated from clinical data, then the time-varying drug efficacy
v () can be estimated for the whole period of antiviral treatment. Similarly, we can model
the combined drug efficacy of an HAART regimen with both PI and RTI agents. Lack of
adherence reduces the drug exposure, which can be quantified by Equation (6.4), and thus,
on the basis of formula (6.5), reduces the drug efficacy, which, in turn, can affect virological
response. The examples of the timecourses of the inhibitory quotients and the drug efficacy y()
with d =1, Cly, =80 and C3,}, = 50 for two PI drugs are shown in Figures 6.1c and 6.1d,
respectively.

6.3 STATISTICAL METHODS FOR PREDICTIONS OF
CLINICAL OUTCOMES

6.3.1 Bayesian Nonlinear Mixed-Effects Model

A number of studies investigated various statistical methods, including Bayesian approaches, to
fit viral dynamic models using short-term viral load data [23,11,34,35,33]. Huang et al. [16,17]
extended the existing methods to model long-term HIV dynamics. In this chapter, we focus on
the predictions of virological response under the setting of a hierarchical Bayesian nonlinear
model.

We denote the number of subjects by n and the number of measurements on the ith subject
by m;. For notational convenience, let p = (In b, In¢, In 8, In \, Indp, In N, In k)T, 0, = (In ¢,
Inc,Ind,InN,Indp, NN, Ink)',0={0,=1,....n} O, ={0,1 # i} and Y = {y;, i =
L....mj=1,...,m}. Letf; (8, t;) = logio(V;, (8; 1)), where V; (8, #;) denotes the num-
erical solution of the differential equations (6.1) for the ith subject at time #;. Let y;(¢) and e;(z;)
denote the repeated measurements of common logarithmic viral load and a measurement error
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with mean zero, respectively. The Bayesian nonlinear mixed-effects model can be written in the
following three stages [4,15-17]:

Stage 1: Within-Subject Variation:
Y =fi0) + e, €00, ~N(0,0°lL,) (6.6)

Here, y; = (ya (1), .- . yim,(lm,-))T, £:(0)=(fi1 0, 1)), ..., fim (0, fm,))T, e; = (e; (1),
o€ (1)
Stage 2: Between-Subject Variation:

9,‘ = + b,‘, [b,\E] ~ N(O,E) (67)
Stage 3: Hyperprior Distributions:

o2 ~Gala,b), pm~NmA), '~ WiQy) (6.8)

where the mutually independent Gamma (Ga), normal ('), and Wishart (Wi) prior dis-
tributions are chosen to facilitate computations [4]. The values of hyper-parameters were
determined from previous studies and literature [11,12,21-25,32].

Following the studies by Davidian and Giltinan [4] and Gelfand et al. [10], we have shown
[16] from (6.6)—(6.8) that the full conditional distributions for the parameters o % p,and 37!
may be written explicitly as

-1
_ o (1 1A

[072|m.2 1,®,Y]~Ga<a+ZlTlm,{E+zZZ[yij —ﬁj(ei,zj)]z} ) (6.9)
=1 =1

i=

(ko2 .0.Y] ~ N((nz‘ +ATH (2' > 0+ A1n> OO A')1>

i=1

(6.10)

Eo 2 mO Y ~ Wil (@7 ) 0, — O, —w'| n+v (6.11)
i=1

Here, however, the full conditional distribution of each 0, given the remaining parameters and
the data, cannot be calculated explicitly. The distribution of [0,-|072, TR 3 ®{i}, Y] has a
density function that is proportional to

2 m;

- 1 _
exp{ T2 v fi ) =50, — 'S 1(&-»)} (6.12)
j=1
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The Markov chain Monte Carlo (MCMC) scheme for drawing samples from the posterior
distributions of all parameters in the three-stage model presented above is obtained by iterating
between the following two steps: (1) sampling from one of the conditional distributions (6.9)—
(6.11) and (2) sampling from the expression (6.12). To implement an MCMC algorithm, the
Gibbs sampler is used here to update o 2 W, and 37! while we update 0; (i=1,2, ...,
n) using the Metroplis—Hastings algorithm. See Huang et al. [15—17] for detailed discussions
of the Bayesian modeling approach, including the choice of the hyperparameters and
implementation of the MCMC procedures [31].

6.3.2 Predictions Using the Bayesian Mixed-Effects
Modeling Approach

In this section, we propose the methods for predictions of virological responses. We apply the
proposed deterministic antiviral response model to characterize long-term viral dynamics and
use the Bayesian modeling approach for predictions. We investigate two prediction problems:
(1) predicting the virological response for a new subject, and (2) predicting future virological
responses for one of the individuals who has some data available. A method for doing this is to
calculate the posterior predictive distribution of responses based on the model specified by
(6.6)—(6.8) and the clinical data.

Let Y denote the data from all patients for which posterior distributions of all population and
individual parameters W = (6% wS"YHand 0; (=1,2,...,n) are available. Denote by y*
the virological response (viral load in log;( scale) for an individual. Then the posterior predic-
tive distribution of interest is p(y*|Y), which can be expressed as

PO Y) = [p(y*,e*,\w)de* v = [p(y*|0*,\v>p<e*\\1'>p<\1'|¥>de* av - (6.13)

where 0" denotes the parameter vector for the patient of interest. If the patient is new and no
information is available, the population dynamic parameter . can be used. We denote the G
usable iterations from the MCMC sampler by

{00 W = () (0@ ue sH®Y, g=1,...,G. (6.14)
For the prediction problem of a new patient, denote the conditional predictive distribution

by p(y*|W, Y). We can now obtain a Monte Carlo estimator of p (y*|Y) by using the iterations
of MCMC sampler in (6.14):

1 G
PO N =23 pO ¥, 1) (6.15)
g=1

Let us now consider the second prediction problem, predicting future virological responses
for one of the n patients, for example, patient k. Denote the conditional predictive distribution
of y* by p(y*|6z W, Y). We can again obtain a Monte Carlo estimator of p(y*|Y) by using the
iterations of MCMC sampler in 6.14:

B LSS 1ol aple)
P&y IY)=5;p(y 10, W) y). (6.16)
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In (6.15) and (6.16), we used the MCMC iterations to compute the predictive distributions
using their known functional forms. We can also incorporate this step directly into the MCMC
sampler by adding either p(y*|W,Y) or p(y*|6;,, W,Y) to the set of conditional distributions
(6.9)—(6.11), from which we sample. We then obtain the MCMC iterations ( y*)(g), g=1,2,
..., G as part of the simulation output, and we can readily analyze them.

6.4 SIMULATION STUDY

In this section, we present a simulation example to illustrate the proposed Bayesian prediction
approach. The scenario we consider is as follows. We simulate a clinical trial with 20 HIV-1-
infected patients receiving long-term antiviral treatment. For each patient, we assume that
measurements of viral load are taken at 15-30 timepoints ranging from day O to day 200 of
follow-up. We consider the Bayesian nonlinear mixed-effects model (6.6)—(6.8), but for illus-
tration purposes and for computational convenience, we propose to estimate only the two par-
ameters log ¢ and log & that are identifiable in our model [17], and assume that the other five
parameters (log ¢, log \, log p, log N, log k) are fixed to be (log ¢, log A, log p, log N, log k) =
(2.5, 4.6, —2.0, 6.9, —9.6). These values were chosen from previous studies in the literature
[7,21,25]. From the discussion in Section 6.3.1, the prior distribution for p. = (log ¢, log 8)”
was assumed to be N (n, A), where A is a diagonal matrix. The details of the prior construction
for unknown parameters are discussed in Huang et al. [16]. Thus, the values of hyperpara-
meters are chosen as follow: a =4.5, »=9.0, v=5.0, n=(1.1, — 1.0)T, A= diag(103,
10%), Q = diag(2.5, 2.5).

Note that the noninformative priors are chosen for both log ¢ and log 8. The values of the
hyperparameters were determined based on several studies in the literature [11,23]. In addition,
the data for the pharmacokinetic factor (Cj,1,), phenotype marker (baseline and failure I1Csy s),
adherence and the baseline viral load (V;) were taken from an AIDS clinical trial study
(Section 6.5). The true individual dynamic parameters, log c; and log §;, are generated by
log ¢; =1log ¢ + by; and log 3; = log 8 + b,;, where log ¢ = 1.1 and log 8 = —1.0 are the
true values of population parameters, and both b; and b,; are random effects following a
normal distribution with mean 0 and standard deviation 0.2.

On the basis of the generated true individual parameters and five known constant par-
ameters, as well as clinical factor data [Cy, p, ICso, and A(?)], the observations y; (the
common logarithm of total viral load) are generated by perturbing the solution to the differen-
tial equations (6.1) with a within-subject measurement error, y; = log,o(V;;) + e;, where V; is
the numerical solution for viral load obtained from the differential equations (6.1) for the ith
subject at time #;. It is assumed that the within-subject measurement error e; is normally distrib-
uted with A/(0, 0.1%). We apply the proposed Bayesian prediction approach to estimate the
dynamic parameters via the MCMC procedure.

We consider the following two prediction scenarios: (1) completely removing the data of a
simulated patient when estimating dynamic parameters, with the objective of predicting the
viral load responses of this patient; and (2) removing only some of the late measurements of
viral load, and trying to use the remaining data to predict the future viral load responses. As
an example, Figure 6.2 displays the predicted curves beginning at a point denoted by the
circle with generated viral load data in log;( scale (solid circles) for two subjects: subject 14
(21 viral load measurements generated) with viral rebound; subject 20 (30 viral load measure-
ments generated) with a rapid decay of viral load in the short term, followed by a rebound of
the virus. We show the predicted curve in the case of completely removing the data for the
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Figure 6.2 Generated viral load data in log;q scale (solid circles) and individual prediction
curves beginning at the point denoted by the circle for the two representative subjects. The
values in the legend denote the number of viral load measurements used for predicting
future virological responses. The HIV-1 RNA measurements below a limit of detection of
25 copies/mL are imputed by 25 copies/mL (dashed horizontal line).

prediction subject in Figure 6.2 (corresponding to legend boxes (1)). In this case, we used the
estimated population parameters and the baseline viral load from this subject to predict future
virological responses. We can see that the prediction power is very poor in this case since no
subject-specific information is available and only population parameter estimates are used.

However, if some data from this subject (i.e., some observed viral load measurements) are
available after initiation of treatment, the subject-specific information can be combined with the
information from other subjects together to fit the model and to predict future virological
responses of this subject. The results indicate that the predictions have been greatly improved.
It is seen from Figure 6.6.2 that the more information from this subject is provided, the better
predictions are achieved. Note that the numbers in the legend denote the numbers of viral load
measurements available for predicting future virological responses.

6.5 CLINICAL DATA ANALYSIS

We apply the proposed methodology to the data from an AIDS clinical study. This study was a
phase /11, randomized, open-label, 24-week comparative study of the pharmacokinetic, toler-
ability, and antiretroviral effects of two regimens of indinavir (IDV) and ritonavir (RTV), plus
two nucleoside analog reverse transcriptase inhibitors on HIV-1-infected subjects failing
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protease inhibitor-containing antiretroviral therapies [1]. The 44 subjects were randomly
assigned to the two treatment arm A [IDV 800mg twice daily (q12h) + RTV 200 mg
q12h] and arm B (IDV 400 mg q12h + RTV 400 mg q12h). Out of the 44 subjects, 42 sub-
jects are included in the analysis; of the remaining 2 subjects, 1 was excluded from the analysis
since the pharmacokinetic parameters were not obtained and the other was excluded since
PhenoSense HIV could not be completed on this subject because of an atypical genetic
sequence that causes the viral genome to be cut by an enzyme used in the assay. Plasma
HIV-1 RNA (viral load) measurements were taken at days 0, 7, 14, 28, 56, 84, 112, 140,
and 168 of follow-up. The data for pharmacokinetic parameters (Cj,}), phenotype marker
(baseline and failure ICsos) and adherence from this study were also used in our modeling.
The adherence data were determined from the pillcount data. More detailed description of
this study can be found in the publication by Acosta et al. [1].

Similar to the simulation study discussed in Section 6.4, the prior distribution for p. = (log
¢, log ¢, log 3, log \, log p, log N, log k)T is assumed to be (7, A), where A is a diagonal
matrix. We chose the values of the hyperparameters [7,11,21,23] as follows:

a=45 b=90, v=80, m=251.1, —1.0,4.6, —2.3,6.9, —9.0),
A = diag(1000.0, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.001),
Q = diag(1.25, 2.5, 2.5, 2.0, 2.0, 2.0, 2.0).

The MCMC techniques introduced in Section 6.3 were used to obtain the prediction results,
which are summarized below. Figure 6.3 presents the observed viral load data in log;( scale
(solid circles) and the predicted curves (solid) beginning at the point denoted by the circle
as well as the corresponding 95% prediction credible intervals (dotted curves) for two subjects:
one subject with viral rebound and one subject with virological success. We find the prediction
results to have patterns similar to what we observed in the simulation study: (1) the prediction
power for a new subject is very poor (see Fig. 6.3, legend boxes (1)) (2) we should notice in
Figure 6.3 that since the viral load measurements below a limit of detection of 25 copies/mL
are imputed by 25 copies/mL, while our method can predict the exact viral load values [i.e.,
those below the dashed horizontal line of log;o(25)]. In this sense, when we predict future vir-
ological responses for one of the 42 subjects based on partial information about this subject, the
more the amount of information from this individual, the better the predictions. We find, not
surprisingly, that the predicted values are closer to the observed values when more information
from this subject is used. The 95% prediction credible interval associated with each predicted
value generally covers the observed value in almost all cases where enough information is
available. This suggests that the proposed Bayesian prediction approach under the framework
of the nonlinear mixed-effect model performs reasonably well.

6.6 CONCLUDING REMARKS

This chapter uses the MCMC techniques to estimate dynamic parameters in a hierarchical
nonlinear mixed-effects model and to make predictions of antiviral response. We have pre-
sented a simulation example and an actual AIDS clinical trial study to illustrate how the pro-
posed Bayesian procedure can be applied to HIV dynamic studies for predictions of antiviral
responses.
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Figure 6.3 Observed viral load data in log;q scale (solid circles) and individual prediction
curves (solid) started at the point denoted by the circle as well as the corresponding 95% pre-
diction credible intervals (dotted curves) for the two representative subjects. The values in the
legend denote the number of viral load measurements used for predicting future virological
responses. The HIV-1 RNA measurements below a limit of detection of 25 copies/mL are
imputed by 25 copies/mL (dashed horizontal line).

We investigated two prediction problems for an individual patient. If a patient’s baseline
characteristics are available, the antiviral response model established from a similar patient
population can be used to predict the outcomes under the assumption of the same treatment.
However, as expected, our results reveal that the prediction power is low in this case since the
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subject-specific information is limited. If the antiviral response data from the patient are par-
tially available in addition to the baseline information, the predictions for this particular
patient can be greatly improved since both the subject-specific information and the infor-
mation borrowed from other patients are used for predictions. In addition, the proposed
Bayesian approach can be employed to incorporate the prior information from existing clinical
studies to increase the prediction power. We can dynamically update the prediction results, as
soon as new additional data from this patient are available. Our results from both the simu-
lation example and real data analysis confirm these arguments. The dynamic predictions of
antiviral responses for individual patients will be useful for clinicians to develop individua-
lized treatments and to make clinical decisions.

We notice that there exist some limitations and difficulties in predicting antiviral response
for individual patients. In fact, patients’ behavior during treatment is difficult to predict, and
some unexpected events may occur during the treatment period. Thus, it is not easy to accu-
rately predict the antiviral response for a particular individual. For example, in many cases
we may not be able to predict viral load rebound until we have observed the rebound data.
This is one limitation of our current model in which not all the parameters are identifiable
on the basis of the measurements of viral load only. Although we have used the (informative)
prior information for some of the population parameters, it can only solve the unidentifiability
problem for the population parameters. For the parameters of individual patients, the identifia-
bility problem may still exist, which may result in poor prediction for individual response,
although it may still produce a good fit to the observed data. We believe that if there is no iden-
tifiability problem and there are enough data in the early stage of the treatment before viral
rebound, our method should be able to predict the viral load rebound (virologic response
failure). We are actively investigating this problem now. We hope to report more successful
prediction results in the near future.

In clinical practice or clinical studies, we may not have frequent measurements of viral load
and other data, which will make the prediction difficult. This is not only because we do not
have enough data and information in this case but also because many unexpected and unpre-
dictable events such as emergence of drug resistance, drug holidays, or other noncompliance to
the therapy may occur between two clinical visits or measurements. Even in this case, our
results suggest that more frequent clinical visits and monitoring are necessary in order to
prevent treatment failure.

In summary, we have proposed combining a mechanism-based mathematical model and the
Bayesian inference approach for antiviral response predictions for AIDS patients. Although the
basic models and methodologies are not new, the application of these methods in the new
model settings for this particular biomedical problem is innovative. However, further studies
are warranted in order to make the proposed approaches for practical use. We expect that
similar ideas and the developed Bayesian prediction methods can also be applied to other
biomedical fields.
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CHAPTER 7

Spatial Epidemiology

Lance A. Waller
Emory University, Atlanta, Georgia

7.1 SPACE AND DISEASE

The spatial distribution of cases of disease often captures the imagination of health researchers
and the general public, based primarily on the notion that the observed pattern of incidence or
prevalence can provide insight into the underlying mechanisms driving disease incidence, its
progression, and the design and implementation of effective public health responses. Historical
examples include John Snow’s famous maps of cholera incidence in London neighborhoods
and early maps of yellow fever incidence in relation to features of cities and docks [57,27].
More recent examples include reports of clusters of cancer cases near hazardous-waste sites.
However, quantifying such hypotheses through statistical inference is a difficult task due to
often subtle signals within multiple layers of noisy, nonindependent, observational data from
multiple agencies collected for multiple purposes, typically other than the spatial
epidemiology issue at hand. As a result, few applications have the luxury of a research
design optimized for the questions of interest, or an experimental setting within which to
conduct inference controlling for potential confounding factors. For these reasons, spatial epi-
demiologic studies encounter many complications in addition to those in traditional studies,
including some unique to the geographic setting.

The field of spatial statistics involves the statistical analysis of observations with associated
locations in space. These observations rarely follow a Gaussian distribution and are not inde-
pendent, two mainstays in the development of statistical methods. In addition, asymptotic
results take on a different flavor depending on whether we consider an increasing number of
observations within a fixed study area (infill asymptotics) or an increasing number of obser-
vations in an increasing study area (increasing domain asymptotics). In response to these
issues, a wide variety of statistical techniques for spatial epidemiologic inference have
emerged more recently, coalescing into a collection of approaches addressing specific questions.
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The field of spatial epidemiology is the subject of several lengthy texts [22,23,34,54] and we
present only an overview of a few particular issues here, accompanied by brief examples. We
encourage the interested reader to follow up in the referenced material for more detailed devel-
opment and applications.

In the sections below, we provide an overview of statistical methods commonly applied
to gain insight on epidemiologic questions based on spatially referenced data. We begin
with an overview of relevant spatial questions typically addressed in spatial epidemiology
and of the typical data structures available, and then review and illustrate methods based on
general topics.

7.2 BASIC SPATIAL QUESTIONS AND RELATED DATA

Often, our main goals in the analysis of spatial data mirror those from nonspatial data; namely,
we seek to describe data patterns, measure associations, and assess variability. In the specific
case of epidemiology, this often falls to assessment of associations between exposure and
disease. For spatial epidemiology, we typically don’t have precisely the information we want
and we seek to use spatial information to fill in for data we cannot easily measure.

More specifically, consider the following basic inferential epidemiologic questions, each
with a spatial dimension:

Q1. Can we quantify spatial trends and/or patterns in the location of cases? Does the risk
of disease appear to vary over space?

Q2. Can we quantify spatial trends and/or patterns in regional counts of incidence or
prevalence (e.g., the number of cases reported within each of a set of census
regions)? Again, does the risk of disease appear to vary over space?

Q3. Can we predict ambient exposure levels at locations where no measurement is taken,
based on measurements from several point locations?

Q4. Can we measure associations between disease risk at particular locations, accounting
for residual spatial correlation in model error terms?

Next, consider the types of data typically accompanying each question:

D1. Residential locations of cases and controls.

D2. Reported counts of incident or prevalent cases and population sizes from census
regions.

D3. Continuous observations of exposure levels at each of a number of monitoring
locations.

D4. Local measures of disease incidence, prevalence, or risk and associated exposure
measures.

Texts on spatial statistics often categorize methods by the data type available, but Waller
and Gotway [54] note a close correspondence between the data structures D1-D4 and their
associated underlying inferential questions of interest Q1 —Q4. In this chapter we consider
more recent developments addressing questions Q1 and Q3 (spatial point patterns and
spatial prediction, respectively), and comment on relationships to questions Q2 and Q4.
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7.3 QUANTIFYING PATTERN IN POINT DATA

We begin with question Q1, how we quantify the spatial pattern of observed events in space. If
we consider the locations of events as random variables distributed in space, we may use a
spatial point process to describe the pattern of events within our study area, denoted D.
Basic questions include whether events are clustered or regularly distributed in space, and a
spatial Poisson process offers a convenient reference model of spatial randomness. Diggle
[16, p. 50] and Stoyan et al. [48, p. 33] define a homogeneous spatial Poisson process according
to the following criteria:

(i) The number of events occurring within a finite region A C D is a Poisson random vari-
able with mean A|A| for some positive constant A and |A| denoting the area of A.

(ii) Given the total number of events n occurring within the area A, the locations of the
events represent an independent random sample of n locations within A, where each
point is equally likely to be chosen as an event location.

Cressie [13, p. 634] lists the following equivalent definition of a homogeneous spatial Poisson
process:

(a) The numbers of events in nonoverlapping regions are statistically independent,

(b) For any region A within the study area

. Pr[exactly one event in A]
lim

=\>0,
l4]—0 A

where |A| = the area of the region A, and
(©
Pr[two or more events in A] 0
A -

lim|A‘_,0

These definitions rely on a distinction between a point (any location within the study area where
an event could occur) and an event (a location within the study are where an event did occur
within a particular realization of the process). Properties (i) and (a) provide motivation for
extensions for the models of regional counts for question Q2, leading to development of
spatial Poisson regression models with residual spatial correlation [54, Ch. 9; 4, Ch. 5].

A few features of spatial Poisson processes merit mention: (1) the constant \ represents both
the intensity of the process and the expected number of events occurring per unit area; (2) a
Poisson process assumes that event locations are independent of one another, that is, that the
occurrence of an event at one location does not influence the probability of events occurring
at any other locations; (3) properties (i) and (ii) provide a recipe for simulating realizations
from a spatial Poisson process, enabling Monte Carlo assessments of deviations of observed
patterns from a null distribution defined by the Poisson process. For instance, if we want to
assess evidence of clustering of observations, we may define a test statistic summarizing
some pattern aspect, calculate its value in the observed data, and then compare this value to
a histogram of values obtained under repeated simulations under a Poisson process [8,54].
As a result, Monte Carlo methods are widely used in the analysis of spatial point processes,
as illustrated in the example below.
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If we wish to allow the intensity to vary over space, we may define a heterogeneous spatial
Poisson process with intensity A (s), a function that varies (typically smoothly) across locations
within the study area s € D. Properties (i) and (ii) are revised to

(i') The number of events occurring within a finite region A follows a Poisson distribution
with mean [4\(s) ds.

(ii") Given the total number of events n occurring within an area A, the events are distrib-
uted according to a (spatial) probability distribution proportional to A(s).

Spatial Poisson processes provide a convenient framework for modeling spatial point
patterns, but are not the only set of models for doing so. The Poisson process assumes that
all events are independent of one another and models all spatial pattern via the hetero-
geneous intensity function; that is, we model all pattern through the first order (mean) proper-
ties of the process. Models assuming interdependence between event locations (e.g., contagion
processes) also allow pattern due to second-order properties of the process. It is mathemati-
cally impossible to distinguish first-order patterns from second-order patterns based on a
single realization of a point process as one could describe an aggregation equally well
through a locally increased mean number (intensity) of independent observations, through a
constant mean number (intensity) of dependent observations, or some combination of the
two [5; 54, p. 137].

In practice, one often assumes independence between events associated with chronic out-
comes (e.g., cancers) and seeks to identify spatial variation in the risk of disease by estimating
the underlying intensity function associated with cases. However, the intensity of cases alone
can be misleading without due consideration of the spatial distribution of the population at risk,
since more cases will be observed where more persons are at risk under the null model of a
constant risk of disease. As a result, most modern studies of spatial point patterns of disease
incorporate a set of “controls” or nondiseased individuals sampled from the population at
risk. The analyst then compares the spatial pattern of cases with that of the controls and quan-
tifies differences to identify case patterns of interest.

To illustrate this point, consider the following dataset originally presented in Cuzick and
Edwards [14]. Figure 7.1 represents the residential locations of 62 cases of childhood leukemia
diagnosed between 1974 and 1982 in the North Humberside region of the United Kingdom.
Also shown are the residential locations of 143 controls sampled at random from the birth reg-
ister for the same years. Note the concentration of cases and controls in the southern region
representing the higher population density found in the city of Hull. Without the controls,
the concentration of cases might seem suspicious, illustrating the importance of considering
a heterogeneous process with intensity adjusted for spatial patterns in the population at risk.
Additional analyses of these data appear in Lawson [34] and Diggle [18].

Since we wish to compare patterns between cases and controls, we begin by estimating the
intensity functions for each, denoted \,(s) for cases and Ay(s) for controls. Here s = (u,v)
denotes any location within our study area D illustrated by the polygon containing observed
case and control events in Figure 7.1.

Since an intensity function is simply a nonnormalized spatial density function, it is natural
to use kernel-based smoothing methods to provide nonparametric intensity estimates [56]. The
use of kernel-based intensity function estimates to identify regions of different patterns between
cases and controls have been proposed for some time [10,36] and developed in depth by Kelsall
and Diggle [27-29]. The approach provides both visual and inferential output addressing the
questions of interest, but applications in the literature are somewhat limited by software
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Figure 7.1 Location of 62 leukemia cases (filled circles) and 143 controls (open circles) in
the North Humberside region of the United Kingdom (data originally from Cuzick and
Edwards [14]. Cases were diagnosed between 1974 and 1982 and controls sampled from the
birth register for the same years.

availability. The analyses below were implemented in the R language [43] using the libraries
splancs and KernSmooth.
To start, suppose we estimate \(s) by

ny

A (s) :ﬁ; Kem(@), (7.1)

where s is a location within D; s;, i =1, ..., n; represent the locations of n; cases; ||s — s;|
denotes the distance between a point location s and an observed event location s; Kern(:) is a
kernel function satisfying [, Kern(s)ds = 1; |D| denotes the area of D; and b denotes a smooth-
ing parameter (bandwidth). We define A\ (s) similarly.

A note on the scaling factor 1/|D| is in order. Scaling by 1/|D| results in a kernel estimate
that integrates to N/| D|, the average number of events per unit area, and omitting the 1/|D|
term generates a kernel estimate integrating to N. Wand and Jones [56] suggest omitting the
scaling factor 1/|D|, and Diggle [17] suggests scaling by 1/|D| to provide an estimate
expressed as average event counts rather than a probability. Perhaps stricter notation would
define the estimate in Equation (7.1) as “proportional to” rather than “equal to” the estimated
intensity function, but, in a sense, scaling by 1/N (density), 1 (intensity), or 1/|D| (expected
events per area) is somewhat irrelevant for visualization of the local peaks and valleys for a
particular process.
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Kelsall and Diggle [27,28] note that, under an assumption of independent heterogeneous
Poisson processes for cases and controls, when we condition on the observed numbers of
cases and controls, the data are equivalent to two independent random samples from
(spatial) density function

fls) = 7\1(5)/J N (s%)ds*
D

for cases and

45) = ho(s) / J ho(s")ds"
D

for controls, where s* represents any location within D. Conditional on the observed case and
control totals (n, and ng), Kelsall and Diggle [27,28] build inference based on the natural
logarithm of the ratio of the two spatial densities

r(s) = log{f (s)/g(s)},

a quantity related to the logarithm of the relative risk of observing a case rather than a control at
location s in D.

To illustrate the approach, Figure 7.2 gives the kernel density estimates for cases and con-
trols in the North Humberside data for a common bandwidth of 0.05 distance units. We note an
overall similarity between the general patterns in Figure 7.2. Taking the ratio of the two
elements, we obtain the (log) relative risk surface shown in Figure 7.3.

We see some spatial variation in the log relative risk surface, most notably a generally
decreasing west-to-east trend with a marked increase on the westernmost edge. For inference,
we need to assess the variability of the estimated log relative risk surface under a null hypoth-
esis of constant risk everywhere [i.e., a flat (log) relative risk surface]. Kelsall and Diggle [28]
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Figure 7.2 Kernel density estimates of the North Humberside leukemia cases (a) and
controls (b) in North Humberside with bandwith set to 0.05.
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Figure 7.3 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.05 for both cases and controls.

offer a convenient way to operationalize this null hypothesis, conditional on the observed case
and control locations, based on a “random labeling” of n; of the n; + ny observed locations as
cases. For a grid of points, we calculate the observed log relative risk surface illustrated in
Figure 7.3a. For each of a large number of random samples of n, cases from the set of n; +
ng observed locations (500 such relabelings in our examples below), we recalculate the log rela-
tive risk surface at the same grid of points, then compare the log relative risk estimate at each
location to those simulated under the random labelings.

We note that the random labeling inferences represent pointwise rather than simultaneous
confidence bounds across all grid locations, due to the large number of grid points where
we make comparisons.

For the North Humberside data, we mark grid locations in Figure 7.3b with the observed log
relative risk value falling above the 97.5th percentile of random labeling values by a “ 4 > and
those falling below the 2.5th percentile by a “—.” We note that the peak on the western side of
the study area and the troughs on the northern and eastern edges each fall outside the random
labeling tolerance intervals. Examination of the data in Figure 7.1 reveals that all three areas
represent low-density regions within the study area. In particular, the peak covers an area
with very few cases and no controls.

To investigate the robustness of the significant departures in Figure 7.3, we consider broader
bandwidths to incorporate more information in the sparsely represented regions of the study
area. Kelsall and Diggle [28] stress the theoretical and practical importance of a shared
bandwidth value to maintain comparability between the two density estimates and offer a
cross-validation algorithm for identifying the bandwidth minimizing the mean integrated
squared error between the estimate and the true (unobserved) density surface. While identifying
a single, optimal bandwidth has merit, Silverman [46] also notes the value of exploring the
stability of observed structures across bandwidth values, an approach that we take in our
illustrative example here. To illustrate the point, consider the density estimates and associated
log relative risk surfaces in Figures 7.4 and 7.5. As one would expect, we see the peaks
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Figure 7.4 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.07 for both cases and controls.

and valleys attenuated, but note that the western peak remains outside the range of values
obtained under 500 random labeling simulations, suggesting a “significant” increase in the
local relative risk.

The preceding example reveals several items meriting additional comments. First, we note
the impact of bandwidth selection on the general appearance and smoothness of the estimated
log relative risk surface. In addition, we note the impact of sparsely populated (or at least
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Figure 7.5 Estimated log relative risk surface (a) and relative risk (b) for the North
Humberside leukemia data with bandwidth set to 0.1 for both cases and controls.
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sparsely sampled) areas on the estimated surface, particularly when such areas are near the edge
of the study area. Kernel estimates are particularly variable near these edges since we do not
include information from any cases or controls falling outside of the study region boundary.
This issue of “edge effects” has seen some discussion in the spatial analysis literature [34],
but adjustments remain largely ad hoc and rarely (if ever) see different adjustments for
different sorts of edges (e.g., a coastline represents a true edge beyond which no cases can
occur, while a county or country boundary is purely a political distinction with little causal
association with local disease risk). Finally, the illustration also reminds us of the epidemiolo-
gic distinction between relative and attributable risks since the observed elevated estimate of
log relative risk corresponds to only a small number of actual cases.

The log relative risk surface represents one way of exploring spatially referenced point data
for local “clusters” of increased risk. Waller and Gotway [54, Chs. 6, 7] review a wide variety
of additional approaches for cluster detection, noting that each approach uses its own math-
ematical definition of a “cluster” and, as a result, different methods may detect differing evi-
dence of clusters (and, in fact, different clusters) within the same dataset.

To illustrate this point, we briefly describe the popular spatial scan statistic developed by
Kulldorff [31] and available in the freeware package SaTScan [32], and then apply it to the
North Humberside leukemia data. Scan statistics consist of a moving window where one cal-
culates the statistic of interest (here the local relative risk) inside and outside the window and
seeks to identify the window (or windows) providing the most extreme values. In the particular
instance of the spatial scan statistic developed by Kulldorff [31], we consider circular windows
of varying sizes (with windows ranging from those containing a single case or control to those
containing half of the sampled population), and for each window we calculate a likelihood ratio
statistic for the hypothesis of equal risk inside and outside of the window. More specifically, let
1y in and ni, = (11 in + no,in) denote the number of case locations and persons at risk (number of
case and control locations) inside a particular window, respectively, and similarly define 7 oy
and Ry = (11 out + Mo,0ur) fOr outside the window. The statistic of interest is the maximum of
the local likelihood ratio statistics, for the Poisson case

Nin 1, 0ut
ny © [ 1,0ut ’ nyj n1out
max in oul I in  "lou , (7.2)
All windows \ i Nout Nin Hout

where I(-) denotes the indicator function, so we only maximize over windows where the
observed rate inside the window exceeds that outside the window.

We obtain a likelihood ratio via Equation (7.2) within each window and identify the
window(s) yielding the highest value. Rather than using distributional results for each likeli-
hood ratio statistic (which would result in multiple testing problems), Kulldorff [31] instead
proposes a Monte Carlo test addressing the following question: “How unusual is the highest
observed local likelihood ratio statistic?”” For each of a large number of simulated assignments
of case locations, we again find the window (among those considered) and the largest local like-
lihood ratio statistic. The test statistic obtained from the original observed data is ranked against
those values obtained from the simulated data, thereby providing a Monte Carlo p value associ-
ated with the “most likely cluster.”

It is important to note two features:

1. We note that the observed likelihood ratio statistic for the most likely cluster is ranked
against the maximum statistic from each simulation, regardless of location. This
avoids the multiple comparison problem in a clever way, but requires careful explanation
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to understand what precisely is meant by significance statements regarding the most
likely cluster.

2. The qualifying phrase “among those considered” added above in reference to the spatial
window also defines an aspect of the proper context for interpretation.

Specifically, the set of windows considered defines a family of potential clusters and our analysis
assesses the most unusual case aggregation among these. As an example, consider a long, linear
cluster of increased risk. In order to “capture” the cluster within our circular windows, we will
either have a small circle containing part of the cluster or a large circle containing most of the
cluster but also a large area experiencing the null, background risk. The first example loses stat-
istical power due to a smaller local sample size; the second, due to the diluted relative risk aver-
aged over the larger window. More recent implementations of SaTScan allow elliptical clusters
to generalize the set of potential clusters. Other more recent developments include the upper level
set approach of Patil and Taillie [42] and an approach based on minimum spanning trees [2],
which broaden the class of potential clusters at the expense of increases in computation time.

We apply the spatial scan statistic (using SaTScan, version 3.0) [32] to the North
Humberside leukemia data presented in Figure 7.1. Figure 7.6 indicates the most likely
clusters by arrows (both having the same local relative risk value). These clusters are quite
small, both contain four cases out of four individuals at risk (with 1.22 cases expected
under a null hypothesis of constant risk), and the Monte Carlo p value associated with this
value is 0.648, based on 999 simulations.

Comparing the results of the spatial scan statistic to those of the log relative risk surface
brings home several conceptual issues. First, note that the basic question of interest is the

Most likely clusters: Spatial Scan Statistic
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Figure 7.6 Most likely clusters identified by the spatial scan statistic for the North Humberside
leukemia data. Neither is statistically significant, based on 999 Monte Carlo simulations.
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same in both cases; namely, we wish to find areas (“clusters”) inconsistent with a null hypoth-
esis of equal risk. In this example, the data are the same, but the different methods operationa-
lize our question slightly differently. The most likely clusters for the scan statistic are much
smaller than the suspicious areas raised by the log relative risk surface. Both of the most
likely clusters are found in areas of higher population density. Because of their small size
and the concentration of nearby case and control event locations, these aggregations are unli-
kely to be detected by kernel smoothing methods, due to the use of a single, fixed bandwidth
across the entire study area. Regardless of the resulting statistical significance, the choice of a
bandwidth small enough to detect very local excesses is unlikely to be effective in summarizing
patterns in the more sparsely populated sections of the study area. In addition, the area most
suspicious for the log relative risk surface is unlikely to be detected by a circular scan statistic
due to its elongated shape along the edge of the study area.

To wrap up our discussion of point patterns in spatial epidemiologic literature and our North
Humberside example, we note that neither approach presented above (nor many other proposed
methods found in the literature) is necessarily more “correct” than any other. Rather, each test
examines a class of potential deviations from the null setting, and draws conclusions from that
examination. Our example presents two specific approaches, but the same general principle
applies to all methods for detecting clusters different methods define (explicitly or implicitly)
the sorts of deviations under consideration, and different methods may provide different
results based the types of clusters present; hence no single method will provide a comprehen-
sive assessment of the presence or absence of clusters. Rather, applying different methods to
the same dataset may provide insight into the type of clusters potentially found within the
data [53].

We conclude this section by noting that the field of spatial point process modeling is far
broader than the two methods presented here and direct interested readers to general surveys
in Lawson [34], Waller and Gotway [54, Chs. 5-8], and especially more recent texts by
Mgller and Waagepetersen [40] and Baddeley et al. [3]. In addition, the subfield of cluster
detection includes many additional approaches. In particular, the text by Lawson and
Denison [35]; papers by Anselin [1], Getis and Ord [24], Ord and Getis [41], and Tango
[49]; and the comprehensive review by Kulldorff in 2006 [33] provide entrance to additional
families of analytic cluster detection techniques. These publications and the references therein
provide a wider examination of different classes of methods and inferential questions and tech-
niques than those presented here.

7.4 PREDICTING SPATIAL OBSERVATIONS

We next consider another important component of spatial epidemiology, namely, the prediction
of local exposures across the study area D , based on a finite number of observations taken at
point locations within D . Many methods central to spatial prediction have their roots in the
geology and mining literature, and the field of geostatistics is focused on the mathematics
and associated inferential methods of spatial prediction.

The basic elements of spatial prediction follow a very intuitive structure:

1. We assume that observations are spatially correlated with observations taken close
together to be more closely related than those taken far apart (also known in the geogra-
phy literature as “Tobler’s first law of geography,” after the eminent geographer Waldo
Tobler [50].
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2. An accurate estimate of spatial correlation as a function of distance should allow us to
combine information across sites and predict the outcome at any location relative to
the observed measurements and their locations relative to the prediction location.

Taken together, spatial prediction is a two-component process; we first estimate the corre-
lation (covariance) as a function of space and then use this covariance function to combine
observations and create a set of predictions across the study area. In the case of a linear predic-
tion of Gaussian data (a weighted average of observed measurements with weights dependent
on the covariance function), the process is often referred to as kriging in honor of D. G. Krige, a
South African mining engineer (Krige 1951).

The geostatistical literature is large and varied. Cressie [13] and Chiles and Delfiner [12]
offer comprehensive coverage of classical statistical inference in geostatistics, while Stein
[47] expands its theoretical basis, and Wackernagel [51] focuses on multivariate setting.
Webster and Oliver [58] give an applied introduction to geostatistics, and Waller and
Gotway [54, Ch. 8] explore results in the setting of predicting exposure values for public health.

More recent methodologic advances of particular interest to spatial epidemiology involve
the use of hierarchical models for spatial prediction, often in a Bayesian setting using
Markov chain Monte Carlo (MCMC) algorithms for inference. We focus attention on this for-
mulation here, drawing primarily from Diggle, Tawn and Moyeed et al. [19] and the text by
Banerjee et al. [4].

We illustrate the model development and application on a dataset involving soil samples
and dioxin contamination originally published in Zirschky and Harris [59] and used as a
case study in Waller and Gotway [54]. In 1971, a truck carrying dioxin-contaminated waste
dumped part of its load along a road in rural Missouri. In 1983, the United States
Environmental Protection Agency (USEPA) collected soil samples in a systematic manner
along the road at varying distances, and at a higher frequency in the immediate area of the
spill. Figure 7.7 shows the sampling locations with circles of area proportional to the measured
log concentration (with concentration measured in pg/kg of soil) of dioxin taken at that
location. As we might expect, concentrations are highest in the vicinity of the spill [near coor-
dinates (15,30)] and along the roadway (the line Y = 30).

Several basic assumptions underly spatial prediction. Most of these may be generalized, but
we present a straightforward example here to illustrate the approach:

1. The first assumption is that of stationarity, specifically the assumption that the spatial
correlation structure is the same across the entire study area. This assumption provides
a sense of replication for estimation of the spatial covariance function, since we often
observe only one dataset in any particular application.

2. One often assumes isotropy, that is, that the spatial covariance declines with distance in
the same manner in all directions.

3. Spatial prediction often assumes Gaussian measurements taken at each location. Under
the Gaussian assumption, classical kriging methods provide the best linear unbiased
prediction (BLUP) for each location in the study area.

4. Finally, for simplicity, we will assume a constant mean for all observations in our devel-
opment, that is, that all spatial patterns are due to spatial covariance among the
observations.

In our dioxin example, we maintain these assumptions for ease of exposition. However, for
the assumptions to best apply, we transform the data, first dividing the original X coordinate by
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Figure 7.7 Location of dioxin measurements. The area of each symbol is proportional to the
natural logarithm of the concentration as measured in pwg/kg of soil.

50 to better follow isotropy then considering the log concentrations to better meet the Gaussian
assumption. The latter transformation results in the BLUP of the transformed values and is no
longer a BLUP of the dioxin concentration itself. Related bias adjustments are provided by
Cressie [13], but we focus here on the basic approach and compare the classical and more
recent hierarchical formulations of spatial prediction using the transformed dataset for
illustration.

Let Z(s) denote the outcome of interest (dioxin in our example), measured at location s within
study area D. Let Z(s;) denote our n measured values taken at locations s; i=1, ..., n.
In classical geostatistics we seek a BLUP; hence our goal is to obtain an unbiased prediction
Z(so) for any location ¢ in D, defined by a linear combination of observed values

Z(s0) =Y Z(s),
i=1

with weights m; to minimize the prediction error [Z(so) — Z(so)], typically summarized in clas-
sical geostatistics by the mean square prediction error (MSPE):

MSPE = E [(Z(so) - Z(so))z] .

In short, we need to find the set of weights {v,, i =1, ..., n} minimizing the MSPE under the
given unbiasedness constraint.
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Since we assume a constant mean, it should come as no surprise that the optimal weights
will depend on the spatial covariance between the observed locations and any prediction
location of interest. The standard classical approach typically considers the semivariogram,
denoted vy (h), defined via

2y(|lsi = s;l) = Var(Z(s;) — Z(sp), (7.3)

for locations s; and s; within D. In other words, the semivariogram is defined as one-half of the
variance of the contrast between observations taken at distance i = ||s; — ;|| apart. If we
assume that this function is the same for distance % regardless of the locations and relative
orientation of s; and s;, then the semivariogram is stationary and isotropic, respectively. The
semivariogram is related to the spatial covariance function, C(h), specifically

Y(h) = C(0) — C(h),

and, as such, the semivariogram must meet conditions necessary to ensure a positive—definite
variance—covariance matrix for all measurements (observed or not) within the study area. On
the basis of this relationship, and since we generally assume positive spatial correlation declin-
ing with distance, the semivariogram will typically be an increasing function of distance, often
rising to a “sill” value representing the variance between observations taken far enough apart to
be effectively independent. The semivariogram has been slightly preferred over the covariance
function in classical geostatistics, due primarily to ease and accuracy of estimation over those
for the covariance function, among other, more technical reasons.

Given the semivariogram vy (%), we obtain the optimal prediction weights m, ..., m, as
solutions to the kriging equations

n=T"y, (7.4)
where

’Y] = (T]la' . 'ann,m)l’
Y = (¥(s0 = 51), -+ - ¥(s0 — 50), 1),

where the elements of I" are

Yii—s) i=1,...,m

j=1,...,m
=<1 i=n+1;, j=1,...,m
j=n+1; i=1,...,m
0 i=j=n+1.
So (7.4) becomes
m Y1 =850 o Y61 —s) 177 [yso—s1)
2 Y2 —s1) o0 yls2—sp) 1 Y(so — 52)
Ny Y0 —s1) o Y —s,) Y(so — $p)

m 1 1 0 1
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The equations above derive from minimization of the MSPE with an additional Lagrangian
multiplier m included to guarantee an unbiased predictor.

Computationally, note that we must calculate m for each prediction location, so. However,
only the vector 'y changes with the prediction location. Since I' depends only on the data but not
the prediction locations, we need invert I only once and then multiply by the associated ~y
vector to obtain a prediction for any sq in D.

The minimized MSPE, also known as the kriging variance, derives from the same elements
and is given by

oi(so) =1y

= Z Aiy(so — si) +m
i=1 (7.5)

n

=2 i Niy(so — i) — Z i nM;Y(si — 85,
i=1 j=1

=1

From Equations (7.4) and (7.5) we see that if we have the semivariogram function, we have
all we need to provide BLUP predictions at any location. As a result, there is a considerable
literature on variography, or the estimation of the semivariogram from observed data. One typi-
cally estimates the semivariogram from the observed data contrasts, often averaging over pairs
of observations taken the same (or nearly the same) distance apart. Such averages often provide
an empirical semivariogram, to which one fits a theoretical semivariogram defined as a para-
metric function of distance. Commonly used parametric families are cataloged throughout the
spatial statistical literature, for example, in Cressie [13] and Waller and Gotway [54, Ch. 8].
Parametric semivariogram families are often defined in terms of the semivariogram’s limiting
value as distance approaches zero (the “nugget”), the semivariogram’s limiting value as dis-
tance increases (the “sill”), and the distance beyond which observations are effectively inde-
pendent (the “range”).

Figure 7.8 illustrates the empirical semivariogram for the dioxin data, shown with dots
representing one-half of the average variation between contrasts observed at given distances
apart. The lines represent the best-fitting theoretical semivariograms from the exponential semi-
variogram model defined by

0 h=0

co+ o1 —exp(—h/ag)} h>0, 70

FY(h’ €0, Ce, ae) = {

where ¢y > 0 denotes the nugget effect, ¢, > 0 denotes the partial sill, and a. > 0, where 3a,
denotes the effective range (traditionally defined as the distance at which the autocorrelation is
0.05). We fit the theoretical semivariograms using both least squares (ordinary and weighted)
and likelihood-based (maximum likelihood and restricted maximum likelihood) method in the
geoR library for R [45]. The observed difference between the two types of estimator suggest a
skewed likelihood across the parameter space.

At this point, one would select a “best” semivariogram from the estimates, and then con-
dition on this estimated function to define the vector v in the kriging equations to obtain
both the point predictions at a set of prediction locations as well as the associated kriging
variances. For Gaussian data, these will allow construction of pointwise prediction intervals
at each location.
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Figure 7.8 Semivariograms for dioxin measurements. The circles denote the empirical semi-
variogram and the lines denote the best-fitting exponential semivariogram under maximum
likelhood (ML), restricted maximum likelhood (REML), ordinary least squares (OLS), and
weighted least squares (WLS).

As noted above, the classical kriging approach is typically a two-stage process: estimating
the semivariogram and then solving the kriging equations. Common criticisms of the clas-
sical kriging approach include concern that the uncertainty associated with the estimation of
the semivariogram is not adequately reflected in the prediction errors expressed in the
kriging variances. In addition, the typical semivariogram estimation procedure outlined
above is itself a two-step procedure involving construction of the point estimates defining
the empirical semivariogram, and then estimation of the parameters in the selected theoreti-
cal semivariogram family. Finally, the asymptotic properties of semivariogram estimation are
nontrivial, depending on whether one uses infill [47] or increasing domain [13, pp. 100—
101] asymptotics.

More recently attention has turned toward an effort to express spatial prediction in a more
cohesive manner addressing the uncertainty in all components in such a way as to accurately
reflect the entire process. The preceding description of classical spatial prediction followed a
rather utilitarian approach, highlighting each step of the typical analytical process. The basic
theoretical construction underlying both classical and Bayesian kriging, on the other hand,
is rather elegant when expressed in a hierarchical fashion, but until relatively recently could
not be readily implemented as such. However, with the advent of Markov chain Monte
Carlo (MCMC) techniques, a general computational framework for addressing hierarchical
models now exists and more recent statistical publications move toward bringing these ideas
and algorithms to the field of spatial prediction. This is not to say that MCMC solves all pro-
blems, as its implementation is often slow and much more computationally demanding than the
classical approach outlined above.

Statistical prediction can be regarded in a Bayesian framework where the optimal predictor
is defined by the conditional expectation of Z(sg) given the observed data. In a more formal
Bayesian statement, the point prediction defined by the conditional expectation
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E[Z(so)|Z (s1), - - -, Z(s,,)] represents the posterior predictive expectation of Z(s) marginalizing
over the posterior distribution of any model parameters. For Gaussian data, this conditional
expectation is a linear function of the data (motivating the BLUP formulation presented
above), but for non-Gaussian data this conditional expectation need not be linear in the data,
so the conditional expectation provides a more general framework for prediction, provided
the expectation (and appropriate uncertainty measures) can be calculated.

More specifically, one can briefly contrast classical and hierarchically specified spatial pre-
diction following exposition found in the literature [19,21,4,55]. Let Z denote the vector of
data, S the unobserved spatial random field of all observations in D, and 0 a vector of
model parameters, for our purposes the set of covariance parameters. In effect, S is the set
of values Z(Sy) for all sy in D. It is helpful to distinguish Z and S in model development,
since we model the stochastic structure of S and seek inference regarding model parameters
based on observations in Z. Our prediction goal is to obtain the conditional distribution of S
given Z and 0, expressed in general notation as [S|Z, 0]. Diggle and Ribeiro [21] note that
Bayes’ theorem provides

(2,501 _  [2]S,01(S]6]
o] ~ [[Z]S.6][S|6ldS

(S|Z.0] = (7.7)

This development conditions on a known value of the set of covariance parameters 0, and sum-
marizes the classical spatial prediction setting in a general and elegant hierarchical form. As
illustrated in the development above, in practice, one typically estimates @ from the data,
and then calculates the conditional expectation above (conditional on both the data Z and
the parameter estimates) via the kriging equations.

The hierarchical structure in Equation (7.7) allows both frequentist and Bayesian implemen-
tation. A frequentist approach builds the likelihood from the hierarchical components and then
requires calculation of the associated predictive distribution for inference, allowing one to
incorporate the variability associated with the covariance function (or, equivalently, the semi-
variogram) into the likelihood at the cost of more complicated computation. In contrast, a
Bayesian view of Equation (7.7) assumes a prior distribution [0] for the unknown parameters,
and then marginalizes over the posterior distribution of the parameters given the data [0|Z],
yielding the posterior predictive distribution

is|2] = J[sw,z] 0/2]4 6. (7.8)

Bayesian kriging draws point and interval predictions from this posterior predictive distri-
bution. While simple in theory, application of the full Bayesian approach typically encounters
complicated or intractable integrals, and also relies on advanced computing through MCMC
sampling from the desired posterior distributions for inference. Both the frequentist and
Bayesian implementations require either advanced computing or simplifying assumptions
(e.g., treating the estimated semivariogram as fixed, as in the classical approach). We focus
here on the Bayesian implementation of the hierarchical structure because of its increasing
application in the literature and the advent of more generally available MCMC code for
such models, and we apply both Bayesian and classical kriging to the dioxin data to
compare results.
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For comparability with the classical development above, suppose that our data are Gaussian
with constant mean, 3¢; that is, suppose

Z ~MVN(B,.32), (7.9)

where 3 represents an n vector of the constant mean 3y and 3, the n x n variance—covariance
matrix of the Z terms. (We use the intercept notation B, to highlight where one might add
additional parameters in a regression-type model of the mean.) Next, suppose that we have a
parametric covariance function C(h; 0), defined up to the unknown model parameters 0. For
our example, we will use the isotropic, stationary exponential covariance function family, cor-
responding to the exponential semivariogram defined above. The covariance function defines
the elements of %, based on the distances between pairs of observation locations:

2z, = C(|Isi — 5], 0).

The latent random field S serves as a data generator for Z, in the sense that the covariance
function C(h, 0) is defined for any location s in D. For any set of n locations, we obtain a vector
of observations Z with the multivariate normal distribution defined in Equation (7.9), with C(h,
0) and the relative locations of observations defining 3. For simplicity, we assume no
measurement error and set Z(s;) = S(s;).

The next step in the model definition is to define prior parameters for model parameters 3
and 0 = (c., co, a.). In most applications, the likelihood structure for the mean parameter g is
quite strong, allowing very vague prior specifications. Prior specification for covariance par-
ameters in 0 is somewhat more complicated, reviewed by Waller [55] and summarized here.
One could ignore 0 by specifying a conjugate inverse Wishart prior for 3, [11, pp. 459—
470; 15], but note that the inverse Wishart does not limit attention to specifically spatial covari-
ance structures and, similar to discussions of clustering approaches in the preceding section,
may not focus attention on the set of models that we are particularly interested in exploring.
A more common practice is to define individual conjugate prior distributions for each par-
ameter within 0. While practical, this approach still requires care as noted by Berger et al.
[6,7], who consider reference and Jeffreys’ priors for variance—covariance parameters in a
Gaussian random field. This setting provides one of the few examples where applying
Jeffreys’ prior independently to each element of 0 yields an improper posterior distribution,
suggesting a need for further work and especially for care in transferring seemingly sensible
priors from the nonspatial to the spatial setting.

For the dioxin example, we assign a flat prior to 3¢, assume a nugget effect of ¢ = 0, and a
prior proportional to the reciprocal of the sill ¢, (variance of independent observations). Rather
than consider the effective range parameter a., directly, we instead model the rate of exponen-
tial decay in the covariance function, denoted ¢. We assign a discrete prior based on 51 equally
spaced values between zero and twice the maximum observed distance between sampling
locations. We fit the model using the R library geoR [45]. Samples from the posterior distri-
butions of all three parameters appear in Figure 7.9. We find a clear posterior signal for 3
(compared to the assumed flat prior). For ¢, Figure 7.9 includes a thin line illustrating the
assigned prior distribution and a thick line representing a kernel estimate of the posterior dis-
tribution. We see both the posterior moving away from the prior and tightening around its (pos-
terior) mean value.

Figure 7.10 shows the empirical semivariogram values from Figure 7.8 and the semivario-
grams corresponding to the exponential covariance function evaluated at the estimated pos-
terior mean, median, and mode. The similarity between the two figures is reassuring and
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Figure 7.9 Posterior samples for semivariogram parameters.

suggests accurate implementation of the Bayesian approach. We note that the skewed posterior
distributions of the sill and ¢ result in the difference between the curves based on posterior
mean and medians and those based on the posterior mode (which is, not surprisingly, quite
similar to the maximum-likelihood estimates shown in Fig. 7.8).
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Figure 7.10 Bayesian semivariograms for dioxin measurements.
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Figure 7.11 Kriged log(dioxin) measurements: (@) mean of predictive distribution; (b) mean
of predictive distribution; (c) mean of predictive distribution; (d) local variance of predictive
distribution.

Figure 7.11 shows the posterior mean predicted levels of log(dioxin) (the posterior mean
surface S) as perspective plots (from two different orientations) in the top row and as a
contour plot in the lower left. The image plot in the lower right shows the spatial pattern in
the variance of the posterior predictive distribution. Predictive variance is higheset in areas
with few observations, in particular, note the band of high predictive variances along the
road (Y = 30), representing the band of no observations.

Figure 7.12 illustrates the posterior predictive mean and associated 2.5th and 97.5th percen-
tiles drawn on the basis of 5000 samples from the posterior predictive distribution taken along
transects for four different values of X. Note the widening of the posterior predictive distri-
bution in the area near the road (¥ = 30) corresponding to the increased predictive variance
associated with the lack of data taken in this area. Also, note the “tightening” of the prediction
errors near the sampling rows near Y = 10,20,40,50,60.

An interesting feature appears in Figure 7.12 for X = 15, the predictions taken through the
area of highest observed dioxin concentration values. Note that the mean posterior prediction
dips down between the peak values taken on either side of the road. This is due to our basing
prediction on a distance—decay correlation function. If we move beyond the effective range
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Figure 7.12 Posterior predictive values of natural logarithm of the local dioxin concentration
for selected transects perpendicular to the road. The thick line denotes the posterior predictive
mean value and the dashed lines represent the 2.5th and 97.5th percentiles of 5000 samples
from the posterior predictive distribution.

estimated by our covariance (or semivariogram) function, observations would be (nearly) inde-
pendent of one another and each would receive nearly the same weight, resulting in the sample
mean in the BLUP case or a posterior estimate of the overall (assumed fixed) mean [3¢. In short,
spatial prediction adjusts toward neighboring values according to how closely correlated we
expect those values to be to our desired prediction. If no observations are close, the method
resorts to an estimate of the background mean.

Results based on classical results (solving the kriging equations in terms of the variogram
estimates shown in Fig. 7.8) are quite similar to those shown here for Bayesian kriging. As a
result, one might wonder what we gain from the extra model specification (setting prior distri-
butions) and the extra computational effort required for MCMC implementation over the basic
matrix calculations required for classical kriging. For Gaussian data with a covariance structure
easily modeled by standard parametric covariance functions and satisfying the basic assump-
tions of stationarity and isotropy, there may be little gain other than a sense of completeness in
the definition of the full probability model incorporating both covariance estimation and
outcome prediction.

However, the Bayesian hierarchical framework also sets the stage for broader extensions
than does the classical framework. To see this, consider the descriptions above. Both the clas-
sical setting and the Bayesian setting derive from a basic definition of conditional probability in
Equation (7.7). At this point the two descriptions (above and in most of the spatial statistical
literature) diverge in a manner mirroring a contrast seen in the frequentist and Bayesian litera-
ture. At the risk of oversimplification, the classical (frequentist) description often builds on the
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basic framework in the following manner. Given the data are Gaussian with a fixed mean, we
know (or can derive) that the predictor will be a linear function of the observed data. We would
like the weights in this linear predictor to minimize the mean square prediction error, so we
define the MSPE as a function of the weights and optimize subject to an unbiasedness con-
straint, obtaining the MSPE as part of the optimization.

We find the optimal weights are a function of the semivariogram, and next seek to estimate
the semivariogram in a accurate and consistent manner in order to provide the best set of pre-
diction weights. The prediction goal has been achieved by a series of theoretical derivations and
accompanying calculations, effectively achieving the larger task by a series of focused smaller
tasks, each built on appropriate theoretical results. Again, at the risk of oversimplification, in
the Bayesian description the initial goal of prediction is again cast in the setting of a conditional
probability. This conditional probability is reexpressed as a marginalization of a hierarchical
probability model with parameters defining the overall mean and covariance function (or semi-
variogram if preferred). The inclusion of prior probabilities places prediction in the setting of a
posterior distribution, the primary inferential tool for Bayesian statistics. The details of interest
in development relate to the structure of the full probability model, such as defining the like-
lihood via the multivariate normal distribution given the covariance structure in Equation (7.9),
next specifying this covariance structure given its parameters, and finally specifying the prior
distributions for these parameters. The computational implementation falls to MCMC, perhaps
a complicated MCMC requiring care in setup and implementation, but an MCMC algorithm
nonetheless.

Here we note a subtle difference in value between the settings, specifically, a difference in
what is regarded as the “cool” part of the derivation. In the classical development, value is
placed on a deconstruction of the problem at hand into a series of steps motivated and validated
by statistical theory, each step with an accurate and efficient mode of calculation. Even in a fre-
quentist evaluation of a hierarchical likelihood, similar steps occur [38]. In the Bayesian devel-
opment however, value is placed on an accurate formulation of the problem in terms of a joint
posterior distribution defined through an interconnected set of hierarchical components, each
justified in its own right and fitting together in a manner that guarantees a proper posterior dis-
tribution incorporating all sources of potential information.

With this distinction in mind, an advantage of the Bayesian approach appears when we con-
sider changes to the components of the probabilistic structure. Suppose that we no longer have
Gaussian data, but rather observations following some other distribution. In the classical setting,
this impacts one of the first steps in the process, namely, the equivalence between the desired
conditional expectation and a linear combination of observations. One approach is to transform
the data to achieve a distribution closer to a Gaussian distribution (as in the dioxin example). The
problem is not insurmountable; in fact, log Gaussian (or more generally trans-Gaussian kriging)
is widely used, but it requires reconstruction of one of the key components of the classical
approach. For the Bayesian formulation, moving from a Gaussian distribution requires reformu-
lation of the likelihood function and can introduce complicated identifiability issues as the mean
and covariance parameters may no longer be orthogonal, yet the basic method is still in place.
This is not to say that the Bayesian approach is necessarily easier to adapt, but one can argue
that the required adjustments impact less of the basic structure than they do in classical kriging.

7.5 CONCLUDING REMARKS

In the discussion above, we focus attention on developing statistical issues for two of the four
general questions of interest in spatial epidemiology. The resulting examples illustrate
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important issues underlying the analysis of spatially referenced data ranging from the interpret-
ation of spatial cluster detection to contrasts between classical and Bayesian spatial prediction.
While the approaches and issues may seem very different at first glance, the two areas highlight
current converging directions of development in spatial epidemiology:

1. Note the similarity between the spatial intensity function A(s) in Section 7.3 and the
latent random field S in Section 7.4. The hierarchical structure outlined regarding spatial pre-
diction suggests extension to the point process setting, as discussed in Mgller and
Waagepetersen [40] and Diggle et al. [20]. In particular, Diggle et al. [20] note that parametric
(often hierarchical) approaches to the analysis of spatial point processes often provide increased
accuracy, while nonparametric (e.g., the kernel-based approaches described above) are often
more robust to violations of the assumed parametric models.

2. While the definition of a spatial Poisson process motivates the construction of spatial
Poisson regression models popular in disease mapping [34,54,4,52], the hierarchical frame-
work also offers a way to build inference for aggregated counts of underlying (latent) point pat-
terns, even for data collected at differing levels of aggregation. Best et al. [9] provide an
example of such an approach.

The field of spatial epidemiology is much larger than the two detailed areas considered here,
and further classes of analytic methods appear in the literature addressing additional epidemio-
logic questions for additional forms of available data. A prime example is the use of remote
sensing data in epidemiologic investigations. Robinson [44] provides a thorough review of stat-
istical techniques for remote sensing data in public health, and Goovaerts et al. [25] define
methods linking both of the analytic areas considered above (geostatistical prediction and
cluster detection) within the setting of remote sensing data.

In conclusion, spatial epidemiology offers much opportunity for continued methodologic
development in order to provide accurate, reliable inference on important public health issues.
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8.1 INTRODUCTION

Disease dynamics are modeled at a population level in order to create a conceptual framework
to study the spread and prevention of disease, to make forecasts and policy decisions, and to ask
and answer scientific questions concerning disease mechanisms such as discovering relevant
covariates. Population models draw on scientific understanding of component processes,
such as immunity, duration of infection, and mechanisms of transmission, and investigate
how this understanding relates to population-level phenomena. There are several compelling
reasons to consider disease processes at this population scale:

1. Anthropogenic change, in land use, climate, and biodiversity has many potentially large
public health impacts [1]. Predicting the future effects of changes to a complex system is
difficult. Retrospective studies of the relationship between climate and disease pre-
valence over space [27] and over time [58] can facilitate predictions and inform
policy decisions [48]. A major challenge in retrospective studies is to disentangle the
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extrinsic effects of climate or other environmental drivers from the intrinsic disease
dynamics [46].

2. The effectiveness of medical treatment and vaccination strategies for certain infectious
diseases, such as malaria and cholera, is limited by drug resistance, genetic shift, and
poor medical infrastructure in affected regions. This leads to an emphasis of controlling
the disease by behavioral and environmental interventions. An ability to model the
disease dynamics can be used to forecast the danger of a major epidemic [65], a step
toward implementing effective interventions.

3. Emerging infectious diseases pose a significant public health threat. Many important
emerging infectious diseases are zoonotic, that is, endemic animal diseases that cross
over to humans. Examples include HIV/AIDS from chimpanzee and sooty mangabey
[28], severe acute respiratory syndrome (SARS) from bats [49], and avian flu [52].
Epidemics are best prevented by early containment of outbreaks. Containment strategies
may be evaluated using population models [52]. Alternatively, one can attempt to
monitor and control the disease in the animal population to reduce contact between
humans and infected animals. This can be facilitated by employing population models
to gain an understanding of the dynamics of the disease in the animal population.

Since the pioneering work of Ross [59] and Kermack and McKendrick [41], mathematical
modeling has been a mainstay of epidemiologic theory. It has also long been recognized that
disease models arising in epidemiology are closely related to population models arising in
ecology [7]; the population dynamics of an infectious disease arise from the interaction of
host and pathogen species in the context of their environment. This chapter explores some
new developments in statistical inference for nonlinear dynamical systems from time-series
data, using cholera in Bangladesh as a case study.

8.2 DATA ANALYSIS VIA POPULATION MODELS

A mainstay of population modeling is the compartment model, where the population is divided
into groups that can be considered homogeneous. The classical Susceptible-Infected-Removed
(SIR) compartment model [41,7] groups N, individuals as susceptible (S,), infected (/;), and
recovered or removed (R,). Exposed classes, age-structured classes, and geographically struc-
tured classes are just some of many possible extensions. Population models may use continuous
or discrete time, take continuous or discrete values, and be stochastic or deterministic. Real-
world processes are continuous-time, discrete-valued, and stochastic. Stochasticity arises
from demographic noise (variability due to uncertainty of individual outcomes, such as the
number of contacts made with an infected individual) and from environmental noise (such
as variability due to weather, or economic events affecting the whole population). To a first
approximation, demographic stochasticity has variance linear in population size, and environ-
mental stochasticity has variance quadratic in population size, although more subtle distinc-
tions can be made [22]. Models must also choose to be mechanistic or phenomenological,
really a continuous scale tradeoff between incorporating scientific understanding and aiming
for a simple description of relationships observed in data [20]. Developing techniques that
draw on understanding of population dynamics, while also permitting statistical inference
about unknown model parameters and exploration of relevant covariates, is a topic of
current research interest [9].

Data are often aggregated over time and space, such as weekly or monthly counts per
region. This has led to the use of discrete-time models for data analysis. Finkenstddt and
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Grenfell [24] and Koelle and Pascual [46] represent the state of the art for data analysis via dis-
crete-time mechanistic modeling, using a Taylor series to generate a log-linear model
with unobserved variables reconstructed via backfitting. There are several reasons to prefer
continuous-time models:

1. For discrete-time models, the sampling frequency affects the models available and the
interpretation of the resulting parameters. The underlying continuous-time processes
are most naturally modeled in continuous time.

2. Continuous-time modeling facilitates the inclusion of covariates measured at various
frequencies.

3. Continuous-time disease models have been studied much more extensively from the
mathematical perspective than for their discrete-time counterparts [5,3,30,17]. This
focus represents both that continuous-time models more accurately reflect the real pro-
perties of the systems and that such models are relatively easy to analyze. Most data
analysis, on the other hand, has made use of discrete-time formulations, which can be
fitted to discretely sampled data in a relatively straightforward fashion. However, the
dynamics of discrete-time nonlinear systems are frequently at odds with those of their
continuous-time analogs [53,25], a fact that can complicate the interpretation of the par-
ameters of discrete-time models.

Strategies appropriate for fitting continuous-time models to discretely observed data include
atlas methods [66], gradient matching [21], and approaches based on nonlinear forecasting
[39]. Likelihood-based analysis (frequentist or Bayesian) has largely been overlooked
because finding the likelihood involves the difficult task of integrating out unobserved vari-
ables. Maximum-likelihood estimates (MLEs) have some considerable advantages:

1. Statistical Efficiency—the MLE is typically efficient (makes good use of limited data).

2. Transformation Invariance—for example, estimates do not depend on whether the
model is written using a log or natural scale.

3. Asymptotic Results—the second derivative of the log likelihood at its maximum can be
used to give approximate standard errors. This means that simulations to understand the
variability in estimates are seldom necessary.

4. Model Selection—Ilikelihoods are comparable between different models for the same
data. In particular, a x* approximation is often appropriate: if p parameters are added
to a model and the increase in the log likelihood is large compared to a (%)xf, random
variable, then the fit is a statistically significant improvement.

Bayesian analysis is also attractive, since previous research may be available to provide an
informed prior. Bayesian methods have been used for population models [64,14]. For this
chapter we consider MLE methods, but the computational issue of integrating out unobserved
variables arises in a similar way with Bayesian methods.

Evaluation of the likelihood and determination of the conditional distribution of unobserved
variables given data are computationally approachable in a broad class of time-series models
known as state space models (SSMs). SSMs have been proposed as a unifying framework
for ecological modeling [64]. Likelihood based inference has been shown to outperform
other more ad hoc statistical model-fitting criteria for population models incorporating
process noise and observation error [16]. The linear, Gaussian SSM [38] became fundamental
to engineering, for signal processing and control theory [2], and found applications in eco-
nomics [29]. Early attempts to handle nonlinear SSMs were plagued by the lack of
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computational ability to evaluate the likelihood, so inference resorted to ad hoc methods [2].
Brillinger et al. [11] provides an early ecological application of nonlinear SSMs.

The development of Monte Carlo methods for nonlinear SSMs, combined with increases in
computational capability, has made likelihood-based inference feasible for increasingly general
nonlinear SSMs. This gives the modeler considerable freedom to write down an appropriate
model without undue concern for inferential feasibility. There are two main approaches to
Monte Carlo inference for SSMs: sequential Monte Carlo [26,18,4] and Markov chain
Monte Carlo (MCMC) [61]. This chapter focuses on sequential Monte Carlo (SMC), which
is more widely used for SSMs and simpler to implement. A careful comparison between
SMC and MCMC is still, to the authors’ knowledge, an unresolved problem.

8.3 SEQUENTIAL MONTE CARLO

An SSM s a partially observed Markov process. The unobserved Markov process, x;, called the
state process, takes values in a state space . The observation process y, takes values in an
observation space %, and y, is assumed to be conditionally independent of the past given x,.
Here, we take & to be R% and % to be R%. There is also a vector of unknown parameters
0 € R%. We suppose that observations take place at discrete times, t =1, ..., T. We further
suppose that all required densities exist, and we adopt a convention that (- | -) is a generic
density that is then specified by its arguments. We write concatenated observations as
Y1t =1 ,-.-,¥). For the case t = 0,y),9 is defined to be an empty vector. The properties of
a state space model are

f(-)(xt|x1:r—1,y1:z—1) :fe(xz‘xt—l), (8.1)

JoOr ‘xl:ta Yia-1) = foOr |xr)~ (8.2)

The dependence on 6 will be written explicitly only when necessary for clarity. In principle,
the assumed Markov structure in (8.1) and (8.2) allows the likelihood, f3(y1.7), to be found
recursively via the identities

S |y1;z71) = Jf(xr—l |)’1:t71)f(xt |xt—1)dxt—l, (8.3)
fx |y1;;—1)f(y;|xr)
1 Y1) = , 8.4
fG |)’1 ) ff(XzIyle)f(ytIXz)dxf ®4)
SO ‘)’I:r—l) = Jf(Yt |Xr)f(xt |)’1:t—l)dxta (8.5)
T
fOrr) = Hf()’z | Y1s-1)- (8.6)
=1

In practice, this requires solving potentially challenging integrals. Following Kitagawa [43], de
Valpine and Hastings [16] showed how these integrals could be solved numerically for
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relatively simple population models. For more complex models, one may employ an SMC
method such as Algorithm 8.1.

Algorithm 8.1: Sequential Monte Carlo (SMC)

Initialize: Let {X& »J=1,...,J} be a sample draw from f(xo). These J realizations are
commonly termed “particles.” Each particle will give rise to a trajectory through the state
space with distribution f(x; | y1.).

FORt=1to T

* Move particles according to unconditional state process: Make X,’;. a draw from
S| X = Xfl 1 j). Then {Xf j} has approximate marginal distribution f(x; | y1,—1).
{Xf,.} is said to solve the prediction problem at time 7.

 Calculate conditional likelihood of new observation: Estimate f(y;|yi.—1) by
1/ Zj:]f()’t |x = ij)-

» Prune particles according to likelihood given data: Generate Xf ; by resampling
from {ij} with probability proportional to w; = f(y, | x, = ij) using Algorithm
8.2 (below). Then {X},r j} has approximate marginal distribution f(x;|y;,). Then
{Xf ;} is said to solve the filtering problem at time .

END FOR

Calculate Log Likelihood: logf(yi.r) = 3", logf (v | y14-1)-

Algorithm 8.2: Systematic Resampling
Input: J particles {ij,j =1,...,J} with weights {w; = f(y, | x, = ij)}

Calculate Cumulative Sum of Normalized Weights: FOR j =1 to J set
¢; = (Shoy W/ (Cie o)

Resample Cumulative Sum at Intervals of 1/J:
Seti=1and u ~ U[0, 1]
FORj=1toJ
e WHILE (j —u)/J >c¢;seti=i+1
e Set X,F i = Xf ;- This resampling generates a tree structure, where Xf ; is said to descend
from X7

t—1,i"
END FOR

Output: J particles {ij,j =1,...,J}
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The reader is referred to the literature [4,18,51] for extensive discussions of Algorithms 8.1
and 8.2, with many possible variations. Algorithm 8.1 can be fine-tuned to be computationally
more efficient in many ways. A more critical issue, in the authors’ opinion, is how to use the
output of Algorithm 8.1 for effective inference. Although Algorithm 8.1 is widely applicable
for calculating the likelihood at a fixed value of 6, complications arise for both Bayesian and
MLE methods, which must compare likelihoods for different values of 6.

Bayesian inference might appear straightforward; simply add 0 to the state space. The initial
particles are then drawn from f(xo, 0), and the particle filter will then produce a sample from
f(®]y1.7). Each particle at time ¢ has exactly the same value of 6 as does its ancestor at
time ¢ — 1, and the prior distribution on 0 is updated via the SMC algorithm, giving particles
with successful values of 6 more descendants. The catch is that the SMC algorithm degenerates
when there is no variability in the 6 component of the state process after t = 0. Heuristically,
the particles in SMC evolve by natural selection according to their plausibility given the data.
Particles whose 6 component are fixed over time are analogous to natural selection without
mutation, which produces only limited scope for evolution. One solution to this is to allow
the parameter to vary slowly with time by adding noise [44]. In cases where this modification
to the model is considered unacceptable, Liu and West [50] showed how to add noise to the
parameters but balance this by simultaneously contracting the parameter distribution toward
its mean. The method of Liu and West [50] has been applied to ecological models by
Thomas et al. [64] and Newman and Lindley [54].

The difficulty for finding the MLE is that the likelihood is calculated with Monte Carlo
error. One useful tool for optimizing functions calculated via Monte Carlo is the method of
common random numbers [63, Sec. 14.4], which involves fixing the seed of the random-
number generator. This method requires synchronization of the Monte Carlo randomness,
which is not directly applicable to SMC techniques. General stochastic optimization
methods of the Robbins—Monro type [57,42,63] are not applicable for problems where there
are many unknown parameters and each function evaluation is a considerable computational
expense. The elegant method of Hiirzeler and Kiinsch [33] for calculating local likelihood sur-
faces is also not readily applicable to relatively difficult problems—it is more computationally
intensive than standard SMC methods such as Algorithm 8.1. Ionides et al. [35] showed how to
find the MLE by taking a limit where the noise, added in a way similar to that in Kitagawa [44],
shrinks to zero. This novel method is described in Algorithm 8.3 and is applied to a cholera
population model in Section 8.4.

Algorithm 8.3 is appropriate when information about parameters arrives steadily throughout
a time series. Heuristically, it gains computational efficiency because the parameter estimate is
being constantly updated throughout each iteration. Each iteration would correspond to one
evaluation of the likelihood for a general-purpose optimization algorithm. In Section 8.4,
N =20 or N =30 iterations are sufficient to optimize a stochastic function of 13 variables,
without availability of analytic derivatives. This computational efficiency is critical when
each iteration takes around 30 min to compute.

In certain situations, such as estimating the initial value vector x,, information about a para-
meter does not arrive steadily throughout a time series. In this case, Algorithm 8.3 is not effec-
tive. If {x,} is stationary, then x, can be drawn from the stationary distribution. If {x,} is not
stationary, one can either pick some more arbitrary distribution for xy or treat x, as an
unknown parameter (in the frequentist sense). We choose to do the latter, and estimate x, by
maximum likelihood simultaneously with 6 by applying Algorithm 8.4, the theoretical justifi-
cation of which is similar to that for Algorithm 8.3 [35]. The value of Tj, in Algorithm 8.4
should be as small as possible such that yz,.;.r contains negligible additional information
about x, beyond that contained in y;.7,. This compromise is known as fixed-lag smoothing [2].
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Algorithm 8.3: MLE via Iterated Filtering

Initialize: Select 6" > 61 > 6!° to be vectors giving a plausible initial value and range
for the parameters. Select scalars 0 < o < 1, C, and N.
FORn=1to N

* Apply SMC (Algorithm 8.1) with 6 included in the state space as a time-varying
parameter, evolving as

B0 ~ Ny, (0,C3.,),
0, ‘ 0,1 ~ Ndﬂ(ﬂt,l,En) for t=2,...,T,

where the covariance matrix 2, is defined by [En];-/ 2= (0" — 0)/2/T) ;o' !and

[X4];; = 0 for i # j. Each particle is now a pair, e.g., xr efj).

Lj?

« Calculate Updated Estimate:

J
6 =(1/N> 8 forl<i<T,
=

Vi =(C+ 13,
Z§:1 (e[FJ - ét)(etF, - ét)/
J—-1

T—1
peth — (Z v —vhe + VT'GT>.
=1

Vigr = +3, for1<t<T-—1,

END FOR

The MLE is estimated as § = & +D,

Algorithm 8.4: MLE via Iterated Filtering, for Initial Values

Initialize: Select x}J' > x{’ > xI° to be vectors giving a plausible initial value and range
for the initial values. Select scalars 0 < o < 1, T, and N.

FORn=1to N
* Apply SMC (Algorithm 8.1) with X} ~ Ny (x§”, ®,) where [®,] 2 [ — )/
21"~ " and [®,], = 0 for i # k. For each particle X;, track label of the corresponding

initial value, denoted a(s, j). In the terminology of Algorithm 8.2, ij descends from
Xs, a(ty)*

« Calculate Updated Estimate: x{"*" = (1/7)Y"_ X} .z 5

END FOR
The MLE is estimated as Xy = ng“)
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Algorithms 8.3 and 8.4 are different variations on the same theme of using limiting
Bayesian posterior distributions to find MLEs. Both algorithms can be combined, so that
one filtering iteration updates estimates of all estimated parameters, including initial
value parameters.

8.4 MODELING CHOLERA

Cholera is a diarrheal disease endemic to the Ganges delta region [60]. Global pandemics have
occurred throughout recent history. The current (seventh) pandemic started in 1960 and has
seen the Ol serogroup become established in various locations throughout South Asia,
Africa, and South America. Cholera is caused by virulent strains of Vibrio cholerae, a bacter-
ium that can live and grow in brackish, warm water. Human-to-human transmission can be
direct, through contact with stool from infected individuals; or indirect, via the environment.
There is not a clear distinction between these two paths; we separate them by supposing that
the increase in force of infection depending on the number of infected individuals is due to
human-to-human transmission. The environmental reservoir is taken to be responsible for
the background force of infection (extrapolating to a situation with no infected humans). A
compartment model describing the basic features of disease transmission is diagrammed in
Figure 8.1. Formally, the diagram in Figure 8.1 corresponds to a set of equations:

dS, = dN®S — dNS' — dN®P + dN*'S,

dl, = dN®' — aN'®' — aN™,

dR! = dN'®' — aNK'® — aNF'P.

dRY = dNF'F — aNK'S — gNR'P

Here, time is measured in months; S, is the number of individuals in class S (susceptible) and
the infinitesimal dS; is defined such that S, = Sy + jé ds,,. For example, Nf’ corresponds to the
total number of individuals who have passed from S to I by time #. The k recovered classes
allow for flexibility in modeling the time from infection to loss of immunity, at which
point an individual becomes newly susceptible. This temporary immunity, with a duration

I 1 I ) [2]

T mSy T mely T mR} me

B; 1eSs 71 rkR} kR
L rkRF J

Figure 8.1 Compartl_nent model for cholera. Each individual is in S (susceptible), / (infected),
or one of the classes R’ (recovered). Transitions to B and D model birth and death, respectively.
The arrows show possible transitions, with superscripts showing transition rates.
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of 3—10 years, is believed to be a key feature of the population dynamics of cholera. We use a
model developed by Ionides et al. [35]:

dNY = W, Sdt + 5, S, dW,,
My = BtII/Pt +w, (8.7
U, =el,/P,.

Here, population size P, is interpolated from available census data, and is presumed to be
accurately known; seasonal transmissibility is modeled as log(B,) = Zj‘:o bjs;(t), where
{sj(»), j=0,...,5} is a periodic cubic B-spline basis; e is an environmental stochasticity
parameter, modeling noise on the environmental scale (with infinitesimal variance propo-
tional to S,); w corresponds to a nonhuman reservoir of disease; B,I;/P; is human-to-human
infection; 1/-y gives the mean time to recovery; 1/r is the mean time to loss of immunity fol-
lowing recovery, with k giving the shape of this distribution; and m and m,. are the death rates
among uninfected and infected individuals, respectively. The remaining transition equations
were modeled deterministically:

AN = gL dr;  dNFR = rkRIT dr;
dNR'S = rkR* dr;  dNP = mS, dt;

; . (8.8)
dNIID = m.l, dt; dNtRD = mR, dt;

dNPS = dP, + AN + dNIP + 3" dNEP,

Defining C; = N'? — NP, = J;’_l dN'P, the number of cholera mortalities between monthly
observation times, the data on observations data on observed mortality were modeled con-
ditional on C; as y, ~ N'[pCy,p(1 — p)C; + szZC,] with reporting rate p. The variance com-
ponent p(1 — p)C, models demographic stochasticity via binomial sampling variation.
Environmental stochasticity is modeled via 72p? Ctz, which dominates demographic variability
for large C, and is found to be appropriate when fitting (8.10) and (8.11) to data. The domi-
nance of environmental stochasticity has been assumed implicitly in previous analyses of
similar data, by modeling additive noise of variance 72 in log (pCy) [24,46]. Demographic
variability is nonnegligible when C; is small, and can be included in our framework without
adding any additional parameters.

Continuous-state population models, such as the model given by (8.7) and (8.8), are more
convenient for data analysis than discrete-state population models. Theoretical results and
simulation studies of population models often resort to demographic (Poisson) variability,
using the rates in Figure 8.1 to define a continuous-time Markov chain. Apart from the inherent
appropriateness of discrete populations, the Markov chain approach has the advantage that no
extra parameters, beyond the rates, are needed to describe the stochasticity. However, demo-
graphic stochasticity alone is not always sufficient to describe observed variations in data;
for cholera, demographic stochasticity is entirely inadequate. If extra variability has to be
introduced, stochastic differential equations (SDEs) provide a simple way to do this. SDEs
are a natural extension to the ordinary differential equation (ODE) systems already used for
describing population dynamics. Other examples of the use of SDEs to provide a framework
for modeling and data analysis include those by Kendall [40], Brillinger and Stewart [13],
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Brillinger et al. [12], and Ionides et al. [36]. There are several misconceptions about SDEs that
explain why they are not currently more widely used for modeling. These are listed below, with
refutations:

1. The theory of SDEs is inaccessible and obscure. However, numerical solutions to SDEs
are now well established [45,31]. This allows development and exploration of models
that would be difficult to investigate analytically. In particular, application of the infer-
ence methodology in Algorithms 8.3 and 8.4 for the models in (8.7) and (8.8) requires
only numerical solution of the system of SDEs.

2. There may be little reason to think that Gaussian white noise is a plausible stochastic
driver for the system under investigation. Supplying random coefficients to an ODE
or Markov chain adds lower-frequency “colored noise”. However, most practical time-
series models, such as the autoregressive moving average (ARMA) framework [62],
use white noise as the basic building block. This noise is often modeled as Gaussian,
for convenience, and the data may sometimes be transformed to increase the plausibility
of this assumption. Solutions to SDEs driven by Gaussian white noise include almost all
non-Gaussian continuous-time, continuous-sample-path Markov processes [55].
Smooth, low frequency noise can be modeled by adding white noise to a derivative
of the process of interest.

3. There has been much discussion in theoretical modeling literature concerning different
possible interpretations of an SDE. The two most popular interpretations are the It6 and
Stratonovich solutions [55]. The distinction, involving the exact way the SDE is solved
as a limit of finite sums, should have little scientific relevance. Meaningful scientific
conclusions should not depend on the choice of interpretation of SDE [36].
Numerical solution is most straightforward for the It6 solution, so that is the one
adopted here.

8.4.1 Fitting Structural Models to Cholera Data

Maximizing a nonconvex function of more than a few variables is seldom routine, especially
when the function is evaluated by Monte Carlo methods. Algorithm 8.3 provides a way to
leverage the special structure of an SSM for optimization, but diagnostic checks are necessary
before one has confidence in the results. Beyond the standard approach of trying various initial
values [0, 6'° and 6™], one should assess the choice of the two variables a and C for
Algorithm 8.3. If a is too small, the rapid decrease in step size in Algorithm 8.3 may leave
the algorithm stranded, unable to reach the maximum. This is analogous to excessively rapid
cooling in simulated annealing [63]. If « is too large, insufficient cooling will occur within a
reasonable computation time. These issues can be diagnosed by plotting 8 against n for
several values of o and 0, looking for consistent convergence. The term C is a dimensionless
constant controlling the initial dispersion of the parameter values, relative to their random
perturbations through time. If C is too small, the algorithm converges slowly. If C is too
large, the algorithm is less stable and converges erratically. This can be assessed by the
same type of convergence plot as used for a, or by the observation that a good choice of C
is one which makes V, fairly stable as a function of 7.

The likelihood surface near the convergence point 6 can be further examined by “sliced
likelihood” plots. Setting A(6) = log fo(yi.7), the sliced likelihood for @,- plots A + cd;)

against é,- + ¢, where §; is a vector of zeros with a one in the ith position. If 9 is at (or
near) the maximum of each sliced-likelihood plot, then 6 is (approximately) a local
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maximum of A(0). Computing sliced likelihoods requires moderate computational effort, linear
in the dimension of 6. A smoothed fit (as suggested by Ionides [34]) is made to the sliced log
likelihood, because )\(é + ¢0i) is calculated with a Monte Carlo error. Figure 8.2 shows a con-
vergence and sliced-likelihood plot for a simulation study, presented in Ionides et al. [35], using
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Figure 8.2 Examples of convergence plots for a simulation from (8.7) and (8.8) with four
different starting points, validating the convergence of Algorithms 8.3 with &« = 0.9 and C =
20. The dotted parabolic line corresponds to a sliced likelihood through b. (cd ) Corresponding
closeups of the sliced likelihood. The dashed vertical line is at 6 and the solid vertical line is at
the true value of 6. The simulation was carried out with p = 0.43, e = 0.289, by = —1.48,
by =242, by =0.02, b3 = —0.98, b, =0.02, bs=3.02, 7 =0.02, w=2.5x 10"°, m.=
1.19,y=1,k=4,1/r= 120, and 1/m = 600. The last four of these parameters were treated
as known, and the remaining parameters were estimated, using Algorithm 8.3 with J = 9000.
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the cholera model in (8.7) and (8.8). The deviation between the MLE and the true parameter
value is due to the finite length (50 years) of the simulated dataset. In some generality, the
MLE for state space models is consistent and asymptotically normally distributed [37].

Sliced likelihoods can be used to generate standard errors, since calculating )\(é + ¢9;)
involves finding log ]gﬂ,a(y, | y1.—1). Regressing log féﬂa,(y, | y14-1) on ¢ gives an estimate
of (0/00;) log fs(vs | y1.4—1), giving rise to an estimate of the observed Fisher information

; Lo 0
[Zr],; = Z%Inge()’t ‘ylzt—l)%logfe()’f | Y1-1) (8.9
’ =1 9Yi J

where the derivatives are evaluated at § = . This leads to a corresponding estimate I ;1 for the
covariance matrix of 6.

A superior way to find confidence intervals is via a profile likelihood [6]. If 0 is partitioned
into two components { and m, then the profile log likelihood of m is defined [6] by
A(p(M) = sup; N({,m). The optimization required for the profile likelihood can be carried
out using Algorithm 8.3. Calculating the profile likelihood for each parameter therefore
requires approximately N times the computational effort of the sliced likelihood (typically, N
is between 20 and 30). The optimization also introduces additional Monte Carlo variability
over a simple likelihood evaluation. Figure 8.3 shows the profile likelihood for a parameter
of the model in (8.7) and (8.8). This parameter was selected because the profile likelihood con-
fidence interval constructed in Figure 8.3, of width 0.27, was considerably different from the
approximation using (8.9), of width 0.10. This rather large discrepancy arose because the quad-
ratic approximation in (8.9) is overly optimistic when some nonlinear combination of the par-
ameters is poorly estimable. The extra computation required to calculate a profile likelihood is
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Figure 8.3 Profile log likelihood Ap,)(b4) for the August seasonal parameter. The log likeli-

hood was maximized over all parameters excluding b, (circles) and was then smoothed (dashed
line) using nonparametric regression [34,15]. The dotted lines show the construction of an
approximate 95% confidence interval, given by {bs : 2[A( ,,)(1;4) — Apy(ba)] < X&gs(l)},
where XGos is the 0.95 quantile of a x? random variable with one degree of freedom and
134 = argmax A(p)(bs).
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evidently worthwhile for a parameter of particular interest. The quadratic approximation can be
calculated more routinely, to get a general idea of the scale of uncertainty.

The model in (8.7) and (8.8) was fitted to historical data for Dhaka, Bangladesh, [10,58,46],
shown in Figure 8.4a. Our resulting estimate of the seasonal transmissibility {3, is shown in
Figure 8.4b. Observed mortality is seen to have two seasonal peaks that appear later than
the peaks in transmissibility. The winter dip in mortality has been ascribed to reduced environ-
mental viability of V. cholerae in colder temperatures. The early January local minimum in
transmissibility is consistent with the early January minimum in mean temperature in
Dhaka. The summer dip in mortality has been ascribed to dilution of V. cholerae due to
monsoon rainfall. The monsoon season in Dhaka is from May to September, with greatest
average rainfall in July. Fitting (8.7) and (8.8), the transmissibility is seen to decrease too
soon to be explained fully by rainfall. Snowmelt from the Himalayas is one candidate to
explain this discrepancy.

Investigating residuals is a routine diagnostic check in time-series and regression analyses.
The most basic residuals to consider for SSMs are the standardized prediction residuals

u (0) = [Varg v, | yia )]~ 2 0 — EyO | Y1),

although there are other possibilities [35,19]. Checking whether the residuals are approxi-
mately uncorrelated is a way to test the goodness of fit of the model. Residuals also
have an important role in the search for covariates. Inasmuch as the model successfully cap-
tures the intrinsic dynamics of the disease, the residuals are left with the system noise plus
signal from the extrinsic variables, such as climate. From this point of view, features that
the intrinsic model cannot capture are as important as those that it can! A more flexible
model might fit the data better, but only by explaining variation that in fact has some
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Figure 8.4 (a) Cholera mortality for Dhaka, Bangladesh, from 1891 to 1940; (b) monthly
averages of Dhaka cholera mortality (boxes) and the seasonal transmissibility 3, (dotted
line) from fitting (8.7) and (8.8).
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Figure 8.5 Sample autocorrelation function for the standardized residuals when fitting (8.7)
and (8.8) to the data in Figure 8.4.

extrinsic origin. The next step after identifying covariates is to include them in the model.
This is not necessarily an easy task—even explaining seasonality can be a challenge [56].
For example, both rainfall and drought can initiate cholera epidemics. The low-frequency
component of residuals from a time-series model fit to cholera data has been found to
match various plausible environmental drivers, such as rainfall, river discharge, and El
Nifio indices [47]. Fitting the model of (8.7) and (8.8) results in less than perfectly
white residuals (see Fig. 8.5). The residuals nevertheless give evidence of increased
cholera infection in Dhaka after the monsoon during El Nifio conditions [35], and this
association is not evident from the original time series. How best to include environmental
covariates in a mechanistic model is a topic for future investigation. However, the method-
ology in Section 8.3 provides both a tool to identify covariates and a flexible framework for
including them in a mechanistic way.

8.5 CONCLUDING REMARKS

Six key areas requiring further development for time-series analysis of population data were
identified by Bjgrnstad and Grenfell [9]. They may be summarized as follows: (1) including
measurement error in mechanistic models, (2) mechanistic modeling of environmental
forcing, (3) employing ecologically realistic continuous-time models, (4) reconstructing unob-
served variables, (5) identifying interactions, and (6) spatiotemporal modeling. The cholera
modeling example in Section 8.4 demonstrates that the SSM approach in Section 8.3 can be
used to address issues 1—4. In addition, likelihood-based model comparison then provides
an approach to issue 5. In principle, one can write down a spatiotemporal SSM to address
issue 6. In practice, the dimension of the state space typically scales linearly with the
number of spatial locations considered, and high-dimensional state spaces increase the numeri-
cal burden on the SMC method. For large spatiotemporal problems, such as data assimilation in
atmospheric and oceanographic science, SMC is not feasible. Related techniques have been
developed for data assimilation [23,32], employing an ensemble of numerical solutions of a
spatiotemporal model to approximate the conditional distribution given data. Alternatively,
spatiotemporal variability can be incorporated through random-effect models [67,68,8].
More progress is necessary before SMC techniques can be routinely applied to spatiotemporal
data. However, SMC provides an effective and flexible tool for partially observed stochastic
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nonlinear dynamical systems of moderate dimension, allowing freedom to develop models
based on scientific principles rather than on methodological constraints.
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9.1 INTRODUCTION

In standard regression analysis we assume that the predictors x are directly observable without
any errors. This is seldom true. Very often in epidemiologic studies, for some reason, the pre-
dictors are not directly observable. Instead, measurements on its surrogates z are available. The
true predictor x is a perturbation of z. In the measurement error literature this is known as the
Berkson error model. In such cases it is usually assumed that x is a linear function of z plus an
error. The classical measurement error model, on the other hand, assumes that x is directly
observable and z is a perturbation of x, that is, that measurements of x are subject to errors.
Thus z is x plus the measurement error. The substitution of z for x complicates the analysis
of the observed data when the purpose of analysis is inference about a model defined in
terms of x. Finding statistical models and methods for analyzing data that arise in either of
these ways is known as a measurement error problem. In epidemiologic studies, most often
we encounter the Berkson error model. In this chapter we would mostly be concerned with
this model.

Until the late 1970s, measurement error models were developed mostly for continuous
responses. Excellent introductions to linear measurement errors involving continuous
responses are provided by Madansky [33], Kendall and Stuart [29, Ch. 29], and Fuller [20].
Historically, early research in measurement error problems was driven by applications in
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physical sciences, especially in astronomy, and soon thereafter by applications in econometrics,
whereas today much of the current research in this area is driven by applications in health
sciences. The seminal article by Carroll et al. [11] on measurement error in binary regression
marks the shift in emphasis from linear to nonlinear modeling. The article is noteworthy for
breaking ground in the applications of measurement errors in health sciences in particular
and in the study of generalized linear models with measurement error in general. This article
literally opened the floodgate and was followed by a spate of contributions in this area by a
host of researchers.

A classical measurement error model is specified in terms of three submodels: (1) an
outcome model connecting the response y to the true predictor x, (2) a measurement error
model specifying the distribution of z (the perturbed value of x) given the true predictor
x, and (3) the assumptions that are made regarding x itself. Two types of assumption
are usually made about x; in a functional model, x is assumed to be fixed but unknown and
in a structural model, it is assumed to have a probability distribution. However, in the
Berkson model we have only two submodels: an outcome model and a model giving the
conditional distribution of x denoted by the surrogate z. We refer the reader to Fuller [20]
for an extensive discussion of linear measurement error models; for nonlinear models, to
Carroll et al. [12,13]. It is found that ignoring measurement errors in both linear and nonlinear
models in general results in attenuation of the estimates of regression parameters
[33,20,49,50,5,45,12,47,53]. Consequently, different methods under different model assump-
tions have been proposed to remove the bias in the estimates. Likelihood-based methods
[58,56,57] methods based on instrumental variables [1-3,52], the estimating-equation-based
method [7,9,10,26], the Nakamura method [35,51,55], and the simulation extrapolation
(SIMEX) method [58,59,31,60] are the major ones. Compared to the classical framework, rela-
tively few works have been done from the Bayesian point of view [15,21,32,39,40,23,25,6].
Also there are a few papers that consider either the effect of measurement errors in covariates
on nonparametric regression [18,61,16] or a nonparametric method to adjust for mismeasured
covariate data [37].

Besides the measurement errors in the predictors, in epidemioiogic studies, very often the
binary responses y are subject to classification errors and are not observable. Instead, the
manifest response y is observable. However, the model is defined in terms of y. Thus, replacing
y with ¥ makes the analysis of data more difficult. We refer to Gustafson [24] for a detailed
discussion of the impact of these errors on the parameter estimates and its Bayesian
adjustments.

In this chapter, instead of discussing the existing methods, we choose to discuss
the likelihood-based adjustments in some interesting models arising in epidemiologic
studies, most of which are yet to be published. The primary reason is that the three books
mentioned above have extensive discussions on most of the existing problems and the
methods for circumventing them. Also, in a restricted space, we find it difficult to do
justice to our task as reviewers if we at all attempt to discuss the existing methods in some
detail.

We begin with a few examples of epidemiologic studies just to illustrate the situations where
models that we discuss in Sections 9.3-9.5 may be applied. In Section 9.3, we consider a
regression model that incorporates substitution of (y, x) by (¥, z). This model is then extended
to bivariate binary responses in Section 9.4. In practice, in certain situations we may get mixed
binary and continuous outcomes. In Section 9.5 we extend our discussion to such models. The
methodology developed in Section 9.3 is illustrated with atom bomb survivor data in
Section 9.6. Finally, in Section 9.7 we give the concluding remarks.
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9.2 A FEW EXAMPLES

9.2.1 Atom Bomb Survivors Data

In a lifespan study among 86,520 survivors of atom bomb explosion in Hiroshima and
Nagasaki, data are collected on the number of deaths due to cancer among the survivors cor-
responding to different dose groups of radiation exposure. Clearly the true radiation dose is
unobservable; instead an estimate of this dose is obtained using DS86, a dosimetry system
that acts as a surrogate. A close inspection of the data shows an unexpected pattern in the pro-
portion of cancer deaths, which suddenly decreases in the last two dose categories, contrary to
what is expected [46]. This is due to the misclassification of cancer deaths as noncancer deaths
on death certificates. Thus the data are contaminated not only with measurement errors in pre-
dictors but also with classification errors in binary responses. This example is considered in
more detail in Section 9.6.

9.2.2 Coalminers Data

A cohort of 18,282 coalminers aged 20—64 years are examined for the presence of wheeze
and breathlessness. The data are collected from a short questionnaire where each respondent
was classified as suffering or not suffering from breathlessness and wheeze. In this instance
each response factor has two levels and all four combinations are possible. Data are provided
corresponding to different age groups, which are at intervals of 4 years. Here the covariate is
the actual age of the miner. However, as a surrogate, we take the midpoint of the age interval
to which the miner happens to belong. Clearly, in addition to the x values being affected
by grouping errors—a specific kind of measurement error [30], they may also be affected
by recording errors, which does not sound unrealistic considering the poor awareness
among the educationally disadvantaged people about their exact ages. Also, in this study,
misclassification of the bivariate binary response is likely. Ekholm and Palmgren [17]
pointed out that the coalminer data were contaminated with classification errors. Thus, the
data are contaminated by both measurement errors in covariates and classification errors in
the bivariate response.

9.2.3 Effect of Maternal Dietary Habits on Low
Birth Weights in Babies

The study of the effect of dietary habits of mothers on low birth weight (LBW) of babies in a
given population is an important health research problem. Suppose that, for a newborn baby,
the mixed binary continuous responses are the household income (y,) and whether the
newborn baby is LBW or not LBW (y;). The covariates affecting the binary response may
include the dietary habits of the mother, the mother’s age at childbirth, age at marriage,
smoking status of mother, and whether the mother suffered from any major disease during
pregnancy. In particular, some of the covariates related to dietary habits (e.g., daily protein
intake) may not be observable, but their estimates may be obtained by personal interview.
These estimates would work as surrogates. In this case we would be interested in estimating
the regression coefficients of dietary habits on the occurrence of LBW (y,) and also its (y;)
correlation with income (y,).
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9.3 BINARY REGRESSION MODELS WITH TWO
TYPES OF ERROR

In this section, a binary regression model is developed using a general link function that incor-
porates two important and independent sources of error, namely, measurement errors in covari-
ates and classification errors in the binary response. Suppose that y denotes the latent or true
binary response, y the manifest binary response, X, the true predictor, and Z,; its surrogate.
Let &y and &, denote the probabilities of misclassification, which are assumed to be indepen-
dent of the covariate values:

P(y=1|y=0=gp; P(y=0|y=1)=¢;. 9.1)
For a fixed X = x, it is assumed that

Py =1[x)=g "By +x"B), 9.2)

where g(-) is an appropriate link function and (B, B7) are the regression parameters. Now a
simple probability calculation yields

PG=1|x)=PF=1|y=0Py=0[x)+PF=1|y=DPy=1|x)
=g0+(1—gg—eg "By +xB) 9.3)

Note that if &y + &1 = 1, Equation (9.3) becomes independent of (B, B7) and thus the manifest
response does not contain any information about the regression parameters. Thus it would be
unreasonable to use this model if the probability of either kind were greater than 0.5. Neuhaus
[36] has shown that for scalar 3, ignoring errors on responses produces biased covariate effect
estimates. If B denotes the naive estimate of B and 3 the estimate obtained under the correct
model, then it can be shown that B = BH’ (0), where H'(0) is given by

(1 =29 —&1)d(By)
GO {eo + (1 — 20 — 21)P(B)}]
(1 —eg—e1)exp(By)
{eo+ (1 —e)expB)H1 —so0 +e1exp(By)}

for probit and logit link functions, respectively. Here ® and ¢ denote the cumulative distri-
bution function (cdf) and the probability distribution function (pdf) of a standard normal dis-
tribution, respectively. Clearly, 0 < H'(0) < 1. Besides these link functions, the result also
holds for any link function based on the inverse of a cdf. Thus for such links, ignoring
errors in response leads to attenuated estimates of the regression coefficients and the attenuation
factor is given by H'(0).

Notice that the correct model incorporating the classification errors is given by (9.3). Now
we need to incorporate measurement errors. Since we have assumed a Berkson model, the
measurement error process in our case is represented by f(x|z). Assuming nondifferential
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measurement error, we obtain
PO =112 = [ PO = 1070 s = |57 By + B e 0. 9.4)

The multiple integral in (9.4) is not tractable analytically in all situations. In the case of a probit
link function and under the assumption that x | z ~ N,(z, 2(2)), it can be shown that

Py =1]2) = Dy, + v 2), 9.5)

where

Bo 4 o B’

_ o - - . 9.6
1+ B’ 3@p) " Y TR 00

Yo

In the case of a logistic regression model, the integral has no closed-form solution.
However, a simple technique often works just as well. The technique is to approximate the
logistic by the probit. For ¢ 2 1.70, it is well known that H(v) = ®(v/c) [28,63,34]. For esti-
mating the regression parameters the maximum-likelihood estimate (MLE) of o, y” is first
derived and then the MLE of (B, B”) is obtained from it by inverting the relationships
given by (9.6). Also, it is to be noted that the MLE of (B, BT) exists provided that
YI3(z)y < 1. It is also evident from expression (9.6) that ignoring measurement error attenu-
ates the estimate of the regression coefficients. Now, combining models (9.3) and (9.5), the
conditional probability of the manifest response given the surrogates is given by

PG=1]|z)=gg+(l —gg— m)[g*‘(ﬁo + x"B)f (x| 2)dx 9.7)

For the parameters in Equation (9.7) to be identifiable, validation, replication, or instrumen-
tal data will typically be required to estimate [12]. It should also be mentioned here that if all the
observations lie in the central part of the probit or logit function, then simultaneous estimation
of €o,e1 and (yo,y"), and hence of (B, B7), clearly falls through since, in that case, g '(yo +
v'z) can be well approximated by a linear function. In such situations, estimation of the
regression coefficients is possible only when independent estimates of € and &, are available
from external validation studies.

An extensive simulation study was carried out with x; terms generated from univariate
N(z;, 02), i=1,2,...,n, where % is a prefixed value of the measurement error variance.
The results are reported for a number of such prefixed choices of o2 such as 0.01, 0.5, and
1.0 and for varying (eg, &1). For the purpose of simulation study, (3¢ is taken to be 0 and
By =1. Samples of size n = 10,000 were selected and the simulation was repeated 500
times. The average of the estimated values of the parameters was obtained along with the stan-
dard errors (given in parentheses), calculated from the inverse of the Fisher information matrix.
In Table 9.1 we list one such result corresponding to (o2, &0,&;) = (0.5,0.05,0.05) for the
naive model (My), the model incorporating measurement errors only (M), the model incor-
porating classification errors only (M) and the model incorporating both the errors (Myyc).

The results show that the classification error dominates in terms of its effect on the esti-
mates. One can also observe that the joint effect of die errors measured by the attenuation of
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Table 9.1 (07,80, 8,) = (0.5, 0.05, 0.05)

Estimate Model My Model M- Model My, Model My
Go 0.0003 (0.016) 0.002 (0.029) 0.000 (0.024) 0.001 (0.036)
B1 0.558 (0.009) 0.820 (0.029) 0.608 (0.012) 1.000 (0.055)
£o —(—) 0.050 (0.005) —(—) 0.050 (0.006)
€ —(—) 0.050 (0.005) —(—) 0.050 (0.006)

the estimates of the regression coefficients is less than the sum effect of the errors. Finally, the
study reveals that the model incorporating both the classification errors and measurement errors
works best in all the situations. For details and further results of the simulation study, we refer
the reader to Roy et al. [44].

A Dbivariate extension of this model is discussed in the next section. The interesting new
feature of this model is that it involves too many error probabilities as unknown parameters.
To make the model parsimonious, modeling the error probabilities as functions of a fewer
number of parameters is found to be all die more essential.

9.4 BIVARIATE BINARY REGRESSION MODELS WITH
TWO TYPES OF ERROR

Here we discuss bivariate binary regression models with measurement errors in the covariates
and classification errors in the responses. Let y; = (i, yiz)T denote the ith observation
(i=1,2,...n) on the bivariate binary response vector. The response depends on a set of
(mx 1) covariates x; = (x},x5)", where X; is the (m;x 1) predictor of
Yi(j = 1,2; m = my +my). Let us define Gaussian latent variables w; = (Wi, w)! such
that w; ~ No(Bg; + BlTx,-l, B + ng,-z, 1,1, p). The binary response y;; is related to the latent
variable as follows:

yj =1 ifw; >0; otherwise y; = O(j’ =1,2). 9.8)
Simple probability calculation yields

P(yin = 1,yn = 1]x1) = F2(Bo; + B{xi1, Boy + Bax2)s 9.9

where F,(.,.) is the cdf of a bivariate normal distribution with parameters (0, 0, 1, 1, p). The
model represented by (9.10) will be called the “naive model” (My). In this case the x; terms are
not observable; however, observations on the surrogate z; = (zl-Tl, z,@)T are available. It is further
assumed that

Xi|zi ~ N(zi, ), 9.10)

where 2, is a matrix consisting of the diagonal blocks %,2,, and the off-diagonal blocks
3.12,25,. For the purpose of identifiability, 2. is completely specified. Assuming nondifferential
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measurement errors, we obtain

Php=1lyn=1|z)= JP(yl'l = Lyn = 1|x)f(x | z)dx;
9.11)
= F2(Yo1 + ¥} i1, Yoo + Y3 22)-
Here F5(.,.) is the cdf of a bivariate normal distribution with parameters (0, 0, 1, 1, p*)
Yo = Boy(1 + B/ 2;B) % v =B/ (1 +B/2;8) " (=12 9.12)

and

£ _ p+B{2128,
(14 BB (1 + BIZ20By)™

p (9.13)

The model represented by (9.11) incorporates measurement errors. For estimating the par-
ameters, the MLEs of vy, 'y]T, p* are first derived, and then the MLEs of B, BJT, p are obtained
by inverting the relationships (9.12) and (9.13). However, the MLEs of (B3, BJT-) exist provided
that 'YJT-E i7Y; < 1 and that of p exists, provided in turn that

—1+B{212B, <pr< 1+ BT3B,
(1+BI=1B (1 + BIZx0B,)" (L4 BIZB™ (1 + BrZnB)™

It is clear from (9.12) that ignoring measurement error causes attenuation of the regression coef-
ficients. However, the effect of measurement error on the correlation coefficient does not follow
any pattern. It can be observed that in the case of a scalar 3, if B; = 3, > 0 (or <0), then the
naive estimate of p becomes inflated.

In this case, in addition to measurement error in covariates, the data may also be contami-
nated with classification errors in binary responses. Suppose that $; = (3;;, ;)" denotes the ith
manifest response corresponding to the true response y;. The probabilities of misclassification
are given by

P(S)il :j’j)iZ = k|)7i1 = l:yiQ = m) = S(jak|l>m)9 say, j’ka l’m € {0’ 1}5 (914)

where j # [ or k # m. The misclassification probabilities in (9.14) are treated as unknown con-
stants and, to keep the treatment simple, are assumed to be independent of the true covariates x;.
Clearly, there are 12 misclassification probabilities corresponding to different choices of (j, k)
and (/, m). Moreover, (j, k) = (I, m) gives a correct classification. To avoid excessive error
probabilities, one meaningful assumption may be that of conditional independence. More
specifically, it is assumed that

PGi =J. Yo = klyin = Ly =m) = PGy =jlyn =D x PGp =k|ya =m).  (9.15)

This model involves only four unknown classification errors that are relatively easy to esti-
mate along with the regression parameters. Now, the conditional probability of the manifest
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response given the surrogates is given by

P(3i =), Vo =kl|z) = ZS(j,k | Lm)PGin = 1,yn = m|z), 9.16)

(i,m)

where (j, k) € {(1, 1), (1,0), (0, 1), (0,0)}. Note that Equation (9.16) gives the model incor-
porating both measurement errors and classification errors and will be denoted by My,c.

A simulation study is carried out with 3; = 3, = 1.0 (no intercept terms are involved), p =
0.6, and for varying choices of measurement error variances and misclassification probabilities.
In particular, the measurement error distribution is chosen to be univariate normal with mean
equal to the value of the surrogate and for some prefixed choices of the measurement error
variance, such as o’ = 0.01, 0.5, 1.0. It is further assumed that

P{yi =1|yn =0} = P{j, = 1|yn = 0} = =0,
P{5; =0]yu =1} =P{J, =0|yn = 1} =&y,

where &g and &, are some prefixed numbers. Samples of size n = 10000 were selected, and the
simulation was repeated 500 times. The average of the estimated values of the parameters was
obtained along with the standard errors calculated from the inverse of the Fisher information
matrix (given in parentheses). The results show that ignoring classification errors results in
attenuation of the estimates of the regression parameters as well as that of p. However, no theor-
etical justification could be given for this phenomenon. As noted before, ignoring measurement
errors attenuates the estimates of the regression coefficients. However, for the choice of the
parameters considered in the simulation, ignoring measurement errors causes inflation of
the estimate of p. Thus, in the presence of both these errors, the effect of ignoring these
errors on the estimate of p works in opposite directions. As a result, we might chance upon
a situation where the estimate of p is close to the true value under My. For instance, when
o = 0.5, the estimate of p is 0.511 and 0.599 under models My and Myc, respectively.
Throughout the simulation it is observed that classification errors dominate small or moderate
measurement errors. For completeness, we list the results in Table 9.2 corresponding to a
specific choice of (6%, €0, &) and for the models My and Myc. For further details, we refer
the reader to Roy [42].

Table 9.2 (02, &0, &) = (0.5, 0.05, 0.05)

Estimate Model My Model My
Gl 0.546 (0.009) 1.002 (0.099)
Bz 0.547 (0.009) 1.008 (0.120)
p 0.511 (0.017) 0.599 (0.031)
€9 — 0.050 (0.003)
£ — 0.950 (0.004)
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9.5 MODELS FOR ANALYZING MIXED MISCLASSIFIED
BINARY AND CONTINUOUS RESPONSES

In this formulation, let y; = (yy;, y2)7 denote the bivariate response, where y,; is binary and y,;
is continuous. Suppose that yj; is the unobserved latent variable associated with the binary
response y;; such that

yi; = Lify}, >0; otherwise yj; = 0. .17

Associated with each observation there is a p; x 1 covariate vector x;; thought to predict y7;
(and hence y,;) and a p, X 1 covariate vector x,; believed to predict y,;. Further, it is assumed
that

Vi yail % = (] 130" ~ Na(Boy + Bl 1 Bop + Bax2i, 1,03, p). (9.18)

In the case of measurement errors in covariates, let le,-(l x p1) and zpi(1 x ps) be
the surrogates for x!, and xI, respectively. With the strength of Equation (9.18),
and assuming that (xy;,x)| (21, 22:) ~ Np{(z1i,22i),2}, where p=p;+p, and 3 is a
completely specified matrix consisting of the blocks 11,315,391 = 31, and 3y, it can be
shown that

Vinyai |z ~ NaBor + Bl z1is By + Bazai 1 + B 21181, 03 + B3 22285, "), (9.19)

where

. _ pos + Bl 2128,
(14 BIS1B ) (03 + BIZxnpy)™

p (9.20)

In this situation, in addition to measurement errors in covariates, the binary response y;; is
subject to classification errors and hence is not observable. Suppose that y;; denotes the ith
manifest response corresponding to the true response y;;. We assume a simple probability
model in terms of misclassification probabilities given by

Py = 1]|y1i = 0,32, %) = P(3; = 1 |y = 0) =&,

i i 9.21)
P(3; =0y = Lyy,x) =P, =0y =1) ==,.

We treat the misclassification probabilities in (9.21) as unknown constants independent of
the true covariates x; and the continuous response y,. Now, some simple probability
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calculations yield
5 N 1 My _ My
Py =1]y2,x) =(1 81)CI){7(1 — pz)O.S} + & {1 (D{i(l — PZ)O'SH

=go+ (1l —gg— al)d){ (1)

m} = my; (say),

PG = 1]yxu.z) =e0 + (1 —go —&1)

(I){'Ym +¥i zui p*

(1 — p2)03 o3 — 072)05 2 — Boz — Bme‘)} 9.22)

=mr; (say), where p* is given by (9.20) and

v = B : (9.23)
A+ BIE R

Boi

Yo T Ty 80

Also, o3 is given by
0y =03+ BIInB,. 9.24)

Thus, the joint distribution of the manifest binary response y,; and the continuous response
yo; given the surrogates z; is

SFGiy2i | z0) = f Gy | y2i 20 f 32i | 220)

1 Oni = B — Bl zai)

= ?'I 1 — =i e
T e XP{ 2 P

}A (9.25)

The bivariate model given in (9.25) incorporates both the classification errors in binary
responses and measurement errors in covariates.

Using the observed data do = {(5y;, Y21, 205 25)7,i = 1,2, ..., n}, the MLEs of the par-
ameters & = (Yo1,¥!> "), & = (Bga» BS,032)7, 80, and &; are obtained. Let us also define
0, = (By;» BIT, p)T and 8, = By, BZT ,U%)T. As a consequence of the invariance property of
MLEs, the MLE of 6, and 6, are obtained from él and éz by using the relations (9.20),
(9.23), and (9.24). It is to be noted that the first p + 1 components of 8, and &, are the
same. Hence By, and 3, remain unchanged because of the incorporation of measurement
error. However, the scale parameter of the continuous response is affected. According to the
assumption that o2 > BI3,pB,, it follows from (9.24) that ignoring measurement error
inflates the estimate of o2. The estimates of B, and B, are obtained from (9.23), assuming
that I3y, < 1. Also equation (9.23) clearly shows that ignoring measurement errors
causes attenuation of the estimates of the regression coefficients. Equation (9.20) shows that
the estimate of the correlation coefficient is also affected; however, the effect of measurement
errors in this case does not follow any clear pattern.

It is significant that for fixed 6,, ignoring classification error causes attenuation of the esti-
mates of 0;. To be specific, the estimates of 3, 3;, and p are attenuated under the naive model
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Table 9.3 (02, &0, £1) = (0.5, 0.10, 0.10)

Estimates M, M,

[§01 0.0014 (0.0147) 00.0019 (0.0438)
Ql 0.4305 (0.0081) 1.2336 (0.0692)
Goz —0.0002 (0.0124) —0.0002 (0.0124)
ﬁz 0.9997 (0.0054) 0.9997 (0.0054)
p 0.3191 (0.0147) 0.5781 (0.0312)
65 1.5013 (0.0226) 1.0016 (0.0230)
&0 — 0.1000 (0.0061)
& — 0.1000 (0.0055)

My. The effect of classification errors on the estimates of, Bg,,[B,, and o2 is not quite
clear. However, in the special but important case of xj; = xp; = x; (say), the estimates of 6,
remain unaffected because of the incorporation of classification errors.

An extensive simulation study was carried out for varying choices of the misclassification
probabilities and measurement error variance such as 3, = o = 0.01, 0.5, 1.0. Here the sample
size is chosen to be 10,000, and the simulation is repeated 500 times. The true values of the
parameters are as follows: By = Bgp, = 0,8, =B, = 1.0,p =06, and o3 = 1.0. The
average values of the estimates of the parameters along with their standard errors calculated
from the inverse of the Fisher information matrix (shown within parentheses) are reported
for a specific choice of the measurement error variance (o> = 0.5) and misclassification prob-
abilities (0.10, 0.10). The results are listed in Table 9.3 for the naive model (My) and the model
incorporating measurement errors and classification errors (Myc). The findings support the
theoretical justifications given above. For further details, we refer the reader to Roy [42],
and Roy and Banerjee [43].

9.6 ATOM BOMB DATA ANALYSIS

About 5 years after the dropping of atomic bombs on Hiroshima and Nagasaki, a lifespan study
(LSS) was begun at the behest of the Radiation Effect Research Foundation (RERF) that led to
the establishment of a fixed study cohort of survivors who have been followed since October
1950. A major purpose of the study was to assess the effect of radiation exposure on cancer
mortality. This cohort of 86,520 survivors includes both an exposed group and a nonexposed
group, distinguished by distance (<2 km, 2—10 km) from the bursting locations of the bombs.
For those in the exposed group, interviews and other efforts were made to determine the sur-
vivor location and shielding at the time of explosion. On the basis of this information, elaborate
physical computations were made to estimate the individual radiation exposures by using DS86
dosimetry [41,19]. The true dose for a person is represented by the absorbed radiation,
measured in gray units (Gy), to his/her intestine at the time of exposure. For our purpose it
is useful to think of the dosimetry system as a formula that would provide negligible error
for a survivor’s radiation exposure given the exact location and shielding condition. Thus
the sources of error in dose measurements result not only from errors in location and shielding
information but also from the fact that the two individuals receiving the same amount of intes-
tinal exposures may absorb different amounts of radiation, possibly due to biological factors.
For illustrative purpose here, it is assumed that the latter is the cause of measurement error.
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Table 9.4 (07, &g, £1) = (0.5, 0.22, 0.035)

Estimates Model My Model My
éo —0.778 (0.000071) —0.688 (0.000114)
B1 0.291 (0.000778) 0.381 (0.001470)

Thus the true dose (x) for a person is a function of the estimated dose (z) obtained by using
DS86. In other words, z is considered as a surrogate to x. It is assumed that given the surrogate
(), the distribution of the true dose (x) is normal with mean equal to z and variance equal to ez,
where ¢ is a known number representing the constant coefficient of variation. The choice of this
model is motivated partly by the study of Pierce et al. [38]. However, the normal model is one
of the several possible choices for measurement error distribution.

A close inspection of the data [48] shows an unexpected pattern in the proportion of cancer
deaths. It suddenly decreases in the last two dose categories, contrary to what is expected.
Shimizu et al. [46] pointed out that the observed dose response in noncancer mortality was
due to the misclassification of cancer deaths as noncancer deaths on death certificates.
Sposto et al. [48] estimated the misclassification probabilities by using a validation dataset
obtained from a subset of deaths in the cohort for which autopsies were carried out. They
found the overall crude misclassification rate of cancer deaths to be 22% and of noncancer
deaths, 3.5%. From the study they concluded that the misclassification rates do not change
significantly with change in dose categories although they significantly depend on age.

Thus the data are contaminated by both measurement error in covariate and classification
error in response. In this analysis, for all practical purposes, it is assumed that the misclassifi-
cation probabilities are all known and equal to the overall misclassification rates estimated by
Sposto et al. [48]. The analysis is carried out with the data for different choices of c. It is found,
for values of ¢ lying between 0.1 and 0.8, that the estimates of neither the regression parameters
norits standard error change significantly. The results are furnished below in Table 9.4, for
¢ = 0.5 and for the two models, namely, the naive model (My) and the model incorporating
measurement errors and classification errors (Myc). The figures in parentheses indicate the
standard errors. The study reveals that the presence of measurement error does not affect
the results significantly. On the other hand, the results of the analysis in presence of response
misclassification in the data significantly affect the estimates of regression parameters. This
is expected, as the misclassification probabilities are quite high. Ignoring misclassification
probabilities may result in significant underestimation of the regression parameters.

9.7 CONCLUDING REMARKS

This study considers the effect of measurement errors in binary regression models where the
binary responses are subject to classification errors. The concepts are extended to correlated
binary outcomes and mixed binary—continuous outcomes. It is possible to extend the work
to random effects probit and logit models [22] as well as to ordered probit models when the
responses are ordinal [14]. Finally, in binary regression models, in addition to misclassified
responses, some of the responses may be missing as well. The responses depend on a set of
covariates, discrete or continuous, which are subject to measurement error or classification
error. In such a situation, investigating the joint effect of the missing mechanism, the
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missing proportions, the classification errors, and the measurement errors on the estimates of
regression coefficients through some efficiency criteria is worth considering.
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North Carolina

10.1 INTRODUCTION

Survival analysis techniques are widely used in biostatistics, econometrics, and many other
areas where time-to-event data occur. Semiparametric versions of survival models have
proved to be extremely useful in practice because of their meaningful blending of both inter-
pretability (through the parametric regression component) and flexibility (through the nonpara-
metric nuisance component). There are many classic references to this area that can help
provide a thorough introduction (see, e.g., Refs. [24,3, and 26]). We will assume that the
reader has had exposure to the basic semiparametric models and estimation techniques used
in survival analysis.

Semiparametric survival models have both a parametric index 6 and a nonparametric index
7. Often, inference about 0 is the primary interest and r) is a nuisance parameter. The prototypic
example is the Cox [11] regression model, where the components in 6 are the hazard ratios for
the covariates (the regression parameter vector) and m is the baseline hazard function. A
broader example is the class of transformation models [49], which includes the odds-ratio
family [12,46], the proportional odds model [39], and the Cox model as special cases. The
parameter defining the odds-ratio transformation can also be considered unknown, resulting
in the univariate proportional hazards frailty regression model family [28]. In all these settings,
the parameter of interest 0§ is usually the regression parameter (but may also include other
parameters), while the nuisance parameter ) is usually related to the baseline survival function
but may also include nonparametric covariate effects.
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We use the adjective “regular” to designate a parameter that is \/n-consistently estimable.
Note that in many of our examples one or more of the nuisance parameters may also be regular
(as happens, e.g., with the baseline hazard in the Cox model for right censoring). In addition to
right censoring, other kinds of censoring may be involved, including current status data [21,34]
or panel data [56,5], although the use of time-dependent covariates may not be feasible in some
cases. Other models for survival data include additive hazards regression models [1,33], accel-
erated failure-time models [50,55], time-varying coefficient models [45], and other complex
models for addressing departures from proportionality [4,19]. Correlated failure times may
also be involved, as happens with multivariate frailty models both without correlation
[37,38] and with correlation [42,57].

For simplicity of exposition, this chapter focuses on certain transformation models for inde-
pendent and identically distributed univariate failure-time data under either right censoring or
current status censoring (case 1 interval censoring), although the techniques we develop can be
extended to more general situations.

We begin the chapter by a presenting several examples that will be used to illustrate the
main inferential techniques. We will then briefly review some basic asymptotic theory
needed for our results. The bootstrap inferential technique, both the nonparametric and
weighted versions, will be presented next. We will then present the profile sampler, followed
by the piggyback bootstrap. At that point, we will briefly review other inferential techniques,
and the chapter will conclude with a brief discussion.

10.2 EXAMPLES OF SURVIVAL MODELS

We now introduce the key examples that will be used for illustration. We note that this is far
from an exhaustive list; it is intended only for illustration. Here are the examples.

Example 10.1: The Cox Model for Right-Censored Data. A single observation consists of
X=(U,d,Z),where U= T A C is the minimum of a failure time 7 and censoring time C, 8 =
1 {T < C} is the indicator of observing a failure time, and Z is a covariate vector in R?. We
assume that 7'and C are independent given Z and that censoring is uninformative. The survival
function for T given the possibly time-dependent covariates Z has the form

Sy(1) = exp (— J 7O dA(s)), (10.1)
0

where A is a continuous, unknown increasing function with A(0) = 0. We will assume for
simplicity that the time-dependent covariates are external (see Sec. 6.3.1 of Ref. 24). This
model has been widely studied.

Example 10.2: The Proportional Odds Model for Right-Censored Data. The data have
the same form as in Example 10.1, but the survival function for T has the form

t —1
Sz(t) = (1 +J P20 dA(s)) (10.2)
0

Efficient estimation for this model was studied in Murphy et al. [39].
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Example 10.3: The Odds-Ratio Model for Right-Censored Data. The data are the same as
in the previous two examples, but the model has the following form for the survival function
given the possibly time-dependent covariates Z

t —1/y
Sy(t) = <1 + yJ P70 dA(s)) , (10.3)
0

where y > 0 is a specified constant. Taking the limit y | O results in the Cox model of Example
10.1, while setting v = 1 results in the proportional odds model of Example 10.2. Efficient
estimation for this family of models was considered in Scharfstein et al. [46].

Example 10.4: The Odds-Ratio Model for Right-Censored Data, with y Known and a
Change Point Based on a Covariate Threshold. A single observation consists of X =
(U, 3, Z, W), where (U, 8, Z) is as in the previous examples, but W € R is a time-independent
covariate (which may or may not be a component of Z). The survival function in this case is the
same as (10.3) but with B’Z(s) replaced by

rpat(s) = B'Z(s) + {W > L}a'Z(s), (10.4)

where o € R® and { € R. Here 6 = (B, ) are the regular parameters and m = ({, A) are the
“nuisance” parameters. The special case of this model with v | 0 (the Cox model case) was
considered in Pons [44]. A more general version for general transformation models was
considered in Kosorok and Song [29].

Example 10.5: The Odds-Ratio Model for Right-Censored Data with y Unknown. For
this model, 6 = (y, ')’ are the regular parameters of interest. A slightly more general
version of this model was considered in Kosorok et al. [28].

Example 10.6: The Cox Model for Current Status Data. A single observation consists of
X = (U, 3, Z), where U is the random current status time, = 1{T < U} is the event status indi-
cator at U, and Z € R? is a time-independent covariate. Tand U are assumed to be independent
given Z. The survival function of T is assumed to have the form given in (10.1). Since Z is
time-independent, the survival function simplifies to

S,(t) = exp (—eB/ZA(t)) . (10.5)

This model was considered by Huang [21] (see also Ref. 20).

Example 10.7: The Partly Linear Cox Model for Current Status Data. A single obser-
vation consists of X = (U, 8, Z, W), where U, 8 and Z are as defined above but WE R is a
single additional time-independent covariate. Both 7 and U are assumed to be independent
given both Z and W. The survival function has the form

Sy(t) = exp (—eB’Z+h<W)A(t)), (10.6)
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where £ is an unknown smooth function assumed to be in a Sobolev space [34] and A is a base-
line integrated hazard. In this case the nuisance parameter is the composite m = (h, A). A gen-
eralization of this example for transformation models was studied in Ma and Kosorok [34].

10.3 BASIC ESTIMATION AND LIMIT THEORY

For Examples 10.1-10.5, semiparametric maximum-likelihood estimation (SPMLE) involves
a hazard function (the derivative a of A). Maximizing over this a results in assigning mass to
each observed failure time, and the resulting maximizer is no longer a continuous hazard as
assumed in model (10.3). This is a well-known issue [39], and the solution is to utilize an
empirical likelihood that replaces @ with AA and assigns mass only at observed failure
times. The maximizer for A(¢) is then just the sum of the maximizers for AA(s) for all s < t.
The profile likelihood pL,(0), obtained by profiling the empirical likelihood over A, is used
for estimation in these examples, although additional profiling over { is needed in Example
10.4. For Example 10.1, this profiling results in the celebrated partial likelihood, which does
not involve A at all. The full MLE in this instance consists of 6, obtained from the partial
likelihood and the Breslow estimator

A XL dNis)
nn(l) = J nX:{—*/,
0 Z,‘:| Yi(s)eZis)

where N;(t) = 1{U; < t}3; and Yi(r) = 1{U; > ¢}, for the sample observations i = 1,...,n.
The remaining MLEs are more complex.

In general, what is required for Examples 10.2—10.7 is to maximize over the infinite-
dimensional nuisance parameter A before maximizing over the other parameters. For
Examples 10.2—10.5, this maximization leads to a stationary point equation that can be
solved iteratively to obtain an estimator A, depending on 6. For Example 10.2, this stationary
point equation has the form

t
anto = | (Pn
JO

where P, is the empirical measure of the sample, for instance,
P.(Y,Z,8,N) =n"" S h(Y;, Z;,8;,N;). For Examples 10.6 and 10.7, profiling over A is
still needed but is accomplished by using an iterative convex minorant algorithm [17,21].
For Example 10.7, additional complexity is present since some form of penalization is required
to ensure proper maximization of the likelihood over £ [34].

This maximizer Ae is used to compute the profile likelihood pL,,(8), which is then further
maximized to obtain the SPMLE estimates én and 1,,. In Example 10.7, as mentioned earlier,
this may require penalized maximization. In all of these examples, the estimators have been
shown to be consistent. In the case of the infinite-dimensional nonregular parameters, this
consistency may be in terms of an L; norm or some other nonuniform norm. All regular
parameters—all parameters in Examples 10.1-10.5 except for the threshold parameter {, and
the B parameter in Examples 10.6 and 10.7—have been shown to be /n-consistent, asympto-
tically normal, and fully efficient (even for the infinite-dimensional regular parameters).

Y(5)e"Z0(1 + )
1+ [} eYZ0dAq(v)

-1
) P, [dN(s)), (10.7)
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For Example 10.4, Zn is n-consistent (more rapidly converging than the regular parameters) and
converges to the argmax of an interesting Poisson process that is asymptotically independent of
the other parameter estimates. For Examples 10.6 and 10.7, A and & are n 1/3_consistent.

We note that establishing consistency, existence, and rates of convergence are typically the
most technically challenging steps in developing inference for semiparametric models. While
we are not dwelling on these steps in this chapter, we acknowledge their importance and
complexity. Establishing existence and consistency is especially challenging for infinite-
dimensional parameter estimators, as highlighted in Murphy and van der Vaart [41], although
the general approach used in Murphy [37] can often be successfully adapted for right-censored
survival data settings. Establishing rates of convergence for nonregular parameter estimators,
regardless of whether they are infinite-dimensional, is also quite difficult. While there are
some general results and strategies available to help, highly specific methods are often
needed for each new situation.

The focus of the remainder of the chapter is on inference for the regular parameters based on
the limiting normal distributions. For Example 10.1, simultaneous inference for the regression
parameter can be accomplished by using closed-form variance estimators that have by now
become standard (for an overview, see Sec. 4.3 of Ref. 16). Because the limiting variances
from the remaining examples involve complex operators, direct estimation of the variances
in these settings is seldom not feasible, and inference can be quite challenging. We will not
discuss inference for the nonregular parameters, except briefly in Section 10.8, although
some progress has been made in this area (see, e.g., the discussion on inference for the
threshold parameter in Ref. 29).

104 THE BOOTSTRAP

The bootstrap has a long and successful history as a general method of statistical inference. The
use of the bootstrap for infinite-dimensional regular parameters or for finite-dimensional
regular parameters in the presence of nonregular parameters is a more recent phenomenon.
In both cases, empirical process theory plays an important role. The reason for this is that
all the estimators from all our examples can be expressed as smooth functionals of an empirical
process. We now briefly review empirical processes and the associated bootstrap results. As
part of this, we will introduce a useful alternative to the nonparametric bootstrap, the weighted
bootstrap. (For additional information on the empirical process bootstrap, see Sec. 3.6 of
Ref. 54) and Ch. 10 of Ref. 27.)

The empirical probability measure P, was introduced in Section 10.310.3 (above). Let X be
the sample space for the random observation X. Then, for any measurable function
f:X—RP,f=n"'>" f(X;) (this is sometimes called the empirical “expectation”
of f). We let P denote the true probability distribution of X and define Pf = JX f (x)P(dx).
Also let G,f = v/n(P, — P)f. General empirical process theory involves a collection F of
measurable functions f:X+— K. We say that F is P-Glivenko—Cantelli if
supser |(Py — P)f| — 0, outer almost surely, where the “outer” here invokes a high level
of generality (see Sec. 1.2 of Ref. 54) that is quite useful in survival analysis. We say that
F is P-Donsker if G, converges weakly to a tight Gaussian process G uniformly over all
f € F, that is, all G,f~~Gf with an appropriate level of continuity over f € F. We drop
the prefix P in P-Glivenko—Cantelli and P-Donsker if the choice of P is contextually clear.

Consider Example 10.2. Much of the theory we now review comes from Lee [30], which
differs some from the approach in Murphy et al. [39]. Using the form of Ag given in
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Equation 10.7, it is not difficult to establish that the profile empirical likelihood is composed of
several empirical expectations. Thus the SPMLE is a functional of an empirical process over a
suitable choice of F. Consistency will essentially follow from F being P-Glivenko—Cantelli
combined with the identifiability of the proportional odds model, although some verification of
the existence of the estimators involved is also needed. The SPMLEs can also be expressed as
the solution (ﬁn, A,,) of the Z-estimating equation P,U($3,A)(h) = 0, where U(B, A) (h) =

I Y ()P ZO[Z (5)hy + ha(s)IdA(s)
1+ [7 Y(5)eBZ0dA(s)

J [Z/(5)h1 + ha(s)1dN(s) — (1 + B) , (10.8)
0

h=(hy, hy) ranges over H= RY x BV, [0,7], BV, [0,] is the space of functions
on [0,7] with total variation bounded by 1, and 7 is the fixed upper limit of the censoring
times.

Once we have consistency of (ﬁn, A,), we can usually obtain asymptotic normality provided
the class of functions F = {U(B)(h) : B € By,A € Ag,h € H}, where By and Ag are open
neighborhoods of the true parameter values By and A, respectively, is P-Donsker. (The
basic theory for Z estimators of this kind can be found in Sec. 3.3 of Ref. 54). It turns out
that once a class of functions is determined to be Glivenko—Cantelli or Donsker, there is an
automatic corresponding validity of the bootstrap. This makes ensuring that the bootstrap esti-
mator is consistent (as an estimator) and that its conditional distribution is also consistent (as an
estimator of the limiting probability distribution) both somewhat automatic. Before we explain
this in more detail, we need to define the bootstraps that we are interested in. The nonparametric
bootstrap is obtained by sampling without replacement from the sample X, ... , X, to obtain
the bootstrapped sample X7, ..., X;. It is not difficult to see that the empirical measure of the
resulting bootstrapped sample is P f = n! Sy Winf (Xi), where the W, = (Wi, ..., W)
are independent multinomial vectors with n categories (one for each sample value) and prob-
ability n vector (1/n, ...,1/n)". Thus the nonparametric bootstrap of a functional of the empiri-
cal distribution can be viewed as the functional of a weighted empirical distribution.

An alternative bootstrap is the weighted bootstrap. This also can be expressed as the func-
tional of a weighted empirical but with different weights. Let &;, ..., &, be an independent
identically distributed (i.i.d.) collection of positive “preweights” independent of the data
with 0 < E[£]=p <00, 0 < Var[§] =0 < oo, and [; /P[E > uldu < co. The latter
moment condition is a little stronger than the existence of a second moment but not as
strong as requiring E[| & |**<] < oo for some € > 0. Let & be the sample mean of these pre-
weights. The proposed weighted bootstrap is then based on the weighted empirical measure
Prf=n" 3L E/HFX). Let G, = /n(P, —Py) and G," = \/u(u/o)(P," = Pn). We

have the following useful Glivenko—Cantelli result.

Theorem 10.1. Let F be a class of measurable functions f : X +— R. The following are
equivalent:

1. F is P-Glivenko—Cantelli.
2. Sup e ¢|(P;, — P)f| — O outer almost surely and sup ;¢ z|f — Pf| < oo.
3. Supser|(P," = P)f| — O outer almost surely and sup ;e | f — Pf| < 0.

The proof follows from Theorem 10.8 and Corollary 10.2 of Kosorok [27]. O
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We also have a similar result for Donsker classes. First, however, we need to define what
it means for the conditional bootstrap distributions to be consistent for the true limiting dis-
tribution. This is accomplished through bounded Lipschitz classes of functions. Specifically,
let BL;(F) be the collection of all Lipschitz continuous functions A : £*(F)— R with
1Ml <1 and |A(f) — h(g)| < |If — gllw» Where || |lo is the uniform norm. Let G be a
mean zero Gaussian process indexed by f € F such that the correlation between Gf and Gg
is P(fg) — PfPg. We say that the bootstrapped process G, is consistent for G if
sup,e BL}(;)‘EWh(GZ) — Eh(g)} — 0 in outer probability, where Ey, denotes expectation over
the weights W given the sample data. This reduces to the standard consistency definition for
the bootstrap when F is finite-dimensional.

The following theorem tells us that bootstrap conditional distribution consistency is an auto-
matic consequence of the class F being Donsker in the first place.

Theorem 10.2. Let F be a class of measurable functions f : X — R. The following are
equivalent:

1. F is P-Donsker.

2. suphEBLl(f)|EWh(gZ) — E(g)| — 0 in probability and h(G,) is asymptotically measur-
able for all h € BL{(F).

3. supep,r) |Ech(G)) — E(G)| — 0 in probability and h(G") is asymptotically measur-
able for all h € BL{(F).

Note that the asymptotic measurability condition in Theorem 10.2 is discussed in van der Vaart
Wellner [54, Sec. 1.3]; however, it poses no difficulties for the examples that we are consider-
ing and for most other practical survival analysis examples (and can be essentially ignored by
the reader). The proof of Theorem 10.2 follows from Theorem 2.6 of Kosorok [27]. There is
also a continuous mapping result for the bootstrap that converts the above results to validity of
the bootstrapped estimators.

We will now apply these results to two settings where inference focuses on regular
parameters. In the first setting, if there are any nonregular parameters, we assume that they con-
verge at a rate faster than /7. In the second setting, inference focuses on the finite-dimensional
parameter 6 but the nuisance parameter estimators are allowed to converge at a slower than

\/n rate.

10.4.1 The Regular Case

For Examples 10.1-10.3 and 10.5, all parameters are regular. In these settings, Theorems 10.1
and 10.2 enable verification of bootstrap validity to follow almost automatically from consist-
ency of (@,,, M) and asymptotic normality of \/ﬁ[(én, M) — (00, Mo)]. The proof of Corollary 1
in Kosorok et al. [28] illustrates this principle for (our) Example 10.5. For Example 10.4, the
only nonregular parameter is the change point {. Since the MLE for , Lo converges at the n
rate, one can hold the value of { fixed at £, while maximizing over the other parameters for each
bootstrap realization. The resulting bootstrap is valid for all the regular parameters [29]. We
note that confidence bands for infinite-dimensional parameters, such as the baseline hazard,
cannot be obtained from simply knowing the covariance structure of the involved limiting
Gaussian processes, except for very simple processes such as Brownian motion or standard
Brownian bridges, and that some sort of sampling is required.
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10.4.2 When Slowly Converging Nuisance Parameters are Present

The validity of the bootstrap when the nuisance parameters converge at a rate slower than /n is
significantly more difficult to establish. The issue is that the convergence of the bootstrapped

estimators é; or é:* (for the nonparametric and weighted bootstraps, respectively) must be
established in essentially the same fashion as the weak convergence of 8,,. Usually, establishing
the asymptotic normality of \/ﬁ(é,, — 0p) in this setting requires calculations of the entropy of
the log-likelihood components from the full model. For the bootstrap calculations to be valid,
these entropy calculations must be preserved in the bootstrap likelihood. This is quite complex
to evaluate for the nonparametric bootstrap since the weights are dependent. However, since the
weights &, ..., &, are not dependent, this issue is more easily evaluated for the weighted boot-
strap. In some cases, it may also be necessary to require the &; terms to be bounded. The general
theory for this approach is given in Ma and Kosorok [35] and can be shown to apply to infer-
ence on 60 in both Examples 10.6 and 10.7. This means that the theory is applicable to penalized
nonparametric maximum-likelihood estimation. It turns out to be generally valid for obtaining
inference for the 8 component in general semiparametric M-estimators, including least-squares,
least-absolute-deviation, and misspecified likelihood estimation, in addition to correctly
specified likelihood estimation and penalized likelihood estimation.

10.5 THE PROFILE SAMPLER

The material for this section comes mostly from Lee et al. [31]. As mentioned earlier, there are
special cases where the profile likelihood for 6 does not involve m, as occurs with Example
10.1. Unfortunately, most often the form of the profile likelihood is quite complicated and m
is not easily eliminated. Inferences about 6 have been studied for specific survival analysis
models, including Example 10.6 [21] and Murphy and van der Vaart [40] have provided a
general justification for such practices. Under mild structural conditions, the profile likelihood
for 8 has an asymptotic quadratic expansion that resembles that of a parametric likelihood.
Furthermore, the maximum profile likelihood estimator 6, for 6 is asymptotically normal
with mean 6, the true value of 8, and covariance matrix n ! times the inverse of the efficient
Fisher information matrix 7, which is corrected for the presence of the infinite-dimensional
nuisance parameter [9,53].

Inferences about 6 may be obtained without 6, The quadratic expansion of the profile like-
lihood permits the construction of confidence sets by inverting the log-likelihood ratio.
Translating this elegant theory into practice has been limited by computational difficulties.
Even if the log profile likelihood ratio can be successfully inverted for a multivariate parameter,
this inversion does not enable the construction of confidence intervals for each parameter sub-
component separately, as is standard practice in data analysis. For such confidence intervals, it
would be necessary to further profile over all remaining components in 6. A related problem for
which inverting the log likelihood is not adequate is the construction of rectangular confidence
regions for 6, such as minimum volume confidence rectangles [13] or rescaled marginal con-
fidence intervals. For many practitioners, rectangular regions are preferable to ellipsoids, for
ease of interpretation.

In principle, having an estimator of 6 and its variance simplifies these inferences consider-
ably. However, the computation of these quantities using the semiparametric likelihood poses
stiff challenges relative to those encountered with parametric models. Finding the maximizer of
the profile likelihood is done implicitly and typically involves numerical approximations.
When the nuisance parameter is not \/n-estimable, nonparametric functional estimation of m
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for fixed 6 may be required, which depends heavily on the proper choice of smoothing
parameters. Even when ) is estimable at the parametric rate, and without smoothing, I, does
not ordinarily have a closed form. When it does have a closed form, it may include linear oper-
ators that are difficult to estimate well, and inverting the estimated linear operators may not be
straightforward. The validity of these variance estimators must be established on a case-by-case
basis.

The bootstrap is a possible solution to some of these problems, but, as mentioned in the
10.4previous section, theoretical justification is not guaranteed for semiparametric models
where the nuisance parameter is not ./n-consistent. The results in van der Vaart and
Wellner [54] apply only to estimators converging at the parametric rate. Even when the boot-
strap can be shown to be valid, the computational burden is quite substantial, since maximiza-
tion over both 6 and m is needed for each bootstrap sample. A different approach to variance
estimation may be based on Corollary 3 of Murphy and van der Vaart [40], which demonstrates
that the curvature of the profile likelihood near 0, is asymptotically equal to ;. In practice, one
can perform second-order numerical differentiation by evaluating the profile likelihood on a
hyperrectangular grid of 3” equidistant points centered at B, taking the appropriate differences,
and then dividing by 4h> where p is the dimension of § and & is the spacing between grid
points. While the properties of & for the asymptotic validity of this approach are well
known, there are no clear-cut rules on choosing the grid spacing in a given dataset. Thus, it
would seem difficult to automate this technique for practical usage.

Prior to the paper by Lee et al. [31], there does not appear to exist in the statistical literature a
general theoretically justified and automatic method for approximating I,. They [31] propose an
application of Markov chain Monte Carlo to the semiparametric profile likelihood. The method
involves generating a Markov chain {6(1), 6@, .. .} with stationary density proportional to
Do, n(8) = pL,(0)q(6), where g(0) = Q(d8)/(d8) for some prior measure Q. This can be accom-
plished by using, for example, the Metropolis—Hastings algorithm [36,18]. Begin with an
initial value 9('), for the chain. For each k= 2,3,..., obtain a proposal HE+D by random

walk from 6%, Compute A" and py(k+1), n®*™), and decide whether to accept H**"

by evaluating the ratio py(k+1), 1" /py (k) n®") and applying an acceptance rule. After
generating a sufficiently long chain, one may compute the mean of the chain to estimate the
maximizer of pL,(0) and the variance of the chain to estimate I, L The output from the
Markov chain can also be directly used to construct various confidence sets, including
minimum volume confidence rectangles.

Part of the computational simplicity of this procedure is that pL,(0) does not need to be
maximized; it only needs to be evaluated. As mentioned earlier, the profile likelihood is
fairly easy to compute as a consequence of algorithms such as the stationary point algorithm
for maximizing over the nuisance parameter. In Example 10.2, as a case in point, Equation
(10.7) can be iteratively solved by starting with an initial guess on the right side, obtaining
Ag on the left, and then plugging this in on the right and repeating until the change in value
is below a prespecified threshold. The procedure’s validity is established in Theorem 1 of
Lee et al., and the arguments rest on a careful analysis of the stationary distribution of the
chain, which involves an extension of the theory of Murphy and van der Vaart [40]. This exten-
sion enables the quadratic expansion of the log likelihood around B to be valid in a fixed,
bounded set, rather than only in a shrinking neighborhood. The conclusion of these arguments
is that the “posterior” distribution of the profile likelihood with respect to a prior on 0 is
asymptotically equivalent to the distribution of b,..

One requirement for the profile sampler to be useful is for the profile likelihood to be
reasonable easy to compute. When this is not the case, the numerical differentiation method
mentioned previously may be advantageous since it requires fewer evaluations of the profile
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likelihood. However, numerical evidence in Lee et al. [31] seems to indicate that, at least for
moderately small samples, numerical differentiation does not perform as well as the profile
sampler. This observation is supported by theoretical work on the profile sampler in Cheng
and Kosorok [10], which indicates that the profile sampler yields frequentist inference that is
second-order accurate.

Note that inferences about 6 might also be based on the marginal posterior of 6 from the full
likelihood with respect to a joint prior on (6, n). Shen [48] has shown that this approach yields
valid inferences for 6, when 8 is estimable at the parametric rate. The profile likelihood sampler
greatly simplifies the theory and computations, since a prior is not explicitly specified for m. At
the very least, the profile sampler is a useful alternative to fully Bayesian computations when m
is strictly a nuisance parameter. It may also enable an exact Bayesian inference that comp-
lements the asymptotic frequentist inference, if one accepts the use of the profile likelihood
for Bayesian analysis.

It is not difficult to verify the theoretical assumptions for the validity of the profile sampler
for Examples 10.1-10.3, 10.5, and 10.6. Lee et al. [31] explicitly verify the assumptions for
Examples 10.5 and 10.6. The validity of Examples 10.1—-10.3 follow since these are essen-
tially special cases of Example 10.5. Data analysis and simulation studies in their paper [31]
verify that this method works well for moderate sample sizes. Note that the profile sampler
is widely applicable for semiparametric models in general, not just for survival models. It is,
however, unclear how the procedure will work when parameters faster than root n are involved,
as in Example 10.4, but it is probably the case that, as with the bootstrap, the change point par-
ameter 2n can be held at its MLE value and then the algorithm can proceed as though { were
known. Unfortunately, it is known that the profile sampler cannot be applied to many penalized
maximum likelihoods [35], such as is used for Example 10.7 [34].

10.6 THE PIGGYBACK BOOTSTRAP

The material presented in this section comes mostly from Dixon et al. [15]. The focus in this
section is on survival analysis settings where the MLEs 6, and 1) are both /n consistent, as is
the case for Examples 10.1-10.3 and 10.5. The difficulty is that \/n(f),, — mo), where a zero
subscript denotes the true value, usually converges weakly to an infinite-dimensional Gaussian
process, and constructing confidence bands usually requires the ability to sample from good
approximations of this limiting process. As mentioned above in Section 10.4.1, having a uni-
formly consistent estimate of the covariance will seldom lead to a shortcut, except when the
form of the covariance is extremely simple.

Bootstrap methods can circumvent this difficulty by using the information from a sample of
size n to generate random draws that accurately approximate the desired Gaussian process.
Valid bootstrap draws are realizations of random variables 8,, and m,, that satisfy the following
asymptotic property: +/n(6, — By M — ) converges weakly, given the sample data,
to the same distribution that \/71(@,, — 00,1, — Mo) does unconditional on the sample data,
as n — o0. A challenge with the bootstrap is that for each set of bootstrap weights, one must
maximize the likelihood over the parametric and nonparametric components. Thus both the
nonparametric and weighted bootstraps are computationally intense.

‘We now introduce an alternative to these bootstrap methods, the “piggyback bootstrap”. Let
L,(0,m) be the full log likelihood associated with the profile likelihood pL,(0) =
L,(0,7¢),where 1)p = argmax,,L,,(0, n). As mentioned earlier, the required computations are fre-
quently facilitated by the existence of fixed-point algorithms for computing 7j5. We assume in
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this section that draws for the parametric component 0,, are readily available and that \/n(8,, —
0,0, given the sample data, converges in distribution to the unconditional limiting distribution
of \/ﬁ(é,, — 0p). Such draws can be achieved, for example, via the profile sampler discussed in
the 10.5previous section. A key feature of the piggyback bootstrap, however, is that it doesn’t
matter how the draws 0,, are obtained, provided they have the appropriate conditional limiting
distribution. Let L; (0, m) be the bootstrapped log likelihood. Then, for each parametric draw
0,, the piggyback bootstrap draw is m, = argmax,L;(6,, m), resulting in the pair (0,, m,).
Hence, given 0,,, only one maximization over n is required. This approach results in a manyfold
decrease in computational intensity over the full bootstrap, since the full bootstrap requires sim-
ultaneous maximization over both 6 and m for each set of bootstrap weights.

The proposed approach is useful for several survival analysis models, including Examples
10.1-10.3 and 10.5 as mentioned earlier. In the case of clustered survival data, the procedure
also applies to the shared frailty model and the correlated gamma frailty model. The method
also applies to the Cox model for doubly censored survival data. There are also a number of
applications not arising in survival analysis, such as certain biased sampling models, for
which this procedure works. For several of these examples, there are existing methods to sim-
plify the computations. For the Cox proportional hazards model, Kim and Lee [25] propose a
novel Bayesian method for obtaining asymptotically valid random draws. In the proportional
odds model, Hunter and Lange [23] provide an accelerated bootstrap algorithm for maximiza-
tion of the likelihood so that an ordinary or weighted bootstrap can be employed with relatively
low computational cost. For the proportional hazards random-effects regression model, Vaida
and Xu [51] consider using the EM algorithm to obtain maximum-likelihood estimates. A dis-
advantage of these procedures is that they are applicable only to certain families of models,
whereas the piggyback bootstrap applies in general to a fairly large class of semiparametric effi-
cient estimators. The proposed piggyback bootstrap has the additional advantage of reducing
the dimension of the set over which maximization is needed.

We will now present the piggyback bootstrap in greater detail. The main idea is to first
obtain valid random draws for the parametric component of the model. Usually, it is possible
to do this in a manner that is computationally much less intense than maximizing the profile
likelihood, such as is the case, for example, with the profile sampler. The second step is to pig-
gyback the draws for the nonparametric component onto the parametric draws, by plugging the
parametric draws into a bootstrapped likelihood and maximizing over the nonparametric com-
ponent holding the parametric part fixed; that is, for each 0% drawn, k = 1, ..., m, we generate
i.i.d. random bootstrap weights &, ..., &, and compute #*6%" = argmax, L:(0'", ), where
L is the bootstrapped log likelihood using the given bootstrap weights. We assume that
these bootstrap weights are nonnegative, with mean and variance 1 and with
[ \/Pl& > x]dx < o0. As with the weighted bootstrap of Section 10.4 10.4, some variations
in the mean and variance of the weights are possible after suitable adjustments. We also define
A, = B, to mean that A, has a limit law conditional on the data equal to the limit law of B,,. The
following theorem, where we let 0,, denote a representative from fo), o, ei{"l establishes the
validity of the new approach.

Theorem 10.3.  Under regularity conditions,\/n(6,, — 0,7, — Mg, ) = v/n(8, — 60,75 — M)
The regularity conditions and proof are given in Dixon et al. [15].

A key assumption is that both 6,, and 1), are efficient estimators. This implies that the effi-
cient score for 6 (adjusted for not knowing m) is uncorrelated with the score for m, where the
score for m is computed under the assumption that 6 is known. This property yields a simple
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expression for the joint distribution of én and 1), that is utilized in the piggyback bootstrap.
Fortunately, establishing efficiency is rarely a problem for semiparametric MLEs.
Furthermore, obtaining the MLE of m corresponding to a specific 6 is simplified in many of
the examples considered in Dixon, including Examples 10.1-10.3 and 10.5 through the use
of a fixed-point algorithm.

Before utilizing this result, it is necessary to obtain draws 8% k=1, ..., m, that have the
right conditional distribution. Because é,, is efficient, \/71(@,, — 0p) is asymptotically zero-mean
normal with variance I !, where I is the efficient Fisher information for 6. Thus one way to

obtain the desired draws is to estimate I | with a consistent estimator Vo, and then let 8% =
0, + n~Y 2V(l)/ ZZ("), k=1,..., m, where the Z® are independent standard normal vectors of

length p, where p is the dimension of 8. In some settings, such as Example 10.1, a consistent
estimator of V;, is not difficult to construct, but in many other settings finding such an estimator
can be quite challenging. An alternative is to utilize the quadratic expansion of the profile log
likelihood pL,(0) given in Murphy and van der Vaart [40] as mentioned earlier in this chapter.
As we have mentioned several times, the profile sampler is also an extremely useful and com-
putationally efficient approach to accomplishing this, and it is the approach we most readily
recommend.

10.7 OTHER APPROACHES

Important alternative approaches to the above procedures include the m within n bootstrap [8]
and subsampling [43]. Since \/ﬁ(én — Bp) is known to have a continuous limiting distribution
L, Theorem 2.1 of Politis and Romano [43] yields that the m out of n subsampling bootstrap
converges—conditionally on the data—to the same distribution £, provided m/n — 0 and
m — 00 as n — 0. Because of the requirement that m — o0 as n — oo, the subsampling boot-
strap potentially involves many calculations of the estimator. Fortunately, the asymptotic line-
arity of the SPMLE é,, [as asserted, e.g., in expression (5) of Ref. 40] can be used to formulate a
computationally simpler alternative as described in Ma and Kosorok [34].

Let 8, be any asymptotically linear estimator of a parameter 6, € R¢, based on an i.i.d.
sample X, ..., X,,, having square-integrable influence function ¢ for which E[$bd7] is nonsin-
gular. Let m be a fixed integer >d, and, for each n > m, define k,, ,, to be the largest integer
satistying mk,,, ,, < n. Also define N,,, , = mk,, ,. For the data X, . . ., X,,, compute the estimator
0, and randomly sample N,,, out of the n observations without replacement, to obtain
Xi,... ,Xl*vm. Note that we are using the notation 8,, rather than én to remind ourselves that
this estimator is a general asymptotically linear estimator and not necessarily an SPMLE.
Forj=1,...,m, let 8% ; be the estimate of 6 based on the observations X7, ..., X}, , after
omitting X Xm+,, Xometjs ...,XE‘k L )m Compute B,=m" Z./:l e,,,_/- and S; =(m —

K D it (6 -9 (en,,-f’,*,)T. The following lemma provides a method of obtaining
asymptotlcally vahd confidence ellipses for 6.

mn

Lemma 10.1. Let 6§, be an estimator of 8, € R?, based on an i.i.d. sample X, . .., X,, which
satisfies n'/2(8, — 09) = /nP,db + 0,(1), where E[bd’] is nonsingular. Then n(8, —
00)71S,*17" (6, — 60) converges weakly to d(m — 1)F,,,—,/(m — d), where F, has an F
distribution with degrees of freedom r and s.

The key to the proof of Lemma 10.1 is the simultaneous validity of the asymptotic lin-
earity expansion for all the jackknife estimates. The details of the proof are given in Ma and
Kosorok [34].
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The fact that m remains fixed as n — oo in the proposed approach results in a potentially
significant computational savings over subsampling that requires m to grow increasingly
large as n — 0. A potential challenge for the proposed approach is in choosing m for a
given dataset. The larger m is, the larger the denominator degrees of freedom in F,,,—, and
the tighter the confidence ellipsoid. On the other hand, m cannot be so large that the required
asymptotic linearity does not hold simultaneously for all jackknife components. The need to
choose m makes this approach somewhat less automatic than the profile sampler.
Nevertheless, that fact that this “block jackknife” procedure requires fewer assumptions than
does the profile sampler makes it a potentially useful alternative.

We have already mentioned fully Bayesian alternatives to the frequentist approaches that we
have discussed. This is an important area of research with much current activity. Of particular
interest are those methods that have demonstrated good frequentist properties such as the
general results of Shen [48] and the special results of Kim and Lee [25] for Example 10.1
that we mentioned earlier and that we now briefly review. The basic idea is to use a specially
designed prior for both parameters. This prior, when applied to the empirical likelihood
discussed previously for the Cox model, results in a posterior with a very convenient form.
Kim and Lee [25] prove that the output of this sampling scheme has the desired asymptotic
properties. Unfortunately, this technique relies on the special structure of the Cox partial
likelihood, a feature not shared by other semiparametric survival models.

Another general approach when all parameters are regular is to accurately estimate the influ-
ence function ¢ with some dT),, satisfying n~ 'Z:-l: 1] b)) — $n(Xi)||§o = 0p(1). One then
samples from nV 22;7: lZiJ>n(Xi), where Z,, ..., Z, are ii.d. standard normals, to construct
confidence intervals. This is essentially the approach taken by Lin, et al. [32] for Example 10.1.
They [32] utilize the nice structure of the SPMLE for the full Cox model to obtain a nice esti-
mate of the full influence function. A key challenge of this approach for the other examples we
have discussed is that the influence function generally involves complex operators and is thus
not practical to estimate in many situations. There are a number of other important specialty
approaches to inference in survival analysis that apply to specific situations but do not
appear to be widely generalizable. Recall, for example, the accelerated bootstrap of Hunter
and Lange [23] and the modified EM algorithm of Vaida and Xu [51] mentioned earlier.

10.8 CONCLUDING REMARKS

In this chapter, we have endeavored to present general methods for semiparametric survival
analysis inference based on nonparametric maximum likelihood estimation. While the
methods we have discussed apply to many survival analysis models, there are many addition
models, such as the correlated gamma frailty model [42], which we have not examined here but
for which the methods presented are applicable [14]. It is important to note that empirical pro-
cesses are very important in all this development, and we encourage the interested reader to
become well acquainted with empirical process theory and techniques.

We also note that the greatest challenges appear to occur when one or more of the para-
meters converge at a rate different than /n. Most open research questions appear to be in
this direction. The use of sieved and penalized log likelihoods can be very useful in some
of these situations, although inference based on these procedures can still be technically chal-
lenging as mentioned previously regarding penalization for Example 10.7 (see also Ref. 34).
Huang [22] applies sieves to estimation in the partly linear Cox model for right-censored
data, while Shen [47] studies sieved estimation for Example 10.2. A deeper discussion of
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sieved and penalized estimation is beyond the scope of the present chapter, but a useful intro-
duction to these approaches can be found in of van de Geer [52, Ch. 10].

Note that we have not even started to discuss inference for nonregular parameters. This area
is very challenging and is also a very active area of research. An interesting development in this
area is the asymptotically pivotal distribution results for certain cube-root-consistent estimators
as described in Banerjee [6]. This approach has been applied successfully to inference for the
survival function evaluated at a chosen timepoint in the current status data setting of example 6
[7]. On the other hand, the problem of constructing uniform confidence bands for the survival
function in this setting remains unsolved.

Yet another challenging, open area in survival analysis is inference under model misspeci-
fication. Some results in this direction for regular parameters can be found in Kosorok et al.
[28], and research on inference under misspecification in the presence of nonregular pa