

What readers are saying about Pragmatic Version Control

Using Git

Pragmatic Version Control Using Git is an excellent guide to getting you

started with Git. It will teach you not only how to get yourself started

but also how to cooperate with others and how to keep your history

clean.

Pieter de Bie

Author, GitX

If you are thinking of using Git, I highly recommend this book. If you

are not using a version control system (and code or create content on

a computer), put the book down, slap yourself, pick the book back up,

and buy it.

Jacob Taylor

Entrepreneur and Cofounder, SugarCRM Inc.

Not only has this book convinced me that Git has something to offer

over CVS and Subversion, but it has also showed me how I can benefit

from using it myself even if I’m using it alone in a CVS/Subversion

environment. I expect to be a full-time Git user soon after reading

this, which is hard to believe considering this is the first distributed

version control system I’ve ever looked at.

Chuck Burgess

2008 PEAR Group Member

Travis has done an excellent job taking a tricky subject and making it

accessible, useful, and relevant. You’ll find distributed version control

and Git much less mysterious after reading this book.

Mike Mason

Author, Pragmatic Version Control Using Subversion

Pragmatic Version Control
Using Git

Travis Swicegood

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Travis Swicegood.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-15-8

ISBN-13: 978-1-934356-15-9

http://www.pragprog.com

Contents
Acknowledgments 9

Preface 10

Who’s This Book For? . 11

What’s in This Book? . 11

Typographic Conventions . 13

Online Resources . 13

I Welcome to the Distributed World 14

1 Version Control the Git Way 15

1.1 The Repository . 16

1.2 What Should You Store? 17

1.3 Working Trees . 18

1.4 Manipulating Files and Staying in Sync 18

1.5 Tracking Projects, Directories, and Files 19

1.6 Tracking Milestones with Tags 20

1.7 Creating Alternate Histories with Branches 21

1.8 Merging . 22

1.9 Locking Options . 24

1.10 Next Steps . 25

2 Setting Up Git 26

2.1 Installing Git . 26

2.2 Configuring Git . 31

2.3 Using Git’s GUI . 33

2.4 Accessing Git’s Built-in Help 34

CONTENTS 6

3 Creating Your First Project 36

3.1 Creating a Repository . 37

3.2 Making Changes . 37

3.3 Starting to Work with a Project 40

3.4 Using and Understanding Branches 43

3.5 Handling Releases . 44

3.6 Cloning a Remote Repository 48

II Everyday Git 50

4 Adding and Committing: Git Basics 51

4.1 Adding Files . 52

4.2 Committing Changes . 55

4.3 Seeing What Has Changed 58

4.4 Managing Files . 61

5 Understanding and Using Branches 65

5.1 What Are Branches? . 66

5.2 Creating a New Branch 67

5.3 Merging Changes Between Branches 69

5.4 Handling Conflicts . 74

5.5 Deleting Branches . 77

5.6 Renaming Branches . 78

6 Working with Git’s History 80

6.1 Inspecting Git’s Log . 81

6.2 Specifying Revision Ranges 82

6.3 Looking at Differences Between Versions 85

6.4 Finding Out Who’s to Blame 86

6.5 Following Content . 88

6.6 Undoing Changes . 91

6.7 Rewriting History . 94

7 Working with Remote Repositories 100

7.1 Network Protocols . 100

7.2 Cloning a Remote Repository 103

7.3 Keeping Up-to-Date . 104

7.4 Pushing Changes . 105

7.5 Adding New Remote Repositories 106

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=6

CONTENTS 7

8 Organizing Your Repository 109

8.1 Marking Milestones with Tags 110

8.2 Handling Release Branches 112

8.3 Using Valid Names for Tags and Branches 114

8.4 Tracking Multiple Projects 115

8.5 Using Git Submodules to Track External Repositories . 116

9 Beyond the Basics 122

9.1 Compacting Repository History 123

9.2 Exporting Your Repository 124

9.3 Rebasing a Branch . 125

9.4 Using the Reflog . 128

9.5 Bisecting Your Repository 131

III Administration 135

10 Migrating to Git 136

10.1 Communicating with SVN 136

10.2 Making Sure git-svn Is Available 140

10.3 Importing a Subversion Repository 141

10.4 Keeping Up-to-Date with a Subversion Repository . . . 143

10.5 Pushing Changes to SVN 145

10.6 Importing from CVS . 146

11 Running a Git Server with Gitosis 147

11.1 Making Sure Dependencies Are Met 148

11.2 Installing Gitosis . 149

11.3 Creating Administrator Credentials 149

11.4 Configuring the Server for Gitosis 150

11.5 Initializing Gitosis . 151

11.6 Configuring Gitosis . 151

11.7 Adding New Repositories 152

11.8 Setting Up a Public Repository 154

11.9 Closing Thoughts . 155

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=7

CONTENTS 8

IV Appendixes 157

A Git Command Quick Reference 158

A.1 Setup and Initialization 158

A.2 Normal Usage . 159

A.3 Branches . 160

A.4 History . 162

A.5 Remote Repositories . 164

A.6 Git to SVN Bridge . 165

B Other Resources and Tools 167

B.1 Extras Bundled with Git 167

B.2 Third-Party Tools . 168

B.3 Git Repository Hosting 171

B.4 Online Resources . 172

C Bibliography 174

Index 175

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=8

Acknowledgments
Although my name is on this book as the author, it is only here because

of a long list of people. Please indulge me while I take a moment to thank

them.

Thanks to Dave Thomas and Andy Hunt for taking the chance on a new

author. The entire team they’ve put together at Pragmatic Bookshelf is

amazing. I owe a special thanks to my editor, the ever helpful Susannah

Davidson Pfalzer.

I would also like to thank all of those who offered me feedback on the

book as it progressed through beta form. Especially helpful was the

great team of technical reviewers: Chuck Burgess, Pieter de Bie, Stu-

art Halloway, Junio Hamano, Chris Hartjes, Mike Mason, John Mertic,

Gary Sherman, Jacob Taylor, and Tommi “Tv” Virtanen. Thanks also

to the wonderful teams of developers and colleagues at SugarCRM and

Ning who supported me while I wrote this book.

Finally, I would like to thank my friends and family for their support

and understanding while I wrote this book. My wonderful wife, Meg,

put up with the late nights and “work weekends” with very little com-

plaining. Without her support, and that from the rest of my friends and

family, this book wouldn’t be here today.

Preface
Development teams around the globe are changing. They are dropping

their clunky, old, centralized version control systems (VCSs) in favor of

Git, which is a lightweight, distributed version control system (DVCS)

and relative newcomer to the version control world.

First here’s a quick overview: a version control system is like a bank

vault. You take your valuables—in our case as developers, these valu-

ables are the source code we write—and deposit them in the bank

for safekeeping.1 Each change you mark—or commit—is recorded, and

you can go back over the history just like you can review your bank

statement.

In the Git world, it’s like you walk around with your own vault that

has an automated teller attached right to it. You can fully disconnect

from everyone else, share what you want, and of course keep track of

your project’s history. The brainchild of Linus Torvalds, Git was orig-

inally developed to track changes made to the Linux kernel. Git has

matured from the original rough collection of scripts Linus created in a

few weeks into a rich toolkit. Its following strengths can help you as a

programmer:

• Distributed architecture: Disconnect completely, and work without

the distractions of an always-on Internet connection.

• Easy branching and merging: Creating branches is easy, cheap,

and fast, and unlike some version control systems, merging every-

thing back together—even multiple times—is a snap.

1. As I write this, we’re in the middle of a $700 billion bailout of the American banking

system, so maybe a bank isn’t the best of analogies. Don’t think about that part; just

think of banks the way they’re supposed to work.

WHO’S THIS BOOK FOR? 11

• Subversion communication: Are you the only one in your company

ready to make the switch? No worries if everyone else is still using

Subversion. Git can import all your history from and send your

changes back to a Subversion repository.

That’s the sixty-second introduction to Git, and the rest of this book

will build on this simple foundation.

Who’s This Book For?

This book has something in it for everyone. If you’re new to version

control and the preceding paragraphs are all you know about it, this

book will walk you through the basics and get you up to speed on how

Git can help you.

If you’re a seasoned developer and have a firm grasp on Subversion or

CVS, you can skim Part I about Git specifics and jump into Part II to

get into the good stuff—the Git commands and how they work.

What’s in This Book?

This book is divided into four parts:

• Part I is an introduction to version control with a Git slant. Chap-

ter 1, Version Control the Git Way, on page 15 is where you’ll learn

about version control in general and some of the fundamental con-

cepts around VCS and how DVCS is different.

Chapter 2, Setting Up Git, on page 26 walks you through installing

and configuring Git, and Chapter 3, Creating Your First Project, on

page 36 gets your feet wet by working on a simple HTML project2

that showcases a lot of Git’s functionality in a real project.

Chapters 2 and 3 are hands-on, so have your computer handy.

• Part II is where the training wheels come off. Chapter 4, Adding

and Committing: Git Basics, on page 51 deals with the basics—

the commands you need to accomplish everyday tasks—getting a

repository started, making commits, and so on.

Next up, we jump into branches in Chapter 5, Understanding and

Using Branches, on page 65. Branching is so key to how Git oper-

2. Don’t worry if you don’t know HTML—our project is a simple one.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=11

WHAT’S IN THIS BOOK? 12

ates that there’s a full chapter explaining what branches are and

how to use them. With the first two chapters of Part II out of the

way, you’ll be ready to start exploring the history of changes you’ve

been creating. Chapter 6, Working with Git’s History, on page 80

covers that.

Chapter 7, Working with Remote Repositories, on page 100 introdu-

ces you to the concepts around sharing your work with others

through remote repositories. The “social” aspect of any version

control system is its killer feature, and Git is no different.

Once you know how to use Git and interact with other developers’

repositories, you’ll learn about some organizational techniques in

Chapter 8, Organizing Your Repository, on page 109 to keep your

repository sane.

Finally, we round out Part II with Chapter 9, Beyond the Basics,

on page 122, which introduces you to some commands you’ll find

useful for specialized situations.

These chapters all have lots of examples to follow along with, but

keep in mind they are jumping-off points for how to use Git to

work with your code’s history. Once you get more comfortable,

feel free to experiment.

• Part III is all about administration and is not required reading if

someone else on your team or in your company handles that for

you. Chapter 10, Migrating to Git, on page 136 shows you how to

handle migration to Git from other popular VCSs, and Chapter 11,

Running a Git Server with Gitosis, on page 147 teaches you how to

administer your public repositories with Gitosis.

• We close out with a few appendixes. In Appendix A, on page 158,

you’ll find a command reference so you can quickly find out how

to do common commands.

In Appendix B, on page 167, you’ll find coverage of some extra

tools—some that ship with Git and some of which you have to

install yourself—and links to online resources.

Finally, in Appendix C, on page 174, you’ll find information on

other books that are referenced throughout this one.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=12

TYPOGRAPHIC CONVENTIONS 13

Typographic Conventions

A few typographical conventions are used throughout this book. They

are as follows:

Git Refers to the program as a whole when capitalized.

git Refers to the command you run on the command

line.

italic Signifies new concepts.

files and directories Are displayed in this font.

prompt> Comes before something you should type. Longer

commands may be broken up into several lines

with a \ at the end of each line. They can be typed

as one line. They’re broken up in the book only so

they fit on the page.

Online Resources

Each chapter in Part II starts with a repository that looks like your

repository does if you follow along with each of the examples throughout

the book. If you skip ahead, you can get a copy of the repository by

cloning it from GitHub. You can find the repositories on GitHub from

my profile:

http://github.com/tswicegood

The command you need to get the current repository is listed at the

start of each chapter.

The book’s web page on pragprog.com3 is a great jumping-off point for

what’s going on with the book. From there you can drop me a note on

the forums or make suggestions or corrections on the errata page.

At this point, I’m sure you’re teeming with questions. So, without fur-

ther ado, let’s jump into it!

3. http://www.pragprog.com/titles/tsgit

http://github.com/tswicegood
http://www.pragprog.com/titles/tsgit
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=13

Part I

Welcome to the Distributed

World

14

Chapter 1

Version Control the Git Way
A version control system (VCS) is a methodology or tool that helps you

keep track of changes you make to the files in your project. In its sim-

plest, manual form, a VCS is you creating a copy of the file you’re work-

ing with and adding the date and time to the end of it.

Being pragmatic, we want something that will help automate that pro-

cess. This is where VCS tools come in. They track all the changes for

us, keeping a copy of every change made to the code in our projects.

Distributed version control systems (DVCSs) are no different in that

respect. Their main goal is still to help us track changes we make to the

projects we’re working on. The difference between VCSs and DVCSs is

how developers communicate their changes to each other.

In this chapter, we’ll explore what a VCS is and how a DVCS—Git in

particular—is different from the traditional, centralized model. You’ll

learn the following:

• What a repository is

• How to determine what to store

• What working trees are

• How files are manipulated and how to stay in sync

• How to track projects, directories, and their files

• How to mark milestones with tags

• How to track an alternate history with a branch

• What merging is

• How Git handles locking

All of these ideas revolve around the repository, so let’s start there.

THE REPOSITORY 16

1.1 The Repository

The repository is the place where the version control system keeps track

of all the changes you make. Most VCSs store the current state of the

code, along with when each change was made, who made it, and a text

log message that explains why they made the change.

You can think of a repository like a bank vault and its history like the

ledger. Each time a deposit—what is called a commit in VCS lingo—is

made, your VCS tool adds an entry to the ledger and stores the changes

for safekeeping.

Originally, these repositories were accessible only if you were logged

directly into the machines they were stored on. That doesn’t scale, so

tools such as CVS, and later Subversion, were created. They allowed

developers to work remotely from the repository and send their changes

back using a network connection.

These systems follow a centralized repository model. That means there

is one central repository that everyone sends their changes to. Each

developer keeps a copy of the latest version of the repository, and when-

ever they make a change to it, they send that change back to the main

repository.

The centralized repository is an improvement over having to directly

access the machine where the repository lives, but it still has limita-

tions. First, you have only the latest version of the code. To look at the

history of changes, you have to ask the repository for that information.

That brings up the second problem. You have to be able to access the

remote repository—normally over a network.

In this age of always-on, broadband Internet connections, we forget that

sometimes we don’t have access to a network. As I’ve worked on this

book, I’ve written parts at my home office, in coffee shops, on cross-

country plane flights, and on the road (as a passenger) while traveling

across country. I even did some of the final editing at a rustic cabin in

Lake of the Ozarks, Missouri.

That highlights one of the biggest advantages of a DVCS, which is the

model that Git follows. Instead of having one central repository that

you and everyone else on your team sends changes to, you each have

your own repository that has the entire history of the project. Making

a commit doesn’t involve connecting to a remote repository; the change

is recorded in your local repository.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=16

WHAT SHOULD YOU STORE? 17

Let’s go back to our bank vault analogy for a minute. A centralized

system is like having one bank that every developer on your team uses.

A distributed system is like each developer having their own personal

bank.

You might be wondering how you can keep in sync with everyone else’s

changes and make sure they have yours. Each developer still sends

their changes back to the main project repository. They can have access

to send the changes directly to the main repository (an action called

pushing in Git), or they might have to submit patches, which are small

sets of changes, to the project’s maintainer and have them update the

main repository.

1.2 What Should You Store?

The short answer: everything.

The slightly less short answer: everything that you need to work on

your project. Your repository needs a copy of everything in your project

that’s essential for you to modify, enhance, and build new versions of it.

The first and most obvious thing you should store in the repository is

your project’s source code. Without that, you can’t fix bugs or imple-

ment new features.

Most projects have some sort of build files. A couple of common ones

are Makefiles, Rakefiles, or Ant’s build.xml. These need to be stored so

you can compile your source code into something usable.

Other common items to store in your repository are sample configura-

tion files, documentation, images that are used in the application, and

of course unit tests.

Determining what to include is easy. Ask yourself, “If I didn’t have X,

could I do my work on this project?” If the answer is no, you couldn’t,

then it should be included.

Like all good rules, there is an exception. The rule doesn’t apply to tools

that you should use. You should include the Ant build.xml file but not

the entire Ant program.

It’s not a hard exception, though. Sometimes storing a copy of Ant or

JUnit or some other program in your repository can make sure the

entire team is using the same version of the tools you use. These should

be stored separately from your project, however.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=17

WORKING TREES 18

1.3 Working Trees

So far we’ve discussed the repository and talked about all the files

you’re storing in it, but we haven’t talked about where you make all

of your changes. This happens in your working tree.

The working tree is your current view into the repository. It has all the

files from your project: the source code, build files, unit tests, and so on.

Some VCSs refer to this as your working copy. People coming to Git

for the first time from another VCS often have trouble separating the

working tree from the repository. In a VCS such as Subversion, your

repository exists “over there” on another server.

In Git, “over there” means in the .git/ directory inside your project’s

directory on your local computer. This means you can look at the his-

tory of the repository and see what has changed without having to com-

municate with a repository on another server.

So, how do you get this working tree in the first place? Well, you can

start your own project and then tell Git to initialize a repository for it;

or you can clone an existing repository.

Cloning makes a copy of another repository and then checks out a copy

of its master branch—its main line of development. Checking out is the

process Git uses to change your working tree to match a certain point in

the repository. We’ll talk more about cloning repositories in Section 7.2,

Cloning a Remote Repository, on page 103.

Of course, a VCS is all about tracking changes. So far, we’ve talked

about repositories and your working tree—your current view of the

repository—but we haven’t talked about those changes yet. Now we’ll

cover that.

1.4 Manipulating Files and Staying in Sync

Tracking changes to your files over time is the whole reason for using

a VCS. You make changes to the source code, rerun your unit tests to

make sure your changes don’t have any side effects, and then commit

those changes.

Committing a change adds a new revision to the repository and stores

your log message explaining what the change did. This gives you a

record to go back through if you ever need to figure out why a certain

change was made or when a bug was introduced.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=18

TRACKING PROJECTS, DIRECTORIES, AND FILES 19

A DVCS such as Git requires that you share your changes with other

developers in order for them to have access to them. This is done by

pushing the changes to an upstream repository.

An upstream repository is a public repository that you and possibly

other developers all push changes to. Pushing is what you do when you

want to send your data to another repository so it can be shared with

other developers.

Pushing changes is just half of what you need to do to stay in sync. You

also have to fetch changes to get the latest updates from other members

on your team.

There are two steps to retrieving changes from a remote Git repository.

First, you fetch them. That creates a copy of the remote repository’s

changes for you. This step is sort of like the reverse of pushing. Instead

of sending changes to another repository, you ask the remote repository

to send you the changes it has.

Next, you merge those changes into your local history. Git provides

tools that help you merge changes. Since you normally want to fetch

and merge changes at the same time, Git provides a way to do both

in one step through a process called pulling. Pulling is similar to an

update command in Subversion or CVS.

Git is fully distributed, though. You can push and pull changes to and

from multiple repositories. Working with remote repositories is a core

part of fully understanding how Git works. We’ll cover it fully in Chap-

ter 7, Working with Remote Repositories, on page 100.

1.5 Tracking Projects, Directories, and Files

So far you’ve seen how to store your code in repositories. In this section,

we’ll talk about how to organize the things you store.

At the lowest level, Git tracks the files you store in your repository as

content. This is different from many version control systems that track

files. Instead of tracking a models.py file, Git tracks the content—the

individual characters and lines that make up the variables, functions,

and so on—of models.py, and Git adds metadata to it such as the name,

file mode, and whether the file is a symlink. It’s a nuanced difference,

but it’s an important one.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=19

TRACKING MILESTONES WITH TAGS 20

Technically, this has a lot of advantages. It reduces the amount of stor-

age space needed to store the entire history of your repository and

makes it feasible and fast to do things, such as detecting functions

or classes moving between two files or determining where copied code

came from. We’ll cover this in more detail in Section 6.5, Following Con-

tent, on page 88.

You interact with the data in those files exactly like you do any other

files. All your work happens in the working tree. It’s a set of normal

directories and files that represents your current view of the repository.

The way you organize the files and directories in your repository makes

up your project. Most projects follow a specific structure so everyone

on the team knows where to put files so everyone else can find them.

Most companies, however, have more than one project. Some larger

projects might even be broken down into several modules to make them

more manageable. How you structure these modules within repositories

is up to you.

Git allows you to structure your repositories however you like. You can

create a new directory in the repository for each project so the projects

share a common history, or you can create a new repository for each

project.

Coming up with the perfect balance is challenging for someone new to

the VCS world. In Chapter 8, Organizing Your Repository, on page 109,

we’ll cover some of the ways you can structure your repository.

We’ve covered the basics now. You know what a repository and your

working tree are. You know that your project is just how you lay out

the contents of your repository. Now let’s explore tags.

1.6 Tracking Milestones with Tags

As projects progress, they hit milestones. Maybe you follow an agile

methodology and have weekly development cycles where some new fea-

ture is added every week, or maybe you’re on a traditional cycle where

updates are released every few months.

Either way, you need to keep track of what state your repository was in

when you passed that milestone. Tags give us the tool to do that. They

mark a certain point in the history of the repository so you can easily

reference them later.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=20

CREATING ALTERNATE HISTORIES WITH BRANCHES 21

A tag is simply a name that you can use to mark some specific point in

the repository’s history. It can be a major milestone such as a public

release or something much more routine like the point at which a bug

was fixed in your repository.

Tags help you keep track of the history of your repository by assigning

an easy-to-remember name to a certain revision. Up next, we’ll cover

branches—the part of any VCS that gives you the ability to work in

alternate existences.

1.7 Creating Alternate Histories with Branches

When I was a kid, one of my favorite book series was the Choose Your

Own Adventure series.1 Readers of these books will remember the way

they work. You read a few pages and then make a choice. Does Joe

enter the dark cave? If so, turn to page 42. Or does Joe turn around

and leave the forest? If so, turn to page 23.

You can think of your repository like a book. You can read it from start

to finish to get the entire story of your project. Branches are like the

Choose Your Own Adventure books. There are multiple ways the story

could go, each with a different history.

So, how do these alternate histories fit into your work with a version

control system? Let’s say you have a few ideas to rewrite a calendar

component in your project. I’ve never worked on a project that got the

calendar portion of the code right the first time, but even if it’s not the

calendar, there’s always something on a project that can be done better

with the benefit of hindsight.

To make these changes, you need to get the rest of the team on board,

and then you have to track your changes. You can copy all the code

into another directory and start making changes, but then there’s no

way to track the changes you make and—more importantly—undo the

bad changes you make while experimenting.

This is where branches come in. You can create a branch that marks

a point where the files in the repository diverged. Each branch keeps

track of the changes made to its content separately from other branches

so you can create alternate histories.

1. http://en.wikipedia.org/wiki/Choose_Your_Own_Adventure

http://en.wikipedia.org/wiki/Choose_Your_Own_Adventure
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=21

MERGING 22

master branch

release branch

some other branch

Create Branch

Figure 1.1: How branches work

You can see how branches work in Figure 1.1. Your master branch is

the main line of development. Some other VCSs call this their trunk.

Your branches then “branch” off that line.

The branch can exist for the rest of the project or for just a few hours.

It can be merged into another branch, but there’s no hard rule saying

a branch has to be merged.

Sometimes, you don’t even want them to merge. It might be a branch

to track an older major version of your project, or it could be an experi-

mental branch that may end up getting deleted.

Just like everything in Git, branches can be created locally without

having to share them. Creating local branches and not sharing them

does have its benefits. You can experiment with changes and then share

them when they’re something worth sharing or quietly delete them if the

experiment didn’t work out.

Branches and tags are an important part of working with Git. There’s

an entire chapter—Chapter 5, Understanding and Using Branches, on

page 65—that covers how to use both.

Most branches need to be merged with other branches to keep them up-

to-date. Up next, we’ll talk about how Git handles merging the branches

together.

1.8 Merging

In our Choose Your Own Adventure story, Joe’s path when we met him

had two distinct routes: into the cave or out of the forest. Often, the

plot lines would come back together later in the book, though.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=22

MERGING 23

He might start off going through the cave but end up on the banks of

the same river that flowed alongside the forest that he left. Sometimes

the author runs out of places to send our hero Joe, so he has to go

down the same path but get there multiple ways.

Likewise, having a couple—or even dozens—of branches is OK, but their

paths will sometimes need to come together. This is where merging

comes in.

Merging is taking two or more branches and combining their history

into one. Git goes about merging the same way you might. It compares

two sets of changes and tries to determine where changes occurred.

When changes happen in different parts of a file, Git can merge them

automatically. Sometimes it can’t work out what was supposed to hap-

pen, so it errs on the side of caution and tells you there’s a conflict.

Say you and another developer on your team modify the same line of

code but in different ways. Git sees this and can’t programmatically

determine which one is correct, so it flags them as a conflict and waits

for you to tell it which change is correct.

Fortunately, Git has several methods of handling conflicts. Knowing

how these work is an important part of mastering Git. We’ll cover all of

the tools you can use in Section 5.4, Handling Conflicts, on page 74.

With all these branches floating around and all of this talk of merging,

you might be thinking “How can I keep track of what I’ve merged and

where?”

Thankfully, you don’t have to keep track. Git handles it through merge

tracking. Just like it sounds, merge tracking keeps track of what com-

mits have been merged together and doesn’t merge them again.

This is a feature not found in many traditional VCSs such as CVS and,

until recently, Subversion.2 Without some sort of merge tracking, you

have to manually keep track of what commits have been merged and

where. Manually tracking merges adds to the overhead of branches and

is one reason many developers have tried to avoid it in the past.

2. Subversion 1.5.0, which was released in June 2008, now has merge tracking.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=23

LOCKING OPTIONS 24

1.9 Locking Options

When you go to the library to check out a book (not this one, because

you bought a copy, right?), no one else can check it out again until you

turn it back in.

The reason for this is simple: when the library has only one copy of

the book, it can’t physically give it to more than one person at a time.

When a lot of people first hear the word check out and that it relates to

version control, they automatically think that version control must be

like a library—only one person making changes at a time.

Some VCSs do work like this. You ask the repository if you can have

the settings.py file to make some changes. It says yes and then prevents

everyone else from making changes until you check it back in.

This is locking at work; in particular, it’s strict locking. Just like a

library, only one person can have a copy of the code at a time. This

isn’t an efficient way for a team to work together, though, and doesn’t

fit with our DVCS model where everyone is only loosely connected to

everyone else.

The alternative that most VCSs and all DVCSs use is called optimistic

locking.3 Optimistic locking allows multiple developers to work on the

same code in the same files with the assumption that most of the time

their changes won’t conflict.

It works like this: Joe and Alice both create clones of the repository they

share and start making changes. They both make changes to the same

file but in different areas of it. Alice pushes her change back to their

shared repository; then Joe attempts to push his.

Joe’s attempt will be rejected, because Git detects that there has been

a change on the server after he got his copy. Joe has to pull those

changes from the repository, handle conflicts if there are any, and then

push his change back to the server.

This all sounds incredibly complex, but it’s pretty simple. You rarely

have two people on the same team editing the same file, so this prob-

lem doesn’t occur often. When it does, Git can handle most merges

automatically.

3. This is sometimes referred to as optimistic concurrency control in the computer science

world.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=24

NEXT STEPS 25

Configuration Management (CM)

You might have heard of tools loosely called configuration
management (CM). They are a class of tools designed to han-
dle the configuration of an application across multiple versions.

Many are built on top of a VCS and do support tracking the
history of the configuration, but they are not version control sys-
tems by themselves.

1.10 Next Steps

We’ve taken a 30,000-foot view of the DVCS world and the way Git

interacts with it. We’ve covered what repositories are, determined what

we should store (nearly everything!), and talked about what working

trees are. You learned how files are tracked and how repositories stay

in sync, and you got an introduction to tags, branches, and the art of

merging.

That gives you a basic understanding of how Git works and what a

DVCS is. Up next, we’ll dive into installing and configuring Git.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=25

Chapter 2

Setting Up Git
Before you can use Git, you have to install it and do some minimal

configuration. Installation is a relatively straightforward process. In this

chapter, we’ll do the following:

• Install Git

• Get it configured

• Introduce you to Git’s GUIs

• Show you how to use Git’s built-in help

Once we’re finished, you’ll be ready to start using Git to manage your

projects.

2.1 Installing Git

If you feel comfortable with Makefiles and make is your constant com-

panion when adding new software to your computer, you can skim most

of this section. If you’ve never heard of any of these, don’t worry—this

section walks you through the process of installing Git for the first time.

Git has its heritage in the Linux world. It was originally meant to be

downloaded as source code and compiled. Most modern distributions

of Linux have a version of Git in their package repositories, and both

Fink1 and MacPorts2 have Git packages. If you’re on Windows, you have

several options to get Git up and running, which you’ll learn about in

Section 2.1, Installing on Windows, on page 28.

1. http://www.finkproject.org/

2. http://www.macports.org/

http://www.finkproject.org/
http://www.macports.org/

INSTALLING GIT 27

Installing on Linux

Each distribution of Linux uses one of the various package managers

available. Most distributions contain Git within their repositories, but

since it is new, you may have to search through development or unsta-

ble packages to find it.

The only problem with these packages is that they tend to go out of

date quite rapidly. You need to have Git version 1.6.0 or greater to

follow along with the examples in this book.

For example, right now Ubuntu has the two packages you need to

install Git: git-core and git-doc. However, they’re both on version 1.4.4.

Instead of relying on the prebuilt version of Git in this case, I recom-

mend downloading the latest release from Git’s website3 and compiling

it yourself.

To do this in Ubuntu, you need to have the build-essential package in-

stalled. Git also has some dependencies that need to be met, but they

don’t change often, so you can use apt-get to grab all the dependencies

with the following command:

prompt> sudo apt-get build-dep git-core git-doc

That installs all the dependencies for the git-core and git-doc packages—

the same dependencies Git has when you’re building from source.

Once the installation is completed, you can build Git. To do that, you

need to uncompress the archive you downloaded from the Git website

and switch into the directory where it’s located. To build Git, type the

following command:

prompt> make prefix=/usr/local all doc

That sets up Git to be installed for all users of your computer. If you

want to install it for yourself, you can leave the prefix=/usr/local part out.

Compiling Git takes a few minutes. Once it’s completed, you can install

it by using this:

prompt> sudo make install install-doc

Once that’s completed, you can run git --version from the command line

to verify that Git has installed. You should see something like this:

prompt> git --version

git version 1.6.0.2

3. http://git.or.cz/

http://git.or.cz/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=27

INSTALLING GIT 28

Check with your distribution’s community and/or vendor if you’re un-

comfortable compiling software from source. They may be able to point

you to a more up-to-date package.

Installing on OS X

If Mac OS X is more your style and you want to use a package manager,

MacPorts keeps its copy of Git relatively current. To install Git using

MacPorts, use the ports command from Terminal:

prompt> sudo port install git-core +svn +doc

This command installs both Git and git-svn, which we’ll talk about in

Chapter 10, Migrating to Git, on page 136.

There is also an installer package for Git that is maintained on Google

Code.4 This installs Git and also has instructions for adding an Open

in Git icon to the Finder.

If you want to compile from source, you need to have Xcode,5 the devel-

opment toolkit from Apple, installed. The command for compiling Git is

similar to that in the Linux section.

The only part that changes is the documentation. I would advise against

adding doc and install-doc to the make commands because the depen-

dencies can be a bit overwhelming.

Regardless of how you install Git, you can run git --version from the

command line once you’re finished installing to verify that it is installed:

prompt> git --version

git version 1.6.0.2

Installing on Windows

Windows support has never been at the forefront of Git development

because of its roots in the Linux kernel community. With its growing

popularity, people have started work on making Git completely cross-

platform. If you’re running Windows, you have a few options to get it

up and running.

4. http://code.google.com/p/git-osx-installer/

5. This is available for free from http://developer.apple.com/tools/xcode/ or from the disks

that came with your Mac.

http://code.google.com/p/git-osx-installer/
http://developer.apple.com/tools/xcode/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=28

INSTALLING GIT 29

Cygwin

The “official” way to run Git in Windows is to use Cygwin, a Linux emu-

lator. This presents several issues to most Windows users, not the least

of which is getting Cygwin installed and running. If Cygwin happens to

be your thing, Git is available as a binary package under Devel > git:

Fast Version Control System.

You need to be sure to have a few other packages as well. First, openssh

from the Net category is a must because Git uses Secure Shell (SSH) as

the default transfer protocol when it talks to remote repositories.

Next up, if you plan on using Git to talk to a Subversion repository like

we’ll discuss in Chapter 10, Migrating to Git, on page 136, you need to

install the subversion-perl package from the Libs category. Also in that

category, you should grab tcltk so you can take advantage of the inte-

grated graphical interfaces for Git that we’ll talk about in Section 2.3,

Using Git’s GUI , on page 33.

Finally, make sure to install your favorite text editor from the Editors

category. Vim, emacs, or even Pico is fine, but you need to have an

editor installed to take advantage of some of Git’s commit log features.

If you don’t know what a commit log is, don’t worry—you will once

you’re finished with the next chapter.

Git on MSys

There is a fork of Git that aims to bring Git to Windows using the under-

lying Windows architecture. It is not officially supported yet but is in

the process of being merged back into the official Git repository.

A project has been started on Google Code called Git on MSys whose

goal is to take that forked code and create an easy-to-install Git pack-

age for Windows. The installer can be downloaded from the project’s

website.6

After you download the installer, double-click it to start the installation

process. The first screen displays information about the software you’re

about to install. You can see the screen in Figure 2.1, on the next page.

Click Next to continue.

The next step is the license and any incompatibilities between the Win-

dows version of Git and the *nix version. Since this project is aimed

at Windows, there will always be slight differences, such as how line

6. http://code.google.com/p/msysgit/

http://code.google.com/p/msysgit/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=29

INSTALLING GIT 30

Figure 2.1: Welcome screen for Git installer

endings are handled. Don’t worry about these changes. Any deviations

from the standard Git are there to make it run better on Windows.

The next two steps are the location to install Git in and the name of the

folder you want Git to create in your Start menu. The defaults are fine.

The next step is the additional enhancements you want Git on MSys to

install. Leaving these at the default settings is fine.

The next step (as shown in Figure 2.2, on the following page) adds Git

to your PATH environment variable. This is necessary for Windows to

know where to find the git command on your system.

There are three choices. You should choose the second option. It allows

you to invoke Git directly from the command line without adding any

extra functionality.

Git on MSys starts the installation process now. Depending on how fast

your system is, it may take a few seconds or a few minutes to finish

installing. Once it has finished, you can verify that it installed correctly

by running git --version from the Windows command prompt.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=30

CONFIGURING GIT 31

Figure 2.2: Git extras

To start the command prompt, click Start and then Run. In the dialog

box that pops up, type cmd, and click OK. Once it is started, type git

--version. If everything is successful, Git outputs its version number like

it does in Figure 2.3, on the next page.

Regardless of which operating system you’re running, some basic con-

figuration is necessary before you can start using Git. Let us cover

that now.

2.2 Configuring Git

Git requires a few pieces of information from you to work. Since it is

distributed, there’s no central repository to ask what your name or

email address is. You can tell Git this information by using the git config

command.

To start with, we’ll configure a few global values. These are the default

configuration values used by every repository you create on your sys-

tem. To set these configuration values as global, add the --global option.

The first two settings that must be set are user.name and user.email. The

first is how you want your name to appear when you commit a change,

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=31

CONFIGURING GIT 32

Figure 2.3: Displaying the current version of Git in Windows

and the second is an email address that other developers can use to

contact you regarding your change.

Of course, substitute your name for mine:

prompt> git config --global user.name "Travis Swicegood"

prompt> git config --global user.email "development@domain51.com"

You can verify that Git stored your settings by passing git config the --list

parameter:

prompt> git config --global --list

user.name=Travis Swicegood

user.email=development@domain51.com

Those are the only two required configuration values, but Git allows

you to configure more than 130 different settings.7 Most of these you’ll

never need to tweak, but there is one extra change that is useful if you

like color-coded output.

The setting color.ui is used to control colors in the user interface of Git.

Setting it to "auto" adds color codes around the various output of Git

whenever you’re viewing the output in the terminal.

7. You can view a list of all the configuration settings by using the git

help config command if you installed the documentation or by visiting

http://www.kernel.org/pub/software/scm/git/docs/git-config.html#_variables.

http://www.kernel.org/pub/software/scm/git/docs/git-config.html#_variables
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=32

USING GIT’S GUI 33

You can turn this setting on with the following command:

prompt> git config --global color.ui "auto"

To me, the color-coded output is much easier to scan—especially the

diffs, the differences between commits—but some people do prefer

straight-up text, so color-coding isn’t turned on by default.

That’s all there is to configuring Git—you’re ready to start using it.

Before we jump into our project in Chapter 3, Creating Your First Project,

on page 36, let’s cover some of Git’s graphical user interface (GUI)

options.

2.3 Using Git’s GUI

Git comes with a Tcl/Tk8 GUI interface. You can run it from within

your project’s directory by typing git gui at the command prompt. Some

OS-specific installers include context menu links to open git-gui—the

name of the project—in the folder you are at.

git-gui provides an interface—like that in Figure 2.4, on the next page—

to many of the commands we’ll be discussing in this book. We won’t

specifically be covering the GUI interface, but if you prefer working with

a GUI, you can follow along relatively closely with the examples using

git-gui.

Although git-gui provides you with an interface to perform operations

such as committing changes, it doesn’t provide any interface for viewing

the history of your repository. gitk does that. You can start it by running

gitk at the command line from within your project’s directory.

gitk displays the history of all the changes you make to your repository.

If you want to see how the branches relate to each other, you can add

the --all parameter to view all branches instead of just the current one.

One final tool that is useful if you’re running Mac OS X is GitX. It’s a

gitk-clone, created by Pieter de Bie, that is built specifically for the Mac

environment. It is hosted and available for download on its GitHub web

page.9

We mentioned the documentation earlier when you were installing Git.

Now let’s cover how to access it.

8. Tcl/Tk is a cross-platform GUI toolkit.
9. http://gitx.frim.nl/

http://gitx.frim.nl/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=33

ACCESSING GIT’S BUILT -IN HELP 34

Figure 2.4: git-gui running

2.4 Accessing Git’s Built-in Help

Git has an extensive user manual that is available from the command

line and online.10 From the command line, you can type this:

prompt> git help <command>

Just replace <command> with the command you want help on, and Git

displays the user manual entry for that command.

The documentation is not installed by default if you build from source.

Some package managers distribute it as a separate git-doc package.

If you’re building from source, you need to call the doc and install-doc

targets when running make. Git requires AsciiDoc11 in order to convert

the documentation from plain text into the manual form.

Don’t worry if you have trouble installing the documentation; you can

always access it online at kernel.org, or you can download the HTML

10. http://www.kernel.org/pub/software/scm/git/docs/

11. http://www.methods.co.nz/asciidoc/

http://www.kernel.org/pub/software/scm/git/docs/
http://www.methods.co.nz/asciidoc/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=34

ACCESSING GIT’S BUILT -IN HELP 35

version12 to your local computer. Look for the latest version of the git-

htmldocs file.

Now you’ve gone through the Git installation and done the basic con-

figuration. You have Git running, so now it’s time to start using it. In

the next chapter, we’ll walk through a basic project so you can start to

get familiar with Git.

12. http://kernel.org/pub/software/scm/git/

http://kernel.org/pub/software/scm/git/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=35

Chapter 3

Creating Your First Project
Now it’s time to dig into Git. Up to this point, we have talked about

abstract ideas and getting set up. That changes in this chapter.

We’re going to work on a small HTML project and use Git to track it.

Don’t worry if you don’t know HTML. The markup we’re using here is

simple and easy to follow even if you aren’t familiar with HTML.

In this chapter, we’ll do the following:

• Create a repository

• Add some files and make some changes

• Create a new branch

• Tag a release and clean up our repository release

• Clone a repository

Once we’re finished, you’ll know the basics you need to get started

with Git. This chapter is a high-level overview. There are a lot of new

concepts and commands introduced to get you started.

We’ll be covering the commands and concepts introduced here pretty

quickly, but each section has references to later parts in the book in

case you can’t wait to learn more about something we’re talking about.

I encourage you to follow along with the examples in this chapter and

the rest of the book, executing all the commands yourself. We learn

via repetition, whether it’s our multiplication tables in grade school or

typing a Git command into the command prompt.1

1. If you’re interested in the processes of learning, Andy Hunt’s Pragmatic Thinking and

Learning [Hun08] is an excellent book on the topic.

CREATING A REPOSITORY 37

3.1 Creating a Repository

Creating a repository in Git is simple, but it seems peculiar if you’re

coming from Subversion or CVS. Your repository is something that

exists separate from your copy of it in most VCSs. Your repository in

Git is stored right alongside your working tree in a directory called .git.

To create a repository in Git, you first need to decide where you want

to store your project’s code. In this example, we’re going to create a

simple HTML page, so let’s call our project mysite. You need to create

a directory of the same name; then change into it, and type git init. The

whole process should look something like this:

prompt> mkdir mysite

prompt> cd mysite

prompt> git init

Initialized empty Git repository in /work/mysite/.git/

You’re done. You now have a Git repository that is ready to start track-

ing your project.

“But there must be more!” you cry. Actually, no. Setting up a Git reposi-

tory is an extremely lightweight operation. The git init command sets up

a directory called .git that stores all the repository metadata, and the

empty directory we’re in, mysite, serves as the working tree of code you

have checked out from the repository.

3.2 Making Changes

Now that we have an empty repository, it’s time to add a file to it. Create

a file called index.html and add a header with the text “Hello World” in it.

It should look something like this:

<html>

<body>

<h1>Hello World!</h1>

</body>

</html>

This gives us a basic HTML page to start tracking. We’ll add some more

to it as we continue. Now that we have this file, it’s time to tell Git we

want to track it. This is a two-step process. First we have to tell Git to

add the file to its index using the command git add; then we create a

commit using git commit.

prompt> git add index.html

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=37

MAKING CHANGES 38

prompt> git commit -m "add in hello world HTML"

Created initial commit 7b1558c: add in hello world HTML

1 files changed, 5 insertions(+), 0 deletions(-)

create mode 100644 index.html

git add takes a file or the list of files you want to track as its parameter.

Git has a couple of other useful ways to add files that we’ll talk about

in Section 4.1, Adding Files, on page 52.

git commit creates a commit. Commits are the individual pieces of history

stored by the repository. Each one marks the progression of your code.

Git stores your name and email address—from the configuration we did

earlier—and adds a message to each commit.

That’s what the -m and string in the earlier command are for. The com-

mit message is add in hello world HTML. Properly written, log messages

are the killer feature of any version control system. They’re a place to

explain the reason of your commit. What does the new file do? Why

did you change the code? For more information writing good commit

messages, check out the Joe Asks. . . on page 42.

So far, you’ve added a new file to the repository. You can see your com-

mit by running git log:

commit 7b1558c92a7f755d8343352d5051384d98f104e4

Author: Travis Swicegood <development@domain51.com>

Date: Sun Sep 21 14:20:21 2008 -0500

add in hello world HTML

The first line here shows the commit name. Commit names are SHA-

1 hashes generated by Git to keep track of a commit. Git uses these

hashes to make sure that each commit identifier is completely unique,

something that’s important in a distributed environment. For more on

why, check out the Joe Asks. . . on the following page.

You might have noticed that the commit name displayed in the git log

output starts with the same seven characters as part of the output from

git commit. That’s because git commit shows you an abbreviated form of

the commit name—the full forty-character SHA-1 hash would take up

too much space.

The seven characters that are displayed by git commit are normally

unique enough that you can use them without having to use the full

forty-character hash. In order to keep lines short, I use the shorter form

throughout the book, but git log always displays the full hash.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=38

MAKING CHANGES 39

Joe Asks. . .

What Are SHA-1 Hashes, and Why Does Git Use Them?

If you’re working with a centralized VCS where one server has
the authority to designate one number to each commit, num-
bers make sense. If you’re working in a distributed environment,
they don’t.

When two different people are working on the same code,
who’s to say what revision 181 is between the two of them?
Git addresses this by using SHA-1 hashes.

SHA stands for Secure Hash Algorithm. It’s an algorithm devel-
oped by the U.S. National Security Agency (NSA) to produce
shorter strings, or message digests, of known data with little pos-
sibility of a “collision” with another hash.

Git generates commit names by using some metadata from
the repository, your information as the person making the com-
mit, and the current timestamp. This data combined produces
a unique hash that has a small probability of ever colliding with
another commit.

The possibility does exist, though, but it’s low enough we can
safely ignore it. For those math majors out there, or those who
like trying to pronounce large numbers, the chances are 1 in
2
63, or 1 in 9,223,372,036,854,775,808. In American English, that’s

nine quintillion, two hundred twenty-three quadrillion, three
hundred seventy-two trillion, thirty-six billion, eight hundred fifty-
four million, seven hundred seventy-five thousand, and eight
hundred and eight. And, yes, I did have to look that up.

These forty-character hashes are kind of hard to remember,
though, and many times they’re unnecessarily long. Most of
the time the first seven or eight characters of a hash will be
unique enough to match. Throughout Git, and this book, you’ll
see shorter commit hashes used. When Git uses smaller hashes,
it uses the first seven characters.

The second line in the git log output is the commit’s author info, the

third is the date the commit was made, and the final bit of information

is the commit log message from the commit.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=39

STARTING TO WORK WITH A PROJECT 40

3.3 Starting to Work with a Project

Now you have our repository in place, and you’re already tracking your

first file. Next up you have to start dealing with changes.

The HTML is missing the <head> and <title> elements. Add them. Now

your index.html file should look like this:

<html>

<head>

<title>Hello World in Git</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

You know that your file changed, and so does Git. The command git

status shows you how Git sees your working tree, which is your current

view of the repository. Subversion and CVS users will recognize this as

their working copy.

prompt> git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

#

no changes added to commit (use "git add" and/or "git commit -a")

This output tells us that Git sees the modification you made but doesn’t

know what to do with it yet. The file is listed as modified, but it’s under

the header Changed but not updated. To commit it, you need to stage

the change.

Staging a commit prepares it to be committed. There are three places in

Git where your code can be stored. First, the one you work with directly

when editing files is the working tree.

Second is the index, which I’ll refer to as the staging area. The staging

area is a buffer between your working tree and what is stored in the

repository, the third and final area in Git. You can use the staging area

to stage only the changes you want to commit to the repository. We’ll

talk more about it in Section 4.1, Adding Files, on page 52.

Turn back to git add to stage the changes you just made to index.html.

It is the same command you used in the previous section to add a new

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=40

STARTING TO WORK WITH A PROJECT 41

file. Instead of telling Git about a new file, though, it now tells Git about

a new change to track.

prompt> git add index.html

prompt> git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

In the git status command after you add the modified index.html, the

header is now Changes to be committed instead of Changed but not up-

dated. If you turned colors on, the line with index.html also changed

from red to green.

Fire off a git commit command, remembering to include the -m with

a commit message explaining why you made your change, and you

are set:

prompt> git commit -m "add <head> and <title> to index" \

-m "This allows for a more semantic document."

Created commit a5dacab: add <head> and <title> to index

1 files changed, 3 insertions(+), 0 deletions(-)

Notice this time I used two -m parameters. Git accepts as many as you

want to add and treats each one as a new paragraph. A quick check of

git log shows the message with two paragraphs:

prompt> git log -1

commit a5dacabde5a622ce8ed1d1aa1ef165c46708502d

Author: Travis Swicegood <development@domain51.com>

Date: Sun Sep 21 20:37:47 2008 -0500

add <head> and <title> to index

This allows for a more semantic document.

That also introduces a new parameter to git log, the -1. You can change

the number to limit the output of git log to the number of commits you

want.

We have the basics—adding new files, modifying existing ones, and

looking at the repository’s history—out of the way; now let’s get into

something meatier and turn our attention to branches.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=41

STARTING TO WORK WITH A PROJECT 42

Joe Asks. . .

What Should My Commit Log Message Contain?

Determining what to put in your commit log message can be
tricky when you first start out. At its barest, the message should
contain all the metadata explaining the “why” of the commit.

Here’s a few good commit messages:

• Changed from nested if/elseif statements to switch for

readability

• Removes experimental code after proven not useful

Crafting the perfect log message is something of an art. It’s
something that you can learn by looking at the logs of other
successful projects. Git’s own log is a treasure trove of excellent
commit messages.

Spend a minute or two with each commit you make, and sum-
marize the changes the same way you would as if you were
explaining them to another developer sitting next to you. A
great rule of thumb is to write a simple, one-line sentence that
tersely explains the commit and then spend another few sen-
tences fully explaining your commit.

Another thing to keep in mind when writing your commit mes-
sage is who is going to read it. If humans are the only ones ever
reading your commit messages, then straight English is fine.

If a program is going to read your log messages, you need to
make sure you’re including all the information it expects. There
are tools that can read commit logs and update third-party
tools such as ticket-tracking systems to show activity on tasks.

Adding Some Color to Git’s Output

If you turned colors on in your configuration, you probably
noticed the color the first time you ran git status. Unstaged
modifications—modifications that Git doesn’t know what to do
with—appear in red. Once you stage the changes with git add,
they will change to green.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=42

USING AND UNDERSTANDING BRANCHES 43

3.4 Using and Understanding Branches

Branches are a way to maintain alternate histories of the project you’re

working on, like we talked about in Section 1.7, Creating Alternate His-

tories with Branches, on page 21. Alternate histories are great, but how

do we use them in a real project?

The honest answer is “any way you want.” For our purposes, though,

we’ll narrow it down a bit. Two types of branches are useful: different

versions of a project in different branches and topic branches that deal

with a specific feature. In this section, we’ll talk about the first kind of

branches.

Your mysite code is almost ready to be released, but it still needs to

be signed off on by everyone involved. In the meantime, you can start

working on the new features in the next version.

You can use a branch to keep a copy of your code that’s ready to release

so you don’t have to stop developing. The command to create a branch

is git branch, and it takes two parameters: the name of the branch you

want to create and the name of the branch you want to create it from:

prompt> git branch RB_1.0 master

That command creates a branch called RB_1.0 from the master branch.

master is the name of the default branch in Git. CVS and Subversion

users might recognize this as the trunk in those VCSs.

The RB in the branch name stands for release branch. Adding the prefix

makes it easier for you and other developers to quickly determine what

branches are release branches.

Now you can start making changes without affecting the code that’s

almost ready for a release. Next up is adding a link to a bio page. Right

before the closing </body> tag, add this:

Biography

Commit your changes now, except this time use the following com-

mand:

prompt> git commit -a

... editor launch, create log message, save, and exit ...

Created commit e993d25: add in a bio link

1 files changed, 3 insertions(+), 0 deletions(-)

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=43

HANDLING RELEASES 44

Notice that this time the command has the -a parameter on it. That tells

Git to commit all files that it knows about that have changed.

Now you have a change on your master branch that is not included on

your release branch. Let’s switch to the release branch and make the

final change to it before it’s ready for release. The command to switch

is git checkout.

prompt> git checkout RB_1.0

Switched to branch "RB_1.0"

If you had your index.html file open, your editor is probably complaining

about the file changing. Go ahead and reload the file. Now your changes

from the master branch have been removed—they’re still safely stored,

in the other branch.

The final change that needs to be added to your file before it can be

released is a description metatag. Add a description so the code in your

<head> block looks something like this:

<head>

<title>Hello World in Git</title>

<meta name="description" content="hello world in Git" />

</head>

Save and commit your changes:

prompt> git commit -a

... editor launch, create log message, save, and exit ...

Created commit 4b53779: Add in a description element to the metadata

1 files changed, 1 insertions(+), 0 deletions(-)

Now it’s ready to release. Now it’s time to mark the release with a tag.

3.5 Handling Releases

Your code is ready for its 1.0 release. It’s time to tag it. Tagging code

in Git marks a specific point in the history of the repository so you can

refer to it easily. Since this is the 1.0 release, tag it with that number:

prompt> git tag 1.0 RB_1.0

The two parameters specify the name of the tag and the point you want

to tag: 1.0 and the branch RB_1.0, respectively. You can view a list of

tags in your repository by running git tag without any parameters. Right

now, it shows only the 1.0 tag you just created:

prompt> git tag

1.0

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=44

HANDLING RELEASES 45

Add in a description element to the metadata

add in hello world HTML

add <head> and <title> to index add in a bio link

Figure 3.1: mysite repository before rebase

Now that your code is tagged, you need to perform some cleanup. You

have two branches, and each contains commits that the other does not

know about. The master branch—the branch you started working on 2.0

features in—needs to know about the new <meta> code you added in

RB_1.0.

To do this, use the git rebase command. Rebasing takes the changes

from a branch and replays them on top of another branch. Right now

your repository looks like Figure 3.1. After rebasing, it looks like Fig-

ure 3.2, on the following page.

First, you need to switch back to the master branch. That’s the git check-

out command from earlier.

prompt> git checkout master

Switched to branch "master"

Next, you can run the git rebase command. For our purposes right now,

it takes one parameter: the name of the branch you want to rebase

against.

prompt> git rebase RB_1.0

First, rewinding head to replay your work on top of it...

Applying: add in a bio link

Now your repository looks like Figure 3.2, on the next page. The add in

a bio link is now placed after the final commit in the RB_1.0 branch.

Now, for the final piece of cleanup—deleting the release branch. This

might seem drastic, but don’t worry. The tag you just created points

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=45

HANDLING RELEASES 46

Add in a description element to the metadata

add in hello world HTML

add <head> and <title> to index add in a bio link

Figure 3.2: mysite repository after rebase

to the same commit that the RB_1.0 branch does, so everything is still

intact.

You use git branch to delete the branch by adding the -d parameter

before the branch name:

prompt> git branch -d RB_1.0

Deleted branch RB_1.0.

So, how do you handle creating patches to the 1.0.x branch if you don’t

keep the release branch around? That’s easy—create a branch off the

tag you created.

Remember when you created the branch earlier? You gave it the name

of the branch you wanted to create the branch from. Just change that

to the tag, and you’re set:

prompt> git branch RB_1.0.1 1.0

prompt> git checkout RB_1.0.1

Switched to branch "RB_1.0.1"

A quick check of git log shows that you have only the three commits

that were in your RB_1.0 branch:

prompt> git log --pretty=oneline

4b53779 Add in a description element to the metadata

a5dacab add <head> and <title> to index

7b1558c add in hello world HTML

There’s one final piece of the release puzzle that Git can help you with:

creating an archive of your release. You don’t always need to distribute

the history of your project with your releases. Often, a tarball or zip file

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=46

HANDLING RELEASES 47

of it at the point you tag is enough. Git provides the git archive command

to do that.

This is how you create a gzipped tarball of mysite:

prompt> git archive --format=tar \

--prefix=mysite-1.0/ 1.0 \

| gzip > mysite-1.0.tar.gz

There are three parameters here. First, --format tells Git to generate

tar output. Second, --prefix tells Git to put everything in the mysite-1.0/

directory. Finally, 1.0 tells Git to use that tag to determine what to store

in the archive.

The third line gets a little more complicated if you’re not used to Unix-

style commands. It pipes the output from git archive—a tar file—to gzip,

which compresses the file. The output is then sent to the mysite-1.0.tar.gz

file that you can distribute.

git archive also lets you create zip files. Creating zip files is a little more

straightforward because the output from git archive is already com-

pressed. You can use the following command to create a zip file:

prompt> git archive --format=zip \

--prefix=mysite-1.0/ 1.0 \

> mysite-1.0.zip

The parameters are almost the same between the zip and tar formats.

The value you pass to --format changes, and instead of piping the output

through gzip, with zips you send it directly to the file where you want to

save it.

Of course, there’s often more to handling a release—you might have

wiki pages to update, acceptance tests to run against the code, and so

on—but every one of those tasks is dependent on the tools and methods

you use.

By using tags, you can manage how Git interacts with those processes

you have, and Git’s archive command can help you create the releases

of your project’s source code.

That wraps up the basic commands, but so far we’ve covered only the

commands that you use locally. Next we’ll cover cloning, which is what

you need to get a project from someone remotely.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=47

CLONING A REMOTE REPOSITORY 48

3.6 Cloning a Remote Repository

One thing we haven’t touched on yet is remote repositories. You’ve built

up the mysite repository using commands that interact locally. Git can

also deal with remote repositories, however, so you can share your work

and get copies of others’ repositories.

To get started with a remote repository, you need to clone it using the

git clone command. Cloning a remote repository does what it sounds

like. It creates a complete copy of the remote repository that you can

start working with.

I already have my copy of mysite shared on GitHub, a Git repository

hosting service. You can try the git clone command by creating a clone

of it:

prompt> cd /work

prompt> git clone git://github.com/tswicegood/mysite.git mysite-remote

Initialized empty Git repository in /work/mysite-remote/.git/

remote: Counting objects: 12, done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 12 (delta 2), reused 0 (delta 0)

Receiving objects: 100% (12/12), done.

Resolving deltas: 100% (2/2), done.

git clone takes two parameters—the location of the repository you want

to clone and the directory where you want the repository to live. The

second is optional, but you already have a mysite directory, so you need

to provide the second parameter to put it in a directory of its own.

That’s all there is to cloning. You can provide some additional param-

eters that we’ll talk about in Section 7.2, Cloning a Remote Repository,

on page 103, but the majority of times you create a clone, providing the

location and the directory you want to store the clone in is all you need

to do.

Of course, you can push and fetch changes as well. We’re going to

save those for later, though, once you’re more comfortable working

with your local repository. There’s a whole chapter—Chapter 7, Working

with Remote Repositories, on page 100—devoted to working with remote

repositories.

Are you dizzy yet? In this chapter, you learned the basics of Git—git

add, git commit, git status, and git log. We built on that foundation and

talked about git branch, git tag, and git rebase, as well as got a quick

glimpse of git clone.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=48

CLONING A REMOTE REPOSITORY 49

Part I has been a lightning-fast tour of the concepts of VCS/DVCS and

Git. This chapter particularly has been heavy on commands but thin

on the “why” of the various commands. Working through the exercise

in this chapter, you’ve used Git to manage a simple repository for your

HTML page project.

Now it’s time to step back, start with the basics, and build up your

knowledge of what Git is doing. In the coming chapters, we’ll continue

to build on the mysite repository as we explore even more of Git.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=49

Part II

Everyday Git

50

Chapter 4

Adding and Committing:
Git Basics

Now it’s time to dig into Git. Part I introduced you to Git; Part II is

about specifics. We’ll dig into Git and go through the basic commands

you need in your day-to-day use of Git.

This chapter focuses on a few areas that we touched on in Chapter 3,

Creating Your First Project, on page 36. You’ll now get a much deeper

understanding of the following:

• Adding files

• Creating commits

• Checking on what has changed

• Managing files

We’ll be building on the repository we started in Chapter 3, Creating

Your First Project, on page 36. If you skipped ahead to this point, don’t

worry—you can always clone the repository to get the repository that I

built:

prompt> git clone git://github.com/tswicegood/mysite.git

Initialized empty Git repository in /work/mysite/.git/

remote: Counting objects: 12, done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 12 (delta 2), reused 0 (delta 0)

Receiving objects: 100% (12/12), done.

Resolving deltas: 100% (2/2), done.

Now that you have your repository—either the one you created in the

previous chapter or by cloning mine—you’re ready to start.

ADDING FILES 52

4.1 Adding Files

You’re constantly adding new files and making changes to your reposi-

tory’s contents. git add fills both of these roles. Just give it the name of a

file or the files you want to add, and Git stages the changes to commit.

Before we proceed, there is a little terminology to clear up. Staged

changes are simply changes in your working tree that you want to tell

your repository about. When you stage a change, it updates what Git

refers to as its index. A lot of people, myself included, refer to it as the

staging area.

The staging area is just that, a place where you can set up commits

prior to committing to your repository.

“But isn’t this double the amount of work? Why can’t I just commit?”

In a lot of cases, yes, it is double work and there are shortcuts that we’ll

talk about in the next section to get around it, but don’t forget about

the staging area. It gives you the ability to craft exactly the commit

you want to make prior to making it. To be able to craft the changes,

though, you have to add them first. git add is the command for that.

Like all good Git commands, there’s more to adding files than just call-

ing git add. You can specify several different options to change how git

add behaves, and a couple of the options are even useful.

You can use Git’s interactive add mode to select which files or parts of

files to stage for a commit. You start it by adding the -i option.

This starts up the interactive shell for staging changes, adding new

files, and even staging part of a file. Let’s change the index.html file so

we have something to stage. Change the Biography link to About. It

now looks like this:

About

Now, run git add -i. Git displays a prompt like the following one when

you start up interactive mode:

prompt> git add -i

staged unstaged path

1: unchanged +1/-1 index.html

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=52

ADDING FILES 53

You have several options now. Typing 1 generates this same status that

is shown when you start up. To add a file, you can type 2 to stage the

file:

What now> 2

staged unstaged path

1: unchanged +1/-1 index.html

Update>>

This generates a list of files that can be staged. In this case, there’s one

file to add, so type 1, and it will change to having an asterisk (*) beside

its name to signify that it’s going to be staged:

Update>> 1

staged unstaged path

* 1: unchanged +1/-1 index.html

Update>>

Once you’re ready to leave this mode, you can press Enter to return to

the main menu:

Update>>

updated one path

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

Now checking the status again, you can see that there’s one change

staged and nothing listed in the unstaged changes:

What now> 1

staged unstaged path

1: +1/-1 nothing index.html

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

You can use the revert functionality if you need to unstage a change. It

works just like the update we did a few paragraphs ago:

What now> 3

staged unstaged path

1: +1/-1 nothing index.html

Revert>> 1

staged unstaged path

* 1: +1/-1 nothing index.html

Revert>>

reverted one path

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=53

ADDING FILES 54

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now>

Running status will show that the changes have gone to unstaged now:

What now> 1

staged unstaged path

1: unchanged +1/-1 index.html

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

If you want to stage files that are not being tracked yet, you can use the

fourth option. It works like the others, so I won’t show it again.

Patch mode is the most useful feature of interactive mode. It starts out

like the other modes. You can choose which file or files you want to add

via patch mode. Once you make your choice, you are presented with a

diff of the changed files and given the option to add the changes or not.

It looks something like this:

What now> 5

staged unstaged path

1: unchanged +1/-1 index.html

Patch update>> 1

staged unstaged path

* 1: unchanged +1/-1 index.html

Patch update>>

diff --git a/index.html b/index.html

index e812d0a..ca86894 100644

--- a/index.html

+++ b/index.html

@@ -6,7 +6,7 @@

<body>

<h1>Hello World!</h1>

- Biography

+ About

</body>

</html>

Stage this hunk [y/n/a/d/e/?]?

Now you have the option of adding this hunk or denying it. A hunk is

a change within the file. Consecutive changes are treated as one hunk.

Each different area in a file is treated as its own hunk.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=54

COMMITTING CHANGES 55

From the prompt, typing y accepts the change, n skips it, and a and d

add or deny all the rest of the changes in the file. Don’t worry about

trying to remember all these commands right now. There’s a ? that dis-

plays some help explaining what all the options do when you’re looking

at a hunk.

For now, type n to skip staging that hunk, and then press 7 to exit

interactive mode:

Stage this hunk [y/n/a/d/e/?]? n

*** Commands ***
1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 7

Bye.

Like all the most useful features in Git, there’s a shortcut to going

straight to patch mode without launching interactive mode. You can

add -p to git add to start directly in patch mode.

For example, you can run the following to launch patch mode directly

on index.html:

prompt> git add -p

diff --git a/index.html b/index.html

index e812d0a..ca86894 100644

--- a/index.html

+++ b/index.html

@@ -6,7 +6,7 @@

<body>

<h1>Hello World!</h1>

- Biography

+ About

</body>

</html>

Stage this hunk [y/n/a/d/e/?]?

This time, enter y to select the hunk. Now it’s staged and ready to com-

mit, which brings us to committing changes.

4.2 Committing Changes

Committing is a relatively straightforward process that adds your

changes to the history of your repository and assigns a commit name

to them.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=55

COMMITTING CHANGES 56

Tracking Empty Directories

Git doesn’t track directories. There has been some historical
resistance to the idea of tracking empty directories. The theory
goes that most well-maintained projects don’t actually need
empty directories.

That may change in the future and Git might track directories,
but in the meantime, there is an easy workaround if you need to
store an empty directory. Just add an empty file in the directory
you want to track, and add it to your repository.

You can name the file anything you want, but most people
start the file’s name with a period (.) because most file systems
ignore files that begin with a period.

The change is not sent to a central repository, though. Other people can

pull the change from you, or you can push the change to some other

repository, but there’s no automatic updating. We’ll talk about these in

Section 7.3, Keeping Up-to-Date, on page 104 and Section 7.4, Pushing

Changes, on page 105.

You can use git commit in multiple ways to commit changes to your

repository, but every commit requires a log message. For simple mes-

sages, you can add a message by adding -m "your message". The message

can be any valid string. You can also specify multiple paragraphs by

passing multiple -m options to git commit.

For more complex messages that require an editor, you can execute

git commit without the -m, and Git launches your editor to create your

log message. When Git tries to launch an editor, it looks through the

following values in this order:

1. GIT_EDITOR environment variable.

2. core.editor Git configuration value.

3. VISUAL environment variable.

4. EDITOR environment variable.

5. Git tries vi if nothing else is set.

When you use the editor to create your commit message, by adding the

-v option you can tell Git to add a diff in the editor showing the changes

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=56

COMMITTING CHANGES 57

you are about to commit. There will be a lot of lines that begin with #.

All of those are ignored when Git reads the commit message.

Like nearly every command in Git, there are a few different ways to

handle a commit. Before we create a new commit, let’s look at the three

ways to generate a commit.

First, you can call git add in some form for the files—or changes if you’re

using git add -p—that you want to commit. This stages those changes

for commit, and calling git commit closes the loop. The process looks like

this:

prompt> git add some-file

prompt> git commit -m "changes to some-file"

That’s an example of a bad commit log message, but it does fit nicely

on a printed page, so I’ll use it here as an example. In a real commit

message, don’t just state the obvious—make sure to explain why you

made the changes too. Remember from the Joe Asks. . . on page 42 that

your commit message should explain the commit like you would to a

developer sitting right next to you.

Another way to handle commits is to pass git commit the -a parameter

on the command line. It tells Git to take the most current version of

your working tree and commit it to the repository. It won’t add new,

untracked files, however—only files that are already being tracked.

If the only change you had made to your working tree in the previous

example was to some-file, you could perform the same commit by exe-

cuting the following:

prompt> git commit -m "changes to some-file" -a

The last method of committing changes is to specify the file or files you

want to commit. Just add each file you want to commit after you specify

all the options you want to pass Git.

Like the -a parameter, this takes the latest version from your working

tree. But it takes just the file or files you specify. Here’s an example

from the two previous commits:

prompt> git commit -m "changes to some-file" some-file

All three examples have their uses. Staged commits are useful when

you want to commit a portion of a file using the git add -p command. If

you need to pull one file out of several that have changed and commit

that, you can commit using the explicit file.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=57

SEEING WHAT HAS CHANGED 58

Using Git Aliases Like SVN Shortcuts

If you’re coming from Subversion, you are probably used to all
those shortcuts to commonly used commands. You never have
to type svn checkout or svn commit because a simple svn co or
svn ci does the trick for you.

Reading through this book and trying the examples, you might
have tried those same aliases with Git and got an error that you
weren’t using a Git command. Git doesn’t ship with all those
aliases like Subversion, but it does give you a better option. You
can add your own aliases via git config.

You can add git ci as a shortcut to git commit with the following:

prompt> git config --global alias.ci "commit"

That works for any Git command, so you can customize your
environment just the way you want it. Substitute the portion
after alias. for the alias you want to create, and you’re set.

There is an important difference to remember between the first method

of committing staged commits and committing all changes or a partic-

ular file’s changes. The last two methods commit the file as it exists the

moment you execute the commit. The first method commits the change

you staged.

This means you can stage a change, make a change to the file, and then

commit the change you staged while still having a file that is changed

in your working tree.

Think of a staged area as a buffer. You add to the buffer with git add.

That buffer stays there until you save it by executing git commit.

Speaking of staged commits, you still have that change staged from

the previous section. Let’s leave it there for a little bit longer while we

explore various ways to view what has changed in your repository.

4.3 Seeing What Has Changed

It’s easy to remember that you added a new file or made a change to

one file when it’s fresh in your mind. Sometimes you don’t have that

luxury, though. Someone walks into your office or you get caught up in

preparation for an impending deadline right after you stage a change.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=58

SEEING WHAT HAS CHANGED 59

You need to find out what has changed in your working tree and how it

has changed. You can use two of Git’s commands, git status and git diff,

to do that.

Viewing the Current Status

You can use git status to see all the changes that have occurred in

your repository. The output it generates is based on the status of any

staged commits and how your current working copy compares to what

is tracked by the repository.

There’s still that change you staged earlier. You can see it right now

with git status:

prompt> git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Note that it has the header Changes to be committed. That tells you that

it’s waiting to be committed. Let’s add another change. This time add a

Contact link after the About link. Here’s the new line I added:

Contact

After you’ve saved your change, run git status again:

prompt> git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: index.html

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: index.html

#

Now there’s two index.html files listed. The first one is the change you

staged earlier. You can tell this because of that header—Changes to be

committed. The second one is the change you just made. It hasn’t been

staged yet, so it has the Changed but not updated header above it. The

first will be green and the second red if you turned on color.ui back in

Section 2.2, Configuring Git, on page 31.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=59

SEEING WHAT HAS CHANGED 60

You just made the changes, so I’m sure you still remember what they

are. Sometimes you need to see, though. To do that, you can check the

diffs—the differences—between the files.

Viewing Difference

Git can show you the differences between what’s in your working tree,

what’s staged and ready to be committed, and what’s in your repository.

You use the git diff command to do this.

Calling git diff with no parameters shows you the changes in your work-

ing tree that you haven’t staged or committed yet.

prompt> git diff

diff --git a/index.html b/index.html

index ca86894..5fdc539 100644

--- a/index.html

+++ b/index.html

@@ -7,6 +7,7 @@

<h1>Hello World!</h1>

About

+ Contact

</body>

</html>

That shows you the Contact link you added—the + at the beginning

of the line shows that it’s an addition—but something is missing. The

About link doesn’t show any change.

Running git diff without any parameters compares the changes in your

working tree against the staging area. You know that there are changes

there, though. git status shows that something is staged. View the differ-

ences in the staging area and the repository by adding --cached to the

call:

prompt> git diff --cached

diff --git a/index.html b/index.html

index e812d0a..ca86894 100644

--- a/index.html

+++ b/index.html

@@ -6,7 +6,7 @@

<body>

<h1>Hello World!</h1>

- Biography

+ About

</body>

</html>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=60

MANAGING FILES 61

Now you see that change you made back in Section 4.1, Adding Files,

on page 52. Notice that there’s a - in front of the Biography line. This

shows you that the line is being removed. If colors are on, Git also

marks the deleted content as red, and added content is green.

That diff doesn’t show the changes that aren’t staged yet, though. You

can compare everything that’s in your working tree—including your

staged changes—against what’s in your repository. To do that, execute

git diff, and add HEAD to the end:

prompt> git diff HEAD

diff --git a/index.html b/index.html

index e812d0a..5fdc539 100644

--- a/index.html

+++ b/index.html

@@ -6,7 +6,8 @@

<body>

<h1>Hello World!</h1>

- Biography

+ About

+ Contact

</body>

</html>

HEAD is a keyword that refers to the most recent commit to the branch

you’re in. You don’t need to worry about that branch part just yet, but

it does come back up.

Let’s create a commit so our changes are tracked:

prompt> git commit -a -m "Change biography link and add contact link" \

-m "About is shorter, so easier to process" \

-m "We need to provide contact info"

Created commit 6f1bf6f: Change biography link and add contact link

1 files changed, 2 insertions(+), 1 deletions(-)

Now you know all the normal commands to get you going. You can add

files, commit changes to the files you’re tracking, and even compare

the changes you’ve made against what’s in your repository. Let’s get

into some housecleaning commands now such as moving, copying, and

even ignoring some files.

4.4 Managing Files

Now your repository is starting to come together. With one file, it’s pretty

simple right now, but as it grows, some cleanup is necessary.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=61

MANAGING FILES 62

Files need moving, code needs to be copied around, and some of the

everyday cruft from working with your project needs to be ignored.

Renaming and Moving Files

We all write flawless, bug-free code on our first pass. Right? Even

though we would like to think that we do, we sometimes get things

wrong. Naming a file incorrectly or putting it in the wrong directory is

no exception.

You can move a file in Git by typing git mv <original-file> <new-file>. The

command tells Git to create new-file with the existing file’s content, and

it keeps the history and removes original-filename.

Your “Hello World” page is not an index, so let’s move it:

prompt> git mv index.html hello.html

prompt> git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: index.html -> hello.html

#

git mv is a convenience. Git can detect the movement of a file, but more

steps are involved. You have to move the file and then call git add on the

new file and git rm—the command to remove a file from the repository—

on the old file.

Go ahead and commit the new hello.html move:

prompt> git commit -m "rename to more appropriate name"

Created commit 9a23464: rename to more appropriate name

1 files changed, 0 insertions(+), 0 deletions(-)

rename index.html => hello.html (100%)

Now that you’ve renamed the index.html file, let’s talk about copying

files.

Copying Files—or Not

If you’re used to Subversion, you might find it odd that Git doesn’t have

a git cp command for copying. There’s a reason—Git doesn’t need it.

Subversion’s copy is mainly to let you create branches and tags—Git

provides you with the commands to handle both of those directly. Git

does track copied code, though.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=62

MANAGING FILES 63

That brings us to a point we haven’t talked much about yet. Git doesn’t

track files; it tracks content like we talked about in Section 1.5, Track-

ing Projects, Directories, and Files, on page 19.

Git has a good reason for this. Filenames are nothing more than meta-

data added to the content of files so they can be organized. Git can

figure out that name by asking the file system about it, but what it

cares about is the content that’s stored inside files.

So, how does this all apply to copying files? Since Git tracks only con-

tent, it can detect when the same content is duplicated across multiple

commits without you having to explicitly tell it to copy.

You can view the copied code, something we’ll cover in Section 6.5,

Following Content, on page 88. Be careful, though. If you find yourself

copying a lot of code around, it might be a sign that your code needs to

be refactored1 to avoid duplication.

Ignoring Files

Depending on your editor, you might be seeing slightly different output

from git status. Actually, that’s because I changed my repository and

didn’t tell you about it.

This is what my output looks like when I remove that change and run

git status:

prompt> git status

On branch master

Your branch is ahead of 'origin/master' by 2 commits.

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

.index.html.swp

nothing added to commit but untracked files present

(use "git add" to track)

My favorite editor is MacVim.2 Whenever I start editing a file with it, it

creates an .swp file for internal tracking. That’s cruft that doesn’t need

to be in the repository. You can ignore it by adding it to the .gitignore

file, and it disappears.

1. Refactoring is the “art” of making code better by small incremental changes. For a

thorough introduction to the topic, there is no better source than Martin Fowler’s book

Refactoring [FBB+99].
2. http://code.google.com/p/macvim/

http://code.google.com/p/macvim/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=63

MANAGING FILES 64

Adding one file at a time to ignore is inefficient, so Git allows wildcards.

Since I know that MacVim swap files always begin with a period and end

with .swp, I add .*.swp to the .gitignore, and Git ignores all matching files:

... add ".*.swp" to .gitignore file ...

prompt> git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

.gitignore

nothing added to commit but untracked files present

(use "git add" to track)

Now the swap file is gone and replaced with the new .gitignore. It’s a

regular file that can be tracked and distributed with your repository, so

everyone who clones your work will ignore those files as well.

Every developer has their own favorite editor, though, and each one

uses a different mechanism to save backups and signify that it has a file

open. Distributing your personal preferences as part of the repository

might not be such a good idea.

You can tell your local repository to ignore files like these without shar-

ing the exclusion with everyone else. Edit the file .git/info/exclude, and

add your rules there.

Deciding Where to Ignore

You can decide what to ignore at the repository level through .gitignore

and what to ignore locally through .git/info/exclude by asking yourself a

simple question: Is this kind of file something that everyone is going to

have in their repositories?

If the answer to that is yes, you need to ignore it by adding the rule to

the .gitignore file and committing that file to the repository. If it’s only a

file you’ll see, add it to your .git/info/exclude file.

Since I didn’t want to add an extra file and commit to the repository, I

had the .*.swp line added to my .git/info/exclude file.

We’ve covered the basics now in this chapter. Everything else builds on

these basics. Start adding things to your repository, and then commit

your changes.

Now you have the basics down. Now it’s time to start learning about

branches. Other VCSs treat them as an afterthought, but in Git they’re

so important to use that we need to cover them up front.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=64

Chapter 5

Understanding and
Using Branches

You can use Git with a single branch—the default master—and get all

the benefits of a VCS. Git will track the history, let you collaborate with

other developers, and make sure you don’t accidentally delete some-

thing important.

But using Git this way is like buying a racing car and using it for your

commute. It will get you there, but you never get to use the car to its

potential in the 8 a.m. rush-hour traffic.

Branches are a fundamental part of Git. In this chapter, you’ll learn

what branches are and how to do the following:

• Create new branches

• Merge changes between branches

• Handle conflicts

• Delete branches

• Rename branches

• Handle release branches

We’re going to be working with the repository that you’ve created up to

this point. If you’ve skipped ahead, you can clone the repository from

its GitHub repository:

prompt> git clone git://github.com/tswicegood/mysite-chp4.git

Initialized empty Git repository in /work/mysite-chp4/.git/

WHAT ARE BRANCHES? 66

5.1 What Are Branches?

We all have competing priorities at work that we have to juggle. Adding

new features, refactoring existing code to make it more maintainable,

and fixing the occasional bug—they all jockey for our attention, and we

have to balance them.

A straight, linear history has a hard time coping with these demands.

This is where branches come in. We talked about them in Section 1.7,

Creating Alternate Histories with Branches, on page 21. They allow you

to track changes with different histories.

Here is Git’s secret: everything is treated like a branch. So far, all the

work you’ve been doing has been in the master branch, but nothing is

stopping you from giving it another name. Actually, let’s do that:

prompt> git branch -m master mymaster

prompt> git branch

* mymaster

That’s it. You renamed the master branch to mymaster. Both of the com-

mands use git branch, but they provide different parameters.

The first has three parameters. The -m parameter tells Git to perform a

move. The other two parameters are the old branch name and the new

name you want your branch to have.

The second command is git branch by itself. Git displays the names of

all the local branches in your repository when it isn’t given any param-

eters. Git just shows the one branch name here since this repository

has only one branch.

Just to tidy things up, let’s rename it to master:

prompt> git branch -m mymaster master

Since everything is considered a branch in Git, they’re “cheap.” Unlike

other systems where all the files are copied into a new directory, a

branch in Git tracks the commits that were made to it from the point it

was created.

Actually, that’s a little white lie. Git’s branches keep track of only the

most recent commit to that branch. That commit has a link to its par-

ent, and using that link Git can figure out all the changes in that

branch.1

1. Those with a background in computer science or mathematics might recognize this

as a directed acyclic graph (DAG).

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=66

CREATING A NEW BRANCH 67

One of the hardest parts of branches is figuring out when to create a

branch. It’s an art, not a science. Here are a few of things that I create

new branches for:

• Experimental changes: Want to try rewriting algorithms just to see

whether they’re faster, or want to try refactoring a section of code

to a particular pattern? Create a new branch to do your work in,

and you can work on it separately from any changes that are being

deployed immediately.

• New features: Every time you start working on a new feature, cre-

ate a new branch. You can merge it back in as soon as you’re

done, either with the full history or through a squashed commit.

We’ll talk about these different merging strategies in Section 5.3,

Merging Changes Between Branches, on page 69.

• Bug fixes: Whether it’s a fix to a bug in code that hasn’t been

released or code that has already been tagged for a release, you

can create a branch to track your changes to that bug. This gives

you a lot of flexibility in how you merge it back into the rest of the

code, just like creating a branch for a new feature. This is espe-

cially true if your bug fix is going to take some experimentation.

How you create and use your branches depends a lot on the project.

I used Git to track all the changes to this book and employed a pretty

extensive branch strategy.

My beta branch contained the latest copy of the book with the content

that was ready to ship, and each chapter had its own branch. New edits

to the chapters happened in their own branch, and then I merged those

changes back in to the beta branch once they were ready.

I also employed a lot of temporary branches. For example, every time

I fixed errata I would create an errata branch, make the corrections,

merge the changes back in, and delete the branch.

That gives you the high-level view of branches and introduces you to

some basics about them. Now, let’s start creating new branches.

5.2 Creating a New Branch

Creating a new branch is a simple process. You still use the git branch

command, except this time you give it the name of the new branch you

want to create. You can create a branch called new like this:

prompt> git branch new

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=67

CREATING A NEW BRANCH 68

Git doesn’t give us any visible feedback that it created a new branch,

but we can check by running git branch again without any parameters:

prompt> git branch

* master

new

There’s our new branch called new. Notice that the master branch has

an asterisk by its name. That’s to signify which branch is currently

checked out. The checked-out branch is the branch that your current

working tree reflects.

Of course, you want to be able to make changes to the files in your

newly created branch. To do that, you have to check out the branch.

You do that with the git checkout command like this:

prompt> git checkout new

Switched to branch "new"

That’s all it takes to switch. Run git branch again without any parame-

ters to see that the current branch has changed:

prompt> git branch

master

* new

Most of the time when you create a branch, you want to immediately

check it out so you can start working with it. Git provides a quick

shortcut to do that. You can create a branch and check it out in one

step by adding the -b parameter to git checkout.

Let’s create another branch using git checkout -b. Each branch has to

have a unique name, so you have to choose something besides master

or new.

Let’s go with alternate to keep it simple:

prompt> git checkout -b alternate master

Switched to a new branch "alternate"

Notice this time I added a third parameter, master. The extra parameter

tells Git to create the branch from the master branch instead of the

current branch.

You can provide the extra branch to git branch as well, and it will create

the new branch from whatever branch you specify.

Now that you have these branches, you can start making changes that

are tracked in that one branch. Next up, we’ll cover how to merge those

changes between branches.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=68

MERGING CHANGES BETWEEN BRANCHES 69

5.3 Merging Changes Between Branches

These branches are great for organizing your repository, but you need

to be able to share changes between branches. This is done through

merging.

Merging does exactly what it sounds like. It takes two—or sometimes

more—branches and merges them into one. There are a couple of dif-

ferent ways to merge changes between branches. This section covers

the following:

• Straight merges take the history of one branch and the history of

the other branch and attempt to merge them together.

• Squashed commits take the history of one branch and compress—

or “squash”—it into one commit on top of another branch.

• Cherry-picking a commit pulls a single commit from a different

branch and applies it to the current branch.

Straight Merging

A straight merge takes one branch and merges it into another branch.

You can use this when you want to pull the entire history of one branch

into another.

Let’s demonstrate this by adding some new changes to the alternate

branch you just created. Add a new file called about.html, and add some

information about yourself.

Once you’ve created the new file, add and commit it to your repository:

prompt> git add about.html

prompt> git commit -m "add the skeleton of an about page"

Created commit 217a88e: add the skeleton of an about page

1 files changed, 15 insertions(+), 0 deletions(-)

create mode 100644 about.html

Now you have a commit on the alternate branch that doesn’t exist on

the master branch. You can now use the git merge command to merge

the two.

First, you have to start by switching to the branch you want to use as

your target for the merge. In this case, that’s the master branch:

prompt> git checkout master

Switched to branch "master"

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=69

MERGING CHANGES BETWEEN BRANCHES 70

Next, you can use git merge. In its simplest form, git merge takes the

name of the branch you want to merge into your current branch:

prompt> git merge alternate

Updating 9a23464..217a88e

Fast forward

about.html | 15 +++++++++++++++

1 files changed, 15 insertions(+), 0 deletions(-)

create mode 100644 about.html

Now the changes from the alternate branch are merged into your master

branch.

Squashing Commits

Feature branches are a common way to use branches in Git. You create

your new feature, or maybe even fix a bug, inside a branch and then

create a squashed commit to merge the changes back.

They are “squashed” because Git takes all the history of one branch

and compresses it into one commit in the other branch. Be careful with

squashed commits. Most of the time you want to keep all the commits

separate in your history. If the changes of a branch represent one indi-

vidual change, then it’s a candidate for squashing.

These are helpful when you’re creating a new feature or fixing a bug that

requires some experimentation. You don’t need each commit tracing

your experimentation; you just need the final outcome.

You need to have something to merge in order to create a squashed

commit. Let’s create a branch from the master branch called contact

and check it out:

prompt> git checkout -b contact master

Switched to a new branch "contact"

Now add a file called contact.html. Add your email address to the file,

and then commit it.

prompt> git add contact.html

prompt> git commit -m "add contact file with email"

Created commit 5b4fc7b: add contact file with email

1 files changed, 15 insertions(+), 0 deletions(-)

create mode 100644 contact.html

Now add a second email address so there are two ways to contact you,

and commit it separately:

prompt> git commit -m "add secondary email" -a

Created commit 2f30ccd: add secondary email

1 files changed, 4 insertions(+), 0 deletions(-)

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=70

MERGING CHANGES BETWEEN BRANCHES 71

Now you have two commits in your contact branch. You can squash

these two commits back into the master branch as one commit.

First, you need to switch back to the master branch:

prompt> git checkout master

Switched to branch "master"

Now call git merge, and pass it the --squash parameter. Adding the

--squash option tells git merge to take all the commits from the other

branch and squash them into one commit:

prompt> git merge --squash contact

Updating 217a88e..2f30ccd

Fast forward

Squash commit -- not updating HEAD

contact.html | 19 +++++++++++++++++++

1 files changed, 19 insertions(+), 0 deletions(-)

create mode 100644 contact.html

Now both of your commits from contact have been applied to your work-

ing tree and are staged for a commit, but they have not been committed.

You can run git status to see the changes:

prompt> git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

new file: contact.html

#

All that’s left now is for you to commit the change like any other commit:

prompt> git commit -m "add contact page" \

-m "has primary and secondary email"

Created commit 18f822e: add contact page

1 files changed, 19 insertions(+), 0 deletions(-)

create mode 100644 contact.html

Squashing and straight merges both have their uses. Sometimes, you

need just one commit, though. Cherry-picking is useful in these cases.

Cherry-Picking Commits

Sometimes you need to merge only one commit between branches and

don’t need to do a full merge. The full merge might be a bad idea

because the branch has features that you can’t use yet or other changes

that aren’t ready for this branch yet.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=71

MERGING CHANGES BETWEEN BRANCHES 72

So, when do you need to pull just one commit? Maybe it’s a bug that has

been fixed or there’s a class that needs to be shared between branches.

You can pull those individual commits using git cherry-pick.

Just like the name implies, it “cherry-picks” a commit and adds it to

your current branch. Let’s run through a quick, albeit contrived, exam-

ple and create a third commit in your contact branch.

First, you need to make sure you’re on the contact branch:

prompt> git checkout contact

Switched to branch "contact"

Next, now that you’ve switched, add a new link to another way to con-

tact you, such as your Twitter account, and commit it:

prompt> git commit -m "add link to twitter" -a

Created commit 321d76f: add link to twitter

1 files changed, 4 insertions(+), 0 deletions(-)

With the commit name—321d76f—in hand, you can cherry-pick it any-

where. Remember, the commit names are universally unique, so your

commit name will be different from the one I created. Let’s bring it over

to the master branch:

prompt> git checkout master

Switched to branch "master"

prompt> git cherry-pick 321d76f

Finished one cherry-pick.

Created commit 294655e: add link to twitter

1 files changed, 4 insertions(+), 0 deletions(-)

Of course, this example isn’t too impressive since your contact branch

has only that one change, but it does demonstrate the raw steps you

need to take to perform a cherry-pick.

Imagine you created a new class in one branch while you’re refactoring

some existing code—maybe a class that implements a generic pattern

such as a registry. It’s generic enough that you want to reuse it, but it’s

stuck in another branch that you can’t merge completely because you

don’t want or need all the functionality in that branch.

You can use git cherry-pick to pick that change out. By default, a new

commit is created with the changes from that cherry-picked commit.

This is OK in most cases, but what if the code you need is in several

commits?

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=72

MERGING CHANGES BETWEEN BRANCHES 73

To cherry-pick multiple commits, give git cherry-pick the -n parameter.

That tells Git to do the merge but stop before creating a commit. Let’s

demonstrate.

First, let’s remove it with git reset. This command is something you

haven’t seen yet, but don’t worry—we’ll cover how to use it in Sec-

tion 6.6, Resetting Changes, on page 94.

prompt> git reset --hard HEAD^

HEAD is now at 18f822e add contact page

Now that the last commit is removed, you can run git cherry-pick again

with the -n parameter:

prompt> git cherry-pick -n 321d76f

Finished one cherry-pick.

Notice that Git stopped at Finished one cherry-pick this time. You can run

git status and see that the new file has been added and is staged and

ready for commit:

prompt> git status

On branch master

Your branch is ahead of 'origin/master' by 2 commits.

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: contact.html

#

Now you can proceed to cherry-pick another change. You can commit

the changes with whatever message you would like once all the commits

have been cherry-picked.

Go ahead and commit the change. But don’t add a message with -m.

The editor will come up with the commit message of the commit you

just cherry-picked:

prompt> git commit

Created commit 0bb3dfb: add link to twitter

1 files changed, 4 insertions(+), 0 deletions(-)

That covers the basics of merging. So far, our merges have been pretty

straightforward and easy, but what happens if there is a problem

merging? Handling those conflicts is the subject of the next section.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=73

HANDLING CONFLICTS 74

5.4 Handling Conflicts

What happens when you edit the same file in different ways in two

different branches and then try to merge them? Git tries to merge them

together, but sometimes it can’t.

It is called a conflict when Git can’t automatically merge the commits

together. Conflicts occur most commonly when the same area in a file

is changed in different ways in each branch. For example, you might

use a different variable name in each branch. Git can’t tell which one

you want to use, so it stops with a conflict and lets you fix it.

Let’s demonstrate how a conflict works. First, let’s create a new branch

called about to add our work in:

prompt> git checkout -b about master

Switched to branch "about"

Next, add a list of a few of your favorite programming languages. Save

the file, and then add and commit it to the repository:

prompt> git add about.html

prompt> git commit -m "a list of my favorite programming languages"

Created commit 01fe684: a list of my favorite programming languages

1 files changed, 7 insertions(+), 0 deletions(-)

Now, create a second branch called about2, but don’t switch to it just

yet:

prompt> git branch about2 about

Before you switch branches, add another language to your about.html

file, and commit your change:

prompt> git commit -m "add Javascript to list" -a

Created commit 9e114ac: add Javascript to list

1 files changed, 1 insertions(+), 0 deletions(-)

Now you have a change that exists in the about branch but not in the

about2 branch because we created the branch before we made the sec-

ond commit.

Switch over to about2. You can refresh about.html to see that the last

entry isn’t there:

prompt> git checkout about2

Switched to branch "about2"

Add another name to about.html on the same line where you added your

last entry, but this time make it something different.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=74

HANDLING CONFLICTS 75

Once it’s saved, commit your new change:

prompt> git commit -m "add EMCAScript to list" -a

Created commit b84ffdc: add EMCAScript to list

1 files changed, 1 insertions(+), 0 deletions(-)

Now you manufactured a conflict. Of course, most of the time you won’t

realize what has happened until later when Git complains as you try to

merge. Let’s see this in action.

Start by switching back to about, and then try merging about2 into it:

prompt> git checkout about

Switched to branch "about"

prompt> git merge about2

Auto-merged about.html

CONFLICT (content): Merge conflict in about.html

Automatic merge failed; fix conflicts and then commit the result.

Notice the CONFLICT line. It tells us that there was a conflict in the

about.html file.

This is what my list from about.html looks like now:

Erlang

Python

Objective C

<<<<<<< HEAD:about.html

Javascript

=======

EMCAScript

>>>>>>> about2:about.html

You can see that there are two different names in the last element.

The first is the commit you made to about earlier. The second is the line

you just added to about2. The conflict is prefixed by this:

<<<<<<< HEAD:about.html

The code that conflicted from the other branch is displayed after the

======= separator and suffixed with the following line:

>>>>>>> about2:about.html

The prefix and suffix lines tell you two things. First, any code that is

preceded by “<<<<<<<” is the code in your current branch, and any code

suffixed with “>>>>>>>” is from the other branch. Second, the name of

what you are trying to merge is included before the filename. In this

case, it is the HEAD—remember, that’s the name of the most current

commit in your current branch—that conflicts with the about2 branch.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=75

HANDLING CONFLICTS 76

For simple merges, you can edit the file by hand to resolve the conflict.

Once you have saved your changes, you need to stage and commit your

changes like normal.

For more complex merges, using a visual tool such as kdiff32 in Linux

or opendiff3 on OS X is helpful. Git can launch a merging tool by using

the git mergetool command.

git mergetool attempts to locate a tool to handle the merge for you. It

will sometimes find multiple tools. When it does, it asks which tool you

want to use.

prompt> git mergetool

Merging the files: about.html

Normal merge conflict for 'about.html':

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (opendiff):

git mergetool looks at the value of merge.tool in your configuration; then

it scans your system for valid merge resolution tools. Valid tools are

kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and

opendiff.

In the previous session, all I have to do is press the Enter key to start

OS X’s FileMerge Utility via opendiff. You can see what it looks like in

Figure 5.1, on the following page.

Each tool is a little different, so a step-by-step guide is impossible, but

the overall result is the same. Each conflicting change is displayed, and

you choose which one you want to use.

Git stages your changes for commit once you successfully resolve the

conflicts. Go ahead and commit your change. Leave -m off, and Git

will prepopulate your log message with a message describing what just

happened:

prompt> git commit

Created commit f846762: Merge branch 'about2' into about

2. http://kdiff3.sourceforge.net

3. opendiff is part of Xcode from Apple that can be downloaded from

http://developer.apple.com/tools/.

http://kdiff3.sourceforge.net
http://developer.apple.com/tools/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=76

DELETING BRANCHES 77

Figure 5.1: OS X’s FileMerge Utility

That covers the creating and merging branches and shows how to han-

dle the conflicts that inevitably arise. These are three of the areas where

most of your time gets spent when working with branches. Up next, we

move on to some housecleaning: deleting branches.

5.5 Deleting Branches

Branches can outlive their usefulness. The release was tagged; the

experiment was proven successful or failed. When this happens, you

should delete the branch to keep your repository’s branches from grow-

ing out of control.

After you merge your changes back into your current branch, such as

the about2 branch you created, you can use the -d parameter on git

branch to delete the old branch:

prompt> git branch -d about2

Deleted branch about2.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=77

RENAMING BRANCHES 78

This works only when the branch you’re trying to delete has been suc-

cessfully merged into the current branch you are on. To demonstrate

this, let’s switch back to the master branch. Remember, we haven’t

merged any of our changes from the about branch yet.

prompt> git checkout master

Switched to branch "master"

prompt> git branch -d about

error: The branch 'about' is not an ancestor of your current HEAD.

If you are sure you want to delete it, run 'git branch -D about'.

Now, if you are sure you want to remove the about branch without

merging, you can force it to be removed by swapping out the -d for a -D.

That tells Git not to check and to make sure that the branch you are

trying to delete has been merged into the current branch.

Let’s revisit renaming branches one last time before we wrap up this

chapter on branches.

5.6 Renaming Branches

Branch names serve as a reminder as to what you’re working with.

Sometimes those reminders need to change. Sometimes you need to fix

a typo.

Let’s take our contact branch. There was one method of contact when

it started, but now there’s three. Let’s rename it to contacts:

prompt> git branch -m contact contacts

prompt> git branch

about

alternate

contacts

* master

new

The -m parameter will not overwrite an existing branch, so the new

branch—the second branch name you provide—must be unique. Git

complains like this if you try to rename a branch using an existing

name:

prompt> git branch -m master contacts

fatal: A branch named 'contacts' already exists.

You can override this behavior by changing the -m option to the -M

option. The uppercase M tells Git to force an overwrite if the other

branch exists. Use this with care.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=78

RENAMING BRANCHES 79

That wraps up our tour of branches. We’ve covered the mechanics of

creating and maintaining branches. Understanding how branches fit

into Git is fundamental to being efficient with Git.

So far, we’ve covered how to use Git moving forward, but a key part of

any VCS is how we can use it to see where we’ve been. The next chapter

Chapter 6, Working with Git’s History, on the next page deals with that.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=79

cannot remember the past are condemned to

repeat it.

George Santayana

Chapter 6

Working with Git’s History
A key aspect of any version control system is its history. Every new

file you add and every change you add creates one more commit in its

history.

In this chapter, you’ll learn how to do the following:

• Inspect the history of your repository using git log

• Specify ranges of commits to help searching

• View differences between commits

• Annotate files with a line-by-line history

• Follow content as you move it around

• Undo changes you’ve made

• Rewrite the history of your repository

Inspecting that history can provide invaluable information. “Why does

this file not conform to our coding standard?” A quick check of a file’s

log might show that it has not been touched since it was originally

hacked together with a log message of make ready for client demo.

If your questions are more specific, Git can show you an annotated

version of your file that tells you who changed each line and when. You

can drill down further to show the differences between two revisions of

a file.

Finally, Git lets you rewrite the history of your repository in several

ways, but be careful, or the other members on your team might quit

talking to you after they spend a morning trying to fix broken merges.

INSPECTING GIT’S LOG 81

In this chapter, you’ll learn how to deal with all these tasks; we’ll start

with looking at where we’ve been by learning about git log.

This chapter uses the repository you’ve been working on throughout

the book. If you don’t have a copy and want to follow along with the

examples in this chapter, you can clone the repository from GitHub:

prompt> git clone git://github.com/tswicegood/mysite-chp5.git

Initialized empty Git repository in /work/mysite-chp5/.git/

remote: Counting objects: 41, done.

remote: Compressing objects: 100% (35/35), done.

remote: Total 41 (delta 14), reused 0 (delta 0)

Receiving objects: 100% (41/41), 4.52 KiB, done.

Resolving deltas: 100% (14/14), done.

prompt> cd mysite-chp5

6.1 Inspecting Git’s Log

The commit log is the most common way for you to inspect what has

happened to your repository. Git shows each new commit’s log entry,

along with who made the commit, when, and optionally the changes

that were made.

It’s displayed in a reverse-chronological order, like a blog. You can pro-

vide all sorts of parameters to filter the log, but let’s start with the

basics. Just type git log at the command prompt from within your work-

ing tree:

prompt> git log

commit 0bb3dfb752fa3c890ffc781fd6bd5dc5d34cd3be

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter

commit 18f822eb1044761f59aebaf7739261042ae10392

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 10:34:51 2008 -0500

add contact page

has primary and secondary email

:

Git sends the log output through less if there is more than it can display

on one screen. That lets you scroll through the log. You can tell that

there’s more output by the presence of the : at the bottom of the screen.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=81

SPECIFYING REVISION RANGES 82

The default output from git log shows you four pieces of information

about each commit: the commit name, the author, the date, and the

log message. The first three are on the first three lines. The rest of the

entry until the next line beginning with commit is the log entry.

Sometimes our log messages aren’t as descriptive as we thought they

were when we view them six months later. Often, viewing the code that

changed in conjunction with the log message can help jog our mem-

ories. Adding the -p option tells Git to display the diff that revision

created.

Often you need to view only a set number of commits. You can add

-1 to the log command to limit the log to one commit, -2 to limit it to

two commits, and so on. For example, git log -10 shows the last ten log

entries.

You can view the log starting at a given revision by passing the revision

as an option at the command line:

prompt> git log 7b1558c

commit 7b1558c92a7f755d8343352d5051384d98f104e4

Author: Travis Swicegood <development@domain51.com>

Date: Sun Sep 21 14:20:21 2008 -0500

add in hello world HTML

Note that I used a short commit name—the first seven characters of the

commit name. Git tries to match any hash you provide it, but it has to

be unique. Four or five characters normally matches, but seven or eight

is almost guaranteed to be unique.

Now that you have the basics down with git log, it’s time to dive into

more complex ways of telling Git what commit—or commits—you’re

looking for.

6.2 Specifying Revision Ranges

I have what I’ve come to call a “nonhistorian” brain. Specifics take a lot

of work for me to remember. I know the gist of American history, but I

can’t tell you specific dates unless they ended up spawning a national

holiday.

The same thing happens when I code: “I added that functionality last

Monday or Tuesday.” “I fixed that bug this morning.” Git has a lot of

functionality for looking through its logs that way.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=82

SPECIFYING REVISION RANGES 83

Git provides some other useful ways for filtering the commits that you

see. Say you want to look at commits only from the last five hours, so

you add --since="5 hours". Your command now looks like this:

prompt> git log --since="5 hours"

commit 0bb3dfb752fa3c890ffc781fd6bd5dc5d34cd3be

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter

Likewise, you can skip the last five hours and view only those commits

older than that by using --before="5 hours":

prompt> git log --before="5 hours" -1

commit 18f822eb1044761f59aebaf7739261042ae10392

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 10:34:51 2008 -0500

add contact page

has primary and secondary email

The --since and --before options can take most English ways of specify-

ing a date. Git can understand --since="24 hours", --since="1 minute", and

--before="2008-10.01"—yes, it is smart enough to parse that date, even

with the mixed hyphen and period.

You can also pass ranges of commits in by separating two revisions

with oldest-revision..newest-revision. You should always specify the oldest

revision first so Git can understand what you want:

prompt> git log 18f822e..0bb3dfb

commit 0bb3dfb752fa3c890ffc781fd6bd5dc5d34cd3be

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter

At first glance, that output looks wrong. We told it to show us the log

from revision 18f822e to revision 0bb3dfb. The first time I used a com-

mand similar to this, I thought it would include 18f822e, but Git doesn’t.

Instead, Git interprets that range to mean every commit after 18f822e to

5ef8.

HEAD is synonymous with the latest revision of the current branch in

your repository. In our earlier command, we could swap out 0bb3dfb

with HEAD and get the same result.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=83

SPECIFYING REVISION RANGES 84

prompt> git log 18f822e..HEAD

commit 0bb3dfb752fa3c890ffc781fd6bd5dc5d34cd3be

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter

You can drop the final HEAD from that range because Git assumes HEAD

is what you mean if you leave the last value blank:

prompt> git log 18f822e..

commit 0bb3dfb752fa3c890ffc781fd6bd5dc5d34cd3be

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter

With ranges, you can swap out the commit name for a tag name too.

This is useful for seeing what has changed since a particular tag and

for looking at the revision history between two tags.

prompt> git log --pretty=format:"%h %s" 1.0..HEAD

0bb3dfb add link to twitter

18f822e add contact page

217a88e add the skeleton of an about page

9a23464 rename to more appropriate name

6f1bf6f Change biography link and add contact link

4333289 add in a bio link

Notice that this time I added the --pretty parameter to git log. The for-

mat:"%h %s" option tells Git to display short hashes and the first line of

the commit log, which is the subject.

A more common usage is --pretty=oneline, but the output from it is too

wide to fit on this page. There’s a bunch of different formats you can

use. The git log manual page lists them all. If your git log command

with ranges doesn’t generate anything, make sure it’s a range that can

actually work. Remember, the oldest revision has to be specified first. If

you don’t do that, Git won’t complain; it just won’t show you anything.

Another common way to specify a revision is by its relationship to

another revision. There are two operators you can use:

• ∧: A caret acts like a minus one. 18f822e∧ translates into the revi-

sion that comes before the revision that matches 18f822e. You can

also use multiple carets: 18f822e∧∧ is two revisions prior to 18f822e,

and so on. On Windows you need to add quotation marks around

your revision if it as a caret in it. 18f822e∧ should be "18f822e∧",

otherwise Windows can’t process your command properly.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=84

LOOKING AT DIFFERENCES BETWEEN VERSIONS 85

• ~N: The tilde and a number operator subtracts N from the commit

name. Using the last examples, 18f822e~1 is the revision prior to

18f822e, and 18f822e~2 is two revisions prior to 18f822e.

You can mix and match these two operators. The following three com-

mands would all grab the same revision:

prompt> git log -1 HEAD^^^

... log entry ...

prompt> git log -1 HEAD^~2

... log entry ...

prompt> git log -1 HEAD~1^^

... log entry ...

prompt> git log -1 HEAD~3

... log entry ...

You can also use revisions with carets or tildes in the ranges we talked

about earlier. So, you can do the following:

prompt> git log HEAD~10..HEAD

fatal: ambiguous argument 'HEAD~10..HEAD': unknown revision or path

not in the working tree.

Use '--' to separate paths from revisions

Oops. That’s what happens when you specify a revision that does not

exist. You get the “unknown revision” error. Now that we have all the

revisions ranges and filters down, let’s look at viewing differences be-

tween a file at different points in history.

6.3 Looking at Differences Between Versions

In Section 4.3, Seeing What Has Changed, on page 58, you learned

how to use git diff to look at the differences between your working copy

and the repository. You can also use it to view the history within the

repository:

prompt> git diff 18f822e

diff --git a/contact.html b/contact.html

index 64135cb..63617c2 100644

--- a/contact.html

+++ b/contact.html

@@ -13,6 +13,10 @@

<p>

Gmail

</p>

+

+ <p>

+ Twitter

+ </p>

</body>

</html>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=85

FINDING OUT WHO’S TO BLAME 86

All the revision ranges and modifiers are the same as git log. The only

difference is that Git shows you all the changes mashed together in-

stead of incrementally.

Using git diff with tags is a great way to get statistics between releases.

With it, you can figure out how many lines of code were changed and

how many were removed.

There’s another cool option for git diff that prints some statistics about

the changes that have been made. Just add the --stat option:

prompt> git diff --stat 1.0

about.html | 15 +++++++++++++++

contact.html | 23 +++++++++++++++++++++++

hello.html | 13 +++++++++++++

index.html | 9 ---------

4 files changed, 51 insertions(+), 9 deletions(-)

This is a great way to see the amount of code that has been touched in

the last week or since the last tag.

Notice that I gave it a tag. Git assumes you want to compare against

the HEAD if you don’t give it a second revision.

Now that you know how the log works and how to show differences

between different revisions of the file, let’s look at the history line-by-

line.

6.4 Finding Out Who’s to Blame

You’re looking at a file in your project, and one block of code—it might

be one line or ten—looks out of place. Or maybe there’s a set of nested

conditions that you’re trying to wrap your head around so you can

refactor it to make it more understandable.

Looking at the log of a file and differences between revisions can be

helpful, but there’s a more useful command when you need information

about a particular block of code. git blame prefixes every line with the

commit name, committer, and timestamp.

Here are the first two lines of git blame output on hello.html with my last

name shortened so the output fits on the page:

prompt> git blame hello.html

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 1) <html>

a5dacabd index.html (Travis S. 2008-09-21 20:37:47 -0500 2) <head>

There’s a couple of interesting pieces of information here. First, the

first eight characters on each line show the commit hash. Notice that

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=86

FINDING OUT WHO’S TO BLAME 87

the first line has a ∧ before it. That signifies that it’s the first commit to

the repository.

Next, notice that the filename index.html is listed. Remember when you

created this file? It was originally named index.html. That second col-

umn, if it’s present, is Git’s way of telling that this change was origi-

nally in another file. After that, it displays the committer’s name and

the time the commit was created. It’s followed with the line number and

then the line of code.

Of course, you rarely need to see the entire file annotated. Git makes

it easy to annotate a portion of a file with its -L option. This tells Git to

display only a certain set of line ranges. It takes single parameter—a

<start>,<end>.

The start and end can be numbers. For example, the following loads

the blame for lines 12 and 13 of the hello.html file:

prompt> git blame -L 12,13 hello.html

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 12) </body>

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 13) </html>

The ending number doesn’t have to be a specific number. You can spec-

ify it as +N or -N to specify a range. This generates the same output as

the previous command:

prompt> git blame -L 12,+2 hello.html

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 12) </body>

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 13) </html>

Using the -N notation allows you to subtract that many lines. You can

use -L 12,-2 to show lines 12 and 11 of your file:

prompt> git blame -L 12,-2 hello.html

4333289e index.html (Travis S. 2008-09-22 07:54:28 -0500 11)

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 12) </body>

Using numbers is often convenient. A lot of the time you have an edi-

tor open with the line numbers displayed when you need to figure out

what’s going on in a file, but Git provides another way to specify the

start and end—regular expressions.1

1. Git uses POSIX regular expressions if you’re curious about what type of regular

expression you can use.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=87

FOLLOWING CONTENT 88

Many books2 have been written on regular expressions, so I won’t cover

them here other than to show you an example. You can write the blame

command we’ve used previously using a regular expression like this:

prompt> git blame -L "/<\/body>/",+2 hello.html

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 12) </body>

^7b1558c index.html (Travis S. 2008-09-21 14:20:21 -0500 13) </html>

Of course, a lot of times the output from blame isn’t going to be helpful.

Perhaps the coding standard changed and someone was performing

some cleanup. You can use any of the methods we talked about in

Section 6.2, Specifying Revision Ranges, on page 82 to specify where

you want to look. For example, if you want to look at the hello.html file

before the 4333289e commit, you can use this command:

prompt> git blame -L "/<\/body>/",-2 4333289e^ -- hello.html

fatal: no such path hello.html in 4333289e^

Oh, that’s right, hello.html didn’t exist at commit 4333289e∧. It was still

index.html at that point. Run the command again with index.html as the

filename. Notice that there’s a -- between the end of the options and the

actual filename. That tells Git that you’re specifying a file.

prompt> git blame -L "/<\/body>/",-2 4333289e^ -- index.html

^7b1558c (Travis Swicegood 2008-09-21 14:20:21 -0500 7) <h1>Hello...

^7b1558c (Travis Swicegood 2008-09-21 14:20:21 -0500 8) </body>

That covers the basics of git blame. You’ve seen it display when files

have moved, but it can also follow changes from copy and pasting. You’ll

learn how to do that next.

6.5 Following Content

As we talked about in Section 4.4, Copying Files—or Not, on page 62,

Git can track when the content moves within a file and even when it

moves to another file. This is useful when you’re trying to track down

the original commit and author of a few lines of code.

To keep from matching lines like a closing bracket in C or a simple

constructor in Python, Git tries to match at least three lines when it

tries to detect a copy and paste.

Let’s create a new file to demonstrate this functionality.

2. Mastering Regular Expressions [Fri97] is one such excellent book.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=88

FOLLOWING CONTENT 89

Call it original.txt, and put the following three lines in it:

This is the first line.

This happens to be the second line.

And this, it is the third and final line.

Once you’ve saved your new file, add it to the repository, and commit:

prompt> git add original.txt

prompt> git commit -m "commit of original text file"

Created commit b87524b: commit of original text file

1 files changed, 3 insertions(+), 0 deletions(-)

create mode 100644 original.txt

Now, let’s edit that file and duplicate the entire file. Just copy and paste

the first three lines onto the next three lines, and save it. Running git

diff from the command line shows output similar to this:

prompt> git diff

diff --git a/original.txt b/original.txt

index 4d9f742..350f1bb 100644

--- a/original.txt

+++ b/original.txt

@@ -1,3 +1,6 @@

This is the first line.

This happens to be the second line.

And this, it is the third and final line.

+This is the first line.

+This happens to be the second line.

+And this, it is the third and final line.

Commit this change so Git knows about it. Now we can utilize the git

blame command to view the history of each line of the file:

Line 1 prompt> git blame original.txt
- b87524b7 (... 1) This is the first line.
- b87524b7 (... 2) This happens to be the second line.
- b87524b7 (... 3) And this, it is the third and final line.
5 222cb821 (... 4) This is the first line.
- 222cb821 (... 5) This happens to be the second line.
- 222cb821 (... 6) And this, it is the third and final line.

Your output will have more information displayed. The ... in this out-

put is my name along with the timestamp of the commit, but I had to

remove it to fit it on the page.

The first eight characters you’ll recognize as a short name. The number

before the content shows the line of text that is being displayed. Lines

2 to 4 of the previous session, lines 1 to 3 of the file, all have the same

commit name, and lines 5 to 7 have another. These signify the two

commits that we’ve made so far.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=89

FOLLOWING CONTENT 90

Now let’s rerun the command, but this time add the -M parameter. This

tells git blame to detect lines that have moved or been copied around

within the same file:

prompt> git blame -M original.txt

b87524b7 (... 1) This is the first line.

b87524b7 (... 2) This happens to be the second line.

b87524b7 (... 3) And this, it is the third and final line.

b87524b7 (... 4) This is the first line.

b87524b7 (... 5) This happens to be the second line.

b87524b7 (... 6) And this, it is the third and final line.

Now all the commit names are the same. Because Git tracks content,

it realizes that it has more of the same content when it detects the

repeating pattern.

Git can also track copies between files. Let’s copy the original.txt file into

a new file with an equally original name: copy.txt.

Now add and commit this file. Now add -C -C to git blame to see the copy

between files:

prompt> git blame -C -C copy.txt

b87524b7 original.txt (... 1) This is the first line.

b87524b7 original.txt (... 2) This happens to be the second line.

b87524b7 original.txt (... 3) And this, it is the third and final line.

b87524b7 original.txt (... 4) This is the first line.

b87524b7 original.txt (... 5) This happens to be the second line.

b87524b7 original.txt (... 6) And this, it is the third and final line.

Git displays not only the original commit name, b87524b7, but also the

original filename, original.txt. git log can also show us when whole files

have been copied when we pass it the same -C -C parameter.

When detecting for copies within the git log command, we also have

to pass the -p parameter. It tells Git to display the changes from each

commit in addition to the normal log information.

prompt> git log -C -C -1 -p

commit 540ecb73f652a882ad235c85b61ffb657d3d4969

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 17:08:16 2008 -0500

copy original to show cross-file blame

diff --git a/original.txt b/copy.txt

similarity index 100%

copy from original.txt

copy to copy.txt

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=90

UNDOING CHANGES 91

We can see that Git tells us that the copy.txt file is a 100 percent match

for original.txt.

Now that we’ve covered the basics of change history, it’s time to bring

out the inner revisionist historian in yourself and start thinking about

revising the history of your repository.

6.6 Undoing Changes

Hindsight is 20/20, or so they say. Working with your code is no excep-

tion. You commit a change and then realize it had a password in it that

you shouldn’t be sharing.

In a centralized repository where every change is sent back to a main

repository, you are almost out of luck. There are some hoops you can

jump through if you have administrator access, but it might well cor-

rupt data.

Git plans for this type of mistake, however. All your changes happen

locally and are shared only when you push them to a public repository.

Since you’re the only one who has to stay in sync, you can rewrite your

history as much as you want!

Dangers of Rewriting History

Before we start, a word of caution: be careful how you use the com-

mands in this section if you use Git like you would a centralized reposi-

tory and push every commit back upstream. Changing the history after

you’ve shared it can lead to major headaches when others try to sync

against your changes.

All these commands except git revert—which is covered in Section 6.6,

Reverting Commits, on page 93—change the history of your repository.

This is dangerous in a centralized repository. How can the repository

keep track of content when its commits move around, are renamed, or

even disappear?

One of the values of completely distributed development is that you

share only what is ready. Make sure changes are ready before you push

them. By keeping all your changes local until they are ready, you leave

yourself the option of rewriting your repository’s history without worry-

ing how it affects others.

Once you push your changes, you lose some of that flexibility—well,

only if you want to keep everyone else on your team talking to you.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=91

UNDOING CHANGES 92

When you push changes, then change your history, and push those

changes that are different, you can cause problems for people who

already have the first set of changes you published. For more infor-

mation on pushing changes, see Section 7.4, Pushing Changes, on

page 105.

Now that we’ve covered the dangers in what we’re about do to, let’s get

to the good stuff. Up first, amending commits.

Amending Commits

We’ve all been there. You’re writing code in a new, still sort of unfamil-

iar language and forget a full stop at the end of a line or leave off a

semicolon.3

Correcting these small problems with Git is simple. Make the correc-

tion, stage the change, and add --amend when you commit.

To demonstrate, add a link to your blog or a website you frequent in

your contact.html file, except put a typo in it:

prompt> git commit -m "add link to blog" -a

Created commit c3531c4: add link to blog

1 files changed, 4 insertions(+), 0 deletions(-)

Now, fix the URL and commit the changes again, except add --amend to

the commit command:

prompt> git commit -C HEAD -a --amend

Created commit 45eaf98: add link to blog

1 files changed, 4 insertions(+), 0 deletions(-)

That command introduces a new option to git commit, -C. This option

tells Git to use the log message from the commit specified—in this case

HEAD, but it could have been any valid commit name as well—instead

of explicitly providing a new message. You use the parameter in its

lowercase form, -c, to tell Git to launch the editor with the message

already filled in so you tweak it before finalizing the commit.

Amending a commit should be done only when you are working with

the last commit. If you made a mistake and need to correct it after

other commits have been made, you want to use git revert, which is up

next.

3. Ironically, I had to use --amend when writing this section of the book because I had a

typo in one of the tags and didn’t catch it until after I had committed.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=92

UNDOING CHANGES 93

Reverting Commits

Sometimes code doesn’t work out. It requires a certain architecture or

introduces a new third-party software dependency that the rest of the

team isn’t on board with. If you’ve committed your changes already,

you need to undo the commits with the new change, or revert them.

The simplest way to revert an existing commit is the git revert command.

It “reverts” a commit by creating a new commit in your repository that

reverses all the changes made by the original commit.

Normally Git commits the reversal immediately, but you can add the

-n parameter to tell Git not to commit. This is useful when you need

to revert multiple commits. Just run multiple git revert commands with

the -n parameter, and Git stages all the changes and waits for you to

commit them.

You must provide it with a commit name so it knows what to revert. For

example, if you wanted to revert the commit 540ecb7 and HEAD, use the

following. Always revert backward—the most recent first. That makes

sure you don’t have any unnecessary conflicts to work through when

reverting multiple commits.

prompt> git revert -n HEAD

Finished one revert.

prompt> git revert -n 540ecb7

Removed copy.txt

Finished one revert.

prompt> git commit -m "revert 45eaf98 and 540ecb7"

Created commit 2b3c1de: revert 45eaf98 and 540ecb7

2 files changed, 0 insertions(+), 10 deletions(-)

delete mode 100644 copy.txt

By default, git revert starts up your editor for your commit message.

The default message is added to the editor: Revert "your original log mes-

sage" followed by the text This reverts commit <commit name>. You can add

--no-edit to git revert when you want it to use the default message.

Just like any other commit, make sure you explain why you’re making

this commit. Just marking that you’re reverting a change, like I did

here, doesn’t say much.

Did it not work? Was it too slow? Say that. You’ll thank yourself in six

months when you’re trying to remember why you reverted that change.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=93

REWRITING HISTORY 94

Resetting Changes

Right as you hit the Enter key, you realize you’ve just committed a

configuration file with your private password in it. We’ve all been there.

With a centralized VCS, you have to ask the systems administrator to

perform some magic to remove all traces of the commit.

Git assumes we make mistakes like this and allows us to reset the

repository to the state we want. git reset takes a commit name as its

parameter. It defaults to HEAD if you don’t provide one.

You can use the ∧ and ~# commit name modifiers to specify a revision.

HEAD∧ would reset two commits, while 540ecb7~3 would reset to three

commits before 540ecb7.

git reset updates the repository and stages the changes for you to com-

mit. This is useful when you notice an error in your previous commit

and want to fix it.

Add --soft when you want to stage all the previous commits but not

commit them. This gives you a chance to modify the previous commit

by adding to or taking away from it.

The final option is --hard, and it should be used with care. It removes

the commit from your repository and from your working tree. It’s the

equivalent of a delete button on your repository with no “undo.”

Let’s demonstrate this really quickly. That last commit that reverted

those two files isn’t necessary. So, let’s undo it:

prompt> git reset --hard HEAD^

HEAD is now at 45eaf98 add link to blog

That resets your repository back to the commit before HEAD. It’s like

that commit that reverted the two files never happened.

6.7 Rewriting History

Revisionist historians view history as a living thing—something that

needs to be reevaluated from time to time to make sure the assump-

tions that were made in the past still apply.

Looking over your code as part of a formal code review is a great way

to make sure the assumptions you made last week or last month still

apply. Git lets you take this a step further, though, by allowing you to

not only review the history of your code but to rewrite it.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=94

REWRITING HISTORY 95

There are a few instances where this is useful:

• Reorder the history so it makes more sense: This is the hardest to

quantify, but you’ll know it when you see it. One commit, or maybe

more, seems out of place and logically fits in a different order.

• Squash several commits into one commit: You realize after the fact

that multiple commits should actually be in one big commit

because they all relate to the same issue.

• Break one commit into multiple commits: This is the reverse of

squashing. After looking through the changes, you realize that one

commit has multiple changes in it that you want to have as indi-

vidual commits.

If you’re coming from a traditional VCS such as Subversion or CVS, that

list might seem like voodoo. The idea of changing a commit after the fact

can take getting used to, but actually reordering commits, breaking one

commit into multiple commits? That’s too much.

That’s the power of having a private repository that’s not connected

with other developers, though. If you share your changes instantly, like

all centralized VCS such as Subversion or CVS do, you can’t make any

changes without risking unresolvable conflicts when someone tries to

update with a repository that has changed.

The tool for this kind of voodoo is the interactive mode of Git’s rebase

command, git rebase -i. Using it, you can craft the history. Here’s the

last three commits to the repository:

prompt> git log --pretty=format:"%h %s" HEAD~3..

45eaf98 add link to blog

540ecb7 copy original to show cross-file blame

222cb82 adding copied lines to showcase git blame

In the next section, you’ll learn how to move the 45eaf98 commit to the

beginning.

Reordering Commits

git rebase in interactive mode is the tool to use to rewrite history.

Launching interactive mode starts your editor for you to make the

changes you want. You’ll remember how Git looks for an editor from

Section 4.2, Committing Changes, on page 55. You have to provide the

rebase command with the revision you want to work from.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=95

REWRITING HISTORY 96

In this case, we want HEAD~3:

prompt> git rebase -i HEAD~3

... launches configured editor ...

pick 222cb82 adding copied lines to showcase git blame

pick 540ecb7 copy original to show cross-file blame

pick 45eaf98 add link to blog

Rebase b87524b..45eaf98 onto b87524b

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

~

~

Everything in the editor that begins with a # is a comment and is

ignored by Git. The first three lines are the three commits we’re working

with. Move the pick 45eaf98 line to the top line. Now the first three lines

look like this:

pick 45eaf98 add link to blog

pick 222cb82 adding copied lines to showcase git blame

pick 540ecb7 copy original to show cross-file blame

Save the editor’s contents and exit; then Git starts the rebase operation.

When it’s finished, you can rerun the git log command to see the new

order:

prompt> git log --pretty=format:"%h %s" HEAD~3..

8c764d3 copy original to show cross-file blame

be53bab adding copied lines to showcase git blame

4f7621d add link to blog

Squashing Multiple Commits into One

There is one more thing you can do here. The blog and Twitter com-

mits can be squashed together. So, let’s start another rebase, this time

against the commit before the Twitter link commit 0bb3dfb∧:

prompt> git rebase -i 0bb3dfb^

... launched configured editor ...

pick 0bb3dfb add link to twitter

pick b87524b commit of original text file

pick 4f7621d add link to blog

pick be53bab adding copied lines to showcase git blame

pick 8c764d3 copy original to show cross-file blame

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=96

REWRITING HISTORY 97

Rebase 18f822e..8c764d3 onto 18f822e

#

Commands:

p, pick = use commit

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

#

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#

~

~

This time, move pick 4f7621d to come after pick 0bb3dfb, and change pick

in the moved line to squash. After you’re done, the first five lines should

look like this:

pick 0bb3dfb add link to twitter

squash 4f7621d add link to blog

pick b87524b commit of original text file

pick be53bab adding copied lines to showcase git blame

pick 8c764d3 copy original to show cross-file blame

Save and exit again. After the rebase starts, the editor will come back up

and ask you for a commit message for the two commits you’re squash-

ing together. The default message looks like this:

This is a combination of two commits.

The first commit's message is:

add link to twitter

This is the 2nd commit message:

add link to blog

You can combine it to say what you like and then save and exit so

Git can finish the rebase operation. You can see the new history with

another call to git log:

prompt> git log --pretty=format:"%h %s" HEAD~4..

7509494 copy original to show cross-file blame

8184d47 adding copied lines to showcase git blame

9a750b3 commit of original text file

b02376d add link to twitter and blog

Now, let’s undo those changes by breaking b02376d back into two

commits.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=97

REWRITING HISTORY 98

Breaking One Commit into Multiple Commits

You just reordered a commit and squashed two commits into one.

Breaking one commit into two is a little more involved, but it starts

out the same way.

Call git rebase -i again. Once the editor launches, edit its contents to

look like this:

prompt> git rebase -i HEAD~4

... launches editor ...

edit b02376d add link to twitter and blog

pick 9a750b3 commit of original text file

pick 8184d47 adding copied lines to showcase git blame

pick 7509494 copy original to show cross-file blame

Notice that the first line says edit now. Save and exit to start the rebase.

When Git gets to the commit you told it to edit, it stops and prints the

following:

Stopped at b02376d... add link to twitter and blog

You can amend the commit now, with

git commit --amend

Once you are satisfied with your changes, run

git rebase --continue

Running git log -1 shows you that the last commit is the commit you

squashed together in the previous section—the commit you told it to

edit:

prompt> git log -1

commit b02376dbbb76c356d9d44cf65163293db9147d9a

Author: Travis Swicegood <development@domain51.com>

Date: Sat Oct 4 11:06:47 2008 -0500

add link to twitter and blog

The rebase is paused now, waiting for you to edit the repository. Now

you can break that commit apart by using git reset to undo the last

commit and then creating two individual commits:

prompt> git reset HEAD^

contact.html: locally modified

prompt> git diff

diff --git a/contact.html b/contact.html

index 64135cb..c6cffa7 100644

--- a/contact.html

+++ b/contact.html

@@ -13,6 +13,14 @@

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=98

REWRITING HISTORY 99

<p>

Gmail

</p>

+

+ <p>

+ Twitter

+ </p>

+

+ <p>

+ Blog

+ </p>

</body>

</html>

git diff shows all the changes waiting for you to commit. Pull that second

link out, and save the contact.html file. With just the link to Twitter,

commit your change:

prompt> git commit -m "add link to Twitter" -a

Created commit 07950f4: add link to Twitter

1 files changed, 4 insertions(+), 0 deletions(-)

Now, add that link to the blog back in, and create a new commit for it:

prompt> git commit -m "add link to blog" -a

Created commit 6c0eebe: add link to blog

1 files changed, 4 insertions(+), 0 deletions(-)

You’re finished with the changes—breaking the commit into two—so

call git rebase --continue:

prompt> git rebase --continue

Successfully rebased and updated refs/heads/master.

A quick check of the log shows that there are now two commits back

where the squashed commit was.

Of course, this wouldn’t be Git if git rebase couldn’t serve another func-

tion too. It works with branches to keep them synced and move them

around. We’ll talk about that functionality in Section 9.3, Rebasing a

Branch, on page 125.

Now you’ve seen how to work with the history—and sometimes even

rewrite it—in Git. These are extremely useful parts of Git, but they

aren’t things you’ll be using every day. At least at first.

As you get more comfortable with concepts like rebasing your reposi-

tory, you’ll find more and more instances where you can use it.

So far we’ve talked only about working with your local repository. As

you’ll see in the next chapter, working with remote repositories lets you

share your work with others and get updates from them.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=99

Chapter 7

Working with Remote Repositories
Now we’ve covered everything you need to work on your own. However,

the distributed in distributed version control means you’ll normally be

working with other people on your projects.

This chapter is about how to interact with projects on remote reposito-

ries. You’ll learn the following:

• What the different types of remote repositories are

• How to create a copy of a remote repository

• How to stay up-to-date with remote changes

• How to share your changes by pushing to a remote repository

• How to work with remote branches

• How to add new remote repositories

I’m going to deviate for a minute. Instead of having cloning instructions

up front, I’ve added the instructions in Section 7.2, Cloning a Remote

Repository, on page 103. Before we dive into working with remote Git

repositories, let’s talk a little bit about the different networking options

you have to connect to different repositories.

7.1 Network Protocols

Git communicates with remote repositories over a network. That net-

work can be your internal LAN, a VPN, or the Internet. Git provides

three protocols for communicating with remote repositories:

• SSH

• git

• HTTP/HTTPS

NETWORK PROTOCOLS 101

git@github.com/tswicegood/mysite-chp6.git

Username Server Path to Repository

Figure 7.1: Components of an SSH URL

SSH

Accessing a repository over Secure Shell (SSH) is similar to accessing

a repository directly from the file system with one exception. Before

the path to the repository, you add the domain name, and username if

needed, for the remote repository.

The only difference between the SSH URL (shown in Figure 7.1) and the

basic file system URL is the addition of git@github.com. That tells Git to

attempt to log on to the github.com server via SSH with the username

git and then clone the repository located at the tswicegood/mysite-chp6.git

path.

The username, the git@ in the previous example, is optional. You don’t

have to specify the username when you use the same username on

your local computer as you do on the remote server.

In a lot of instances, you share a user with other members on your team

to log into the server, and the remote server checks the credentials you

provide to make sure you have access to it.

git

Git has its own protocol that has been designed for speed. It is the

fastest protocol, but it might run into issues with strict firewalls since

it uses port 9418, a port that doesn’t normally have network traffic.

In Figure 7.2, on the next page, you can see what a repository URL over

the git protocol looks like. git:// specifies the protocol, followed by the

server, github.com, followed by the repository name.

In this example, the full path is not specified. When you start a Git

server, you tell it what directory to look in for repositories to serve. All

that clients have to do is specify the name of the repository they want

to access.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=101

NETWORK PROTOCOLS 102

git://github.com/tswicegood/mysite-chp6.git

Protocol Server Repository

Figure 7.2: Components of a git URL

The major difference between this protocol and SSH, besides encryp-

tion, is that it is anonymous. This is good if you want to provide public

read-only access to your repository, but it can be dangerous if you open

it up for writing—you don’t want just anyone changing your repository.

Almost every time you see a repository using git://, it will be read-only.

It is common for repositories to utilize this protocol to allow other devel-

opers to pull their changes while using SSH to push their own changes

into the repository to share.

HTTP/HTTPS

The HTTP protocol is generally considered the protocol of last resort. It

is the least efficient way to pull changes and requires much more net-

work overhead, but it is almost always allowed by the strictest firewalls

and is relatively quick and easy to set up.

Continuing with the example of mysite-chp6.git on the github.com server,

if GitHub had HTTP access to its repositories, you would access GitHub

with a URL like this:

http://github.com/tswicegood/mysite-chp6.git

GitHub doesn’t support HTTP, though, so if you try to clone it, you’ll

get an error from Git.

Choosing Networking Options

With the git protocol, SSH, and HTTP/HTTPS, it may seem like there

are a lot of choices to determine which networking option you should

use. Choosing one is straightforward, though:

• If you want speed above all else, you want the git protocol.

• If you value security above all else, SSH is the protocol for you.

• If you don’t want to have to reconfigure restrictive firewalls, HTTP

or HTTPS is the way to go.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=102

CLONING A REMOTE REPOSITORY 103

Authentication is an issue. The git protocol is anonymous, so allowing

a repository to be written using it means anyone can write to your

repository. SSH requires proper user permissions for your repository to

work, and HTTP/HTTPS requires a working WebDAV server.

You’re not locked into one protocol, though. You can mix and match

protocols to get an optimal balance of speed and security.

For my personal Git repository, I use a mixture of SSH and git. To write

to my server, I use SSH keys for authenticating users and allow anony-

mous reads via the git protocol. Though the configuration may sound

complex, it’s made simple by a program called Gitosis, which we’ll cover

in Chapter 11, Running a Git Server with Gitosis, on page 147.

7.2 Cloning a Remote Repository

Sharing your work with other developers means you need a remote

repository. The easiest way to work with a remote repository is to clone

an existing repository. Cloning creates a local copy of the remote

repository.

For projects that are already in progress, this is the normal route, but

it isn’t the only one. A remote repository can be configured later if you

start working on a project by yourself and then need to share it. See

the sidebar on page 107 for details.

Your local copy created by cloning works like it would if you had created

it yourself using git init; the only difference is that you get the history of

the repository up to the point you created the clone.

You use the git clone command any time you want to clone a repository

to work with. In its simplest form, it takes only one parameter: the

name of the repository you’re cloning.

I’m sure you’re familiar with this by now—there’s been a git clone at the

beginning of each chapter in Part II of this book. Let’s clone one more

time and grab the repository that we had from the previous chapter:

prompt> git clone git://github.com/tswicegood/mysite-chp6.git

Initialized empty Git repository in /work/mysite-chp6/.git/

remote: Counting objects: 37, done.

remote: Compressing objects: 100% (31/31), done.

remote: Total 37 (delta 10), reused 0 (delta 0)

Receiving objects: 100% (37/37), 4.08 KiB, done.

Resolving deltas: 100% (10/10), done.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=103

KEEPING UP-TO-DATE 104

This downloads the repository stored on the server and sets up a local

copy of it in the mysite-chp6 directory. You can change into that directory

and see the contents, the five files we created earlier:

prompt> cd mysite-chp6

prompt> ls

about.html contact.html copy.txt hello.html original.txt

You now have a fully functioning clone of the remote repository that is

set up to track both your own local changes and those you fetch from

the remote server.

7.3 Keeping Up-to-Date

Cloning gets you the history of a repository up to the point you clone

it, but other developers will still be making changes and updating the

repository with those changes after you clone it.

You need to fetch those changes from the remote repository. You do this

by using the git fetch command.

Fetching changes updates your remote branches. You can see your

local branches when you run git branch. If you add the -r parameter,

Git shows you the remote branches:

prompt> git branch -r

origin/HEAD

origin/master

You can check out those branches like a normal branch, but you should

not change them. If you want to make a change to them, create a local

branch from them first, and then make your change.

Running git fetch updates your remote branches; it doesn’t merge the

changes into your local branch. You can use git pull if you want to fetch

the changes from a remote repository and merge them into your local

branch at the same time.

git pull takes two parameters, the remote repository you want to pull

from and the branch you want to pull—without the origin/ prefix.

Speaking of the origin/ prefix in the remote branch name, that’s to keep

the remote branches separate from your local branches. origin is the

default remote repository name assigned to a repository that you create

a clone from.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=104

PUSHING CHANGES 105

Now that you can fetch and pull changes from remote repositories, let’s

talk about pushing changes to a remote repository.

7.4 Pushing Changes

Getting changes from upstream repositories is only half of keeping in

sync with everyone else on your team. You also need to be able to

push changes back to an upstream repository to share the changes

with everyone else.

As we talked about in Section 1.4, Manipulating Files and Staying in

Sync, on page 18, pushing changes is sending changes to another

repository. This is the step you go through to send your commits with

another repository. It’s an extra step from the traditional VCS world

where a commit is automatically sent to a centralized repository.

Git makes a few assumptions when you call git push without any param-

eters. First, it assumes you’re pushing to your origin repository. Second,

it assumes you’re pushing the current branch on your repository to its

counterpart on the remote repository1 if that branch exists remotely.

Git pushes only what has been checked in, so any changes you have in

your working tree or have staged are not pushed:

prompt> git push

Counting objects: 11, done.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (9/9), 933 bytes, done.

Total 9 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (9/9), done.

To /repos/mysite/.git

5ef8232..d49d1e5 master -> master

You can add --dry-run to this command when you want to see what

changes would be pushed.

You can also specify the repository you want to push to, just like git pull.

The syntax is the same: git push <repository> <refspec>. The <repository>

can be any valid repository. Any of the URLs we discussed (Section 7.1,

Network Protocols, on page 100) will work, as will any named repository

that we’ll talk about in Section 7.5, Adding New Remote Repositories,

on the following page.

1. That’s the default behavior; you can configure a branch to push to another one, but

I’m going to let you work that one out on your own since it’s not a normal case.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=105

ADDING NEW REMOTE REPOSITORIES 106

Retrieving Pushed Changes

It’s not common, but there might be a case where you need
to let someone push changes into your private repository. Or
maybe you have to do it. I push changes between my private
repositories in other virtual machines whenever I’m testing code
in multiple OSs.

If changes are pushed into your repository—either by your-
self or by someone else—those changes won’t be reflected
in your working tree. This keeps someone else from overwrit-
ing changes you have in your working tree that have not been
committed yet.

You have to run git checkout HEAD to pull all the latest changes
from the repository to your working tree. This gives you an oppor-
tunity to handle any conflicts through the methods we dis-
cussed in Section 5.4, Handling Conflicts, on page 74.

The <refspec> in its simplest form is a tag, a branch, or a special key-

word such as HEAD. You can use it to specify which branches to push

and where you want them to be pushed. For example, you can use git

push origin mybranch:master to push the changes from mybranch to the

remote master.

Now that you have the basics of cloning a repository and keeping your

local repository in sync with remote repositories, let’s cover one final

topic, adding new repositories.

7.5 Adding New Remote Repositories

You can push or pull from any remote repository that you have read

or write permission on. Typing the full name of a repository can be

cumbersome, especially when you’re syncing with the same repositories

over and over again.

Your default remote repository is called origin. It’s an alias to the full

name of your repository—whatever you cloned. Say your team includes

a developer named Erin, and you constantly pull changes from her

repository.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=106

ADDING NEW REMOTE REPOSITORIES 107

Adding a Remote Repository Later

Starting to work on a project by cloning is great if the project
already has a history, but how do you push your changes to a
remote repository if you created it with git init?

Just add the repository you want to push to by using the git

remote add command we covered in Section 7.5, Adding New
Remote Repositories, on the preceding page. Call the remote
repository origin if it is going to be the repository you want to
push changes to by default.

For example, your session should look something like the
following if you want to add a remote repository at
git@example.com:/repos/pocus.git:

prompt> git remote add origin git@example.com:/repos/pocus.git
prompt> git push origin master
... output from Git ...

To do a one-off pull from her repository, you use git pull and her reposi-

tory. It might look something like this:

prompt> git pull git://ourcompany.com/dev-erin.git

That’s OK for a one-time pull, but if you’re going to be doing it more

than once, adding an alias can save some keystrokes. To add a new

named remote repository, use git remote add <name> <repo-url>. This

command adds Erin’s repository:

prompt> git remote add erin git://ourcompany.com/dev-erin.git

Now, you can use erin instead of the full repository any time you need

to push or pull some changes. So, the pull we just executed now looks

like:

prompt> git pull erin HEAD

warning: no common commits

remote: Counting objects: 6318, done.

remote: Compressing objects: 100% (2114/2114), done.

remote: Total 6318 (delta 3899), reused 5680 (delta 3505)

Receiving objects: 100% (6318/6318), 1.03 MiB, done.

Resolving deltas: 100% (3899/3899), done.

From git://ourcompany.com/dev-erin.git

* branch HEAD -> FETCH_HEAD

Merge made by recursive.

... a bunch of output showing the result of the pull ...

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=107

ADDING NEW REMOTE REPOSITORIES 108

That’s a lot easier to remember! Of course, erin is completely arbitrary.

You can name it whatever you would like. The only limitation is that

each name must be unique. You can have only one erin or origin.

You can use git remote add to add an origin to your repository if you don’t

have one. This is useful when you start a repository locally with git init

and then need to send it to a remote repository later.

There are some other useful ways to use the git remote command too.

You can call it without any parameters to see a list of all the remote

aliases you have created, and git remote show <name> will show you

some information on the remote repositories.

You can call git remote rm to remove a remote alias if you no longer need

it or want to use that name for another repository.

That wraps up remote repositories and almost finishes up our tour of

commands you need to know when using Git.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=108

Chapter 8

Organizing Your Repository
Having the entire history of your project available to you is the key

benefit to any version control system. You can quickly find old versions

of the software and look through the history of a file to figure out how

it got to its current state.

All this information can be overwhelming, though. A good strategy for

organizing your repository is important to making sure you can find

your way around all the history you create. This chapter explains how

to do the following:

• Mark milestones within your project with tags

• Handle release branches to focus development when you’re about

to make a release

• Group your tags and branches in directory-like structures

• Track multiple projects using one or multiple repositories

• Use Git’s submodules feature to track external repositories

This chapter uses the repository you’ve been working with. If you don’t

have the repository, you can clone the latest from GitHub:

prompt> git clone git://github.com/tswicegood/mysite-chp7.git

Initialized empty Git repository in /work/mysite-chp7/.git/

remote: Counting objects: 53, done.

remote: Compressing objects: 100% (47/47), done.

remote: Total 53 (delta 19), reused 0 (delta 0)

Receiving objects: 100% (53/53), 5.72 KiB, done.

Resolving deltas: 100% (19/19), done.

MARKING MILESTONES WITH TAGS 110

8.1 Marking Milestones with Tags

As your repository progresses, it is going to have milestones: it will

be deployed, new versions will be created, and so on. Tags give you a

convenient way to mark such milestones so you can come back to them

later.

Tags act like bookmarks in your repository. You can use them to jump

back to the point in the repository that you tagged. You can tag any

commit in Git for any purpose you can think of.

The most common use of tags is to mark when the code in your project

is released. That allows you to go back to the code you released if you

need to fix or change something later.

Tags in Git are read-only, unlike the tags you might be familiar with if

you’re coming from Subversion. This means you can’t make a change

to the contents of a tag as if it were a normal branch. This is a much

better way to handle tags. You can be sure that the tag is exactly what

was tagged and hasn’t changed since it was created.

The command to work with tags in Git is git tag. Just like git branch, you

can call it without any parameters to see what tags you currently have:

prompt> git tag

1.0

That’s the tag we created in Chapter 3, Creating Your First Project, on

page 36. Let’s create a tag called 1.1. To do that, call git tag again, but

this time provide it with the tag name: 1.1:

prompt> git tag 1.1

Git does not provide any visible feedback that the tag was successfully

created. You can call git tag without any parameters, though, to see

your newly created tag:

prompt> git tag

1.0

1.1

Git’s tag command may be quiet if it succeeds, but if there is a problem,

it lets you know. For example, if you try to create a tag using a name

that is not valid—a tag name with spaces, for example—it will display a

fatal error such as this. Valid naming is discussed in Section 8.3, Using

Valid Names for Tags and Branches, on page 114.

prompt> git tag "version 1.1"

fatal: 'version 1.1' is not a valid tag name.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=110

MARKING MILESTONES WITH TAGS 111

Git creates a tag based on the current working tree’s commit if you call

it and provide only a tag name. You can provide it with an additional

parameter to specify the commit you want to tag. The extra parameter

can be any valid commit or branch name.

For example, you can create a tag from the latest commit in your con-

tacts branch by calling git tag like this:

prompt> git tag contacts/1.1 contacts

prompt> git tag

1.0

1.1

contacts/1.1

You can use tags to return to the state of the repository that they

marked. Even though you can’t make changes to a tag, you can check

it out like you would a branch:

prompt> git checkout 1.0

Note: moving to "1.0" which isn't a local branch

If you want to create a new branch from this checkout, you may do so

(now or later) by using -b with the checkout command again. Example:

git checkout -b <new_branch_name>

HEAD is now at 4b53779... Add in a description element to the metadata

At this point, you’re in a “no man’s land” of sorts. You’re not on a

branch, so you can’t track changes. If you run git branch to see your

local branches, it will show that you are not on a branch:

prompt> git branch

* (no branch)

about

alternate

contacts

master

new

You can create a new branch and check it out with git checkout -b like

this:

prompt> git checkout -b from-1.0

Switched to a new branch "from-1.0"

Now you can start tracking changes directly again. Like all good things

in Git, you can do this another way as well. You can create a new

branch using git branch or git checkout -b and use a tag name as the

second parameter:

prompt> git checkout -b another-from-1.0 1.0

Switched to a new branch "another-from-1.0"

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=111

HANDLING RELEASE BRANCHES 112

The git log output here shows that the only commits in the current

branch are the original three commits that were there for the 1.0 tag.

Creating a branch from a tag can be useful for creating release branches

to fix bugs or make small changes to previously released code. Handling

those release branches is the topic of the next section.

8.2 Handling Release Branches

Release branches are a place to prepare code for a release. Teams nor-

mally use them to segregate code for a release. What segregate means

depends on the team.

The exact timing of a release branch depends on the team and your

development style. For simplicity’s sake, let’s work with this definition:

a release branch is created when a project is feature complete—that is,

it has everything it needs to satisfy this release—but hasn’t been fully

vetted yet.

This type of branch will have only minimal changes made to it, and

all will focus around fixes, whether they are bugs or logic, but no new

features are added. These release branches make it easy to continue

developing new features on the master branch while the team has a

copy of the code that is about to be released without the new code in it.

Release branches are normally prefixed with an RB_ and contain the

number of the release. So, a version 1.2 release would be RB_1.2, while

the 1.3 version would be RB_1.3.

The release branch should last only for a short period while your release

goes through any final testing. Once the release is ready, you create a

tag to mark the occasion and delete the branch.

Don’t worry about deleting the branch; you don’t have to keep a branch

around to keep that history. Your tag marks its place. There’s no need

to keep a branch around cluttering up your branch list.

What about fixing the inevitable bug that pops up in a release? You

create a new release branch based on the tag like we did in the previous

section. Use the RB_ prefix, and specify the tag you want to create it

from.

prompt> git branch RB_1.0.1 1.0

prompt> git checkout RB_1.0.1

Switched to branch "RB_1.0.1"

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=112

HANDLING RELEASE BRANCHES 113

All you did was use a tag name as the second parameter for git branch.

It created a branch based on the commit the tag referenced.

Your new branch looks just like the release branch did when you cre-

ated the tag. It has the same history as your release branch did before

you deleted it.

You can check git log to show it:

prompt> git log --pretty=format:"%h %s"

4b53779 Add in a description element to the metadata

a5dacab add <head> and <title> to index

7b1558c add in hello world HTML

Now make your fix. Once you have the fix in place, create a new tag:

prompt> git tag 1.0.1

Once the bug is fixed and a new tag is created, you can delete the

branch like you did with the previous release branch. You can’t delete

the branch you are on, so make sure to switch back to your master

branch:

prompt> git checkout master

Switched to branch "master"

prompt> git branch -D RB_1.0.1

Deleted branch RB_1.0.1.

You might have noticed that git branch -D was used to delete the release

branch. That’s because master doesn’t think it is related to RB_1.0.1

because of the new commit. We’re going to leave it the way it is for

a little bit longer—we’ll fix it in Section 9.3, Rebasing a Branch, on

page 125.

Release branches help organize your team’s workflow as you approach

a release. They allow you to insulate a release from any new features or

bugs by making sure that only code that’s necessary—bug fixes, final

tweaks from client feedback, and so on—make it into the release before

it happens.

And that’s the mechanics of release branches in Git. The hard part is

figuring out when to create the release branch. It depends on your orga-

nization’s development style. If you’re constantly adding new features,

creating a branch as soon as the product is “feature complete” might be

a good idea; however, if your development process is a little bit slower,

you might be able to wait to create the release branch until a few days

before the release.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=113

USING VALID NAMES FOR TAGS AND BRANCHES 114

Getting the timing just right is an art. Git’s easy merging that we talked

about in Section 5.3, Merging Changes Between Branches, on page 69

means that if you branch too early, keeping the two branches in sync

will be a snap, and if you realize you should have branched earlier,

create the branch from the commit where you should have branched at.

Release branches and tags can help you organize your repository. The

only thing you have to watch out for is how to name them. Git is pretty

permissive in what it allows, but there are a few gotchas. We’ll cover

those next.

8.3 Using Valid Names for Tags and Branches

Let’s talk about valid names for tags and branches before we jump off

into some specific types of organization you can employ in Git. Git is

pretty liberal in what you can do, but there are a few things to avoid.

First, you can use a forward slash (/) in a tag or branch name, but it

can’t end with the slash. This allows you to organize tags and branches

into directory-like structures.

You can also use periods (.) in the name, but Git will not allow the

first portion of a path element in the name to begin with a period. This

means that releases/1.0 is a valid tag name, but neither releases/.1.0 nor

.releases/1.0 is.

If you’re familiar with the file system on Linux or BSD/Mac OS X, you

probably recognize the issue with the second name. Those operating

systems treat a file or directory that begins with a period as something

that should be hidden.

You can’t use some special characters in a tag or branch name. These

include spaces, tildes (~), carets (∧), colons (:), question marks (?), aster-

isks (*), and opening brackets ([). None of the ASCII control characters

(anything lower than \040) or the Delete key (ASCII \177) is allowed.

Don’t worry if you don’t know what those are, or how to create them,

because it means you’ll probably never create them by accident!

The only other rule in naming is that you can’t use a double period any-

where in the name. Remember the syntax for ranges we talked about

in Section 6.2, Specifying Revision Ranges, on page 82? Ranges use the

<first-commit>..<second-commit> syntax. These aren’t allowed in tag and

branch names to keep from having any ambiguity.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=114

TRACKING MULTIPLE PROJECTS 115

That’s it. Branches and tags can be named about anything that is a

valid file or directory name, just like your normal file system, and you

can organize them into directory-like structures to help sort them. Of

course, we haven’t gotten into the specifics of tags yet, so let’s cover

them.

8.4 Tracking Multiple Projects

Most organizations have multiple projects. Even if they are different

parts of one product, they all need to be segregated so everyone on the

team can find the code they need without having to sift through all

the code.

You can handle multiple projects with Git in a couple of ways. You can

store all your projects in one repository, or you can have individual

repositories for each project. There are pros and cons to each, and we’ll

cover them in the following sections.

Multiple Projects, One Repository

The first and most straightforward method is creating one repository

and storing multiple projects within it. You can do this by creating a

different top-level directory for each project within your repository.

This will be familiar to those with a Subversion background because

this is how Subversion handles multiple projects within a repository.

This is a convenient way to store all the projects together so you have

to clone only one repository to get access to everything.

This works well for projects that need to have a common history, such

as a project that is made up of several components that are all released

together.

It could be a CMS, an order entry system, or any other type of program

that consists of several distinct components that are all released at one

time as a package.

Notice that I keep talking about releasing at the same time. This is the

criteria I use for determining whether a repository should contain one

or multiple projects like we’ll discuss in Section 8.4, Multiple Projects,

Multiple Repositories, on the following page.

If each smaller project, or component, is only ever released as part of

the larger project, then sharing the same history might be a good idea.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=115

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 116

This makes sure that all the history in the repository revolves around

one project.

If they are released separately, then they probably need their own his-

tory. The distinction is made because of the way tags and branches are

handled within Git. They refer to the whole repository, not one section

of it.

With multiple projects on independent release schedules, the number

of branches and tags you have to create will increase exponentially.

Repositories are lightweight in Git, though, so creating one repository

for each project isn’t difficult.

Multiple Projects, Multiple Repositories

Creating one repository per project is the alternative to trying to store

multiple projects with one repository. This requires a little more setup

but allows each project to have its own independent history.

Determining when to split a project is a straightforward process. Flip

the rule on keeping all projects in one repository. Will this project be

released by itself? If it will, it needs to be in its own repository.

This isn’t a rule set in stone. If you release the two projects indepen-

dently but they are so coupled that you can’t use one without the other,

sometimes it is more convenient to have them in one repository so you

have to clone only the one.

Like everything in Git, there is yet another way to handle this situation.

That brings us to our next topic: Git submodules.

8.5 Using Git Submodules to Track External Repositories

Sometimes you need to track multiple repositories as if they’re all in

the same repository. This might be because of a dependency on some

third-party library or possibly because your in-house project has been

divided into multiple projects to help make them more manageable.

Git allows you to track external repositories through what it calls sub-

modules. These allow you to store a repository within another repository

while keeping the two histories completely independent. Those coming

from a Subversion background might recognize these as svn:externals.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=116

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 117

Adding a New Submodule

Let’s demonstrate this behavior. First we need to create a new reposi-

tory that will house our submodule repository. Let’s create a repository

called magic:

prompt> mkdir /work/magic

prompt> cd /work/magic

prompt> git init

Initialized empty Git repository in /work/magic/.git/

With this empty repository initialized, you can use git submodule to view

the submodules associated with this repository:

prompt> git submodule

prompt>

Since there are no submodules defined yet, it doesn’t return anything.

Adding a new submodule is straightforward. You use the git submodule

add command. It has two required parameters. The first is the reposi-

tory; the second is the path where you want to store the repository.

For example, let’s add the hocus repository—a small repository hosted

on GitHub that I created to use for the book. And to keep things clear,

let’s put it in the hocus directory. You can use the command on one line

without the \; those are here to make the command fit on the page:

prompt> git submodule add \

git://github.com/tswicegood/hocus.git \

hocus

Initialized empty Git repository in /work/magic/hocus/.git/

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 7 (delta 0), reused 7 (delta 0)

Receiving objects: 100% (7/7), done.

Now when you rerun git submodule, hocus is displayed:

prompt> git submodule

-20cc9ddc65b5f3ea3b871480c1e6d8085db48457 hocus

Git submodules track a particular revision within the remote reposi-

tory. That revision is noted here by the hash, and then the name you

gave it (hocus) is displayed. You probably noticed the minus sign before

the hash. This is telling you that the hocus submodule has not been

initialized. That’s simple enough to fix:

prompt> git submodule init hocus

Submodule 'hocus' (git://github.com/tswicegood/hocus.git)

registered for path 'hocus'

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=117

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 118

This adds an entry to .git/config so Git understands that the hocus direc-

tory contains a submodule. Now with everything added and initialized,

you can see that you have some changes in your repository:

prompt> git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: .gitmodules

new file: hocus

#

The .gitmodules is a plain-text file that stores all the information about

your submodule. Git tracks this file inside the repository. That way,

when you share your repository with someone else, Git has the infor-

mation it needs to get their submodule set up too.

Now it’s time to commit these changes. Any simple log message will do:

prompt> git commit -m "initial commit with submodule"

Created initial commit f24a0d9: initial commit with submodule

2 files changed, 4 insertions(+), 0 deletions(-)

create mode 100644 .gitmodules

create mode 160000 hocus

Now your submodule is ready to share with other repositories. Creating

a clone of a repository with submodules is a little different, so let’s try it.

Cloning a Repository with Submodules

A few extra steps are required to set up submodules on a freshly cloned

repository. Let’s walk through it here. First things first—create a clone

of the magic repository:

prompt> cd /work

prompt> git clone magic new-magic

Initialized empty Git repository in /work/new-magic/.git/

prompt> cd new-magic

prompt> ls

hocus

You can see that the hocus directory is there, but it’s empty if you look

in it. Running git submodule shows that it hasn’t been initialized:

prompt> git submodule

-20cc9ddc65b5f3ea3b871480c1e6d8085db48457 hocus

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=118

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 119

Remember from the previous section that the minus sign as the first

character shows that a submodule hasn’t been initialized. Run the git

submodule init command to initialize it:

prompt> git submodule init hocus

Submodule 'hocus' (git://github.com/tswicegood/hocus.git)

registered for path 'hocus'

The hocus directory is still empty, though. There’s one more command

required to pull the changes into your submodule: git submodule update.

Just like the other git submodule commands, this takes the name of the

submodule you’re working with as its parameter.

prompt> git submodule update hocus

Initialized empty Git repository in /work/new-magic/hocus/.git/

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 7 (delta 0), reused 7 (delta 0)

Receiving objects: 100% (7/7), done.

Submodule path 'hocus': checked out

'20cc9ddc65b5f3ea3b871480c1e6d8085db48457'

Now your hocus directory has all the files from the 20cc9dd commit that

you tracked. This brings you up to speed on how to set up a submodule,

but right now it always tracks this one commit. What do you do when

you want to change what you want to use? That’s up next.

Changing Which Commit Is Tracked by a Submodule

Git’s submodules don’t track the latest commit in the repository; they

track an individual commit. It always starts tracking whatever the HEAD

—the latest commit—is when you add the submodule. You have to tell

Git when you want to change the commit it’s tracking.

This might seem odd at first for those with a Subversion background.

Subversion tracks the repository and automatically pulls the latest

commit whenever you run an update. To track an individual revision,

you have to explicitly set that up.

That might seem more convenient at first glance, but it can introduce

problems. What happens when a bug is introduced in the repository

you were tracking or when you have one revision of a remote repository

and another developer has a different version? Explicitly tracking one

commit removes those issues.

Git determines the commit when you create the submodule; then it

detaches from the repository. A submodule is actually a completely

cloned repository that is checked out at one particular commit. You

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=119

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 120

can see this by changing into the hocus directory and looking at the

branch list:

prompt> cd hocus/

prompt> git branch

* (no branch)

master

This repository has only two commits in it, so let’s change to the first

commit instead of the second. Just check out the commit before HEAD:

prompt> git checkout HEAD^

Previous HEAD position was 20cc9dd... initial commit

HEAD is now at 7901f67... initial commit with README

Now you have to tell Git that this is the changed version you want

to use. You can see that Git realizes there’s a change by running git

submodule without any parameters:

prompt> cd ..

prompt> git submodule

+7901f67feaadeeef755734a92febbc7214fb7871 hocus (7901f67)

The + is the note that this commit isn’t the one that Git expects. git

status also shows that the hocus directory has changed:

prompt> git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

modified: hocus

#

no changes added to commit (use "git add" and/or "git commit -a")

All you have to do now is add the hocus directory and commit the

change. That tells Git you want to track the submodule using the new

commit.

prompt> git add hocus

prompt> git commit -m 'update commit to track in submodule'

Created commit fedf2bc: update commit to track in submodule

1 files changed, 1 insertions(+), 1 deletions(-)

Check out the patch for that commit. You’ll see the changes that Git

recorded. Pay special attention when updating the commit that a sub-

module should track. There are a few things to keep in mind when

working with submodules.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=120

USING GIT SUBMODULES TO TRACK EXTERNAL REPOSITORIES 121

Gotchas to Watch Out For with Submodules

Make sure you don’t include a trailing slash with calling git add. Git

currently translates that into a request to add all the files from that

repository into your current local repository instead of updating the

commit a submodule should track. A quick check of git status prior to a

commit will show when this mistake has been made.

Another thing to keep in mind is that git submodule update is destruc-

tive. Running the update command will overwrite any changes you have

in your submodule that have not been committed. Be sure to double-

check your submodule’s working tree for changes before running git

submodule update to correct changes.

The other gotchas revolve around adding new content directly to a sub-

module’s repository. First, before you make a change, check out the

branch you want to apply the changes to. Remember that the sub-

module is detached from the normal branches. A quick git checkout will

fix that.

Then, once your changes have been committed, you have to make sure

your changes are available from the remote repository before you share

your changes to the submodule checkout. Git will behave unexpectedly

if the commit of your submodule references is not available from the

remote repository when you try to run git submodule update.

That brings us to the end of this chapter on organization. You learned

how to use tags for the first time and how you can use them to orga-

nize the milestones of your repository. You also learned about release

branches and how they can help you organize your repository as you

prepare for a release.

Now you know that there are two different ways to organize your repos-

itories and projects: storing everything in one big repository and storing

everything in individual repositories. The chapter closed with a look at

Git submodules and how you can use them to track remote repositories

as independent parts of your repository.

With what you learned in this and the previous chapters, you now know

what you need to about Git to start being productive with it. In the next

chapter, we’ll cover a few of the lesser-used parts of Git that you need

to know to round out your knowledge.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=121

Chapter 9

Beyond the Basics
Git is a rich toolkit. So far in this book we’ve covered how to use the

day-to-day features of Git—the basics. That barely scratches the sur-

face of Git.

Git currently ships with more than 140 different commands. Many

you will probably never have to use. Commands such as git check-ref-

format, which Git uses internally to determine whether a string is a valid

branch or tag name, is of use only to those creating extensions to Git.

But there are some commands that you won’t use every day that are

extremely useful when you do need them. This chapter is devoted to

those topics, which include the following:

• Compacting your repository history

• Exporting your repository

• Rebasing a branch’s history against its parent

• Using the reflog to fix your repository

• Bisecting your repository to find what change introduced a bug

This chapter uses the mysite repository you’ve been creating throughout

the book. If you haven’t been following along, you can create a clone

of the work that’s been done up to this point by using the following

command:

prompt> git clone git://github.com/tswicegood/mysite-chp8.git

Initialized empty Git repository in /work/mysite-chp8/.git/

remote: Counting objects: 56, done.

remote: Compressing objects: 100% (49/49), done.

remote: Total 56 (delta 21), reused 0 (delta 0)

Receiving objects: 100% (56/56), 5.92 KiB, done.

Resolving deltas: 100% (21/21), done.

COMPACTING REPOSITORY HISTORY 123

9.1 Compacting Repository History

Everything in life needs a little maintenance to work optimally. Your car

needs its oil changed, your floors need sweeping, and Git needs to have

git gc run.

Git stores everything. The problem with this is that it occasionally will

have some leftover data that is no longer useful. For example, when you

use the --amend parameter on git commit to fix a commit, Git remem-

bers the older revision too. Or you delete an experimental branch using

the git branch -D, and Git knows what was in that branch even though

nothing references it any longer.

This is where git gc comes in. Once a month, or about every 100 or so

commits, it’s a good idea to run git gc to tidy things up by optimizing

the way Git stores its history internally. It doesn’t change the history,

only the way it is stored.

Running git gc with an empty repository won’t hurt anything, but it

won’t accomplish much either. To give our examples some meat, I’m

going to use the repository my book is stored in.

I hadn’t run git gc on my book’s repository for a few weeks when I

started writing this section. In those few weeks, I had made quite a few

additions along with 50 or so small commits fixing errata that had been

reported by my great beta book readers. Here’s what the git gc output

on my book’s repository looks like:

prompt> git gc

Counting objects: 3918, done.

Compressing objects: 100% (2052/2052), done.

Writing objects: 100% (3918/3918), done.

Total 3918 (delta 2103), reused 3440 (delta 1852)

Removing duplicate objects: 100% (256/256), done.

Your output will vary slightly, of course, based on the size of your

repository’s history. The changes that git gc makes stick with your

repository. Once it has been run, you don’t need to run it again until

there are more changes that need to be optimized.

So, what does this optimization translate into? Disk space. Running

the git gc command on my book’s repository reduced the size of the

repository by roughly 20 percent!

This isn’t to say that Git normally isn’t efficient. The problem is that Git

wants to be fast and efficient. To achieve both, it delegates some of the

optimizations to later so you can run them when speed isn’t an issue.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=123

EXPORTING YOUR REPOSITORY 124

You can add the --aggressive parameter to git gc to do even further opti-

mizations. This comes at the expense of speed but can be worth it.

Git stores changes that were made in what it calls deltas. git gc com-

presses those deltas when it runs by itself, but it doesn’t recalcu-

late them. Adding --aggressive tells Git to recalculate those deltas from

scratch when it runs its optimization.

9.2 Exporting Your Repository

On a successful project, you have to release the software you’re creat-

ing. If the software is written in one of the modern scripting languages

such as Python or Ruby or PHP, you have to include the source for the

end user to be able to run it.

You can do this by providing access to your public Git repositories, but

creating official “releases” that are snapshots of your project reduces

the amount of knowledge needed for your user to get up and running

with your software.

Git provides a convenient tool for creating such a snapshot—git archive.

It exports your code in either tar or zip format, creating an exact copy

of your repository at the point you give it.

git archive takes a few parameters. First, you have to specify the for-

mat you want by specifying the --format=<format-type> parameter. Valid

format types are tar and zip.

Second, you must supply a point in the history of the repository you

want to create the archive from. This can be a commit, a branch, or

a tag. That’s all you have to provide, but another useful parameter is

--prefix. Using that, you can specify what you want the files that are

exported to be prefixed with. You can use this to put your release in a

particular directory.

For example, you can create an archive of the mysite repository you’ve

been working on. Execute this command from within the working tree

of your repository:

prompt> git archive --format=zip \

--prefix=mysite-release/ \

HEAD > mysite-release.zip

The first line contains the --format parameter we talked about. The sec-

ond contains the --prefix parameter. Notice that there’s a trailing for-

ward slash at the end of mysite-release/. Without that, git archive adds

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=124

REBASING A BRANCH 125

the string to the beginning of every filename rather than putting it in a

directory.

The last line has two parts. First, it specifies the commit you are cre-

ating the archive from—HEAD. After that, it tells your shell to put the

output from git archive into the mysite-release.zip file by using >, which is

a greater-than symbol.

The command to create a tarball, or tar, of your repository is simi-

lar. You have to provide an additional command instead of directing

the output of git archive directly to the file. You can create a mysite-

release.tar.gz file by executing this command:

prompt> git archive --format=tar \

--prefix=mysite-release/ \

HEAD | gzip > mysite-release.tar.gz

Notice that after HEAD, you use the pipe (|) to pass the contents to the

gzip command, which then generates the mysite-release.tar.gz file. You

can replace gzip with bzip2 to use bzip2 compression instead of gzip.

Exporting your repository as either a tarball or as a zip file gives you

a convenient way to distribute a snapshot of your repository to people

who don’t need, or in some cases don’t want, the entire history of your

repository.

9.3 Rebasing a Branch

Branches are a great way to organize your work, but keeping every-

thing in sync between branches has been branching’s Achilles’ heel.

With merge tracking, such as Git provides, the effort required to keep

everything in sync is greatly reduced, but there is another way.

For example, in Section 8.2, Handling Release Branches, on page 112,

you added code to the RB_1.0.1 branch. There’s a new paragraph that

exists in the 1.0.1 tag that master doesn’t know about yet.

You can rebase master against that tag so that the change is incorpo-

rated into the history of the master branch, as if the master had always

had that change.

We talked about git rebase earlier in Section 6.7, Rewriting History, on

page 94 where you used git rebase -i to interactively rewrite the history.

You can use it without the -i parameter to tell Git to rebase (or rewrite)

the history in your current branch against an updated point on another

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=125

REBASING A BRANCH 126

branch. Think of it as a way to replay the history of your branch as if it

were created at the new updated point in your repository’s history.

Let’s start the rebase. Run git rebase, and provide it with the tag you’re

going to rebase against:

prompt> git rebase 1.0.1

First, rewinding head to replay your work on top of it...

Applying: add in a bio link

error: patch failed: index.html:5

error: index.html: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merged index.html

CONFLICT (content): Merge conflict in index.html

Failed to merge in the changes.

Patch failed at 0001.

When you have resolved this problem run "git rebase --continue".

If you would prefer to skip this patch, instead run "git rebase --skip".

To restore the original branch and stop rebasing run "git rebase

--abort".

Oops. There’s an error right off the bat. Remember, we covered handling

conflicts in Section 5.4, Handling Conflicts, on page 74. Using the git

mergetool is the normal course to take here, but editing by hand is

going to be easier this time.

That’s because there isn’t a right or wrong change. You want both the

new paragraph from 1.0.1 and the unordered list that you added after

creating the 1.0 tag.

Editing the file by hand is the easiest way here. Your index.html file has

this conflict in it:

<<<<<<< HEAD:index.html

<p>

Fixed

</p>

=======

Biography

>>>>>>> add in a bio link:index.html

Remove the three lines that signify the conflict so it reads like a normal

file. After you save the file, run the following to tell Git the conflict is

resolved and to continue rebasing:

prompt> git add index.html

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=126

REBASING A BRANCH 127

prompt> git rebase --continue

Applying: add in a bio link

... a bunch of additional lines saying Applying: ...

Applying: copy original to show cross-file blame

Remember how you renamed index.html to hello.html using git mv in Sec-

tion 4.4, Managing Files, on page 61? Check your hello.html file now. It

now contains the new paragraph that was added in 1.0.1.

This is a pretty simple case. There was only the initial conflict, and then

the changes were pretty straightforward. Let’s look at a few of the more

complex cases.

Say that you’re following the Git repository of your favorite language

or framework. You might be maintaining a branch with some custom

changes on top of the normal code. There’s a couple of things that might

happen.

First, if you submitted one of your changes and it was accepted, Git is

smart enough to realize that the change has been applied. It won’t try

to apply your change again if it’s already been made.

Another possibility is a conflict. You dealt with a simple conflict; the

process is always the same. Fix the conflict, and then call the git add

and git rebase --continue like you did.

Of course, you can also call git rebase with --skip or --abort to either

skip that particular commit or completely abandon the rebase process,

respectively.

The --onto parameter provides another interesting way to rewrite your

history. For example, you have three branches: master, the contacts

branch that was created from master, and the search branch that was

created from contacts.

The history of those branches might go something like this. You started

with contact code, but partway into it you decide to add new search

code too.

After you finish with the new search code, you realize that it would work

directly without requiring any of the changes that are in your contact

branch.

This is what the --onto parameter does. It takes one parameter, the

branch you want to rebase onto. Your command to rebase search onto

the master branch looks like this:

prompt> git rebase --onto master contact search

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=127

USING THE REFLOG 128

This breaks the search branch off the contact branch and moves it to

the master branch. This is useful if you need to merge the search branch

back into master but don’t need everything in the contact branch. Of

course, search has to be completely independent to keep from having

any merge conflicts when the rebase starts replaying the changes.

You can do some other interesting things with --onto and a combination

of commit ranges like we discussed in Section 6.2, Specifying Revision

Ranges, on page 82. For example, you can erase a revision by using git

rebase. To erase the commit two commits ago, you can do this:

prompt> git rebase --onto HEAD^^ HEAD^ HEAD

This rebases onto the commit that happened two commits prior to your

current HEAD, starting one commit ago through the current HEAD.

Of course, any time you start rewriting the history of a branch, it’s a

good idea to have a backup plan in case things go wrong. You can create

additional branches to experiment in before you do them in your live

branches. Since branches are so cheap in Git, it’s a good idea to use

them instead of live branches when you experiment with rebasing.

There is another tool that comes in handy if things go wrong: the reflog.

9.4 Using the Reflog

One of the key tenets that Linus set for Git was that it had to be safe.

Being nondestructive means you have to be able to get back to any state

in the repository, and to do that, you need to have some mechanism for

tracking the changes in state.

The normal history of a repository will protect you in all but the most

extreme cases with a normal version control system. Git allows you

to do things that most VCSs can’t. Changing the order of commits,

breaking one commit into multiple commits, removing commits, adding

extra ones—these are all tasks that Git does that a VCS like Subversion

or CVS can’t.

Of course, with all this power comes some risk. What happens when

you accidentally delete a branch using git branch -D or a git rebase -i goes

wrong?1 This is where Git’s reflog comes in.

1. This happened to your humble author the first time he did an interactive rebase.

About fifty commits disappeared in about five seconds and weren’t retrieved until he got

familiar with git reflog.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=128

USING THE REFLOG 129

This commit used to be part
of the branch, but now is

orphaned

Figure 9.1: A commit that was orphaned by git rebase

The reflog keeps track of when a branch changes. Remember in Chap-

ter 5, Understanding and Using Branches, on page 65 that we talked

about how branches are only a pointer to the latest commit in that

line? The reflog tracks all those changes. Viewing it, you can find the

commit you need to check out to restore a branch.

For example, let’s create a simple repository and mess it up. Create a

new repository with a single commit, and then create a branch and add

two more commits. The contents can be whatever you want; you just

need the commits in place.

Now, using git rebase or git rebase -i, which you read about in Section 9.3,

Rebasing a Branch, on page 125 and Section 6.7, Rewriting History, on

page 94, delete the first of your commits on the second branch. Now

your branch should look like Figure 9.1.

You can verify what your repository’s history looks like by using git log.

That history is what you expect. After git rebase -i deleted the one com-

mit, there are two commits in the history. Now check the reflog; you’ll

see it knows about a lot more commits:

prompt> git reflog

1b41334... HEAD@{0}: commit: third commit

5e685de... HEAD@{1}: checkout: moving from reflog to 5e685de...

0cb04ad... HEAD@{2}: commit: third commit

71bc515... HEAD@{3}: commit: second commit

5e685de... HEAD@{4}: checkout: moving from master to reflog

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=129

USING THE REFLOG 130

I shortened the commit on the second line of the output so it would fit

on the page. This output reads in reverse chronological order, like the

regular git log. Notice that there are two commits with the message third

commit. Commit 0cb04ad is the first commit, while 1b41334 is the second

commit after git rebase removed 71bc515.

So, to restore to your first third commit, all you have to do is check out

that commit:

prompt> git checkout 0cb04ad

Note: moving to "0cb04ad" which isn't a local branch

If you want to create a new branch from this checkout, you may do so

(now or later) by using -b with the checkout command again. Example:

git checkout -b <new_branch_name>

HEAD is now at 0cb04ad... third commit

As the message tells you, you’re not on a real branch, but you can

create one here with a simple git checkout -b. Not being on a branch

doesn’t stop you from viewing the history, though. Using git log, you

can now see your second commit has been restored.

prompt> git log --pretty=format:"%h %s"

0cb04ad third commit

71bc515 second commit

5e685de initial commit

Of course, you don’t have to explicitly check out the branch to create it.

You can just as easily use git branch to create the branch immediately

if you don’t need to check the history prior to creating the branch:

prompt> git branch reflog-restored 0cb04ad

prompt> git checkout reflog-restored

Switched to branch "reflog-restored"

git gc, which we talked about in Section 9.1, Compacting Repository

History, on page 123, will cause some older reflog entries to expire. For

example, the commits we just restored are normally deleted after thirty

days. This can be changed by changing the gc.reflogExpireUnreachable

config setting. Likewise, normal reflog entries are expired after ninety

days, unless you change gc.reflogExpire to something else. That is to

keep the reflog from getting too large.

You’ll rarely need to use the reflog, but when you do, it can be a life-

saver. Rewriting history can be dangerous, and git reflog is a safety net

to help keep you safe from yourself.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=130

BISECTING YOUR REPOSITORY 131

X√

bad commitgood commit

? ??

Figure 9.2: Repository with a known good commit and a known bad

commit

9.5 Bisecting Your Repository

Try as we might, bugs still make it into the software we create. We

add unit tests, have rigorous acceptance tests created with clients, and

think through the implications of what we are creating, but all of these

steps require perfection from humans in order to work.

Plan for the occasional bug. All those tools can help you locate the bug,

but when they fail, you can turn to your repository to try to figure out

when the bug got introduced. git bisect is a tool that helps with that

process.

git bisect works by stepping through your repository’s history based on

a known bad commit and a known good commit. It walks you through

your repository, letting you mark a commit as good or bad, until you

isolate the commit that created the bug.

Consider this example. Your repository for your project has a 1.0 tag,

and your current code is working toward the 1.1 release of your project.

Your beta testers reported a bug in the new releases that they can’t

reproduce in version 1.0 of your software. Now you have a good point

and a bad point in your repository to check against, so you can use git

bisect to start walking through the history to isolate the bug.

You can see what this repository looks like in Figure 9.2. You can see

that there are three possible commits that caused this break.

First things first—create a test case that demonstrates the bug. Test it

against the bad commit to make sure it doesn’t pass, and then test it

against the one you know is good to prove that it works there.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=131

BISECTING YOUR REPOSITORY 132

X√

bad commitgood commit

? ??

bisect starts here

Figure 9.3: git bisect starts in the middle.

Now, move back to the bad commit and start the bisect process by

calling git bisect start, then git bisect bad, and finally git bisect good <some

commit or tag>. The session looks something like this:

prompt> git bisect start

prompt> git bisect bad

prompt> git bisect good 1.0

Bisecting: 1 revisions left to test after this

[d3289f8ab4916f58134a7e5c813ca91c13dd6a70] <commit message>

Once you mark the second commit, git bisect moves you to another place

in the repository. It takes the commits between the two known points,

splits them in half, and checks out that point. This makes your reposi-

tory look like Figure 9.3.

Now rerun your tests to prove this commit good or bad. In this case,

the commit is bad, so mark it as such with git bisect bad:

prompt> git bisect bad

Bisecting: 0 revisions left to test after this

[1318fa48089ea36c082d7e69cbd7c04b489821ec] <commit message>

Now, there is just one commit left to try with no more commits left

between this and the good commit. Logically, you can determine at this

point that if the previous commit was good and all the commits after

this point are bad, this one must be the cause. A quick run of the unit

tests proves that it is.

Marking it as bad causes Git to realize it has hit the last possible bad

commit and shows the log entry for it. Now you’ve narrowed the history

down to the commit that was bad. All that’s left to do is figure out

exactly which change in the commit caused the problem and fix it.

git bisect moves you off your branch as it steps through each commit.

You need to move back onto the branch before you apply your change.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=132

BISECTING YOUR REPOSITORY 133

You do that with git bisect reset:

prompt> git bisect reset

Switched to branch "master"

Of course, like all interesting things in Git, there’s more to git bisect

than just the simple case. When trying to understand the history of

your changes, having a visualization of the history can be helpful. For

this, you can use git bisect visualize.

You can use git bisect log to show the history of what commits have been

marked as good or bad if text output is more your style. It also comes

in handy if you find out later that you’ve made a mistake in marking a

commit as either good or bad.

To do that, save the output of git bisect log to a file, and then remove all

the output after the point of your mistake. Then supply that file as the

parameter to git bisect replay <some-file> to tell Git to replay the history

up to that point.

All of this is great, but a lot of manual work is involved. Not only does

it add to the amount of work you have to do, but it also makes it more

error prone because of human error. An automated test suite helps, but

git bisect can take it a step further by automating the running of that

test suite for you.

To do this, you need to have a script that can be run from the com-

mand line that exits with a 0 exit code when the tests pass or a positive

number if the tests fail. The normal practice is to exit with a 1.

You can’t exit with the exit code 125 unless you want to skip a commit

and have git bisect move to the next commit. Generally, you do not want

to skip a commit unless you just can’t test whether a commit is good

or bad.

git bisect run is the command you use to automatically run this script.

For example, if you create a script called run-tests, you can invoke it like

this:

prompt> git bisect start HEAD 1.0

Bisecting: 1 revisions left to test after this

[d3289f8ab4916f58134a7e5c813ca91c13dd6a70] <commit message>

prompt> git bisect run /work/run-tests

running /work/run-tests

git bisect continues running just like you were doing it manually, except

it uses the exit value from the script called /work/run-tests. Every time the

script returns an integer other than 0, it is treated as a bad commit.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=133

BISECTING YOUR REPOSITORY 134

Notice that this command references a file in another directory. This is

to make sure Git doesn’t change the file that git bisect run is trying to

execute. Using a file outside the repository to drive your tests isn’t a

necessity but can help avoid any problems.

git bisect is one of those commands that you may never have to use, but

if you do, it can be a lifesaver. Coupled with an automated test suite

that can be run from the command line, you can use it to trace bugs

quickly.

The enterprising development team could even tie it into their auto-

mated build system to help isolate bugs. This can be a tremendous

time-saver when a project moves too rapidly to be tested with a tra-

ditional continuous integration system where each change kicks off a

new build.

This brings us to the end of the basics chapter and the end of Part

II. Whether you’ve just started your journey as a developer and are

learning your first VCS or you are an old hand looking to pick up Git,

you now know what you need to start being productive with Git.

Part III covers administrative tasks. It’s required reading only if you

plan on migrating to Git from Subversion or CVS—covered in Chap-

ter 10, Migrating to Git, on page 136—or are going to set up your own

remote repository—covered in Chapter 11, Running a Git Server with

Gitosis, on page 147.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=134

Part III

Administration

135

Chapter 10

Migrating to Git
If you’ve been developing for long, you probably have a Subversion or

CVS repository that already has your complete project history stored in

it. Switching to Git doesn’t mean you have to lose all that history. In

fact, Git provides several tools to make migrating easy.

In this chapter, you’ll learn how to do the following:

• Import your history from Subversion

• Stay in sync with a remote Subversion

• Import your history from CVS

To help you map the Subversion and CVS commands you’re familiar

with to their Git counterparts, the Subversion mapping is shown in

Figure 10.1, on the next page, and the CVS mapping is shown in Fig-

ure 10.2, on page 138.

10.1 Communicating with SVN

Many companies today use Subversion to manage their version control

repositories. It was designed to be a compelling replacement to CVS and

has succeeded in many areas. It is much easier to understand with its

clear, understandable command structure, and its atomic commits are

much easier to track.

Git didn’t set out to become a replacement to Subversion—or any other

version control system, for that matter—but its features make it a “com-

pelling replacement” to Subversion.

COMMUNICATING WITH SVN 137

Common Subversion Commands in Git

git add

git add
git commit

svn add

svn commit

git statussvn status

git clonesvn checkout

git checkout <branch>svn switch <branch>

git merge <branch>
svn merge
<branch>

git pullsvn update

git checkout <file>svn revert <file>

git initsvnadmin create

Figure 10.1: Common Subversion commands in Git

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=137

COMMUNICATING WITH SVN 138

Common CVS Commands in Git

git add

git add
git commit

cvs add

cvs commit

git statuscvs status

git clone
cvs -d<repo>

checkout <module>

git checkout <branch>cvs co -r <branch>

git mergecvs update -j

git pullcvs update -dP

git checkout <file>cvs update -C

git initcvs -d<repo> init

Figure 10.2: Common CVS commands in Git

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=138

COMMUNICATING WITH SVN 139

Subversion
Repository

git svn clone

Your Git
Repository

Subversion
Repository

git svn clone
Your Git
Repository

Import Subversion Repository

Treat Subversion as an Upstream Repository

git svn rebase

git svn dcommit

Figure 10.3: Two options for migrating from Subversion

A quick note before we start: when reading this chapter, you’ll see ref-

erences to both git-svn and git svn. This is to differentiate between the

package of git-svn and the command that is executed.

There are two ways to migrate to Git from Subversion. The first is to

import all your history and move on to using Git as your main VCS.

The second keeps Subversion around and uses Git’s ability to not only

import changes from Subversion but also push changes back to it. Both

of these are outlined in Figure 10.3.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=139

MAKING SURE GIT -SVN IS AVAILABLE 140

10.2 Making Sure git-svn Is Available

Git has a tool called git-svn that handles communication with a Subver-

sion repository. Depending on how you installed Git, you may already

have git-svn installed. To determine whether you have it installed, run

git svn --version:

prompt> git svn --version

git-svn version 1.6.0.2 (svn 1.4.4)

If your output looks similar to this, you have everything you need and

are ready to go. There are two possible error messages you might get

instead of the previous output:

• Git complains about SVN not being a command or a fatal error

• An error saying that it can’t find SVN/Core.pm

Not a Git Command or Fatal Error

This is a common issue when you install Git through a package man-

ager such as Ubuntu’s apt-get or OS X’s MacPorts. They break Git into

multiple smaller packages to reduce the number of dependencies when

installing packages.

To install git-svn on Linux, you need to locate the package that contains

the Subversion subcommand for Git. In Ubuntu, this package is aptly

named git-svn:

prompt> sudo apt-get install git-svn

If you installed using MacPorts the way we discussed in Section 2.1,

Installing Git, on page 26, then you already have git-svn installed. Like-

wise, if you compiled Git from source, it’s already available.

Missing SVN/Core.pm

The other error you might receive is Perl complaining about a missing

SVN/Core.pm file. This is caused when you don’t have the Perl bindings

for Subversion installed.

There are a couple of ways to get the necessary files. The easiest way

for most people is to use their package manager.

On Ubuntu, the missing package is called subversion-perl. To install it,

type the following:

prompt> sudo apt-get install subversion-perl

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=140

IMPORTING A SUBVERSION REPOSITORY 141

Being the Git: Using Git in a Subversion Company

At a past job, I worked on performance testing and tuning
of the company’s application. I did a lot of experimentation
interspersed with random adjustments to specific areas as they
came across my radar. The engineering department used Sub-
version to track their changes.

My development was anything but linear. I often worked on
several different areas during the course of a week. The central-
ized model with expensive branches and lack of merge track-
ing didn’t work well for me.

Git’s cheap branches allowed me to work much more effec-
tively without the mental and physical overhead of maintaining
separate copies of the half dozen or so branches I had.

There’s another benefit. Following the advice in Practices of
an Agile Developer [SH06], Git allowed me to share work only
when it was ready. If not, I ran the risk of someone seeing some
partially completely algorithm change and thinking “Well, if
Travis did it this way, it must be good!”

By using Git I could manage multiple branches of code, keep-
ing them all current without manually tracking merges; craft
the commits I wanted to push back to our main repository;
and commit new code only once it had been proven as more
efficient.

If you’re on a Mac, the MacPorts package is called subversion-perlbindings:

prompt> sudo port install subversion-perlbindings

If you use CPAN to keep your Perl libraries up-to-date, you can also

install the package directly through it. The package you want to install

is SVN::Core:

prompt> sudo cpan install SVN::Core

10.3 Importing a Subversion Repository

To import a Subversion repository’s history into Git, use the git svn clone

command to Just like its normal Git counterpart, git svn clone retrieves

the entire history of a repository and stores it in your repository.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=141

IMPORTING A SUBVERSION REPOSITORY 142

Beware of CPAN on Mac

I spent two afternoons trying to figure out why MacPorts was
telling me I had everything I needed but Git wouldn’t recognize
it. It turns out I had two versions of the Perl Subversion bindings
on my system: an outdated one that was installed by Subver-
sion when I originally set it up on my machine and the newer
one on MacPorts.

To make matters worse, before I realized what had happened,
I had also installed it via CPAN, so I now had three versions
installed! My CPAN one worked, but when I pointed Git to it,
another dependency failed. Once I realized that my CPAN
library didn’t have all the dependencies met, it was a quick
fix, but it still took a few hours that I wish I had back.

You do have to tell Git how the repository is structured. If you follow

the recommended Subversion repository layout,1 you can provide the

-s. That tells Git to utilize the standard layout.

You can use the -b and -t options if your branches and tags directories

are in different locations. Likewise, if your trunk isn’t named trunk, you

can use the -T option:

prompt> git svn clone --prefix svn/ -s svn://svnrepo/sunshine

Initialized empty Git repository in /work/sunshine.git/

Using higher level of URL: svn://svnrepo/sunshine =>

svn://svnrepo/sunshine/

This may take a while on large repositories

branch_from: /tags => /tags/prototype

Found possible branch point:

svn://svnrepo/sunshine/branch/tswicegood-speed

r1 = 305a06a00d6048fe36ee01bb96b7c770cc30317e (trunk)

A tests/basic-use-cases.py

r2 = a7f1299c2821f788d64218cc4e366ebe13202105

A src/sunshine/__init__.py

A src/sunshine/framework.py

... etc., etc. ...

r50 = c534dfb90a8365842af86fde85065d76baca260a (trunk)

Checked out HEAD:

svn://svnrepo/sunshine r50

1. http://svnbook.red-bean.com/en/1.1/ch04s07.html

http://svnbook.red-bean.com/en/1.1/ch04s07.html
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=142

KEEPING UP-TO-DATE WITH A SUBVERSION REPOSITORY 143

Shrinking the Size of Your Repository

If you clone a Subversion repository of more than 100 or so com-
mits, you might notice that a lot of disk space has disappeared
after the clone is finished.

Just like you would after a few hundred commits, remember
to run git gc on a fresh Subversion clone as soon as possible to
reduce the amount of disk space taken up.

If it’s the first thing you do after you clone the repository, you
can safely pass the --aggressive option. This may take a while,
though. I’ve personally seen fourteen-plus CPU hours spent
compressing a newly cloned repository with more than 31,000
commits.

Subversion doesn’t know how to respond to a request such as “Give me

your entire history,” so git-svn queries it one revision at a time. For a

large repository with tens of thousands of commits, this can take nearly

a whole day!

Notice in the earlier git svn clone command that I included a --prefix

parameter. That tells git-svn to add a prefix, such as the remote reposi-

tory names for remote branches, to all the Subversion-based branches.

Without adding a prefix, you end up with remote and local branches of

the same name. You don’t have to add this parameter, but it does make

the output of git branch -a much easier to digest.

If old commits aren’t important to you, you can use the -r option to

specify what revision to start cloning at. Specifying a revision clones the

history of that one revision. You have to run another command to pull

the rest of the changes. The command git svn rebase is the same com-

mand we’ll use in the next section to pull changes from our “upstream”

Subversion repository after our initial import.

10.4 Keeping Up-to-Date with a Subversion Repository

Whether you are communicating with an active Subversion repository

or you used git svn clone -r ... to make your initial clone, you can pull

changes from your Subversion repository in two ways.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=143

KEEPING UP-TO-DATE WITH A SUBVERSION REPOSITORY 144

Joe Asks. . .

What’s with That Error?

If you cloned a project within a repository that isn’t present in
the oldest commit, you might see errors similar to these:

W: Ignoring error from SVN, path probably does
not exist: (175002): RA layer request failed:
REPORT request failed on '/test/!svn/bc/100':
REPORT of '/test/!svn/bc/100': Could not read
chunk size: Secure connection truncated
(svn://svnrepo)
W: Do not be alarmed at the above message
git-svn is just searching aggressively for
old history.

As the second warning (the lines that start with W:) says, don’t
worry. When git-svn tries to clone your Subversion repository, it
starts at the oldest revision it can access and keeps moving for-
ward until it can find a revision that contains the code you’ve
referenced.

The warning is telling you is that it couldn’t find the code at the
oldest revision it requested. It continues through the history until
it finds the revision where the project you’re trying to clone first
exists.

The first is git svn fetch. It pulls all the remote changes into their remote

branch but doesn’t try to merge them into your local branch. This is

also the command you use to grab new branches from Subversion.

The second, and the one that gets more use, is git svn rebase. It works

like git svn fetch followed by git rebase. It pulls all the commits from your

upstream Subversion repository and then rebases your current branch

against the remote branch.

Just like with git rebase, if you have a local commit that has been

applied on Subversion, it will not apply that patch again when rebas-

ing. Also, like its regular Git counterpart, git svn rebase can’t run when

there are uncommitted changes in your working tree.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=144

PUSHING CHANGES TO SVN 145

Alternative to Cloning a Subversion Repository

Cloning a Subversion repository can be a time-consuming pro-
cess. I’ve cloned large repositories that have taken more than
twenty CPU hours. If you’re trying to clone a large existing
repository, ask around for a bootstrap repository before you
start cloning yourself.

A bootstrap repository is a tarball of a Git repository that has
been cloned from the Subversion repository you want to track.
In the open source community, bootstrap repositories are nor-
mally updated every week or so.

Using a bootstrap repository, all you have to do is type git svn

rebase to grab all the changes since the last time the bootstrap
was updated. That’s a lot faster than cloning an entire history!

10.5 Pushing Changes to SVN

We’ve covered everything you need to know if you’re migrating to Git and

leaving your Subversion repository behind. Share your newly created

repository, and skip this section.

One of the benefits of Git over other popular DVCSs, however, is its

ability to continue to not only pull but also push changes back to Sub-

version.

The command to push changes back to Subversion is git svn dcommit. It

takes each of the commits you’ve made locally and commits them back

to your Subversion repository, one by one.

During this process, it rebases your copy so each of your local commit

reflects the information from the Subversion server. Just like git svn

rebase, this is to make it easier for git-svn to figure out what it has

already synced.

You can use the -n option to tell Git you want to do a “dry run.” In this

mode, it looks through your history and lists all the commits it would

send to the Subversion repository.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=145

IMPORTING FROM CVS 146

10.6 Importing from CVS

If you’re coming to Git from CVS, there are some hurdles you must

jump over compared to Subversion. In fact, the most reliable method

for converting a CVS repository to Git is to convert it to a Subversion

repository first using the cvs2svn command.2 cvs2svn is a tool for con-

verting a CVS repository to a Subversion repository.

Git ships with a tool for importing CVS repositories called git cvsimport.

Since the cvs2svn command is much more stable to a Git repository,

we’ll focus on it.

To start with, you need to get revision control system (RCS) files from

your CVS repository. Once you have those, you need to convert them to

an SVN dump file using the cvs2svn tool:

prompt> cd /path/to/cvs-rcs-files

prompt> cvs2svn --dumpfile=svndump

Creating the dump file allows you to filter out any unnecessary data

by using tools such as svndumpfilter.3 With your new svndump prepared,

now you need to create a Subversion repository to import it into. You

can do this by using the svnadmin create command:

prompt> cd ..

prompt> svnadmin create ./tmpsvn

prompt> svnadmin load ./tmpsvn < /path/to/cvs-rcs-files/svndump

Assuming there were no problems loading the history into your tmpsvn

repository, now you’re ready to import that into Git. The process is the

same as the one covered in Section 10.1, Communicating with SVN , on

page 136:

prompt> git svn clone file:///path/to/tmpsvn

Now you know how to get your history out of Subversion and CVS and

into Git. You can even treat Subversion like a shared upstream reposi-

tory, pushing changes back to it.

In the next chapter, you’ll learn how to manage upstream Git reposito-

ries through Gitosis.

2. You can download this in source form directly from http://cvs2svn.tigris.org/, or you can

get it from your favorite package manager in Linux or MacPorts in OS X.
3. http://svnbook.red-bean.com/en/1.1/ch05s03.html#svn-ch-5-sect-3.1.3

http://cvs2svn.tigris.org/
http://svnbook.red-bean.com/en/1.1/ch05s03.html#svn-ch-5-sect-3.1.3
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=146

Chapter 11

Running a Git Server with Gitosis
Gitosis is a tool that shows off the brilliance of Git. Not only is Git

a distributed version control system, but it is a platform for building

other applications that depend on a file system and can benefit from

versioning.

More specifically, Gitosis is a tool for managing a remote Git server

and its repositories. It does this by using a Git repository to store its

configuration. All you have to do if you need to update the configuration

of the server is push that new configuration to the Gitosis repository.

It manages this by taking advantage of the hook scripts, located in

the .git/hooks/ directory. Hook scripts execute at certain events such as

before a commit (the pre-commit script) or right after a commit (post-

commit).

Gitosis uses these scripts to update the configuration files for the repos-

itories you create. It handles things such as creating the empty reposi-

tory and who has access to read or write to the repository for you.

Gitosis is still a fairly new project, so you have to get your hands a little

dirty working under the hood to get it installed and configured. The

steps required to install Gitosis are as follows:

1. Making sure dependencies are met

2. Installing Gitosis

3. Configuring the server for Gitosis

4. Creating administrator credentials

5. Initializing Gitosis

6. Configuring Gitosis

MAKING SURE DEPENDENCIES ARE MET 148

If you’re not familiar with running daemons on your server, this chapter

might not be for you. The topics we’re covering, although straightfor-

ward, fall to the more complex end of the spectrum.

Don’t fret if setting up servers isn’t your thing; you have a couple of op-

tions. You can try to enlist the help of a sysadmin buddy by bribing, err,

paying him to help you out. This chapter will make perfect sense to him.

Or, if your social circle is lacking anyone who can work their sysadmin

magic for you, you can also look to external hosting services. GitHub

and Gitorious both offer free hosting. I talk more about these in Sec-

tion B.3, Git Repository Hosting, on page 171.

11.1 Making Sure Dependencies Are Met

Gitosis has a few dependencies. First, since it is written in Python,

you will need to have that installed on your system. Python is pretty

popular, so it may already be installed on your system. The easiest way

to check is to run the following command from the command prompt:

prompt> python --version

Python 2.5.1

If Python is installed on your system, you will get a response similar to

the one shown here, but the version number may be different depend-

ing on which version of Python you have installed.

You also need the EasyInstall package from the Python Enterprise

Application Kit (PEAK). EasyInstall is a package that helps develop-

ers install Python-based applications and handle dependencies. It is a

popular package, so you may already have it installed on your system.

You can check by running the following from the command line:

prompt> python -c "import setuptools"

There is no output if EasyInstall and its setuptools module are avail-

able. If you get a warning similar to the following one, you will need to

install EasyInstall. Check your operation system’s documentation for

information on how to install EasyInstall, or follow the instructions on

its website.1

prompt> python -c "import setuptools"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ImportError: No module named setuptools

1. http://peak.telecommunity.com/DevCenter/EasyInstall

http://peak.telecommunity.com/DevCenter/EasyInstall
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=148

INSTALLING GITOSIS 149

11.2 Installing Gitosis

Gitosis is still in active development, so you have to install it from its

source code. You can get its source code directly from its Git repository

by cloning it:

prompt> git clone git://eagain.net/gitosis

Initialized empty Git repository in /work/gitosis/.git/

remote: Counting objects: 599, done.

remote: Compressing objects: 100% (168/168), done.

remote: Total 599 (delta 422), reused 599 (delta 422)

Receiving objects: 100% (599/599), 92.57 KiB | 59 KiB/s, done.

Resolving deltas: 100% (422/422), done.

Now you have a copy of the source code located in the gitosis directory.

To install Gitosis, change into that directory, and run the setup.py file

like this:

prompt> cd gitosis

prompt> sudo python setup.py install

running install

... a few hundred more lines of output ...

Now that Gitosis is installed, you need to set up a user on your server

that Gitosis can use. To do that, you have to create the credentials for

your user.

11.3 Creating Administrator Credentials

You must create a SSH public key for your admin user on Gitosis. A

SSH public key is used by SSH to verify your connection instead of

using a password.

If you already have a public key that you use with SSH, you can use

that now instead of creating a new one. If not, you will need to create a

key. Keys can be created from the command line by using the ssh-keygen

command.

You need this command on your local computer, the one you use to

connect to your server running Gitosis. You can generate your key by

running the following from the command line:

prompt> ssh-keygen -t rsa

The program will prompt you for the location where you want to store

the new key. The default location is fine, so hit the Enter key to accept

it. It will then ask for your passphrase. Your passphrase is required in

order to use the key you are generating. Just like a normal password,

choose this carefully, and make sure you don’t give it to anyone.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=149

CONFIGURING THE SERVER FOR GITOSIS 150

The ssh-keygen program creates your key and gives you some informa-

tion about the new key. If you left the location and name at their default

values, you now have a public key located in this location:

/home/<username>/.ssh/id_rsa.pub

Copy this file to your server. You’re going to be using it shortly when

you initialize Gitosis.

11.4 Configuring the Server for Gitosis

Gitosis requires two things in order to run on your server. It must have

its own user on the server and a directory to store all your repositories.

Each operating system has a slightly different way for adding new

users. In most Linux distributions, you can use the adduser command.

Gitosis needs a new user on the system. Their home directory is where

Gitosis stores its configuration values and its repositories. You can

specify the home directory on most Linux systems by adding --home

/path/to/home.

The home path can be located anywhere on the system that you want.

The convention within Gitosis is to put it in /srv/example.com/git—

changing example.com out for your domain—but that isn’t required.

You can name this user whatever you would like, but I’m going with git.

If you use something else, substitute the username in the commands

in the rest of this chapter with your username.

prompt> sudo adduser --shell /bin/sh \

--group \

--disabled-password \

--home /srv/example.com/git

git

For those familiar with adduser, this command will be self-explanatory.

It creates a user named git that has their home set to /srv/example.com/

git, disables logging in with a password, adds a git group, and sets their

shell to /bin/sh.

With the user set up and credentials already created, now you need to

initialize Gitosis.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=150

INITIALIZING GITOSIS 151

11.5 Initializing Gitosis

Gitosis comes with a program, gitosis-init, to handle initialization. gitosis-

init doesn’t require any options, but it must be run as the user you

created in the previous section. If you used the recommended git user,

your init command looks like this:

prompt> sudo -H -u git gitosis-init < /path/to/id_rsa.pub

Initialized empty Git repository in

/srv/example.com/repositories/gitosis-admin.git/

Reinitialized existing Git repository in

/srv/example.com/repositories/gitosis-admin.git/

This initializes Gitosis and its repository. All that’s left now is the con-

figuration. If you got an OSError exception, continue reading this section.

Otherwise, you can skip ahead.

If you’ve installed Git in a location that’s not in your normal $PATH, you’ll

get this error instead of the successful output shown previously. This

is because the gitosis-init command can’t find Git.

To fix this, you need to make sure the Git commands are available to

the git user. You can do this by modifying $PATH variable for the user

Gitosis is running as, or you can make sure that the Git commands are

available to the user by adding a symbolic link to the git binary in one

of the directories in the Gitosis user’s $PATH.

11.6 Configuring Gitosis

Now you need to clone Gitosis’s configuration repository. It contains all

the configuration values you need to manage your new repositories. You

must clone it from the computer where you generated the SSH public

key. That’s the only one that Gitosis knows about right now.

If your server’s domain name was example.com, your clone command

would look something like this:

prompt> git clone git@example.com:gitosis-admin.git

Initialized empty Git repository in /work/gitosis-admin/.git/

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 5 (delta 1), reused 5 (delta 1)

Receiving objects: 100% (5/5), done.

Resolving deltas: 100% (1/1), done.

There is a gitosis.conf file and a keydir/ directory in your newly cloned

repository.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=151

ADDING NEW REPOSITORIES 152

gitosis.conf is a simple INI-style file. Its sections are denoted by brackets,

and its values have a name, an =, and the value. The default configu-

ration looks something like this:

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = travis

The part that’s interesting here is the block after [group gitosis-admin].

The first line specifies that this group can write to the gitosis-admin

repository. The second line specifies the users—or in this case the

user—that are part of this group.

The members field is a space-separated field. Each entry refers to a

file in the keydir directory of the same name with a .pub extension. For

example, the key for my user is located in keydir/travis.pub.

To add a new user, you need their public SSH key. Each developer who

wants access to your repository needs to generate their key on their

computer. It can be generated using the command you used earlier, but

it has to be done on their computer. Each key is specific to a particular

computer.

Once you have a copy of their public key, add it to the keydir/ directory,

named with the name you want to use for them, and then add that

name to the repositories you want to give them access to. Once you’ve

committed those changes to your local repository, you need to push it

to the Gitosis server with a quick git push command.

11.7 Adding New Repositories

The initial configuration that Gitosis creates has one configuration

repository, but you can manage as many repositories as you like. If

you want to, you can add new writable lines to the gitosis-admin group,

but that means everyone with access to your repositories has access to

change Gitosis’ configuration. A more secure solution is to create two

groups: one for administrators and another for normal developers.

Here’s a sample configuration:

[gitosis]

[group gitosis-admin]

writable = gitosis-admin

members = travis

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=152

ADDING NEW REPOSITORIES 153

[group team]

writable = mysite

members = travis susannah

Recognize the first [group] from earlier? This configuration adds a new

group called team and says that the team members can write to the

mysite repository; then it gives write access to users travis and susannah.

For each new repository you want to create, add a new writable line with

that repository’s name. Once again, commit your changes and push

them to your server. After pushing the changes, you can add content to

your new remote repository.

You can send content to your new remote repository from any local

Git repository. Your local repository has to have at least one commit

so there is something to send, though. From the working tree of that

repository, execute the following command to add a remote repository

to your configuration:

prompt> git remote add origin git@example.com:mysite.git

That adds the mysite remote repository to your local repository’s config-

uration as its origin repository. Obviously, you need to swap out exam-

ple.com with whatever your server’s domain name is and mysite.git with

the name of your repository.

Now all that’s left is to push the contents of your local repository to the

remote repository. That’s a simple enough command, but remember

you have to specify the branch you want to push to since it doesn’t

exist on your remote repository yet:

prompt> git push origin master

Initialized empty Git repository in

/srv/example.com/git/repositories/mysite.git/

Counting objects: 3, done.

Writing objects: 100% (3/3), 214 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To git@example.com:test.git

* [new branch] master -> master

Now you’re set. Other users who have access can clone your repository

and push changes to it too if you gave them permission to write to the

repository.

On an open source project, your repository needs to be accessible by

the public at large. You might even need to expose your repository on

your local VPN to everyone in the company, but you don’t need to keep

track of who is logging in to read its contents.

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=153

SETTING UP A PUBLIC REPOSITORY 154

You can set up your repository to allow anonymous read-only access

using git daemon, which we’ll cover next.

11.8 Setting Up a Public Repository

The one last thing you might need to do is set up the read-only portion

of your repository. You have to do this only if you want to share your

work with other developers without having to set up a user for them.

This is most common in open source development where anyone can

read from the repository.

Setting this up requires two steps. First, you have to configure your

repository for sharing with Gitosis. Second, you have to run git daemon

to respond to the requests.

To configure Gitosis, you need to edit the gitosis.conf name from earlier.

This time, add a new section called repo with the name of your repos-

itory. For example, if your repository were called web, you would add

this:

[repo web]

That’s the INI setting for creating the new section. It tells the configu-

ration that everything that comes after it is part of that section. Now

you need to add a line that says daemon = yes so git daemon knows this

repository can be read. Your new section should look like this:

[repo web]

daemon = yes

That’s all there is to the configuration step. Commit your changes, and

push them to your server. Now you need to set git daemon.

git daemon needs to be run as your git user that you created earlier. The

easiest way to do that is by using sudo -u git to prefix your command.

Other than that, the only parameter that git daemon needs is --base-

path. That tells it where to look for your repositories. Following the

configuration that we’ve used so far, this is located in /srv/example.com/

repositories.

The actual command to run git daemon looks like this:

prompt> sudo -u git git daemon \

--base-path /srv/example.com/repositories/

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=154

CLOSING THOUGHTS 155

You can test that this works by cloning one of your read-only reposito-

ries. Using the web repository, the clone command is as follows:

prompt> git clone git://example.com/web.git

Now you’re set. The git daemon command that you executed will run

only as long as that user is logged in. It also doesn’t run every time your

server boots up. Each operating system handles that a little differently.

I use nohup when I want to run git daemon even after I log out of my

server, but I don’t need it to start up when I reboot my server. The

command I use looks something like this:

prompt> nohup sudo -u git git daemon \

--base-path /srv/example.com/repositories &

The final & suffix detaches it from the current session, and the nohup

prefix detaches it from the current user.

A final note: Gitosis is stable but still relatively new, just like Git. I have

used it exclusively to manage my Git repositories for the better part of

a year and never had any issues with its reliability.

It is tightly coupled with Git, however, so there may be incompatibility

issues between different versions of Git. I ran into one that was caused

by a change in Git from version 1.5.x to 1.6.0. It has already been fixed,

but there’s always the possibility that something like that will pop up.

If you run into any issues installing Gitosis, you can try the book’s

forums,2 or if IRC is more your thing, the #git channel on Freenode

always has a few people with experience including usually Tv, the devel-

oper of Gitosis.

11.9 Closing Thoughts

This brings us to the end of the book. There’s some additional infor-

mation in a few appendixes. In Appendix A, on page 158, you’ll find

recipes for the common tasks in Git. Consider it your Git cookbook. In

Appendix B, on page 167, you’ll find information on a few of the extra

tools and resources available to you as a Git user. The book finishes

up with Appendix C, on page 174. It lists all the other books referenced

throughout this book.

2. http://forums.pragprog.com/forums/64

http://forums.pragprog.com/forums/64
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=155

CLOSING THOUGHTS 156

I hope you’ve enjoyed reading this book as much as I have enjoyed

writing it. It has been a great learning experience and a lot of fun, and

I hope that has come through in the book. If you have any questions,

feel free to stop by the book’s forum3 and drop me a line.

3. http://forums.pragprog.com/forums/64

http://forums.pragprog.com/forums/64
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=156

Part IV

Appendixes

157

Appendix A

Git Command Quick Reference
This appendix is your quick reference for how to perform common Git

tasks. Each section focuses on one type of task.

This appendix is light on content and heavy on commands. If you’re

skipping ahead and aren’t familiar with the concepts of Git, now would

be a good time to flip through Chapter 1, Version Control the Git Way,

on page 15.

A.1 Setup and Initialization

Before you start working with Git, you have to configure it. Before you

can start working on a new project, you have to initialize it. This section

covers commands related to the initial configuration and setup of Git.

Configure Global Username/Email

prompt> git config --global user.name "Your Name"

prompt> git config --global user.email "you@example.com"

Configure Username/Email for a Specific Repository

Note: You can set your username and email address on a per-repository

basis. This allows you to use a different name and/or email address for

different projects.

prompt> cd /path/to/repo

prompt> git config user.name "Your Name"

prompt> git config user.email "you@example.com"

Turn Color On in Git’s Output

prompt> git config --global color.ui "auto"

NORMAL USAGE 159

Initialize a New Repository

prompt> mkdir /path/to/repo

prompt> cd /path/to/repo

prompt> git init

Initialized empty Git repository in /path/to/repo/.git/

prompt>

... create file(s) for first commit ...

prompt> git add .

prompt> git commit -m 'initial import'

Created initial commit bdebe5c: initial import

1 files changed, 1 insertions(+), 0 deletions(-)

create mode 100644 <some file>

Clone a Repository

prompt> git clone <repository url>

Initialize repo/.git

Initialized empty Git repository in /work/<remote repository>/.git/

Add Git to an Existing Directory

prompt> cd /path/to/existing/directory

prompt> git init

Initialized empty Git repository in /path/to/existing/directory/.git/

prompt> git add .

prompt> git commit -m "initial import of some project"

Add a New Remote Repository

... from within the repository directory ...

prompt> git remote add <remote repository> <repository url>

A.2 Normal Usage

You use these commands doing normal, day-to-day activities. These are

your bread-and-butter commands, the ones we covered in Chapter 4,

Adding and Committing: Git Basics, on page 51.

Add a New File or Stage an Existing File and Commit

prompt> git add <some file>

prompt> git commit -m "<some message>"

Stage a Partial File

Note: [...] indicates optional parameters.

prompt> git add -p [<some file> [<some file> [and so on]]]

... select hunks to commit ...

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=159

BRANCHES 160

Add Files via Git’s Interactive Add Mode

prompt> git add -i

Stage Changes to Modified, Tracked Files

prompt> git add -u [<some path> [<some path>]]

Commit Changes to All Modified, Tracked Files

prompt> git commit -m "<some message>" -a

Revert Changes in a Working Tree

prompt> git checkout HEAD <some file> [<some file>]

Reset Staged Changes That Haven’t Been Committed

prompt> git reset HEAD <some file> [<some file>]

Fix the Last Commit

... make whatever changes and stage them ...

prompt> git commit -m "<some message>" --amend

Amend the Previous Commit and Reuse a Commit Message

prompt> git commit -C HEAD --amend

A.3 Branches

Branches are one of Git’s strongest points. This section covers com-

mands related to all aspects of branches. You can find more details in

Chapter 5, Understanding and Using Branches, on page 65.

Show Local Branches

prompt> git branch

Show Just Remote Branches

prompt> git branch -r

Show All Local and Remote Branches

prompt> git branch -a

Create a New Branch from the Current Branch

prompt> git branch <new branch>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=160

BRANCHES 161

Check Out Another Branch

prompt> git checkout <some branch>

Create a New Branch from the Current Branch and Check It Out

prompt> git checkout -b <new branch>

Create a Branch from Another Starting Point

You can create a branch from any start point within the history of the

repository. The start point can be another branch, a commit name, or

a tag.

prompt> git branch <new branch> <start point>

Overwrite the Existing Branch with a New Branch

prompt> git branch -f <some existing branch> [<start point>]

Move or Rename a Branch

...only if <new branch> does not exist

prompt> git checkout -m <existing branch name> <new branch name>

...overwriting any existing branch

prompt> git checkout -M <existing branch name> <new branch name>

Merge Another Branch into the Current Branch

prompt> git merge <some branch>

Merge but Don’t Commit

prompt> git merge --no-commit <some branch>

Cherry-Pick Commit

prompt> git cherry-pick <commit name>

Cherry-Pick, but Don’t Commit

prompt> git cherry-pick -n <commit name>

Squash One Branch’s History into Another

prompt> git merge --squash <some branch>

Delete a Branch

...only if branch has been merged into current branch

prompt> git branch -d <branch to delete>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=161

HISTORY 162

...even if branch has not been merged into current branch

prompt> git branch -D <branch to delete>

A.4 History

These commands show you your history, including where your code

has been, who did what and when, changes, and statistics. Many of

these commands are covered in more detail in Chapter 6, Working with

Git’s History, on page 80.

Show All History

prompt> git log

Display Log with Patch Showing Change

prompt> git log -p

Limit Log to Show One Entry

prompt> git log -1

Limit Log to Show Twenty Entries and Patches

prompt> git log -20 -p

Show Commits from Past Six Hours

prompt> git log --since="6 hours"

Show Commits Older Than Two Days

prompt> git log --before="2 days"

Show Log for Single Commit Three Commits Prior to HEAD

prompt> git log -1 HEAD~3

Or...

prompt> git log -1 HEAD^^^

Or...

prompt> git log -1 HEAD~1^^

Show Commits Between Two Points

<start point> and <end point> in the following example can be a commit,

branch, or tag name. You can also mix different names.

prompt> git log <start point>...<end point>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=162

HISTORY 163

Show Log History as One-Liners

prompt> git log --pretty=oneline

Show Stats of Affected Lines for Each Line Entry

prompt> git log --stat

Show Status of Files Touched by a Commit

prompt> git log --name-status

Show the Differences Between the Current Working Tree and the

Index

prompt> git diff

Show the Differences Between the Index and the Repository

prompt> git diff --cached

Show the Differences Between the Working Tree and the

Repository

prompt> git diff HEAD

Show the Differences Between the Working Tree and the Previous

Point in Repository

<start point> can be a commit, branch, or tag name.

prompt> git diff <start point>

Show the Differences Between Two Points in a Repository

prompt> git diff <start point> <end point>

Show Stats from Differences

prompt> git diff --stat <start point> [<end point>]

Annotate a File with Commit Information

prompt> git blame <some file>

Annotate File and Show Copy and Paste and Line Movement

Within File

prompt> git blame -M <some file>

Annotate File, Show Line Movement and Original File

prompt> git blame -C -C <some file>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=163

REMOTE REPOSITORIES 164

Show Copy and Paste Within the Log

prompt> git log -C -C -p -1 <some point>

A.5 Remote Repositories

You collaborate with other developers by using remote repositories to

share your work and interact with others’ work. This section covers

those commands, many of which are covered in Chapter 7, Working

with Remote Repositories, on page 100.

Clone a Repository

prompt> git clone <some repository>

Clone a Repository but Download Only the Last 200 Commits

prompt> git clone --depth 200 <some repository>

Add a New Named Remote Repository

prompt> git remote add <remote repository> <repository url>

Show All Remote Branches

prompt> git branch -r

Create a Local Branch from a Remote Branch

prompt> git branch <new branch> <remote branch>

Create a Local Branch from a Remote Tag

prompt> git branch <new branch> <remote tag>

Fetch Changes from Origin Repository, but Do Not Merge into

Local Branch

prompt> git fetch

Fetch Changes from a Remote Repository Other Than Origin, but

Do Not Merge

prompt> git fetch <remote repository>

Fetch Changes from a Remote Repository and Merge into Current

Branch

prompt> git pull <remote repository>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=164

GIT TO SVN BRIDGE 165

Fetch Changes from Origin Repository and Merge into Current

Branch

prompt> git pull

Push Local Branch to Remote Branch

prompt> git push <remote repository> <local branch>:<remote branch>

Push Local Branch to Remote Branch of Same Name

prompt> git push <remote repository> <local branch>

Push New Local Branch to Remote Repository

prompt> git push <remote repository> <local branch>

Push Local Changes to Origin Repository

This pushes only those branches that are already present in the origin

repository. To push a new branch, you must use the git push <repository

name> <local branch> syntax.

prompt> git push

Delete a Remote Branch

prompt> git push <remote repository> :<remote branch>

Remove Any Stale Remote Branches

prompt> git remote prune <remote repository>

Remove a Remote Repository and Any Associated Branches

prompt> git remote rm <remote repository>

A.6 Git to SVN Bridge

The ability to receive and send commits to and from a Subversion repos-

itory is one of the many finishing touches that sets Git apart from all

the other DVCSs. These are a few of the more common commands used

when working with a remote SVN repository. You can find out more

about them in Chapter 10, Migrating to Git, on page 136.

Clone an Entire SVN Repository

prompt> git svn clone <svn repository>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=165

GIT TO SVN BRIDGE 166

Clone an Entire SVN Repository Using Standard Layout

Use this if you are cloning a repository that uses the standard trunk,

branches, and tags repository structure:

prompt> git svn clone -s <svn repository>

Clone an Entire SVN Repository with Nonstandard Layout

prompt> git svn clone -T <trunk path> \

-b <branch path> \

-t <tag path> \

<svn repository>

Clone an SVN Repository with Standard Layout at Revision 2321

prompt> git svn clone -s -r 2321

Clone SVN Repository with Standard Layout and Add Prefix to All

Remote Branches

prompt> git svn clone -s --prefix svn/ <svn repository>

Update from Upstream SVN Repository and Rebase

prompt> git svn rebase

Push Commits Back to Upstream SVN Repository

prompt> git svn dcommit

View List of Commits That Would Be Pushed Upstream

prompt> git svn dcommit -n

View SVN Log of Repository

prompt> git svn log

View SVN Blame for a File

prompt> git svn blame <some file>

http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=166

Appendix B

Other Resources and Tools
Git is a growing and maturing open source project. This book outlines

the core tools you need to work with Git daily, but you can access a

whole host of other tools and resources as you work to get the most out

of Git.

B.1 Extras Bundled with Git

Git has many great tools that are packaged directly with it. Installing

it through a package system such as apt-get or MacPorts means you

might have to install these tools separately.

gitk

Arguably one of the most useful tools in Git, gitk visualizes your reposi-

tory’s history, showing you how all the various branches come together

in the history.

gitk is billed as the “original Tcl/Tk GUI for browsing the history of a

Git repository.” It requires Tcl/Tk, which is already installed on many

Linux and Mac computers.

The configuration needs a little tweaking to look decent on a Mac. You

can add configuration values to the .gitk file in your home directory to

customize the interface. I like my development interfaces to all use the

same font at the same size—Panic Sans at 11 points.1

1. Panic Sans is part of the Coda package, which is available online at

http://www.panic.com/coda.

http://www.panic.com/coda

THIRD-PARTY TOOLS 168

My .gitk file looks like this:

set mainfont {{Panic Sans} 11}

set textfont {{Panic Sans} 11}

set uifont {{Panic Sans} 11 bold}

git-gui

git-gui provides an interface to the basic commands you need when

working with a repository. You can use it to view files that are not being

tracked, changed files, and what is staged. It also lets you stage changes

and make commits.

It is platform independent, so you can use it in any operating sys-

tem, but the cross-platform capabilities mean it doesn’t integrate as

smoothly with your operating system the way tools such as Tortoise

SVN/CVS do.

gitweb

gitweb is a web front end to Git repositories. You may have seen it in

action at http://git.kernel.org or http://repo.or.cz. gitweb incorporates every

feature you need to view your repository in a web interface.

It is bundled with Git’s source code in the gitweb directory. Full infor-

mation on how to install it and how to configure it is available in the

INSTALL and README files in that directory.

B.2 Third-Party Tools

More tools are being made for Git every day. This section highlights a

few of the standout tools. All of these are currently maintained outside

the official Git distribution, but many are created by developers who

also contribute to Git.

GitX

GitX is a native OS X clone of gitk. It performs the same functions,

except it looks like a native OS X application. You can view any branch

one at a time or all the branches at once like with gitk. Its latest version

includes the ability to create commits, similar to git-gui.

It is fairly new with the first commit being made in June 2008, but it

was already up to its fourth stable release—0.4—by early fall of 2008.

It is hosted on GitHub, where you can download the latest build and

get information on building it from source.

http://gitx.frim.nl/

http://git.kernel.org
http://repo.or.cz
http://gitx.frim.nl/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=168

THIRD-PARTY TOOLS 169

Komodo IDE

ActiveState announced that it’s integrating support for several DVCSs

including Git in the 5.0 release of the Komodo IDE. Komodo is an

integrated development environment geared toward scripting languages

and web development. It is built on Mozilla 1.9, the same branch of

Mozilla that Firefox 3 is written on.

ActiveState released the first alpha version of Komodo IDE version 5.0

in August 2008. The current plan is to have the stable release out some-

time in the fall of 2008. You can obtain information about the latest

version of the Komodo IDE from its website.

http://www.activestate.com/Products/komodo_ide/

Eclipse Git Plug-In

Eclipse is a popular cross-browser IDE written in Java. It has support

for every major programming language and runs on any platform that

Java runs on. There is a Git plug-in that allows you to use Git directly

inside the IDE.

Features include the ability to commit, amend commits, view diffs, and

visualize the repository history graphically. You can find more informa-

tion, including download information, on the project’s wiki page.

http://git.or.cz/gitwiki/EclipsePlugin

TextMate Git Bundle

TextMate bills itself as “the missing editor for Mac OS X.” Its excellent

support for scripting languages and ease of use make it popular with

developers working on OS X.2

There is a Git Bundle for TextMate that allows you to work with Git

directly inside TextMate. You can get the bundle and more information

about how to install it from the project website on Gitorious.

http://gitorious.org/projects/git-tmbundle

VCSCommand

Word of caution—I’m a Vim user. I used MacVim for nearly all the writ-

ing of this book, so this review might be slanted.

2. TextMate: Power Editing for the Mac [Gra07] is also available from the Pragmatic Book-

shelf if you’re interested in learning more about TextMate.

http://www.activestate.com/Products/komodo_ide/
http://git.or.cz/gitwiki/EclipsePlugin
http://gitorious.org/projects/git-tmbundle
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=169

THIRD-PARTY TOOLS 170

VCSCommand is a plug-in for the wildly popular and battle-tested Vim

editor. Combine it with a few shortcuts in your .vimrc file, and you’re set

to take on the most challenging programming projects on any platform.

Too over the top? OK, I’ll back it down a notch. Vim is an editor that has

been ported to every major platform. It’s even available on a “jailbroken”

iPhone. Vim, or its predecessor vi, is available on nearly every Linux box,

so there’s a good chance it’s available when editing code on a Linux box.

VCSCommand lets you interact with several VCS directly through Vim.

It currently supports CVS, Subversion, and Git. It’s written in Python so

it requires the Python bindings for Vim. You can get more information

about VCSCommand from its listing on the Vim Scripts site.

http://www.vim.org/scripts/script.php?script_id=90

GitNub

GitNub describes itself as a gitk-like tool that looks like it belongs on

a Mac. It provides basic viewing of history and has integration with

GitHub’s timeline viewer if your repository is hosted on GitHub.

You have to build GitNub from source. It requires Ruby and RubyCocoa

along with Leopard. You can get more information and the URL to clone

it from its listing on GitHub.

http://github.com/Caged/gitnub

TicGit

Ticket-tracking systems are how many teams keep track of who is work-

ing on what. These introduce a centralized system into your distributed

tool set. TicGit lets you disconnect again with a simple distributed

ticket system within Git.

TicGit stores all your ticket information in a branch inside your repos-

itory, so whoever clones your repository also has a copy of the tickets

associated with it. The only interface right now is through the command

line, but a web interface is planned.

You can download the latest and get an introduction on how to interact

with TicGit on the TicGit website.

http://github.com/schacon/ticgit/wikis

http://www.vim.org/scripts/script.php?script_id=90
http://github.com/Caged/gitnub
http://github.com/schacon/ticgit/wikis
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=170

GIT REPOSITORY HOSTING 171

git-sh

Reading this book, you no doubt noticed that git is typed a lot. git-sh

removes the need to type git before every command in Git—you can type

checkout when you want to check out or commit when you’re ready to

commit changes.

It does this by launching a customized shell and creating aliases for

all the Git commands. It also adds the name of your current repository

and the branch you’re on to your command prompt so you don’t have

to type git branch to see your current branch. The code and installation

instructions are available on its GitHub site.

http://github.com/rtomayko/git-sh

B.3 Git Repository Hosting

There are several repository hosting services if you don’t want to run

your own Git server. These range from services that allow only open

source to commercial paid hosting. This section covers a few of the

most notable services.

repo.or.cz

The original free Git hosting site, repo.or.cz offers free Git repository

hosting to open source projects. It is limited to open source only, but it

houses a large collection of repositories.

It is based around the Gitweb package, so the interface should be famil-

iar to those who have set up Gitweb for their repositories. The URL is

http://repo.or.cz.

GitHub

GitHub is familiar to nearly everyone who has viewed a Git repository

of an open source project. It is the hosting provider used for this book’s

repositories, it hosts the Rails repository, and it is home to many of the

tools listed in this appendix.

It offers several unique features. In particular, it adds a social aspect

to software development by allowing people to track who has forked a

project. Its tracking makes it easy for you to see all the developers who

are contributing code to a project.

http://github.com/rtomayko/git-sh
http://repo.or.cz
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=171

ONLINE RESOURCES 172

GitHub is free for open source projects, but it also offers private hosting

for a fee for companies that want to use GitHub to manage their own

private projects. You can get more information and sign up by visiting

its website.

http://github.com

Gitorious

Gitorious is another free Git hosting provider. The user interface is sim-

ilar to GitHub, and it offers some similar features, with two exceptions:

• There is no hosting of private repositories on Gitorious.

• The source code for Gitorious is available under the Affero General

Public License, which is similar to the GPL with one addition. You

must release the source code from any service that uses the AGPL.

http://gitorious.org

B.4 Online Resources

A ton of information about Git is available online. This section high-

lights the main stops for information online.

git.or.cz

The source for all things Git is the main Git website, has links to the

latest source code, user documentation, wiki, and many of the projects

related to Git.

http://git.or.cz

Git Manual

The user’s manual is the definitive source on how to do everything in

Git. It lists all the commands and their options. Thanks to the commu-

nity surrounding Git, the documentation is becoming stronger every-

day. Every time you run git --help <some command>, you’re accessing

the user manual.

The entire command manual is available online as well.

http://www.kernel.org/pub/software/scm/git/docs/

http://github.com
http://gitorious.org
http://git.or.cz
http://www.kernel.org/pub/software/scm/git/docs/
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=172

ONLINE RESOURCES 173

Git Mailing List

Like many open source projects, a lot of the interaction amongst the

developers and the community happens on the mailing list.

git@vger.kernel.org

You can subscribe to the mailing list by sending an email with “sub-

scribe git” in the body of the message to the following address:

majordomo@vger.kernel.org

#git IRC channel

Git has an active community on IRC—#git on Freenode. There is always

someone willing to answer questions, from basic to advanced.

From time to time, I’m also on the IRC channel. I’m the ever creatively

named tswicegood, so say “Hi” if you see me in the channel.

Pragmatic Version Control Using Git Forums

Lastly, I would be remiss if I didn’t mention the book’s forums.

http://forums.pragprog.com/forums/64

I keep an eye on the forums regularly, and though most of the discus-

sion so far has been related to the book, I hope they turn into a place

where people can come for help when they’re looking to answers to their

Git questions.

http://forums.pragprog.com/forums/64
http://books.pragprog.com/titles/tsgit/errata/add?pdf_page=173

Appendix C

Bibliography

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly

& Associates, Inc, Sebastopol, CA, 1997.

[Gra07] James Edward Gray II. TextMate: Power Editing for the Mac.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2007.

[Hun08] Andy Hunt. Pragmatic Thinking & Learning: Refactor Your

Wetware. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2008.

[SH06] Venkat Subramaniam and Andy Hunt. Practices of an Agile

Developer: Working in the Real World. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2006.

Index
A
Adding files, 52–56

Adding, remote repositories, 106–107

adduser, 150

Aliases, 58

apt-get, 167

Archive, 46

AsciiDoc, 34

Authentication, 103

B
Bisecting repository, 131f, 132f,

131–134

Branches, 22f, 21–22, 43–45, 65–79

changes in (reflog), 129

checking out, 68

commands for, 160

conflict handling, 74–77

creating, 67–68

defined, 66–67

deleting, 77–78

merging, 69–73

names for, valid, 114–115

rebasing, 125–128

release, 112–114

renaming, 78–79

see also Merging

Branching and merging, 10

Buffer, 58

Bugs, 113, 119, 131

C
Centralized repository model, 16

Changes, undoing, 91–94

Checked-out branch, 68

cherry-pick, 73

Cloning

remote repositories, 103–104

repositories, 48, 118

Color control, 32, 42, 61

Commit messages, 42, 83

Commits

breaking down, 98

cherry-picking, 71

orphaned, 129f

reordering, 96

squashing, 70, 96

submodules and, 119

see also Changes, undoing

Committing files, 55–58

Configuration, 31–33

Configuration management (CM), 25

Conflict resolution, 23, 74–77

Conflicts, 74

Content tracking, 88–91

Conventions, 13, 110

Copying files, 62

CPAN, 142

Creating branches, 67–68

CVS, 138f

importing from, 146

cvs2svn, 146

D
de Bie, Pieter, 33

Deleting branches, 77–78

Directed acyclic graph (DAG), 66

Directories, tracking, 56

Distributed architecture, 10

Distributed version control systems

(DVCSs), 10, 15, 16

see also Git

Documentation, 35, see History,

repository

DVCSs, see Distributed version control

systems

176 GIT -GUI

E
Eclipse Git plug-in, 169

Empty directories, 56

Errors, 144

Exporting repository, 124–125

F
Feature branches, 70

Fetching, remote repositories, 104–105

Files

adding, 52–56

committing, 55–58

copying, 62

differences between, 60

hunks, 54

ignoring, 63, 64

managing, 61–64

manipulation of, 18–19

status and history of, 58–61

Fink, 26

G
Git

branches, 22

built-in help for, 34–35

commands in, 122

configuration of, 31–33

conventions, 13

development of, 10

forums for, 173

GUI, 33, 34f

hashes in, 39

installation of, 30f, 31f, 26–31, 32f

merging, 23

migrating to, 136–146

git-svn, 140–142

CVS commands in, 138f

importing from CVS, 146

importing from Subversion,

141–144

pushing to Subversion, 145

Subversion commands in, 137f

SVN communication, 139f,

136–139

tracking changes from

Subversion, 143–145

network protocols, 101f, 102f,

100–103

protocol for, 101

pulling, 19

pushing, 17

setup of, 158

strengths of, 10

submodules, 116–121

URL components, 101, 102f

user manual, 172

website for, 172

see also Gitosis

git, 13

git add, 52, 57, 62, 127

git archive, 47, 124, 125

git bisect, 131, 132, 134

git blame, 86, 89, 90

git branch, 43, 66, 68, 77, 110, 111,

113, 130

git checkout, 45, 68, 121

git checkout HEAD, 106

git cherry-pick, 72, 73

git clone, 48, 103

git commit, 56, 58, 92

git config, 58

git daemon, 154, 155

git diff, 60, 85, 86, 89

git fetch, 104

git gc, 123, 124, 143

git init, 103

#git IRC channel, 173

git log, 81, 84, 86, 97, 112, 113, 130

Git Mailing List, 173

git merge, 70, 71

git mergetool, 76, 126

git mv, 62

git pull, 104

git push, 105, 152

git rebase, 45, 95, 126–129, 144

git remote add, 107

git remote rm, 108

git reset, 73, 94, 98

git revert, 93

git rm, 62

git status, 59, 63, 71, 73, 121

git submodule, 117, 119, 120

git submodule add, 117

git submodule init, 119

git submodule update, 119, 121

git svn clone, 141, 143

git svn dcommit, 145

git svn fetch, 144

git svn rebase, 143–145

git tag, 110, 111

git-gui, 168

177 REFLOG

git-sh, 171

git-svn, 140–142

GitHub, 13, 102, 109, 171

gitk, 33, 167

GitNub, 170

Gitorious, 169, 172

Gitosis, 147–155

admin setup, 149–150

configuration, 151–152

dependencies, 148

initialization, 151

installation of, 147, 149

public repository, 154–155

repositories for, 152–154

server configuration, 150

gitosis-init, 151

gitweb, 168

GitX, 168

Graphical user interface, see GUI

GUI, 33, 34f

gzip, 47

H
Hashes

options for, 84

SHA-1, 39

Help, built-in, 34–35

History, repository, 80–99

blame, 86–88

changes, undoing, 91–94

commands for, 162

compacting, 123–124

content tracking, 88–91

log of, 81–82

reviews of, 94–99

revision ranges, 82–85

version differences, 85–86

Hook scripts, 147

Hosting, 171–172

HTTP, 102

Hunk, 54

I
Ignoring files, 63, 64

Installation, 30f, 31f, 26–31, 32f

Gitosis, 147, 149

Linux, 27–28

Mac OS X, 28

Windows, 28–31, 32f

Interactive mode, 54

K
Keys, 150, 152

Komodo IDE, 169

L
Linux installation, 27–28

Locking, 24

Log messages, 42, 81, 82

M
Mac OS X

CPAN, 142

FileMerge Utility, 77f

installation, 28

MacPorts, 26, 140, 142

MacVim, 63, 169

Makefiles, 26

Master branch, 43, 45, 112

Merging, 22–23, 69–73

Milestones, marking, 110–112

Moving files, 62

MSys, 29

N
Naming, 110, 114–115

Network protocols, 101f, 102f, 100–103

nohup, 155

O
Online resources, 13

Optimistic locking, 24

Organization, 19–20

Orphaned commits, 129f

P
patch mode, 54

Perl bindings, 140

Port 9418, 101

Practices of an Agile Developer: Working

in the Real World, Subramaniam &

Hunt, 141

Public key, 150, 152

Pulling, 19

Pushing, 17, 19, 105–106, 145

Python, 148

R
Rebasing, 45

Rebasing branches, 125–128

reflog, 129f, 128–130

178 VERSION CONTROL SYSTEMS (VCSS)

Regular expressions, 87

Release branches, 43, 45, 112–114

Releases, 45f, 46f, 44–47, 116

Remote repositories, 100–107

adding, 106–107

cloning, 103–104

commands for, 164

fetching, 104–105

network protocols, 101f, 102f,

100–103

pushing changes, 105–106

Remote repository

see also Repository

Renaming branches, 78–79

Renaming files, 62

repo.or.cz, 171

Repository, 16–17

adding files, 52–56

bisecting, 131f, 132f, 131–134

branches and, 43–44

changing, 37–39

cloning, 48, 118

committing to, 55–58

creating, 37

exporting, 124–125

file management, 61–64

file status and history, 58–61

Gitosis and, 152–154

history, compacting, 123–124

hosting services for, 171–172

log messages for, 42

milestones, marking, 110–112

private, 95

public, 154–155

release branches, 112–114

releases and, 45f, 46f, 44–47

shrinking, 143

tracking, 115–116

tracking changes in, 40–41, 129f,

128–130

tracking, submodules for, 116–121

see also History, repository; Remote

repositories

Resources

bundles, 167

online, 13, 172–173

repository hosting, 171–172

third-party tools, 168–171

Reverting commits, 93

Revision control system (RCS), 146

Revisions, 18, 82

S
Server setup, see Gitosis

SHA (secure hash algorithm), 39

Squashing, 70, 96

SSH, 101

SSH public key, 149, 152

ssh-keygen, 149, 150

Staged changes, 52

Staging area, 52

Status check, 59

Straight merging, 69

Submodules, 116–121

Subversion, 11, 58

commands for, 165

commands in Git, 137f

Git communication and, 139f,

136–139

importing to Git, 141–144

keep up-to-date with, 143–145

pushing changes to, 145

SVN/Core.pm missing file, 140

Syntax, names, 114

T
Tags, 20–21, 44, 84, 110–112, 114–115

Tcl/Tk GUI toolkit, 33

TextMate Git Bundle, 169

TicGit, 170

Torvalds, Linus, 10

Tracking, projects, 115–116

Tracking, tags, 20–21

Trunk, 43

U
Upstream repository, 19

URL components, 101, 102f

Username, 32

V
VCSCommand, 169

VCSs, see Version control systems

Version control systems (VCSs)

benefits of, 10

branches, 22f, 21–22

configuration management, 25

defined, 15

file manipulation, 18–19

history, 80–99

blame, 86–88

changes, undoing, 91–94

179 WORKING TREES

content tracking, 88–91

log, 81–82

reviews of, 94–99

revision ranges, 82–85

version differences, 85–86

locking, 24

merging, 22–23

organizing, 19–20

repository, 16–17, 37

tags, 20–21

what to store in, 17

working trees, 18

see also Git

Versions, 85–86, 155

Virtual machines (VMs), 106

W
Windows installation, 28–31, 32f

Working trees, 18

Web 2.0
Welcome to the Web, version 2.0. You need some help to tame the wild technologies out

there. Start with Prototype and script.aculo.us, a book about two libraries that will make

your JavaScript life much easier.

See how to reach the largest possible web audience with The Accessible Web.

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is to write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

Getting It Done
Start with the habits of an agile developer and use the team practices of successful agile

teams, and your project will fly over the finish line.

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragprog.com/titles/prj

http://pragprog.com/titles/pad
http://pragprog.com/titles/prj

It All Starts Here
If you’re programming in Ruby, you need the PickAxe Book: the definitive reference to the

Ruby Programming language, now in the revised 3rd Edition for Ruby 1.9.

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Second

Edition, which goes beyond the Jolt-award winning

first edition with new material on:

• Migrations • RJS templates • Respond_to

• Integration Tests • Additional ActiveRecord

features • Another year’s worth of Rails best

practices

Agile Web Development with Rails: Second

Edition

Dave Thomas and David Heinemeier Hansson with

Leon Breedt, Mike Clark, James Duncan Davidson,

Justin Gehtland, and Andreas Schwarz

(750 pages) ISBN: 0-9776166-3-0. $39.95

http://pragprog.com/titles/rails2

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails2

Stuff You Need to Know
Learn the best ways to use your own brain and the best ways to use Ubuntu Linux. Either

way, this is stuff you need to know.

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

Ubuntu Kung Fu
Award-winning Linux author Keir Thomas gets

down and dirty with Ubuntu to provide over 300

concise tips that enhance productivity, avoid

annoyances, and simply get the most from Ubuntu.

You’ll find many unique tips here that can’t be

found anywhere else.

You’ll also get a crash course in Ubuntu’s flavor of

system administration. Whether you’re new to

Linux or an old hand, you’ll find tips to make your

day easier.

This is the Linux book for the rest of us.

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks

Keir Thomas

(400 pages) ISBN: 978-1-9343562-2-7. $34.95

http://pragprog.com/titles/ktuk

http://pragprog.com/titles/ahptl
http://pragprog.com/titles/ktuk

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Version Control Using Git’s Home Page

http://pragprog.com/titles/tsgit

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tsgit.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/tsgit
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tsgit
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	Who's This Book For?
	What's in This Book?
	Typographic Conventions
	Online Resources

	Welcome to the Distributed World
	Version Control the Git Way
	The Repository
	What Should You Store?
	Working Trees
	Manipulating Files and Staying in Sync
	Tracking Projects, Directories, and Files
	Tracking Milestones with Tags
	Creating Alternate Histories with Branches
	Merging
	Locking Options
	Next Steps

	Setting Up Git
	Installing Git
	Configuring Git
	Using Git's GUI
	Accessing Git's Built-in Help

	Creating Your First Project
	Creating a Repository
	Making Changes
	Starting to Work with a Project
	Using and Understanding Branches
	Handling Releases
	Cloning a Remote Repository

	Everyday Git
	Adding and Committing: Git Basics
	Adding Files
	Committing Changes
	Seeing What Has Changed
	Managing Files

	Understanding and Using Branches
	What Are Branches?
	Creating a New Branch
	Merging Changes Between Branches
	Handling Conflicts
	Deleting Branches
	Renaming Branches

	Working with Git's History
	Inspecting Git's Log
	Specifying Revision Ranges
	Looking at Differences Between Versions
	Finding Out Who's to Blame
	Following Content
	Undoing Changes
	Rewriting History

	Working with Remote Repositories
	Network Protocols
	Cloning a Remote Repository
	Keeping Up-to-Date
	Pushing Changes
	Adding New Remote Repositories

	Organizing Your Repository
	Marking Milestones with Tags
	Handling Release Branches
	Using Valid Names for Tags and Branches
	Tracking Multiple Projects
	Using Git Submodules to Track External Repositories

	Beyond the Basics
	Compacting Repository History
	Exporting Your Repository
	Rebasing a Branch
	Using the Reflog
	Bisecting Your Repository

	Administration
	Migrating to Git
	Communicating with SVN
	Making Sure git-svn Is Available
	Importing a Subversion Repository
	Keeping Up-to-Date with a Subversion Repository
	Pushing Changes to SVN
	Importing from CVS

	Running a Git Server with Gitosis
	Making Sure Dependencies Are Met
	Installing Gitosis
	Creating Administrator Credentials
	Configuring the Server for Gitosis
	Initializing Gitosis
	Configuring Gitosis
	Adding New Repositories
	Setting Up a Public Repository
	Closing Thoughts

	Appendixes
	Git Command Quick Reference
	Setup and Initialization
	Normal Usage
	Branches
	History
	Remote Repositories
	Git to SVN Bridge

	Other Resources and Tools
	Extras Bundled with Git
	Third-Party Tools
	Git Repository Hosting
	Online Resources

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

