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Preface

This book deals with batch process modeling, monitoring, fault diagno-
sis, and control, focusing on batch fermentation processes. Fermentation
is one of the main bioprocesses used in pharmaceutical, food, and chem-
ical industries. Most fermentation processes are carried out as batch or
fed-batch operations. Batch processes have been around for many millen-
nia, and received increasing attention in the second half of the twentieth
century. Although batch processes are simple to set up and operate, mod-
eling, monitoring, and control of these processes is quite challenging. Even
in simple fermentation processes, diverse organisms and the large num-
bers of cells that are produced in various phases of the batch by complex
metabolic reactions provide significant challenges to successful process op-
eration. Slight changes in operating conditions during critical phases may
have a significant influence on the growth and differentiation of organisms,
and impact the quality and yield of the final product. Accurate process
models are necessary to monitor and control the progress of the batch, de-
termine transition times to new phases of activity, and diagnose the causes
of unacceptable process behavior and product quality. Significant advances
have been made in recent years in the development of powerful model-
ing, monitoring, diagnosis, and control techniques. Various new modeling
paradigms have been proposed to develop models of desired accuracy for
a specific task. Real-time multivariate process monitoring techniques have
been developed to complement quality control based on laboratory analysis
of the final product and to permit timely corrective actions to save a batch
run destined to produce low quality products during the progress of the
run. Control methods that consider desired future trajectories of critical
variables, process constraints, and sensor faults have been developed for
tighter control of multivariate processes. This book offers a unified presen-
tation of these new methods and illustrates their implementation with a
case study of penicillin fermentation.

The book integrates fundamental concepts from biochemical engineer-
ing, multivariate statistical theory, model identification, systems theory,
and process control, and presents powerful methods for multivariable non-
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vi Preface

linear processes with nonstationary and correlated data. Methods are in-
troduced for finding optimal reference trajectories and operating condi-
tions, and for manufacturing the product profitably in spite of variations in
the characteristics of raw materials and ambient conditions, malfunctions
in equipment, and variations in operator judgment and experience. The
book presents both fundamental and data-based empirical modeling meth-
ods, several monitoring techniques ranging from simple univariate statisti-
cal process control to advanced multivariate process monitoring techniques,
many fault diagnosis paradigms and a variety of simple to advanced process
control approaches. The integration of techniques in model development,
signal processing, data reconciliation, process monitoring, fault detection
and diagnosis, quality control, and process control for a comprehensive ap-
proach in managing batch process operations by a supervisory knowledge-
based system is illustrated. Most of these methods have been presented in
various conferences and have been discussed in research journals, but they
have not appeared in books for the general technical audience. The focus of
the book is on batch fermentation in pharmaceutical processes. However,
the methods presented can be used for batch processes in other areas by
paying attention to the special characteristics of a specific process.

The book will be a useful resource for engineers and scientists working
with fermentation processes, as well as students in biotechnology, mod-
eling, reaction engineering, quality control, and process control courses.
One objective of the book is to provide detailed information for under-
standing, comparing, and implementing new techniques reported in the
research literature. Various paradigms are introduced in each subject to
provide a balanced view. Some of them are based on the research of the
authors, while others have been proposed by other researchers. A well-
documented industrial process, penicillin fermentation, is used throughout
the book to illustrate the methods, their strengths and limitations. An-
other objective is to provide a detailed case study to the reader to practice
these methods and become comfortable in using them. Data sets, mod-
els, and software are provided to encourage the reader to gain hands-on
experience. A dynamic simulator for batch penicillin fermentation is avail-
able as a web-based application and downloadable material. The fermen-
tation simulator, batch process monitoring software, and software tools
for supervision of batch process operations are provided at the website
www. chee. lit. edu/~cinar/batchbook.html.

Convincing the reader about the strengths and limitations of the tech-
niques discussed in this book would be impossible without reference to
proper theory. Theoretical derivations are kept at an appropriate level to
enhance the readability of the text, and references are provided for readers
seeking more rigorous theoretical treatment. The level of the treatment of
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Preface vii

methodology in the book requires little background information in various
areas such as biotechnology, statistics, system theory, and process control.
An outline of the book and various roadmaps to read it are presented in
Section 1.4. Introductory books to review the fundamentals are also sug-
gested in Section 1.4, and advanced books are referenced in appropriate
chapters in the book. Details of the algorithms are summarized in the text
to permit the reader to develop software in his/her favorite environment.
Executable software modules are also provided in the aforementioned web-
site for readers who may prefer using our programs.

The book also discusses recent advances that may have an impact on the
next generation of modeling, monitoring, and control methods. Metabolic
pathway engineering, real-time knowledge-based systems, and nonlinear dy-
namics are introduced as some of the powerful paradigms that would be of
interest.

This book could not have been written without the strong cooperation
of the authors and the sacrifices of many family members and friends. The
labor and agony of writing a multidisciplinary book tested the strength of
several relationships. All four authors are grateful for the encouragement
and support they have received from their loved ones. One of the authors,
Cenk Undey, has done a magnificent job in coordinating the work of all
authors, integrating the manuscript and providing technical support in the
use of LaTeX to the others. All four authors are also grateful to Dr. Inane
Birol for contributing an important chapter on System Science Methods for
Nonlinear Model Development (Chapter 5). It is certain that the impact
of the methods and tools discussed in that chapter will increase in future
years in analyzing the dynamics of many nonlinear batch fermentation pro-
cesses and developing new monitoring and control methods. His insight
and knowledge have enhanced the value of the book. It seems that no book
can be published free of errors. As time progresses, errors, omissions, and
better ways to express the material discussed in the book will be discovered.
Each author apologizes for the remaining errors and agrees that they are
the fault of the other three.

Batch fermentation operations are abundant in industries that touch
many human lives. Pharmaceutical, food, and chemical industries have
made significant contributions in improving health and the quality of life.
They have also been cited at times for causing challenges to nature and
humans. Health, food, comfort, and safety also remind us of disease, lim-
ited resources, hunger, and pollution. Advances in technology may play an
important role in resolving many conflicts. The authors hope that the meth-
ods presented in this book will contribute to the safety and productivity
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viii Preface

of batch process operations, and ultimately to improving the quality of life
and harmony with nature.

Ali Cinar
Satish J. Parulekar
Cenk Undey
Giilnur Birol
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Nomenclature

a Alkaloid in Section 2.6.2

a Number of equality constraints in Eqs. 7.5 and 7.6

dij Amount of Ni utilized for production of unit amount of Pj
in Eq. 2.19 (g/g)

&ij State transition probabilities of an HMM from state i to state j

a Gas-liquid interfacial area per unit culture volume (l/m)

A, B Denned in Eqs. 7.79 and 7.105

A = [a>ij] State transition matrix of an HMM

A Input metabolite in Ch. 2 and 9

A, R Number of PCs or LVs in Ch. 3, 4, 6 and 8

b Number of inequality constraints in Eqs. 7.5 and 7.6

B = {bj(k}} Observation symbol probability distribution

B Output metabolite

C, E Denned in Eqs. 7.105 and 7.106

C — {ci} Initial state distribution (initial state occupancy probability)

C?k Contribution of each element in 2;new,jfc to .D-statistic summed over
all r components

Ci
 k FCC of kth reaction affected by enzyme i

Cfy r Contribution of each element of a new batch run new, jk on the rth
score

xv
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xvi Nomenclature

Ci Concentration of specie i in the bulk liquid (g/L)

C* Concentration of specie i in the liquid phase at the
gas-liquid interface (g/L)

Cfk Flux control coefficient for pathway k with respect to enzyme Ei or
reaction i, defined in Eqs. 9.4 and 9.5

JfCi
 3 Concentration control coefficient for the intermediate Xj with

respect to enzyme Ei, defined in Eq. 9.7
T( .

Ci ° CCC of intermediate Xj affected by activity of enzyme i

CL Dissolved O^ concentration in Eqs. 2.47, 2.48, 2.5 (mmole/L)

CL Dissolved O^ concentration at maximum saturation (mmole/L)

Cx Concentration of biomass (cell mass) in culture (g/L culture)

CIG Concentration of specie i in the bulk gas

C*G Concentration of specie i in the gas phase at the
gas-liquid interface (g/L)

CR. Contribution of new observation vector xnevf,jk to D-statistic

CjK Contributions to Q-statistic of J variables over the entire batch run

Cjk Contributions to Q-statistic of variable j at time k

d p or m^-dimensional vector of disturbance variables

d Hyphal diameter (m)

di(x.) Linear discriminant score

di (x) Quadratic discrimination score for the iih population

D Differential operator in Section 4.4

D Dilution rate, denned in Eq. 2.11 (1/h)

Die Molecular diffusivity of specie i in the gas phase (m2/h)

DIL Molecular diffusivity of specie i in the liquid phase (m2/h)

e, E Residuals vector and matrix, respectively, in Ch. 4, 6 and 8

e Predicted error vectors, denned in Eqs. 7.152 and 7.157
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Nomenclature xvii

e Output estimation error y — y in Ch. 4, 6 and 8

f Nonlinear function of d, u, x in Eqs. 2.1 and 7.1

Ei Enzyme corresponding to the iih reaction step

Ej Enzyme catalyzing reaction j in a metabolic pathway

F Volumetric feed rate of nutrient medium (L/h)

F, / Bioreactor feed, gas feed or liquid feed as appropriate

Fs Volumetric feed rate of nutrient medium in singular control (L/h)

/(0,w) Defined in Eqs. 7.88 and 7.89

fh Fraction of hyphal cells that are capable of synthesizing penicillin

G(q) Multivariable input-output transfer function matrix

G Transfer function matrix denned in Eqs. 7.79 and 7.108

GI, G2 Transfer function matrices for multi-loop feedback control denned
in Eq. 7.111

Gc(q) Actuator (controlled input) fault TFM

Gc, Gm Transfer function matrices associated with feedback controllers
and measuring devices, respectively

Ga Transfer function matrix defined in Eq. 7.108

GI, KI Transfer function matrix and gain matrix, respectively, for the de-
couplers, Eqs. 7.117-7.120

GM(<?) Input sensor fault TFM

Gi(y(tf)) Used in the definition of the objective function J in Eq. 7.4

GS Throughput rate of substrate 5, involved in the constraint
in Eq. 7.7 (g/h)

G(x(tf)) Used in the definition of the objective function J in Eq. 7.3

g Nonlinear function of d, u, x in Eq. 2.2

g(x, u) Used in the definition of the objective function J in Eq. 7.3

#'(y, u) Used in the definition of the objective function J in Eq. 7.4
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xviii Nomenclature

g(i] Impulse-response functions in Eq. 7.141

g, ra Concentrations of glucose and methionine, respectively, in the
abiotic phase (Section 2.6.3) (g/L)

h Nonlinear function of x in Eq. 7.2

H Hankel matrix in Ch. 4

HJ.K- Scaled Hankel matrix

H Hamiltonian defined in Eq. 7.10

/i(x, u) Used in the definition of the objective function J in Eq. 7.77

HI Henry's law constant for specie i

I Identity matrix

I Number of batches in a reference set in Ch. 4, 6 and 8

7m(.), Re(.} Imaginary and real parts of a complex number or expression

J Objective function (performance index) defined in Eq. 7.3

Ji Flux of metabolic pathway i

Jk Metabolic flux through the kth reaction

K Steady-state gain matrix defined in Eq. 7.112

KQO Kalman filter gain in Ch. 4

KiL Overall liquid-based mass transfer coefficient for specie i, defined in
Eq. 2.6 (m/h)

ka, ks,kh Maximum specific growth rates of apical, subapical, and hyphal
cells, respectively, in Eq. 2.25 (1/h)

kic Gas-side mass transfer coefficient for specie i, defined in
Eq. 2.4 (m/h)

klL Liquid-side mass transfer coefficient for specie i (m/h)

kUj Kinetic coefficients in Eqs. 2.22-2.24 (1/h)

L, Z/o Nonlinear functions in Eqs. 7.162 and 7.163

!/[•] Simplified log-likelihood function
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Nomenclature xix

M Number of distinct observation symbols per state in HMMs, the
alphabet size

m Length of control sequence (controller output) prediction horizon
in model predictive control

m,i Maintenance coefficient for specie i in Eq. 2.19 (1/h)

MS Amount of substrate 5 supplied in a batch or fed-batch operation,
involved in the constraint in Eq. 7.8 (g)

mts? mia Intracellular concentrations of methionine in hyphae,
swollen hyphal fragments, and arthrospores, respectively (g/g)

Coefficient matrix of multiplicative modeling faults

Np Matrix of time-varying coefficients of multiplicative parametric
faults

N Number of states in an HMM

Ni Concentration of nutrient Ni in the abiotic phase (g/L)

Ni Flux of specie i from the gas phase to liquid phase, defined in Eqs.
2.4, 2.5 and 2.6 (g/{m2.h})

Ni Nutrient i

O Observation sequence in an HMM (QI • • • o^)

P, Q, R Defined in Eqs. 7.79 and 7.132

Q, R, S Positive definite weighting matrices in Eq. 7.163

p, P Loading vector and matrix, respectively, in Ch. 4, 6 and 8

P Concentration of target non-biomass product (g/L)

P Target non-biomass product (sections 2.6.4 and 7.2.5)

PJ Concentration of non-biomass product Pj on the basis of the abiotic
phase volume (g/L)

PJ Non-biomass product j

p Parity vector

p Extracellular phosphate concentration in Section 2.6.2 (g/L)
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xx Nomenclature

p Length of output prediction horizon in model predictive control

p Target product (cephalosporin C) in Section 2.6.3

pT Intracellular phosphate concentration in Section 2.6.2 (g/g)

pH Culture pH

Q Evolving sequence of states 5 of an HMM in Section 8.3.3

Q Volumetric flow rate of culture in Ch. 2 (L/h)

Qa Volumetric flow rate of abiotic phase, defined in Eq. 2.9 (L/h)

Qb Volumetric flow rate of biotic phase, defined in Eq. 2.9 (L/h)

QSN Quantile of standard Normal distribution

QY Quantile of ordered data set

[q] Intracellular concentration of specie q (Section 2.6.4) (g/g)

q Shift operator in Section 4.4

q%j Intracellular concentration of specie q in cell type j (Section
2.6.3) (g/g cell type j)

qt Actual state of a discrete-time system at time t

q~k Maximum likelihood estimate

R Defined in Eq. 7.113

r(K) Rank of a matrix K

TI, r<2 Amplitudes of periodic variations in u\ and v,2, respectively (Section
7.3)

Td Specific rate of cell loss due to cell death or cell lysis (Vn)

Ti Net rate of generation of specie i in the biotic phase in Ch. 2 (1/h)

Ti Residual based on the PC model for fault i in Ch. 8

Rfen Rate of generation of specie i due to reactions in the abiotic
phase (g/{L.h»

rfen Net rate of generation of specie i in the biotic phase exclusive of
the rate of its loss from the biotic phase due to cell death or cell
lysis (1/h)
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Nomenclature xxi

rtrans Biomass-specific rate of transport of specie i from the biotic phase
to the abiotic phase (1/h)

rq^n Specific rate of net generation of specie q in cell
type j (g/{g cell type j.h})

rtrans Specific rate of transport of specie q from the cells of type j to the
abiotic phase (g/{g cell type j'.h})

S Riccati transformation matrix in Eqs. 7.136 and 7.137

S Covariance matrix of scores in Ch. 4, 6 and 8

SB Between-class scatter matrix

Sf Defined in Eq. 7.132

SPF(Q) Plant fault TFM

Spi Pooled estimate of 5]

SPAT(?) Plant noise TFM

Sw Within-class scatter matrix

Sy Total scatter matrix

S Concentration of limiting substrate in the abiotic phase
(liquid) (g/L)

S Distinct states of a discrete-time system in Ch. 8

S Limiting substrate

s Laplace transform variable

Si Score distance based on the PC model for fault i

t,T Scores vector and matrix, respectively, in Ch. 4, 6 and 8

tf Duration of a bioreactor operation (h)

T Sampling period (h)

u m-dimensional vector of manipulated inputs

u, U PLS scores vector and matrix, respectively, in Ch. 4, 6 and 8

7/1, 7/2, 7/3 Rates of the three metamorphosis reactions in (Eqs. 2.22-
2.24) (1/h)
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xxii Nomenclature

V, W Scaling matrices in Eq. 7.158

V, W, Vi, Wi Denned in Eqs. 7.122, 7.123 and 7.126

V Culture volume (L)

Va Volume of abiotic phase, defined in Eq. 2.9 (L)

Vb Volume of biotic phase, denned in Eq. 2.9 (L)

VG Volume of gas phase in the bioreactor (gas phase holdup) (L)

VT Culture volume (L)

Abiotic Specific volume of the cells (Wg)

vc Input actuator noise

VM Input sensor noise

VP Plant noise

vy Output sensor noise

Vj Rate of reaction j in a metabolic pathway (Eq. 9.1)

v, w Parameters in the definition of J in Eq. 7.95

v Deviation in v(t) from its reference, yr, v= d, u, x in section 7.4.1

v(s) Laplace transform of v(t)

W Projection matrix

W Weight matrix in Ch. 4, 6 and 8

W Wavelet transform

w Estimated weight functions in Section 4.4

X Three-way array of process measurements in Ch. 4, 6 and 8

X Unfolded matrix of process measurements in Ch. 4, 6 and 8

X Dynamic Matrix defined in Eqs. 7.150b and 7.157

X Biomass (cell mass)

X Concentration of biomass (cell mass) in culture (g/L culture)

Copyright © 2003 by Taylor & Francis Group, LLC



Nomenclature xxiii

Xh, Xs, Xa Concentrations of hyphae, swollen hyphal fragments, and
arthrospheres, respectively (Section 2.6.3) (g/L culture)

Xh, Xs, Xa Three morphological types of Cephalosporium acremonium,
hyphae, swollen hyphal fragments, and arthrospheres, respectively
(Section 2.6.3)

x Vector of state variables

x Vector of process measurements

y Predicted output vector

y, Y Vector and matrix of quality measurements, respectively, in Ch. 4,
6 and 8

y /-dimensional vector of output variables

ym Vector of measured outputs

yjcj' ^kK Stacked vectors of future and past

Yp/x Cell mass phosphate content in Eq. 2.30 (g/g)

Yx/Ni Biomass (cell mass) yield with respect to nutrient Ni in
Eq. 2.19 (g/g)

Z Denned in Eq. 7.81

z z-transform variable

Za, Zs, Zh Mass fractions of apical, subapical, and hyphal cells,
respectively, in the total cell population (Eqs. 2.22-2.24)

Zh, Zs, Za Mass fractions of hyphae, swollen hyphal fragments, and arthro-
spheres, respectively, in the total cell population (Section 2.6.3)

Greek Letters

Oij Constant characteristic of a particular metabolite Pj in Eq. 2.21

/?, (3 Vector and matrix of regression coefficients, respectively

fi(i) Step-response functions in Eq. 7.142

f3j Constant characteristic of a particular metabolite Pj in
Eq. 2.21 (1/h)
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xxiv Nomenclature

e State estimation error x — x

F Regressor matrix

F, A Matrices involved in Eqs. 7.158 and 7.159

A Relative gain array (RGA)

A Vector of adjoint variables associated with state equations, defined
in Eqs. 7.11, 7.81, and 7.136

</>'(y,u) Argument vector in the equality constraints in Eq. 7.6

</>(x, u) Argument vector in the equality constraints in Eq. 7.5

<j>M Modeling errors

4>P Parametric faults

n(w) Hermitian matrix defined in Eq. 7.78

i/?'(y,u) Argument in the inequality constraints in Eq. 7.6

t/>(x,u) Argument in the inequality constraints in Eq. 7.5

£ Denned in Eq. 7.127

e(t] Error vector, vector of inputs to controllers

e ( t ) Vector of prediction errors

77, p Vectors of adjoint variables associated with integral constraints in
Eq. 7.5, defined in Eqs. 7.81

X Optimum phase difference between MI and 112 in forced periodic
operation, denned in Eq. 7.89

Xji(Ni) Functions in the expression for e-, in Eq. 2.20 and Table 2.2

Sue Input actuator faults

SUM Input sensor faults

Sup Plant faults

5y Output sensor faults

SG Thickness of the gas-side boundary layer (m)

SL Thickness of the liquid-side boundary layer (m)
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Nomenclature xxv

€.lXj Elasticity of reaction rate i with respect to concentration of
metabolite Xj

e Cell-mass specific production rate of P (1/h)

e Measurement error

6j Cell- mass specific production rate of Pj (1/h)

€j0 Characteristic of a particular strain in Eq. 2.20 (1/h)

A = (A, B, C) The set of probabilities in an HMM

Afc(r) Log- likelihood ratio

\ij (i, j)th element of the relative gain array (RGA), defined in
Eq. 7.113

(ji Specific cell growth rate (1/h)

Specjfic CQ\\ growth rate, defined in Eq. 2.10 (1/h)

/^a, /L£S, /j,h Specific growth rates of apical, subapical, and hyphal
cells, respectively, defined in Eq. 2.25 (1/h)

y,0 Characteristic of a particular strain in Eq. 2.17 (1/h)

vi Reaction rate of the ith reaction step

u Forcing frequency in forced periodic operation (cycles/h)

wi, o>2 Forcing frequencies for u\ and 1*2, respectively, in forced periodic
operation (cycles/h)

<fr Wavelet scaling function

<j>i(Ni) Functions in Eq. 2.17 and Table 2.1

TTi Classes of events such as distinct operation modes i = 1, • • • , g

fy Mother wavelet

if>(X) Functions in Eq. 2.17 and Table 2.1

ij>j(Pj) Functions in Eq. 2.17 and Table 2.1

^jk(Pk) Functions in the expression for €j in Eq. 2.20 and Table 2.2

p Culture density (g/L)

Copyright © 2003 by Taylor & Francis Group, LLC



xxvi Nomenclature

pb Density of biomass (g/L)

Pij (i; j)th element of n(u;), section 7.3

cr Cell-mass specific uptake rate of limiting substrate 5 (Section
7.2.5) (1/h)

<Ji Cell-mass specific uptake rate of nutrient Ni (1/h)

(jj Standard deviation of summed mean contributions over time
instances

ffj jth singular value of a matrix

<7fc Standard deviation of summed mean contributions over all process
variables

r Cycle period in forced periodic operation (h)

9 Model parameters vector

Subscripts

abiotic Abiotic phase

biotic Biotic phase

/ At the end of bioreactor operation (t = £/)

F Bioreactor feed, gas feed or liquid feed as appropriate

J Partial derivative with respect to J (Sections 7.2.5 and 7.3.2)

m, max Maximum values of a variable

min Minimum value of a variable

r Reference state/value

sp Set point

syn, util Synthesis and utilization, respectively (Section 2.6.3)

0, 0 Initial conditions

0, 0 Steady-state conditions (Section 7.3)

Reciprocal of a scalar or inverse of a matrix
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Nomenclature xxvii

Superscripts

c Complex conjugate

T Transpose of a matrix

* Optimal trajectory/value or desired trajectory/value

Abbreviations

adj A Adjoint of a matrix A, Eqs. 7.119 and 7.120

AHPCA Adaptive hierarchical principal component analysis

AIC Akaike information criteria

ANN Artificial neural network

AO Additive outlier

AR Auto regressive

ARL Average run length

ARMA Auto regressive moving average

ARMAX Auto regressive moving average with exogenous inputs

ARX Auto regressive model with exogenous inputs

BJ Box-Jenkins

CCC Concentration control coefficient

CPCA Consensus principal components analysis

CUMPRESS Cumulative prediction sum of squares

CUSUM Cumulative sum

CV Canonical variate

CVA Canonical variates analysis

CVSS Canonical variate state space (models)

d.f. Degrees of freedom

diag A Diagonal matrix containing the diagonal elements of a matrix A
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xxviii Nomenclature

DMC Dynamic-matrix control

DOE Design of experiments

DTW Dynamic time warping

ECM Expected cost of misclassification

EKF Extended Kalman filter

EWMA Exponentially weighted moving average

FCC Flux control coefficient

FDA Fisher's discriminant analysis in Section 8.2.2

FDA Functional data analysis in Section 4.4

FDD Fault detection and diagnosis

FIA Flow injection analysis

FPE Final prediction error

G A specific gene (Section 2.6.4)

GAM Generalized additive model

GC Gas chromatography

GLR Generalized likelihood ratio

GUI Graphical user interface

HMM Hidden Markov model

HPCA Hierarchical principal components analysis

HPLC High pressure liquid chromatography

HPLS Hierarchical partial least squares

ILC Iterative Learning Control

IO Innovational outlier

IV Indicator variable

KBS Knowledge-based System

LCL Lower control limit
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Nomenclature xxix

LMS Least median squares

LPV Linear parameter varying

LQC Linear quadratic Gaussian control

LTS Least trimmed squares

LTV Linear time varying

LV Latent variable

LWL Lower warning limit

MA Moving average

MAC Model algorithmic control

MARS Multivariate adaptive regression splines

MIMO Multiple-input, multiple-output control/system

MFC Model predictive control

NMPC Nonlinear model predictive control

MBO Model-based optimization

MBPCA Multiblock principal components analysis

MBPLS Multiblock partial least squares

MCA Metabolic control analysis

MFA Metabolic flux analysis

MHBE Moving horizon Bayesian estimator

MIMO Multi-input multi-output

MLE Maximum likelihood estimate

MLR Multiple linear regression

MOBECS Model-Object Based Expert Control System

MPCA Multiway principal component analysis

MPLS Multiway partial least squares

mRNA Messenger ribonucleic acid
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xxx Nomenclature

MS Mass spectrometer

MSB Least squares mean squared error

MSMPCA Multiscale Multiway principal component analysis

MSPM Multivariate statistical process monitoring

MV Multivariate

NAR Nonlinear auto regressive

NARMAX Nonlinear autoregressive moving average with exogenous inputs

NLTS Nonlinear time series

NO Normal operation

NOC Normal operating conditions

NPETM Nonlinear polynomial models with exponential and trigonometric
functions

OD Optical density

OE Output error

OVAT One-variable-at-a-time

PARAFAC Parallel factor analysis

PC Principal component

PCA Principal components analysis

PCD Parameter change detection (method)

PCR Principal components regression

PDA Principal differential analysis

PDF Probability distribution function

PLS Partial least squares (Projection to latent structures)

PRESS Prediction sum of squares

PSSE Penalized sum of squared error

PSSH Pseudo-steady state synthesis
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Nomenclature xxxi

QQ Quantile-Quantile

RGA Relative gain array

RQ Respiratory quotient

RTKBS Real-time knowledge-based systems

RVWLS Recursive variable weighted least squares

RWLS Recursive weighted least-squares

SISO Single-input single-output

SNR Signal-to-noise ratio

SPC Statistical process control

SPE Squared prediction error

SPM Statistical process monitoring

SS Sum of squares

SSE Sum of squares explained

SSR Regression sum of squares

SSY Sum of squares on Y-block

STFT Short-time Fourier transform

SV Singular values

SVD Singular value decomposition

TFM Transfer function matrix

UCL Upper control limit

UWL Upper warning limit

VIP Variable influence on projection
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Introduction

Batch processes have been around for many millennia, probably since the
beginning of human civilization. Cooking, bread making, tanning, and wine
making are some of the batch processes that humans relied upon for survival
and pleasure. The term "batch process" is often used to refer generically
to both batch and fed-batch operations. In the former case, all ingredients
used in the operation are fed to the processing vessel at the beginning of
the operation and no addition or withdrawal of material takes place during
the batch run. In the latter, material can be added during the batch run.
For brevity, the term batch is used in this text to refer to both batch and
fed-batch operations when there is no need to distinguish between them.
The term fed-batch is used to denote addition of material in some portions
of an otherwise batch operation.

Batch processes have received increasing attention in the second half of
the twentieth century. Specialty chemicals, materials for microelectronics,
and Pharmaceuticals are usually manufactured using batch processes. One
reason for this revival is the advantages of batch operation when there is
limited fundamental knowledge and detailed process models are not avail-
able. Batch processes are easier to set up and operate with limited knowl-
edge when compared to continuous processes. The performance of the
process can be improved by iterative learning from earlier batch runs. A
second reason is the increasing pressure to start commercial production of
novel materials once patents have been issued to recover research and de-
velopment costs before competing products affect prices. Another reason
is the ability to use the facilities for many products with little or no hard-
ware modification. Many pharmaceutical products are produced in limited
quantities and the plant manufactures a specific product for a short period
of time before switching to another product. Batch operation is usually
more efficient than continuous operation for frequent product changes and
small amounts of products.

Although batch processes are simple to set up and operate, modeling,
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2 Chapter 1. Introduction

monitoring, and controlling them is quite challenging. Consider a simple
operation like cooking spaghetti. The basic steps involved are simple. Heat
some water, immerse the spaghetti strings in boiling water, drain the wa-
ter after the spaghetti is cooked, add oil and sauce, and serve. But the
actual process to make good spaghetti is more complex and requires many
well-timed decisions. What should be the temperature of the water when
the spaghetti strings are added, how long should the spaghetti be cooked
in water, how much oil and what other seasoning and ingredients should
be added to the spaghetti sauce? This is a process with several phases
(operations in the same vessel for a specific activity such as cooking or fer-
mentation) and stages (operations in different vessels for different activities
such as raw material preparation and product separation). The landmarks
denoting the end of one phase and beginning of the other should be mon-
itored for proper timely actions. For example, spaghetti should not be
added to water that is not hot enough, otherwise the strings will stick to
each other. A good landmark is boiling of water which can be detected
easily as opposed to water temperature reaching 200 °F. The latter would
work equally well for the cooking operation but will be more difficult to
detect, monitor (a thermometer would be needed) and regulate. The du-
ration of keeping the spaghetti in hot water will change because of many
factors. These include the relative amounts of water and spaghetti (the
initial charge of ingredients), the tenderness of cooked spaghetti (a quality
variable that varies with personal taste and weight watching - it is said that
absorption of the carbohydrates by the body increases as the spaghetti gets
tender), type of spaghetti flour (whole wheat or bleached flour), and the
amount of heat provided (one can turn the heat off and keep the strings
in hot water longer). Consequently, while developing an optimal reference
trajectory for this example process, one may have to take into consideration
variations in batch run duration and other factors that influence the degree
of cooking. Developing a detailed model of this simple process based on
first principles may be even more challenging. A simple empirical model
based on data may be accurate enough for most needs. Most industrial
batch processes have more process and quality variables, and more strin-
gent operational and financial constraints. Consequently, development of
reference trajectories, determination of change point landmark occurrence,
quality assessment, and monitoring of process and product safety are much
more challenging.

This book focuses on batch process modeling, monitoring, fault diag-
nosis, and control. The discovery of a new drug such as a new antibiotic
or a new manufacturing method that revolutionizes yield and productivity
are critical for commercial success. Biology, chemistry, bioinformatics, and
biochemical engineering provide the foundations for these advances. But,
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Chapter 1. Introduction 3

large-scale commercial production with consistent product quality, strin-
gent process and product safety requirements, and tight production sched-
ules necessitate a different set of skills built upon systems science, statistics,
and control theory. The focus then shifts to finding optimal reference trajec-
tories and operating conditions, and manufacturing the product profitably
in spite of variations in raw materials and ambient conditions, malfunc-
tions in equipment, and variations in operator judgement and experience.
Techniques in model development, signal processing, data reconciliation,
process monitoring, fault detection and diagnosis, quality control, and pro-
cess control need to be integrated and implemented. The book provides
a unified source to introduce various techniques in these areas, illustrate
many of them, and discuss their advantages and limitations.

The book presents both fundamental and data-based empirical model-
ing methods, several monitoring techniques ranging from simple univariate
statistical process control to advanced multivariate monitoring techniques,
many fault diagnosis techniques and a variety of simple to advanced pro-
cess control approaches. Techniques that address critical issues such as
landmark detection, data length adjustment, and advanced paradigms that
merge monitoring and diagnosis activities by a supervisory knowledge-based
system are discussed. The methods presented can be used in all batch
processes by paying attention to the special characteristics of a specific
process. The focus of the book is on batch fermentation and pharmaceu-
tical processes. Penicillin fermentation is used as a case study in many
chapters throughout the book. Various paradigms are introduced in each
subject to provide a balanced view. Some of them are based on the prior
research of the authors, others have been proposed by other researchers.
Appropriate examples and case studies are presented to illustrate some of
the methods discussed. A dynamic simulator for batch penicillin fermen-
tation and batch process monitoring software are provided in the Web.
The readers are invited to check the Web site of one of the authors at
www.chee.iit.edu/~cinar/batchbook.html for the penicillin fermenta-
tion simulator and software tools for supervision of batch process opera-
tions.

This chapter continues with a discussion of batch process operations in
Section 1.1. Section 1.2 provides introductory remarks about the main focus
areas of the book: modeling, monitoring, control, and diagnosis. Section
1.3 introduces the penicillin fermentation process that is used in many case
studies in various chapters. The last section (1.4) of the chapter provides
an outline of the book and provides road maps for readers.
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4 Chapter 1. Introduction

1.1 Characteristics of Batch Processes

Batch operation is characterized by two key elements: (i) the physical
configuration that consists of various reactors, tanks, and the network of
pipelines available to transfer material between various tanks and produc-
tion units, and (ii) the sequence of processing tasks. Typically, final prod-
ucts are produced from a number of raw materials and intermediate prod-
ucts through a series of processing tasks. All processing tasks are realized
in batch mode of operation, with minimum and maximum batch sizes pre-
determined by the nature of the processes and the capacity of the reactors
[68]. There are number of process specific issues that should be considered
in a typical batch processing:

• Because the duration of chemical reactions are fixed, processing times
are assumed constant and predetermined irrespective of the particular
batch size.

• In many practical applications, the number and size of the individual
batches are not known in advance, and hence considered as decision
variables. Moreover, merging and splitting of batches are allowed.

• Processing of a single batch is carried out uninterrupted.

• The proportions of input and output materials may be fixed or vari-
able, depending on the particular process.

• Storage conditions depend on availability and capacity of appropriate
storage facilities. In extreme cases, reactors themselves can be used
as intermediate storage devices.

The inherent advantages of batch processes, such as flexibility to produce
multiple related products in the same facility and ability to handle vari-
ations in feed stocks, product specifications and market demand pattern,
make them well suited for the manufacture of low-volume, high-value prod-
ucts. Ultimate goals of the industry is to reduce time-to-market, lower
costs, comply with regulatory requirements, minimize waste and emissions
and increase return-on-investment [393].

The main disadvantage of batch processing is the high proportion of un-
productive time (down-time) between batches, consisting of times to charge
and discharge the reactor, cleaning of vessels and pipes, and restart process.

Batch Bioprocesses
The importance of batch processes in biotech process industries has in-

creased significantly in recent years. Batch processes are extensively used
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1.1. Characteristics of Batch Processes 5

to produce specialty chemicals, biotechnology, pharmaceutical and agri-
cultural products. The production of these high value-added chemicals,
as opposed to bulk commodity chemicals, contributes to a significant and
growing portion of the revenue and earnings of bioprocess industries. Con-
sidering the growing trend in industry towards products with short life
cycles and products tailored to specific market needs, rapid process de-
velopment has become even more significant. With the current pressures
of global competition, economic efficiency often dictates whether a manu-
facturer can compete on a cost basis, an issue of special relevance to the
pharmaceutical industry, which is additionally faced with a lengthy gov-
ernment approval process for its production [393]. Environmental concerns
are also another key issue faced with batch bioprocesses today.

Batch bioprocesses refer to a partially closed system in which most of
the materials required are loaded onto the bioreactor aseptically and are
removed at the end of the operation. Contamination of production biore-
actors may lead to economic loss and is cause for alarm. Infections by
phage are particularly difficult to combat because the virus particles are
small enough to escape capture by the filters used to sterilize the air pro-
vided to the bioreactors. Phage attacks can be overcome by switching to
resistant strains of the microorganisms. In a batch bioprocess, the only
material added and removed during the course of operation is air/gas ex-
change, antifoam and pH controlling agents. For years, batch fermenters
were loaded, inoculated, and run to completion with nothing added except
air and some agent to control foam. Most modern bioprocesses incorporate
adjustments to the medium to control conditions and to supply nutrients
and compounds that promote biosynthesis of the desired product. It seems
obvious that changes in the batch process should affect formation of the
desired product (s) and that these changes can be controlled by additions
of certain materials. Also of great interest is interfacing with the bioreac-
tor system with computers to monitor and control it. Since a bioreactor
consists of a complicated system of pipes, fittings, wires, and sensors, it is
open to malfunctioning. With the aid of on-line monitoring and diagnosis
tools, it is now possible to detect many things that can go wrong during
the process.

The cultivation broth is assumed to be uniform throughout the reactor
at any instant of time in a well-mixed bioreactor. However, these processes
exhibit time variant dynamic behavior and are characterized by complex,
nonlinear physiological phenomena that are difficult to model.

The stirred tank bioreactor is still the workhorse of bioprocess indus-
tries involving microbial cell cultures. Although there are many alternative
designs, roughly 85 percent of bioreactors in the world resemble closely
to the conventional design. There were already fermentation vats such as
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6 Chapter 1. Introduction

those for beer, whiskey, pickles, or sauerkraut, but the conventional design
evolved in the 1940's as the pharmaceutical companies scaled up reactors
for antibiotics from shake flasks and milk bottles to stirred tanks with fea-
tures to discourage entry of contaminating organisms. Typical sizes for
commercial production bioreactors are 60,000 to 200,000 liters, but there
are a few that are considerably larger. One famous bioreactor that was
known as the Merck hot dog was a cylinder laying on its side with four or
five agitators mounted along the top. Its dimensions were 3.6 ra diameter
by 27 ra long. The world's largest industrial bioreactor is still the Id's
air lift system first operated at the Billingham, U.K. plant for producing
single-cell protein in 1979. The size of a bioreactor is limited by its ability
to remove the heat generated by cellular metabolism. Volume goes up by a
dimension cubed while area depends on a dimension squared. This means
that the volume of culture fluid overwhelms the heat transfer area when
the fermenter is very large. Products based on genetic engineering tend
to be produced in small amounts and are suited to much smaller biore-
actors. Furthermore, production cultures derived from plant, animal, or
insect cells require expensive media which contain many more special nu-
trients than those present in media employed for synthesis of antibiotics,
vitamins, and other products with bulk markets. The microorganisms that
make antibiotics, in particular, are relatively easy to cultivate because their
products discourage the growth of other microorganisms. Animal cell cul-
tures, in contrast, have no self-protection and cannot compete with hardy,
rapidly-growing microorganisms that find the media delectable [133].

1.2 Focus Areas of the Book

Maximizing benefits by optimization of product quality and yield is the
ultimate goal of industrial bioprocess operations. In batch processes, this
can be achieved by a repeatable process to convert raw materials to final
products and tools for supervision of process operation and intervention
when needed. Process development involves integration of scientific knowl-
edge with sound design principles. Considering the vast number of per-
mutations in raw materials types and properties, processing methods, and
operating conditions, relying exclusively on experimental trial-and-error is
not a feasible option for process development. Powerful design of exper-
iments tools are available to reduce the number of experiments, but the
cost and length of relying exclusively on experiments are still prohibitive
for developing most industrial processes. Use of modeling and simulation
tools reduces the cost and the length of the process development period
significantly. Process models are also the cornerstone of process monitor-
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ing, process control, and fault diagnosis tools that are the building blocks
for supervision of process operation and intervention decisions. The book
focuses on these four topics: modeling, monitoring, control, and diagno-
sis. Introductory remarks on these four topics are given in the following
subsections.

1.2.1 Batch Process Modeling
Process models can be classified into two groups: first principles (funda-
mental) models and data-based (empirical, black box) models. First princi-
ples models are based on fundamental theories or laws, such as the conser-
vation of mass, energy and momentum. One of the most important reasons
for using fundamental models is the analytical expressions they provide
relating key features of the physical system to its dynamic behavior. Data-
based models provide relations between measured inputs and outputs that
describe how the process responds to changes in various inputs. They can
be developed much faster than first principles models, but their accuracy,
robustness, and usability are limited. They provide an inexpensive alter-
native to fundamental models in most monitoring, diagnosis and control
tasks.

First Principles Models of Bioprocesses
The central theme of mathematical modeling of bioprocesses is the ab-

straction of physical phenomena into a suitable simplified mathematical
formalism [615]. Even the simplest living cell is a system of such com-
plexity that any mathematical description of it is an extremely modest
approximation [32]. For this reason, a fundamental understanding of the
phenomena taking place in the cell is needed to develop an acceptable first
principles model. In the context of biological systems, this requires the
presumption of metabolic intermediates and pathways that are crucial to
system behavior and the specific regulatory role they play. This approach
may require a number of iterations since the pathways may consist of large
number of biochemical reactions [615].

The first step in developing a bioprocess model is to specify model com-
plexity. Model complexity depends primarily on the purpose the model
such as description of specific intracellular events or biochemical reactions,
effects of environmental variables and effects of bioreactor operating con-
ditions on growth and product formation. Model specifications include the
number of biochemical reactions in the model, specification of the stoi-
chiometry for these reactions, and related assumptions and simplifications.
In setting up bioprocess models, lumping of biochemical reactions is done
while paying attention to the detail level appropriate for the intended use
of the model developed. After the model complexity is specified, rates of
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biochemical reactions are described with appropriate mathematical expres-
sions using linear or nonlinear formulations. The rates are defined as func-
tions of bioprocess variables, namely the concentrations of substrate(s) and
metabolic products. These functions are referred to as kinetic expressions.
Biochemists traditionally use elemental balances as their basic models, for-
mulated as reaction equations. These balances define the biochemical state
identifying the components which change considerably during the process,
and contain information on the yields of various species with respect to
some reference species. Besides stoichiometric relationships, empirical re-
lations discussed in Chapter 2 can also be used as black box expressions.

The second step in modeling is to develop mass, energy, and/or mo-
mentum balances based on bioreactor operation mode (batch, fed-batch, or
continuous) and combine them with kinetic expressions of the bioprocess.
In general, homogeneity is assumed within the bioreactor for the sake of
simplicity. Detailed bioreactor models that include spatial non-uniformity
are also available. The combination of kinetic and bioreactor models form
the complete mathematical description of the bioprocess.

The final step in first principles model development is assigning val-
ues to operating and kinetic parameters. The former depend on operating
conditions such as volumetric liquid/gas flow rates of inputs and outputs,
rotational speed of the impeller, and environmental conditions. The latter
are associated with the biological system under consideration. Parame-
ter estimation algorithms are used to assign values to these parameters.
The basic steps in developing first principles models of bioprocesses are
summarized in Figure 1.1. Detailed discussion of first principles models of
bioprocesses and case studies are presented in Chapter 2.

collect experimental data

specify model complexity *

write kinetic expressions

i
write mass balance equations

are
1

iterate
until
satisfactory
results

obtained
estimate/optimize model parameters

simulate bioprocess

Figure 1.1. Steps in model formulation of bioprocesses.
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Data-based Models of Bioprocesses
Process models developed by using fundamental principles explain and

describe the behavior of the process. This provides the opportunity to assess
the importance of various fundamental phenomena such as steps in the
metabolic pathway, effects of various modes of mass transfer, or limitations
in energy exchange. The user can postulate the existence or lack of some
phenomena, modify the model accordingly and compare the predictions
of the model with data to determine if the assumptions made could be
supported. Often, the process may be too complex or the information may
be too limited to develop fundamental models. In addition, the fundamental
models developed may be too large to be used in process monitoring, fault
diagnosis, and control activities. These activities require fast execution
of the models so that regulation of process operation can be made in a
timely manner. The alternative model development paradigm is based on
developing relations based on process data.

Statistics and system identification literature provide a large number of
methods for developing models to represent steady-state and dynamic rela-
tions that describe process behavior. Powerful model development software
is available to build models that relate process inputs to process and quality
variables or relate process variables and product properties with ease and
speed. There are two important tradeoffs. First, the model describes the
process behavior as it is captured in data used for model development. Un-
like first principles models, data-based models cannot provide information
on behavior that has not been observed (in the sense of capturing in data).
Data-based models should not be used for extrapolation, and nonlinear
data-based models should be used with caution for interpolation as well.
The second tradeoff is the loss of the ability to link physical or biochemical
phenomena directly with some part of the model. Hence, the capability to
explain the mechanisms in play for the observed behavior is severely lim-
ited. One has to rely on sensitivity analysis between inputs and outputs,
and expert knowledge to extract information that sheds light on funda-
mental phenomena that are important in a specific process. However, one
should not underestimate the power of good data-based models. In diverse
fields such as the stock market, aircraft and ship navigation, oceanography,
agriculture, and manufacturing, data-based models have played a signifi-
cant role. Some data-based modeling methods are built with algorithms
that are useful in mining historical databases to elucidate hidden relations
in process and product variables. Data-based modeling techniques such as
principal components regression and subspace state-space models provide
good insight about the largest directions of variation in data and most in-
fluential variables. This information can be valuable in enhancing process
understanding and developing fundamental models.
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Data-based models are frequently used in process monitoring and con-
trol, quality control or fault diagnosis activities. Many case studies included
in the book illustrate the value and power of data-based models in super-
vising process operations. Data-based models are discussed in Chapters 4
and 5, their uses in monitoring, control, and fault diagnosis are illustrated
in Chapters 6, 7, and 8, respectively.

Applications of Process Models
Various reasons can be listed for making and using mathematical models

of bioprocesses, each important in some venue of biotechnology [32]:

• To organize disparate information into a coherent whole: Molecu-
lar biology and biotechnology have generated and will continue to
generate vast amounts of information about components involved in
various biological processes and their properties. Models will enable
integrated consideration of many interacting components that would
shed light on many questions about the genes and their integrated
roles.

• To think logically about components and interactions that are impor-
tant in a complex system and calculate them: As more experimental
data become available on protein-nucleic acid interactions and theo-
retical possibilities to predict effects of sequence changes on these pa-
rameters improve, genetically structured models can provide a unique
resource for predicting the relationship between nucleotide sequence
and complex functions of the organism.

• To discover new strategies in process operation: Cell metabolism can
be controlled by manipulation of environmental parameters such as
pH, temperature, dissolved oxygen, aeration rate and other operating
conditions. Cell metabolism is reflected in measurable quantities of
the culture (measured variables). Models are the crucial link between
these two groups of variables, enabling implementation of an algo-
rithm for operating the process effectively based on accessible on-line
measurements of the process.

• To test and modify conventional wisdom: Many situations encoun-
tered in biochemical engineering, and biological science research are
extremely complex. It is easy to make erroneous hypotheses or as-
sumptions about a bioprocess. Mathematical modeling and analysis
of the resulting model, can aid substantially in avoiding such mistakes
or in identifying errors or omissions in earlier thinking and interpre-
tations.
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• To understand the essential, qualitative features: When analyzing a
complex system, it is often sufficient to have certain qualitative results
without the need for particular numerical value. Qualitative analy-
sis becomes increasingly important as the system under investigation
becomes complex.

• To build model-based monitoring, control and diagnosis techniques:
Multivariable first principles and data-based models are critical for
developing powerful techniques for monitoring and controlling process
operations and for diagnosing source causes of faulty operation.

1.2.2 Process Monitoring
Batch processes convert raw materials to products during a finite period
of time by following prescribed processing recipes. A high degree of repro-
ducibility is necessary to obtain successful batches. Monitoring and control
of batch processes are crucial for detecting deviations from reference tra-
jectories and interfering with undesirable trends to bring the operation to
conditions that assure acceptable product quality. The goal of statistical
process monitoring (SPM) is to detect the existence, magnitude, and time
of occurrence of changes that cause a process to deviate from its desired
operation.

Traditional statistical process control (SPC) has focused on monitor-
ing quality variables at the end of a batch and if the quality variables are
outside the range of their specifications making adjustments (hence control
the process) in subsequent batches. An improvement of this approach is to
monitor quality variables during the batch run and make adjustments in the
same run if they deviate from their expected ranges. Monitoring of quality
variables usually involves measurement and reporting delays. Information
about quality variations is encoded in process variables, and measurement
of process variables is often frequent and highly automated. Hence, moni-
toring of process variables is useful not only for assessing the status of the
process, but also for controlling product quality.

In traditional quality control of multivariable processes, several quality
variables are monitored using univariate SPC techniques such as Shewhart
charts. This approach considers each variable in isolation. In contrast,
multivariate techniques focus on the whole picture and generate an alert
when many process variables make small moves from their mean values in a
way that indicates a specific trend. They leverage the interaction between
variables and monitor changes in the correlation structure of the variables.

The book presents many process monitoring and quality control tools in
Chapter 6, starting with simple univariate SPC charts. Several multivari-
ate SPM techniques for end of batch and real-time on-line monitoring are
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introduced and integrated with quality control. Furthermore, these tools
are linked with fault diagnosis to offer an automated process monitoring
and diagnosis environment in Chapter 8.

1.2.3 Process Control

Automatic control of batch fermentation processes provides the opportu-
nity to regulate the operation when variations in input conditions such as
changes in impurity compositions in feedstock or disturbances during the
run such as equipment malfunctions may cause departure from optimal
reference trajectories. A simple temperature control loop or stirrer speed
controller can save a 80,000 liter batch from getting ruined.

Control of batch fermentation processes can be denned as a sequence of
problems. The first problem is the determination of optimal trajectories to
be followed during a batch run. Given a good model, this can be cast as an
open-loop optimization problem. Another approach for determining these
trajectories is to extract them from historical data bases of good batches
by using statistical techniques such as principal components analysis. The
second problem is the low level closed-loop control of critical process vari-
ables. This may be achieved by using several single-input single-output
(SISO) control loops to regulate each controlled variable by manipulating
an influential manipulated variable paired with it. The third problem is
higher level control that can be addressed by selecting a multi-loop or a
multivariable control approach. The former necessitates the coordination
of the operation of SISO loops, the latter focuses on the development of a
single controller that regulates all controlled variables by all manipulated
inputs. While such a controller can be built without using any low level
SISO loops, practice in other areas has favored the use of SISO loops for
redundancy and reliability. In that case, the multivariable controller sup-
plies the set-points to SISO loops. The multivariable control system can be
based on linear quadratic optimal control theory or model predictive con-
trol (MFC). The optimal control theory has many success stories in various
fields ranging from aerospace to manufacturing and power generation. In
recent years MFC has become appealing because it can handle process con-
straints, disturbances, and modeling errors very effectively. MFC involves
the solution of a real-time constrained optimization problem at each sam-
pling time. While this is a limiting factor, the increase of computation speed
and reduction of computation cost over the years works in favor of MFC.
Techniques for addressing these three problems are discussed in Chapter
7.
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1.2.4 Fault Diagnosis
When process monitoring indicates abnormal process operation, diagno-
sis activities are initiated to determine the source causes of this abnormal
behavior. Experienced plant personnel have good insight in integrating var-
ious pieces of information provided by process measurements to determine
the cause(s) of a fault. Various fault diagnosis paradigms can automate this
effort and provide timely information to plant personnel about the most
likely causes for abnormal operation. Reduction of down time, fixing the
actual problem (as opposed to a secondary fault), and scheduling regular
maintenance as opposed to doing emergency repairs contribute significantly
over time to the profitability of the process.

The book introduces many alternative fault diagnosis paradigms and
illustrates some in more detail through case studies. It also proposes the
integration of monitoring and diagnosis activities by linking SPM tools
with a real-time knowledge-based system that acts as a supervisor of pro-
cess operations and fault diagnosis agent. Fault diagnosis techniques and
knowledge-based systems are covered in Chapter 8. A forward-looking
proposal for further integration of monitoring and diagnosis with control
system performance assessment, supervisory control of batch fermentation
process operation, and plantwide decision making systems is presented in
Chapter 9.

1.3 Penicillin Fermentation

In September 1928, Alexander Fleming, a professor of bacteriology at St.
Mary's Medical School in London, observed that mould had developed ac-
cidentally on a Staphylococcus aureus culture plate that was left on the
laboratory bench and that the mould had created a bacteria-free circle
around itself. He was inspired to further experiment and he found that
a mould culture prevented growth of Staphylococcus, even when diluted
800 times. He named the active substance penicillin [154]. In December
1945, he and his colleagues (Florey and Chain) received the Nobel Price
in medicine for the discovery of penicillin and its curative effect in various
infectious diseases [424]. This accidental discovery saved thousands of lives
in later years and had a major impact on pharmaceutical production of
various antibiotics.

Industrial Scale Penicillin Production
There are basically two major kinds of antibiotics, namely, narrow-

spectrum antibiotics and broad-spectrum antibiotics. Narrow-spectrum an-
tibiotics control a narrow range of microorganisms, such as Gram-positive
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Figure 1.2. Penicillin cultivation process.

or Gram-negative bacteria but not both. Penicillin is an example of narrow
spectrum antibiotic. Broad-spectrum antibiotics are active against a wide
range of microorganisms such as both Gram-negative and Gram-positive
bacteria. Tetracycline is an example of a broad-spectrum antibiotic.

The penicillin family includes penicillin G, penicillin V, penicillin O,
and many synthetic and semisynthetic derivatives such as ampicillin, amox-
icillin, nafcillin and ticarcilin. /3-lactams are the largest group of antibiotics
covering approximately 65% of the World market. More than 60% of these
antibiotics are penicillin derivatives (either penicillin V or penicillin G).
The total worldwide production of bulk penicillin is about 25,000 tons of
which about 70% is sold either directly, i.e. penicillin V for oral adminis-
tration and penicillin G for use in animal feed mixtures or a sterile salt, or
it is converted to amoxicillin and ampicillin via 6-APA [424].

Although penicillin is produced by many Penicillium and Aspergillus
strains, industrial penicillin is completely produced by Penicillium chryso-
genum. Highly developed mutants are also used in industry. The medium
for penicillin production typically contains an organic nitrogen source (e.g.
corn steep liquor), fermentable carbohydrate (e.g. sucrose, lactose, fructose,
or glucose), calcium carbonate as a buffer and other inorganic salts as neces-
sary. Oxygen should also be added not to exceed 40% of saturation which
corresponds to a volumetric oxygen uptake rate of 0.4-0.8 mmol/l/min.
Although it is strain-specific, pH and temperature of cultivation broth are
typically between 5-7 and 23-28°C, respectively. The culture volume is
40,000-200,000 / and is vigorously agitated using turbine agitators. Under
these circumstances, a maximum theoretical yield of penicillin on glucose
is estimated to be 0.12 g penicillin/g glucose [26]. A typical industrial
scale process for penicillin production is shown in Figure 1.2 starting with
culture growth. Penicillium chrysogenum strains are used to inoculate 100
ml of the medium in a 500 ml flask at 25°C. After incubating for four
days, the contents of the flask are transferred to a new 2 / medium which
is further incubated for two more days. Depending on the size of the final
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Figure 1.3. Downstream processes in industrial scale penicillin production.

culture volume, sequential growth is followed in this manner. Inoculum size
is typically around 10% of the total culture volume. Since formation of sec-
ondary metabolites (in this case, penicillin) is usually not associated with
cell growth, it is a common practice to grow the cells in a batch culture
followed by a fed-batch operation to promote synthesis of the antibiotic.
When inoculum at the desired concentration is obtained, an industrial size
bioreactor (40,000-200,000 /) is inoculated. The bioreactor is operated for
five to six days in fed-batch mode. After the cultivation stage, a series of
product recovery techniques are applied depending on the required purity
of the final product. Flow diagram for penicillin recovery process is given
in Figure 1.3.

A typical time course of penicillin cultivation is represented in Figure
1.4. First, the cells are grown batchwise until they enter early station-
ary phase of batch growth which is also associated with the depletion of
substrate. Then, the process is switched to fed-batch operation that is ac-
companied by penicillin production. At this stage, process is said to be in
the production phase. Experimental data are displayed in [26]. Detailed
discussion of various physiological phases is presented in Section 2.7.

1.4 Outline of the Book

The book consists of nine chapters. Chapters 2-5 focus on modeling.
Chapter 6 presents a variety of process monitoring techniques. Chapter
7 presents control techniques for batch process operation and Chapter 8
discusses various fault diagnosis paradigms. Chapter 9 outlines recent de-
velopments that will impact fermentation process modeling, monitoring,
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Figure 1.4. Time course of changes in carbohydrate (glucose, —), dissolved
oxygen (% saturation/10) (A), penicillin (g.Lr1 x 10) (*) and biomass (•)
concentrations in a penicillin fermentation simulation [61].

and control, and speculates about the future.
Chapter 2 focuses on the development of process models based on first

principles. Considering the uncertainty in some reaction and metabolic
pathways, and in various parameters, both unstructured and structured
kinetic models are discussed. Case studies for penicillin fermentation are
presented for both types of models along with simulation results. Chapter 3
presents various concepts and techniques that deal with experimental data
collection and pretreatment. Sensors and computer-based data acquisition
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is discussed first. Then, statistical design of experiments techniques are
introduced for preliminary screening experiments. Factorial and fractional
factorial designs are summarized and statistical analysis tools are presented
for interpretation of results. Data pretreatment issue is divided into outlier
detection and data reconciliation, and signal noise reduction. Wavelets are
introduced in this section for use in noise reduction. Finally, techniques
for theoretical confirmation of data such as stoichiometric balances and
thermodynamics of cellular growth are presented to provide a reality check
of experimental data. Chapter 4 tackles the modeling problem by focus-
ing on data-based models. First, theoretical foundations in multivariate
statistics, such as principal components analysis (PCA), multivariable re-
gression techniques, and functional data analysis, are summarized. Then,
various statistical techniques for batch process modeling (multiway PCA,
multivariate covariates regression, and three-way techniques) are presented.
Extensions to nonlinear model development are discussed and artificial neu-
ral networks, nonlinear input-output modeling, and nonlinear partial least
squares (PLS) modeling are introduced as alternative techniques for devel-
oping nonlinear models. Chapter 5 focuses on nonlinear model development
from systems science and chaos point of view. It illustrates how the con-
cept of correlation can be extended to the nonlinear framework and used
for model development and reduction.

Chapter 6 deals with batch process monitoring problem. It starts with
discussion of statistical process monitoring (SPM) tools for univariate prob-
lems (Section 6.1). Shewhart, cumulative sum (CUSUM), and exponen-
tially weighted moving average (EWMA) charts are presented. Then, multi-
variate tools (PCA and PLS) for SPM of continuous processes are discussed
in Section 6.2. The phase change point (landmark) detection problem and
data length adjustment are discussed in Section 6.3, introducing indicator
variable, dynamic time warping (DTW) and curve registration techniques.
In Section 6.4, SPM of multivariable batch processes is discussed and mul-
tiway PCA, multiway PLS, multiscale SPM with wavelets techniques are
introduced. Finally in Section 6.5, on-line SPM of batch processes is ad-
dressed using multiway PCA and hierarchical PCA techniques, and Kalman
filters for final product quality estimation.

Chapter 7 presents various control problems in batch process opera-
tions. The first problem is the determination of the optimal reference tra-
jectories that should be followed during the batch run. This is an optimal
open-loop control problem. A related problem is the determination of the
benefits, if any, of forced periodic operation of the fermentation system
and the variables and operating conditions that will maximize productivity
and selectivity. The other control problems focus on closed-loop control
using multi-loop, linear quadratic Gaussian, and model predictive control
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techniques.
Chapter 8 discusses various fault diagnosis techniques. One approach is

based on determining first the variables that contribute to the increase in
the statistic that indicates an out-of-control signal and then using process
knowledge to reason about the source causes that will affect those vari-
ables to identify the likely causes of faulty operation. The contribution
plots method is presented in the first part of the chapter. Automating
the integration of the variables indicated by contribution plots and process
knowledge with a knowledge-based system (KBS) is discussed in the last
section of the chapter. Section 8.2 of the chapter is devoted to multivari-
ate statistical classification techniques such as discriminant analysis and
Fisher's discriminant function, and their integration with PCA. Section 8.3
focuses on a variety of model-based techniques from systems science for
fault diagnosis. Generalized likelihood ratio, parity relations, observers,
Kalman filter banks, and hidden Markov models are presented. Section 8.4
is devoted to model-free fault diagnosis techniques such as limit checking,
hardware redundancy and KBSs. The last section outlines real-time su-
pervisory KBSs that integrate SPM, contribution plots and KBS rules to
provide powerful fault diagnosis systems.

Chapter 9 introduces some related developments in modeling, dynamic
optimization, and integration of various tasks in batch process operations
management. Metabolic engineering, metabolic flux analysis and metabolic
control analysis concepts are introduced and their potential contributions
to modeling is discussed. Dynamic optimization and its potential in indus-
trial applications is discussed and compared with classical and advanced
automatic control approaches. The integration of various tasks in process
operation using a supervisory knowledge-based system is outlined for on-
line process supervision.

Background Information and Road Maps to Use the Book
The book is written for professionals and students interested batch fer-
mentation process operations. It requires little background information in
various areas such as biotechnology, statistics, system theory, and process
control. Introductory materials in biotechnology can be found in various
process engineering books [35, 426, 546]. Applied statistics books for engi-
neers and scientists [78, 167, 400, 626] provide the basic theory and tech-
niques. A reference for multivariate statistics [262] would be useful for
Chapters 6 and 8. Several good textbooks are available for basic concepts
in process control [366, 438, 541]. Advanced books in all these areas are
referenced in appropriate chapters in the book.

Ideally, the chapters in this book should be read in the sequence they ap-
pear. However, allowing for potential diversity in background in fundamen-

Copyright © 2003 by Taylor & Francis Group, LLC



1.4. Outline of the Book 19

tals of various readers, we suggest here alternate roadmaps. Chapters 1 and
9, being the first and last chapters in this book, have been intentionally
kept descriptive and can be followed by readers with diverse fundamen-
tal background and technical expertise with relative ease. The remaining
chapters could be followed in the order in which they appear or in an alter-
nate sequence. Readers with much more familiarity with process modeling
and control than with statistical methods may start with Chapters 2, 5
and 7. This sequence would then be followed by Chapters 3 and 4, which
deal with data collection and pretreatment and data-based modeling, This
would then set the stage for statistical techniques for process monitoring
and fault diagnosis, which are the subjects of Chapters 6 and 8. In this
alternate sequence, the readers may need to refer to appropriate sections
in Chapters 3 and 4 while going over certain sections of Chapters 5 and
7. Finally, readers very conversant with statistics and statistical methods
but not familiar with engineering processes may start with Chapters 3 and
4 and may transit to Chapters 6 and 8, followed by Chapters 2, 5 and 7.
Many chapters rely on sufficient knowledge of linear algebra and systems
theory. The readers will be well served by referring to appropriate help ma-
terial, as needed, on these, which can be found in many undergraduate and
graduate texts in engineering and mathematics. Access to the help material
will permit the readers to focus on differences in methodologies/techniques
discussed in individual sections of the appropriate chapters. At the start of
each chapter, we have provided a brief layout of the chapter. Depending on
the level of familiarity with different sections in a chapter, the readers may
make their own menu for going over the chapter, reading perhaps sections
that they are more familiar with first, followed by reading the sections with
which they are less familiar or unfamiliar. The book is intended to be a
valuable resource guide. For further in-depth review of particular topics,
the readers should access suggested references.
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Kinetics and Process
Models

2.1 Introduction and Background
Growth of living (viable) cells requires intimate contact of a small quan-
tity of living cells with a liquid solution (medium) containing appropriate
levels of nutrients at a suitable pH and temperature. Depending on the
morphology of cells under consideration, one needs to consider two differ-
ent manifestations of cell growth. For unicellular organisms which divide
as they grow, an increase in biomass (mass of viable cells) is accompanied
by an increase in the number of cells present in the culture (cell-medium
suspension). The situation is very different in the case of growth of molds,
which are popular organisms for industrial production of a variety of antibi-
otics. In the case of molds, the length and number of mycelia increase as the
growth proceeds. The growing mold therefore increases in size and density
(concentration) but not necessarily in numbers. (There isn't a one-to-one
relation between the number of distinct multicellular units and amount of
biomass.)

The extent of complexity of the kinetic description to be considered
depends on the complexity of the physical situation under consideration
and the intended application of the kinetics (fundamental understanding of
cellular processes, design and simulation of bioprocesses, optimization and
control of bioprocesses). However simple or however complex the kinetic
description be, it must incorporate certain key cellular processes, such as
cell replication (cell growth), consumption of essential nutrients, synthe-
sis of end products (followed by intracellular accumulation or excretion of
these), and cell death/lysis.

Biological reactors employed for production of commercially significant
metabolites using living cells involve two or more phases (a single gas phase,
at least one liquid phase, and at least one solid phase). The cells are usually
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in contact with a liquid phase. Whether the cells are suspended in the liquid
phase (suspension culture) or attached to a suitable solid support (immo-
bilized) and in contact with the liquid phase, the interactions between the
two phases [biotic phase (cell population) and abiotic phase (liquid)] must
be considered and fully accounted for. Both phases are multicomponent
systems. The abiotic phase usually contains all of the nutrients essential
for cell growth and various end products of cellular metabolism that are
excreted. Some of the end products may undergo further reactions in this
phase. A classic example is the hydrolysis of antibiotics such as penicillin
in the liquid medium. Transport of nutrients from abiotic phase to biotic
phase is essential for utilization of these for cell growth and maintenance and
for formation of a host of metabolic intermediates and end products. Some
of the end products are retained within the cells (intracellular metabolites),
while others are excreted by the cells (transport from biotic phase to abi-
otic phase). The large number of chemical reactions occurring within a cell
result in accumulation or depletion of energy. Exchange of energy between
abiotic and biotic phases must be accounted for to determine the culture
temperature. The temperature of the abiotic phase usually determines the
temperature of the biotic phase. Some of the cellular reactions impact the
acid-base equilibria in the biotic phase and in turn the pH of the abiotic
phase, which in turn influences cellular activities and transport processes
across the abiotic - biotic two-phase interface. In addition to transport of
essential nutrients and end products of cellular metabolism between the two
phases, one must also consider transport of ionic species (such as protons
and cations). As a result of cellular reactions, the properties of the abiotic
phase, such as viscosity, may change during the course of cell cultivation.

An individual cell is a complex multicomponent system in which a large
number of independent enzyme-catalyzed chemical reactions occur simul-
taneously, subject to a variety of constraints. In a growing cell population,
there is cell-to-cell variation as concerns cell age and cell function (cell
activity). Thus, at a given time and in a sufficiently small region of phys-
ical space in a culture, some cells may be newly born, others may be of
intermediate age and dividing, while still others may be much older and
subject to death or lysis. In the case of molds, in an individual multicel-
lular unit, there may be significant variation as concerns cell age. There is
also differentiation among different cells as concerns replication, utilization
of essential nutrients and formation of the target end product (for example,
antibiotics such as cephalosporin and penicillin). Some of the cells thus
may be actively dividing but incapable of or less efficient in synthesizing
the target metabolite, while some others may be fully capable of synthesis
of the target end product.
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2.2 Mathematical Representation of Bioreac-
tor Operation

A popular form of operation of bioreactors employing living cells involves
the use of a well-mixed reactor, the mixing being accomplished by me-
chanical agitation and/or fluid motion. The uniformity of composition and
temperature in the reactor allows its representation as a lumped parameter
system. Although well-mixed reactors are almost a norm in cell cultiva-
tion, tubular reactors are used in bioprocesses involving immobilized cells
and immobilized enzymes, these bioreactors being distributed parameter
systems. In view of this, the focus in this chapter is on lumped parame-
ter systems. The dynamics of bioreactors that can be viewed as lumped
parameter systems can be described succinctly as

=f(x,u,d), x(t0)=xo, (2.1)
at

with x denoting the set of variables which represent the status of the cell
culture in the bioreactor, the so-called state variables, and u and d repre-
senting the set of external variables which indirectly influence the status
of the cell culture, the so-called input variables. The input variables are
further classified into inputs that are manipulated (u) and inputs that are
not manipulated (d), the so-called disturbance variables. Let n, m and p
denote the number of state variables, manipulated inputs and disturbance
variables. The right hand side in Eq. 2.1 contains information on how the
temporal variations in state variables are influenced by the state and in-
put variables, these influences in general being nonlinear (f - a nonlinear
function of x, u and d). In the subsequent sections, illustrations will be
provided on how descriptions of different operating modes for bioreactors
and bioprocesses with varying levels of complexity as concerns description
of kinetics of cellular and extracellular processes can be concisely repre-
sented in the form of Eq. 2.1. As these illustrations are discussed, it will be
evident that not all state variables can be measured or estimated. There
can be a variety of reasons for not monitoring variations in a state variable,
including lack of availability of an assay (procedure for analysis)/ measur-
ing device/sensor, monitoring difficulties due to rapid fluctuations in the
state variable, and costs associated with frequent measurement of the same.
The specifics of an assay (analytical procedure) or measuring device may
impose limitations on frequency of measurement of certain state variables.
In such situations, the measurements of the state variable at discrete times
may have to be supplanted by estimations of the same (based on these
measurements) at times when no measurements were made. Some of the
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state variables, which cannot be measured as frequently as desired, can be
estimated from measurement of certain other parameters, which in turn
can be measured as frequently as desired. An example of such a state vari-
able is the biomass concentration in the culture (usually expressed as dry
mass of cells per unit culture volume). Direct estimation of this variable
requires time-intensive separation (of the abiotic and biotic phases via cen-
trifugation or filtration) and gravimetric procedures. A reliable procedure
for monitoring biomass concentration involves determination of turbidity
of cell culture via measurement of optical density (OD) of the culture and
estimating the biomass concentration using a predetermined correlation
between the biomass concentration and OD. The advantage of this estima-
tion is rendered by one's ability to measure OD as frequently as possible.
It must therefore be realized that only some of the state variables may be
monitored or estimated. The set of variables which can be measured will
be referred to as bioreactor outputs, y, with the number of outputs being 1.
The relations among the state variables, the input variables and the output
(measured) variables can then be succinctly stated as

y = g(x,u,d). (2.2)

2.3 Bioreactor Operation Modes

The three popular modes of operation of mechanically agitated reactors for
cell cultivation are batch, fed-batch and continuous operations. The me-
chanically agitated reactors are equipped with capabilities for on-line and
off-line sensing of a variety of culture characteristics, such as pH, temper-
ature, concentrations of dissolved gases (such as CO-2 and O^}, biomass
concentration, cell morphology, concentrations of various components of
the nutrient medium, total protein content of cells, activities of certain
proteins, and concentrations of certain metabolites, and tighter control of
some of these using appropriate controllers. The classification of the reac-
tor operation is based on culture [suspension of cells in a liquid medium or
a composite of liquid medium and cells attached to a suitable solid support
(immobilized cells)]. Besides the liquid and solid phases, these reactors
also have a gas phase, to provide oxygen to liquid culture in an aerobic bio-
process, to provide a blanket of an inert such as nitrogen in an anaerobic
bioprocess, and to remove carbon dioxide (from the culture) generated as a
product of cellular metabolism. Irrespective of the mode of operation with
respect to culture, the bioreactors are always operated in continuous mode
with respect to gas phase (gas phase continuously entering and leaving the
reactor).
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2.3.1 Batch Operation

A batch culture operation is characterized by no addition to and withdrawal
from the culture of biomass, fresh nutrient medium and culture broth (with
the exception of gas phase). The batch operation is initiated by addition of
a small amount (with respect to sterile nutrient medium) of a cell culture
(the so-called "inoculum") to a sterile nutrient medium. The inoculum is
derived from serial batch cultures, the so-called starter cultures or subcul-
tures. Some of the culture conditions (such as pH and dissolved oxygen
level) during each subculture are usually left uncontrolled. A typical batch
culture operation is strictly not a batch operation since it may involve ad-
dition of an acid/base for pH control and antifoam to suppress foaming
in the culture and withdrawal of small portions of culture for assessing
the status of the culture. Any net volume changes due to these additions
and withdrawals are usually minimized by using concentrated acid/base
and antifoam solutions and by keeping the number and volume of samples
withdrawn within limits. As concerns cell mass accumulation resulting from
uptake and utilization of nutrients, the batch culture is characterized by a
lag phase (during which period cells in the inoculum adjust to the shock
in their environment and accelerate synthesis of enzymes needed to uti-
lize nutrients in the liquid medium), which is followed by an active growth
phase (both the cell number and cell mass usually increase exponentially
with time in this phase). Cell growth continues in the next phase, albeit
at a slower rate since substantial consumption of nutrients has already oc-
curred and such growth is usually referred to as non-exponential growth.
Production of some of the metabolites (including a variety of antibiotics
and enzymes of commercial importance), whose synthesis is not necessarily
directly proportional to cell growth, is accelerated (and in some cases initi-
ated) in this second growth phase. These metabolites are usually referred
to as secondary metabolites. The growth phase is followed by a stationary
phase upon near complete exhaustion of one or more nutrients essential
for cell growth. Synthesis of secondary metabolites is usually promoted in
the stationary phase. The stationary phase is followed by the death phase,
which is characterized by a significant decline in the cell number density (or
the viable cell concentration). A batch operation is usually terminated near
the end of the growth phase or during the stationary phase. In industrial
bioprocesses, serial batch culture operations are very common. In a typical
operation, a portion of the culture from the previous batch is used as in-
oculum for the next batch. Since there is in a sense recycle of culture from
batch to batch, these operations are referred to as repeated batch opera-
tions with recycle. If there is no transfer of culture from a batch to the next,
the serial operations are referred to as repeated batch operations without
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recycle and are indistinguishable from a single (once-through) batch culture
or parallel batch cultures (conducted simultaneously).

2.3.2 Fed-Batch Operation

A fed-batch culture operation is characterized by predetermined or con-
trolled addition of nutrient medium in an otherwise batch operation (no
withdrawal of culture). This operation allows for temporal variation in
the supply of nutrients, thereby allowing tighter control of various cellu-
lar processes such as cell growth, nutrient uptake and production of target
metabolites. As mentioned earlier, synthesis of secondary metabolites, in-
cluding a variety of antibiotics and enzymes, is promoted under culture
conditions where cell growth is discouraged. Controlled addition of nutri-
ents in a fed-batch operation allows for control of cell growth and thereby
promotes production of secondary metabolites. The total mass of culture
increases during a fed-batch operation and so does the culture volume un-
less nutrients in highly concentrated form (such as solid powders) are fed to
the culture. The feed rate can be varied in a predetermined fashion or by
using feedback control. The addition of nutrient feed is terminated upon
reaching the maximum permissible volume. A fed-batch operation may be
followed by a terminal batch operation, with culture volume being equal
to maximum permissible volume, to utilize the nutrients remaining in the
culture at the end of fed-batch operation. A fed-batch operation is usually
preceded by a batch operation. A typical run involving fed-batch operation
therefore very often consists of the fed-batch operation sandwiched between
two batch operations. This entire sequence (batch—>fed-batch—>batch) may
be repeated many times leading to serial (or repeated) fed-batch operation.
As in the case of repeated batch operation with recycle, transfer of culture
from one sequence to the next to inoculate the next sequence is common in
these serial operations.

2.3.3 Continuous Operation

In a continuous culture operation, nutrients essential for growth are con-
tinuously fed and a portion of the culture is continuously withdrawn. The
culture volume is controlled using a level controller. A continuous cul-
ture is usually preceded by a batch or fed-batch culture. If the mass flow
rates of the bioreactor feed and bioreactor effluent are identical and time-
invariant, a time-invariant (steady state) operation can be realized after
sufficient time since the start of continuous culture operation. The sta-
tus of the culture can be determined easily by analysis of the bioreactor
effluent, thereby causing no interference with bioreactor operation, which
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is certainly not the case with batch and fed-batch operations. As in a
fed-batch culture, the feed rate to a continuous bioreactor can be varied
in a temporal sense in a predetermined fashion or using feedback control.
Since the culture conditions (in a global sense) can be kept time-invariant,
continuous cultures are easier to monitor and control. When culture condi-
tions which promote biomass growth are substantially different from those
which promote production of a target metabolite (on a per cell basis), a
simple continuous culture operation described here may not yield the best
productivity of the target metabolite. Two-staged continuous culture op-
erations where cell growth is promoted in the first stage and synthesis of
a target metabolite is promoted in the second stage have been shown to
yield much higher productivity when compared to the highest productivity
attainable in single-stage continuous culture. Such two-staged operations
may be attained spatially in two continuous cultures in series and tempo-
rally in a single continuous culture by switching from a growth promoting
medium to a production medium and vice versa[451]. These are some of the
advantages and flexibility that a continuous culture offers over batch and
fed-batch cultures. Unlike the operation of continuous processes employed
for production of chemicals, long-term operation of continuous cultures is
subject to many operating difficulties, including risks of contamination and
loss in productivity due to cell washout in case of unanticipated distur-
bances and substantial changes in characteristics of the biotic phase.

2.4 Conservation Equations for a Single
Bioreactor

Irrespective of the type of operation, a description of the behavior of a sus-
pension culture requires applying the principle of conservation for each of
the three distinct phases (gas, liquid and solid phases) and constituents of
each phase. When the nutrients are in the liquid phase, as is the case with
submerged cultures and which are the primary focus here, the solid phase
is comprised essentially entirely of cell mass. In cases involving nutrients
(such as cellulose) which are insoluble in the liquid medium, the solid phase
is comprised of cell mass and solid nutrients. Where a particular specie is
present in more than one phase, the conservation equations for that specie
in each of these phases must account for interphase transport of that specie.
As an illustration, the conservation equations for a single well-mixed biore-
actor are presented here, with the feed to the bioreactor (in the case of
fed-batch and continuous cultures) being considered to be sterile. Each of
the three phases are considered to be well-mixed. The bioreactor operation
is considered to be isothermal. Appendages/modifications to these conser-
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vation equations due to operational modifications such as recycle of cell
mass, downstream separations, and two-stage continuous cultures will be
addressed briefly at the end of this chapter.

2.4.1 Conservation Equations for the Gas Phase
For the three bioreactor operation modes (batch, fed-batch and continuous),
the continuously flowing gas phase is ubiquitous. The conservation equation
for a specie i in the gas phase (e.g., i — 0%, CO^] can then be expressed as

-NlaV, VG = VT-V (2.3)

with do denoting concentration of specie i in the gas phase, QG the vol-
umetric gas phase flow rate, VG the gas phase holdup in the bioreactor
(volume of gas phase in bubbles and head space) , the subscript F the gas
feed, Ni the flux of specie i from the gas phase to liquid phase, a the
gas-liquid interfacial area per unit culture volume, V the culture volume,
and VT the volume of empty reactor. Equation 2.3 provides a volume-
averaged description of the gas phase. In a bioreactor, the gas phase is
introduced at the bottom of the bioreactor using spargers. As is evident
from Equation 2.3, the rate of transport of a specie i depends on the gas-
liquid interfacial area, which is higher, the smaller the size of gas bubbles
(say bubble diameter). Although the bubble size near the sparger is more
or less uniform, there are variations in characteristics of gas bubbles (such
as bubble shape and size, gas-liquid interfacial area and concentrations of
various gaseous species) during their ascent through the culture. Further,
these characteristics of the gas phase in the head space above the culture
may be substantially different from those of the gas phase in ascending gas
bubbles. A detailed accounting of (bubble-to-bubble and gas bubbles to
headspace) heterogeneity in the gas phase, although possible, can certainly
divert one's attention from description of culture behavior. For this reason,
Equation 2.3 is commonly used for representation of events in the gas phase.
It must be realized that while the volume of the head space in batch and
continuous cultures is essentially time-invariant [and therefore so is VG as
per Eq. 2.3 ] since the culture volume is essentially unchanged, an increase
in culture volume (V) during a fed-batch operation implies a reduction in
the head space and VG [Eq. 2.3].

The transport of a specie i from the gas phase to the liquid phase and
vice versa occurs through boundary layers on each side of the gas-liquid
interface in the two phases. The dominant mechanism for transport of
specie i in each boundary layer in a direction orthogonal to the gas-liquid
interface is molecular diffusion. Assuming that specie i does not participate
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in any chemical reactions in the gas-side boundary layer, the flux Ni in
Eq. 2.3 can be expressed as

(2.4)
G

with C*G denoting the concentration of specie i in the gas phase at the gas-
liquid interface, kiG the gas-side mass transfer coefficient for specie i, DIG
the molecular diffusivity of i in the gas phase, and 8G the thickness of the
gas-side boundary layer. On the other side of the gas-liquid interface, one
must consider in the liquid-side boundary layer the transport of specie i by
molecular diffusion. Such transport occurs in parallel with consumption or
generation, as appropriate, of specie i as a result of cellular metabolism by
cells present in the liquid-side boundary layer and is therefore influenced
by the latter. Precise description of events occurring in the liquid-side
boundary layer then requires solution of conservation equations which ac-
count for diffusion of specie i and its participation in one or more reactions
within cells leading to its consumption or generation. Similar conservation
equations must also be considered for all species that are non-volatile and
participate in cellular reactions. These conservation equations are typically
nonlinear second-order (spatially) ordinary (partial) differential equations
and simultaneous solution of these can be a computationally challenging
task. For this reason, it is assumed that cellular reactions occur to negligi-
ble extents in the liquid-side boundary layer. Since the gas-liquid interface
has infinitesimal capacity to retain specie i, flux of specie i must be con-
tinuous at the gas-liquid interface and the gas and liquid phases must be
at equilibrium with respect to species i at the gas-liquid interface. When
the two phases are dilute with respect to i, the equilibrium is described by
Henry's law. The following relations then apply at the gas-liquid interface.

Ni = kiG(CiG - C*G} — kiL(C* - CO, C*G = HiC*, (2.5)

In Eq. 2.5, Ci and C* denote the concentrations of specie i in the bulk liquid
and the liquid phase at the gas-liquid interface, Hi the Henry's law constant
for specie i, kn. the liquid-side mass transfer coefficient for specie i (kn, =
D I L / S I ) , DO, the molecular diffusivity of i in the liquid phase, and SL the
thickness of the liquid-side boundary layer. The thicknesses of the boundary
layers in the gas and liquid phases are dependent, among other things, on
flow patterns in the two phases. Since the interfacial concentrations are not
easily tractable, in view of Eq. 2.5, the flux of specie i across the gas-liquid
interface can be expressed in terms of easily tractable variables, CiG and
Gj, as
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N^KiL&iG-Hid), KlL = . (2.6)
KiL + HiKiG

The volumetric flow rate of gas feed is usually many-fold greater than that
of liquid feed. A pseudo-steady state hypothesis is therefore invoked as
concerns Eq. 2.3, with the term on the left side (accumulation term) be-
ing much less than any of the three terms on the right side (as concerns
absolute magnitudes). Eq. 2.3 then reduces to an algebraic relation. The
conservation equations for the culture and its constituents are discussed
next.

2.4.2 Conservation Equations for Cell Culture
The conservation equation for the culture can be stated as

(2-7)

with p and Q denoting the density and volumetric effluent rate, respec-
tively, of the culture and pp and Qp the density and volumetric flow rate,
respectively, of the sterile feed (usually liquid). Q is trivial in batch and
fed-batch operations, while QF is trivial in a batch operation. The mass
balance in Eq. 2.7 is simplified via a customary assumption that pp and
p are not significantly different. This assumption is reasonable since the
densities of nutrient medium and biomass are not substantially different.
The simplified form of Eq. 2.7 is

^ = QF ~ Q. (2.8)
at

The culture is comprised of the biotic phase (cell mass) and the abiotic
(extracellular) phase. Let the concentration of biomass (X, cell mass) be
denoted as Cx (Cx — X, the notation popular in the biochemical engineer-
ing literature is X] and the density of biomass as p^. It is then not difficult
to deduce that the volume fractions of the biotic and abiotic phases in the
culture are Cx/'Pb and (1 - Cx/ Pb)-, respectively. The volumes of biotic
and abiotic phases (Vb and Va: respectively) and the volumetric flow rates
of these phases in the bioreactor effluent (in the case of continuous culture,
Qb and Qa, respectively) can then be expressed as

Q. = (!-£*)«. (2.9)
Pb Pb Pb Pb

The volume fraction of the biotic phase is commonly considered to be negli-
gible. While this consideration is valid in cultures that are dilute in biomass
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(Cx <C Pb), in cultures that are concentrated in biomass, neglecting the vol-
ume fraction of the biotic phase may lead to certain pitfalls.

Before proceeding further, some comments are in order regarding bases
for different species. For a particular specie, the basis for choice is based on
how the specie is monitored. Thus, the biomass concentration is expressed
on the basis of unit culture volume, concentrations of species present in
the abiotic phase are expressed on the basis of unit abiotic phase volume,
and concentrations of intracellular species are usually expressed on the ba-
sis of unit biomass amount. For rate processes occurring entirely in the
abiotic phase, the basis is the volume of the abiotic phase (Va), while for
rate processes occurring in the biotic phase (metabolic reactions) and at
the interface between the abiotic and biotic phases (such as species trans-
port), the basis is the amount of the biotic phase. On a larger scale, a
single cell is viewed also as a catalyst (hence the name biocatalyst), or in a
stricter sense, an autocatalyst, since resource utilization and generation of
end products of cellular metabolism are promoted by the cell. The rates of
proliferation/replication of a living species and other processes associated
with it (utilization of resources and synthesis of end products) are as a
result proportional to the amount of the living species.

Approaches to representation of the biotic phase according to the num-
ber of components (species) used for such representation and whether or
not the biotic phase is viewed as a heterogeneous collection of discrete cells
have been succinctly classified by Fredrickson and Tsuchiya [166]. Repre-
sentations which view each cell as a rnulticomponent mixture are referred
to as structured representations, while those which view the biotic phase
as a single component (like any specie in the abiotic phase) are termed un-
structured representations. An unsegregated representation is based on use
of average cellular properties and does not account for cell-to-cell hetero-
geneity. A segregated representation, on the other hand, involves descrip-
tion of behavior of discrete, heterogeneous cells suspended in the culture
and thereby accounts for cell-to-cell variations. The segregated-structured
representation is most suitable for a bioreactor. In order to have tractable
representations of biotic phase, it is often assumed that the cell-to-cell varia-
tions do not substantially influence the kinetic processes in the biotic phase.
The segregated representation can then be reduced to an unsegregated rep-
resentation based on average cell properties. The discussion in this chapter
is limited to the latter perspective. With this in mind, the conservation
equation for the biotic phase can be stated as

™'\^X * ) net
- - - /o in\(2.10)

at

with n denoting the specific cell growth rate, r^ the specific rate of cell
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loss due to cell death or cell lysis, and p,net the net specific growth rate,
respectively, the basis for each being unit biomass amount. It must be kept
in mind that Cx (later referred to also as X) represents the concentration of
viable cell mass. The mass fraction of dead cells in the total cell population
is considered to be negligible. In view of Eqs. 2.8 and 2.10, the temporal
variation in Cx can be described as

- — y-, '

with D denoting the dilution rate for the culture. The mass balance above
applies for all three reactor operations under consideration, with D being
trivial for a batch operation.

The conservation equation for a specie i in the abiotic phase in its
general form can be expressed as

= QFClF + N,aV + RfnVa + r^CxV - QaC^ (2.12)

with CIF denoting the concentration of specie i in the nutrient feed, Rfen

the rate of generation of specie i due to any reactions in the abiotic phase,
rtrans ^g biomass-specific rate of transport of specie i from the biotic phase
to the abiotic phase, and Qa being trivial in batch and fed-batch operations.
When the specie is supplied in the feed gas (as is the case with oxygen),
CiF is trivial and Ni is non-trivial. For species which are not transported
into the biotic phase (for example, macromolecules like starch), r^rans is
trivial. Although bulk of the chemical transformations occur in the biotic
phase, some species may undergo reactions in the abiotic phase and for
these species RfGn is non-trivial. Two examples of this situation are acidic
or enzymatic hydrolysis of starch to generate readily metabolizable carbo-
hydrates and degradation of antibiotics and enzymes in abiotic phase. This
sets the stage for accounting for the intracellular components (components
of the biotic phase) .

The conservation equation for a specie i in biotic phase can be succinctly
stated as

jL-x V ) / trans \/^( \r ri~ n {<) -\1\)CxV-QCiCx (2.16)

with Ci denoting intracellular concentration of specie i in the biotic phase
(mass of i per unit biomass, i.e., mass fraction of specie i in the biotic
phase) and r^ the net rate of generation of specie i in the biotic phase. In
view of the biomass balance [Eq. 2.10], Eq. 2.13 can be restated as
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rlr 1 — r — r-trans _ ,,neir~7T — 11 ™i P Cii

It should be observed that Eq. 2.14a is valid irrespective of the mode of
operation of the bioreactor and the last term on the right side represents
the effect of dilution due to net cell growth. For species which are retained
inside the cells (e.g., large macromolecules), r*rans is trivial. The net rate
of generation of specie i in the biotic phase, r*, includes the rate of loss of
specie i from the biotic phase due to cell death or cell lysis. In view of Eq.
2.10, Eq. 2.14a can be stated alternately as

^=rf e n - r f a n s -M C i , (2.14b)

with rfen being the net rate of generation of specie i in the biotic phase
exclusive of the rate of its loss from the biotic phase due to cell death or
cell lysis. In the case of cell lysis, specie i will be introduced into the abiotic
phase at the rate equal to r^CxV and this must be accounted for in Rfen

in Eq. 2.12.
Conservation equations for intracellular species (and therefore tempo-

ral variations in quantities of these) are not accounted for in an unstruc-
tured representation of kinetics of cellular processes (the so-called unstruc-
tured kinetic models). For species that are present in both abiotic and
biotic phases, examples of which include readily metabolizable nutrients
and metabolites that are excreted by the cells, no differentiation is (can
be) made between rfen (specie synthesis in the biotic phase) and r*rans

(specie transport across the outer cell membrane into the abiotic phase).
The conservation equation for a specie i in the abiotic phase is then based
on Eq. 2.12 and is expressed as

= QFClF + Nigy + R?enVa + T^CxV - QaCi. (2.15)

For a target product metabolite (specie i} that is retained in the cells, an
unstructured kinetic model must still include the conservation equation for
the intracellular product, viz., Eq. 2.13, with rfrans of course being trivial.

2.5 Unstructured Kinetic Models
An unstructured kinetic representation provides a simplistic global (with
respect to cell mass) view of the net result of metabolic rate processes
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occurring in the living cells. In brief, the unstructured representation can
be described as

Nutrients (^Ni) + Cell mass -» (2.16)

more Cell mass + Non-biomass Products^ ^Pj)

This representation then involves conservation equations for cell mass, key
nutrients, and metabolites of interest (target products), the rates of gen-
eration/consumption of the individual species being expressed in general
in terms of concentrations of nutrients in abiotic phase, Ni (Ni — Ci for
nutrient Ni as per the notation commonly used in literature in biochemi-
cal engineering and biotechnology), cell mass concentration, X (X = Cx),
concentrations of metabolites of interest (Pj, Pj = Cj for product Pj for
an extracellular metabolite and Pj — CjCx for an intracellular metabolite
as per the notation commonly used in literature in biochemical engineering
and biotechnology), and other parameters such as culture pH and temper-
ature (T). For biomass (cell mass), the specific cell growth rate is therefore
expressed as // = //(A^, A^, • • • , PI, P-2, • • • , -X", pH, T). Consumption of a
nutrient Ni implies that the rate of its generation in the biotic phase, rfen,
is negative [Eq. 2.15], with the consumption rate usually being expressed as
(. rf

en) = <Ti(Ni, N2, ..., PI, P2, • • • , X, fj., pH, T) and being referred to
as the cell mass-specific uptake rate of nutrient Ni. Similarly, for a target
metabolite Pj, the rate of its generation in the biotic phase, r|en (whether
or not the metabolite is excreted) [Eqs. 2.14a and 2.15], is expressed as
r|en = £j(Ni, N2,..., PI, PI, ..., X, u, pH, T), with EJ being referred to
as the cell mass-specific production rate of metabolite Pj.

2.5.1 Rate Expressions for Cell Growth
More commonly, the dependence of specific cell growth rate on concentra-
tions of various nutrients, cell mass and target metabolites is expressed in
uncoupled, multiplicative form as per the relation

(2.17)

with fji0 being constant characteristic of a particular strain. The popular
forms of (fri(Ni) and (f>j(Pj) are based on the following common experimental
observations. Cell growth is usually promoted by increased presence of
some nutrients Ni (i.e., with increasing concentrations of these) at least up
to some threshold levels and may be discouraged at high concentrations
of some of these (the so-called "substrate inhibition"). Such nutrients are
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called (growth) rate-limiting nutrients. Nutrients which do not influence
cell growth are not rate-limiting [^(A^) = 1 for these nutrients]. Cell
growth may be unaffected by the presence of a target metabolite [(fj(Pj) =
1 for a metabolite Pj] or may be discouraged as the product Pj accumulates
in the culture [i.e., y>j(Pj) decreases with increasing Pj]. The former is often
the case when the amount of Pj in the culture is significantly less than that
of cell mass (X), an example of this situation being production of many
antibiotics and enzymes. The latter is often the case when the amount
of Pj in the culture is comparable or greater than that of cell mass (X),
an example of this situation being production of alcohols (such as ethanol
and butanol) and organic acids (such as acetic, citric, formic, lactic and
succinic acids) by a variety of microbial species. One of the determinants
of cell proliferation is accessibility of nutrients in the abiotic phase to cells.
This accessibility is reduced with increasing biomass concentration in the
culture and as a result, cell growth may be discouraged as the biotic fraction
of the culture is increased [i.e., <p(X) may decrease with increasing X, <p(X)
< I]. The popular forms of ^(A^), <f>j(Pj) and ip(X) are provided in Table
2.1.

In the classical chemical literature, rate expressions for homogeneous
(fluid-based) reactions are of the power-law type, i.e., the rate of a reaction
is proportional to some power of concentration of a reactant or a product
for that reaction, the power (exponent) being referred to as the order of the
reaction with respect to that species. For the large number of expressions
available in the literature for rate of cell growth (see [35, 426, 545] for several
examples of these), the orders of reactions with respect to nutrients are less
than unity and positive those with respect to end-products are non-positive
(not surprising since synthesis of building blocks for cellular material and
synthesis of end-products are competing processes as concerns utilization
of nutrient and energy resources within the living species) (Table 2.1).

The activity of each cell is a net result of thousands of molecular level
chemical reactions occurring inside the cell that are promoted by a large
number of enzymes (biological catalysts). These reactions are therefore
surface-based reactions. Following the classical literature in chemistry on
catalytic reactions, the rate expressions for individual reactions are usually
of the Langmuir-Hinshelwood type, Michaelis-Menten expression being one
example [126]. Depending on the positive (activation, induction) and neg-
ative (inhibition, repression) effects of various chemicals on the activity
of an enzyme and the rate of the reaction it catalyzes, expressions with
varying degrees of complexity have been proposed in the literature, all of
these bearing a strong resemblance to the Langmuir-Hinshelwood type rate
expressions used for chemical catalytic reactions. Due to enzyme-based
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Table 2.1. Dependence of the specific cell growth rate p, on concentrations
of nutrients, products and cell mass [35, 447, 451]

Function

M^)

w(Pi)

vPO

Form

N* Kr - 0
Ki+Nj+Nj/Ku'^tJ " U

N3 if IST •, no
Kj+Nj " Kh °°

1 -e-Ni/Ki

(i + K^r1

Nje~^N>

K,
(K3+P})

e-<*iPi

(-1 Pi \a
(L p3rn)

C\ X \\L J(^)

Reference

[19, 190, 600]

[8, 9, 35]

[35]

[35]

[7, 453]

[8,9]

[8,9]

[47, 190, 239, 326, 338, 395]
[544, 600]

[23, 24]

nature of cellular metabolism, rate expressions for cell replication, nutri-
ent uptake and synthesis of metabolites of interest are usually analogous
to those for individual enzyme-catalyzed reactions (Langmuir-Hinshelwood
type). Some of the entries in Tables 2.1 and 2.2 are reflective of this.

The uncoupled, multiplicative form in Eq. 2.17, although by far the
most popular, is not the only way of relating the specific cell growth rate
(n) to concentrations of various nutrients, cell mass and target metabolites.
Alternate expressions for p, do not uncouple the effects of concentrations
of individual species influencing cell growth. One such expression, used
previously for description of growth of P. chrysogenum, the strain used for
synthesis of penicillin, is the Contois kinetics, viz.,

(2.18)

with fj,0 and Ks being kinetic coefficients independent of S and X, and S
the concentration of the rate-limiting nutrient.
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2.5.2 Rate Expressions for Nutrient Uptake

The cell mass-specific uptake rate of nutrient Ni, &i, is usually related to ac-
tivities accounting for consumption of that nutrient, namely cell growth (an
aggregate of all reactions occurring in an individual cell), cell maintenance,
and production (in significant amounts, amounts comparable to amount of
cell mass) of certain metabolites of interest and is therefore expressed as

cri = r^A- + mi + EdijEj (2.19)

with Yx/Ni being the biomass yield with respect to nutrient Ni, m^ (referred
to as the maintenance coefficient) accounting for consumption of N^ for
maintenance activities of cells, and a^ being the amount of Ni utilized
for production of unit amount of metabolite Pj. (The reciprocal of a^
is commonly referred to as the yield of Pj with respect to JVj.) Since
production of metabolites Pj is a part of cellular metabolism, the biomass
yield in Eq. 2.19 is the apparent biomass yield (and not the true biomass
yield) when consumption of Ni for production of Pj is accounted for directly
[as in the last term in Eq. 2.19] and also indirectly via uptake of Ni for
biomass production. When the last term in Eq. 2.19 is trivial, the cell
mass yield (Yx/Ni) in this relation represents the true cell mass yield. A
direct accounting of utilization of a nutrient Ni for production of metabolite
PJ, as represented by the last term in Eq. 2.19, is justified only when the
amount of Pj is substantial, so that utilization of Ni for synthesis of Pj is
comparable to that for cell growth. The significance of utilization of Ni for
cell maintenance relative to utilization of the same nutrient for cell growth
increases as the specific cell growth rate is reduced.

2.5.3 Rate Expressions for Metabolite Production

The dependence of specific formation rate of metabolite Pj (EJ) on con-
centrations of various nutrients, cell mass and target metabolites is usually
expressed in two different ways. The first approach involves expressing the
dependence in an uncoupled, multiplicative form as per the relation

with £j0 being constant characteristic of the metabolite Pj. The popular
forms of Xji(Ni) and ipjk(Pk) are based on the experimental observations
for a particular strain and the metabolite Pj. Synthesis of a metabolite Pj
may be
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Table 2.2. Dependence of the specific formation rate PJ,£J on concentra-
tions of nutrients, products and cell mass [35, 447, 451]

Function

XjiW)

^jk(Pk}

1>(X)

Form

Ni
Ni + K'ji

Ni
K'^ + Ni + Nf/K'j^

K'3k

(K']k + Pk)

g-OtjkPjk

(I Pk }0

(L P'km>

(I - -MV1 X'm>

Reference

[8, 9, 35, 453, 575]

[190, 600]

[8,9]

[8,9]

[47, 190, 239, 326, 395, 544, 600]

[325, 470]

• promoted by increased presence of a nutrient Ni (xji increases with
increasing concentration of A^) at least up to some threshold levels
and may be discouraged at high concentrations of Ni (the so-called
"substrate inhibition"),

• discouraged by increased presence of the nutrient
with increasing concentration of Ni, Xji < 1)> or

• unaffected by variations in concentration of A^ (xji
.of Ni) (Table 2.2).

ji decreases

= 1 for all values

Production of a metabolite Pj is usually (i) unaffected by the presence of a
target metabolite Pk \^jk(Pk) = 1] or may be discouraged as the product
Pk accumulates in the culture [i.e., ipjk(Pk) decreases with increasing Pk].
Accessibility of nutrients in the abiotic phase to cell mass is reduced with
increasing biomass concentration in the culture (X) at high levels of the
same and as a result, cellular metabolism (including synthesis of metabo-
lite Pj) may be affected negatively as the biotic fraction of the culture is
increased [i.e., ^ ( X ] may decrease with increasing X, ip(X) < I]. The
popular forms of Xji(Ni), ijJjk(Pk) and ij)(X) are provided in Table 2.2.
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The second approach in relating the specific formation rate of metabo-
lite PJ (EJ) to concentrations of various nutrients, cell mass and target
metabolites involves expressing EJ as a function of the specific cell growth
rate, viz., EJ = £j(/x). A popular relation that follows this approach is the
Leudeking-Piret rate expression used to represent kinetics of synthesis of
metabolite PJ, viz.,

EJ =ajn + Pj, (2.21)

with OLJ and /3j being constants characteristic of the particular metabolite

Pi-

2.5.4 Miscellaneous Remarks
It was mentioned at the beginning of section 2.5 that the cell mass-specific
rates of cell growth, uptake of various nutrients, and synthesis of various
metabolites are influenced by two additional culture parameters, viz., pH
and temperature. Many of the parameters in the rate expressions discussed
in Eqs. 2.17 - 2.21 and Tables 2.1 and 2.2 are functions of pH and tem-
perature. These two culture parameters are tightly controlled in bioreactor
operations in research laboratories and industrial bioprocesses. This is the
reason why we do not dwell much on the effects of pH and temperature on
culture dynamics. Before concluding this section, it is pertinent to relate
the discussion in this section to the compact representation of bioreactor
dynamics provided in Eqs. 2.1 and 2.2. When an unstructured representa-
tion is used for cellular metabolism, the state variables (x) would include
concentrations of gaseous species such as 0% and CO-2, concentrations of
nutrients (including dissolved O^) and extracellular products of interest
(including dissolved CO-i), cell mass concentration, culture volume, and
concentrations of intracellular metabolites of interest. If pH and temper-
ature are not controlled, the state variables would also include these two
additional variables. The inputs to the bioreactor (u and d) typically would
include volumetric flow rates and composition of gas feed and liquid feed
(for fed-batch and continuous operations). The outputs from the biopro-
cess (y) typically would include all bioreactor variables that are monitored
(including culture parameters that are measured on-line or off-line, com-
position of the effluent gas, and volumetric flow rates of effluent gas and
culture withdrawal).

2.6 Structured Kinetic Models

Structured kinetic representations are warranted in situations involving sig-
nificant changes in composition of the biotic phase and the kinetics of eel-
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lular rate processes is significantly sensitive to changes in cell composition.
Since it is not practical to account for variations in every component of
the biotic phase, the structured kinetic model for a particular bioprocess
must focus on carefully selected key components and rate processes of ma-
jor interest for that bioprocess. Depending on a particular application of
interest, a variety of structured kinetic representations have been reported
in the literature. These can be classified as (1) morphologically structured
models, (2) chemically structured models, (3) genetically structured mod-
els, and (4) metabolically structured models, and some binary and higher
combinations of (l)-(4). Since antibiotic (such as penicillin) production is
the example industrial bioprocess considered throughout this book, the il-
lustrations provided below will pertain more often to antibiotic production
processes. In these illustrations, which are imported from the literature,
the notation used in the source will be followed as much as possible so that
interested readers will have little difficulty in accessing additional details in
the source references.

2.6.1 Morphologically Structured Models

The kinetics of nutrient utilization and product (for example, an antibi-
otic) formation by filamentous microorganisms and molds is usually quite
complex. A characteristic of growth of these living species is cellular dif-
ferentiation, with different cell types differing from one another in terms
of functions (cell growth, uptake of different nutrients, and synthesis of a
target metabolite such as an antibiotic) they perform. The illustration pro-
vided here pertains to penicillin production. Morphologically structured
models for penicillin production by P. chrysogenum have been proposed
earlier by Megee et al. [382], Nielsen [423], and Paul and Thomas [459].
The models due to Megee et al. [382] and Paul and Thomas [459], although
very comprehensive, involve large number of parameters, which make their
identification and validation difficult. In comparison, the model proposed
by Nielsen [423, 424, 425] is simplified and flexible and is used here as an
illustration. This is not to say that we prefer one structured model over
the others. Three cell types are considered in the Nielsen [423, 424, 425]
model, apical cells, subapical cells, and hyphal cells (denoted as a, s and h,
respectively). Uptake of nutrients and formation of biomass occurs only in
apical and subapical compartments of an hyphal element (a multicellular
unit). In an hyphal element, the apical compartment is located between a
tip and the first septum. The cells in the interior (with respect to apical
compartment) have an intracellular composition similar to that of apical
cells and form the subapical compartment. Three metamorphosis reactions
are considered in the Nielsen [423, 424, 425] model: branching, tip exten-
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sion and differentiation. During tip extension, some apical cells become
subapical cells. Branching refers to formation of new apical compartments
from the cells in the subapical compartment. The subapical cells further
away from the tip become more and more vacuolated as their age increases.
As a result, cells further away from the tip contain large vacuoles. These
cells, which form the hyphal compartment, play an important role in trans-
port of protoplasm toward the tip section. Formation of vacuolated hyphal
cells from the subapical cells is referred to as differentiation. The transi-
tion from active subapical cells to completely vacuolated hyphal cells takes
place gradually. The hyphal cells located in the vicinity of the subapical
compartment are therefore assumed to retain the metabolic activity and
ability to grow as do the subapical cells. This has been accounted for in the
formulation of the model by considering that a fraction fh of the hyphal
cells is metabolically active ([423, 424, 425]).

The kinetic expressions for branching, tip extension and differentiation
are considered to be first order in cell type being transformed, which leads
to the following rate expressions for the metamorphosis reactions under
consideration.
Branching (1):

Zs^Za, Ul=kUlZs (2.22)

Extension (2):

Za —> Zs, «2 = kU2Za (2.23)

Differentiation (3):

03(S) = .. * . (2.24)

In Eqs. 2.22 - 2.24, Za, Zs, and Zh represent the mass fractions of apical,
subapical, and hyphal cells, respectively, in the total cell population, w/s
(j = 1, 2, 3) the rates of the three metamorphosis reactions and kUj's (j =
1, 2, 3) the kinetic coefficients for these. Differentiation is assumed to be
inhibited by the carbon source (usually glucose, S = glucose concentration
in the abiotic phase). The form of $3(8) in Eq. 2.24 is a special case of the
form of <j>i(Ni) (Ni = S) in Table 2.1. The specific growth rates of each cell
type have been represented by the Monod kinetics, viz.,

Vj = kj(j>(S), 0(5) = -4—, j = a,s,h. (2.25)
J\s + o

In Eq. 2.25, kj's (j = a, s, h] represent the maximum values of specific
growth rate of each cell type. The mass balances for the three cell types
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then can be described by Eqs. 2.14a and 2.14b (ci — Zi, i = a, s, /i, r£rans

= 0) with rfen (i = a, s, h) being

rf n = ui - u2 + ̂ aZa, rfn = w2 - ui - u3 + ̂ SZS, (2.26)

Via addition of Eq. 2.14b for the three cells types and in view of the identity
Za + Zs + Zh — 1, the expression for the specific cell growth rate /u can
be deduced to be

// = p,aZa + HSZS + fh^hZh- (2.27)

Cell death and cell lysis have not been considered in the model by Nielsen
([423, 424, 425]). One must note that the specific cell growth rate in this
structured kinetic representation is dependent not only on the extracellular
glucose concentration (5), but also on the fractions of the three cell types
(intracellular variables as concerns the total cell population). The follow-
ing expressions have been employed for the other two key processes, viz.,
glucose (5) uptake and penicillin (P) synthesis (specific rates denoted as
as and £p, respectively).

ms + a2£P, £P = k2(Zs + fhZh}X(S), (2.28)

-
K2 + S + S'2/KI'

In Eq. 2.28, the parameters ai, 0:2, k2, K2, and Kj are independent of 5, X
and ZiS (i — a,s,/i). The rate expression for glucose uptake in Eq. 2.28 is
similar to Eq. 2.19, with a\ being the reciprocal of the cell mass yield with
respect to glucose (Yx/s)- Before leaving this illustration, the functional
segregation of the three cell types must be commented upon. While all
three cell types are considered to be capable of growth [Eq. 2.25], only the
subapical cells and a fraction (/^) of the hyphal cells are capable of synthe-
sizing penicillin [Eq. 2.28], and the three cell types participate in different
metamorphosis reactions [Eqs. 2.22-2.24]. The conservation equations for
glucose (5) and the extracellular product (penicillin, P) are provided by
Eq. 2.15 with N, = 0 and #fn =Q(i = 5, P, products of hydrolysis of peni-
cillin pooled together with penicillin), r|en = - 0-5, rpen = £p, and Cj — J,
J = P, S1, X. Conservation equations for oxygen in the gas phase and the
abiotic phase have not been considered in the Nielsen model [423, 424, 425],
since it is assumed that the culture is not oxygen limited (with dissolved
oxygen level assumed to be in excess of 45% saturation). The supply of
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sufficient amounts of oxygen may indeed become a critical problem at high
biomass concentrations. The state variables [Eq. 2.1] in this model there-
fore are x = [X S P Zs Zh]T for batch and continuous cultures and x =
[X S P Zs Zh V]T for a fed-batch culture. The identity Za + Zs + Zh

— I implies that only two of the three fractions of the cell population are
independent state variables.

2.6.2 Chemically Structured Models
The effects of key chemicals on the key rate processes are accounted for
in the chemically structured models. All viable cells in the cell population
are considered to be functionally similar, with conservation equations in
the abiotic and biotic phases being considered for those species that are
present in both phases. For such species, generation in the abiotic and
biotic phases and transport across the interface between the abiotic and
biotic phases must be fully accounted for. Synthesis of several antibiotics
and other secondary metabolites by a host of microorganisms is inhibited by
high concentrations of phosphate. Since cell growth is promoted by phos-
phate and the production of the secondary metabolite depends on both
the cell mass concentration and production of the secondary metabolite
per unit cell mass (specific production of the target metabolite), an opti-
mum phosphate level which leads to maximum production of the secondary
metabolite exists, as has been shown in previous experimental studies (see
[461]). The illustration provided here pertains to a structured model for
alkaloid production by Claviceps purpurea [461]. Let p and p\nt denote the
concentrations of extracellular and intracellular phosphate (KN^PO^), re-
spectively, the dimensions for the respective variables being g phosphate/L
abiotic phase and g phosphate/g biomass.

Phosphate is considered to be the rate-limiting nutrient as concerns cell
growth. Following expressions have been employed for specific cell growth
rate (JJL) and specific cell lysis rate (rd) [Eq. 2.10].

(2.29)

In the relations above, fci, &2> and K\ are the kinetic parameters. The
dependence of /j, on pint is expressed by the Tessier equation. Cell lysis
releases phosphate into the abiotic phase in quantity proportional to the
cell mass phosphate content (YP/X) and the intracellular phosphate con-
centration (PJ). This release must be accounted for in the mass balance for
extracellular phosphate, which is described by Eq. 2.12 with Cp = p and
Np = 0, and Rfn and r*rans being
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= (YP/X + Pint}k2X
2V/Va, rf ans = - j - p (2-30)

In Eq. 2.30, k$ and K-2 are kinetic parameters. The conservation equation
for intracellular phosphate is provided by Eq. 2.14b with a = cp — pjnt and
rpen — ~ Yp/xfJ" The specific phosphate utilization rate for generation of
biomass is therefore considered to be proportional to specific cell growth
rate. It should be noted that the expression for Tprans in Eq. 2.30 is similar
to the Monod expression. The transport of many species from the abiotic
phase to the biotic phase and vice versa is facilitated by transport proteins
(such as permeases). The rate expressions for transport of species across the
outer cell membrane therefore bear close resemblance to the rate expressions
for enzyme-catalyzed reactions (such as the Michaelis-Menten expression).
Finally, the mass balance for the alkaloid (target metabolite) is provided
by Eq. 2.15 with d = Ca = a, 7Va = 0, Rfn = 0, and r|en being provided
by

, (2.31)

with KS and k± being the kinetic parameters. It is evident from Eqs. 2.29
and 2.31 that while increasing intracellular phosphate content is conducive
for cell growth, it inhibits alkaloid synthesis due to repression of phos-
phatase activity. In this chemically structured model, the rates of all key
kinetic activities, viz., cell growth, phosphate consumption, (- r|en), and
alkaloid production are expressed in terms of the conditions prevailing in
the biotic phase, viz., pl in the present case. The state variables [Eq. 2.1] in
this model therefore are x — (X p pl a}T for batch and continuous cultures
and x = [X p pi a V]T for a fed-batch culture.

2.6.3 Chemically and Morphologically Structured
Models

This illustration pertains to production of the antibiotic cephalosporin C
(CPC) by the mold Cephalosporin acremonium. As in the case of penicillin
production (section 2.6.1), experimental observations have revealed that the
cell population is comprised of three different morphological types, viz.,
hyphae (/i), swollen hyphal fragments (s), and arthrospores (a). These
three cell types undergo two metamorphosis reactions shown below.

(t) Xh -* X8t (it) Xs -> Xa. (2.32)

Transformation of hyphae into swollen hyphal fragments involves assimila-
tion of glucose (a carbon source, denoted as g] and methionine (a nitrogen
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source, denoted as m). The uptake of these two nutrients is confined mainly
to hyphae and swollen hyphal fragments. Of the three cell types, only the
swollen hyphal fragments are primarily capable of synthesizing CPC. Ex-
perimental studies have indicated that the rate of CPC synthesis is directly
related to the activity of enzymes responsible for this. These enzymes are
induced by intracellular methionine and are repressed by glucose. Only
hyphae are capable of replication (growth) . The rate of reaction (i) is ex-
pressed as a function of concentrations of hyphae, glucose and methionine,
while the rate of reaction (ii) is expressed as a function of concentrations
of glucose and swollen hyphal fragments. Let Zh, Zs and Za denote the
mass fractions of hyphae, swollen hyphal fragments, and arthrospores, re-
spectively, in the total cell population. Then the conservation equations
for the three cell types can be expressed as in Eq. 2.14a with Ci — Zi,
rtrans _ Q^ _ ^ s^ a rpj^ net rates of generation of the three cell types,
Ti (i — h, s, a), are expressed as ([35, 374])

rh = ( f j , ' - p - kD)Zh, rs = (3Zh - (7 + kD)Z8, ra = 7ZS - kDZa (2.33)

with &£> being the kinetic coefficient for cell death or cell lysis and the
specific rates //, (3 and 7 being expressed as

+ m))02(#), 7 = tei + k22<M#),
g), (2.34)

with g and m denoting concentrations of glucose and methionine, respec-
tively, in the abiotic phase, and //m, #11, £12, foi, ^22, Kg, KG and Km being
the kinetic parameters. In view of the identities Zh + Zs + Za = 1 and
Xh/Zh — XS/ZS = Xa/Za = X, it can be deduced from Eqs. 2.14a and
2.33 that

//net = / / -&£ , n = n'Zh. (2.35)

The structured model by Matsumura et al. [374] incorporates conservation
equations for glucose and methionine in the abiotic phase. A separate mass
balance for intracellular glucose is not considered. Hence, one needs to
employ Eq. 2.15 for glucose (i — g] and Eq. 2.12 for methionine (i = m)
with Ni — 0 and Rfen = 0 (i — g, m}. Glucose uptake occurs predominantly
in hyphae and swollen hyphal fragments and as a result

rf n - -(HmZh/YH/G + vmZa)0i(s), (2.36)

in Eq. 2.15 with YH/G (yield of hyphae based on glucose consumption) and
vm being kinetic parameters. For methionine in the abiotic phase,

Us = Umsfo(m), (j>3(m) - m/(Km + m), (2.37)
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with Umhi Urns, and Km being the associated kinetic parameters.
Owing to the considerable significance of intracellular methionine in reg-

ulating expression of CPC-synthesizing enzymes, conservation equations for
methionine in the three cell types are also part of the structured model. Let
mihimis and raje denote concentrations of methionine inside the hyphae,
swollen hyphal fragments, and arthrospores, respectively. The conservation
equation for the cell type j (j = h, s, a), which is analogous to that for total
cell mass, Eq. 2.11, has the form

dX3/dt = (nj - kD}X3 - DXj, j = h, 5, a, (2.38)

with the effective specific growth rates /^ , /j,s , and jita being expressed based
on Eq. 2.33 as

7, Ha = lZa/Za. (2.39)

The conservation equations for an intracellular species in one or more of the
cell types can be expressed in a form similar to those in Eqs. 2.13 and 2.14b.
For a specie q, the temporal variation in its intracellular concentration in
cell type j, qij , can therefore be expressed as

(2.40)

with r^n and r^ans representing the specific rate of net generation of specie
q in cell type j and the specific rate of transport of specie q from cells of
type j into the abiotic phase [both in units mass (moles) of q /{time, mass
of cells of type j } } . For methionine (s — m), these rates have the following
forms for the three cell types under consideration [35, 374].

i8 + (3mlhZh/Zs - jmls,

rf n = -k3amia + ~fmlsZs/Za, r*rans = 0. (2.41)

The first terms on the right sides of expressions for r^en and rfen account
for biosynthesis of methionine in hyphae and swollen hyphal fragments,
respectively. The terms in the expressions above containing (3 and 7 rep-
resent (dis)appearance of methionine in a particular cell type population
associated with interconversion between two cell types. The presence of
glucose in the abiotic medium is considered to increase the rate of me-
thionine utilization for protein synthesis. The estimation of the kinetic
parameters in Eq. 2.41 has been based on comparison of the experimen-
tally measured and model predicted values of the average intracellular me-
thionine concentration, (rai)avg, the value predicted by the model being

mlsZs + miaZa.
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The kinetic parameters in Eq. 2.41 have been considered to be constant.
The rate of synthesis of CPC is considered to depend on activity of enzymes
responsible for synthesis of CPC. The conservation equation for this enzyme
pool (denoted as e) in swollen hyphal fragments is provided by Eq. 2.40
with qih = eih = e, with

rlTS = 0, r*£ = (l/Xs}(VmEmlsXs/{mls + KE})t-trQ - ̂
Q = {1 + (K/an)g}/{l + (*/an)(l + ry)pn} (2.42)

and VmE,KE,K, a,n, and 77 being the kinetic parameters. The effect of
catabolite repression by glucose is included in Q (n > 1). The subscript
(t — £/) denotes evaluation at time t' = £ — £/, with £/ representing the time
lag between induction and gene expression. Finally, the mass balance for
the target product (p), cephalosporin C (Cp = p), is expressed as in Eq.
2.15 with

(2.43)

The second expression in Eq. 2.43 accounts for degradation of cephalosporin
C in the abiotic phase. The magnitudes of various kinetic parameters for
the structured model are reported in [35] and [374]. The state variables
(Eq. 2.1) in this model therefore are x = [X g m Z^ Zs m^ rriis mia e p]T

for batch and continuous cultures and x = [X g m Zh Zs m^ m,is rriia e p
V]T for a fed-batch culture. The identity Zh + Zs + Za — I implies that
only two of the three fractions of the cell population are independent state
variables.

2.6.4 Genetically Structured Models
In the case of protein synthesis, the knowledge of pertinent mechanisms
at the molecular level allows formulation of genetically structured models.
Protein synthesis assumes particular importance in manufacture of enzymes
of industrial importance, hormones, and other commercial polypeptides.
These models are robust, that is, these can be used for reliable prediction
at conditions different from those used for estimation of model parameters
and model evaluation and as such are very useful for optimization with
respect to environmental and genetic parameters. A simple illustration
is considered here that focuses on transcription and translation processes
involved in synthesis of a target protein. One must consider conservation
equations for the messenger RNA (mRNA) obtained by transcription of a
particular gene G and the product of translation of the message carried by
the mRNA, viz., the target protein (P). Let [G], [mRNA], and [P] denote the
molar intracellular concentrations (moles per unit cell mass) of G, mRNA,
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and P, respectively. The conservation equations for mRNA and P then are
provided by Eq. 2.14b [329, 330] with a = [i], i = mRNA, P and

ke[P],

(2.44)

In Eqs. (2.44), kp and kq are the kinetic coefficients for transcription of the
gene and translation of mRNA, 77 the efficiency of promoter utilization, £
the efficiency of utilization of the mRNA at the ribosomes, and kj and ke

the kinetic coefficients for deactivation of the mRNA and the active protein,
respectively. For intracellular proteins, rpans is trivial, while for proteins
partially excreted from living cells, rpans is non-trivial and positive. In
balanced growth, pseudo-steady state hypothesis (PSSH) is often invoked
for the specific mRNA and the target protein, i.e., the rate of intracellular
accumulation of each species (left side of Eq. 2.14b) is considered to be
insignificant compared to rates of other processes (the non-trivial terms
on the right side of Eq. 2.14b). Application of PSSH for an intracellular
protein results in the following algebraic relations.

[mRNA] = kpr)[G]/(kd + /u), [P] = kq£[mRNA}/(ke + fj.). (2.45)

The cell mass-specific rate of synthesis of the target protein, rpen, therefore
can be deduced to be

r|en = kpkqri[G\n/{(kd + n)(ke + »)}. (2.46)

From this the cell mass-specific production rate of the target protein ( s p ,
total rate of protein production in the culture = £pXV) can be obtained
as follows. If the cells are subject to death, then Ep = r|fn — r^, while if
the cells are subject to lysis, then assuming total release of protein from
the cells undergoing lysis into the abiotic phase, R^nVa = rd[P}XV and
in that case £p = r|fn. If the target protein is partially excreted, then one
must consider mass balances for it in both biotic and abiotic phases with
rtrans providing the linkage between the two balances.

The rate of expression of an operator-regulated gene depends on the
efficiency of transcription of that gene (77), which in turn is determined by
interactions of modulating species at operator sites and RNA polymerase
binding. This efficiency is thus proportional to the probability that the op-
erator site O is not bound to represser protein R. The genetically structured
model involves a large number of model parameters representing various
molecular interactions. A specific genetic change would affect only certain
interactions and therefore specific model parameters. Further details on
this model [329, 330] are spared here and interested readers are referred
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to the source references ([33, 329, 330]). For Escherichia coli, the kinetic
parameters for the transcription and translation processes, viz., kp and kq,
have been correlated to the specific cell growth rate (//), with both pa-
rameters increasing with increasing /j, [329, 330]. Such kinetic models will
allow mapping of nucleotide sequence into cell population productivity and
therefore afford the user capability for systematic optimization of cloned
DNA inserts and in the long run the genetic makeup of the organism.

2.7 Case Studies

2.7.1 An Unstructured Model for Penicillin Produc-
tion

In this case study, the mechanistic model of Bajpai and Reuss [36] was
used as starting point for model development. The original model has been
extended by including additional input variables such as agitation power,
and aeration rate. Functional relationships among the process variables
are summarized in Table 2.3 and all inputs and outputs are listed in Figure
2.1. A variety of mathematical representations have been suggested for
describing certain biological behaviors by researchers referenced earlier in
the text and others. We used the representations by Bajpai and Reuss [36]
but readers are cautioned that several other representations may also be
used to describe the penicillin fermentation process as we discussed earlier.

Unstructured Models
Mass balance equations can be summarized as follows.

^-

Input Variables
PROCESS

Output Variables

Glucose Feed Temperature Culture Volume
Glucose Feed Flow Rate Fermenter Temperature
Aeration Rate Generated Heat
Agitator Power Input pH
Coolant Flow Rate
Acid/Base Flow Rate Concentrations of

Glucose
Biomass
Penicillin
Dissolved Oxygen
Carbon Dioxide

Figure 2.1. Input/output structure of the process.
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Table 2.3. Functional relationship among the process variables

Model Structure

X = f (X, S, CL, H, T)

S = f (X, S, CL, H, T)

CL = f (X, S, CL, H, T)

P = f (X, S, CL, H, T, P)

CO-2 = f (X, H, T)

H - f (X, H, T)

Biomass: The dependence of specific growth rate on carbon and oxygen sub-
strates was assumed to follow Contois kinetics [36] to consider the biomass
inhibition. The biomass growth has been described by Eq. 2.11 with
Cx = X and /znet = fj. and the specific growth rate /u being

CL

(KXX + S) (KOXX
(2.47)

in the original model [36]. The variables and parameters used are defined
in Table 2.3 and 2.4.

In order to include the effects of environmental variables such as pH
and temperature, biomass formation can be related to these variables by
introducing their effects in the specific growth rate expression [61] to give:

P'X

If \ W~MA \ \n j

L ' \H+] ' K2 \

S
( K X -\- S1^ ( A

CL

:oxx + CL}

kge /.de (2.48)

This would in turn affect the utilization of substrate and the production
of penicillin. Direct effects of pH and temperature on penicillin production
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Table 2.4. Initial conditions, kinetic and controller parameters for normal
operation (adapted from [61])

Time: t (h)
Initial Conditions
Biomass concentration: X (g/L)
Carbon dioxide concentration: CC>2 (mmole/L)
Culture volume: V (L)
Dissolved oxygen concentration: CL (= C*L at saturation) (g/L)
Heat generation: Qrxn (cal)
Hydrogen ion concentration: [H+] (mole/L)
Penicillin concentration: P (g/L)
Substrate concentration: S (g/L)
Temperature: T (K)
Activation energy for growth: E9 (cal/mole)
Arrhenius constant for growth: kg

Activation energy for cell death: E^ (cal/mole)
Arrhenius constant for cell death: ka
Constant: KI (mole /L)
Constant: I<2 (mole /L)
Constant relating COa to growth: 0.1 (mmole CO?/ g biomass)
Constant relating COa to maintenance energy:
Constant relating COa to penicillin production:
Constant: p
Constant: b
Constants in Kja : a, (3
Constant in FJoss: A (h"1)
Constant in heat generation: rg2 (cal/g biomass.h)
Cooling water flow rate: Fc (L/h)
Contois saturation constant: Kx (g/L)
Density x heat capacity of medium: p Cp (1/L°C)
Density x heat capacity of cooling liquid: pcCpc (1/L°C)
Feed substrate concentration: Sf (g/L)
Feed flow rate of substrate: F (L/h)
Feed temperature of substrate: T/ (K)
Heat transfer coefficient of cooling/heating liquid: a (cal/h°C)
Inhibition constant: Kp (g/L)
Inhibition constant for product formation: K/ (g/L)
Maintenance coefficient on substrate: mx (h"1)
Maintenance coefficient on oxygen: m0 (h~ J )
Maximum specific growth rate: p,x ( h~ J )
Oxygen limitation constant: KOI , Kop (no limitation)
Oxygen limitation constant: KOI , Kop (with limitation)
Penicillin hydrolysis rate constant: K (h"1)
pH : (Base)Kc,Tj:(h),Tr>:(h)
(Acid)Kc ,T/:(h),TD:(h)
Specific rate of penicillin production: np (h"1)
Temperature: (Cooling)Kc,r/:(h),TD:(h)
(Heating)Kc,T/:(h),T£>:(h)
Yield constant: Yx/s (g biomass/g glucose)
Yield constant: Yx/0 (g biomass/g oxygen)
Yield constant: Yp/s (g penicillin/g glucose)
Yield constant: Yp/0 (g penicillin/g oxygen)
Yield of heat generation: rgl (cal/g biomass)
O.-2 (mmole CO?/ g biomass h)
as (mmole CO2/ L h)

Value
0.1
0.5
100
1.16

0
10-5.5

0
15

297
5100

1X603

52000
10

10
7x10

0.143

33
-10

-5

0.60
72, 0.5

2.5xlO~4

1.6783X10"1

0.15
1/1580
5/2000

600

298
1050
0.0002
0.10
0.014
0.467
0.092

0
2 x l O ~ 2 , 5xlO~ 4

0.04
8x40~4 , 4.2, 0.2655
IxlO"4 , 8.8, 0.125

0.005
70, 0.5, 1.6
5, 0.8, 0.05

0.45
0.04
0.90
0.20
60

4xlO~ 7

io-4
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are not considered due to the complex nature of the phenomenon, and
unavailability of the experimental data.

A typical inhibition term that includes hydrogen ion concentration [H+] is
introduced into the specific growth rate expression. It has been found that
the [H+]-dependent term in the rectangular parentheses in Eq. 2.48. The
values of KI and K2 are chosen to be in the range of their typical values in
the literature [426, 545].

The influence of temperature on the specific growth rate of a microor-
ganism shows an increasing tendency with an increase in temperature up
to a certain value which is microorganism specific and a rapid decrease
is observed beyond this value. This decrease might be treated as a death
rate [545] . These effects are reflected in the temperature-dependent term in
Eq. 2.48 with kg and E9 being the pre-exponential constant and activation
energy for cell growth, and k^ and E^ being the pre-exponential constant
and activation energy for cell death, respectively. Typical values for these
parameters were taken from the literature [545]. An adjustment has been
made so that an increase in temperature enhanced the biomass formation
up to 35°C.

Penicillin:

The production of penicillin is described by non-growth associated prod-
uct formation kinetics. The hydrolysis of penicillin is also included in the
rate expression [36] for completeness.

f-o* — -7W
where, ep is the specific penicillin production rate defined as:

S Cp

Substrate inhibition kinetics for penicillin production was originally pro-
posed by Bajpai and Reuss [36] to successfully represent the observed exper-
imental behavior. They commented that the proposed mechanism should
not be considered to throw any light upon the nature of phenomena in-
volved. Others point out that industrial strains of penicillin production are
tolerant to high levels of glucose and question the use of substrate inhibi-
tion terms in Eq. 2.50. Large quantities of substrate results in only little
improvement in penicillin production.
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Substrates:

The utilization of each of the two substrate (glucose and oxygen) largely
for biomass growth, and penicillin formation, and cell maintenance [36].
The mass balances for glucose and oxygen for the variable volume fed-
batch operation therefore are

Glucose:

Dissolved Oxygen:

dCL n ep CLdV
—rr = -T? — A - — — A - m0X + Kia(CL - CL) - -^--JT (2.52)

at Yx/0 Yp/0 V at

with yield coefficients Yx/s, Yp/s, Yx/0, and Yp/0 and maintenance coeffi-
cients mx and m0 being constants characteristic of a particular penicillin
producing strain. Whereas Bajpai and Reuss [36] have considered the over-
all mass transfer coefficient Kja to be constant, we have assumed K/a to
be a function of agitation power input Pw and flow rate of oxygen fg (as
fg = QG = QGF suggested by [35].

(2-53)

The values of a and (3 are assigned so that the dependence of penicillin
concentration on K;0 showed behavior very similar to the predictions of
[36]-

Volume Change:

The change in the bioreactor volume during fed-batch process operation
is provided by a modified form of Eq. 2.8, which is

^ = F + Fa/b - Floss (2.54)

The effect of acid/base addition on the bioreactor volume is accounted
for by Fa/b (volumetric feed rate of acid/base addition) The term FIOSS

accounts for evaporative loss during fermentation. The loss in volume due
to evaporation is in fact more significant than the acid/base addition term
in industrial cultivations. Normally the air entering the bioreactor is fairly
dry and after bubbling through the broth it is at about 90 - 100 % relative
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humidity. Typically, 10 to 20 % of the total broth can be lost due to
evaporation during one week of fermentation, the actual amount depending
on the temperature of the fermentation. FIOSS is a function of temperature
and culture volume V of the cultivation broth. An accurate relationship can
be developed by carrying out a set of experiments at different temperatures
and measuring the humidity of the inlet and exit gas and the volume of the
culture broth at different times during each experiment.

Culture Temperature:

Neglecting all other sources of heat generation except that caused by
microbial reactions, the volumetric heat production rate is given as:

^n dXV
(2.55)

dt qi dt

where rgi is assumed to be constant and might be treated as a yield coeffi-
cient [426]. During the product synthesis phase, when the rate of biomass
formation is rather low, there is still significant heat generation associated
with metabolic maintenance activities. Therefore, we have included the
second term on the right hand side of Eq. 2.55 to account for the heat pro-
duction during maintenance. Because the heat generation and CO<i evolu-
tion show similar profiles, their production rate due to growth (dX/dt) and
biomass (X) should have the same ratio as a first approximation. Based on
this observation, rQ2 is calculated and tabulated in Table 2.4. The energy
balance is written based on a coiled type heat exchanger which is suitable
for a laboratory scale fermentor [424]:

j^ „ \-j -i ' T / _ _ -MKJ-II , r,h (2.00)

2pcCpc J

Carbon Dioxide:

The introduction of variables which are easy to measure yet important
in terms of their information content has been very helpful in predicting
other important process variables. One such variable is CO2 from which
biomass may be predicted with high accuracy. In this work, CO2 evolution
is assumed to be due to growth, penicillin biosynthesis and maintenance
requirements as suggested by [398]. The CO2 evolution is:

— ~ - = a — +aX + a (2.57)
dt 1 dt 2 3
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Here, the values of ai, a-z and 0:3 are chosen to give CC>2 profiles similar to
the predictions of [398].

The extended model developed consists of differential equations 2.11,
2.49, and 2.51-2.57 that are solved simultaneously.

Simulation Results of the Unstructured Model

Simulations have been carried out to check the performance of the simula-
tor. In all runs, a batch operation has been followed by a fed-batch opera-
tion upon near complete depletion of the carbon source (glucose). This has
been done by assigning a threshold value to glucose concentration which
was chosen to be 0.3 g/L. The system switches to the fed-batch mode of op-
eration when the level of glucose concentration reaches this threshold value.
The predictions of the model under different conditions are compared with
experimental data of Pirt and Righelato [471] and the simulation results of
Bajpai and Reuss [36]. Note that most of the parameters are functions of
the strain, nature of the substrate and the environmental conditions like
pH and temperature. The additional terms that were introduced increased
the stiffness of the ordinary differential equations. For that reason, some
of the parameter values are readjusted. These readjusted parameters are
listed in Table 2.4.

Figures 2.2, 2.3, 2.4, 2.5, and 2.6 show the simulation results under
normal operating conditions with the pH and temperature being controlled
at 5.0 and 25°C, respectively. The model successfully predicted the con-
centration profiles of biomass (Figure 2.2), glucose (Figure 2.3), penicillin
(Figure 2.4), dissolved oxygen (Figure 2.5), and carbon dioxide (Figure
2.6). Typical experimental data are also shown in Figure 1.4 for com-
parison. In the batch operation, glucose and oxygen are mainly used for
biomass growth. In Figures 2.2, 2.3, 2.4, 2.5, and 2.6, phase I represents
the lag phase where no biomass production is observed. Phase II represents
the exponential growth phase where the specific growth rate is maximum
and so is the substrate utilization rate. Phase III is the late exponential or
early stationary phase where the operation is switched to fed-batch mode
and penicillin production starts. At this stage, glucose and oxygen are used
for both biomass growth and penicillin production. Phase IV is the station-
ary phase where biomass production is essentially negligible and penicillin
production is high. When the concentration of penicillin reaches its high
value and levels off, it is common practice to stop the operation. All phases
are simulated successfully via the unstructured model.

Copyright © 2003 by Taylor & Francis Group, LLC



56 Chapter 2. Kinetics and Process Models

0 50 100 150 200 250 300 350 400 450

Figure 2.2. Time course of biomass concentration based on unstructured
model.

J Fed-batch switch

IV

50 100 150 200 250 300 350 400 450

Time, h

Figure 2.3. Time course of glucose concentration based on unstructured
model.
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1.5
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II III

0 50 100 150 200 250 300 350 400 450

Time, h

Figure 2.4. Time course of penicillin concentration based on unstructured
model.

1.3

1.25

1.2

1.05

Fed-batch switch

IV

«n*

0 50 100 150 200 250 300 350 400 450

Time, h

Figure 2.5. Time course of dissolved oxygen concentration based on un-
structured model.
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50 100 150 200 250 300 350 400 450

Time, h

Figure 2.6. Time course of carbon dioxide concentration based on unstruc-
tured model.

2.7.2 A Structured Model for Penicillin Production

The model proposed in this case is a derivative of the morphologically struc-
tured model by Nielsen [424] and accounts for effects of dissolved oxygen on
cell growth and penicillin production and variations in volume fractions of
abiotic and biotic phases due to biomass formation [63]. Penicillin produc-
tion is considered to occur in the subapical hyphal cell compartment and
to be affected by glucose and oxygen.

Morphology and Metamorphosis

The morphological structure of the model is described in detail elsewhere
[423, 424]. Each hyphal element is divided into three cell compartments/re-
gions: apical (Za), subapical (Zs) and hyphal (Zh). Branching, tip exten-
sion and differentiation are the three metamorphosis processes considered
[423]. Let Za, Zs and Zh denote the mass fractions of apical, subapical and
hyphal portions, respectively in the cell population. Both branching and
tip extension are considered to be first order processes, viz.

Branching:

u\ (2.58)
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Extension:

Za -> Zs u2 = k2Za (2.59)

Differentiation:

(2-60)

Mass Balance Equations

Growth of apical and subapical cells is described by saturation type
kinetics including effects of both glucose and oxygen in multiplicative form.
The motivation for this is an earlier modeling work on penicillin production
by Bajpai and Reuss [36] where growth has been described by Contois
kinetics. Here, in order to reduce the model complexity, Monod kinetics
has been used for describing the growth as suggested by Nielsen [423].

Zangirolami et al. [685] suggest that hyphal cells may still retain the same
metabolic activity and growth ability exhibited in the subapical compart-
ment to some extent and considers a growing fraction (//J of hyphal cells
in their model. On the other hand, Nielsen [423] suggests that hyphal cells
have a metabolism completely different from the actively growing apical and
subapical cells, and hence, they are believed not to contribute to the over-
all growth process and assumes ^h to be zero. For simplicity, the growth
rate of hyphal cells (/z^) is also considered to be trivial based on Nielsen's
work [423]. The overall specific growth rate (//), which is an average of the
growth rates of individual compartments, is then obtained as

p. — fJLaZa + IJLSZS. (2.63)

In view of the above, the conservation equations for the three compartments
(components) of the cell population can be expressed as (Za+Zs+Zh=l)

/j7
—r^- — HI — u-2 + (//a — fJL)Za apical cells (2.64)

T f-7

— - = —ui + u2 — u% + (p,s — fi)Zs subapical cells (2.65)
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dZh

dn
hyphal cells. (2.66)

The terms yZi (i = a, s, h) in Eqs. 2.64, 2.65, and 2.66 account for
dilution associated with biomass formation. The random fragmentation at
different positions in individual hyphal elements leads to distribution in
characteristics of the population such as the mass and numbers of total
tips and actively growing tips [423]. Estimation of the average properties
of the hyphal elements has been addressed theoretically by Nielsen [423]
and experimentally using image analysis by Yang et. al. [674, 675]. In
this case, we have made use of this population model based on the average
properties of the hyphal elements [423] . In summary,

Hyphal element balance:

^ = (^ - D)e (2.67)

where D is the dilution rate.
Hyphal mass balance:

— - = (n — (pm)m (2.68)

Actively growing tips balance:

(2.69)

where 0 (= 02^1, 0,2 is constant) is the specific branching frequency (l/{g.h})
and is a function of Zs. (f> is the specific rate of fragmentation (l/{g.h})
and is assumed to be constant. The number of actively growing tips is less
than the total number of tips (ntotai) due to formation of non-growing tips
by fragmentation. Two inactive tips are formed as a result of fragmenta-
tion resulting in formation of an additional hyphal element. The average
number of inactive tips on each element is exactly 2. The total number of
tips then is:

"total = n + 2. (2.70)

The mass of the average hyphal growth unit (rhhgu ) and total hyphal
growth unit length (Ihgu) are then obtained as [85]

m , 4™,hgu /0 ~-, N
mhgu = ~ - , Ihgu = - 7^ - ̂ M • (2-71)

"total Ml - W)d

Mass balances are as follows:

For glucose:

dS F(Q ^ - V S dV»**>tfc 07^~ = —(Sf-S)-crsme- -- - -- - — (2.72)
at V Vabiotic ^abiotic at
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where as = aaH>a + <^s^s + ^s + 77—£PZS. (2.73)

For oxygen:

F _ V CL aoc /0 r,A\- -CL - a0me- — (2.74)
V ^abiotic ^abiotic at

where a0 = ——/z + ——£PZS + m0. (2.75)
*

1 J.

f p / o

For penicillin:

dP „ V r^ ?„ p
— = EpZsme— KP - —P - ——
at ^abiotic V Vabiotic at
^ = epZ,rhe^— -KP-'-P-,/ T™ (2-76)

Cp

The last term in Eqs. 2.72, 2.74 and 2.76 is due to volume correction
that is applied to glucose, penicillin and oxygen concentrations since these
are based on liquid volume (V'abiotic)- Biomass concentration, X (= me ,
e = number of elements per culture volume, and rh = average mass per
element) is on the other hand based on culture volume (V).

In Eq. 2.73, ms and ep are the maintenance on glucose and the specific
rate of product formation, respectively and ota and as are the stoichiometric
biomass yield coefficients for apical and subapical cell compartments, re-
spectively. The last term on the right hand side of as (Eq. 2.73) reflects the
fact that the target antibiotic is synthesized only by subapical cells. The
dissolved oxygen balance (Eq. 2.74) can similarly be expressed after ac-
counting for oxygen consumption due to cell growth, cell maintenance and
product formation and m0 is the maintenance on oxygen in Eq. 2.75. The
mass balance for penicillin in Eq. 2.76 accounts for hydrolysis/degradation
for the antibiotic with K being the degradation/hydrolysis coefficient. The
form of £p in Eq. 2.77 is chosen so as to reflect the inhibitory effects ob-
served at high biomass and glucose concentrations.

These balances [Eqs. 2.72, 2.74 and 2.76] reduce to standard balances
without volume correction when X « l/Vbiotic? since Vabiotic = V in that
case.

Simulation Results of the Structured Model

For simplicity, at all times, all the hyphal elements were assumed to have
the same composition of the three compartments with the same number
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of actively growing tips and mass. The model parameters are presented in
Table 2.5. Parameters related to growth and substrate consumption were
taken from Nielsen [423]. Again for simplicity, the growth kinetics of apical
and subapical compartments are assumed to be the same resulting in the
same stoichiometric yield coefficients for the two compartments and the
same maximum specific growth rates (ka = ks).

In all simulations, a batch operation is considered to be followed by a
fed-batch operation. The transition from batch culture to fed-batch culture
occurs when the level of glucose concentration reaches a threshold value (10
g/L); such threshold values are commonly used in industrial scale penicillin
production. The predictions of the model presented here under different
operating conditions were compared with various experimental data. Note
that most of the parameters are specific to the strain employed, substrate
used and culture parameters such as pH, and temperature. Hence, this work
focuses on capturing the general dynamic behavior of penicillin production
rather than concentrating on strain or medium specific conditions. A set
of simulation results are illustrated through Figures 2.7 and 2.13. Similar
to the unstructured model, it is obvious from the simulated results that
there are four distinct phases based on growth and are shown in Figures
2.7 through 2.13.

IV

:h switch

Time, h

Figure 2.7. Time course of the apical fraction of the cells based on the
structured model.
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N 0.15n

100 150
Time, h

Figure 2.8. Time course of the subapical fraction of the cells based on the
structured model.

IV

Fed-b^tch switch

Time, h
100 150

Figure 2.9. Time course of the hyphal fraction of the cells based on the
structured model.
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Figure 2.10. Time course of biomass concentration based on the structured
model.

IV

Fed-bktch switch

Time, h

Figure 2.11. Time course of glucose concentration based on the structured
model.
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Figure 2.12. Time course of penicillin concentration based on the structured
model.

100 150
Time, h

Figure 2.13. Time course of dissolved oxygen concentration based on the
structured model.
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Table 2.5. Parameter set for structured model

Parameter

Yx/o

Yp/s

YP/O
ki
k2

k3

K3

ka

ks

K
Ksa

Koa

Kss

Kos

a2

<fi
P
P
w

Ota,0ts

ms

m0

£m
Kp

K,
Kop

Pb

Kla

Value

0.04 g/g
0.90 g/g
0.20 g/g
2.30 1/h
0.70 1/h
0.85 1/h

4g/L
0.16 1/h
0.16 1/h
0.004 1/h
0.03 g/L

0.02 xCl g/L
(under O2 limitation, otherwise 0)

0.03 g/L
0.02 xC£ g/L

(under Oa limitation, otherwise 0)
5.2xl08 tips/g
6xl07 l/{gh}

3
IxlO6 g/m3

0.67
0.45

0.015 1/h
0.467 1/h
0.005 1/h

0.0002 g/L
0.1 g/L
5x 10"4

(under C>2 limitation, otherwise 0)
294 g/L

200 1/h

Reference

[36]
[36]
[36]

[423]
[423]
[423]
[423]
[423]
[423]

modified from [36]
[423]

modified from [36]

[423]
modified from [36]

[423]
[423]

modified from [36]
assigned

[423]
[423]
[36]
[36]
[36]
[36]
[36]

modified from [36]

[264]

[36]
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Experimental Data
Collection and
Pretreatment

Data collection during the progress of a batch is necessary for monitoring
and controlling process operation for optimal cultivation and production.
An essential element of effective monitoring and control is high quality
data obtained during the progress of the batch via appropriate instrumen-
tation/sensors. The information collected may also be used for modeling
the process or improving the process design and production policies.

This chapter focuses on a number of important topics about experimen-
tal data collection. Section 3.1 outlines desirable properties of sensors and
discusses various on-line and off-line sensors used in fermentation processes.
Section 3.2 presents data acquisition systems and describes computer-based
data collection and control. Section 3.3 presents introductory concepts in
statistical design of experiments. Outliers in data and signal noise may have
strong influence on the parameter values and structure of models developed,
decisions about process status in monitoring, and regulatory action selected
in process control. Consequently, outlier detection and data pretreatment
such as reconciliation and denoising of data are critical for developing accu-
rate models. Section 3.4 introduces various techniques on outlier detection
and data reconciliation. Process data may contain various levels of signal
noise. Section 3.5 introduces wavelets and discusses various noise reduction
techniques. Section 3.6 outlines methods used in theoretical confirmation
of data, in particular stoichiometric balances and thermodynamics of cell
growth.

67
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3.1 Sensors

Sensors may be categorized as on-line and off-line sensors. On-line sensors
are preferred since they provide process information quickly without any
disruption in the process and any sampling and cultivating delays, and
fewer human errors, and allow for arbitrary frequencies of measurement.
Off-line analysis techniques are used because of the difficulty and expense
of developing sterilizable probes or constructing a sampling system for some
process variables and product properties.

Sensors must have several characteristics that must meet the specifications
for use in a particular application [366, 439, 475]:

Accuracy is the degree of conformity to standard when the device is op-
erated under specified conditions. This is typically described in terms
of maximum percentage of deviation expected based on a full-scale
reading on the device specification sheet.

Precision (Repeatability) is the exactness with which a measuring in-
strument repeats indications when it measures the same property un-
der the same conditions. Sensors display a drift in time which can be
corrected by periodic calibration.

Range is the difference between the minimum and the maximum values
of the sensor output in the intended operating limits. It is essential
that accuracy and precision improve as the range is reduced, which
implies that a small range would be preferred. However, the range
must be large enough to span the expected variation of the process
variable under typical operational conditions, including disturbances
and set point changes.

Durability refers to the endurance of a sensor under the exposure to dif-
ferent operational conditions (pH, temperature, acidity). Since most
of the industrial scale cultivations require extensive periods of oper-
ation time for completion (2-20 days), the sensor response should be
stable for extended periods.

Reliability is the degree of how well a sensor maintains both precision
and accuracy over its expected lifetime. Reliability is a function of
the failure rate, failure type, ease of maintenance, and robustness of
the sensor.

Response Time is the time it takes for the sensor output to reach its final
value. It indicates how quickly the sensor will respond to changes in
the environment. This parameter indicates the speed of the sensor
and must be compared with the speed of the process.
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Sensor technology is a rapidly growing field that has significant poten-
tial to improve the operation, reliability, serviceability, and utility of many
engineering systems. Advances in chemistry, biochemistry, materials sci-
ence and engineering have accelerated the development of new and more
capable sensors. However, as the complexity and the capabilities of the sen-
sors increase, there is a significant amount of associated cost. Cost may be
a critical consideration in the selection of a sensor and the way a measure-
ment should be made (on-line or off-line). There may always be a trade-off
between a high-cost on-line frequent measurement or a relatively low-cost
off-line infrequent measurement.

On-line Sensors

On-line sensors are crucial for monitoring and controlling a process for its
safe and optimal performance. These instruments can be classified as

1. sensors that do not come in contact with the cultivation broth, (e.g.,
in a thermocouple)

2. in-situ sensors that are immersed directly into the cultivation broth
and hence are in contact with it (e.g., pH meter, dissolved oxygen
probe and level sensor).

3. other sensors, such as tachometer and rotameter.

When the sensors/probes directly come in contact with the cultivation
broth, one potential problem is to maintain aseptic conditions. Under these
conditions, probe should be sterilizable and should be placed in a way
so as to avoid any possible leakage from/ to the bioreactor through the
connections. The seal is usually accomplished by elastomer "O" rings that
also provide an easy insertion of the probe.

The location of the sensor in the fermenter is very important since the
contents of the bioreactor are usually heterogeneous. As a result, the mea-
surements of variables that are critical for control action will be dependent
on the location of the sensor. Conventionally, sensors are placed in the
midsection of the vessel, though placement somewhere else may also be
considered depending on the design of the bioreactor. A sensor should be
placed in a region with sufficient turbulence to maintain the surface of the
sensor clean and avoid build-up of material on it. Besides corrupting the
sensor output, such build-up may lead to fouling of the sensor.

In the absence of in-situ sensors, on-line analysis of medium compo-
nents is preferred. The main idea is to sample the medium automatically
by collecting it in a loop that has a relatively small volume compared to
the cultivation broth and to analyze it. Automatic sampling can be per-
formed in two ways: (1) direct withdrawal of sample by using a syringe
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or a catheter into a loop, (2) use of a membrane module that separates
the sample from the tip of the sensor. After collecting the sample, micro-
bial activity has to be stopped to achieve precise measurement by either
adding a deactivating agent or by cooling the sample [424]. Direct sampling
allows for the measurement of the biomass and intracellular and extracellu-
lar components. The membrane modules used can be categorized either as
membranes placed in a recycle loop connected to the bioreactor or in-situ
membrane modules. The membrane may be replaced during the operation
without any interruption of the process if it is placed in a recycle loop.

Flow Injection Analysis (FIA) has proven to be a valuable tool for
on-line measurement of medium components due to its high speed (fre-
quent analysis ability), good precision, and reliability. For the same pur-
pose, other analytical systems are also used such as Mass Spectrometer
(MS), High Pressure Liquid Chromatography (HPLC), Gas Chromatog-
raphy (GC), with somewhat less efficiency. Among the in-situ sensors,
Pt-resistance thermometers are commonly used for temperature measure-
ment. Temperature control is typically implemented by manipulating flow
rate of coolant circulating in coils if the temperature exceeds the control
limits and by steam injection if the temperature goes below the minimum
acceptable limit. For pH measurement, glass electrodes are used and the
pH is regulated by the addition of acid or alkali. Dissolved Oxygen (DO2)
is measured by Pt, Ag/AgCl, Ag and Pb sensors. They could be either
polarographic which are expensive but reliable or galvanic types. DC>2 is
kept within the desired control limits by changing the agitator speed, inlet
air flow rate and gas composition. The level of foam is determined by using
conductance or capacitance sensors that trigger the addition of aliquots of
antifoaming agent when there is excessive amount of foam formation.

Agitation speed and its power requirement are measured by a tachome-
ter and watt-meter, respectively. Variable speed drives perform the control
action. Air flow rate is measured by rotameters and mass flow meters and
regulated by flow control valves. The pressure built inside the bioreactor
is measured by spring and oil-filled diaphragms and regulated by pressure
control valves. Feed flow rate is measured by electro-magnetic flow meters,
vortex devices and electronic balances, it is controlled by upstream flow
control valve and peristaltic pumps. On-line gas analysis (O2 and CO2) is
performed by gas analyzers (paramagnetic and infrared, respectively) and
by mass spectrometer.

Off-line Sensors

Off-line analysis becomes a viable option especially when there is a need
to measure a large number of medium components in order to improve the
understanding of the process. Disadvantages of off-line analysis include in-
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frequent and time-delayed process information. This may be caused by the
speed of the instrument or preliminary treatment of the sample. In some
cases, the amount of sample necessary may be sufficiently high to cause a
volume change in the bioreactor if sampling is done frequently. In a typical
cultivation, substrates, precursors, intermediate metabolites and products
are measured in addition to other biomass related material (biotic phase)
and other components of the cell-free medium (abiotic phase).

Dry weight and optical density measurements are used to determine the
mass of the cells. For homogeneous cell populations, usually optical density
is correlated with the weight of the sample. Microscopy and plate counts
are used to measure the number of cell colonies present in an aliquot of cell
suspension and on an agar-plate, respectively. Coulter counter provides a
means for counting the number of particles passing through an orifice hence
giving size distribution. But, this instrument is very expensive and has a
limited usage due to the problems associated with small cells and inability
to measure fungal organisms. Flow cytometry is used to determine the
protein, DNA and RNA contents of the biotic phase. Although this is
a very powerful technique, it can only be applied to unicellular cultures.
There are also chemical methods, such as enzymatic assays and colorimetric
analysis for the measurement of these compounds, but some of them may
be quite labor intensive. Image analysis systems are very useful especially
in performing detailed morphological studies.

For the measurement of medium components, HPLC, being less selec-
tive, offers a wide range of advantages over FIA. GC is another widely used
instrument with limited capacity. For certain components such as glucose,
lactate and ethanol, analyzers specifically designed for these components
are also available (e.g., YSI Glucose Analyzer). Physical properties of the
cultivation medium such as viscosity, density and turbidity are also mea-
sured off-line in most of the cultivations.

The interested readers may find detailed information about sensors in
many references [366, 396, 424, 439, 475].

3.2 Computer-Based Data Acquisition

Data collection and process control in most modern fermentation systems
are computer-based. The computer is interfaced to process sensors by ana-
log to digital converters and to final control elements such as control valves
with digital to analog converters (Figure 3.1). This interface provides a
link between hardware signals and software variables. Some analyzers may
have their own microprocessors to refine and interpret data that they col-
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Figure 3.1. A typical data acquisition system.

lect. A supervisory level computer may also be included to perform higher
level monitoring, diagnosis, optimization and advanced control tasks (Fig-
ure 3.1). In the data-acquisition system, the input to the system is a phys-
ical variable such as temperature, pressure or flow rate. Such a physical
variable is first converted to an electrical signal (a voltage or current signal)
by a suitable transducer. Then it is transmitted to A/D converter. The
digitized signal is sent to the computer. The computer records the data,
monitors process status and generates control commands and messages to
plant personnel. The control commands are converted to analog signals by
the D/A converter and sent to the final control elements.

The Analog-to-Digital (A/D) converter, also called as encoder, is a de-
vice that converts an analog signal into a digital signal, usually a numer-
ically coded signal. A/D converter is needed as an interface between an
analog component such as a sensor or transducer and a digital component
such as a computer.

The Digital-to-Analog (D/A) converter, also called as decoder, is a de-
vice that converts a digital signal into an analog signal. This converter is
needed as an interface between a digital component and an analog compo-
nent (a physical device) to operate the physical device, such as a control
valve or a pump.

The conversion of an analog signal into a digital signal (binary number)
is an approximation since an analog signal can take on an infinite number of
values, whereas the numbers that can be formed by a finite set of digits are
limited. This approximation process is called quantization. In other words,
"quantizing" means transforming a continuous or analog signal into a set
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of discrete states. Since the number of bits in the digital code is finite, A/D
conversion results in a finite resolution, rounding off an analog number to
the nearest digital level and producing a quantization error.

The functionality and ease of use of commercially available data col-
lection and processing packages have significantly improved over the years.
Most commercial data acquisition software in the market are capable of

• capturing and recording process data over time

• data reconciliation and outlier detection

• custom tailoring data treatment according to the user's needs

• transferring the data to other software

• sending out commands or data to control instruments and final control
elements

• alarm generation and handling

• inputting time series data from any device into any application pro-
gram

• creating charts and graphs that automatically uptake real-time data
from serial devices

• performing real time analysis of data

• storing and compressing the data

Most software work with popular operating systems such as Windows 2000
and Unix. User-friendly graphical user interface (GUI) of software provides
a convenient environment for the user. Simple, menu driven, step by step
set-up is possible in most commercial software due to the interactive nature
of the GUI. Hierarchical password protection personalizes the user. In most
applications, controllers can be designed and set points can be changed as
a function of any parameter using simple pictorial function blocks avoiding
any programming.

3.3 Statistical Design of Experiments

Experiments are frequently performed to assess the effects of inputs, oper-
ating conditions, and changes in the process on the outputs. For example,
the effects of variations in fermentation temperature, air flow rate, or strain
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type used on the attributes of a product would provide valuable informa-
tion for optimizing productivity. Experiments are costly since they consume
time and raw materials. Properly planned experiments minimize unneces-
sary duplications, generate more information with fewer experiments, and
reduce the effects of measurement noise on data used for analysis. Statis-
tically designed experiments provide unambiguous results at a minimum
cost and provide information about interactions among variables [213]. An
experiment is a means for drawing inferences about the real world and care
must be exercised to define the scope of the experiment broad enough to
include all conditions that the experimenter wishes to consider.

Most technical personnel focus on generating information from data, an
activity that is called statistical analysis. However, equal attention should
be given to generate informative data. The process of planning the experi-
ments to generate the maximum amount of information with the minimum
number of experiments is called statistical design of experiments (DOE).
The objectives of DOE can be:

• To compare a set of treatments to determine whether their effects
differ on some response (output) of interest

• To establish cause and effect relationships between outputs (responses,
dependent variables] and inputs (factors, independent variables}

• To identify the most important inputs

• To identify interactions between inputs

• To identify improved settings for inputs to optimize the outputs

• To estimate empirical relationships between inputs and outputs.

The amount of data needed to cover this wide range of objectives that in-
clude comparison, screening, regression and optimization varies from one
process to another. Consequently, the methods selected to design the exper-
iments depend on the objective. Exploratory experiments can be designed
as an iterative process where additional experiments are designed based on
insight gained from analyzing the results of prior experiments. The liter-
ature on design of experiments is quite rich. Some of the popular books
include [78, 370, 401]. More sophisticated design and analysis techniques
include response surface analysis [77, 407], multivariate design of process
experiments [277], and various types of advanced designs used for exam-
ple in the pharmaceutical industries for drug discovery where very large
numbers of configurations must be screened rapidly. The discussion in this
section will be limited to screening experiments where the most influen-
tial inputs and interactions are determined. Two-level factorial designs are
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of great practical importance for comparison and screening studies. They
are discussed in this section to underline the wealth of information that
can be extracted from a process by a proper design and to contrast with
the favorite approach of most technical people, the one-variable-at-a-time
(OVAT) experimentation.

The OVAT approach involves variation in the level of an input (with
levels of all other inputs being fixed) to find the input level that yields an
optimal response. This procedure is then repeated for each of the remaining
inputs. The OVAT procedure can be carried out for several iterations. The
inputs that were varied in previous sets of experiments are kept at levels
that gave optimal responses. The OVAT approach necessitates more ex-
periments than the factorial design based experimental plans. Experiments
must be duplicated and the results must be averaged to reduce the effects
of measurements errors. This increases further the number of experiments
conducted based on the OVAT approach. As illustrated later, the averag-
ing process is an integral part of the analysis of data collected by factorial
design based experimental plans. Furthermore, the OVAT approach does
not provide information on the impact of the interaction of inputs on the
response. Consequently, the OVAT approach must be avoided as much as
possible.

Design of experiments to collect data for building empirical dynamic
models of processes is another challenging problem. Here the focus is on
designing input sequences that have specific characteristics so that the pro-
cess is excited properly to generate data rich in information. This problem
has been studied in the systems science, system identification and process
control communities. The interested reader is referred to [346, 558].

3.3.1 Factorial Design

In any process, there may be a large number of input variables (factors) that
may be assumed a priori to affect the process. Screening experiments are
conducted to determine the inputs and interactions of inputs that influence
the process significantly. In general the relationship between the inputs and
outputs can be represented as

y = f(xi,x2,--' ,xp) + e . (3.1)

where Xi,i = I : p are the factors, (e) is the random and systematic error
and y is the response variable. Approximating this equation by using Taylor
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series expansion:
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a polynomial response surface model is obtained where bi denotes the pa-
rameters of the model. The first task is to determine the factors (xi] and
the interactions (XiXj, XiXjX^ and higher order interactions) that influence
y. Then, the coefficients like bi,bij,bijk of the influential inputs and inter-
actions are computed. These parameters of the response surface models
can be determined by least squares fitting of the model to experimental
data. Several decisions have to be made before designing the experiments.
A detailed summary of the decision making process is discussed in [88].

This section presents the two-level factorial design approach to select
the conditions for conducting screening experiments that determine the
significant factors and interactions. To perform a general factorial design,
the investigator selects a fixed number of levels (two in most screening
experiments) for each factor and then runs experiments with all possible
combinations of levels and variables. If there are p factors, 2P experiments
must be conducted to cover all combinations. The number of experiments
to be conducted grows rapidly with increasing number of factors. While
8 experiments are needed for 3 factors, 64 experiments are necessary for
6 factors. The factors may be continuous variables such as substrate feed
rate (R) or bioreactor temperature (T) or discrete variables such as the
strain (S) of the inoculum. The low and high levels of continuous variables
may be coded using the — and + signs or 0 and 1, respectively. Qualitative
(discrete) variables limited to two choices are coded using the same nomen-
clature. The levels of inputs to be used in each experiment are listed in a
design matrix (Table 3.1).

Two-level factorial designs are appealing for a number of reasons. They
require a few experiments to indicate major trends in process operation and
determine promising directions for further experiments. They form the ba-
sis for two-level fractional factorial designs. They can be readily augmented
to form composite designs, hence they are building blocks to construct ef-
ficient data collection strategies that match the complexity of the problem
studied. The results of the experiments can be interpreted using simple
algebra and computations. The interpretation of experimental results by
discovering the significant factors and interaction effects is illustrated below
by an example.

Example. A set of screening experiments are conducted in a laboratory
scale fermenter and separation system to determine the effects of substrate
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Table 3.1. Three alternative notations for 23 full factorial designs

Run
1
2
3
4
5
6
7
8

R T S
_ _ _
+ - -
- + -
+ + -

1
+ - +
- + +
+ + +

R T S
0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

1
r
t
rt
s
rs
ts
rts

feed rate (R), bioreactor temperature (T) and two different strains (S) of
the inoculum on the total amount of product (yield Y) in a fed-batch run.
The high (+) and low (—) settings for feed rate R (L/h) and temperature
T °C are 0.08, 0.02 and 35, 17, respectively. Two strains A (-) and B
(+) are used. It is assumed that approximately 5% higher production is
reached when strain A is used (first four runs in Table 3.2). The fictitious
experiments and penicillin production information are listed in a tabular
form (Table 3.2).

Table 3.2. Data from a 23 full factorial design for investigating the effects of
substrate feed rate (R L/h), bioreactor temperature (T °C) and inoculum
strains (S) on the total amount of product (Y grams) in a fed-batch run.

Run
1
2
3
4
5
6
7
8

R T S
- - -
+ - -
- + -
+ + -
- - +
+ - +
- + +
+ + +

Y
69.24
214.82
59.45
133.49
65.78
201.93
57.07
126.82

The first group of information to extract is the effect of each variable
on yield. For example, with everything else besides the experimental error
remaining the same, what is the effect of temperature on the product (peni-
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cillin) yield? Consider for example runs 1 and 3 in Table 3.2: The variation
in the yield is due to a variation in T and experimental error. In fact, there
are four pairs of runs in Tables 3.1 and 3.2 where R and S have identical
values in each pair and T is at two different levels. The variations in yield
with variation in temperature for the four pairs and the corresponding R
and S settings are listed in Table 3.3.

Table 3.3. The effect of temperature on penicillin yield

Individual Measure of the effect
of changing T from 17°C to 35°C

y3 - yi =59.45 - 69.24 = -9.79
y4 - yi =133.49 - 214.82 = -81.33
y7 - y5 =57.07 - 64.41 = -4.69
2/8-2/6 =133.71 -213.61 = -79.9

Level of oth(
R (L/h)
0.02
0.08
0.02
0.08

3r factors
S (Type)

A
A
B
B

The main effect of temperature is the average of these four differences
(—43.93). It is denoted by T (not to be confused by T that is the symbol
for the input) and it indicates the average effect of temperature over all
conditions of the other factors. The main effects of the other factors can be
computed similarly. A more efficient computation can be made by noting
that the main effect is the difference between two averages:

main effect of factor i — yl+ — yi_ (3-3)

where yi+ and yt_ are the average responses for the + and - levels of
variable i, respectively. Hence, for T:

rr ys + y4 + y7 + y& yi+yz + ys + ye ,„ A,T = - - --- - - (3.4)

Similar equations can be developed for other main effects. The main effects
of all three factors are T = -43.73, R = 106.38, and S = -6.35. D

All eight observations are used to compute the information on each of
the main effects, providing a fourfold replicate of the differences. To secure
the same precision in the OVAT approach for estimating the main effect of
temperature, eight experiments have to be conducted, four at each level of
temperature, while the other two inputs are fixed at one of their respective
levels. A total of 24 experiments (a threefold increase) is needed to obtain
the estimates of the three main effects. In general, a p-fold (p =number of
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factors) increase in the number of experiments are needed for OVAT over
the full factorial approach. Even if all changes are made with respect to
a common experimental condition in OVAT design, (p + l)/2 times more
experiments are needed than the full factorial designs [78] .

The implicit assumption in the OVAT design is that the main effect
observed for one factor will remain the same at different settings of the other
factors. In other words, the variables act on the response additively. If this
assumption is correct, the results based on the OVAT design will provide
complete information about the effects of various factors on the response
even though the OVAT design would necessitate more experiments to match
the precision of factorial design. If the assumption is not appropriate, data
based on factorial design (unlike the OVAT design) can detect and estimate
interactions between factors that lead to nonadditivity [78].

Interaction Effects. The effect of a factor may be much greater at one
level of another factor than its other level. If the factors do not behave addi-
tively, they interact. A geometric representation of contrasts corresponding
to main effects and interactions is given in Figure 3.2. The interaction be-
tween two factors is called two-factor interaction. Most of the interactions
between a larger number of factors are usually smaller. The experimental
data collected provide the opportunity to compute and assess the signifi-
cance of these interactions. A measure of two-factor interaction with RI
and R-2 as factors is provided by the difference between the average effect
of one factor at one level of the second factor and its average effect at the
other level of the second factor. Two factor interactions are denoted as
RI x R% or R\R<2 (when the x can be dropped without causing ambiguity).
Thus, the temperature and inoculum strain interaction is denoted by T x S
or TS.

Consider the interaction between the first and third factors in Table
3.1. The average effect of the first factor for one level of the third factor
(#3=+) is (y6 - y5)/2 + (y8 - j/7)/2, and for the other level of the third
factor (#3 = — ) is (y? — 2/i)/2 + (2/4 — J/s)/2. The first and third factor
interaction thus is

e-y5 + ys -y?} fa-yi + yi-ys}^
2 2 2

This equation can be rearranged to give:

RI x R3 = - (yi - y2 + y3 - y* - y*> + ye - y? +

_ yi+ys + y& + y& 3/2 + ?/4 + ys + yt
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R

R x T R x S T x S

(b) Two-factor interactions

R x T x S

(c) Three-factor interactions

Figure 3.2. Geometric representation of contrasts corresponding to main
effects and interactions [78].
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Similarly,

r> 2 /1+2/4+2/5+2/8 2/2 + 2/3 + 2/6 + 2/7

D D 2 /1+2/2+2/7 + 2/8 2 /3+2/4+2/5+2/6 /„ 7x
K2 X K3 = - - --- - - . (6.1)

The interactions of higher number of factors are denoted using the same
convention. For example, the three-factor interaction between concentra-
tion, temperature, and strain is denoted by R x T x S. Three-factor inter-
actions are computed using similar equations. The interaction between the
three factors (factor levels as listed in Table 3.1) and illustrated in Figure
3.2 is computed by using two factor interactions. The interaction between
jRi and R% for one level of -Rs(-) is [(2/4 - 3/3) - (7/2 - 2/i)]/2 and for the
other level of RS(+) [(2/8 — 2/7) ~ (2/6 ~ 2/s)]/2- Half of their difference (for
RZ[+] - RS[— ]) is denned as the three factor interaction:

RI x R2x R3 = - ( - yi + y2 + 2/3 - 2/4 + 2/5 - 2/6 - 2/7 + 2/8)

= 2/2 + 2/3 + 2/5 + 2/8 _ 2/1 + 2/4 + 2/6 + 2/7
~ 4 4

(3.8)

Example. Computation of the two-factor and three-factor interactions
for the penicillin fermentation data.

The two-factor interactions are computed using Eqs. 3.6 and 3.7. The
three-factor interaction is computed using Eq. 3.8:

R x T = -36.69

R x S = 1.63 (3.9)
T x S = 0.89

R x T x S - -0.92 D

The levels of factors such as those displayed in Table 3.2 can be used to
generate a table of contrast coefficients that facilitates the computation of
the effects (Table 3.4). The signs of the main effects are generated using
the signs indicating the factor levels. The signs of the interactions are
generated by multiplying the signs of the corresponding experiment levels
(main effect signs). For example, the main effect T is calculated by using
the signs of the third column:

-69.24 - 214.82 + 59.45 + 133.49 - 64.41 - 213.61 + 59.72 + 133.71
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Table 3.4. Signs for calculating the effects from a 23 full factorial design.
Last column (product) for use in the fermentation example

Run mean R T
1 + — —
2 + + -
3 + - +
4 + + +
£ i»j i

6 + + -
7 4- — +
8 4- + +

8 4 4

S RT RS TS RTS yield
- + + + 69.24
- - - + + 214.82
- - + - + 59.45
- + 133.49
+ + - - + 64.41
+ - + 213.61
+ - - + 59.72
+ + + + + 133.71
4 4 4 4 4 divisor

Similarly, Eqs. 3.6-3.8 can be readily obtained from the information in
columns 5 through 8 of Table 3.4.

Randomization and Blocking. Randomization of experiments is desired
to reduce the inferential validity of data collected in spite of unspecified
disturbances. For example, the run numbers in Table 3.2 are written on
pieces of paper and a drawing is made to pick the sequence of experiments
to be conducted. Blocking is used to eliminate unwanted variability. The
variability may be introduced by changes in raw materials. For example,
the substrate may be prepared in batches that may be enough for 4 batch
runs, necessitating the use of two batches of raw materials to run the eight
experiments of the 23 factorial design of the fermentation example. The
experimental design can be arranged in two blocks of four runs to minimize
the effect of variations due to two different batches of substrate. If runs
1, 4, 6, 7 use one substrate batch, and runs 2, 3, 5, 8 use the second
substrate batch, two data points from each substrate batch are used in
the computation of the main effects. This eliminates the additive effect
associated with substrate batches from each main effect. There is a tradeoff
in this experimental design. The RTS interaction and the experiments using
a specific substrate batch are confounded (Table 3.4). All experiments with
one of the substrate batches correspond to experiments where RTS is —,
and all experiments with the other substrate batch correspond to RTS being
+ . Therefore, one cannot estimate the effect of the three-factor interaction
separately from the effect of substrate batch change. Fortunately, the three-
factor interaction is usually less important than the main effect and the
two-factor interactions which are measured more precisely by this design.
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The concept of confounding is discussed further in the section on fractional
factorial design. More detailed treatment of blocking and confounding is
available [78].

3.3.2 Fractional Factorial Design
The number of experiments required in a full 2k factorial design increases
geometrically with k. For a process with 7 factors, for example 27 = 128
experiments are needed to estimate the 7 main effects, and 120 interactions.
There are 21 two-factor, 35 three-factor, 35 four-factor, 21 five-factor, 7
six-factor and 1 seven-factor interactions [78]. Fortunately, not all of these
interactions are important. Furthermore, the main effects tend to be larger
in absolute magnitude than the two-factor interactions, which in turn are
greater in absolute magnitude than the three-factor interactions, and so
on. This then permits neglecting higher order terms in the Taylor series
expansion in Eq. 3.2. Consequently, the information collected by a full
factorial design will have redundancies, and fewer experiments than the
required number (2P) may be enough to extract all the relevant information.
A popular experimental design approach that plans only part of the full
factorial design is the fractional factorial design. The fractional factorial
designs are named according to the fraction of the full design used, half-
fraction indicating that only half of the experiments are conducted.

Consider a process where the effects of five factors are investigated. A
full factorial design would necessitate 25 = 32 runs as listed in Table 3.5.
One possible half-fraction design (16 runs) includes all runs indicated by an
asterisk in the half-fraction column of Table 3.5. The half-fraction design
for an experiment with five factors is designated as 25"1 to underline that
the design has five variables, each at two levels, and only 24 = 16 runs are
used

-25 = 2~125 = 25-1 (3.10)
Zt

The selection of the specific 16 runs is important. One way to make
the selection is to start with a full 24 design for the first four variables
1, 2, 3, and 4. Then, derive the column of signs for the 1234 interaction
and use it to define the levels of variable 5. Thus, 5=1234 as displayed
in Table 3.5. Because only 16 runs are carried out, 16 quantities can be
estimated: the mean, 5 main factors and 10 two-factor interactions. But
there are 10 three-factor interactions, 5 four-factor interactions and 1 five-
factor interaction as well. Consider the three-factor interaction 123 written
for the 16 runs in Table 3.5. They are identical to the two-factor interaction
45, hence 123 = 45. The remaining 16 runs not included in the half-fraction
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Table 3.5. Full and half-fraction 25 factorial design

Run
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1 2 3 4 5
— — — — -

1
i

i i
I

I i
i i

+ + + - -
I

1 _i_
i ii — ~T

+ + - + -
. _i_ i

+ - + + -

- + + + -

+ + + + -
i

i i

- + - - +

+ + - - +

- - + - +
+ _ + _ +

- + + - +

+ + + - +

- - - + +

+ - - + +
_ + _ _|_ +

+ + - + +

- - + + +
+ _ + + +

- + + + +

+ + + + +

1234
+
—
-
+
-
+
+
—
-
+
+
—
+
—
-
+
+
-
-
+
-
+
+
—
—
+
+
—
+
-
—
+

half-fraction

*
*

*

*
*

*

*
*

*

*

*
*

*
*

*

*

123
-
+
+
—
+
-
—
+
-
+
+
—
+
—
-
+
—
+
+
-
+
—
-
+
—
+
+
-
+
-
-
+

45
+
+
+
+
+
+
+
+
—
-
—
—
—
—
—
—
-
-
—
—
—
-
-
-
+
+
+
+
+
+
+
+
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Table 3.6. The confounding patterns for the 25 1 design with the defining
relation 1=12345

1
2
3
4
5
12
13
14
15
23
24
25
34
35
45

- 2345
= 1345
= 1245
= 1235
= 1234
= 345
= 245
= 235
= 234
= 145
= 135
= 134
= 125
= 124
= 123

design selected satisfy the relationship 123 = —45. Consequently, the 123
and 45 interactions are confounded. The individual interactions 123 and
45 are called aliases of each other. A relationship such as 5 = 1234 used
to construct the 25"1 design is called the generator of the design. Recall
that the numbers 1 to 5 used above or the uppercase letters used in Section
3.3.1 denote a factor and a column of — and + signs indicate its level.
The multiplication of the elements of a column by another column having
identical elements is represented as 1 x 1 = I2 = I. Similarly 2 x 2 = 1 and
T x T = I. Furthermore, 2 x 1 = 2. Hence,

5 x 5 = 52 = 1234 x 5 = 12345 or I = 12345 (3.11)

The relation 1=12345 is called the defining relation of the design and is
the key for determining all confoundings. For example, multiplying both
sides of the defining relation with 1 yields 1= 2345, indicating that the main
effect 1 is confounded with the four-factor interaction 2345. All confounding
patterns for the 25"1 design with the defining relation 1=12345 are given
in Table 3.6.

The complementary half-fraction design for 25 1 is made up by all the
entries in Table 3.5 without the asterisk in the "half-fraction" column. Its
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defining relation is I= —12345, the "—" sign indicating that the — level of
1234 interaction is used. Higher fractions such as 1/4 or 1/8 may also be
of interest because of limited resources to conduct experiments. Then, ad-
ditional denning relations must be used to design the experiment plan.
The selection of the denning contrasts and confounded effects becomes
more challenging as the number of factors and level of the fractions in-
crease, necessitating systematic procedures such as the algorithm proposed
by Franklin [164].

Design Resolution. Fractional factorial designs are classified according
to their resolutions as well. A design of resolution R has no p-factor effect
confounded with any other effect containing less than R — p factors. Usually
the resolution of the design is indicated with Roman numerals as subscripts
such as 2^ for the design with the denning relation 1=12345. Referring to
Table 3.6, main effects are confounded only with 4-factor interactions (R —
4 = 1, hence R =V) and 3-factor interactions are confounded only with 2-
factor interactions (R—3 = 2, hence R =V again). In general, the resolution
of a two-level fractional design is equal to the length of the shortest word
in the defining relation (1=12345 has R =V) [78]. A design of resolution
R =111 does not confound main effects with one another, but confounds
main effects with two-factor interactions. A design of resolution R =IV
does not confound main factors and two-factor interactions, but confounds
two-factor interactions with other two-factor interactions. Consequently,
given the number of experiments that will be performed, the design with
the highest resolution is sought. The selection of the defining relation plays
a critical role in the resolution. In general, to construct a 2p~l fractional
factorial design of highest possible resolution, one writes a full factorial
design for the first p - I variables and associates the pth variable with the
interaction 123 • • • (p - 1) [78].

Exploratory experimentation is an iterative process where results from a
small number of experiments are used to obtain some insight about the pro-
cess and use that information to plan additional experiments for learning
more about the process. It is better to conduct sequential experimentation
in exploratory studies using fractional factorial designs and use these frac-
tions as the building blocks to design more complete sets of experiments as
needed.

3.3.3 Analysis of Data from Screening Experiments

Once the numerical values of main and interaction effects are computed,
one must decide which effects are significant. Comparison of the estimates
of effects and standard errors indicates the dominant effects. Consequently,
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the standard errors must be computed. If replicate runs are made at each
set of experimental conditions, the variation between their outcomes may
be used to estimate the standard deviation of a single observation and
consequently the standard deviation of the effects [78] . For a specific com-
bination of experimental conditions, n^ replicate runs made at the iih set
of experimental conditions yield an estimate s2 of the variance a2 having
z/j = m — 1 degrees of freedom. In general, the pooled estimate of the run
variance for g sets of experimental conditions is

. (3 12)
l 2 --'+Vg

with v = ^i + v<2 + • • • + Vg degrees of freedom.
A direct estimate of the variance cr2 is not available if there are no repli-

cate runs. An alternate way to estimate a2 may be based on the assump-
tion that the interactions of large number of factors would be negligible
and the numerical values computed would measure differences caused by
experimental error.

Example. Inspection of the interactions computed for the example prob-
lem (Eq. 3.9) shows that #T=-36.69, #5=1.63, TS=0.89, and RTS=-0.92.
Since there are only three factors and RT is more than an order of (absolute)
magnitude greater than the other interactions, one may either use RTS or
pool RS, TS, and RTS to compute an estimate of a2. The exclusion of RT
may seem arbitrary, but its large magnitude would justify its exclusion. The
first approach will yield s = \/(— 0.92)2 = 0.92. The second will give s =
V^l.632 + 0.892 + (-0.92)2]/3 = 1.19. D

Once a standard error is estimated, it can be compared with the mag-
nitude of the effects of various factors and interactions to assess their sig-
nificance.

Example. Determine the dominant effects of the example problem. Recall
the main effect values T = -43.93, R = 110.71 and 5 = -1.39. Either esti-
mate of s indicates that T and R, and their interaction (RT) are more influ-
ential than all other factors and interactions. An increase in temperature re-
duces the product yield while an increase in substrate feed rate increases it.
The two strains have no significant influence on the yield. The interaction
of temperature and feed rate is such that a joint increase in both variables
causes a reduction in the yield. D

Quantile-Quantile plots. A more systematic approach for the assess-
ment of effects is based on comparison of the magnitudes of actual effects
to what might be expected from a Normal distribution. This may be done
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Table 3.7. Data and computed values for Q-Q plot of the main effects and
interactions for the experimental data in Tables 3.1 and 3.2 and standard
Normal distribution

i
I
2
3
4
5
6
7

Ordered y^ effect Qy(fi)
-43.93 T -43.93
-36.69 PT -36.69
-1.39 S -1.39
-0.92 RTS -0.92
0.89 TS 0.89
1.63 RS 1.63

110.71 S 110.71

fi
0.0862
0.2241
0.3621
0.5000
0.6379
0.7759
0.9138

QsN(fi)

-1.3646
-0.7561
-0.3515

0
0.3515
0.7561
1.3646

using normal probability paper [78] or quantile-quantile (Q-Q) plots. Since
the Q-Q plots can easily be generated by many software packages, the pro-
cedure to use them in assessing the importance of effects will be outlined.
Assume that the data (effects of all factors and interactions in this case)
are represented as a set of values T/J, i = 1, 2, . . . , n.

1. Order the data according to magnitude: < <

2. For each ordered data, set Qy(fi) = y(i)i i — 1,2, . . . , n where Q
denotes a quantile.

3. Calculate the quantiles for a standard Normal distribution
using the empirical relation

\0.14 where fl ~
3/8

n + 1/4
(3.13)

4. Plot Qy(fi) versus QsN(fi)- Approximate linearity indicates that
data are consistent with standard Normal distribution. Significant
deviation of specific effects from linearity indicates that they are im-
portant effects.

Example. Develop the Q-Q plot for the main effects and interactions
computed for the penicillin fermentation data in Tables 3.1 and 3.2.

The second and fourth columns of Table 3.7 provide the quantiles of
the main effects and interactions. The last column of the table displays
the corresponding quantiles of the standard Normal distribution computed
using Eq. 3.13. The two sets of quantiles are plotted in Figure 3.3. The
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Figure 3.3. Quantile-quantile plot of main effects and interactions against
standard Normal distribution.

same main effects and interactions noted earlier (R, T, RT} deviate sub-
stantially from the Normal distribution (i.e., from the line of unit slope
passing through the origin in Figure 3.3).

3.4 Data Pretreatment: Outliers and
Data Reconciliation

Data pretreatment is necessary to assure that data used in modeling, mon-
itoring and control activities provide an accurate representation of what
is happening in a process. Data corruption may be caused by failures in
sensors or transmission lines, process equipment malfunctions, erroneous
recording of measurement and analysis results, or external disturbances.
These faults would cause data to have spikes, jumps, or excessive oscilla-
tions. For example, sensor faults cause bias change, drift or increase in
signal noise and result in abnormal patterns in data. The general strategy
is to detect data that are not likely based on other process information
(outlier detection) and to substitute these data with estimated values that
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are in agreement with other process information (data reconciliation). The
implementation of this simple strategy is not straightforward. A significant
change in a variable reading may be caused by a process equipment fault
or a sensor fault. If the change in signal magnitude is due to an equipment
fault, this change reflects what is really happening in the process and the
signal value should not be modified. Corrective action should be taken to
eliminate the effect of this disturbance. However, if the magnitude of the
signal has changed because of a sensor fault, the process is most likely be-
having the way it should, but the information about the process (measured
value) is wrong. In this case, the signal value must be modified. Oth-
erwise, any action taken based on the erroneous reading would cause an
unwarranted process upset. The challenge is to decide when the significant
change is caused by something that is happening in the process and when
it is caused by erroneous reporting of measurements. This necessitates a
comprehensive effort that includes signal noise reduction, fault detection,
fault diagnosis, and data reconciliation. However, many of these activities
rely on the accuracy of measurement information as well.

This section focuses on detection of outliers and gross errors, and data
reconciliation. Data reconciliation involves both the elimination of gross
errors and the resolution of the contradictions between the measurements
and their constraints such as predictions from the model equations of the
process. Detection and reduction of random signal noise are discussed in
Section 3.5. Techniques for fault diagnosis and sensor fault detection are
presented in Chapter 8. The implementation of these techniques must be
well coordinated because of the interactions among signal conditioning,
fault detection and diagnosis, process monitoring and control activities.
The use of an integrated supervisory knowledge-based system for on-line
process supervision is discussed in Chapter 8.

Most outlier detection and data reconciliation techniques are developed
for continuous processes where the desired values of the important pro-
cess variables are constant for extended periods of time. Consequently,
these techniques are often based on the existence of stationary signals (con-
stant mean value over time) and many of them have focused on assessment
and reconciliation of steady state data. The time-dependent nonstation-
ary data that batch processes generate may necessitate modification of the
techniques developed for continuous processes prior to their application for
batch processes.

3.4.1 Data Reconciliation

The objective of data reconciliation is to convert contaminated process
data into consistent information by resolving contradictions between mea-
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surements and constraints imposed on them by process knowledge. The
simplest reconciliation case is steady-state linear data reconciliation which
can be set as a quadratic programming problem. Given the process mea-
surements vector x, the vector of unmeasured variables v and the data
adjustments a (their final values will be the solution of the optimization
problem), the data reconciliation problem is formulated as

min F(a) = aT^la
a

such that Bi(x + a)+Pv = 0 (3.14)

where BI and P are the matrices of coefficients corresponding to x and v
in Eq. 3.14 and Si is the covariance matrix of x. For example if a leak
detection problem is being formulated, x will consist of component flow
rates and the constraint equations will be the material balances. Matrix
projections can be used to remove the unmeasured variables [113] such
that the constraints in Eq. 3.14 are transformed to a reduced set of process
constraints that retain only the measured variables. The covariance matrix
of the reduced constraints is

He = cov(e) = Bf S^(Bf )T (3.15)

where BjMs the "material balance" coefficient matrix of the reduced con-
straints with a residual vector (reduced balance residuals)

e = Bf x . (3.16)

The optimal value of the objective function F is

F = eTHe-
1e ~ xl (3.17)

which follows a chi-squared (x2} distribution with m degrees of freedom
where m is the rank of He [113]. Additional restrictions such as flow rates
being positive or zero may be introduced so that (x + a) is not negative.
This framework can be combined with principal components analysis for
gross error detection and reconciliation [259, 591].

Other data reconciliation and gross error detection paradigms have been
proposed for linear processes operating at steady state. A serial strategy for
detecting and identifying multiple gross errors eliminates sequentially mea-
surements susceptible to gross errors, recomputes a test statistic, and com-
pares it against a critical value [258, 519]. The use of generalized likelihood
ratio (Section 8.3) method for identifying abrupt changes [651] has been pro-
posed to discriminate between gross measurement errors and process faults
(for example between malfunctions of flow rate sensors and leaks) [409]. The
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approach has been extended to dynamic linear processes [410]. Techniques
based on Kalman niters [563], maximum likelihood functions [516, 517],
successively linearized horizons [491], orthogonal collocation [341], neural
networks [269], and discretization of differential-algebraic equation systems
[12] have been developed. Recent books [29, 518] provide details of many
techniques for data reconciliation and gross error detection.

The first critical step in data reconciliation is the detection, identifica-
tion and elimination of gross errors. Some strategies and methods to carry
out this task are presented in Section 3.4.2.

3.4.2 Outlier Detection

Outliers or gross errors corrupt process data. Spikes in data that are can-
didates for outliers can be detected easily by visual inspection. Statistical
tools or heuristics can then be used to assess validity of the spikes as out-
liers, and based on this assessment, data analysis, modeling, and/or mon-
itoring activities may be undertaken. Detection of outliers is critical for
having reliable data to make decisions about the operation of a process and
to develop empirical (data based) models. Consequently, the literature on
outliers is dispersed in statistics, process engineering and systems science
as robust estimation, regression, system identification, and data analysis.
Since many references from the process engineering literature have been
provided in Section 3.4.1, outlier detection methods developed by statisti-
cians are outlined first in this section. This is followed by a discussion of
outlier detection in multivariable systems by principal components analysis
(PC A).

Various books [42, 225, 599, 523] and survey papers [20, 41, 201, 476,
512] in the statistics literature provide a good account of many techniques
used in outlier detection. Outlier detection in time series has received signif-
icant attention [96, 281, 538]. Fox [159] distinguished two types of outliers:
Type I, the additive outlier (AO), consisting of an error that affects only a
single observation, and Type II, the innovational outlier (IO), consisting of
an error that affects a particular observation and all subsequent observa-
tions in the series. Abraham and Chuang [3] considered regression analysis
for detection of outliers in time series. Lefrancois [332] developed a tool
for identifying over-influential observations in time series, and presented a
method for obtaining various measures of influence for the autocorrelation
function, as well as thresholds for declaring an observation over-influential.

A popular outlier detection technique in time series is the leave-one-out
diagnostic idea for linear regression where one deletes a single observation
at a time, and for each deletion computes a Gaussian maximum likelihood
estimate (MLE) (Section 8.3) for the missing datum [80, 222, 283]. Because
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more than one outlier may exist in data, some outliers may be masked by
other dominating outliers in their vicinity. A patch of outlying successive
measurements is common in time series data, and masking of outliers by
other outliers is a problem that must be addressed. One approach for
determining patches of outliers is the generalization of the leave-one-out
technique to the leave-fc-out diagnostics. However, at times the presence of
a gross outlier will have sufficient influence such that deletion of aberrant
values elsewhere in the data has little effect on the estimate. More subtle
types of masking occur when moderate outliers exist close to one another
[379]. These types of masking can often be effectively uncovered by an
iterative deletion process that removes suspected outlier(s) from the data
and recomputes the diagnostics.

Several modeling methods have been proposed to develop empirical
models when outliers may exist in data [91, 595]. The strategy used in some
of these methods first detects and deletes the outlier (s), then identifies the
time series models. A more effective approach is to accommodate the pos-
sibility of outliers by suitable modifications of the model and/or method of
analysis. For example, mixture models can be used to accommodate certain
types of outliers [10]. Another alternative is the use of robust estimators
that yield models (regression equations) that represent the data accurately
in spite of outliers in data [69, 219, 524]. One robust estimator, the LI
estimator, involves the use of the least absolute values regression estima-
tor rather than the traditional least sum of squares of the residuals (the
least squares approach). The magnitudes of the residuals (the differences
between the measured values and the values estimated by the model equa-
tion) have a strong influence on the model coefficients. Usually an outlier
yields a large residual. Because the least squares approach takes the square
of the residuals (hence it is called the Z/2 regression indicating that the
residual is squared), the outliers distort the model coefficients more than
I/i regression that uses the absolute values of the residuals [523]. An im-
proved group of robust estimators includes the M estimator [216, 391, 245]
that substitutes a function of the residual for the square of the residual
and the Generalized M estimator [15, 217] that includes a weight function
based on the regressor variables as well. An innovative approach, the least
trimmed squares (LTS) estimator uses the first h ordered squared residuals
in the sum of squares (h < n, where n is the number of data points), thereby
excluding the n — h largest squared residuals from the sum and consequently
allowing the fit to stay away from the influence of potential outliers [523].
A different robust estimator, the least median squares (LMS) estimator, is
based on the medians of the residuals and tolerates better outliers in both
dependent and independent (regressor) variables [523].

Subspace modeling techniques such as principal components analysis
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(PCA) provide another framework for outlier detection [224, 591, 592] and
data reconciliation. PCA is discussed in detail in Section 4.1. One advan-
tage of PCA based methods is their ability to make use of the correlations
among process variables, while most univariate techniques are of limited use
because they are ignoring variable correlations. A method that integrates
PCA and sequential analysis [592] to detect outliers in linear processes op-
erated at steady state is outlined in the following paragraphs. Then, PCA
based outlier detection and data reconciliation approach for batch processes
is discussed.

PCA can be used to build the model of the process when it is operating
properly and the data collected do not have any outliers. In practice, the
data sets from good process runs are collected, inspected and cleaned first.
Then the PCA model is constructed to provide the reference information.
When a new batch is completed, its data are transformed using the same
PCs and its scores (see Section 4.1) are compared to those of the reference
model. Significant increases in the scores indicate potential outliers. Since
the increases in scores may be caused by abnormalities in process operation,
the outlier detection activities should be integrated with fault detection
activities. The PCA framework can also be used for data reconciliation as
illustrated in the example given in this section.

Consider a set of linear combinations of the reduced balance residuals
e defined in Eq. 3.16:

ye = We
Te = A<r1/2Ue

Te (3.18)

where Ae is a diagonal matrix whose elements are the magnitude ordered
eigenvalues of He (Eq. 3.15). Matrix Ue contains the orthonormalized
eigenvectors of He (detailed discussion of PCA computations are presented
in Section 4.1). The elements of vector ye are called PC scores and cor-
respond to individual principal components (PC). The random variable e
has a statistical distribution with the mean 0 and covariance matrix He

(e ~ (0,He)). Consequently, ye ~ (0,1) where I denotes the identity ma-
trix (a diagonal matrix with Is in the main diagonal), and the correlated
variables e are transformed into an uncorrelated set (ye) with unit vari-
ances. Often the measured variables are Normally distributed about their
mean values. Furthermore, the central limit theorem would be applicable
to the PCs. Consequently, ye is assumed to follow Normal distribution
(ye ~ N(0,T)) and the test statistic for each PC is

ye,i = (Wje), ~ 7V(0,1), i = 1, - • • , m (3.19)

which can be tested against tabulated threshold values. When an outlier
is detected by noting that one or more ye^ are greater than their thresh-
old values, Tong and Crowe [592] proposed the use of contribution plots
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(Section 8.1) to identify the cause of the outlier detected. They have also
advocated the use of sequential analysis approach [625] to make statistical
inferences for testing with fewer observations whether the mean values of
the PCs are zero.

Outlier detection in batch processes can be done by extending the PCA
based approach by using the multiway PCA (MPCA) framework discussed
in Section 4.5.1. The MPCA model or reference models based on other
paradigms such as functional data analysis (Section 4.4) representing the
reference trajectories can also be used for data reconciliation by substituting
"reasonable" estimated values for outliers or missing observations. The
example that follows illustrates how the MPCA models can be used for
outlier detection and data reconciliation.

Example Consider a data set collected from a fed-batch penicillin fer-
mentation process. Assume that there are a few outliers in some of the
variables such as glucose feed rate and dissolved oxygen concentration due
to sensor probe failures. This scenario is realized by adding small and large
outliers to the values of these variables as shown in Figure 3.4. Locations
of the outliers for the two variables are shown in Table 3.8.

In this example, a multiway PCA (MPCA) model with four principal com-
ponents is developed out of a reference set (60 batches, 14 variables, 2000
samples) for this purpose. A number of multivariate charts are then con-
structed to unveil the variables that might contain outlying data points and
the locations of the outliers in those variables. The first group of charts one
might inspect is the SPE, T2 charts and the charts showing variable con-
tributions to these statistics. Contribution plots are discussed in detail in
Section 8.1. Both SPE and T2 charts signal the outliers and their locations
correctly (Figure 3.5), but they do not give any information about which
variable or variables have outliers. At this point of the analysis, contribu-
tion (to SPE and T2 values) plots are inspected to find out the variables
responsible for inflating SPE and T2. Since outliers will be projected far-
ther from the plane defined by MPCA model, their SPE values are expected
to be very high. Consistently, SPE contribution plot indicates two variables

Table 3.8. Locations of the outliers

Variable

Glucose feed rate (no. 3)

Dissolved O<2 cone. (no. 6)

Locations of the outliers (sample no.)

500, 750, 800, 1000, 1500, 1505, 1510

450, 700, 900, 1400, 1405, 1410
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Figure 3.4. Raw data profiles containing outliers.

(variables 3 and 6, glucose feed rate and dissolved oxygen concentration,
respectively). T2 contributions represent similar information. Variable 3 is
not that obvious from that chart but variable 6 can be clearly distinguished.
Now that the variables with outliers and the overall locations of outliers are
identified, the locations of outliers in each variable need to be found. This
task can be accomplished either by directly inspecting individual variable
trajectories (Figure 3.4) or by using multivariate temporal contribution
plots (to both SPE and T2) for the identified variables (Figure 3.6). Some
of the critical change points on these curves (Figure 3.6) indicate the mul-
tivariate nature of the process, and the important events that take place.
For instance, the sudden drop in variable 3 at sample 450 is due to corre-
sponding outlier in variable 6 and the dip in variable 6 around sample 300
indicates the switch from batch to fed-batch operation. In this example, all
of the outliers are clearly detected by using PCA. To prevent multivariate
charts from signaling that the process is out-of-control, these outliers are
marked for removal. However, for further analysis and modeling purposes,
they should be replaced with estimates. The ability of the PCA technique
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Figure 3.5. Multivariate charts for detecting and diagnosing outliers. Vari-
able 3 is glucose feed rate and variable 6 is dissolved oxygen concentration.

to handle missing data is used for estimation of these by restricting the
estimates with observed values up to time interval k and the correlation
structure of the reference set variables as denned by the loading matrix
P of the MPCA model. The procedure followed in this example is based
on locating the first outlier, replacing it with a PCA-based estimate and
repeating this procedure with the next outlier. Projection of the already
known observations made on J variables [xk(kJ x 1)] into the reduced space
is performed by calculating the t^^ scores (Eq. 3.20). This scores vector
tpt^k is then used to predict the next observation set [xk+i((k + 1)J x 1)]
with the outlier becoming the missing value (old value replaced by a 0) as
shown in Eq. 3.21:

tR,fc = (P£Pfc

x(fc+l)Jxl =

Note that Pfc is a (A;J x R) matrix having as columns the elements of p-

(3.20)

(3.21)
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loading vectors (pr) from all R principal components up to time k just
before the outlier is observed. The matrix (PjTPfc) is well conditioned
because all pr vectors are orthogonal to each other [435].

All these techniques use data sets that have already been collected. This is
acceptable for model development and analysis of completed batches, but
it is not satisfactory for real time process monitoring and control activities.
Outlier detection during the progress of the batch is more challenging and a
compromise must be made between speed and sophistication of the outlier
detection technique used. As a first step, simple upper and lower limits for
each measured variable may be used to identify major outliers. More so-
phisticated tools based on multivariate process monitoring techniques can
also be used, noting the need to discriminate between real process faults
(that may persist for a number of sampling times) and outliers that usually
have shorter durations. Signal processing tools such as change detection
techniques based on maximum likelihood ratios can be considered for crit-
ical variables [45]. Outlier detection and data reconciliation during the
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Figure 3.6. Temporal contribution plots for locating outliers in identified
variables.
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Figure 3.7. Outlier removal and principal components estimates of the
removed samples.

progress of the batch in real time is an active research and development
area [607, 647].

A different paradigm is the use of smart sensors that include in the
sensor system functionality to detect outliers, reduce noise and conduct
self diagnosis of operation status. This will shift the burden of informa-
tion reliability assessment from the data collection and process operations
computer to the individual sensors. In coming years, cost reductions and
improvements in reliability would increase the feasibility of this option.

3.5 Data Pretreatment: Signal Noise
Reduction

Sensors and transmission lines can pick up noise from the environment
and report compromised readings. Various signal processing and filtering
paradigms have been proposed to reduce signal noise. Some simple remedies
can be developed by boosting the signal strength or selecting a variable that
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is less susceptible to noise. An example of the former is noise reduction in
thermocouple signals that are at millivolt level. If the signal is amplified to
volt level before transmitting, the signal to noise ratio during transmission
is significantly improved. Converting a voltage signal to current that is less
noise prone is an example of the latter remedy.

If several measurements are made for the same variable at a specific
sampling time, measurement error is reduced by averaging these. This is
the approach used in traditional statistical quality control in discrete man-
ufacturing processes. It may also be used for quality variables at the end
of a batch if several measurements can be made easily and at low cost.
The problem is more challenging if a single measurement is made for each
variable at each sampling instant. The paradigms used in this case include
averaging over time, decomposing the signal into low and high frequency
components, and use of multivariate data analysis techniques such as PCA
to separate signal information from noise. A general framework for data
averaging for signal filtering is presented and the use of PCA for noise reduc-
tion is illustrated in Section 3.5.1. The PCA method is discussed in detail
in Section 4.1. Signal decomposition can be implemented by various tech-
niques described in the signal processing literature [45, 207, 271]. Most of
these techniques are available in commercial software such as Matlab Signal
Processing Toolbox [373]. A particular signal decomposition approach that
has captured attention in recent years is the wavelet decomposition, which
can implement time-frequency decomposition simultaneously. Wavelets and
their use in noise reduction are discussed in Section 3.5.2. Multivariate data
analysis techniques use a different premise: If a coordinate transformation
can be made to explain the major variation in data, what has not been
extracted from the measurements would be mostly random noise. If the
signals are reconstructed by using only the information retained in the new
coordinate system, then the noise will be filtered out.

3.5.1 Signal Noise Reduction Using Statistical
Techniques

Simple noise filtering tools can be developed by using time series model
representation (Section 4.3.1) where the filtered signal y(ri) at sampling
time n is related to the signal x(n):

y(ri) = bix(n) + b<2x(n - 1) H ---- + bnb+ix(n - rib)

-a2y(n - ! ) • • • - ana+1y(n - na) (3.22)

where n is the current sampling time and na and rib are the lengths of the
past sampling time windows for y and x signals, respectively. This is the
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standard time-domain representation of a digital filter. Assuming zero ini-
tial conditions and starting with y(l), the progression of this representation

y(2) = blx(2} + b2x(l}-a2y(l) (3.23)

y(3) = 6ix(3) 4- 62x(2) + 63z(l) - a2y(2) - a3y(l) .

For example, if n\> = 2 and na = 2, then y(6) is computed by writing Eq.
3.22 for this set of index values:

y(6) = &ix(6) 4- b2x(5) 4- b3x(4) - a2y(5) - a3y(4) . (3.24)

To compute the estimated value y(6) for sensor reading x(6), the weighted
sum of the three most recent sensor readings and two most recent estimated
(filtered) values are used. Two limiting cases may be considered to generate
the estimates by using a time series model: the use of sensor readings only
(all di = 0) and the use of previous estimates only (all 6$ = 0). The
former is called moving average (MA) since all readings included in a sliding
time window (the window width is determined by the value of n& + 1) are
used to estimate the filtered signal. One option is to assign all values
equal weights (all bi are equal). Another option is to assign them different
weights, perhaps to give a higher emphasis to more recent readings. If only
past estimated values are used, then the current value is regressed over the
previous estimates, yielding an auto regressive (AR) model. If an MA model
is used, the last few readings are averaged to eliminate random noise. This
is reasonable because the noise is "random" and consequently sometimes
it will be positive and at other times it will be negative with a mean value
that is zero in theory. By averaging a few readings, it is hoped that the
noise components in each measurement cancel out in the averaging process.
A pure AR model is not appealing because the estimation is based only on
past estimated values and the actual measurements are ignored. The filter
is called autoregressive moving average (ARMA) when both AR and MA
terms are included. The reduction of noise by using ARMA and MA filters
is illustrated in the following example.

Example Consider a low frequency, high amplitude sinusoidal signal con-
taining high frequency, low amplitude noise (Figure 3.8(a)). Moving average
(MA) and autoregressive moving average (ARMA) filtering are applied to
denoise this signal. Filter design and fine tuning the parameters are im-
portant issues that are influential as concerns the result (Figure 3.8). After
filtering (especially with good performance filters), increase in the signal-
to-noise ratio is obvious. D
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(a) Noisy raw signal.

(b) Filtered signal with a poor MA fil-
ter.

(c) Filtered signal with a good MA
filter.

(d) Filtered signal with a poor ARMA
filter.

(e) Filtered signal with a good ARMA
filter.

Figure 3.8. Noise reduction using MA and ARMA filters.
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Noise Reduction by PCA. Multivariate statistical analysis tools pro-
cess the entire data set and make use of the relations between all measured
variables. Consequently, the noise reduction philosophy is different than
the filtering techniques discussed earlier where each measured variable is
treated separately. The multivariable statistical technique is utilized to sep-
arate process information from the noise by decomposing relevant process
information from random variations. This is followed by reconstruction of
the signals using only the process information. PCA determines the new
coordinates and extracts the essential information from a data set. Prin-
cipal Components (PC) are a new set of coordinates that are orthogonal
to each other. The first PC indicates the direction of largest variation in
data, the second PC indicates the largest variation not explained by the
first PC in a direction orthogonal to the first PC (Fig. 4.1). Consequently,
the first few PCs describe mostly the actual variations in data while the
portion of the variation not explained by these PCs contains most of the
random measurement noise. By decomposing the data to their PCs and
reconstructing the measurement information by using only the PCs that
contain process information, measurement noise can be filtered. The meth-
ods for computing PCs and determining the number of PCs that contain
significant process information are described in Section 4.1. The random
noise filtering by PCA is illustrated in the following example.

Example An MPCA model with 4 principal components is developed
using a reference data set containing 60 batches, 14 variables and 2000
samples of each variable over the batches. Scores of the first two principal
components are plotted in Figure 3.9, for the reference data set representing
normal operating conditions. As a result of PCA modeling, noise level is
decreased as shown in Figure 3.10. This is expected since a PC model
extracts the most relevant correlation information among the variables,
unmodeled part of the data being mostly noise. D

3.5.2 Wavelets and Signal Noise Reduction
Wavelets were developed as an alternative to Short Time Fourier Transform
(STFT) for characterizing non-stationary signals. Wavelets provide an
opportunity to localize events in both time and frequency by using windows
of different lengths while in STFT the window length is fixed. A wavelet
transform can be represented as

W(a,b) = -$= f x(t}^(t—\dt (3.25)
v W J \ a J

where ^ represents the mother wavelet, x(t) is the original signal, a and
b are scale and translation parameters, respectively, and the factor l/-v/[o[
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Figure 3.9. Biplot of first two score vectors (ti and t2, respectively) of
the MPCA model representing normal operation with 95 and 99 % control
limits.

is used to ensure that the energy of the scaled and translated signals are
the same as the mother wavelet. Scale parameter specifies the location
in frequency domain and translation parameter determines the location in
time domain. This equation can be interpreted as the inner product of x ( t )
with the scaled and translated versions of the basis function \l> [116]:

(3.26)

(3.27)
t-b

Scaled and translated versions of the basis functions are obtained from
the mother wavelet (Eq. 3.27). The discrete wavelet transform is used to
reduce the computational burden without losing significant information. To
obtain the discretized wavelet transform, scale and translation parameters
are discretized as a — 2-7 and b = 2J x k. Then, there exists \I> with good
time-frequency localization properties such that the discretized wavelets
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Figure 3.10. CO^ concentration profile before and after MPCA based de-
noising.

constitute an orthonormal basis. For this reason, although there are other
choices for discretization, dyadic discretization is used frequently [116]. The
discretized wavelet function becomes

j and k are the scale and translation parameters, respectively.
According to Mallat's multiresolution theory [362], any square inte-

grable signal can be represented by successively projecting it on scaling
and wavelet functions. The scaling function is shown as

< £ / . j.\(t] = 2~-7/23>(2~J£ — k] . (3.29)

The scaling coefficients o^ (Eq. 3.30) which are the low frequency content
of the signal are obtained by the inner product of the signal with the scal-
ing function <3?. The wavelet coefficients dj,k (Eq.3.31) which are the high
frequency content of the signal are obtained by the inner product of the
original signal with the wavelet function ^.

=< >= yz(t)*w,fc)(*)<fc (3.30)
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djtk =< x,Vjtk >= I (3.31)

where < •, • > indicates the inner product operation. Mallat [362] developed
a fast pyramid algorithm for wavelet decomposition based on successive
filtering and dyadic downsampling. Figure 3.11 represents this process for
one scale. The input signal X is filtered by a low pass filter L(n) and a high
pass filter H(n) in parallel obtaining the projection of the original signal
onto wavelet function and scaling function. Dyadic downsampling is applied
to the filtered signal by taking every other coefficient of the filtered output.
The same procedure is repeated for the next scale to the downsampled
output of L(n) shown as Al, since the low pass output includes most of
the original signal content. By applying this algorithm successively, scaling
coefficients dj and wavelet coefficients dj at different scales j can be found
as

-i . (3.32)dj =

Increasing the scale yields scaling coefficients that become increasingly
smoother versions of the original signal. The original signal can be com-
puted recursively by adding the wavelet coefficients at each scale and the
scaling coefficients at the last scale.

Haar wavelet [116] is the simplest wavelet function that can be used
as a basis function to decompose the data into its scaling and wavelet
coefficients. It is defined as

0 < t < 1/2
1/2 < t < 1
otherwise

(3.33)

and its graphical representation is shown in Figure 3.12. The scaling and
wavelet coefficients for the Haar wavelet are [1,1] and [1,-1], respectively.
Haar wavelet transform gives better results if the process data contain jump
discontinuities. Most of batch process data by nature contain such disconti-
nuities which make Haar wavelet a suitable basis function for decomposing

\2

12

Figure 3.11. Discrete wavelet decomposition.
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Figure 3.12. Haar wavelet.

batch process data. A noisy process signal (COi evolution rate) was decom-
posed in four scales using Haar wavelet in Figure 3.13. The low frequency
component (dominating nonlinear dynamics) of the original signal (upper-
most figure) is found in the scaling coefficients at the last scale whereas the
high frequency components that are mostly comprised of noise appear at
wavelet coefficients at different scales.

Wavelets are widely used to remove the noise from signals by extracting
the low frequency content and removing the high frequency content above
a threshold value. The denoised signal is obtained by reconstructing the
signal by applying inverse wavelet transform to the scaling and thresholded
wavelet coefficients. Thresholding, a crucial step of wavelet denoising, can
be applied either as soft or hard thresholding. Hard thresholding (Eq. 3.34)
removes the wavelet coefficients smaller than the threshold and replaces
them with zero:

\x\ > A
otherwise

(3.34)

where 6h(x) denotes the threshold value of x. Soft thresholding shrinks the
wavelet coefficients which are greater than the threshold value towards zero
by subtracting the threshold value from the wavelet coefficients as well:

Ss(x] =
x > A

\x < A
x < -A

(3.35)

Different methods for selecting the threshold value have been suggested in
the literature by Donoho and co-workers [132]. These methods are grouped
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Figure 3.13. Wavelet decomposition of a process signal (CO-2 evolution
rate).
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Figure 3.14. Wavelet denoising of a process signal.

into two categories as global thresholding and level-dependent threshold-
ing. A single threshold value is applied for all scales in global thresholding
whereas for level-dependent thresholding, a different threshold value is se-
lected for each scale. Level-dependent thresholding is suitable especially
for data with non-stationary noise. Figure 3.14 illustrates the wavelet de-
noising of a process variable using level-dependent hard thresholding. Haar
wavelet was used for de-noising the data in three scales.
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3.6 Theoretical Confirmation/Stoichiometry
and Energetics of Growth

Data collected from a process should also be checked for consistency by
using fundamental process knowledge such as stoichiometry and the en-
ergetics of growth. Cell growth involves consumption of nutrients for the
synthesis of additional biomass. The nutrients that supply energy and raw
materials for the biosynthesis should be compatible with the enzymatic
machinery of the cell. Knowledge of the reaction stoichiometry provides
a convenient way of obtaining various yield coefficients and consequently
provides information for formulating a growth medium that will supply all
the required nutrients in balanced amounts. This will in turn be very useful
for (i) determining the other quantities by expressing one in terms of the
others, (ii) monitoring the bioprocess, (iii) eliminating the measurements
of compounds that are difficult to measure while keeping track of the easy
to measure ones.

For many microorganisms, the energy and carbon requirements for growth
and product formation can be met by the same organic compound. This
considerably simplifies the analysis of cellular kinetics.

3.6.1 Stoichiometric Balances
To examine cell growth, it is important to know what the cells are made of,
that is their chemical composition. Although there are many different bio-
logical species, it turns out that a very large fraction of their mass is made of
a few elements, namely carbon (C), oxygen (O), nitrogen (N) and hydrogen
(H). Minor elements in the cell include phosphorus, sulfur, calcium, potas-
sium and sodium. Typically, 70% of cell mass is water and the remainder
is dry matter. Therefore it is conventional to express cell composition on a
dry basis. Nearly half of the dry matter in cells is carbon and the elements
carbon, oxygen, nitrogen and hydrogen make up about 92% of the total dry
mass. In different microbes, the carbon content varies from 46 to 50%, hy-
drogen from 6 to 7%, nitrogen from 8 to 14% and oxygen from 29 to 35%.
These are small variations and they appear to depend on substrate and
growth conditions. For many engineering calculations, it is reasonable to
consider the cell as a chemical species having the formula of CHi.gOo.5No.2-
This engineering approximation is a good starting point for many quantita-
tive analyses while a more carefully formulated empirical formula based on
gravimetric techniques may be necessary for complete material flow anal-
ysis. The cell "molecular weight" for the generic molecular formula stated
above is then 12+1.8 + 0.5(16) +0.2 (14) = 24.6. More generally, the ele-
mental composition of the cell can be represented as CHaO6Nc. Elemental
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composition of selected microorganisms can be found in [26].
When the cells grow in a medium (a source of all elements needed by the

cells) in the presence of oxygen, they oxidize or respire some of the carbon
to produce energy for biosynthesis and maintenance of cellular metabolic
machinery. Furthermore, cells may produce extracellular products that
accumulate in the broth. The overall growth process may therefore be
represented simplistically as:

Cell + Source (Carbon, Nitrogen, etc.) + O2 —>

More Cells + Extracellular Products + CO2 + H2O (3.36)

Carbon dioxide and water on the product side of the reaction (overall
growth process) result from oxidation of carbon source (such as glucose)
in the medium. Assuming that glucose and ammonia are the sole C and
N sources, and the cell composition is represented as CHi.sOo.sNo^, the
overall cell growth may be described by

C6H12O6 + aNH3 + bO2 ->

aCHi.s00.6N0.2 + /3CHxOyNz + jCO2 + SH2O . (3.37)

Here, CHxOyN2 is the elemental composition of extracellular product and
a, b, x, y, z ,Q, /3, 7 and 5 are the parameters to be determined. In order
to calculate these parameters, some additional information, such as yield
coefficient (Yx/s), respiratory quotient (RQ) and degree of reductance (71?),
is needed.

Elemental balances, when applied to Eq. 3.37, lead to the following
algebraic relations

6 = a + /3 + 7 (3.38)

12 + 3a = 1.8a + s/3 + 2<$ (3.39)

6 + 26 = 0.5a + y/3 + 27 + 6 (3.40)

a = 0.2a + z/3 (3.41)

Eqs. 3.38-3.41 reduce the degrees of freedom (parameters to be determined,
such as a, 6, x, y, z, a, (3, 7, and 5 by four. If the elemental composition of
the extracellular product is available a priori, then additional information
on this variables, such as cell mass yield (Yx/s and respiratory quotient
(RQ), is needed. If the elemental composition of the extracellular product
is not available, then information on five variables must be available from
experiments for complete specification of Eq. 3.37.

Cell Mass Yield can be defined as the amount of cell mass produced per
unit amount of substrate consumed,

_ amount of cell mass produced _ AX
x's amount of substrate consumed A5
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The subscript x/s denotes that, cell yield (X] is based on substrate
(5). This notation is especially important when there is more than
one substrate which significantly influences cell mass yield. This defi-
nition of yield can be extended to non-biomass products (P) with the
basis being substrate consumed or biomass produced:

_ amount of product produced _ AP .
amount of substrate consumed AS

or
amount of product produced AP , .

amount of cell mass produced AX

The cell mass yield based on oxygen (Yx/0) and yield of ATP (Adeno-
sine triphosphate, Y A T P / X ] can be obtained in analogous manner.

Respiratory Quotient, RQ, is defined as the rate of carbon dioxide for-
mation divided by the rate of oxygen consumption in aerobic growth.

_ rate of CQ2 formation . .
rate of O<2 consumption

This ratio can be calculated from on-line measurements of feed and
exit CC>2 and 62 using CC>2 and C>2 analyzers. If the nature of the
major extracellular product(s) is known (i.e., x, y, z of CHxOyNz),
then it is possible to calculate the parameters a, /?, 7 and 5 in Eq.
3.37 from experimental measurement of RQ and one other measure-
ment. If no significant amount of extracellular product is formed, as
in some cell growth processes, then it is evident from Eqs. 3.38-3.41
(/3 = 0) only one measurement such as RQ is needed to calculate
stoichiometric coefficients.

Degree of Reductance of an organic compound is defined as the number
of electrons available for transfer to oxygen upon combustion of the
compound to CO2, N2 and H^O. It is also defined as the number
of equivalents of available electrons per g atom of the compound.
The number of equivalents for carbon, hydrogen, oxygen and nitrogen
are 4, 1, -2 and -3 respectively. In view of this, for different cell
compositions, degree of reductance can be calculated. Examples of
the degree of reductance values for a wide range of compounds can
be found in [514].

3.6.2 Thermodynamics of Cellular Growth
A complex network of metabolic reactions in microbial growth is involved.
These reactions are either catabolic or anabolic. The former type releases
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energy while the latter consumes energy. However, some energy is always
lost as heat. For this reason, in large-scale processes, it is necessary to
remove this heat so that the culture is maintained at its optimum temper-
ature. When there is negligible amount of extracellular product formation
under aerobic conditions, the growth reaction (Eq. 3.36) may be rewritten
as,

Cell + Source (Carbon, Nitrogen, etc.) + O2 — • >

More Cells + CO2 + H2O (3.46)

and assuming cell composition is CHi.gOo.sNo^, Eq. 3.37 becomes

C6H12O6 + aNH3 + bO2 ->
+ (3CO2 + jH2O (3.47)

The total heat evolved (AQ) during growth can be calculated from an
enthalpy balance

AQ = (-A#S)(-AS) + (-A#N)(-AAO - (-A#X)(-AX) (3.48)

where, AHS, A-fiT^, A#x are the heats of combustion of carbon substrate,
nitrogen substrate and cells in kcal/g respectively. A5, A7V, AX are the
amounts of the corresponding materials consumed or produced. The value
of the heat of combustion of cells can be estimated using a modification of
the Dulong equation [67] using cell composition data that is experimentally
determined,

(-A#x) = 8.076C + 34.462(77 - 2) (3.49)
8

while heats of combustion of carbon substrate, and nitrogen substrate can
be found in standard chemistry books. The heats of combustion for a va-
riety of organisms are in a narrow range around 22 k J/g. Note that there
are several empirical correlations for AQ as a function of the amount of
oxygen consumed during aerobic growth as well [67].

It is also common to define a yield term, Yfccaj, based on the heat evo-
lution by cell growth as

A V

(3.50)

Typical values of Y^cai range between 0.096 and 0.126 g/kcal for many
microorganisms .

When significant amount of product is present, based on the stoichio-
metric description of cell growth (Eq. 3.36), total heat evolved (Eq. 3.48)
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should be modified to

(3.51)

(3.52)

where (— A.fifp.) and (— AP;) represent the heats of combustion of products
Pi and the amount of those products respectively.

Example

In this example, stoichiometric balances and calculation of yield coefficients
will be illustrated for growth of Penicillium chrysogenum and penicillin
production. For growth, a simple stoichiometric model can be used that
is based on the theoretical analysis of biosynthesis and polymerization by
Nielsen [424] and is given by:

+ 0.2(W#3 + Q.QQ4HSO4 + Q.QIQH2PC>4 + YX<ATPATP

+ Q.243NADPH. (3.53)

The stoichiometry (Eq. 3.53) is based on a cell with the composition given
in Table 3.9. C-source is glucose, N-source is ammonia, S-source is sulfate
and P-source is phosphate. The stoichiometry is given on a C-mole basis
and the elemental composition of the biomass is calculated from the con-
tent of the various building blocks [424]. The required ATP and NADPH
for biomass synthesis are supplied by the catabolic pathways, and excess
NADH formed in the biosynthetic reactions is, together with NADH formed
in the catabolic pathways, reoxidized to oxygen via the electron transport
chain. Based on the above stoichiometry, the yield coefficient of biomass
on glucose can be easily calculated as Yx/s = 1.139 C-mole glucose/ C-mole
biomass. In a similar manner, the yield coefficient of biomass on other nu-
trient sources such as V^ /ammonia* and ^/phosphate- can a^so be calculated.
The yield coefficient is usually given as g per g dry weight in the literature.
To convert the literature data to a C-mole basis a molecular weight of 24
g/C-mole and an ash content of 5% can be assumed.

For the calculation of the theoretical yield of penicillin, a simple stoi-
chiometric balance proposed by Cooney and Acevedo [112] can be used:

H2SO4 + 2NADH2 + PAA + 5 ATP ->

penicillin G + 1FADH2 + CO2 + 7H2O. (3.54)

a-AAA (a-Aminoadipic acid) is the starting compound in the pathway
for penicillin biosynthesis and acts as a carrier. If it is recycled, its net
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synthesis is of little concern in the overall material and energy requirements
for formation of large quantities of penicillin. But if it is used once and
then degraded, the net demand for energy will contribute to the energy
demands of penicillin and cell synthesis. If the synthesis of a-AAA cannot
be neglected and if a-AAA is used once and discarded, then the overall
stoichiometry is obtained as:

3C6#i2O6 + 3NH3 + H2SC>4 + PAA + 3ATP -> penicillin G

+ 2FADH2 + 4CO2 + 7H2O + 4NADH2 + a - AAA. (3.55)

Both penicillin G and a-AAA would accumulate. From the above stoi-
chiometry (Eqs. 3.54 and 3.55), the theoretical yield of penicillin on either
glucose, or ammonia or sulfate can be calculated based on the definition
of yield coefficient for the two cases (in which a-AAA is either recycled
or discarded) [112]. Theoretical yield coefficients are presented in Table
3.10, [112] where the stoichiometry of Eq. 3.54 is used in case 1 and the
stoichiometry of Eq. 3.55 is used in case 2.
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Table 3.9. Composition, ATP and NADPH requirements of a Penicillium
chrysogenum. Adapted from [424].

Macromolecule

Protein
RNA
DNA
Lipid

Phospholipids
Sterolesters

Tryacylglycerol
Carbohydrates

Cell Wall
Glycogen

Soluble Pool6

Amino Acids
Nucleotides

Metabolites etc.
Ash

Transport^
Ammonia

Amino Acids
Sulfate

Phosphate9

Total

Content"

0.45
0.08
0.01
0.05

0.035
0.010
0.005
0.25
0.22
0.03
0.08
0.04
0.02
0.02
0.08

1

ATP"
Defined0

19.918
3.315
0.389

1.652
0.805
0.295

2.901
0.370

7.101
0

0.137
2.116

38.999

ATP"
Complex0*

17.505
3.315
0.389

1.652
0.805
0.295

2.901
0.370

1.736
4.341

0
2.116

35.425

NADPH6

Defined
8.295
-0.266
0.016

0.655
0.029
0.119

-0.356
0

8.492

NADPH6

Complex
0

-0.266
0.016

0.655
0.029
0.119

-0.356
0

197

a : The macromolecular composition is given in g per g DW for balanced growth at a
specific growth rate of about 0.1 h"1.
6 : The calculation of ATP and NADPH requirements (in mmole per DW) are shown
in [424].
c : Data for growth on a defined medium of glucose and inorganic salts.

: Data for growth on a complex medium containing glucose, inorganic salts and amino
acids.
e : The metabolic costs for biosynthesis of building blocks present in the soluble pool
are included in the cost for the macromolecules.
•* : In estimation of the ATP requirement for transport it is assumed that glucose is
transported by facilitated diffusion.
9 : For the phosphate requirements it is assumed that 3 moles of phosphate are needed
for synthesis of each nucleotide.
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Table 3.10. Theoretical conversion yield of penicillin G. Adapted from [112].

Product

g penicillin G"
g glucose

£ 6-APAb

g glucose
106 units penicillin Gc

g glucose
g penicillin G

g NH3g penicillin G
K H2S04

Case 1
a-AAA recycled

1.10

0.67

1.80
10.5
3.60

Case 2
a-AAA discarded

0.66

0.40

1.10
7.0
3.60

a : The macromolecular weight of sodium salt of benzylpenicillin is 356.4.
The molecular formula is CieHnN^O^SNa.
b : The molecular weight of 6-aminopenicillanic acid (6-APA) is 216.28.
c : One international unit of penicillin is equal to 0.6 fig of benzyl sodium
penicillin.
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Methods for Linear
Data-Based Model
Development

Process models may be developed by using either first principles such as
material and energy balances, or process input and output information.
The advantages of first principle models include the ability to incorporate
the scientist's view of the process into the model, describe the internal
dynamics of the process, and explain the behavior of the process. Their
disadvantages are the high cost of model development, the bias that they
may have because of the model developer's decisions, and the limitations
on including the details due to" lack of information about specific model
parameters. Often, some physical, chemical or transport parameters are
computed using empirical relations, or they are derived from experimental
data. In either case, there is some uncertainty about the actual value of the
parameter. As details are added to the model, it may become too complex
and too large to run model computations on the computer within an accept-
able amount of time. However, this constraint has a moving upper limit,
since new developments in computer hardware and software technologies
permit faster execution. Fundamental models developed may be too large
for faster execution to be used in process monitoring and control activities.
These activities require fast execution of the models so that regulation of
process operation can be made in a timely manner. The alternative model
development paradigm is based on developing relations based on process
data.

Input-output models are much less expensive to develop. However, they
only describe the relationships between the process inputs and outputs,
and their utility is limited to features that are included in the data set col-
lected for model development. They can be used for interpolation but they

119
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should not be used for extrapolation. There are numerous well established
techniques for linear input-output model development. Nonlinear input-
output model development techniques have been proposed during the last
four decades, but they have not been widely accepted. There are more than
twenty different paradigms, and depending on the type of nonlinearities in
the data, some paradigms work better than others for describing a specific
process. The design of experiments to collect data and the amount of data
available have an impact on the accuracy and predictive capability of the
model developed. Data collection experiments should be designed such that
all key features of the process are excited in the frequency ranges of inter-
est. Since, the model may have terms that are composed of combinations
of inputs and/or outputs, exciting and capturing the interactions among
variables is crucial. Hence, the use of routine operational data for model
development, without any consideration of exciting the key features of the
model, may yield good fits to the data, but provide models that have poor
predictive ability. The amount of data needed for model development in-
creases with the order of first principle models, linear input-output models,
and nonlinear input-output models.

Biochemical processes have become increasingly instrumented in recent
years. More variables are being measured and data are being recorded more
frequently [304, 655]. This creates a data overload, and most of the use-
ful information gets hidden in large data sets. There is a large amount of
correlated or redundant information in these process measurements. This
information must be compressed in a manner that retains the essential in-
formation about the process, extracts process knowledge from measurement
information, and presents it in a form that is easy to display and interpret.
A number of methods from multivariate statistics, systems theory and ar-
tificial intelligence for data based model development are presented in this
chapter.

Model development may have various goals. These goals warrant consid-
eration of the following cases. One case is the interpretation and modeling
of one block of data such as measurements of process variables. Princi-
pal components analysis (PCA) may be useful for this to retain essential
process information while reducing the size of the data set. A second case
is the development of a relationship between two groups of data such as
process variables and product variables, the regression problem. PCA re-
gression or partial least squares (PLS) regression techniques would be good
candidates for addressing this problem. Discrimination and classification
are activities related to process monitoring that lead to fault diagnosis.
PCA and PLS based techniques as well as artificial neural networks (ANN)
and knowledge-based systems may be considered for such problems. Since
all these techniques are based on process data, the reliability of data is
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critical for obtaining dependable results from the implementation of these
techniques.

Data-based models may be linear or nonlinear and describe only the
process behavior captured by the data collected. Methods for development
of linear models are easier to implement and more popular. Since most
monitoring and control techniques are based on the linear framework, use
of linear models is a natural choice. However, nonlinear empirical models
that are more accurate over a wider range of operating conditions are desir-
able for processes with strong nonlinear it ies. ANNs provide one framework
for nonlinear model development. Extensions of PC A and PLS to develop
nonlinear models have also been proposed. Several nonlinear time series
modeling techniques have been reported. Nonlinear system science meth-
ods provide a different framework for nonlinear model development and
model reduction. This chapter will focus on linear data-based modeling
techniques. References will be provided for their extensions to the nonlin-
ear framework. ANNs will also be discussed in the context of model devel-
opment. Chapter 5 will introduce nonlinear modeling techniques based on
systems science methods.

Section 4.1 introduces PCA. Various multivariate regression techniques
are outlined in Section 4.2. Input-output modeling of dynamic processes
with time series and state-space modeling techniques, state estimation with
Kalman filters and batch process modeling with local model systems are
introduced in Section 4.3. Functional data analysis that treats data as rep-
resentation of continuous functions is discussed in Section 4.4. Statistical
methods for modeling batch processes such as multivariate PCA and mul-
tivariate PLS, multivariate covariates regression and three-way techniques
like PARAFAC and Tucker are introduced in Section 4.5. ANNs and their
use in dynamic model development are presented in Section 4.6. Finally,
Section 4.7 introduces extensions of linear techniques to nonlinear model
development, nonlinear time series modeling methods, and nonlinear PLS
techniques.

4.1 Principal Components Analysis

Principal Components Analysis (PCA) is a multivariable statistical tech-
nique that can extract the essential information from a data set reported
as a single block of data such as process measurements. It was originally
developed by Pearson [462] and became a standard multivariate statistical
technique [18, 254, 262, 263]. PCA techniques are used to develop models
describing the expected variation under normal operation (NO). A refer-
ence data set is chosen to define the NO for a particular process based on
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the data collected from various periods of plant operation when the per-
formance is good. The PCA model development is based on this data set.
This model can be used to detect outliers in data, data reconciliation, and
deviations from NO that indicate excessive variation from normal target
or unusual patterns of variation. Operation under various known upsets
can also be modelled if sufficient historical data are available to develop
automated diagnosis of source causes of abnormal process behavior [488].

Principal Components (PC) are a new set of coordinate axes that are
orthogonal to each other. The first PC indicates the direction of largest
variation in data, the second PC indicates the largest variation unexplained
by the first PC in a direction orthogonal to the first PC (Fig. 4.1). The
number of PCs is usually less than the number of measured variables.

Figure 4.1. PCs of three-dimensional data set projected on a single plane
[488].

PCA involves the orthogonal decomposition of the set of process mea-
surements along the directions that explain the maximum variation in the
data. For a continuous process, the elements of the data matrix (X) are xij
where i = 1 , • • • , n indicates the number of samples and j = 1 , • • • , ra indi-
cates the number of variables. The directions extracted by the orthogonal
decomposition of X are the eigenvectors PJ of XTX or the PC loadings

X - tipf + t2pj + • • • + tAp^ + E (4.1)

where X is an n x m data matrix with n observations of m variables, E
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is n x m matrix of residuals, and the superscript T denotes the trans-
pose of a matrix. Ideally the dimension A is chosen such that there is no
significant process information left in E, and E represents random error.
The eigenvalues of the covariance matrix of X define the corresponding
amount of variance explained by each eigenvector. The projection of the
measurements (observations) onto the eigenvectors define new points in
the measurement space. These points constitute the score matrix, T whose
columns are t j given in Eq. 4.1. The relationship between T, P, and X can
also be expressed as

T = XP , X = TPT + E (4.2)

where P is an m x A matrix whose jih column is the jth eigenvector of
XTX, and T is an n x A score matrix.

The PCs can be computed by spectral decomposition [262], computa-
tion of eigenvalues and eigenvectors, or singular value decomposition. The
covariance matrix S (S=XTX/(m — 1)) of data matrix X can be decom-
posed by spectral decomposition as

S - PLPT (4.3)

where P is a unitary matrix1 whose columns are the normalized eigenvectors
of S and L is a diagonal matrix that contains the ordered eigenvalues li of
S. The scores T are computed by using the relation T = XP.

Singular value decomposition is

X - UAVT (4.4)

where the columns of U are the normalized eigenvectors of XX , the
columns of V are the normalized eigenvectors of XTX, and A is a 'diagonal'
matrix having as its elements the positive square roots of the magnitude
ordered eigenvalues of XTX. For an n x m matrix X, U is n x n, V is m x m
and A is n x m. Let the rank of X be denoted as p, p < min(m,n). The
first p rows of A make a p x p diagonal matrix, the remaining n — p rows
are filled with zeros. Term by term comparison of the last two equations
yields

P = V and T = UA . (4.5)

For a data set that is described well by two PCs, the data can be
displayed in a plane. The data are scattered as an ellipse whose axes are in

1A unitary matrix A is a complex matrix in which the inverse is equal to the conjugate
of the transpose: A-1 = A*. Orthogonal matrices are unitary. If A is a real unitary
matrix then A"1 = AT.
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(a) (b) (c) (d)

Figure 4.2. Data preprocessing: Scaling of the variables, (a) Raw data,
(b) After mean-centering only, (c) After variance-scaling only, (d) After
autoscaling (mean-centering and variance-scaling) [145, 181].

the direction of PC loadings in Figure 4.1. For higher number of variables
data will be scattered as an ellipsoid.

PCA is sensitive to scaling and outliers. The process data matrix should
be mean-centered and scaled properly before the analysis. Scaling is usually
performed by dividing all the values for a certain variable by the standard
deviation for that variable so that the variance in each variable is unity
(Figure 4.2(d)) corresponding to assumption that all variables are equally
important. If a priori knowledge about the relative importance about the
variables is available, important variables can be given a slightly higher
scaling weight than that corresponding to unit variance scaling [82, 206].

The selection of appropriate number of PCs or the maximum significant
dimension A is critical for developing a parsimonious PCA model [253, 262,
528]. A quick method for computing an approximate value for A is to add
PCs to the model until the percent of the variation explained by adding
additional PCs becomes small. Inspect the ratio X^=i ^/5^f=i ^ where L
is the diagonal matrix of ordered eigenvalues of S, the covariance matrix.
The sum of the variances of the original variables is equal to the trace
(£r(S)), the sum of the diagonal elements of S:

5? + Si + • • • + S2
p = tr(S) . (4.6)

where tr(S) = tr(L). A more precise method that requires large computa-
tional time is cross-validation [309, 659]. Cross-validation is implemented
by excluding part of the data, performing PCA on the remaining data, and
computing the prediction error sum of squares (PRESS) using the data re-
tained (excluded from model development). The process is repeated until
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every observation is left out once. The order A is selected as that minimizes
the overall PRESS. Two additional criteria for choosing the optimal number
of PCs have also been proposed by Wold [659] and Krzanowski [309], related
to cross-validation. Wold [659] proposed checking the following ratio

(47)V '

where RSS^ is the residual sum of squares after Ath principal component
based on the PCA model. When R exceeds unity upon addition of another
PC, it suggests that the Ath component did not improve the prediction
power of the model and it is better to use A — 1 components. Krzanowski
[309] suggested the ratio

W = (PRESSA-i-PRESSA)/£>m

PKESSA/DA
 ( ' '

- 2A, DA = JK(I - 1) - / + JK - 2i
1=1

where Dm and DA denote the degrees of freedom required to fit the Aih
component and the degrees of freedom after fitting the Ath component,
respectively. If W exceeds unity, then this criterion suggests that the Ath
component could be included in the model [435].

4.2 Multivariable Regression Techniques

Several regression techniques can be used to relate two groups of variables
such as process measurements X and quality variables Y. The availability
of a model provides the opportunity to predict process or product variables
and compare the measured and predicted values. The residuals between
the predicted and measured values of the variables can be used to develop
various SPM techniques and tools for identification of variables that have
contributed to the out-of-control signal.

Multivariable linear regression is the most popular technique for model
development. The model equation is

Y = X/3 + E where /3 = (X^'^Y (4.10)

where E is the residual which is equal to 0 for the estimate Y — X/3. A
critical issue in using this approach for modeling multivariable processes
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is the colinearity among process variables. Colinearity causes numerical
difficulties in computing the inverse (XTX)-1. Hence, the computation
of the regression coefficients /3 by the least-squares approach may not be
possible. Even if (3 is computed, the standard errors of the estimates of
the /3 coefficients associated with the colinear regressors become very large.
This causes uncertainty and sensitivity in these (3 estimates.

Colinearity can be detected by standardizing all predictor variables
(mean centered, unit variance) and computing correlations and coefficients
of determination.

_ m

Zi — x%i ~ xi d2 — y^(x t--S-)2 , i — 1, • • • ,ra ,j = 1, • • • ,p . (4.11)
3 i=l

There is significant colinearity among some predictor variables if:

• The correlation between any two predictors exceeds 0.95 (only colin-
earity between two predictors can be assessed).

• The coefficient of determination R? of each predictor variable j re-
gressed on all the other predictor variables exceeds 0.90, or the vari-
ance inflation factor VIFj — (1 — -R?)"1 is less than 10 (variable j
is colinear with one or more of the other predictors). VIFj is the
0) j) th diagonal element of the matrix Z^^Z"1 where Z = \zlj\. R2

can be computed from the relationship between R2 and VIFj.

• Some of the eigenvalues of the correlation matrix ZTZ are less than
0.05. Large elements of the corresponding eigenvectors identify the
predictor variables involved in the colinearity.

Remedies in regression with colinear data include

• Stepwise regression

• Ridge regression

• Principal components regression

• Partial least squares (PLS) regression

These techniques will be introduced in the sections that follow.
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4.2.1 Stepwise Regression
Predictor variables are added to or deleted from the prediction (regression)
equation one at a time. Stepwise variable selection procedures are useful
when a large number of candidate predictors is available. It is expected that
only one of the strongly colinear variables will be included in the model.
Major disadvantages of stepwise regression are the limitations in identifying
alternative candidate subsets of predictors, and the inability to guarantee
the optimality of the final model. The procedure is:

• Fit p single variable regression models, calculate the overall model F-
statistic for each model. Select the model with the largest F-statistic.
If the model is significant, retain the predictor variable and set r = 1.

• Fit p—r reduced models, each having the r predictor variables selected
in the previous stages of variable selection and one of the remaining
candidate predictors. Select the model with the largest overall F-
statistic. Check the significance of the model by using the partial
F-statistic.

• If the partial F-statistic is not significant, terminate the procedure.
Otherwise, increment r by 1 and return to step 2.

Computation of F-statistics:
Regression sum of squares: SSR = Y^(Vi ~ 2/)2» witn P degrees of freedom
(d.f.), Error sum of squares: SSE = ^(yi — y)2, with d.f.= m — p — 1.
Denote a model of order r by M% and a model of order r + 1 by MI , and
their error sum of squares by SSE? and SSEi , respectively. Then

Overall F-statistic : Fpin_p_! = (4.12)
n p 1

Partial F-statistic : F1>m_r_2 = (4.13)
MSE\

where

(4.14).
r + l - r r a - r - 2

4.2.2 Ridge Regression
The computation of regression coefficients @ in Eq. 4.10 is modified by
introducing a ridge parameter k such that

0= [ZTZ + kl]~lZTY . (4.15)
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Standardized ridge estimates (3j j = 1, • • • , p are calculated for a range of
values of k and are plotted versus k. This plot is called a ridge trace. The
/3 estimates usually change dramatically when k is initially incremented by
a small amount from 0. Some (3 coefficients may even change sign. As k is
increased, the trace stabilizes. A k value that stabilizes all /3 coefficients is
selected and the final values of (3 are estimated.

A good estimate of the k value is obtained as

_ pMSE
- 4'16

where /3*s are the least-squares estimates for the standardized predictor
variables, and MSE is the least squares mean squared error, SSE/(m — p —

1).
Ridge regression estimators are biased. The tradeoff for stabilization

and variance reduction in regression coefficient estimators is the bias in the
estimators and the increase in the squared error.

4.2.3 Principal Components Regression
Principal components regression (PCR) is one of the techniques to deal
with ill-conditioned data matrices by regressing the system properties (e.g.
quality measurements) on the principal components scores of the measured
variables (e.g. flow rates, temperature). The implementation starts by
representing the data matrix X with its scores matrix T using the trans-
formation T = XP. The number of principal components to retain in the
model must be determined as in the PC A such that it optimizes the pre-
dictive power of the PCR model. This is generally done by using cross
validation. Then, the regression equation becomes

Y = TB + E (4.17)

where the optimum matrix of regression coefficients B is obtained as

B = (TTT)-1TTY . (4.18)

Substitution of Eq. 4.18 into Eq. 4.17 leads to trivial E's. The inversion
of TTT should not cause any problems due to the mutual orthogonality of
the scores. Score vectors corresponding to small eigenvalues can be left out
in order to avoid colinearity problems. Since principal components regres-
sion is a two-step method, there is a risk that useful predictive information
would be discarded with a principal component that is excluded. Hence
caution must be exercised while leaving out vectors corresponding to small
eigenvalues.
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4.2.4 Partial Least Squares
Partial Least Squares (PLS), also known as Projection to Latent Struc-
tures, develops a biased regression model between X and Y. It selects
latent variables so that variation in X which is most predictive of the prod-
uct quality data Y is extracted. PLS works on the sample covariance matrix
(XTY)(YTX) [180, 181, 243, 349, 368, 661, 667]. Measurements on k pro-
cess variables taken at n different times are arranged into a (nxra) process
data matrix X. The p quality variables are given by the corresponding
(nxp) matrix Y. Data (both X and Y blocks) are usually preprocessed
prior to PLS analysis. PLS modeling works better when the data are fairly
symmetrically distributed and have fairly constant "error variance" [145].
Data are usually centered and scaled to unit variance because in PLS any
given variable will have the influence on the model parameters that in-
creases with the variance of the variable. Centering and scaling issues
were discussed earlier in Section 4.1. The PLS model can be built by us-
ing the non-linear iterative partial least-squares algorithm (NIPALS). The
PLS model consists of outer relations (X and Y blocks individually) and
an inner relation (linking both blocks). The outer relations for the X and
Y blocks are respectively

A
TX = TP + E = tap + E (4.19)

a=l

A

Y = UQT + F = ̂  uaq£ + F (4.20)
a=l

where E and F represent the residuals matrices. Linear combinations of x
vectors are calculated from the latent variable ta = wjx and those for the
y vectors from ua = q^y so that they maximize the covariance between X
and Y explained at each dimension. wa and qa are loading vectors. The
number of latent variables can be determined by cross-validation [659].

For the first latent variable, PLS decomposition is started by selecting one
column of Y,YJ, as the starting estimate for Ui. (Usually, the column of
Y with greatest variance is chosen.) Starting in the X data block (for the
first latent variable):

T uTX Xwi , , „.. .
T II ' 4'21

w

In the Y data:
r__t[Y_ „ Yq,

Ql - pTtJ ' Ul - IJqTqTil ' (422>
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u

Figure 4.3. The matrix relationships in PLS [145]. T and U show PLS
scores matrices on X and Y blocks, respectively, P, X loadings, W and
Q represent weight matrices for each block, E and F are residual matrices
formed by the variation in the data that were left out of modeling.

At this point, the convergence is checked by comparing ti in Eq. 4.21 with
the ti from the preceding iteration. If they are equal within rounding error,
one proceeds to Eq. 4.23 to calculate X data block loadings pi and weights
wi are rescaled using the converged ui. Otherwise, Ui from Eq. 4.22 is
used.

T
Pi -

t x
I t f t l l l (4.23)

The regression coefficient b for the inner relation is computed as

fti |
(4.24)

Once the scores and loadings have been calculated for the first latent vari-
able, X- and Y-block residuals are computed as

= X - t1Pf (4.25)

(4.26)

The entire procedure is now repeated for the next latent variable start-
ing with Eq. 4.21. X and Y are replaced with the residuals EI and FI,
respectively, and all subscripts are incremented by 1. Hence, the variabil-
ity explained by the earlier latent variables is filtered out from X and Y
by replacing them in the next iteration with their residuals that contain
unexplained variation.
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Several enhancements have been made to the PLS algorithm [118, 198,
343, 363, 664, 660, 668] and software is available for developing PLS models
[472, 548].

4.3 Input-Output Modeling of Dynamic
Processes

Methods for developing models to describe steady state relationships of
processes are presented in Sections 4.1 and 4.2. The description of batch
fermentation processes and the general form of their model equations in
Chapter 2 (for example Eq. 2.1 or Eq. 2.3) indicate that dynamic input-
output models are more appropriate for representing the behavior of these
processes. Two types of dynamic models are introduced in this section: time
series models (Section 4.3.1) and state space models (Section 4.3.2). State
estimators are also presented in conjunction with state space models. The
linear model structures are discussed in this section. They can handle mild
nonlinearities. They can also result from linearization around an operating
point. Their extensions to nonlinear models are discussed in Section 4.7.
Use of these modeling paradigms to develop more complex models of batch
and semi-batch processes is reported in Section 4.3.4.

Inputs, outputs, disturbances and state variables will be denoted as u,
y, d and x, respectively. The models can be in continuous time (differ-
ential equations) or discrete time (difference equations). For multivariable
processes where ui(t), uz(t), • • • , um(t} are the m inputs, the input vector
u(t) at time t is written as a column vector. Similarly, the p outputs, and
the n state variables are denned by column vectors:

y(t) = : , U(t) = : , x(t) = : (4.27)

Disturbances d(t), residuals e(t} = y(t) — y(t}, and random noise attributed
to inputs, outputs and state variables are also represented by column vectors
with appropriate dimensions in a similar manner.

4.3.1 Time Series Models
Time series models have been popular in many fields ranging from modeling
stock prices to climate. They could be cast as a regression problem where
the regressor variables are the previous values of the same variable and past
values of inputs and disturbances. They are also called black box models
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because they describe the relationship of the present value of the output
to external variables but do not provide any knowledge about the physical
description of the processes they represent.

A general linear discrete time model for a single variable y(t] can be
written as

y(t) = r ) ( t ) + w ( t ) (4.28)

where w(t) is a disturbance term such as measurement noise and 17 (t) is the
noise-free output

)u(t) (4.29)

with the rational function G(q,0] and input u(t). The function G(q,9)
relates the inputs to noise-free outputs whose values are not known because
the measurements of the outputs are corrupted by disturbances such as
measurement noise. The parameters of G(q, 9} (such as bi in Eq. 4.30) are
represented by the vector 6, and q is called the shift operator (Eq. 4.31).
Assume that relevant information for the current value of output y(i) is
provided by past values of y(t) for ny previous time instances and past
values of u(t) for nu previous instances. The relationship between these
variables is

rj(t) + fm(t - I) + • • • + /^(t - ny)

= biu(t) + b2u(t -!) + • • • + bnuu(t - (nu - 1)) (4.30)

where /j, i = l,2,,..,ny and 6Z, i = 1,2, . . . ,n n are parameters to be
determined from data. Denning the shift operator q as

(4.31)

Eq. (4.30) can be written using two polynomials in q

ri(t) (1 + /i^1 + • • • + fnyq~ny)

= u(t] (61 + b2q-1 + ••• + bnuq-n») . (4.32)

This equation can be written in a compact form by defining the polynomials

F(q) = (1 + fiq~l + • • • + /n q~ny}

B(q) = (61 + b2q~1 + • • • + bnuq-(n"~1}) (4.33)

where

r)(t) = G(q,Q] u(t] with G(q,0) = -=$-. (4.34)
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Often the inputs may have a delayed effect on the output. If there is a
delay of nk sampling times, Eq. (4.30) is modified as

i7(t) + firt(t -l} + --- + fnyrj(t- ny) (4.35)
= biu(t - nk] + b2u(t - (nk + 1)) H ----- h bnuu(t - (nu + nk- 1)) .

The disturbance term can be expressed in the same way

w(t) = H(q,0)e(t) (4.36)

where e(t) is white noise and

~ D(d] ~ 1 + cfcg-i + - - -

The model (Eq. 4.28) can be written as

y(t) = G(q, 0)u(t] + H(q, 0)e(t) (4.38)

where the parameter vector 0 contains the coefficients &i, C{, di and fi of the
transfer functions G(q,0} and H(q,0). The model structure is described
by five parameters ny, nu, nk, nc, and n^. Since the model is based
on polynomials, its structure is finalized when the parameter values are
selected. These parameters and the coefficients are determined by fitting
candidate models to data and minimizing some criteria based on reduction
of prediction error and parsimony of the model.

The model represented by Eq. (4.38) is known as the Box-Jenkins
(BJ) model, named after the statisticians who have proposed it [79]. It
has several special cases:

• Output error (OE) model. When the properties of disturbances
are not modeled and the noise model H(q) is chosen to be identity
(nc = 0 and U& = 0), the noise source w(t) is equal to e(£), the
difference (error) between the actual output and the noise-free output.

• AutoRegressive Moving Average model with eXogenous in-
puts (ARM AX) . If the same denominator is used for G and H

A(q] = F(q) = D(q) = I + a.q'1 + ••• + anaq~n~ . (4.39)

Hence Eq. (4.38) becomes

A(q)y(t) = B(q}u(t] + C(q)e(t] (4.40)

where A(q)y(t) is the autoregressive (regressing on previous values
of the same variable y(t)} term, C(q)e(t) is the moving average of
white noise e(t), and B(q}u(€) represents the contribution of external
inputs. Use of a common denominator is reasonable if the dominating
disturbances enter the process together with the inputs.
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• AutoRegressive model with exogenous inputs (ARX). A spe-
cial case of ARMAX is obtained by letting C(q) = 1 (nc = 0).

These models are used for prediction of the output given the values of
inputs and outputs in previous sampling times. Since white noise cannot
be predicted, its current value e(t) is excluded from prediction equations.
Predicted values are denoted by a "A over the variable symbol, for example
y(t). To emphasize that predictions are based on a specific parameter set
0, the nomenclature is further extended to y(t 6).

The computation of parameters 0 is usually cast as a minimization prob-
lem: select the values for 9 that minimize the prediction errors e(t,9] =
y(t] — y(t | 6} for given sets of data over a time period. For N data points

1 A
(4.41)

t=i

where "arg min" denotes the minimizing argument. This criteria has to be
extended to prevent overfit of data. A larger model with many parameters
may fit data used for model development very well, but it may give large
prediction errors when new data are used. Several criteria have been pro-
posed to balance model fit and model complexity. Two of them are given
here to illustrate how they balance accuracy and parsimony:

• Akaike's Information Criterion (AIC)

where d is the number of parameters estimated (dimension of 0).

Final Prediction Error (FPE)

N

mini- rTTTTF ) ^£2(t, 6} . (4.43)» f\ \ 1 ,j / A / A / \ / j ^ * f ^ 'a,6* v _ „,.. . . x ^_^

Model development (also called system identification) involves several
critical activities including design of experiments and collection of data,
data pretreatment, model fitting, model validation and acceptability of the
model for its use. A vast literature has been developed over the last 50
years in various aspects of model identification [212, 354, 346, 500, 558].
A schematic diagram in Figure 4.4 [347] where the ovals represent human
activities and decision making steps and the rectangles represent computer-
based computations and decisions illustrates the links between critical ac-
tivities.
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Design the
experiment and

collect data

Figure 4.4. Model identification [347].

4.3.2 State-Space Models
State variables are the minimum set of variables that are necessary to de-
scribe completely the state of a system. In quantitative terms, given the
values of state variables x(t) at time to and the values of inputs u(t] for
t > to, the values of outputs y(t) can be computed for t > to. Various
types of state-space models are introduced in this section. Recall the mod-
els derived from first principles in Chapter 2. The process variables used in
these models can be subdivided into measured and unmeasured variables,
and all process variables can be included in the set of state variables while
the measured variables can form the set of output variables. This way,
the model can be used to compute all process variables based on measured
values of output variables and the state-space model.

Classical state-space models are discussed first. They provide a versatile
modeling framework that can be linear or nonlinear, continuous or discrete
time, to describe a wide variety of processes. State variables can be defined
based on physical variables, mathematical solution convenience or ordered
importance of describing the process. Subspace models are discussed in the
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second part of this section. They order state variables according to the
magnitude of their contributions in explaining the variation in data. State-
space models also provide the structure for developing state estimators
where one can estimate corrected values of state variables, given process
input and output variables and estimated values of process outputs. State
estimators are discussed in the last part of this section.

Classical State-Space Models

State space models relate the variation in state variables over time to their
values in the immediate past and to inputs with differential or difference
equations. Algebraic equations are then used to relate output variables to
state variables and inputs at the same time instant. Consider a system of
first-order differential equations (Eq. 4.44) describing the change in state
variables and a system of output equations (Eq. 4.45) relating the outputs
to state variables

dx
— =*(*)= f(x(t), ii(O) (4-44)

y( t )=h(x( t ) ,u ( t ) ) . (4.45)

For a specific time to, x(to) can be computed using Eq. 4.44 if x ( t ) and
u(t) are known at time to- For an infinitesimally small interval <5t, one can
compute x(t0 + <5t) using

x(t0 + 5t) = x(t0) + 5t • f (x(t0), u(t0)). (4.46)

Then, the output y(to + St) can be computed using x(to + St) and Eq.
(4.45). Equation (4.46) is the Euler's method for the solution of Eq. (4.44)
if 5t is a small number. This computation sequence can be repeated to
compute values of x(t) and y(t) for t > to if the corresponding values of
u(t) are given for future values of time such as to + 25t, • • • , to + k5t. The
model composed of Eqs. (4.44)-(4.45) is called the state-space model, the
vector x(t), the state vector, and its components #$(£) the state variables.
The dimension of x(t), n (Eq. (4.27)) is the model order.

State-space models can also be developed for discrete time systems. Let
the current time be denoted as t^ and the next time instant where input
values become available as tk+i- The equivalents of Eqs. (4.44)-(4.45) in
discrete time are

x(tfc+1) = f(x(t f c),u(t f c)) A: = 0,1, 2 , - - • (4.47)

y(tfc) = h(x(t f c) ,u(t f c)) . (4.48)

For the current time to — t^, the state at time t^+i = to + St is now
computed by using the difference equations (4.47)-(4.48). Usually, the time
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interval between the two discrete times St = tk+i — tk is a constant value
equal to the sampling time.

Linear State-Space Models

The functional relations f(x, u) and h(x, u) in Eqs. (4.44)-(4.45) or Eqs.
(4.47)- (4.48) were not restricted so far. They could be nonlinear. For the
sake of easier mathematical solutions, if justifiable, they can be restricted
to be linear. The linear continuous models are represented as

*(*) = Ax(*) + Bu(t)

y(t) = Cx(t) + Du(t) . (4.49)

The linear discrete time model is

x(*fc+i) = Fx(tfc) + Gu(tfc) k = 0,1, 2 , . . -
y(tfc) = Cx(tfc) + Du(tfc) . (4.50)

The notation in Eq. (4.50) can be simplified by using Xfc or x(fc) to denote

xfc+i = Fxfc + Gufc fe = 0, 1,2, •••

yfc = Cxfc + Dufe . (4.51)

Matrices A and B are related to matrices F and G as

F = eAT G= / eATBdr (4.52)
Jo

where the sampling interval T = tk+i — tk is assumed to be equal for all
values of k. The dimensions of these matrices are

A : n x n B : n x m
C : p x n D : p x m

These models are called linear time-invariant models. Mild nonlinear-
ities in the process can often be described better by making the matrices
in model equations (4.49) or (4.50) time dependent. This is indicated by
symbols such as A(£) or Ffc.

Disturbances

Disturbances are inputs to a process. Some disturbances can be measured,
others arise and their presence is only recognized because of their influence
on process and/or output variables. The state-space model needs to be
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augmented to incorporate the effects of disturbances on state variables and
outputs. Following Eq. (4.28), the state-space equation can be written as

x(t) = f(x(t) ,u(t) ,w(t))

y(t) = h(x(t),u(t),w(t)) (4.53)

where w(t) denotes disturbances. It is necessary to describe w(t) in order
to compute how the state variables and outputs behave. If the disturbances
are known and measured, their description can be appended to the model.
For example, the linear state-space model can be written as

y(t) = Cx(t) + Du(t) + E2w2(t) . (4.54)

where wi(t) and W2(£) are disturbances affecting the state variables and
outputs, respectively, and EI and £2 are the corresponding coefficient ma-
trices. This model structure can also be used to incorporate modeling
uncertainties (represented by wi(t)) and measurement noise (represented
by w2(t)).

Another alternative is to develop a model for unknown disturbances to
describe w(t) as the output from a dynamic system with a known input
uw(t) that has a simple functional form.

xw(t) = fw(xu,(t),uu;(t))

w(t) = hw(xw(t},uw(t)) (4.55)

where the subscript w indicates state variables, inputs and functions of the
disturbance(s). Typical choices for input forms may be an impulse, white
noise, or infrequent random step changes. Use of fixed impulse and step
changes lead to deterministic models, while white noise or random impulse
and step changes yield stochastic models [347]. The disturbance model is
appended to the state and output model to build an augmented dynamic
model with known inputs.

Linearization of Nonlinear Systems

Sometimes a nonlinear process can be modeled by linearizing it around
a known operating point. If the nonlinear terms are expanded using the
linear terms of Taylor series and equations are written in terms of deviations
of process variables (the so-called deviation variables) from the operating
point, a linear model is obtained. The model can then be expressed in
state-space form [438, 541].

Consider the general state-space equation Eqs. (4.44-4.45) and assume
that there is a stable stationary solution (a steady state) at x = xss,u =
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uss:
f(xss,uss) = 0 . (4.56)

If f(x, u) has continuous partial derivatives in the neighborhood of the
stationary solution x = xss, u = uss, then for £ — ! , • • • ,n:

r\ p

ft(x,u) - fe(xss,uss) + -— ̂ -(xs5,uss)(:ri - zss,i) H ---- (4.57)

~f~ T; (xss? Hss)(xn ~ xss.n) + "̂  (xss> Uss )(Ui — Uss i J

r\ /»

H ----- h ^— -(xaa, uss)(wm - uss,m) + rfe(x - xss, u - uss]dum

where all partial derivatives are evaluated at (xss,uss) and r^ denotes the
higher order terms that yield nonlinear expressions, which are assumed
to be negligible. Consider the Jacobian matrices A and B that have the
partial derivatives in Eq. (4.57) as their elements:

. ... ... .
xi dxn \ I dui du

A= : • - . : , B= : •.. : (4.58)
a/n a/n / I a/n a/n
8x1 ' ' ' 9a:™ / \ 8ui du

with the partial derivatives being evaluated at (xss,uss). In view of Eq.
4.56, Eq. 4.57 can now be written in a compact form as

f (x, u) = A(x - xss) + B(u - uss) + r(x - xss, u - uss) . (4.59)

Neglecting the higher order terms r/e(x - xss,u - uss) and denning the
deviation variables

x = x - xss, u = u - uss (4.60)

Eq. (4.44) can be written as

x - Ax + Bu, (4.61)

The output equation is developed in a similar manner:

y - Cx + Du (4.62)

where the elements of C and D are the partial derivatives dhi/dxj with i =
1, • • • , p and j — 1, • • • , n and dhi/duj with i = 1, • • • , p and j = 1, • • • , m,
respectively. Hence, the linearized equations are of the same form as the
original state-space equations in Eq. 4.49. Linearization of discrete time
nonlinear models follows the same procedure and yields linear difference
equations similar to Eq. (4.50).
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Subspace State-Space Models

Subspace state-space models are developed by using techniques that deter-
mine the largest directions of variation in the data and build models that
describe the data. PCA and PLS are subspace methods used for steady
state data. They could be used to develop models for dynamic relations by
augmenting the appropriate data matrices with lagged values of the vari-
ables. In recent years, dynamic model development techniques that rely
on subspace concepts have been proposed [315, 316, 613, 621]. Subspace
methods are introduced in this section to develop state-space models for
process monitoring and closed-loop control.

Consider a simple state-space model without external inputs Uk

xfc+1 = Fxfc + Hefc

yfc = C x f c + e f c (4.63)

where Xfc is the state variable vector of dimension n at time k and yfc is
the observation vector with p output measurements. The stochastic input
efc is the serially uncorrelated innovation vector having the same dimen-
sion as yfc and covariance E[efce£,J = A if / = 0, and 0 otherwise. This
representation would be useful for process monitoring activities where "ap-
propriate" state variables (usually the first few state variables) are used
to determine if the process is operating as expected. The statistics used
in statistical process monitoring (SPM) charts assume no correlation over
time between measurements. If state-space models are developed such that
the state variables and residuals are uncorrelated at zero lag, the statis-
tics can be safely applied to these calculated variables instead of measured
process outputs. Several techniques, balanced realization [21], PLS realiza-
tion [416], and the canonical variate realization [315, 413] can be used for
developing these models. Negiz and Cinar [413] have proposed the use of
state variables developed with canonical variate analysis based realization
to implement such SPM techniques to multivariable continuous processes.

Subspace algorithms generate the process model by successive approxi-
mation of the memory or the state variables of the process by determining
successively functions of the past that have the most information for pre-
dicting the future [316]. Canonical variates analysis (CVA), a subspace
algorithm, is used to develop state space models [315] where the first state
variable contains the largest amount of information about the process dy-
namics, the second state variable is orthogonal to the first (does not repeat
the information explained in the previous state variable) and describes the
largest amount of the remaining process variation. The first few significant
state variables can often be used to describe the greatest variation in the
process. The system order n is determined by inspecting the dominant sin-
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gular values (SV) of a covariance matrix (the ratio of the specific SV to the
sum of all the SVs [21] generated by singular value decomposition (SVD) or
an information theoretic approach such as the Akaike Information Criterion
(AIC) [315].

The Hankel matrix (Eq. 4.65) is used to develop subspace models. It
expresses the covariance between future and past stacked vectors of output
measurements. If the stacked vectors of future (3^) and past (y^K} data
are given as

Yfc
Yfc+i

and »** =
yfc-2

Yk-K

(4.64)

the Hankel matrix (note that H#j is different than the H matrix in Eq.
(4.63)) is

A2

A3

Aj AJ+/C-I

(4.65)

where A^ is the autocovariance of y/t's which are i time period apart and
E[-] denotes the expected value of a stochastic variable. K and J are past
and future window lengths. The non-zero singular values of the Hankel
matrix determine the order of the system, i.e., the dimension of the state
variables vector. The non-zero and dominant singular values of HJK are
chosen by inspection of singular values or metrics such as AIC.

CV (canonical variate) realization requires that covariances of future
and past stacked observations be conditioned against any singularities by
taking their square roots. The Hankel matrix is scaled by using R^ and
Rj defined in Eq. (4.67). The scaled Hankel matrix (H.JK) and its singular
value decomposition is given as

HJK = R-1-1/2
K\ = U£VT

where

(4.66)

(4.67)

n contains the n left eigenvectors of HJK, £nxn contains the singular
values (SV), and V/<:pxn contains the n right eigenvectors of the decompo-
sition. The subscripts associated with U, E and V denote the dimensions
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of these matrices. The SVD matrices in Eq. 4.66 include only the SVs and
eigenvectors corresponding to the n state variables retained in the model.
The full SV matrix S has dimension Jp x Kp and it contains the SVs in a
descending order. If the process noise is small, all SVs smaller than the nth
SV are effectively zero and the corresponding state variables are excluded
from the model.

The state variables are given as

x, = S'/^(R-)-l/2;yt-_lK. (4.68)

Once x/c (or x(t)) is known, F, G (or A, B), C, and A can be constructed
[413]. The covariance matrix of the state vector based on CV decomposition
£"[xfcX^] = S reveals that x^ are independent at zero-lag.

The second subspace state-space model includes external inputs:

= Fxfc + Gufc +

yfc = Cxfc + Dufc + H2vfc (4.69)

where F ,G,C,D,Hi and H2 are system matrices, and w and v are Nor-
mally distributed, zero- mean noise vectors. It can be developed using CV
or other methods such as N4SID [613].

The subspace state-space modeling framework has been used to develop
batch-to-batch process monitoring and control techniques that utilize infor-
mation from previous batches along with measurements from the ongoing
batch (Section 6.6).

4.3.3 State Estimators
A state estimator is a computational algorithm that deduces the state of a
system by utilizing knowledge about system and measurement dynamics,
initial conditions of the system, and assumed statistics of measurement and
system noises [182]. State estimators can be classified according to the set of
state variables estimated. Full-order state estimators estimate all n state
variables of the process. Minimum- order state estimators estimate only
the unmeasurable state variables. Reduced-order state estimators estimate
some of the measured state variables in addition to all unmeasurable state
variables.

The estimator is designed to minimize the estimation error in a well-
defined statistical sense by using all measurement information and prior
knowledge about the process. The accuracy of the estimates is affected by
errors in process models used. Three estimation problems can be listed:
filtering, smoothing, and prediction (Fig. 4.5). In filtering, the time at
which the estimate is desired coincides with the latest measurement time.
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indicates span of
available data

(a) Filtering

(b) Smoothing

(c) Prediction

Figure 4.5. Estimation problems.

In smoothing, the time of the estimate falls within the span of measurement
data available. The state of the process at some prior time is estimated
based on all measurements collected up to the current time. In prediction,
the time of the estimate occurs after the last available measurement. The
state of the process in some future time is estimated. The discussion in this
section focuses on filtering (Fig. 4.6), and in particular on Kalman filtering
technique.

An estimate x of a state variable x is computed using the measured
outputs y. An unbiased estimate x has the same expected value as that of

Process Measurement
Error Error A Priori

Sources Sources Information
1 1 | Process
1 Process 1 1 State
T Stfltp T Observation » Potimato

DDOPPQQ
X(t) _

MPAQI IDPMCMT
y(t) KALMAN

FILTER
x(t) _

Figure 4.6. Kalman filtering technique.
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the variable being estimated (x}. A minimum variance (unbiased) estimate
has its error variance that is less than or equal to the variance of any other
unbiased estimate. A consistent estimate x converges to the true value of
x as the number of measurements increase. Kalman niters are unbiased,
minimum variance, consistent estimators. They are also optimal estimators
in the sense that they minimize the mean square estimation error.

Discrete Kalman Filter

Consider a discrete time system with a state equation

xfc ^Ffc^Xfc. i+Wfc.! (4.70)

where Xfc is an abbreviation for x(tfc), and the subscript of Ffc_i indicates
that it is time dependent (F( t fc_j ) ) . Note that the time index is shifted
back by 1 with respect to the discrete time state-space model description
in Eq. (4.50) to emphasize the filtering problem, w^ is a zero mean, white
(Gaussian) sequence with covariance Qk, and the system is not subjected
to external inputs (unforced system) (G(tfc) = 0). The measured output
equation is

y f c = C f c X f c + V f c (4.71)

where v& is a vector of random noise with zero mean and covariance Rfc
corrupting the output measurements yk- Given the prior estimate of Xfc
denoted by x^ , a recursive estimator is sought to compute an updated esti-
mate x^ based on measurements y k • The recursive estimator uses only the
most recent values of measurements and prior estimates, avoiding the need
for a growing storage of past values. The updated estimate is a weighted
sum of x^ and y^:

x£=Kixfc +K f cy f c (4.72)

where K^, and Kfc are unspecified (yet) time-varying weighting matrices.
Expressing the estimates as the sum of unknown real values and estimation
errors denoted by Xfc

xj = xfc + xj Xfc = Xfc + Xfc (4.73)

and inserting the equation for x^" and Eq. (4.71) in Eq. (4.72), the estima-
tion error x^ becomes:

x+ = (K'k + KfcCfc - I) xfc + KfcXfc- + KfcVfc . (4.74)

Consider the expected value (£"[•]) of Eq. (4.74). By definition E[vk] = 0.
If E[x~i~} = 0 as well, then the estimator (Eq. (4.72)) will be unbiased for
any given Xfc if K'fc + K/-Cfc -1 = 0. Hence, substituting for K'fc in Eq.
(4.72):

x+ = (I - KfcCfc)x- + Kkyk (4.75)
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that can be rearranged as

x+ = x;; + Kfc(yfc - C f cXfc) . (4.76)

The corresponding estimation error is derived from Eqs. (4.71), (4.73) and
(4.76) as

x+ = (I - KfcCfc)Xfc + Kkyk . (4.77)

The error covariance matrix P^ changes when new measurement informa-
tion is used.

P+ = E [x+XfcT] = (I - KfcCfc)Pfc (I - KfcCfc)
T + KfcRfcKj (4.78)

where Pj£" and P^~ are the prior and updated error covariance matrices,
respectively [182].

From Eq. (4.76), the updated estimate is equal to the prior estimate
corrected by the error in predicting the last measurement and the magni-
tude of the correction is determined by the "gain" K^. If the criterion for
choosing K.k is to minimize a weighted scalar sum of the diagonal elements
of the error covariance matrix Pj£" , the cost function Jk could be

Jfc = E [x+S x+] (4.79)

where S is a positive semidefinite matrix. If S = I, Jk — trace. [Pk] which
is equivalent to minimizing the length of the estimation error vector. The
optimal choice of Kjt is derived by taking the partial derivative of Jk with
respect to K.k and equating it to zero:

Kfe = Pfc-Cj (CfcP^Cf + Rfc)- . (4.80)

Substituting Eq. (4.80) in Eq. (4.78) provides a simpler expression for PjJ~
[182]:

P+ = ( I -K f cC f c )P^. (4.81)

The equations derived so far describe the state estimate and error co-
variance matrix behavior across a measurement. The extrapolation of these
entities between measurements is

x^ = Ffc-ixjjlj (4.82)

Pfc = Ffc-iPf-iFfc-i + Q*-i •
Discrete Kalman filter equations are summarized in Table 4.1.
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Table 4.1. Summary of discrete Kalman filter equations

Description
Process model
Measurement (output) model

Initial conditions

State estimate extrapolation
Error covariance extrapolation
State estimate update
Error covariance update
Kalman gain matrix

Equation
4.70
4.71

4.82
4.83
4.76
4.81
4.80

Other
w f c ~AT(0 ,Q f c )
v f c ~iV(0,R f c )
£[x(0)] = x0

E [(x(0) - x0)(x(0) - x0)T] = Po

E[wkvJ} = 0 for all j, fc

Continuous Kalman Filter
The formulation of continuous Kalman filter parallels that of the discrete
Kalman filter. For the state-space model of the unforced system

x = A(t)x + E(t)w (4.84)

and an output equation similar to Eq. (4.71)

y = C(t)x + v (4.85)

the propagation of error covariance becomes

P(t) = A(t)P(t)+P(t)AT(t)+E(t)Q(t)ET(t]
-P(t)CT(t)R~1(t)C(t)P(t) (4.86)

where AP 4- PAT is the contribution of the unforced system without the
effect of measurements, EQET accounts for the increase in uncertainty
because of process noise, and PCTR-1CP accounts for the reduction in
uncertainty as a result of measurements. Equation (4.86) is called the ma-
trix Riccati equation and its solution is described in most advanced systems
science and control books [17] and provided in most control toolbox soft-
ware such as Matlab. The continuous Kalman filter equations for white
measurement noise are given in Table 4.2 where the last row shows the
Kalman gain matrix when the process and measurement noises are corre-
lated. The explicit statement of time dependency is eliminated by excluding
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Table 4.2. Summary of continuous Kalman filter equations

Description
Process model
Output model
Initial
conditions
State estimate
Error covariance
Kalman gain
matrix

Equation
x = Ax + Ew wfc ~ AT(0, Q)
y = Cx + v vfc ~ N(Q, R)
£[x(0)] = x0 R"1 exists
£[(x(0)-xo)(x(0)-x0)Tl =P0

x = Ax + K(y-Cx), x(0)=x0

P = AP + PAT + EQET - PC^R-^CP,
K = PCTR-1 when E[w(i)vT(r)] = 0

= (PCT + EZ)R-X when ^[w(t)vT(r)]

P(0) = Po

= Z6(t - T)

the arguments (t) from the matrices in the equations of Table 4.2 for com-
pactness. Time dependency of system matrices A, C, and E will indicate
which matrices in other equations are time dependent.

If the process is excited by deterministic inputs u (either a deterministic
disturbance or a control signal), the procedures for computing P and K
remain the same, but the estimators are modified. For the discrete time
process, state equation Eq. (4.70) becomes

xfc = Ffc-xXfc-i + Gfc_iu f c_i + Wfc-i

and the state estimator is

x+ - Ffc-ix+^ + Gfc-nifc-i

+ Kfc (yfc - CfcFfc_ixJ_1 - CfcGfc-iUfc-i

For continuous processes, state equation Eq. (4.84) becomes

x(t) = A(t)x(t) + B(t)u(t) + E(t)w(t)

and the corresponding state estimator is

t) + B(t}u(t] + K(t) (y(t) -

(4.87)

(4.88)

(4.89)

(4.90)

Steady State Kalman Filter
When the process and measurement dynamics are represented by linear
constant coefficient equations (A, B, E or F, G, H are not functions of
time) and the driving noise statistics are stationary (Q, R are not func-
tions of time), the filtering process may reach a steady state. Computing

Copyright © 2003 by Taylor & Francis Group, LLC



148 Chapter 4. Linear Data-Based Model Development

the steady state value of P denoted by P^ and inserting it in state es-
timator equations reduce the computational burden for state estimation
significantly. For P — 0 the Riccati equation becomes

-I-P AT-4-EOET — P CTR~1CP - — 0 (491")i -*• OO -"L I J-JV^J-^ X QQ V_^ J.V. V^J. QQ — ^ • \ /

The Kalman filter gain becomes a constant:

KQO = PooC R (4.92)

and the corresponding steady-state Kalman filter is

x(t) = Ax(t) + Bu(t) + Koo (y(t) - Cx(t)) . (4.93)

Extended Kalman Filter
The linear filters were developed so far for linear process models. State
estimation can be extended to nonlinear processes described by nonlinear
stochastic differential equations:

x(t) = f (x ( t ) , t )+w( t ) (4.94)

where f (•) is a nonlinear function of the state and w(£) is N(0, Q(t)) noise
vector. The objective is to estimate x(t) from sampled nonlinear measure-
ments

yk = hfc(x(£fc)) + vfc fc = l,2, ••• (4.95)

where hfc depends on both the time index k and x(tfc), and v^ is JV(0,Rfc)
noise vector. Hence the estimation is for a process with continuous dy-
namics and discrete-time measurements. While the general solution to this
problem is challenging, a practical estimation algorithm that relies on Tay-
lor series expansion of f can be formulated [182]. The filter developed is
called extended Kalman filter (EKF) [257].

Consider the expansion of f about the current estimate (conditional
mean) of the state vector x = x:

(x - x) + • • • (4.96)
=x

Taking the expectation of both sides of the equation yields

f/x £\ _ f (x(£) t) + 0 + • • • (4.97)

and using Eq. (4.94)

x(t) = f(x(£)) tk-i <t<tk . (4.98)
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By using the first two terms of the expansion in Eq. (4.96) an approximate
differential equation for the estimation error covariance matrix is obtained:

P(t) = F(x(t), t)P(t) + P(i)FT(x(i), t) + Q(t) tk-l<t<tk (4.99)

where F(x(£),£) is a matrix whose ij th element is

Fy (*(*),*) = (4.100)
x(t)=x(t)

To complete the filtering algorithm, update equations that account for new
measurement information must be developed. Assume that the estimate of
x(£) and its associated covariance matrix are propagated using Eqs. (4.98)
and (4.99) and denote the solutions at time tk by x^ and P^T. When a new
measurement y^ is received the updated estimates are

x + = X f c +K f c (y f c -h f c (Xfc ) ) (4.101)

with
P+ = (I-K f cH f c(Xfc))Pfc . (4.102)

The same approach as the linear case is used to determine the optimal filter
gain matrix:

I f , — P~H/ fv~ HHi fv~> lP~H/ (TC~} -4- Tt, \ f4 1 0*^fc — k •^fc V k ' v fc\ jfc ) k k v fc / ' n^k) {*±.i\JO)

where /ni, /'Y^, ^^
(4.104)

x(t f c)=x f c

resulting from Taylor series expansion of hk(xk} = hk(xk} + Hk(xk}(xk —
x^) + • • • about x^ .

EKF equations for a continuous process with discrete-time measure-
ments are summarized in Table 4.3. EKFs for continuous measurements
and more advanced filters for nonlinear systems are discussed in [17, 182].
Applications of EKFs to batch processes are illustrated in [72, 120].

Kalman Filters for Processes with Nonstationary Stochastic Dis-
turbances
The literature on Kalman filters focuses mostly on deterministic systems
subjected to arbitrary noise to account for modeling error (Eq. 4.70) and
measurement error (Eq. 4.71). This framework implies that the true pro-
cess states can never drift away for prolonged periods from their values
predicted by the deterministic model equations [356]. Consequently, the
Kalman filter will not contain any integration terms and will not track a
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Table 4.3. Summary of extended Kalman filter equations for continuous
process with discrete-time measurements

Description
Process model
Measurement model
Initial conditions
Assumptions

State estimate propagation
Error covariance propagation
State estimate update
Error covariance update
Kalman gain matrix

Equation
4.94
4.95

4.98
4.99
4.101
4.102
4.103

Other
w( t )~JV(0 ,Q( t ) )
v( t)~ AT(0,R(t))
x(0)~JV(x0 ,P0)
£[w(t)vT] = 0,
for all k and all t

real shift in the level of the process variables caused by nonstationary dis-
turbances such as changes in the impurity level of the feedstock. Stochastic
nonstationary disturbances force the process to drift away from determinis-
tic model predictions. The presence of a disturbance state model in addition
to white noise variables w^ and v/c will provide the necessary information
for tracking the trajectories of state variables. A common practice for elim-
inating the offset caused by nonstationary disturbances (instead of using
the disturbance state model) is to increase the Kalman filter gain K^ ei-
ther directly or indirectly by augmenting the magnitude of the state noise
covariance matrix Qfc-i (Refer to Eqs. (4.80) and (4.83)). This will reduce
the bias, but will also increase the sensitivity of the Kalman filter to mea-
surement noise, just like the effect of increasing the proportional gain of a
feedback controller with only proportional action. The addition of the non-
stationary disturbance model will have an effect similar to integral action
in feedback controllers to eliminate the offset.

Since most Kalman filter applications for processes with nonstationary
disturbances are for processes with external inputs u and involve processes
that are typically nonlinear, the incorporation of the nonstationary distur-
bance model will be illustrated using an EKF for processes with external
inputs. The nonlinear process is described by

y ( t ) = h(x,u,t) (4.105)

where x represents the complete vector of state variables, and x.d is the
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modeled deterministic subset of x. The complete state vector x consists
of xd and stochastic state variables xs which include model parameter and
disturbance states that may vary with time in some stochastic manner and
may be unknown initially [300, 356]. Performing local linearization and
discretization of model equations

x£ = F^xt i + Ffc-iXfc-i + G fc_iu fc-i + w^i (4-106)

where ~x.^_i is the zero-mean Gaussian white noise vector with covariance
Qd. The true dynamics of stochastic states xs are usually unknown and
often they are assumed to follow a simple nonstationary random walk be-
havior [300, 356]

xj^xJU+wU (4-107)

where w|_j is a white noise vector with covariance Qs. Usually Qs is
a diagonal matrix with elements representing the change of magnitude in
stochastic states (disturbances) in one sampling interval. The elements of
Qs are tuning parameters to give good tracking behavior. The optimal
one-step-ahead prediction of the stochastic states is

x s(tfc|* f c_i) = xS.ifafc-ilffc-i) . (4.108)

If more information is available about the stochastic states, an ARIMA
model can be constructed to represent their dynamics.

The combined linearized dynamic/stochastic model of the system is

xfc = F f c_ix f c_i + G f c_iu f c_i + wfc_! (4.109)

where

I Q<

The measurements are represented by Eq. (4.95), which can be modified if
the inputs u directly affect the measurements. The Kalman filter, and the
recursive relations to compute the filter gain matrix K&, and the covari-
ance propagation matrices P^T and P^ are given by Eqs. (4.101), (4.103),
(4.102), and (4.99) or (4.83), respectively.

A challenge in this approach is the selection of covariance matrices Q/j,
Rfc, and PQ. Process knowledge and simulation studies must be used to
find an acceptable set of these tuning parameters to prevent biased and
poor estimates of state variables. Knowledge of the initial state x0 affects
the accuracy of estimates as well. If x0 initially unknown, the EKF can
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be restarted from the beginning with each new measurement using the up-
dated estimate xo|fc. Convergence to the unknown XQ is usually achieved
during the early states of the estimation, but there is a substantial increase
in computational load. If feedback control is used during the batch run,
rapid convergence to initially unknown disturbance and parameter states
can be achieved using this reiterative Kalman filter. One approach to im-
plement the reiterative estimation of XQ is to combine a recursive nonlinear
parameter estimation procedure with the EKF [300].

4.3.4 Batch Modeling with Local Model Systems

Most batch processes are nonlinear to some degree and may be represented
better by nonlinear models. An alternative is to develop a series of local,
preferably linear models to describe parts of the batch operation, then link
these models to describe the whole batch operation. These models are
referred to as local models, operating-regime based models [156, 260], or
linear parameter-varying models [312].

Operating-regime Based Models.

Consider the general state space representation in Eqs. (4.44-4.45)

x = f(x, u, w)

y = h(x,u,v) (4.112)

where x, u, y are the state, input (control) and output (measurement) vec-
tors, w and v are disturbance and measurement noise vectors, and f and
g are nonlinear function systems. Assume that the batch run can be parti-
tioned into i operating regimes that can be represented sufficiently well by
local model structures

X = fi(x,U,W,0i)

y - h,(x,u,v,0i) (4.113)

parameterized with the vector 0^. Each local model will be valid in its
particular operating regime. Denote by 0^ the operating point (described
by some x, u, y) representing a specific regime 3>j. The whole batch run
(the full range of operation) is composed of N regimes: {$1, • • • , &N} = &•
The selection of variables to characterize an operating regime will be process
dependent, containing a subset of state variables, inputs, and disturbances.
Assume the existence of a smooth model validity function pi that has a value
close to 1 for operating points where the model i of Eq.(4.113) is a good
description of the process, and close to 0 otherwise. Define an interpolation
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function uji with range [0,1] that is the normalization of pi\

such that ^i-i ^i(</>) = 1. To guarantee a global model, not all local model
validity functions should vanish at any operating point 4>.

The modeling framework consists of three tasks [156]:

• Decompose the operating range of the process into a number
of operating regimes that completely cover the whole range of oper-
ation (complete batch run). This can be achieved based on process
knowledge or by using computerized decomposition tools on the basis
of an informative data sequence [156].

• Develop a local model structure using process knowledge and
data. Assign local model validity functions.

• Identify local model parameters. The unknown parameter sets
$ ! ? • • • i &N are identified. If the models are linear, many model iden-
tification methods and tools that are readily available can be used.
Attention must be paid during data collection to generate data that
contain significant information for all operating regimes.

Linear Parameter Varying Models
The local models approach was extended such that a linear parameter vary-
ing (LPV) model was obtained by interpolation between multiple local mod-
els to emulate the behavior of a nonlinear batch process [312] . First consider
the nonlinear process model Eq. 4.112 without disturbances.

x = f (x, u)

y = h(x,u) . (4.115)

Batch processes are operated to track an optimal profile obtained by off-
line optimization or empirical methods using historical information from
previous batches. Local models are obtained by linearizing the model at
different points in time on the optimal profile. Denote the optimal profile
by (xo,i,yo,i), i = 1, • • • ,N where TV represents the number of operating
points. Linearize Eq. 4.115 using Taylor series expansion and neglecting
terms higher than first order. The resulting model is similar to Eqs. 4.61-
4.62

(4.116)
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where the deviation variables (Eq. 4.60) are defined using xss = xo,i and
Yss — yo,i and the elements of the Jacobian matrices are derived by eval-
uating the derivatives of f and g at the corresponding operating point
(XQ i,yo,i) such that

<9f
A; =

<9x
(4.117)

A linear time-varying global model is constructed by using the local
models to approximate the nonlinear dynamics of a batch run. The time-
varying model is obtained by interpolating between local models by using
model validity functions pi(t) which are similar to the interpolation function
uji of Eq. 4.114. Model validity functions are the estimates of the validity
of various local models in different operating points and for N local models

N

P(*) = bi(*),P2(*), • • • ,PN(t}} X>(£) = 1 • (4.118)
i=l

The state space matrices of the global model are then parametrized in terms
of p(t] as a LPV model:

{A[p(*)],B[p(t)],C[p(t)],D[p(*)]} - (4-119)

The LPV model dynamics can be constructed in terms of model validity
functions as

£ = A[p(t)]x + B[p(t)]u

y = C[p(t)]x + D[p(*)]u (4.120)

and the model Jacobians are of the form

N

(4.121)

The LTV model can be extended for state estimation. An adaptive
technique using the Bayesian framework has been developed [40]. Consider
the discrete time version of the state space model Eq. (4.116) with zero-
mean Gaussian process and measurement noises w and v, respectively

yk = C(Pl}xk + ~D(pi)uk+vk (4.122)

with noise covariance matrices Q& and Rfc for w and v, respectively. A
moving horizon estimator that updates the piS based on a past window of
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data of length ne can be developed. At the start of the batch, the number
of data samples is fewer than ne and the measurement data history is given
by data of different length

Yfc = [ y f c , y f c - i , - - - ,yo] k < ne

Yfc = [ y f c , y f c - i , - - - , y f c - n e ] k > ne (4.123)

Let p(j|Yfc) represent the probability that model j is describing the
batch process based on measurements collected until time k. Bayes theorem
can be used to compute the posterior probability p(j\Yk) given the prior
probability (computation of p(j) before measurements at time k are used)

p(j|Yfc) =
p\.yk)

1 - (4.124)

where / (yfcjj, Yfc_i) is the probability distribution function (PDF) of the
outputs at time k computed by using model j and the measurement history
Yfc_i collected until time k — 1. A Kalman filter is designed for each model
in order to evaluate the PDFs. The jth Kalman filter assumes that the
jth model matches the plant and any mismatch is caused by process and
measurement noises with covariance matrices Qj and Rj. The update of
state variables of the jth model is

*j,*|fc-i = FjX f c_i| f c_i + Gj-iifc-i (4.125)

where x = ^,j—iPj,k^-j,k\k- Following the derivations of Kalman filters in
Section (4.3.3), measurements at time k provide a correction to the updates

Xj,fc|fc = Xj,fc|fc-i + KJ (yfe - Cjikx.jjk\k-i - Dj,kuk) (4.126)

where K.J denotes the Kalman filter gain for the jth model. The outputs
of the jth model are

yjtk = CjXj)k\k + Djiifc . (4.127)

If the assumptions about the accuracy of the jth model and noise char-
acteristics hold, then the model residuals £jtk — y^ — y^fc will have zero
mean and covariance flj = CjPjCj + Hj. Here Pj is the state covariance
matrix from the jth Kalman filter. The PDF is computed using [312]

- . (4.1*0

Copyright © 2003 by Taylor & Francis Group, LLC



156 Chapter 4. Linear Data-Based Model Development

Estimates of model probabilities are then obtained by substituting recur-
sively Eq. (4.128) into Eq. (4.124) [312]. To reduce the time required for
the computations to converge to the correct probability model, the proba-
bilities are initialized as [312]:

P01Y(0)) = { ̂  ^ \ k < ne

\ N~l J (4.129)
p(j\Y(k-ne)) = — k > ne

where p\ > (1 —pi)/(N — 1) and N is the number of local models. The rela-
tive magnitude of p\ with respect to pi depends on the expected magnitude
of disturbances, for large disturbances pi is closer to pi [312].

Local model dynamics are affected by disturbances entering the batch
process, and the PDFs of various local models may become identical. The
proximity of model outputs to the optimal profiles may be used to select
the best local model with a moving horizon Bayesian estimator (MHBE)
with time-varying tuning parameters [312]. The aim of the MHBE is to
assign greater credibility to a model when plant outputs are closer to the
outputs around which the model is identified. This reduces the covariance
of model residuals fi^ for model i at time k. This approach is implemented
by reducing the noise covariance matrices Q;^ and ~Ri,k which may be used
as the tuning parameters for the respective Kalman filters. Relating these
covariances to deviations from optimal output trajectories

Qi.fc = Qexp(o- | yfc - y0)

R i)fc = Rexp (a \\ yk - y0, I) (4-130)

where yo,i is the optimal output profile for local model i and a is a tuning
parameter, Q;;/c and R^/c of the most likely local model is reduced. The
Euclidian norm in Eqs. 4.130 is defined as x ||2= XTX. Consequently,
the residual covariance matrix fi^fc is reduced as well and the probability
of model i is increased. The parameter a reflects the trust in the model
and at higher values promotes rapid transition between models [312]. Case
studies reported in [312] indicate that model predictive control of a batch
reactor using LVS models provided better control than model predictive
control with extended Kalman filters.

Multiple ARX Models

A different way of approximating the nonlinear process behavior is based
on the use of linear ARX models for each sampling instant. Define the
input (u), output (y) and disturbance (d) sequences over the entire batch
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run as

u = [uT(0) uT(l) ... uT(N-l)]T

y = [yT(l] yT(2) . . . yT(N)}T (4.131)

d = [dT(l) dT(l) ... dT(N}}T

where N is the batch run data length. Given the initial condition yini =
y(0), a nonlinear model relating the outputs to inputs and disturbances is
expressed as

y = Mu,yini,d) = A/>,d) +A/"ini(yini) . (4.132)

The nonlinear model A/"(u, d) can be approximated with one linear model
for each sampling instant [70]. Denote a specific or optimal output trajec-
tory by yo, the batch index by k and define the output error trajectory
6y — yo — yfc • The state equations for the output error are

ey
k - e£+v£ (4.133)

where Aufe+i = ufc+i-ufe, Ayini)fc+i = yini,fe+i-yini,fc, wj£ and vjj are zero-
mean, independently and identically distributed random noise sequences
with respect to fe, and e^ is the noise-free (cannot be measured) part of the
error trajectory. Matrices Gy and Gfni are linear system approximations.
The same modeling approach can be applied to secondary outputs s (out-
puts that are not used in control systems) and quality variables q and the
resulting models can be combined. Define the error trajectory vector for
the controlled outputs, secondary outputs and quality variables as

B*

The resulting combined model then is [70]

. (4.134)
*-*»i

efc+1 = efc - GAufc+i - Ginieini!fc+i + wfc

efc = e f c + V f c . (4.135)

To enable the use of a Kalman filter for estimation of initial conditions ejni,
the initial condition can be modeled with a batchwise random walk model
[70]:

®ini,fc+l = ^inj^ + "ini,fc

Zini,fc = eini)A; + £ini>fc (4.136)
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where ^ini,fc is a batchwise white disturbance, Zini^ is the measured value
of eini^, and £ ini)fc is a batchwise white measurement noise.

The general form of the model has a very large dimension. Structural
information is used in [70, 200] to reduce the dimensions of the model.

4.4 Functional Data Analysis

Functional data are data generated by an inherent functional relationship
in a process. The relationship may not be known explicitly, but its exis-
tence is assumed based on the knowledge about the process. Variations of
daily weather temperature over the year, height and weight growth of a
child over the years, or trajectories of process variables during a batch are
functional data. The goals of functional data analysis (FDA) are to rep-
resent the data in ways that facilitate further analysis, determine patterns
in data and study important sources of pattern in data, explain variations
in output variables in terms of input variations, and conduct comparative
studies between sets of data [495]. Hence, modeling, analysis, and diagnosis
activities are conducted in a framework that is different from "analysis of
large data sets" approach. Indeed, a functional observation is considered
as a single datum rather than a sequence of individual observations. The
focus is on the trajectory of a process variable during the batch rather than
the several hundred measured values for the variable.

The FDA approach detects and removes characteristics in data by applying
a linear operator that consists of weighted sums of various orders of deriva-
tives rather than subtracting the assumed characteristics from the original
data. The derivative terms in the linear operator provides physical insight
such as acceleration in production of a certain biological species for a spe-
cific time period during the batch. The differential equation representation
of a dynamic process is well-accepted in physical sciences and engineering,
and the interpretation of these differential equations provides significant
information about the characteristics of the process. This approach can
also be used for nonlinear trajectories by finding the mean trajectories and
centering the data with respect to the mean before implementing the prin-
cipal differential analysis (PDA) method in order to eliminate most of the
nonlinearity in data.

FDA starts by converting raw functional data (measurements during the
batch) to a functional representation. This usually involves data smooth-
ing since most data include measurement noise, estimating the derivatives
of various orders for the data trajectories, and development of functional
relations that include these derivatives. The K functional observations rep-
resented by the raw data vector as x = (x i ,X2, • • • , £fc, • • • , X K ) T are used
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to define a much smaller set of m functions that are efficient approximations
of these data. Data smoothing provides the ability of possessing a certain
number of derivatives for the latent function, which may not be obvious
in the raw data vector. Denoting the latent function at time tk as z(tk],
xk — z(tk) + ek where ek is the measurement error that contributes to the
roughness of the data. Derivatives should not be estimated by computing
differences because of the measurement error. Differencing magnifies these
errors.

The Principal Differential Analysis (PDA) method identifies the linear dif-
ferential operator L

L = w0I + WlD + ••• + Wm-iD™-1 + Dm (4.137)

that comes as close as possible to satisfying the homogeneous linear dif-
ferential equation Lxk for each observation xk [493]. The methodology
outlined and the nomenclature used follows Ramsay and Silverman [495]
where a detailed treatment of the topic is provided. The differential equa-
tion model

Dmxk = -w0xk - WlDxk + ---- wm-iDm-lxk (4.138)

that satisfies the data as closely as possible is sought. Since the operator
is expected to annihilate the data functions xk as nearly as possible, Lxk

can be regarded as the residual error from the fit provided by L. A least
squares approach can be used to fit the differential equation model by using
the minimization of sum of squared errors (SSE) criterion.

K ,
SSE(L) = £] / [Lxk(t)fdt . (4.139)

fc=i^

Here, SSE(L) is minimized to determine the m weight functions in Eq.
4.137, viz., w = (WQ,WI, • • • ,w;m_i). Once the operator L is determined
by estimating its w, a set of m linearly independent basis functions ^ that
satisfy L£j = 0 and form the null space of L can be computed. The weights
w can be determined by pointwise minimization of the sum of squared
errors (SSEp] criterion:

SSEP(t] = x(Lxk)\t) = - ,.(*)(^**)(*) (4.140)
fc=l fc=l j=0

with wm(t) — I for all t. The representation (L:Efc)2(£) is used to underline
the pointwise nature of time- variant data [495]. Defining the K x m re-
gressor matrix T(t) and the -ftT-dimensional dependent variable vector A(i)
as
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i>K;J-=o,m-i and A(t) = [-(Dmxk)(f)}k=liK

(4.141)
the least squares solution of Eq. (4.140) gives the weights Wj(t)

w = [r(t)Tr(t)]-1rTA(t). (4.142)
Weights w must be available at a fine level of detail for computing the
basis functions £j. The resolution of w depends on the smoothness of the
derivatives D^xk. Pointwise computation of w for larger orders of m is
computationally intensive. Furthermore, F(t) may not be of full rank. One
way to circumvent these problems is to approximate w by a fixed set of
basis functions 0 = <£/, I = 1, • • • , L. Standard basis function families such
as polynomials, Fourier series, B-spline functions or wavelets could be used.
The weights w can be approximated as

Z^Cjifa (4.143)
i

where the mL coefficients c = [cji]j=itm;i=i!L are stored as a column vector.
The estimates c are the solution of Re = — s resulting from the minimiza-
tion of the quadratic form

C + cTRc + 2cTs (4.144)

where C is a constant independent of c, R = [Rij]i=o,m-i;j=o,m~i and
s = [sj]j=o,m-i with

(4.145)

Sj = ^D^M^xMdt . (4.146)f k=i

The integrals are evaluated numerically by using traditional tools such as
the trapezoidal rule.

An alternative computation of w can be made by attaching a penalty term
toEq. (4.139):

.. K m—l ,.

PSSE(L} = - ^(Lxk)
2(t] +Y.°i ^(*)2<ft (4-147)

fc=l j=0 J
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where 9j controls the roughness of the estimated weight functions. The
solution can be found by using the pointwise approach which results in

w = [T(t)TT(t) + X0]-1rTA(t) (4.148)

where © = diag(0Q, • • • , 0m_i). Alternatively, the basis function approach
can be used to compute w.

The FDA framework can be used to model the trajectories of the pro-
cess variables of a batch process. This model can be used to generate the
estimates of the future portion of the trajectories for implementing SPM
during the progress of the batch. The FDA based prediction provides re-
markable improvement in trajectory estimation illustrated in Figures 4.7
and 4.8. In this illustration, data are generated using the simulator based
on the unstructured nonlinear multivariable model of penicillin fermenta-
tion (Section 2.7.1) and data-based models are developed using multiway
PC A (MFC A) and FDA frameworks. The trajectories to the end of the
batch are estimated based on these models and the "data collected" (Solid
curves in Figures 4.7 and 4.8) up to the present time in the current batch.

Two cases are generated for penicillin concentration profile to illustrate
and compare estimation methods. Curves labelled 1-3 are based on the
estimation methods described in Section 6.5.1, curve 4 is based on the
PDA model and curve 5 is the PDA based estimation with EWMA-type
local weights on "measured" and "estimated" data. In the first case, data
generated under normal operation are used. Estimation performed starting
at 150 h onward to the end of the batch run resulted in comparatively
close results for all methods (Figure 4.7(a)). Mean-centered profiles are
also given in Figure 4.7(b) to provide a magnified look at the predictions.
Although the predictions are close in this case, PDA with EWMA-type
local weightings produced the best result (Curve 5). The problem can also
be cast into a framework of Kalman filter-type correction of the predicted
values. The results are identical when the EWMA weight and Kalman filter
gain are matched. A drift disturbance in the substrate feed rate from the
start of fed-batch operation until the end of the batch is generated as the
second case. Estimation is started at 180 h onward to the end of the batch
(Figure 4.8). The best estimates are given by PDA with local weighting of
data (Curve 5).

The FDA approach provides a framework to develop methods for data
pretreatment, adjustment of data length of different batches, detection of
landmarks for the beginning and ending of various stages during the batch,
PCA, and estimators for final product properties. Landmark detection and
data synchronization using FDA are discussed in Section 6.3.3. Further-
more, the differential equations generated can be converted to a state-space
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Figure 4.7. Estimates of the penicillin concentration trajectory under nor-
mal operation.
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Figure 4.8. Estimates of the penicillin concentration trajectory under dis-
turbance.
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representation, enabling the representation of the process model in a form
that can be used efficiently in process control.

4.5 Multivariate Statistical Paradigms for
Batch Process Modeling

Data collected from batch or fed-batch processes have a three-dimensional
structure. This array is different than the two-dimensional structure (vari-
ables x time) resulting from continuous process data. The dimensions
in batch data are batch runs, variables and time (Figure 4.9). Data are
arranged into a three-dimensional array (/ x J x K) where / is the num-
ber of batches, J is the number of variables and the K is the number of
sampling times in a given batch. Consequently, the PCA and PLS based
methods discussed in Sections 4.1 and 4.2.4 must be modified to handle
three-dimensional data.

4.5.1 Multiway Principal Component Analysis-MPCA

MPCA is based on PCA [661]. It is equivalent to performing ordinary PCA
on a large two-dimensional matrix constructed by unfolding the three-way
array. The use of MPCA for batch process monitoring was proposed in
mid 1990s [433] and applied to monitor a polymerization reactor. It has
been extended to nonlinear PCA [130] and wavelet decomposition based
multiscale PCA techniques for analysis of batch process data [39].

Batch process data are arranged into a three-dimensional array X The
underbar is used to denote a three dimensional matrix. MPCA decomposes
the X array into a summation of the product of score vectors ta and loading
matrices Pa, plus a residuals array E that is minimized in a least-squares
sense, as

t a ®P a + E (4.149)
a=l

where <8> is the Kronecker product (X = t ® P is X(i, j, k) = t ( i ) P ( j , k))
and A is the number of principal components (PC) retained [661].

This three-way array is unfolded and scaled properly prior to MPCA
(Figure 4.10). Unfolding of three-way array X can be performed in six pos-
sible ways. For instance, X can be unfolded to put each of its vertical slices
(/ x J) side by side to the right, starting with the slice corresponding to the
first time interval. The resulting two-dimensional matrix has dimensions
(/ x JK] . This particular unfolding allows one to analyze variability among
the batches in X by summarizing information in the data with respect to
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a=l

I x J x K 1 x 1 x 1 1 x J x K I x J x K

Figure 4.9. Batch process data arrangement and decomposition in three-
way array [433].

variables and their time variation. A mathematically equivalent unfolding
would be to take slices off the side of X and place them down the time
axis, which also forms a (/ x JK) dimensional matrix. The latter unfolding
orders the matrix with the history of each variable kept together while the
former orders the matrix with all the measurements taken at the same time
kept together. After mean-centering and scaling the unfolded data matrix,
PC A is applied. Each of the p, however, is really an unfolded version of
the loadings matrix Pa. After vectors p are obtained, Pa can be obtained
by reversing the unfolding procedure. Similarly, the three-way array E can
be formed by folding the PCA residual matrix E. For the unfolded X:

(4.150)
0=1

MFC A explains variation of measured variables about their average trajec-
tories. Subtracting the average trajectory from each variable (accomplished
by mean centering the columns of the unfolded matrix X) removes most
of the nonlinear behavior of the process (see Figure 4.11). Batch process
models, developed based on historical data of batch runs yielding good
products, using MFC A provide the foundation to develop statistical pro-
cess monitoring and quality control systems in Section 6.4.

4.5.2 Multiway Partial Least Squares-MPLS
Traditional SPC methods in batch processes are usually limited to end-
product quality measurements [598, 614] or to a single variable measured
throughout the batch. Most batch processes operate in open loop with re-
spect to product quality variables due to lack of on-line sensors for tracking
these variables. Upon completion of the batch, off-line quality measure-
ments are usually made in the laboratory. MPCA makes use of process
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Batches

Variables

b(2)

b(l)

PT

Figure 4.10. Batch data representation and unfolding process. The rows
are batches and columns are the variables, Vj, sampled at each time Tk
[433].

variable trajectory measurements (X) taken throughout the duration of
the batch to help classify a batch as 'good' or 'bad'. MPLS [661] is an
extension of PLS that is performed using both process data (X) and the
product quality data (Y) to predict final product quality during the batch
[434]. The unfolding process, mean-centering and scaling issues apply to
MPLS technique as well (Section 4.5.1). There is also a Y matrix of qual-
ity variables in addition to three-way data matrix, as shown in Figure 4.10.
After unfolding this three-way array into two dimensions, the algorithm ex-
plained for PLS in Section 4.2.4 is applied to this unfolded three-way array
[298, 434].

For batch data, MPLS decomposes the X(7 x JK) and Y(J x M) matri-
ces into a summation of A score vectors [t(7 x 1), u(7 x 1)], loading vectors
[p(JK x 1), q(M x 1)], weights w(JK x 1) and model residual matrices
E(7 x JK), F(7 x M). t, u, p, q and w can be combined into T(7 x A),
U(7 x A), P(JK x A), Q(M x A) and W(JK x A) matrices to build matrix
form of equations Eq. 4.19 and 4.20 in Section 4.2.4. A denotes the number
of latent variables included in the MPLS model.

X = TPT + E, Y = TQT + F

where T is given by
= XW(PTW)~1.

(4.151)

(4.152)
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Figure 4.11. Autoscaling of a set of reference trajectories about the mean
trajectory (darker line).

This decomposition summarizes and compresses the data with respect to
both X and Y variables and lime into low dimensional spaces that describe
the process operation which is most relevant to final product quality. T
matrix carries information about the overall variability among the batches.
The P and W convey the time variation of measured variables about their
mean trajectories and weights applied to each variable at each time instant
within a batch giving the scores for that batch. U represents the inner
relationship between X and Y, and summarizes the Y variables (quality
variables) with some information coming from the X block (process vari-
ables) . Q relates the variability of process measurements to final product
quality [243, 434, 661].

MPLS will detect unusual operation based on large scores and classify
a batch as 'good' or 'bad' as MPCA does and in addition, it will indicate if
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the final product qualities are not well predicted by process measurements
when the residuals in the Y space [SPEy = ]Cc=i F(^c)2] are large. The
W, P, and Q matrices of MPLS model bear all the structural information
about how the process variables behaved and how they are related to the
final quality variables. Implementation of this technique is discussed in
Section 6.4.4.

4.5.3 Multiblock PLS and PCA Methods for Modeling
Complex Processes

Multiblock data analysis has its origins in path analysis and path modeling
in sociology and econometrics. In situations where the number of variables
is very large or the process that is analyzed is large and consists of many
different stages, it is logical to group variables in a meaningful way, either
based on their similarity, or their origin in the system or process, and then
summarize each group that is called block. Each block may be divided
into sub-blocks according to process phases and stages (several X-blocks of
process variables and/or Y blocks of quality variables). If the focus is on
the process measurements space, several MPCA models can be developed
out of sub-blocks, however in regression models separate projections of each
block can be put together as a block and the resulting block scores are then
treated as predictor and response variables on the "super level (or upper
level)" of the model. The resulting models are called hierarchical projection
models.

A version of multiblock PCA (MBPCA) called as "consensus PCA"
(CPCA) was introduced by Wold et al. [662] as a method for comparing
several blocks of descriptor variables (process variables) measured on the
same objects (batches). A consensus direction is sought among all the
blocks. One of the classical applications of CPCA is the testing of food and
beverages especially wines by a number of judges (or samplers). Each judge
(b is an index for judges) tastes each of the N samples and gives his/her
opinion in terms of Kb variables such as sweetness, color, tannic taste, etc.
A consensus matrix T (super score) will then contain the overall opinion
of the judges about the same object while the super weight showing the
relative importance of each judge in the consensus score (Figure 4.12). Wold
et al. [665] also suggested a slightly different multiblock PCA algorithm
called "hierarchical PCA" (HPCA). The only difference is the normalization
step where in HPCA, tb and t^ are normalized instead of WT and p<, in
CPCA, and the super weight only shows if the direction of the super score
is present in the block in HPCA. In both algorithms the super score will
show the direction most dominant in the consensus block T. However,
because the block scores are normalized in HPCA, it will search the most
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dominant direction in these normalized scores. In CPCA, block scores will
be combined in T as they are calculated for each block and hence the super
score will just be the direction most dominant in the block scores. This
difference between the two methods intensifies as one direction becomes
stronger in only a single block [665] .

To prevent the domination of one block due to large variance with re-
spect to other blocks, an initial block scaling is performed by modifying
autoscaling according to a function the number of variables m contained in
each block (see Eq. 4.153). Typically this function is chosen to be between
the square root and the fourth root of m, giving each block the total weight
of between one and ^/m [640, 665].

X = [ Xi/v/ro^T, • • • , X6/v/m^ ] - (4.153)

Additional scaling factors can also be introduced to some particular X
and/or Y blocks in hierarchical models with many blocks to scale up or
down the importance of those blocks. Since larger blocks have usually a
greater importance than the smaller ones, a mild weighting according to
size can be assigned as [665]

db = l + 0.5 \og10Kb. (4.154)

A convergence problem in these original algorithms is reported and resolved
by Westerhuis et al. [640]. An adaptive version of HPCA for monitoring
of batch processes has been reported by Rannar et al. [496] . The details of
this advantageous technique is discussed along with case studies in Section
6.5.2.

The application of multiway MBPCA is also suggested for batch process
data. In multiway MBPCA, blocking of the variables is done as explained
above. Kosanovich et al. [291] have grouped the data from a batch poly-
merization reactor based on operational stages while Undey et al. [604, 605]
have extended the same approach by dividing one process unit into two op-
erational phases and included additional data for analysis from a second
process unit for the case of multistage pharmaceutical wet granulation. A
detailed example is given in Section 6.4.5 for this case. A nonlinear version
of multiway MBPCA based on artificial neural networks is also suggested
with some improvement on the sensitivity of the monitoring charts in the
literature [129, 130].

When development of regression (projection based) models is aimed
between multiple X and Y blocks, hierarchical PLS (HPLS)or MBPLS
methods can be used. HPLS is an extension of the CPCA method. After
a CPCA cycle on multiple X blocks, a PLS cycle is performed with the
super block T and Y [640, 662, 665]. An application of HPLS was given by
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mx tT

Super Level

mX2 \ t2
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Figure 4.12. CPCA and HPCA methods [640, 665]. X data matrix is
divided into b blocks (Xi, X2,. . ., X&) with block b having mxb variables.

Wold et al. [665] the modeling process data (hundreds of variables) from a
catalytic cracker.

Another PLS algorithm called multiblock PLS (MBPLS) has been in-
troduced to deal with data blocks [629, 640, 666]. The algorithm could
handle many types of pathway relationships between the blocks. It is log-
ically specified from left to right. Left end blocks are denned as blocks
that predict only while right end blocks are blocks that are predicted but
do not predict. Interior blocks both predict and are predicted. The main
difference between this method and HPLS is that in MBPLS, each X block
is used in a PLS cycle with Y block to calculate the block scores t&, while
in HPLS tb is calculated as in CPCA. The basic methodology is illustrated
in Figure 4.14 where there is a single Y block and two X blocks and the
algorithm is given as

1. Start by selecting one column of Y, y^, as the starting estimate for
u.

2. Perform part of a PLS round on each of the blocks Xi and X2 to get
(wi)ti) and (w2,t2) as in Eq. 4.21 stated in PLS algorithm in Section
4.2.4.

3. Collect all the score vectors ti, t% in the consensus matrix T (or
composite block).
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4. Make one round of PLS with T as X (Eqs. 4.21-4.23) to get a loading
vector v and a score vector tc for T matrix, as well as a loading vector
q and a new score vector u for the Y matrix.

5. Return to step 2 and iterate until convergence of u.

6. Compute the loadings pi = Xf ti/tf ti and P2 =
Xi and X2 matrices.

7. Compute the residual matrices EI = Xi — tipf , £2 = X2 —

for the

8. Calculate the next set of latent vectors by replacing Xi,X2 and Y
by their residual matrices Ei,E2, and F, and repeating from step 1.

This algorithm has been applied to monitoring a polymerization reactor
[355] where process data are divided into blocks of data, with each block
representing a section of the reactor. An increased sensitivity in multi-
variate charts is reported for this reactor. The reason behind sensitivity
improvement is that these charts for individual blocks are assessing the
magnitude of the deviations relative to normal operating conditions in that
part of the process only, and not with respect to variations in all variables
of the process.

Super Level

mx1 t,

mY u

mX2
mxb

p]
X1

PT
2

i X2

J— J-

\

-Jf

Pr
b

xb

Figure 4.13. HPLS method [640, 665]. X data matrix is divided into 6
blocks (Xi, X2,..., Xfc) with block 6 having mxb variables while only one
Y block containing my variables is present.
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Figure 4.14. Multiblock PLS algorithm [355, 629].

Another application of the same algorithm is also reported for the case
of wet granulation and tableting [638]. An improvement (with respect to
ordinary PLS method) in prediction of a number of pharmaceutical tablet
properties was reported.

When extra information is available (such as feed conditions, initial
conditions, raw material qualities, etc.), this information should be incor-
porated in the multiway MBPLS framework. A general block interaction
can be depicted for a typical batch process as shown in Figure 4.15. In this
typical multiblock multiway regression case (multiblock MPLS), the blocks
are the matrix containing a set of initial conditions used for each batch,
Z(/ x TV), the three-way array of measurements made on each variable at
each batch, X(J x J x A"), and Y(/ x M) containing quality measurements
made on batches. Kourti et al. have presented an implementation of this
MBPLS technique [297] by dividing process data into two blocks based on
different polymerization phases and also incorporating a matrix of initial
conditions. An improvement in the interpretation of multivariate charts
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and fault detection sensitivity on individual phases are reported. The abil-
ity to relate the faults detected to initial conditions was another benefit of
multiblock modeling that included relations between initial conditions and
final product quality.

4.5.4 Multivariate Covariates Regression
The principal covariates regression proposed by de Jong and Kiers [119]
can also be used to develop predictive models [554]. In this method, the
relationship between the predictor block X and the dependent variable
block Y is expressed by finding components scores T where the A column
vectors tj, i = 1, . . . ,A span the low-dimensional subspace of X that
accounts for the maximum amount of variation in both X and Y.

T = XW X - TPX + Y = TPy + Ey (4.155)

where W is a p x A matrix of component weights, EX and Ey contain
the unique factors of X and Y, respectively, and the loading matrices PX
(A x p) and Py (A x m) contain the regression parameters relating the
variables in X and Y, respectively [119]. The model is fitted to the data
in the least-squares sense by maximizing the weighted average of -RxT' ^ne

percentage of variance in X accounted for by T and -RyT, the percentage of

Batches

cc

oc

INITIAL
EDITIONS QUALITY

z Y i

BBatches

Batches

Variables

Figure 4.15. Multiway multiblock regression problem [297, 556].
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variance in Y accounted for by T: a • R2
XT + (1 — a) • jRyT, with 0 < a < 1.

The least-squares loss function may be written in terms of the residuals as
a minimization problem:

a(W,Px,Py) - a||X - XWPX||2 + (1 - a)||Y - XWPyf (4.156)

with the Frobenius matrix norm || • || and constraint TTT = WTXTXW =
1,4, where I A is an A x A identity matrix. The method can be extended
to multi-block data. While de Jong and Kiers [119] consider prediction of
Yfc, k > I from a single X, it is also possible to formulate problems where
many X blocks are used to predict Y.

4.5.5 Other Three-way Techniques
There are several methods for decomposing the three-way array that are
more general than MPCA [179]. These methods include parallel factor
analysis (PARAFAC) [553, 555] and Tucker models [179, 597].

The Tucker Model. The Tucker model decomposes the 3-dimensional
data as

L M N
Xijk = ̂  ̂  JZ aHbirnCknZlmn + &ijk (4.157)

/=! m=ln=l

where an is an element of the (/ x L) loading matrix of component i, bjm is
an element of the ( J x M) loading matrix of the second component j, and
Cfcn is an element of the (K x N] loading matrix of the third component
k. zimn denotes an element of the three-way core matrix Z and e^ is an
element of the three-way residual matrix E. The core matrix Z represents
the magnitude and interactions between the variables [305]. A ,B,C are
column-wise orthonormal, and A,B,C and Z are chosen to minimize the
sum of the squared residuals. In the Tucker model, each mode (/, J, K)
may have a different number of PCs, which is denned -not chosen- by the
least squares algorithm.

The PARAFAC Model. The PARAFAC model yields a trilinear model
of X

G
xijk = 51 ai9bJ9Ckg + &ijk (4.158)

9=1

and eijk are the same as in Eq. 4.157. aig, b j g , and Ckg are the elements
of the loading matrices A (/ x G), B ( J x (?), and C (K x G). A, B, and
C are chosen to minimize the sum of squared residuals. Under certain
conditions, the solution does not converge due to the degeneracy of the
problem [552, 555]. Degeneracy refers to the fact that the loadings A, B,
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and C are rotation-dependent i.e., there can be no multiple solutions for the
calculated set of loadings. In terms of data manipulations, the PARAFAC
model is a simplification of the Tucker model in two ways [555]:

1. The number of components in all three modes (/, J, K] are equal, and

2. There is no interaction between latent variables of different modes.

The use of MPCA and three-way techniques have been reported for SPM
in [641, 646].

4.6 Artificial Neural Networks
Although this chapter is devoted to empirical modeling techniques for mod-
eling linear systems, artificial neural networks (ANNs) which can be used to
model both linear and nonlinear systems are discussed here as well because
of their popularity. Following a short historical perspective, summarizing
foundations of ANNs. Due to availability of numerous ANN software on
different platforms, there is no need to construct ANN models from scratch
unless a very special, custom application is aimed.

The "neural networks" have been inspired from the way the human brain
works as an information-processing system in a highly complex, nonlinear
and massively parallel fashion. In its most general form, the following
definition of a neural network has been suggested as an adaptive machine
[226]:

A neural network is a massively parallel distributed processor made
up of simple processing units, which has a natural propensity for stor-
ing experiential knowledge and making it available for use. It resem-
bles the brain in two respects:

1. Knowledge is acquired by the network from its environment
through a learning process.

2. Interneuron connection strengths, known as synaptic weights,
are used to store the acquired knowledge.

ANNs have a large number of highly interconnected processing elements
also called as nodes or artificial neurons. The first computational model
of a biological neuron, namely the binary threshold unit whose output was
either 0 or 1 depending on whether its net input exceeded a given threshold,
has been proposed by McCulloch and Pitts in 1943 [377]. Their interpreta-
tion has united the studies of neurophysiology and mathematical logic. The
next major development in neural networks came in 1949 when Hebb, in his
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book named The Organization of Behavior [227], explicitly proposed that
the connectivity of the brain is continually changing as an organism learns
differing functional tasks, and that "neural assemblies" are created by such
changes. This suggested that a system of neurons, assembled in a finite
state automaton, could compute any arbitrary function, given suitable val-
ues of weights between the neurons [390]. 15 years after these pioneering
fundamental studies, automatically finding suitable values for those weights
was introduced by Rosenblatt [520] in his work on the perceptron which is
a function that computes a linear combination of variables and returns the
sign of the result. It was proposed that this iterative learning procedure
(so-called perceptron convergence theorem] always converged to a set of
weights that produced the desired function, as long as the desired function
is computable by the network [521, 643]. Interest in neural networks was
gradually revived from about 1985s when Rumelhart et al. [527] popular-
ized a much faster learning procedure called back-propagation, which could
train a multi-layer perceptron to compute any desired function.

Other commonly used names for ANNs include parallel distributed pro-
cessors, connectionist models (or networks), self-organizing systems, neuro-
computing systems, and neuromorphic systems. ANNs can be seen as
"black-box" models for which no prior knowledge about the process is
needed. The goal is to develop a process model based only on the input-
output data acquired from the process. There are benefits and limitations
of using ANNs for empirical modeling [226, 483]:

Benefits

• Adaptive Behavior. ANNs have the ability to adapt, or learn, in
response to their environment through training. A neural network
can easily be retrained to deal with minor changes in the operational
and/or environmental conditions. Moreover, when it is operating in a
nonstationary environment, it can be designed to adjust its synaptic
weights in real time. This is especially a valuable asset in adaptive
pattern classification and adaptive control.

• Nonlinearity. A neural network is made of interconnections of neurons
and is itself nonlinear. This special kind of nonlinearity is distributed
throughout the network. The representation of nonlinear behavior by
nonlinear structure is a significant property, since the inherent charac-
teristic of most fermentations/biological processes is highly nonlinear.

• Pattern Recognition Properties. ANNs perform multivariable pattern
recognition tasks very well. They can learn from examples (training)
by constructing an input-output mapping for the system of interest.

Copyright © 2003 by Taylor & Francis Group, LLC



4.6. Artificial Neural Networks 177

In the pattern classification case an ANN can be designed to provide
information about similar and unusual patterns. Training and pat-
tern recognition must be made by using a closed set of patterns. All
possible patterns to be recognized should be present in the data set.

• Fault Tolerance. A properly designed and implemented ANN is usu-
ally capable of robust computation. Its performance degrades grace-
fully under adverse operating conditions and when some of its con-
nections are severed.

Limitations

• Long Training Times. When structurally complex ANNs or inappro-
priate optimization algorithms are used, training may take unreason-
ably long times.

• Necessity of Large Amount of Training Data. If the size of input-
output data is small, ANNs may not produce reliable results. ANNs
provide more accurate models and classifiers when large amounts of
historical data rich in variations are available.

• No Guarantee of Optimal Results. Training may cause the network to
be accurate in some operating zones, but inaccurate in others. While
trying to minimize the error, it may get trapped in local minima.

• No Guarantee of Complete Reliability. This general fact about all
computational techniques is particularly true for ANNs. In fault di-
agnosis applications, for instance, ANNs may misdiagnose some faults
1% of the time while other faults in the same domain 25% of the time.
It is hard to determine a priori (when backpropagation algorithm is
used) what faults will be prone to higher levels of misdiagnosis.

• Operational Problems Associated with Implementation. There are
practical problems related to training data set selection [302, 334].

4.6.1 Structures of ANNs
ANNs have a number of elements. The basic structure of ANNs typically
includes multilayered, interconnected neurons (or computational units) that
nonlinearly relate input-output data. A nonlinear model of a neuron, which
forms the core of the ANNs is characterized by three basic attributes (Figure
4.16):

A set of synaptic weights (or connections), describing the amount of influ-
ence a unit (a synapse or node) has on units in the next layer; a

Copyright © 2003 by Taylor & Francis Group, LLC



178 Chapter 4. Linear Data-Based Model Development

positive weight causes one unit to excite another, while a negative
weight causes one unit to inhibit another. The signal Xj at the input
synapse j connected to neuron k in Figure 4.16 is multiplied by weight
wkj (Eq. 4.159).

A linear combiner (or a summation operator) of input signals, weighted
by the respective synapses of the neuron.

An activation function with limits on the amplitude of the output of a
neuron. The amplitude range is usually given in a closed interval
[0,1] or [-1,1]. Activation function <£>(• ) defines the output of a neuron
in terms of the activation potential Vk (given in Eqs. 4.160 and 4.161).
Typical activation functions include the unit step change and sigmoid
functions.

A neuron k can be described mathematically by the following set of equa-
tions [226]:

m

(4.159)

and
Vk = v(vk]

(4.160)

(4.161)

Fixed input
W =

Inputs
Output

Synaptic weights
(including bias)

Figure 4.16. A nonlinear model of a single neuron [226].
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where xi,X2, . . . ,Xj, . . . ,xm are the input signals; Wki,Wk2, . . • , Wkj> • • >
are the synaptic weights of neuron k, Uk is the linear combiner output of the
input signals, bk is the bias, Vk is the activation potential (or induced local
field), <£>(•) is the activation function, and y^ is the output signal of the neu-
ron. The bias is an external parameter providing an affine transformation
to the output Uk of the linear combiner.

Several activation functions are available. The four basic types illus-
trated in Figure 4.17 are:

1. Threshold Function. Also known as McCulloch-Pitts model [377]

2. Piecewise-linear Function.

ip(v)=l v, +\>v>-\ (4.163)
I n 1 ! < — i^ u, v ^ 2

where the amplification factor inside the linear region of operation is
assumed to be the unity.

3. Sigmoid Function. This s-shaped function is by far the most common
form of activation function used. A typical expression is

<p(v) = -— (4.164)
1 + e~av

where a is the slope parameter.

4. Hyperbolic Tangent Function. This is a form of sigmoid function but
it produces values in the range [—1, +1] instead of [0,1]

(4.165)e_ .

Processing units (neurons) are linked to each other to form a network as-
sociated with a learning algorithm. A neural network can be formed with
any kind of topology (architecture). In general, three kinds of network
topologies are used [226]:

Single-layer feedforward networks include input layer of source nodes
that projects onto an output layer of neurons (computation nodes),
but not vice versa. They are also called feedforward or acyclic net-
works. Since the computation takes place only on the output layer
nodes, the input layer does not count as a layer (Figure 4. 18 (a)).
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Figure 4.17. Activation functions [226].

Multilayer feedforward networks contain an input layer connected to
one or more layers of hidden neurons (hidden units) and an output
layer (Figure 4.18(b)). The hidden units internally transform the
data representation to extract higher-order statistics. The input sig-
nals are applied to the neurons in the first hidden layer, the output
signals of that layer are used as inputs to the next layer, and so on for
the rest of the network. The output signals of the neurons in the out-
put layer reflect the overall response of the network to the activation
pattern supplied by the source nodes in the input layer. This type of
networks are especially useful for pattern association (i.e. mapping
input vectors to output vectors).

Recurrent networks differ from feedforward networks in that they have
at least one feedback loop. An example of this type of network is given
in Figure 4.18(c) which is one of the earliest recurrent networks called

Copyright © 2003 by Taylor & Francis Group, LLC



4.6. Artificial Neural Networks 181

Jordan network [306]. The activation values of the output units are
fed back into the input layer through a set of extra units called the
state units. Learning takes place in the connection between input and
hidden units as well as hidden and output units. Recurrent networks
are useful for pattern sequencing (i.e., following the sequences of the
network activation over time). The presence of feedback loops has
a profound impact on the learning capability of the network and on
its performance [226]. Applications to chemical process modeling and
identification have been reported [97, 616, 679].

Before proceeding with training the network, an appropriate network ar-
chitecture should be declared. This can be done either in static or dy-
namic manner. Many ad hoc techniques for static network structure se-
lection are based on pruning the redundant nodes by testing a range of
network sizes, i.e., number of hidden nodes. However, techniques for net-
work architecture selection for feedforward networks have been proposed
[301, 335, 482, 627, 628]. Reed [499] gives a partial survey of pruning algo-
rithms and recent advances can be found in the neural network literature
[144, 404].

Having specified the network architecture, a set of input-output data is used
to train the network, i.e. to determine appropriate values for the weights
associated with each interconnection. The data are then propagated for-
ward through the network to generate an output to be compared with the
actual output. The overall procedure of training can be seen as learning
for the network from its environment through an interactive process of ad-
justments applied to its weights and bias levels. A number of learning rules
such as error-correction, memory-based, Hebbian, competitive, Boltzmann
learning have been proposed [226] to define how the network weights are
adjusted. Besides these rules, there are several procedures called learn-
ing paradigms that determine how a network relates to its environment.
The learning paradigm refers to a model of the environment in which the
network operates. There are two main classes of learning paradigms:

Learning with teacher (supervised learning), in which a teacher pro-
vides output targets for each input pattern, and corrects the network's
errors explicitly. The teacher can be thought of as having knowledge
of the environment (presented by the historical set of input-output
data) so that the neural network is provided with desired response
when a training vector is available. The desired response represents
the optimum action to be performed to adjust neural network weights
under the influence of the training vector and error signal. The error
signal is the difference between the desired response (historical value)
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(a) Single-layer feedfor-
ward network.

Input layer of Layer of hidden Layer of output
source nodes neurons neurons

(b) Multilayer feedforward network.

Layer of hidden Layer of output
neurons neurons

(c) Recurrent network [306].

Figure 4.18. Three fundamentally different network architectures.
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and the actual response (computed value) of the network. This cor-
rective algorithm is repeated iteratively until a preset convergence
criteria is reached. One of the most widely used supervised train-
ing algorithms is the error backpropagation or generalized delta rule
proposed by Rumelhart and others [527, 637].

Learning without a teacher, in which there is no teacher, and the net-
work must find the regularities in the training data by itself. This
paradigm has two subgroups

1. Reinforcement learning/Neurodynamic programming,
where learning the relationship between inputs and outputs is
performed through continued interaction with the environment
to minimize a scalar index of performance. This is closely related
to Dynamic Programming [53].

2. Unsupervised learning, or self-organized learning where there
is no external teacher or critic to oversee the learning process.
Once the network is tuned to the statistical regularities of the
input data, it forms internal presentations for encoding the input
automatically [48, 226].

4.6.2 ANN Applications in Fermentation Industry
Application of ANN models in biochemical and fermentation industries
concentrate mostly on soft sensor development for estimating infrequently
measured quality variables such as biomass concentration using process
variables that are frequently measured. Developing such empirical mod-
els is almost similar to developing statistical regression models. There are
numerous applications for different types of fermentations in the litera-
ture. Applications include use of ANN models to estimate biomass con-
centration in continuous mycelial fermentation [28, 649], improve yield in
penicillin fermentations [125], and develop on-line estimators for batch and
cell-recycle systems [268]. Applications in general for soft sensor technology
[25, 75, 98], optimization and fault diagnosis [92, 345, 587] and experimen-
tal design based on ANNs [194] have also been reported. There are also
hybrid neural network-first principles models that incorporate fundamental
models with ANN models for better accuracy on predictions [170, 481, 588].
One approach is to use a first principle model to explain as much variation
as possible in data. The remaining significant variation is modeled by an
ANN. This hybrid structure is inspired from the first principle-time series
model combinations that rely on the same philosophy. In another approach,
the parameters of a first principles model are estimated by ANN in a hy-
brid structure [481]. Another hybrid structure [588] creates series parallel
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Batch Age

Substrate Feed

1, bias

Figure 4.19. A hypothetical feedforward ANN with one hidden layer for
estimating substrate and biomass concentrations in fed-batch penicillin
fermentation (OUR: Oxygen uptake rate, S: Substrate cone., X: Biomass
cone., Wij and Wjk weight vectors associated with interconnected layers).

structure that combines parametric models based on fundamental process
knowledge and nonparametric models based on process data.

Three-layer feedforward networks with backpropagation learning algo-
rithm are dominantly used in the applications mentioned above. A hy-
pothetic neural network structure is shown in Figure 4.19 for estimating
biomass and substrate concentrations in penicillin fermentation utilizing
frequently measured variables such as feed rates and off gas concentrations.

There are many educational and commercial software packages available
for development and deployment of ANNs. Most of those packages include
data preprocessing modules such as Gensym's NeurOn-Line Studio [185].

ANNs can be seen as autoassociative regression models. They resemble
statistical modeling techniques in that sense. But the lack of statistical
inference and robustness issues may cause problems. Care should be taken
(e.g., data pre-processing, appropriate selection of input-output data set)
during deployment. The advantages/disadvantages summarized in the in-
troductory paragraph of Section 4.6 should be taken into consideration prior
to deciding if ANNs are appropriate for a specific application.
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4.7 Extensions of Linear Modeling Techniques
to Nonlinear Model Development

Several paradigms are available for developing nonlinear dynamic input-
output models of processes. These models have the capability to describe
pathological dynamic behavior and to provide accurate predictions over a
wider range of operating conditions compared to linear models. ANNs were
introduced in the previous section. Chapter 5 presents system science meth-
ods for nonlinear model development. Various other nonlinear model de-
velopment paradigms such as time series models, Volterra kernels, cascade
(block-oriented) models and nonlinear PLS have been developed. Exten-
sions of linear empirical model development techniques based on time series
models and PLS are introduced in this section to expand the alternatives
available to build nonlinear models. Polynomial models, threshold models,
and models based on spline functions can describe various types of nonlinear
behavior observed in many physical processes. Polynomial models include
bilinear models, state dependent models, nonlinear autoregressive moving
average models with exogenous inputs (NARMAX), nonlinear polynomial
models with exponential and trigonometric functions (NPETM), canonical
variate nonlinear subspace models, and multivariate adaptive regression
splines (MARS). A unified nonlinear model development framework is not
available, and search for the appropriate nonlinear structure is part of the
model development effort. Use of a nonlinear model development paradigm
which is not compatible with the types of nonlinearities that exist in data
can have a significant effect on model development effort and model accu-
racy. Various nonlinear time series modeling paradigms from system identi-
fication and statistics literature are summarized in Section 4.7.1. A special
group of nonlinear models based on the extension of PLS is presented in
Section 4.7.2.

4.7.1 Nonlinear Input-Output Models in Time Series
Modeling Literature

More than twenty nonlinear time series model structures have been pro-
posed during the last four decades. They could be classified based on
features such as the types of variables used in the model, and the way the
model parameters appear in equations. The characteristic features of vari-
ous nonlinear time series (NLTS) models are discussed in this subsection.

The three basic groups of variables used in NLTS models are:

1. Previous values of the dependent variable that yield autoregressive
(AR) terms,
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2. Sequences of independent and identically distributed (iid) random
vectors (white noise) that provide moving average (MA) terms,

3. Input variables with nonrandom features that are called external (ex-
ogenous) (X) variables.

Volterra series models [624] do not utilize previous values of the depen-
dent variable, while nonlinear autoregressive moving average models with
exogenous variables (NARMAX) (Eqs. 4.171-4.174) use all three types of
variables. Model structures are either linear or nonlinear in the parameters.
Model parameter estimation task is much less computation intensive if the
model parameters appear in a linear structure. This permits use of well-
developed parameter estimation techniques for linear modeling paradigms.
NARMAX, bilinear (Eq. 4.170), and threshold models (Eq. 4.177) are
linear in the parameters, while exponential models are nonlinear in the pa-
rameters.

Volterra models have been utilized by Wiener [644] for the study of non-
linear systems by constructing transformations of Volterra series in which
the successive terms are orthogonal. Expressing y(t) as a function of current
and past values of a zero mean white noise process e(t)

ff(e(t) ,e(*- I ) , ' " ) - (4.166)

H can be expanded as a Taylor series about the point a

oo oo oo

gijke(t - i)e(t - j } e ( t - k) + . . . (4.167)
; = 1 fc=l

where

A* = H la 5 • — - \ o / ,de(t-t)Ja J \de(t - i)de(t -
(4.168)

When input u(t) and output y(i) are both observable, the Volterra series
can be represented in terms of the input by replacing e(t) by u(t). If the
system is linear, only the first derivative term is present and the model
is completely characterized by the transfer function gi of the system. For
nonlinear processes, additional terms in Eq. (4.167) must be included, and
the generalized transfer functions concept is used [479].
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Exponential models of order k have the basic form [211]

fc
y(t] = [aj + ft e*p(-a(y(t - l))2)y(t - j)] + e(t] (4.169)

where e(£) is a sequence of iid random variables, aj, ft-, and 6 are model
parameters. Since 6 is in the argument of the exponential term, the model
estimation problem is computationally more challenging.

Bilinear models [394] cannot describe several types of nonlinearities such
as limit cycles, but they have a simple form that can describe processes
where products of two variables appear in equations derived from first prin-
ciples. The general form of a bilinear model is

y(t] + ajy(t - j) = cje(t ~ j) + M(* - »)e(t - j) (4.170)
j-l j=0 i=l j=l

where CQ — 1 and e(-) represents another variable or white noise. With
suitable choices of parameters, bilinear models can approximate a "well
behaved" Volterra series relationship over a finite time interval [83] .

Nonlinear Polynomial Models. An important class of nonlinear polyno-
mial models has been proposed by Billings and his coworkers [93, 95, 336].
Depending on the presence of autoregressive (AR), moving average (MA)
terms, and/or exogenous (X) variables, they are denoted by acronyms such
as NAR, NARX, or NARMAX. NARMAX models consist of polynomials
that include various linear and nonlinear terms combining the inputs, out-
puts and past errors. Once the model structure, monomials to be included
in the model, has been selected, identification of parameter values (coeffi-
cients of monomials) can be formulated as a standard least squares problem.
The number of candidate monomials to be included in a NARMAX model
ranges from about a hundred to several thousands for moderately nonlinear
systems. Determination of the model structure by stepwise regression type
of techniques becomes inefficient. An algorithm that efficiently combines
structure selection and parameter estimation has been proposed [290] and
extended to MIMO nonlinear stochastic systems [94].

The NARMAX model [336] of a discrete time multivariable nonlinear
stochastic system with r inputs and m outputs is

= f(y(t - 1), • • • , y(* - %), u(t - 1), • • • , u(t.- nu),
e ( t - l ) , - - - ,e(*-ne)) + e(*) (4.171)
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where

3/i (0
y(t) = : , u(t) = : , e(t) = : (4.172)

are the system output, input and noise, respectively, ny,nu, and ne are the
maximum lags in the output, input and noise, respectively, { e ( t } } is a zero
mean iid sequence, and f (•) is some vector valued nonlinear function.

NARMAX models can be illustrated by a NAR model

yq(t) = /9(yi ( * - ! ) , - • •
+e9(t), q = l,m (4.173)

Writing /q(-) as a polynomial of degree / yields

E E
(4.174)

where n = m x ny, zi(£) — y\(t — 1), Z2(£) — 2/ i (*~2) , • • • , and zmriy(t) =
ym(t - ny}. All terms composed of z^ ( £ ) , • • • , zi; (£) in Eq. (4.173) are thus
provided. Hence, for each q, 1 < q < m, Eq. 4.174 describes a linear
regression model of the form

M

yq(t] = Ept(*)0i + e(t), t = l,---,N (4.175)
1=1

where M = X^=i mi with TTI^ = raj_i - (n y -m + i — l)/i, A7" is the time series
data length, p\(t) = 1, Pi(t) are monomials of degree up to / composed of
various combinations of z\(t) to zn(t) (n — m x ny), e(t) are the residuals,
and Oi are the unknown model parameters to be estimated.

A new methodology has been proposed for developing multivariable
additive NARX (Nonlinear Autoregressive with eXogenous inputs) models
based on subspace modeling concepts [122]. The model structure is similar
to that of a Generalized Additive Model (GAM) and is estimated with
a nonlinear Canonical Variate Analysis (CVA) algorithm called CANALS.
The system is modeled by partitioning the data into two groups of variables.
The first is a collection of "future" outputs, the second is a collection of
past input and outputs, and "future" inputs. Then, future outputs are
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predicted in terms of past and present inputs and outputs. This approach
is similar to linear subspace state-space modeling [316, 415, 613]. The
appeal of linear and nonlinear subspace state-space modeling is the ability
to develop models with error prediction for a future window of output
(window length selected by user) and with a well-established procedure that
minimizes trial-and-error and iterations. An illustrative example of such
modeling is presented based on a simulated continuous chemical reactor
that exhibits multiple steady states in the outputs for a fixed level of the
input [122].

Models with a small number of monomials are usually adequate to de-
scribe the dynamic behavior of most real processes. Methods have been
developed for the combined structure selection and parameter estimation
problem based on Gram-Schmidt orthogonalization [94]. The selection of
monomials is carried out by balancing the reduction in residuals and in-
crease in model complexity. Criteria such as Akaike Information Criteria
(AIC) are used to guide the termination of modeling effort. A variant of
AIC is given in Eq. 4.42

AIC(k] = Nlog - + 2k (4.176)

where E = (e(l) • • • e(N))T and k is the number of parameters 0 in
the model. AIC and similar criteria balance minimization of prediction
error (residuals) and model complexity (parsimony) . The addition of new
monomials to the model is terminated when AIC is minimized.

A common problem with polynomial models is the explosion of the pre-
dicted variable magnitude. This may be caused by assigning large values
to some predictors which are raised to high powers, or to the existence of
unstable equilibrium points. This type of behavior necessitates the cen-
soring of the predicted variable value. One censoring method is based on
embedding the whole prediction term as the argument of a sigmoid function
as is done in ANN. Consequently, the predicted value reaches a lower or
upper limit as the magnitude of the argument increases. Other censoring
methods rely on fixed upper and lower limits, or upper and lower limits that
are linear functions of the value predicted by the uncensored polynomial
model.

Threshold Models provide a nonlinear description by using different sub-
models in different ranges of a variable. A piecewise linear model with AR
and MA terms takes the form

~ 0 + E ^e(t - i) (4.177)
i=0
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where the appropriate parameter set (oj, 6j) is selected based on y(t — d) e
.Rj, j = 1,1. Here .Rj — (rj-_i , r j ) with the linearly ordered real numbers
ro < 7*1 < • • • < TI called the threshold parameters, and d is the delay
parameter [24]. The identification of threshold models involves estimation
of model parameters and selection of d and TJ . The threshold model (Eq.

4.177) can be reduced to an AR structure by setting b^ — I and b ^ ' =
0, i = l ,m — 1. External input variables can also be incorporated and
the condition for selection of parameter sets may be based on the input
variables. The submodels may also be nonlinear functions such as NARX
and NARMAX models.

Models Based on Spline Functions. Spline functions provide a non-
parametric nonlinear regression method with piecewise polynomial fitting.
A spline function is a piecewise polynomial where polynomials of degree q
join at the knots Kl, i = 1, k and satisfy the continuity conditions for the
function itself and for its q — 1 derivatives [658]. Often continuity of the
first and second derivatives are enough, hence cubic splines (q = 3) have
been popular. One-sided and two-sided power univariate basis functions
for representing gth order splines are

bq(y - Ki) = (y - Ki)\ and b±(y - K,} = [±(y - K^}*. (4.178)

where subscript + indicates that the term is evaluated for positive values,
the basis function has a value of zero for negative values of the argument.

The multivariate adaptive regression splines (MARS) method [169]
is an extension of the recursive partitioning method. Friedman [169] de-
scribes the evolution of the method and presents algorithms for build-
ing MARS models. An introductory level discussion with applications in
chemometrics is presented by Sekulic and Kowalski [539]. Spline fitting is
generalized to higher dimensions and multivariable systems by generating
basis functions that are products of univariate spline functions

r=l

where Rm is the maximum number of allowable variable interactions and
yv(r,m) denote predictor variables. The final model is of the form

M

/(x) = a0 + Y, a^BM (4-18°)
m— 1

where OQ is the coefficient of the constant basis function B\ and the sum
is over all the basis functions Bm produced by the selection procedure.
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Basis function selection is carried out in two steps. The first step is forward
recursive partitioning which selects candidate basis functions. The second
step is backward stepwise deletion which removes splines that duplicate
similar information. Both steps are implemented by evaluating a lack-of-fit
function [169]. A recent study reports the comparison of models developed
by MARS and ANN with sigmoid functions [480].

Nonlinear Polynomial Models with Exponential and Trigonomet-
ric Terms (NPETM). If process behavior follows nonlinear functions such
as trigonometric, exponential, or logarithmic functions, restricting model
structure to polynomials would yield a model that has a large number
of terms and acceptable accuracy over a limited range of predictor vari-
ables. Basically, several monomials are included in the model in order to
describe approximately the functional behavior of that specific exponential
or trigonometric relation. For example,

I/i(t) = 0iyi(t - IJe^Ct-i) + yl(t _ 2) + 03 sin(04yi(* - 2)) . (4.181)

Consequently, inclusion of such functions in the pool of candidate terms
would reduce the number of terms needed in the model and improve model
accuracy. If the argument of such functions includes a parameter to be
estimated (parameters #2 and #4 in Eq. 4.181), the model is not linear in
the parameters and the parameter estimation problem becomes more chal-
lenging. If the nature of the functional relationship is not known a priori,
the coupled problem of model structure determination and parameter esti-
mation may not converge unless the initial guess is somewhat close to the
correct values. Physical insight to the process or knowledge about model
structure based on earlier modeling efforts provide vital information for the
initial guess.

NPET models are feasible when changes in operating conditions neces-
sitate a remodeling effort starting from an existing model. Some mono-
mials and/or parameter values need to be changed, but the exponential
or trigonometric type relations that are known remain the same for such
cases. NPET models should be avoided when new models are being devel-
oped and information about the functional form of the nonlinearity is not
known. The large number of nonlinear function types and the existence
of unknown parameters in the function argument creates a search domain
that is too large for most practical applications.

Cascade Systems

Cascade structures [210, 367] are composed of serially connected static
nonlinear and dynamic linear transfer function blocks. This structure is ap-
propriate when the process has static nonlinearities. The structure is called
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Figure 4.20. General structure of Wiener-Hammerstein cascade model.

a Hammerstein model if the static nonlinear element precedes the dynamic
linear element, a Wiener model if the nonlinear element succeeds the linear
element. In general, the models have polynomial terms that describe a con-
tinuous nonlinear steady state characteristic and/or a continuous function
of a dynamic parameter.

Extensions of Linear Models for Describing Nonlinear Variations
Two other alternatives can be considered for developing linear models

with better predictive capabilities than a traditional ARMAX model for
nonlinear processes. If the nature of nonlinearity is known, a transformation
of the variable can be utilized to improve the linear model. A typical
example is the knowledge of the exponential relationship of temperature
in reaction rate expressions. Hence, the log of temperature with the rate
constant can be utilized instead of the actual temperature as a regressor.
The second method is to build a recursive linear model. By updating model
parameters frequently, mild nonlinearities can be accounted for. The rate
of change of the process and the severity of the nonlinearities are critical
factors for the success of this approach.

4.7.2 Nonlinear PLS Models
Linear PLS decomposes two variable blocks X and Y as X = TPT and
Y = UQT such that X is modeled effectively by TPT and T predicts U
well by a linear model (inner relation) U = TB where B is a diagonal ma-
trix. To model nonlinear relationships between X and Y, their projections
should be nonlinearly related to each other [664]. One possibility is to use
a polynomial function such as

= C0a (4.182)

where a represents the model dimension, coa, cia, and C2a are constants,
and ha is a vector of residuals. This quadratic function can be generalized
to other nonlinear functions of ta:

ua = / ( t a)+h a (4.183)

where /(•) may be a polynomial, exponential, or logarithmic function.
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Another framework for expressing a nonlinear relationship between X
and Y can be based on splines [660] or smoothing functions [160]. Splines
are piecewise polynomials joined at knots (denoted by Zj) with continuity
constraints on the function and all its derivatives except the highest. Splines
have good approximation power, high flexibility and smooth appearance as
a result of continuity constraints. For example, if cubic splines are used for
representing the inner relation:

j
u = b0 + bit + b2t

2 + bst* + ̂  bj+3(t - *,)+ (4.184)
j

where the J knot locations and the model coefficients b^ are the free pa-
rameters of the spline function. There are K + J + 1 coefficients where K
is the order of the polynomial. The term bj+z(t — Zj}\ denotes a function
with values 0 or bj+s(t — Zj)3 depending on the value of t:

The desirable number of knots and degrees of polynomial pieces can be
estimated using cross-validation. An initial value for J can be AT/7 or
\/(N} for N > 100 where N is the number of data points. Quadratic
splines can be used for data without inflection points, while cubic splines
provide a general approximation for most continuous data. To prevent
over-fitting data with higher-order polynomials, models of lower degree and
higher number of knots should be considered for lower prediction errors
and improved stability [660]. B splines that are discussed in Section 6.3.3
provide an attractive alternative to quadratic and cubic splines when the
number of knots is large [121].

Other nonlinear PLS models that rely on nonlinear inner relations have
been proposed [209, 581]. Nonlinear relations within X or Y can also be
modeled. Simple cures would include use of known functional relation-
ships for specific variables based on process knowledge such as exponential
relationships of temperature in reactions. More sophisticated approaches
are also available, including use of artificial neural networks to generate
empirical nonlinear relations.
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One of the nature's greatest mysteries is the reason why she is un-
derstandable. Yet, she is understandable, and the language she speaks
is mathematics. The history of science is full of breakthroughs when the
mathematics of a certain type of behavior is understood. The power of
that understanding lies in the fact that, stemming from it, one can build a
model for the phenomenon, which enables the prediction of the outcome of
experiments that are yet to be performed.

Now, it is a part of scientific folklore [195], how Lorenz [350] realized
the phenomenon that was later given the name deterministic chaos; how it
stayed unnoticed on the pages of the Journal of Atmospheric Sciences for
a period of time only to be rediscovered by other scientists; and how it un-
folded a new scientific approach. In fact, the existence of chaotic dynamics
has been known to mathematicians since the turn of the century. The birth
of the field is commonly attributed to the work of Poincare [473]. Subse-
quently, the pioneering studies of Birkhoff [55], Cartwright [89], Littlewood
[344], Smale [551], Kolmogorov [284] and others built the mathematical
foundations of nonlinear science. Still, it was not until the wide utilization

195
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of digital computers in late- 1970s for scientific studies, that the field made
its impact on sciences and engineering. It has been demonstrated that chaos
is relevant to problems in fields as diverse as chemistry, fluid mechanics, bi-
ology, ecology, electronics and astrophysics. Now that it has been shown
to manifest itself almost anywhere scientists look, the focus is shifted from
cataloging chaos, to actually learning to live with it. In this chapter, we are
going to introduce basic definitions in nonlinear system theory, and present
methods that use these ideas to analyze chaotic experimental time series
data, and develop models.

5.1 Deterministic Systems and Chaos

Assuming that we are living in a causal universe, the cause of the events
in the future are attributed to the events of the present and the past.
Considering an isolated deterministic system that is characterized by an
n-dimensional real phase space (denoted by x € 7£n), to describe this de-
pendence, we can write a set of n differential equations

or a set of n difference equations

x(i + l )=f (x ( i ) ) (5.2)

with f (•) representing an n-dimensional vector function of x. Under general
conditions, the existence and uniqueness properties of solutions hold, and
Eq (5.1) or (5.2) determines the trajectory (or orbit) of the dynamical
system, given the initial conditions. Eq (5.1) defines a continuous flow for
a continuous system, and Eq (5.2) defines a discrete map for a discrete
system. Note that both definitions are for autonomous systems, meaning
there is no explicit time dependence in the system equations. Even if there
were explicit terms in t or i in the system equations, we could augment the
system order by one, to have xn+\ — t with fn+i — 1 for the continuous
case, and xn+\ — i with fn+i = i + 1- Thus, without loss of generality, we
will confine our interest to autonomous systems.

Poincare Map

Although most physical systems manifest continuous dynamics, maps arise
naturally in many applications. Furthermore, even when the natural state-
ment of a problem is in continuous time, it is often possible and sometimes
desirable to transform the continuous dynamics to a map. Note, however
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X

Figure 5.1. The Poincare surface of section, S, defined by £3 =constant,
for a third order system.

that, this transformation is not necessarily a mere time discretization, but
can as well be performed by the Poincare surface of section technique, shown
in Figure 5.1 for a third order system. The trajectory of the system can be
visualized by a parametric plot of the states Xfc, in phase space (or state
space) (xi, 2:2, £3). Thus, the trace of this parametric plot is an instance of
the system dynamics, and the arrows show the direction of time.

If we choose a surface, 5, in this space, say, defined by x$ =constant,
and label the points that the system trajectory crosses 5, as a, 6, c,. . . , we
can collect a two dimensional information about those crossings, given by
the coordinates (x 1,0:2). If the point a corresponds to the ith crossing of
the surface of section at t — ti, we can define a two-dimensional vector,
y(i) = ( x i ( t i ) , X 2 ( t i ) ) . Given y(i), we can reconstruct an initial condition
for the system dynamics, and solve the model equations —analytically or
numerically— to find the next crossing point, b. In other words, point a
uniquely determines point b for a given system dynamics. Therefore, there
exists a two-dimensional map

y(* +1) = g(y(0) (5-3)
which can be iterated to find all subsequent crossings of 5. Using this
Poincare surface of section technique, we can, in general, discretize an nth
order continuous flow into an n — 1st order map, called the Poincare map.
Note that, the common time discretization via strobing is a special Poincare
map, where a periodic function of the system time, e.g., sin(wt), is con-
sidered as a state variable, and the surface of section is selected, such as
sin(wt) = 0.
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Phase Volume

The way the phase space volume changes in time is an important property
of systems with continuous or discrete dynamics. Select a subset of the
phase space with a positive finite (hyper-) volume, and evolve the points
in this subset in time. If the volume defined by the new subset is always
equal to the initial volume, the dynamics under investigation belongs to a
conservative system, such as a Hamiltonian system. If, on the other hand,
that volume is changing in time, we have a nonconservative system. If the
phase volume of the system always increases, the system will be structurally
unstable, and the trajectories will diverge to infinity. Thus we cannot ob-
serve such systems for long, and they are not of much interest. The class of
systems with shrinking phase volume in time are called dissipative systems.
They are structurally stable, and the methods introduced in this chapter
are directed at studying such systems.

The rate of change of the phase space volume for a continuous flow
defined by Eq (5.1) is given by the trace of the tangent flow matrix, (or the
Jacobian matrix evaluated along the flow),

. (5.4)

If this rate is positive (negative), then the phase space volume grows (shrinks)
in time.

Example 1 Phase volume change of a flow

Consider the "deterministic non-periodic flow" of Lorenz [350], given by,

dx
- = - f l r (xi-X 2 )

= — £1X3 + pxi — x<2 (5-5)

dt
dx-2
~dt
dx3

dt

with cr, p and ft are real positive constants. The tangent flow matrix of the
system can be found as

or —cr a 0
-X3 + p — 1 —xi (5-6)

X<2 X\ —ft

which has a trace r = —a — I — ft, that is less than zero. Thus, an initial
phase space volume, V(0) shrinks with time as V(t) — V(0)ert.
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A similar definition is made for the map of Eq. (5.2), using the magni-
tude of the determinant of the tangent flow matrix,

r = det ~ (5.7)

Eq. (5.7) defines the factor by which the n-dimensional phase space volume
changes. If this factor is greater (less) than one, the phase space volume
grows (shrinks) at the next iteration.

Example 2 Phase volume change of a map

Consider the two dimensional Henon map [231], given by

xi(i + l) = a - x\(i) + Px2(i) (5.8)

z2(« + l) = xi(i),

where a and (3 are constants. The tangent flow matrix for this system

(5'9)OK ~ 1 0

has a constant determinant r = |/3|. The hyper volume defined in this phase
space is in fact an area, since the phase space is two dimensional. If the
"absolute value" of the parameter (3 is less than one, then the area shrinks
by a factor of \(3\. D

Systems with phase space contraction, such as the ones presented in the
last two examples, are commonly characterized by the presence of attrac-
tors. The trajectories of the system originating from a specific region of the
phase space are attracted to a bounded subset of the phase space, called
the attractor, and that specific region that hosts all such initial conditions
is called the basin of attraction for that attractor.

Chaos — Sensitive Dependence on Initial Conditions

In a two dimensional phase space, possible scenarios are limited for a con-
tinuous flow. Distinct trajectories cannot intersect because of the existence
and uniqueness conditions. They either diverge to infinity, or converge to
a limit point1 or a limit cycle2 However, when the phase space dimension
increases to three, something fascinating happens. The trajectories can en-
joy the freedom of staying confined in the phase space, without converging
to a limit point or to a limit cycle. Let us illustrate this with an example.

1 Limit point: a final state, where the trajectory of a dynamics converge.
2Limit cycle: the periodic motion displayed by the trajectory of a dynamics.
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Example 3 Driven pendulum

Using Newton's second law, the dynamics of a damped, sinusoidally driven
pendulum are expressed as

(5.10)
a at

where 0 is the angular displacement from the vertical, £ is the damping
coefficient accounting for friction, and a and /3 are the forcing amplitude
and forcing frequency, respectively. Note that, this is a non-autonomous
second order system. Applying the definitions,

— = — £KJ — sin($) + acos(^)

we can transform the system into an autonomous third order system. First,
consider a pendulum with no forcing (a = 0) , which reduces the phase space
dimension to two. The system will have infinitely many steady states,
located at 9 = ±/CTT and w = 0, with k = 0, 1, 2, ____ The steady states for
even k (corresponding to the lower vertical position) are stable, and those
for odd k (corresponding to the upper vertical position) are unstable. If
we also set £ = 0 to eliminate friction, the pendulum will swing back-and-
forth, or rotate in an infinite loop, determined solely by its initial conditions,
as shown in Figure 5. 2. a. Note that, the pendulum with no friction is a
Hamiltonian system, hence it conserves the phase space volume due to
Liouville theorem. If, however, we consider a finite friction, the energy
of the trajectories will eventually be consumed, and the pendulum will
come to a halt at one of its steady states (Figure 5.2.b). To have a better
understanding of the mechanism of this, take a closer look at the trajectories
near the two types of steady states. Near the stable ones, (Figure 5. 3. a)
the trajectories spiral down to the steady state. Near the unstable steady
states, trajectories approach the (saddle) steady state from one direction,
and are repelled in another direction. There are some trajectories that
seem to violate the uniqueness of the solution; they approach the steady
state from opposite directions to meet at the steady state, and diverge
from it in opposite direction, starting from the steady state. If we consider
the time aspect of the problem, the uniqueness condition is not actually
violated, since it takes infinitely long to converge to the steady state, on the
trajectories that end in there. Similarly, for the trajectories that emanate
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from the steady state, it takes infinitely long to diverge from the steady
state. Another property of the trajectories that converge to this steady
state is the partitioning of the phase space in the sense that trajectories on
the right hand side of this trajectory cannot cross over to the left hand side
of it, and vice versa. Therefore, they define the boundaries of the basins of
attraction.

Next, introducing the forcing back into the system, we have a three di-
mensional phase space. For certain combinations of driving amplitude and
frequency, we observe a rich dynamic behavior, which neither converges to
a steady state, nor gets attracted by a limit cycle. Instead, the trajectories
explore a finite subset of the phase space, converging to a strange attractor.

When the system converges to a steady state (also called a limit point),
the limit set of the system in phase space is an object of zero dimension.
When it converges to a limit cycle, the limit set is still an object of integer
dimension (one). However, when the system exhibits a rich dynamic behav-
ior, such as the one shown in Figure 5.2.c, the limit set is a fractal object
with a non-integer dimension. We will discuss the concept of dimension in
the next section in more detail.

One way of identifying chaotic behavior is using the Poincare surface
of section technique. For example, let us consider the periodically driven
pendulum again, and use a surface of section on the angle of the forcing term
(j). If we operate the system with £ = 0.4, a = 1 and j3 = 2/3, it converges
to a periodic trajectory which gives a single point in the Poincare surface
of section of Figure 5.4.b. If we operate it with £ = 0.4, a = 1.4 and
J3 — 2/3, the dynamics would be richer, and we observe a fractal object
resembling the shape in the projection of the attractor on the (0, it;)-plane
(Figure 5.4.d). This kind of an attractor is called a strange attractor.

The manifestation of chaos in the dynamics of a system is often asso-
ciated with a sensitive dependence on its initial conditions. If we initialize
our driven pendulum with slightly different initial conditions around its
strange attractor, initially nearby trajectories diverge exponentially in time
as shown by solid and dotted curves in Figure 5.5.a.

If we observe a block of initial conditions, shown in Figure 5.5.b, for 4
units of simulation time, the volume element that we started with shrinks
in one direction, and is stretched in another. If we keep on observing the
system, since the trajectories stay confined in a certain region of the phase
space, the volume element cannot perform this shrinking and stretching
without eventually folding on itself (Figure 5.5.c). This stretch-and-fold
routine repeats itself as the dynamics further evolves. Hence, we will even-
tually find points that were arbitrarily close initially, separated in the phase
space by a finite distance. In fact, the stretch-and-fold is the very mecha-
nism that generates the fractal set of the strange attractor. D
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Figure 5.2. Phase space of pendulum, projected on (#, w) plane, (a) Trajec-
tories for no friction case with several initial conditions either oscillating or
rotating around the stable steady state, (b) Trajectories for several initial
conditions converge to the stable steady state, when there is friction, (c)
The chaotic trajectory of the driven pendulum with friction.
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(b)

Figure 5.3. Trajectories near steady states of the pendulum, 9 = ITT (a) for
i — even, and (b) for i = odd.

There are several different measures that quantify this fingerprint of
chaos. For example, the exponential divergence and convergence of nearby
trajectories in different axial directions is measured by the Lyapunov ex-
ponents of the system. An nth order system has n Lyapunov exponents
associated with the exponential rate of growth or shrinkage along its prin-
cipal axes, and the set of all n Lyapunov exponents of a system is called its
Lyapunov spectrum.

The notion of Lyapunov exponents can best be visualized by considering
the experiment of putting a droplet of ink in a glass of water. The sphere
described by the ink at the instant it is dropped, represents a family of
nearby trajectories. In the course of time, the droplet gets deformed slowly,
first into an ellipsoid, and then diffuses in the liquid. If we watch the
droplet in slow motion, we can see that it is stretched in some directions,
and squeezed in others. After some time, we see a folding occurring, as if
to keep the droplet in the glass. In this analogy, the stretch of the droplet
corresponds to a positive Lyapunov exponent, and the squeeze to a negative
one. Since the phase volume is conserved in this system, i.e., total amount
of ink in the glass is constant, the amount of squeezes is equal to the amount
of stretches. Therefore, the sum of the Lyapunov exponents is equal to zero.

To put the idea in mathematical context, consider the autonomous con-
tinuous flow of Eq. (5.1), and observe the long-term evolution of an in-
finitesimal n-sphere of initial conditions. As in the ink analogy, the sphere
will become an n-ellipsoid due to the locally deforming nature of the flow.
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(d)

Figure 5.4. Periodically driven pendulum (a) goes to a limit cycle for £ =
0.4, a = l and /3 = 2/3. (b) Strobing it with a frequency that is a multiple
of the oscillation frequency results in a single point in the Poincare section.
(c) If we operate the system with £ = 0.4, a = 1.4 and j3 — 2/3, it leads to
this chaotic orbit, and (d) strobing this motion results in a fractal object
in the Poincare section.
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(c)

Figure 5.5. (a) Trajectories of two realizations of the pe-
riodically driven pendulum for two nearby initial conditions
(00,u>o,0o) = (0.36564,-7.4964,100) (solid curve) and (00,wo,<M =
(0.36564, -7.4964,100.1) (dotted curve), (b) How a rectangular block of
initial points get deformed in a simulation interval of 4 units, stretching
in one direction and squeezing in the other, (c) Same initial rectangular
block after a simulation time of 10 units.
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Using the length of the ith ellipsoidal principal axis Pi(t), we can define the
ith Lyapunov exponent of the system from

t -t-oo t pl(0)

when the limit exists. Aj are conventionally ordered from largest to the
smallest. Note that, this definition is akin to the definition of eigenvalues
for linear systems, but unlike the eigenvalues, there is no unique direction
associated with a given Lyapunov exponent. This is understandable, since
the eigenvalue is a local definition, and, characterizes a steady state, while
the Lyapunov exponent is a time average associated with a principal axis,
that continuously changes orientation as it evolves.

As one classifies linear systems using their eigenvalues, Lyapunov spec-
tra can be used to classify the asymptotic behavior of nonlinear systems.
For example, for a system to be dissipative, the sum of its Lyapunov expo-
nents should be negative. Likewise, if we have a Hamiltonian system, the
sum of its Lyapunov exponents should be zero, due to the volume preserv-
ing property of such systems. A continuous dynamical system is chaotic, if
it has at least one positive Lyapunov exponent.

In the investigation of chaotic systems, we have mentioned that third-
order systems have a special importance. For third order dissipative sys-
tems, we can easily classify the possible spectra of attractors in four groups,
based on Lyapunov exponents.

1. ( — , — , — ) : a fixed point,

2. (0, — , — ): a limit cycle,

3. (0,0,-): a 2-torus,

4. ( + , 0 , — ) : a strange attractor.

Therefore, the last configuration is the only possible third-order chaotic
system. However, in a continuous fourth-order dissipative system, there are
three possible types of strange attractors with Lyapunov spectra (+, 0, — , — ),
(+, 0, 0, — ) and (+, +, 0, — ). Note that, all three configurations have at least
one vanishing Lyapunov exponent. In fact, it is required by the theorem of
Haken [215] that the system should have at least one zero Lyapunov expo-
nent, if the trajectory of its attractor does not have a fixed point. The last
case where there are two positive Lyapunov exponents is called the hyper
chaos.

The classical Lyapunov exponent computation method of Wolf et al.
[669] is based on observing the long time evolution of the axes of an in-
finitesimal sphere of states. It is implemented by defining the principal
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(b)

Figure 5.6. Time evolution of the fiducial trajectory and the principal axis
(axes), (a) The largest Lyapunov exponent is computed from the growth
of length elements, (b) The sum of the largest two Lyapunov exponents is
computed from the growth of area elements.
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axes, with initial conditions that are separated as small as the computer
arithmetic allows, and by evolving these using the nonlinear model equa-
tions. The trajectory followed by the center of the sphere is called the fidu-
cial trajectory. The principal axes are denned throughout the flow via the
linearized equations of an initially orthonormal vector frame "anchored" to
the fiducial trajectory. To implement the procedure, the fiducial trajectory
on the attractor is integrated simultaneously with the vector tips defin-
ing n arbitrarily oriented orthonormal vectors. Eventually, each vector in
the set tends to fall along the local direction of most rapid growth (or a
least rapid shrink for a non-chaotic system). On the other hand, the col-
lapse toward a common direction causes the tangent space orientation of all
axis vectors to become indistinguishable. Therefore, after a certain inter-
val, the principal axis vectors are corrected into an orthonormal set, using
the Gram-Schmidt reorthonormalization. Projection of the evolved vectors
onto the new orthonormal frame correctly updates the rates of growth of
each of the principal axes, providing estimates of the Lyapunov exponents.
Following this procedure, the rate of change of a length element, li, around
the fiducial trajectory, as shown in Figure 5. 6. a, would indicate the domi-
nant Lyapunov exponent, with

(5.13)
tk+i - tk I

Similarly, the rate of change of an area element, as shown in Figure 5.6.b
would indicate the sum of the largest two Lyapunov exponents, with

(5.14)
tk+l - tk ak

The idea can be generalized to higher dimensions, considering volume ele-
ments for the largest three Lyapunov exponents, hypervolume elements for
the largest four Lyapunov exponents, and so on.

The reorthonormalization procedure can further be implemented in ev-
ery infinitesimal time step. This continuum limit of the procedure can be
expressed by the set of differential equations

dx. „ . .
* - f(x)

d&i df ^-^ j. df Y~^ T / 9f
dt <9x ^ J' J' 5x Z-? J •

dt ~~ t^~ * GI 9xG^
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where e» € Kn with i = 1, . . . , n stand for the orthonormal basis vectors of
the tangent flow around a fiducial trajectory [645]. The initial conditions of
the state variables are set by the original system. Although the augmenting
variables can be initialized arbitrarily, it would be a good practice to select
an orthonormal set for ej, such as {e^} = In, and a neutral guess for A i 5

such as \i = 0. In the limit t — > oo, the set {Aj} will give the Lyapunov
spectrum of the system.

The concept of Lyapunov exponents is illustrated for continuous flows
in this presentation, but it can be carried to discrete maps as well. For
instance, if the map (or a time series data for that matter) represents
samplings of a continuous flow, the amount of growth or contraction as-
sociated with the ith Lyapunov exponent will be <Ji — eAiA*, and is called
the Lyapunov number. Therefore, when ith Lyapunov exponent is positive
(negative) the ith Lyapunov number will be greater (less )than unity.

Routes to Chaos

Unlike the continuous flows, discrete maps need not have a minimum phase
space dimension to exhibit chaotic behavior. Since the values are attained
at discrete instances, orbit crossings in data representations are mostly
superfluous, hence do not pose the existence- uniqueness problems of con-
tinuous flows. Even a first order discrete map can produce chaotic behavior,
as shown in the following example.

Example 4 Logistic map

The logistic map is a one dimensional nonlinear system, given by the dif-
ference equation

(l - x(i}} (5.16)

which was originally proposed to model population dynamics in a limited
resource environment [375]. The population size, x(i), at instant i is a
normalized quantity. It can be easily shown that a choice of /j, in the range
[0,4] guarantees that, if we start with a physically meaningful population
size, i.e., x(0) e [0, 1], the population size stays in [0, 1].

If we simulate the system with an initial condition x(0) = 0.1, we will
obtain the results shown in Figure 5.7 for various n values. The system
goes to a steady state for fj. = I and fj, — 2, but as // is further increased to
2.9, the behavior of the convergence to a steady state is qualitatively dif-
ferent than the previous cases. It reaches the steady state in an oscillatory
manner. For // = 3.3, the oscillations are not damped anymore, and we
have periodic behavior, every other value of X{ being equal for large i. The
system is said to have a two-period oscillation in this regime. For fj, = 3.5,
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the asymptotic behavior of the system is similar to the previous case. This
time, we have a four-period oscillation though. The demonstrated increase
in the period is actually common to many nonlinear systems, and is called
period doubling. The period-doubling mechanism is a route to chaos, that
has been studied extensively, since it is encountered in many dynamical
systems. One interesting finding is that, period doubling may be charac-
terized by a universal number independent of the underlying dynamics. In
our example, if we label the kih period doubling value of // with ̂ , then

r ,. Hk ~ Mfc-1 f r - , -N6 = hm (5-17)
fc-+oo /J,fc+i — //fc

where 5 ~ 4.669 is the Feigenbaum number [150]. Naturally, the period
doubling values of the parameter, /j,£, depend on the system dynamics.
However, the number 5 is universal (i.e., the same) for all one-dimensional
maps. A detailed study of the link between the Feigenbaum number and
the period doublings is beyond the scope of this text. (Interested reader
can check the rigorous works of Lanford [313] and Collet and Eckmann
[109, 110]) However, its implication for our case is important, which suggests
that as /j, = 3.569 is approached, an infinite number of period doublings will
occur.

Although different types of dynamics can be visualized by plotting the
time evolution of the system for a specific parameter set (Figure 5.7), or
by plotting orbits or Poincare surface of sections in the phase space, they
are far from representing the global behavior of the system for a range
of parameter values. The bifurcation diagram provides a summary of the
dynamics by plotting the essential dynamics for a range of parameter values.
For example, if we plot the steady states of the system versus the system
parameter, /^, we obtain the bifurcation diagram of Figure 5.8.a. The solid
curve corresponds to the stable steady states, and the dashed curve to the
unstable ones. The steady state loses its stability at // = 3, which is where
the period doubling occurs.

Alternatively, we can plot the limiting values of x(i) for the logistic
map versus the system parameter, /z, to obtain the bifurcation diagram
of Figure 5.8.b. This bifurcation diagram summarizes the period doubling
cascade that leads to chaos. It shows that, there is a period doubling at
/j, = 3, and another around ^ = 3.45, and indeed the system goes chaotic
around \i — 3.569, as suggested by the Feigenbaum number. Looking at
this bifurcation diagram, we not only have a complete picture of how the
period doubling cascade results in chaotic behavior, but we may also dis-
close some types of behavior that we did not know have existed, such as
the window around p, = 3.83, where the system exhibits periodic behavior.
The logistic map is attracted by a three-period orbit when operated with
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Figure 5.7. Simulation results of the logistic map for (a) ^ = 1, (b) \JL = 2,
(c) /z = 2.9, (d) n = 3.3, (e) fj, = 3.5, and (f) fj, = 3.9.
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/^ = 3.83 (Figure 5.9), which is an evidence that this map has a region in the
parameter space (// for this example) that it experiences chaotic behavior.

After this periodic window, we again observe a chaotic regime, but this
time the chaos is reached via the intermittency route. There are three
documented intermittency routes [540]

1. a real eigenvalue crosses the unit circle at +1;

2. a complex conjugate pair of eigenvalues cross the unit circle;

3. a real eigenvalue crosses the unit circle at -1.

The logistic map exhibits a type 1 intermittency after the three-period
window. D

Apart from the period doubling and intermittency routes, there is a
third route to chaos, called the quasiperiodicity route, originally suggested
to understand turbulence [419]. In this mechanism, the stable steady state
of a dynamical system becomes unstable at a certain value of the bifur-
cation parameter, in a special manner. In a continuous system, with the
changing bifurcation parameter, a complex conjugate pair of eigenvalues
cross the imaginary axis, making the steady state unstable and creating
a stable limit cycle around it. This transition of the complex conjugate
eigenvalues through the imaginary axis with changing bifurcation param-
eter is called the Hopf bifurcation. After a Hopf bifurcation that makes
the steady state unstable, the dynamics can have another Hopf bifurcation,
this time making the stable limit cycle unstable. Right after this second
bifurcation, the trajectory is confined on a torus, and the states of the sys-
tem show a quasiperiodic behavior. Some further change in the bifurcation
parameter may result in a third Hopf bifurcation, taking the trajectory on
a three torus, which decays to a strange attractor after certain infinitesimal
perturbations.

Example 5 Autocatalytic reactions

Consider the cubic autocatalysis

R + 2P^3P (5.18)

with decay

P ̂  D (5.19)

as a paradigm for population dynamics of sexually reproducing species [64,
65], with kp and dp representing the birth and death rates of the species
P, respectively. If we let these reactions occur in two coupled identical
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Figure 5.8. Bifurcation diagrams of the logistic map, (a) showing the stable
(solid curve) and the unstable (dashed curve) steady states of the system
versus the system parameter, n, and (b) showing the limiting values of x(i)
versus the system parameter, ^.
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Figure 5.9. Logistic map with p, = 3.83 results in a three-period orbit.

continuous stirred tank reactors fed with a volumetric flow rate /, and a
coupling strength g, as shown in Figure 5.10, we can write the material
balance equations as

drl

~dt
dpi

-kpTrp2 + f ( r 0 - Ti) + g(rj - rl

O / /»
7*' T) • ( r j fj ] rf) • \ rj (T)' — T) ' )

(5.20)

where rt is the resource concentration in the ith tank, TO is the resource
concentration in the feed, pz is the concentration of species P in the ith
tank, and i = 1,2, j = 1, 2 with i ^ j.

Investigating a species P with kp = 25 and dp = 0.1 in a setup with
concentration, TQ — 1 and coupling strength g = 0.002, we can use the feed
flow rate / as a bifurcation parameter to plot the bifurcation diagram of
Figure 5.11. For / = 0.006728, we get the chaotic trajectory of Figure 5.12.
D

Figure 5.10. Two coupled identical CSTRs with cubic autocatalytic species
P.
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Figure 5.11. Bifurcation diagram of the autocatalytic species P, show-
ing the stable steady states (thick curve), the unstable steady states (thin
curve), and the stable limit cycle (dotted curve), using the feed flow rate,
/ as the bifurcation parameter.

5.2 Nonlinear Time Series Analysis

The tasks in the analysis of time series observed from nonlinear systems
are not very different from those involved in the analysis of linear systems.
However, the methods for the analysis are substantially different. We can
classify the tasks as, (1) state-space reconstruction, (2) signal filtering, (3)
system classification, and (4) model development.

5.2.1 State-Space Reconstruction

If the source of the signal were an autonomous linear system, looking at
the frequency spectrum of the signal would be utmost informative, thus
the Fourier domain would be an appropriate space to examine the signal.
If the linear system had an explicit time component hosting some burst of
high frequency events localized in time domain, then a linear transform,
such as wavelet transform, would be useful. Much of the contemporary
signal processing toolkits (e.g. Matlab [373]) are based on the ability to
perform a linear transformation that converts a low-order ordinary differ-
ential equation to another domain, and perform matrix manipulations on
the transformed algebraic representation of the measurements.

In the case of a nonlinear source, we are not likely to find any sim-
plification from using a linear transformation, such as Fourier, since the
processes that give rise to chaotic behavior are fundamentally multivariate.
Consequently, we need to reconstruct the (multidimensional) state-space of
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Figure 5.12. Two projections of the chaotic orbit of the autocatalysis sys-
tem.
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the system, as accurately as possible, using the information in the (usu-
ally scalar) time series. This reconstruction will result in vectors in an
m-dimensional space that unfolds the structure the orbits follow in the
multidimensional phase space. Therefore, the focus now is, how to choose
the components of the m-dimensional vectors, and of course, how to deter-
mine the value of m itself.

The answer to this lies in a combination of concepts in dynamics about
nonlinear systems as generators of information, and in geometry ideas about
how one unfolds an attractor using coordinates established on the basis of
their information content. The result of this operation will be a set of m-
dimensional vectors, that replace the original scalar data we have filtered.

Although multidimensional measurements are becoming more common
because of the wide availability of computer driven data acquisition sys-
tems, such measurements do not often cover all degrees of freedom of the
underlying dynamics. Furthermore, scalar measurements still constitute
the majority of the recorded time series data.

The most commonly used phase space reconstruction technique utilizes
the so called delay coordinates. If we represent the measured scalar time
series by {yi}, then we can reconstruct a phase space using

X = [yi-(m-l)T,2/ t - (m-2)T,--- ,2/ i ]T (5-21)

where m is called the embedding dimension, and r the time delay. The
embedding theorems of Takens [582] and Sauer et al. [535] show that,
under some conditions, if the sequence {y^} is representative of a scalar
measurement of a state, and m is selected large enough, the time delay
coordinates provide a one-to-one image of the orbit with the underlying
dynamics.

Example 6 Time delay representation of the blood oxygen concentration
signal

Consider the blood oxygen concentration (measured by ear oximetry) data
set recorded from a patient in the sleep laboratory of the Beth Israel Hospi-
tal in Boston, Massachusetts [196] (Figure 5.13.a). The data were a part of
the Santa Fe Institute Time Series Prediction and Analysis Competition in
1991, and belonged to a patient with sleep apnea. The data were collected
with the patient taking a few quick breaths and then stopping breathing
for up to 45 seconds. If we could develop a viable low-dimensional model
for the system, we could predict stoppage of breathing from the preceding
data, which would be a medically significant application.

Consider a time delay representation of the blood oxygen concentration
in two dimensions. If we select a time delay of 2 seconds, the autocorrelation
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of the data would overshadow the representation (Figure 5.13.b). Selecting
a larger time delay of 25 seconds would present a more spread signal in the
reconstructed phase space (Figure 5.13.c).

It is apparent that, if the frequency of measurements is higher than the
dynamical fluctuations of the system, choosing a too small time delay would
result in a highly correlated state variables. On the other hand, since our
data set is of finite length, we cannot have a too large time delay. Thus,
there should be an optimum way of selecting this parameter. Furthermore,
if we select a low dimensional reconstruction space, the orbits would inter-
sect, and we would not be able to untangle the dynamics. Many authors
point out that it would be safe, in terms of representing the dynamics in
a multidimensional phase space, if we select a large enough dimension, m.
However, since our goal is to model the dynamics (as opposed to its rep-
resentation), we should seek the smallest possible m, that would untangle
the dynamics. Then again, there should be an optimum way of selecting
ra.

First, consider the choice of time delay T. If we were to make multivari-
ate measurements on the patient of the previous example, we would prefer
measuring his heart rate, rather than his blood oxygen concentration mea-
sured from his arm. In other words, we would not like to measure closely
related (or correlated, in mathematical terms) quantities. Based on this
idea, some authors (c.f. [340]) propose the least time delay that minimizes
the correlation between y(t — r] and y ( t ) . Others [165] argue that, since the
underlying dynamics is nonlinear, and the correlation coefficient is a linear
concept, we should be selecting the time delay by monitoring the mutual
information content of the series y(t — T) and y(t), which quantifies the
amount of information gathered (in bits) about signal y(t) by measuring
y(t — r). The mutual information content between these signals is defined
as,

(5.22)
where Pab is estimated from the normalized histogram of the joint distri-
bution, and Pa and P^ are the marginal distributions for y(t — r) and y(i),
respectively. Similar to the correlation coefficient guided selection of the
time delay, we should select the T where IT attains its first local minimum.
Note that, for our example data, the choice of T with both methods is
around 25 seconds (Figure 5.14). The drift towards zero in both quantities
is due to the finite data size of 17,000, with a sampling rate of 2 measure-
ments per second. Although both methods of choosing a time delay give
useful guidelines, one should always make a reality check with the data.
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(b)

(c)

Figure 5.13. (a) Time series data of the blood oxygen concentration of a
sleep apnea patient, (b) Selection of a too small time delay (T = 2) hides
the information in the data, (c) Selecting a more appropriate time delay
(r = 25) reveals more detail in the data.
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Figure 5.14. The correlation coefficient (solid line), and the mutual infor-
mation content (dashed line) versus the time delay.

When analyzing chaotic signals, it is always easy to use a certain algorithm
that gives out a certain result. Yet, the results should always be scrutinized
before being adapted, as chaotic systems usually defy haute couture solu-
tions. For a review of different methods to select the time delay, see [233]
and the references therein. D

According to the embedding theorems of Takens [582] and Sauer et al.
[535], if the attractor has a dimension d, then an embedding dimension of
m > 2d is sufficient to ensure that the reconstruction is a one-to-one embed-
ding. The geometric notion of dimension can be visualized by considering
the hyper-volume occupied by a hyper-cube of side r in dimension d. This
volume will be proportional to rd, and we may get a sense of dimension
by measuring how the density of points in the phase space scale when we
examine small r's. One of the methods to compute a dimension of the
attractor is called the box counting method [90]. To evaluate d, we count
the number of boxes necessary to cover all the points in the data set. If we
evaluate this number, N ( r ) for two small values of r, then we can estimate
d as

d= "s^v/ i ; / ; V ' 2 ; _ (5.23)
Iogri/r2

Here, "small" r refers to a value that is much less than the radius of the
data set, yet much greater than the distance between the second nearest
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neighbors in the data set. The choice of the second nearest neighbors is to
eliminate the impossibility of comparing with a zero distance, should we
have a repeating pattern in the data set. Although it is computationally
straightforward to come up with a numerical value for d using this algo-
rithm, producing an accurate value is often of doubt. A rule of thumb is to
use at least 10d/2 data points to compute d [526].

Note that the box counting dimension computed from Eq (5.23) need
not be integer. In fact, it is certainly non-integer for a strange attractor,
hence the name strange. On the other hand, the phase space dimension m
is an integer, and to host the attractor, it should be grater than or equal
to the box counting dimension of the attractor, d. Although we stick with
the box counting dimension in our arguments, there are other definitions
of (fractal) dimensions, such as correlation and Lyapunov dimensions, but
selecting one or the other would not change the line of thought, as different
measurements of dimension of the same strange attractor should not differ
in a way to contain an integer value in the range. Thus, no matter which
definition we use for the fractal dimension, we have the same necessary
condition ra > d, and the same sufficient condition m > 2d.

Using these guidelines, one may be tempted to use an embedding di-
mension equal to the next integer value after Id. In an ideal case, where
there is no noise in the infinitely many data points, such a selection would
be sound and safe. However, in a more realistic setup, if m is chosen too
large, the noise in the data will decrease the density of points defining the
attractor. In this analysis we are interested in finite dimensional determin-
istic systems, whereas noise is an infinite dimensional process that fills each
available dimension in a reconstructed phase space. Increasing m beyond
what is minimally required has the effect of unnecessarily increasing the
level of contamination of data with noise [669]. A method to determine the
minimal sufficient embedding dimension is called the false nearest neighbor
method [276].

Suppose that the minimal embedding dimension for our dynamics is mo,
for which a time delay state-space reconstruction would give us a one-to-
one image of the attractor in the original phase space. Having the topolog-
ical properties preserved, the neighbors of a given point are mapped onto
neighbors in the reconstructed space. If we try to embed the attractor
in an m-dimensional space with m < mo, the topological structure would
no longer be preserved. Points would be projected into neighborhoods of
other points to which they would not belong in higher dimensions. Such
data points are called false neighbors. To find the minimal embedding di-
mension, we should require the fraction of the false neighbors to be less
than a heuristic value.
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Figure 5.15. The fraction of false nearest neighbors as a function of the
embedding dimension.

Example 7 Embedding the blood oxygen concentration signal

If we investigate the time series of the blood oxygen concentration signal
of the previous example for false nearest neighbors, we can see that an
embedding dimension of m = 4 would be enough to reconstruct the state-
space (Figure 5.15). D

5.2.2 Nonlinear Noise Filtering
Every modeling effort starts with measuring some quantity, with the ulti-
mate goal of understanding the process that generated it. Although making
some measurements can be fairly easy, finding the signal out of the mea-
surement is a task on its own. That is, we have to identify the signal which
is possibly contaminated by fluctuations in the system, or by disturbances
in the environment, or by the measurement procedure itself. Thus, before
using the measurement for model development, it is often desirable to filter
the measurement, and obtain as clear a signal as possible. In linear system
theory, the process that generated the signal is assumed to send a frequency
spectrum that has a finite range with sharp peaks, and the contamination is
assumed to have a broadband spectrum. Then, the separation of the signal
of interest from the noise becomes an exercise of distinguishing narrowband
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signals from broadband signals. Methods for this [172] are over fifty years
old and are well developed.

In more general terms, in filtering the noise from the signal, we are
separating the information-bearing signal and the interference from the en-
vironment. In the case of a narrowband signal, such as signals from a linear
system, in a broadband environment, the distinction is quite straightfor-
ward. The frequency domain is the appropriate space to perform the sepa-
ration, and looking at the Fourier spectrum is sufficient to differentiate the
signal from noise.

Similar to the linear case, if the nonlinear process signal and the con-
tamination are located in significantly distinct frequency bands, the Fourier
techniques are still indicative. In sampling dynamic systems, if for exam-
ple the Fourier spectrum of the system is bounded from above at a cut-off
frequency, /c, Shannon's sampling theorem states that, by choosing a sam-
pling frequency, fs > 2/c, the signal can be perfectly reconstructed [172].
However, in the case of signals that come from sources that are dynamically
rich, such as chaotic systems, both the signal and the contamination are
typically broadband, and Fourier analysis is not of much assistance in mak-
ing the separation. It is shown analytically that, the frequency spectrum
of a system that follows intermittency route to chaos has a I// tail [540].
When the orbits converge to a strange attractor, which is a fractal limit set,
it again has a I// tail in the frequency domain. Thus, for dynamically rich
systems, no matter how high one considers the cut-off, the filtered portion
of the signal will still have more information. This can be easily seen from
the signal to noise ratio of a signal 5, whose power content up to a frequency
fb is P, and for frequencies greater than /&, it goes proportional to I//.
This ratio

P + a f/c df/f
SNR= £» J (5.24)

alfc
 d//f

with a a real positive proportionality constant, vanishes for all fc < oo.
Furthermore, we cannot practically consider a very large fc, since most
of the measurements are done by the aid of digital computers with finite
clock frequencies. Nevertheless, we will be gathering measurements from
such sources with finite sampling frequencies, and still wish to filter the
data for the underlying signal. Another problem caused by finite sampling
is the so called aliasing effect. That is, in the Fourier domain, the power
contributions coming from the replicas of the original signal centered at the
multiples of the sampling frequency are not negligible either.

If we can make the assumption that the signal we seek to separate is
coming from a low-order system with specific geometric structure in its
state space, we can make use of a deterministic system model or a Markov
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chain model, and seek for model parameters or transition probabilities via
a time domain matching filter. The geometric structure of a system in
its state space is characteristic for each chaotic process, which enables us
to distinguish its signal from others. These separating techniques have a
significant assumption about the nature of the process generating the signal,
that is, the 'noise' we wish to separate from the 'signal' should be coming
from a high-order chaotic source. Depending on the a priori information
we have about the underlying system dynamics, various filtering problems
can be stated.

• If we know the exact dynamics that generated the signal,

xi+i = f (Xi) (5.25)

with xz e T2J1 (i.e., an n-dimensional real vector) and f (•) : ~R,n —> 7ln

(i.e., an n-dimensional vector function that takes an n-dimensional
argument), we can use this knowledge to extract the signal satisfying
the dynamics. This method is referred as the regression technique.

• If we have a filtered signal from the system of interest extracted at
some prior time, we can use this pivot signal to establish a statistics
of the evolution on the attractor, and use it to separate the signal in
the new set of measurements. This is gray box identification.

• If we know nothing about the underlying process and have just one
instance of measurements, then we must start by making simplifying
assumptions. Such assumptions may be that the dynamics is deter-
ministic, and that it has a low-dimensional state space. This is black
box identification.

Although as the problem bleaches out, the task of separating the signal
from noise gets easier, the real life cases unfortunately favor darker shade
situations. Various linear filtering and modeling techniques were discussed
in Chapter 4.

To filter out noise in the time series signal, we will make use of the serial
dependencies among the measurements, that cause the delay vectors to fill
the available ra-dimensional space in an inhomogeneous fashion. There is
a rich literature on nonlinear noise reduction techniques [117, 295]. In this
section we will briefly discuss one approach that exploits the geometric
structure of the attractor by using local approximations.

The method is a simple local approximation that replaces the central
coordinate of each embedding vector by the local average of this coordinate.
The practical issues in implementing this technique are as follows [228]. If
the data represents a chaotic dynamics, initial errors in the first and the
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last coordinates will be magnified through time. Thus, they should not be
replaced by local averages. Secondly, except for oversampled data sets, it
is desirable to choose a small time delay. Next, the embedding dimension,
m, should be chosen higher than 2d + 1, with d being the fractal dimension
of the attractor. Finally, the neighborhood should be defined by selecting
a neighborhood radius r such that, r should be large enough to cover the
extent of the contaminating noise, yet smaller than the typical radius of
curvature of the attractor. These conditions may not always be satisfied
simultaneously. As we have been stressing repeatedly for other aspects of
nonlinear data analysis, the process of filtering should be carried out in
several attempts, by trying different tuning parameters, associated with a
careful evaluation of the results, until they look reasonably satisfactory.

The filtering algorithm is as follows:

1. Pick a small time delay, r, a large enough odd embedding dimension,
m, and an optimum neighborhood radius, r.

2. For each embedding vector x (as defined in Eq (5.21)) calculate a
filtered middle coordinate 2/i-(m+i)T/2 by averaging over the neigh-
borhood defined by r, as

Ej yj-(m+i)r/2U (r - ||xj - Xj-H)
- ( '- m T y- r / f r - l l x - - x - l hl^j u (r — ||xt — x_j||j

where £/(•) is the unit step function, and || • || is the vector norm. Note
that the first and the last (m — l)/2 data points will not be filtered
by this averaging.

3. Select the average magnitude of correction as the new neighborhood
radius and the filtered data as the raw data, and go to Step 2 if
deemed necessary after inspecting the filtered data. If the result looks
satisfactory, or if the modified neighborhood radius drops below the
distance between nonidentical nearest neighbors, iterations stop.

Example 8 Filtering the blood oxygen concentration signal

Again consider the time series data of Example 6 (Figure 5. 16. a). Applying
the local averaging noise filtering method to the signal with an embedding
dimension of m — 5, a time delay of r — 9 sec., and a neighborhood radius
of r = 400, we obtain the filtered signal shown in Figure 5.16.b. Note how
the orbits became crisp, and how the conic shape of the attractor became
visible in the filtered signal. D
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Figure 5.16. The reconstructed state space of the blood oxygen concentra-
tion signal with r = 9 sec. projected in two dimensions (a) before filtering,
and (b) after filtering.
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5.2.3 System Classification

With a filtered signal and the proper state space, we can investigate certain
properties of the process that generated the signal. One critical question
we need to address is that of classifying or identifying the source of the
observations. A prerequisite for devising a suitable approximation scheme is
to make predictions on the system behavior, and to solve the mathematical
model if available.

In the case of linear systems, we again have the powerful tool of Fourier
analysis. The locations of the sharp peaks in the frequency spectrum are
characteristic of the process under investigation. If we drive the linear
system with more power, the peaks will get higher, and if we observe the
system starting from a different origin in time, there will be a phase shift
associated with the measurements, yet in all cases, the locations of the peaks
are the same. Quantities such as the locations of peaks in frequency domain
are invariants of a linear system dynamics, and can be used to classify the
system. A powerful example of classifying systems using frequency contents
is voice recognition, where the frequency spectrum of a speech signal reveals
the identity of the speaker with almost no doubt.

We have argued that frequency domain techniques are not very useful
for nonlinear systems, especially when they are operated in dynamically
rich regimes. Still, there are other invariants that are specific in classify-
ing and identifying the signal source. These invariants are quantities that
remain unchanged under various operations on the dynamics or the or-
bit. Most importantly, they remain unchanged under small perturbations
in initial conditions, other than on countable specific points. Some of the
invariants remain unchanged throughout the operation of the system. This
guarantees that they are insensitive to initial conditions, which is appar-
ently not true for the individual orbits. Some of them are guage invariants
and stay unchanged under smooth coordinate transformations, and oth-
ers are topological invariants, which are purely geometric properties of the
vector field describing the dynamics. Among these invariants are the local
and global Lyapunov exponents, and various fractal dimensions. Chaotic
systems are notorious for the unpredictability of their orbits, and the lim-
ited predictability of chaotic systems is quantified by the local and global
Lyapunov exponents of the system. Fractal dimensions associated with the
source, on the other hand, reveal the topology of its attractor.

One of the hallmarks of chaotic behavior is the sensitivity of any orbit
to small changes in initial condition, which is quantified by a positive Lya-
punov exponent. Because of this sensitivity, it is inappropriate to compare
two orbits generated by a nonlinear process directly. Generically, they will
be totally uncorrelated. However, the invariants of the system will enable us
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to identify the source of an observation, since they are unchanged properties
of the attractor of the system that has a peculiar geometry. These invari-
ants are as useful in identifying nonlinear systems, as the Fourier spectrum
is for linear systems. Therefore, system identification in nonlinear systems
means establishing a set of invariants for each system of interest, and then
comparing the invariants of the observation to the database of invariants.

5.3 Model Development

Now that we have identified the source of the signal, we can proceed with
building a local or global model for that source, working within the coordi-
nate system established. In linear systems, the task is relatively simple. As
discussed in Section 4.7, observations y must somehow be linearly related
to observations and the forcing u applied at earlier times. If time series
models (Section 4.7) are used, this leads to an ARM A model of the form

K L
y ( i ) = ̂  aky(i - k} + ]T bm(i - /) (5.27)

fe=i 1=1

where the coefficients a^ and bi are to be determined from the observations,
typically using a least-squares or an information-theoretic criterion. If we
take the 2-transform of the Eq (5.27), we obtain the transfer function

that defines the process dynamics.
Availability of a reliable model gives us the unprecedent power of pre-

dicting the outcome of hypothetical operations of the system, thus in many
cases enable us to device methods of controlling it. In the case of discrete
linear systems described, the choice of coefficients should be consistent with
any prior knowledge of spectral peaks the system has. The denominator of
the transfer function (after possible pole-zero cancellations) holds all that
information, in terms of poles in the z-plane. Much of the linear signal
processing literature is devoted to efficient and effective ways of choosing
the coefficients in this kind of linear modeling cases of varying complexity.
From the dynamical systems point of view, this kind of modeling consists
of autocorrelating the signal, and time averaging the forcing function.

When chaotic dynamics is concerned, such models will not be of much
use, since they cannot evolve on a strange attractor, that is, they cannot
have any positive Lyapunov exponents, or equivalently, they will always
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have zero Kolmogorov-Sinai entropy. Nonlinear modeling of chaotic pro-
cesses is based on the idea of a compact geometric attractor on which our
observations evolve. The attractor of a chaotic system is a fractal ob-
ject called a strange attractor. Due to its fractal nature, the orbit of a
particular trajectory is folded back on itself by the nonlinear dynamics.
Thus, in the neighborhood of any orbit x(i), other orbit points x.^(i) with
r = 1,. . . , NB, arrive in the neighborhood at quite different times than i.
One can then build various forms of interpolation functions, which account
for whole neighborhoods of state space, and how they evolve from near x(i)
to the whole set of points near x(z + 1). The use of state space information
in the modeling of the temporal evolution of the process is the key inno-
vation in modeling chaotic systems. The general procedure would work for
non-chaotic systems as well, but is likely to be less successful, because the
neighborhoods are underpopulated to make reliable statistical inferences.

The implementation of this idea is to build parameterized nonlinear
functions that take x(i) into x(i -f 1) as

x(i + l) = f(x(i);a) (5.29)

and then use various criteria to determine the parameters a. Thus building
an understanding of local neighborhoods, one can build up a global non-
linear model by piecing the local models to capture much of the attractor
structure.

The main departure from linear modeling techniques is to use the state
space and the attractor structure dictated by the data itself, rather than
to resort to some predefined algorithmic approach. It is likely that there
is no algorithmic solution [511] to how to choose a model structure for
chaotic systems, as the data from the dynamics dictate properties that are
characteristic for the underlying structure.

If we are going to build a continuous model, we need the time derivatives
of the measured quantities, which are generally not available. However, one
should avoid numerical differentiation whenever possible, as it amplifies
measurement noise. One remedy is to smooth the data before taking the
time derivatives. The smoothing techniques usually involve least-squares
fit of the data using some known functional form, e.g., a polynomial. In-
stead of approximating the time series data by a single (thus of high order)
polynomial over the entire range of the data, it is often desirable to replace
each data point by the value taken on by a (low order) least-squares poly-
nomial relevant to a subrange of 2M + 1 points, centered, where possible,
at the point for which the entry is to be modified. Thus, each smoothed
value replaces a tabulated value. For example, if we consider a first order
least squares fit with three points, the smoothed values, yi; in terms of the
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original values, yx, would be computed as follows:

y,_! = (5yl_i + 2^-y l+i)/6 (5.30)

& = (2/i-i +Vi + yz+i)/3 (5.31)
yi+i = (-yi-i+2yi + 5yi+i)/6 (5.32)

If the system is sampled with a fixed frequency, I/At, an interpola-
tion formula, such as Newton's, may be used, and the resulting formula
is differentiated analytically. If the sampling is not done homogeneously,
then Lagrange's formulae must be used. The following differentiation for-
mulae are obtained for uniformly sampled data points by differentiating a
three-point Lagrange interpolation formula

(5.33)

(5.34)

(5.35)

Next, we can consider the reconstructed state space, and seek which set
of coordinates give enough information about the time derivative of each
coordinate. This is illustrated with an example.

Example 9 Functional dependencies in the reconstructed state-space

In the four dimensional reconstructed state space of the blood oxygen con-
centration signal (Table 5.1), we would like to investigate the mutual infor-
mation contents of Table 5.2.

From an information theoretic point of view, the more state components
we compare with a given time derivative, the more information we would
gather. For example, the mutual information between x\ and x\,x<2 would
be greater than or equal to the mutual information between x\ and x\.
Therefore, for each ±k, the last line of the Table 5.2 would be the largest
entry. Of course, this would depend on the choice of time delay r we use
to reconstruct the state-space. If we plot this dependence (Figure 5.17),
the mutual information contents of all time derivatives behave similarly,
making a peak around r = 5 sec, and a dip around r = 22 sec. For
modeling purposes, this plot suggests the use of a time delay of T = 5 sec.

For this choice of time delay, we can investigate how information are
gathered about the time derivatives by filling out the mutual information
table (Table 5.2) and observing the information provided by various subsets
of coordinates. At this point, we again resort to our judgement about the
system, and tailor the functional dependencies of the coordinates guided by
our knowledge about the system and educated guess. We are interested in
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Table 5.1. The mutual information contents to be computed for the four
dimensional reconstructed state space of the blood oxygen concentration
signal, with k = 1,2,3,4. The mutual information content between the
time derivative of each x^ and the entries in the right-hand column are
computed.

Xk

Xk

Xk

xk

X2

X3
£4

£2,^4

2 0.45

Time Delay (sec)

Figure 5.17. The mutual information content between Xk and #1, #25^35
versus the time delay, for k — 1,2,3,4.
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Table 5.2. The mutual information contents for the four dimensional re-
constructed state space of the blood oxygen concentration signal.

Xi

X2

X3

£4

Xi,X2
Xl,X3

Xi,X4

X2,X3

X2,X4

X3,X4

21,22,23

2i,£2,24
2j, 23, 24

22,23,24

2i,22, 23,24

±i

2.665e-01
2.188e-01
1.507e-01
7.433e-02
4.312e-01
3.819e-01
3.240e-01
2.6126-01
2.614e-01
2.0136-01
4.533e-01
4.568e-01
4.098e-01
2.905e-01
4.802e-01

22

3.664e-01
2.679e-01
2.190e-01
1.508e-01
5.043e-01
5.770e-01
5.125e-01
4.315e-01
3.829e-01
2.616e-01
5.979e-01
5.800e-01
6.0416-01
4.535e-01
6.268e-01

23

2.493e-01
3.651e-01
2.675e-01
2.186e-01
4.183e-01
4.283e-01
4.398e-01
5.029e-01
5.751e-01
4.302e-01
5.318e-01
6.052e-01
5.422e-01
5.959e-01
6.257e-01

±4

1.250e-01
2.476e-01
3.627e-01
2.665e-01
3.214e-01
4.098e-01
3.486e-01
4.1526-01
4.260e-01
4.999e-01
4.431e-01
4.752e-01
5.347e-01
5.287e-01
5.562e-01

finding the simplest functional relationships (fewest variables in an equa-
tion) that describe the system with the desired accuracy. For example, if
measurement noise is about 10% of a signal, we would be content by about
90% of the information we could gather about the system by considering
all the coordinates. This leads to

21 = /i (21,22),

X2 = /2 (£1,2:3),

X3 = /3(22,24),

24 = /4(23,24).

(5.36)

(5.37)

(5.38)

(5.39)

D
The conventional usage of the methods introduced in this chapter in

system modeling is to reconstruct a phase space using a scalar measurement.
In the following example we will demonstrate how these concepts can be
used to narrow down the phase space using multivariate measurements from
a fermentation process [59].
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Example 10 Phase space reduction

Consider the starch fermentation by recombinant Saccharomyces cerevisiae
in a batch reactor (Figure 5.18). A series of experiments were conducted
in the absence of oxygen supply by changing initial starch concentrations,
and time courses of

• J, intracellular RNA (g/L),

• £>, plasmid DNA (g/L),

• X, biomass (g/L),

• S, starch (g/L),

• 7£, reducing sugar (g/L),

• £, glucose (g/L),

• P, extracellular protein (mg/L)

concentrations, and

• a, a-amylase (U/mL) and

• 7, glucoamylase (U/mL)

activities were measured using appropriate analytical techniques [57, 60]. A
single run of the experiment generates snapshots of the measured quantities
like the one shown in Figure 5.19. Note that measurements were made
at varying time intervals, and different measurements are not necessarily
synchronous. The focus is different from the previous examples in that
we concentrate on the underlying non-chaotic dynamics. Although the
techniques described in this chapter are applicable to chaotic and non-
chaotic systems, most of the nonlinear time series analysis tools require a
dense phase space. As we demonstrated with numerous examples, chaotic
systems fulfill this requirement by populating the phase space, e.g., by
strange attractors. In the present example, this was achieved by repeated
experiments. Figure 5.19 shows only a single realization of the experiment.
When we aggregate data from many experiments involving the same system,
due to variations in the controlled conditions (e.g., initial conditions) and
uncontrolled conditions (e.g., environmental conditions), the phase space
will be dense, and we will be able to use the tools introduced earlier.

Next, we classify pairs of measurements as INDEPENDENT, COUPLED or
REDUNDANT using the heuristic scheme described in Figure 5.20. When a
measurement pair is found to be INDEPENDENT, we will conclude that the
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FLOWMETER

SAMPLE

NUTRIENT r~S *
A MEDIUM

BREAK
ANTIFOAM [X]

EXHAUST
CONDENSER

DEBUBBLER

WATER -*-

HARVEST
VESSEL

Figure 5.18. Experimental setup of the fermentation system.

measurement do not have an explicit mutual dependence in model equa-
tions. When the classification scheme indicates a COUPLED measurements,
we will write those measurements in each other's model equations. If the
scheme indicates REDUNDANT measurements, we will claim that making
a set of measurements for one coordinate yields a remarkable amount of
information about the other, hence measuring both, or considering both in
a modeling attempt is not necessary.

In the classification scheme, we use the mutual information content be-
tween the measurements I normalized to data length3, the fractal dimension
of the data d and the correlation coefficient p. The reasoning behind this
classification scheme is as follows: If two arrays of data fill the phase space
they live on (d > 1), they are likely to be INDEPENDENT, as dependent

3This normalization is done by changing the base of the logarithm in Eq 5.22 from 2
to the data length N.
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Figure 5.19. Sample experimental data.
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Figure 5.20. Heuristic scheme used to classify measurement pairs [58].

variables would make a loosely quilted pattern, leaving tracks on the phase
space. At the other extreme, if the variables reveal a dense pattern yielding
no significant information about each other, (d < 0.5 and I < 0.5), these
are considered to be INDEPENDENT. If two arrays of data leave tracks on
the phase space by moderately filling it and display a considerable amount
of information about each other, and are highly correlated (0.5 < d < 1,
/ > 0.5 and p > 0.6), then one of the two arrays can be discarded in
favor of the other, since measuring both would be REDUNDANT. For other
combinations of /, d and p, two arrays of data will be considered to be
COUPLED.

Our measurement space is 9-dimensional, and our measurement vector
is composed of samples of the vector [X T> X S 1Z, Q P a j ] T ' . When
we compute the capacity dimension of this signal we find d — 2.98. This
capacity dimension yields a sufficient embedding dimension of n = 6. On
the other hand, due to the statistical fluctuations, we may as well have a
capacity dimension that is slightly above 3.0. In such a case, we should
be computing an embedding dimension of n = 7. However, this is not the
case, as the actual dimension of this signal must be an integer value (3 in
this case), due to the assumed non-chaotic nature of the signal. Therefore,
we choose n — 6.

This choice of embedding dimension for a 9-dimensional signal implies
that at least 3 of the entries in the measurement vector should be discarded.
In agreement with this finding, if we look at the eigenvalues of the covariance
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matrix, (see Section 4.1)

{o-i} = {3.98 x 104,5.10 x 103,9.45 x 101,4.81 x 101,1.70 x 10°,

7.18 x 10~1,1.77x 10~2,2.77x 10~3,3.07x 10~4}, (5.40)

we see that the last three eigenvalues are negligible when compared to
others. If we perform a principal component analysis and select the first
six dominant transformed coordinates, we will have a mean-square error
less than 4.63 x 10~5%, which is much less than the square of the radius of
error caused by the sensitivity in our measurements which is around 10~2%.

Here, we are not after a best reduced representation, but after the most
significant measured quantities in our data set. Naturally, our choice of a
subset composed of the most significant measured quantities will yield a
higher mean-square error in representing the data set. Nevertheless, it is
desired to keep this error level as low as possible. We are to select three of
the coordinates out of nine, such that the mean-square error is minimum.
This gives us (3) =84 possible ways to choose these three coordinates. To
facilitate this process, consider Table 5.3 where we summarize the results
of dimension (d), mutual information coefficient (7) and correlation coeffi-
cient (p) computations, as well as the outcome of the heuristic classification
scheme (Class) on our data pairs. Note that, d, I and p are symmetric quan-
tities, and the order in which they are referenced is immaterial, i.e., d, I
and p for T)Q are the same as the d, / and p for QT>.

The data series pairs T>S, Q'R, and XX show redundancies, since for all
three pairs, 0.5 < d < 1, / > 0.5 and \p\ > 0.6. Therefore, in each pair, one
coordinate can be discarded in favor of the other. Thus, we have six possible
ways to choose the coordinates to be discarded. Dropping coordinates P, Q
and Z from the measurement vector results in a reduced covariance matrix,
with eigenvalues,

{o-i} = {3.98 x 104,5.10 x 103,9.45 x 101,4.81 x 101,1.68 x 10°, 7.12 x 1Q-1}.
(5.41)

Comparing the eigenvalue sets (5.40) and (5.41), we find that dropping P,
Q and X gives a mean-square error of 2.41 x 10~4%, which is about an
order of magnitude greater than that achieved by considering a principal
component analysis and representing the 9-dimensional space by the first
6 coordinates. Still, this is much less than the square of our measurement
sensitivity radius. We find this proximity satisfactory and reduce the phase
space to [X S 7£ P a 7JT. This phase space reduction will reduce any
such experimental work in the future by 33% for this system.

Hereafter we concentrate on the entries below the double line in Ta-
ble 5.3, where only the relations between the coordinates of the reduced
phase space are considered. Looking at the mutual interactions between
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Pair
T>Q
x>n
VS
-DX
T>a
£>7
VP
Qn
QS
QX
Qa
Gl
QP
I'D
IQ
in
IS
IX
la
J7

IP

Ua
7^7
np
sn
Sa
<S7

SP
xn
xs
Xa
*7
XP
aP
70;
~fP

d
0.65
0.71
0.59
1.26
0.85
0.84
1.03
0.75
0.28
0.59
1.11
0.78
1.10
1.40
0.70
0.79
0.59
0.95
0.91
0.96
1.33

1.16
1.00
1.09
0.31
0.63
0.47
0.77
0.40
0.36
1.01
0.93
1.36
1.19
0.87
0.59

I
0.51
0.60
0.53
0.58
0.66
0.51
0.64
0.55
0.47
0.53
0.51
0.41
0.52
0.62
0.60
0.62
0.51
0.58
0.62
0.53
0.63

0.65
0.48
0.63
0.57
0.50
0.34
0.50
0.62
0.54
0.61
0.52
0.59
0.64
0.53
0.52

P
0.13
-0.12
-0.69
0.26
0.23
0.21
0.49
0.63
0.25
0.38
-0.36
-0.07
-0.17
0.13
0.05
-0.45
-0.34
0.92
-0.08
-0.10
-0.18

-0.34
-0.16
-0.09
0.38
-0.53
-0.26
-0.58
-0.07
-0.15
-0.25
-0.10
-0.14
0.50
0.46
0.35

Class
C
C
R
I
C
C
I
R
I
C
I
C
I
I
C
C
C
R
C
C
I
I
I
I
C
C
I
C
C
C
I
C
I
I
C
C

Table 5.3. Phase space dimension d, information coefficient i, and corre-
lation coefficient p, corresponding to each data pair, and the result of the
heuristic classification scheme. Classifications I, C and R stand for INDE-
PENDENT, COUPLED and REDUNDANT, respectively.
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the coordinates of interest, we see that, 8 out of 15 pairs are classified as
COUPLED, and 7 of them are classified as INDEPENDENT coordinates. The
COUPLED pairs, SK, Sa, SP, XTl, XS, Xj, 70: and 'jP expected to ap-
pear in the equations of motion of one-another. For instance, since S and
7£ are found to be COUPLED, the dynamics of S should be affected directly
by the value of 7£, or the dynamics of 72. should be affected directly by the
value of <S, or both. To be on the safe side, we assume the "both" case.
Also, a coordinate in the phase space may appear in its own dynamics, so a
generic form of equations of motion should also take this into account. On
the other hand, the pairs Tla, 7?7, 1ZP, £7, Xa, XP and aP are classified
to be INDEPENDENT, and these pairs will not appear in the dynamics of
each other.

Consequently, we propose that a suitable model for the fermentation
behavior of recombinant Saccharomyces cerevisiae cells should be of the
following form:

X = /i(#,S,ft,7), (5-42)

S = /2(*,S,fc,P,a), (5.43)

U = /3(*,S,fc), (5.44)

P = /4(«S,P,7), (5.45)

a = /5(5,a,7), (5.46)

7 - /6(#,7>,a,7). (5.47)

Writing down such a set of generic model equations for potential mod-
els reduces the computational effort of parameter estimation to about one-
fourth, while increasing the reliability of the model constructed by increas-
ing its degrees of freedom. In a modeling attempt with 100 data points,
this corresponds to about a four-fold increase in reliability.

5.4 Software Resources

Several software packages have been used to generate, manipulate and
present the data used in the examples presented in this chapter. Brief
descriptions of various software packages used are given below:

Content [311] is an interactive program to study continuous (given as
ordinary or partial differential equations) and discrete (given as iterated
maps) dynamical systems. It is flexible to analyze standard and customized
dynamical systems, using simulations, one- or two-parameter continuation
studies and normal form analysis. It is available free of charge by anony-
mous ftp, from ftp.cwi.nl/pub/CONTENT/. The package has an online
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and offline documentation. A Matlab version of CONTENT is also avail-
able from http://www.math.uu.nl/people/kuznet/cm/. Platforms: sev-
eral Unix flavors (including Linux) and Windows.

TISEAN [228] is a package of time series analysis programs with methods
based on the theory of nonlinear deterministic dynamical systems. The
name is an acronym for Time SEries ANalysis. Software and documentation
are available free of charge from http://www.mpipks-dresden.mpg.de
/^tisean/. Platforms: Although it is mainly designed for a Unix based
environment, its distribution is in source form (C and FORTRAN).

Maple [364] is a favorite symbolic programming environment, not re-
stricted to dynamical systems. It has a numerical computation interface
using Matlab. It is a commercial package. More information can be ob-
tained from http://www.maplesoft.com/flash/index.html. Platforms:
Unix flavors (including Linux), Windows and Macintosh.

Matlab [372] is arguably the most widely used interactive numerical pro-
gramming environment in science and engineering. The name is an acronym
for MATrix LABoratory. It has a symbolic computation interface using
Maple. It is a commercial product. More information can be obtained from
http://www.mathworks.com/. Platforms: Unix flavors (including Linux),
Windows and Macintosh.

gnuplot [648] is a command-driven interactive function plotting program.
It can be used to plot functions and data points in both two- and three-
dimensional plots in many different formats, and will accommodate many
of the needs of today's scientists for graphic data representation, gnu-
plot is copyrighted, but freely distributable. It can be obtained from
http://www.gnuplot.info/. Platforms: Unix flavors (including Linux),
VAX/VMS, OS/2, MS-DOS, Amiga, Windows, OS-9/68k, Atari, BeOS,
and Macintosh.

There is a wide collection of free and commercial software packages
available. Below is a list of the ones we have examined, with no particular
order.

Auto [128] is a software for continuation and bifurcation problems in or-
dinary differential equations. Users can download the package and find doc-
umentation about it free of charge form http: //indy. cs. concordia. ca
auto/main.html. Platforms: Unix flavors (including Linux).
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XPP [146] is a package for simulating dynamical systems that can handle
differential equations, difference equations, Volterra integral equations, dis-
crete dynamical systems and Markov processes. The name is an acronym for
X-windows Phase Plane. Data structure used by XPP is compatible with
AUTO. XPP also offers a graphical user interface for AUTO. It is a free
software that can be obtained from http: //www. math. pitt. edu/^bard/
xpp/xpp.html. Online documentation is also available from the same ad-
dress. Platforms: Unix flavors (including Linux).

DsTool [204] is a computer program for the interactive investigation of
dynamical systems. The program performs simulations of diffeomorphisms
and ordinary differential equations, find equilibria and compute their one-
dimensional stable and unstable manifolds. It is freely available with doc-
umentation from http://www.cam.cornell.edu/ gucken/dstool. Plat-
forms: Unix flavors (including Linux).

Octave [266] is a general purpose high-level language, primarily intended
for numerical computations that is mostly compatible with Matlab. Its un-
derlying numerical solvers are currently standard Fortran ones like Lapack,
Linpack, Odepack, the Bias, etc., packaged in a library of C++ classes.
Users can freely download, redistribute and even modify Octave, under
GNU General Public License. It is available from http: //www. octave. org/.
Platforms: Unix flavors (including Linux), Windows.

Mathematica [670] is another general purpose symbolic and numerical
programming environment. It is a commercial product. More information
can be obtained from http://www.wolfram.com/. Platforms: Unix flavors
(including Linux), Windows and Macintosh.

MuPAD [147] is a system for symbolic and numeric computation, paral-
lel mathematical programming, and mathematical visualization. The name
is an acronym for Multi Processing Algebra Data tool. It is a commer-
cial package, that is available for free for Linux. Further information and
documentation is available from http: //www.mupad. de/index_uni. shtml.
Platforms: Unix flavors (free for Linux), Windows and Macintosh.

Other Resources on the Web There are many resource directories on
the Web that list nonlinear dynamical systems tools. We refer interested
reader to two of these.

http: //www. enm. bris. ac. uk/staf f/hinke/dss/ aims to collect all avail-
able software on dynamical systems theory, and has 15 links.
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http://sal.kachinatech.com/index.shtml is a more general direc-
tory service, called Scientific Application on Linux (SAL). Although the
name suggests an exclusive Linux listing, the broad coverage of applica-
tions will also benefit the whole scientific computation community. As of
March 2002, there are 3,070 entries listed in SAL.
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Statistical Process
Monitoring

Monitoring and control of batch processes are crucial tasks in a wide variety
of industrial processes such as pharmaceutical processes, specialty chemi-
cals production, polymer production and fermentation processes. Batch
processes are characterized by prescribed processing of raw materials for a
finite duration to convert them to products. A high degree of reproducibil-
ity is necessary to obtain successful batches. With the advent of process
computers and recent developments in on-line sensors, more data have be-
come available for evaluation. Usually, a history of the past successful and
some unsuccessful batches exist. Data from successful batches characterize
the normal process operation and can be used to develop empirical process
models and process monitoring systems.

The goal of statistical process monitoring (SPM) is to detect the exis-
tence, magnitude, and time of occurrence of changes that cause a process to
deviate from its desired operation. The methodology for detecting changes
is based on statistical techniques that deal with the collection, classification,
analysis, and interpretation of data. Traditional statistical process control
(SPC) has focused on monitoring quality variables at the end of a batch
and if the quality variables are outside the range of their specifications,
making adjustments (hence control the process) in subsequent batches. An
improvement of this approach is to monitor quality variables during the
progress of the batch and make adjustments if they deviate from their ex-
pected ranges. Monitoring quality variables usually delays the detection
of abnormal process operation because the appearance of the defect in the
quality variable takes time. Information about quality variations is encoded
in process variables. The measurement of process variables is often highly
automated and more frequent, enabling speedy refinement of measurement
information and inferencing about product quality. Monitoring of process
variables is useful not only for assessing the status of the process, but also

243
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for controlling product quality. When process monitoring indicates abnor-
mal process operation, diagnosis activities are initiated to determine the
source causes of this abnormal behavior.

This chapter starts with a review of statistical monitoring techniques for
a single variable system. Shewhart charts, cumulative sum (CUSUM), mov-
ing average (MA) and exponentially weighted moving average (EWMA)
methods are discussed in Section 6.1. Monitoring of multivariable batch
processes by using multivariate statistical process monitoring (MSPM) meth-
ods is discussed in the subsequent sections of the Chapter. Most MSPM
techniques rely on empirical process models developed from process data
using methods discussed in Chapter 4. Empirical models based on prin-
cipal components analysis (PCA), partial least squares (PLS), functional
data analysis, multiscale analysis, and artificial neural networks (ANNs)
can be used for monitoring batch or continuous processes. It is usually
easier to visualize these methods in terms of data from continuous pro-
cesses operating around a steady state value. Consequently, the discussion
in Section 6.2 focuses first on the application of these methods to generic
continuous processes. Then, the determination of landmarks that separate
different phases of a batch process and equalization of batch data lengths
are discussed in Section 6.3. The application of multivariable statistical
monitoring (MSPM) methods to batch process data is introduced in Sec-
tion 6.4. The multiway PC A (MPCA) method is discussed first. Other
modeling and monitoring techniques such as the multivariate covariates
regression method, the multiblock MPCA and MPLS, various three-way
methods, and multiscale SPM techniques based on wavelets are introduced
in Section 6.4.6. On-line monitoring of batch processes during the progress
of the batch is discussed in Section 6.5. Techniques based on estimation
of variable trajectories, hierarchical PCA and estimation of final product
quality are presented. Section 6.6 introduces a framework for monitoring
successive batch runs for disturbances that evolve through several batches,
leading to gradual drifts in product quality.

For the sake of simplicity and realism, it will be assumed that each
measurement will be made only once (no repeated measurements) except
for Section 6.1. For multivariable continuous processes, the index i will
denote the variables and j the samples (measurements) with the upper
limits indicated by m and n, respectively. For multivariable batch processes,
traditionally i denotes the number of batches, j the number of variables,
and k the number of samples, with the upper limits indicated by /, J, K,
respectively. This notation will be followed in the text.
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6.1 SPM Based on Univariate Techniques

Traditional statistical monitoring techniques for quality control of batch
products relied on the use of univariate SPC tools on product quality vari-
ables. In this framework, each quality variable is treated as a single inde-
pendent variable. The SPM techniques used for monitoring a single variable
include Shewhart, cumulative sum (CUSUM), moving average (MA), and
exponentially weighted moving average (EWMA) charts (Figure 6.1). For
end-of-batch product quality control Shewhart and CUSUM charts are use-
ful. MA and EWMA charts use time series data. Consequently, their use
with end-of-batch product data is limited. However, they are discussed in
this section for the sake of providing an overview of all popular univariate
SPM techniques.

Hypothesis Testing
Often decisions have to be made about populations on the basis of

sample information. A statistical hypothesis is an assumption or a guess
about the population. It is expressed as a statement about the parameters
of the probability distributions of the populations. Procedures that enable
decision making whether to accept or reject a hypothesis are called tests of
hypotheses. For example, if the equality of the mean of a variable (/^) to a
value a is to be tested, the hypotheses are:

Shewhart Chart

Time

Moving Average Chart

UNI
Time

CUSUM Chart

I l l l l l l l l l l l l l l l r

Time

EWMA Chart

i l l l
Time

Figure 6.1. Schematic representation of univariate SPC charts.
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Null hypothesis: Ho : p, = a
Alternate hypothesis: Ji\ : p, ̂  a

Two kinds of errors may be committed when testing a hypothesis:

P{reject HQ \ HQ is true}Type I (a) error
(Producer's risk):

Type II ((3} error
(Consumer's risk):

P{fail to reject false}

First a is selected to compute the confidence limit for testing the hy-
pothesis then a test procedure is designed to obtain a small value for /5,
if possible. j3 is a function of sample size and is reduced as sample size
increases. Figure 6.1 represents this hypothesis testing graphically.

6.1.1 Shewhart Control Charts

Shewhart charts indicate that a special (assignable) cause of variation is
present when the sample data point plotted is outside the control limits. A
graphical test of hypothesis is performed by plotting the sample mean, and
the range or standard deviation and comparing them against their control
limits. A Shewhart chart is designed by specifying the centerline (C), the

Critical Value
a

•*— Reject HQ jf x < a

Specified

Sampling
Distribution of x

assuming Ht true at
(J =X,

. Accept H0 if x > a

Specified

Sampling
Distribution of x

assuming HQ true at

Figure 6.2. Type I and type II errors.
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upper control limit (UCL) and the lower control limit (LCL).
Two Shewhart charts (sample mean and standard deviation or the

range) are plotted simultaneously. Sample means are inspected in order
to assess between samples variation (process variability over time). Tra-
ditionally, this is done by plotting the Shewhart mean chart (x chart, x
represents average (mean) x). However, one has to make sure that there
is no significant change in within sample variation which may give an er-
roneous impression of changes in between samples variation. The mean
values at times t — 2 and t — 1 in Figure 6.3 look similar but within sample
variation at time t — I is significantly different than that of the sample at
time t — 2. Hence, it is misleading to state that between sample variation
is negligible and the process level is constant. Within sample variations
of samples at times t — 2 and t are similar, consequently, the difference in
variation between samples is meaningful. The Range chart (R chart) or

CD

O Individual points
• Mean

Time

Figure 6.3. A dot diagram of individual observations of a variable.

standard deviation chart (S chart) monitors within sample process vari-
ation or spread (process variability at a given time). The x chart must be
used along with a spread chart. The process spread must be in-control for
proper interpretation of the x chart.

Usually several observations of the same variable at a specific time are
used (Figure 6.3). If only one observation is available, individual values can
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be used to develop the x chart (rather than the x chart and the range chart
is developed by using the "moving range" concept discussed in Subsection
6.1.3.

The assumptions of Shewhart charts are:

• The distribution of the data is approximately Normal.

• The sample group sizes are equal.

• All sample groups are weighted equally.

• The observations are independent.

Describing Variation
The location or central tendency of a variable is described by its mean,

median, or mode. The spread or scatter of a variable is described by its
range or standard deviation. For small sample sizes (n < 6, n=number of
samples), the range chart or the standard deviation chart can be used. For
larger sample sizes, the efficiency of computing the variance from the range
is reduced drastically. Hence, the standard deviation charts should be used
when n > 10.

One or more observations may be made at each sampling instant. The
collection of all observations at a specific sampling time is called a sample.
The convention on summation and representation of mean values is

_ __ _ _ /,, 1 x
X-i, — y Xi'i . X.. — / y X i - j ( O . i )

n z— ' ran z— ' z— 'j=i 1=1 j=\

where m is the number of samples (groups) and n is the number of observa-
tions in a sample (sample size). The subscripts . indicate the index used in
averaging. When there is no ambiguity, average values are denoted in the
book using only x and x. For variables that have a Normal distribution:

Statistic

Mean

Range

Population (size N)

, , 1 V /y> .
<" — N 2L^i=l x^

2 1 v'^-'V / \ 2

Ri = max(xi) — rain

Sample (size n)

*=££?=!**

(xi) i = 1, • • • , N or n

Selection of Control Limits
Three parameters affect the control limit selection:

i. the estimate of average level of the variable,
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ii. the variable spread expressed as range or standard deviation, and

Hi. a constant based on the probability of Type I error, a.

The "3a" (a denoting the standard deviation of the variable) control lim-
its are the most popular control limits. The constant 3 yields a Type I
error probability of 0.00135 on each side (a = 0.0027). The control limits
expressed as a function of population standard deviation a are:

UCL = Target + 3cr, LCL = Target - 3cr (6.2)

The x chart considers only the current data value in assessing the status
of the process. Run rules have been developed to include historical infor-
mation such as trends in data. The run rules sensitize the chart, but they
also increase the false alarm probability. The warning limits are useful in
developing additional rules (run rules) in order to increase the sensitivity
of Shewhart charts. The warning limits are established at "2-sigma" level,
which corresponds to a/2=0.02275. Hence,

UWL = Target + 2(7 LWL = Target - la (6.3)

The Mean and Range Charts

Development of the x and R charts starts with the R chart. Since the
control limits of the x chart depends on process variability, its limits are
not meaningful before R is in-control.

The Range Chart
Range is the difference between the maximum and minimum observa-

tions in a sample.

= xmax,t — X mm,t £ = 1Em ^-f
(6.4)

The random variable R/a is called the relative range. The parameters of its
distribution depend on sample size n, with the mean being d<2- An estimate
of <j (the estimates are denoted by a ?) can be computed from the range
data by using

d<z values as a function of n

n
d2 =

2
1.128

3
1.683

4
2.059

5
2.326

6
2.534
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The standard deviation of R is estimated by using the standard deviation
of R/a, d?,:

f>
ds — (6.6)

The control limits of the R chart are

Defining

UCL, LCL = R±3d3 (6.7)
«2

and J94 = 1 + 3 (6.8)
"2

the control limits become

UCL = RD4 and LCL = RD3 (6.9)

which are tabulated for various values of n and are available in many SPC
references and in the Table of Control Chart Constants in the Appendix.

The x chart
The estimator for the mean process level (centerline) is x. Since the

estimate of the standard deviation of the mean process level a is ^-,

° R (6.10)

The control limits for an x chart based on R are

UCL, LCL - x ± A2R, A2 = ~^-= . (6.11)

Example Consider the following data set where three measurements have
been collected at each sampling time in Table 6.1. The first twenty samples
are used to develop the monitoring charts and the last five samples are
monitored by using these charts.

Data used in the development of the SPM charts by computing the mean
and standard deviation and calculating the control limits are also plotted
to check if any of these samples are out of control. If not, the charts are
used as developed. If there are any out of control points, special causes for
such behavior are investigated. If such causes are found, the corresponding
data are excluded from the data set used for chart development and the
chart limits are computed again. Since there are no data out of control for
the first 20 samples, the charts are used as developed for monitoring the
five "new" samples.
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Table 6.1. A sample data set

No
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Measurements

19.70 16.90 23.20
19.60 17.60 20.50
18.50 19.70 20.80
20.10 18.90 19.90
22.70 21.40 18.20
16.80 17.20 17.70
19.40 21.60 17.60
19.10 20.70 20.70
17.40 22.70 18.20
23.70 22.50 17.70
19.90 19.70 21.20
20.80 19.60 18.90
20.00 18.60 18.90
18.80 19.70 17.80
17.30 16.90 18.20
17.20 19.10 18.80
17.40 16.90 19.30
20.10 18.60 19.50
20.60 23.10 21.40
17.40 22.10 20.50
20.82 16.64 19.19
24.22 21.18 22.44
24.54 26.89 17.34
18.93 18.50 17.38
20.68 18.09 20.35

Mean

19.93
19.23
19.67
19.63
20.77
17.23
19.53
20.17
19.43
21.30
20.27
19.77
19.17
18.77
17.47
18.37
17.87
19.40
21.70
20.00
18.88
22.61
22.92
18.27
19.70

Range

6.30
2.90
2.30
1.20
4.50
0.90
4.00
1.60
5.30
6.00
1.50
1.90
1.40
1.90
1.30
1.90
2.40
1.50
2.50
4.70
4.18
3.04
9.55
1.55
2.59

St Dev

2.58
1.21
0.94
0.52
1.89
0.45
1.64
0.75
2.33
2.59
0.66
0.78
0.60
0.78
0.54
0.83
1.03
0.62
1.04
1.95
1.72
1.24
4.06
0.65
1.15

The overall mean, range, and standard deviation are 19.48, 2.80 ana
1.18, respectively. The mean and range charts are developed by using
the overall mean and range values in Eqs. 6.10 and 6.11. The resulting
Shewhart charts are displayed in Figure 6.4. The mean of sample 22 is out
of control while the range chart is in control, indicating a significant shift in
level. Both the mean and range are out of control at sample 23, indicating
significant change in both level and spread of the sample.
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UCL

16-

10-

2. 5

LCL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A A

UCL

CL

LCL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Observation Number

Figure 6.4. Shewhart chart for mean (CL = x) and range (CL — R).

The Mean and Standard Deviation Charts

The 5 chart is preferable for monitoring variation when the sample size
is large or varying from sample to sample. Although S2 is an unbiased es-
timate of cr2, the sample standard deviation 5 is not an unbiased estimator
of a. For a variable with a normal distribution, S estimates C4cr, where c^
is a parameter that depends on the sample size n. The standard deviation
of S is a- When a is to be estimated from past data,

m
(6.12)

1=1

and 5/C4 is an unbiased estimator of a. The exact values for 04 are given
in the Table of Control Chart Constants in the Appendix. An approximate
relation based on sample size n is

4n-3
(6.13)
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The S Chart
The control limits of the S chart are

UCL, LCL = S±3— v/l-cj (6.14)
C4

Defining the constants

B3 = 1 - —\ll-cl and 54 = 1 + — \l\-c\ (6.15)
C4 * C4 "

the limits of the 5 chart are expressed as

UCL = B±S and LCL = B3S (6.16)

T/ie x CTmri
When a = S/C4, the control limits for the x chart are

UCL, LCL = x± -^=5 (6.17)
c4v/n

Defining the constant AS = — ̂ -p= the limits of the x chart become
04 \» fl

UCL = x + A35 and LCL = x - AZS (6.18)

Example The mean and standard deviation charts are developed by using
the overall mean and standard deviation values in Eqs. 6.16 and 6.18. The
resulting Shewhart charts are displayed in Figure 6.5. The means of samples
22 and 23 are out-of-control, while the standard deviation chart is out-of-
control for sample 23, providing similar results as x and R charts.

Interpretation of x Charts
The x charts must be used along with a spread chart. The process

spread must be in-control for proper interpretation of the x chart.
The x chart considers only the current data value in assessing the status

of the process. In order to include historical information such as trends in
data, run rules have been developed. The run rules sensitize the chart,
but they also increase the false alarm probability. If k run rules are used
simultaneously and rule i has a Type I error probability of on , the overall
Type I error probability cttotai is

If 3 rules are used simultaneously and on = 0.05, then a — 0.143. For
ai = 0.01, a = 0.0297.
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Figure 6.5. Shewhart chart for mean (CL = x) and standard deviation
(CL = S).

The Run Rules
Run rules, also known as Western Electric Rules [111], enable decision

making based on trends in data. A process is declared out of control if any
one or more of the run rules are met. Some of the criteria used as run rules
are:

• One point outside the control limits.

• Two of three consecutive points outside the 2-sigma warning limits
but still inside the control limits.

• Four of five consecutive points outside the 1-sigma limits.

• Eight consecutive points on one side of the centerline.

• Eight consecutive points forming a run up or a run down.

• A nonrandom or unusual pattern in the data.
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Patterns in data could be any systematic behavior such as shifts in process
level, cyclical (periodic) behavior, stratification (points clustering around
the centerline), trends, or drifts.

Average Run Length (ARL)
The ARL is average number of samples (or sample averages) plotted in

order to get an indication that the process is out-of-control. ARL can be
used to compare the efficacy of various SPC charts and methods. ARL(O)
is the in-control ARL, the ARL to generate an out-of-control signal even
though in reality the process remains in control. The ARL to detect a
shift in the mean of magnitude ka is represented by ARL(cr) where k is
a constant and a is the standard deviation of the variable. A good chart
must have a high ARL(O) (for example ARL (0) =400 indicates that there is
one false alarm on the average out of 400 successive samples plotted) and
a low ARL(<r) (bad news is displayed as soon as possible).

For a Shewhart chart, the ARL is calculated from

ARL = E[R] = - (6.20)

where p is the probability that a sample exceeds the control limits, R is the
run length and E[-] denotes the expected value. For an x chart with 3cr
limits, the probability that a point will be outside the control limits even
though the process is in control is p = 0.0027. Consequently, the ARL(O) is
ARL = l/p = 1/0.0027 = 370. For other types of charts such as CUSUM,
it is difficult or impossible to derive ARL(O) values based on theoretical
arguments. Instead, the magnitude of the level change to be detected is
selected and Monte Carlo simulations are run to compute the run lengths,
their averages and variances.

6.1.2 Cumulative Sum (CUSUM) Charts
The cumulative sum (CUSUM) chart incorporates all the information in a
data sequence to highlight changes in the process average level. The values
to be plotted on the chart are computed by subtracting the overall mean
IJLQ from the data and then accumulating the differences. For a sample size
n > 1, denote the average of the j'th sample Xj. The quantity

i

Sl = (Xj - MO) (6.21)

is plotted against the sample number i. CUSUM charts are more effective
than Shewhart charts in detecting small process shifts, since they combine
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information from several samples. CUSUM charts are effective with samples
of size 1. The CUSUM values can be computed recursively

5i = (x i -Ato ) + 5i_i . (6.22)

If the process is in-control at the target value //o, the CUSUM Si should
meander randomly in the vicinity of 0. If the process mean is shifted, an
upward or downward trend will develop in the plot. Visual inspection of
changes of slope indicates the sample number (and consequently the time)
of the process shift. Even when the mean is on target, the CUSUM Si may
wander far from the zero line and give the appearance of a signal of change
in the mean. Control limits in the form of a V-mask were employed when
CUSUM charts were first proposed in order to decide that a statistically
significant change in slope has occurred and the trend of the CUSUM plot
is different than that of a random walk. CUSUM plots generated by a
computer became more popular in recent years and the V-mask has been
replaced by upper and lower confidence limits of one-sided CUSUM charts.

One-Sided CUSUM charts are developed by plotting

(6-23)

where K is the reference value to detect an increase in the mean level. If
Si becomes negative for /j-i > /ZQ, it is reset to zero. When Si exceeds the
decision interval H, a statistically significant increase in the mean level is
declared. Values for K and H can be computed from the relations:

A" = f , H = f . (6.24)

Given the a and j3 probabilities, the size of the shift in the mean to be
detected (A), and the standard deviation of the average value of the variable
x (<7x), the parameters in Equation 6.24 are:

S=— a n d d = — . (6.25)
<Jx \52/ \ a /

A two-sided CUSUM can be generated by running two one-sided CUSUM
charts simultaneously with the upper and lower reference values. The re-
cursive formulae for high and low side shifts that include resetting to zero
are

Sn(i] = max [0,£i - (fj,Q + K) + SH(i - 1)]

SL(i) = m a x [ Q , ( f j . 0 - K ) - X i + SL(i-I)] (6.26)
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respectively. The starting values are usually set to zero, S#(0) = SL(O) = 0.
When <$"# (i) or SL(I) exceeds the decision interval H, the process is out-of-
control. Average Run Length (ARL) based methods are usually utilized to
find the chart parameter values H and K. The rule of thumb for ARL(A)
for detecting a shift of magnitude A in the mean when A ^ 0 and A > K
is

ARL(A) = 1 + J?-^ . (6.27)

Two-sided CUSUM sometimes is called as the tabular CUSUM. Whereas
the monitoring results are usually given as tabulated form, it is useful to
present graphical display for tabular CUSUM. These charts are generally
called as CUSUM status charts [400].

Example Develop the CUSUM chart to detect a shift in the mean of
magnitude S = A/a£ = 2, with a = 0.01 and (3 = 0.05. Using Eq. 6.25,
d = 2.28. H and K are computed from Eq. 6.24 as H = 2.62 and K = 1.15,
and the one-sided CUSUM charts are based on Eq. 6.26. The resulting
charts where the first twenty samples are used to develop the charts are
shown in Figure 6.6. Since the observation 23 exceeds the decision interval
H at which SH > H = 2.62, we would conclude that the process is out of
control at that point.

6.1.3 Moving Average Control Charts for Individual
Measurement s

Individual data (sample size n=l) are common in many process industries.
Continuous streams of data are more common for continuous processes. MA
charts may be used for monitoring successive batches by using end of batch
quality measurements. MA charts may also be used for data with small
variation, collected during a batch run. Instantaneous variations in a batch
run may be small, but the process varies over time. Selecting a group of
successive measurements close together in time will include mostly variation
due to measurement and sampling error. In such situations, statistical
monitoring of the process can be achieved by using moving-average (MA)
charts. In MA charts, averages of the consecutive data groups of size a are
plotted. The control limit computations are based on averages and standard
deviation values computed from moving ranges. Since each MA point has
(a — 1) common data points, the successive MAs are highly autocorrelated.
This autocorrelation is ignored in the usual construction of these charts.
The MA control charts should not be used with strongly autocorrelated
data. The MA charts detect small drifts efficiently (better than x chart) and
they can be used when the original data do not have Normal distribution.
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Figure 6.6. The CUSUM status chart.

The disadvantages of the MA charts are slow response to sudden shifts in
level and the generation of autocorrelation in computed values.

Estimation of S for individual measurements
Three approaches can be used for estimating S:

1. If a rational blocking of data exists, compute an estimate of S based
on it. It is advisable to compare this estimate with the estimates
obtained by using the other methods to check for discrepancies.

2. The overall S estimate. Use all the data together to calculate an
overall standard deviation. This estimate of S will be inflated by the
between-sample variation. Thus, it is an upper bound for S. If there
are changes in process level, compute S for each segment separately,
then combine them by using

\

-l)ff

ii-1)
(6.28)
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where k is the number of segments with different process levels and
Hi is the number of observations in each sample.

3. Estimation of S by moving-ranges of "a" successive data points. Use
differences of successive observations as if they were ranges of n obser-
vations. A plot of S for group size a versus a will indicate if there is
between-sample variation. If the plot is flat, the between-sample vari-
ation is insignificant. This approach should not be used if there is a
trend in data. If there are missing observations, all groups containing
them should be excluded from computations.

The procedure for estimating S by moving-ranges is:

1. Calculate moving-ranges of size a, a = 2, 3, • • • , using 25 to 100 ob-
servations.

MRt = | max(xi) - min(xi) \ , i = (t — a + l),t. (6.29)

2. Calculate the mean of the ranges for each a

3. Divide the result of Step 2 by d<i (for each a).

4. Tabulate and plot results for all a.

Process Level Monitoring by Moving-Average Charts
In a moving-average (MA) chart, the averages of consecutive groups of

size a are computed and plotted. The control limit computations are based
on these averages. Several original data points at the start and end of the
chart are excluded, since there is not enough data to compute the moving-
average at these times. MA charts detect small drifts efficiently (better
than x chart). However, they respond slowly to sudden shifts in level and
the MA generates autocorrelation in computed values.

Procedure For Chart Development
The procedure is outlined for ra samples of size n. For individual mea-

surements, let n — 1.

1. Compute the sample averages Xi, i = l,m.

2. Compute the moving average Mt of span a at time t as

Mt = ** + **-! + "- + *«-q+i
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3. Compute the variance of Mt

± V(*,) = (6.31)
i=t-a+l

Hence, a = S/c^^/an or a = MR/dzi/n, using MR for R.

4. Compute the control limits with the centerline at x:

or = ^ ± 5 (6.32)

In general, the span a and the magnitude of the shift to be detected are
inversely related.

Spread Monitoring by Moving-Range Charts
In a moving-range chart, the range of two consecutive sample groups of

size a are computed and plotted. For a > 2,

MRt= max(xi) - mm(xz) , i = (t — a + l),t (6.33)

The computation procedure is:

1. Select the range size a. Often a = 2.

2. Obtain estimates of MR and a = MR/d-2 by using the moving-ranges
MRt of length a. For a total of m samples:

771—a+l

MR = V MRt (6.34)
m - a + 1 -

3. Compute the control limits with the centerline at MR:

LCL = D3MR, UCL = D4A4R (6.35)

Recall that <r# = d^R/d^, and d-2 and d3 depend on a.

6.1.4 Exponentially Weighted Moving-Aver age Chart
The exponentially weighted moving-average (EWMA) Zi is denned as

Zi = wxx + (1 - w)zi-i (6.36)

where 0 < w < 1 is a constant weight, Xi is the mean of sample i of size
n, and the starting value at i = I is ZQ = x. EWMA attaches a higher
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weight to more recent data and has a fading memory where old data are
discarded from the average. Since the EWMA is a weighted average of
several consecutive observations, it is insensitive to nonnormality in the
distribution of the data. It is a very useful chart for plotting individual
observations (n = 1). If x^ are independent random variables with variance
cr2/n, the variance of Zi is

^ = — (-^—] [1 - (1 - w}21} (6.37)
z.z \ o I L \ ' J >• '

The last term (in brackets) in Eq. 6.37 quickly approaches 1 as i increases
and the variance reaches a limiting value. Often the asymptotic expres-
sion for the variance is used for computing the control limits. The weight
constant w determines the memory of EWMA, the rate of decay of past
sample information. For w = 1, the chart becomes a Shewhart chart. As
w — > 0 EWMA approaches a CUSUM. A good value for most cases is in
the range 0.2 < w < 0.3. A more appropriate value of w for a specific ap-
plication can be computed by considering the ARL for detecting a specific
magnitude of level shift or by searching w which minimizes the prediction
error for a historical data set by an iterative least squares procedure. 50
or more observations should be utilized in such procedures. EWMA is also
known as geometric moving average, exponential smoothing, or first order
pole filter.

Upper and the lower control limits are calculated as

= fiQ + 3a2i

CL = ZQ

Example Develop an EWMA chart to detect a shift in the mean by
using the first column of the example data set in Figure 6.6 and w = 0.25.
Compute the variance of z by using asymptotic version of Eq. 6.37 and
the values of Zi from Eq. 6.36. The resulting charts where the first twenty
samples are used to develop the charts are shown in Figure 6.7. From the
EWMA control chart (Figure 6.7) signal for observation 23, we conclude
that the process is out of control at that point.

6.2 SPM of Continuous Processes with
Multivariate Statistical Techniques

In traditional quality control of multivariable processes, a number of quality
variables are monitored using Shewhart charts [542] . But because of inter-
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UCL

LCL

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Observation Number

Figure 6.7. EWMA chart of observations.

actions among the variables that cause crosscorrelation, autocorrelation
and colinearity, monitoring one variable at a time approach may become
misleading and time consuming if the number of variables to be monitored
is high. The potential for erroneous interpretations is illustrated in Fig-
ure 6.8 such that univariate charts of two quality variables (xi and X2) are
constructed separately and depicted as a biplot by aligning one chart per-
pendicular to the other. The control limits of the two individual Shewhart
charts (99 % upper (UCL) and lower (LCL) confidence limits) are now
shown as a rectangle. All of the observations are inside the limits, indi-
cating an in-control situation and consequently acceptable product quality.
The ellipse represents the control limits for the in-control multivariable
process behavior with 99 % confidence. When a customer complains about
low-quality product for the batch corresponding to the sample indicated by
<8> in Figure 6.8, Shewhart charts do not indicate poor product quality but
the multivariate limit does. Furthermore, if there are any samples outside
the upper left or lower right corners of the Shewhart confidence region, but
inside the ellipse, the consumer would not report them as poor quality prod-
ucts. The situation can be explained by inspecting the multivariate plot
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Figure 6.8. Univariate charts and biplot of two variables.

of these variables. Given the joint-confidence region defined by the ellipse,
any observation that falls out of this region is considered as out-of-control.

Traditional univariate techniques based on a single variable have been
reviewed in the previous section. Despite their misleading nature, univari-
ate charts are still used in industry for monitoring multivariable processes.
Several multivariate extensions of Shewhart, CUSUM and EWMA have
been proposed in the literature [351, 352, 594, 672]. The multivariate per-
spective helps one to unveil hidden relations that reside in process data
and reach correct conclusions about product quality. There is significant
motivation to develop a multivariable statistical process monitoring (SPM)
framework to detect the existence, magnitude, and time of occurrence of
changes that cause the process to deviate from its desired operation.

Biplots are useful when only a few variables are monitored. When the
process has a large number of variables, monitoring tools based on pro-
jection techniques are more effective. These techniques rely on principal
components analysis (PCA) and partial least squares (PLS) introduced in
Sections 4.1 and 4.2.4.

Copyright © 2003 by Taylor & Francis Group, LLC



264 Chapter 6. Statistical Process Monitoring

SPE

SPE

PC2 / Envelop of NOC

Figure 6.9. The multivariate monitoring space, (a) Three dimensional
representation, (b) Two dimensional representation.

6.2.1 SPM of Continuous Processes with PCA

SPM with PCA can be implemented by graphical and numerical tools. Two
types of statistics, the statistical distance T2 and the principal components
(PC) model residuals (I — PPT)X or squared prediction error (SPE) must
be monitored. If a few PCs can describe the data, biplots of PC scores
can be used as easy to interpret visual aids. Such biplots can be generated
by projecting the data in Figure 6.9 to two dimensional surfaces PCi-PC2,
PCi-Error and PC2-Error. Data representing normal operation (NO) and
various faults are clustered in different regions, providing the opportunity
to diagnose source causes as well [304].

Inspection of many biplots becomes inefficient and difficult to interpret
when a large number of PCs are needed to describe the process. Monitoring
charts based on squared residuals (SPE) and T2 become more useful. By
appending the confidence interval (UCL) to such plots, a multivariate SPM
chart as easy to interpret as a Shewhart chart is obtained.

PCA techniques have been used to monitor an LDPE reactor operation
[297], high speed polyester film production [635], Tennessee Eastman sim-
ulated process [488] and sheet forming processes [508]. Multiscale PCA by
using wavelet decomposition has been proposed [38].

6.2.2 SPM of Continuous Processes with PLS

Modern process data acquisition systems generate large amounts of process
data, such as temperatures and flow rates. Measurements of process out-
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Figure 6.10. SPE and T2 charts for continuous process monitoring based
on PCA.

puts that describe product quality are collected less frequently since these
measurements are expensive and time consuming. Although it is possible to
measure some quality variables on-line by means of sophisticated devices,
measurements are generally made off-line in the quality control laboratory.
Process data contain important information about both the quality of the
product and the performance of the process operation. PLS models can be
used in two ways:

Quality monitoring. The correlation between the process variables and
the quality variables can be determined through the PLS model. This
statistical model provides information for estimating product quality
from process data.

Statistical process control. PLS model can also be used to quickly de-
tect process upsets and unexpected behavior. When an assignable
cause is detected, necessary actions can be taken to prevent any dam-
age to process performance and/or product quality.
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The traditional statistical modeling methods such as Multiple Linear Re-
gression (MLR) fail to handle process data that are correlated and collinear.
PLS, as a projection method, offers a suitable solution for modeling such
data.

The first step in the development of a PLS model is to determine the
variables that will be considered as process variables X and as indicator of
product quality Y. This selection is dependent on the measurements avail-
able and the objectives of monitoring. The reference set used to develop
the multivariate monitoring chart will determine the variations considered
to be part of normal operation and ideally includes all variations leading to
desired process performance. If the reference set variation is too small, the
procedure will cause frequent alarms, and if it is too large the sensitivity
of the monitoring scheme to the abnormal operation will be poor. The
normal operating data are collected from past successful process history.
The reference data set selected should include the range of process vari-
ables that yield desired product quality. If the PLS model is developed for
monitoring certain process conditions, the reference data set should include
data collected under these conditions. Data for various batch runs are then
stacked together to form the reference set that represents normal behavior
of the process.

Since PLS technique is sensitive to outliers and scaling, outliers should
be removed and data should be scaled prior to modeling. After data pre-
treatment, another decision to be made is the determination of the number
of latent variables (PLS dimensions) to be retained in the model. Cumula-
tive prediction sum of squares (CUMPRESS) vs number of latent variables
or prediction sum of squares (PRESS) vs number of latent variables plots
are used for this purpose. It is usually enough to consider the first few PLS

Process
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Product Quality
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1 2 ... k
1
2
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c
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Y

Figure 6.11. Data arrangement in PLS for continuous SPM.
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dimensions for monitoring while for prediction more PLS dimensions are
needed in order to improve the precision of the predictions.

Once the PLS model is built, squared prediction error (SPE) can be
calculated for either the X or the Y block model (Eqs. 6.38 and 6.39)

(6.38)

y-yy) 2 (6.39)

where x and y are predicted observations in X and Y using the PLS model,
respectively, i and j denote observations and variables in X or Y, respec-
tively.

x and y in Eqs. 6.38 and 6.39 are calculated for new observations as
follows:

m

£a,new — / ^ •^new,j^a,j ^D.4UJ

J = l

A

,j — / ^ *a,newPa,-j

a=l

where waj denotes the weights, paj the loadings for X block (process
variables) of the PLS model, ta>new the scores of new observations and b
the vector of regression coefficients.

Multivariate control charts based on squared prediction errors (SPEx
and SPEy), biplots of the scores (ta vs ta+i) and the Hotelling's statistic
(T2) are constructed with the control limits. The control limits at signif-
icance level a/2 for a new independent t score under the assumption of
normality at any time interval are

±*n-l,«/2«e8t(l + 1/™)1/2 (6.43)

where n, sest
 are the number of observations and the estimated standard

deviation of the score sample at the chosen time interval and in-i,a/2 is
the critical value of the ^-student test with n — 1 degrees of freedom at
significance level a/2 [214, 435]. The Hotelling's statistic (T2) for a new
independent t vector is calculated as [594]

rpi A.T Q-IJ. •"•\n ~ *•) z? (a AA\
* — tnew^ tnew ~ —7 T^^A,n-A (6.44)

Copyright © 2003 by Taylor & Francis Group, LLC



268 Chapter 6. Statistical Process Monitoring

where S is the estimated covariance matrix of PLS model scores, A the num-
ber of latent variables retained in the model and FA,H-A the F-distribution
value. The control limits on SPE charts can be calculated by an approxi-
mation of the x2 distribution given as SPEQ = gXha [?6] • This equation is
well approximated as [148, 255, 435]

SPEa * gh I - (6.45)

where g is a weighting factor and h degrees of freedom for the x2 distribu-
tion. These can be approximated as g = v/(2m) and h = 2m2 /v , where v
is the variance and m the mean of the SPE values from the PLS model. All
of the aforementioned calculations are illustrated in the following example.

Example. Consider a continuous fermentation process where monitor-
ing will depend on how well the process is performing based on product
quality. Assume that ten process variables such as aeration rate and sub-
strate feed rate are used for the X block, and one quality variable, product
concentration for Y block. As the first step of the PLS modelling the out-
liers are removed and both blocks are scaled appropriately (autoscaling is
used for this case). A PLS model is built to relate ten process variables
with one quality variable. A data window of 100 observations are taken as
in-control operation. In order to decide the number of latent variables to
be retained in the model, PRESS and CUMPRESS values are calculated
based on cross-validation (Figure 6.12).

Only the first two latent variables are used in the monitoring procedure
since they explained 88.10% variation in Y (Table 6.2) and the decrease
in the CUMPRESS value by adding the third latent variable is small (only
an additional 0.83% of the variance of Y). A step decrease (30% off the
set point) into substrate feed rate was introduced after 100th observation
until 150£/i observation (Figure 6.12). It is desired to detect this change
based on its effects on the quality variable (product concentration). Both

Table 6.2. Percent variance captured by PLS model

LVno.
1
2

X-block

This LV Total
27.19 27.19
10.98 38.17

Y-block

This LV Total
75.42 75.42
12.67 88.10
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SPE (Figure 6.12(c)) and T2 (Figure 6.12(e)) charts for X block have de-
tected this change on time. Biplot of the latent variables also shows an
excursion from the in-control region defined by ellipses and the score val-
ues come back to the in-control region after the change is over (Figure
6.12(b)). SPE of Y block shows an out-of-control situation as well (Figure
6.12(f)). Although the disturbance is over after 150th observation (Figure
6.12(c)-6.12(e)), product quality seems to deteriorate because the predic-
tion capability of PLS model becomes poor after 150th observation (Figure
6.12(d)) suggesting a change in the quality space which is different than
the one reflected by PLS model.

6.3 Data Length Equalization and Determi-
nation of Phase Landmarks in Batch Fer-
mentation

Most batch processes, including many fermentation processes, pass through
several phases based on complex physiological phenomena during the prog-
ress of the batch (Figure 6.13). In this book, we used the term "stage"
to refer to different process operations such as fermentation and separa-
tion, and the term "phase" to refer to distinct episodes in time during
the progress of the batch where qualitatively different activities take place.
Since batch fermentation time varies from batch to batch due to complex
physiological behavior and operational changes, the data sets for different
batches will have different lengths and shifted phase changing points or pro-
cess landmarks. These shifts can affect monitoring activities and generate
false alarms. Consequently, alignment of landmarks is necessary for com-
paring similar events. Multivariate analysis requires the data to be stacked
in a matrix (or in a three-way array) prior to empirical modelling. Several
techniques have been suggested for batch data length synchronization and
equalization [270, 296, 418, 522, 641]. Cutting batch data lengths to length
of the variable with the shortest data sequence is not recommended because
of significant information loss generated by discarding data. When the time
between the shortest batch and the longest batch is large, or the process
in question is very sensitive to small changes in operational or environmen-
tal conditions, robust and generic methods are needed to synchronize and
equalize data lengths.

Two problems will be addressed in this section: equalization of batch
data lengths, and detection and alignment of phase change landmarks.
Three methods are discussed for equalizing batch data lengths:

• Indicator Variable Technique
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Figure 6.12. SPM charts based on PLS model for monitoring a faulty case
(step decrease in substrate feed rate).
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• Dynamic Time Warping (DTW)

• Curve registration

The simple popular technique based on an indicator variable is discussed
in Section 6.3.1. Then, the dynamic time warping method is presented in
Section 6.3.2. Finally, time warping by functional data analysis (also called
curve registration) is discussed in Section 6.3.3 and comparative examples
are provided.

6.3.1 Indicator Variable Technique
This technique is based on selecting a process variable to indicate the
progress of the batch instead of time. Each new observation is taken rel-
ative to the progress of this variable. The indicator variable should be
smooth, continuous, monotonic and spanning the range of all other process
variables within the batch data set. Linear interpolation techniques are
used to transform batch-time dimension into indicator variable dimension.
This variable should be chosen appropriately such that it also shows the
maturity or percent completion of each batch. This variable can be for ex-
ample percent conversion or percent of a component fed to the fermenter.
For monitoring new batches, data are collected from all process variables

o
D.
d
§
o

CO

o
CO

Figure 6.13. Different phases (landmarks) of penicillin fermentation in a
batch cultivation.
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at specified time intervals and then adjusted with respect to the indicator
variable. In this technique, a measure of the maturity or percent comple-
tion of any batch is provided by the percentage of its final value that has
been attained by the indicator variable at the current time. Several suc-
cessful applications of this approach can be found in the literature, mostly
for batch/semi-batch polymerization processes, reaction extent or percent
of component fed being the indicator variables [296, 418]. An application
for fermentation processes has been also given in the literature [522].

Choosing an indicator variable in batch fermentation processes depends
on the process operation and characteristics. If the process is a batch fer-
mentation, the choice of this variable is simpler than processes with batch
and fed-batch phases. For batch fermentations, there may be several vari-
ables, which can serve as indicator variables such as substrate concentra-
tion, product concentration or product yield. In the fed-batch case, in
addition to the aforementioned variables, percent substrate fed is also an
indicator variable. This percentage is calculated by fixing the total amount
of substrate added into the fermenter based on some performance crite-
ria. This end point (total amount of substrate fed), which is eventually
reached in all batches, defines a maturity point. For more complex oper-
ations such as batch operation followed by fed-batch operation, which is
very common for non-growth associated products such as antibiotics, dif-
ferent approaches to choosing indicator variables can be considered. Batch
and fed-batch phases of the operation can be treated separately so that
appropriate indicator variables can be determined for individual phases.
Implementation of this two-phase operation is illustrated in the following
example.

Example. Assume that data are available from 5 runs of a batch fol-
lowed by fed-batch penicillin fermentation. Potential process variables are
shown in Figure 6.14 for all batches before data pretreatment. Based on
simulation studies, data were collected using 0.2 h of sampling interval on
each variable for each batch resulting in total batch lengths varying be-
tween 403.8 h (2019 observations) and 433.6 h (2168 observations). When
these variables are assessed for use as an indicator variable, none of them
seem appropriate. Most of these variables contain discontinuities because of
the two operating regions (batch and fed-batch) and some of them are not
smooth or monotonically increasing/decreasing. Since none of the variables
can be chosen as an indicator variable that spans the whole duration of fer-
mentation, a different approach is suggested. The solution is to look for
different indicator variables for each operating region. In order to achieve
this mixed approach fermentation data are analyzed. For the first operating
(batch operation) region, substrate concentration in the fermenter can be
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Figure 6.14. Output variables for the five batches. S: Substrate cone.,
DO: Dissolved oxygen cone., X: Biomass cone., P: Penicillin cone., V: Cul-
ture volume, CO2: CO2 cone., T: Temperature in the fermenter and Q:
Generated heat [62, 603].

considered as a good candidate since it can be started from the same initial
value and terminated at the same final value for each batch. The initial and
final substrate concentrations are fixed to 15 g/L and 0.4 g/L, respectively
to implement this idea. Instead of reporting data as a function of time for
these batches, data are reported on each variable for each batch at every
decrease of 0.5 g/L in substrate concentration using linear interpolation.

Choosing substrate concentration decrease (substrate consumption) as
an indicator variable for the batch operation provides another advantage,
it defines the end of batch operation or in other words the switching point
to fed-batch operation. Since the operating conditions are slightly different
and there are some random changes in microbial phenomena, the switch-
ing point is reached at different times for each batch resulting in different
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number of observations (Figure 6.15). While the number of observations is
varying between 210 and 218 before equalization, after implementing the
indicator variable technique there are only 147 observations taken from each
batch.

Substrate concentration cannot be used for the fed-batch operation re-
gion since substrate is added continuously to promote penicillin production
and biomass maintenance such that substrate concentration approximately
constant until the end of the run. In the second region (fed-batch), amount
of substrate fed to the fermenter can be considered as an indicator variable
since it somehow defines the end point of the fermentation. Figure 6.16 is
used to decide the approximate amount of substrate needed to reach the
desired final penicillin concentrations under normal operating conditions.
Analysis shows approximately 16 L of substrate would be necessary for each
batch. To calculate this amount, fermentations were carried out fairly long
enough (approx. 600 h) to see a decline in penicillin concentration. A mean
trajectory is then calculated and its maximum is used to determine the to-
tal amount of substrate to be added. Batch/fed-batch switching times,
maximum and final penicillin concentrations for each batch including mean
trajectory values are given in Table 6.3. The following calculations then
become straightforward

-Pfinai = 1.3525 g/L , ?switch = 42 /i, tfinai = 420 h,

Hotal substrate added = ^-fjA^ (6-47)

i

where Pfinai denotes final penicillin concentration, Switch beginning of the
fed-batch period, tfinA\ end of fermentation for the mean trajectory, Fi,
instantaneous value of the substrate feed rate and Ati, instantaneous sam-
pling interval (which is 0.2 h in the example). When the maximum of
penicillin concentration of the mean trajectory is used by assuming that
the values Pmax = 1.3664 g/L, tswjtch — 42.0 h, tfina,\ = 446.2 h and
Fi — 0.0394 L/h are predetermined by analyzing the mean trajectory for
penicillin concentration, the approximate total amount of substrate is cal-
culated as Fx x (ffinai - £switch) = 0.0394 x (446.2 - 42.0) = 15.9055 L.
This amount can be calculated more accurately by using Eq. 6.47 resulting
a closer value to 16 L. Although 16 L is not the exact outcome of the
calculations, it was chosen to round off the number and introduce a little
safety margin (using a little more substrate than the required minimum).
The resulting final penicillin concentrations do not deviate substantially
from their maximum values (Table 6.3) verifying this choice. The result
of equalization is shown in Figure 6.17 for several variables based on the
calculations above.
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Figure 6.15. Substrate and dissolved oxygen concentrations of five batches
(a) before and (b) after equalization.
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Figure 6.16. Penicillin concentration profiles of five batches.

Table 6.3. Critical values on penicillin concentration profiles

Batch No

1
2
3
4
5

* mean

Batch Operation

^switch

43.2
43.6
42.8
42.0
42.6

42.0

No. of obs.

216
218
214
210
213

210

Fed-batch Operation

tfinal

432.0
421.8
411.6
403.8
433.6

420.0

No. of obs.

1944
1891
1844
1809
1955

1890

Pfinal

1.3392
1.3574
1.3470
1.3935
1.3328

1.3525

-t"max

1.3392
1.3574
1.3736
1.4101
1.3332

1.3664
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Figure 6.17. Equalized batch lengths of five batches based on indicator
variable technique in fed-batch operation.

6.3.2 Dynamic Time Warping

When an appropriate indicator variable does not exist, other techniques can
be implemented to synchronize data and equalize batch lengths. Dynamic
Time Warping (DTW) technique is one of them. It has its origins in speech
recognition. Unsynchronized feature vectors (trajectories) are a common
problem in speech recognition [123, 406, 446, 547] since the same word can
be uttered in varying intensities and durations by different speakers. Speech
recognition systems should have the ability to interpret words independent
of speakers [484]. This is analogous to batch process trajectory synchro-
nization problem since similar events that take place in each batch run are
required to be matched. DTW is a flexible, deterministic, pattern match-
ing scheme which works with pairs of patterns. The time-varying features
within the data are brought into line (synchronized) by time normaliza-
tion. This process is known as "time warping" since the data patterns are
locally translated, compressed, and expanded until similar features in the
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patterns between reference data and the new data are matched resulting
in the same data length as the reference data [252, 533]. Basic description
of DTW and different algorithms for implementing it have been reported
[252, 406, 533, 485].

One of the pioneering implementations of DTW to bioprocesses was
suggested by Gollmer and Posten [197] on the detection of important pro-
cess events including the onset of new phases during fermentations. They
have provided a univariate scheme of DTW for recognition of phases in
batch cultivation of S. cerevisiae and detection of faults in fed-batch E.
coli cultivations. Another application of DTW (by Kassidas et al. [270])
has focused on batch trajectory synchronization/equalization. They have
provided a multivariate DTW framework for both off-line and on-line time
alignment and discussed a case study based on polymerization reactor data.

To introduce the DTW theory, consider two sets of multivariate ob-
servations, reference set R, with dimensions j x P, and test set T, with
dimensions i x P (Eq. 6.48). These sets can be formed from any multivari-
ate observations of fermentation processes (or batch processes in general)
where j and i denote the number of observations in R and T, respectively,
and P the number of measured variables in both sets as p — 1, 2, . . . , P.

R(j, p) : Reference Set, j = 1, 2, . . . , M

T(i,p): Test Set, i = 1,2,..., N

R = rip,r2p,...,rjp,...,rMp

T = tip,t2p,...,tip,...,tNp (6.48)

Data lengths TV and M will not be equal most of the time because the
operating time is usually adjusted by the operators to get the desired prod-
uct quality and yield in response to variations in input properties for each
batch run and the randomness caused by complex physiological phenomena
inherent in biochemical reactions. This problem could be overcome using
linear time alignment and normalization based on linear interpolation or
extrapolation techniques. Let i and j be the time indices of the obser-
vations in T and R sets, respectively. In linear time normalization, the
dissimilarity between T and R for any variable trajectory is simply denned
as

N

) = d ( i , j ) (6-49)

where i and j satisfy l

i = j. (6.50)

1Since the indices i and j are integers, some round-off rule is implied in Eq.6.50 [484].
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r :

M
Temporal
Fluctuation

Region

1 N

Figure 6.18. Linear time alignment of two trajectories with different dura-
tions [484].

Note that the dissimilarity measure d(ti, TJ] between T and R is denoted as
d ( i , j ) for simplicity of notation in Eq. 6.49. Hence, the distortion measure
assessment will take place along the diagonal straight line of the rectangu-
lar (ti, TJ] plane shown in Figure 6.18. Linear time normalization implicitly
assumes that the temporal trajectory variations are proportional to the
duration of the batch (or the number of samples made on each variable).
However, since the timing differences between the two batches will be local
and not global, a more general time alignment and normalization scheme
would be appealing, including the use of nonlinear warping functions that
relate the indices of the variables in two trajectory sets to a common "nor-
mal" time axis k. Time warping has been developed to deal with these
issues by using the principles of dynamic programming (that is why it is
called as dynamic time warping) [252, 485, 533].

The objective in time warping is to match the elements of each pattern
(trajectory in our case) T and R so as to minimize the discrepancy in each
pair of samples. Similar events will be aligned when this is achieved using
a nonlinear warping function. This function will shift some feature vectors
in time, compress and/or expand others to obtain minimum distances. For
each vector pair in T and R, DTW is performed on a M x N grid under
a number of constraints. An example of pattern matching between two
vectors is shown in Figure 6.19.
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^c(k): Warping function

1 2 3 4 5 6 7 8 N=9

Figure 6.19. Nonlinear time warping process details. The point at (5,4)
aligns £(5) with r(4).

Let the warping function be

C = c(l), c ( 2 ) , . . . , c ( / e ) , . . . , c(K) ; max(JV, M) ^ K ^ N + M (6.51)

where each c is a pair of indices to the trajectory elements being matched
(position in the grid):

Thus, C can be considered as a model of the time axis fluctuation in a given
pattern sequence. For each c(k) we have a cost function or a local distance
measure which reflects the discrepancy between the paired samples. There
are many definitions of local distance calculation such as Euclidian distance,
Mahalanobis distance and Chebyshev norm [252, 441, 485, 533]. A typical
local distance is the squared difference between the samples

/7 y»| I/* \\ — f i \ f i ( K*\ i ( K*\\ — ( " / " • / » \ T* / i \ I ( r l ^ * ^ iLt Ol rti / — I x / i / Y / v / . / l n / H — V Z ( fc i 1\ KI / ' \ \ J ' * - J * ~ J i

The most commonly used local distance for multivariate data is the weighted
quadratic distance

d[c(k)} = (6.54)

where Wp is a positive definite weight matrix that shows the relative im-
portance of each variable p.
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c,(k)=i(k) *

1 2

M

c2(k)=j(k)

Figure 6.20. An example of time warping of two features vectors (made
on the same object); time warping functions c\ and c<± map the individual
time indices i and j, respectively, to the common time index k [484].

The warping function C is required to minimize the overall cost function
for any path [406, 446, 484, 533]

(6.55)

where D[i(k), j(k)} = D(t, r) is a normalized total distance between the two
trajectories along the path of length K, w(k) is a weighting function for the
local distances and N(w] is a normalization factor which is a function of
the weighting function. Now, the problem is reduced into an optimization
problem that can be written as

ZT(C) =
1

(6.56)
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where D*(C) denotes the minimum normalized total distance and C* the
optimal path. This optimization problem can be efficiently solved by using
dynamic programming techniques [49, 53]. Dynamic programming is a well
known optimization technique used extensively in operations research for
solving sequential decision problems. The decision rules about determining
the next point (location) to be visited following a current point i is called
"policy". Dynamic programming determines the policy that leads to the
minimum cost, moving from point 1 to point i based on the Principle of
Optimality denned by Bellman [49] as

An optimal policy has the property that, whatever the initial state
and decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

For time normalization problem this principle can be recast as follows [270,
406, 484]:

1. A globally optimal path is also locally optimal. If C* is determined
as the optimal path, any (i,j) point on C* is also optimal.

2. The optimal path to the grid point (i,j) only depends on the values
of the previous grid points.

Before delving into the integration/formulation of dynamic programming
and time warping, constraints on the warping function must be discussed.

Warping Function Constraints

There are some restrictions imposed on the warping function. Since it
represents a model of the time axis fluctuation in feature patterns (batch
trajectories), it should properly approximate the properties of the actual
time axis. Typical essential DTW constraints include:

1. Endpoint Constraints (Boundary Conditions).
For batch process trajectories, this condition is easy to visualize:

Beginning point : i ( l } = 1, j ( l ) = 1 or c(l) = (1,1) (6.57)

Ending point : i(K] = N, j ( K ) = M or c(K) = ( N , M )

2. Monotonicity Conditions.
The temporal order of the measurements collected on each variable is
of crucial importance to their physical meaning. Hence, imposing a
reasonable monotonicity constraint (monotonically nondecreasing se-
quence requirement) to maintain the temporal order while performing
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DTW is necessary:

i(k + l)>i(k) (6.58)

As shown in Figure 6.20, any path on which -D(i,r) is calculated
will not have a negative slope. Basically, this constraint prevents the
possibility of reverse warping along the time axis that is physically
meaningless.

3. Local Continuity Constraints.
There are two reasons to impose local continuity constraints:

(i) To guarantee that excessive compression or expansion of the time
scale is avoided (neither too steep nor too gentle a gradient of
fluctuations should be allowed).

(ii) To compare events in their natural temporal order while keeping
any potential loss of information to a minimum [406, 484, 533].

This is a very important constraint since it defines the set of potential
preceding points (predecessors) in the grid. Obviously, it is possible
to specify many sets of such local constraints. In order to visualize
the concept, consider the following local transition rule between two
consecutive points on the path c, an example suggested by Sakoe and
Chiba [533],

i(k) - i(k - 1) < 1 and j ( k ) - j(k - 1) < 1. (6.59)

Inequalities in Eq.6.59 impose that the warping function c should not
skip any points in both vectors. This can also be formulated as

(6.60)

If (z,j) is the kth path point in the grid shown in Figure 6.21, then
the previous path point, c(k — 1) can only be chosen from a set of
preceding points (Eq. 6.60). In this simple example, [i(k),j(k]] can
only be reached by either from [i(k),j(k - 1)} or [i(k - l ) , j ( k - 1)] or
[i(k — 1), j(k}}. This is also known as "no slope constraint" case. Ob-
viously, the control of the slope would be of importance for the correct
alignment. Sakoe and Chiba [533] have proposed a slope constraint
on the warping function using a slope intensity measure P — q/p

Copyright © 2003 by Taylor & Francis Group, LLC



284 Chapter 6. Statistical Process Monitoring

(Figure 6.22). The intensity measures ensure that, if the warping
function c(k) moves forward in the horizontal or vertical direction
p consecutive times, then it is not allowed to proceed further in the
same direction before moving at least q times in the diagonal direction
(Figure 6.22). The larger the P value the more rigidly the warping
function will be restricted. If the slope intensity (P) is too severe,
DTW would not work effectively. If it is too lax, then the discrimi-
nation between the trajectories will be degraded. Consequently, it is
necessary to set a proper value. Sakoe and Chiba [533] have reported
that they have observed the best results with P = I although that
depends on the system under investigation. This constraint also helps
reduce search paths through the grid while maintaining a reasonable
distortion in time axis. A number of slope intensities has been pro-
posed [252, 406, 533]. Local continuity can also be expressed in terms
of incremental path changes [406, 484]. A path can be denned as a
sequence of moves associated with a pair of coordinate increments as

? ->( t i , r i ) ( t 2 , r 2 ) . . . ( tx , r K ) (6.61)

where the indices refer to normalized time increments (or location
of the points on the warping function). For illustration purposes,
consider the slope intensity P = 1 case of Sakoe and Chiba [533] that
has also been studied by Myers et al. [406] (Figure 6.23). According
to this description, for instance, the path in Figure 6.19 contains the
following transition sequence:

3> -> (1, 1)(1,0)(1, 1)(1, 1)(0, 1)(2, 1)(1, 0)(1, 1). (6.62)

Most common local transitions are given in Figure 6.24.

4. Slope Weighting.
Another constraint that can be included to optimal path search de-
nned in Eq. 6.55 (distance calculation) is the weighting function,

Figure 6.21. Sakoe-Chiba local transition constraint with no constraint on
slope [533].
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11 * p-times 'I.
(a) Minimum slope (b) Maximum slope

Figure 6.22. Sakoe-Chiba slope constraints [533].

Figure 6.23. An example of local continuity constraint expressed in terms of
coordinate increments (Sakoe-Chiba local transition constraint with slope
intensity of 1) [406, 484, 533].

w(k). This function depends only on the local path and controls the
contribution of each local time distortion d[i(k}, j(k)].

Based on the local continuity constraint used, many slope weighting
functions are possible. Sakoe and Chiba [533] have proposed the
following four types of slope weighting functions and their effects on
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(a) Type I

(c) Type III

<Py

<E

(e) Type V

(b) Type II

(d) Type IV

(f) Type VI

(g) Type VII (h) Type Itakura

Figure 6.24. Local continuity constraints studied by Myers et al. [406, 533].
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DTW performance were extensively studied by Myers et al. [406]:

Type (a) : w(k) = mm[i(k) - i(k - l)J(k) - j(k - 1)] (6.63)

Type (b) : w(k) = max[t(fc) - i(k - 1), j ( k ) - j(k - 1)] (6.64)

Type (c) : w(k) = i(k) - i(k - 1) (6.65)

Type (d) : w(k) = i(k) - i(k - 1) + j ( k ) - j(k - 1) (6.66)

where it is assumed that i(Q) = j(0) = 0 for initialization. Figure
6.25 illustrates the effects of weighting functions on Type III local
continuity constraints [406]. The numbers refer to particular weight-
ing coefficient (calculated by the relevant formula) associated with
each local path. Note that, since the increase in distortion will cause
a decrease in the likelihood of proper matching, larger weightings will
lead to less preferable paths. For instance, in Figure 6.25(b), Type
(b) weighting will promote diagonal moves in the search grid.

(a) (b) w(k)=max(i(k)-i(k-l)

(c) (d)

Figure 6.25. Sakoe-Chiba slope weightings for Type III local continuity
constraint studied by Myers et al. [406, 533].

When these four types of weighting functions are applied to differ-
ent types of local continuity constraints, sometimes 0 weight can be
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assigned to certain local paths. When this happens, weightings of
inconsistent paths are smoothed by redistributing the existing weight
equally on each move. This situation is illustrated using Sakoe and
Chiba's Type II local constraint on Figure 6.26. Similar smoothing
can be applied to different local continuity constraints given in Figure
6.24 if needed.

The calculation of accumulated distance in Eq. 6.55 requires an over-
all normalization to provide an average path distortion independent
of the lengths of the two patterns being synchronized. The normal-
ization factor N(w) is a function of the slope weighting type chosen
such that

K
N(w} = ̂ Tw(k). (6.67)

k=i

For instance, when Type (c) and Type (d) slope weighting constraints
are used, the overall normalization factors would be

= ]T[i(/e) - i(k - l}\ = i(K) - i(Q) = N (6.68)
fc=l

and

fc=l
= i(K)-i(Q)+j(K)-j(0)=N + M (6.69)

respectively, independent of the length of the warping functions [484].
Type (a) and type (b) slope weighting constraints will produce nor-
malization factors that are strong functions of the actual paths, hence
Type (c) and (d) are preferred in most of the applications.

5. Global Path Constraints.
Since local continuity constraints are imposed on the warping func-
tion, certain portions of the i,j grid (search space in mapping) are
excluded from the region where the optimal warping path can be lo-
cated. For each type of local constraints the allowable regions that
determine the maximum and minimum amounts of expansion (or com-
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(c)

(d)

Figure 6.26. Uniformly redistributed (smoothed) slope weightings for Type
II local constraint [406, 484, 533].
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pression) can be defined using the two parameters Qmax and Qmin'-

= max
£

= m n

Kt

E
-* - c

£

Kt
(t)

(l)

(6.70)

(6.71)

where £ denotes the index of the allowable path 7g in the constraint
set, and Kt is the total number of moves in 3V The monotonicity
conditions in Eq. 6.58 hold as

Pk\q(k}>Q for all k. (6.72)

For instance, in Sakoe-Chiba local continuity constraints given in Fig-
ure 6.23, I = 1,2,3, and Kt = 2,1,2, respectively for O^O^^s re-
sulting in Qmax = 2 and 1/2. Normally, Qmax = 1/Q
The values of Qmax and Qmin for different types of local continuity
constraints are given in Table 6.4.

The boundaries of the allowable regions (global path constraints) can
be defined using the values of Qmax and Qmin as

(6.73)

M (6.74)

Eq. 6.73 defines the range of the points that can be reached using a
legal path based on a local constraint from the beginning point (1,1).
Likewise, Eq. 6.74 specifies the range of points that have a legal
path to the ending point (N, M) defined by Itakura [252] (Itakura
constraints). Figure 6.27 shows the effects of the global constraints
on the optimal search region defined by the parallelogram (Itakura
constraints) in the (TV, M) grid. An additional global path constraint
has been proposed by Sakoe and Chiba [533] as

\i(k) - j(k)\ < K0 (6.75)

where KQ denotes the maximum allowable absolute temporal differ-
ence between the two variable trajectories at any given sampling in-
stance. This constraint further decreases the search range as well as
the potential misalignments by trimming off the edges of the paral-
lelogram in the grid.
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Table 6.4. Allowable local path specifications and associated Qmax and
Qmin values for different types of local continuity constraints given in Figure
6.24 [484]

Type Allowable paths Vmin

CO

II 1/2

III 1/2

IV 1/2

V 3>

IPs -» (i,ixo,i)(o,i)

1/3

VI 3/2 2/3

VII 1/3

Itakura (1,1) (Note: consecutive (1,0)(1,0)
(1, 2) not allowed)

1/2

Different slope constraints result in different forms of dynamic pattern
matching that can be classified as either symmetric or asymmetric algo-
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rithms. The two most commonly used ones are Types (c) and (d)

Type (c), asymmetric : w(k) = i ( k ) — i(k — 1), i(0] = 0 (6.76)

Type (d), symmetric : w(k) = i ( k ) — i(k — 1) + j ( k } — j(k — 1),

i (0)=j(0)=0 (6.77)

resulting in asymmetric and symmetric forms, respectively. In the asym-
metric form, time normalization is realized by transforming the time axis
of a feature vector onto that of the other, resulting in the expansion or
compression of the second feature vector. The asymmetric algorithm will
map the time index of the test trajectory (T) that is placed on the horizon-
tal axis onto the time index of the reference trajectory (R) that is placed
on the vertical axis. As a result of such matching, the optimal path will
contain as many points as the test set does (which is N in our example)

r(j\ _ r?- » ( j \ ] (R 7g\
\~s\L 1 \ 1 J \ } \* I W • I w /

(N,M)

(1-1) (Ko+1,1)

Figure 6.27. Global path constraints on the search grid (N x M) [484] for
Qmax = 2 and K0 = 2 N - M given that (KQ > \i(K] - j(K}\).
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Consequently, the optimal path will pass through each point on t but may
skip some on r.

A symmetric algorithm, however, will transform both time axes onto a
temporarily denned common axis with a common index, k. In this case,
the optimal path will go through all the points in both trajectory sets. Fur-
thermore, for the same reference trajectory set, the number of points in the
optimal path will be different for each new test trajectory set. Although
each test trajectory individually will be synchronized with the reference
trajectory, they will not be synchronized with each other, resulting in a set
of individually synchronized batch trajectories with unequal batch lengths.
If an asymmetric DTW is used, it will skip some points in the test trajec-
tory but will produce synchronized (with reference and each other) batch
trajectories having equal length with the reference set. Depending on the
choice of the reference set, some of the inconsistent features in T that may
cause false alarms in statistical process monitoring will be left out. In order
to compromise between the two extremes, solutions that are presented in
the following sections have been suggested [270].

Dynamic Programming Solution

Since the search space for optimal path (minimum accumulated distance)
can be reduced by imposing local and global constraints, dynamic pro-
gramming can be used to develop the DTW algorithm. In addition to
their contribution on more realistic pattern matching, local and global con-
straints reduce the search space so that the computational requirements
will be lower. Dynamic programming will be used to find a move sequence
on the constrained i x j grid under the given local continuity constraints
(local transitions) and the boundary conditions (usually fixed end-points)
to minimize the following accumulated distance starting from point (1,1)
to (i, j):

K

DA(i,j)=mm^d[i(k),j(k)}w(k). (6.79)
k=l

When point (TV, M) is reached, the time normalized distance is calculated
to evaluate the performance of the DTW algorithm under the chosen con-
ditions.

Dynamic programming proceeds in phases, the first phase is the forward
algorithm and second is the backward tracking (optimal path reconstruc-
tion). Assume that the test pattern is placed on the horizontal axis and the
reference pattern on the vertical axis. After initialization, for each incre-
ment made on i — axis (abscissa), all possible points (i.e., all points within
the allowed region) along the j — axis (ordinate) are considered based on the
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local continuity constraints chosen. For each point, a number of possible
predecessors and associated accumulated costs are determined and stored
to construct the optimal path at the end such that

= d[c(k)}+ mm [D(Cfc_i)] (6.80)
legal c(k-l)

where D(Ck) — DA(i, j)- Eq. 6.80 defines the accumulated distance that is
comprised of the cost of particular point [i(k),j(k)j itself and the cheapest
cost path associated with it. The second term in Eq. 6.80 requires a
decision on the predecessor. In Table 6.5, dynamic programming recursion
equations are summarized for different local continuity constraints when
Type (d) slope weighting is used. Note that slope weightings of the paths in
Table 6.5 are smoothed according to Figure 6.26. To illustrate the progress
of dynamic programming procedure, assume that Type (d) slope weighting
(symmetric) in Eq. 6.66 and Type III local continuity constraint (Figures
6.24(c) and 6.25(d)) are used (Figure 6.24).

During the forward phase, transition cost to the accumulated distance
at point ( i , j ) can be found by solving the following simple minimization
problem (dynamic programming recursion equation)

DA(i,j) = (6.81)

The local continuity constraints chosen above mean that the point ( i , j ) can
only be reached by either points (i — 2, j — 1), or (i — 1, j — 1) or (i — 1, j — 2)
as shown in Figure 6.24(c). To initialize the iterative process, DA(^-, 1) can
be assigned to 2d(l, 1). The forward phase finishes when point [i(K),j(K)]
is reached and the minimum normalized distance, D*(C), in Eq.6.56 is
computed (note that N(w) = i(K] + j ( K ) for Type (d) slope weighting).

At this point the second phase, which is the reconstruction of the op-
timal path, starts. Starting from point [i(K),j(K)] (say i ( K ) = N and
j ( K ] = M) in the search grid and using the stored information on opti-
mal transitions, first the predecessor of point (N, M) is located, then the
predecessor of the latter is identified. This is repeated until point (1,1) is
reached. At the end of the second phase, the optimal path is reconstructed
and as a consequence pattern indices are matched accordingly.

Example Consider two artificial signals to illustrate the DTW algorithm.
r is a (1 x 60) reference signal and t is a (1 x 50) test signal (Figure 6.28(a)).
Boundary conditions are assumed as

r(0) = *(0) = 0 and j(M) = 60, i(N) = 50. (6.82)
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Table 6.5. Accumulated distance formulations used for some of the local
constraints for Type (d) slope weighting case [406, 484]

Type Accumulated Distance Function

II

III

IV

m n

m n

m n

mn

V

Itakura

m n

min

2d(t,j)

DA(i - 3, j - 1) + |[d(i - 2, j) + d(i - 1, j) + d(i, j)]
D^(i - 2, j - 1) + |[d(i - 1, j) + d(i, j)]
D,i(i-l,j -l) + 2d(i,j)
D^(i - 1, j - 2) + |[d(i, j - 1) + d(i, j)}
DA(i - 1, j - 3) + |[d(i, j - 2) + d(t, j - 1) + d(i, j)]

Type V local continuity constraint was used along with a Type (d) slope
weighting function to produce the results in Figure 6.29 (see Figure 6.24(e)
and Table 6.4 for definitions). For simplicity, Sakoe and Chiba band global
path constraint was applied as shown by the shaded region in Figure 6.29.
The resulting synchronized signals are now comparable since the similar
features were aligned by DTW (Figure 6.28(b)). The signal magnitudes at
the end points were different, and DTW has preserved this difference while
adjusting the time scale.
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(a) Reference: r and Test: t signals before DTW

1 -

0.8

0.6

0.4
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-0.2-

0 10 20 30 40 50 60
(b) Reference: r and Test: t signals after DTW

Figure 6.28. A univariate application of DTW.
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C(K): Warping Function

(1,1)

(50,60)

test

Figure 6.29. Optimal path determined by dynamic time warping function.

Multivariate Iterative DTW Framework for Equalization and Syn-
chronization of Batch Trajectories

To implement DTW technique to equalize/synchronize a set of trajectories,
some modifications need to be performed. As mentioned earlier for the uni-
variate case, DTW works with pairs of patterns, and for each pattern only
two data points (on the reference and the test set) are analyzed at each
step of the algorithm. However, in the multivariate case, there are two
vectors of multivariate observations to be considered. Thus, the relative
importance of the variables should be taken into consideration by giving
more weight to some variables such that the synchronization is conducted
more on those variables. The underlying idea is to utilize variable trajec-
tories that contain more structural information about the progress of the
process. Monotonically increasing or decreasing, smooth variables will be
given more weight since they resemble the time axis behavior.

It is assumed that an appropriate scaling was performed prior to imple-
mentation of DTW. Scaling is an important issue since DTW is a distance-

Copyright © 2003 by Taylor & Francis Group, LLC



298 Chapter 6. Statistical Process Monitoring

based technique. One can calculate the means and standard deviations for
each variable in each batch trajectory set, take the average of those and
use to autoscale the set of trajectories to a common y-axis scale which was
used in the following example in this book. The average mean and stan-
dard deviation should be stored for rescaling and scaling of future batches.
The iterative synchronization procedure that will be presented here is an
adaptation of Kassidas and his co-workers' approach [270].

Consider T^, i = !,...,!/ set of trajectories of normal operation. Each
trajectory set in these batches will contain unequal data lengths as well as
unsynchronized trajectories. Each T^, is a matrix of Ng x P where A^ is the
number of observations and P is the number of variables, as given in Eq.
6.48. It is also assumed that a reference batch trajectory set R/ (M x P)
has been defined. The objective is to synchronize each T^ with R/.

After scaling and choosing one of the batches as reference batch run,
the next step becomes deciding on which DTW algorithm to implement.
If a symmetric algorithm is used, the resulting trajectories will be of equal
length that is greater than the length before synchronization since a sym-
metric algorithm projects the time indices of both test and reference trajec-
tories onto a common time scale. After each round of synchronization for
each batch, the resulting batch lengths will be different even though each
test batch will be synchronized with the reference batch individually but
not with each other. However, if one chooses to implement an asymmetric
algorithm, the optimal path will go through each point on the reference
batch run but could skip some points on the test set. The resulting tra-
jectories will be of equal length with the reference set and each test set
will be synchronized with each other. Since the synchronized trajectories
may not contain all the data points that were in the original trajectories
before synchronization, some inconsistent features of the test trajectories
may be left out. A combined algorithm (a symmetric DTW followed by an
asymmetric DTW) has been proposed by Kassidas et al. to compromise
between the two extremes [270].

According to their proposition, conventional symmetric DTW is first
applied for each batch trajectory set. The resulting expanded trajectories
are then exposed to an asymmetric synchronization step. If more than
one point of T is aligned with one point of R/, they suggested to take the
average of these points of T and align this average point with the particular
point of R/ [270]. As shown in Figure 6.30 for one variable, both t% and
ti+\ are aligned with the same TJ of the reference trajectory. In this case,
the following averaged point is aligned with TJ instead
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Reference trajectory

Figure 6.30. Combined symmetric/asymmetric DTW matching.

This calculation can be extended to multivariate case by using the vec-
tor notation as (T| + Ti+i)/2 —> Rj. The resulting trajectory set will
contain the same number of observations although some of them are av-
eraged. Before applying DTW a number of calculations are required for
initialization as shown in Figure 6.31. The DTW/synchronization proce-
dure is performed for a specified number of iterations. In each iteration, the
weight matrix W is updated to give more importance to variables bearing
more consistent dynamic behavior (monotonically increasing/decreasing,
smooth, non-noisy, etc.). The weight matrix can also be assigned values
based on process knowledge, but when there is uncertainty or no such
knowledge, automatic updating of W based on calculations that will be
explained below becomes advantageous.

1. Select one of the batches (trajectory set) as reference batch
Rf = T^, (with rf the length of the reference batch)

2. Define the maximum number of iterations

3. Apply the DTW procedure outlined previously to synchronize/equalize
the test batches with the reference batch resulting in T£, i — 1, . . . , L,
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Calculate and store
average mean and
standard deviation

Scale each trajectory set,
using

I
Choose a Reference

Batch, R f =T ,

I
Define Boundary

Conditions for DTW

Choose Local and
Global Constraints for

DTW

Set W equal to Identity
Matrix of Size p-by-p

Figure 6.31. Initialization steps preceding multivariate DTW implementa-
tion.
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synchronized trajectory sets having the common duration r/ (i.e. each
TI will be a matrix of size (r/ x P) containing the synchronized vari-
able trajectories).

4. Compute the average trajectory for each variable

L

(6.84)

5. Compute the sum of squared deviations from T for each variable
1

L rf

11=1 m=l

Ti(m,p)-T(m,p) (6.85)

6. Normalize the weight matrix W so that the sum of the weights is
equal to the number of variables, p

W = W -r - T (6.86)

7. For the first couple of iterations (two or three would be sufficient)
use the same chosen reference trajectory R/. Set R/ = T for the
subsequent iterations.

8. Go to step 3 for the next iteration.

The change in the weight matrix can also be monitored to see the conver-
gence and to determine consistent variables.

Example Consider a set of unequal/unsynchronized trajectories of 13 vari-
ables collected from 55 normal operation runs of fed-batch penicillin fer-
mentation (L = 55, P = 13) at 0.2 h of sampling interval. The durations of
each batch trajectory set varies from 418.4 h (2092 observations) to 499.8 h
(2499 observations). Batch number 36 of length 445.6 h (2228 observations)
is chosen arbitrarily and it was found to be appropriate since its length is
close to the median length of 451 h (2255 observations). As a result, the
number of batches that will be expanded and the number of batches to
be compressed will be close. Prior to DTW implementation, the necessary
initial steps explained in Figure 6.31 were taken. Each variable was scaled
using averaged means and standard deviations to remove the effects of dif-
ferent engineering units. A low-pass filter was also used to remove white
noise from especially off-gas measurements such as CO<2 concentration. Fig-
ure 6.32 shows profiles of substrate, biomass, and penicillin concentrations
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Figure 6.32. Four variables (out of 13) of 55 good performance batches
before synchronization/equalization.

and temperature profiles before DTW. Fixed boundary conditions were
chosen for DTW as i ( l ) = j ( l ) = 1 and i(K] = N,j(K) = 2228. Type II
symmetric local continuity constraint (Figure 6.24(b)) with smoothed path
weightings and Itakura global constraint together with Sakoe and Chiba
band constraint (with Qmax — 2 and KQ — 30) were also used. DTW syn-
chronization procedure explained earlier was applied for a maximum of five
iterations. Batch 36 was used as a reference batch in the first two iterations.
Because of their monotonically decreasing, smooth behavior, biomass con-
centration and heat generated were assigned the highest weights throughout
the calculations. The percent change in the weight matrix W was given to
reflect this fact in Figure 6.33. The resulting profiles of the four variables
(out of 13) are presented in Figure 6.34. All of the trajectories are synchro-
nized and equalized to a common length of 445.6 h (2228 observations). D
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Figure 6.33. Percent weight change for the variables after five iterations.

6.3.3 Curve Registration
The curve registration problem casts the landmark alignment problem in
functional data analysis (FDA) framework [495]. FDA involves the esti-
mation of rath order linear differential operators L = WQ! + w\D + ... +
wm-iDm~1 + Dm where Lx = 0, and Dm denotes the rath derivative, and
the weights w are functions of the independent variable t. Let TV functions
Xi be denned on closed real interval [0,Tb] and hi(t) be a transform of t
for case i with domain [0,Trj]. The time of events must remain in the same
order regardless of the time scale. Therefore, the time warping functions
hi must be such that hi(ti) > ^(£2) for ti > £2- Define y(t) to be a fixed
(reference) function defined over [0,To] to act as a template (for example
a reference batch trajectory) for individual curves Xi such that after regis-
tration, the features of Xi will be aligned with the features of y. In discrete
values 7/j, k — 1, . . . , K,

= Xi [/ii(tfc)] + eik (6.87)
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Figure 6.34. Four variables (out of 13) of 55 good performance batches
after synchronization.

where e^ is a small residual relative to XT and roughly centered about 0
[495]. The curve registration task is to determine the time warping func-
tions hi so that the de-warped trajectories Xi[hi(tk}} can be interpreted
more accurately. The hi can be determined by using a smooth monotone
transformation family consisting of functions that are strictly increasing
(monotone) and have an integrable second derivative [494]:

D2h = qDh. (6.88)

A strictly increasing function has a nonzero derivative and consequently
the weight function q — D2h/Dh or the curvature of h. The differential
equation 6.88 has the general solution

h(t) = CQ + exp q(v}dv du
o Jo

1 expD-lq}(t] (6.89)
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where D~l is the integration operator and Co and C\ are arbitrary con-
stants [495]. Imposing the constraints /i(0) = 0 and /i(To) = T;, CQ = 0
and Ci = Ti/[{D-1exp(D-1q}}(TQ}]. Hence, h depends on q. The time
warping function h can be estimated by minimizing a measure of the fit T,j
of Xi[hi(tj)] to y. A penalty term in T,, based on q permits the adjustment
of the smoothness of hi [495]. To estimate the warping function /&j, one
minimizes

(6.90)
j

where ctj(tys are weight functions and

and Wj are weight matrices [495]. Weight matrices Wj allow for gen-
eral weighting of the elements and weight functions ctj (t} permit unequal
weighting of the fit to a certain target over time [495]. Parameter 77 ad-
justs the penalty on the degree of smoothness and q is expressed as a linear
combination of B-spline bases

K

fc=0

B-splines are used in this study as the polynomial basis for performing
curve registration because calculating the coefficients of the polynomial
is well defined. When estimating the solution to transforming particular
waveforms into the B-spline domain, the required number of calculations
increases linearly with the number of data points [494]. The derivative of
T^ with respect to the B-spline coefficient vector c is

dh(t]
dc ^J J V ' dc 6h

x (Djy(t)-Djx[h(t)])dt + rj - dt. (6.93)

The derivative [dD^x(h)/dh] must be estimated with a smoothing tech-
nique to ensure monotonic increase [495].

One can use either an a priori local time stamp indicator or an optimization
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procedure for determining the landmarks in a reference set. The challenge
of implementing multivariate landmarking is that landmarks are different
(in placement and number) for different process variables. Critical issues
are the selection of the process variable(s) for determining the landmarks,
the number of landmarks and their locations to define clearly the progress
of the batch.

One alternative is to select a process variable based on process knowledge
and implement landmarking by using the trajectory of that variable. An-
other alternative is to use an iterative approach which will reconcile the
identification of process landmarks with respect to particular trajectory
landmarks:

1. Find the landmarks of the most important variable trajectories Lm\.
Align all other variable trajectories with respect to the landmarks
Lm\.

2. Calculate the principal components of the aligned set of process vari-
ables. Determine the landmarks of the first principal component

3. Realign the process trajectories with respect to

4. Recalculate the principal components of the realigned set of process
variables. Determine the landmarks of the first principal component
Lm PC Anew

5. Determine if LmpcAnew are reasonably close to LmpcA- If so, the
process landmarks are defined by LmpcAnew If not, return to Step
3.

The outcome of this procedure may be interpreted using several alterna-
tives. Once LmpcAnevf has converged, one may proceed with statistical
analysis using the data warped with respect to LmpcAnew As an alterna-
tive, only the data identified as "most significant" (either by user or prin-
cipal components) may be warped with respect to Lm PC Anew, and other
process data may be warped with respect to its own optimal landmarks.

When landmarking a test trajectory with respect to a reference tra-
jectory, two distinct cases may be considered. The first case is a simple
idealized situation where all the landmarks are delayed (or advanced) by
a constant time r and is called uniform landmark case. The second is the
mixed landmark case that represents a general framework where some land-
marks of the new batch are delayed and others are advanced with respect
to the landmarks of the reference trajectory, yielding a more challenging
landmark detection problem. Furthermore, the time shifts of the landmarks
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Figure 6.35. On-line landmarking: mixed case.

will vary, preventing the use of an assumption of a constant time shift r
between calculated and reference landmarks.

For illustration, consider the example in Figure 6.35, where the solid
curve represents the mean pH trajectory calculated from an aligned refer-
ence set and the dashed curve in the upper figure represents a different test
trajectory. The estimated landmarks (denoted by hollow circles) are mixed
in leading or lagging the reference landmarks (indicated by dotted verti-
cal lines and numbers) and they have varying time shift magnitudes. The
first estimated landmark is advanced with respect to the first mean-value
landmark, the second and third estimated landmarks are delayed with re-
spect to their mean values. The advance between the first estimated and
mean-value landmark is not equal to the delay between the second and the
third estimated and their mean-value counterparts. When the test trajec-
tory is warped with respect to the reference trajectory (as illustrated in the
lower portion of Figure 6.35), the warped time-values (the solid line) is a
curved pattern that crosses the center dashed-curve that represents linear
mapping. This pattern suggests that when warping the test pattern (to
align similar events to the reference pattern), the test trajectory will be
stretched and compressed, respectively. In this example, the warping pat-
tern lies slightly below the center line until the first landmark, so test values
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before it will be stretched to align the estimated landmark. After the first
landmark, the warped curve lies above the center dashed-line, indicating
that the values after the first landmark location need to be compressed to
align the second and third landmarks with respect to the mean-value land-
marks. This makes intuitive sense, because an estimated landmark that is
advanced before a mean-value landmark must shift the data in a direction
that will align similar process events.

The on-line optimization procedure sequentially searches for the optimal
location of the landmarks of the test data with respect to the reference
mean landmarks. The following procedure is given for the mixed land-
marks case and can be modified to implement in an adaptive hierarchical
PCA framework for online SPM:

1. Initialize estimated landmarks vector Li.

2. For i = 1 , . . . , m (m, number of landmarks in the reference set).

3. Collect values of test trajectory that contains landmark information
up to time K. Choose time Ki for ith landmark so that it will span
the reference landmarks range as

Ki > argmax(^i).
K

4. Set up search space for iih landmark. This consists of a vector of
possible landmarks range for the ith landmark of reference set (£m (1 x
Hi) and a r i i X K i matrix of n^ replicates of the test curve to be warped
with respect to the possible landmarks' space.

(a) Align rii test curves by landmark registration. If i > 2 use previ-
ously estimated and stored landmarks in Li during registration.

(b) Calculate the sum of squared errors (SSE) between each of the
nl test curves and the reference trajectory (calculate reference
trajectory from previously aligned reference set).

(c) For j = 1 , . . . , Hi (number of test curves)
When the minimum SSE is found, select the ijth landmark as
the ith landmark for the test trajectory.

(d) End j-loop.
(e) Store estimated zth landmark in vector L;.

5. End i-loop.

6. Warp test trajectory (and the rest of the trajectories in the new batch)
with respect to the m estimated landmarks.
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Example. The implementation of time alignment by landmark registra-
tion differs in postmortem and online analysis. When there is a database
of historical batches of different lengths that alignment is to be performed,
all of the multivariate batch data are re-sampled to a common number (e.g.
the median length) of data points by interpolation first, then the registra-
tion technique is implemented. However, in the case of online registration
with landmark detection, unknown batch length (process termination time
or campaign run length is not known) of the new batch represents some
difficulties in implementation. To represent online landmark detection in
real-time, it is assumed that a fixed batch termination point is determined.
Although all of the batches are to come to a completion at the same final
time point, a temporal variation in important landmark locations is still
present. The critical implementation issues of the alignment technique are
presented in an orderly fashion in this example.

Determination of the landmark locations in reference batches

The regularization technique for mixed case is implemented to simulated
fed-batch penicillin fermentation data of 40 batches sampled at 0.5 h on 16
variables for 500 h resulting in 1000 measurements. The decision should
be made using engineering judgment on choosing appropriate variable tra-
jectories that may contain physiological information about the location of
the process landmarks. Figure 6.36 shows some of the process variable tra-
jectories as well as two of the manipulated variables (base and acid flow
rates) of a reference batch run under nominal operating conditions. Note
that, the concentration of hydrogen ion (pH) is associated with biomass
growth [61] as explained in Section 2.7.1, hence, becoming a good indicator
for tracking physiological activities.

It is inferred that there are three process landmarks separating four dis-
tinct phases in fed-batch penicillin fermentations based on expert knowl-
edge about penicillin fermentation. The first phase (lag phase and pre-
exponential phase) corresponds to batch operation where a lag exists on
the inception of penicillin production while cells are consuming substrates
to grow. The landmark for the first phase can be found easily in any of the
trajectories as shown in Figure 6.36. Exponential cell growth along with
the start of penicillin production is observed in the second phase where
glucose feed is initiated. The location of the second landmark is not appar-
ent on each trajectory. Normally it corresponds to the time when biomass
concentration begins to level off. In the vicinity of that point, hydrogen
ion concentration starts to decrease and consequently the need for base ad-
dition (Fbase) is reduced as shown in Figure 6.36. Hence, base flow rate
is an excellent candidate for determining the location of the second land-
mark that indicates the beginning of the third phase (stationary phase). A
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Figure 6.36. Physiologically important variable trajectories (F: glucose
feed rate, S: glucose concentration, DO: percent oxygen saturation, X:
biomass concentration, P: penicillin concentration, V: culture volume,
-Phase: base flow rate and F&c\^: acid flow rate).

similar line of thought can be followed for detecting the temporal location
of the third landmark which is the start of the death phase towards har-
vesting the fermentation. At this phase, biomass concentration begins to
decline resulting in the decrease in hydrogen ion concentration level. Note
that, a set point gap is defined for acid flow rate controller action to avoid
excessive acid addition during the simulations resulting in a small increase
at pH right after the third landmark [61]. Therefore, the instant when acid
addition takes place after stationary phase can be used to determine the
location of the third landmark and the beginning of the death phase.

Once the decision about the choice of the variables that contain land-
mark information is made, these variables (biomass concentration (X), base
(-^base) and acid (Facid) flow rates in Figure 6.36) are investigated in each
batch of the reference set and landmark locations are stored. In this ex-
ample, reference landmark locations matrix im is of size (3 x 40). Note

Copyright © 2003 by Taylor & Francis Group, LLC



6.3. Data Length Equalization 311

200 300
Time, h

Figure 6.37. Comparison of average pH profiles. Solid curve is obtained
after alignment by landmark registration.

that, instead of using one variable to determine process landmarks a com-
bination of three variables is used in this example. The landmark location
information from the inflection point of biomass concentration, the instant
when base flow reaches zero after about 100 h and the instant when acid
flow controller takes action after base flow decreases to zero are gathered
in a landmark location vector, respectively.

Alignment of variable profiles in reference batches using landmark registra-
tion

Given the locations of landmarks in the reference batches, variable pro-
files are 'registered' so that similar events will be aligned with respect to
mean landmarks. Mean landmark locations can be calculated from im and
used for the alignment to be performed around the average landmark lo-
cations. This is an arbitrary choice. A vector of landmark locations that
belong to a reference batch could also be chosen. The aforementioned curve
registration technique is implemented to all variable trajectories by using
the mean landmarks vector and the matrix f.m of landmarks in reference
batches.

Comparison of cross-sectional mean trajectories prior to alignment and
structural means after alignment illustrates the affects of trajectory align-
ment. The average pH profile (dashed curve) that is the cross-sectional
mean of the reference profiles before alignment (Figure 6.37), resembles
the reference profiles shown in Figure 6.38(a) but differ in the amplitudes
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Figure 6.38. Curve registration results on pH profiles.

and temporal occurrences of landmarks. The average profile obtained af-
ter alignment by curve registration resembles reference curves structurally
in both landmark locations and amplitudes of the local peaks and valleys
(solid curve). Aligned pH curves are presented in Figure 6.38(b) along with
corresponding mean landmark locations (vertical dotted lines). Each curve
is aligned with respect to its particular landmarks allowing for comparison
of similar events in the statistical analysis, hence leading to the develop-
ment of more consistent MSPM frameworks. Figures 6.38(c) and 6.38(d)
show warping and resulting deformation functions used during alignment
of variable profiles in each batch. Deformation functions are obtained from
the difference between warped and actual times, and represent a measure
of time distortion required for nonlinear feature matching. The rest of the
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Figure 6.39. Landmark registration results for some of the concentration
profiles (S: glucose concentration, X: biomass concentration, P: penicillin
concentration). Dashed lines represent the locations of mean landmarks.

profiles in the reference batch set are aligned similarly so that the same
set of nonlinear warping functions (Figure 6.38(c)) are used to align rest
of the variable profiles. Since the same physiological events affect most
variables such as concentration profiles, their landmark locations overlap in
time (Figure 6.39).

Alignment of variable profiles online in real-time of a new batch using land-
mark registration

After aligning the reference batch profiles, the necessary information is
available for implementing the alignment procedure for a new batch online
in real-time. The iterative online landmark estimation procedure described
earlier is used in this example. The necessary information from reference
batch alignment includes reference landmark locations matrix £m and its
mean vector, and the aligned reference set to calculate average profiles.
Since a combined landmark location vector is used from different process
variables, the corresponding reference profile is used as a comparative tem-
plate while implementing the online procedure. For instance, the inflection
point in biomass concentration profile determines the location of the first
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Figure 6.40. Online landmark estimation results. Dashed lines represent
estimated landmark locations.

landmark in this example. Therefore, the mean biomass concentration pro-
file that is calculated from the aligned reference set is used while searching
for an estimated first landmark. Another decision should be made about
the landmark search space. For practical purposes, it is chosen as the range
of reference landmark locations. The search space is depicted as a band for
each landmark in Figure 6.40. The plots on right side of Figure 6.40 repre-
sent sum of squared errors (SSE) between the mean and replicate profiles
with potential landmarks in search space. A minimum of the SSE indicates
the landmark point in the search space that gives the closest match be-
tween new batch profile and the template profile. Once the locations of the
landmarks are estimated, the rest of the profiles are aligned with respect to
estimated landmark(s). The results in Figure 6.40 show that the iterative
technique successfully detects landmark locations. D
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6.4 Multivariable Batch Processes

Batch processes often exhibit some batch-to-batch variation. Variations in
charging the production recipe, differences in types and levels of impurities
in raw materials, shift changes of operators, and disturbances during the
progress of the batch are some of the reasons for this behavior.

Monitoring the trajectories of the process variables provides four differ-
ent types of monitoring and detection activities:

• End of batch quality control: This is similar to the traditional qual-
ity control approach. The ability to merge information from quality
variables and process variable trajectories by multivariate statistical
tools enables accurate decision-making. Since process variable tra-
jectories are available immediately at the conclusion of the batch,
product quality can be inferred from them without any time delay.

• Analysis of process variable trajectories after the conclusion of the
batch: This "postmortem" analysis of the batch progress can indicate
major deviations in process variable trajectories and enable plant per-
sonnel to find out significant changes that have occurred, trace the
source causes of disturbances and prevent the repetition of abnormal
behavior in future batches. It can also point out different phases of
production during the batch, providing additional insight about the
process. Since the analysis is carried out after the conclusion of the
batch, it cannot be used to improve the product of that batch.

• Real-time on-line batch process monitoring: The ultimate goal in
batch process monitoring is to monitor the batch during its progress.
This provides information about the progress of the batch while the
physical, biological and chemical changes are taking place, enabling
the observation of deviations from desired trajectories, implementa-
tion of interventions to eliminate the effects of disturbances, and de-
cision to abort the batch if saving it is too costly or impossible.

• Real-time on-line quality control: This is the most challenging and
important problem. During the progress of the batch, frequently mea-
sured process variables can be used to estimate end of batch product
quality. This will provide an opportunity to foresee if there is a ten-
dency towards the inferior product quality and take necessary actions
to prevent final product quality deterioration before it is too late.

This section focuses on the first two types of activities, the off-line SPM
and quality control. On-line SPM and quality control are discussed in
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Section 6.5. Section 6.4.1 focuses on reference databases describing normal
process operation and introduces the penicillin fermentation data used in
many examples. Section 6.4.2 represents various multivariate charts for
SPM. SPM of completed batches by MPCA is discussed in Section 6.4.3 and
MPLS based SPM is presented in Section 6.4.4. Use of multiway/multiblock
techniques for monitoring multistage/multiphase processes is discussed in
Section 6.4.5. The integration of wavelet decompositions and MPCA is
presented in Section 6.4.6.

6.4.1 Reference Database of Normal Process Opera-
tion

Developing empirical models as well as multivariate control charts for MSPM
require a reference database comprised of past successful batches run un-
der normal operating conditions (NOG). The historical database contain-
ing only the common cause variation will provide a reference distribution
against which future batches can be compared. Selection of the reference
batch records set out of a historical database depends on the objective of the
monitoring paradigm that will be implemented. MPCA-based modeling is
suitable if only the process variables are of interest. MPLS model will allow
inclusion of final quality variables in the monitoring scheme. Initial choice
of the potential NOC reference set may contain outlying batches. These
batches will be found and removed at the initial round of either MPCA or
MPLS modeling. As described in the earlier sections, there will be a tempo-
ral variation, in addition to amplitude variation, in process trajectories for
each batch resulting in unequal/unsynchronized data. Prior to model devel-
opment, it is crucial to apply one of the three equalization/synchronization
techniques proposed earlier in Sections 6.3.1 (IVT), 6.3.2 (DTW) and 6.3.3
(Curve Registration). Equalized/synchronized data form a three-way ar-
ray. After transforming the data by unfolding this array into a matrix and
by subtracting the mean trajectory set from each batch trajectory set to
remove most of the nonlinearity, MPCA and/or MPLS models can be built
to investigate if the choice of the reference set is suitable for use in SPM of
new batches. Once that decision is made, multivariate control chart limits
are constructed according to the formulations given in Section 6.4.2. Devel-
opment of a multivariate statistical process monitoring scheme will be given
by means of a case study based on the unstructured mathematical model of
fed-batch penicillin fermentation introduced in Section 2.7.1. A reference
set of NOC generated by this simulator (Figures 6.41 and 6.42) will be used
where applicable throughout the examples representing different monitor-
ing techniques such as MPCA and MPLS along with the construction of
multivariate control charts. Only for the multiblock MPCA technique, an
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Table 6.6. Process variables measured throughout the batches

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Process Variables

Aeration rate, L/h
Agitation power, W
Glucose feed rate, L/h
Glucose feed temperature, K
Glucose concentration, g/L
Dissolved oxygen concentration, mmole/L
Biomass concentration, g/L
Penicillin concentration, g/L
Culture volume, L
Carbon dioxide concentration, g/L
pH
Fermenter temperature, K
Generated heat, kcal
Cooling water flow rate, L/h

example is chosen from pharmaceutical granules production case (Section
6.4.5).

Example. A set of data is produced using the simulator of fed-batch peni-
cillin production (based on the unstructured model discussed in Section
2.7.1) under normal operating conditions. The values of the initial condi-
tions and set points of input variables are slightly varied for each batch,
resulting in unequal and unsynchronized batch trajectories that are typical
in most experimental cases. Batch lengths varied between 375 h and 390
h. One of the batches that has a batch length of 382 h, close to the me-
dian batch length is chosen as a reference batch. Data of the other batches
are equalized based on multivariate DTW algorithm discussed in Section
6.3.2. Type II symmetric local continuity constraint (Figure 6.24(b)) with
smoothed path weightings, Itakura global constraint, and Sakoe and Chiba
band constraint (with Qmax = 2 and KQ = 50) are used for data synchro-
nization. Multivariate DTW synchronization procedure was applied for a
maximum of five iterations (Figure 6.43).

The reference set is comprised of 42 batches containing 14 variables
(sampled at 0.5 h). A three-way array of size 41 x 14 x 764 is formed based on
this initial analysis. The variables are listed in Table 6.6. Although on-line
real-time measurement availability of some of the product related variables
such as biomass and penicillin concentrations is somewhat limited in reality,
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it is assumed that these can be measured along with frequently measurable
variables such as feed rates and temperature. If the sampling rates are
different, an estimator such as Kalman filter can be used to estimate these
variables from measured values of frequently measured variables. A number
of product quality variables are also recorded at the end of the batch (Table
6.7 and Figure 6.41).

Three additional batches were simulated to illustrate detection, diag-
nosis and prediction capabilities of the MPCA and MPLS models used for
both end-of-batch and on-line SPM. Fault scenarios are chosen such that
they resemble the ones generally encountered in industry. First fault is a
10% step decrease in agitator power input about its set point during early
in the second phase of the fermentation between 70 and 90 hrs (between the
140th and 180th samples). The second fault is a small drift in the glucose
feed rate right after start of feeding in fed-batch operation. In the latter
case, the abnormal operation develops slowly and none of the individual
measurements reveal it clearly when their univariate charts are examined.
The third fault is the same as the second fault, only the slope of the drift is
higher. The first faulty batch is of length 375 h (750 samples), the second is
380 h (760 samples) and the third batch of length 382 h (764 samples). Fig-
ure 6.44 shows the trajectories of these faulty batches along with a normal
batch trajectory set.

6.4.2 Multivariate Charts for SPM
The following multivariate charts are used as visual aids for interpreting
multivariate statistics calculated based on empirical models. Each chart
can be constructed to monitor batches or performance of one batch during
its evolution.

Score biplots or 3D plots are used to detect any departure from the in-
control region defined by the confidence limits calculated from the ref-

Table 6.7. Quality variables measured after the completion of batches

No. Quality Variables

Final penicillin concentration, g/L
Overall productivity, g/h
Terminal yield of penicillin on biomass
Terminal yield of penicillin on glucose
Amount of penicillin produced, g
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Figure 6.41. Quality variables measured at the end-of-batches for the ref-
erence set (listed in Table 6.7).

erence set. The score plots provide a summary of process performance
from one batch to the next. The control limits for new independent
t scores under the assumption of normality at significance level a at
any time interval k is given by [214]

(6.95)

where n and sref are the number of observations and the estimated
standard deviation of the t-score sample at a given time interval k
(mean is always 0) and £n-i,a/2 is the critical value of the Studentized
variable with n — 1 degrees of freedom at significance level a/2 [435].
The axis lengths of the confidence ellipsoids in the direction of ath
principal component are given by [262]

±[S(a, a)FAtI-AtaA(I2 - I}/(1(1 - A))]1/2 (6.96)
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0 200 400 600 800 0 200 400 600 800

Figure 6.42. Unequal/unsynchronized raw batch trajectories of the refer-
ence set.

Table 6.8. Faulty batch information and data sets

Variable name

Agitator power
input (Variable 2)

Data: Xi(750 x 14)
Glucose feed rate

(Variable 3)
Data: X2(761 x 14)

Glucose feed rate
(Variable 3)

Data: X3(764 x 14)

Fault definition

10% step decrease

Small downward drift

Large downward drift

Introduction time

70 - 90 hrs
(140th and 180th samples)

Beginning of
fed-batch operation

Beginning of
fed-batch operation
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Figure 6.43. Equalized/synchronized batch trajectories of the reference set
using DTW procedure in Figure 6.31.

where S is the estimated covariance matrix of scores and FA,I-A,O is
the F-distribution value with A and I — A degrees of freedom in a
significance level, / is the number of batches in the reference set, A
is the number of PCs retained in the model.

Hotelling's T2 plot detects the small shifts and deviations from normal
operation defined by the model. Statistical limits on the D-statistic
are computed by assuming that the data follow a multivariate Normal
distribution [254, 253]. D statistics (T2 can be written as the D-
statistic) for end-of-batch SPM for batch i are

(/- i) Bt (6.97)

where ta is a vector of A scores [254] and S is the (A x A) estimated
covariance matrix, which is diagonal due to the orthogonality of the
t scores [594]. The statistics aforementioned in Eq. 6.97 is called
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Figure 6.44. Trajectories of process variables of normal (solid curve), a
batch with 10% step decrease (Variable 2) (dotted curve), with a small
drift (Variable 3) (dashed curve) and with a large drift (Variable 3) (dashed-
dotted curve).

Hotelling's T2 [244] and follows the beta distribution. It can also be
calculated for each batch as [254]

Di = (6.98)
a=l a=l

where the PC A scores t in dimension a have variance Aa (or estimated
variance s^ from the scores of the reference set), which is the a-th
largest eigenvalue of the scores covariance matrix S. If tables for the
beta distribution are not readily available, this distribution can be
approximated using Eq. 6.99 [594].

Bf (6.99)
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T2 values are calculated throughout the batch. As soon as the batch
is complete Eq. 6.100 is applied for each observation at time interval
k [435].

Dik=tTAk(sr1tiAk (6-100)

T2 values for each time interval k for a new batch can also be calcu-
lated similar to Eq. 6.98 as

o=l fl 0=1

values follow F-distribution [594]

(6-102)

where A denotes the number of PCs and / the number of batches in
the reference set.

Squared Prediction Error (SPE) plot shows large variations and de-
viations from the normal operation that are not denned by the model.
The iih elements of the t-score vectors correspond to the iih batch
with respect to the other batches in the database over the entire
history of the batch. The P loadings matrices summarize the time
variation of the measured variables about their average trajectories.
If a new batch is good and consistent with the normal batches (used
to develop MFC A model), its scores should fall within the normal
range and the 'sum of the squared residuals' (Q-statistic) should be
small. The Q statistic for end-of-batch SPM for batch i is written as

KJ
Ql = eieJ = ^E(i,c)2 (6.103)

c=l

where e^ is the ith row of E, /is the number of batches in the reference
set, A is the number of PCs retained in the model, and ta is a vector
of A scores [254] .

Statistical limits on the Q-statistic are computed by assuming that
the data have a multivariate normal distribution [253, 254]. The
control limits for Q-statistic are given by Jackson and Mudholkar
[255] based on Box's [76] formulation (Eq. 6.104) for quadratic forms
with significance level of a given in Eqs. 6.104 and 6.105 as

(6-104)
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Qa = 01 [1 - 02/10(1 - /K>)/01 + Z«(202/li!)1/2/0l]1/'10 (6-105)

where ^^ is the chi-squared variable with h degrees of freedom and z
is the standard normal variable corresponding to the upper (1 — a)
percentile (za has the same sign as /IQ). 6 values are calculated using
unused eigenvalues of the covariance matrix of observations (eigenval-
ues that are not retained in the model) as [655]

0l = V^ A!-, for i = 1,2, and 3. (6.106)
jL J J

j=k+l

The other parameters are

9 = 02/01, h = 01/02

ho = 1-20103/302- (6-107)

#;'s can be estimated from the estimated covariance matrix of residu-
als (residual matrix used in Eq. 6.103) for use in Eq. 6.105 to develop
control limits on Q for comparing residuals on batches. Since the co-
variance matrices ETE (JK x JK} and EET (/ x /) have the same
non-zero eigenvalues [435], EET can be used in estimating 0^'s due to
its smaller size for covariance estimation as

EET

V = - — - , Oi = trace(V'), for i = 1,2, and 3. (6.108)
1 1

A simplified approximation for Q-limits has also been suggested in
[148] by rewriting Box's equation (Eq. 6.104) by setting 6\ « #i#3

Qa = gh{l - 2/9/1 + ^a(2/9/i)12]3. (6.109)

Eq. 6.105 can be used together with Eq. 6.108 to calculate control
limits for sum of squared residuals when comparing batches (Qi in
Eq. 6.103).

In order to calculate SPE values throughout the batch as soon as the
batch is complete, Eq. 6.110 is used for each observation at measure-
ment time k [435]

SPEik = ̂ (xljk - xijk)
2 =

Calculated SPE values for each time k using Eq. 6.110 follow x2

(chi-squared) distribution (Eq. 6.104, [76]). This distribution can be
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well approximated at each time interval using Box's equation in Eq.
6.104 (or its modified version in Eq. 6.109). This approximation of
moments is preferred because it is computationally faster than using
traces of powers of the residual covariance matrix of size (J x J)
at each time interval. Parameters g and h can be approximated by
matching moments of the gxi distribution [435]

9=—, *=—y 2m v
where m and v are the estimated mean and variance of the SPE at
a particular time interval k, respectively. It was reported that these
matching moments were susceptible to error in the presence of outliers
in the data or when the number of observations was small. Outliers
should be eliminated as discussed in Section 3.4.2.

Contribution plots are used for fault diagnostics. Both T2 and SPE
charts produce an out-of-control signal when a fault occurs but they
do not provide any information about the cause. Variable contribu-
tions to T2 and SPE values indicate which variable(s) are responsible
for the deviation from normal operation. T2 statistic is used to mon-
itor the systematic variation and SPE statistic is used to monitor the
residual variation. Hence, in the case of a process disturbance, ei-
ther of these statistics will exceed the control limits. If only the T2

statistic is out of control, the model of the process is still valid but
the contributions of each process variable to this statistic should be
investigated to find a cause for the deviation from normal operation.
If SPE is out of control, a new event is found in the data, that is
not described by the process model. Contributions of each variable
to SPE will unveil the responsible variable(s) to that deviation.

Contribution plots are discussed in more detail as a fault diagnosis
tool in Section 8.1.

Explained variance, loadings and weights plots highlight the varia-
bilities of batch profiles. The explained variance is calculated by
comparing the real process data with the MPCA model estimates.
This can be calculated as a function of batch number, time, or variable
number. The value of explained variance becomes higher if the model
accounts for more variability in the data and for the correlation that
exists among the variables. Variance plots over time can be used as
an indicator of the phenomenological/operational changes that occur
during the process evolution [291]. This measure can be computed as

~ 2

SS explained, % = ^- x 100 (6.112)
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where SS stands for 'sum of squares', cr2 and a1 are the true and
estimated sum of squares, respectively.

Loadings also represent variability across the entire data set. Al-
though the loadings look like contributions, a practical difference oc-
curs when some of the contributions of the process variables have
values much smaller than their corresponding loadings and vice versa.

In the case of MPLS-based empirical modeling, variable contributions
to weights (W) carry valuable information since these weights sum-
marize information about the relationship between X and Y blocks.
There are several ways of present this infirmation as charts. The over-
all effect of all of the process variables on quality variables over the
course of process can be plotted, or this can be performed for a specific
period of the process to reflect the change of the effect of the predictor
block (X). Recently, Wold et al. [145] suggested yet another statistic
as they coined the term Variable Influence on Projection (VIP) using
the following formula

VIP* =

1/2
J

0 - SSYA)
(6.113)

where J denotes the number of variables in X-block, A the number of
latent variables retained in the model, waj the weight on ath compo-
nent on jth variable, SSY0 the initial sum of squares on Y-block, and
SSY^ the sum of squares after A latent variables on Y-block. While
this equation holds for continuous process data, a small modification
is needed for batch process data since in the case of I x JK data
arrangement, there are JK variables. One possible modification is
to calculate the mean of each j variable to obtain an overall view or
this can also be done for a period of the process. The squared sum
of all V/P's is equal to the number of variables in X-block (that is
J for continuous process data and JK for batch process data). VIP
terms on each variable can be compared and the terms with large
VIP (larger than 1) are the most relevant to explaining Y-block. An
example is given in Section 6.4.4 for the overall VIP case.

6.4.3 Multiway PCA-based SPM for Postmortem
Analysis

In this section, the use and implementation of MPCA-based modeling (Sec-
tion 4.5.1) are discussed for a postmortem analysis of finished batch runs to
discriminate between the 'good' and the 'bad' batches. This analysis can
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be used to improve operation policies and discover major sources of vari-
ability among batches. MPCA can also be implemented on-line (Section
6.5). In either case, an MPCA model based on a reference set (representing
normal operating conditions) selected from a historical batch database is
developed.

When a batch is complete, measurements on the process variables made
at each sampling instant produce a matrix of Xnew (K x J). This matrix is
unfolded and scaled to give xnew (1 x KJ], using the same parameters for
scaling the reference batches during the model development phase. This
new batch vector is tested for any unusual behavior by predicting t scores
and residuals via the use of P loading matrices (Eq. 6.114) that contain
most of the structural information about the deviations of variables from
their average trajectories under normal operation:

A

tnew = XnewJr, enew = Xnew J ^ ^new,aPa (D.I 14]

a=l

where tnew denotes the scores of the new batch calculated by using P (JKx
A) loadings from the MPCA model with A PCs. If the scores of the new
batch are close to the origin and its residuals are small, this indicates that
its operation is also similar to that of reference batches representing normal
operation. The sum of squared residuals Q for the new batch over all the
time periods can be calculated as Q = eTe = X^=i e(^)2 for a quick com-
parison with Q values of reference batches. D statistic (Eq. 6.97) can also
be used to get an overall view. These statistics give only summary infor-
mation about the new batch with respect to the behavior of the reference
set, they do not present instantaneous changes that might have occurred
during the progress of the batch. It is a common practice to use on-line
MPCA algorithms to obtain temporal SPE and T2 values. These charts
are introduced in Section 6.5.1. However, T2 and cumulative score plots
are used along with the variable contributions in this example to find out
the variable(s) responsible for deviation from NO. T2 is computed for each
sampling instant using Eq. 6.101. Scores are calculated for each sampling
instance and summed until the end of the batch to reach the final score
value. Limits on individual scores are given in Eq. 6.95.

The MPCA model can be utilized to classify a completed batch as 'good'
or 'bad'. Besides providing information on the similarity of a newly finished
batch with batches in the reference set, MPCA model is also used to assess
the progress during a run of a finished batch. Temporal scores evolution
plots, SPE and T2 charts, are generally used along with contribution plots
to further investigate a finished batch.

Example. MPCA-based SPM framework is illustrated for a simulated data
set of fed-batch penicillin production presented in Section 6.4.1. Two main
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Table 6.9. Percent variance captured by MFC A model

PC no.

1
2
3
4

X-block

This PC
16.15
10.34
7.89
5.96

Cumulative
16.15
26.49
34.38
40.34

steps of this framework are model development stage using a historical refer-
ence batch database that defines normal operation and process monitoring
stage that uses the model developed for monitoring a new batch.

MFC A model development stage: MPCA model is developed from a
data set of equalized/synchronized (Figures 6.42 and 6.43), unfolded and
scaled 41 good batches. Each batch contains 14 variables 764 measure-
ments, resulting in a three-way array of size X(41 x 14 x 764.) After un-
folding by preserving the batch direction (/), the unfolded array becomes
X(41 x 10696). MPCA is performed on the unfolded array X with four
principal components, resulting in scores matrix T of size (41 x 4) and
loadings matrix P of size (10696 x 4). The variability of the X block ex-
plained by MPCA model is summarized in Table 6.9. While 4 PCs explain
only 40 percent of the variation in data, the resulting MPCA model is good
enough for performing various SPM tasks. Additional PCs can be included
to improve model accuracy, paying attention not to include variation due
mostly to noise in the model.

MPCA model statistics are summarized in a number of multivariate charts
in Figure 6.45. All of the control limits are developed based on the for-
mulations summarized in Section 6.4.2. Score biplots (with 95% and 99%
confidence ellipsoids defined in Eq. 6.96) in Figures 6.45(a)-6.45(b), T2

and Q (sum of squares of residuals) charts in Figures 6.45(c)-6.45(d), re-
spectively, with their 95% and 99% control limits revealing that none of
the 41 batches present any unexpected behavior. It can also be concluded
that all of the batches are operated similarly and the scatters of the score
biplots in Figures 6.45(a)-6.45(b) defines the normal operational region in
the reduced space. The percent of the cumulative sum of squares explained
by the MPCA model is also shown (Figures 6.45(e) and 6.45(f)) with re-
spect to time and variables. Figure 6.45(e) summarizes the cumulative
explained variance by each principal component over the course of batch
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Figure 6.45. MPCA model (with four principal components) statistics.
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evolution. The lowest line in both figures represents the percent explained
by the first PC, the next line above shows the percent explained by the
first two PCs together, and so on. Several operational and physiologi-
cal phases throughout the fed-batch penicillin fermentation are detected
from this plot. Comparing the relative increases in the four curves that
indicate the cumulative variation explained, the first PC explains most
of the variability in first phase that corresponds to the batch operation
(switching from batch to fed-batch at around the measurement 85), while
the second PC explains variability in the second phase (fed-batch opera-
tion/exponential growth phase). This is a common observation in MPCA
because the correlation of the process variables in each phase changes over
the progress of a batch. Figure 6.45(f) shows that the dominant variables
in the first principal component are 5, 7, 8, 9, 13 and 14. These variables
contain physiological change information and their profiles look similar (see
Figure 6.31). Variable 10 and others are explained mostly by the second
and third components. The first principal component explains most of the
batch operation phase and exponential growth phase in fed-batch operation
where most of the process dynamics take place (in the associated variables
5, 7, 8, 9, 13 and 14). The second and additional principal components cap-
ture variability mostly in the fed-batch operation where 10 (carbon dioxide
evolution) is dominant. Figure 6.45(e) indicates a decrease in explained
variance during the period of approximately 40th and 60th measurements
for all of the 4 PCs that precedes switching to fed-batch operation, because
the variability of process variables is low in this period. To increase phase-
based explained variability, multiple model approaches are also suggested
[130, 291, 605]. An example is given in Section 6.4.5.

Process monitoring stage: The MPCA model developed here is used
to monitor finished batches to classify them as 'good' or 'bad' and also
investigate past batch evolution, and detect and diagnose abnormalities. A
batch scenario including a small downward drift fault is simulated (Section
6.4.1, Figure 6.44 and Table 6.8). New batch data are processed with
MPCA model using Eq. 6.114 after proper equalization/synchronization,
unfolding and scaling. The same set of multivariate SPM charts are plotted
(Figure 6.46). Score biplots in Figures 6.46(a) and 6.46(b) detect that
the new batch (batch number 42) is operated differently since its scores
fall outside of the NO region defined by MPCA model scores. Both D
and Q statistics also indicate an out-of-control batch. Now that the batch
is classified as out-of-control, the time of the occurrence of the deviation
and the variables that have contributed to increasing the values of the
statistics can be determined. The aforementioned temporal T2 chart based
on cumulative scores and individual score plots can be used here. The
T2 value goes out-of-control as shown in Figure 6.47(a), the same out-of-
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Figure 6.46. End-of-batch monitoring results of a faulty batch.

control situation is also observed with score plots (Figures 6.47(b)-6.47(c)).
The first out-of-control signal is given by the PCs chart around the 445th
measurement. When variable contributions are calculated, the responsible
variables are identified. Variables 3, 5 and 8 have the highest contributions
which make sense since the fault was introduced into variable 3 (glucose feed
rate), which affects variables 5 and 8, glucose and penicillin concentrations,
respectively.

6.4.4 Multiway PLS-based SPM for Postmortem
Analysis

MPLS [661] is an extension of PLS that is performed using both process
data (X) and the product quality data (Y) to predict final product quality
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Figure 6.47. End-of-batch fault detection and diagnosis for a faulty batch.

during and/or at the end of the batch [298, 434, 663]. When a batch is
finished, a block of recorded process variables Xnew (K x J) and a vector
of quality measurements ynew (1 x M) that are usually measured with a
delay due to quality analysis, are obtained. Xnew (K x J) is unfolded to
Xnew (1 x KJ) and both xnew and ynew are scaled similarly as the reference
batch set scaling factors. Then, they are processed with MPLS model
loadings and weights that contain structural information on the behavior
of NOC set as

= xnewW (PTW)
-i

^new — Y Yn

(6.115)

(6.116)

where tnew (1 x^4) denotes the predicted t-scores, ynew (1 xM) the predicted
quality variables, and e and f the residuals.
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Example. MPLS-based SPM framework is also illustrated using simulated
fed-batch penicillin production data set presented in Section 6.4.1. Simi-
lar to MPCA framework in the previous section (Section 6.4.3), the MPLS
framework has two main steps: model development stage out of a histor-
ical reference batch data base that defines normal operation and process
monitoring and quality prediction stage that uses model developed. The
latter stage includes prediction of the product quality, which is the main
difference between MPCA and MPLS based SPM frameworks. Note that
in this MPLS framework, quality prediction is made at the end of batch
while waiting to receive quality analysis laboratory results. It is also possi-
ble to implement MPLS on-line while predicting the final product quality
as batch progresses. This version is discussed in detail in Section 6.5.1.

MPLS model development stage: MPLS model is developed from the
data set of equalized/synchronized (Figures 6.42 and 6.43), unfolded and
scaled 38 good batches (each containing 14 variables 764 measurements
resulting in a three-way array of size X(38 x 14 x 764). After unfolding
by preserving the batch direction (/), the unfolded array becomes X(38 x
10696)). Three batches in the original 41 batches of data are excluded
from the reference set due to their high variation. In addition to X block, a
Y (38 x 5) block comprised of 5 quality variables measured at the end of each
batch also exists (Table 6.7 and Figure 6.41). MPLS is performed between
the unfolded and scaled X and Y with four latent variables resulting in
scores T (38 x 4), U (38 x 4), weights W (10696 x 4) and Q (5 x 38) and
loadings matrices P (10696 x 4). Explained variability on both X and Y
blocks by MPLS model is summarized in Table 6.10. 38.39 % of X explains
97.44 % of Y with 4 latent variable MPLS model. Cumulative percentage
of sum of squares explained by 4 latent variables on each y in Y block
is also tabulated in Table 6.11. MPLS model statistics are summarized
in a number of multivariate charts in Figure 6.49. All control limits are
developed based on the formulations summarized in Section 6.4.2.

NO region is defined by the ellipsoids in Figures 6.49(a) and 6.49(b) by
the MPLS model. Naturally all of the reference batches fall into these re-
gions. Note that Figure 6.49(a) defines process measurements while Figure
6.49(b) defining final quality variables. All of the batches also are inside
the control limits in sum of squared residuals as shown in Figures 6.49(e)
and 6.49(f) in both process and quality spaces. Hence, MPLS model can be
used to discriminate between the acceptable and 'poor' batches at the end-
of-the batch. It is evident from the biplots of inner relations of the MPLS
model (Figures 6.49(c) and 6.49(d)) that there is a correlation between pro-
cess and product variables and this relation is linear because most of the
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Table 6.10. Percent variance captured by MPLS model

LVno.

1
2
3
4

X-block

This LV Cumulative
16.11 16.11

9.55 25.66
5.84 31.50
6.89 38.39

Y-block

This LV Cumulative

57.58 57.58
26.26 83.84
11.78 95.62

1.82 97.44

nonlinearity is removed by subtracting the mean trajectories from reference
set trajectories prior to analysis. Another statistic that is calculated from
MPLS model is the Variable Influence on Projection (VIP) to investigate
the effects of important process variables (predictors) on quality variables
(predictees). As the formulation and interpretation details provided in Sec-
tion 6.4.2, process variables that have contributions larger than 1 can be
considered to exert more influence on quality as far as MPLS projection
is concerned. Figure 6.48 summarizes the mean values of VIP set, i.e.,
over the entire course of batch run and according to these plots variables
5, 7, 8, 9, 13 and 14 are found to be important, which is meaningful since
these variables carry physiological information and hence are expected to
be effective on the quality.

Process monitoring and quality prediction stage: Developed MPLS model
is used to monitor finished batches to classify them as 'good' or 'poor' based
on how well they follow similar trajectories to achieve 'good' quality prod-
uct. The same fault scenario with a small downward drift on glucose feed
(see Figure 6.44 and Table 6.8) in MPCA based monitoring is used to illus-
trate end-of-batch MPLS framework. MPLS model is also used to predict
product quality as soon as the batch finishes providing information ahead

Table 6.11. Cumulative percent variance captured by MPLS model on each
quality variable

LVno.

1
2
3
4

X

16.11
25.66
31.50
38.39

Y

57.58
83.84
95.62
97.44

2/1
48.08
85.62
95.64
97.41

1/2
51.24
87.23
95.98
97.23

2/3

45.42
62.18
92.38
97.20

2/4

91.89
96.89
98.08
98.10

2/5

51.24
87.23
95.98
97.23
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Figure 6.48. MPLS model VIP statistics. Important variables on projec-
tion are variables 5 (glucose concentration), 7 (biomass concentration), 8
(penicillin concentration), 9 (culture volume), 13 (generated heat) and 14
(cooling water flow rate).

of time for initial fast assessment before the real Y is available. New batch
data are processed with MPLS model at the end of the batch as shown in
Eqs. 6.115 and 6.116 after proper equalization/synchronization, unfolding
and scaling, resulting in multivariate SPM charts (Figures 6.50 and 6.51)
for detection and diagnosis. Figure 6.50 summarizes several statistics to
compare new batch with the reference batches. Figures 6.50(a) and 6.50(b)
indicate that there is a dissimilarity between the new batch and the NO
batches in both process and quality spaces. Scores of the new batch in both
spaces fall outside of the in-control regions denning NO in figures 6.50(c)
and 6.50(d). These charts suggest that an unusual event occurred in new
batch and should be investigated further. To find out when the process
wnet out-of-control and which variables were responsible SPEx chart and
a variety of contribution plots are used (Figure 6.51). SPEx chart of process
space in Figure 6.51 (a) reveals a deviation from NO and process goes out-
of-control around 570th observation. The overall variable contributions to
SPEx in Figure 6.51(b) over the course of batch run indicate that variable 9
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Figure 6.49. MPLS model (with four latent variables) statistics.
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Figure 6.50. MPLS-based end-of-batch monitoring results.

(culture volume) has changed unexpectedly, hence the deviation. Variable
contributions to SPEx for a specified time interval can also be calculated to
zoom the interval when out-of-control situation is observed. Figure 6.51(d)
shows average variable contributions to SPEx between 570th and 690th
measurements. Variables 3, 6 and 9 are found having the highest contri-
butions to deviation for that interval of out-of-control. A further analysis
can be performed by calculating contributions to process variable weights.
Since weights (W) bear information about the relationship between pro-
cess and product variables, variable contributions to weights will reveal
variable(s) that are responsible to out-of-control situation with respect to
product quality. These contributions can be calculated similar to SPEx
contributions. Figure 6.51(c) shows overall absolute variable contributions
to the weights over the course of the batch run. Variables 3, 6, 7, 10, 13
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Figure 6.51. MPLS-based end-of-batch monitoring results.
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and 14 have the high contributions compared to other variables. These
contributions are also calculated between 570th and 690th measurements
where the out-of-control occurs. Variables 3, 6, 7, 13 and 14 are found to
be significant in that case (Figure 6.51(e)). Since the original disturbance
was introduced into the variable 3 (glucose feed rate) as a small down-
ward drift, its effect on the other structurally important process variables
such as dissolved oxygen concentration (variable 6) and biomass concentra-
tion (variable 7) becomes more apparent as the process progresses in the
presence of that disturbance. Obviously, culture volume is expected to be
directly affected by this disturbance as it is found with SPEx contribution
plots. The weight contributions highlight the effect of this change on the
process variables that are effective in the quality space. Variables 13 and
14 (heat generated and cooling water flow rate, respectively) being highly
correlated with biomass concentration (variable7) also show high contribu-
tion. Since MPLS model can be used to predict end-of-batch quality as
well, model predictions are compared with actual measurements in Figure
6.51(f). Quality variable 3 is predicted somewhat poorly. This is due to
model order, and if the focus is on the prediction, this can be improved
by increasing the number of latent variables retained in the MPLS model.
End-of-batch quality can be predicted from the start of a new batch, this
case is illustrated in Section 6.5.1.

6.4.5 Multiway Multiblock Methods
Many chemical processes consist of several distinct processing units. Data
from various processing 'stages' carried in processing units and 'phases'
for operational or phenomenological regions in single units provide the in-
formation about the progress of the batch. As the number of units and
phases increases, the complexity of the monitoring problem also increases.
The techniques presented in Section 4.5.3 are useful for monitoring these
type of processes with some modifications in both data pretreatment and
monitoring techniques.

Example. A pharmaceutical granule production process by wet granula-
tion technique following a fluidized-bed drying operation was chosen as a
test case in this study. Process variables were broken up into blocks that
correspond to specific processing stages. The choice of blocks depends on
engineering judgment and the objectives of the study. In this study, blocks
are related to particular processing units. Furthermore, because of the dif-
ferent operating regimes occurring in each unit, it is convenient to split
the data from a stage into phases (Figure 6.52). This way, the predictive
and diagnostic capabilities of the multivariate statistical models can be im-
proved to provide more accurate inferences about the whole process. These
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| Staqe 1

Phase 1 Phase 2
>• I Stage 2

X1

/\
X1b

Figure 6.52. Data arrangement and blocking of variables for process stages
and phases.

models can be used to eliminate major disturbances in future batches, and
therefore to help adjust control limits for more consistent production, which
is crucial for pharmaceutical production processes [604].

Stage 1 is the wet granulation of the fine powder mix of active ingre-
dient (s) and other pharmaceutical excipients. The objective of the
granulation is to increase the particle size by agglomerating this fine
powder by adding a binder solution under continuous mixing. Parti-
cle size increase promotes higher bioavailability of the drug. At this
stage, the amount of binder used and its addition rate are effective on
the particle size increase. The amount of binder solution and its ad-
dition rate are predefined based on experimental design studies. We
have assumed a fixed total amount of binder solution in the simulation
studies. Binder addition rate, impeller speed, and power consump-
tion are taken as measured process variables at this stage. Stage 1
is operated in two phases: phase 1, dry mixing for a fixed time in-
terval, and phase 2, binder addition while mixing (Fig. 6.53). Since
there are small fluctuations in binder flow rate at each batch, the
final time of the second phase is variable, producing unequal batch
length for stage 1. These differences should be eliminated prior to
multivariate statistical modeling. To equalize data lengths in phase
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Figure 6.53. Phase structure of the first stage. F^: Binder addition rate,
Pw: Agitator power consumption.

2, we have used percent binder solution added into the granulator as
an indicator variable and sampled each variable at every 1% increase
in this variable, resulting in 100 observations for each batch at this
phase. These equalized data are appended to the fixed data of the
first phase, resulting in a total number of 160 observations for stage
1 (Figs. 6.54a and 6.54b).

Stage 2 is the drying stage where a fluid bed dryer is used. The wet gran-
ulates are dried using hot airflow to decrease their moisture content.
The increase in product temperature is measured as an indicator of
drying. Airflow rate, inflow air temperature, drying rate, and prod-
uct moisture are also measured. Product temperature is found to be
appropriate as an indicator variable for this stage, and measurements
on each variable are interpolated on every 0.5 °C increase in product
temperature, resulting in 63 observations (Figs. 6.54c and 6.54d).

MFC A model development stage for data blocks: There are two opera-
tional phases at the first stage of the granule production process. The first
phase contains dry mixing for a fixed time, and the second phase involves
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Figure 6.54. Equalized process variable trajectories of both stages using
indicator variable technique.

wet massing. Since the total amount of binder to be added is fixed, the
exact completion of the second phase is reached when all of the binder solu-
tion is consumed. Data from the first phase are collected based on the fixed
operation time, resulting in the 'X.ijiki unfolded matrix. Data arrangement
in the second phase is based on a fixed indicator variable (percent binder
addition), resulting in X ij2fe2- The index pairs jl, kl and j2, k2 denote
variables and observation numbers of each phase, respectively. The overall
performance can also be investigated by appending these matrices to form
an augmented matrix

Xij2k2\,

where j = jl + j2 and k = kl + k2.
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Figure 6.55. Comparison of local and overall models performances on ex-
plained variance.

Two local models for phase 1 and phase 2, and one overall model, are
developed using MPCA technique and compared. Variance plots can be use-
ful for comparing different models and investigating the changing variance
structure in overall data. The variance explained is higher (45.67% more)
for the local model of phase 1 than the overall model, whereas variances
explained are much closer but still higher (4.22% more) for the local model
of phase 2 (Fig. 6.55). This is expected, since the same event occurs in the
second phase (Fig. 6.53). Local models explain more information (17.98%
more for the whole process) based on computations of sum of squared errors
and data lengths in each phase.

Process monitoring stage: A new batch with a small drift in impeller
speed introduced at 0.5 rain (10th observation in phase 1 of stage 1) was
monitored after its completion. Note that the fault starts early in the
first phase. Both SPE and T2 plots for local and overall models in Figure
6.56 indicated that there is a deviation from the NO. Since overall model
performance is not high in the first phase, the early departure is caught
later with monitoring based on the overall model than with the local model
(Figure 6.56b), and many false alarms are observed in the SPE plot (Figure
6.56a). The advantages of using the local model for phase 1 are:

1. The false alarms observed with the overall model for phase 1 in the
SPE plot are eliminated.
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Figure 6.56. Effects of overall and local modeling on process performance
monitoring.

2. Departures from the NO are detected earlier (by three observations)
than with the overall model, and more consecutive out-of-control
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Figure 6.57. AHPCA based on-line monitoring of process stages under
faulty operation.

points (run length of 12 observations) are observed in the T2 plot
with the local model for phase 1 than the number the overall model
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produces (six observations),

The case illustrates that local models provide the capability to detect ear-
lier small trends and departures from NO that will be propagated to the
next phase and eventually cause significant deviation, thus allowing process
operators to improve their operations.

Online monitoring was performed in each processing stage based on
adaptive hierarchical PC A (AHPCA). For this multistage process, AH-
PCA is limited to stages due to interstage discontinuity. To overcome this
problem, different AHPCA models are developed for each stage. Differ-
ent weightings can also be applied to better account for changing phase
structure.

To illustrate online monitoring, a case is generated where a small drift
in impeller speed is introduced (dashed line) in the first stage and a step
increase (dashed line) in inflow air rate in the second stage. Each AHPCA
model successfully detected and diagnosed the problem online in each stage
for the overall process (Fig. 6.57).

6.4.6 Multiscale SPM Techniques Based on Wavelets
Multiscale MPCA (MSMPCA) is a combination of MPCA with wavelet
decomposition. Traditional MPCA is applied at a single time scale by rep-
resenting data with the same time-frequency localization at all locations.
MPCA may not be suitable for processes which include measurements with
different sampling rates and measurements whose power spectrum changes
with time.

Another important factor is that an MPCA model will still include imbed-
ded random noise although the random noise is reduced by selecting only
the significant components. This random noise may cause failure in de-
tecting small deviations from normal operating conditions of process. In
order to improve the performance of MPCA, the random noise should be
extracted from the signal in an enhanced manner. A possible solution to
this shortcoming of MPCA is to apply wavelet transformation to the signal
before developing MPCA model. The role of wavelet decomposition here
is similar to that of filtering the signal to separate the errors. Examples
of this pretreatment by filtering data such as exponential smoothing and
mean filtering can be found in literature [586].

The algorithm for MSMPCA is

Model development:

I . Use a historical data set of the past batches
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2. Choose a wavelet function

3. Select the number of scales

4. Apply 1-D wavelet decomposition to each variable trajectory in his-
torical data which are the unfolded, mean-centered and scaled version
of a three-way array

5. Develop MPCA models for the coefficients at each scale for the past
batches

6. Reconstruct the models in a recursive manner at each scale to form
the model for all scales together

Monitoring:

7. Apply the same 1-D wavelet decomposition on each variable trajec-
tory of the batch to be monitored

8. Identify the scales that violate the detection limits as important scales

9. Reconstruct the new data by including only the important scales

10. Check the state of the process by comparing the reconstructed data
with detection limits

The data set representing normal operation is decomposed to wavelet coef-
ficients for each variable trajectory. MPCA models are developed at each
scale. The overall MPCA model for all scales is obtained by reconstructing
the decomposed reference data. Wavelet decomposition is applied to new
batch data using the same wavelet function. For each scale, T2 and SPE
values of the new batch are compared with control limits computed based
on reference data. The scales that violate the detection limits are consid-
ered as important scales for describing the critical events in current data.
Inverse wavelet transform is applied recursively to the important scales to
reconstruct the signal. The new batch is considered to be out-of-control if
T2 and/or SPE values of the reconstructed signal violate the control limits.

Selecting the number of scales of the wavelet decomposition is important.
The optimum scale number gives maximum separation between the stochas-
tic and deterministic components of the signal. If the scale number is chosen
too small, the signal will still have noise. On the other hand, if the scale
number is too large, the coarser scales will have too few a data to form an
accurate model. The number of scales should be determined according to
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Table 6.12. Coefficient data sets from wavelet decomposition of X

Wavelet coefficients data sets
Approximation coefficients at scale m = 3, A3

Detail coefficients at scale m = 3, DS
Detail coefficients at scale m = 2, D2
Detail coefficients at scale m — 1, DI

Data set size
(40 x 1337)
(40 x 1337)
(40 x 2674)
(40 x 5348)

the dimension of data used. For selection of scales the following formula
can be used:

£ = log2n-5 (6.118)

where t is the number of scales and n is the number of observations.

Example. MSMPCA based SPM framework is illustrated for a simulated
data set of fed-batch penicillin production presented in Section 6.4.1. Two
main steps of this framework are model development stage using a histor-
ical reference batch database that defines normal operation and process
monitoring stage that uses the model developed for monitoring of a new
batch.

MSMPCA model development stage: A reference data set of equal-
ized/synchronized (Figures 6.42 and 6.43), unfolded and scaled 40 good
batches (each batch contains 14 variables 764 measurements resulting in a
three-way array of size X(40 x 14 x 764) is used. After unfolding by preserv-
ing the batch direction (/), the unfolded array becomes X(40 x 10696)).
Each variable trajectory in X is decomposed into its approximation and
detail coefficients in three scales using Daubechies 1 wavelet family that is
chosen arbitrarily. Although Eq. 6.118 suggests four scales, the decomposi-
tion level of three is found sufficient in this case. Since the original signals
can be reconstructed from their approximation coefficients at coarsest level
and detail coefficients at each level, those coefficients are stored for MPCA
model development (Table 6.12). Then, MPCA models with five PCs are
developed at each scale and MV control limits are calculated.

Process monitoring stage: MPCA models developed at each scale are
used to monitor a new batch. A faulty batch with a small step decrease
on glucose feed between measurements 160 and 200 is mean-centered and
scaled similarly to the reference set and 1-D wavelet decomposition is per-
formed on variable trajectories using Daubechies 1 wavelets. This three-
level decomposition is illustrated for penicillin concentration profile (vari-
able 8 in the data set, x& = OQ) in Figure 6.58. Note that, the effect of the
step change on this variable becomes more visible as one goes to coarser
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Figure 6.58. Decomposition of penicillin concentration profile of a faulty
batch.

scales. Starting and end points of the fault are more apparent in the detail
coefficient (d^) of the third scale since detail coefficients are sensitive only
to changes and this sensitivity increases in coarser scales. SPE on each scale
is calculated based on MPCA models on scales. An augmented version of
SPE values at all scales is presented in Figure 6.59. The 99% control limit
is violated at scale m = 3 on both its approximation and detail coefficients.
There are also some violation at scale two but no violation is detected at
the first scale hence this scale is eliminated. Fault detection performances
of conventional MPCA and MSMPCA are also compared in Figure 6.60.
The lower portion of this figure represents SPE of the approximation coeffi-
cients. The first out-of-control signal is detected at point 162 and returning
to NO is detected at point 208 at that scale on SPE whereas conventional
MPCA detects first out-of-control signal at 165th measurement and return-
ing point to NO at 213th measurement. In addition, MSMPCA-based SPE
contains no false alarms but conventional MPCA has 16 false alarms after
the process returns to NO. The advantage of MSMPCA stems from com-
bined used of PCA and wavelet decomposition. The relationship between
the variables is decorrelated by MPCA and the relationship between the
stochastic measurements is decorrelated by the wavelet decomposition. MV
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Figure 6.59. SPE on different scales of the decomposed faulty batch data.
Darker line represents 99% control limit.

charts on important scales can be conveniently used on both detection and
diagnosis of abnormal operation, particularly, in the case of small shifts in
variable set points. Figure 6.61 represents detection and diagnosis of ab-
normal operation. Responsible variable(s) are detected by SPE charts and
diagnosed correctly by contribution plots (averaged contributions during
the period when the process is out-of-control) for this fault case as glucose
feed rate (variable 3), glucose (variable 5) and penicillin concentrations
(variable 8) in the fermenter. D

Methodology of on-line MSMPCA: Wavelet decomposition by nature is
not suitable for on-line monitoring because future measured data is needed
to calculate the current wavelet coefficient which introduces a time delay in
the computation. This delay can be prevented by making the wavelet filter
causal by implementing special wavelet niters named boundary corrected
niters at the edges. Another source for time delay in wavelet decomposi-
tion is the dyadic downsampling. The signal is decomposed into wavelet
coefficients only if it is of dyadic length. For example if the signal has three
data points, the decomposition is not executed until the fourth data point
is added to the signal. In order to eliminate these disadvantages, an algo-
rithm that includes decomposition of data in a moving window has been
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Figure 6.60. Comparison of fault detection performances. Original data
(upper figure) and approximation coefficients of thirds scale (lower figure).
Dashed line represents 99% control limit in both figures.

proposed [437]. This algorithm can be summarized as:

1. Decompose data in a window of dyadic length

2. Reconstruct the signal after applying thresholding to the wavelet co-
efficients

3. Retain only the last point of the reconstructed signal

4. Shift the window in time when new data are available and keep the
window length constant

Initial window length selection is critical. If the window length is chosen
too small, there may not be enough data points to decompose in coarser
scales. On the other hand, if the initial window length is too large, by
the time process data reaches the chosen window length, the process might
have already gone out of control. The window length is kept constant to
reduce the computational burden. Another difference compared to off-line
algorithm is the adjustment of detection limits for each scale as for the
relation:

C), (6.119)
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Figure 6.61. Fault detection and diagnosis by MSMPCA. Dashed line rep-
resents 99% control limit on SPE charts.

where C is the desired overall limit, d is the adjusted confidence limit at
each scale in percent, and t is the number of scales of decomposition [38].

The constraints of dyadic downsampling can be eliminated by using a
moving window, implementing a computational strategy similar to moving
average. The increase in computational burden is a disadvantage of this
approach.

6.5 On-line Monitoring of Batch/Fed-Batch
Fermentation Processes

Real-time SPM during the progress of the batch can be as simple as moni-
toring the trajectory of each process variable and comparing it against an
ideal reference trajectory. The premise for this approach is that if all vari-
ables behave as expected, the product properties will be as desired. A few
control loops can be used to regulate some critical process variables. There
are several problems with this approach:

1. Slight changes in many variables may seem too small for each variable,
but their collective effect may be significant
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2. Variations in impurity levels or other initial conditions may affect the
variable trajectories, but these deviations from the reference trajec-
tories may not cause significant product quality degradation

3. The duration of each batch may be different, causing difficulties in
comparing the trajectories of the current batch to reference trajecto-
ries.

The remedies proposed fall into four groups:

1. Use the MSPM tools with variable trajectories that are combinations
of real data (up to the present time in the batch) and estimates of
the future portion of the trajectories to the end of the batch

2. Use hierarchical PC A that relies only on trajectory information from
the beginning of the batch to the current time

3. Use MPCA or MPLS that is performed on an unfolded three-way
batch data array by preserving variable direction

4. Use estimators for predicting the final product quality and base batch
monitoring on this estimate.

These four approaches are discussed in the following Sections.

6.5.1 MSPM Using Estimates of Trajectories
The problem that is encountered when applying MPCA and MPLS tech-
niques for on-line statistical process and product quality monitoring is that
the xnew vector in Eqs. 6.114 and 6.115 is not complete until the end of
the batch run. At time interval k, the matrix Xnew has only its first k rows
complete and all the future observations [(K — k) rows] are missing. Several
approaches have been proposed to overcome this problem for MPCA and
MPLS-based on-line monitoring [433, 434, 435].

MPCA—based on-line monitoring. The future portions of variable tra-
jectories are estimated by making various assumptions [433]. The on-line
evolution of a new batch is monitored in the reduced space defined by the
PCs of the MPCA model.

The incompleteness of the Xnew (K x J) matrix (or xnew (1 x KJ)
vector after unfolding and scaling) during the batch creates a problem for
on-line monitoring. The loadings of the reference data set cannot be used
with incomplete data because the vector dimensions do not match. Three
approaches are suggested to fill in the missing values in Xnew [433, 435].
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Method 1, assumes that future observations are in perfect accordance
with their mean trajectories.

Method 2, assumes that future values of disturbances remain constant at
their current values over the remaining batch period.

Method 3, treats unknown future observations as missing values from the
batch in MPCA model. Hence, PCs of the reference batches can be
used for prediction.

All three assumptions introduce arbitrariness in the estimates of variable
trajectories (Figure 6.62). Deciding which approach to use depends on
the inherent characteristics of the process being monitored and information
about disturbances. If process measurements do not contain discontinuities
or early deviations, the third approach may be used after some data have
been collected. If it is known that the disturbances in a given process are
persistent, it is reported that the second approach works well [435]. When
no prior knowledge exist about the process, the first estimation technique
may be used.

As the new vector of variable measurements is obtained at each time
fc, the future portions of the trajectories are estimated for use in regular
MPCA-based SPM framework as

A

«new,k == -*new* ' ®new,fc ~ ^new / ^ ^new.qfcPa (v.LZO)

a=l

where x®^ denotes the full variable measurements vector (1 x KJ) that is
estimated at each k onwards to the end of the batch run, tneWjfc (IxA), the
predicted scores at sampling time k from the P loadings, and eneW)fc (1 x KJ)
the residuals vector at time k. To construct the control limits for on-line
monitoring of new batches, each reference batch is passed through the on-
line monitoring algorithm above, as if they are new batches, and their
predicted scores (tnew.fc) and squared prediction errors (SPEfc) are stored
at each sampling interval k.

Example. MPCA-based on-line SPM framework is illustrated using the
same simulated data set of fed-batch penicillin production presented in Sec-
tion 6.4.1. The large downward drift fault in glucose feed rate is used as
a case study (Figure 6.44 and data set X3 (764 x 14) in Table 6.8). The
model development stage and the MPCA model developed are the same as
in Section 6.4.3, with the exception that the construction of control limits
is performed by passing each batch data in the reference set through the
estimation-based on-line SPM procedure. The process monitoring stage
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Figure 6.62. Methods of estimation of future values in MPCA-based on-line
SPM (Autoscaled penicillin concentration profile).

depends on the estimation method used. All three methods are imple-
mented in this example. Greater difference caused by the data estimation
method used is observed in the T2 chart in Figure 6.63(a). The out-of-
control signal is first detected by the second technique (the future values
of disturbances remain constant at their current values over the remaining
batch period) at the 325th measurement in T2 chart. SPE chart detected
the fault around the 305th measurement in all of the techniques. Variable
contributions to SPE and T2 and scores biplots are presented for Method
2. Contribution plots revealed the variables responsible for the deviation
from NO when out-of-control state is detected. Variables 3 and 5 in SPE
contributions (Figure 6.63(d)) at 305th measurement and variable 3 and 5
(and 7, 13, 14 to a lesser extent) in T2 contribution plot (Figure 6.63(c))
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at 325th measurement are identified as responsible for the out-of-control
situation. Variable 3 (glucose feed rate) is the main problematic variable
affecting the other variables gradually. Variable 5 (glucose concentration in
the fermenter) is the first variable directly affected by the drift in variable
3. Since T2 detects the out-of-control state later, the effect of the drift
develops significantly on variables such as 7 (biomass concentration in the
fermenter), 13 (heat generated), and 14 (cooling water flow rate) that are
signaled by the T2 contribution plot (Figure 6.63(c)). Scores biplots also
show a clear deviation from NO region defined by confidence ellipses of the
reference model (Figures 6.63(e) and 6.63(f)). D

MPLS-based on-line monitoring and estimation of final product
quality. Although the three estimation methods presented above can be
used to deal with missing future portions of the trajectories when imple-
menting MPLS on-line, another approach that uses the ability of PLS to
handle missing values is also proposed [434] . Measurements available up to
time interval k are projected onto the reduced space defined by the W and
P matrices of the MPLS model in a sequential manner as for all of the A
latent variables

W(l : kJ a]
t( l ,a)n e w , fc = Xnew, ' . k J, a)

Xnew,fc = Xnew,fc - t(l, a)new,fcP(l = kJ, d)T (6.122)

where (1 : k J, a) indicates the elements of the ath column from the first row
up to the kJth row. The missing values are predicted by restricting them
to be consistent with the values already observed, and with the correlation
structure that exists between the process variables as defined by the MPLS
model. It is reported that this approach gives t-scores very close to their
final values as Xnew is getting filled with measured data (k increases) and
it works well after 10 % of the batch evolution is completed [433, 434, 435].

When a new variable measurements vector is obtained and k is incre-
mented, scores t(l, a)neW)fc can be estimated and used in MPLS (Eqs. 6.115
and 6.116). There are no residuals f on quality variables space during on-
line monitoring since the actual values of the quality variables will be known
only at the end of the batch. Each batch in the reference database is passed
through the on-line MPLS algorithm as if they were new batches to con-
struct control limits. Since MPLS provides predictions for the final product
qualities at each sampling interval, the confidence intervals for those can
also be developed [434]. The confidence intervals at significance level a for
an individual predicted final quality variable y are given as [434]

)1/2 (6.123)
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Figure 6.63. MPCA-based on-line SPM results of a faulty batch. In (a)
and (b) Method 1 (Solid curve), Method 2 (Dashed curve), and Method 3
(Dash-dotted curve), (c)-(d) Variable contributions to T2 and SPE at 325th
and 305th measurements, respectively. Score biplots based on Method 2
(e) 1st vs 2nd PC and (f) 2nd vs 3rd PC.
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where T is the scores matrix, ti_A-\, a/2 is the critical value of the Stu-
dentized variable with I — A — I degrees of freedom at significance level a/2
and mean squared errors on prediction (MSE) are given as

SSE = (y - y)T(y - y), MSE = SSE/(I -A-l). (6.124)

In these equations, / refers to number of batches, A to number of latent
variables retained in the MPLS model, and SSE to sum of squared errors
in prediction.

Example. To illustrate on-line implementation of MPLS for monitoring
and prediction of end product quality, the same reference set and MPLS
model are used as in Section 6.4.4. All batches in the reference set are
passed through the on-line algorithm to construct multivariate statistical
control limits. MV charts for an in-control batch are shown in Figure 6.64.
T2, SPE, first LV and second LV charts indicate that the process is oper-
ating as expected. Figure 6.65 presents predictive capability of the model.
The solid curves indicate the end-of-batch values estimated at the corre-
sponding measurement times. The dashed curves are the 95% and 99%
control limits on end-of-batch estimates. End-of-batch values of all five
quality variables are predicted reasonably while the batch is in progress.
The third fault scenario with a significant downward drift on substrate feed
rate is used to illustrate MPLS based on-line SPM. The first out-of-control
signal is generated by the SPE chart at the 305th measurement (Figure
6.66(a)), followed by the second LV plot at the 355th measurement (Fig-
ure 6.68(c)), the T2 chart at the 385th measurement (Figure 6.66(c)) and
finally by the first LV plot at the 590th measurement (Figure 6.68(a)).
Contribution plots are also plotted when out-of-control status is detected
on these charts. Variable contributions to SPE in Figure 6.66(b) reveal the
root cause of the deviation that is variable 3 (glucose feed rate). Second
highest contribution in this plot is from variable 5 (glucose concentration in
the fermenter), which makes sense because it is directly related to variable
3. The rest of the corresponding contribution plots reveal variables that
are affected sequentially as the fault continues. For instance, the second
LV signals the fault later than SPE, hence there is enough time to see the
effect of the fault on other variables such as variables 12 (temperature in
the fermenter) and 13 (heat generated) while variable 3 is still having the
maximum contribution (Figure 6.68(d)). T2 chart signals out-of-control a
little later than the second LV and at that point variables affected are vari-
able 7 (biomass concentration in the fermenter), 13 (heat generated) and
14 (cooling water flow rate) (Figure 6.66(d)). An upward trend towards the
out-of-control region can be seen in T2 charts in Figure 6.66(c) when SPE
chart detects the out-of-control situation. Variable contributions at 305th
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Figure 6.64. MPLS-based on-line monitoring results of a normal batch.

measurement are shown in Figure 6.67 to reveal the variables contribut-
ing to this deviation that is beginning to develop. As expected, variables 3
(glucose feed rate) and 5 (glucose concentration in the fermenter) are found
responsible for the start of that upward trend towards the out-of-control
region. End-of-batch product quality is also predicted (Figure 6.69). Signif-
icant variation is predicted from desired values of product quality variables
(compare Figure 6.69 to Figure 6.65). The confidence intervals are plotted
only until the SPE signals out-of-control status at 305th measurement be-
cause the model is only valid until that time. D
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Figure 6.65. MPLS-based on-line predictions of end-of-batch product qual-
ity of an in-control NO batch. (•) represents the actual value of the end-
of-batch product quality measurement.

6.5.2 Adaptive Hierarchical PC A
Hierarchical PCA provides a framework for dividing the data block X into
K two-dimensional blocks (/ x J) and look at one time slice at a time [496]
(see Figure 6.70). This gives separate score vectors tak for each individual
time slice X^ where a = 1, • • • , A, k = 1, • • • , K. The initial step is to
calculate a one-component PCA model for the first time slice, and to obtain
the score and loading vector (tafc, pafc, a = 1, A; = 1) for the first block. The
hierarchical part of the algorithm starts at k = 2 and continues for the rest
of the batch (k = K). The score and loading vectors are built iteratively,
the score vector for the previous time slice model t a(fc_i) is used as the
starting estimate for tafc. Then, pa^ = X^fct0fc and the new score vector
rak is calculated and normalized:

Yak = Xafcpafc, rafc = dfcrafc/||rafc || (6.125)

The weighting factor dk balances the contributions of the new information
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Figure 6.66. MPLS-based on-line monitoring results of a faulty batch.

(rafc) at time k and the recent history (ta(k-i))i playing a role similar to that
of the exponential weighting factor in an EWMA model. The consensus
matrix Rafc is formed from ta(k-i) and rafc column vectors and the weight
vector wafc is computed as (wafc = R^fctafe) for calculating the new score
vector tafc = RafcWafc. Then, tafc is normalized and checked for convergence.
If convergence is achieved the Xafc blocks are deflated as X(0+1)fc = Xafc —
tafcp^r, to calculate the next dimension (a is increased by 1). The converged
latent vectors are computed for a given a for all k, then a is incremented
by 1 and the process is repeated until a = A. The model generated can
be used to monitor future batches by storing pafc, wafc, and dk for a =

As data are collected from the new batch and stored as row vectors x^,
the values for rafc, tafc, and x.(a+i)k are computed at time k for a = 1, • • • , A
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Figure 6.67. Variable contributions to T2 when SPE chart signals out-of-
control status at the 305th measurement.

by using
tafc = [ta(fc_i) dkrak]\vak, (6.126)

xf«+i)fc = xlfe - tafcpSc (6-127)

The prediction error is computed as

A
efc=x f c -£t o f cpS f e (6.128)

0=1

The score and error values at each k can be plotted for MSPM of the
batch. Since no missing data estimation is required in AHPCA, the control
limits are calculated directly using the residuals and scores from the model
building stage.

Example. AHPCA-based SPM framework is illustrated using the same
simulated data set of fed-batch penicillin production presented in Section
6.4.1. Two main steps of this framework can be expressed as model de-
velopment stage using a historical reference batch database that defines
normal operation and process monitoring stage by making use of the model
developed for monitoring a new batch.

AHPCA model development stage: AHPCA model is developed from a data
set of equalized/synchronized (Figures 6.42 and 6.43), unfolded and scaled
37 good batches (each containing 14 variables 764 measurements resulting
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Figure 6.68. MPLS-based on-line scores and contribution plots of a faulty
batch.

in a three-way array of size X(37 x 14 x 764). A subset of 37 batches is
chosen from the original 41 batches. After unfolding by preserving the batch
direction, size of the resulting matrix X becomes (37 x 10696)). AHPCA-
based empirical modeling is performed on the unfolded array X with three
principal components and the weighting factor d is chosen as 0.35 (for all
the sampling intervals). Explained variability on X block by AHPCA model
is summarized in Figure 6.71(b) and Table 6.13. The explained variability
even with 3 PCs is higher than that of 4 PC MPCA model presented in
Section 6.4.3 (Figure 6.45(e)).

Process monitoring stage: The adaptive model developed is used to
monitor new batches on-line. The batch fault scenario with 10% step de-
crease in agitator power input between the 140th and 180th measurements
(Figure 6.44 and Table 6.8) is used. New batch data are processed with
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Figure 6.69. MPLS-based on-line predictions of end-of-batch product qual-
ity. (•) represents the actual value of the end-of-batch product quality
measurement.

Figure 6.70. Adaptive hierarchical PCA scheme [496].
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Table 6.13. Percent variance captured by AHPCA model

PC no.

1
2
3

X-block

This PC
28.25
20.05
10.29

Cumulative
28.25
48.30
58.59

UJ 20

(b)

Figure 6.71. AHPCA model (with three PCs) statistics, (a) biplots of 37
reference runs, (b) cumulative explained variance with one, two and three
PCs.

an AHPCA model as shown in Eqs. 6.126-6.128 after proper equaliza-
tion/synchronization, unfolding and scaling, resulting in multivariate SPM
charts (Figure 6.72). Both SPE and T2 charts signal on-line when the pro-
cess is out-of-control. The variable responsible for this deviation from NO
is diagnosed to be variable 2 (agitator power input) by using on-line contri-
bution plots to SPE and T2 in Figures 6.72(b) and 6.72(d). Contributions
are calculated for the interval of the fault occurrence (140th and 180th mea-
surements). Variables 7, 13 and 14 (biomass concentration, heat generated
and cooling water flow rate) are also contributing to deviation. This is due
to the decrease in oxygen transfer rate during that short interval. D
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Figure 6.72. On-line monitoring of a faulty batch using AHPCA. The sub-
script "140-180" in figures (b) and (d) indicate that contributions are av-
eraged between 140th and 180th measurements.

6.5.3 Online MSPM and Quality Prediction by Pre-
serving Variable Direction

A different online MSPM framework can be established by unfolding the
three-way data array by preserving variable direction [203, 232, 663]. In
this MSPM framework, it is not necessary to estimate the future portions of
variable trajectories. MPCA or MPLS models can be developed and used
for online monitoring. A new methodology has been proposed based on de-
veloping an MPLS model between process variable matrix that is unfolded
in the variable direction and local time stamp to use in the alignment of
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Figure 6.73. Three-way array formation and unfolding, (a) by preserving
batch direction, (b) by preserving variable direction.

trajectories [663].
Process measurements array X can be unfolded to X (IK x J) by pre-

serving the variable direction [232, 552, 663]. In this case, X can be thought
of as a combination of slices of matrices of size (KxJ] for each batch (Figure
6.73(a)). X is formed after rearrangement of these slices. This type of un-
folding suggests a different multivariate modeling approach [232, 606, 663].
Batch evolution can be monitored by developing an MPLS model between
X (IK x J) and a time stamp vector z (IK x 1) (Figure 6.75(b)). In this
case, MPLS decomposes X and z into a combination of scores matrix T
(IK x .R), loadings matrix P (J x R} and vector q (R x 1) and weight
matrix W (J x R} with different sizes compared to conventional MPLS
decomposition discussed in Section 4.5.2

X = TPT + E
z = Tq + f

where E and f are the residuals matrix and vector, respectively.

(6.129)
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Figure 6.74. Comparison of different scalings applied to X matrix. Biomass
(left figures) and penicillin concentration profiles (right figures). Raw pro-
files (a)-(b), mean-centered (by subtracting mean trajectories) and unit
variance scaled profiles (c)-(d), mean-centered (by subtracting variable
means) and unit variance scaled profiles (e)-(f).

During the progress of a new batch, a vector xnew of size 1 x J becomes
available at each time interval k. After applying the same scaling to new
observations vector as reference sets, scores can be predicted for time instant
k by using the MPLS model parameters

t - xnewW(PTW)-i (6.130)

Since the size of the resulting matrix from the operation W(PTW) x is
J x R, online monitoring of the new batch can be performed without any
future value estimation.

In the pre-processing step, X is mean-centered by subtracting variable
means and usually scaled to unit variance. This pre-processing differs from
the conventional approach (Figure 6.74(c)-(d)) in that the dynamic non-
linear behavior of trajectories in X is retained (Figure 6.74(e)-(f)). This
technique can also be combined with conventional MPLS for predicting
product quality after the completion of the batch run [606, 663].
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Figure 6.75. MPLS modeling with using different unfolding approaches.

Development of Online Process Performance Monitoring Frame-
work. This online monitoring framework in this work is based on unfolding
a three-way array by preserving the variable direction. However, it is also
incorporated with the conventional MPLS technique when online/offline
quality prediction and end-of-batch monitoring are aimed. To differentiate
the two MPLS techniques depending on different type of unfolding, the con-
ventional technique that preserves batch direction is called MPLSB (Figure
6.75(a)) and the one that preserves variable direction is called MPLSV (Fig-
ure 6.75(b)). MPLSV relies on information at a specific time. The history
of the batch up to that time is not considered in contrast to the MPLSB
framework. In this respect, it is similar to a Shewhart chart while MPLSB
is similar to a CUSUM chart.

A reference data set that contains good batches presenting normal op-
eration is used in the model development. Equalization and alignment
of trajectories are required if batches in this reference set are of different
lengths using alignment techniques discussed in Section 6.3. Data align-
ment using an indicator variable (IV) can be performed in different ways.
If there exists an indicator variable that other process variables can be
measured against its percent completion, variable trajectories in the refer-
ence set are re-sampled by linear interpolation techniques with respect to
this indicator variable. As an alternative method, (especially when such
an indicator variable is not available), an MPLSV model can be developed
between the process measurements matrix X and local time stamps vector
z of the individual batches in the reference set (Figure 6.75(b), y = z).
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Figure 6.76. Predicted local batch time for the entire process duration. The
peak corresponds to switching from batch to fed-batch operation.

This model provides information about the relationship between time and
the evolution of process variable trajectories. The predicted time stamp
vector Zpred can then be used as an indicator variable such that process
variables are re-sampled on percent increments of this derived variable. It
is assumed that variable trajectories contain sufficient information to fairly
predict batch time in MPLSV modeling. This assumption implies that
variable trajectories somewhat linearly increase or decrease in each time
region. Local batch time prediction produces weak results when there are
discontinuities or there exists instances that variables have simultaneous
piecewise linear dynamics during the evolution of the batch. As illustrated
in Figure 6.76 with fed-batch penicillin fermentation data, predicted time
shows non-increasing or decreasing behavior in the region around the dis-
continuity which makes it inappropriate for data alignment. Similar results
were also reported for industrial data [641].

A solution is proposed to this problem by partitioning the entire process
into major operational phases [606]. Two different data alignment methods
are used. For the general case when batches in the reference data set are of
unequal length and no appropriate indicator variable is found, an MPLSV
model is developed between X and local time stamps vector z for each pro-
cess phase. Process variable trajectories are then re-sampled with respect to
the percent completion of predicted local batch time vector zpred • A vector
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of tmax containing predicted termination times of reference batches is used
to calculate percent completion on zpred- The second type of alignment
does not use MPLSV modeling. Appropriate indicator variables are chosen
for aligning batch variables in each phase of operation. The discontinu-
ity occurs in the transition from batch to fed-batch operation in penicillin
fermentation (Figure 1.4). Consequently, there are two operational phases
and two indicator variables are used. In this case, process termination is
determined according to a maturity indicator such as a preset percent con-
version level or a certain total amount of a component fed. Both cases are
common in industrial operations.

Once the reference data set of good batches is aligned to give an equal
number of measurements in each batch and synchronized variable profiles,
an MPLSV model is developed between the aligned process variables set
and predicted percent completion of the batch run, zpred- Model parameters
from this step are used to construct MSPM charts as outlined earlier in
Section 6.4.2.

Figure 6.77 shows aligned biomass concentration profiles of the reference
batches in each phase of the batch run using indicator variables. As a
result of the alignment procedure, temporal variation of process events is
minimized so that similar events can be compared. A very useful byproduct
of the alignment procedure is that the number of measurements in each
batch on each variable is also equalized. zpred profiles in each phase of
the reference batches are shown in Figure 6.78 along with their control
limits. Zpred °f a new batch can be used as a maturity indicator. It can be
inferred that if its value is smaller than the observed value, the process is
progressing slower than the reference batches. Limits are used to detect an
unusual deviation from the expected time course of the batch.

When used as is, MPLSV modeling produces nonlinear estimated scores.
Control limits can be calculated as

t±3cr (6.131)

where t are average estimated scores and a their standard deviations [663].
When a new batch is monitored with the model parameters of MPLSV,
estimated scores of this new batch will also be nonlinear. After proceed-
ing with mean-centering of these scores that reduces the nonlinearity, it is
possible to construct tighter control limits by using Eq. 6.95. This mod-
ification allows faster fault detection as discussed in case studies. When
an out-of-control status is detected with either type of score plots, variable
contributions are checked for fault diagnosis.

Online Prediction of Product Quality. It is advantageous to use
MPLSV type models for online monitoring because it is not necessary to
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Figure 6.77. Results of the alignment procedure for biomass concentration
profiles.
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Figure 6.78. Predicted local batch times (zpred) in Phase 1 and 2 with
control limits (dashed lines).
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Figure 6.79. (a) Partitioning of process measurements space and (b) re-
structuring for online quality prediction framework.

estimate future portions of variable trajectories. However, this technique
lacks online prediction of end-of-batch quality in real-time. A two-step
integrated modeling approach is proposed to account for online quality
prediction [606]. The first step is similar to MPLSV modeling discussed
earlier. After reference batch data are aligned using IV technique, batch
progress is determined according to percent increments on local batch time
(or another IV) so that batches in the reference set are partitioned based on
these increments that are chosen arbitrarily such as 10%, 20% of zpred (Fig-
ure 6.79(a)). Each partition of X (IK x J] is rearranged and inserted into
matrix X (/ x KJ) as shown in Figure 6.79(b). This is similar to transition
between MPLSV and MPLSB modeling. The difference is that whenever
a partition is rearranged, i.e. some percent of the batch is completed, an
MPLSB model is developed between this partial data and the final prod-
uct quality matrix Y. This gives an opportunity to predict end-of-batch
quality on percent progress points reflected by partitions. The number of
quality predictions will be equal to the number of partitions in this case.

Example. MPLS-based SPM and quality framework is illustrated using
the simulated data set of fed-batch penicillin production presented in Sec-
tion 6.4.1. Because of the modeling concerns about discontinuity, the data
set is preprocessed for partitioning according to process phases. First, the
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batch/fed-batch switching point is found for each batch and data are di-
vided into two sets as phase 1 and phase 2. Because the third variable
(substrate feed) is zero in batch phase, only 13 variables are left in this
first set. Data alignment is performed by using the IV technique. Since an
indicator variable is not available for the entire batch run, separate indi-
cator variables are selected for each phase. Variable 9, the culture volume
decrease, is a good candidate to be chosen as an indicator variable for phase
1. A new variable called 'percent substrate fed' is calculated from variable
3 (substrate feed) and used as an indicator variable for phase 2 data set.
This variable is added as the 15th variable to the data set of phase 2. It
is assumed that fed-batch phase is completed when 25 L of substrate is
added to the fermenter. Data are re-sampled by linear interpolation at
each 1 percent completion of volume decrease for phase 1 and at each 0.2
percent of total substrate amount added for phase 2. Data alignment is
achieved yielding in equal number of data points in each phase such that
the data lengths are Kl = 101 and K2 — 501, respectively.

MPLS model development stage: Model development includes two stages.
In the first stage, an MPLSV model is developed between process variables
matrix (unfolded in variable direction) and an indicator variable. This
model is used for online SPM purposes. The second stage involves devel-
oping predictive MPLSB models between available data partitions matrix
(rearranged process variables matrix in batch direction) and end-of-batch
quality matrix.

An MPLSV model is developed for phase 1 between autoscaled XI
(IKl x Jl) and the IV vector zl (IKl x I) by using 5 latent variables. The
number of latent variables should be chosen large enough to explain most
of the information in zl block because the MPLSV model is used to predict
batch evolution. Cross validation is used to determine the number of latent
variables. XI (IKl x Jl) can be rearranged into matrix XI (/ x KUl) to
develop an MPLSB model to obtain an estimate of end-of-batch quality at
the end of phase 1. Since all Kl measurements of the first phase have been
recorded by the beginning of the second phase, there would be no estimation
of variable trajectories required and / x K J partitioning can be used for
modeling. Autoscaled XI (IxKUl) and product quality matrix Y ( I x M )
are used as predictor and predicted blocks, respectively. Similarly, another
MPLSV model is developed for phase 2 between autoscaled X2 (/ x K2J2)
and IV vector z2 (IK2 x I).

In the second modeling stage, quality prediction models are developed.
To develop the first MPLSB model, data are collected in 50% increment
of phase 1 resulting in two data partitions Xi5i and Xi,2 (Figure 6.79b).
A similar approach is followed in phase 2 for every 20% increase in phase
2 evolution resulting in five data partitions (X2,n5

 n ~ 1, • • • , 5). MPLSB
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Table 6.14. Explained variance of MPLSB models for online quality pre-
diction

Model no. X-block Y-block

1
2
3
4
5
6
7

61.57
61.27
58.85
60.62
63.10
63.35
63.39

68.85
71.27
89.21
95.07
97.31
98.39
98.89

type of modeling is performed between the rearranged X matrix which is
augmented as a new data partition becomes available. As more data become
available local models are developed (model no. 1.. .7 in Table 6.14) and
explained variance in Y block increases with each local model as shown in
Table 6.14.

Process variables for the new batch are sampled at percent increments of
volume decrease for phase 1. After the completion of phase 1, the sampling
rate is switched to percent completion of the amount of substrate added.
New data vector xnew (1 x J) is monitored by using the following algorithm
for each sampling point from k — 1 to k = Kl, K1 for both phases

1. For k = I ...K
2. New batch data: xnew (1 x J)
3. Calculate new batch scores, SPE, T2 and variable contribu-

tions to these statistics by using the information generated
by MPLSV model

4. Compute zpred
5. Check MV control charts for abnormalities
6. End.

Process monitoring and quality prediction stage: A small drift of magni-
tude -0.018% h~l was introduced into substrate feed rate from the start of
fed-batch operation at 50 h until the end of the batch run as a test case.
There are significant differences in fault detection times and out-of-control
signal generation by different charts (Table 6.15). T2 detected the fault
fastest (Figure 6.80). Second fastest detection is obtained by the linear
score control chart of latent variable 2 (Figures 6.81 and 6.82). The last
four latent variables give out-of-control signals for both linear and non-
linear score matrices. Although SPE is in-control throughout the course
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Table 6.15. Fault detection times

Type % completed IV Time, h

T2

Linear Score LV 2
Linear Score LV 5

Nonlinear Score LV 2
Nonlinear Score LV 5

Linear Score LV 4
Nonlinear Score LV 4

Linear Score LV 3
Nonlinear Score LV 3

SPE

48.4
50

51.6
51.6
52

59.4
60.6
70.2
84.2

-

269
276
283
283
285
319
324
368
433

-

of the batch, the contribution plot for SPE signals an unusual situation
for variable 3 (Figure 6.80c). Variable 3 and 11 are found to be the most
affected variables because of the fault according to T2 contribution plot.
Deviation from average batch behavior plot is ineffective in indicating the
most affected variable(s) in this case (Figure 6.83a).

Quality prediction ability of the integrated MSPM framework is also
tested via two cases. A normal batch is investigated first. As expected, SPE
plot produced no out-of-control signal and final product quality on all five
variables (shown as a solid star) is successfully predicted (Figure 6.84). The
prediction capability is somewhat poor in the beginning because of limited
data, but it gets better as more data become available. In the second case,
where a drift of magnitude -0.05% h~l is introduced into substrate feed rate
at the beginning of the fed-batch phase until the end of operation, SPE plot
signaled out-of-control right after the sixth quality prediction point (80%
completion of phase 2). Because MPLSB model is not valid beyond this
point no further confidence limit is plotted (Figure 6.85). Although the
predictions of MPLSB model might not be accurate for the seventh (and
final) value, the framework generated fairly close predictions of the inferior
quality. Predicting the values of end-of-batch quality during the progress
of the batch provided a useful insight to anticipate the effects of excursions
from normal operation on final quality. D
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Figure 6.80. Control charts for SPE, T2 for the entire process duration
and contributions of variables to SPE and T2 for a selected interval after
out-of-control signal is detected in Phase 2 with 95% and 99% control limits
(dashed-dotted and dashed lines).

6.5.4 Kalman filters for Estimation of Final Product
Quality

Information on final product quality complements the information obtained
from process variable trajectories. A model of the batch process and pro-
cess variable measurements can be used to estimate final product properties
before the completion of the batch. Consider the differential-algebraic non-
linear equation system that describes the batch process and its final state:

-— = fx(x, u, v)
dt v '

= fy(x,w) q = (6.132)

where x are the state variables, u the manipulated inputs, v and w the
state and output disturbances, y the measured outputs, and q the final
product quality at the end of the batch(t = £/). If a fundamental model
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100 0 50 100
% Completion of IV % Completion of IV

Figure 6.81. Nonlinear scores in Phase 2 with control limits (dashed lines).

of the process were available, the final product quality can be estimated
by using an Extended Kalman filter. When a fundamental dynamic model
is not available, an empirical model could be developed by using historical
data records of successful batches. The problem may be cast as a regression
problem where the measurements y upto the current time tc, and inputs u
upto the end of the batch are used at any time tc to estimate q. Note that
the inputs at t = tc, • • • ,tf have not been implemented yet and have to be
assumed. A linear predictor for final product quality has been proposed by
using a least squares estimator obtained through biased regression (by using
PCA or PLS) and extended to recursive least squares prediction through a
Kalman filter [531].

6.6 Monitoring of Successive Batch Runs

Batch process monitoring techniques presented in previous sections focus
on detecting abnormalities in the current batch run by comparing it with
performance criteria developed using a historical database. In some batch
processes, disturbances may evolve over several batches, causing a gradual
drift in product quality and eventually leading to significant quality devi-
ation. MSPM methods that track changes in "between-batch" correlation
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Figure 6.82. Linear scores in Phase 2 with 95% and 99% control limits
(dashed-dotted and dashed lines).

structure, mean or drift are needed to track systematic variations in suc-
cessive batch runs. Subspace identification (Section 4.3.2) where the time
index is replaced by a batch index can be used to develop a framework for
monitoring batch to batch (between-batch) variations [134].

Consider measurement data generated in a batch run arranged as /
batches, J variables, and K sampling instants. Let yitk denote the vector
of mean centered and scaled J process measurements of batch i at sampling
time k. Collecting all process measurement vectors for k — 1, • • • , K, the
J x K data are unfolded to vectors of length JK for each k (called as lifting
in subspace identification literature):

yi = (yli, y ? 2 . - - - . y^f (6.133)
This is repeated for all batches ( ! , - • • ,/) of the data set used for model
building. The stochastic process model describing batch-to-batch variation
is extracted from the data using subspace identification (Section 4.3.2):

4- (6.134)

Just as the state Xfc in Section 4.3.2 was holding relevant process informa-
tion from sampling times & — ! , • • • ,1 for predicting future process behavior
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(a) (b)

11 12 13 14 15

(c) (d)

Figure 6.83. Phase 2 variable contributions to (a) deviations from average
batch behavior at the interval of 50-60% completion of IV , (b) to linearized
LV2 score at the interval of 50-60% completion of IV, (c) to linearized LV3
score at the interval of 70-80% completion of IV, (d) to linearized LV4 score
at the interval of 59-65% completion of IV (dashed-dotted and dashed lines).

in time, the state Xi is holding valuable information about earlier batches
i — 1, • • • , 1 for predicting future batches. Consequently, a monitoring al-
gorithm can be developed using state variables Xi to detect undesirable
behavior from batch-to-batch.

The simplest monitoring problem would be end-of-batch monitoring
based on off-line final quality measurements. In this case, 3^ contains only
the end-of-batch quality data. A more comprehensive monitoring problem
would include both process variable data collected during the batch and
end-of-batch quality variable data. In this case, Eq. (6.134) is augmented
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Figure 6.84. Online predictions for end-of-batch quality values for a normal
batch. Dotted straight line indicates the average value of a quality variable
based on reference batches.
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Figure 6.85. Online predictions for end-of-batch quality for the faulty batch.
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to include the final product quality variables q^:

H i sy

Qi

The size of the lifted output vector y may be too large to develop sub-
space models quickly. This high dimensionality problem can be alleviated
by applying PCA prior to subspace identification [134]. Since 34 may have
a high degree of colinearity, there is a potential to reduce the number of
variables significantly. If the number of principal components is selected
correctly, the residuals are mostly noise that tends to be batchwise uncor-
related, and the principal components will retain the important features
of batch-to-batch behavior. Applying PCA to project 3^ of length JK to
a lower dimensional space y_ of size a such that a <C JK, the state-space
model based on 3^ is

H£ i

£l (6.136)

where 3^ is defined by
(6.137)

with the columns of matrix 0 being the principal directions (loadings) and
E being the PCA residuals matrix.

Several monitoring charts can be developed to detect abnormal batch-
to-batch behavior. T2 and Q charts of principal components would be one
alternative. But T2 charts of states X% and prediction errors £ r offer better
alternatives. The use of a small window CUSUM chart of prediction error
T2 has also been proposed [134]. It filters out high frequency variation in
£ i over i, and enhances the trends by accumulating the deviation over a
number of batches. A window size of 5 batches provides a good compro-
mise between capturing trends and delay in indicating big increases in the
prediction error of one batch run.
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Process Control
7.1 Introduction
It should be evident from the discussion and various illustrations in Chap-
ter 2 that even in its simplest form, the representation of dynamic and
steady-state behavior of a bioprocess is multivariate in nature. Even a
simple unstructured kinetic representation for biomass formation would re-
quire knowledge / monitoring / prediction of a minimum of two variables,
namely concentrations / amounts of biomass and at least one specie (sub-
strate) which leads to production of cell mass. Recognizing that biomass
formation is the sum total of a large number of intracellular chemical reac-
tions, each of which is catalyzed by an enzyme, and that activity of each
enzyme is very sensitive to intracellular pH and temperature, one can ap-
preciate that this simplest black box representation would be applicable
only if the intracellular pH and temperature, and therefore indirectly the
culture (composite of abiotic and biotic phases) pH and temperature were
kept invariant. Considering that the pH and temperature in the biotic por-
tion of the culture and culture as a whole, if left uncontrolled, would vary
with time because of the large number of intracellular chemical reactions,
it is obvious that maintaining the culture pH and temperature at desired
values would require addition of an acid or a base and addition/removal of
thermal energy (heating/cooling) as appropriate. Thus, even in the sim-
plest scenario where the focus in the forefront is on formation of biomass
and consumption of a single substrate, one must consider in the background
manipulation of rates of acid/base addition and heating/cooling to keep
culture pH and temperature at the desired values.

Having realized that one must always deal with multivariate problems
when dealing with biological reactors, the dimension of the system rep-
resentation will depend on the nature of that kinetic representation em-
ployed (complexity of the kinetic model if one is available or complexity
of the bioprocess under consideration if a kinetic model is not available),
mode of operation of bioreactor [whether batch, fed-batch, or continuous,
with/without recycle (after selective removal of a portion of the bioreactor
contents using a separation technique)], and other external influences, such

383
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as addition/removal of thermal energy, acid/base addition for pH control,
mechanical agitation to promote mixing, and circulation of a gas phase to
provide oxygen (in an aerobic bioprocess) or nitrogen (to maintain oxygen-
free atmosphere in an anaerobic bioprocess) and remove carbon dioxide.

The three popular modes of operation of mechanically agitated reactors
for cell cultivation are batch, fed-batch and continuous operations. Irre-
spective of the mode of operation with respect to culture, the bioreactors
are always operated in continuous mode with respect to gas phase (gas
phase continuously entering and leaving the reactor). A batch culture op-
eration is characterized by no addition to and withdrawal from the culture
of biomass, fresh nutrient medium and culture broth (with the exception
of gas phase). A fed-batch culture operation is characterized by prede-
termined or controlled addition of nutrient medium in an otherwise batch
operation (no withdrawal of culture). This operation allows for tempo-
ral variation in the supply of nutrients, thereby allowing tighter control of
various cellular processes such as cell growth, nutrient uptake and produc-
tion of target metabolites. The feed conditions (volumetric flow rate and
composition) can be varied in a predetermined fashion (open-loop control)
or by using feedback control. In a continuous culture operation, nutri-
ents essential for growth are continuously fed and a portion of the culture
is continuously withdrawn. The culture volume is controlled using a level
controller. A continuous culture is usually preceded by a batch or fed-batch
culture. If the mass flow rates of the bioreactor feed and bioreactor effluent
are identical and time-invariant, a time-invariant (steady state) operation
can be realized after sufficient time has elapsed from the start of continuous
culture operation. As in fed-batch culture, the feed rate to a continuous
bioreactor can be varied in a temporal sense in a predetermined fashion
or using feedback control. Since the culture conditions (in a global sense)
can be kept time-invariant, continuous cultures are easier to monitor and
control. Unlike the operation of continuous processes employed for pro-
duction of chemicals, long-term operation of continuous cultures is subject
to many operating difficulties, including risks of contamination and loss in
productivity due to cell washout in case of unanticipated disturbances and
substantial changes in characteristics of the biotic phase. For this reason,
batch and fed-batch culture operations are more common than continuous
culture operations.

While the batch and fed-batch operations of a bioreactor are inherently
transient, transients are also encountered in continuous bioreactor opera-
tions before attaining a steady state or during transition from one steady
state (established under one set of feed and culture conditions) to another
steady state (established under a different set of feed and culture condi-
tions).
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The effectiveness of the operation of a biological reactor (cell cultivation)
depends on the outcome of the operation and what went into such oper-
ation. Some indicators of the outcome are characteristics associated with
metabolites which are desired and/or are generated in significant amounts,
biomass (cells), and significant material resources employed (substrates).
These characteristics typically are amounts of these species in the biore-
actor in batch and fed-batch operations and mass flow rates of these in
continuous operation, both of which are related to concentrations of these
species in the culture. The inventory of what went into the bioreactor op-
eration will typically include cost of material resources, operating costs for
the bioreactor, and the costs associated with separation and recovery of
the desired product from the culture. The cost of raw material resources
is proportional to the amount of nutrient medium (substrates) supplied
to the culture. The operating costs will take into consideration costs as-
sociated with mechanical agitation, pumping of different fluids (feeding of
nutrient medium and addition of acid/base and antifoam solutions), supply
of a suitable gas phase (aeration in the case of an aerobic bioprocess) to
the bioreactor, and control of certain culture parameters such as pH and
temperature. The costs associated with downstream processing to recover
the desired product at desirable concentration will depend on the culture
composition and hence on the outcome of the bioreactor operation. The
cost of separation and recovery of the desired product is always related
inversely to its concentration in the culture.

The effectiveness of bioreactor operation is assessed via an objective
function or a performance index which takes into account the price of the
target product and the costs associated with generating that product (most
or at least the prominent entries in what went into the bioreactor operation}.
For cost-effective operation of a bioprocess, one is interested in maximiz-
ing the objective function. The outcome of the bioreactor operation being
decisively dependent on the trajectories of variables affecting the kinetics
of the bioprocess (information contained in f in Eq. 7.1), these trajectories
strongly influence the magnitude of the objective function. The trajectories
that lead to maximization of the objective function can be attained using
feedback control with appropriate controllers. Guiding the trajectories of
influential culture variables at or very near their optimal values is accom-
plished by appropriate manipulation of some of the input variables. (All of
these may not be the physical inputs to the process.) Identification of the
optimal trajectories of the manipulated inputs can be accomplished using
the optimal control theory.

The controlled variables are the output variables that influence the out-
come of the process, which is assessed in terms of an objective function or
performance index. Those inputs to the process which have the strongest
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influence on the controlled outputs are usually chosen as manipulated vari-
ables. The remaining inputs are either used for process optimization or
cannot be influenced or even measured (disturbance variables). In this
work, we will assume that there are ra manipulated variables, m^ distur-
bances and no additional inputs used for optimization. In a multivariate
system such as a biological reactor, one normally encounters multiple input
variables (mt = TYI + m^) and multiple output variables which decide the
process outcome (p). To control the p outputs, it is essential to take into
account how each of the mt inputs influences each of the p outputs in an
uncontrolled process. One would anticipate that input(s) which have the
greatest influence on a particular output should be manipulated by appro-
priate controllers to control the particular output. Control can be imple-
mented by using multivariable or multi-loop controllers. In multivariable
control, information from all controlled variables and disturbances is used
together to compute all manipulated variable moves. In multi-loop control,
many single-input, single-output (SISO) controllers are developed by pair-
ing the appropriate manipulated and controlled variables. The collective
operation of these SISO controllers controls the multivariable process. Mul-
tivariable controllers, such as linear quadratic Gaussian controllers (LQCs)
and model predictive control (MFC) systems, are more effective than multi-
loop controllers and their use has increased in recent years.

The number of controllers involved in multi-loop control is min(mt,
p). The issues to be resolved in multi-loop control are (1) how to pair
input and output variables and (2) how to design the individual single-loop
controllers. The decision on input-output pairings is based on the nature of
process interactions (effect of an an input on multiple outputs). Even with
the best possible input-output pairings, functioning of individual controller
loops may be influenced by other control loops due to process interaction.
Ideally, one would like all control loops to function independently. This
requires use of decouplers (additional elements inserted between single-loop
controllers and the process), so that the output from a controller used to
control a particular output influences not only the manipulated input that
is paired with that output, but also other inputs in order to eliminate the
effects of interaction. The idea behind the use of decouplers is to make the
controllers function independently in entirety.

This chapter starts with determination of optimal trajectories during
bioprocess operation. Given a process model, this can be done by solving
an appropriate open-loop optimization problem to maximize a particular
objective function or performance index. The general procedure for identifi-
cation of optimal open-loop control policies for nonlinear bioprocess models
is provided in Section 7.2, which is followed by a detailed case study in-
volving identification of optimal feeding policies for fed-batch cultures with
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varying complexity of kinetics. The general procedure discussed in Section
7.2 is applicable to both dynamic and steady-state operations of batch /
fed-batch / continuous bioprocesses. A related problem, that of further po-
tential improvement in performance of steady-state continuous bioprocesses
via periodic variations in one or more inputs, is considered in Section 7.3.
The discussion on criteria for superiority of periodic forcing is followed by
a case study. Closed-loop feedback control based on state-space models in-
volving multiple single-input, single-output (SISO) controllers is considered
in Section 7.4. Methods for selection of multi-loop controller configuration
and minimizing / eliminating effects of bioprocess interaction are consid-
ered in this section, the ultimate goal being independent functioning of
various control loops. Multivariable control is discussed next in Sections
7.5 and 7.6. Identification of optimal feedback control strategies based on
optimal open-loop trajectories (Section 7.2) is the focus of Section 7.5. The
optimal feedback controllers have the traditional proportional, integral, and
derivative modes of action, with controller parameters being functions of
time. Finally, the more powerful and increasingly popular model-based
multivariable control, the Model Predictive Control (MFC), is the subject
of Section 7.6. The discussion of the general recipe for MFC is followed
by a specific illustration of one of the MFC schemes, namely the Dynamic
Matrix Control (DMC) and an introduction to nonlinear MFC.

Several review papers and books provide overviews of batch process
control and its implementation in chemical process industries that comple-
ment this chapter. An early comparative assessment of the effectiveness
of simple control techniques and dynamic optimization in the 1980s favors
simple control tools for controlling fed-batch fermentation processes [261].
Industrial practice in control and diagnosis of batch processes has been re-
ported [429]. The progress and challenges in batch process control have
been discussed in various review papers [51, 265, 510] and assessed in the
context of scheduling and optimization of batch process operations [501].

7.2 Open-Loop (Optimal) Control

7.2.1 Nonlinear Models of Bioreactor Dynamics
A popular form of operation of bioreactors employing living cells involves
the use of a well-mixed reactor. The uniformity of composition and tem-
perature in the reactor allows its representation as a lumped parameter
system. The reactor dynamics can be described succinctly as

rfx
— =f(x,u,d), x(0)=x0 , (7.1)
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with x denoting the state variables which represent the status of the cell
culture in the bioreactor, and u and d representing the input variables
which indirectly influence the status of the cell culture. The input variables
are further classified into manipulated inputs (u) and disturbance variables
(d). Let n, m and m^ denote the number of state variables, manipulated
inputs and disturbance variables. Not all state variables can be measured.
Some of the state variables, which cannot be measured or can be measured
less frequently, are estimated from measurements of other variables that are
measured frequently by using estimators (Section 4.3). It must therefore
be realized that only some of the state variables may be monitored or
estimated. The set of variables which can be measured will be referred to
as bioreactor outputs, y, with the number of outputs being p. The relations
among the state variables and the output (measured) variables can then be
succinctly stated as

y = h(x). (7.2)

The functions f (•) and h(-) are in general nonlinear. But for mathemat-
ical convenience in developing the control equations, these functions are
linearized. Linear state-space equations are discussed in Section 7.4.

7.2.2 Background on Optimal Control Theory
Whether the bioreactor is operating at a steady state or is exhibiting tran-
sients, one is interested in maximizing an appropriate objective function for
cost-effectiveness of the operation. For the sake of generality, we consider
here a transient bioreactor operation. During the time interval (0, £/), one
may be interested in maximizing an objective function

tfrf
/ g(x,u)dt. (7.3)

Jo

The objective function in Eq. 7.3 is sufficiently general for a wide variety
of practical problems. <?(•) denotes the benefit generated at the end of the
operation (tf) and g(-) the benefit materialized during the operation. The
optimization may be cast as a minimization problem by defining G(-) and
g(-) as costs. The objective function may also be written in terms of output
variables y. Thus, for example, if

J = G1(y(tf))+ V(y,u)d*, (7.4)

then in view of relation 7.2, the objective function in Eq. 7.4 can be re-
stated as in Eq. 7.3. Besides the constraints imposed by the conservation
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equations (state equations) in Eqs. 7.1, the maximization of J may have
to be achieved subject to the following integral constraints:

— / ' 0(x, u)dt = 0 and — / * i/>(x, u)dt < 0. (7.5)
*/ Jo tf Jo

where </>(•) and i/>(-) are appropriate linear or nonlinear functions. Integral
constraints expressed in terms of outputs y, such as

i / V(y,u)<ft = 0 and i / ' i/>' (y,u)d* < 0 (7.6)
*/ Jo tf Jo

can be readily expressed as in Eq. 7.5 in view of the relations in Eq. 7.2.
As an example of the equality constraint in Eq. 7.5, consider a continu-
ous culture operation. It is usually of interest to identify an optimal feed
composition (for example, the substrate feed concentration, SF) which will
lead to maximization of an objective function, such as yield or productivity
of the target metabolite. Economic considerations would dictate that this
identification be done while keeping the throughput rate of the substrate
(Gs) fixed. Different candidate continuous culture operations with variable
Sp then would be subject to the integral constraint

-i- ( ' (FSF - Gs) (ft = 0 -* 1- [' FSFdt = Gs. (7.7)
*/ Jo tf Jo

The integral constraint in Eq. 7.7 is applicable for situations involving fixed
F and SF in an individual operation as well as time-varying F and SF in
an individual operation, as is the case of forced periodic operation of a
continuous culture. As an example of the inequality constraint in Eq. 7.5,
consider a batch, a fed-batch or a composite of batch and fed-batch culture
operation. It may be desired to maximize an objective function such as the
amount or yield of a target metabolite. This may have to be accomplished
with a limited amount of substrate (Ms). The candidate operations would
then be subject to the constraint

/ ' (FSF - — ^ dt < 0 -> / ' FSFdt < Ms. (7.8)
Jo \ tf J Jo

In a strictly batch operation, the nutrient medium containing substrate is
added rapidly at the start of operation, i.e., at t ~- 0, the volumetric flow
rate F being an impulse function in this operation.

Because of the considerable complexity that the constraints of the form
in Eqs. 7.5 add to process optimization, we consider first situations involv-
ing constraints only on the manipulated inputs u. Each manipulated input
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then is considered to be bounded from above and below as

Umax > U > Umin (7.9)

where umin and umax denote the lower and upper bounds, respectively.
Maximization of the objective function is then accomplished via maximiza-
tion of the Hamiltonian H with respect to u. The Hamiltonian is denned
as [84]

# = c?(x,u)+ATf(x,u) , (7-10)

with A being the vector of adjoint variables associated with Eqs. 7.1. The
variation in A with time is described by

dxT 9

The influence of system equations Eq. 7.1 on H (and J) is transmitted
by the adjoint variables. Eqs. 7.1 and 7.11 represent a set of ordinary
differential equations. Their solution requires knowledge of each state and
adjoint variable at some t (usually at t = 0 or £/). Let x*, u*, t*j, and J*
denote the optimal values of x, u, tf and J, respectively. Let the variations
in x, u, tf and J for an arbitrary operation from their respective values
for the optimal operation be expressed as 6tf = tf — t**, SJ = J — J*,
5x = x — x*, and 5u — u — u*. Identification of optimal u then involves
expressing the variation in J (<5J) entirely in terms of variation in u (<5u).
In general, 5J depends on 5x(0), 5x(t/) and Stf as well. Trivializing the
influences of these on 6 J leads to the following conditions [84]:

Ai(0) = 0 if Xi(0) is not specified. (7.12)

dG
^i(tf) = 7j— ^ x i ( t f ) is not specified. (7-13)

H ( t f ) =0 if tf is not specified. (7.14)

The conditions in Eqs. 7.12 and 7.13 are applicable for once-through oper-
ations, i.e., process operations where x(0) and x(t/) are independent (i.e.,
£x(0) and <5x(t/) are not identical). In cyclic operation of a bioreactor, the
operation modes under consideration here (batch, fed-batch and continu-
ous) and certain sequences of these are repeated, with tf being the duration
of a cycle. In this case, x(t) satisfy the periodic boundary conditions

x(0) = x(t/) => 5x(0) = 5x(t/). (7.15)
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The boundary condition for the adjoint variables are then obtained as

dG
\i(tf) = ^— + Ai(0) if Xi(tf) is not specified. (7.16)

UXi

In view of the conditions above (Eqs. 7.12-7.14 and 7.16), 6J can be ex-
pressed as

f f [ / f)U\ 1

SJ = \(^-}6u(t)\dt. (7.17)
Jo L V ou J J

If some components of u*(t) include segments (sections) where M; = (iti)min

or (wi)max, then 5ui(t) must be positive at (iii)min and 6ui(t) must be
negative at (it* ) max- Since SJ is expected to be non-positive, the following
conditions must be satisfied on the optimal trajectory for i^, w*(t):

Q rr

in if «-<0, (7.18)

if - > 0 , (7.19)

<3 TT

(Wi)min < tij(t) < (Ui)max lf 7̂ ^ °"

Further details on the derivation of Eqs. 7.10 through 7.20 are discussed in
Bryson and Ho [84]. As long as H is a nonlinear function of Ui, Eq. 7.20
provides an explicit expression for w*(t).

7.2.3 Singular Control
If the Hamiltonian H varies linearly with Wi, i.e., if

H = /io(x,u', A) + /ii(x,u', A)wi(t), (7.21)

with u' being the vector obtained from u by excluding m, then Ui (t) cannot
be obtained explicitly from the condition in Eq. 7.20 if hi is trivial over a
finite time interval (ti < t < t^)- The control over each such finite inter-
val is referred to as singular control and the time interval is referred to as
singular control interval. The singular control problems are especially dif-
ficult to handle due to difficulties associated with identification of singular
arc (trajectory of w*(t)), and estimation of when to transit from boundary
control [u* = (wi)min or (ui)max\ to singular control and vice versa. Triv-
iality of hi over a finite time interval implies triviality of first and higher
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derivatives of hi with respect to time over the entire time interval. As will
become evident in the illustrations presented later, this property is used to
identify u* in a singular control interval. Admissibility of singular control
is related to the kinetics of the process being optimized, i.e., the elements
of f. If the bioprocess kinetics is such that singular control is not admis-
sible, then the optimal control policy (trajectory of a manipulated input
Ui) would involve operation at the lower or upper bounds for Ui [(ui)m-m or
(iti)maxj or a composite of operations at the lower and upper bounds such
that

u*(t) = (wi)min if hi < 0 (7.22a)

<(*) = Mmax if h,>Q (7.22b)

The trajectory of u*(t) then may involve one or more switches from the
lower bound to upper bound and vice versa. The values of t at which such
switches occur are called switching times.

7.2.4 Optimal Control

Next we consider situations where integral constraints in Eqs. 7.5 are appli-
cable. Let there be a equality constraints and b inequality constraints. The
original vector of state variables can be augmented by additional (a + b)
state variables satisfying the following relations

dx'
-£ = 0,(x, u), Xj(Q) = 0, j = (n + 1), (n + 2 ) , . . . , (n + a) (7.23)

—£- = -0j(x, u), Xj(Q) = 0, j = (n-t-a+1), (n+o+2) , . . . , (n+a+b) (7.24)
\JLL

with x = \x\ X2 . . . xn]
T being the original vector of n state variables. The

vector of state variables may have to be further augmented if the objective
function cannot be directly expressed in the form displayed in Eq. 7.3.
Consider for example batch and/or fed-batch operation of a bioprocess.
For cost-effective operation, it may be of interest to maximize productivity
of the target product P. The objective function in this case would be

J = [ P ( t f ) V ( t f ) - P ( 0 ) V ( Q ) ] / t f . (7.25)

For a single-cycle operation, P(0) and V(0) will be known (specified). The
objective function above can be expressed as in Eq. 7.3 by augmenting the
vector of state variables by an additional variable satisfying the following

dxj/dt = I , Xj(Q) = 0, j = (n + a + b+1). (7.26)
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The objective function in Eq. 7.25 can now be expressed as in Eq. 7.3 with
g(x, u) being trivial. The application of optimal control theory then follows
as discussed before with the vector of state variables now consisting of n
process variables and additional state variables satisfying relations such as
Eqs. 7.23, 7.24 and 7.26. Since the Hamiltonian in Eq. 7.10 is independent
of Xj (j — n + 1, n + 2 , . . . , n + a + b), it follows from Eq. 7.11 that the
corresponding adjoint variables, Xj (j = n + 1, n + 2 , . . . , n + a + b), are
time-invariant. For a steady-state operation, all adjoint variables Xj (j =
l ,2 , . . . ,n + a + 6 + l) are time-invariant and still provided by Eq. 7.11.

While integral constraints can be handled by augmenting the state variable
space, if the process to be optimized is subject to algebraic constraints of
the type

</>j(x, u) = 0 and i/^x, u) < 0, (7.27)

then the Hamiltonian in Eq. 7.10 must be appended to account for these
constraints. The case study which follows provides an illustration of this.

7.2.5 Case Study - Feeding Policy in Single-Cycle and
Repeated Fed-Batch Operations

Fed-batch operation is used for production of a variety of biochemicals
[452, 642]. Formation of the desired product(s) can be optimized by proper
manipulation of the feed conditions (feed rate and feed composition). Here
we consider a bioprocess represented by an unstructured model. Assuming
that formation of biomass (X), utilization of the limiting substrate (5),
and formation of the desired non-biomass product (P) represent the key
rate processes and the biomass-specific rates of these can be expressed ex-
clusively in terms of concentrations of cell mass, limiting substrate and
the target non-biomass product, the dynamics of the bioreactor can be
described by the following total and species material balances:

dV
— = F, V(0} = V0 (7.28)

dX F
— =^X--X, X(Q)=X0 (7.29)

r/9 F
— = -(SF-S)-crX, 5(0) = S0 (7.30)

dP F
-£ = eX--P, P(0)=P0 (7.31)

The bioreactor volume (V), volumetric feed rate (F), and the substrate
feed concentration (Sp) are constrained as

V(t) < Vm, (7.32)
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0 < F(t) < Fm, (7.33)

and
0 < SF(t) < 5Fm. (7.34)

Constraint 7.32 is necessary to prevent flooding. It is desired to maximize
the objective function in Eq. 7.3 with g being considered constant (a special
case) with x = [V X S P t]T, the time variation of #5 being described by
Eq. 7.26 with n = 4 and a ~ b = 0. The Hamiltonian can be expressed as

H = h0 + h\F + h'2FSF, (7.35)

where
HQ = \X2fj, — X3(7 + X^f.)X + AS + g -f- TJQ(V — Vm) (7.36)

h( = AI - [X2X + X3S + A4P]/V, h'2 = X3/V. (7.37)

rjo is a Lagrangian multiplier to take care of the algebraic inequality con-
straint, Eq. 7.32 (770(2) = 0 when V < Vm and 770(2) > 0 when V = Vw)
[392, 447, 454]. The variations in adjoint variables can be expressed as in
Eq. 7.11, which assume the form

^Al \\ Y \ (Q Q\ -L \ £>] <n (7 ^8"l—;— — ~77o" ^2-^- ~ ^SV'-'F — < -> ) i - ^ 4 - ^ 1 ~~ ^0 (1.00)
at V *

dX2 F
dt V

dX3 F .
—;— — TrAs — (X2p,s ~~ X3&s + X4ces)X (7.40)
dt V

dx* ~ -x -x x }x
dt V

—1 = 0 ^> X5 = constant. (7.42)

The subscripts X, S and P used in the above and elsewhere in the case
studies in this chapter denote partial derivatives of a quantity (such as a
specific rate or ratio of two specific rates) with respect to X, S and P,
respectively. The Hamiltonian must be constant (= H*) on the optimal
path, H* being zero when tf is not specified (Eq. 7.14).

The trajectory of x(t) will, in general, comprise an interior arc (V <
Vm) and a boundary arc (V = Vm). When the orders of the boundary
control and singular control are both unity, there is no jump in the adjoint
variables at each junction point of the boundary and interior arcs [392, 447,
454]. Once the bioreactor is full (V — Vm), its operation continues on the
boundary arc (F = 0) until t-tf [392].
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It is evident from Eqs. 7.35 and 7.37 that the Hamiltonian is linear in
both F and SF. Admissibility of singular control must therefore be exam-
ined. The conditions for admissibility of singular control can be obtained
from Eq. 7.20 as

^ = h{ + h'2SF =0 in ti<t<t2 for OH/OF = 0 (7.43)

FX3 = 0 in t3<t< U for OH/dSF = 0. (7.44)

For the sake of illustration, we consider here u — F (i.e., SF is not manipu-
lated and kept time-invariant) and designate the control policy in singular
control as Fs. The values of manipulated inputs in the singular control
interval(s) are dependent on both the state and adjoint variables. For some
specific cases of bioprocess kinetics, it is possible to express the optimal
control policy, u, entirely in terms of state variables. These cases are con-
sidered here for the purpose of illustration. Such control policy can be
easily implemented in a feedback mode.

Case 1. The three specific rates are related to one another by two linear
relations as

<j = PJJL and e — c/j, (7.45)

with p and c being constant. Substituting these relations and Eq. 7.28 into
Eqs. 7.29-7.31, eliminating the specific cell growth rate between any two of
these and integrating the resulting equations, it can be deduced that the
bioreactor state moves along the intersection of the hyperplanes

(SF-S- PX) V = ci = (SF-S0~ pX0] V0 (7.46)

and
-S- p V = c2 = (SF - S0 - ^P0) V0 (7.47)

Satisfaction of relations in Eq. 7.45 implies that the bioreactor dynamics
can be completely described by two algebraic relations, Eqs. 7.46 and 7.47
and two differential equations among Eqs. 7.28-7.31. Utilizing triviality of
hi and dhi/dt, it can be deduced that the bioreactor trajectories must lie
on the surface

g(X, S, P) = X^x - (SF - S)»s + P^p = 0 (7.48)

during singular control intervals. The feed rate during the singular control
interval is then obtained from triviality of d2hi/dt2 as

V
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If XQ, SQ and PQ for a typical cycle lie on the line

x = £^ = 5 (7.50)
p c

then X, 5 and P lie on the same line during that cycle (Eqs. 7.46 and
7.47). The expressions for the singular surface and control policy during
singular control, Eqs. 7.48 and 7.49, then reduce to

-T£ = Us - ~Vx - -ftp =0 (7-51)
dS P P

and

(7.52)

where Si is the substrate concentration at which conditions in Eq. 7.50
and 7.51 are satisfied. In this special situation, S, X and P remain time-
invariant at Si, Xi and Pi, respectively (Si, Xi and Pi satisfy relations in
Eq. 7.50). After substitution of relation Eq. 7.52 into total mass balance,
Eq. 7.28, and integration of the same, one can deduce that both Fs and V
vary exponentially with time.

In a strictly batch operation (F = 0), it can be deduced from Eqs. 7.29-
7.31 and 7.45 that the concentration trajectories will lie on the line in Eq.
7.50. Further, in another related operation, viz., a continuous culture at
steady state, X, S and P also lie on the line in Eq. 7.50.

In a typical cycle of a fed-batch operation, increase in V implies that the
bioreactor state moves closer to the line denned by Eq. 7.50 if not already
on it at the beginning of that cycle (see Eqs. 7.46 and 7.47). The feed point
(S = SF, X — P = 0) also lies on the line denned by Eq. 7.50. In a cyclic
operation, the bioreactor contents are partially or completely withdrawn
at the termination of a cycle; this is followed by addition of fresh feed.
The initial state for the reactive portion of the next cycle, (Xin, Sin, Pin},
therefore moves closer to the line defined by Eq. 7.50 if not already on it. It
follows then that in a cyclic fed-batch operation with reproducible cycles,
the concentration trajectories lie on the line in Eq. 7.50.

Relations 7.45 imply that among the three rate processes under con-
sideration, only one (for example, cell growth) is independent. Optimal
singular control interval therefore involves maximization of the specific cell
growth rate, as indicated by Eqs. 7.48 and 7.51.

In general, nx and fj,p are non-positive. Singular control is therefore
feasible only when //s < 0 (Eqs. 7.48 and 7.51). Since fj, increases with
increasing S at low values of the same, this then requires that ;u exhibit
non-monotonic behavior with respect to S. Singular control is therefore not
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admissible if yu is a monotonically increasing function of 5, this being the
case with some fermentations producing alcohols [47, 239, 325, 338, 544].

Case 2. The three specific rates are related to one another by a single
linear relation as

An + B<T + Ce = Q (7.53)

with A, B and C being constants, at least two of which are non-zero. In
view of Eq. 7.53, it can be deduced that, in a typical cycle, the bioreactor
state lies on the hyperplane

[AX + B(SF -S) + CP]V = c3 = [AX0 + B(SF - S0) + CP0}V0 (7.54)

We consider here the special case where g is trivial and G is independent
of tf in Eq. 7.3, and tf is not specified (therefore H — AS = 0). It then
follows that HQ (Eqs. 7.35 and 7.36) must be trivial in a singular control
interval. Two types of linear relations among the three rate processes un-
der consideration are commonly encountered in bioprocess kinetics. The
first type arises when cell growth and synthesis of the target non-biomass
product account almost entirely for substrate utilization, i.e., when

cr = an + be (a = -A/B and b = -C/B, B^O). (7.55)

In the other type, synthesis of the target non-biomass product is associ-
ated with and proportional to cell growth, with cell growth and substrate
utilization being linearly independent rate processes, i.e.,

£ = cfj. (c=-A/C,B = 0). (7.56)

When Eq. 7.55 is satisfied, the following necessary and sufficient condition
for admissibility of singular control is obtained in view of the triviality of
ho and dhi/dt in a singular control interval.

(7.57)
/Vx /Vs /VP

The above relation provides the description of the singular surface in the
three dimensional concentration space (X, 5, P). The feeding policy during
singular control is obtained from the triviality of d'2hi/dt2 as

Fs

V

where
5 = a + Xax - (SF - S)fix + PTX (7.58b)
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= /3 + Xas - (SF - S)(3s + Pis (7.58c)

= 7 + XaP - (SF - S)0P + P7P (7.58d)

/3 = ^65 - e/is, 7 = /ieP - e/iP (7.58e)

When Eq. 7.56 is applicable, the following necessary and sufficient condi-
tion for admissibility of singular control, which also describes the singular
surface in the (X, S, P) plane, can be obtained in view of triviality of h0

and dhi/dt.

*(^) -(SF-S)(£) +P(£) =0. (7.59)
\aJ X V c r / S V c r / P

The feeding policy during the singular control is obtained as in Eq. 7.58a
(since d^hi/dt2 is trivial), with a, (3 and 7 being denned as

a = fffjLx - V<?x, P = a^s - A^s, ^ = cr^p - ^ap. (7.60)

If .ATo, So and PQ in a typical cycle lie on the plane

AX + B(SF - S) + CP = 0, (7.61)

, 5 and P lie on the same during that cycle (see Eq. 7.54). The biore-
actor trajectories can then be completely described in a two-dimensional
phase-plane (5 — X if B = 0 or X — P if B ^ 0) with the singular arc
(Xi, S% and Pj moving along the singular arc) being the intersection of the
singular surface in Eq. 7.57 (if B is non-zero) or Eq. 7.59 (if B — 0) with
the plane in Eq. 7.61.

The feed point (S = SF, X = P = 0) lies on the plane in Eq. 7.61.
Further, in a strictly batch operation (F = 0), it can be deduced from Eqs.
7.29-7.31 and 7.53 that the concentration trajectories will lie on the plane
in Eq. 7.61. Moreover, for a continuous culture at steady state, X, S and P
also lie on the plane in Eq. 7.61. In a typical cycle of a fed-batch operation,
increase in V implies that the bioreactor state (in terms of concentrations)
moves closer to the plane in Eq. 7.61 if not already on it at the start of
that cycle (see Eq. 7.54). In a cyclic fed-batch operation, the bioreactor
contents are partially or completely withdrawn at the end of each cycle,
which is followed by rapid addition of fresh feed. The initial state of the
reactive portion of the next cycle, (Xo, So, -Po)> therefore moves closer to
the plane in Eq. 7.61 if not already on it. One can conclude then that in
a repeated fed-batch operation with reproducible cycles, all concentration
trajectories will lie on this plane. The trajectories in a batch operation in
the two-dimensional phase-plane (S - X if B = 0 or X — P if B ^ 0) will in
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general be nonlinear. These can in some cases have inflection points. The
locus of inflection points is described by one of the following surfaces [447] :

if cr = a/i + 6e (7.62)
/

p ( H ] -*(£} +e(^} = 0, i f e = c/*. (7.63)
\a/x V c r / s \cr/p

The intersections of surfaces in Eqs. 7.57 and 7.62 or those of surfaces in
Eqs. 7.59 and 7.63, as appropriate, are of special significance in a fed-batch
operation. At each such intersection,

These intersections are discrete points on the stoichiometric plane in Eq.
7.61. These points are referred to as limit points or singular inflection
points. At a limit point, the feeding policy in Eqs. 7.58 and 7.60 reduces
to

i,Pi') (7.65)

with Xi, Si and Pi satisfying Eq. 7.64 and being obtained from solutions of
Eqs. 7.57 or 7.59, as appropriate, and Eq. 7.61. It follows from Eqs. 7.64
and 7.65 that Xi, Si and Pi are equilibrium (time-invariant) solutions of
Eqs. 7.29-7.31. Upon reaching the limit point, Fs varies exponentially with
time until transition to boundary control (F = 0) occurs upon saturation
of the bioreactor volume (V = Vm). The bioreactor operation at the limit
point is a quasi-steady state operation since X, S, and P remain time-
invariant while V increases with t.

In view of the nonlinear dependence of the three specific rates on X,
S and P, multiplicity of limit points for a fixed feed composition cannot
be ruled out. In a repeated fed-batch operation, the bioreactor trajectories
during singular control interval of each cycle must terminate at a locally
asymptotically stable (accessible) limit point. The necessary and sufficient
conditions for local accessibility of a limit point can be obtained via lin-
earized stability analysis of Eqs. 7.29-7.31. These conditions have been
reported [447].

The first example of kinetics belonging to this case considered by Parule-
kar [447] pertains to binary quasi-linear relations among //, a and £; /z =
/x(X, S, P), a = pn + q, e — cju + e; c, e, p and q are constants (at
least e or q is non-zero). This kinetics is applicable for bioprocesses where
the limiting substrate is utilized for cell growth and maintenance and/or
product synthesis, the synthesis of the target product being partially growth
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associated and partially non-growth associated. Eqs. 7.57 (e / 0) and 7.59
(e — 0) reduce in this case to condition in Eq. 7.48. In general, Hx and p,p
are non-positive. Singular control is therefore feasible only when us < 0
(Eqs. 7.48 and 7.51). Since /j, increases with increasing S at low values of the
same, this then requires that ^ exhibit non-monotonic behavior with respect
to S. Specific examples of this kinetics include (i) production of propionic
acid by Propionibacterium shermanii [230] for which a — pfj,, e = cfj, + e]
and (ii) production of ammonium lactate by Lactobacillus species [575] for
which a = 6e, e = GJJ, + e, // being function of S and P in both cases.
For both bioprocesses, us is positive and HP is negative for all S and P.
Singular control is therefore inadmissible for either process.

The second example pertains to ethanol production from glucose by
Saccharomyces cerevisiae [8, 9]. Two different forms of kinetics of cell
growth, substrate utilization and product (ethanol) formation have been
proposed for this bioprocess, these being

P), e = ei(5)e2(P), a = pn

' (7'66)

= earp(-QiP), e2(P) = exp(-faP). (7.67)

The third example pertains to ethanol production from cellulose hydrolysate
by S. cerevisiae. The following kinetic expressions have been used for de-
scription of this bioprocess [190, 600].

-—} S

Pm ) KS + S

P \ S
6 = „,

KS

For these examples, optimization of single-cycle (once-through) and cyclic
batch and fed-batch operations of these bioprocesses has been investigated
in detail by Parulekar [447]. Here, we import numerical illustrations for the
second example.

The values assigned for the kinetic parameters in Eqs. 7.66 and 7.67
were [8, 9]

KI = 0.22 g/L, K2 = 0.44 g/L, ^m = 0-408 /T1, p = 10, em = 1.0 h~l ,

K3 = 16 g/L, K± = 71.5 g/L, ai = 0.028 L/g, fa = 0.015 L/g. (7.69)

The performance index considered was the product (ethanol) yield at the
end of the bioreactor operation, viz., J = Pf/Sp, Pf — P(tf)- The perfor-
mance of the optimal fed-batch operation was compared for two types of
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cyclic batch operation. Each cycle of a cyclic batch operation consists of fill-
ing the reactor rapidly (Fm —>• oo) with feed to increase the reactor volume
from an initial volume VQ to Vm (0 < VQ < Vm), followed by a batch opera-
tion until the objective function J is maximized and then terminating the
cycle by rapid withdrawal of the reactor contents to reduce the bioreactor
volume from Vm to VQ. A batch operation is normally continued until the
stoichiometrically limiting nutrient (limiting substrate here) is completely
utilized and/or product synthesis is terminated, for this ensures that the
bioreactor contents at the end of each cycle will have the maximum product
concentration for a given feed composition. The batch reactor trajectories
would terminate at (Xf, 5/, Pf) starting from (Xo, SQ, PO) with the
feed point being (0, 5^, 0). The relations among the three concentration
variables at these points are

X0 _ SF - So _ PQ _ VQ_ _ _ __ _ _ __
Xf &F - of Pf Vm

The cyclic batch operations with VQ = 0 are referred to as operations with-
out recycle (from one batch to the next) while those with non-zero VQ are
termed as operations with recycle.

For the kinetics described in Eq. 7.66, a unique and locally asymptot-
ically stable limit point on the singular arc is guaranteed for all 5^ with
the exception of very low SF (Figure 7.1 (a)). In a cyclic operation, the
bioreactor trajectories in fed-batch mode terminate at a limit point and
the trajectories approach the limit point in a single-cycle operation. The
overall product-to-substrate yield for each of the three operations under
consideration and the substrate and product concentrations at the limit
point, Si and Pi, respectively, all increased with increasing 5^ (Figure 7.1).
It is evident from Figure 7.1(b) that for the kinetics under consideration,
the cyclic fed-batch operations are superior to cyclic batch operations with
recycle, which in turn are superior to cyclic batch operations without recy-
cle. The differential in the product yield between the optimal (fed-batch)
operation and the two suboptimal (batch) operations increases as SF is
increased (Figure 7.1(b)). The maximum theoretical yield of ethanol based
on glucose is 0.5111. For the kinetic parameters considered, Eq. 7.69, the
overall ethanol yields for cyclic fed-batch operations exceed the maximum
theoretical yield for SF in excess of 76.6 g/L. The magnitudes of some of
the kinetic parameters in this SF range are therefore suspect.

Results for the kinetics described in Eqs. 7.66, 7.67, and 7.69 are pre-
sented in Figure 7.2. The singular control in this case has a richer variety.
The number of limit points for the singular arc is (i) zero if SF < 3.1957 g/L
or if SF > 125.317 g/L, (ii) one if 3.1957 g/L < SF < 8.0894 g/L, and
(ii) two if 8.0894 g/L < SF < 125.317 g/L. The critical SF (125.317 g/L)
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Figure 7.1. Profiles of (a) Si ( --- ) and Pi and (b) overall product
yields for repeated batch operation without recycle (lower solid curve) and
repeated fed-batch operation (upper solid curve) for fermentation described
by Eq. 7.66. The dashed curve in (b) represents the upper (open) bound
on the profiles of the overall product yield for repeated batch operations
with recycle [447] .

also represents the bifurcation point for the limit-point curve (Figure 7.2).
Limit points lying on the lower branch (portion CDE) of the limit-point
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Figure 7.2. Profiles of 5* (dashed curve ABODE) and overall product yields
for repeated batch operation without recycle (lower solid curve) and re-
peated fed-batch operation (upper solid curve). Singular control in each
cycle of a repeated fed-batch operation terminates at a locally stable limit
point [S; lying on the upper branch (portion ABC) of the limit point curve
ABODE]. The non-labeled dashed curve represents the upper (open) bound
on the profiles of the overall product yield for repeated batch operations
with recycle [447].

curve are unstable. Parulekar [447] has established that fed-batch opera-
tions terminating at an unstable limit point are not feasible. The profiles
of overall product yield in Figure 7.2 illustrate the superiority of cyclic
fed-batch operation with singular control terminating at the stable limit
point over cyclic batch operations. These profiles also reveal the substan-
tial improvement in yield that can be obtained with recycle in a cyclic batch
operation.

The optimizations based on the highly lumped models such as the ones
considered in Eqs. 7.66 and 7.67 may be sensitive to variations in the ki-
netic parameters in these, some of which have significant uncertainty. For
the kinetic parameters considered in Eq. 7.69, the predicted maximum
product yield exceeded the theoretical maximum yield beyond certain 5p-
This indicates that these parameter values are not accurate enough to be
used for fed-batch optimization. Sensitivity of the objective function (max-
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imum product-to substrate yield at the termination of a cycle in a cyclic
fed-batch operation, Pf/Sp) to variations in the kinetic parameters was
therefore examined. The effects of ±25% variations in each of the kinetic
parameters on the maximum product yield are illustrated in Table 7.1. The
kinetic parameters, with the exception of the parameter being varied, were
assigned the values listed in Eq. 7.69. In each case, a repeated fed-batch
operation provided the maximum Pf for a given SF- For both examples
of kinetics, the maximum product yield increased with increases in KI, 8m

and biomass-to-substrate yield (Yx/s — l/P) and decreases in K% and /zm.
The maximum product yield increased with increased cell growth inhibition
by the desired product (signified by a decrease in K^ or an increase in ai)
and with reduced inhibition/repression of product synthesis by the desired
product (signified by an increase in K± or a decrease in /3m). The maximum
product yield is very sensitive to //m, £m, p, KS (example 1), and am (ex-
ample 2), moderately sensitive to K± (example 1) and /3m (example 2), and
less sensitive to K\ and K2. The results in Table 7.1 clearly demonstrate
the need for accurate estimation of the maximum specific cell growth and
product formation rates, biomass-to-substrate yield, and product-inhibition
coefficients and the necessity of frequent updating/retuning of kinetic pa-
rameters via on-line estimation when lumped kinetic models are employed
for bioprocess optimization.

Case 3. The three specific rates are functions of 5 and P but have no
linear relations among them.

The objective function in Eq. 7.3 is considered to be independent of Xf
and t/, both of which are not specified, and A5 is trivial as a result. Further,
g in Eq. 7.3 is considered to be trivial. Termination of bioreactor operation
in a particular cycle must occur in singular control or batch mode, the
final reactor volume being Vm in either case. It has been shown that A2 is
trivial during singular control. Triviality of ho and dhi/dt during singular
control then provides the following necessary and sufficient condition for
admissibility of singular control and description of singular arc

The feeding policy during singular control (obtained from d2hi/dt2 = 0) is
described in Eq. 7.58 with a, (3 and 7 being defined as

a = 0, j3 — aes - e&s, 7 = epd — ecrp. (7.72)

The projections of the batch bioreactor trajectories on an S — P plane will
in general be nonlinear due to the nonlinear nature of a and £ and may
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Table 7.1. Sensitivity of the maximum product yield (Pf/Sp) to kinetic
parameters in Eqs. 7.66, 7.67 and 7.69. Only one parameter was varied at a
time. Base yields correspond to the appropriate parameter values provided
in the text [447].

Variation (%)

SF (g/L)

Base yield

Parameter

Ki (g/L)

*2 (g/L)

Kz (g/L)

^4 (g/L)

"i (L/g)

& (L/g)

Mm (1/h)

em (1/h)

>X/S = 1/P

Example 1

+25

50

0.39662

Maximum

0.40391

0.38523

0.34085

0.42313

-

-

0.28681

0.55642

0.55642

-25

50

0.39662

Product Yield

0.3901

0.41175

0.52213

0.3629

-

-

0.6148

0.26195

0.26195

Example 2

+25

70

0.30398

Maximum

0.30776

0.298

-

-

0.38941

0.2789

0.22863

0.41764

0.41764

-25

70

0.30398

Product Yield

0.3006

0.3119

-

-

0.26232

0.33981

0.46262

0.21137

0.21137

admit one or more inflection points (d2P/dS2 = 0 at these points). The
locus of the inflection points is provided by

i) -„(!) =
a/p \cr/s

0 (7.73)

The intersections of the singular arc and the locus of inflection points have
special significance with respect to singular control. These intersections are
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discrete points (S = Si, P = Pi} where

The feeding policy denned in Eqs. 7.58 and 7.72 reduces to

l)X. (7.75)

at each such intersection.
It follows from Eqs. 7.74 and 7.75 that Si and Pi are equilibrium

(time- invariant) solutions of Eqs. 7.30 and 7.31, respectively. Singular
control operation at such points is characterized by time invariance of 5
and P and a gradual approach of X to the equilibrium value Xi (Xi —
[j,(Si, Pi}/ p(Si, Pi)} unless already at it. Upon reaching such a quasi-
steady state ((X, S, P} — (Xi, Si, Pi), V varies with t) in a cycle,
the bioreactor will be operated in an exponential fed-batch mode until a
transition to the boundary control (F — 0, batch operation) occurs upon
saturation of bioreactor volume.

In view of the nonlinear dependence of the three specific rates on S and
P, multiplicity of limit points for a fixed feed composition cannot be ruled
out. In a repeated fed-batch operation, the bioreactor trajectories during
singular control interval of each cycle must terminate at a locally asymptot-
ically stable (accessible) limit point. The necessary and sufficient conditions
for local accessibility of a limit point can be obtained via linearized stability
analysis of Eqs. 7.29-7.31 [447].

7.3 Forced Periodic Operations
The performance of optimal steady state continuous chemical processes can
be improved in some cases by forced periodic operation of these processes.
Significant experimental and theoretical effort has been undertaken to iden-
tify operations that lead to improved productivity, yield and/or selectivity
of chemical reactors by periodic variations in one or more reactor inputs
[30, 34, 102, 103, 104, 115, 124, 136, 141, 237, 240, 256, 318, 319, 385, 442,
443, 444, 445, 509, 550, 561, 571, 572, 573, 632, 633, 634, 653]. Optimization
of batch and fed-batch operations of bioprocesses has received much more
attention compared to optimization of continuous operations. With the
increasing significance of continuous bioreactor operations, it is important
to know how these can be operated more effectively. The effect of cycling
of feed conditions on behavior of continuous cultures has been examined
experimentally and theoretically in few prior studies [4, 5, 74, 322, 448, 449,
450, 451, 455, 460, 468, 469, 525, 549, 568, 569, 570, 610, 636, 678, 688].
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A matter of primary concern in the periodic control problem is whether
and when forced periodic control is superior to steady state control. The
three major approaches taken for analysis of forced periodic operations
[202, 571] are: (1) the Hamilton-Jacobi approach based on the maximum
principle [34, 202, 358, 431], (2) a frequency-domain approach using second-
variations methods [66, 634], and (3) numerical approach based on, among
other things, vibrational control [102, 103, 104, 442, 443, 444, 445, 509].
Sufficient conditions for optimality of periodic control have been proposed
using the Hamilton-Jacobi approach, relaxed steady state analysis, and
second-variations methods. For periodic operations employing high fre-
quencies, the sufficient condition is either based on the maximum principle
or relaxed steady state analysis [30, 34]. In very low frequency periodic
operations, description of process dynamics is based on the quasi-steady
state assumption. For the intermediate frequency range, the sufficient con-
dition, based on second-variations methods, is provided by the 7r-criterion
[66, 202]. While the relaxed steady state analysis allows for strong varia-
tions in control variables, both the 7r-criterion and the maximum principle
are applicable only for weak variations in control variables.

A generalized 7r-criterion based on perturbations around arbitrary steady
states which are locally, asymptotically stable has been proposed [573]. The
development of the generalization, which is based on a line of reasoning
similar to that outlined by Bryson and Ho [84] and the averaging result
of Tikhonov et al. [589], allows application of the vr-criterion to a broader
range of problems. Continuous processes may not always operate at an
optimal steady state and in some situations, optimal steady states may not
be admissible [448, 449, 573]. The generalized 7r-criterion is useful in these
cases to explore the possibility of improving the process performance via
forced periodic operation.

7.3.1 Preliminaries on the vr-Criterion
Consider the steady r-periodic operation of a continuous process described
by

dx
-=f(x, u), x(0)=x(r). (7.76)

The optimal periodic control problem is to maximize a scalar objective
function i r

J = - h(x, u)dt, (7.77)T Jo
subject to the integral constraints in Eq. 7.5 with tf = T. Let there
be a steady-state solution x* of Eq. 7.76 corresponding to u = u* at
which the performance index in Eq. 7.77 is maximized, subject of course
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to satisfaction of constraints in Eq. 7.5. The forced periodic control is said
to be proper if the objective function for a periodic operation exceeds that
for the steady-state operation. A sufficient (but not necessary) condition
for this is provided by the 7r-criterion. This criterion, originally developed
for forced periodic operations around an optimal steady state [66, 202],
has been generalized to be applicable to forced periodic operation around
an arbitrary steady state [571, 572, 573]. Assuming that f, h, <j> and *
are continuously differentiable in x and u, the Hermitian matrix II (cj) is
defined as

R (7.78)

where

G(s) - (si - A)-^, A = fx(x, u), P = tfxx(x, u, A, p, 77),

B = fu(x, u), Q = #xu(x, u, A, p, 77), R = #uu(x, u, A, p, r/)(7.79)

and the Hamiltonian H is denned as

#(x, u, A, p, TJ) = h + ATf + pT4>. (7.80)

In Eqs. 7.78-7.80, x and u assume their respective values at a steady state,
viz., x0 and UQ, respectively. The superscript c in Eqs. 7.78, 7.83 and 7.84
denotes the complex conjugate. The adjoint variable vectors A, p, and 77
satisfy the conditions

Zx(x, u, A, p, r/) - 0T, Z = H + 77T*,

77 < 0, 77T*(x, u) = 0, (7.81)

at an arbitrary steady state. At the optimal steady state, the following
additional condition must be satisfied

Zu(x, u, A, p, 77) = 0T, x = x*, u = u*. (7.82)

For superior performance of forced periodic operation of continuous bioreac-
tors vis-a-vis operation of the same at a steady-state, it is sufficient (but not
necessary) to have positive-definite II for some values of u) (0 < uj < oo).
For small variations in the control variables relative to their values at a
steady state, the differential between the magnitudes of the objective func-
tion in a forced periodic operation and the corresponding steady-state op-
eration can be expressed as [572]

1 fT

8J — — / (duc}TTl(uj)8udt, 6u = u — UQ, 5J = J — Jo, «/o = MXQ, uo),
2r Jo

(7.83)
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uj being the overall frequency of the periodically perturbed system.
Periodic variation in only two inputs is considered here since the case

study to be discussed later pertains to two inputs. The results obtained here
can be extended to higher dimensions, with tedious algebraic manipulations
[449, 450]. Since the domain of II is complex vectors, 6u is assigned the
following form:

ri P:?0i "I [ r-i P~J®T- 1
ie, . ««C = -», • *« = u - no- (7.84)

The complex exponential notation used here simplifies the analysis [549,
632, 634]. Let Pij(u>) (i, j = 1,2) denote the individual elements of II(u>).
Then Eq. 7.84 can be deduced to have the form [p2i(w)

1 . A 1 CT

SJ = - V P«Mr? + ~
z i=i r Jo

Z2i = [/te(p2i) cos(02 - 0i) + Im(p2i) sin(02 - ft)] . (7.85)

In what follows, we examine the forms Eq. 7.85 reduces to when the number
of inputs subject to periodic variation is 1 or 2.

Periodic Variation in Single Input

In bioreactor operations involving periodic variation in only one feed pa-
rameter (n or r2 is positive), Eq. 7.85 reduces to 5J — pa(uj}r^/2 (i = I or
2). It follows then that for superiority of forced periodic operation vis-a-vis
steady-state operation, pa(uj) (i — 1 or 2) must be positive for some u;.

Periodic Variations in Two Inputs

In bioreactor operations involving periodic variations in two feed parame-
ters (i.e., ri 7^ 0 or r2 7^ 0), let the frequencies of variations in u\ and u<2
be the same or different with Ok = 27ro>fc£ + (f>k (k = 1, 2, fa = 0).

Unequal forcing frequencies.
When u\ ^ u>2 , let the maximum of u>i and o>2 be an integral multiple of
the minimum of u)\ and ^2, i.e., max(ct;i, u;2)/mm(a;i, ^2) = n (n> 1, n
an integer). Then

>, n\ =

u> = min(a>i, u>2), r = max(ri, r2), ujjTj = ur = 1, j = 1, 2 (7.86)

where n\ and 77,2 are integers.
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In this case, Eq. 7.85 reduces to

= 0 if Pjj(^} < 0, j = 1, 2. (7.87)

It is evident from Eq. 7.87 that the interaction between the control variables
HI and u-2 vanishes when u>\ ^ cu?. Simultaneous periodic variations in u\
and U2 may provide improvement in process performance vis-a-vis periodic
variations in u\ or u2 alone for those intervals of LJ where both pn and
P22 are positive. For a particular 77 ( = r2/ri), the optimum frequency (OJQ)
then is the frequency at which (pn + P22??2) is maximized.

Equal forcing frequencies .
When uo\ — cu2 = u, Eq. 7.85 assumes the form

5J=2 [P^(^ri

/(<£, a;) = [Re(p2i) cos(0) + Im(p2l) sm(<j>)} . (7.88)

The third term on the right side of Eq. 7.88 represents the interaction
between the control variables u\ and u%. A positive effect of interaction
between the two control variables in forced periodic operation involving
perturbations in both u\ and u^ requires that / be positive. Maximization
of 5J for a particular steady state requires that / be maximized. Since

P2i)}2 + {/m(p2i)}2]1/2 , fmax = \p2l , (7.89)

a maximum in / (/max) occurs when 0 = \. Positivity of / requires that
0 lie in the interval -yr/2 < (0 — x) < ^11. Where possible, optimum
ratios of the amplitudes of weak perturbations in u\ and u2 which lead to
maximization of <*> J are identified next.

Fixed ?"2, variable r\.

The necessary and sufficient condition for occurrence of a local maximum
in 5 J and its value are

1 / f*2> \ f

5J = ̂ l ( P22 - — ) at T? - ̂  = —1- if Pll < 0. (7.90)
A V Pll/ ^2 Pll

The upper bound on 6J in Eq. 7.90 corresponds to / = |p2i| (defined in
Eq. 7.89). The necessary condition for a positive maximum in SJ is that
\P21 2 > P11P22-
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If weak perturbations in u-2 alone lead to improved process performance
(p22 > 0), then it is evident from Eq. 7.90 that simultaneous variations in
HI and u-2 lead to further improvement in the process performance. When
P22 > 0, forced periodic operation involving variations in ui and u-2 is
superior to steady-state operation only in the range 0 < 77 < 772 [77 = T\jr^
Figure 7.3(a)j, with 172 being

[/ + P11P22
(7.91a)'/^ / \ > w ^ j — r^i •

(-Pll)

If p22 = 0, an improvement in performance of steady-state operation is
feasible only in the range 0 < rj < 7}2 [Figure 7.3(a)]. If p22 < 0, a positive
5J occurs in the range 771 < 77 < 772 [ry = r^/r^, Figure 7.3(a)], with

If- \/72 ~ PHP22J
m = I 1, 0 < / < | p 2 1 | , (7.91b)

(-Pn)

provided /2 > pnP22-

Fixed 7*1, variable r2.

The necessary and sufficient condition for occurrence of a local maximum
in 5J and its value are

i - — ) at C = — = —— if P22 < 0. (7.92)
P22 / ^1 P22

The upper bound on 6J in Eq. 7.92 corresponds to / = |p2i| (denned in
Eq. 7.89). The necessary condition for a positive maximum in 6J is that
|P21 2 > P11P22-

If weak perturbations in HI alone lead to improved process performance
(pn > 0), then it is evident from Eq. 7.92 that periodic variations in
U2 as well as u\ lead to further improvement in the process performance.
When pn > 0, forced periodic operation involving variations in u\ and u2 is
superior to steady-state operation only in the range 0 < C < C2 [C = ri/^2,
Figure 7.3(a)j, (2 being

[/ + ~ PHP22
(7.93a),

(-P22)

If Pii = 0, a forced periodic operation involving variations in u\ and w2 is
superior to steady-state operation (8J > 0 in Eq. 7.88) only in the range
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(b)

Figure 7.3. (a) Portraits of GI and r? for p22 < 0 and portraits of G2

and C for pu < 0. Gl = pu + 2/r? + p22r?2, G2 = P22 + 2/C + PiiC2-
[ ( x , y ) = (77, GI) and ( x , y ) = (C, G2).] The profiles 1, 2 and 3 correspond
to pu > 0, pu = 0 and pu < 0, respectively, when ( x , y ) — (77, GI) and
to p22 > 0, p22 = 0 and p22 < 0, respectively, when ( x , y ) = (C, G2).
(b) Profiles of 6J — c (c an arbitrary constant) when min(pn, p22) > 0,
max(pn, p22) > 0 and / > 0 [449].

0 < C < C2 [Figure 7.3(a)]. If pu < 0, a positive 5J occurs in the range
Ci < C < C2 [C = r2/ri, Figure 7.3(a)], with

Ci =
PllP22

P22)
0 < / < p2i|, (7.93b)
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provided /2 > p\\pii-
When both p\\ and p22 are non-negative, on the family of curves S J = c

(c is an arbitrary constant), an increase (a decrease) in r2 is accompanied
by a decrease (an increase) in r\ [Figure 7.3(b)], since

for

J V 'P22r2)

There therefore are infinite sets of r\ and r2 which lead to the same value
of 5J for a particular Js when min(/9n, p22) > 0, max(/9n, p22) > 0 and
/ > 0. An optimum amplitude ratio, ri/r2, is as a result not admissible.

The contribution of the off-diagonal elements of II, pjk (j ^ k, j, k =
1 , 2 in the present case) , to 8 J is more significant than that of the diagonal
elements, PJJ (j = 1, 2) [449, 450, 571, 572, 573]. In the case study that
follows, the forcing frequencies of inputs subject to periodic variation are
therefore considered to be equal.

7.3.2 Case Study - Forced Periodic Operations

A unified analysis of optimality of forced periodic operation of continuous
cultures producing a wide range of products and subject to periodic vari-
ation in dilution rate and/or feed concentration of the limiting substrate
has been reported by Parulekar [448, 449]. It was established that very
low frequency periodic operations around the optimal steady state, where
admissible, are non-optimal. Conditions for properness of periodic control
and expressions for frequency ranges where periodic control is proper and
optimum cycling frequency were obtained analytically. It was established
that subjecting a bioprocess to simultaneous periodic variations in dilu-
tion rate and substrate feed concentration does always lead to improved
performance, at least at high frequencies [449].

Problem Formulation
The dynamics of continuous bioprocesses of interest (continuous pure cul-
tures) is considered to be described adequately by the conservation equa-
tions for cell mass (biomass), limiting substrate and the desired non-biomass
product. The mass balances for cell- and product-free feed are provided in
Eqs. 7.29-7.31 with F/V being referred to as the dilution rate (D) for con-
tinuous culture. In situations where the desired product is excreted to a
large extent and is subject to degradation in the abiotic phase, e can be
expressed in terms of the cell mass-specific product synthesis rate (EQ) and
the volume-specific product degradation rate (Rd) as e = £Q — Rd/X. It is
of interest to maximize the performance index of the type [448, 449]

1 fT

J = - I D(P + vX - wSF)dt (7.95)
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with w (w > 0) being the cost of limiting substrate relative to the price
of the desired product. The term involving the coefficient v in Eq. 7.95
accounts for the difference between the price of those products (other than
the desired product) whose formation is associated with cell growth and
the cost of separation of cell mass from the desired product relative to the
price of the desired product. The objective function in Eq. 7.95 is there-
fore appropriate for optimizing operation of continuous bioprocesses that
generate growth-associated and non-growth associated products and incor-
porates costs associated with separation of the desired product from cell
mass. In both steady-state and periodic operations of continuous cultures,
the input variable space is defined by the inequality constraints

0 < D < D* and 0 < SF < S*F (7.96)

with D* being the dilution rate beyond which retention of cells is not pos-
sible in a steady state continuous culture and Sp the maximum permissible
concentration of the limiting substrate in the bioreactor feed (usually de-
cided by solubility limits of the substrate in the feed medium).

Since the performance index considered here (Eq. 7.95) is non-positive
for steady-state operations at D — 0, D — D* or SF = 0 (P = X = 0
for D > D* or SF = 0), the optimal steady state solutions cannot lie on
the boundaries D = 0, D = D* and SF = 0 of the control variable space.
The optimal steady state solutions may therefore lie strictly in the interior
of the control variable space (denned by the inequality constraints in Eq.
7.96) or on the boundary SF = Sp.

The expressions for the scalars and vectors involved in evaluation of
II(u;) have the form

B

u =

A =

X
s
P

-X
(SF-.

_p

D
SF

/i
h
/3

Ai

0
D
0 (\

X^s
+ Xas}

X£s

h = D [P + vX - wSF],

(A2 - w)
0

-XaP

- D)

(7.97)
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with /i, /2, and /3 being the right sides of Eqs. 7.29-7.31, respectively,
and the elements of P being

Pn = (2/^r + VxxX) AI - (2ax + °xxX] A2 + (2ex + £xxX) A3,

Pi2 = (p>s + v-xsX) AI - (as + crxsX) A2 + (ES + £xsX} A3,
Psi = (IJ-P + VxpX) AI - (aP + (?xpX) A2 + (EP + £xpX) A3,

P22 = (uss^i — 0"ssA2 -f £33^3) X,

P23 — (^SpAi — CTsp\2 + £SpA3) X,

P33 = (/^ppAi - aPP\2 + £ppA3) X. (7.98)

The adjoint variables at a steady state are obtained from solution of Eq.
7.81, which in this case assume the form

m2A2 + m3A3 — —vD,

msA2 + m6A3 = 0,

myAi - mgA2 + mgA3 = -D,

mi = /z - D + Xfjix, m-2 = a -\-

m4 = Xfis, m5 = D + Xcrs, m&

m7 = X//p, mg = Xap, mg = Xep — D. (7.99)

For the problem formulation described by Eqs. 7.29-7.31, depending on
the nature of relations among the three rate processes, various bioprocesses
can be classified into three types as [448, 449]: (I) bioprocesses where a
and e are each related linearly to /u, (II) bioprocesses where //, a and e are
related by a single linear relation, and (III) bioprocesses where /^, a and £
are not related linearly. For type I bioprocesses, the relations in Eq. 7.45
are applicable. In steady-state operations and forced periodic operations
with variation in D alone, the state variables X, S, and P satisfy the
stoichiometric relations in Eq. 7.50 (Sp = SFO}- For type II bioprocesses,
the three specific rates are related linearly as in Eq. 7.53. In steady-
state operations and forced periodic operations with variation in D alone,
the state variables X, S, and P satisfy the stoichiometric relation in Eq.
7.61 (Sp = SFQ). The analysis of forced periodic operation is simplified
considerably if the bioreactor state (X, S, P) in steady-state and forced
periodic operations satisfies Eq. 7.50 or Eq. 7.61, as appropriate [448, 449].
For details of the analysis of the forced periodic operations of the three
bioprocess types, the reader should refer to [448, 449].

Forced periodic operations of continuous cultures may in some situations
extend the regions of the operating parameter space where non- washout so-
lutions are admissible [322]. The extension of the regions of admissibility of
the meaningful states of continuous cultures via forced periodic operations
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subject to weak variations in inputs can be investigated by applying the
7r-criterion to the washout steady state (X — P = 0, S = SF) when it
is locally, asymptotically stable, the necessary and sufficient condition for
which is that n(XF, SF, PF) < D [448]. It is established in [448] that
weak periodic perturbations in D and SF will allow for cell retention under
conditions where such retention is not possible in steady-state continuous
culture operation as long as the phase difference between the perturbations
in the two inputs lies between 90° and 270°. For the performance index
under consideration (Eq. 7.95), in view of the form of h in Eq. 7.97, RU
and #22 (diagonal elements of R) are trivial and P and Q (Eq. 7.79) do
not depend on w. For the three types of bioprocesses therefore, PU(UJ) and
P22(^) are independent of w [448]. We import here numerical results from
specific examples in [449].

Example 1.
This example pertains to type I bioprocesses (Eq. 7.45) with // being de-
pendent exclusively on S. For a locally, asymptotically stable steady state
(^LS > 0, [ASS < 0)> improvement in bioprocess performance via periodic
forcing in D or SF alone is not possible since pn < 0 and p^i < 0 for all
u (0 < uj < oo) [448]. Superiority of forced periodic operations subject to si-
multaneous variations in D and SF over steady-state operation at a locally,
asymptotically stable non-trivial steady state is guaranteed at low and high
frequencies (Figure 7.4). This observation is valid in the entire portion(s)
of the SF — D space where stable non-trivial steady states are admissible.
The results in Figure 7.4 are for Monod kinetics [fj, = ^mS/(Ks + S}} with
Mm = 1.0 h~l, Ks = 0.05 gL~l, and w = 0.

Example 2.
This example pertains to type I bioprocesses with /j, being dependent on
S, X, and P (Eq. 7.50), ^x and p,p being negative. Case studies of these
bioprocesses include fermentations producing alcohols [47, 239, 325, 326,
338, 395, 544]. For numerical illustration, p, is expressed as [326, 395]

with

Mm = 1.0 /i-1, Ks - 0.4 g/L, Kj = 48.1 g/L,

Pm = 70 g/L, n = 0.94, p = 1/0.048, and c = 1/0.097. (7.101)

For the parameters listed in Eq. 7.101, the maximum number of non-trivial
steady states is two. When two non-trivial steady states are admissible, one
of these is locally, asymptotically stable and the other is unstable. Where
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Figure 7.4. (a) Operating diagram for Example 1 with the cell growth
following Monod kinetics (/zm = 1.0 h~l, KS — 0.05 gL~l, and Kj —» oo
in Table 3, D in h~l and SF in gL~1}. n(SF] = D on the curve ABODE.
Forced periodic operation with variations in D and Sp is superior to steady-
state operation (i) at all frequencies in region I [(Spo^Do) lying below the
curve ABFG], (ii) for 0 < u < ui and u>2 < u> < oo (0)2 > ^i) in
region II {(Spo,DO) lying between the curves BFG and BODE], and (iii)
for all (jj except u = cj* for (SFQ,DQ) lying on the curve BFG (f^ax ~
Pi 1/^22 at u — cu*). (b) For a particular SFO, forced periodic operation
involving variations in D and Sp is superior to steady-state operation for
(z, DQ)(Z = uj2} lying outside the curve ABCDEF [/^ax = PUP22 on the
curve ABCDEF, f^ax < pnp22 for (z, D0) enclosed by the curve ABCDEF,
and f^ax > PiiPm for (z, DO] lying outside the curve ABCDEF]. Regions
I and II in (a) correspond to DO < D* and DO > D*, respectively. D*
corresponds to asterisk [449].
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DO < PI(SFO) [under the curve ABCEFG in Figure 7. 5 (a)], a unique lo-
cally, asymptotically stable non-trivial steady state is admissible, the global
asymptotic stability of which is also assured since the washout state is un-
stable. Two non-trivial steady states are admissible in a portion of the
SF — D space where DQ > /^i(SVo) [(•S'.FCb -Do) tying inside the envelope
CEFHC in Figure 7.5(a)]. One of the non-trivial steady states and the
washout state are locally stable in this portion. On the curve CEF [ex-
cluding points C and F, /^I(SFO) = -Do], a unique non-trivial steady state,
which is globally, asymptotically stable, is admissible.

Since positive J is of interest, it follows that (v + c) must be positive (Eq.
7.97). In the entire region of the SF — D space where a stable non-trivial
steady state is admissible [below the curve ABCHFG in Figure 7.5(a)], peri-
odic control with variation in D alone is not proper. When u = Sp, P22(u)
is positive for some uj in region I [(/S^o? DQ) lying to the right of the curve
FIJ and below the curve FG, Figure 7.5(a)] and negative for all uj in region
II [(SFO, DQ) lying below the curve ABCHFIJ] and for (SFO, -Do) lying
on the curve FIJ excluding point F. In region I, forced periodic operations
subject to weak variations in SF will yield superior performance vis-a-vis
steady-state operation.

The effect of simultaneous periodic variations in D and SF on the biore-
actor performance was examined for v — w — 0 (Eq. 7.95). In these opera-
tions, 5J is positive at all frequencies in region I and for wi < uj < oo (u)\ ^
0, aji depends on DQ and SFO) in region II. On the interface between the
two regions [(5Vo> -Do) lying on the curve FIJ excluding point F], 5J is
positive for LU > 0.

Following conditions must be satisfied at the optimal steady-state (D =

For v = w = 0 and parameters in Eq. 7.101, the optimal steady-state lies
in region II [Figure 7.5(a)]. The performance of the optimal steady-state
operation cannot therefore be improved by weak periodic variations in D
or SF alone. Weak periodic variations in both D and SF (around D* and
SF, respectively) will lead to improved performance for u; > 4.165 cycles
h-1.

An analytical expression for the optimum frequency (UJQ) for maxi-
mal improvement in performance of a steady-state operation via weak
periodic variations in SF alone (in region I) is provided in [448]. For
DO = 0.3045 /i"1, a comparison between the maximum improvement at-
tainable (vis-a-vis steady-state operation) in forced periodic operations in-
volving weak variations in SF alone and in both D and SF (SJ as in Eq.
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Figure 7.5. Results for Example 2. (a) Operating diagram for Example 2 (D
in h~l and SF in gL~1}. ^\(SF] = D on the curve ABCEFG. Non-trivial
steady-states are admissible for (Sp, D} lying below the curve ABCHFG.
The number of non-trivial steady-states is (i) one for (Sp, D) lying below
the curve ABCEFG and on the curve CEF (excluding points C and F) and
(ii) two for (Sp, D) lying inside the envelope CEFHC. Periodic operations
involving weak variations in Sp are superior to steady-state operation only
in region I [(Spo 5 A)) lying to the right of the curve FIJ and below the curve
FG]. For v = w = 0, periodic operations involving weak variations in Sp and
D are superior to periodic operations involving weak variations in Sp and
steady-state operation (i) at all frequencies in region I and for (SFQ,DQ)
lying on the curve FIJ (excluding point F) and (ii) for uj\ < uj < oo
(ui > 0) in region II [(5>o, A>) lying below the curve ABCHFIJ]. The
asterisk denotes the optimal steady-state for v = w = 0. (b) Portraits of
Q [curve 1: Q = ^22(^0)) curve 2: Q = G2U(^o}} and SFQ and (J>I(UJQ) and
SPQ (dashed curve) for D0 = 0.3045 h~l. (c) Portraits of G2 for C = 0.0417
and uj (dashed curve) and GIU and uj (solid curve) for DQ = 0.3045 h~l and
SFQ = 101.5 gL~l. C, = 0.0417 is the optimum amplitude ratio (6?2 = G-2u)
at u = 1.904 cycles h~l. G2 = pii + 2/C + piiC2, G2u = P22 - fmax/Pu
[449].
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7.90 with / = /max) is provided in Figure 7.5(b) for various SFO'S in re-
gion I (u) = LUQ in both types of operations). The benefit of simultaneous
variation in D and SF over variation in SF alone is self-evident. The differ-
ential in the maximum improvement attainable in the two forced periodic
operations is significantly sensitive to SFQ. For certain sets of operating
parameters, (Spo, DQ) therefore, periodic operations involving variation
exclusively in SF can be substantially inferior to those involving variations
in both D and SF- In the narrow range of SFQ considered in Figure 7.5(b),
there is substantial variation in the optimum phase difference (0 = x) that
leads to maximum positive interaction between D and Sp (f = /max). The
optimum frequency UJQ for forced periodic operation involving variation in
Sp alone decreases with increasing SFQ (profile not shown).

For DQ = 0.3045 h~l and SFo = 101.5 gL~l, variations in G2 (G2 =
P22 ~ /2//>n, Pu < 0, Eq. 7.90) for the optimal amplitude ratio (G2 for
/ = /max) and G-2 for a fixed amplitude ratio (£ = 0.0417) are presented
in Figure 7.5(c). The amplitude ratio in the latter case is the optimal am-
plitude ratio only at w = 1.904 cycles h~l. Periodic operations employing
this amplitude ratio are suboptimal at other frequencies [Figure 7.5(c)].
The difference between the performance of periodic operation employing
optimal amplitude ratio and that of the periodic operation employing a
fixed amplitude ratio increases as the deviation of u; from the frequency for
which the fixed amplitude ratio is the optimal one [ui = 1.904 cycles h~1 in
Figure 7.5(c)] increases.

Example 3.
The expressions for fj,, a and e are provided in Eq. 7.68, with the parameter
values being [190, 600]

n = 1, /v> = 0.4 JT1, em = 1.4 h~l, Ks = 0.476 g/L,

K's = 0.666 g/L, Pm = 87 g/L, P'm = 114 g/L, KI = 203.49 g/L,
K'j = 303.03 g/L, YP/S = 0.47. (7.103)

A unique non-trivial steady state is admissible in that portion of the Sp—D
space where HI(SFQ) > D0 [(SFQ, DQ) lying below the curve ABCDEF
in Figure 7.6]. The non-trivial steady state does not undergo any Hopf
bifurcations and since the washout state is unstable when ^I(SFQ) > DQ,
the non-trivial steady state is globally, asymptotically stable.

Application of 7r-criterion was considered for v = 0 (Eq. 7.95). Periodic
control was found not to be proper when u = D in the entire region where
HI(SFQ) > DQ. When u = SF, P22(&) is positive for some LJ in region
I [(SFO, DQ) lying to the right of the curve DGH and below the curve
DEF] and negative for all o> in region II [(SFO> -^o) tying below the curve
ABCDGH] and for (/S>o, -Do) lying on the curve DGH (excluding point D)
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0.48

D 0.24

Figure 7.6. Operating diagram for Example 3 (D in h l and SF in gL 1).
VI(SF] — D on the curve ABCDEF. A unique non-trivial steady-state is
admissible for (Sp, D} lying below the curve ABCDEF. For v — 0, periodic
operations involving weak variations in SF are superior to steady-state
operation only in region I [(5^0? A)) lying to the right of the curve DGH
and below the curve DEF]. For v — w = 0, periodic operations involving
weak variations in SF and D are superior to periodic operations involving
weak variations in SF and steady-state operation (i) at all frequencies in
region I and for (SFQ, -Do) lying on the curve DGH (excluding point D) and
(ii) for uji < u) < oo (uji > 0) in region II [(5^0, DO] lying below the curve
ABCDGH]. The asterisk denotes the optimal steady-state for v = w = 0
[449].

(Figure 7.6). The performance of steady-state operation can be improved
via periodic variations in 5^ in region I. The effect of simultaneous periodic
variations in D and Sp on the bioreactor performance was examined for
v = w — 0 (Eq. 7.103). In such operations, 5J is positive (i) at all
frequencies in region I and for (Spo, DO) lying on the curve DGH and (ii) for
uJi < u < oo (cji ^ 0, o>i depends on DQ and SFO] in region II. For v = w =
0 and the parameters in Eq. 7.103, the optimal steady-state (subject to Eq.
7.102) lies in region II (Figure 7.6). The performance of the optimal steady-
state operation cannot therefore be improved by weak periodic variations in
D or SF alone. Weak periodic variations in both D and SF around D* and
Sp, respectively, will lead to improved performance only for large u) (uj >
2921 cycles h~l, r < 1.23 s). The rapid cycling required may need to be
restricted to weak perturbations since large and very rapid perturbations in
the extracellular environment may not be suitable for cellular metabolism.

Additional examples are discussed in [448, 449, 450]. Unstructured mod-
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els, such as those considered in this section, predict a faster response to
changes in operating parameters, such as D and SF, than that observed
experimentally [192]. This is presumably due to the inherent assumption
in these models of no time lag between changes in the extracellular en-
vironment (abiotic phase) and adjustment of cellular metabolism. This
assumption may be relaxed by considering that the specific rates (such as
//, a, and e) are functions not only of the current substrate concentration
but also of previous substrate concentrations. Delay models for cell growth
that account for this have been used previously [5, 440, 448]. For Exam-
ple 1, periodic forcing in D or Sp does not lead to any improvement in
bioprocess performance. However, accounting for the lag between changes
in extracellular environment and alteration in cell growth rate revealed
that forced periodic operations involving variations in D or SF alone pro-
vide superior performance vis-a-vis steady-state operation [PU(LJ) > 0 for
u;* < ijj < oo (o>* > 0) and p22(<*>) > 0 for u/ < a; < oo (u/ 7^ 0)] [448].

The generalized 7r-criterion, being based on weak variations around a
steady state, provides a sufficient condition (and not a necessary one) for
superiority of a forced periodic operation over a steady-state operation.
Satisfaction of the criterion guarantees superiority of periodic operations
involving both weak and strong variations in process inputs. It is antic-
ipated that stronger input variations will lead to higher enhancement in
performance under these conditions. Violation of the criterion does not
necessarily rule out such superiority when strong variations in process in-
puts are considered. When strong variations in one or more of the bioreactor
inputs, viz., D and SF-, are considered, the performance of the bioreactor
subject to periodic forcing must be evaluated via solution of Eqs. 7.29-7.31
subject to the periodic boundary conditions in Eq. 7.76 and the objective
function in Eq. 7.95 for particular forms of variations in the input(s). Ap-
plication of the generalized 7r-criterion allows one to identify the regions in
the multidimensional operating parameter space (Spo — DQ space for this
case study) where periodic forcing may lead to improved process (biore-
actor in the present case) performance. One may anticipate enlargement
of these regions in bioprocess operations involving strong variations in the
feed conditions (D and SF)-

As in the case of steady-state continuous bioprocesses, it is possible that
in the inherently transient batch and fed-batch bioprocesses, periodic per-
turbations in one or more inputs around their optimal trajectories may lead
to improvement in bioprocess performance. Identification of optimal tra-
jectories for which such improvement occurs will however be a numerically
challenging task, since unlike the continuous steady-state cultures where the
variations in inputs are around a fixed point in the multidimensional space
of inputs u, the systematic variations in inputs are around trajectories in
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this space in the case of batch and fed-batch operations.

7.4 Feedback Control

7.4.1 State-Space Representation

The majority of techniques for design of controllers for multivariable sys-
tems apply to linear systems. The system represented by Eqs. 7.1 and 7.2
is a nonlinear multivariable system. The behavior of such a system in a
close neighborhood of a reference state, (xr, ur, dr), can be represented by
linearizing Eqs. 7.1 and 7.2 using the approach discussed in Section 4.7.2.
Following Eqs. 4.90-4.95,

dx
~ = A(*)x(t) + B(t)u(t) + E(t)d(t) (7.104)
at

where x = x — xr, u = u — ur, d = d — dr, and

The output is

y(t) = C(t)x(t), C(t) = ̂ , y(t) = y(t) - yr. (7.106)

A(t), B(t), C(t) and E(t) are the appropriately dimensioned system ma-
trices with the respective multiplying vectors, the elements of which are
partial derivatives evaluated at the reference state (xr, ur, dr). If the ref-
erence state happens to be a steady state (admissible only in a continuous
bioreactor operation), then the system matrices are time-invariant. In that
case, the state-space representation in Eqs. 7.104 and 7.106 can be trans-
formed into transfer function representation by applying Laplace transform
to Eqs. 7.104 and 7.106.

y(s) = G(s)u(s) + Gd(s)d(s), (7.107)

with the transfer functions having the form

G(s) = C(sl - A)~1B Gd(s) = C(sl - A}~1E. (7.108)

As mentioned previously, the process models for biological reactors are in-
herently nonlinear due to large number of chemical reactions occurring in
a typical cell. Where kinetic descriptions are available, the values of model
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Figure 7.7. Multivariable block diagram.

parameters (kinetic and equilibrium coefficients) may be subject to sub-
stantial uncertainty due to complexity of the reaction scheme and difficulty
to account for all reactions. Further, batch and fed-batch operations, which
are inherently transient operations, are more common than continuous op-
erations which permit steady-state operation. Taking cognizance of these,
the transfer function representation is considered here since it can still pro-
vide valuable guidelines on control of transient multivariable processes.

7.4.2 Multi-Loop Feedback Control
In multivariable systems, all the output variables (y) are measured and the
information is sent to the controllers assigned to the task of regulating each
output. The control decisions by the controllers are implemented as appro-
priate changes (manipulations) in certain process inputs (u). The transfer
functions for a multivariable feedback-controlled (closed-loop) process can
be obtained from the concise representation of the block diagram for the
process in Figure 7.7 as follows. By substituting the following input-output
relations for the measuring devices and the controllers

Ym(s) = Gm(s)y(s), y(s) = Gc(s)e(s), e(s) = yd(s) - ym(s), (7.109)

in Eqs. 7.107 and 7.108, one can obtain

GGcGm)y(s) - GGcyd + Gdd. (7.110)

In Eqs. 7.109 and 7.110, Gc(s) and Gm(s) represent the transfer function
matrices for the controllers and measuring devices, respectively, and ym(s)
and yd(s) the Laplace transforms of the vector of measured outputs and
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the vector of set-points for the measured outputs, respectively. In view of
relation 7.110, one obtains the following relations among the outputs and
inputs for the feedback-controlled process

y(s] = Gi(*)yd(«) + G2(s)d(«), (7.111)

Gi(s) - (I + GGcGm)-1GGc, G2(s) = (I + GGcGmrlGd.

For an uncontrolled process with p outputs, m manipulated inputs and m^
disturbances, the dimensions of G, Gm, Gc, and Gd are (p x m), (p x p),
(m x p), and (p x m^), respectively. It is evident from the dimension of
Gc that a maximum of mp controllers will be needed to control p outputs
by manipulating ra inputs. Such controller configuration will be the most
complex one for the given number of process inputs and outputs.

Following feedback control of SISO systems, the simplest controller con-
figuration will involve control of one process output by manipulating only
one process input. This one-to-one input-output pairing will require the
least number of controllers, viz., min(mt, p}, with mt (= m + m^) being
the total number of process inputs (manipulated and non-manipulated).

Relative Gain Array

When using minimum number of single-loop controllers, an important con-
sideration is the input-output pairing. The decision on the input-output
pairing is based on how a particular output that is to be controlled is af-
fected by each of the inputs that are being manipulated. In the vicinity of
a steady state, by invoking the final value theorem (s —> 0), one can relate
the deviations in the outputs (y) to deviations in the manipulated inputs
(u) as

y(t) = Ku(t), K = G(0). (7.112)

The elements of K are referred to as the steady-state gains. The (i, j)th
element of the gain matrix K represents the ratio of change in the output
yi to change in the input HJ., i.e., (K)^ = dyi/duj.

The most widely used measure of interaction has been the relative gain
array (RGA) introduced by Bristol [81]. For q manipulated inputs [q —
min(mt, p)], the array (denoted as A) is a square matrix of dimension
q. The (i, j)th element of RGA, A^, is the ratio of gain between output
yi and input Uj (dyi/duj) when no control is implemented (the so-called
open loop gain) and gain between output yi and input Uj when all control
loops except the yi - Uj loop are functioning. Let R be the transpose of
the inverse of the gain matrix K with elements r^. The elements of the
relative gain array (\ij) are then related to the elements of K and R as per
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the relation [81, 438]

Ay = (K)yry, ry = (R)y, R=(K-1)T . (7.113)

The relative gain array (RGA) has some interesting properties, which
are listed below.

1. RGA is a symmetric matrix.

2. The elements of RGA in any row or any column add up to unity.

3. The elements of RGA are dimensionless.

4. The gain in the open loop pairing y± with Uj when all other loops are
closed (operating), Ky, is related to the open-loop gain for this pair
(Kij] as

The open-loop gain is thus altered by a factor of I/ Ay when all con-
trollers except that for the yi- Uj loop are active. This alteration is
due to action from other control loops, which may be complementary
or retaliatory. The sign of Ay then assumes special significance.

5. If K is a diagonal, an upper triangular, or a lower triangular matrix
and if not, can be arranged into one via appropriate switches of rows
or columns, then RGA is an identity matrix. The process under
consideration then is non-interactive.

Recommendations for Input- Output Pairings
Based on the magnitudes of Ay, the recommendations for pairing and im-
plications for interactions among control loops are discussed briefly.

1. Ay = 1. The input HJ can control yi without interference from the
other control loops. Pairing Uj with T/J is therefore recommended.
This always is the case for non-interactive processes (property 5 of
RGA).

2. Ay = 0. Since Uj has no direct influence on yi, pairing Uj with ^ is
absolutely not recommended.

3. 0 < Ay < 1. In absolute values, the closed loop gain (all control
loops except the y^ — Uj loop closed) is larger than the open loop
gain. The increase in gain is due to complementary effect from other
active control loops. The complementary effect becomes increasingly
pronounced as Ay is reduced. At the critical value of Ay = 0.5, the
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direct effect of Uj on yi is identical to the complementary effect of
other control loops. As a result, the pairing Uj — T/J is recommended
when 0.5 < AJJ < 1 and should be avoided when 0 < \i3; < 0.5.

4. \ij > 1. Here, the open-loop gain between T/J and Uj exceeds the
corresponding closed-loop gain. This is due to retaliatory effect of
other control loops. The direct effect is still dominant. The retaliatory
effect is enhanced as \ij is increased. The higher the AJJ, the greater
is the opposition Uj experiences from the other control loops in trying
to control yi. As a result, pair yi with Uj as long as \ij is not very
large and where possible, avoid pairing yi with Uj if \ij is very large.

5. \ij < 0. When all loops except the Uj —yi loop are closed, a particular
change in Uj will produce a change in yi in opposite direction to that
when all loops are open (uncontrolled process). The retaliatory effect
of the other control loops is in opposition to the direct effect of Uj
on yi and is the dominant of the two effects. The yi — Uj pairing is
potentially unstable and should be avoided.

6. In summary, one should pair input and output variables that have
positive RGA elements that are closest to unity.

Further Comments on RGA
The relative gain array is based on the gain matrix for a process under
consideration. The kinetics of processes of interest here (bioprocesses) be-
ing highly nonlinear, the elements of a steady-state gain matrix are based
on the linearized version of the nonlinear process model. As a result, the
elements of the process gain matrix as well as the elements of RGA will be
functions of steady-state operating conditions for the process. The input-
output pairings based on RGA analysis will therefore be dependent on the
process operating conditions and may be altered as the operating condi-
tions are changed. The concept of the relative gain array can be extended,
with appropriate caution, to dynamic processes [173]. For process opera-
tion in the vicinity of a steady-state, the system matrices A, B, C and
E are considered to be time-invariant (Eqs. 7.104 and 7.106) since the
reference state, (xr, ur, dr), is time-invariant. The linearized version of
the description of a nonlinear process (Eqs. 7.1 and 7.2) is a reasonable
approximation in a small interval of t (t — A£ < t' < t). The reference
state, (xr, ur, dr), then must lie in this interval. The system matrices
A, B, C and E (Eqs. 7.104 and 7.106) will then change from one time
interval to another as the reference state, (xr, ur, dr), is altered. Obtain-
ing information on dynamic process gains from these system matrices is
not straightforward. Alternately, for each time interval, one can obtain an
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equivalent process gain matrix from the nonlinear process model (Eqs. 7.1
and 7.2), the individual gains, (K)jj (between y^ and Wj), being obtained
as

(Ky) « [yi(t] - yt(t - At)]/[Uj-(t) - ^-(t - At)]. (7.115)

The choice of At is somewhat arbitrary. Witcher [657] has recommended
At to be 20 to 100% of the dominant time constant in the process. The
magnitude of At is reduced by the process time delay, if any, in effect of Uj
on yi, dij [173]. One can then proceed with obtaining RGA as described
earlier (Eq. 7.114). This equivalent RGA has been referred to as the
dynamic relative gain array. We will continue to refer to it as RGA. During
the transient operation of a bioprocess from an initial state to a final state
(this may be a steady state for continuous bioprocess operation) in a single
operation (run or experiment), the elements of the process gain matrix
and hence the elements of RGA may alter significantly. The input-output
pairings therefore may not be the same throughout the operation and may
have to be switched on one or more occasions.

It should be apparent from (Eq. 7.114) that even though the elements
of RGA involve comparison of open-loop gain between an input Uj and an
output yi with the closed-loop gain for this pair (when all other control
loops except the loop controlling yi by manipulating Uj are closed), RGA
can be estimated solely from the open-loop gains. Although the discussion
related to estimating the interaction among inputs and outputs thus far
has been based on availability of a mathematical description of the process,
the so-called process model, one should not be under the impression that
availability of a model is essential for estimation of RGA and decision on
input-output pairing (controller configuration). When process models are
not available or when available are reliable only in a narrow region of oper-
ating conditions, it is still possible to obtain the RGAs from experimental
data. In an uncontrolled process, one can implement changes in an input
(one input at a time) and observe the changes in various output variables.
The elements of the process gain matrix, K, can then be obtained, similar
to Eq. 7.115 as

(K)ij « Aj/i/Aitj, uk fixed, k^j. (7.116)

Generation of RGA then would follow as per Eq. 7.113.
A system where p > mt is an underdefined system since there are not

enough input variables to control all output variables. Based on economic
considerations, one must decide which mt of the p output variables are the
most important. These will be paired with the mt inputs and the remaining
outputs (p — mt in number) will have to be left uncontrolled. Multiple
independent sets (subsystems) of input-output pairing are candidates in
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this case, the exact number of sets being pCmt[
= p'/{m*'(P ~ ^t)'}]- The

relative gain arrays for all sets must be obtained. Comparison of the RGAs
for these subsystems will reveal which subsystem has RGA closest to the
ideal situation (elements corresponding to particular input-output pairing
as close to unity as possible) and therefore will provide the best possible
control.

A system where mt > p is an overdefined system since there are not
enough output variables to be controlled with the available input variables
which can be manipulated (mt). The number of controllers in this situation
is p and only p inputs can be manipulated. The remaining (mt — p) inputs
would therefore not be manipulated and can be used for process optimiza-
tion. If they cannot be regulated then they will be classified as disturbance.
Multiple independent sets (subsystems) of input-output pairing are candi-
dates in this case, the exact number of sets being mtCp[= mtl/{pl(mt— p)!}]-
The relative gain arrays for all sets must be obtained. Comparison of the
RGAs for these subsystems will reveal which subsystem has RGA closest
to the ideal situation (elements corresponding to particular input-output
pairing as close to unity as possible) and therefore will provide the best
possible control.

Decoupling Controllers for Interaction Compensation

The idea behind the use of minimum number of controllers and RGA-based
selection of the input-output pairings is to have the controller loops be
essentially independent. This occurs only when the RGA elements corre-
sponding to all input-output pairings are either unity or very close to unity.
When the RGA element corresponding to an input-output pairing (A^) is
substantially farther off from unity, there will be significant interaction from
other control loops while controlling yi. The interaction from the other con-
trol loops is due to process interactions. Consider as an example a process
with two manipulated inputs u\ and u^ and two controlled outputs y\ and
?/2- Let the process transfer function matrix or the gain matrix be a full
matrix. Let y\ be paired with u\ and y<2 with u^- Controller for the y\ — u\
loop may change u\ subject to information feedback on y\. This change in
MI would then lead to change not only in yi (the controlled variable for the
u\—y\ loop), but also in 3/2- The alteration in y% due to action of controller
1 would then be fed back to controller 2. The action of controller 2 (ma-
nipulation of 112) is thus influenced by action of controller 1. The change in
U2 will lead to change in not only 7/2 (the controlled variable for the u-2 — y-2
loop), but also in y\. The change in y\ would then result in change in u\.
The action of controller 1 is thus influenced by action of controller 2. One
can see that the two loops would be continually interacting.
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The interaction among the minimum number of control loops can be
minimized by use of appropriate decouplers. The decouplers, which are
placed between the controllers and the process, try to compensate for the
interaction in the process and therefore are also referred to as interaction
compensators. The use of decouplers is intended to make the control loops
independent. The controller-decoupler combination is also referred to as
decoupling controller.

After RGA analysis, let the input-output pairings be such that Uj be
paired with yj, j = 1, 2 , . . . , q, q = iw.n(mt,p). If the RGA analysis suggests
otherwise, then u or y and G(s) or K may have to be reconfigured. As an
example of this reconfiguration, consider a process with three manipulated
inputs and three controlled outputs. If the pairings based on RGA are
u\ ~~2/3! U2~yi and u^ — y2, then (i) the output vector should be reconfigured
as (y)new = [ys y\ y2}T and the third, first and second rows of G(s) or
K should appear as the first, second and third rows, respectively, in the
reconfigured G(s) or K; or (ii) the input vector should be reconfigured as
(u)neu; = [u-2 ^3 u\\T and the second, third, and first columns of G(s) or
K should appear as the first, second and third columns in the reconfigured
G(s) or K. Let the controller action (controller outputs) be denoted as v.
These serve as the inputs to decouplers, the outputs from the decouplers
being the manipulated process inputs u. The controlled outputs and the
controller inputs can then be related as

y(s) = G(s)G/(s)Gc(s)e(s) (7.117)

in the s domain and by analogy as

Ay(t) = K(t)K/(t)Kc(t)Ae(t) (7.118)

in the time domain in terms of steady-state or dynamic gains. In the
above, GI and KI represent the transfer function matrix and gain matrix,
respectively, for the interaction compensators (decouplers). The number of
controlled outputs being equal to the number of manipulated inputs in the
simple multi-loop controller configuration under consideration, considering
the situation where no decoupler is employed [Gi(s) = KI(£) = I], it can
be deduced from Eqs. 7.117 and 7.118 that GC(-S) and KC(£) are diagonal
matrices. It should then be evident from Eqs. 7.117 and 7.118 that for
the control loops to perform independently of one another, G(s)Gj(s) and
K(£)Ki(t) must be diagonal matrices.

Generalized Decoupler
The elements of G(s)Gi(s) and K(t)Kj(i) can be selected in multiple ways.
The more general way assigns the non-trivial elements of these matrices to
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be the diagonal elements of G(s) or K(t), as applicable. The interaction
compensator may then be obtained as

Gi(a) = [G(«)]-1diag G(a), [G(s)]-1 = adj G(a)/|G(«)| (7.119)

and

Ki(t) = [K(t)]-1diag K(i), [K(t)]-1 = adj K(t)/|K(t)| (7.120)

In Eqs. 7.119 and 7.120, adj M denotes the adjoint matrix of M. Some
words of caution are in order here. Perfect decoupling is possible only if
the process model is perfect and reliable. However, even with imperfect
process models, decoupling can be applied with considerable success. The
dynamic decouplers being based on model inverses (Eqs. 7.119 and 7.120),
these can be implemented only if the inverses are causal and stable. For
further discussion of this and other related issues, the reader should refer
to Ogunnaike and Ray [438].

Limitations of Decouplers - Ill-Conditioned Processes
It should be evident from Eqs. 7.118 and 7.120 that if the determinant of
the process gain matrix is very small, the system will be extremely sensitive
to any errors in the process model and decoupling will be difficult to achieve.
Small changes in e or v will lead to large changes in y. The process is said
to be ill-conditioned when |K(t)| is very small. It is virtually impossible
to achieve decoupling in an ill-conditioned process. There are situations
where |K(t)| is not small, yet the process is poorly conditioned. Examples
of these situations have been discussed in [438] . The most reliable indicator
of the conditioning of a process is the condition number of the process gain
matrix, «(K), which is provided by the ratio of the largest singular value
of this matrix to the smallest singular value. The singular values of the
real- valued K(£) are the the square root of the eigenvalues of the matrix
KT '(t)K(t) . Since KT(i)K(t) is a symmetric matrix with real elements,
its eigenvalues and therefore the singular values of K(£) are non-negative.
When the input-output pairings are based on RGA, all singular values
are positive since K(t) is not singular. As |K(t)| is reduced in absolute
value, so is the smallest singular value of K(t) and the condition number is
increased. A very small |K(t) | is indicative of the degeneracy of the process.
Such degeneracy is only a special case of ill-conditioning. If the condition
number of the process gain matrix is quite large, then the process is said
to be poorly conditioned. Use of a decoupler in such situations would do
more harm than good and should be avoided.
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Decoupling Based on Singular Value Decomposition
The singular value decomposition (SVD) of the process gain matrix pro-
vides a much more general approach to decoupling. SVD allows for exten-
sion of matrix diagonalization to non-square process gain matrices, since
KT(t)K(t) is a square matrix irrespective of whether or not K(t) is.

Singular Value Decomposition
Let r(K) be the rank of K [r = r(K) < g, q — min(m, p)], which is an p x m
matrix. Then only r singular values of K (denoted as cr^, j — 1 ,2 , . . . , r)
are non-trivial and the remaining (m — r) singular values are trivial. Let
the non-trivial singular values be arranged as a\ > a^ > • • • &r • For any
matrix such as the process gain matrix, there exist orthogonal (i.e., unitary)
matrices W and V such that

WTKV = £ (7.121)

with W, V and !S being p x p, m x m and p x m matrices related to K
as follows. The p columns of W, denoted as wi (i — 1, 2 , . . . ,p), are the
orthonormal eigenvectors of KKT. Thus,

W = [wi w2 • • • wp]. (7.122)

Similarly, the m columns of V, denoted as Vj (i = l , 2 , . . . , m ) , are the
orthonormal eigenvectors of KTK. Thus,

V = [ v i v a • • • vm]. (7.123)

Since V and W are composed of orthonormal vectors, these are orthogonal
(or unitary) matrices, i.e., VTV = VVT = I (dimension of I = m) and
WTW - WWT = I (dimension of I = p). It then follows that

V T =V- 1 and WT = W"1. (7.124)

In view of the above, upon pre-multiplication by W and post-multiplication
by VT, Eq. 7.121 can be restated as

K = WEVT. (7.125)

The eigenvectors YI of KTK and Wi of KKT are related to each other as
per the following general pair of expressions.

Kvi = cr^Wi and KTWj = <J;Vi. (7.126)

With the singular values of K being arranged in descending order, the only
non-trivial elements (Sij) of the pxm matrix £ appear for i, j = 1, 2 , . . . , r,
i.e.,

Yiij = &i, i = j = 1 ,2 , . . . , r; Sij = 0 otherwise. (7.127)
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Figure 7.8. Block diagram of the multivariable controller based on SVD
technique [438].
From BA Ogunnaike and WH Ray. Process Dynamics, Modeling, and Control. New York: Oxford
University Press, Inc., 1994. Used by permission.

Decoupler Design
Substitution of the singular value decomposition of K, Eq. 7.125, into the
input-output relations for the process leads to the following

= WSVTAu(t). (7.128)

Pre-multiplication of the above by WT and use of relation in Eq. 7.124
leads to the following restatement of Eq. 7.128

- VTAu(t), Arj(i) - WTAy(£). (7.129a)

Since the non-trivial elements of £ lie on a diagonal (Eq. 7.127), the
system is totally decoupled, with 771 being paired with /ij (i = 1,2, . . . , r).
The block diagram of the feedback-controlled multivariable process utilizing
singular value decomposition is shown in Figure 7.8. The process outputs
are mixed according to Eq. 7.129a to obtain rj, the information on which is
then fed to the comparators to obtain controller inputs. The manipulated
inputs u are obtained from the controller outputs, p,, via the mixing rule
in Eq. 7.129a, i.e.,

Au(t) = (7.129b)

The application of the relative gain array method involves pairings among
actual process inputs and outputs. For non-square process gain matrices
(the number of inputs not being the same as the number of outputs), use
of minimal controller configuration implies that either some inputs cannot
be manipulated (overdefined system) or some outputs cannot be controlled
(underdefined system). This problem does not arise when the controller
configuration is based on SVD since all inputs and outputs are involved in
the feedback control (Eq. 7.129).
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7.5 Optimal Linear- Quadratic Feedback
Control

A classical problem in optimal control theory, the linear-quadratic prob-
lem, is instrumental in identification of optimal feedback control strategies
for both linear and nonlinear systems [84]. Since bioprocesses without any
exception are nonlinear systems, we consider the nonlinear optimal control
problem described by Eqs. 7.1 and 7.3-7.9. Let there be open-loop trajec-
tories of u(t) and x(t), u*(t) and x*(t), respectively, for a particular initial
condition, x(0) = XQ, at which the necessary conditions for open-loop op-
timality, Eqs. 7.11, 7.13, 7.14 and 7.20, are satisfied, with the Hamiltonian
H being defined in Eq. 7.10. It is assumed here that x(0) is specified and tf
and x(t/) are unspecified. After a second-order expansion of the objective
function J in Eq. 7.3 around the optimal open-loop trajectories of the state
variables and the manipulated inputs, having adjoined the constraints in
Eq. 7.1 and employed the necessary conditions for optimality listed above,
the variation in 5J can be expressed as [498]

SJ = I f ' [(8u)TH5u + 2(5x)TQ5u + (5x)TP5x] dt
2 Jo

+ i(ftc(*/))TS/&c(*/) (7.130)

with

x(£) -x*(t), 6u(t) = u(t)-u*(t), and<5J = J-J*, (7.131)

and

" 2 ' ss/ =

Notice that the definitions of P, Q and R are the same as those in Eqs.
7.79. The matrices P(£), Q(t), R(t) and S/ are evaluated at the optimal
trajectories of x and u, viz., x(i) = x*(i) and u(t) — u*(t). The vector
of state variables x considered here includes the n process variables which
influence the process kinetics and additional up to (a + 6+1) state variables,
the time-variance of which is described by Eqs. 7.23, 7.24 and 7.26. P, R
and S/ are symmetric matrices. One can then work with the following
perturbation equations obtained from Eq. 7.1 via linearization around the
open-loop optimal policy [u(t) — u*(t), x(i) = x*(£)] for a fixed initial
condition stated in Eq. 7.1, viz., x(0) — XQ.

, (5x0 (7.133)
at
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with A(t>=!' B(i)=^- (7-i34)
The equation above represents the process behavior for initial conditions
in a close neighborhood of XQ. Definitions of system matrices A and B are
the same as those in Eqs. 7.79 and 7.104. The variation in the objective
function in Eq. 7.130 can be arranged in the following quadratic form

(7.135)
The objective of the optimal feedback control is then to minimize the degra-
dation in the process performance (5J < 0) due to perturbations in x and
u. Maximization of 5J then requires solution of Eq. 7.133 and the asso-
ciated adjoint variable equations. The boundary conditions for 6x(t) are
provided at t = 0, while those for the adjoint variables X(i) are known at
t = tf. The solution to the resulting two-point boundary value problem
can be conveniently expressed using the Riccati transformation wherein
the adjoint variables and the corresponding state variables are related as
[498, 560]

X(t) = S(f)5x(f). (7.136)

For the objective functional in Eq. 7.135, the variation in the n x n matrix
with t is described by the following Riccati equation

~ = -SA-ATS + (SB + Q)R-1(QT+BTS)-P, S(t/) - S/. (7.137)

The solution to Eq. 7.137 is then employed to relate the manipulated inputs
to the state variables as per the following perturbation feedback control law
[84, 498]

u(t) - u(t) - K(t) [x(t) - x(t)] , (7.138)

with
K(t) = R-l(QT + BTS). (7.139)

For implementation of the feedback control policy outlined in Eqs. 7.137-
7.139, knowledge of the optimal open-loop control policies is required. If
the initial condition x(0) is altered, the entire nonlinear open-loop opti-
mal control policy must be recalculated, since nonlinear optimal control
problems, such as the ones encountered with bioprocesses, depend nonlin-
early on the initial process conditions. A set of optimal open-loop control
policies over a range of nominal initial conditions XQ must be calculated
and stored prior to implementation of optimal feedback control. The corre-
sponding trajectories of controller gains, K(£), based on solution of Riccati
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equation, Eq. 7.137, should be calculated and stored. The on-line feedback
control can then be implemented by identifying the closest initial condi-
tion (among the stored values) to the actual initial condition and using
the corresponding trajectory of proportional controller gain matrix, K(t),
for feedback control. The procedure described here is useful for designing
optimal proportional controllers with time-varying gains. Besides the pro-
portional action, the other two controller actions, viz., the derivative and
integral actions, can be built in with certain modifications of the problem
considered earlier [135, 498]. For example, integral action can be added by
inclusion of time derivative of u in the objective function J or by augment-
ing the state variables by p auxiliary state variables z(t) with

^=Mx, Z=[Zlz2... zp}
T. (7.140)

In Eq. 7.140, M is an appropriate weight matrix and the p auxiliary vari-
ables correspond to those state variables for which integral action is desired.
The state variable vector x(t) then would be comprised of the n process
variables which influence the process kinetics, up to (a + b + 1) auxiliary
state variables which satisfy Eqs. 7.23, 7.24 and 7.26 and p auxiliary vari-
ables which satisfy Eq. 7.140. Derivative control action can similarly be
incorporated through a different transformation [135].

7.6 Model Predictive Control

In the competitive global market, pharmaceutical and biotechnological com-
panies are forced to increase the efficiency and productivity of well-establish-
ed processes continuously. Changes amounting to a few percent in the final
titers and product yields may lead to enormous benefits in large-scale culti-
vations. These goals can be achieved either by introducing more productive
strains or by optimization of the cultivations. In the chemical and allied
industries, the expectations for consistent attainment of high product qual-
ity, more efficient use of energy, and environmental impact of production
activities have led to far stricter demands on control systems than can be
met by traditional techniques alone. The response of these industries and
academia to these challenges led to the development of a different control
methodology, called Model Predictive Control (MFC). A built-in feature
of MFC is the direct use of an explicit and separately identifiable pro-
cess model. MFC is finding wide acceptance in applications in chemical
and allied industries, because of its versatility, accommodation of nonlinear
process models, and ability to handle variations in constraints in real time.
MFC schemes use a process model for two key purposes, first to predict
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future process behavior explicitly, and the second to compute appropriate
controller action required to drive the predicted outputs as close as possible
to their respective desired values.

Industrial chemical, biotechnological and pharmaceutical processes are
multivariable and nonlinear, and may exhibit difficult dynamic behavior
due to time delays, inverse response, and open loop instability. Further,
the process operations may be subject to constraints of all kinds to be sat-
isfied by process inputs, process outputs, and certain state variables based
on considerations for process economics and safety, environmental impact,
and hardware (equipment) characteristics. An ideal controller required for
optimal operation of these processes should be able to handle multivariable
process interactions, time delays and other problematic dynamic behavior,
input and output constraints, nonlinear process behavior, and influence of
disturbance variables on the same, while optimizing the controller actions
[438]. It should remain robust despite modeling errors and measurement
noise and should be able to infer critical unmeasured information from
whatever is available.

While no such ideal controller exists, the typical capabilities of MFCs
come closest to the requirements for an ideal controller stated above. MFCs
handle process interactions, time delays, inverse response and other difficult
dynamics well. MFC utilizes a process model. A rigorous process model is
not necessary since the MFC schemes can be based on non-parametric step-
and impulse-response models. Being considered as an optimization, MFC
is capable of meeting the control objectives by optimizing the control effort,
while satisfying appropriate constraints. An attractive feature of MFC is
compensation for the effect of measurable and unmeasurable disturbance
variables. The compensation for measured disturbances is carried out in a
feedforward mode, while that for unmeasured disturbances is carried out
in a feedback fashion. A variety of references provide a good perspective
of MFC [22, 174, 175, 176, 241, 376, 403, 420, 438, 477, 478]. MFC is best
suited to processes with any of the following characteristics: (i) multiple in-
put and output variables with significant interactions between single-input,
single-output control loops, (ii) constraints in inputs and/or outputs, (iii)
problematic dynamics such as long time delays, inverse response, and very
large time constants. Although MFC is not inherently more or less robust
than classical feedback control, it can be adjusted more easily for robust-
ness.

Biotechnological processes have inherently slow dynamics. It therefore
would take significant time for the full effect of each control action to be
realized in the observable process outputs. It is therefore difficult to assess
the full impact of the control actions taken in the past based only on the
current output measurements. As a result, it is pertinent to consider how
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Figure 7.9. Example of elements in model predictive control: x — x: refer-
ence trajectory, y*; o --- o: predicted output, y; A -- A: measured output,
ym; - : control action, u [438].
From BA Ogunnaike and WH Ray. Process Dynamics, Modeling, and Control. New York: Oxford
University Press, Inc., 1994. Used by permission.

the process output will change in the future if no control action is taken
(model-based prediction) and to target control action as a compensatory
effect for what will need to be corrected after the full effects of the previously
implemented control action have been completely realized. This is the
motivation behind the MFC methodology.

The MFC design methodology consists of four elements: (i) specifica-
tion of reference trajectories for the process outputs, (ii) model-based pre-
diction of process outputs, (iii) model-based computation of control action,
and (iv) update of error prediction for future control action. The varia-
tions in different MFC schemes are based primarily on how each element is
implemented in the MFC scheme. The continuous-time process operation
is comprised of successive time intervals. The four elements of MFC must
be updated in each time interval. For this reason, it is convenient to work
with discrete-time models for process and controllers. The discrete-time
models are naturally well suited since most MFC schemes are implemented
using digital computers. Techniques for transformation of continuous-time
models into discrete-time models have been discussed earlier in Chapter 4.

The first element of MFC involves specification of the desired trajecto-
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ries for the process outputs, y*(fc) (Figure 7.9). For an individual output,
this can be a fixed set-point value or a trajectory. The second element in-
volves prediction of trajectory of process outputs y in response to changes
in the manipulated variables u in the absence of further control action. At
the present time k (t = fcT, T — sampling period), the behavior of the
process is predicted over a horizon p. For discrete-time systems, this leads
to prediction of y(k + 1), y(k + 2), . . . , y(k + i) for i sample times into the
future based on all actual past control actions u(fc), u(k — 1 ) , . . . , u(k — j )
(Figure 7.9). In the third element of MFC, the same model as that used in
the second element is employed to calculate control trajectories that lead
to optimization of a specified objective function, which typically may in-
clude minimization of the predicted deviation of the process outputs from
the target trajectories over the prediction horizon and minimization of the
expense for control effort in driving the process outputs to their respective
target trajectories. This is equivalent to constructing and utilizing a suit-
able model inverse to predict trajectories of the manipulated inputs. This
optimization must of course be accomplished while satisfying pre-specified
operating constraints. This element therefore involves prediction of the
control sequence u(k),u(k + 1), . . . ,u(fc + m — 1) required for achieving
the desired output behavior p sampling times into the future [from t = kT
to t — (k + p — 1)T] (Figure 7.9). Usually, the prediction horizon p is
larger than the control horizon m. For computations, all control com-
mands for times (k + m) to (k + p) are kept constant at their values at
time (k + m — 1). This reduces the computational burden during real time
optimization. The last element of MFC involves comparison of the output
measurements ym(fc) to model-predicted values of the same, y(k}. The pre-
diction error e(k) = ym(k] — y(k] [not to be confused with the controller
input, e(fc) = ym(k] — y*(k)} is then used to update future predictions

The conventional MFC schemes have relied on linear process models.
Incorporation of nonlinear process models within the MFC framework is
relatively recent [54] . Here we briefly review the three more commonly used
forms of discrete models, the finite convolution models based on impulse-
and step-response function, state-space models, and the transfer function
models. For easier understanding, these models are presented below for
SISO systems and can be readily extended to MIMO systems.

There are two entirely equivalent forms of finite convolution models,
namely, the impulse-response model and the step-response model. The
former can be expressed as

(7.141)
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with g(i) being the impulse response functions of the process. The step-
response model can be expressed as

(7.142)
i=0

with (3(i) being the step-response functions for the process and A-u(fc) =
u(k) — u(k — 1). For all real, causal systems, both <?(0) and /?(0) are consid-
ered to be trivial, hence such systems will exhibit the mandatory one-step
delay. For a process represented by the two model forms in Eqs. 7.141 and
7.142, the equivalency of the two models follows by equality of coefficients
of u(k — i), i — 0 , 1 , . . . , k, leading to the following relations.

i

Impulse or step response coefficients can be obtained directly from exper-
imental data or from other parametric model forms, if available, such as
those discussed in the following.

State-space models relate the variations in state variables and hence
process outputs over time to the past history of state variables and to
process inputs. The models may be in the form of differential equations
(Eqs. 4.44, 4.45, 7.1 and 7.2) or difference equations (Eq. 4.51). The
models in these forms are more advantageous for state estimation using
Kalman filters and extended Kalman filters than the time series models.
The reader should refer to Section 4.3 for discussion on continuous and
discrete Kalman filters.

Time series models such as ARM A, provide relations among output
values at the current and previous sampling times and input values at the
current and prior sampling times

k k

y(k] = ̂  a(i}y(k - i) + ̂  b(i)u(k - i - d}, (7.144)
i=0 i=0

The effect of time delay is included when d > 1. For real, causal processes,
it follows that a(0) = 6(0) = 0. The coefficients a(i) and b(i) and the
time delay, d, in Eq. 7.144 must be identified by fitting the model to
experimental process data. The linearized continuous-time versions of the
nonlinear continuous-time state-space models, such as in Eqs. 7.104 and
7.106 obtained from linearization of Eqs. 7.1 and 7.2, can be transformed
into time series models as in Eq. 7.144 with relative ease.
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As the name suggests, in a transfer function model, the process outputs
are related to the manipulated inputs by transfer functions. For a SISO
process for example, the output y and the input u are related as

~1

A(z~l) and B(z~1} are appropriate polynomials in the 2-transform vari-
able, z"1, and the term z~d incorporating the effect of process time delay
of d sampling times (= dT). The parameters of the transfer function model
must be determined from experimental data for the process. As stated ear-
lier, a rigorous process model is not necessary since non-parametric step-
and impulse- response models can be readily employed for MFC in the ab-
sence of rigorous process models.

The "model inverse" required for prediction of manipulated inputs at
future sampling times is carried out numerically as the solution of an ap-
propriate optimization problem. Only the first computed change in the
manipulated inputs is implemented. At time k 4- 1, the computations for
the four elements of MFC are repeated with the time horizon moved by
one time interval (sampling time).

A variety of factors are responsible for the discrepancy observed between
the actual output measurements and model-predicted values of the outputs.
These include the effects of unmodeled and unmeasured disturbances, fun-
damental errors in model structure, and parameter uncertainties. Since it
is difficult to independently assess these effects, it is a common strategy
to attribute this discrepancy entirely to unmeasured disturbances, assume
that this discrepancy will remain the same over the prediction horizon, un-
til better information is available, and update model predictions by adding
this discrepancy.

Two pioneering MFC schemes are the dynamic matrix control (DMC)
and model algorithmic control (MAC) and derivatives of these, such as the
quadratic dynamic matrix control (QDMC) [175] and IDCOM [383, 384,
503, 504, 505, 506]. In the following, we briefly discuss the basic formulation
of DMC.

Dynamic Matrix Control (DMC). Let the current time instant be k. In the
absence of further control action, let the process output take the following
predicted values over the future horizon of p sampling times: y°(k), y°(k +
1], . . . ,y°(k + p — 1). Let the vector of the predicted p values be represented
as

y°(k) = [y0(k)y°(k + I} ... y°(k+p-l}}T. (7.146)

The argument in the vector above indicates the time origin of sequential
predictions of the process outputs and the superscript ° indicates that the
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Figure 7.10. The elements of DMC: The "reference trajectory" is the set-
point line [438].
From BA Ogunnaike and WH Ray. Process Dynamics, Modeling, and Control. New York: Oxford
University Press, Inc., 1994. Used by permission.

output predictions are conditional on the absence of further control action.
The case k = 0 corresponds to initial condition on the predicted process
output. Sequences for k > 0 are obtained recursively using the predictions
at the prior instant, (k — 1). The vector notation used here is different
from the one used earlier in this chapter (including this section). Earlier,
y(t) or y(/c) denoted the values of different process outputs at the same
time instant, for the single-input, single-output system under consideration.
Here, y°(k) denotes the predicted values of single output y at p sampling
times including the current time k. An arbitrary sequence of m (m < p)
control actions, Aw(/c), Au(k +1),..., Au(k + m — 1), will cause the process
outputs to change from the initial conditions y°(k) to a new state (Figure
7.10)

y(k + l) = (y(k + 1) y(k + 2 ) . . . y(k + p)}' (7.147)

Let the effect of unmeasured disturbances on the predicted output y(k + i)
be represented as w(k + i], i = 1 ,2, . . . ,p. Then it follows from Eq. 7.142
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that

w(k -M), i = 1, 2, . . . , m,

(7.148)

m - j) + w(k + i),

i = m + 1, m + 2, . . . , p.

Eq. 7.148 may be rewritten succinctly as

y(fc + 1) = y°(k) + w(k + 1) + XAu(fc)

with

Au(fc) = [Au(fc) Au(fc + 1)... Au(fc + m -

(7.149)

(7.150a)

and

• 0(1)
0(2)
0(3)

0(m)
0(m + l)

P(P)

0 0
0(1) 0
0(2) 0(1)

0(m - 1) 0(m - 2) . . .
0(m) 0(m - 1) . . .

0(p - 1) (3(p - 2) . . .

0
0
0
0

0(1)
0(2)

/ J (p-m + l ) .

(7.150b)

X is referred to as the Dynamic Matrix. The MFC methodology for the
unconstrained problem is considered first.

The control problem expressed in Eq. 7.149 reduces to judiciously choos-
ing and implementing the control sequence Au(fc) so that the predicted
process output is driven to and remains at the desired trajectory

y*(k + l ) = [y*(k + 1) y*(k + 2 ) . . . y * ( k + p ) ] - (7.151)

i.e., let y(k + 1) = y*(& + 1). The difference between the desired output
trajectory, y*(A; + 1) and the current output prediction in the absence of
further control action corrected for the effect of unmeasured disturbances
on the process output, viz., y°(fc) -I- w(fc + 1), is the predicted error vector
e(k + 1), which is the input to feedback controllers. Eq. 7.149 therefore is
restated as

e(fc + l) = XAu(fc). (7.152)
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The left hand side of Eq. 7.152 represents the predicted deviation of process
output from the desired set-point trajectory in the absence of further control
action and the right hand side the predicted change in the process output
resulting from the control action, Au(/c).

The horizon over which control moves are computed is always smaller
than the horizon chosen for output prediction (i.e., m < p). As a result, Eq.
7.152 represents an overdetermined system of equations. No exact solution
exists for Eq. 7.152 as a result. A satisfactory "solution" to Eq. 7.152 then
may be obtained by minimizing an appropriate metric that represents the
difference between the left hand and right hand sides of Eq. 7.152. One
such metric is described by the right hand side of Eq. 7.153.

min J = [e(k + 1) - XAu(/c)]T[e(/e + 1) - XAu(fc)]
Au(fc)

+K[Au(k)}TAu(k), K>0 (7.153)

The second term on the right hand side of Eq. 7.153 reflects a penalty
against excessive control action. The necessary condition for minimization
of J with respect to Au(fc) is that the derivative vector <9J/<9Au(/c) be
trivial. The application of this condition to Eq. 7.153 leads to the following
feedback control law [438].

(XTX+ltt)Au(fc) - XTe(/c + l) =* Au(fc) = (XTX+XI)-1XTe(/c + l).
(7.154)

The projected error vector requires the vector of future values of effects
of unmeasured disturbances on the process output, values that are not
available at the present time k. In the absence of any better information,
w(A; -f- 1) is estimated as

w(k + i)=ym(k}-y(k), i = l,2,...,p. (7.155)

It is not advisable to implement the entire control sequence, Aw(fc), Au(k +
1) , . . . , Aw(/c + m — 1), as calculated from Eq. 7.154, in quick succession for
the following reasons. It must be recognized that it is impossible to antic-
ipate or predict precisely over the next m sampling intervals, the process-
model mismatch and unmodeled disturbances which will cause the actual
state of the process to differ from the model predictions used to compute
this sequence of control actions. Additionally, there may be changes in
the process set point at any time over the next m time intervals as bet-
ter information becomes available on the status of the process. The pre-
computed control sequence is inherently incapable of reflecting the changes
which would occur after the computation. For these reasons, as mentioned
earlier, the MFC strategy therefore is to implement only the first control
action, Au(/c), and repeatedly execute the following steps.
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1. Update y*(k + 1) with any new desired set-point information.

2. Update y°(A;) by adding the effect of implementation of Au(k) and
assuming no further control move will be implemented.

3. Update \v(k + 1) as per Eq. 7.155.

4. Update the projected error vector e(k + !)[= y*(k + 1) — y°(fc) —

5. Shift the origin of the prediction horizon from k to (k + 1). Obtain
y*(fc + 2), y°(k + l ) and w(fc + 2) from y*(/c + l), y°(fc), and w(fc + l),
respectively, by removing the first element in each of these updated
vectors, advancing the other elements in order, and filling the last
element by linear extrapolation.

6. Compute the new control action sequence using the updated and
shifted vectors, implement Au(/c + 1) and repeat steps 1-6.

Application of DMC scheme to multiple-input, multiple-output (MIMO)
processes is discussed next.

For multiple-input, multiple-output processes, step response models anal-
ogous to the one in Eq. 7.142 must be considered. For example, for a process
with two inputs and three outputs, the impact of step changes in inputs u\
and u2 on output y$ may be expressed by the step-response model

k k

y3(k) — \^/?3i(z)Aui(fc — i) + V^^32(i)Aw2(fc — i), (7.156)
i=0 i=0

with /33i and /?32 being the parameters indicative of the sensitivity of y3

to changes in u\ and u2, respectively. The procedure for application of
the four elements of MFC for MIMO processes is the same as that for
SISO processes, except that the matrices and vectors involved are much
larger. For example, the relations between the predicted error vector and
the control action in Eq. 7.152 are also applicable for MIMO processes with

e(fc + 1) = [ei(fe + 1) ... e2(fc + 1)]T , Au(fc) - [Aui(fc) . . . Au2(fc)]T ,

-1),

-1),

X = (7.157)

X22
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The dynamic matrices X7<5 in Eq. 7.157 (for example, 7, S = 1, 2) relate
the dependence of the output 7/7 on the input u$. For given ra and p, these
matrices are identical in structure to the dynamic matrix X for an SISO
process (Eq. 7.150b), with the elements of X7s being obtained by replacing
(3 by /375 in Eq. 7.150b.

In multivariable processes, it must be realized that a change of certain
magnitude (say a unit change) in one output may be more or less important
than the change of the same magnitude in another output. One example
is an output that is mole fraction of a specie, a second output that is
temperature, and a third that is a flow rate. Since the three outputs will
have different nominal values, a unit change in mole fraction spans the entire
scale (mole fraction ranges between zero and unity), while a unit change in
temperature may be a change of few percent and the same may be the case
with flow rate. Appropriate scaling factors must therefore be incorporated
when working with the error vector e(k + 1) and the control action vector
Au(&) so that equally important changes in different outputs or inputs
are treated equally. This is accomplished by pre-multiplying the projected
error vector e(k + 1) by a scaling matrix W and the control sequence
vector Au(fc) by a scaling matrix V and employing the resulting scaled
vectors in the definition of objective function J (an appropriate norm) to
be minimized. The objective in Eq. 7.153 then may be modified as follows
to reflect this.

min J = [e(fc + 1) - XAu(/e)]Tr[e(/c + 1) - XAu(fc)] + [Au(/e)]TAAu(/c)
Au(fc)

r = WTW, A = VTV. (7.158)

The analytical, closed form solution for the classical least-squares problem
in Eq. 7.158 is obtained by equating dJ/dAu(k) to zero. The control policy
then is provided by

(XTrX+A)Au(fc) = XTre(/c+l) => Au(fc) = (XTrX+A)-1XTre(fc+l).
(7.159)

The elements of the matrices T and A are best determined by choosing
the elements of the scaling matrices W and V. The scaling matrices W
and V will be partitioned matrices with the elements of each submatrix
being identical and equal to the scaling factor for a particular output or
manipulated input, as appropriate.

When constraints are involved, the objective function 0 used for com-
puting the control action sequence Au(fc) must be augmented with the
constraint equations. This prevents the development of closed-form con-
troller equations such as Eq. 7.159. The resulting quadratic program must
be solved as a real-time optimization problem to identify the recommended
control action sequence [176, 477, 507, 681].
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Batch and fed-batch bioprocesses are inherently transient operations.
Although transients are also encountered in continuous bioprocesses, the
focus usually is on operation at a desired steady-state. In a steady-state
operation, the target trajectory reduces to a fixed set-point in the multidi-
mensional space of output variables. For batch and fed-batch operations,
which are more common compared to continuous operations, the target
trajectories of the output variables will typically be time- variant, i.e., the
set-point for a particular output will vary with time. One of the character-
istics of industrial batch and fed-batch bioprocesses is that they are cyclic
or repetitive. This characteristic allows the process operator and controllers
the opportunity to make compensations based on errors from previous cy-
cles. The target trajectories can therefore be updated from cycle to cycle as
one gathers more knowledge of the bioprocess. Indeed, this idea, referred to
by the generic name Iterative Learning Control (ILC) has been integrated
into conventional model predictive control and applied to batch processes
[327, 328, 682]. The integrated methodology is not only capable of elimi-
nating persisting errors from previous cycles or runs, but also can respond
to new disturbances as these occur during a particular cycle or run [327] .

The DMC formulation uses a step response model which is limited to
stable processes. To leverage the wealth of knowledge on state-space tech-
niques, MFC algorithms based on state-space models were proposed by
converting the step response models into state-space form [324, 339]. The
state-space formulation for unstable linear processes has been addressed
[405]. A related formulation called generalized predictive control is based
on transfer function models with the aim of handling unstable processes
[107]. Inequality constraints in an MFC lead to nonlinear feedback con-
trol laws. Considering the abundance of process nonlinearities in chemical
and biochemical processes, the use of nonlinear process models in MFC
formulation was a natural progress.

Nonlinear MFC
Many processes have significant nonlinearities that challenge successful im-
plementation of linear MFC. This has motivated the development of non-
linear MFC (NMPC) which relies on the use of a nonlinear process model.
NMPC has the potential of improving process operation, but it also pro-
vides challenging theoretical and practical problems mostly because of the
nonlinear optimization problem that must be solved at each sampling in-
stant in real time to compute the control moves.

Many nonlinear model representations were discussed in Section 4.3.
Consider the general form expressed in Eqs. (4.44)- (4.45)

— = f (x(t), u(t)), y(*) = h(x(t), u(t)) (7.160)
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that can be written in discrete time as

(7.161)
where x(fc) is a condensed form of the terminology x(tfc) used in Section
4.3.2. The optimization problem in NMPC formulation can be expressed
as finding the values of u to optimize the objective function J subject to
constraints [234, 381]

min J = L0[y(k + p\k)} (7.162)
. ,u(fe+m-l|fc)

-l

3=0

where LQ and L are nonlinear functions of their arguments, m is the control
horizon, and p is the prediction horizon. y(k + j k) denotes the value of the
output y at time k + j computed from information available at time k and
Au(fc + j k) — u(k + j \ k ) — u(k + j — l\k}. The functions LQ and L may
represent a variety of objectives, including the minimization of the overall
cost of process operation. For example, regulation to set points or tracking
reference trajectories can be formulated as quadratic equations of the form

L0 = [y(k+p\k}-yr(k)]T Q \y(k+p\k)-yr(k)]

L = [y(k + jk)-yr(k)]T Q [y(k+j\k}-yr(k)}

+ [u(k + j \ k ) - ur(k)}T R [u(k+j\k)-ur(k)}

+ AuT(/c + j \ k ) S Au(/c + j k) (7.163)

where yr(k) and ur(k) are the reference values for y and u, and Q, R,
and S are positive definite weighting matrices. These weighting matrices,
m, p and the sampling time are the tuning parameters of the NMPC. The
prediction of output values y(k + j \ k ) are based on state variables and
the calculated input sequence. Hence, measurement or estimation of state
variables is necessary. State estimation relies on the nonlinear model Eq.
(7.161) and use of process information that reflects disturbance effects as
discussed below. The solution of the NMPC problem yields the values
for the input sequence ( u ( k \ k ) , u(k + ! • & ) , • • • , u(k + m - l\k)). Only the
first input vector u(k\k) is implemented and the the real time optimization
problem is solved again at the next sampling time.

Constraints Several constraints are imposed on inputs and outputs. In-
put (manipulated variable) constraints reflect actuator limitations such as
saturation and rate-of-change restrictions such as rate of temperature in-
crease:

umin < u(k + j\k)< umax j = 0, m - I , (7.164)
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Aumin < Au(fc + j\k)< Aumax j = 0, m - 1 . (7.165)

where umin and umax denote the minimum and maximum values of the
inputs. Output constraints are associated with operational limitations such
as equipment, materials, product properties, and safety considerations:

j \ k ) < ymax j = 0,p . (7.166)

The nonlinear model in Eq. (7.161) is added as equality constraints:

j \ k ) = h(x(k + j\k)} j = l,p (7.167)

where x(k\k] = x(k) if the state variables are measured.

State and Disturbance Estimation The objective of the NMPC system
is to drive process outputs (and inputs) to their reference (target) values.
If the reference values used in Eqs. (7.163) are not chosen properly, un-
measured disturbances and modeling errors would cause offset. The offset
problem can be handled by designing a disturbance estimator that provides
an implicit integral control action [234, 381]. A simple method for incor-
porating integral action is to modify the reference values yr by shifting the
set points with the disturbance estimates. The penalties on inputs are also
eliminated in this method (R = 0). The output references are computed as

yr(k) = ysp -
= y(Q-y(k\k) (7.168)

where ysp are the set points of outputs, y ( k ) are the measured values of
outputs, y(k\k) are output estimates obtained from the nonlinear model
Eq. (7.161), and d(k) are the estimated disturbances. This disturbance
model assumes that plant-model mismatch is attributable to a step dis-
turbance in the output that remains constant over the prediction horizon
[234]. A method for incorporating integral action based on steady-state
target optimization has been developed [381].

Simultaneous state and disturbance estimation can be performed by
augmenting the state-space model:

x(fc + l) = f(x(fc),u(A;))

d(fc + l) = d(fc) (7.169)

- h(x(fc), i i(AO)+d(AO

where d(k) is a constant output disturbance. The augmented process model
can be used for designing a nonlinear observer. A general theory for nonlin-
ear observer design is not available, and input-output models are preferred
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over state-space models when full state feedback is not available. A list of
NMPC applications with simulations and experimental studies is given in
[234] along with a discussion of computational issues and future research
directions.

Heuristic tuning guidelines are discussed in [381] and summarized in
[234]. For stable systems, the sampling interval should be selected to pro-
vide a compromise between on-line computation load and closed-loop per-
formance. There is an inverse relationship between sampling interval and
allowable modeling error. Smaller control horizons (ra) yield more sluggish
output responses and more conservative input moves. Large values of m
increase the computation burden. Large prediction horizons (p) cause more
aggressive control and heavier computation burden. The weighting matri-
ces (Q, R, S) are dependent on the scaling of the problem. Usually they
are diagonal matrices with positive elements. The parameter values can be
tuned via simulation studies.

Computational constraints and stability of the controlled system are
critical issues in NMPC. The need to solve the nonlinear programming
problem in real time necessitate efficient and reliable nonlinear program-
ming techniques and MPC formulations that have improved computational
speed. Successive linearization of model equations, sequential model solu-
tion and optimization, simultaneous model solution and optimization are
some of the approaches proposed in recent years [234, 381].

MPC of Batch Bioprocesses
Batch and fed-batch bioprocesses typically exhibit large variations in the
operating conditions during a cycle or a run. During different phases of
batch and fed-batch operations, culture parameters such as pH, tempera-
ture, and substrate availability may change and these changes would sub-
stantially alter parameters in the bioprocess model. The performance of
MPC depends critically on the predictive abilities of the process model
employed for prediction. For the reasons mentioned above, building a non-
linear model for batch and fed-batch cultures is a cumbersome task [156].
Empirical models are therefore appealing in model predictive control of
batch and fed-batch bioprocesses. In fact, most of the practical applications
of MPC have involved use of empirical models. Another way to circumvent
the nonlinear first principles model development for application of MPC
is to use artificial neural networks (ANNs). Models based on ANNs rely
on data from previous runs or cultivations and are capable of extracting
the relevant parameters and relationships from them [397]. Model predic-
tive control with ANNs has been used for on-line optimization of riboflavin
production in a fed-batch bioprocess [299]. A variant of this approach is
the use of empirical reference trajectories and predictive models developed
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using the multivariate statistical methods discussed in Chapter 6. With
landmark and trajectory alignment using dynamic time warping (DTW)
and curve registration, the reference trajectories and predictive models de-
veloped show good promise for MFC.
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Fault Diagnosis

Detection and diagnosis of faults in batch process operations is of great
significance for productivity and product quality improvements. Several
disciplines including statistics, systems science, signal processing, and com-
puter science have contributed to the development of fault detection and
diagnosis (FDD) techniques. FDD systems implement the following tasks
[189]:

Fault detection: Indication of abnormal system behavior. This can be
achieved by process monitoring techniques discussed in earlier chap-
ters or by a number of other paradigms.

Fault isolation: Determination of the specific cause or location of the fault.

Fault identification: Determination of the magnitude of the fault.

The term "diagnosis" is used to refer to the combined isolation and identi-
fication tasks, but it can also be used as a synonym for isolation.

Faults are deviations from normal (expected) behavior in a process or
its instruments. Faults may be grouped as sensor, actuator or process
faults. Sensor faults are discrepancies between measured and actual values
of process variables. Actuator faults are discrepancies between the control
command received by an actuator and the actuator output. Process faults
include all other faults. They may be additive such as leaks or multiplicative
such as deterioration of process equipment like fouling of heat exchange
surfaces. In general, additive faults are unknown inputs which are normally
zero, and multiplicative faults are abrupt or gradual changes that affect the
parameters of the process.

FDD methods can be classified as model-free and model-based meth-
ods. Model-free FDD methods do not utilize a mathematical model of the
plant. They are based on limits on variables, physical redundancy or em-
pirical process knowledge (mental models). Model-based FDD methods use
a mathematical model of the process developed using by first principles

453
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or data-based empirical techniques. They either use the residuals between
measured and estimated values of process variables or recursive estimates of
model parameters to implement FDD. MSPM methods discussed in Chap-
ter 6 for determining out-of-control status (fault detection) and contribu-
tion plots, or other statistical tools such as discriminant analysis are also
model-based techniques.

The performance of fault detection and diagnosis methods is character-
ized by several benchmarks:

Sensitivity: Ability to detect and diagnose faults of a specific size. The
magnitude of fault size to detect depends on process needs.

Discrimination power (isolation performance): Ability to discriminate
the correct fault(s) when several faults occur simultaneously, masking
each other.

Robustness: Ability to detect and diagnose a fault in the presence of noise,
disturbances, and modeling errors.

Missed fault detections and false alarms: The number of faults that have
not been detected and the number of alarms issued when there were
no faults.

Detection and diagnosis speed: Time to detect and diagnose faults after
their occurrence.

The first four benchmarks are related to Type I and Type II errors discussed
in Section 6.1.

To check the correctness of measurements additional information is nec-
essary. For example, the correctness of some temperature measurement re-
ported by a sensor can be checked by using readings from a second tempera-
ture sensor (that measures the same temperature) or other relevant process
information such as readings of other variables and energy balances. This
information redundancy is a critical element of FDD. If duplicate sensors
are used to measure the same variable and their readings are compared to
detect presence of faults, there is physical redundancy. If a process model is
used to estimate process variables and the difference between measured and
estimated values forms the basis of diagnosis, there is analytical or func-
tional redundancy. Since physical redundancy necessitates duplication of
measurement systems, it is usually more expensive. Furthermore, it is usu-
ally focused on FDD of a single variable. Physical redundancy is considered
when instantaneous FDD is needed for critical process equipment. Most
modern FDD techniques focus on multivariable systems and use analyti-
cal redundancy that can leverage the correlation between various process
variables.
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One approach for FDD that appeals to plant personnel is to first iden-
tify process variables that have significant influence on an out-of-control
signal issued by process monitoring tools, and then to reason based on
their process knowledge about the possible source causes that affect these
variables. The influence of process variables can be determined by contri-
bution plots discussed in Section 8.1. The second stage of this indirect FDD
approach can be automated by using knowledge-based systems. Many FDD
techniques are based on direct pattern recognition and discrimination that
diagnoses the fault directly from process data and models. Their founda-
tions are built on signal processing, machine learning and statistics theory.
In some techniques, trends in process variables are compared directly to
a library of patterns that represent normal and faulty process behavior.
The closest match is used to identify the status of the process. Statistical
discrimination and classification analysis, and Fisher's discriminant func-
tion are some of the techniques drawn from statistical theory. They are
discussed in Section 8.2. Other model-based FDD techniques are based
on signal processing and systems science theory such as Kalman filters,
residuals analysis, parity relations, hidden Markov models, and parameter
estimation. They are introduced in Section 8.3. Artificial neural networks
provide FDD techniques relying on fundamentals in statistics and computer
science classification and machine learning, respectively. Knowledge-based
systems (KBS) provide another group of FDD techniques that have roots
in artificial intelligence. KBSs and their use in integrating and supervis-
ing various model-based and model-free FDD techniques are discussed in
Section 8.4.

Faults can be classified as abrupt (sudden) faults and incipient (slowly
developing) faults. Abrupt faults may lead to catastrophic consequences.
They need to be detected quickly to prevent compromise of safety, produc-
tivity or quality. Incipient faults are usually associated with maintenance
problems (heat exchange surfaces getting covered with deposits) or devia-
tion trends in critical process activities from normal behavior (trends in cell
growth in penicillin production). Incipient faults are typically small and
consequently more difficult to detect. Multivariate techniques are more
useful in their detection (See Chapter 6) since these techniques make use
of information from all process measurements and can notice burgeoning
trends in many variables and integrate that information to reach a decision.
Quick detection may not be as critical for maintenance related problems,
but deviations in critical process activities are usually time critical. The
time behavior of faults can be grouped into a few generic types: jump (also
called step or bias change), intermittent, and drift (Figure 8.1). Jumps in
sensor readings are often caused by bias changes or breakdown. Wrong
manual recordings of data entries or loose wire connections that lose con-

Copyright © 2003 by Taylor & Francis Group, LLC



456 Chapter 8. Fault Diagnosis

a) Jump or bias
change

b) Intermittent c) Drift

Figure 8.1. Typical fault functions [189].

tact would result in intermittent erroneous measurements. A measurement
instrument that is warming up or an actuator that is wearing out would
yield drift faults. Disturbances have the same types of time behavior. These
faults and disturbances are usually slow and generate low frequency signals.
In addition to faults, sensors, actuators, and process equipment are sub-
jected to noise. Noise is usually assumed to be a random, zero mean, high
frequency signal.

8.1 Contribution Plots

Multivariate quality control techniques use data from measurements of pro-
cess variables, taking into account the correlation between process variables,
to detect special causes affecting the process. Multivariate control charts
such as SPE and T2 charts indicate when the process goes out of control,
but they do not provide information on the source causes of abnormal pro-
cess operation. The engineers and plant operators need to determine the
actual problem once an out-of-control situation is indicated. Miller et al.
[388, 389] have introduced variable contributions and contribution plots
concept to address this need. The diagnosis activity can be done by deter-
mining which process variables have contributed to inflate /^-statistic (or
T2), squared prediction error Q-statistic (or SPE) and scores and use the
knowledge of plant personnel to relate these process variables to various
equipment failures and disturbances.

Contributions of process variables to the Q-statistic. Contribution
to Q-statistic can either be calculated for the whole batch or for a time
period during that batch. The Q-statistic for a new batch is calculated as

Xr X

JK

— / ^

jk=l

(8.1)
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where xnew is the vector (1 x JK) of predicted values of the (centered
and scaled) data for the new batch and enevfjk is the residuals vector. An
inflated Q-statistic suggests that the new observation does not follow the
same covariance structure as that of the reference set that defines NO. This
usually happens when there is a sensor failure or a shift in the process.
If the Q-statistic for a batch represents an out-of-control situation, the
process variables responsible for inflating the Q-statistic are diagnosed by
computing the variable contributions to Q-statistic as

JK
[e n ew(c+l:c+J)] 2 (8.2)

c=(fe-l)J

resulting in a (1 x J) vector of contributions from J variables over the entire
batch. When deviations from NO are small and last for short periods of
operation, this measure will not indicate the responsible variable(s) explic-
itly due to the masking effect from the contributions of other variables. To
overcome this problem, the contribution C^k of process variable j at time
period k to the Q-statistic is calculated as

^jk ~ (enew,jfc) — (xnevf,jk ~ xne-w,jk) (."•")

where rcnewjfc is the jkih element of £new(l x JK), xnew,jfc is its prediction
by the model, and enewjk is the vector of residuals.

Recently, control limits for variable contributions to Q-residuals were
suggested by Westerhuis et al. [639] to compare the residuals of the new
batch to the residuals of the NO data. If a particular variable has high
residuals in the NO set, it can also be expected to have high residuals in
the new batch. The control limits are calculated similar to those of the
Q-statistic as discussed in Section 6.4.2 (Eqs. 6.104-6.111). The residuals
matrix E of the reference set that is used to calculate contribution limits
is obtained by "monitoring" each reference batch with one of the on-line
SPM techniques discussed in Sections 6.5.1 and 6.5.2.

Contributions of process variables to the .D-statistic. Two different
approaches for calculating variable contributions to D-statistic have been
proposed. The first approach introduced by Miller et al. [389] and by
MacGregor et al. [355] calculates the contribution of each process variable
to a separate score. The first step in this approach is to determine t score
that is above its own confidence limits. Constructing confidence limits on
individual scores is discussed and formulated in Section 6.4.2 (Eq. 6.95).
The next step is to calculate the contribution of each element of the new
batch run xnew,jk on the rth score [389, 639]

Cjk,r = xnew,jkPjk,r (8.4)
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The sum of the contributions in Eq. 8.4 is equal to the tnew,r score of the
new batch.

The second approach was proposed by Nomikos [432]. This approach
calculates contributions of each process variable to the D-statistic instead
contributions of separate scores.

R

jk = / j rr tnew,rxne-w,jkPr,jk W'^J
r=l

In Eq. 8.5, the contribution of each element in xnew,jfc to the .D-statistic
is summed over all r components. This formulation is valid for the case of
orthogonal scores because S"1, which is the inverse of covariance matrix
of reference set scores T, then becomes diagonal and its diagonal elements
are used. The loadings P of the MFC A model are also assumed to be or-
thogonal so that PTP = I. Westerhuis et al. [639] have extended Nomikos'
[432] formulation to cases where scores and loadings are non-orthogonal.
According to this generalization, D-statistic is calculated as follows:

n — f T Q-1* — f T Q-•'-'new — tnew° Lnew — ^new0

jk=l

jk=l
JK

W •> j-v

X s~*iL> (Q &\
/ _^ J ™ ^ '

jk=l

Hence, the contribution of new observation vector xnewjk of the new batch
to the D-statistic is calculated as

/~iD iT o — 1 „ T^^1 ^"P/^n"P\ (R r7\

where t7
iew = x^ewP (PTP)

The control limits for variable contributions to D-statistic are also given
[639]. These are computed by means of a jackknife procedure in which
each of the NO batches is left out once, and variable contributions are
calculated for each batch that is left out. The next step is to calculate
the mean and variance of these contributions from / batches for each jth
variable at kth time period. Westerhuis et al. [639] proposed to use an
upper control limit (UCL) for contributions that is calculated as the mean
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of the variable contributions at each time interval plus three times the
corresponding standard deviation. It is noted that UCL obtained by this
calculation is not considered to have a statistical significance, but it is useful
for detecting contributions that are higher than those of NO batches in the
reference set. A lower control limit (LCL) can also be developed in the same
manner. If it is preferred to sum contributions over all time instances or
over all process variables, then the control limits are obtained by summing
the means of the corresponding jackknifed contributions from the reference
set. The standard deviation of these summed means can be calculated as
[639]

\ a* =
\

K

k=i

where o~k and <jj are the standard deviations of the summed mean contri-
butions over all process variables and all time instances, respectively. If the
sum of the contributions over all variables at each time instance is used, one
can zoom in the region(s) where summed contributions exceed the control
limits that are calculated by using <7fc in Eq. 8.8.

It is always a good practice to check individual process variable plots
for those variables diagnosed as responsible for nagging an out-of-control
situation. When the number of variables is large, analyzing contribution
plots and corresponding variable plots to reason about the faulty condition
may become tedious and challenging. All these analyzes can be automated
and linked with real-time diagnosis [436, 607] by means of knowledge-based
systems.

Example. Consider a reference data set of 42 NO batches from fed-batch
penicillin fermentation process (see Section 6.4.1). An on-line SPM frame-
work is developed with that data set (X(42 x 14 x 764)). The model devel-
opment stage and the MPCA model developed are the same as in Section
6.4.3, except that the construction of control limits is performed by passing
each batch data in the reference set through the estimation-based on-line
SPM procedure. Estimation method 2 (the future values of disturbances
being assumed to remain constant at their current values over the remaining
batch period) discussed in Section 6.5.1 is chosen for on-line SPM. A new
batch scenario with a small downward drift on glucose feed rate (variable
3) between 180th and 300th measurements (Figure 8.3(d)) is produced for
illustration of contribution plots. Both SPE (Figure 8.2(a)) and T2 (Fig-
ure 8.2(c)) charts have detected the out-of-control situation between 250th
and 310th measurements and 270th and 290th measurements, respectively.
Variable contributions are summed for the intervals of out-of-control for
SPE and T2 in Figures 8.2(b) and 8.2(d). Since these summations represent
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(a)
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(d)

Figure 8.2. On-line monitoring results with contribution limits for a faulty
batch.

faulty situation after the fault has developed long enough to affect related
variables, most of the variable contributions in Figures 8.2(b) and 8.2(d)
violate the control limits. The real fault is the drift in glucose feed rate
(variable 3), which is highly correlated with glucose concentration (vari-
able 5), dissolved oxygen concentration (variable 6), biomass concentration
(variable 7), penicillin concentration (variable 8), culture volume (variable
9), heat generated (variable 13), and cooling water flow rate (variable 14).
Note that penicillin concentration (variable 8) in Figure 8.2(b) and dis-
solved oxygen concentration (variable 6) in Figure 8.2(d) have the highest
contributions to SPE and T2 during the out-of-control period. Variable
contributions to T2 over all of the variables at each time instant are also
presented in Figure 8.3(a) as another indicator for detecting out-of-control
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Figure 8.3. On-line monitoring results with contribution limits for a faulty
batch.

situation. To reveal the root cause of the fault, variable contributions to
SPE and T2 are plotted along with the control limits right after the out-of-
control situation is detected. Variable contributions to T2 are summed for
270th and 271st measurements in Figure 8.3(b) and are summed for 250th
and 251st measurements in the case of SPE in Figure 8.3(c). Both charts
indicate that the glucose feed rate (variable 3) has the highest contribution,
and therefore is the root cause to the deviation. Second highest contribu-
tion is that of the glucose concentration (variable 5) as expected. As a good
practice, univariate chart of the variable that has the highest contribution
is plotted. Figure 8.3(d) represents the glucose feed rate profile of the faulty
batch superimposed on the reference glucose feed rate profile of NO.

All of the aforementioned tasks can be integrated into a real-time know-
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ledge-based system for automated supervision and ease of interpretation.
The details of implementation will be discussed and presented in Section
8.4.1.

8.2 Statistical Techniques for Fault Diagnosis

8.2.1 Statistical Discrimination and Classification

Statistical discrimination and classification are multivariate techniques that
separate distinct sets of objects (or events), and allocate new objects (or
events) into previously defined groups of objects, respectively [262]. Dis-
crimination focuses on discrimination criteria (called discriminants) for con-
verting salient features of objects from several known populations to quanti-
tative information separating these populations as much as possible. Classi-
fication sorts new objects or events into previously labelled classes by using
rules derived to optimally assign new objects to the labelled classes. A good
classification procedure should yield few misclassifications. The probability
of occurrence of an event may be greater if it belongs to a population that
has a greater likelihood of occurrence. A good classification rule should
take these "prior probabilities of occurrence" into consideration. A good
classification procedure should also account for the costs associated with
misclassification, classification of an event to a different class. Consider
two hypothetical sensor faults, one necessitating process shutdown because
without measuring and controlling that variable the process may produce
hazardous products, and the other causing higher use of utilities. Their
misclassification would yield different levels of hazards and damages, hence
their costs of misclassification are different.

Consider a data set with g distinct events such as normal process oper-
ation and operation under g — I different faults. The operation type (class)
is determined on the basis of p measured variables x = [x\ x2 • • • xp]

T that
are random variables. Denote the classes by TTJ, i — 1,- • • ,g, their prior
probability by pi i — 1, • • • , g and their probability density functions by
/i(x). While it is not necessary to assume that /i(x) be the multivariate
normal density, in most derivations and in this discussion it will be assumed
that it is, with population and sample means /ii and Xj, respectively and
population and sample variances Z^ and Si, respectively. Denote the cost
of misclassification as c(k i), the cost of allocating an object to vr/c (for
k = 1, • • • , g) when in fact it belongs to TTJ (for i = 1, • • • , g). If Rk is the
set of x's classified as TT^, the probability of classifying an event as TTfc when
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in reality it belongs to TTJ is

P(k\i} = P(classifying event as ̂ 1^) = /
jR

i, k = 1, • • • , g

(8.9)
with P(i\i) = 1 — ̂ 9

k=ik^iP(k\i}- The conditional expected cost of mis-
classification (ECM} of an event in TTI to any other class is

(8.10)
k=2

This conditional expected cost of misclassifying an event belonging to ?TI
occurs with prior probability p\ (the probability of ir\}. The conditional
overall expected cost of misclassification is computed by multiplying each
ECM with its prior probability and summing over all classes

ECM = PlECM(7ri) + ---+pgECM(7Tg)
9 9

= Pl£>(fc|l)C(fc|l)+p2 Yl P(k\2)c(k\2]
k=2 k=l, fc/2

0-1

Determination of the optimal classification procedure becomes selection of
mutually exclusive and exhaustive classification regions JRi, #2, • • • , -R5 such
that the ECM in Eq. (8.11) is minimized [262]. The classification regions
that minimize Eq. (8.11) are defined by allocating y to that population
TTfc , & = ! , - • • , g for which

(8.12)

is smallest [18, 262]. If all misclassification costs are equal, the event
described by data x will be assigned to that population TTfe for which
Sf=i) i^fePi/i(x) is smallest. This means that the omitted term Pfc/fc(x) is
largest. Consequently, the minimum ECM rule for equal misclassification
costs becomes [262]:

Allocate x to TT/J if Pfc/fc(x) > Pifi(x) for all i ^ k.
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given prior probabilities, density functions, and misclassification costs (when
they are not equal). This classification rule is identical to the one that max-
imizes the "posterior" probability P(itk x) (-P(x) comes from Ttk given that
x was observed) where

p/_ | s _ Pfc/fc(x) _ (prior) x (likelihood)
1 fc| j "" £?=i ft/i(x) " £[(prior) x (likelihood)] *' ' ' ' ' *

(8.13)
If the populations follow Normal distributions with mean vectors fjii, co-
variance matrices Si, and generalized variance |Si| (determinant of the
covariance), /i(x) is defined as

2(X ~ ^fc)TSfc 1(x ~ ̂
(8.14)

and all misclassification costs are equal, then x is allocated to TTfc if

n 1 1lnpfc/fc(x) =

= max In piFi(x) . (8.15)
i

The constant p/2 ln(2-7r) is the same for all populations and can be ignored
in discriminant analysis. The quadratic discrimination score for the zth
population ^^(x) is defined as [262]

d i
Q(x)=lnp i-i ln|E i | - i(x-/i i)

TSr1(x-Mi) » = ! , • • • , 0 - (8.16)

The generalized variance Si , the prior probability pi and the Mahalanobis
distance contribute to the quadratic score di ('x). Using the discriminant
scores, the minimum total probability of misclassification rule for Normal
populations and unequal covariance matrices becomes [262]:

Allocate x to nk if d ^ ( x . ) is the largest of all c^ (x), i = 1, • • • , g.

In practice, population mean and covariances (//j and Si) are unknown.
Computations are based on historical data sets of classified observations,
and sample mean (xj) and covariance matrices (Si) are used in Eq. (8.16).

A simplification is possible if the population covariance matrices Si are
equal for all i. Then, Si = S and Eq. (8.16) reduces to

<°(x) = lnpz - i In |S - i(xrE-1x) + /if E^x - \^^'1 ̂  (8.17)

Since the second and third terms are independent of z, they are the same for
all dj^(x) and can be ignored in classification. Since the remaining terms
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consist of a constant for each i (\npi — 1/2/zf E^O and a linear combination
of the components of x, a linear discriminant score is defined as

di(x) = M? E^x - ^/if S'Vi + Inpi (8.18)

An estimate of d* (x) can be computed based on the pooled estimate of ZJ
[262]:

» = 1 , . . . , 0 (8.19)

where

S^ = r, + r> + 1 + r, - n ̂  ~ l)§1 + ' ' ' + K ~ ̂  (8-20)Til + ni + • • • + ng — g

and n5 denotes the data length (number of observations) in class g. The
minimum total probability of misclassification rule for Normal populations
with equal covariance matrices becomes [262]:

Allocate x to TT^ if dfc(x) is the largest of all di(x), i = 1, • • • ,g.

FDD by Integrating PCA and Discriminant Analysis
An integrated statistical method was developed [488] for automated de-

tection of abnormal process operation and discrimination between several
source causes by utilizing PCA and discriminant analysis techniques for
multivariable continuous processes. The method was developed for mon-
itoring continuous processes deviating from their steady state operation.
The lack of significant autocorrelation, stationarity, and ergodicity should
be established before utilizing this method. The method does not rely
on visual inspection of plots; consequently, it is suitable for processes de-
scribed by large sets of variables. It can be extended to batch processes by
making appropriate modifications, but such extensions have not been re-
ported. The method was illustrated by monitoring the Tennessee Eastman
industrial challenge problem [137].

Detection and diagnosis of multiple simultaneous faults is an important
concern. In a real process, combinations of faults may occur. An inter-
vention policy to improve process operation may need to take into account
each of the contributing faults. Diagnosis should be able to identify major
contributors and correctly indicate which, if any, secondary faults are occur-
ring [487]. Most FDD techniques rely on the assumption of a single fault.
Raich and Cinar proposed several statistical measures to assess the overlap
between models describing process behavior caused by single faults. The
similarity between models indicates the potential for confusion and mask-
ing of the effects (symptoms) of multiple faults. Quantitative measures to
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compare multivariable models permit decisions about their usefulness and
discrimination capability. They also provide a priori information about
faults that are likely to be masked by other faults.

PCA is used to develop a model describing variation under normal oper-
ation (NO). This PC model is used to detect outliers from NO, as excessive
variation from normal target or unusual patterns of variation. Operation
under various known upsets can also be modeled if sufficient historical data
are available. These fault models are then used to isolate source causes
of faulty operation based on similarity to previous upset behavior. Using
PCs for several sets of data under different operating conditions (NO and
with various upsets), statistics can be computed to describe distances of
the current operating point to regions representing other areas of opera-
tion. Both scores distances and model residuals are used to measure such
distance-based statistics.

Fault Diagnosis
PC models for specific faults can be developed using historical data sets

collected when that fault was active. When current measurements exhibit
out-of-control behavior, a likely cause for this behavior can be assigned by
pattern matching by using scores, residuals or their combination.

Score Discriminant. Assuming that PC models retain sufficient variation
to discriminate between possible causes in scores that have independent nor-
mal distributions, the maximum likelihood that data x are from fault model
i is indicated by the minimum distance. This minimum can be determined
by the maximum of di expressed for example by quadratic discrimination
(Eq. 8.16)

di(t) = Inp, - i ln lE i l - ^Sr't (8.21)

where t = xPj is the location of original observation x in PC space for
fault model i, Sj is the covariance along PCs for fault model i, and pi is
the adjustment for overall occurrence likelihood of fault i [262]. Figure 8.4
illustrates the fault isolation process. Score discriminants are calculated
using PC models for the various known faults (Figure 8.4c); this semilog
plot shows the negative of the discriminant. The most likely fault is chosen
over time by selecting the fault corresponding to the maximum discriminant
(curve with the lowest magnitude). Figure 8.4d reports the fault selected at
each sampling time. Fault 3, which is the correct fault, has been reported
consistently after the first 10 sampling times.
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Figure 8.4. Detection and diagnosis of process upsets (a) Detection of
outliers based on residuals, (b) detection based on T2 test of scores, (c) di-
agnosis statistics considering each possible disturbance, (d) index of chosen
disturbance for each observation [488].
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Residual Discriminant. Assuming that observations will not be well de-
scribed by PC models for other faults but will be within the residual thresh-
old of their own class, it is most likely that x is from the fault model i with
minimum

ri/ri)a where n = tf (I - PPT)tz (8.22)

Ti is the residual computed using the PCA model for fault i and r^ is the
residual threshold at level lOOa based on the PCA model for fault i.

Combined Discriminant. Combining the information available in scores
and residuals usually improves the diagnosis accuracy [408]. Comparing
the combined information to the confidence limits of each fault model, x is
most likely to be from the fault model i with minimum

+
where Sj and r* are the score distance and residual based on the PC model,
respectively, for fault i, Si}0c and r^a are the score distance and residual
thresholds using the PC model, respectively, for fault i, and q is a weight
between 0 and 1. To weigh scores and residuals according to the amount
of variation in data explained by each, q is set equal to the fraction of
total variance explained by scores. The combined discriminant value thus
calculated gives an indication of the degree of certainty for the diagnosis;
statistics less than 1 indicate a good fit to the chosen model. If no model
results in a statistic less than 1, none of the models provide an adequate
match to the observation.

The FDD system design includes development of PC models for NO and
faulty operation, and computation of threshold limits using historical data
sets collected during normal plant operation and operation under specific
faults. The implementation of the FDD system at each sampling time
starts with monitoring. The model describing NO is used with new data
to decide if the current operation is in-control. If there is no significant
evidence that the process is out-of-control, further analysis is not necessary
and the procedure is concluded for that measurement time. If score or
residual tests exceed their statistical limits, there is significant evidence
that the process is out-of-control. Then, the PC models for all faults are
used to carry out the score and residuals tests, and discriminant analysis
is performed by using PC models for various faults to diagnose the source
cause of abnormal behavior.

Discrimination and Diagnosis of Multiple Disturbances
In fault diagnosis, where process behavior due to different faults is de-

scribed by different models, it is useful to have a quantitative measure of
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similarity or overlap between models, and to predict the likelihood of suc-
cessful diagnosis. In comparing multivariate models, much work has been
reported for testing significant differences between means when covariance
is constant. Testing for differences in covariance is more difficult yet cru-
cial; diagnosis can be successfully done, whether or not means are different,
as long as there is a difference in covariance [171]. Testing for eigenvalue
models of covariance adds new complications, since the statistical charac-
teristics are not well known, even for common distributions. Simplifying
assumptions for special cases can be made, with significant loss of generality
[378].

Angles Between Different Coordinate Systems and Similarity Index. Raich
and Cinar proposed a method based on the angles between principal coordi-
nate directions of current data and regions corresponding to operation with
different faults [489]. The method uses angles between different coordinate
systems and a similarity index defined by using the angle information [308].

The similarity index has a range from 0 to 1, increasing as models
become more similar. It provides a quantitative measure of difference in
covariance directions between models and a description of overall geometric
similarity in spread. The similarity index can be used to evaluate discrim-
ination models by selecting a threshold value to indicate where mistakes
in classification of data from the two models involved may occur. It can
also be used to compare models built from different operating runs of the
same process for monitoring systematic changes in process variation dur-
ing normal operation. Another possible application is in batch processes,
where use of the similarity index could provide a way to check if PC model
orientation around a moving mean varies in time.

Overlap of Means. The other important statistical test in comparing multi-
variate models is for differences in means. This corresponds to comparison
of origin of coordinates rather than the coordinate directions. Many sta-
tistical tests have been developed for testing means, but most of them
can become numerically unstable when significant correlation exists be-
tween variables. In order to work around the instability, overlap between
eigenvalue-based models can be evaluated. Target factor analysis can assign
a likelihood on whether a candidate vector is a contributor to the model of
a multivariate data set. A statistic is defined to test if a specific vector is
significantly inside the confidence region containing the modeled data [361].
For overlap of means, the test can determine whether the mean from one
model, jui, significantly overlaps the region of data from another (second)
model [488]. Mean overlap analysis can be used to test if an existing PC
model fits a new set of observations or if two PC models are analogous.

Comparison of models for individual faults and their combinations can
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provide information for extending the diagnosis methods to multiple simul-
taneous faults and masking of contributing faults. If there is no overlap
between regions spanned by two different faults, two alternative schemes
might handle multiple faults modeled by PCA. In one method, the combina-
tion fault is idealized as being located between the regions of the underlying
component faults; allocations of membership to the different independent
faults contributing to the combination may provide diagnosis of underlying
faults. The second method is based on a more general extension of the
discrimination scheme by introducing new models for each multiple-fault
combination of interest. The measures of similarity in model center and di-
rection of spread can be useful to determine the independence of the models
used in diagnosis.

Masking of Multiple Faults. When the region spanned by the model for
one (outer) fault contains the model for another (inner) fault, their combi-
nation will not be perfectly diagnosed. Idealizing the two fault regions as
concentric spheres, the inner model region is enveloped by the outer model.
As a result, only the outer fault will be diagnosed and the inner fault will
be masked. Overlap of regions is likely to exist for most processes under
closed-loop control, the multiple fault scenario is further complicated for
such processes.

Random variation faults such as excessive sensor noise move a process
less drastically off-target than step or ramp faults. Consequently, similarity
measures should indicate that the random variation faults have more over-
lap with other models, particularly with each other. Ramp or step faults
tend to be the outer models, this is consistent with moving the process
off its control target or NO. As outer model, ramp or step fault masks
secondary random variation faults.

Similarity measures serve as indicators of the success in diagnosing com-
binations of faults. They can identify combinations of faults that may be
masked or falsely diagnosed, and provide information about the success
rates of different diagnosis schemes incorporating single and combinations
of faults. Using these guidelines, multiple faults occurring in a process can
be analyzed a priori with respect to their components, and accommodated
within the diagnosis framework described earlier.

8.2.2 FDD with Fisher's Discriminant Analysis
A problem that emerges when statistical techniques are used in multivari-
ate classification and clustering is what Bellman calls the curse of dimen-
sionality [139]. Principal components analysis (PCA) is discussed as a
linear dimensionality reduction technique in Section 4.1. PCA is optimal
in terms of capturing the variability among the data. Another technique
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called Fisher's discriminant analysis (FDA) is optimal in terms of maximiz-
ing the separation among the set of classes [153]. Suppose that there is a
set of n(= n\ + ri2 + • • • + rig) p-dimensional samples xi, • • • , xn belonging
to classes TT.J, i — 1, • • • ,g. Fisher suggested to transform the multivariate
observations x to another coordinate system that enhances the separation
of the samples belonging to each class TT^. In this section, the FDA con-
cept is illustrated first for separating data belonging to two classes TTI and
7T2- Then, FDA is generalized to process data with many classes. Finally,
classification and diagnosis with FDA is discussed.

FDA for data belonging to two classes
Fisher suggested transformation of multivariate observations x to uni-

variate observations z such that the z's derived from populations ?TI and
7T2 are separated as much as possible. If the multivariate observations have
more than two variables, additional z variables (22,23,' ' • ) may be neces-
sary for enhancing the separation. The total scatter of data points (Sr)
consists of two types of scatter, within-class scatter Sw and between-class
scatter SB- The objective of the transformation proposed by Fisher is to
maximize SB while minimizing Sw- Fisher's approach does not require that
the populations have Normal distributions, but it implicitly assumes that
the population covariance matrices are equal, because a pooled estimate of
the common covariance matrix (Sp/) is used (Eq. 8.20).

The transformation is based on a weighted sum of observations x. In
the case of two classes, the linear combination of the samples (x) takes
values zu, • • • ,zipi for the observations from the first population TTI and
the values z%i,- • • , Z2P2 for the observations from the second population 7T2-
Denote the weight vector that transforms x to z by w. FDA is illustrated
for the case of two normal populations with a common covariance matrix
in Figure 8.5. First consider separation using either x i or x^ axis. The
diagrams by the abscissa and ordinate indicate that several observations
belonging to one class (TTI) are mixed with observations belonging to the
other class ( T^). The linear discriminant function z — WTX defines the
line in the upper portion of Figure 8.5 that observations are projected
on to maximize the ratio of between-class scatter and within-class scatter
[262, 139]. One may visualize changing the slope of the line to see how the
number of observations of a specific class that move in the region of the
other class changes.

The separation of the two sets of z's can be assessed in terms of the
difference between z\ and 22 expressed in standard deviation units:

separation = *Zl ~^2 ' (8.24)
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points and projections

probability density functions for projections

Classify as n2 . _ * Classify as 7^

Figure 8.5. Fisher's discriminant technique for two populations (g — 2),
7Ti(*) and 7r2(o), with equal covariances.

where s2 is the pooled estimate of the variance

1
s2 =

+ n-2 - 2 -**)' (8.25)

The linear combination that maximizes the separation is [262]

z = WTX = (xi - x2)T Sj^x (8.26)

which maximizes the ratio

- WTX2)2 (wTd)2

(8.27)

over all possible coefficient vectors w where d = (xi — x2). The maximum
of the ratio in Eq. 8.27 is T2 = (xx - x2)TS~/(xi - x2) [262]. For two
populations with equal covariances, FDA corresponds to the particular case
of the minimum ECM rule discussed in Section 8.2.1. The first terms in
Eqs. 8.18 and 8.19 are the linear function obtained by FDA that maximizes
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the univariate between-class scatter relative to the within-class scatter (Eq.
8.26) [262].

The allocation rule of a new observation XQ to classes TTI or 7T2 based on
FDA is [262]

Allocate XQ to ?TI if

(x — x ^S~1x > — (x — x l^S^Vx 4- x } (8 28}
Zt

Allocate XQ to 7T2 otherwise.

Separation of Many Classes (g > 2)
The generalization of the within-class scatter matrix Sw for g classes is

9

Sw = ̂ (rii - l)Sj (8.29)
1=1

where

q _ •*• V\v v .Vv-- -v- ' l T (R If}}1 ~ r> - 1 Z^XtJ ~X*Axtj xtJ 1,5.OUJ
* J = l

represents the covariance matrix for class i and the mean vector for class i
is [139]

Xi = — ̂ Xij (8.31)
ni j=i

where n^ denotes the number of observations in class i. Sw/(ni + ̂ 2 H h
ng—g) = Spi is an estimate of E. The w that maximizes wTS#w/wTSpjw
also maximizes •w^Sew/w^Svv'W.

Define the between-class scatter matrix SB and the total scatter matrix
ST as [139, 246]

9

SB = 5>i(*i - x)(xi - x)T (8.32)
i=l

9 ni

where x is the total mean vector

9 * 9

x = —

Copyright © 2003 by Taylor & Francis Group, LLC



474 Chapter 8. Fault Diagnosis

and n = £)f=i n* denotes the total number of observations in all classes.
Eq. 8.33 can be rewritten by adding — x* + X; to each term and rearranging
the sums so that the total scatter is the sum of the within-class scatter and
the between-class scatter as [139]

9 n-i

ST = 2L, /_j(*ij — Xj + Xj - x)(Xij — X; + Xj — X)

= Sw + SB-

The first FDA vector wi maximizes the scatter between classes (SB)
while minimizing the scatter within classes (Sw) is obtained as

wrsgwmax ^TTCi — — (8.36)

under the assumption of Sw being invertible [139, 99]. The second FDA
vector is calculated to maximize the scatter between classes while minimiz-
ing the scatter within classes among all axes perpendicular to the first FDA
vector (wi). Additional FDA vectors are determined if necessary by us-
ing the same maximization objective and orthogonality constraint. These
FDA vectors wa form the columns of an optimal W that are the generalized
eigenvectors corresponding to the largest eigenvalues in

SBwa = AaSwwa (8.37)

where the magnitude ordered eigenvalues Aa indicate the degree of overall
separability among the classes by linearly transforming the data onto wa

[139, 99]. The eigenvalues in Eq. 8.37 can be computed as the roots of
the characteristic polynomial det(S# — AaSw) = 0 and then solving (SB —
AaSw)wa = 0 directly for the eigenvectors wa [139].

Classification with FDA
Consider a data set from a fermentation process with g distinct events

such as normal process operation and operations under g — 1 different faults.
Each operation type (class) is determined on the basis of p measurements
xi, • • • , xn that belong to one of the classes TTJ, i — 1, • • • ,g with prior
probabilities of p$, i — 1, • • • ,g and probability density functions of /i(x).
The objective of the fault diagnosis is to assign the new on-line out-of-
control observations (XQ) to the most likely fault class.
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FDA is used to diagnose faults by modifying the quadratic discrimina-
tion score for the zth population denned in Eq. 8.16 in the FDA framework
such that

£

-iln[det(Wj1S«Wf l)] (8.38)

where Wa contains the first a FDA vectors [99]. The allocation rule is:

Allocate XQ to TT^ if dk (XQ) is the largest of all d^(x.o), ? = ! , • • • , g.

The classification rule in conjunction with Bayes' rule is used [262, 99]
so that the posterior probability (Eq. 8.13) assuming Xlf=i P(^k\^} = 1
that the class membership of the observation XQ is i. This assumption may
lead to a situation where the observation will be classified wrongly to one
of the fault cases which were used to develop the FDA discriminant when
an unknown fault occurs. Chiang et al. [99] proposed several screening
procedures to detect unknown faults. One of them involves FDA related
T2 statistic before applying Eq. 8.38 as

T2 -Cx-x^TW (WTS W ^~ 1 W T fx -x - > l (8391in — V "̂  "̂ l / Or \ n i * * f l / rt\ "̂  ^"1) \{Jf*J*jJ

so that it can be used to determine if the observation is associated with
fault class i. The threshold for Tfa is defined as

where Fa(a, n — a) denotes the F-distribution with a and n — a degrees of
freedom [262]. Chiang et al. [99] introduce another class of data that are
collected under NO to allow the class information in the known fault data
to improve the ability to detect faults. The first step then becomes the
detection of out-of-control situation. A threshold for NO class is developed
based on Eq. 8.40 for detection; if T?a > T2

 a, there is an out-of-control
situation. One proceeds with calculation at thresholds for each class i using
Eq. 8.40. If T?a > T^a for all i = 1,... ,5, then the observation x0 does
not belong to any fault class i, and it is most likely associated with an
unknown fault. If Tfa < T% a for some fault class i, then XQ belongs to a
known fault class. Once this is determined, Fisher's discriminant score in
Eq. 8.38 can be used to assign it to a fault class TT; with the highest (^(XQ)
of all ^Q(XO), i = 1,- • • ,g.

FDA and PCA can also be combined to avoid assigning an unknown
fault to one of the known fault classes [246, 99, 530]. PCA is widely used
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for fault detection as discussed in Chapter 6. Chiang et al. [99] pro-
posed two algorithms incorporating FDA and PCA. In the first algorithm
(PCA/FDA), PCA is used to detect unknown faults and FDA to diag-
nose faults (by assigning them to fault classes). The NO class and classes
with fault conditions are used to develop the PCA model. When a new
observation XQ becomes available, T% value is calculated based on PCA as

Tl = x^PaA-^xo (8.41)

where Aa is (a x a) diagonal matrix containing eigenvalues and P are the
loading vectors. A set of threshold values based on NO and the known fault
classes using Eq. 8.40 is calculated. If T% < T^a, it is concluded that this
is a known class (either NO or faulty) and FDA assignment rule is used to
diagnose the fault class (or NO class if it is in-control).

The second combined algorithm (FDA/PCA) deploys FDA initially to
determine the most probable fault class i. Then it uses PCA T2 statistic
to find out if the observation XQ is truly associated with fault class i.

8.2.3 FDD with Neural Networks
Artificial neural network (ANN) applications in bioprocess and fermenta-
tion operations deal mostly with estimation, control and optimization. An
outline and literature review on ANNs are presented in Section 4.6. ANNs
have also been used for classification and FDD, which may be formulated
as a classification problem. FDD in chemical processes with ANN was ini-
tially proposed by Hoskins and Himmelblau [242] and extended by various
researchers [302, 618, 631]. ANN structures have been proposed to detect
multiple simultaneous faults [620, 630].

The usual way to apply ANNs to FDD is to classify process operation
states using data representing various states of operation of the process
(normal or faulty). As discussed in Section 4.6, ANNs are well-suited to
solve complicated classification problems especially in the case of highly
nonlinear processes such as fermentations. In the most general case, a set
of state or input variables are used as a measurement space (input space)
and mapped onto a fault space (output space) where variables reflecting
malfunctions reside (Figure 8.6). Data are scaled for faster convergence be-
fore training the network. Backpropagation is used in most applications as
a training algorithm. Once the network is trained with data (Xi , . . . , Xn)
for particular fault conditions (Fi,... ,Fs_i) as well as normal operating
conditions, new observations can be used to classify process operation as
faulty or normal using the trained ANN. Variants to this traditional ap-
proach have also been suggested. In one case, a two-stage ANN structure is
used where an ANN for discriminating among the possible causes of faults
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Figure 8.6. A three-layered feedforward ANN structure with four input,
four hidden and three output units designed for FDD purposes.

(first stage) is followed by another ANN (second stage) that uses the out-
puts of the previous one to determine the level of deterioration (severity of
the deviations) [631]. Such a network will have a number of outputs that
is equal to the number of causes x the number of levels of deterioration,
this considerably increases the computational requirement. A cascaded hi-
erarchically layered network is also suggested for simultaneously detecting
multiple faults [630]. Recently, an alternative two-stage framework was sug-
gested for use of ANNs in FDD [360]. In this two-stage network, a primary
network is trained to determine basic process trends (increasing, decreasing
and steady) including the level of change. The secondary network receives
the outputs from the primary network and assigns them to particular faults
that it is trained for. It is reported that when network receives data for an
unknown fault, it assigns the fault to either normal operation or untrained
faults class [360].

Most ANN based FDD architectures assume that input-output pairs are
available on-line. But in fermentation processes, very important state vari-
ables such as biomass and substrate concentrations are measured off-line in
the laboratory while measurements on variables such as dissolved oxygen
and carbon dioxide concentrations are available on-line. To develop a reli-
able ANN-based FDD scheme, values of infrequently measured (or off-line
available) variables must be provided as well. This can be done by including
some state observers or estimators such as Extended Kalman Filters (EKF)
(Section 6.5.4) into the FDD framework. Such cascaded ANN-based fault
diagnosis system (Figure 8.7) particularly designed for fermentation pro-
cesses (glutamic acid fermentation in particular) is proposed by Liu [345]. A
typical ANN architecture is used in the classifier that is a multi-layer feed-
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Assigned faults

Figure 8.7. The structure of the cascade EKF-ANN-based FDD [345].

forward network although infrequently measured variables are estimated
by the EKF. It is reported that once the classifier was trained with on-line
measurements and estimates of off-line measurements, it achieved 89% fault
diagnosis accuracy and it could be implemented in real-time.

8.2.4 Statistical Techniques for Sensor Fault Detection

Misleading process information can be generated if there is a bias change,
drift or high levels of noise in measurements reported by some of the sen-
sors. Erroneous information often causes decisions and actions that are
unnecessary, resulting in the deterioration of product quality, safety and
profitability. Identifying failures such as a broken thermocouple is relatively
easy since the signal received from the sensor has a fixed and unique value.
Incipient sensor failures that cause drift, bias change or additional noise are
more difficult to identify and may remain unnoticed for extended periods
of time. Auditing sensor behavior can warn plant personnel about incipient
sensor faults and initiate timely repair and maintenance. Many approaches
have been proposed for sensor fault detection and diagnosis using statistical
methods, model-based fault diagnosis techniques (Section 8.3) such as par-
ity space [189, 292], state estimators [456] and parameter change detection
[686], artificial intelligence applications such as neural networks [631] and
knowledge-based systems. In this section, sensor auditing methods based
on functional redundancy generated by PLS or canonical variate state space
(CVSS) models (Section 4.3.2) are presented. Integration of these statisti-
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cal methods with knowledge-based systems to discriminate between sensor
faults and process disturbances is discussed in [584]. Another method for
FDD of sensors and discrimination of faults from process upsets relies on
changes in correlation between data from various sensors [138]. Sensor FDD
by wavelet decompositions of data followed by calculation of signal features
and nonparametric statistical test has also been reported [353].

Sensor Auditing Using PLS and CVSS Models
The use of the mean and variance of residuals between measured and

estimated sensor readings based on PCA and PLS models was proposed
in late 1980s [656]. The authors cautioned the users about the corruption
of estimates when erroneous sensor data were used when multiple sensors
were faulty. Negiz and Cinar [412] developed a sequential PLS model de-
velopment and sensor FDD method to reduce the effect of multiple faulty
sensors and to discriminate between sensor bias, drift and noise. These
methods use a data sequence to compare the mean and variance of data
batches. They can be implemented to run repeatedly at frequent intervals
and warn plant personnel about incipient sensor faults to initiate timely
repair and maintenance. Both methods are based on interpreting the mag-
nitudes of the mean and variance of the residuals between a data batch and
their prediction from a process model. The PLS-based method is useful
for process data with milder autocorrelation, while the CVSS-based ver-
sion is more appropriate for processes with significant dynamic changes
and autocorrelation in data. Industrial continuous processes have a large
number of process variables and are usually operated for extended peri-
ods at fixed operating points under closed-loop control, yielding process
measurements which are auto cor related, cross correlated, and colinear. A
CVSS model would be appropriate for modeling data generated from such
processes. Once an accurate statistical description of the in-control vari-
ability of a continuous process is available, the next step is the design and
implementation of the sensor monitoring SPM procedure.
Multipass PLS-Based Sensor FDD Method. The multipass PLS algorithm
was developed for detecting simultaneous multiple sensor abnormalities.
This is achieved by eliminating successively the corrupted measurements
from both the calibration and test data sets and identifying a different
smaller PLS submodel.

Assume that there are p sensors to be monitored and the calibration
data set is of length N. The mean and the variance of the residuals for
each variable is computed through the N x p residuals block matrix R.
Once the PLS (calibration) model is identified for the in-control data set,
the statistics for the residuals are computed for setting the null hypothesis.
Then, a test data block of size Nt x p is formed from new process measure-
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ments. The residual statistics for the test sample are then generated by
using the PLS calibration model. The statistical test compares the residu-
als statistics of the test sample with the statistics of the calibration set for
detecting any significant departures.

Denote by R.j the ith N x 1 residual vector column from the TV x p
residual block matrix R. The statistic for testing the null hypothesis of the
equality of means from two normal populations with equal and unknown
variances is

2 (8.42)

where R.itest and R«imodel denote the maximum likelihood estimates of the
residual means for the variable i in the test sample and the calibration set,
api is the pooled standard deviation of the two residual populations for
the i-th variable, N and Nt denote the sizes of the calibration and testing
populations, and tN+Nt-2 is the ^-distribution with N + Nt — 2 degrees of
freedom [140].

The statistic for testing the null hypothesis of the equality of variances
from two normal populations with unknown means is [140]

-^--FNt_l>N^ (8.43)

where F/vt-i,w-i is the F distribution with respective degrees of freedom.
The level of the test for all the testing statistics is chosen to be 5% and two
sided. This part of the procedure is similar to that given by [656].

The algorithm takes action when either the mean or variance of the
residuals are out of the statistical limits (based on t and F probability
distributions) for a particular variable. Since the corrupted variable affects
the predictions of the remaining ones, false alarms might be generated
unless the corrupted variable is taken out from both the calibration and test
data blocks. The information loss due to taking the variable out of both
the calibration and the test sample sets is not significant since the testing
procedures are based on the iid assumption of the residuals and not on the
minimum prediction error criterion by the model. The algorithm discards
the variable with the highest corruption level by looking at the ratios of its
residual variance and its residual mean to their statistical limits which are
based on Eqs. 8.42-8.43.

Excluding variables and computing a new PLS model for the remaining
variables is the key step of the sensor auditing and fault detection algorithm.
The likelihood for all of the process sensors to become simultaneously faulty
is extremely small. After several successive steps, if the mean and variance
of the remaining residuals still indicate significant variation, then it is more
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likely that a disturbance is active on the system causing the in-control
variability to change.

Multipass CVSS-Based Sensor FDD Method. A multipass CVSS technique
similar to the multipass PLS algorithm is developed for detecting multiple
sensor failures. This is achieved by eliminating successively the corrupted
measurements from both the calibration and test data sets and identifying
a different CVSS submodel. The algorithm discards the variable with the
highest corruption level by looking at the ratios of its residual variance
and its residual mean to their statistical limits which are based on Eqs.
8.42-8.43. Excluding variables and computing a new CV realization for
the remaining variables, the algorithm proceeds in a manner similar to the
PLS-based version. The application of the method for FDD of the sensors
of a high-temperature short-time pasteurization process is reported in [417].

Real-time Sensor FDD by Statistical Methods. A sensor FDD that
checks sensor status at each sampling instant can be developed by using T2

and squared prediction error (SPE) charts. Once these charts indicate an
out-of-control status, discrimination between sensor faults and disturbances
should be made and the faulty sensor should be isolated. One approach used
for discrimination of sensor faults and disturbances is the redundant sensor
voting system [577] that utilizes backward elimination for sensor identifica-
tion [578]. The backward elimination is similar to the multipass PLS ap-
proach, but remodeling is implemented at each time instant the SPE limit
is violated. In this approach, once the SPE limit is violated at a specific
sampling time, every sensor is sequentially removed from the model matrix
and the control limit is recalculated. If the ratio SPE/SPEnmit < 1, the
search terminates and the sensors eliminated up to that point are declared
faulty. Otherwise, the search continues by eliminating another sensor from
the model. This approach has significant computational burden. In addi-
tion, sensor faults that do not inflate the SPE statistic cannot be detected.
Incorporation of T2 charts and use of correlation coefficient criterion were
proposed to improve this method [138].

8.3 Model-based Fault Diagnosis Techniques
A mathematical model of the process is used in model-based fault diagnosis
to describe the expected behavior of the process. In most model-based FDD
techniques, measured values of process variables are compared to their esti-
mated values. The estimations are based on a process model describing the
expected (nominal) operation, past measurements of process variables, and
noise/disturbance information. The difference between measured and esti-
mated values are residuals that are subjected to statistical tests to detect
significant magnitudes of residuals that indicate presence of faults. Various
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FDD methods based on residuals are discussed in Section 8.3.1. Another
group of model-based FDD techniques use parameter estimation. They are
presented in Section 8.3.2. In this approach, model parameters are esti-
mated for nominal operating conditions. They are estimated repeatedly as
new measurement information is collected. Significant deviations in model
parameter values are used for FDD. Hidden Markov models provide another
FDD framework. Markov processes, hidden Markov models and their use
in FDD are discussed in Section 8.3.3.

Model-based FDD has its origins in various engineering areas. Mate-
rial and energy balance calculations were used for gross error detection and
data reconciliation in chemical process operations [235, 359, 519]. FDD
applications in aerospace systems were reported [652] leading to parity re-
lations concepts [101, 187]. Kalman filters were used in aerospace and nu-
clear power industries for FDD [168, 650]. Diagnostic observers were also
proposed for similar applications [105, 161, 163, 458]. FDD by parameter
estimation has been used in manufacturing industries [50, 251]. Excellent
review papers [44, 162, 457] and books [45, 189, 456, 518] report recent
developments in the FFD theory and applications in many areas. The pre-
sentation of various model-based FFD techniques in this text is based on
these resources and the research of Cinar and co-workers [292, 414].

Input-output relations for systems subject to faults. Consider a process that
receives measured inputs UM subject to sensor faults 5iiM> controlled inputs
uc subject to actuator faults 5uc, process faults Sup that are interpreted
as additional inputs, and measured outputs y subject to sensor faults 6y
(Figure 8.8). Additive faults acting on the process include:

• input actuator faults 6uc(t]

• input sensor faults £UM(*)

• output sensor faults 5y(t)

• plant faults 5up(t).

In addition, there are additive disturbances acting on the process (these are
usually unmeasured input disturbances) (d) and various noises acting on
measurements and the process:

• input actuator noise

• input sensor noise

• output sensor noise vy(t}

• plant noise vp(t).
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Figure 8.8. Additive faults and disturbances [189].

Consider a multiple-input, multiple-output system described by

y(t) = G(g)u(t) (8.44)

where G(^) denotes the multivariable input-output transfer function matrix
(TFM) and q is the shift operator defined in Section 4.3.1. Denoting the
actual inputs and outputs of the process with superscript °, they can be
expressed as:

u°c(t] = uc(t)+5uc(t)+vc(t)
u°M(t) = UM (*) - 5uM(t)
y°(*) = y(t)-Sy(t)-vy(t)

(8.45)

The relation in Eq. (8.44) is between the nominal inputs and outputs.
Expanding this relationship to show explicitly the faults, noises and process
disturbances:

y(t) = Gfo)ii(t) + SF(g)f (t) + SD(<?)d(t) + SN(g)i/(t) (8.46)

where Sp(q) is the combined fault FTM, 8^(9) is the combined noise TFM,
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SD(<?) is the process fault TFM, and

T - T Tf(t) = [«5u?(t) -6u^(t) SuT
P(t] -6y(t}

SF = [Gc(q) GM(q) SPF(q) I] (8.47)

SN = [Gc(q) GM(q)

with Gc(q) denoting the actuator (controlled input) fault TFM, GM(<?)
the input sensor fault TFM, Spp(q) the plant fault TFM and SPN(Q} the
plant noise TFM.

This framework with additive faults has to be augmented to consider
multiplicative faults. Multiplicative faults may reflect a parametric fault
resulting from the change in process operation (hence the model is not
accurate anymore) or a modeling error such as inaccuracy in model struc-
ture or parameters resulting from approximating a nonlinear process with a
linear model or a high ordered process with a low order model. The input-
output model representation Eq. (8.46) is further expanded to incorporate
multiplicative faults

= G(q)u(t) + SF(q)f(t) + SD(q)d(t) + S N ( q ) v ( t )
(8.48)

where Np(£) denotes the matrix of time- varying coefficients of multiplica-
tive parametric faults, NM(^) the coefficient matrix of multiplicative mod-
eling faults, (j)P the parametric faults and (f)M the modeling errors. An
important difference between additive and multiplicative faults is that the
TFMs of additive faults are constant while the TFMs of multiplicative
faults are time dependent. Whereas additive fault vectors are time de-
pendent, multiplicative fault vectors are constant [189]. The remainder of
this section will focus mainly on additive faults. Multiplicative faults are
equally important, but the model-based techniques for addressing them are
active research issues that can not be adequately treated in the framework
of this text.

State-space relations for systems subject to faults. The relationship between
y and u can also be written in state-space form. The state-space form
equivalent to input-output relations in Eq. (8.46) is given in Eq. (8.85).
Most early methods based on observers and Kalman filters use a simplified
state-space representation that ignores noise as a separate factor, resulting
in

= Fxfc + Gufc

= Cxfc + FFffc + FDdfc (8.49)
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where component and actuator faults are modeled by Ejrifc and sensor
faults are modeled by Fpfk- The unknown inputs affecting the actuators
and process dynamics are introduced by Ejrjd/c and unknown inputs to
sensors are introduced by F^dfc. This modified representation is used in
illustrating the use of Kalman filters and observers in subsequent sections.

8.3.1 Residuals-Based FDD Methods
Residuals, the difference between measured and model predicted values of
process variables, carry valuable information. Unfortunately, this infor-
mation is blended with measurement noise and prediction errors due to
modeling accuracy. Robust FDD techniques are needed to interpret the
residuals in spite of noise in data and modeling errors. Three different
approaches for computation of residuals and their interpretation are dis-
cussed in this section: Parity equations, diagnostic observers and Kalman
filters, and robust observers for unknown inputs. Often, statistical tests are
conducted to assess the significance level of the magnitudes of residuals to
detect or diagnose a fault. Two popular tests, x2 tests and likelihood ratio
tests are introduced below.

X2 tests of residuals for fault detection.Fault:!detection!x2 tests of
residuals for Statistical testing of residuals for fault detection can be cast
as testing for the zero mean hypothesis. The null hypothesis (T~to) is residual
mean being zero (or having a nonsignificant magnitude), which indicates
lack of evidence for a fault. The alternative hypothesis (Wi) is large nonzero
values of the residual mean, indicating the presence of a fault.

Ho : [J,r = 0 no fault

Hi : A*r ^ 0 fault (8.50)

where /ir is the mean of the residual vector. Because of limited data, the
test is conducted using the sample mean of residuals f instead of /ir. The
test may be conducted on a single residual at a given time (r(t)), a single
residual over a time window I (r(t) = [r(£), • • • ,r(£ — /)]T)? or an average
residual over the window I (r(t, I) — [!/(/+!)] X^=o r(t~J"))- The same tests
can be conducted on a vector of residuals where r(t) = [ri(t), • • • , rn(t}]T,
f(t] = [rT(t), • • • , TT(t - OF, and f(t, I) = [I/(I + 1)] £<=0 r(t - j). The
tests are designed for a specified false alarm rate a, and Normal distribution
and zero mean of residuals is assumed, x2 tests are used for fault detection.
They can be developed for scalar or vector residuals. Detailed discussion
of scalar and vector residuals tests is given in [189]. The tests for vector
residuals are summarized below.
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Single observation of vector residual. The joint density function
for a single observation of vector residuals r(t) of length n is

where Sr is the population covariance matrix of r. The corresponding
sample covariance matrix is Sr. The statistic

pn(t) = TT(t)S-lT(t) (8.52)

follows the x2 distribution with n degrees of freedom and can be used to
detect faults with the hypotheses

^0 : Pn(f) < Xn,a n° fault

Hi : Pn(t}>x2
n,a fault (8.53)

Vector residual sequence. The joint density function of the vector
sequence is

(8'54)

with the covariance matrix Sp = ^[f^rj. The test statistic

r ( t ) (8.55)

can be tested against the threshold Xn(/+n a
-

Window average of vector residual. The density function for the win-
dow average is

(8-56)
^ ' (27r)"/2|Ef

where

1
4- T- (/ + 1 - j) [^n(j)Y^(j)] (8.57)

with covariance matrix Err(j) = E[rj(t)rJ(t—j)] [189]. The corresponding
fault detection test statistic is

Pn(t) = TT(t)S^T(t] (8.58)
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with threshold Xn,a-

Likelihood Ratio Tests for Change Detection. Consider a simple
change detection problem, detecting the change in the mean of an i.i.d. ran-
dom variable yk from p,o to Hi and estimating the time of change (switching
or jump time) q. If y^ is a sequence of n observations and ek is a white
noise sequence with variance a2

Vk = P>k + efc (8.59)

where

{ ^to if k < q — I
A*i if fc > q

The detection problem can be phrased as a hypothesis testing problem [44].

HQ : q > k no change

Hi : q<k change (8.61)

This is an easy case since the new value of the mean (//i) is known and
only the change time is investigated. The likelihood ratio between these
two hypotheses is

kn
i=q

where pi(-) is the Gaussian probability density function of y; with mean
Pi, 1 = 0,1

The log-likelihood ratio is derived by taking the logarithm of the likelihood
function Eq. (8.62) and noting that the constant term cancels out. After
some algebraic manipulation, the log-likelihood ratio can be expressed as
[44]

Afe(r) = ^-f
' ~q\

 z /

= -^S*(vo,8) (8.64)

where
n j.

~ '< - A** ~ «) (8'65)
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and 6 — ̂ i — IJ.Q is change magnitude which is known in this case. The jump
time q is not known. Consequently, q in likelihood ratio (Eq. 8.62) and log-
likelihood ratio (Eq. 8.64) should be replaced by its maximum likelihood
estimate <]k under hypothesis HI'.

V-i
qk — &rg max I I Po\yi)

i=0 i=q

= arg max S*!(u,Q,6} . (8.66)
l<q<k q

The resulting change detector with a threshold r is

gk = Afc(<?fc) = maxS'g (//o, <5) (8.67)

where

Ho : gk < T no change at time k

HI : gk > T change at time k (8.68)

Hence, the detector detects a jump of magnitude 6 in the mean at the first
time where

gk = Si(jUo,<5) — min S\(iJ,Q,8) > r (8.69)

which is called the Page-Hinkley Stopping Rule or the cumulative sum
algorithm that may be computed recursively [44].

If the jump magnitude is unknown (HQ is known but not /^i), one ap-
proach is to select a minimum jump magnitude in the mean that is desired
to be detected and run two tests (increase and decrease in the mean). A
second approach is to replace the unknown magnitude 5 by its maximum
likelihood estimate (MLE) and then run the likelihood ratio test. In this
case,

gSjk = max max5f(//o, &) (8-70)

and using Eq. (8.65)

•"- 1

6k = arg max S£(^o,£) = r r? Z_A^ ~ ^°) C8-?1)
o K — O -p 1

i=q

which reduces the double maximization in Eq. (8.70) to a single maximiza-
tion [44]. The likelihood ratio test becomes

^o '• 9s,k < r n° change of 6k at time k

HI : g$ k > T change of 6k at time k (8.72)
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These maximum likelihood tests for composite hypothesis testing problems
(such as finding MLE of S and the jump time q) are called generalized
likelihood ratio (GLR) tests [45]. Likelihood ratio tests for more complex
changes or models can be found in [45] .

Maximum Likelihood and GLR Tests for Fault Diagnosis. When
faulty operation is detected, the fault needs to be diagnosed. Diagnosis
can be implemented by several approaches. Estimation of maximum likeli-
hoods (ML) and the GLR test are popular techniques for model-based fault
diagnosis.

Rewrite the joint density function in Eq. (8.51) in a generic form

/(z(t),/*.(0) = K exp -l-[2,(t} - /iz(t)]
TS-1[z(i) - M,(

where K denotes the constant term preceding the exponential part (it re-
mains the same for all hypotheses tested) , z stands for the type of obser-
vation used (r, r, or f), and p>z(f) the corresponding mean. The simplified
log- likelihood function L[-] is defined as

log L[(z(t),/i,(t))] = - [ z ( t ) - /i,(t)]
TE-1[z(t) - M»(t)] (8.74)

where log K is omitted because it will cancel out when the likelihood ratio
is denned.

The ML test consists of the following procedure:

1. Compute the maximum likelihood estimates of the residual mean from
observations under various hypotheses Jij\

f i z j ( t ) = arg max log L[(z(t), £,(*)) \Hj} j = 1, • • • , / (8.75)
A*z(*)

where Tij are the hypotheses about various possible faults that im-
pose constraints on the estimates of the mean and / is the number of
faults. The hypotheses are a function of the properties of the resid-
uals generators such as directional residuals or structured residuals
discussed below.

2. Compute the conditional likelihood functions using the observations
and conditional estimates

log Lj(t} = log L[(z(t), fizj(t))} j = 1, - - - , / (8.76)

The most likely fault is the fault that yields the highest log-likelihood value.
Extensions of ML approach with additional checks to account for the un-
certainty in the decision because of signal noise are discussed in [189].
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FDD by Parity Equations

The basic idea is to check the parity (consistency) of the mathematical
equations describing the process by using process measurement informa-
tion. For illustration, consider a simple system with redundant information
described by [162]

y = Cx + <5y (8.77)

where y is the measurement vector of length g, C the q x n measurement
matrix of rank n, x the unknown true measurements, and 6y the error
vector. If Syi > Ti where 7* is the error threshold for variable i, there is
a faulty operation indicated by the iih measured variable. Define a parity
vector of dimension q — n such that

p = Wy (8.78)

The projection matrix W is of dimension (q — n) x q is determined such that
the parity vector is only a function of 5y. To achieve this, W is determined
such that

WC = 0 WTW = lq - C(CTC)-1CT WVT = Iq-n (8.79)

These conditions assure that the rows of W are orthogonal and W is the
null space of C. Consequently,

p = W 5y (8.80)

Hence, parity equations are independent of x and contain only the errors
6y caused by faults. Furthermore, the columns of W define q distinct fault
directions, each associated with only one of the measurements. If there is
significant increase in the iih direction of p, it indicates faulty measurement
Vi-

The residual vector r = y — Cx is related to p as r = WTp where
x = (CTC)~1CTy is the least squares estimate of x. The FDD prob-
lem can be stated as a two-step procedure: (1) Find x and compute r;
(2) Detect and diagnose the faulty measurements by parity checks. This
concept is extended during the last three decades to handle more complex
cases involving faults, disturbances, and noise. A short discussion of the
formulation of residual generator and parity equations is given below.

Residual Generators. A residual generator is a linear discrete dynamic
algorithm acting on observable variables [189]

r(t) = V(9)u(t)+W(g)y(t) (8.81)
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where r(t] is the vector of residuals, and V(g) and W(<?) are TFMs. Noting
that r(£) must be zero when all inputs u(t) and y(t) are zero, and substi-
tuting y(t) = G(g)u(t) into Eq. (8.81) yields (V(g) + W(g)G(g))u(t) = 0.
Hence, Eq. (8.81), the computational form of the residual generator can be
written as

r(t) = W(q)(y}t)-G(q}u(t)} (8.82)

The term in brackets in Eq. (8.82) can be substituted using Eq. (8.48) to
yield the internal form of the residual generator

(8-83)

Ideally, residuals r(t) should only be affected by faults. If specific unique
residuals patterns for each fault could be generated, fault detection and
isolation would reduce to checking the violation of limits of residuals and
recognizing the patterns. However, disturbances, noise and modeling errors
(nuisance inputs) contribute to residuals as well and interfere with FDD.
The residual generator should be designed such that the effects of these
nuisance inputs on the residuals are as small as possible, leading to robust
residual generators. The differences in the properties of these three nui-
sance inputs determine the approach used in marginalizing them. Additive
disturbances and modeling errors have similar temporal behavior to addi-
tive faults. Explicit decoupling of residuals from disturbances and modeling
errors is necessary to improve the detection and diagnosis capability of the
residuals.

Noises usually have much higher frequencies than fault signals and zero
mean values. Therefore, filtering the residuals signals with low-pass niters
reduces the effects of noise without affecting the fault signals significantly.
In addition, testing the residuals against some threshold value as opposed
to testing them for nonzero values reduces false alarms caused by noise.
There is a tradeoff between the number of false alarms and the number of
missed alarms which is affected by the level of thresholds selected (Type I
and Type II errors).

The residual generator should be designed to improve fault isolation.
The residual set should have different patterns for particular faults. Resid-
ual sets designed with the isolation objective are called enhanced residuals.
There are two enhancement approaches, structured and directional. In
structured residuals, each residual responds to a different set of faults and
is insensitive to others. Threshold tests are applied to each element of the
residual vector and the test results are converted to a fault code vector
s(t) of binary digits. Defining a residual threshold vector (T), Si(t) = 1 if
\ri(t)\ > Ti', Si(t] = 0 otherwise. The pattern of the fault code vector (a
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binary string) is matched against the library of fault signatures for diagno-
sis. Directional residuals generate fault-specific vector directions (3 and the
scalar transfer function 7(9) in that direction indicates the dynamics of the
fault [189]

(8-84)

where j3j is the direction of the jth fault. Fault diagnosis is based on
associating r(t|f) with the closest fault direction in the fault library.

The implementation of the residual generator may be done either in
input-output form (Eq. (8.46)) or in the equivalent state-space form. (Note
the conventional use of G in state-space representation which is different
than its as a TFM G(q] and the difference between the conventional use of
F in state-space representation and F^, F£>, and F^.)

xfc+1 = Fxfc + Gufc

yk = Cxfc+Di i fc+FFffc + FDdfc+F^fc (8.85)

The residual responses are specified such that detection and diagnosis
are enhanced. For additive faults and disturbances (noise and multiplicative
faults are neglected) define the specifications as

r(t) = Z F ( q ) f ( t ) + ZD(q)d(t} (8.86)

Comparing the internal residual expression Eq. (8.83) (ignoring the noise
term) and the specification in Eq. (8.86), one can deduce that

W(9) [SF(<?) SD(9)] = [ZF(q) ZD(q)\ . (8.87)

The residual generator is obtained by solving Eq. (8.87) for W(g). Detailed
examples in [189] illustrate the technique and its extensions with multiplica-
tive faults and disturbances. Other extensions include integration of parity
relation design and residual evaluation with GLR test and whitening fil-
ters for FDD of dynamic stochastic processes [464]. An implementation
of this approach to continuous pasteurization systems and comparison of
parity space approach with a statistical approach that combines T2 and
SPE tests with contribution plots illustrates the strengths and limitations
of both techniques [292].

FDD with Kalman Filters and Diagnostic Observers

The basic concept is to generate residuals for FDD by comparing measure-
ments and their estimates computed using Kalman filters or observers. The
estimation errors of observers or innovations of Kalman filters are used as
residuals. Consider an observer for the deterministic process without faults
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and disturbances, the Kalman filter being used for the stochastic case that
includes noise

xfc+i - Fxfc +

Yfe = Cxfc (8.88)

The observer with a gain matrix K06 has a structure similar to Kalman
filters discussed in Section 4.3.2, viz.,

= Fxfc + Gufc + Ko6(y -

yk = Cxfc . (8.89)

The relations for the state estimation error e = x — x and the output
estimation error e = y — y for the system with faults and disturbances
become

ek+l = (F - Ko6C)efc + Gufc + EFffc + EDdfc - Ko6FFffc - Ko6FDdfc

efc = Cefc + FFffc + FDdfc (8.90)

when Eq. (8.88) is augmented with faults and disturbances by adding
EFffc+E£>dfc to the state equation and F^ffc+F^dfc to the output equation.
Note that the term Gu^ drops out because of the subtraction in deriving e,
and the estimation errors are independent of deterministic inputs u^ . The
output estimation error e can be used as the residual r for FDD. In the
absence of faults (f = 0), r is influenced only by unknown inputs d and
noise that is not included in the process model. Faults can be detected by
setting up threshold values for r (greater than zero to avoid false alarms
due to noise and small disturbances) and developing some FDD logic.

Various observer and Kalman filter configurations have been considered
to detect and diagnose multiple faults. One configuration is based on mul-
tiple hypotheses testing where a bank of estimators are designed such that
each estimator is designed for a different fault hypothesis. For example,
Tio would be no faults, "Hi, bias in sensor 1, 7^2 zero output in sensor 1,
etc. The hypotheses are tested in terms of likelihood functions. The dedi-
cated observer configuration has multiple estimators where each estimator is
driven by a different single sensor output to estimate as many components
of the output vector y as possible. When a certain sensor fails, the output
estimate given by the corresponding estimator will be erroneous. FDD of
multiple simultaneous faults is carried out by checking values of structured
sets of estimation errors [106]. The generalized observer approach uses a
bank of estimators where each estimator is dedicated to a certain sensor.
Each estimator receives process information from all other sensors except
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the sensor whose reading is being estimated. The residuals are checked us-
ing threshold logic to diagnose a faulty sensor. Reduced-order or nonlinear
estimators can also be used to develop FDD systems with Kalman niters
and diagnostic observers. The equivalence between parity relation based
and diagnostic observer based FDD has been shown [162, 188].

FDD Using Robust Observers for Unknown Inputs
Deterministic observers and niters were used in the previous section to es-
timate state variables and outputs. The effect of disturbances and noise
were accounted for by using nonzero threshold limits for residuals. Ro-
bust observers can be designed by including disturbances [163] and both
disturbances and noise [427]. To illustrate the methodology and design
challenges, robust residuals generation using unknown deterministic input
(disturbance) observers [163] are discussed. Consider the process model

xfc+i = Fxfc + Gufc + EFffc + E£>dfc

yfc - Cxfc + FFfk + FDdfc (8.91)

Define a linear transformation

zfc = Txfc (8.92)

for the fault free system and the robust unknown input observer

zfe+1 = Rzfc + Syfc + Jufc (8.93)

with the residual
rfc = L lZfc + L2yfc (8.94)

such that if ffc = 0 then lim^oo r^ = 0 for all u and d, and for all initial
conditions XQ and ZQ. If ffc ^ 0, then r^ 7^ 0. The estimation error equation
for the observer is

efc+i = zfc+i - Txfc+i (8.95)

= Rzfe + Syfc + Jufc - TFxfe - TGufc - TEFffc - TEDdfc

Substituting for x^ and yfc, and imposing that the error should be inde-
pendent of state variables, control inputs and disturbances, the following
equations are established:

TF

(8.96)

-RT

J

TED

SFD

TEF

SFF

= SC

= TG

= 0

= 0

+ o
^ o
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where the last two equations ensure that the residual is nonzero if there is
a fault (ffc 7^ 0). The equations for y^ and r^ and Eq. (8.95) lead to

LiT + L2C = 0

L2FD - 0 (8.97)
L2FF ^ 0

The solution to Eqs. (8.96-8.97) is obtained by supplying the matrices R,
S, J, LI, and L2. The solution details are given in [456]. However, Eq.
(8.94) (nonzero and zero values for rfc) and Eq. (8.92) may not exactly
be satisfied in many practical situations, and optimal approximations may
be needed [163]. The procedure for finding optimal approximate solutions
have been proposed [163].

8.3.2 FDD Based on Model Parameter Estimation
The parameters of a model describing the dynamic behavior of a process
change when the operation of the process varies significantly. If a process
model is developed for normal process operation, the model parameters can
be re-estimated when new data are collected and compared with nominal
values of model parameters. Significant deviations in the values of model
parameters indicate the presence of faults or disturbances or modification
of the operating point of the process. If the last two possibilities are elimi-
nated, then changes in parameter values indicate faults.

The model of the process may be constructed from first principles. Then
the parameters that depend on process operation should be determined and
those parameters should be estimated when new data are collected [251].
Another alternative is to develop a time series type of model (Section 4.3.1).
Then, changes in model parameters over time are monitored for FDD.

A procedure suggested for implementing this approach in a deterministic
framework is outlined [251]. Consider a process model described by linear
input/output differential equations with constant coefficients

(n} (t) + ' - - + a 1 y ( f ) + y(t) = bmu^ (£) + • • • + b0u(f) (8.98)any

where y^ indicates the nth derivative of y. The model parameters are
collected in a vector 9

0 = [1 ai • • • an b0 • • • bm}T . (8.99)

Determine relationships between model parameters 9i and physical param-
eters (j)j

e = f(<j>) . (8.100)
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Identify model parameters 6 from process data (u, y). Then, determine
the physical parameter values using the inverse relationship 0 = f"1^) and
compute changes in 0, A0. Use threshold logic or other tools to determine
the magnitude of changes in A0 and presence of faults.

A more general framework can be established for modeling the changes
in the eigenstructure of a data-based model in state space form (F ma-
trix of discrete-time equation such as Eq. (8.49)) or time series form (AR
or ARMA model). The version discussed below will provide detection of
change in univariate systems. Extension to multivariable processes has
been developed [45]. Additional steps are necessary for diagnosis if mul-
tiple faults are possible. For the case of additive changes, the cumulative
sum to be computed becomes

on / „ >> _ y^ ^„„Pe1(yk\yk-l) f
^m(Pe0,Pel) - > log — r (

where pe1 reflects the change of magnitude 6 at time r and the stacked
output values are

yk-i = [Vk-i yk-2 ••• yi]T • (8.102)

The GLR is
&k(po0,P91) = max max S*(peo,pei ) (8.103)

l<r<fe (?i

and the GLR test becomes

HO : A.k(po0,pe1) < T no change at time k

H\ : A.k(peQ,p6l) > r change at time k (8.104)

Significant savings in computation time can be generated by using a two-
model approach [50]. For illustration, consider a two-model approach for
on-line detection of change in scalar AR models

(8.105)

where e^ is Gaussian white noise with variance cr? s and for i = 1, • • • ,p

\ f r n ^ r ~ l (8.106)
il tor n > r

r% for n < r ~ 1
af(P) 1 (T? for n > r .

Define the parameter vectors

6P = fa? • • • aP crj] p = 0,1 . (8.107)" L i n p j ^ ' \ /
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The on-line change detection can be formulated as a GLR test using Eqs.
(8.101-8.104). If the AR model M0 (with parameter vector 0°) for the no
change hypothesis is not known, identify it with a recursive growing memory
filter. For each possible change time r, identify the after change AR model
MI using data for the time window [r,k] and compute the log-likelihood
ratio ,5̂  • Maximize 5* over r. Simplifications for saving computation time
and other distance measures between models MQ and MI are discussed in
[50].

Parameter Change Detection (PCD) method for SPM of Strongly Autocor-
related Processes. The model parameter estimation paradigm is a powerful
change detection method for strongly autocorrelated processes. The SPM
framework based on time series model forecasts introduced by Alwan and
Roberts [16] is one of the most widely used approaches to handle the SPC of
processes with autocorrelated data [402, 220]. In this framework, a time se-
ries model that describes the autocorrelated process behavior is determined
from either some preliminary information or a data set collected when the
process was in a state of statistical control. The residuals are generated from
the difference of actual measurements and one-step-ahead predictions com-
puted by using this model. The estimation of the one-step-ahead minimum
variance forecasts can also be formulated by using a state-space form of the
time series model, where the states are the one-step-ahead forecasts. The
optimal estimation is given by a Kalman filter. In this approach, change
detection in the autocorrelated signal is converted to a change detection in
residuals that have suitable statistical properties such as iid which permit
the use of standard SPC charts. Generalized likelihood ratio was also used
to develop process monitoring schemes based on residuals [45, 677]. Mon-
itoring of forecast residuals have not proven to be very useful SPC tools
especially for highly positively correlated time series models. The ability
to make correct decisions gets worse particularly when the AR part of the
model has roots close to the unit circle [220]. This is frequently encountered
in process variables that are under feedback control. The behavior of the
controlled variable is dominated by the closed-loop dynamics that include
the feedback controller. Usually the controller has an integrator by design
in order to compensate for steady-state offset, and the integral action yields
roots of magnitude one.

An alternative SPM framework can be developed by monitoring the
variations in model parameters that are updated at each new measure-
ment instant. Sastri [534] used such an approach together with the con-
cept of discounted recursive least-squares also known as recursive weighted
least-squares (RWLS). An extension of this approach was called parame-
ter change detection (PCD) method for monitoring autocorrelated processes
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[414]. The new features of the PCD method include use of recursive variable
weighted least squares (RVWLS) with adaptive forgetting, and an implicit
parametrization scheme that estimates the process level at each sampling
instant. RVWLS parameter updating with adaptive forgetting provides
better tracking of abrupt changes in the process parameters than the usual
RWLS updating, and it reduces the number of false detections of change as
well. The detection capabilities of PCD method are superior to methods
based on forecast residuals for highly positively correlated processes. As au-
tocorrelation increases, the improvement of PCD over residuals based SPM
methods becomes more significant. The PCD method possesses several
attractive features for on-line, real time operation: its computations are ef-
ficient, its implementation is easy, and the resulting charts are clearly inter-
pretable. The implicit parametrization feature of PCD provides a statistic
for the process level (mean) which is used to detect and distinguish between
changes in level and eigenstructure of a time series. Model eigenstructure
is determined by the roots (or eigenvalues) of a model. It is related to the
order and parameter values of AR or ARM A models, and has a direct effect
on the level (bias) of the variable described by the model and its variance
(spread). Based on the values assigned by PCD to various indicators one
can determine if an eigenstructure change has occurred and if so whether
this involves a level change, a spread change, or both. The outcome of
implicit parametrization confirms the existence or lack of a level change,
and provides the magnitude of the level change [414, 411].

8.3.3 FDD with Hidden Markov Models

Hidden Markov models provide a modeling framework when the state of a
system can be inferred from some measured variables (observations) with-
out direct knowledge of the state variables. It is a double stochastic pro-
cess in the sense that both the observations and the states are stochastic
[279, 484]. The discussion focuses first on discrete-time Markov processes.
Then, HMMs, their parameters, and the fundamental problems in develop-
ing an HMM are summarized. Finally, some applications are presented.

Discrete-Time Markov Processes
Consider a process that can be in any one of N distinct states S —

{si? s<2->'' • > SN} at any time. The process state changes at regularly spaced
times indexed by t, and the actual state at time t is denoted by qt. The
evolving sequence of states are Q = {qi,q2, • • • ,qt} and qt belongs to one
of the states in S. A full probabilistic description of the process may ne-
cessitate specification of the current and some of the preceding states. A
special case that is similar to state-space models requires only the imme-
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diate previous state. Called discrete-time, first order Markov chain, this
special case is represented as P[q± = Sj\qt-\ = Si]. If the state transition
probabilities a^ from state i to state j are not time dependent

oy - P[qt = Sjfa-i =Si] 1 < i,j < N (8.108)

with the constraints

N

dij > 0 for all ij ' = 1 for a11 L (8.109)

This process is an observable Markov model because the process outputs are
the set of states and each state corresponds to a deterministically observable
event. The outputs in any given state are not random. A simple Markov
chain with three states is presented in Figure 8.9.

Hidden Markov Models
Consider the case where the stochastic process is observed only through

a set of stochastic processes that produce the sequence of observations.
The states are not directly observable, they are inferred from the observa-
tions. An example would be a process consisting of a few containers that
are filled with marbles of multiple colors. Each container has marbles of
all colors, but the fraction of marbles of a certain color in each container
varies. At each observation time, a marble rolls out through a channel that
connects all containers, but the observer does not see the container that
dispenses the marble and does not know the rule that selects the container
that dispenses the marble. The dispensing of marbles generates a finite ob-
servation sequence of colors which can be modeled as the observable output
of an HMM. A simple HMM of this process would have each state corre-
sponding to one of the containers and for which a marble color probability
is defined for each state. The choice of containers is determined by the
state transition matrix A = [a^-] of the HMM.

The elements of the HMM as depicted in Figure 8.10, include [279, 484]:

N The number of states in the model. The model is called ergodic if any
state can be reached from any other state. Generally all states are
interconnected. Denote the state at time t as qt.

M The number of distinct observation symbols per state, the alphabet size.
The individual symbols are denoted as V = {vl5 • • • , VM}

A = {o>ij} The state probability distribution where

aij = P[qt = Sj\qt-i = Si] 1 < i,j < N (8.110)
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31
23

Figure 8.9. A Markov chain with three states (labelled si, si and s3) and
selected transitions (ais and 0,32 set to 0).

B = {bj(k)} The observation symbol probability distribution, where

bj(k) = P[ot = l<k<M (8.111)

defines the symbol distribution in state sJ5 for 1 < j < N.

also called the initial state oc-C = {ci} The initial state distribution
cupancy probability

^ = P[qi = s i < N (8.112)

A complete specification of an HMM requires specification of two model
parameters (TV and M), observation symbols, and three sets of probability
measures (A, B, and C). The set of probabilities is written compactly as
A = (A,B,C). This parameter set defines a probability measure for O,
P(0|A).

Given the values of TV, M, A, B and A, the HMM can generate an
observation sequence O = (QI • • • OT) where each observation ot is one of
the symbols in V, and T is the total number of observations in the sequence.

The three basic problems for HMMs to develop a useful model for FDD
are:

1. Given the observation sequence O = (QI • • • OT) and a model A =
(A, B, C), how can the probability of the observation sequence P(O|A)
be computed efficiently? The solution provides a measure of similar-
ity (goodness of fit) between the observation sequence and a sequence
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that would be generated with the given model. Hence, if these se-
quences are similar, one may accept that the model used is describing
the process that generated these observations.

2. Given the observation sequence O = (01 • • • OT) and a model A =
(A, B, C), how can the most likely state sequence q = (qi q-z • • • qr]
that "explains" best the given observation sequence O be determined?
This is an attempt to find the hidden part of the model, the "correct"
state sequence. In general, there is no analytic solution and usually
a solution based on some optimality criteria is obtained.

3. How are the model parameters A = (A,B,C) adjusted to maximize
P(O|A)? The parameter re-estimation is carried out using a set of
observation sequences called training data in an iterative manner until
the model parameters maximize P(O|A).

The HMM is formulated in two stages: training stage that solves Prob-
lem 3, and testing stage that addresses Problems 1 and 2. Problem 1
is solved using either the forward or the backward computation procedure,
Problem 2 is solved using the Viterbi algorithm, and Problem 3 is solved us-
ing the Expectation-Maximization (EM) (also called Baum-Welch) method
[279, 484]. Details of the algorithms, implementation issues, and illustra-
tions are given in both references.

Pattern recognition systems combined with finite-state HMMs have
been used for fault detection in dynamic systems [557]. The HMM pa-
rameters are derived from gross failure statistics. Wavelet-domain HMMs
have also been proposed for feature extraction and trend analysis [671].
A wavelet-based smoothing algorithm filters high-frequency noise. A tra-
jectory shape analysis technique called triangular episodes converts the
smoothed data into semi-qualitative mode and membership functions trans-
forms the information to a symbolic representation. The symbolic data
is classified with a set of sequence matching HMMs for trend analysis.
This approach is extended to detection and classification of abnormal pro-
cess situations using multidimensional hidden Markov trees [37, 579]. The
case studies discussed in these publications illustrate the application of the
method to various continuous processes.

8.4 Model-free Fault Diagnosis Techniques

The traditional model-free FDD method relies on physical redundancy cre-
ated by multiple sensors that measure the same variable. It is used in the
measurement of critical process variables. Significant difference between
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Time
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sequence
(feature
vectors)

Known

Determine the
state q q _ q . . . q most likely

sequence 2 t T sequence q that
explains best the

(q =S. i=1 N) observationf ' ' ' sequence O given
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Figure 8.10. HMM structure.

different sensor readings indicate a sensor fault. When three or more sen-
sors are used, a voting mechanism may be established to diagnose the faulty
sensor (s). Another hard ware-based FDD is self-diagnosing or smart sensors
that can check the correctness of their own operation. These approaches are
usually more expensive than FDD based on analytical redundancy, but the
cost may be justifiable for mission critical measurements and equipment.

A simple model-free FDD is based on limit checking. Each measurement
is compared to its upper and lower (preset) limits, and exceeding the limits
indicates a fault. The limit checking approach can be made more elaborate
by defining warning and alarm limits, and by monitoring time trends (run
rules in univariate SPC in Section 6.1.1). An important disadvantage of
the limit checking approach is the need to interpret the alarms generated.
A single disturbance that travels through the process can generate many
alarms. Extensive process knowledge and process operation experience is
necessary to determine the source cause of the alarms. Knowledge-based
systems (KBS) can automate alarm interpretation.

Logic reasoning using ladder diagrams and hard-wired systems have
been useful for FDD in the latter part of the 20th century. Recently, fuzzy
logic and FDD based on fuzzy logic has gained popularity. Fuzzy logic
systems are discussed in Section 8.4.1 as an integral part of KBS.

Software based logic reasoning, especially real-time KBSs have become
more abundant with the increase of computation power and reduction of
computer costs. Object oriented real-time KBSs and their use in logic
reasoning are discussed in Section 8.4.1. KBSs can also provide a super-
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visory operation to integrate various monitoring and diagnosis activities.
Real-time supervisory KBSs that integrate statistical process monitoring,
generation and interpretation of contribution plots, and FDD are presented
in Section 8.4.2.

8.4.1 Real-time Knowledge-Based Systems (RTKBS)
Chemical process industries (CPI) require a high level of supervision in real-
time. Supervision tasks may include scheduling processing stages, supervis-
ing data acquisition, distributed control systems, and alarm management.
This means low level process operations such as adjustment of PID control
settings and high level qualitative decisions such as implementing differ-
ent operational policies and fault handling are to be dealt with together.
All these activities are realized with accumulated expertise over the years.
Experience of process operators and engineers is an invaluable asset and
should be incorporated in an automated supervisory system. Real-time
knowledge-based systems (RTKBS) provide such an environment where a
high level automated process supervision can be achieved.

KBSs have been one of the rapidly growing applications of Artificial
Intelligence (AI) in the scientific and engineering arena during the last two
decades. A KBS is a computer program that emulates the decision-making
ability of a human expert. The terms KBS and Expert Systems are often
used synonymously. In this book we will use the term KBS.

Figure 8.11 illustrates the general framework and the common compo-
nents of a KBS [191]. The knowledge-base contains facts, rules and heuris-
tics that are used by the inference engine to draw conclusions. The user
interfaces with the KBS by using an interface to input information or learn
the conclusion reached by the KBS. Many algorithms have been proposed
for inferencing by AI researchers [502, 428]. In the context of KBSs for

Figure 8.11. Basic structure of a KBS.
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supervising process operations, forward-chaining is used to update all mea-
surement information and derived variables when new process information
is made available to the KBS. Then, backward-chaining is used to infer the
status of process operation (normal or faulty), diagnose the source cause of
abnormal operation, and formulate the proper intervention.

The process of building a KBS, developing and implementing a problem-
solving strategy is called knowledge engineering. The knowledge of an ex-
pert or a group of experts is transferred into KBS by knowledge engineer.
The customary way of performing this task is to repeat a cycle of interview-
ing the expert(s), constructing a prototype, testing and re-interviewing that
is a very time consuming and laborious task. This task is called knowledge
acquisition and elicitation [221]. Recently, more effective systematic tech-
niques have been proposed for knowledge acquisition and elicitation [193]
and techniques for automatic knowledge acquisition have been suggested
[46, 513]. In the early days of the technology, knowledge engineers had
to develop the entire system from scratch by using one of the available
AI programming languages such as LISP (LISt Processing language), Pro-
log (Programming in Logic), Smalltalk, OP5 (its current version is OP83)
and NASA's CLIPS software. Today's KBS development software such as
Gensym's G2, make the development easier. One of the major differences
between conventional programming languages such as FORTRAN and C
and AI programming languages is that the former rely on the numbers and
algorithms while the latter are designed over symbols, lists and searches.
KBSs use inferences to achieve a reasonable solution that is the best that
can be expected based on data, facts and rules currently available, in con-
trast to a numerical optimization approach based on an objective function,
process model, constraints to equations, and numerical optimization algo-
rithm.

Several types of knowledge are used in a KBS. Most of the early KBSs
for CPI are developed using shallow knowledge which is based on empir-
ical and heuristic knowledge [303, 314, 492, 617]. Heuristics are rules of
thumb or empirical knowledge gained by experience which may provide a
quick solution to a specific problem by relating the symptoms with causes
without using a system model. Deep knowledge is based on the basic struc-
ture, function and behavior of a process such as underlying physiological
phenomena about microbial activities in fermentations (a process model in
a mathematical form). Shallow and compiled knowledge provide the ba-
sis for various kinds of knowledge. Rules formed from information derived
from deep knowledge are called compiled knowledge and rules derived from
shallow and compiled knowledge are called rule-based knowledge. Several
KBSs have been proposed for FDD based on these knowledge abstractions
in CPI [467, 619].
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Rule-based knowledge representation became dominant in early KBSs
developed in many fields. The initial number of rules to be retained in the
KBS depends on the complexity of the process and the amount of knowl-
edge acquired from experts. One of the advantages of a KBS is that rule
library can be expanded by adding new rules as they become available. As
the number of rules increases, the use of information becomes challenging.
Some commercial KBSs had tens of thousands of rules for knowledge repre-
sentation and inferencing, putting on an enormous burden on the execution
of the software. Recent KBS shells such as G2 of Gensym Inc., and Nexpert
Object of Neuron Data have adopted a hybrid structure based on object
based systems. The object framework is used to develop classes, objects,
and instances to represent knowledge, and rules are used for inferencing.
This results in significant reduction in the number of rules and increase
in computation speed. Rules are conditionally true and can be cast into
IF-THEN statements such as

IF the substrate consumption rate is lower than that expected
and the fermentation is in the fed-batch operation mode

THEN the flow of substrate feed rate is high.

Object-based knowledge representation is another technique in which
field of knowledge representation, the object is the central notion. The de-
sign of G2 knowledge representation relies on this technique. Knowledge is
here expressed by means of two kinds of objects: (1) classes (which describe
families of individuals), and (2) instances (which describe the individuals).
Classes are organized in hierarchies by a specialization relation upon which
an inheritance mechanism is settled. This mechanism allows a more spe-
cific sub-class to inherit from all the properties of it super-class it does
not redefine. Inference mechanisms are also proposed in order to complete
knowledge; default value, classification, and procedural attachment. Clas-
sification is a central mechanism which determines for an instance the set of
sub-classes of its current class to which it also could be linked. Procedural
attachment consists in specifying a peace of code to be executed in order
to obtain the value of a property in a class, if needed [183, 184].

A number of KBS are proposed in early nineties for knowledge-based
(KB) process control and control systems design in CPI [43, 56, 274, 601].
KB control technologies are also proposed for bioprocesses and fermenta-
tion industries [1, 27, 236]. A review of knowledge-based control systems
for fermentations is given by Konstantinov and Yoshida [288] where they
summarize the functions of a supervisory KBS for fermentation control as

1. Input data validation. KB is structured such that contradictory mea-
surements with respect to previous fermentation can be identified.
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2. Identification of the state of the cell culture. On-line detection and
evaluation of physiological phase of the cell population is one of most
challenging tasks to be achieved. Phase specific control activities can
then be performed.

3. Detection and diagnostics of instrumentation faults. Instrument mea-
surements should be closely monitored and failures detected/diagnosed
by the KBS.

4. Supervision of conventional control. Phase detection type of high level
decisions are used to change low level control parameters.

5. Communication with user. KBS should be able to inform the user
(operator) about the process, explain its activities and give advice.

6. Plantwide supervision and scheduling. KBS should be extended to
perform supervision and scheduling activities for upstream and down-
stream processes.

On-line estimation of infrequently measured variables and prediction of
product quality variables can also be added to the list above. Achieving all
of these tasks in a KBS environment can be realized with the combined use
of different techniques. For example, ANNs (Section 4.6), are integrated
with fermentation KBS for estimating state variables such as biomass con-
centration [28, 490].

A variety of RTKBS applications can be found for bioprocesses including
novel interface design [580], extended Kalman filter integration for on-line
state estimation [399], use of qualitative physics for behavior monitoring
[574] and simple rule-based intensive designs [205]. Successful development
and implementation of RTKBS using Gensym's G2 for supervision of indus-
trial fermentation plants are reported [13, 14]. This application which con-
tained approximately 300 rules and integrated with large plant databases
is credited for increasing the plant yield by 4%, reducing process variabil-
ity by more than 10% and saving more than 10 production fermentation
batches from total loss over a period of two years [14].

Fuzzy set theory (widely known as fuzzy logic (FL)) has also received
attention during the last decade in control applications and integrated with
RTKBSs [466, 543]. A brief introduction of FL is presented next in con-
junction with its use in fermentation technologies and RTKBS integration.
Techniques and applications for using integrated ANN-FL controllers have
also been reported [280, 293, 342].
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Fuzzy logic and its integration with KBS for supervision of
fermentation processes

FL is inspired by the way human thinking deals with inexact uncertain
information and can be interpreted as the generalization of classical set
theory. In classical set theory, a set is comprised of a finite or infinite num-
ber of elements belonging to some specified set called universe of discourse.
An element x of the universe of discourse (U) may belong to a set A which
is included in U so that

A = {(X,IJLA(X))\X£ U} (8.113)

where the membership function (or characteristic function) is defined as
(Figure 8.12(a))

{0 T (^ A

1 I A <8-114)1, x f A.

This is a crisp or Boolean description. FL is based on Fuzzy Set Theory
which was introduced by Zadeh in 1965 [680]. A fuzzy set is a generalization
of a classic set so that it allows the degree of membership for each element
in a range over, say closed unit interval [0, 1]. A fuzzy set A (also called
as support set) in the universe of discourse U can be defined as a set of
ordered pairs,

\x£U} (8.115)

where HA(X] is called the membership function of set A and it maps each
element of the universe of discourse to its range space that is the unit
interval in most cases [342] . A variety of membership functions illustrated
in Figures 8.12(b) and 8.12(c) can be used.

Consider the classical Boolean description of the level of temperature
in a fermenter: the temperature is high or low based on a reference point.
In contrast, FL defines vague qualifiers such as quite high, very high, rather
high, rather low, very low, quite low on temperature. Figure 8.12(d) il-
lustrates how the linguistic (fuzzy) variable 'temperature' is mapped for a
few of its values onto the universe of discourse (temperature scale in this
example) for a range of [0, 100 °C] through linguistic descriptors and their
assigned values. For the fuzzy value VeryLow for instance, the mapping is
described in terms of a set of positive integers in the range [0, 100 °C}. The
support set (A) expresses the degree to which the temperature is consid-
ered VeryLow over the range of all possible temperatures in discrete values
specified in degrees Centigrade using HA(X] such that

= 0.8 ^(20) = ^(25) = 0.6,

^(30) = ^(35) = . . . ,^(100) = 0. (8.116)
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Figure 8.12. Examples of membership functions and mapping of a linguistic
variable (d) [280].

This relation is usually represented in the following more compact form

n

A = fj,^(xi)/xi + ̂ A(x2}/x2 + ... + LLA(xn}/xn = vA(xi)/Xi (8.117)

where '+' denotes the union of elements (/ does not indicate division) and
HA(xi) is the grade of membership of Xi for n membership values. For the
temperature example, Eq. 8.116 becomes

A = 1/0 + 1/5 4- 0.8/10 4- 0.8/15 4- 0.6/20 4- 0.6/25 4 - . . . 4- 0/100. (8.118)

Theory and applications of FL, and integration of KBS and FL for control
of fermentation processes are discussed in the literature [285]-[422].
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Control of Fermentation Processes using an Integrated KBS-FL
System. Konstantinov and Yoshida proposed a methodology (Figure 8.13)
for detection of the physiological state of fermentation and control of bio-
processes based on expert identification of the physiological state of a cell
population [285, 286, 287] using FL, RTKBS and temporal reasoning [465].
The physiological state (PS) vector (x) is defined quantitatively by a set
of on-line measured variables (u, y) such as ammonia flow rate and sub-
strate feed rate that are used to calculate variables such as specific oxygen
to substrate consumption rate, forming the physiological state-space of the
culture. Based on the practical experience on the process, a finite number
of physiological situations (PSN) are defined where the physiological char-
acteristics of the cell population and its reactions to different control actions
are well known. The description of PSNs is mostly in qualitative terms such
as "situation of optimal productivity." Hence, PSNs can be interpreted as
fuzzy variables. When the process passes from one state to the next, it of-
ten exhibits variation in structure behavior and therefore proper alteration
in control strategies is required for each state. Adaptive weighting of the
membership functions is also introduced to give more importance to certain
physiological states. The synthesis of physiological recognition algorithm
consists of the development of a decision procedure in which qualitatively
defined PSNs are related quantitatively to PS vector x. State recognition
is performed by means of expert decision rules using fuzzy sets defined over
PSNs. An example of a decision rule relating the current PS vector x and
PSNs is:

IF xi is high and X2 is low
THEN the current x belongs to PSNi with the possibility MI = I.
The fuzzy values used in the rules are described by fuzzy sets in the

general form given in Eq. 8.117 leading to the following system of nonlinear
decision functions

wjz(x) = M (8.119)
where w denotes the matrix of weights, fi(x.) matrix of fuzzy membership
functions and M vector of possibilities for the recognition of the current PS
as an element of PSNi. Mi is a real number in the range [0, 1] and equal
to Y^Li wjlj'ij(xj} ~ Mi [285]. Once the physiological state is determined,
RTKBS uses another rule-base to decide on switching to appropriate control
algorithm:

IF PSN is PSNi
THEN activate control algorithm aj where the control action is defined
as Ui = ai(y, x).

They have also proposed variants of this methodology by developing tem-
poral shape libraries for real-time detection of physiological phenomena in
a KBS framework [289].
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Figure 8.13. The structure of physiological state control system [285].

8.4.2 Real-time Supervisory KBS for Process
Monitoring and FDD

KBS applications discussed in Section 8.4.1 for FDD and supervision of
fermentation processes lacked multivariate statistical inference. MV statis-
tical techniques are found to be very suitable for on-line SPM and FDD
of fermentations processes as discussed in detail in Chapter 6 and Sections
8.1 and 8.2. There is a growing interest in the use of MV techniques in
fermentation process modeling, monitoring and FDD [199, 248, 333, 608].
The synergistic integration KBS and MSPM tools offers advantage. Inte-
grating MSPM and RTKBS enables the automated interpretation of MV
charts during the abnormal situations and relate this information with pro-
cess knowledge. The basic structure of the overall integrated framework
based on Gensym's G2 KBS development environment is given in Figure
8.14 [184].

Research on developing integrated KBS-SPM for process supervision
and FDD progressed during the last decade. Norvilas et al. proposed an in-
telligent SPM framework by interfacing KBS and MV techniques [337, 436]
and demonstrated its performance with simulation studies. Integrated use
of MSPM techniques and RTKBS for real-time on-line monitoring and FDD
of fermentation processes is proposed by Undey et al. [607] and Glassey et
al. [193]. Applications of the integrated RTKBS and MSPM techniques are
also reported by industrial researchers [11]. Most of the recent applications
are developed using Gensym's G2 software. G2 offers a graphical, object-
oriented environment for creating intelligent applications that monitor, di-
agnose, and control dynamic events in on-line and simulated environments.
It features a structured natural language for creating rules, models, and
procedures. G2 includes concurrent execution of rules and procedures and
the ability to reason about behavior over time. Communication between
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Figure 8.14. The structure of integrated KBS [607].

G2 and external programs such as executable C routines and real-time data
systems including relational databases and distributed control systems is
realized by using G2 Bridge Products provided by Gensym [185].

Recently, Undey et al. [609] have extended the integrated RTKBS
framework by including process landmark detection and time alignment
for a more refined SPM and FDD in their work for fed-batch fermenta-
tion processes. G2 knowledge-base is comprised of two kinds of rule-bases:
(1) Fermentation process rule-base, where fermentation specific rules are
stored such as physiological phase related heuristics, (2) Multivariate statis-
tics rule-base, where interpretation about the MV charts are stored. The
first rule-base is process-specific, hence the level of knowledge depends on
the knowledge acquired from process experts, while the second rule-base
is process-independent so that it can be used for different types of batch
processes. Examples of statistical and process related rules are, respectively

IF the T2 chart is out-of-control
THEN start checking T2 contribution plots and identify faulty

variables whose contributions exceed contribution limits.

IF the glucose feed rate is diagnosed as out-of-control and fermentation
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is in the fed-batch operation mode
THEN Check the condition of the glucose feed pump.

These two rule-bases are also connected to an external database where
process related data such as historical data sets and reference batches as
well as statistical limits and parameters are stored. There is a continu-
ous flow of information between the G2 KBS and external databases. MV
statistical algorithms are first developed in Mathworks' MATLAB software
environment because it allows faster prototyping. A number of software
bridges are created by using G2 Standard Interface (GSI) to provide com-
munication between the KBS and external statistical modules. Since GSI
bridge development requires C code, the Matlab functions developed are
compiled into C functions. Performing statistical calculations outside the
G2 KBS environment allows faster execution and better computational per-
formance.

Detection of abnormal process operation can be performed on-line in
real-time by implementing one of the on-line SPM techniques discussed in
Section 6.5. In this application, AHPCA technique (Section 6.5.2) is pre-
ferred due to its superior computational performance and elimination of
the need to estimate future values of variable trajectories. Fault diagnosis
is performed by means of contribution plots and inferencing. Statistical
limits for variable contributions to T2 and SPE are calculated as discussed
in Section 8.1. When an out-of-control signal is observed on either T2

or SPE charts, the corresponding contribution plots are investigated auto-
matically and variable(s) exceeding control limits are diagnosed as major
contributor(s) to the abnormal situation. The RTKBS helps operators on
this interpretation. Once the MSPM rule-base detects and diagnoses the
abnormal situation, the process specific rule-base is activated to further
investigate the problem by emulating the reasoning of the human expert.

The penicillin fermentation simulator developed based on the unstruc-
tured mathematical model discussed in Section 2.7.1 is integrated with the
RTKBS as a test-bed. It is run as an external C executable to provide
fermentation data in real-time through another GSI bridge. G2 also allows
a nice representation of the process flow chart. Each processing unit can be
interpreted as objects that can inherit a general class information. Changes
in the process operation can also be animated by means of changing color
schemes of objects such as active pumps or showing attributes on each ob-
ject such as temperature value in the fermentor next to fermenter object. A
typical fed-batch fermentation for penicillin production flow chart is devel-
oped in a G2 workspace as a part of integrated G2 RTKBS (Figure 8.15).
Figure 8.16 shows a case where a small downward drift is introduced in
glucose flow rate. First, the RTKBS uses its statistical inference rule-base
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to detect the out-of-control situation and reports it along with the time of
its occurrence. The RTKBS continues to use the statistical rule-base to
find out the responsible variable(s) by analyzing contribution plots. Based
on the contribution limit violations, a conclusion is reached on the respon-
sible variable(s). At this point process expertise is required. Hence, the
RTKBS turns to process specific rule-base to further investigate the sit-
uation and generate some advice to isolate the problem. In the example
shown in Figure 8.16, the process rule-base is used by the RTKBS to infer
that the problem is with the glucose feed. The RTKBS also checks cer-
tain variables that are highly correlated with glucose feed such as glucose
and biomass concentrations in the fermenter to verify its conclusion. Since
these variables are also affected (determined by analyzing their contribu-
tion values), the certainty about a potential glucose feed failure is high
and these findings are reported to the operator by displaying them on the
monitor. The messages include the time of detection of the deviation, the
input variable(s) responsible, and the process variable(s) affected by the

Data Monitoring Messages Displays Help Batch Age: 129.0 hr

A"' S*VH\<.^ X ~^£**-J&f&^^^<&'^~

Figure 8.15. Fed-batch penicillin production process flow chart and profiles
of process variables in G2 environment.
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Figure 8.16. MV charts (and their interpretation by RTKBS) detecting
out-of-control situation in real-time.

disturbance. As the batch proceeds, additional process variables may be
affected. Figure 8.17 shows multivariate charts along with their RTKBS
interpretation at the end of the batch. In addition to variable(s) that are
diagnosed in real-time at the time of their deviation from NO (Figure 8.16),
there are variables such as dissolved oxygen and penicillin concentrations
diagnosed as having contributed to the deviation. This is due to after-
effect of the root cause of the deviation that is a temporary drift in the
glucose feed. If the detection is delayed, the diagnosis effort must sort
out all this additional information, by considering the time that they were
listed and other characteristics. This underlines the importance of early
detection for easier diagnosis. All of the results about the performance of
the batch run such as whether it has gone out-of-control and the time of
out-of-control occurrence, variables responsible to deviation from NO and
a list of productivity and yield related measures are reported conveniently
for the review of process operator (Figure 8.18). These results can also be
stored for future reference and integrated with other software that monitors
plant performance, supply chain management, and profitability.
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Figure 8.17. MV charts and RTKBS findings at the end-of-batch.
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Productivity Measures
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Final Penicillin Cone. - 1.302 pA 61 381.5 h
Total Penlclilln Produced - 135 264 g

During the batch operation 1 faults occured
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Figure 8.18. RTKBS report including interpretation of MV charts at the
end-of-batch.
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Related Developments

Increased use of batch processes in various industries has invigorated re-
search and development in batch process design and operation. Recent de-
velopments in batch process modeling, monitoring, diagnosis, and control
have been presented in earlier chapters of the book. Related developments
in other aspects of batch processes are presented in this chapter, focusing
on three areas:

• Process development and modeling using metabolic engineering and
pathway analysis

• Dynamic optimization of batch process operations

• Integration of monitoring, control, and diagnosis activities using su-
pervisory systems

The earlier chapters of this book presented many powerful techniques that
have been developed for batch operations or extended from other fields to
improve modeling, monitoring, diagnosis, and control of multivariable fer-
mentation processes. This chapter introduces additional research directions
and techniques that will have an impact on bioprocess operations, and in
particular the operation of multivariable batch fermentation processes.

Advances in process development have been influenced by better under-
standing of fundamentals of fermentation processes and developments in
metabolic engineering, focusing on metabolic pathway analysis and modi-
fication. The role of metabolic engineering in process improvement is dis-
cussed in Section 9.1.

Progress in process modeling can be discussed based on advances in var-
ious key areas. One influential factor is the interest in building layers of
models, starting with the model of a cell. An ambitious plan in biomedical
applications is to integrate the models of cells to build models of organs
and integrate the models of organs to build models of the body for con-
ducting computational experiments. The availability of such models for

517
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screening potential drug candidates in pharmaceutical industry will have
significant impact on drug development time and cost. Advances in funda-
mental areas such as biology, biochemistry, mathematics, computer science
and bioengineering have contributed to progress in the development of these
multi-layer first principles models. Methods for developing first principles
models of batch fermentation processes were introduced in Chapter 2. In-
formation on metabolic pathways and integration of systems science meth-
ods and metabolic pathway analysis can provide the tools to add detailed
knowledge to first principles models. Metabolic flux and control analysis
are introduced in Section 9.2 to underline the use of sensitivity analysis in
model development. The other alternative for describing a batch fermenta-
tion process is an empirical model discussed in Chapter 4. The existence of
many nonlinearities in living systems has motivated researchers for devel-
oping nonlinear empirical models. Advances in statistics, computer science,
mathematics, and systems science enabled development and application of
nonlinear model development techniques in many fields. Section 4.7 pre-
sented extensions of linear model development techniques and Chapter 5
introduces many useful techniques for modeling and analyzing the dynamic
behavior of nonlinear systems.

Progress in dynamic optimization of batch fermentation process op-
erations is influenced by advances in modeling, optimization, statistical
methods, and control theory. Model predictive control (MFC) presented
in Section 7.6 relies on similar techniques and focuses on tracking a ref-
erence trajectory while rejecting the effects of disturbances. The perfor-
mance of MFC systems is strongly related to availability of good process
and disturbance models, and powerful optimization techniques. Dynamic
optimization methods offer a variety of alternatives to select optimal val-
ues of process inputs and switching times to maximize productivity and
yield. The alternatives in dynamic optimization of batch processes, current
practice and emerging technologies are discussed in Section 9.3.

Software environments for efficient real-time operations and powerful
computer hardware enable horizontal and vertical integration of various
tasks in guiding batch process operations. Horizontal integration focuses
on the coordination of monitoring, diagnosis, and control tasks. Verti-
cal integration focuses on the coordination of process operations related
tasks with higher level management tasks. Section 9.4 presents supervisory
knowledge-based systems (KBS) to implement horizontal integration and
introduces vertical integration paths with supply chain management and
plantwide optimization.
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9.1 Role of Metabolic Engineering in Process
Improvement

For several decades, various industrial strains have been successfully de-
veloped by traditional mutagenesis and selection to improve the yield and
productivity of native products synthesized by these strains. The develop-
ment of molecular biological techniques for DNA recombination introduced
a new dimension to metabolic pathway modification. Genetic engineering
allowed precise modification of specific enzymatic reactions in metabolic
pathways, leading to the construction of well-defined genetic background
[564]. Soon after the feasibility of DNA recombination was established, the
potential of directed pathway modification became apparent and various
terms were coined to express the potential applications of this technology,
such as, molecular breeding [273], in vitro evolution [590], microbial or
metabolic pathway engineering [357, 593], cellular engineering [386], and
metabolic engineering [31, 567]. The advent of recombinant DNA tech-
nology has enabled metabolic pathway modification by means of targeted
genetic modifications.

Metabolic engineering can be defined as directed modification of cel-
lular metabolism and properties through the introduction, deletion, inhi-
bition and/or modification of metabolic pathways by using recombinant
DNA and other molecular biology techniques [31, 331, 564]. The analysis
aspect of metabolic engineering focuses on the identification of important
parameters that define a physiological state, use of this information to elu-
cidate the control architecture of a metabolic network, and propose targets
for modification to achieve an appropriate objective [565]. The synthesis
aspect of metabolic engineering examines the complete biochemical reac-
tion network, focusing on pathway synthesis, thermodynamic feasibility,
pathway flux, and flux control [565]. This multidisciplinary field embraces
principles from chemical engineering, computational sciences, biochemistry,
and molecular biology. Potential advantages of using genetically engineered
organisms instead of natural isolates can be [546]:

• The pathway can be turned on in situations where it would normally
be suppressed (e.g. degradation of a hazardous compound to a con-
centration lower than necessary to induce the pathway in the natural
isolate),

• High levels of an enzyme in desired pathways can be obtained by the
aid of strong promoters,

• A single promoter can be used to control the pathways moved from
lower eucaryotes to bacteria, keeping in mind that each protein is
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controlled by a separate promoter in lower eucaryotes,

• Several pathways can be combined in a single recombinant organism
by recruiting enzymes from more than one organism,

• A pathway can be moved from a slowly growing organism into a more
easily cultured organism,

• The genetically engineered cell can be proprietary property.

Product biosynthesis ranging from primary to secondary metabolite pro-
duction pathways of microorganisms are of highest interest in metabolic
engineering. Biopharmaceutical production via plant and mammalian cell
cultures are also of immediate interest due to potential uses in pharmaceu-
tical industry.

Applications of Metabolic Engineering
Several reviews on metabolic engineering cover general ([86, 87, 149, 566]

and specific organisms such as yeast [218], plants [114, 127], and Escherichia
coli [52]. Bacteria and yeast have numerous applications in metabolic engi-
neering because they are well-studied microorganisms and genetic tools for
these are well-developed. Mathematical representations for their growth
and substrate utilization, and product synthesis in these organisms are
available in literature. Furthermore, their generation times are relatively
small, allowing quick experimentation and development. Many practical
applications of metabolic engineering are cited in various papers and books
[87, 331, 564, 565]:

• Improvement of yield and productivity of native products synthesized
by microorganisms. Examples include ethanol production by Es-
cherichia coli [250], succinic acid production by E. coli [576], acetone
and butanol production by Clostridium acetobutylicum [387], produc-
tion of L-lysine, L-phenylalanine, and L-tyrosine by Corynebacterium
sp. [143, 249, 611], L-proline production by Serratia marcescens [371].

• Expansion of the range of substrates for cell growth and product for-
mation. Examples include ethanol production from xylose (and pos-
sibly from hemicellulose hydrolysates) by Saccharomyces cerevisiae
[583], ethanol production from lactose (and possibly from whey) by
S. cerevisiae [310], and ethanol production from starch [60, 238].

• Synthesis of products that are new to the host cell. Examples are var-
ious modified and novel polyketide antibiotics by Saccharopolyspora
erythraea and Streptomyces sp. [247], production of 1,3 propane-
diol by E.coli [593], and polyhydroxyalkanoate production by a small
oilseed plant, Arabidopsis thaliana [474].
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• Design of improved or new metabolic pathways for degradation of
various chemicals, especially xenobiotics. Examples are degradation
of mixtures of benzene, toluene and xylene (BTX) by Pseudomonas
putida [320] and degradation of polychlorinated biphenyls (PCBs) by
Pseudomonas sp. [515].

• Modification of cell properties that facilitate fermentation and/or
product recovery. Examples include better growth of E. coli and other
microorganisms under microaerobic conditions [278], uptake of glu-
cose without consuming phosphoenolpyruvate in E. coli, and ammonia
transport without ATP consumption in Methylophilus methylotrophus
[654].

These examples are a small subset of many success stories of metabolic
engineering that have been reported. They illustrate the various types of
approaches that can be undertaken experimentally:

• Extending an existing pathway to obtain a new product

• Amplifying a flux-controlling step

• Diverting flux at branch points ("nodes") to a desired product by
circumventing a (feedback) control mechanism, amplifying the step
initiating the desired branch (or the converse), removing reaction
products, or manipulating levels of signal metabolites.

Examples of Industrially Important Products
The interest in metabolic engineering is stimulated by potential com-

mercial applications in that improved methods are sought for developing
strains which can increase production of useful metabolites. Recent en-
deavors have focused on the theme of using biologically derived processes
as alternatives to chemical processes. Such manufacturing processes pursue
goals related to "sustainable development" and "green chemistry" as well
as positioning companies to exploit advances in the biotechnology field.
Examples of these new processes include the microbial production of in-
digo (developed by Genencor) and propylene glycol (developed by DuPont)
and other improvements in more traditional areas of antibiotic and amino
acid production. The extension of metabolic engineering to produce de-
sired compounds in plant tissues and to provide better understanding of
genetically determined human metabolic disorders broadens the interest in
this field beyond the fermentation industry and bodes well for increasing
impact of this approach in the future [676].
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A number of industrially important aromatic compounds, including the
aromatic amino acids and other metabolites, can be produced in microor-
ganisms through metabolic engineering of the aromatic pathway. Plastics
and other synthetic polymers, whose desirable properties include chemical
and biological inertness, have become essential for a multitude of appli-
cations in common consumer products. On the other hand, increasing
concern about environmental pollution by these non-biodegradable poly-
mers has created interest in the development of completely biodegradable
polymers [387]. Polyhydroxyalkanoates (PHAs) are an important class of
biodegradable polymers that can be produced by a number of microorgan-
isms. However, the high production cost and some poor material properties
are preventing the use of PHAs in a wide range of applications. Contin-
ued pressure to provide aromatic compounds with very low production costs
will create new challenges to develop competitive biotechnological processes
[331].

Traditional strain improvement methods as well as metabolic engineer-
ing strategies have been used for enhancing the production of antibiotics
and production of novel antibiotics. A wide variety of microorganisms syn-
thesize antibiotics while only clinically useful antibiotics are produced by
the eubacteria, Actinomycetes, in particular Streptomyces, and the fila-
mentous fungi. Metabolic engineering techniques are applied for strain im-
provement to increase the final amount of antibiotics produced in fermenta-
tion processes. A typical strain improvement program involves generation
of genotype variants in the population, either by means of physically or
chemically induced mutations or by recombination among strains [331]. A
detailed case study in penicillin producing strain improvement is discussed
in Nielsen [424].

Yeasts have been associated in a number of ways with mankind for the
production of alcoholic beverages, baker's yeast, and recently for the pro-
duction of ethanol, pharmaceutical proteins and enzymes. Other metabo-
lites, including pyruvate, xylitol, carotenoids, and inositol, can be produced
by metabolically engineered yeasts. Metabolic engineering strategies have
been applied to modify the cellular properties of yeast to improve fermen-
tation and product recovery processes as a result of extended range of sub-
strate utilization. Renewable substrates for extension of substrate range
include starch, the most abundant and readily extractable plant biomass,
and cellulose, hemicellulose and pectin fractions in lignocellulosic materials,
and whey lactose [331]. Traditional approaches include using mixed cultures
or multistage operations such as physical and enzymatic pretreatment of
substrates prior to fermentation. With the development of recombinant
DNA technology, the introduction of heterologous genes into a host yeast
facilitates one step conversion of substrates into useful end products (e.g.,
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recombinant Saccharomyces cerevisiae containing a-amylase and glucoamy-
lase genes that allow the yeast to grow on starch and convert it into ethanol
[60]).

Another area of application of metabolic engineering is in the production
of secondary metabolites that can be used as pharmaceuticals, including
anticancer drugs vinblastine and more recently, taxol by plant cells [331].
Some major objectives are:

• Improving nutritional value of crops (e.g., essential amino acid sup-
ply for storage proteins, modifying lignin amount or type to enhance
forage digestibility)

• Creating new industrial crops (e.g., modified fatty acid composition of
seed triglycerides, pharmaceuticals, polyhydroxybutyrate synthesis,
bioremediation)

• Altering photosynthate partitioning to increase economic yield

• Enhancing resistance to biotic and abiotic stresses

• Reduction of undesired (toxic or unpalatable) metabolites

• Using them as research tool to test basic ideas about metabolic reg-
ulation.

The Future of Metabolic Engineering
No single discipline can bring about the successful development and

applications of metabolic engineering [331]. Metabolic engineering offers
one of the best ways for meaningfully engaging chemical engineers in bi-
ological research for it allows the direct application of the core subjects
of kinetics, transport, and thermodynamics to the reactions of metabolic
networks [565]. With the advent of genomics and proteomics, enormous
amounts of information on the genetic and protein makeup of various mi-
croorganisms are becoming available. As a consequence, bioinformatics will
play an increasingly significant role in the evolution of metabolic engineer-
ing. Also, directed evolution of enzymes will become a powerful tool for
the generation of enzymes or even metabolic pathways suitable for given
tasks. These improvements in metabolic engineering will lead to reshaping
the biotechnology endeavor, giving rise to more precise, more focused and
more effective bioprocessing and intervention at the cellular and organis-
mal levels. Furthermore, it will also bring more control at all levels (gene
expression and protein translation, protein, metabolite, pathway, and flux
levels).
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9.2 Contributions of MFA and MCA
to Modeling

Metabolic flux analysis (MFA) and metabolic control analysis (MCA) are
mathematical tools that have become widely applicable in metabolic en-
gineering. Both tools are interrelated and widely used in metabolic engi-
neering research [331, 426, 565]. They are useful in developing models of
metabolic activity in a biochemical system. They would be instrumental in
developing detailed first principles models of fermentation processes.

The flux is a fundamental determinant of cell physiology and a critical
parameter of a metabolic pathway [565]. The pathway is the sequence of
feasible and observable biochemical reaction steps linking the input and out-
put metabolites. Consider the linear metabolic pathway in Figure 9.1 (a),
where A is the input metabolite, B is the output metabolite, i>i denotes
the reaction rate of the zth reaction step and EI the corresponding enzyme.
The flux J of this linear pathway is equal to the rates of the individual
reactions at steady state [565]:

v\ - »2 = • • • = Vi = • • • = VL (9.1)

For a branched pathway splitting at intermediate I (Figure 9.1(b)) to pro-
duce two output metabolites B and C, two additional fluxes are defined
for the branching pathways. The flux of each branch (J^ and J3, in Figure

A -^

(b)

Figure 9.1. Linear metabolic pathway [565].
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9.1(b)) is equal to individual reaction rates at the corresponding branches.
At steady state, J\ = J% + J$. During a transient, the individual reaction
rates are not equal and the pathway flux varies with time. Consequently,
MFA can not be used to develop transient first principle models. But any
dynamic model proposed to describe the transients in the metabolic path-
way has to be consistent with the steady state model based on MFA. This
provides a reliable reference for a dynamic model when it is reduced to a
steady state description.

MFA is used for studying the properties and capabilities of metabolic
networks in microorganisms. It allows stoichiometric studies of biochemical
reaction networks and may be used for the determination of stationary
metabolic flux distributions, if measurements of uptake and/or excretion
rates of a cell culture in steady state are known. The result is a flux
map that shows the distribution of anabolic and catabolic fluxes over the
metabolic network. Based on such a flux map or a comparison of different
flux maps, possible targets for genetic modifications might be identified,
the result of an already performed genetic manipulation can be judged or
conclusions about the cellular energy metabolism can be drawn. The MFA
is also used to optimize the product yield by redirecting fluxes using genetic
manipulations [282, 426, 565].

Metabolic control analysis (MCA) applies to steady-state or pseudo-
steady-state conditions and relies on the assumption that a stable steady
state is uniquely defined by the activities of enzymes catalyzing individ-
ual reactions in a metabolic pathway. Enzyme activities are considered to
be system parameters along with concentrations of substrate for the first
reaction and product of the last reaction in the metabolic pathway, while
the flux through the pathway or intermediate metabolite concentrations
are considered to be system variables [565]. MCA is a sensitivity analysis
framework for the quantitative description of metabolism and physiology
that allows the analysis and study of the responses of metabolic systems to
changes in their parameters [151, 223, 229, 267, 272]. MCA relies on linear
perturbations for the nonlinear problem of enzymatic kinetics of metabolic
networks. Hence, MCA predictions are local and any extrapolations should
be made with caution. Yet, MCA has been useful in providing measures of
metabolic flux control by individual reactions, elucidating the concept of
rate-controlling step in enzymatic reaction networks, describing the effects
of en/ymatic activity on intracellular metabolite concentrations, and cou-
pling local enzymatic kinetics with the metabolic behavior of the system
[565].

Consider a two-step pathway where the substrate 5 is converted to the
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product P via an intermediate X and enzymes activities E\ and E-2

S^xJ^P (9.2)

The flux of conversion of 5 to P at steady state is denoted by J. The
steady-state is uniquely defined by the parameters of the system, the levels
of enzyme activities E\ and E^, substrate concentration 5 and product
concentration P [565]. Given the values of these parameters, intermediate
metabolite concentration GX and pathway flux J can be determined. If any
parameter value is altered, a new steady state is reached and GX and J are
changed.

One objective of MCA is to relate the variables of a metabolic system
to its parameters and then determine the sensitivity of a system variable to
system parameters [565]. These sensitivities summarize the extent of sys-
temic flux control exercised by the activity of an enzyme in the pathway.
One can also solve for the concentrations of intracellular metabolites and
determine their sensitivities to enzyme activities or other system parame-
ters. The sensitivities are represented by control coefficients that indicate
how a parameter affects the behavior of the system at steady state. The
flux control coefficients (FCC) are the relative change in steady-state flux
resulting from an infinitesimal change in the activity of an enzyme of the
pathway divided by the relative change of the enzymatic activity [565]:

j _ EdJ _ dlnJ
~ JdE~ dlnE ( }

Because enzymatic activity is an independent system parameter, its change
affects the flux both directly and indirectly through changes caused in other
system variables, as indicated by the total derivative symbol in Eq. 9.3.
FCCs are dimensionless and for linear pathways they have values from 0 to
1. For branched pathways, FCCs can be generalized to describe the effect
of each of the L enzyme activities on each of the L fluxes through various
reactions [565]:

j Ei dJk din Jfc .
C> = — — — — — — — i , fe = l , - - - , L (9.4)

Jk dEi

where J/t is the steady-state flux through the kih reaction in the pathway
and Ei is the activity of the ith enzyme. A similar definition is developed
based on the rate of the iih reaction (z^) [565]:

Jk Vi dJk~

The FCCs for branched pathways may have any positive or negative value.
The normalization in the definition of FCCs leads to their sum being equal
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to unity, the flux- control summation theorem:

L
(9.6)

The relative magnitudes of FCCs would depend on the structure of the
system and length of the pathway. FCCs should only be compared with
each other in the same pathway but not with FCCs of other pathways.

Sensitivities can also be denned for the effect of system parameters on
intracellular metabolite concentrations. The concentration control coeffi-
cients (CCC) specify the relative change in the level of the j'th intermediate
Xj when the activity of the ith enzyme is changed:

x. _ E, dcj _
Ci ' CjdE," dlnE, ' ' ' - ? - ' ' '

where Cj denotes the concentration of Xj , Because the level of any inter-
mediate Xj remains unchanged when all enzyme activities are changed by
the same factor, the sum of all CCCs for each of the K metabolites is equal
to zero [565]:

L
*'=0 j = l , . . . , t f . (9.8)

Eq. 9.8 implies that for each metabolite at least one enzyme exerts negative
control. For example, in the two-step pathway of Eq. 9.2 the CCC C* will
normally be negative because GX will decrease when the activity of £2 is
increased [565].

The control coefficients are systemic properties of the overall metabolic
system. Local properties of individual enzymes in the metabolic network
can be described by elasticity coefficients such as the sensitivities of reaction
rates with respect to metabolite concentrations. The elasticity of the ith
reaction rate with respect to the concentration of metabolite Xj is the ratio
of the relative change in the reaction rate caused by an infinitesimal change
in the metabolite concentration, assuming that none of the other system
variables changed from their steady state values:

Elasticity coefficients may also be denned for other compounds that influ-
ence a reaction rate that may not be pathway intermediates.

The relationship between FCCs and elasticity coefficients is expressed
by the flux- control connectivity theorem that indicates how local enzyme
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kinetics affect flux control [267, 565]:

L
5^C/VX. = 0 i = ! , - • • ,L ; j = ! , - • • ,# (9-10)

For the two-step pathway of Eq. 9.2, the connectivity theorem gives

c*J^ -L r*Jc^ — 0 I'Q 11 ̂Lyi CY i Oo ^V — <J v" /

or
/^•J ^2

(9.12)

indicating that large elasticities are associated with small FCCs. For exam-
ple, reactions operating close to thermodynamic equilibrium are normally
very sensitive to variations in metabolite concentrations; their elasticities
are large indicating that flux control for such reactions would be small [565].
Connectivity theorems have also been developed for CCCs.

9.3 Dynamic Optimization of Batch Process
Operations

Discussion on optimal operation of fermentation processes in Chapter 7
focused on the search for open-loop optimal trajectories (Section 7.2) and
regulation of process operation to track reference trajectories while reject-
ing disturbances by using optimal feedback control (Section 7.5) and model
predictive control (MFC) (Section 7.6). These techniques rely on the avail-
ability of reliable dynamic models for the process and disturbances. Indus-
trial practice involves following recipes developed in the laboratory that are
modified to accommodate changes in equipment and scale. The 'educated
trials' approach based on experience and heuristics is used often for recipe
adjustment. The recipes and reference profiles are often non-optimal since
the search is usually limited to the vicinity of a known 'acceptable' recipe
and the reference profiles are somewhat conservative to assure feasible pro-
cess operation in spite of process disturbances.

From an industrial perspective, there is a need to improve the perfor-
mance of batch processes in spite of incomplete and/or inaccurate process
models, few online measurements and estimates of process variables, large
uncertainties (model inaccuracies, process disturbances, variations in raw
material properties), and important operational and safety constraints. In a
series of papers, Bonvin and co-workers assessed the industrial perspective
in batch process operation and the batch process optimization problem
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[71, 73, 348], and proposed an 'Invariant-Based Optimization' approach
that does not require an accurate process model [73].

Industrial Perspective and Practice The operational objectives of batch
processes are high productivity, reproducible product quality, process and
product safety, and short time to market. These objectives could be posed
as an optimization problem, but the implementation of optimization through
mathematical modeling and optimization techniques is not widespread. The
popular approach is to develop recipes in the laboratory for safe implemen-
tation in production environment, then empower plant personnel to adjust
the process based on heuristics and experience for incremental improve-
ments from batch to batch [622]. Various organizational and technical
reasons are cited for this practice [73].

The organizational reasons hindering the adoption of a rigorous dynamic
optimization approach include process registration and validation, low lev-
els of interaction between design of individual steps in multi-step processes,
and separation between design and control tasks [73]. Process registration
and validation with regulatory agencies such as the U.S. Food and Drug
Administration is mandatory in production of active compounds in pharma-
ceutical and food processing. Because this is a time-consuming and costly
task, it is performed simultaneously with the research and development
work of a new process. Consequently, the main operational parameters are
fixed within conservative limits at an early stage of process development.
Changes in process operation may require revalidation and registration; a
costly venture. The second reason is related to use of different design teams
for different steps of the process. While each step is optimized by introduc-
ing the appropriate conservatism to account for uncertainty, the process as
a whole may become too conservative. The third reason stems from the
practice of treating design and control as separate tasks; a legacy from the
times when automatic process control was considered mostly as the instal-
lation of hardware for process control and tuning individual controllers.
This prevents the use of systems science, control theory, and optimization
tools to develop a better design that is easier to optimize and control.

A number of technical reasons has influenced the administrative deci-
sions to favor this conservative optimization practice. Lack of reliable first
principles models, absence of on-line quality measurements, uncertainty
due to variations in feedstock properties, assumptions during process scale-
up, and modeling errors, and constraints caused by equipment limitations,
operational limits on variables and end-points are some of these reasons
[73]. These reasons also hint that improvements in model development and
measurements that are coupled with powerful optimization techniques may
generate significant improvements in batch process operation, productivity,
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product quality, and safety.

Dynamic Optimization Problem Batch process optimization is a dy-
namic optimization problem that involves dynamic and static constraints.
Various types of optimization problems are formulated depending on the
assumptions used for uncertainty and availability of measurement informa-
tion, and the method used for updating the optimal values of inputs [73]. If
it is assumed that there is no uncertainty, the problem is reduced to nom-
inal optimization and the computational load is lighter. But the solution
computed may not be feasible when implemented in a real application that
invariably has some uncertainty. Uncertainty necessitates the adoption of
conservative operation (control) strategies. The uncertainty is taken into
account in robust optimization by considering the range of possible values
for uncertain parameters and the optimization is performed by considering
the worst-case scenarios (selecting the best solution for the worst conditions
assures that the solution would be feasible under better scenarios) or by
using expected values. The availability of process measurements reduces
uncertainty and consequently less conservative process operation strate-
gies can be adopted. Various types of dynamic optimization problems and
their major disadvantage are classified in [73] (Figure 9.2). If quality mea-

Problem: Dynamic Optimization

Uncertainty: Nominal Optimization
(discards uncertainty)

Optimization under Uncertainty

Information: No Measurements
Robust Optimization

(conservative)

Measurements
Measurement-based

Optimization

Input Calculation: Model-based
Repeated Optimization

Model-free
Implicit Optimization

Methodology:
*^

Fixed Model
(accuracy of

model)

Refined Model
(persistency of

excitation)

Evolution/
Interpolation

(curse of
dimensionality)

Reference
Tracking

(what to track
for optimality)

Figure 9.2. Dynamic optimization scenarios with, in parentheses, the cor-
responding major disadvantage [73].
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surements at the end of a batch run are available, they could be used in
determining the optimal operation policy of the next batch. Consider the
kth run of a batch process where process measurements from the previous
(k — 1) batches and measurements up to the current time ti of the kth
batch are available. The optimal input policy for the remaining time inter-
val [ti,tf] of the kth batch can be determined by solving the optimization
problem:

Jk = L(x fc(tf,0)) (9.13)mm, , fc

such that xfc = F(x fc,0,u fc) + dfc(t), xfc(0) = xg
y*=H(x*,0)+v*(t)
S (x f c , 0 , u f c )<0 , T(x f c(t / ,6l))<0

given yjr(i) , i = 1, N for j = 1, k — 1 and i = 1,1 for j = k

where the superscript k denotes the kth batch run, x fc(£), u fc(£), yk(t), d k ( t ] ,
and vfe(t) denote the state, input, output, disturbance, and measurement
noise vectors, respectively. S() is a vector of path constraints, and T()
is a vector of terminal constraints, y^(i] denotes the ith measurement
vector collected during the jth batch run, and N the total number of mea-
surements during a run. The optimization utilizes information from the
previous k — 1 batch runs and measurements up to time ti of the current
batch to reduce uncertainty in the parameter vector 6 and to determine
the optimal input policy for the remainder of the current batch run k.

The optimization approaches that rely on process measurements to up-
date the inputs can be divided into two main groups: model-based tech-
niques and model-free techniques [73]. Model-based techniques use the
mathematical model of the batch process to predict the evolution of the run,
compute the cost sensitivity with respect to input variations, and update
the inputs. Measurement information is used to improve the estimates of
the state variables and parameters. The estimation and optimization tasks
are repeated over time (as frequently as at each sampling time), yielding
significant computational burden. In this repeated optimization approach
the model can be fixed or refined during the batch run and its optimization.
If the model is fixed, a higher level of model accuracy is necessary. If the
model parameters are known with accuracy and uncertainty is caused by
disturbances, the fixed model can yield satisfactory results. If model re-
finement such as estimation of model parameters is carried out during the
run, the initial model may not need to have high accuracy. The tradeoff is
heavier computational burden and addition of persistent excitation to in-
put signals in order to generate data rich in dynamic information for more
reliable model identification. Unfortunately, the requirement for sufficient
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excitation in inputs may conflict with optimal value of inputs.
Model-free optimization relies on measurements from batch runs for up-

dating the inputs to achieve optimality without using a model or an explicit
numerical optimization procedure. These implicit optimization schemes use
either the deviation from a reference trajectory or measurement information
to update the inputs. The reference-based techniques update the inputs by
using feedback controllers to track the reference trajectories. Reference
(optimal) trajectories are usually computed using a nominal model (See
Section 7.2). Uncertainty in the model may cause significant deviation of
the actual optimal (unknown) trajectories from the nominal ones computed
by the model. Data-based techniques compute the inputs directly by us-
ing measurement information from past and current batch runs. A reliable
historical database is needed to implement this approach.

The type of measurements (off-line taken at the end of the batch run or
on-line during the progress of the batch) indicate the type of optimization
sought. Off-line end-of-batch measurements lead to batch-to-batch opti-
mization where process knowledge obtained in earlier batches enable up-
date of the operating strategy of the current run, approaching an optimal
solution as information from additional batch runs are used. The avail-
ability of on-line measurements during the run enable the use of an on-line
optimization approach. On-line measurement-based optimization schemes
have many similarities to model-predictive control. The Iterative Learn-
ing Control approach (Section 7.6) integrates MFC and batch-to-batch
optimization [327, 328, 682]. The integrated methodology is capable of
eliminating persisting errors from previous runs and responds to new dis-
turbances that occur in the current run [100, 323, 327]. The differences
between measurement-based optimization and MFC are discussed and an
extensive list of references for measurement-based optimization studies is
given in [73]. Table 9.1 summarizes the classification of measurement-based
optimization methods in [73] and provides additional references.

An invariant-based optimization approach is proposed in [73] to identify
the important characteristics of optimal trajectories of a batch run that are
invariant under uncertainty and provide them as reference to feedback con-
trollers. The method consists of three steps: state-dependent parameteriza-
tion of inputs, selection of signals that are invariant under uncertainty, and
tracking the invariant by using process measurements. The state-dependent
parameterization is related to the characteristics of the optimal solution:
switching times of inputs (related to the concept of process landmarks) and
the types of input arcs that occur between switching times. The two types
of input arcs are singular arcs where the input lies in the interior of the fea-
sible region and nonsingular arcs where the inputs are determined by a path
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Table 9.1. MBO methods specifically designed to compensate uncertainty
[73].

Methodology

Model-based
Fixed model

Model-based
Refined model

Model-free
Evolution

Interpolation

Model-free
Reference
tracking

Batch-to-batch optimization
(Off-line measurements)

[131, 683, 684]

[152, 157, 178, 317]
[365, 369, 497]

[108, 687]

[536, 562]

On-line optimization
(On-line measurements)

[2, 6, 380]

[100, 142, 177, 323]
[321, 430, 529]

[155, 307, 486]
[537, 596, 673]

[158, 186, 312]
[532, 559, 585]
[602, 612, 623]

constraint. The structure of the optimal solution is determined by the type
and sequence of arcs, and switching times. This can be based on experien-
tial knowledge of plant personnel, analytical expressions for optimal inputs,
or inspection of the solution from numerical optimization. Uncertainty af-
fects the numerical values of optimal inputs, but the necessary conditions
for optimality remain invariant. This fact is exploited to identify the in-
variants and the measurements to track the invariants by use of feedback.
The proposed approach is effective when the optimization potential stems
from meeting path and/or terminal constraints of a batch run [73].

9.4 Integrated Supervisory KBS for On-line
Process Supervision

The integration of various tasks for fault-tolerant optimal operation of batch
processes is closer to realization because of the availability of software en-
vironments for efficient real-time operations and powerful computer hard-
ware. The first integration problem (horizontal integration) focuses on the
coordination of monitoring, diagnosis, and control tasks, and their super-
vision for enhanced decision making and intervention. The second Integra-
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tion problem (vertical integration) focuses on the coordination of technical
tasks related to process operations (monitoring, diagnosis and control) with
higher level management tasks (supply chain management and plantwide
optimization).

Horizontal integration can be formulated as a fault-tolerant control
problem where appropriate control policies are formulated and implemented
in real time in response to equipment failures and disturbances to prevent
operational losses or process shutdown. Consider as an example the fail-
ure of a sensor that provides critical information to the control system.
The monitoring system will detect an abnormality in process operation ei-
ther because the change in sensor readings will be significantly different
from their expected values or the controller acting on erroneous informa-
tion will cause significant changes in some process variables. This will
trigger diagnostic activities either by an automated fault diagnosis system
or by plant personnel. Actuator faults or disturbances will also follow this
detect-diagnose-decide-intervene sequence. In a fault-tolerant environment,
these activities will be carried out automatically under the supervision of
a supervisory real-time knowledge-based system.

Basila and co-workers have developed such a supervisory real-time KBS
(MOBECS) for retuning or restructuring multivariable feedback controllers
for a tubular packed-bed reactor system [43, 274, 275]. MOBECS (Model-
Object Based Expert Control System) was developed initially for a single-
input single-output control system [43], then extended to multivariable pro-
cesses to provide fault-tolerant, minimally conservative robust control by
using advanced multivariable control techniques. MOBECS is capable of
emulating the steps typically carried out in redesigning the multivariable
control system and bumplessly implementing the new control law with the
entire control system remaining under automatic control. Control system
redesign efforts can be initiated by plant personnel or MOBECS can be
instructed to assess process performance automatically and take the appro-
priate controller redesign actions. If controller restructuring is necessary,
MOBECS initiates the development of a new process model by using closed-
loop data collected at the current operating point. The new model is used
in developing a new controller with improved performance.

Powerful real-time KBS development environments such as G2 of Gen-
sym enable the development of more sophisticated supervisory systems for
automating and integrating all process, supervision and control activities.
The building blocks for a real-time supervisory KBS for monitoring and
fault diagnosis of multivariable batch fermentation processes are discussed
in Section 8.4.2. They illustrate how the KBS coordinates and enhances the
interface between detection of abnormality in process operation and fault
diagnosis. Additional modules for model development and control system
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design/modification can be added to implement fault-tolerant control of
batch processes.

The real-time supervisory KBS can be vertically interfaced with vari-
ous software tools that fulfill supply chain management, tracking of process
equipment maintenance and repair, and plantwide optimization. Supply
chain management interface would transmit consumption levels of raw ma-
terials, specific properties (supplier, impurity level, critical characteristics)
of feed materials, production schedules and forecasts on product availabil-
ity. Updating of equipment maintenance and repair records would reduce
the surprise and cost of emergency repairs. Automated logging of equip-
ment faults discovered, repairs made, and parts replaced would provide a
health record for various equipment, forecast the parts that may be replaced
in the near future and restock them to minimize emergency ordering and
downtimes caused by waiting for their shipment. Interface with plantwide
optimization and planning software will reduce the constraints and time
losses in running batch campaigns with many fermentation and storage
vessels, increase effective use of every process operation from raw mate-
rials to final products, and prevent raw material, resource, and product
shortages. This interface will also provide appropriate financial data to
management for higher level decision making.
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X and R Charts X and s Charts

Subgroup
Size
n

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Chart for
Averages

(*)

Factors for
Control
Limits

A2

1.880
1.023
0.729
0.577
0.483
0.419
0.373
0.337
0.308
0.285
0.266
0.249
0.235
0.223
0.212
0.203
0.194
0.187
0.180
0.173
0.167
0.162
0.157
0.153

Chart for
Divisors for
Estimate of

Standard
Deviation

d2

1.128
1.693
2.059
2.326
2.534
2.704
2.847
2.970
3.078
3.173
3.258
3.336
3.407
3.472
3.532
3.588
3.640
3.689
3.735
3.778
3.819
3.858
3.895
3.931

Ranges (R)

Factors for
Control
Limits

D3 D4

3.267
2.574
2.282
2.114
2.004

0.076 1.924
0.136 1.864
0.184 1.816
0.223 1.777
0.256 1.744
0.283 1.717
0.307 1.693
0.328 1.672
0.347 1.653
0.363 1.637
0.378 1.622
0.391 1.608
0.403 1.597
0.415 1.585
0.425 1.575
0.434 1.566
0.443 1.557
0.451 1.548
0.459 1.541

Chart for
Averages

w
Factors for

Control
Limits

A3

2.659
1.954
1.628
1.427
1.287
1.182
1.099
1.032
0.975
0.927
0.886
0.850
0.817
0.789
0.763
0.739
0.718
0.698
0.680
0.663
0.647
0.633
0.619
0.606

Chart for
Standard

Divisors for
Estimate of

Standard
Deviation

C4

0.7979
0.8862
0.9213
0.9400
0.9515
0.9594
0.9650
0.9693
0.9727
0.9754
0.9776
0.9794
0.9810
0.9823
0.9835
0.9845
0.9854
0.9862
0.9869
0.9876
0.9882
0.9887
0.9892
0.9896

Deviations (s)

Factors for
Control
Limits

63 64

3.267
2.568
2.266
2.089

0.030 1.970
0.118 1.882
0.185 1.815
0.239 1.761
0.284 1.716
0.321 1.679
0.354 1.646
0.382 1.618
0.406 1.594
0.428 1.572
0.448 1.552
0.466 1.534
0.482 1.518
0.497 1.503
0.510 1.490
0.523 1.477
0.534 1.466
0.545 1.455
0.555 1.445
0.565 1.435
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\JCLX,LCLX = X±A2R UCL^LCL^ = X±A3s

UCLfi =D4R UCLS -B4s

LCLfi =D3^ LCLS =B35

(T = R/&2 a — S/C4

D3 = 1 - 3d3/d2 D4 = 1 + 3d3/d2
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