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Dedicated to Prof. R. Glowinski
at the occasion of his 70th birthday.



Preface

The present volume is comprised of contributions solicited from invitees to
conferences held at the University of Houston, University of Jyvaskyla, and
Xi’an Jiaotong University honoring the 70th birthday of Professor Roland
Glowinski. Although scientists convened on three different continents, the ed-
itors prefer to view the meetings as single event. The three locales signify
the fact Roland has friends, collaborators and admirers across the globe. The
contents span a wide range of topics in contemporary applied mathematics
ranging from population dynamics, to electromagnetics, to fluid mechanics, to
the mathematics of finance among others. However, they do not fully reflect
the breath and diversity of Roland’s scientific interest. His work has always
been at the intersection mathematics and scientific computing and their ap-
plication to mechanics, physics, aeronautics, engineering sciences and more
recently biology. He has made seminal contribution in the areas of methods
for science computation, fluid mechanics, numerical controls for distributed
parameter systems, and solid and structural mechanics as well as shape op-
timization, stellar motion, electron transport, and semiconductor modeling.
Two central themes arise from the corpus of Roland’s work. The first is that
numerical methods should take advantage of the mathematical properties of
the model. They should be portable and computable with computing resources
of the foreseeable future as well as with contemporary resources. The second
theme is that whenever possible one should validate numerical with experi-
mental data.

The volume is written at an advanced scientific level and no effort has
been made to make it self contained. It is intended to be of interested to both
the researcher and the practitioner as well to advanced students in compu-
tational and applied mathematics, computational science and engineers and
engineering.

Many individuals contributed to the success of the celebration honoring
Roland’s 70th. The scientific coordination of the events was managed by Prof.
Tsorng Whay Pan in Houston and Dr. Kirsi Majava in Jyvéskyld. Without
their dedicated efforts the conferences and this volume would not have existed.



VIII  Preface

The solicitation and collect of manuscripts was overseen by Ms. Sharon Lahey
in Houston and Ms. Marja-Leena Rantalainen in Jyvaskyld. The staffs of
the Faculty of Information Technology in Jyvéskyld and the Departments of
Mathematics of the University of Houston and Jiaotong University need to
be recognized for their diligent efforts in logistics, local arrangements and
support.

Houston, Texas William Fitzgibbon
Houston, Texas Yuri Kuznetsov
Jyvéaskyla, Finland Pekka Neittaanmaksi
Jyvéaskyla, Finland Jacques Périaux
Paris, France Olivier Pironneau

April 2009
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Roland Glowinski: The Unconventional
and Unexpected Path of a Mathematician

William E. Fitzgibbon! and Jacques F. Périaux?

L College of Technology, University of Houston, 4800 Calhoun Road, Houston,

TX 77204, USA, fitz@uh.edu

Department of Mathematical Information, University of Jyvéaskyla, 40351,
Jyvaskyla, Finland

and

Numerics en Enginyeria (CIMNE), Centre Internacional de Metodes, C/Gran
Capitan s/n, 08034, Barcelona, Spain, jperiaux@gmail.com

More than 10 years have elapsed since the conference, “Computational Science
for the Twentieth Century”, was held in Tours, France. The Tours event hon-
ored the 60th birthday of Roland Glowinski. The world has witnessed many
changes in the last decade, but Roland and his lovely wife, Angela, seem to
barely have changed at all. Indeed, they are like fine French wine or Tennessee
whiskey; they improve with age. As we reflect upon the career of Roland, it
is important that we not underestimate the role of Angela. Everyone knows
the old saying,

Beside every great man stands a great woman.

The quote becomes more complete, and perhaps appropriate, if we include
Voltaire’s addendum,

a surprised mother in law.

Angela Glowinski is the first lady of Franco American mathematics. She serves
as Roland’s tireless confidante, supporter, cheerleader, and at times, task mas-
ter. Roland never expected to become a professor and renowned scientist. Only
at the urging of his wife did Roland make the decision to return to the academy
and enroll at the Institut Blaise Pascal. For that, the applied mathematical
community, as well as Roland, owes Angela a profound debt of gratitude. In
fact, we think that if Jacques-Louis Lions had not existed, Angela would have
found a Lions.

The event celebrating Roland’s 70th birthday was a peripatetic one, taking
place at the University of Houston in Houston, Texas; University of Jyvaskyla
in Jyvaskyla, Finland; and Xi’an Jiaotong University in Xi’an, China. Roland
has friends and collaborators across the globe. Many old, loyal friends and
some new were present at the gatherings. However, the joy at these events was
dampened by the sad realization that some old friends were missing and will

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 1
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3_1,
(© Springer Science+Business Media B.V. 2010



2 W.E. Fitzgibbon and J.F. Périaux

not return. In particular, we pay tribute to Professor Jacques-Louis Lions. He
was an inspiration and mentor to us all. His torch will now have to be carried
by Roland and his fellow lionceauz.

We will not deign to give a full discussion or even a list of the research
achievements, distinctions, and accolades of Roland Glowinski. We will say
that over the course of his career Roland has authored or coauthored over 250
scientific articles, has written or edited about twenty books, has served on
a panoply of editorial boards, advised numerous students and post doctoral
fellows, and has collaborated with scientists across the globe. Among other
honors, he has been elected to the French Academy of Science and is a member
of the French Legion d’Honneur at the level chevalier.

The eminent German poet and author Johann Wolfgang von Goethe once
said,

Mathematicians are like Frenchmen: whatever you say to them they
translate into their own language and forthwith, it is something en-
tirely different.

Although Roland is, and always will be, quintessentially French, the corpus
of his work serves as a marked counterexample to the sentiments Goethe
expressed. If there is a common thread running through the large and broad
corpus of his work, it is his four-step approach:

1. Identification of the model

2. Determination of the structure and mathematical properties of the model

3. Development of numerical methods that take advantage of the model’s
mathematical properties, while at the same time making optimal use of
available computing resources

4. Validation and verification of the numerical results

It has always been Roland’s concern to construct portable methods that
can readily be adapted by other scientists in different contexts. Today, applied
and computational mathematics is in vogue. Academic institutions compete
to develop it. This was not the case when Roland began to follow his muse.
Pure mathematics was the mode and even applied mathematics tended to be
highly theoretical. Roland’s decision to engage the applied problems of in-
dustry, engineering, and science was both unconventional and bold. His work
has always been in mathematics and scientific computing and their applica-
tion to mechanics, physics, aeronautics, engineering sciences and, more re-
cently, biology. He has made seminal contributions in the areas of methods
for science computation, fluid mechanics, numerical controls for distributed
parameter systems, and solid and structural mechanics, as well as shape op-
timization, stellar motion, electron transport, and semiconductor modeling.
Indeed, Roland’s work demonstrates that Goethe should have paid attention
to the words of Leonardo di Vinci,

Mechanics is the paradise of the mathematical sciences because by
means of it one comes to the fruits of mathematics.
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Roland’s scientific journey began in the late fifties with his education
at the elite Ecole Polytechnique. Air France awarded Roland a traineeship
at the Boeing Company in Seattle, in 1960. This is significant in two ways;
one, it gave Roland an introduction to aviation and aeronautics, and it in-
troduced Roland to the United States and kindled his affection for life in the
United States. Roland fulfilled his military obligation in the French Army
serving in Algeria during the period of trouble. Roland then worked as a
telecommunications engineer for ORTF (the French Broadcasting System)
from 1963-1968 and became well grounded in electromagnetism, as well as
learning FORTRAN.

Roland’s decision at Angela’s urging to enroll in Professor J.-L. Lions’ Post
DEA Course in Numerical Analysis at Institut Blaise Pascal proved to have a
major impact upon Roland’s subsequent career. This course is made notable
by the careers that it launched. The list of those who have benefited from it
includes: J. Cea, A. Bensoussan, P. A. Raviart, J. C. Nédélec, G. Chavent,
L. Tartar and O. Pironneau. Roland grabbed Lions’ attention and came under
his influence. In 1967, Professor Lions hired Roland at I'Institut de Recherche
en Informatique et en Automatique (IRTA). Roland excelled and rapidly be-
came a Scientific Director in 1971, serving until 1985. On the academic side,
Roland was elevated to a professorship at the Université de Pierre et Marie
Curie. Following the dictum of Lions, Roland, as did other disciples of Lions,
maintained close connections with industry and government agencies (be they
French or, more recently, American) in the areas of aeronautics, nuclear en-
ergy, space exploration and hydrocarbon recovery.

Roland’s career path is both unconventional and unexpected. It is uncon-
ventional by virtue of his decision to become involved in the applied problems
of industry, engineering, and science at a time when pure mathematics was
the mode. His applied orientation is well illustrated by his highly acclaimed
collaboration with Dassault Aviation as leader of the Glowinski-Bristeau—
Pironneau—Perrier—Periaux—Poirier GB4P team. This effort culminated in the
finite element simulation by least squares techniques of the 3-D shocked tran-
sonic flow around a complete Falcon 50 business jet geometry.

In the 1980s, Roland made a series of major contributions in the domain
decomposition and fictitious domain methods. This work was initially mo-
tivated by large scale industrial applications in aeronautics and the oil in-
dustry, and extended recently to applied electromagnetics the identification
of the signature of coated materials on aircraft, ships, submarines or mobile
phones. The latter work applied exact controllability methods derived from the
Hilbert Uniqueness Method of J.-L. Lions. Roland’s important contributions
to the numerical solution using Lagrange multiplier methods are documented
in his paper, Augmented Lagrangians and Operator Splitting, which he coau-
thored with P. Le Tallec. He subsequently, in collaboration with D. Joseph
and T. W. Pan, extended this to the theoretical description of the fluidization
and the sedimentation of particular flows.

If there is a feature in Roland’s background that distinguishes him from
most of his contemporaries in applied mathematics, it is probably the fact that
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he began by obtaining experience as an engineer in aeronautics at Boeing
telecommunications ORTF and then undertaking the study applied mathe-
matics and numerical analysis with J.-L. Lions and other distinguished math-
ematicians. All of this background was coupled with a native intelligence,
an open mind, and relentless curiosity. Roland’s affable personality, constant
good mood, patience, and willingness to listen, together with his innate ability
to interact and collaborate with people across a wide spectrum of scientific
and engineering disciplines, have enabled his putting together an impressive
international network of friends and colleagues.

In the administrative area, Roland served as Director at CERFACS,
Toulouse, from 1992 to 1994, a unique experience with EC and Aerospatiale.
Although Roland first came to the United States on an internship with Boeing
in the early 1960s, the American portion of his career began in 1985, with
his assumption of the M. D. Anderson Professorship of Mathematics at the
University of Houston. Roland subsequently became the Hugh and Roy Cullen
Professor of Mathematics and Yuri Kuznetsov assumed the M. D. Anderson
Chair. Roland’s presence at the University of Houston has had significant im-
pact on the development of applied mathematics in Houston and in Texas.
Under Roland’s leadership and guidance, we have developed into a major
node on the international applied and computational network. Many well
known scientists joined our faculty — to name a few: Mary Wheeler, Yuri
Kuznetsov, Tsorng-Whay Pan, Ed Dean, Jiwen He, Ronald Hoppe, Jeffery
Morgan, Robert Azencott and Sunéica Canié¢. We will not even attempt to list
the visitors who have streamed through Houston. It will suffice to say that one
can expect to hear French, Russian, German, Chinese, Spanish, and Croatian,
as well as the Texas drawl, along the corridors of the mathematics department.
It is fair to say that Roland was a bellwether for the State of Texas. Subse-
quent to his arrival, both the University of Texas and Texas A&M University
have emerged as major centers of computational mathematics. Texas can now
be known for computational science, as well as horses, cattle, oil and barbecue.

We find ourselves on the threshold of a new era with interesting and chal-
lenging problems concerning the areas of medicine, life science, the environ-
ment, energy, information technology, communications, and materials science.
Now more than ever, we will need scientists like Roland with innovation, vi-
sion, and ability to work across both disciplinary and national boundaries.

We conclude with the last stanza of a poem dedicated to Roland by
Professor Zhong-Ci Shi of the Institute of Computational Mathematics in
Beijing:

You earned your success and you should feel very confident with your-

self for all that you have achieved.



The Scientific Career of Roland Glowinski

Olivier Pironneau

Université Paris VI, Laboratoire Jacques-Louis Lions, 175 rue du Chevaleret,
FR-75013 Paris, France, pironneau@ann. jussieu.fr

Roland Glowinski is a former student of one of the best school for mathematics
and engineering in France, the Ecole Polytechnique.

After a first employment at the French television company ORTF, he de-
cided to go back to the university for a thesis (these d’Etat) and received
his degree and a position of professor at the University of Paris VI in 1970.
Already a fervent admirer and colleague of Professor Jacques-Louis Lions, his
former advisor, he succeeded him as head of the numerical analysis group at
IRIA (now INRIA) in 1976.

Soon he became the best known French algorithm designer for solid and
fluid mechanics, a talent which will give him many awards and nominations as
scientific advisor in hi-tech companies, a temporary teaching position at Ecole
Polytechnique and the worldwide reputation of the best scientific advisor for
partial differential equations in industry. Nevertheless, as if life was too easy,
Roland decided to move to University of Houston, Texas, in the 1980s. At
the request of J.-L. Lions he came back for a couple of years to France to
lead the CERFACS, at the time of writing the best French lab in Toulouse
for scientific computing. Since then he is a full time Professor at University
of Houston and Honorary Professor at the University of Jyvéskyla.

Roland Glowinski is the author of 7 books and more than 300 articles. His
main contributions are in many fields of applied mathematics, simulations and
scientific computing; we may order them in eight groups:

1. Domain decomposition methods. He is the first to have understood the
links between Schwarz algorithms and Lagrange multiplier methods; one
of the first domain decomposition method without overlap is his. He is
also among the first to have proposed the framework of mixed methods
for domain decompositions. Finally, he is a co-founder of the famous DDM
conference series. He received the Cray prize for his achievements in this
important field of parallel computing.

2. Fictitious domain methods. With equal success he applied the framework of
Lagrange multipliers to the fictitious domain embedding methods, thereby

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 5
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3_2,
(© Springer Science+Business Media B.V. 2010
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O. Pironneau

establishing convergence of old Russian algorithms and new methods of
his. He gave the appropriate functional framework for the variational nu-
merical methods with important applications to time dependant domains.
In an article with V. Girault a fundamental error estimates was established
which is one of the most cited result of the field also because it contains a
compatibility condition which says that the discretization of the physical
domain must be coarser than the background mesh.

Robust preconditioners for the Navier—Stokes equations and other nonlin-
ear partial differential equations. In his book (Springer-Verlag) on nonlinear
problems Roland Glowinski proposed several iterative algorithms (conju-
gate gradient and augmented lagrangian methods) with optimal precon-
ditioners especially for the Stokes equations thereby opening the way to
modern scientific computing, a method which everybody use nowadays. He
received the Prix Marcel Dassault of the French academy of sciences for
his work in this field.

Several iterative algorithms for wvisco-elastic problems. With J.-L. Lions
a family of methods based on augmented Lagrangian formulations and
other penalties were given to solve the variational inequalities of physics,
an approach which is still, when possible, the most stable way to find free
boundaries, thereby avoiding remeshing of the moving domains.
Algorithms for the biharmonic problem. R. Glowinski proposed a formu-
lation of the problem which could be discretized with low degree finite
elements and which leads to the fastest numerical method to the point
that at Dassault Aviation their first Navier—Stokes solver was based on
this formulation. It was also the first in a series of scientific “coups” in the
fruitful cooperation between Roland, Jacques Périaux and Pierre Perrier
at Dassault Aviation.

An algorithm for the transonic equation. In this industrial cooperation a
variational formulation of the transonic equation was tested with an en-
tropy condition based on the potential of the flow, which again brought
Dassault Aviation to the front line of scientific computing with the first
complete numerical aircraft at transonic speed.

A numerical implementation compatible with the controllability conditions
of hyperbolic problems, the famous H.U.M. of J.-L. Lions. With several
collaborators at INRIA and at Dassault Aviation the method was proven
to be very efficient for solving the Maxwell equations of electromagnetism in
the physical variables yet seeking for periodic solutions and hence avoiding
frequency domain reformulations.

A mized formulation for fluid—-structure interactions. In cooperation
with D. Joseph at University of Minnesota (Minneapolis) for pipelines,
R. Glowinski and his team at University of Houston solved the very diffi-
cult challenge of simulating the fluidized bed problem. This is a 3D flow
with thousands of solid balls moving with the flow. This was the prob-
lem that lead Roland to use the fictitious domain method, although he
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tried also body fitted meshes. The originality of his approach is to have
embedded the Newton laws for the balls into the variational formulation
of the problem.

Roland Glowinski is world famous for his contributions to parallel comput-
ing especially for problems with unstructured meshes, with the finite element
method, linear or non-linear, with or without free boundaries and with multi
physics. His collected work in book form would amount to perhaps 12 volumes,
fairly easy to read and yet to the point, with the right dose of mathematics
for beautiful theories pertinent to the applications which Roland never loose
sight of what he calls “applied mathematics of good taste”.

It would be tedious to list all the prizes and honors he received but let us
cite two: the French Academy of Sciences and the von Karman Lecture at the
2004 SIAM meeting.

Books by Roland Glowinski

1. R. Glowinski, J.-L. Lions, and J. He. FEzact and approximate controllability for
distributed parameter systems. A numerical approach, volume 117 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge,
2008.

2. R. Glowinski. Finite element methods for incompressible viscous flow. In P. G.
Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Vol. IX, pages
3-1176. North-Holland, Amsterdam, 2003.

3. R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator splitting
methods in nonlinear mechanics. STAM, Philadelphia, PA, 1989.

4. M. Blanc, D. Fontaine, R. Glowinski, and L. Reinhart. Simulation of electron
transport in the earth magneto sphere. Gordon Breach, 1987.

5. R. Glowinski. Numerical methods for nonlinear variational problems. Springer,
New York, 1984.

6. M. Fortin and R. Glowinski. Méthodes de Lagrangien augmenté. Gauthier-Villars,
Paris, 1982. (publié en anglais par North-Holland en 1983).
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1 Introduction

We establish existence and uniqueness of solutions of a class of partial differ-
ential equations with nonlocal Dirchlet conditions in weighted function spaces.
The problem is motivated by the study of the probability distribution of the
response of an elasto-plastic oscillator when subjected to white noise excita-
tion (see [1,2] on the derivation of the boundary value problem). Note that the
developments in [1,2] are based on an extension of Khasminskii’s method (see,
e.g. [5]) and in this paper we use a direct approach to achieve our objectives.
We refer the reader to [3,4,6,7] for general background on modeling,
theoretical, and computational issues related to elasto-plastic oscillators.

2 Setting of the Problem

2.1 Notation

We set D = R x (=Y,Y). A point in D is denoted by (y,z). We define the
operators

10%¢  a¢ ¢
AC(Z/’Z)——58—y2+a—y(coy+kz)—y§’ (1)
10% 0
Biy(y) ———qf + —w(coy +kY),
2 Oy 0 (2)
102 Oy
B_ = — + — — kY
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10 A. Bensoussan and J. Turi

Let g(y, z) be bounded. We define

9+(y) =9(y,Y) and g_(y) =g(y,-Y). (3)

We also define the weightfunction

1
m(y) = ————, m>1. 4
Pm(y) B (4)
2.2 The Problem
Let A > 0, we look for a function
[e%s) au 2
ue L*®(D), — €L (D), m>1,
dy
,O0u 0% 9

—, Y= <€ L, (D >3
y az7yay2€ m( )7 m_ ?

/ ylpmu?(y, £Y)dy < oo, m > 1,
R
3 ou\?

satisfying

A+ Au=yg in D,
)\U+B+U:g+, Z:Y7y>0a

—~
N
—

M+B_u=g_, z=-Y, y<O. (8)
Note that on a subdomain,
Dy ={(p,0) x (=Y, Y)U (=00, —p) x (=Y,Y)}, p>0,
the function u is continuous up to the boundary, the derivatives ‘g—’;, g—Z, and

22712‘ are L2 . and the equations (6), (7), and (8) are satisfied in the strong

sense.

3 The Main Result

Theorem 1. Assuming that g is bounded and A\ > 0, there exists one and
only one solution of (5)—(8).
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3.1 Boundary Conditions
The boundary conditions can be replaced by nonlocal Dirichlet conditions

’U,(y7 Y) = U‘+X+(y) + ﬁJr(y)? Yy > 07 (9)
u(y, =Y) =u_x—(y) + 6-(y), y<O, (10)

where v and u_ are constants. The functions (4, x4, 6—, and x_ are defined
by

Ay + ByBy =gy, B1(0)=0, 8y € Hy,(0,00), (11)
where
H! (0,00) = { \/pm )2 (y dy<oo/pm < >(y)dy<oo},
similarly
Mo+ B_f_ =g, B_(0)=0, B_ € H},(~00,0), (12)
where
H,, (—o0 { I/ Py dy<00/ pm(y ( )(y)dy<00},
furthermore,
At +Bixs =0, y>0, x4(0) =1, x4 € H,,(0,00), (13)
and
M-+ B_x-=0, y<0, x-(0)=1, x— € Hy(-00,0).  (14)

3.2 A Priori Estimates

Consider a solution u of (5)—(8). We test (6) with upy,,. We get easily

)\/ up dy dz + = / <%> Pm dydz+/ pm@u(coy—kkz)dydz
D 2 Jp \ 9y p 0y
ou 0

Y 1 2
— md d - = m ) d
m By 1 2p ydz 2[ ypmu(y,Y)dy

1 o0
+3 / ypmu®(y, —Y)dy = / gpmu dy dz
0 D

1 [> 1 /O
+ 5/ Ypm(usxs + B+ )’dy — 5/ ypm(u_x— + B-)*dy. (15)
0 —00
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We next test (6) with 3“y Pm. We obtain

o\’ A [0 A,
A/ypm e dydz—g/ Y2 pmu®(y, )dy+2/ Y pmu(y, —Y) dy
s 0

—-/ a—“Q( Y)d+1/m3 @2( ~-Y)d
4700ypm ay) WY)Wt g | vemlG ) W Y

Oudu 9 3 my? 3 Ou
m k 5 dydz — m dyd
ay 3Zy p [Coy + K2y + 2 1+42 yaz /Dgy p D2 yaz

A [ A Y
+ 5/ Y pm (ug x4 + By ) dy — 5/ Y2 pm(u_x— + B-)*dy
0

1> dyy  dBy 1 /0 5 dx—  dp-
— m — ) dy— -~ m | U —— + —— d .
+4/0 yp <u+dy+dy Y 470031P u dy+dy Y
(16)
Since the right-hand side of (15) is bounded, a simple application of Holder’s
inequality in (16) allows to obtain bounds on the norms of the functions listed

in (5), except for the L* norm of u, which does not follow from the energy
equalities (15) and (16).

3.3 Further Regularity

Proposition 1. Assume that A is sufficiently large and % € L2,(D), for
m > 1. Then

2 2
>
ER L:. (D), 920y € L, (d), form >1,
a3u 2 232’& 2

a.a o P~y >

yazayQ e Lm(D)7 y 6Z2 6 Lm(D)7 fOT m = 3
ou\?

/ Ylpm | 52 ) (¥, £Y)dy < oo, form>1,

R 0z

3 02u \”
/R\y| Pm, <m> (y, £Y)dy < oo, for m > 3.

Also,
2
ZTH € L2 (D), form>2.

Proof. We find the problem for v = g—z by differentiating (6). We get
dg _,0u
0z dy
v=0, forz=Y, y>0,

v=0, forz=-Y, y<O.

v+ Av = in D

)

(17)
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We can obtain the analogues of (15) and (16), namely

1 2
)\/ vzpmdydz—l——/ <@> pmdydz—i—/ pm@v(coy—i—kz) dy dz
D 2Jp \9%y p Oy

o0

vy I 2 1 9
- —v—"—pndydz — = mV2(y,Y) dy + = w02 (y, —Y)d
m/ﬁvayQp ydz 2[myp v (y )y+2/0 Yypmv-(y, =Y ) dy

dg ou
- - — b m ) 1
/D(az kay>0 vy 18)

. (O’ A [0 AL,
A yom | 5o ) dydz— 3 Vom0, YV)dy+ = [ om0’ (y, —Y)dy
D 62’ 2 ) 2 0

I o\’ 1 [ o\
- m = Y - 3 m a 7_Y
4/_Ooyp <ay> (Y, )dy+4/0 Y p <8y> (y,—Y)dy

[ Ovdv 9 3 my?
8y8 — Y Pm [coy + kzy + 2 1142 dydz
Jg ou\ 5 Ov
_ - — 1
/D (32 kf)y)y Py 0= (19)

Since A can be taken sufficiently large, these relations prove the properties
stated. Note that the last one follows from (6) itself and already proven prop-
erties. U

Since )
ou
lylom | = ) (y,£Y)dy < oo, form > 1,
R 0z
the function u(y,+Y") satisfies the differential equation

160%u Ou Ou
- —— +kY)= +Y +Y 2

and we can consider the right-hand side as a given function in L2, (R), m > 2.

Note that

%(y,Y)zO, ify>0 and %(y,—Y)zo, if y <0.

0z
From this relation, using also the fact that u is bounded, we deduce easily

0%u

8_y2(y’ +Y) € L2 (R), form > 2. (21)

Hence, in particular,
u(y, £Y) is C1(r). (22)
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4 Proof of Theorem 1

4.1 Proof of Uniqueness

Proof. We will prove that if A is sufficiently large, then the solution of (5)—(8)
is unique. Moreover, we will prove that for A > 0, there exists a solution of
(5)—(8) such that

g1z~

N
So, for A sufficiently large there exists one and only one solution of (5)—(8)
and it satisfies (4.1).

But we may then consider the map T, defined on L>°(D) by

Jullze <

u = Tyw,
where
A+ a)u+ Au=g+ aw in D, (23)
(/\—|—a)u—|—B+u:g++aw+, Z:K y>0a (24)
A+ ao)u+B_u=g_+ow_, z=-Y, y<O0. (25)

A solution of (5)—(8) is a fixed point of T,.
Next we show that T}, is a contraction on L. Indeed, if wy, wy € L*°(D)
and u; = Towy, us = Tyws, then u; — us is the solution of

A+ a)(ug —u2) + Alug — uz) = a(wy — ws) in D, (26)
A+ a)(ug —uz) + By(ug —ug) = a(w; —wa)y, z=Y, y>0, (27)
A+ a)(ug —ug) + B_(ug —u2) = a(wy —wz)—, z=-Y, y<0. (28)

Since A + « is large, w1 — u9 is uniquely defined and

aljwy — wsl| e

Uy —u o <
lur — uzl L= < Y

It follows that T, has a unique fixed point, i.e. the solution of (5)—(8).

We shall assume that A is sufficiently large to prove uniqueness. We must
prove that if u satisfies (5), and (6)—(8) with g = 0, then u = 0. Since g = 0, the
regularity result of Proposition 1 applies and we may assume that u € C*(D).
If we exclude a strip (—p, p) x (=Y, Y), p > 0, then u € C? and we may apply
strong maximum principle considerations.

Define the function

log |z| + 1, if |[z] > 1

x(@) exp <—§x4 + sz - §> ;e <1
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Then y € C?, x(£1) = 1, x/(&£1) = &1, ¥ (£1) = —1, and x(z) > x(0) =
7

[

We set
Y
v (y =x<—>,
() 7
where ¢ is a constant, and let
u(y, 2)
w(y,z) =
WA= )
Then w satisfies
4 1
Aw—i—)\w—ag—z}—i—% <—§W”+Ll7/(coy+kz)> —0, —Y<z<Y, yeR,
v ow  w 1
B _ 29 gy )% — -V
LW+ Aw Ll78y+kp< 5 + ¥ (coy + k )) 0, y>0,z )
v ow  w 1
B_ M — ——+ — | —=0" + ¥ —kY)] =0 0, z=-Y.
w + A\w y‘/aeru'/(z + ¥ (coy )) . y<0,z
(29)
Using the definition of ¥, we obtain
: vl >3
wl _ lX/ <g> _ %’( ) ) Yy Y,
7 \g) e (L ;
2g2y( 2o lyl <9,
and
- lyl >y
1 Y y?’ ’
g = _X” (_> = 6 4 2
J J Py) |9 (v y T(y _
y? ] YWY _5(Y oy
57 |2\ 5 5 7 +2 7 +5|, |yl <7

Combining these relations, we get

1 1 _
;(COZ/ +kz) + 22 lyl > 7,

1 v 9 (y\° o 15 8
' (coy + kz) — ?V/ = % [_Z (g) - % <3CO - —> — 3k L

Choosing 3 > %, we have

1 1
7 <LZ//(c0y +kz) — 5![’”) >0, for |yl >y.
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In particular,

1/, 1, 1[13
LZ/(W(coy-i-kz) 2W>> y{4y+4ky}

and we may choose g sufficiently large so that
1[13
A— = |:—_+4k‘Y:| > 0.
v 4y

Note that w(y, z) — 0 as |y| — oo uniformly in z.

If it has a positive maximum, it must be attained at finite distance, say at
(y*, 2*). We cannot have —Y < 2* < Y since the coefficient of w(y*, z*) is A+
2 (¥ (coy+kz)—20") > 0 and ?9_1; =% = Qat (y*, 2*) while ?927“2" (y*,z*) <O.

Suppose z* = =Y, y* < 0, then the same conclusion follows from
the boundary condition. If z* = —Y, y* > 0, then %(y*7 z*) < 0 and
y*%(y*, z*) < 0 and the same conclusion follows from the inner equation.

If y* =0, z* = =Y, then we have g—Z(O, —Y) = 0 and hence

10°U

)\U(O, —Y) — 58_y2(07 —Y) =0.

Therefore,
0%u
a—yQ(O, —Y) > 0,
which is a contradiction with the fact that u(y, —Y") attains its maximum at 0.
By asymmetric reasoning, we cannot have a positive maximum with z* =Y.
So we cannot have a positive maximum. A similar argument shows that we
cannot have a negative minimum. Hence w = 0, which implies v = 0. [

4.2 Approximation

We study (6)—(8) by a regularization method as follows. Define

SN
A=A 2022
We approximate (6)—(8) by
A+ Au =g inD, (30)
R - ou’
)\’LL +B+U = g+, y>07Z:K 5207 y<07Z:K (31)
ou’

E+Buw =g, y<0, z=-Y, =0, y>0, z=-Y. (32)

Dz
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Consider the spaces

2. = {vw) | [~ pulwr i< oo},
(R = {w e m), e ).
0= {51691 [ e <),
and
H (D) = {;p e 12 (D), Z—‘z € 12 (D), Z—‘p e 12 (D)} .

If ¥ € H}, (D), then ¥(y,+Y) € Hé(r) We will need a slight modification of
HL (D), defined as follows:

- o\’
H! (D) = {LZ/ | / pm(y? + )W dydz —|—/ Pm <8_> dydz
D D Y

+/me <g—f>2dydz<oo}. (33)

Note that H} (D) N L®(D) C H} (D), if m > 2.
Introduce the set

K= {w € HL(D) | (5, Y) = Uy xs (y) + Be(y). v = 0,

P ~Y) =P+ 5, v <0, sl < 0L oy

Lemma 1. The set K is a convex closed not empty subset of ﬂ}n(D)

Proof. The fact that K is convex and closed is clear. To show that it is not
empty, we pick

ﬂ+(y)ﬂy>0_ﬂ (y)1 y<0 B+(y) y>0_ﬂf(y)ly<0
2Y 2

U(y,z) ==z

which belongs to K.
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_ We will give a variational formulation of (30)—(32). We define for £,n €
H} (D) the bilinear form

€ 0€ 0 1 o0& O
am e (€,1) = /pmaga”d dz 2/ pmaja”d dz

—i—/\/ pmgndydz—m/ Pm——N—-—=dydz

Y
Byl+2

23 3
+/mea—yn(00y+kz)dydz /me&nydydz (35)

To simplify the notation, we drop, when necessary, the indices m, e. The
bilinear form is continuous on H} (D).
If we consider the modified form

alen) +a /D (W + 1) pméndydz, (36)

then for « sufficiently large, depending on ¢, the modified form is coercive.
If f € L°°(D), then there exists one and only one solution of the variational
inequality

a6 —n) +a /D Py + DEE — m)dydz

> / Fom(€ —n)dydz, VneK, €€ K. (37)
D

We proceed by defining a map u = Tov. If v € L®(D), u is the solution of
the variational inequality

a(u,n —u)+ a/ pm(y2 + Du(n — u)dydz
D
> / pm(g+ay? +1)v)(n —u)dydz, VYne K, ue K. (38)
D

Lemma 2. If |v]|p~ < %7 then [Ju L~ < Hg“}fm'

Proof. Let v = %. We first notice that if ¥ € K, then [¥(y,£Y)| < 7.
Therefore, (u — )" (y, £Y) = 0. We can take n = u — (u — 7). We obtain

—alu, (u— ") —a / Py + Dy — )+ dydz
D

> - / P9 + Ay + 1)0)(u — 7)* dydz;
D
hence

au, (u— 7)) + / Py + Dy — )+ dydz
D

< [ pulo+ ale? + Do)~ )" dud
D
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It follows from the definition of the bilinear form that
alu =y, (u—=7)%) + A /D pm(u — )" dydz
o [ puls? + =)= dudz + 07 [ (62 + 1))y
< /D Pl + aly? + 1)) (u — 7)* dydz.

Since v < v and YA = ||g|| L, we deduce

a((u—7)*, (w—7)") +a / P+ 1) (1 — 7)) dydz < 0,
D

which implies (v —«)* = 0. Similarly (v — )~ = 0 and the proof has been
completed. [

Taking n =19 € K in (36), we obtain

a(u,u) + a/ (y2 + 1)pmu2dydz < a(u,ng)
D
+ a/ (v 4+ 1) pmunodydz — / pmlg + a(y? + 1)) (no — u)dydz. (39)
D D

Since ||v]|pe < 7, we deduce easily from (33) and the coercivity that there
exists a number M depending only on the H! (D) norm of 5y and of v (but
not on the specific v).

We define the following subset of K:

: ol
&= {oer ol < = ol o < 00 (40)

which is also closed and convex in fI}n(D) and not empty. Indeed, the func-
tion picked in Lemma 1 belongs to K if M is sufficiently large. The map T,
transforms K into itself. The set K is a compact subset of L2, (d) and T, is
continuous. Hence Ty, has a fixed point.

The fixed point satisfies

a(u,n—u) > / pmg(n —u)dydz, VneK, uckK. (41)
D

Take ¥ € H} (d) N L>°(D) such that

U(y,Y)=0, ify>0, W(y,-Y)=0, ifY <0 (42)
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then n =u £ ¥ € K. Hence
a(u,¥) = / Pmg¥dydz, Y& (43)
D

such that (39) is satisfied.
It follows that in the sense of distributions

A+ A*u=g, inD. (44)

By the definition of K the Dirichlet parts of the boundary conditions in
(31)—(32) are satisfied.
Now considering ¥ as in (43) and testing (44) with ¥p,,, we obtain

0 ou *  Qu
| oG yian= [ pnGrue—via=o.

— 00

Since the values of ¥(y,Y) and ¥(y,—Y) are arbitrary, we get

O fory<0, z=Y
0z

and
a—uzo, fory >0, z=-Y.
0z

Therefore, the fixed point of T, solution of (38), is a solution of (30)—(32).

4.3 Estimates

We are going to obtain estimates similar to (15)—(16). Writing (41) explicitly,
we obtain

€ out (0n  Ou® 1 out (0n  Ouf
s o (5250 ) e oy (5 5 ) o

+A/p us(n—us)dydz—m/p %(n—us) -
b p Oy 1+y?

dydz

S

ou® R ou R
+ /D pma—y(n — u®)(coy + kz)dydz — /D P (0 = u")ydydz

> / pmg(n - ug)dydz, V77 € K.
D
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Therefore,
€ ous\? 1 ou’
5/ Pm (E) dydz+§/l)pm <a_y> dydz+/\/ P (u)2dydz
- / dd+/ o T (coy + k) dyd
m | png- 1+2yz m gy U (Coy + kz)dyd:

- 5/_001/%( )2y Y)dy+;/oooypm(us)2(y, ~Y)dy

1 o0
< /D rhomgu®dydz + 5 /0 Yom (Ui x4 + B1)*dy

1

0
— 5/ ypm(usx— + B-)%dy

€ Ouf On 1 Ouf On

T3 /me 9z 2.ty /me o= oy ™"
ous y
—i—)\/ muSnd dz—m/ m——"——dydz
ity R mlwerll
ous out

+ | pm—mndydz — [ pm——nydydz — [ pmgndydz.

D dy D 0z D

Recalling that u® is bounded, we deduce

ous\ > ous\?
e/ Pm (E) dydz < C, / Pm <8—> dydz < C,

and / [yl pm () (y, £Y)dy < C, m > 1.

Next, considering (30) and testing with —%f Y3 pm, we obtain (cf. (16))
ous\? e [ [0uf)?
m 4 - Y 3 m
/Dpy<az>dyd2+4/o <82>(y, )Y pmdy
0 2 0

€ ou® A
_ _ - _Y 3 m _ m 3 £ Y 2

4/00(32)(31, )Y pmdy 2[mpy(U(y, ))“dy

A [ 10 uc\”
Y A C MR
0 —o0o Y

2

+Z/ PmY (‘?;;) (y, —Y)dy

ou® 6 € 3 my? ou®
/ {coy +kzy+ - — Y 2] dydz —/ pmgyg p)
D z
_|_

2 14y
0

A £
/ Py (U X4 + By)? y—§/ Pmy> (U x— + B-)*dy

— 00

cdxy | dBy 1/0 s odx—  dB-
S s d S m e d.
/ ( y+dy y4_oopy dy+dy v

(46)
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From this relation we deduce

4 [ Ou® 2 3 [ Ou® 2
PmY dydz < C, €[ pmlyl (y, £Y)dy < C,

€ 2
and / 1> o v (y,£Y)dy < C, m>3.
R dy

We next obtain the analogue of (18). Assuming % € L2, (D), m > 1, we
differentiate (30)—(32) in z and set

(47)

Ezﬁus
0z
We obtain
E

)\v‘s—i-Ast:%—k%y in D,
€ Ov® . .
56—+yv =0, y>0, 2=Y, v (y,Y)=0, y<O0, (48)
€ Ov®

)\56_—’_:[/,08:07 y<07 Z:_Yv Us(y’_y):()? y>0

We test with v¢p,,, and obtain
A
A pm(v®)?dyd E/ w () dyd
/Dp(v)szrQDp o) dvdz

l/ v 2d dz—i—/ aUsvs(c + kz)dydz
2 Pm ay Y me ay oY Y

1 * 3 2
—m/ gV T 2dyalz+2/0 pmy (v (y,Y)) dy
2 sty
B dg  Ou®
_/me <az kg )dydz. (49)

Again if A is sufficiently large and %g € L2,(D), m > 1 we have
ous\? 02us\”
m dydz < C, m | 7—— | dydz < C,
X <a> s [ (ayaz> -
ous\?
it [ pulil (55 ) ()i < Com 1.
R 62

4.4 Proof of Existence

(50)

Proof. If A is sufficiently large and % € L2 (D) we can use the estimates (45)
and (50) and pass to the limit in the variational inequality (41).
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We obtain

1/ ou <8n 8u> /
— m— | =— — — | dydz + X\ m(n —u)dydz
5 ).y \ay ~ay) Y P (n—u)dy

ou y ou
—Tn/meﬁ—y(n—u)l+y2dydz+/me3—y(77—U)(60y+k2)dydz

ou
- /D pm@(n — u)ydydz
> / pmg(n —uw)dydz, Vne K, ue K. (51)
D

In general, we cannot use the regularity properties of Proposition 1, and thus
we cannot write the variational inequality (51).

However, the weak limit of «® in the sense of the bounds (45), (47) will
satisfy (6) in the sense of distributions. The boundary conditions (7), (8) are
obtained easily by considering the limits of

uix+(y) + B+(y) and wZx—(y)+ B(y)

which amount to considering the limits of the numbers uf , u®

bounded by @.
So we can extract converging subsequences. This is also the trace of a
converging subsequence of u®. The proof has been completed.[]
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Summary. Boundary shape optimization problems for systems governed by partial
differential equations involve a calculus of variation with respect to boundary modi-
fications. As typically presented in the literature, the first-order necessary conditions
of optimality are derived in a quite different manner for the problems before and
after discretization, and the final directional-derivative expressions look very differ-
ent. However, a systematic use of the material-derivative concept allows a unified
treatment of the cases before and after discretization. The final expression when per-
forming such a derivation includes the classical before-discretization (“continuous”)
expression, which contains objects solely restricted to the design boundary, plus a
number of “correction” terms that involve field variables inside the domain. Some
or all of the correction terms vanish when the associated state and adjoint variables
are smooth enough.

1 Introduction

Computer simulations of systems in science and engineering provide an effi-
cient and cost effective tool to explore how performance depends on geometric
features of the system components. An attractive alternative to trial-and-error
testing is numerical design optimization, in which we introduce a parametriza-
tion of the geometry and let a numerical optimization algorithm interact with
the simulation software in order to explore the parameter space. Boundary
shape optimization is a strategy for design optimization that examines dis-
placements of the boundary to a given domain. Such optimization is a powerful
tool for final design, in order to put the final touch to a given configuration.
Numerical boundary shape optimization typically uses body-fitted meshes,
which makes the method suitable for problem exhibiting boundary layers or
other phenomena with high sensitivity to boundary smoothness.

Besides boundary shape optimization, there are other, conceptually dif-
ferent techniques for design optimization that can handle much more general
geometries than those generated by displacements of a given boundary; the
term topology optimization is often used to highlight the generality. In the
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so-called material distribution method for topology optimization, it is coef-
ficients of the governing partial differential equations discretized on a fixed
mesh that are subject to optimization [2]. Such methods can generate arbi-
trarily complex geometries and are therefore suitable for preliminary design
studies. The price for the generality is the limited resolution of the boundary
geometry: typically, the boundary is represented using a staircase approxima-
tion, which is likely to cause problems in connection with boundary layers,
for instance.

Conceptually, boundary shape optimization is a calculus of variation with
respect to boundary modifications and traces its historical roots back to the
works by, for instance, Newton, Lagrange, and Hadamard. The modern de-
velopment was initiated in the early 1970s, mainly by the French school of
numerical analysis, through researchers like Cea, Glowinski, and Pironneau.
Although the field has developed and matured over the years, it is perhaps fair
to say that the impact on science and engineering practice has been limited.

In contrast, the technique of optimal layout of a linearly elastic structures
using the material distribution method for topology optimization has, indeed,
had a noticeable impact on the design of mechanical components. There are
commercial software packages available, for instance, from Altair Engineering
and FE-design, which are increasingly used for the design of mechanical com-
ponents, particularly in the vehicle and aerospace industries. Boundary shape
optimization is then used as a post processing tool for the layout obtained by
topology optimization. However, boundary shape optimization is not much
used for practical engineering design outside of such structural “sizing”. One
reason for the limited impact can be the complexity of managing a system
for shape optimization: software for parametrization of shapes, mesh defor-
mation, solvers, sensitivity analysis, and optimization needs to be developed
and interfaced in an intricate way. Another reason is computational: solving a
shape optimization problem takes often at least an order of magnitude longer
time than a pure simulation. Because of the explosive development of hard-
and software resources, these hurdles are likely to be overcome eventually.
The recent appearance of several monograph dedicated to shape optimiza-
tion [4,6,8,10-12] is hopefully indicative of a revival.

The key to be able to treat shape optimization problems with a large
number of design variables lies the use of gradient-based optimization meth-
ods and, in particular, in the use of adjoint equations to extract the di-
rectional derivatives. The experience collected through my own involvement
in boundary shape optimization strongly indicates that the sensitivity in-
formation — directional derivatives of objective functions and constraints
— needs to be very accurately computed in order for the optimization al-
gorithms to fully converge. As was early on recognized, not the least by
Roland Glowinski and his colleagues when developing shape optimization tech-
niques, the processes of discretization and differentiation do not commute, in
general. That is, a discretization of the necessary conditions of optimality
(differentiate-then-discretize, or the “continuous” approach) does not gener-
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ally lead to the same expressions as when deriving the necessary conditions
for the discretized optimization problem (discretize-then-differentiate, or the
“discrete” approach). The latter strategy is more reliable in my experience, but
may be difficult to effectuate in practice for complicated problems. Glowinski
and He [7] and Gunzburger [8, §2.9], among many others, discuss and offer
perspectives on this somewhat controversial issue.

A disturbing fact is that the two approaches often appear to be unrelated:
the procedure for deriving the first-order necessary conditions in the undis-
cretized case is typically different from the one used in the discrete case, and
the final expressions look very different. These problems may have contributed
to the reason why there are very attempts to perform analysis of convergence
and approximation errors for shape optimization problems. One of the few
attempts reported in the literature are by Di Cesare et al. [5], [12, Chapter 6].

The present article shows that a systematic use of the material derivative
allows a unified sensitivity analysis in the undiscretized and discretized cases.
To minimize technical issues, the derivation will be made for a model elliptic
problem and will be largely formal (without existence proofs, for instance).
However, the derivation will be made in a way that does not violate the reg-
ularity properties of the discrete problem. The final directional-derivative ex-
pression (45) (which appears to be new) contains the “continuous” expression
plus a number of correction terms that are generally nonzero in the discrete
case, but that vanish when the state and adjoint solutions are regular enough.

2 A Potential Flow Model Problem

We consider the flow of an incompressible fluid in a bounded domain 2 C R?,
d = 2, 3 with a Lipschitz boundary 942 (Figure 1). Fluid is flowing in and out
through I3, C 0f2; otherwise there are impenetrable walls at the boundary.
Let I'y € 02\ I}, be a part of the boundary. We wish to manipulate the shape
of the design boundary Iy in order to affect the velocity field in a desired way.
Let % be the set of admissible design boundaries, whose definition may pro-
vide conditions such as bounds on curvature, bounds on displacements from

Fig. 1. An example domain for the model shape optimization problem.
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a reference configuration, or requirements such as convexity of the domain.
In order to perform a calculus of variation on Iy, we introduce a design vari-
ation 56b : Iy — R? that generates a family of deformed design boundaries
I'4(t) € % in the following way: for each x € I'y, there is an x(t) € I'4(¢) such
that R

x(t) =x+tdp(x), t€[0,al (1)

In order to generate for the formula (1) Lipschitz design boundaries that are
connected to the rest of the boundary, any feasible design variation needs
to be Lipschitz continuous and vanishing on 0I'y. Any admissible (5(2) should
also, of course, be compatible with the definition of %/. Further smoothness
requirements on 5(2) will be introduced in Section 4 to allow differentiation.
We assume that o > 0 is small enough so that the mapping between I'y and
I'4(t) is bijective for each ¢ € [0, a].

The displaced design boundaries I'y(t) generate a family of domains 2(¢)
with Lipschitz boundaries. We consider the following potential-flow model
defined on £2(t):

—Au+eu=0 in £2(¢),

ou

an 9 ol (2)
ou

a—n = O on 69(15) \Ho,

where € > 0 is a small “regularization” parameter introduced to avoid the
singularity of the pure Neumann problem. The standard variational form of
the state equation (2) is

Find u(t) € H'(£2(t)) such that

Vo - Vu(t) +€/

vult) = / vg Yoe HYQW),  (3)
) n

io

Q(t)
where the notation wu(t) indicates the dependency on .

Remark 1. Throughout this article, we will leave out symbols for volume and
surface measure in the integrals, since the appropriate measures will be clear
from the context.

Now introduce an observation domain 2.ps that does not intersect with
the design boundary; that is, f2,,s C 2 such that Q2 N Tq(t) = 0. We
wish to manipulate the shape of I'y such that the velocity field within the
observation domain coincides as closely as possible with a given velocity field
Uobs, & requirement that naturally leads to the objective function

T(6bit) = % /Q V() — tgpe2. )

Some variation of the above problem is a common model problem for shape
optimization in the context of fluid flow; Cesare et al. [5] consider essentially
the same problem, for instance.
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3 Sensitivity Analysis

Here, we present the well-known formulas resulting from a sensitivity analysis
of the objective function (4), as described in the book by Pironneau [13],
for instance. Section 3.1 gives the expressions before discretization, whereas
corresponding expressions obtained after a finite-element discretization are
reported in Section 3.2.

3.1 Before Discretization

A sensitivity analysis of the objective function (4) and the state equation (3)
concerns the calculation of one-sided directional derivatives of the objective
function with respect to design variation d¢; we will use the notation

. + Y
5J(5h) = 3_t J6i1)|y = Jim J(5¢5t) t J(56:0)

(5)

The use of the one-sided derivative is essential when performing sensitivity
analysis around admissible designs for which geometry constraints are active.
The classical expression for the directional derivative is

5608) = [

I'q

n~(5(§5Vu-Vu*—5/ n-dpuu*, (6)

I'q

where u* € H'({2) satisfies the adjoint equation

/Vw-Vu*+e/wu*:/ Vw - (Vu —ueps) Ywe HY(D). (7)
I7) I7) I7)

obs

Note the advantage of introducing the adjoint equation: the directional deriva-
tive for each feasible design variation 5&) can be computed by repeated eval-
uation of the integral (6) without solving any more equations.

The expression (6) is typically derived through a change of variables in-
volving a smooth bijection between (2 and (2(¢). Such a mapping can be
constructed by extending the boundary variation 5(}5 to a domain variation
8¢ : 2 — R? such that for each point x € 2, there is a unique point
x(t) € £2(t) given by

X(t) = X + t(x), (8)

and such that d¢|p, = d¢.

Although the extended mapping is used for the derivation, under certain
smoothness assumptions of d¢ together with regularity properties that will be
made explicit in Section 6, it holds that the final expression (6) is independent
of the particular choice of extension.
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3.2 After Finite-Element Discretization

In the discrete case, it is natural to use the locations of the mesh vertices at
the design boundary Iy as design variables. However, in order to retain mesh
quality, it is, in general, necessary to modify the mesh inside the domain as
well. Thus, for generality, associate with each mesh vertex a vector dx; € R?
that indicates a feasible direction of movement for vertex k. Associated with
mesh vertex variation 0Xj, it is convenient to define the domain variation
§¢, = N}oxy, where N} is the continuous piecewise-linear finite-element
basis function at vertex k. Subject to variation dxy, each x(¢) in the deformed
domain £2(t) is then given by

X(t) = x + t 0xp NL (X) = x + t 5y, (%), 9)

and §2(0) = £2. The formula (9) interpolates deformation t dxj at vertex k on
the support of N ,i Note that the use of piecewise-linear basis functions implies
that planar mesh surfaces and edges will remain planar under the deformation.
Figure 2 illustrates the deformation (9) in two cases. If the mesh on domain
{2 is nondegenerate, then for each mesh vertex k, there is an oy > 0 such that
the mesh associated with the deformation (9) will also be nondegenerate for
all t € [0, ag].

Now discretize the equation (3) on the domain {2 using a conforming finite-
element discretization in a subspace Vj, C H({2). Given the deformation (9)
associated with an arbitrary mesh vertex k, we may then define a family of
discrete solutions

up(t) € Vi (t) € H'(£2(t)) such that

Vo, - Vup(t) —|—€/ vpup(t) :/ vy Yop € Vi(t),
2(t) To

(10)
)

and consider the discrete objective function

()VLV
A
LA

Fig. 2. Each mesh vertex displacement ¢ 0xy, is interpolated onto the support wy of
the continuous piecewise-linear finite-element basis functions N}.
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Iodt) = 5 [ 1unt) = uon ()

The following classical expression (e.g. [12, §6.5]) holds for the directional
derivative of Jy:

0Jp = —oxp, - / VNE(Vuy, - Vu}) + 6xp, - / Vun(Vuj, - VN})
Q 2
+ 0xy, - / Vi (Vuy, - VNE) — € 0%y / upul VNE,  (12)
Q 2
where u} € Vj, such that

/ Vuwy, - Vuj, —|—5/ wpuy = / Vuwyp, - (Vup, — uohs) Ywp € Vi (13)
n n 26bs

The expression (12) reveals expressions for the derivative of .J, with respect
to variations of each mesh vertex in all coordinate directions (note that the
integrals are vectors with d components). Once the state u;, and adjoint state
ujy are known, all these derivatives can be computed by a single assembly loop
over all elements. The derivatives can, for instance, be stored in a vector D.Jj
of dimension dn, where n is the total number of mesh vertices. Elements dk,
dk+1, ..., dk+d—1 of DJ} then contains the d components of the integrals
in the expression (12).

However, in shape optimization, it does not make much sense to optimize
the position of each mesh points independently. A good strategy is to modify
the locations of the mesh vertices on Iy explicitly using updates from the
optimization algorithm, and employ a mesh deformation strategy to move
the rest of the mesh vertices indirectly in order to preserve mesh quality. In
simple geometries, such a mesh deformation can be defined by an explicit
formula based on the distance to I'y. A more general strategy, however, is to
use a numerical deformation strategy, for instance, based on elliptic smooth-
ing [12, §5.3]. To describe the role of the mesh deformation in the derivative
calculations, consider the spaces of discrete boundary and domain variations,
Un = span(d¢y,)kev(ry) and Un = span(dy),.cy, ), where V() denotes the
set of mesh vertices located in the subdomain . A mesh deformation strategy
defines a mapping a : Y — U, and the objective function that is in reality
used for optimization when employing a mesh deformation is the composition
Jn = Jp 0 a. By the chain rule, the derivative of mapping J;, will be

DJ, = A"DJ,, (14)

where A4 is a matrix representation of the Jacobian of the mesh deformation
mapping a.

Note that the discrete adjoint equation (13) constitutes a finite-element
discretization of the adjoint equation (7). However, the discrete direc-
tional derivative expressions (14), (12) carry no obvious resemblance to
the expression (6).
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4 Shape and Material Derivatives of Functions

In Section 6, we will perform the sensitivity analysis in a way that simultane-
ously provides the seemingly quite different expressions (6) and (12). A main
component of the derivation is the differentiation of the state equations (3)
and (10). There are two fundamentally different ways in which a function can
be differentiated with respect to variations in the domain on which it is de-
fined: as a material or as a shape derivative. These concepts, shortly reviewed
below, are analogues to the material and spatial derivatives in continuous me-
chanics [9, §8]. For a thorough treatment of these concepts in the framework
of shape optimization, see the monograph by Sokolowski and Zolésio [14]. This
section aims to demonstrate a fact that seems curiously underappreciated in
the shape-optimization literature: the material derivative is better suited, due
to its favorable regularity properties, than the shape derivative for use in the
sensitivity analysis.
We start by introducing the notation £2(¢) = 74(£2), where, for x € (2,

T(x) =x+ tdp(x), te 0,0l (15)

For simplicity, we assume that the domain variation d¢ vanishes on (2,15 and
00\ I'y. For the problem before discretization, ¢ is an extension of 5(}5 (which
was defined solely on I'y) into a mapping from {2 into R?. We require that the
extended mapping is smooth enough so that the components of the second-
order tensor Vo¢ are in L*(£2). In the discrete case, d¢p(x) = d¢p;,(x), where
d¢;, is given by the expression (9) (here, d¢p can be made to vanish on 2,ps
and 02 \ I'y by simply not considering any k for which corresponding mesh
vertices are in {2,ps or 012\ I'q). By the definition (9), it follows that the
components of Vi¢ are in L*°({2) in the discrete case.

Now consider functions p : £2(t) x R — R. We will use p(t) as a shorthand
notation the for function x — p(x,t).

Definition 1. The material derivative of p with respect to domain variation
0@ at point x € 2 is
p(Tt(x)v t) - p(X7 0) _ d+

Omp(x;0¢p) = lim ; = 7 P(rx) )],

provided that the point-wise limit exists.

(Whenever there is no risk for confusion, we will suppress the second argument
and just use the notation d,,p(x).) The material derivative is thus a (one-sided)
derivative of the compound function ¢ — p(t) o1, (the “total” derivative). For
p(t) in a Banach space W, Definition 1 is easily extended to

q+
Omp = 37p(t) 0 ey (16)

with the limit in a Banach space X D W.
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Definition 2. The shape derivative of p with respect to design variation d¢
1s the function
6p = 0mp — ¢ - Vp(0). (17)

Remark 2. Definition 2 imposes an a priori regularity difference between d,,p
and dp due to the right-side gradient in the expression (17). This difference is
consistent with the typical behavior when differentiating the state variable in
a shape optimization problem. As illustrated in Examples 3 and 4 below, the
material derivative of the state variable can typically be defined in the same
space as the state variable itself, whereas the shape derivative typically cannot.
An alternative definition of the shape derivative is as the partial derivative

p(X, t) B p(X7 O)
t—0+ t

(18)

from which the expression (17) follows by the chain rule applied on ,p.
However, a complicating factor with the definition (18) is that the two terms
on the right side has different domains of definition, {2(t) and {2, respectively.

Following four examples highlight the different properties of the material
and shape derivative.

Ezample 1. Let g : £2 — R be given. Define p(t) = g o 7; !; that is, p(x,t) is
defined by mapping back x € £2(t) to corresponding point in {2 and evaluating
g at the mapped-back point. Then

dt d*

Omp = g(p(t)oﬁ)hzo = E(QOT;IOTt”t:o:O’ (19)

0p = dmp — 9 - Vp(0) = —d¢ - Vp(0).

Thus, when p(t) is “moving along” with the deformation, the material deriva-
tive vanishes. Next example illustrates the opposite situation.

Ezample 2. Let f : R? — R. Define p(t) = flo- Then

dt d*
Omp = TS (p(t) o Tt)’tzo Ty (flow o Tt) ’t:O
dt
=V low (57| Ly = VHlaw 60 =50 Tp0). 0

dp = 0mp — d¢p - Vp(0) = 0.

Thus, a function that is “fixed” with respect to the deformation yields a
vanishing shape derivative, a property that is consistent with the interpreta-
tion (18) of the shape derivative as a partial derivative.

Example 3. Let g belong to a finite element space V,, C H'({2) such that
g(x) = Zivzl gk N} (x), where N} is a finite-element basis function that is
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globally continuous and whose restriction on each triangular or tetrahedral
element is a polynomial of degree p. Define basis functions on the deformed
domain £2(t) by the expression N7 (x,t) = NP (7; '(x)), as in Example 1. The
span of the functions N7 (¢) defines a family of finite-element spaces V (¢) on
£2(t). Each p(t) € Vj,(t) may then be written

N
p(x,1) = > pr(t)NE(x,1). (21)
k=1
As in Example 1, we find that 6, N} =0, N} = —d¢p - VN! and thus

N
Smp =Y opi NE,
k=1

N (22)
0p = 0mp—0¢p-Vp ="y (6px NI —prd¢p- VNT),
k=1
where
d+
opr = gpk(t)lt:@ (23)

Note that d,p € V3, but dp € V3! That is, the material derivative is conforming
to the finite element space, whereas the shape derivative is not. Also note that
the material derivative is obtained by differentiating only the coefficients of p
(and not the basis functions) with respect to the deformation.

Ezample 4. Consider the solution u(t) € H*(£2(t)) to the state equation (3).
Sokolowski and Zolésio [14, §2.29] and Haslinger and Mé&kinen [10, §2.5.2]
discuss the existence of d,,p in similar situations, where they show that d,u €
HY(£2), provided that the domain deformations are sufficiently regular. As in
Example 3, the material derivative is defined in the same space as the state,
but since du = §u—Jd¢- Vu, the shape derivative typically has less regularity.

5 Rules for the Material Derivative

It is immediate from Definition 1 that the product rule holds for the material
derivatives of functions f, g on £2(t) x R:

5m(fg) = 6mfg + f5m97 (24)

where, for simplicity of notation, we have suppressed the evaluations at zero:
the right side should really be &, f g(0) + f(0) dmg. The rest of the article
adheres to the same convention: for a function f on £2(¢) x R, the symbol “f”
outside a material derivative will denote its restriction to ¢ = 0.

The shape derivative commutes with the spatial gradient, that is, 6V =
V4, but the material derivative does not: §,,V # V. However, it holds that
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Sm(Vp) = V(3mp) — (Vi¢)" Vp, (25)

or, in Cartesian components,

d
5m<@>:i5 » O 0 54 i=1,....d (26)

8.%’1' 3561 e _jzla_xj@_xi

To prove the expression (25), consider a finite-difference approximation of
the material derivative:

D, p(t) def M_ (27)

Differentiating both sides of the expression (27) yields
(p(t) o) — Vp(0)
t
[(T+ (Vo)) Vp(t) o 7/ — Vp(0)]

_ Vp(t)or ; — Vp(0) + (V) TVp(t), (28)

<

VD, p(t) =

| =

where the second equality follows from the chain rule applied on V(p(t) o 7¢)
and from differentiation of 7 as defined in the expression (15). The expres-
sion (28) implies that

V(0wp) = lim VDS, p(t) = uVp + (V3e)"Vp, (29)

which is the expression we wanted to show.
The product rule (24) and the expression (25) yields that

0m(Vq-Vp) =Vomq-Vp+Vq-Viup —Vq-(Vsdp)Vp, (30)

where Vg d¢p = Vg + (Vi) .
The rule for differentiating domain integrals that we will need in the fol-
lowing is [10, Lemma 3.3]

()= (. 7)

The rules (25), (30), and (31) are the basic tools needed for a differentiation
of the variational forms. Note that there are no direct counterparts to the
expressions (25) and (30) for the shape derivative in the discrete case (when
p,q € V), and no shape-derivative counterpart to the expression (31) with
f = Vq - Vp, since such expressions would involve second derivatives of the
finite-element functions, which are not functions.

- /Q (Ouf+fV-30).  (31)

t=0
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6 Sensitivity Analysis Using Material Derivatives

Equipped with the tools of Sections 4 and 5, we now perform a derivation
that simultaneously provides the directional derivatives (6) and (12).

Let V(t) C HY(2(t)) and define V = V(0). In the case before discretiza-
tion, V(t) = H'(£2(t)), whereas V(t) = V;(t), a finite-element space, in the
discrete case. The state equations (3) and (10) can then be written in the
common form:

Let u(t) € V(t) such that

32
Vo(t) - Vul(t) +€/ o(B)u(t) = / o)y o) vy, O
Q(t) Q2(t) T
and the objective functions (4) and (11) in the form
. 1
jodit) = 5 / Vu(t) — gl (33)
2obs

Differentiating the objective function (33) using the differentiation
rule (31) and observing that d¢|q,,.. = 0 yields

obs

5i(6¢) = /Q Vot - (Vi — ops). (34)

obs

Differentiating the state equation (32) at ¢ = 0, using the rules (24), (30),
and (31) yields that

0:/Q(Vdmv-Vu—ks(émv)u)—i—/Q(Vv-Vdmu-i-svému)
+/ (Vo-VuV - -d¢p+vuV-d¢p—Vov-(Vgdp) Vu) (35)
o

for each v € V. Since §,v € V (cf. Examples 3 and 4), the first integral in the
expression (35) vanishes due to the state equation (32) evaluated at ¢ = 0.
Now let u* € V satisfy the adjoint equation

/Vw-Vu*+e/wu*:/ Vw - (Vu — upps) Yw € V. (36)
Q Q Q

obs

By choosing v = u* in the expression (35) and making use of the equation (36)
with w = dyu, the expression (35) reduces to

0= / Vimu - (Vu — Uobs)
10,

obs

+/ (Vu* - VuV-5¢+u*uV - ¢ — Vu* - (Vsdp) Vu), (37)
0]
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from which we conclude that the expression (34) can be written

5j(0e) = — / (V' - VuV -6+ cu'uV - 66 — Vau* - (Vo) Var).  (38)
Q

Substituting d¢ = dxj, N'(x) into the expression (38) yields the discrete ex-

pression (12).

In order to proceed further, we need to integrate the expression (38) by
parts in a way that respects the regularity properties of the involved functions.
We will use a notation borrowed from the context of discontinuous Galerkin
methods [1, §3]. Let 75, be the set of elements (triangles or tetrahedrons) in
a triangulation of the domain 2 (that is, £2(0)). Note that the triangulation
will be completely superficial, without any effect on the solution, in the case
before discretization. Denote by H'(7;,) the space of functions in L?(§2) whose
restriction to each element K € 75, is in H*(K) (functions in H'(7;) may,
however, contain jump discontinuities between neighboring elements in the
discrete case). Denote by X the union of the boundaries to all elements in
the triangulation. Denote by T'(X) the space of traces of functions in H*(7},)
on X; such traces are uniquely defined on the domain boundary 9f2 but are,
in general, double valued on the element boundaries Xy = X'\ 02 interior
to the domain. Consider two neighboring elements K; and K5 that shares
the surface (3D) or the edge (2D) o € Xy, and denote by n; and ny = —ny
the unit normals on ¢ that are outward directed with respect to K; and Ko,
respectively. For ¢ € H'(7},), define jumps on o by

[[q]] = q|8K1ﬂan1 + q|8Kgﬂon2' (39)

For ¢ € H'(7) and v € H'(£2)¢ hold the integration-by-parts formula

[vwa==3 [wves [ wvor [ v w0

KeTy,

We will now apply the formula (40) with ¢ = Vu* - Vu and ¥ = d¢. Note
that ¢ € H'(7;,) and ¢ € H'(£2)? hold for these choices: before discretization,
q|x is smooth by internal regularity of the equations (32) and (36), and @ €
H'(0)? by assumption; after discretization, g|x is polynomial, and ) is in
an H(02)% conforming finite-element space. Using the formula (40), the first
term in the right side of the expression (38) can be written

—/QVu*-VuV~5¢: Z /K<5¢~V(Vu*~Vu)

KeTy,

—/ n-J¢Vu* - Vu — d¢p - [Vu™ - Vu], (41)
I'q

3o

where we have used that d¢ vanishes on 92\ I'4. Integration by parts on the
second term in the right side of the expression (38) yields
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—5/u*uV-5¢:5/ 6¢-V(u*u)—5/ n-d¢putu. (42)
0 N Iy

Substituting the expressions (41) and (42) into the expression (38) and col-
lecting terms, we obtain

5j(5¢):—/ n-d¢(Vu* - Vu+euu) — 5 - [Vu* - Vu]
T4 o
+ ) / (8¢ - V(Vu* - Vu) + Vu* - (Vsdo) Vu+ ¢ 6 - V(u*u)).
KeTy, K
(43)

The two first terms in the last integral in the expression (43) can be written
0V (Vu™-Vu)+Vu*-(Vsdp) Vu = V(6p-Vu*)-Vu+Vu*-V(d¢p-Vu), (44)

as shown by expanding in Cartesian components, for instance. Substituting
the expression (44) into the expression (43) yields

5J:—/ n-é¢(Vu* - Vu+eu'u) — 0¢ - [Vu™ - Vu]
Fd EO

s /K(v(5¢.Vu*)~Vu+5(5¢~Vu*)u)

KeTy,

+ 3 /K(Vu*-V(5¢-Vu)+5u*6d>-Vu). (45)

KeTy,

The expression (45) contains, as its first term, the “continuous” directional
derivative expression (6), but also three “correction” terms. The first correc-
tion term involves jumps of Vu* - Vu at inter-element boundaries, whereas
the second and third terms contain some particular weighted element-wise
residuals of the state and adjoint equations, respectively, for which d¢ - Vu*
and d¢ - Vu replace the test functions. Some or all of these “correction terms”
may vanish, depending on the situation:

Case 1 (before discretization). When V = H'(£2) — the “continuous” case —
the functions u and u* are interior regular (and regular up to the boundary
I'y when the boundary is smooth enough). In this case, the jump terms vanish
due to the continuity of Vu - Vu*. Also, since d¢p - Vu* € V, §¢ - Vu € V
in this case, the element residual terms will also vanish due to the state and
adjoint equations (32), (36). Hence, in this case, the expression (45) reduces
to the classic “continuous” expression (6).

Case 2 (lowest-order finite elements). If functions in V are linear on each
element, the element residual terms vanish, since then V(d¢-Vu*)|x = V(d¢p-
Vu)|x = 0.
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Case 3 (higher-order finite elements). Here, none of the terms vanishes, in
general, and the expression (45) with §¢p = dxj, N!(x) just provides a different
way of evaluating the expression (12).

Case 4 (C* finite elements). When using the (rather unusual) class of C'*! finite
elements (for instance, the Argyris element [3, §3.2.10]), the inter-element
jump terms vanish since then [Vu* - Vu] = 0.

The expression (45) links together the “discrete” expression (12) and the
“continuous” expression (6) and constitutes, therefore, hopefully a first step
in a rigorous numerical analysis of finite-element shape optimization. For in-
stance, the convergence rate of the discrete Frechet derivative could be esti-
mated by estimates of the jumps and residual terms that the expression (45)
exposes.

References

1. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of dis-
continuous Galerkin methods for elliptic problems. SIAM Journal on Numerical
Analysis, 39(5):1749-1779, 2002.

2. M. P. Bendsoe and O. Sigmund. Topology optimization. Theory, methods, and
applications. Springer, 2003.

3. S. C. Brenner and L. R. Scott. The mathematical theory of finite element meth-
ods. Springer, New York, 2nd edition, 2002.

4. D. Bucur and G. Buttazzo. Variational methods in shape optimization problems.
Birkh&user, 2005.

5. N. Di Cesare, O. Pironneau, and E. Polak. Consistent approximations for
an optimal design problem. Technical Report R 98005, Laboratoire d’Analyse
Numérique, Université Pierre et Marie Curie, 1998.

6. M. C. Delfour and J.-P. Zolésio. Shapes and geometries. Analysis, differential
calculus, and optimization. SIAM, Philadelphia, PA, 2001.

7. R. Glowinski and J. He. On shape optimization and related issues. In
J. Borggaard, J. Burns, E. Cliff, and S. Schreck, editors, Computational Meth-
ods for Optimal Design and Control, Proceedings of the AFOSR workshop on
Optimal Design and Control (Arlington, VA, 1997), pages 151-179. Birkh&user,
1998.

8. M. D. Gunzburger. Perspectives in flow control and optimization. SIAM,
Philadelphia, PA, 2003.

9. M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 2003.

10. J. Haslinger and R. A. E. Makinen. Introduction to shape optimization. Theory,
approximation, and computation. SIAM, Philadelphia, 2003.

11. E. Laporte and P. Le Tallec. Numerical methods in sensitivity analysis and shape
optimization. Birkhduser, 2003.

12. B. Mohammadi and O. Pironneau. Applied shape optimization for fluids. Oxford
University Press, 2001.

13. O. Pironneau. Optimal shape design for elliptic systems. Springer Series in Com-
putational Physics. Springer, New York, 1984.

14. J. Sokolowski and J.-P. Zolésio. Introduction to shape optimization. Shape sen-
sitivity analysis. Springer, Berlin, 1992.






A Novel Approach to Modeling Coronary
Stents Using a Slender Curved Rod Model:

A Comparison Between Fractured Xience-Like
and Palmaz-Like Stents

Josip Tambaca!, Suncica Cani¢?, and David Paniagua®

! Department of Mathematics, University of Zagreb, Bijenicka 30, HR-10000
Zagreb, Croatia, tambaca@math.hr

Department of Mathematics, University of Houston, 4800 Calhoun Road,
Houston, TX 77204-3476, USA, canic@math.uh.edu

Baylor College of Medicine, Texas Heart Institute at St Luke’s Episcopal
Hospital, P.O. Box 20345, Houston, TX 77225-0345, USA, dpaniag@pol.net

Summary. We present a novel mathematical model to study the mechanical
properties of endovascular stents in their expanded state. The model is based on
the theory of slender curved rods. Stent struts are modeled as linearly elastic curved
rods that satisfy the kinematic and dynamic contact conditions at the vertices where
the struts meet. A weak formulation for the stent problem is defined and a Finite Ele-
ment Method for a numerical computation of its solution is used to study mechanical
properties of two commonly used coronary stents (Palmaz-like and Xience-like stent)
in their expanded, fractured state. A simple fracture (separation), corresponding to
one stent strut being disconnected from one vertex in a stent, was considered. Our
results show a drastic difference in the response of the two stents to the physiologi-
cally reasonable uniform compression and bending forces.

1 Motivation

Mathematical and computer modeling of endovascular stents is an efficient
way to improve their design and performance [1,5,6,8,9,12,14-17,22]. Cur-
rently available computational tools include “off the shelf”, commercial soft-
ware which is based on various three-dimensional Finite Element Method
structure approximations of stent struts that form a three-dimensional stent
mesh. Accurate, three-dimensional approximation of stents is often computa-
tionally very expensive in terms of time and memory requirements. This is
why we developed a novel mathematical and computational algorithm which
approximates three-dimensional stents as a mesh of one-dimensional, elastic
curved rods.

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 41
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3_5,
(© Springer Science+Business Media B.V. 2010
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Fig. 1. A stent with nc =6 and ny, = 9.

Fig. 2. Deployment of a coronary stent.

Stent struts are modeled as linearly elastic, slender curved rods that satisfy
the kinematic and dynamic contact conditions at the vertices where the struts
meet. A weak formulation for the stent problem is defined and a Finite El-
ement Method for a numerical computation of its solution was developed in
[21]. The resulting FEM algorithm is incomparably simpler and faster than
any corresponding three-dimensional solver, thereby enabling simulations of
a large number of stent configurations in a short time.

Using this algorithm, we studied elastic deformation of stents in their
expanded state (see Figure 1) exposed to physiologically reasonable pres-
sure loads causing compression, expansion and bending. In particular, in this
manuscript we compared the mechanical response to compression and bending
of two commonly used coronary stents: a Palmaz-like stent and a Xience-like
stent (see, e.g., Figure 2). Furthermore, a fracture (separation) was intro-
duced prior to the computer simulations, corresponding to a separation of
one stent strut from one vertex in the stent frame. Stent fractures and sep-
aration of coronary stent components are relatively rare (although fracture
of stents used in larger arteries such as those of the legs, are more common)
but they cause potentially serious complications of coronary artery stenting
[13,18]. Patients whose coronary stents suffer from stent fracture may present
non-specific symptoms of angina as a result of restenosis (re-narrowing of a
coronary artery) or in-stent thrombosis, or both [13,18]. In order to insure
proper recognition and treatment of this problem, physicians must be aware
of its existence and of the stent behavior under these circumstances [3]. In
this manuscript we present a few scenarios that shed light on the mechanical
behavior of two commonly used coronary stents under the assumption of a
disconnection of one of the struts in the stent frame. New insights related to
the performance of such coronary stents are obtained.
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2 The Model

We consider a stent to be a three-dimensional elastic body defined as a union
of three-dimensional struts, see Figure 3 and Definition 1. The main novelty in
this manuscript, over the standard approaches that can be found in literature
[1,5,6,9,12,14-17,22], is the use of the one-dimensional curved rod model
to approximate the slender three-dimensional stent struts, and a definition
of a stent as a union of curved rods satisfying certain contact conditions.
The one-dimensional approximation is given in terms of the arc-length of
the middle curve of the rod as an unknown variable. The cross-section of a
rod representing each stent strut is assumed to be rectangular, of width w
and thickness t. The curved stent struts “lie” on a cylinder with reference
(expanded) radius denoted by R, and reference (expanded) length denoted
by L.

Struts themselves are assumed to be linearly elastic, with the elastic pa-
rameters given by the Lamé constants A and u, or, equivalently, by the Youngs
modulus of elasticity E and the shear modulus pu.

2.1 Geometry: Parametrization of the Stent Frame

Without the loss of generality, we will be assuming that the stent struts form
a uniform frame of diamonds with n¢ vertices in the circumferential direction,
and ny, 4+ 1 vertices in the longitudinal direction, as shown in Figure 1. The
assumption of uniform geometry is, however, not required for the implemen-
tation of the ideas described below, as they can be generalized to stents of
arbitrary geometry with struts of different lengths. This will be utilized, for

example, in Section 3.
Stent vertices will be denoted by v;;, where i = 1,...,nc and j =
1, ..., nr + 1, see Figure 1. Vertices can be defined as

L T
Vi, = (Rcos«z' C 16+ (G- 1)6/2), Rsin((i — 1)+ (G — 1)é/2), (j — 1) ) ,

nr

Fig. 3. Left: The figure shows the angle formed by a vertex of a stent, the center of
the circular cross-section, and an adjacent vertex on the stent. The angle is denoted
by ¢ = 27 /nc. Right: The geometry of an interior vertex v;; with incoming and
outgoing struts.
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Vi, j+1 P

/ Nij

Fig. 4. Curved stent strut.

where ¢ = 27 /n¢ is the angle formed by a vertex of a stent, the center of the
circular cross-section of a stent, and an adjacent vertex on the same circum-
ference of the stent, see Figure 3, left. The vertices on the adjacent circular
cross-section are shifted by the angle ¢/2. Each interior vertex is characterized
by two incoming and two outgoing struts. See Figure 3, right.

Struts of a high precision laser cut stainless steel stent are not straight,
but curved and located on the cylinder of radius R. To write the equations for
the curved stent struts we take a cord connecting the two vertices that define
a strut, and then project the cord to the cylinder of radius R. See Figure 4.
More precisely, denote by RF ;s k = 0,1, the two outgoing struts emerging
from the vertex v; ;, and connecting to the vertices shifted by +¢/2 at the
level j + 1. Then the cords (straight lines) corresponding to the struts RZ i
k = 0,1, can be parameterized as

Szk,j(s) =sVij+ (1 = 8)V((i—1—k) mod nc)+1,j+1, S € [0, 1],
i=1,...,nc, j=1,...,n1, k=0,1. (1)

The middle curve of the curved stent struts Rﬁ ; can be expressed via the
parameterization (see Figure 4)

Pi’fj :[0,1] — R3,
where

PFi(s)=NSF;(s), s€[0,1],i=1,...,nc, j=1,...,n, k=0,1. (2)

ij
Here N is the operator that lifts the cord up to the cylinder of radius R:

Pv
Nv = Pv+ R—
v — P’
where P denotes the orthogonal projector on es in R? with the standard scalar
product, and {e;, ez, e} is the standard orthonormal basis of R3.

Using the parameterization ij of the middle curve of stent strut Rk
we can now introduce a parameterization of the three-dimensional stent strut
Ri; as

@f’j(sl,SQ,s;),):Pf( )+82n (s )+83b (), (3)
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where t¥ and bk ;(s) define a local basis at each point of the middle

7,79 n; j
curve of stent strut Rf 5

k s) = ( Zlfj)/(s) nk 5) — (I—P)Pf](s) k 5) = k s Ilk s
t;;(s) ”(sz]),(s)”a ii(8) ||(I_P)szj(3)||7 bi ;(s) = t;;(s)xn; ;(s),

for s € [0,1]. The parameterization ®; maps the set [0,1] x [—t/2,t/2] x
[~w/2,w/2] into R3.

Definition 1. Three-dimensional stent {2 is a union of stent struts RF ' pa-
rameterized by @i,j, given by (3):

nr nc

2=UJU U ®F. on [0,1] x [~t/2,t/2] x [~w/2,w/2]. (4)

i=175=1k=0

The interior stent surface of a stent is defined by

nr nc

=JUy U ®F. on [0,1] x {~t/2} x [~w/2,w/2],

i=1j=1 k=0
and the exterior stent surface by

nr nc

re=JU U ®F. on [0,1] x {t/2} x [~w/2,w/2)].

i=1j=1 k=0

2.2 Mechanics: Stent as a Collection of Elastic Curved Rods

The curved rod model is a one-dimensional approximation of a three-
dimensional rod-like structure to the £2 accuracy, where ¢ is the ratio between
the largest dimension of the cross-section and the length of a rod. For a deriva-
tion and mathematical justification of the curved rod model see, e.g. [10,11].
In general, the behavior of a three-dimensional rod-like elastic body is approx-
imated by the behavior of its middle curve and of its cross-sections. In the
curved rod model, the cross-sections behave approximately as infinitesimal
rigid bodies that remain perpendicular to the deformed middle curve.

More precisely, let P : [0,¢] — R? be the natural parameterization of the
middle curve of the rod of length ¢ (||P'(s)|| =1, s € [0,4]). Then the curved
rod model can be formulated as a first-order system of differential equations
for the following unknown functions:

@:[0,/] = R3  the displacement of the middle curve of the rod;

@ :[0,4] — R3  the infinitesimal rotation of the cross-section of the rod;
q:[0,¢] = R3  the contact moment; and

p:[0,4] - R3  the contact force.
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(Here ¢ corresponds to the strut length, denoted by [,.) For a given line force
density f, the equations of the curved rod model can be written as (see [19]):

p'+f=0, (5)

qd+txp=0, (6)

describing the balance of contact force and contact moment, respectively, with
& - QH Qg =0, (7)

'+t xw=0, (8)

describing the constitutive relations for a curved, linearly elastic rod. Here t
is the unit tangent to the middle curve, Q = (t,n, b) is the orthogonal matrix
containing the tangent vector t and vectors n and b that span the normal
plane to the middle curve (Q describes the local basis at each point of the
middle curve), and

uK 0 0
H=|0 FI, 0 |,
0 0 FI,
where £ = MM is the Young modulus of the material, I,, and I are

moments of mertla of a cross-section and pK is the torsion rigidity of the
cross-section. Therefore, H describes the elastic properties of the rod and
the geometry of the cross-section.

The equation (8) is a condition that requires that the middle line is ap-
proximately inextensible and that allowable deformations of the cross-section
are approximately orthogonal to the middle line. This condition has to be in-
cluded in the solution space for the weak formulation of the problem (5)—(8)
(pure traction problem for a single curved rod). Thus, introduce the space

V={(%Ww)eH(0,0°:¥+txWw=0}. (9)

Function (@1,w) € V is called a weak solution of the problem (5)—(8) if

¢
/ QHQT &' W' ds — /0 Fds+(0)W(0)—a(0)w(0)+D(0)¥(0)—p(0)¥(0)
(10)

holds for all (v,w) € V (notice the difference in the notation between @
and wW).

To model the mechanical behavior of a stent as a collection of one-
dimensional linearly elastic, homogeneous, isotropic curved rods, We param-
eterize the struts using the one-dimensional parameterizations P, Z g of the
struts’ middle curves, see (2). Now a stent can be defined as a union of one-
dimensional parameterizations as follows:

nc nL

-UUu

i=1j=1 k=0
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Fig. 5. Vertex v; ;.

Note that parameterizations Pi’fj are not arc-length parameterizations which
is necessary for the formulation of the curved rod model (5)—(8). Nevertheless,
they uniquely determine the middle curves of the stent struts and imply the
existence of the arc-length parameterizations. Finding the arc-length param-
eterization in this case is a difficult task which is not necessary for the final
formulation of the problem and the numerical method development.

Each of the curved rods approximating the stent struts Rﬁ ; satisfy a set of
equations of the form (5)—(8). At the vertices where the curved rods meet, the
kinematic and dynamic contact conditions determine the boundary condition
for each curved rod in the stent frame structure. The kinematic contact condi-
tion describes the continuity of the kinematic quantities ﬁf ; and (.Z:f ;» stating
that the displacement and the infinitesimal rotation for two struts meeting
at a vertex, are the same. The dynamic contact condition is the equilibrium
condition requiring that the sum of all contact forces at a vertex, and the sum
of all contact moments at a vertex be equal zero. Thus, for each vertex v; ;
(see Figure 5) the kinematic contact conditions are given by
ﬁ?i—l) mod nc+1,j—1(ls) =

-0
W(i—1) mod nc+1,j—1(ls) =

=1}

i mod nc+1,j—1(ls) = ﬁi,j(o) = ui,j(0)7 (11)
zlmod nc+1,j—1(ls) = ‘;’z‘,j(o) = G"z{j(o)v (12)

and the dynamic contact conditions are given by

&

q(()i—l) mod nc+1,j—1(ls) + qzl mod nc+1,j71(ls) + 61?,3 (0) + q’},j (0) = 07 (13)
f)(()i—l) mod nc+1,j—1(ls) + f)'} mod nc+1,j71(ls) + f)(l),j (0) + 13'},3 (0) = 07 (14)
fori=1,...,nc,j=1,...,np + 1 with the convention that the quantity

is removed for nonexistent indexes corresponding to the end vertices v; 1 and

Vi,’n L+1-
To define a weak formulation for the stent frame problem, introduce the
following function space:

»Yne,np) Wne,np 1,50 YWi,g

Vi = {900 % 1 Vs Wheon,) : (VE5,WE ) € VS & (1), (12) howd}

where Vzkj are the function spaces (9) corresponding to the struts Rﬁ e
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Now the weak formulation for the stent frame structure consisting of curved
rods is given by the following:

Definition 2. Function (ﬁ?,l,&?’l, e o) ) € Vi is a weak solu-

? U no,mL? T ne,nL
tion to the stent frame problem if

nc nr

l l

s ~ ~ S’“‘k ~
Y3 Y [akm@b) @) oy = [ st )
i=1 j=1 k=0,1

<0 =0 <1 1
holds for all (Vi 1, W3 153 Ve n, s Wnom,) € VE.

Notice again the difference in the notation for the infinitesimal rotation

test functions vNVﬁ j and the notation for the infinitesimal rotation solution

functions &f ;- Also notice that all the intermediate boundary terms on the
right-hand side of the equation (10) cancel out in the formulation (15) due to
the kinematic and dynamics contact conditions.

Solution to the problem (15) is not unique. Namely, since only the deriva-
tive of @ appears in the weak formulation, the solution will be determined
up to a constant wg. Thus, if P is a point on the frame structure, then
w(P) = @o is in the kernel of the problem. Furthermore, from the condi-
tion @' +t x @ = 0, with & constant, one can solve the equation for @ to
obtain t1(s) = tig — P X @g = Ug + @o X P. Thus, the infinitesimal rotation of
the cross-section and displacement of P are unique up to the term

w(P)| _ wo
ﬁ(P) o ﬁo + (:J() x P’
for arbitrary vectors 11, @o € R3. This means that the solution is unique up

to the translation and infinitesimal rotation of the frame structure. Thus we
will be interested in the solution of (15) that satisfies an additional condition

/ ia(P)-(a+bx P)dP =0, Va,becR> (16)
F

2.3 Numerical Implementation

The frame structure presented in this section is still extremely complex. The
main obstacle for the numerical treatment of the problem of the form (15) is
the implementation of the condition in the function spaces Vlkj that should be
satisfied by the test functions. For this reason, we made a further simplification
that incorporates approximation of each curved rod by the piecewise straight
rods. This approximation has been mathematically justified in [19, 20]. For
details, please see [21]. A Finite Element Method was developed in [21] for a
solution to this problem. Numerical results are presented next.
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3 Numerical Results

The mechanical behavior of two types of stents is considered below: a Xience-
like stent (nonuniform geometry) shown in Figure 6, and a Palmaz-like stent
(uniform geometry), shown in Figure 14. Both stents are subject to two loading
scenarios: uniform compression and bending.

Uniform Compression

A uniformly distributed force in the radial direction is applied to stents caus-
ing compression. Radial displacement from the expanded configuration is mea-
sured. The compression force corresponds to the pressure load of 0.5 atm. The
force is calculated by considering the 0.5 atm pressure load of a cylinder (e.g.,
blood vessel) of length L acting on a stent of the same length L. This pressure
load is physiologically reasonable. Namely, we can use the Law of Laplace to
estimate exterior pressure loads to an inserted stent. Recall that the Law of
Laplace relates the displacement u of the arterial wall with the transmurral
pressure p — pg [7] via:

Eh

D —Po = m% (17)

where E is the Young modulus of the vessel wall, h is the vessel wall thickness,
R the vessel (reference) radius and v the Poisson ratio. For incompressible
materials such as arterial walls (nearly compressible), v = 1/2. The Young
modulus of a coronary artery is between 10% and 10° Pa, see, e.g., [2] and the
references therein. For our calculation let us take the intermediate value of
E = 5 x 10° Pa, and let us take the reference coronary artery radius to be
around 1.3 mm with the vessel wall thickness i = 1 mm. Stents are typically
oversized by 10% of the native vessel radius to provide reasonable fixation.
Thus, 10% displacement of a coronary artery of radius 1.3 mm is 0.13 mm.
This gives v = 0.13mm. By plugging these values into the formula (17) one
gets p—po = 5 x 10* Pa which equals 0.5 atm. Thus, a pressure load of 0.5 atm
is necessary to expand a coronary artery by 10% of its reference radius. This
force is applied to the stents studied below to capture the stent deformation
under the coronary artery loading.

Bending

In the examples below we will be calculating stent deformation to forces caus-
ing bending. These forces will be applied pointwise to the center of a given

Fig. 6. Xience stent by Abbott (left); Computationally generated Xience-like stent
(right) showing half of the mesh with nc = 6 and np = 24.
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stent (at 2—4 points in the center) and to the end points (at 1 point near each
end of a stent). The force at the end points is applied in the opposite direction
from the force applied to the center of the stent. The magnitude of the total
applied force is calculated for each stents to be equal to the force that a curved
vessel, with the radius of curvature R. = 2.5cm, exerts on a straight stent
that is inserted into the curved vessel. Stents with higher bending rigidity will
deform less, while stents with low bending rigidity will deform more.

3.1 Xience-Like Stent (Stent X) (Non-Uniform Geometry)

The stent geometry is that of Multi-Link Mini Vision, resembling Xience
stent by Abbott shown in Figure 6, left. Figure 6, right shows our computer-
generated geometry of a Xience-like stent. The stent struts are made of Cobalt
Chromium (CoCr) (L-605) (CoCr, Young’s modulus E = 2.43 x 10*! Pa) with
thickness 0.08 mm. Stent struts are organized in zig-zag rings (“in-phase”
rings) connected with horizontal struts which contain one wiggle near the
protruding vertex of a zig-zag ring. Stent X has nc = 6 vertices in the cir-
cumferential direction and ny;, = 24 vertices in the longitudinal direction with
reference radius R = 1.5 mm.

In the examples below a fractured Xience-like stent will be considered,
with a fracture corresponding to a disconnection of one strut from one vertex.
In particular, a vertex in the middle of the stent is chosen to suffer component
separation, see Figures 7 and 12. Namely, our simulations show that this ver-
tex suffers from highest contact moments during bending (and compression).
Denote this vertex by v. There are three struts that meet at vertex v: two
symmetric, diagonally placed ones forming one zig-zag geometry in the zig-zag
ring of stent struts, see Figure 7, bottom, and one horizontally placed strut

0.0000456502

[

0.0000456502

Fig. 7. Non-fractured Xience-like stent exposed to uniform compression. Stent struts
are colored based on the magnitude of contact moment. The bottom figure shows
the strut which will be disconnected from vertex v, colored with a black dot.
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connecting two different zig-zag rings, see Figure 12. We will consider below
two examples: the first is an example of a Xience-like stent with a separated
diagonally placed strut, and the second is an example of a Xience-like stent
with a separated horizontally placed strut.

Ezxample 1. Xience-like stent with a disconnected diagonally placed strut
emerging from vertex v is exposed to uniform compression and bending.
Figure 7 shows the bending moments for a non-fractured Xience-like stent,
with a strut that is to be disconnected from vertex v shown in black. Figure 8
shows radial displacement under uniform compression of the fractured stent.
The disconnected strut is shown in light blue (cyan). The two views show that
the strut disconnected from vertex v protrudes into the lumen of the stented
vessel by around 30% of the reference radius, causing potential for complica-
tions associated with in-stent thrombosis, as observed in clinical practice [13].

Figure 9 shows that the deformation of the disconnected strut causes
higher contact moments. A comparison between the numbers on the scale
shown on the left in Figures 7 and 9 indicate that the maximum bending
moment for the deformed stent with a disconn