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Dedicated to Prof. R. Glowinski
at the occasion of his 70th birthday.



Preface

The present volume is comprised of contributions solicited from invitees to
conferences held at the University of Houston, University of Jyväskylä, and
Xi’an Jiaotong University honoring the 70th birthday of Professor Roland
Glowinski. Although scientists convened on three different continents, the ed-
itors prefer to view the meetings as single event. The three locales signify
the fact Roland has friends, collaborators and admirers across the globe. The
contents span a wide range of topics in contemporary applied mathematics
ranging from population dynamics, to electromagnetics, to fluid mechanics, to
the mathematics of finance among others. However, they do not fully reflect
the breath and diversity of Roland’s scientific interest. His work has always
been at the intersection mathematics and scientific computing and their ap-
plication to mechanics, physics, aeronautics, engineering sciences and more
recently biology. He has made seminal contribution in the areas of methods
for science computation, fluid mechanics, numerical controls for distributed
parameter systems, and solid and structural mechanics as well as shape op-
timization, stellar motion, electron transport, and semiconductor modeling.
Two central themes arise from the corpus of Roland’s work. The first is that
numerical methods should take advantage of the mathematical properties of
the model. They should be portable and computable with computing resources
of the foreseeable future as well as with contemporary resources. The second
theme is that whenever possible one should validate numerical with experi-
mental data.

The volume is written at an advanced scientific level and no effort has
been made to make it self contained. It is intended to be of interested to both
the researcher and the practitioner as well to advanced students in compu-
tational and applied mathematics, computational science and engineers and
engineering.

Many individuals contributed to the success of the celebration honoring
Roland’s 70th. The scientific coordination of the events was managed by Prof.
Tsorng Whay Pan in Houston and Dr. Kirsi Majava in Jyväskylä. Without
their dedicated efforts the conferences and this volume would not have existed.



VIII Preface

The solicitation and collect of manuscripts was overseen by Ms. Sharon Lahey
in Houston and Ms. Marja-Leena Rantalainen in Jyväskylä. The staffs of
the Faculty of Information Technology in Jyväskylä and the Departments of
Mathematics of the University of Houston and Jiaotong University need to
be recognized for their diligent efforts in logistics, local arrangements and
support.

Houston, Texas William Fitzgibbon
Houston, Texas Yuri Kuznetsov
Jyväskylä, Finland Pekka Neittaanmäki
Jyväskylä, Finland Jacques Périaux
Paris, France Olivier Pironneau
April 2009
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P.O. Box 35 (Agora)
FI-40014 University of Jyväskylä
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Université Paris VI
Laboratoire Jacques-Louis Lions
175 rue du Chevaleret
FR-75013 Paris, France
pironneau@ann.jussieu.fr

Jacques Rappaz
Institute of Analysis and Scientific
Computing
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Roland Glowinski: The Unconventional

and Unexpected Path of a Mathematician

William E. Fitzgibbon1 and Jacques F. Périaux2

1 College of Technology, University of Houston, 4800 Calhoun Road, Houston,
TX 77204, USA, fitz@uh.edu

2 Department of Mathematical Information, University of Jyväskylä, 40351,
Jyväskylä, Finland
and
Numèrics en Enginyeria (CIMNE), Centre Internacional de Mètodes, C/Gran
Capitan s/n, 08034, Barcelona, Spain, jperiaux@gmail.com

More than 10 years have elapsed since the conference, “Computational Science
for the Twentieth Century”, was held in Tours, France. The Tours event hon-
ored the 60th birthday of Roland Glowinski. The world has witnessed many
changes in the last decade, but Roland and his lovely wife, Angela, seem to
barely have changed at all. Indeed, they are like fine French wine or Tennessee
whiskey; they improve with age. As we reflect upon the career of Roland, it
is important that we not underestimate the role of Angela. Everyone knows
the old saying,

Beside every great man stands a great woman.
The quote becomes more complete, and perhaps appropriate, if we include
Voltaire’s addendum,

a surprised mother in law.
Angela Glowinski is the first lady of Franco American mathematics. She serves
as Roland’s tireless confidante, supporter, cheerleader, and at times, task mas-
ter. Roland never expected to become a professor and renowned scientist. Only
at the urging of his wife did Roland make the decision to return to the academy
and enroll at the Institut Blaise Pascal. For that, the applied mathematical
community, as well as Roland, owes Angela a profound debt of gratitude. In
fact, we think that if Jacques-Louis Lions had not existed, Angela would have
found a Lions.

The event celebrating Roland’s 70th birthday was a peripatetic one, taking
place at the University of Houston in Houston, Texas; University of Jyväskylä
in Jyväskylä, Finland; and Xi’an Jiaotong University in Xi’an, China. Roland
has friends and collaborators across the globe. Many old, loyal friends and
some new were present at the gatherings. However, the joy at these events was
dampened by the sad realization that some old friends were missing and will

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 1
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3 1,
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2 W.E. Fitzgibbon and J.F. Périaux

not return. In particular, we pay tribute to Professor Jacques-Louis Lions. He
was an inspiration and mentor to us all. His torch will now have to be carried
by Roland and his fellow lionceaux.

We will not deign to give a full discussion or even a list of the research
achievements, distinctions, and accolades of Roland Glowinski. We will say
that over the course of his career Roland has authored or coauthored over 250
scientific articles, has written or edited about twenty books, has served on
a panoply of editorial boards, advised numerous students and post doctoral
fellows, and has collaborated with scientists across the globe. Among other
honors, he has been elected to the French Academy of Science and is a member
of the French Legion d’Honneur at the level chevalier.

The eminent German poet and author Johann Wolfgang von Goethe once
said,

Mathematicians are like Frenchmen: whatever you say to them they
translate into their own language and forthwith, it is something en-
tirely different.

Although Roland is, and always will be, quintessentially French, the corpus
of his work serves as a marked counterexample to the sentiments Goethe
expressed. If there is a common thread running through the large and broad
corpus of his work, it is his four-step approach:

1. Identification of the model
2. Determination of the structure and mathematical properties of the model
3. Development of numerical methods that take advantage of the model’s

mathematical properties, while at the same time making optimal use of
available computing resources

4. Validation and verification of the numerical results

It has always been Roland’s concern to construct portable methods that
can readily be adapted by other scientists in different contexts. Today, applied
and computational mathematics is in vogue. Academic institutions compete
to develop it. This was not the case when Roland began to follow his muse.
Pure mathematics was the mode and even applied mathematics tended to be
highly theoretical. Roland’s decision to engage the applied problems of in-
dustry, engineering, and science was both unconventional and bold. His work
has always been in mathematics and scientific computing and their applica-
tion to mechanics, physics, aeronautics, engineering sciences and, more re-
cently, biology. He has made seminal contributions in the areas of methods
for science computation, fluid mechanics, numerical controls for distributed
parameter systems, and solid and structural mechanics, as well as shape op-
timization, stellar motion, electron transport, and semiconductor modeling.
Indeed, Roland’s work demonstrates that Goethe should have paid attention
to the words of Leonardo di Vinci,

Mechanics is the paradise of the mathematical sciences because by
means of it one comes to the fruits of mathematics.
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Roland’s scientific journey began in the late fifties with his education
at the elite École Polytechnique. Air France awarded Roland a traineeship
at the Boeing Company in Seattle, in 1960. This is significant in two ways;
one, it gave Roland an introduction to aviation and aeronautics, and it in-
troduced Roland to the United States and kindled his affection for life in the
United States. Roland fulfilled his military obligation in the French Army
serving in Algeria during the period of trouble. Roland then worked as a
telecommunications engineer for ORTF (the French Broadcasting System)
from 1963–1968 and became well grounded in electromagnetism, as well as
learning FORTRAN.

Roland’s decision at Angela’s urging to enroll in Professor J.-L. Lions’ Post
DEA Course in Numerical Analysis at Institut Blaise Pascal proved to have a
major impact upon Roland’s subsequent career. This course is made notable
by the careers that it launched. The list of those who have benefited from it
includes: J. Cea, A. Bensoussan, P. A. Raviart, J. C. Nédélec, G. Chavent,
L. Tartar and O. Pironneau. Roland grabbed Lions’ attention and came under
his influence. In 1967, Professor Lions hired Roland at l’Institut de Recherche
en Informatique et en Automatique (IRIA). Roland excelled and rapidly be-
came a Scientific Director in 1971, serving until 1985. On the academic side,
Roland was elevated to a professorship at the Université de Pierre et Marie
Curie. Following the dictum of Lions, Roland, as did other disciples of Lions,
maintained close connections with industry and government agencies (be they
French or, more recently, American) in the areas of aeronautics, nuclear en-
ergy, space exploration and hydrocarbon recovery.

Roland’s career path is both unconventional and unexpected. It is uncon-
ventional by virtue of his decision to become involved in the applied problems
of industry, engineering, and science at a time when pure mathematics was
the mode. His applied orientation is well illustrated by his highly acclaimed
collaboration with Dassault Aviation as leader of the Glowinski–Bristeau–
Pironneau–Perrier–Periaux–Poirier GB4P team. This effort culminated in the
finite element simulation by least squares techniques of the 3-D shocked tran-
sonic flow around a complete Falcon 50 business jet geometry.

In the 1980s, Roland made a series of major contributions in the domain
decomposition and fictitious domain methods. This work was initially mo-
tivated by large scale industrial applications in aeronautics and the oil in-
dustry, and extended recently to applied electromagnetics the identification
of the signature of coated materials on aircraft, ships, submarines or mobile
phones. The latter work applied exact controllability methods derived from the
Hilbert Uniqueness Method of J.-L. Lions. Roland’s important contributions
to the numerical solution using Lagrange multiplier methods are documented
in his paper, Augmented Lagrangians and Operator Splitting, which he coau-
thored with P. Le Tallec. He subsequently, in collaboration with D. Joseph
and T. W. Pan, extended this to the theoretical description of the fluidization
and the sedimentation of particular flows.

If there is a feature in Roland’s background that distinguishes him from
most of his contemporaries in applied mathematics, it is probably the fact that
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he began by obtaining experience as an engineer in aeronautics at Boeing
telecommunications ORTF and then undertaking the study applied mathe-
matics and numerical analysis with J.-L. Lions and other distinguished math-
ematicians. All of this background was coupled with a native intelligence,
an open mind, and relentless curiosity. Roland’s affable personality, constant
good mood, patience, and willingness to listen, together with his innate ability
to interact and collaborate with people across a wide spectrum of scientific
and engineering disciplines, have enabled his putting together an impressive
international network of friends and colleagues.

In the administrative area, Roland served as Director at CERFACS,
Toulouse, from 1992 to 1994, a unique experience with EC and Aerospatiale.
Although Roland first came to the United States on an internship with Boeing
in the early 1960s, the American portion of his career began in 1985, with
his assumption of the M. D. Anderson Professorship of Mathematics at the
University of Houston. Roland subsequently became the Hugh and Roy Cullen
Professor of Mathematics and Yuri Kuznetsov assumed the M. D. Anderson
Chair. Roland’s presence at the University of Houston has had significant im-
pact on the development of applied mathematics in Houston and in Texas.
Under Roland’s leadership and guidance, we have developed into a major
node on the international applied and computational network. Many well
known scientists joined our faculty – to name a few: Mary Wheeler, Yuri
Kuznetsov, Tsorng-Whay Pan, Ed Dean, Jiwen He, Ronald Hoppe, Jeffery
Morgan, Robert Azencott and Sunčica Čanić. We will not even attempt to list
the visitors who have streamed through Houston. It will suffice to say that one
can expect to hear French, Russian, German, Chinese, Spanish, and Croatian,
as well as the Texas drawl, along the corridors of the mathematics department.
It is fair to say that Roland was a bellwether for the State of Texas. Subse-
quent to his arrival, both the University of Texas and Texas A&M University
have emerged as major centers of computational mathematics. Texas can now
be known for computational science, as well as horses, cattle, oil and barbecue.

We find ourselves on the threshold of a new era with interesting and chal-
lenging problems concerning the areas of medicine, life science, the environ-
ment, energy, information technology, communications, and materials science.
Now more than ever, we will need scientists like Roland with innovation, vi-
sion, and ability to work across both disciplinary and national boundaries.

We conclude with the last stanza of a poem dedicated to Roland by
Professor Zhong-Ci Shi of the Institute of Computational Mathematics in
Beijing:

You earned your success and you should feel very confident with your-
self for all that you have achieved.



The Scientific Career of Roland Glowinski

Olivier Pironneau

Université Paris VI, Laboratoire Jacques-Louis Lions, 175 rue du Chevaleret,
FR-75013 Paris, France, pironneau@ann.jussieu.fr

Roland Glowinski is a former student of one of the best school for mathematics
and engineering in France, the Ecole Polytechnique.

After a first employment at the French television company ORTF, he de-
cided to go back to the university for a thesis (thèse d’Etat) and received
his degree and a position of professor at the University of Paris VI in 1970.
Already a fervent admirer and colleague of Professor Jacques-Louis Lions, his
former advisor, he succeeded him as head of the numerical analysis group at
IRIA (now INRIA) in 1976.

Soon he became the best known French algorithm designer for solid and
fluid mechanics, a talent which will give him many awards and nominations as
scientific advisor in hi-tech companies, a temporary teaching position at Ecole
Polytechnique and the worldwide reputation of the best scientific advisor for
partial differential equations in industry. Nevertheless, as if life was too easy,
Roland decided to move to University of Houston, Texas, in the 1980s. At
the request of J.-L. Lions he came back for a couple of years to France to
lead the CERFACS, at the time of writing the best French lab in Toulouse
for scientific computing. Since then he is a full time Professor at University
of Houston and Honorary Professor at the University of Jyväskylä.

Roland Glowinski is the author of 7 books and more than 300 articles. His
main contributions are in many fields of applied mathematics, simulations and
scientific computing; we may order them in eight groups:

1. Domain decomposition methods. He is the first to have understood the
links between Schwarz algorithms and Lagrange multiplier methods; one
of the first domain decomposition method without overlap is his. He is
also among the first to have proposed the framework of mixed methods
for domain decompositions. Finally, he is a co-founder of the famous DDM
conference series. He received the Cray prize for his achievements in this
important field of parallel computing.

2. Fictitious domain methods. With equal success he applied the framework of
Lagrange multipliers to the fictitious domain embedding methods, thereby

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 5
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establishing convergence of old Russian algorithms and new methods of
his. He gave the appropriate functional framework for the variational nu-
merical methods with important applications to time dependant domains.
In an article with V. Girault a fundamental error estimates was established
which is one of the most cited result of the field also because it contains a
compatibility condition which says that the discretization of the physical
domain must be coarser than the background mesh.

3. Robust preconditioners for the Navier–Stokes equations and other nonlin-
ear partial differential equations. In his book (Springer-Verlag) on nonlinear
problems Roland Glowinski proposed several iterative algorithms (conju-
gate gradient and augmented lagrangian methods) with optimal precon-
ditioners especially for the Stokes equations thereby opening the way to
modern scientific computing, a method which everybody use nowadays. He
received the Prix Marcel Dassault of the French academy of sciences for
his work in this field.

4. Several iterative algorithms for visco-elastic problems. With J.-L. Lions
a family of methods based on augmented Lagrangian formulations and
other penalties were given to solve the variational inequalities of physics,
an approach which is still, when possible, the most stable way to find free
boundaries, thereby avoiding remeshing of the moving domains.

5. Algorithms for the biharmonic problem. R. Glowinski proposed a formu-
lation of the problem which could be discretized with low degree finite
elements and which leads to the fastest numerical method to the point
that at Dassault Aviation their first Navier–Stokes solver was based on
this formulation. It was also the first in a series of scientific “coups” in the
fruitful cooperation between Roland, Jacques Périaux and Pierre Perrier
at Dassault Aviation.

6. An algorithm for the transonic equation. In this industrial cooperation a
variational formulation of the transonic equation was tested with an en-
tropy condition based on the potential of the flow, which again brought
Dassault Aviation to the front line of scientific computing with the first
complete numerical aircraft at transonic speed.

7. A numerical implementation compatible with the controllability conditions
of hyperbolic problems, the famous H.U.M. of J.-L. Lions. With several
collaborators at INRIA and at Dassault Aviation the method was proven
to be very efficient for solving the Maxwell equations of electromagnetism in
the physical variables yet seeking for periodic solutions and hence avoiding
frequency domain reformulations.

8. A mixed formulation for fluid–structure interactions. In cooperation
with D. Joseph at University of Minnesota (Minneapolis) for pipelines,
R. Glowinski and his team at University of Houston solved the very diffi-
cult challenge of simulating the fluidized bed problem. This is a 3D flow
with thousands of solid balls moving with the flow. This was the prob-
lem that lead Roland to use the fictitious domain method, although he
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tried also body fitted meshes. The originality of his approach is to have
embedded the Newton laws for the balls into the variational formulation
of the problem.

Roland Glowinski is world famous for his contributions to parallel comput-
ing especially for problems with unstructured meshes, with the finite element
method, linear or non-linear, with or without free boundaries and with multi
physics. His collected work in book form would amount to perhaps 12 volumes,
fairly easy to read and yet to the point, with the right dose of mathematics
for beautiful theories pertinent to the applications which Roland never loose
sight of what he calls “applied mathematics of good taste”.

It would be tedious to list all the prizes and honors he received but let us
cite two: the French Academy of Sciences and the von Karman Lecture at the
2004 SIAM meeting.

Books by Roland Glowinski

1. R. Glowinski, J.-L. Lions, and J. He. Exact and approximate controllability for
distributed parameter systems. A numerical approach, volume 117 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge,
2008.

2. R. Glowinski. Finite element methods for incompressible viscous flow. In P. G.
Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Vol. IX, pages
3–1176. North-Holland, Amsterdam, 2003.

3. R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator splitting
methods in nonlinear mechanics. SIAM, Philadelphia, PA, 1989.

4. M. Blanc, D. Fontaine, R. Glowinski, and L. Reinhart. Simulation of electron
transport in the earth magneto sphere. Gordon Breach, 1987.

5. R. Glowinski. Numerical methods for nonlinear variational problems. Springer,
New York, 1984.

6. M. Fortin and R. Glowinski. Méthodes de Lagrangien augmenté. Gauthier-Villars,
Paris, 1982. (publié en anglais par North-Holland en 1983).

7. R. Glowinski, J.-L. Lions, and R. Trémolières. Analyse numérique des inéquations
variationnelles. Tome 1. Théorie générale premiéres applications. Tome 2.
Applications aux phénomènes stationnaires et d’évolution. Dunod, Paris, 1976.
(et en anglais par North-Holland, 1981 avec 200 pages de plus).
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1 Introduction

We establish existence and uniqueness of solutions of a class of partial differ-
ential equations with nonlocal Dirchlet conditions in weighted function spaces.
The problem is motivated by the study of the probability distribution of the
response of an elasto-plastic oscillator when subjected to white noise excita-
tion (see [1,2] on the derivation of the boundary value problem). Note that the
developments in [1,2] are based on an extension of Khasminskii’s method (see,
e.g. [5]) and in this paper we use a direct approach to achieve our objectives.

We refer the reader to [3, 4, 6, 7] for general background on modeling,
theoretical, and computational issues related to elasto-plastic oscillators.

2 Setting of the Problem

2.1 Notation

We set D = R × (−Y, Y ). A point in D is denoted by (y, z). We define the
operators

Aζ(y, z) = −1
2
∂2ζ

∂y2
+
∂ζ

∂y
(c0y + kz) − y

∂ζ

∂z
, (1)

B+ψ(y) = −1
2
∂2ψ

∂y2
+
∂ψ

∂y
(c0y + kY ),

B−ψ(y) = −1
2
∂2ψ

∂y2
+
∂ψ

∂y
(c0y − kY ).

(2)

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 9
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3 3,
c© Springer Science+Business Media B.V. 2010
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Let g(y, z) be bounded. We define

g+(y) = g(y, Y ) and g−(y) = g(y,−Y ). (3)

We also define the weightfunction

ρm(y) =
1

(1 + y2)m
, m ≥ 1. (4)

2.2 The Problem

Let λ > 0, we look for a function

u ∈ L∞(D),
∂u

∂y
∈ L2

m(D), m ≥ 1,

y2∂u

∂z
, y
∂2u

∂y2
∈ L2

m(D), m ≥ 3,
∫
R

|y|ρmu2(y,±Y )dy <∞, m ≥ 1,

∫
R

|y|3ρm
(
∂u

∂y

)2

(y,±Y )dy <∞, m ≥ 3,

(5)

satisfying

λu +Au = g in D, (6)
λu +B+u = g+, z = Y, y > 0, (7)
λu +B−u = g−, z = −Y, y < 0. (8)

Note that on a subdomain,

Dρ = {(ρ,∞) × (−Y, Y ) ∪ (−∞,−ρ) × (−Y, Y )}, ρ > 0,

the function u is continuous up to the boundary, the derivatives ∂u
∂z , ∂u∂y , and

∂2u
∂z2 are L2

loc and the equations (6), (7), and (8) are satisfied in the strong
sense.

3 The Main Result

Theorem 1. Assuming that g is bounded and λ > 0, there exists one and
only one solution of (5)–(8).
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3.1 Boundary Conditions

The boundary conditions can be replaced by nonlocal Dirichlet conditions

u(y, Y ) = u+χ+(y) + β+(y), y > 0, (9)
u(y,−Y ) = u−χ−(y) + β−(y), y < 0, (10)

where u+ and u− are constants. The functions β+, χ+, β−, and χ− are defined
by

λβ+ +B+β+ = g+, β+(0) = 0, β+ ∈ H1
m(0,∞), (11)

where

H1
m(0,∞) =

{
ψ(y) |

∫ ∞

0

ρm(y)ψ2(y)dy <∞,

∫ ∞

0

ρm(y)
(
dψ

dy

)2

(y)dy <∞
}
,

similarly

λβ− +B−β− = g−, β−(0) = 0, β− ∈ H1
m(−∞, 0), (12)

where

H1
m(−∞, 0) =

{
ψ(y) |

∫ 0

−∞
ρm(y)ψ2(y)dy <∞,

∫ 0

−∞
ρm(y)

(
dψ

dy

)2

(y)dy <∞
}
,

furthermore,

λχ+ +B+χ+ = 0, y > 0, χ+(0) = 1, χ+ ∈ H1
m(0,∞), (13)

and
λχ− +B−χ− = 0, y < 0, χ−(0) = 1, χ− ∈ H1

m(−∞, 0). (14)

3.2 A Priori Estimates

Consider a solution u of (5)–(8). We test (6) with uρm. We get easily

λ

∫
D

u2ρm dy dz +
1
2

∫
D

(
∂u

∂y

)2

ρm dy dz +
∫
D

ρm
∂u

∂y
u(c0y + kz) dy dz

−m

∫
D

∂u

∂y
u

y

1 + y2
ρm dy dz − 1

2

∫ 0

−∞
yρmu

2(y, Y ) dy

+
1
2

∫ ∞

0

yρmu
2(y,−Y )dy =

∫
D

gρmu dy dz

+
1
2

∫ ∞

0

yρm(u+χ+ + β+)2dy − 1
2

∫ 0

−∞
yρm(u−χ− + β−)2dy. (15)
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We next test (6) with ∂u
∂z y

3ρm. We obtain

λ

∫
D

y4ρm

(
∂u

∂z

)2

dy dz − λ

2

∫ 0

−∞
y3ρmu

2(y, Y ) dy +
λ

2

∫ ∞

0

y3ρmu
2(y,−Y ) dy

− 1
4

∫ 0

−∞
y3ρm

(
∂u

∂y

)2

(y, Y ) dy +
1
4

∫ ∞

0

y3ρm

(
∂u

∂y

)2

(y,−Y ) dy

=
∫
D

∂u

∂y

∂u

∂z
y2ρm

[
c0y

2 + kzy +
3
2
− my2

1 + y2

]
dy dz −

∫
D

gy3ρm
∂u

∂z
dy dz

+
λ

2

∫ ∞

0

y3ρm(u+χ+ + β+)2dy − λ

2

∫ 0

−∞
y3ρm(u−χ− + β−)2dy

+
1
4

∫ ∞

0

y3ρm

(
u+
dχ+

dy
+
dβ+

dy

)2

dy − 1
4

∫ 0

−∞
y3ρm

(
u−
dχ−
dy

+
dβ−
dy

)2

dy.

(16)

Since the right-hand side of (15) is bounded, a simple application of Hölder’s
inequality in (16) allows to obtain bounds on the norms of the functions listed
in (5), except for the L∞ norm of u, which does not follow from the energy
equalities (15) and (16).

3.3 Further Regularity

Proposition 1. Assume that λ is sufficiently large and ∂g
∂z ∈ L2

m(D), for
m ≥ 1. Then

∂u

∂z
∈ L2

m(D),
∂2u

∂z∂y
∈ L2

m(d), for m ≥ 1,

y
∂3u

∂z∂y2
∈ L2

m(D), y2 ∂
2u

∂z2
∈ L2

m(D), for m ≥ 3

∫
R

|y|ρm
(
∂u

∂z

)2

(y,±Y )dy <∞, for m ≥ 1,

∫
R

|y|3ρm
(
∂2u

∂y∂z

)2

(y,±Y )dy <∞, for m ≥ 3.

Also,
∂2u

∂y2
∈ L2

m(D), for m ≥ 2.

Proof. We find the problem for v = ∂u
∂z by differentiating (6). We get

λv +Av =
∂g

∂z
− k

∂u

∂y
in D,

v = 0, for z = Y, y > 0,
v = 0, for z = −Y, y < 0.

(17)
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We can obtain the analogues of (15) and (16), namely

λ

∫
D

v2ρm dy dz +
1
2

∫
D

(
∂v

∂y

)2

ρm dy dz +
∫
D

ρm
∂v

∂y
v(c0y + kz) dy dz

−m

∫
D

∂v

∂y
v

y

1 + y2
ρm dy dz − 1

2

∫ 0

−∞
yρmv

2(y, Y ) dy +
1
2

∫ ∞

0

yρmv
2(y,−Y ) dy

=
∫
D

(
∂g

∂z
− k

∂u

∂y

)
ρmv dy dz, (18)

and

λ

∫
D

y4ρm

(
∂v

∂z

)2

dy dz − λ

2

∫ 0

−∞
y3ρmv

2(y, Y ) dy +
λ

2

∫ ∞

0

y3ρmv
2(y,−Y ) dy

− 1
4

∫ 0

−∞
y3ρm

(
∂v

∂y

)2

(y, Y ) dy +
1
4

∫ ∞

0

y3ρm

(
∂v

∂y

)2

(y,−Y ) dy

=
∫
D

∂v

∂y

∂v

∂z
y2ρm

[
c0y

2 + kzy +
3
2
− my2

1 + y2

]
dy dz

−
∫
D

(
∂g

∂z
− k

∂u

∂y

)
y3ρm

∂v

∂z
dy dz. (19)

Since λ can be taken sufficiently large, these relations prove the properties
stated. Note that the last one follows from (6) itself and already proven prop-
erties. �

Since ∫
R

|y|ρm
(
∂u

∂z

)2

(y,±Y )dy <∞, for m ≥ 1,

the function u(y,±Y ) satisfies the differential equation

λu − 1
2
∂2u

∂y2
+
∂u

∂y
(c0y ± kY ) = y

∂u

∂z
(y,±Y ) + g(y,±Y ) (20)

and we can consider the right-hand side as a given function in L2
m(R), m ≥ 2.

Note that

∂u

∂z
(y, Y ) = 0, if y > 0 and

∂u

∂z
(y,−Y ) = 0, if y < 0.

From this relation, using also the fact that u is bounded, we deduce easily

∂2u

∂y2
(y,±Y ) ∈ L2

m(R), for m ≥ 2. (21)

Hence, in particular,
u(y,±Y ) is C1(r). (22)
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4 Proof of Theorem 1

4.1 Proof of Uniqueness

Proof. We will prove that if λ is sufficiently large, then the solution of (5)–(8)
is unique. Moreover, we will prove that for λ > 0, there exists a solution of
(5)–(8) such that

‖u‖L∞ ≤ ‖g‖L∞

λ
.

So, for λ sufficiently large there exists one and only one solution of (5)–(8)
and it satisfies (4.1).

But we may then consider the map Tα defined on L∞(D) by

u = Tαw,

where

(λ+ α)u +Au = g + αw in D, (23)
(λ + α)u+B+u = g+ + αw+, z = Y, y > 0, (24)
(λ+ α)u+B−u = g− + αw−, z = −Y, y < 0. (25)

A solution of (5)–(8) is a fixed point of Tα.
Next we show that Tα is a contraction on L∞. Indeed, if w1, w2 ∈ L∞(D)

and u1 = Tαw1, u2 = Tαw2, then u1 − u2 is the solution of

(λ+ α)(u1 − u2) +A(u1 − u2) = α(w1 − w2) in D, (26)
(λ+ α)(u1 − u2) +B+(u1 − u2) = α(w1 − w2)+, z = Y, y > 0, (27)
(λ+ α)(u1 − u2) +B−(u1 − u2) = α(w1 − w2)−, z = −Y, y < 0. (28)

Since λ+ α is large, u1 − u2 is uniquely defined and

‖u1 − u2‖L∞ ≤ α‖w1 − w2‖L∞

α+ λ
.

It follows that Tα has a unique fixed point, i.e. the solution of (5)–(8).
We shall assume that λ is sufficiently large to prove uniqueness. We must

prove that if u satisfies (5), and (6)–(8) with g = 0, then u = 0. Since g = 0, the
regularity result of Proposition 1 applies and we may assume that u ∈ C1(D).
If we exclude a strip (−ρ, ρ)× (−Y, Y ), ρ > 0, then u ∈ C2 and we may apply
strong maximum principle considerations.

Define the function

χ(x) =

⎧⎨
⎩

log |x| + 1, if |x| > 1

exp
(
−3

8
x4 +

5
4
x2 − 7

8

)
, if |x| ≤ 1.
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Then χ ∈ C2, χ(±1) = 1, χ′(±1) = ±1, χ′′(±1) = −1, and χ(x) ≥ χ(0) =
e−

7
8 .
We set

Ψ(y) = χ

(
y

ȳ

)
,

where ȳ is a constant, and let

w(y, z) =
u(y, z)
Ψ(y)

.

Then w satisfies

Aw + λw − Ψ ′

Ψ

∂w

∂y
+
w

Ψ

(
−1

2
Ψ ′′ + Ψ ′(c0y + kz)

)
= 0, − Y <z<Y, y∈R,

B+w + λw − Ψ ′

Ψ

∂w

∂y
+
w

Ψ

(
−1

2
Ψ ′′ + Ψ ′(c0y + kY )

)
= 0, y > 0, z = Y,

B−w + λw − Ψ ′

Ψ

∂w

∂y
+
w

Ψ

(
−1

2
Ψ ′′ + Ψ ′(c0y − kY )

)
= 0, y < 0, z = −Y.

(29)
Using the definition of Ψ , we obtain

Ψ ′ =
1
ȳ
χ′
(
y

ȳ

)
=

⎧⎪⎨
⎪⎩

1
y
, |y| > ȳ,

Ψ(y)
2ȳ2

y

(
−3

y2

ȳ2
+ 5

)
, |y| < ȳ,

and

Ψ ′′ =
1
ȳ2
χ′′

(
y

ȳ

)
=

⎧⎪⎪⎨
⎪⎪⎩

− 1
y2
, |y| > ȳ,

Ψ(y)
2ȳ2

[
9
2

(
y

ȳ

)6

− 15
(
y

ȳ

)4

+
7
2

(
y

ȳ

)2

+ 5

]
, |y| < ȳ.

Combining these relations, we get

Ψ ′(c0y + kz) − 1
2
Ψ ′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
y
(c0y + kz) +

1
2y2

, |y| > ȳ,

Ψ(y)
2ȳ2

[
−9

4

(
y

ȳ

)6

− y4

ȳ2

(
3c0 − 15

2ȳ2

)
− 3kz

y3

ȳ2

−y2

(
−5c0 +

7
4ȳ2

)
+ 5kzy − 5

2

]
, |y| < ȳ.

Choosing ȳ > kY
c0

, we have

1
Ψ

(
Ψ ′(c0y + kz) − 1

2
Ψ ′′

)
> 0, for |y| > ȳ.
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In particular,

1
Ψ

(
Ψ ′(c0y + kz) − 1

2
Ψ ′′

)
> −1

ȳ

[
13
4ȳ

+ 4kY
]

and we may choose ȳ sufficiently large so that

λ− 1
ȳ

[
13
4ȳ

+ 4kY
]
> 0.

Note that w(y, z) → 0 as |y| → ∞ uniformly in z.
If it has a positive maximum, it must be attained at finite distance, say at

(y∗, z∗). We cannot have −Y < z∗ < Y since the coefficient of w(y∗, z∗) is λ+
1
Ψ (Ψ ′(c0y+kz)− 1

2Ψ
′′) > 0 and ∂w

∂y = ∂w
∂z = 0 at (y∗, z∗) while ∂2w

∂y2 (y∗, z∗) < 0.
Suppose z∗ = −Y , y∗ < 0, then the same conclusion follows from

the boundary condition. If z∗ = −Y , y∗ > 0, then ∂w
∂z (y∗, z∗) < 0 and

y∗ ∂w∂z (y∗, z∗) < 0 and the same conclusion follows from the inner equation.
If y∗ = 0, z∗ = −Y , then we have ∂u

∂y (0,−Y ) = 0 and hence

λu(0,−Y ) − 1
2
∂2U

∂y2
(0,−Y ) = 0.

Therefore,
∂2u

∂y2
(0,−Y ) > 0,

which is a contradiction with the fact that u(y,−Y ) attains its maximum at 0.
By a symmetric reasoning,we cannot have a positivemaximum with z∗ = Y .

So we cannot have a positive maximum. A similar argument shows that we
cannot have a negative minimum. Hence w = 0, which implies u = 0. �

4.2 Approximation

We study (6)–(8) by a regularization method as follows. Define

Aε = A− ε

2
∂2

∂z2
.

We approximate (6)–(8) by

λuε +Aεuε = g in D, (30)

λuε +B+u
ε = g+, y > 0, z = Y,

∂uε

∂z
= 0, y < 0, z = Y, (31)

λuε +B−u
ε = g−, y < 0, z = −Y, ∂uε

∂z
= 0, y > 0, z = −Y. (32)
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Consider the spaces

L2
m(R) =

{
Ψ(y) |

∫ ∞

−∞
ρm(y)Ψ2(y)dy <∞

}
,

H1
m(R) =

{
Ψ ∈ L2

m(R),
dΨ

dy
∈ L2

m(R)
}
,

L2
m(D) =

{
Ψ(y, z) |

∫
D

ρm(y)Ψ2(y, z)dydz <∞
}
,

and

H1
m(D) =

{
Ψ ∈ L2

m(D),
∂Ψ

∂y
∈ L2

m(D),
∂Ψ

∂z
∈ L2

m(D)
}
.

If Ψ ∈ H1
m(D), then Ψ(y,±Y ) ∈ H

1
2
m(r). We will need a slight modification of

H1
m(D), defined as follows:

H̃1
m(D) =

{
Ψ |

∫
D

ρm(y2 + 1)Ψ2dydz +
∫
D

ρm

(
∂Ψ

∂y

)2

dydz

+
∫
D

ρm

(
∂Ψ

∂z

)2

dydz <∞
}
. (33)

Note that H1
m(D) ∩ L∞(D) ⊂ H̃1

m(D), if m ≥ 2.
Introduce the set

K =
{
Ψ ∈ H̃1

m(D) | Ψ(y, Y ) = Ψ+χ+(y) + β+(y), y ≥ 0,

Ψ(y,−Y ) = Ψ−χ−(y) + β−(y), y ≤ 0, ‖Ψ±‖ ≤ ‖g‖
λ

}
. (34)

Lemma 1. The set K is a convex closed not empty subset of H̃1
m(D).

Proof. The fact that K is convex and closed is clear. To show that it is not
empty, we pick

Ψ(y, z) = z
β+(y)1Iy>0 − β−(y)1Iy<0

2Y
+
β+(y)1Iy>0 − β−(y)1Iy<0

2

which belongs to K. �
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We will give a variational formulation of (30)–(32). We define for ξ, η ∈
H̃1
m(D) the bilinear form

am,ε(ξ, η) =
ε

2

∫
D

ρm
∂ξ

∂z

∂η

∂z
dydz +

1
2

∫
D

ρm
∂ξ

∂y

∂η

∂y
dydz

+ λ

∫
D

ρmξηdydz −m

∫
D

ρm
∂ξ

∂y
η

y

1 + y2
dydz

+
∫
D

ρm
∂ξ

∂y
η(c0y + kz)dydz −

∫
D

ρm
∂ξ

∂z
ηydydz. (35)

To simplify the notation, we drop, when necessary, the indices m, ε. The
bilinear form is continuous on H̃1

m(D).
If we consider the modified form

a(ξ, η) + α

∫
D

(y2 + 1)ρmξηdydz, (36)

then for α sufficiently large, depending on ε, the modified form is coercive.
If f ∈ L∞(D), then there exists one and only one solution of the variational

inequality

a(ξ, ξ − η) + α

∫
D

ρm(y2 + 1)ξ(ξ − η)dydz

≥
∫
D

fρm(ξ − η)dydz, ∀η ∈ K, ξ ∈ K. (37)

We proceed by defining a map u = Tαv. If v ∈ L∞(D), u is the solution of
the variational inequality

a(u, η − u) + α

∫
D

ρm(y2 + 1)u(η − u)dydz

≥
∫
D

ρm(g + α(y2 + 1)v)(η − u)dydz, ∀η ∈ K, u ∈ K. (38)

Lemma 2. If ‖v‖L∞ ≤ ‖g‖L∞
λ , then ‖u‖L∞ ≤ ‖g‖L∞

λ .

Proof. Let γ = ‖g‖L∞
λ . We first notice that if Ψ ∈ K, then |Ψ(y,±Y )| ≤ γ.

Therefore, (u − γ)+(y,±Y ) = 0. We can take η = u− (u− γ)+. We obtain

−a(u, (u− γ)+) − α

∫
D

ρm(y2 + 1)u(u− γ)+dydz

≥ −
∫
D

ρm(g + α(y2 + 1)v)(u − γ)+dydz;

hence

a(u, (u− γ)+) + α

∫
D

ρm(y2 + 1)u(u− γ)+dydz

≤
∫
D

ρm(g + α(y2 + 1)v)(u − γ)+dudz.
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It follows from the definition of the bilinear form that

a(u− γ, (u− γ)+) + γλ

∫
D

ρm(u− γ)+dydz

+ α

∫
D

ρm(y2 + 1)(u− γ)(u− γ)+dydz + αγ

∫
D

ρm(y2 + 1)(u− γ)+dydz

≤
∫
D

ρm(g + α(y2 + 1)v)(u − γ)+dydz.

Since v ≤ γ and γλ = ‖g‖L∞, we deduce

a((u − γ)+, (u− γ)+) + α

∫
D

ρm(y2 + 1)((u− γ)+)2dydz ≤ 0,

which implies (u − γ)+ = 0. Similarly (u − γ)− = 0 and the proof has been
completed. �

Taking η = η0 ∈ K in (36), we obtain

a(u, u) + α

∫
D

(y2 + 1)ρmu2dydz ≤ a(u, η0)

+ α

∫
D

(y2 + 1)ρmuη0dydz −
∫
D

ρm(g + α(y2 + 1)v)(η0 − u)dydz. (39)

Since ‖v‖L∞ ≤ γ, we deduce easily from (33) and the coercivity that there
exists a number M depending only on the H̃1

m(D) norm of η0 and of γ (but
not on the specific v).

We define the following subset of K:

K̄ =
{
v ∈ K | ‖v‖L∞ ≤ ‖g‖L∞

λ
, ‖v‖H̃1

m(D) ≤M

}
(40)

which is also closed and convex in H̃1
m(D) and not empty. Indeed, the func-

tion picked in Lemma 1 belongs to K̄ if M is sufficiently large. The map Tα
transforms K̄ into itself. The set K̄ is a compact subset of L2

m(d) and Tα is
continuous. Hence Tα has a fixed point.

The fixed point satisfies

a(u, η − u) ≥
∫
D

ρmg(η − u)dydz, ∀η ∈ K, u ∈ K. (41)

Take Ψ ∈ H1
m(d) ∩ L∞(D) such that

Ψ(y, Y ) = 0, if y > 0, Ψ(y,−Y ) = 0, if Y < 0. (42)
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then η = u± Ψ ∈ K. Hence

a(u, Ψ) =
∫
D

ρmgΨdydz, ∀Ψ (43)

such that (39) is satisfied.
It follows that in the sense of distributions

λu +Aεu = g, in D. (44)

By the definition of K the Dirichlet parts of the boundary conditions in
(31)–(32) are satisfied.

Now considering Ψ as in (43) and testing (44) with Ψρm, we obtain

∫ 0

−∞
ρm

∂u

∂z
Ψ(y, Y )dy −

∫ ∞

0

ρm
∂u

∂z
Ψ(y,−Y )dy = 0.

Since the values of Ψ(y, Y ) and Ψ(y,−Y ) are arbitrary, we get

∂u

∂z
= 0, for y < 0, z = Y

and

∂u

∂z
= 0, for y > 0, z = −Y.

Therefore, the fixed point of Tα, solution of (38), is a solution of (30)–(32).

4.3 Estimates

We are going to obtain estimates similar to (15)–(16). Writing (41) explicitly,
we obtain

ε

2

∫
D

ρm
∂uε

∂z

(
∂η

∂z
− ∂uε

∂z

)
dydz +

1
2

∫
D

ρm
∂uε

∂y

(
∂η

∂y
− ∂uε

∂y

)
dydz

+ λ

∫
D

ρmu
ε(η − uε)dydz −m

∫
D

ρm
∂uε

∂y
(η − uε)

y

1 + y2
dydz

+
∫
D

ρm
∂uε

∂y
(η − uε)(c0y + kz)dydz −

∫
D

ρm
∂uε

∂z
(η − uε)ydydz

≥
∫
D

ρmg(η − uε)dydz, ∀η ∈ K.



A Class of PDEs with Nonlocal Dirichlet BC’s 21

Therefore,

ε

2

∫
D

ρm

(
∂uε

∂z

)2

dydz +
1
2

∫
D

ρm

(
∂uε

∂y

)2

dydz + λ

∫
D

ρm(uε)2dydz

−m

∫
D

ρm
∂uε

∂y
uε

y

1 + y2
dydz +

∫
D

ρm
∂uε

∂y
uε(c0y + kz)dydz

− 1
2

∫ 0

−∞
yρm(uε)2(y, Y )dy +

1
2

∫ ∞

0

yρm(uε)2(y,−Y )dy

≤
∫
D

rhomgu
εdydz +

1
2

∫ ∞

0

yρm(uε+χ+ + β+)2dy

− 1
2

∫ 0

−∞
yρm(uε−χ− + β−)2dy

+
ε

2

∫
D

ρm
∂uε

∂z

∂η

∂z
dydz +

1
2

∫
D

ρm
∂uε

∂z

∂η

∂y
dydz

+ λ

∫
D

ρmu
εηdydz −m

∫
D

ρm
∂uε

∂y
η

y

1 + y2
dydz

+
∫
D

ρm
∂uε

∂y
ηdydz −

∫
D

ρm
∂uε

∂z
ηydydz −

∫
D

ρmgηdydz.

Recalling that uε is bounded, we deduce

ε

∫
D

ρm

(
∂uε

∂z

)2

dydz < C,

∫
D

ρm

(
∂uε

∂y

)2

dydz < C,

and
∫
R

|y|ρm(uε)2(y,±Y )dy < C, m ≥ 1.
(45)

Next, considering (30) and testing with ∂uε

∂z y
3ρm, we obtain (cf. (16))

∫
D

ρmy
4

(
∂uε

∂z

)2

dydz +
ε

4

∫ ∞

0

(
∂uε

∂z

)2

(y, Y )y3ρmdy

− ε

4

∫ 0

−∞

(
∂uε

∂z

)2

(y,−Y )y3ρmdy − λ

2

∫ 0

−∞
ρmy

3(uε(y, Y ))2dy

+
λ

2

∫ ∞

0

ρmy
3(uε(y,−Y ))2dy − 1

4

∫ 0

−∞
ρmy

3

(
∂uε

∂y

)2

(y, Y )dy

+
1
4

∫ ∞

0

ρmy
3

(
∂uε

∂y

)2

(y,−Y )dy

=
∫
D

ρm
∂uε

∂y

∂uε

∂z
y2

[
c0y

2 + kzy +
3
2
− my2

1 + y2

]
dydz −

∫
D

ρmgy
3∂u

ε

∂z
dydz

+
λ

2

∫ ∞

0

ρmy
3(uε+χ+ + β+)2dy − λ

2

∫ 0

−∞
ρmy

3(uε−χ− + β−)2dy

+
1
4

∫ ∞

0

ρmy
3

(
uε+
dχ+

dy
+
dβ+

dy

)2

dy − 1
4

∫ 0

−∞
ρmy

3

(
uε−
dχ−
dy

+
dβ−
dy

)2

dy.

(46)
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From this relation we deduce
∫
D

ρmy
4

(
∂uε

∂z

)2

dydz ≤ C, ε

∫
R

ρm|y|3
(
∂uε

∂z

)2

(y,±Y )dy ≤ C,

and
∫
R

|y|3ρm
(
∂uε

∂y

)2

(y,±Y )dy ≤ C, m ≥ 3.

(47)

We next obtain the analogue of (18). Assuming ∂g
∂z ∈ L2

m(D), m ≥ 1, we
differentiate (30)–(32) in z and set

vε =
∂uε

∂z
.

We obtain

λvε +Aεvε =
∂g

∂z
− k

∂uε

∂y
in D,

ε

2
∂vε

∂z
+ yvε = 0, y > 0, z = Y, vε(y, Y ) = 0, y < 0,

λ
ε

2
∂vε

∂z
+ yvε = 0, y < 0, z = −Y, vε(y,−Y ) = 0, y > 0.

(48)

We test with vερm and obtain

λ

∫
D

ρm(vε)2dydz +
ε

2

∫
D

ρm

(
∂vε

∂z

)2

dydz

1
2

∫
D

ρm

(
∂vε

∂y

)2

dydz +
∫
D

ρm
∂vε

∂y
vε(c0y + kz)dydz

−m

∫
D

ρm
∂vε

∂y
vε

y

1 + y2
dydz +

1
2

∫ ∞

0

ρmy(vε(y, Y ))2dy

− 1
2

∫ 0

−∞
ρmy(vε(y,−Y ))2dy

=
∫
D

ρm

(
∂g

∂z
− k

∂uε

∂y
vε
)
dydz. (49)

Again if λ is sufficiently large and ∂g
∂z ∈ L2

m(D), m ≥ 1 we have

∫
D

ρm

(
∂uε

∂z

)2

dydz ≤ C,

∫
D

ρm

(
∂2uε

∂y∂z

)2

dydz ≤ C,

and
∫
R

ρm|y|
(
∂uε

∂z

)2

(y,±Y )dy ≤ C,m ≥ 1.

(50)

4.4 Proof of Existence

Proof. If λ is sufficiently large and ∂g
∂z ∈ L2

m(D) we can use the estimates (45)
and (50) and pass to the limit in the variational inequality (41).
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We obtain

1
2

∫
D

ρm
∂u

∂y

(
∂η

∂y
− ∂u

∂y

)
dydz + λ

∫
D

ρmu(η − u)dydz

−m

∫
D

ρm
∂u

∂y
(η − u)

y

1 + y2
dydz +

∫
D

ρm
∂u

∂y
(η − u)(c0y + kz)dydz

−
∫
D

ρm
∂u

∂z
(η − u)ydydz

≥
∫
D

ρmg(η − u)dydz, ∀η ∈ K, u ∈ K. (51)

In general, we cannot use the regularity properties of Proposition 1, and thus
we cannot write the variational inequality (51).

However, the weak limit of uε in the sense of the bounds (45), (47) will
satisfy (6) in the sense of distributions. The boundary conditions (7), (8) are
obtained easily by considering the limits of

uε+χ+(y) + β+(y) and uε−χ−(y) + β(y)

which amount to considering the limits of the numbers uε+, uε− which are
bounded by ‖g‖

λ .
So we can extract converging subsequences. This is also the trace of a

converging subsequence of uε. The proof has been completed.�
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A Unified Discrete–Continuous Sensitivity

Analysis Method for Shape Optimization
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Summary. Boundary shape optimization problems for systems governed by partial
differential equations involve a calculus of variation with respect to boundary modi-
fications. As typically presented in the literature, the first-order necessary conditions
of optimality are derived in a quite different manner for the problems before and
after discretization, and the final directional-derivative expressions look very differ-
ent. However, a systematic use of the material-derivative concept allows a unified
treatment of the cases before and after discretization. The final expression when per-
forming such a derivation includes the classical before-discretization (“continuous”)
expression, which contains objects solely restricted to the design boundary, plus a
number of “correction” terms that involve field variables inside the domain. Some
or all of the correction terms vanish when the associated state and adjoint variables
are smooth enough.

1 Introduction

Computer simulations of systems in science and engineering provide an effi-
cient and cost effective tool to explore how performance depends on geometric
features of the system components. An attractive alternative to trial-and-error
testing is numerical design optimization, in which we introduce a parametriza-
tion of the geometry and let a numerical optimization algorithm interact with
the simulation software in order to explore the parameter space. Boundary
shape optimization is a strategy for design optimization that examines dis-
placements of the boundary to a given domain. Such optimization is a powerful
tool for final design, in order to put the final touch to a given configuration.
Numerical boundary shape optimization typically uses body-fitted meshes,
which makes the method suitable for problem exhibiting boundary layers or
other phenomena with high sensitivity to boundary smoothness.

Besides boundary shape optimization, there are other, conceptually dif-
ferent techniques for design optimization that can handle much more general
geometries than those generated by displacements of a given boundary; the
term topology optimization is often used to highlight the generality. In the
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so-called material distribution method for topology optimization, it is coef-
ficients of the governing partial differential equations discretized on a fixed
mesh that are subject to optimization [2]. Such methods can generate arbi-
trarily complex geometries and are therefore suitable for preliminary design
studies. The price for the generality is the limited resolution of the boundary
geometry: typically, the boundary is represented using a staircase approxima-
tion, which is likely to cause problems in connection with boundary layers,
for instance.

Conceptually, boundary shape optimization is a calculus of variation with
respect to boundary modifications and traces its historical roots back to the
works by, for instance, Newton, Lagrange, and Hadamard. The modern de-
velopment was initiated in the early 1970s, mainly by the French school of
numerical analysis, through researchers like Cea, Glowinski, and Pironneau.
Although the field has developed and matured over the years, it is perhaps fair
to say that the impact on science and engineering practice has been limited.

In contrast, the technique of optimal layout of a linearly elastic structures
using the material distribution method for topology optimization has, indeed,
had a noticeable impact on the design of mechanical components. There are
commercial software packages available, for instance, from Altair Engineering
and FE-design, which are increasingly used for the design of mechanical com-
ponents, particularly in the vehicle and aerospace industries. Boundary shape
optimization is then used as a post processing tool for the layout obtained by
topology optimization. However, boundary shape optimization is not much
used for practical engineering design outside of such structural “sizing”. One
reason for the limited impact can be the complexity of managing a system
for shape optimization: software for parametrization of shapes, mesh defor-
mation, solvers, sensitivity analysis, and optimization needs to be developed
and interfaced in an intricate way. Another reason is computational: solving a
shape optimization problem takes often at least an order of magnitude longer
time than a pure simulation. Because of the explosive development of hard-
and software resources, these hurdles are likely to be overcome eventually.
The recent appearance of several monograph dedicated to shape optimiza-
tion [4, 6, 8, 10–12] is hopefully indicative of a revival.

The key to be able to treat shape optimization problems with a large
number of design variables lies the use of gradient-based optimization meth-
ods and, in particular, in the use of adjoint equations to extract the di-
rectional derivatives. The experience collected through my own involvement
in boundary shape optimization strongly indicates that the sensitivity in-
formation – directional derivatives of objective functions and constraints
– needs to be very accurately computed in order for the optimization al-
gorithms to fully converge. As was early on recognized, not the least by
Roland Glowinski and his colleagues when developing shape optimization tech-
niques, the processes of discretization and differentiation do not commute, in
general. That is, a discretization of the necessary conditions of optimality
(differentiate-then-discretize, or the “continuous” approach) does not gener-
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ally lead to the same expressions as when deriving the necessary conditions
for the discretized optimization problem (discretize-then-differentiate, or the
“discrete” approach). The latter strategy is more reliable in my experience, but
may be difficult to effectuate in practice for complicated problems. Glowinski
and He [7] and Gunzburger [8, §2.9], among many others, discuss and offer
perspectives on this somewhat controversial issue.

A disturbing fact is that the two approaches often appear to be unrelated:
the procedure for deriving the first-order necessary conditions in the undis-
cretized case is typically different from the one used in the discrete case, and
the final expressions look very different. These problems may have contributed
to the reason why there are very attempts to perform analysis of convergence
and approximation errors for shape optimization problems. One of the few
attempts reported in the literature are by Di Cesare et al. [5], [12, Chapter 6].

The present article shows that a systematic use of the material derivative
allows a unified sensitivity analysis in the undiscretized and discretized cases.
To minimize technical issues, the derivation will be made for a model elliptic
problem and will be largely formal (without existence proofs, for instance).
However, the derivation will be made in a way that does not violate the reg-
ularity properties of the discrete problem. The final directional-derivative ex-
pression (45) (which appears to be new) contains the “continuous” expression
plus a number of correction terms that are generally nonzero in the discrete
case, but that vanish when the state and adjoint solutions are regular enough.

2 A Potential Flow Model Problem

We consider the flow of an incompressible fluid in a bounded domain Ω ⊂ R
d,

d = 2, 3 with a Lipschitz boundary ∂Ω (Figure 1). Fluid is flowing in and out
through Γio ⊂ ∂Ω; otherwise there are impenetrable walls at the boundary.
Let Γd ∈ ∂Ω\Γio be a part of the boundary. We wish to manipulate the shape
of the design boundary Γd in order to affect the velocity field in a desired way.
Let U be the set of admissible design boundaries, whose definition may pro-
vide conditions such as bounds on curvature, bounds on displacements from

±φ̂
Γd

Γd(t)

Γio

ΓioΩobsΩ

Fig. 1. An example domain for the model shape optimization problem.
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a reference configuration, or requirements such as convexity of the domain.
In order to perform a calculus of variation on Γd, we introduce a design vari-
ation δφ̂ : Γd → R

d that generates a family of deformed design boundaries
Γd(t) ∈ U in the following way: for each x ∈ Γd, there is an x(t) ∈ Γd(t) such
that

x(t) = x + tδφ̂(x), t ∈ [0, α]. (1)

In order to generate for the formula (1) Lipschitz design boundaries that are
connected to the rest of the boundary, any feasible design variation needs
to be Lipschitz continuous and vanishing on ∂Γd. Any admissible δφ̂ should
also, of course, be compatible with the definition of U . Further smoothness
requirements on δφ̂ will be introduced in Section 4 to allow differentiation.
We assume that α > 0 is small enough so that the mapping between Γd and
Γd(t) is bijective for each t ∈ [0, α].

The displaced design boundaries Γd(t) generate a family of domains Ω(t)
with Lipschitz boundaries. We consider the following potential-flow model
defined on Ω(t):

−Δu+ εu = 0 in Ω(t),
∂u
∂n

= g on Γio,

∂u
∂n

= 0 on ∂Ω(t) \ Γio,

(2)

where ε > 0 is a small “regularization” parameter introduced to avoid the
singularity of the pure Neumann problem. The standard variational form of
the state equation (2) is

Find u(t) ∈ H1(Ω(t)) such that∫
Ω(t)

∇v · ∇u(t) + ε

∫
Ω(t)

vu(t) =
∫
Γio

vg ∀v ∈ H1(Ω(t)), (3)

where the notation u(t) indicates the dependency on t.

Remark 1. Throughout this article, we will leave out symbols for volume and
surface measure in the integrals, since the appropriate measures will be clear
from the context.

Now introduce an observation domain Ωobs that does not intersect with
the design boundary; that is, Ωobs ⊂ Ω such that Ωobs ∩ Γd(t) = ∅. We
wish to manipulate the shape of Γd such that the velocity field within the
observation domain coincides as closely as possible with a given velocity field
uobs, a requirement that naturally leads to the objective function

J(δφ̂; t) =
1
2

∫
Ωobs

|∇u(t) − uobs|2. (4)

Some variation of the above problem is a common model problem for shape
optimization in the context of fluid flow; Cesare et al. [5] consider essentially
the same problem, for instance.
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3 Sensitivity Analysis

Here, we present the well-known formulas resulting from a sensitivity analysis
of the objective function (4), as described in the book by Pironneau [13],
for instance. Section 3.1 gives the expressions before discretization, whereas
corresponding expressions obtained after a finite-element discretization are
reported in Section 3.2.

3.1 Before Discretization

A sensitivity analysis of the objective function (4) and the state equation (3)
concerns the calculation of one-sided directional derivatives of the objective
function with respect to design variation δφ̂; we will use the notation

δJ(δφ̂) =
d+

dt
J(δφ̂; t)

∣∣
t=0

= lim
t→0+

J(δφ̂; t) − J(δφ̂; 0)
t

. (5)

The use of the one-sided derivative is essential when performing sensitivity
analysis around admissible designs for which geometry constraints are active.

The classical expression for the directional derivative is

δJ(δφ̂) = −
∫
Γd

n · δφ̂∇u · ∇u∗ − ε

∫
Γd

n · δφ̂uu∗, (6)

where u∗ ∈ H1(Ω) satisfies the adjoint equation
∫
Ω

∇w · ∇u∗ + ε

∫
Ω

wu∗ =
∫
Ωobs

∇w · (∇u− uobs) ∀w ∈ H1(Ω). (7)

Note the advantage of introducing the adjoint equation: the directional deriva-
tive for each feasible design variation δφ̂ can be computed by repeated eval-
uation of the integral (6) without solving any more equations.

The expression (6) is typically derived through a change of variables in-
volving a smooth bijection between Ω and Ω(t). Such a mapping can be
constructed by extending the boundary variation δφ̂ to a domain variation
δφ : Ω → R

d such that for each point x ∈ Ω, there is a unique point
x(t) ∈ Ω(t) given by

x(t) = x + tδφ(x), (8)

and such that δφ|Γd = δφ̂.
Although the extended mapping is used for the derivation, under certain

smoothness assumptions of δφ together with regularity properties that will be
made explicit in Section 6, it holds that the final expression (6) is independent
of the particular choice of extension.
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3.2 After Finite-Element Discretization

In the discrete case, it is natural to use the locations of the mesh vertices at
the design boundary Γd as design variables. However, in order to retain mesh
quality, it is, in general, necessary to modify the mesh inside the domain as
well. Thus, for generality, associate with each mesh vertex a vector δxk ∈ R

d

that indicates a feasible direction of movement for vertex k. Associated with
mesh vertex variation δxk, it is convenient to define the domain variation
δφk = N1

kδxk, where N1
k is the continuous piecewise-linear finite-element

basis function at vertex k. Subject to variation δxk, each x(t) in the deformed
domain Ω(t) is then given by

x(t) = x + t δxkN1
k (x) = x + t δφk(x), (9)

and Ω(0) = Ω. The formula (9) interpolates deformation t δxk at vertex k on
the support ofN1

k . Note that the use of piecewise-linear basis functions implies
that planar mesh surfaces and edges will remain planar under the deformation.
Figure 2 illustrates the deformation (9) in two cases. If the mesh on domain
Ω is nondegenerate, then for each mesh vertex k, there is an αk > 0 such that
the mesh associated with the deformation (9) will also be nondegenerate for
all t ∈ [0, αk].

Now discretize the equation (3) on the domain Ω using a conforming finite-
element discretization in a subspace Vh ⊂ H1(Ω). Given the deformation (9)
associated with an arbitrary mesh vertex k, we may then define a family of
discrete solutions

uh(t) ∈ Vh(t) ⊂ H1(Ω(t)) such that∫
Ω(t)

∇vh · ∇uh(t) + ε

∫
Ω(t)

vhuh(t) =
∫
Γio

vhg ∀vh ∈ Vh(t),
(10)

and consider the discrete objective function

!k

±xk

Γd

!k

Γd ±xk

Fig. 2. Each mesh vertex displacement t δxk is interpolated onto the support ωk of
the continuous piecewise-linear finite-element basis functions N1

k .
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Jh(δφk; t) =
1
2

∫
Ωobs

|∇uh(t) − uobs|2. (11)

The following classical expression (e.g. [12, §6.5]) holds for the directional
derivative of Jh:

δJh = −δxk ·
∫
Ω

∇N1
k (∇uh · ∇u∗h) + δxk ·

∫
Ω

∇uh(∇u∗h · ∇N1
k )

+ δxk ·
∫
Ω

∇u∗h(∇uh · ∇N1
k ) − ε δxk ·

∫
Ω

uhu
∗
h∇N1

k , (12)

where u∗h ∈ Vh such that∫
Ω

∇wh · ∇u∗h + ε

∫
Ω

whu
∗
h =

∫
Ωobs

∇wh · (∇uh − uobs) ∀wh ∈ Vh. (13)

The expression (12) reveals expressions for the derivative of Jh with respect
to variations of each mesh vertex in all coordinate directions (note that the
integrals are vectors with d components). Once the state uh and adjoint state
u∗h are known, all these derivatives can be computed by a single assembly loop
over all elements. The derivatives can, for instance, be stored in a vector DJh
of dimension dn, where n is the total number of mesh vertices. Elements dk,
dk+1, . . . , dk+ d− 1 of DJh then contains the d components of the integrals
in the expression (12).

However, in shape optimization, it does not make much sense to optimize
the position of each mesh points independently. A good strategy is to modify
the locations of the mesh vertices on Γd explicitly using updates from the
optimization algorithm, and employ a mesh deformation strategy to move
the rest of the mesh vertices indirectly in order to preserve mesh quality. In
simple geometries, such a mesh deformation can be defined by an explicit
formula based on the distance to Γd. A more general strategy, however, is to
use a numerical deformation strategy, for instance, based on elliptic smooth-
ing [12, §5.3]. To describe the role of the mesh deformation in the derivative
calculations, consider the spaces of discrete boundary and domain variations,
Ûh = span(δφk)k∈V(Γd) and Uh = span(δφk)k∈V(Ω), where V(γ) denotes the
set of mesh vertices located in the subdomain γ. A mesh deformation strategy
defines a mapping a : Û → U , and the objective function that is in reality
used for optimization when employing a mesh deformation is the composition
Ĵh = Jh ◦ a. By the chain rule, the derivative of mapping Ĵh will be

DĴh = AT DJh, (14)

where A is a matrix representation of the Jacobian of the mesh deformation
mapping a.

Note that the discrete adjoint equation (13) constitutes a finite-element
discretization of the adjoint equation (7). However, the discrete direc-
tional derivative expressions (14), (12) carry no obvious resemblance to
the expression (6).
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4 Shape and Material Derivatives of Functions

In Section 6, we will perform the sensitivity analysis in a way that simultane-
ously provides the seemingly quite different expressions (6) and (12). A main
component of the derivation is the differentiation of the state equations (3)
and (10). There are two fundamentally different ways in which a function can
be differentiated with respect to variations in the domain on which it is de-
fined: as a material or as a shape derivative. These concepts, shortly reviewed
below, are analogues to the material and spatial derivatives in continuous me-
chanics [9, §8]. For a thorough treatment of these concepts in the framework
of shape optimization, see the monograph by Sokolowski and Zolésio [14]. This
section aims to demonstrate a fact that seems curiously underappreciated in
the shape-optimization literature: the material derivative is better suited, due
to its favorable regularity properties, than the shape derivative for use in the
sensitivity analysis.

We start by introducing the notation Ω(t) = τ t(Ω), where, for x ∈ Ω,

τ t(x) = x + t δφ(x), t ∈ [0, α]. (15)

For simplicity, we assume that the domain variation δφ vanishes on Ωobs and
∂Ω\Γd. For the problem before discretization, δφ is an extension of δφ̂ (which
was defined solely on Γd) into a mapping from Ω into R

d. We require that the
extended mapping is smooth enough so that the components of the second-
order tensor ∇δφ are in L∞(Ω). In the discrete case, δφ(x) = δφk(x), where
δφk is given by the expression (9) (here, δφ can be made to vanish on Ωobs

and ∂Ω \ Γd by simply not considering any k for which corresponding mesh
vertices are in Ωobs or ∂Ω \ Γd). By the definition (9), it follows that the
components of ∇δφ are in L∞(Ω) in the discrete case.

Now consider functions p : Ω(t)×R → R. We will use p(t) as a shorthand
notation the for function x �→ p(x, t).

Definition 1. The material derivative of p with respect to domain variation
δφ at point x ∈ Ω is

δmp(x; δφ) = lim
t→0+

p(τ t(x), t) − p(x, 0)
t

=
d+

dt
p(τ t(x), t)

∣∣
t=0
,

provided that the point-wise limit exists.

(Whenever there is no risk for confusion, we will suppress the second argument
and just use the notation δmp(x).) The material derivative is thus a (one-sided)
derivative of the compound function t �→ p(t)◦τ t (the “total” derivative). For
p(t) in a Banach space W , Definition 1 is easily extended to

δmp =
d+

dt
p(t) ◦ τ t

∣∣
t=0

(16)

with the limit in a Banach space X ⊃W .
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Definition 2. The shape derivative of p with respect to design variation δφ
is the function

δp = δmp− δφ · ∇p(0). (17)

Remark 2. Definition 2 imposes an a priori regularity difference between δmp
and δp due to the right-side gradient in the expression (17). This difference is
consistent with the typical behavior when differentiating the state variable in
a shape optimization problem. As illustrated in Examples 3 and 4 below, the
material derivative of the state variable can typically be defined in the same
space as the state variable itself, whereas the shape derivative typically cannot.
An alternative definition of the shape derivative is as the partial derivative

δp(x) = lim
t→0+

p(x, t) − p(x, 0)
t

(18)

from which the expression (17) follows by the chain rule applied on δmp.
However, a complicating factor with the definition (18) is that the two terms
on the right side has different domains of definition, Ω(t) and Ω, respectively.

Following four examples highlight the different properties of the material
and shape derivative.

Example 1. Let g : Ω → R be given. Define p(t) = g ◦ τ−1
t ; that is, p(x, t) is

defined by mapping back x ∈ Ω(t) to corresponding point in Ω and evaluating
g at the mapped-back point. Then

δmp =
d+

dt
(p(t) ◦ τ t)

∣∣
t=0

=
d+

dt
(
g ◦ τ−1

t ◦ τ t
)∣∣
t=0

= 0,

δp = δmp− δφ · ∇p(0) = −δφ · ∇p(0).
(19)

Thus, when p(t) is “moving along” with the deformation, the material deriva-
tive vanishes. Next example illustrates the opposite situation.

Example 2. Let f : R
d → R. Define p(t) = f |Ω(t). Then

δmp =
d+

dt
(p(t) ◦ τ t)

∣∣
t=0

=
d+

dt
(
f |Ω(t) ◦ τ t

)∣∣
t=0

= ∇f |Ω(0) ·
(

d+

dt
τ t

)∣∣∣
t=0

= ∇f |Ω(0) · δφ = δφ · ∇p(0),

δp = δmp− δφ · ∇p(0) = 0.

(20)

Thus, a function that is “fixed” with respect to the deformation yields a
vanishing shape derivative, a property that is consistent with the interpreta-
tion (18) of the shape derivative as a partial derivative.

Example 3. Let g belong to a finite element space Vh ⊂ H1(Ω) such that
g(x) =

∑N
k=1 gkN

p
k (x), where Np

k is a finite-element basis function that is
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globally continuous and whose restriction on each triangular or tetrahedral
element is a polynomial of degree p. Define basis functions on the deformed
domain Ω(t) by the expression Np

k (x, t) = Np
k (τ−1

t (x)), as in Example 1. The
span of the functions Np

k (t) defines a family of finite-element spaces V (t) on
Ω(t). Each p(t) ∈ Vh(t) may then be written

p(x, t) =
N∑
k=1

pk(t)N
p
k (x, t). (21)

As in Example 1, we find that δmN
p
k = 0, δNp

k = −δφ · ∇Np
k and thus

δmp =
N∑
k=1

δpkN
p
k ,

δp = δmp− δφ · ∇p =
N∑
k=1

(δpkN
p
k − pk δφ · ∇Np

k ) ,

(22)

where

δpk =
d+

dt
pk(t)

∣∣
t=0
. (23)

Note that δmp ∈ Vh but δp �∈ Vh! That is, the material derivative is conforming
to the finite element space, whereas the shape derivative is not. Also note that
the material derivative is obtained by differentiating only the coefficients of p
(and not the basis functions) with respect to the deformation.

Example 4. Consider the solution u(t) ∈ H1(Ω(t)) to the state equation (3).
Sokolowski and Zolésio [14, §2.29] and Haslinger and Mäkinen [10, §2.5.2]
discuss the existence of δmp in similar situations, where they show that δmu ∈
H1(Ω), provided that the domain deformations are sufficiently regular. As in
Example 3, the material derivative is defined in the same space as the state,
but since δu = δmu−δφ·∇u, the shape derivative typically has less regularity.

5 Rules for the Material Derivative

It is immediate from Definition 1 that the product rule holds for the material
derivatives of functions f, g on Ω(t) × R:

δm(fg) = δmf g + f δmg, (24)

where, for simplicity of notation, we have suppressed the evaluations at zero:
the right side should really be δmf g(0) + f(0) δmg. The rest of the article
adheres to the same convention: for a function f on Ω(t)×R, the symbol “f”
outside a material derivative will denote its restriction to t = 0.

The shape derivative commutes with the spatial gradient, that is, δ∇ =
∇δ, but the material derivative does not: δm∇ �= ∇δm. However, it holds that
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δm(∇p) = ∇(δmp) − (∇δφ)T∇p, (25)

or, in Cartesian components,

δm

(
∂p
∂xi

)
=

∂

∂xi
δmp−

d∑
j=1

∂p
∂xj

∂

∂xi
δφj , i = 1, . . . , d. (26)

To prove the expression (25), consider a finite-difference approximation of
the material derivative:

D+
m p(t)

def=
p(t) ◦ τ t − p(0)

t
. (27)

Differentiating both sides of the expression (27) yields

∇D+
m p(t) =

∇(p(t) ◦ τ t) −∇p(0)
t

=
1
t

[(
I + t(∇δφ)T

)
∇p(t) ◦ τ t −∇p(0)

]

=
∇p(t) ◦ τ t −∇p(0)

t
+ (∇δφ)T∇p(t), (28)

where the second equality follows from the chain rule applied on ∇(p(t) ◦ τ t)
and from differentiation of τ t as defined in the expression (15). The expres-
sion (28) implies that

∇(δmp) = lim
t→0

∇D+
m p(t) = δm∇p+ (∇δφ)T∇p, (29)

which is the expression we wanted to show.
The product rule (24) and the expression (25) yields that

δm(∇q · ∇p) = ∇δmq · ∇p+ ∇q · ∇δmp−∇q · (∇S δφ)∇p, (30)

where ∇S δφ = ∇δφ+ (∇δφ)T.
The rule for differentiating domain integrals that we will need in the fol-

lowing is [10, Lemma 3.3]

δ

(∫
Ω

f

)
=

d+

dt

(∫
Ω(t)

f(t)

)∣∣∣∣∣
t=0

=
∫
Ω

(δmf + f∇ · δφ). (31)

The rules (25), (30), and (31) are the basic tools needed for a differentiation
of the variational forms. Note that there are no direct counterparts to the
expressions (25) and (30) for the shape derivative in the discrete case (when
p, q ∈ Vh), and no shape-derivative counterpart to the expression (31) with
f = ∇q · ∇p, since such expressions would involve second derivatives of the
finite-element functions, which are not functions.
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6 Sensitivity Analysis Using Material Derivatives

Equipped with the tools of Sections 4 and 5, we now perform a derivation
that simultaneously provides the directional derivatives (6) and (12).

Let V (t) ⊂ H1(Ω(t)) and define V = V (0). In the case before discretiza-
tion, V (t) = H1(Ω(t)), whereas V (t) = Vh(t), a finite-element space, in the
discrete case. The state equations (3) and (10) can then be written in the
common form:

Let u(t) ∈ V (t) such that∫
Ω(t)

∇v(t) · ∇u(t) + ε

∫
Ω(t)

v(t)u(t) =
∫
Γio

v(t)g ∀v(t) ∈ V (t),
(32)

and the objective functions (4) and (11) in the form

j(δφ; t) =
1
2

∫
Ωobs

|∇u(t) − uobs|2. (33)

Differentiating the objective function (33) using the differentiation
rule (31) and observing that δφ|Ωobs ≡ 0 yields

δj(δφ) =
∫
Ωobs

∇δmu · (∇u− uobs). (34)

Differentiating the state equation (32) at t = 0, using the rules (24), (30),
and (31) yields that

0 =
∫
Ω

(∇δmv · ∇u + ε (δmv)u) +
∫
Ω

(∇v · ∇δmu+ ε v δmu)

+
∫
Ω

(∇v · ∇u∇ · δφ+ vu∇ · δφ−∇v · (∇Sδφ)∇u) (35)

for each v ∈ V . Since δmv ∈ V (cf. Examples 3 and 4), the first integral in the
expression (35) vanishes due to the state equation (32) evaluated at t = 0.
Now let u∗ ∈ V satisfy the adjoint equation

∫
Ω

∇w · ∇u∗ + ε

∫
Ω

wu∗ =
∫
Ωobs

∇w · (∇u− uobs) ∀w ∈ V. (36)

By choosing v = u∗ in the expression (35) and making use of the equation (36)
with w = δmu, the expression (35) reduces to

0 =
∫
Ωobs

∇δmu · (∇u− uobs)

+
∫
Ω

(∇u∗ · ∇u∇ · δφ+ u∗u∇ · δφ−∇u∗ · (∇Sδφ)∇u), (37)
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from which we conclude that the expression (34) can be written

δj(δφ) = −
∫
Ω

(∇u∗ · ∇u∇ · δφ+ εu∗u∇ · δφ−∇u∗ · (∇Sδφ)∇u). (38)

Substituting δφ = δxkN1(x) into the expression (38) yields the discrete ex-
pression (12).

In order to proceed further, we need to integrate the expression (38) by
parts in a way that respects the regularity properties of the involved functions.
We will use a notation borrowed from the context of discontinuous Galerkin
methods [1, §3]. Let Th be the set of elements (triangles or tetrahedrons) in
a triangulation of the domain Ω (that is, Ω(0)). Note that the triangulation
will be completely superficial, without any effect on the solution, in the case
before discretization. Denote by H1(Th) the space of functions in L2(Ω) whose
restriction to each element K ∈ Th is in H1(K) (functions in H1(Th) may,
however, contain jump discontinuities between neighboring elements in the
discrete case). Denote by Σ the union of the boundaries to all elements in
the triangulation. Denote by T (Σ) the space of traces of functions in H1(Th)
on Σ; such traces are uniquely defined on the domain boundary ∂Ω but are,
in general, double valued on the element boundaries Σ0 = Σ \ ∂Ω interior
to the domain. Consider two neighboring elements K1 and K2 that shares
the surface (3D) or the edge (2D) σ ∈ Σ0, and denote by n1 and n2 = −n1

the unit normals on σ that are outward directed with respect to K1 and K2,
respectively. For q ∈ H1(Th), define jumps on σ by

�q� = q
∣∣
∂K1∩σn1 + q

∣∣
∂K2∩σn2. (39)

For q ∈ H1(Th) and ψ ∈ H1(Ω)d hold the integration-by-parts formula
∫
Ω

∇ ·ψ q = −
∑
K∈Th

∫
K

ψ · ∇q +
∫
∂Ω

n · ψ q +
∫
Σ0

ψ · �q�. (40)

We will now apply the formula (40) with q = ∇u∗ · ∇u and ψ = δφ. Note
that q ∈ H1(Th) and ψ ∈ H1(Ω)d hold for these choices: before discretization,
q|K is smooth by internal regularity of the equations (32) and (36), and ψ ∈
H1(Ω)d by assumption; after discretization, q|K is polynomial, and ψ is in
an H(Ω)d conforming finite-element space. Using the formula (40), the first
term in the right side of the expression (38) can be written

−
∫
Ω

∇u∗ · ∇u∇ · δφ =
∑
K∈Th

∫
K

δφ · ∇(∇u∗ · ∇u)

−
∫
Γd

n · δφ∇u∗ · ∇u−
∫
Σ0

δφ · �∇u∗ · ∇u�, (41)

where we have used that δφ vanishes on ∂Ω \ Γd. Integration by parts on the
second term in the right side of the expression (38) yields
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− ε

∫
Ω

u∗u∇ · δφ = ε

∫
Ω

δφ · ∇(u∗u) − ε

∫
Γd

n · δφu∗u. (42)

Substituting the expressions (41) and (42) into the expression (38) and col-
lecting terms, we obtain

δj(δφ) = −
∫
Γd

n · δφ (∇u∗ · ∇u + ε u∗u) −
∫
Σ0

δφ · �∇u∗ · ∇u�

+
∑
K∈Th

∫
K

(δφ · ∇(∇u∗ · ∇u) + ∇u∗ · (∇Sδφ)∇u+ ε δφ · ∇(u∗u)).

(43)

The two first terms in the last integral in the expression (43) can be written

δφ·∇(∇u∗ ·∇u)+∇u∗ ·(∇Sδφ)∇u = ∇(δφ·∇u∗)·∇u+∇u∗ ·∇(δφ·∇u), (44)

as shown by expanding in Cartesian components, for instance. Substituting
the expression (44) into the expression (43) yields

δJ = −
∫
Γd

n · δφ (∇u∗ · ∇u+ ε u∗u) −
∫
Σ0

δφ · �∇u∗ · ∇u�

+
∑
K∈Th

∫
K

(∇(δφ · ∇u∗) · ∇u+ ε (δφ · ∇u∗)u)

+
∑
K∈Th

∫
K

(∇u∗ · ∇(δφ · ∇u) + ε u∗δφ · ∇u). (45)

The expression (45) contains, as its first term, the “continuous” directional
derivative expression (6), but also three “correction” terms. The first correc-
tion term involves jumps of ∇u∗ · ∇u at inter-element boundaries, whereas
the second and third terms contain some particular weighted element-wise
residuals of the state and adjoint equations, respectively, for which δφ · ∇u∗
and δφ ·∇u replace the test functions. Some or all of these “correction terms”
may vanish, depending on the situation:

Case 1 (before discretization). When V = H1(Ω) – the “continuous” case –
the functions u and u∗ are interior regular (and regular up to the boundary
Γd when the boundary is smooth enough). In this case, the jump terms vanish
due to the continuity of ∇u · ∇u∗. Also, since δφ · ∇u∗ ∈ V , δφ · ∇u ∈ V
in this case, the element residual terms will also vanish due to the state and
adjoint equations (32), (36). Hence, in this case, the expression (45) reduces
to the classic “continuous” expression (6).

Case 2 (lowest-order finite elements). If functions in V are linear on each
element, the element residual terms vanish, since then ∇(δφ·∇u∗)|K = ∇(δφ·
∇u)|K ≡ 0.
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Case 3 (higher-order finite elements). Here, none of the terms vanishes, in
general, and the expression (45) with δφ = δxkN1(x) just provides a different
way of evaluating the expression (12).

Case 4 (C1 finite elements). When using the (rather unusual) class of C1 finite
elements (for instance, the Argyris element [3, §3.2.10]), the inter-element
jump terms vanish since then �∇u∗ · ∇u� ≡ 0.

The expression (45) links together the “discrete” expression (12) and the
“continuous” expression (6) and constitutes, therefore, hopefully a first step
in a rigorous numerical analysis of finite-element shape optimization. For in-
stance, the convergence rate of the discrete Frechet derivative could be esti-
mated by estimates of the jumps and residual terms that the expression (45)
exposes.
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1998.

8. M. D. Gunzburger. Perspectives in flow control and optimization. SIAM,
Philadelphia, PA, 2003.

9. M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 2003.
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Summary. We present a novel mathematical model to study the mechanical
properties of endovascular stents in their expanded state. The model is based on
the theory of slender curved rods. Stent struts are modeled as linearly elastic curved
rods that satisfy the kinematic and dynamic contact conditions at the vertices where
the struts meet. A weak formulation for the stent problem is defined and a Finite Ele-
ment Method for a numerical computation of its solution is used to study mechanical
properties of two commonly used coronary stents (Palmaz-like and Xience-like stent)
in their expanded, fractured state. A simple fracture (separation), corresponding to
one stent strut being disconnected from one vertex in a stent, was considered. Our
results show a drastic difference in the response of the two stents to the physiologi-
cally reasonable uniform compression and bending forces.

1 Motivation

Mathematical and computer modeling of endovascular stents is an efficient
way to improve their design and performance [1, 5, 6, 8, 9, 12, 14–17, 22]. Cur-
rently available computational tools include “off the shelf ”, commercial soft-
ware which is based on various three-dimensional Finite Element Method
structure approximations of stent struts that form a three-dimensional stent
mesh. Accurate, three-dimensional approximation of stents is often computa-
tionally very expensive in terms of time and memory requirements. This is
why we developed a novel mathematical and computational algorithm which
approximates three-dimensional stents as a mesh of one-dimensional, elastic
curved rods.
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Fig. 1. A stent with nC = 6 and nL = 9.

Fig. 2. Deployment of a coronary stent.

Stent struts are modeled as linearly elastic, slender curved rods that satisfy
the kinematic and dynamic contact conditions at the vertices where the struts
meet. A weak formulation for the stent problem is defined and a Finite El-
ement Method for a numerical computation of its solution was developed in
[21]. The resulting FEM algorithm is incomparably simpler and faster than
any corresponding three-dimensional solver, thereby enabling simulations of
a large number of stent configurations in a short time.

Using this algorithm, we studied elastic deformation of stents in their
expanded state (see Figure 1) exposed to physiologically reasonable pres-
sure loads causing compression, expansion and bending. In particular, in this
manuscript we compared the mechanical response to compression and bending
of two commonly used coronary stents: a Palmaz-like stent and a Xience-like
stent (see, e.g., Figure 2). Furthermore, a fracture (separation) was intro-
duced prior to the computer simulations, corresponding to a separation of
one stent strut from one vertex in the stent frame. Stent fractures and sep-
aration of coronary stent components are relatively rare (although fracture
of stents used in larger arteries such as those of the legs, are more common)
but they cause potentially serious complications of coronary artery stenting
[13,18]. Patients whose coronary stents suffer from stent fracture may present
non-specific symptoms of angina as a result of restenosis (re-narrowing of a
coronary artery) or in-stent thrombosis, or both [13, 18]. In order to insure
proper recognition and treatment of this problem, physicians must be aware
of its existence and of the stent behavior under these circumstances [3]. In
this manuscript we present a few scenarios that shed light on the mechanical
behavior of two commonly used coronary stents under the assumption of a
disconnection of one of the struts in the stent frame. New insights related to
the performance of such coronary stents are obtained.
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2 The Model

We consider a stent to be a three-dimensional elastic body defined as a union
of three-dimensional struts, see Figure 3 and Definition 1. The main novelty in
this manuscript, over the standard approaches that can be found in literature
[1, 5, 6, 9, 12, 14–17, 22], is the use of the one-dimensional curved rod model
to approximate the slender three-dimensional stent struts, and a definition
of a stent as a union of curved rods satisfying certain contact conditions.
The one-dimensional approximation is given in terms of the arc-length of
the middle curve of the rod as an unknown variable. The cross-section of a
rod representing each stent strut is assumed to be rectangular, of width w
and thickness t. The curved stent struts “lie” on a cylinder with reference
(expanded) radius denoted by R, and reference (expanded) length denoted
by L.

Struts themselves are assumed to be linearly elastic, with the elastic pa-
rameters given by the Lamé constants λ and μ, or, equivalently, by the Youngs
modulus of elasticity E and the shear modulus μ.

2.1 Geometry: Parametrization of the Stent Frame

Without the loss of generality, we will be assuming that the stent struts form
a uniform frame of diamonds with nC vertices in the circumferential direction,
and nL + 1 vertices in the longitudinal direction, as shown in Figure 1. The
assumption of uniform geometry is, however, not required for the implemen-
tation of the ideas described below, as they can be generalized to stents of
arbitrary geometry with struts of different lengths. This will be utilized, for
example, in Section 3.

Stent vertices will be denoted by vi,j , where i = 1, . . . , nC and j =
1, . . . , nL + 1, see Figure 1. Vertices can be defined as

vi,j =

(
R cos((i − 1)φ + (j − 1)φ/2), R sin((i − 1)φ + (j − 1)φ/2), (j − 1)

L

nL

)T
,

f
vi+1, j-1

vi-1, j+1

vi, j

P1i+1, j-1 P0i, j

P1i, jP0i, j-1
vi, j-1

vi, j+1

Fig. 3. Left: The figure shows the angle formed by a vertex of a stent, the center of
the circular cross-section, and an adjacent vertex on the stent. The angle is denoted
by φ = 2π/nC . Right: The geometry of an interior vertex vi,j with incoming and
outgoing struts.
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vi, j+1

vi, j
S0
i, j

P0
i, j

Fig. 4. Curved stent strut.

where φ = 2π/nC is the angle formed by a vertex of a stent, the center of the
circular cross-section of a stent, and an adjacent vertex on the same circum-
ference of the stent, see Figure 3, left. The vertices on the adjacent circular
cross-section are shifted by the angle φ/2. Each interior vertex is characterized
by two incoming and two outgoing struts. See Figure 3, right.

Struts of a high precision laser cut stainless steel stent are not straight,
but curved and located on the cylinder of radius R. To write the equations for
the curved stent struts we take a cord connecting the two vertices that define
a strut, and then project the cord to the cylinder of radius R. See Figure 4.
More precisely, denote by Rki,j , k = 0, 1, the two outgoing struts emerging
from the vertex vi,j , and connecting to the vertices shifted by ±φ/2 at the
level j + 1. Then the cords (straight lines) corresponding to the struts Rki,j ,
k = 0, 1, can be parameterized as

Ski,j(s) = svi,j + (1 − s)v((i−1−k) mod nC)+1,j+1, s ∈ [0, 1],

i = 1, . . . , nC , j = 1, . . . , nL, k = 0, 1. (1)

The middle curve of the curved stent struts Rki,j can be expressed via the
parameterization (see Figure 4)

P ki,j : [0, 1] → R
3,

where

P ki,j(s) = NSki,j(s), s ∈ [0, 1], i = 1, . . . , nC , j = 1, . . . , nL, k = 0, 1. (2)

Here N is the operator that lifts the cord up to the cylinder of radius R:

Nv = Pv +R
v − Pv

‖v − Pv‖ ,

where P denotes the orthogonal projector on e3 in R
3 with the standard scalar

product, and {e1, e2, e3} is the standard orthonormal basis of R
3.

Using the parameterization P ki,j of the middle curve of stent strut Rki,j ,
we can now introduce a parameterization of the three-dimensional stent strut
Rki,j as:

Φk
i,j(s1, s2, s3) = P ki,j(s1) + s2nki,j(s) + s3bki,j(s), (3)
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where tki,j , nki,j and bki,j(s) define a local basis at each point of the middle
curve of stent strut Rki,j :

tki,j(s) =
(P ki,j)

′(s)
‖(P ki,j)′(s)‖

, nki,j(s) =
(I − P )P ki,j(s)

‖(I − P )P ki,j(s)‖
, bki,j(s) = tki,j(s)×nki,j(s),

for s ∈ [0, 1]. The parameterization Φk
i,j maps the set [0, 1] × [−t/2, t/2] ×

[−w/2, w/2] into R
3.

Definition 1. Three-dimensional stent Ω is a union of stent struts Rki,j pa-
rameterized by Φk

i,j, given by (3):

Ω =
nL⋃
i=1

nC⋃
j=1

1⋃
k=0

Φk
i,j on [0, 1] × [−t/2, t/2]× [−w/2, w/2]. (4)

The interior stent surface of a stent is defined by

ΓI =
nL⋃
i=1

nC⋃
j=1

1⋃
k=0

Φk
i,j on [0, 1] × {−t/2} × [−w/2, w/2],

and the exterior stent surface by

ΓE =
nL⋃
i=1

nC⋃
j=1

1⋃
k=0

Φk
i,j on [0, 1] × {t/2} × [−w/2, w/2].

2.2 Mechanics: Stent as a Collection of Elastic Curved Rods

The curved rod model is a one-dimensional approximation of a three-
dimensional rod-like structure to the ε2 accuracy, where ε is the ratio between
the largest dimension of the cross-section and the length of a rod. For a deriva-
tion and mathematical justification of the curved rod model see, e.g. [10, 11].
In general, the behavior of a three-dimensional rod-like elastic body is approx-
imated by the behavior of its middle curve and of its cross-sections. In the
curved rod model, the cross-sections behave approximately as infinitesimal
rigid bodies that remain perpendicular to the deformed middle curve.

More precisely, let P : [0, �] → R
3 be the natural parameterization of the

middle curve of the rod of length � (‖P ′(s)‖ = 1, s ∈ [0, �]). Then the curved
rod model can be formulated as a first-order system of differential equations
for the following unknown functions:

ũ : [0, �] → R
3, the displacement of the middle curve of the rod;

ω̃ : [0, �] → R
3, the infinitesimal rotation of the cross-section of the rod;

q̃ : [0, �] → R
3, the contact moment; and

p̃ : [0, �] → R
3, the contact force.
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(Here � corresponds to the strut length, denoted by ls.) For a given line force
density f̃ , the equations of the curved rod model can be written as (see [19]):

p̃′ + f̃ = 0, (5)
q̃′ + t × p̃ = 0, (6)

describing the balance of contact force and contact moment, respectively, with

ω̃′ − QH−1Q̃
T
q̃ = 0, (7)

ũ′ + t × ω̃ = 0, (8)

describing the constitutive relations for a curved, linearly elastic rod. Here t
is the unit tangent to the middle curve, Q = (t,n,b) is the orthogonal matrix
containing the tangent vector t and vectors n and b that span the normal
plane to the middle curve (Q describes the local basis at each point of the
middle curve), and

H =

⎡
⎣μK 0 0

0 EIb 0
0 0 EIn

⎤
⎦ ,

where E = μ 3λ+2μ
λ+μ is the Young modulus of the material, In and Ib are

moments of inertia of a cross-section and μK is the torsion rigidity of the
cross-section. Therefore, H describes the elastic properties of the rod and
the geometry of the cross-section.

The equation (8) is a condition that requires that the middle line is ap-
proximately inextensible and that allowable deformations of the cross-section
are approximately orthogonal to the middle line. This condition has to be in-
cluded in the solution space for the weak formulation of the problem (5)–(8)
(pure traction problem for a single curved rod). Thus, introduce the space

V =
{
(ṽ, w̃) ∈ H1(0, �)6 : ṽ′ + t × w̃ = 0

}
. (9)

Function (ũ, ω̃) ∈ V is called a weak solution of the problem (5)–(8) if
∫ �

0

QHQT ω̃′·w̃′ds =
∫ �

0

f̃ ·ṽds+q̃(�)·w̃(�)−q̃(0)·w̃(0)+p̃(�)·ṽ(�)−p̃(0)·ṽ(0)

(10)

holds for all (ṽ, w̃) ∈ V (notice the difference in the notation between ω̃
and w̃).

To model the mechanical behavior of a stent as a collection of one-
dimensional linearly elastic, homogeneous, isotropic curved rods, we param-
eterize the struts using the one-dimensional parameterizations P ki,j of the
struts’ middle curves, see (2). Now a stent can be defined as a union of one-
dimensional parameterizations as follows:

Ω1 =
nC⋃
i=1

nL⋃
j=1

1⋃
k=0

P ki,j([0, 1]).
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P1i+1,j-1

vi,j
P0i,j-1

P0i,j

P1i,j
vi,1

P1i,1

P0i,1

Fig. 5. Vertex vi,j .

Note that parameterizations P ki,j are not arc-length parameterizations which
is necessary for the formulation of the curved rod model (5)–(8). Nevertheless,
they uniquely determine the middle curves of the stent struts and imply the
existence of the arc-length parameterizations. Finding the arc-length param-
eterization in this case is a difficult task which is not necessary for the final
formulation of the problem and the numerical method development.

Each of the curved rods approximating the stent struts Rki,j satisfy a set of
equations of the form (5)–(8). At the vertices where the curved rods meet, the
kinematic and dynamic contact conditions determine the boundary condition
for each curved rod in the stent frame structure. The kinematic contact condi-
tion describes the continuity of the kinematic quantities ũki,j and ω̃ki,j , stating
that the displacement and the infinitesimal rotation for two struts meeting
at a vertex, are the same. The dynamic contact condition is the equilibrium
condition requiring that the sum of all contact forces at a vertex, and the sum
of all contact moments at a vertex be equal zero. Thus, for each vertex vi,j
(see Figure 5) the kinematic contact conditions are given by

ũ0
(i−1) mod nC+1,j−1(ls) = ũ1

i mod nC+1,j−1(ls) = ũ0
i,j(0) = ũ1

i,j(0), (11)

ω̃0
(i−1) mod nC+1,j−1(ls) = ω̃1

i mod nC+1,j−1(ls) = ω̃0
i,j(0) = ω̃1

i,j(0), (12)

and the dynamic contact conditions are given by

q̃0
(i−1) mod nC+1,j−1(ls) + q̃1

i mod nC+1,j−1(ls) + q̃0
i,j(0) + q̃1

i,j(0) = 0, (13)

p̃0
(i−1) mod nC+1,j−1(ls) + p̃1

i mod nC+1,j−1(ls) + p̃0
i,j(0) + p̃1

i,j(0) = 0, (14)

for i = 1, . . . , nC , j = 1, . . . , nL + 1 with the convention that the quantity
is removed for nonexistent indexes corresponding to the end vertices vi,1 and
vi,nL+1.

To define a weak formulation for the stent frame problem, introduce the
following function space:

VF =
{
(ṽ0

1,1, w̃
0
1,1, . . . , ṽ

1
nC ,nL

, w̃1
nC ,nL

) : (ṽki,j , w̃
k
i,j) ∈ V ki,j & (11), (12) hold

}
,

where V ki,j are the function spaces (9) corresponding to the struts Rki,j .
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Now the weak formulation for the stent frame structure consisting of curved
rods is given by the following:

Definition 2. Function (ũ0
1,1, ω̃

0
1,1, . . . , ũ

1
nC ,nL

, ω̃1
nC ,nL

) ∈ VF is a weak solu-
tion to the stent frame problem if

nC∑
i=1

nL∑
j=1

∑
k=0,1

∫ ls

0

Qk
i,jH(Qk

i,j)
T (ω̃ki,j)

′ · (w̃k
i,j)

′ds =
∫ ls

0

f̃
k

i,j · ṽki,jds (15)

holds for all (ṽ0
1,1, w̃

0
1,1, . . . , ṽ

1
nC ,nL

, w̃1
nC ,nL

) ∈ VF .

Notice again the difference in the notation for the infinitesimal rotation
test functions w̃k

i,j and the notation for the infinitesimal rotation solution
functions ω̃ki,j . Also notice that all the intermediate boundary terms on the
right-hand side of the equation (10) cancel out in the formulation (15) due to
the kinematic and dynamics contact conditions.

Solution to the problem (15) is not unique. Namely, since only the deriva-
tive of ω̃ appears in the weak formulation, the solution will be determined
up to a constant ω̃0. Thus, if P is a point on the frame structure, then
ω̃(P ) = ω̃0 is in the kernel of the problem. Furthermore, from the condi-
tion ũ′ + t × ω̃ = 0, with ω̃ constant, one can solve the equation for ũ to
obtain ũ(s) = ũ0 −P × ω̃0 = ũ0 + ω̃0 ×P . Thus, the infinitesimal rotation of
the cross-section and displacement of P are unique up to the term

[
ω̃(P )
ũ(P )

]
=
[

ω̃0

ũ0 + ω̃0 × P

]
,

for arbitrary vectors ũ0, ω̃0 ∈ R
3. This means that the solution is unique up

to the translation and infinitesimal rotation of the frame structure. Thus we
will be interested in the solution of (15) that satisfies an additional condition

∫
F

ũ(P ) · (a + b × P )dP = 0, ∀a,b ∈ R
3. (16)

2.3 Numerical Implementation

The frame structure presented in this section is still extremely complex. The
main obstacle for the numerical treatment of the problem of the form (15) is
the implementation of the condition in the function spaces V ki,j that should be
satisfied by the test functions. For this reason, we made a further simplification
that incorporates approximation of each curved rod by the piecewise straight
rods. This approximation has been mathematically justified in [19, 20]. For
details, please see [21]. A Finite Element Method was developed in [21] for a
solution to this problem. Numerical results are presented next.
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3 Numerical Results

The mechanical behavior of two types of stents is considered below: a Xience-
like stent (nonuniform geometry) shown in Figure 6, and a Palmaz-like stent
(uniform geometry), shown in Figure 14. Both stents are subject to two loading
scenarios: uniform compression and bending.

Uniform Compression

A uniformly distributed force in the radial direction is applied to stents caus-
ing compression. Radial displacement from the expanded configuration is mea-
sured. The compression force corresponds to the pressure load of 0.5 atm. The
force is calculated by considering the 0.5 atm pressure load of a cylinder (e.g.,
blood vessel) of length L acting on a stent of the same length L. This pressure
load is physiologically reasonable. Namely, we can use the Law of Laplace to
estimate exterior pressure loads to an inserted stent. Recall that the Law of
Laplace relates the displacement u of the arterial wall with the transmurral
pressure p− p0 [7] via:

p− p0 =
Eh

(1 − ν2)R2
u, (17)

where E is the Young modulus of the vessel wall, h is the vessel wall thickness,
R the vessel (reference) radius and ν the Poisson ratio. For incompressible
materials such as arterial walls (nearly compressible), ν = 1/2. The Young
modulus of a coronary artery is between 105 and 106 Pa, see, e.g., [2] and the
references therein. For our calculation let us take the intermediate value of
E = 5 × 105 Pa, and let us take the reference coronary artery radius to be
around 1.3mm with the vessel wall thickness h = 1mm. Stents are typically
oversized by 10% of the native vessel radius to provide reasonable fixation.
Thus, 10% displacement of a coronary artery of radius 1.3mm is 0.13mm.
This gives u = 0.13mm. By plugging these values into the formula (17) one
gets p−p0 ≈ 5×104 Pa which equals 0.5 atm. Thus, a pressure load of 0.5 atm
is necessary to expand a coronary artery by 10% of its reference radius. This
force is applied to the stents studied below to capture the stent deformation
under the coronary artery loading.

Bending

In the examples below we will be calculating stent deformation to forces caus-
ing bending. These forces will be applied pointwise to the center of a given

Fig. 6. Xience stent by Abbott (left); Computationally generated Xience-like stent
(right) showing half of the mesh with nC = 6 and nL = 24.
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stent (at 2–4 points in the center) and to the end points (at 1 point near each
end of a stent). The force at the end points is applied in the opposite direction
from the force applied to the center of the stent. The magnitude of the total
applied force is calculated for each stents to be equal to the force that a curved
vessel, with the radius of curvature Rc = 2.5 cm, exerts on a straight stent
that is inserted into the curved vessel. Stents with higher bending rigidity will
deform less, while stents with low bending rigidity will deform more.

3.1 Xience-Like Stent (Stent X ) (Non-Uniform Geometry)

The stent geometry is that of Multi-Link Mini Vision, resembling Xience
stent by Abbott shown in Figure 6, left. Figure 6, right shows our computer-
generated geometry of a Xience-like stent. The stent struts are made of Cobalt
Chromium (CoCr) (L-605) (CoCr, Young’s modulus E = 2.43×1011 Pa) with
thickness 0.08mm. Stent struts are organized in zig-zag rings (“in-phase”
rings) connected with horizontal struts which contain one wiggle near the
protruding vertex of a zig-zag ring. Stent X has nC = 6 vertices in the cir-
cumferential direction and nL = 24 vertices in the longitudinal direction with
reference radius R = 1.5mm.

In the examples below a fractured Xience-like stent will be considered,
with a fracture corresponding to a disconnection of one strut from one vertex.
In particular, a vertex in the middle of the stent is chosen to suffer component
separation, see Figures 7 and 12. Namely, our simulations show that this ver-
tex suffers from highest contact moments during bending (and compression).
Denote this vertex by ṽ. There are three struts that meet at vertex ṽ: two
symmetric, diagonally placed ones forming one zig-zag geometry in the zig-zag
ring of stent struts, see Figure 7, bottom, and one horizontally placed strut

Fig. 7. Non-fractured Xience-like stent exposed to uniform compression. Stent struts
are colored based on the magnitude of contact moment. The bottom figure shows
the strut which will be disconnected from vertex ṽ, colored with a black dot.
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connecting two different zig-zag rings, see Figure 12. We will consider below
two examples: the first is an example of a Xience-like stent with a separated
diagonally placed strut, and the second is an example of a Xience-like stent
with a separated horizontally placed strut.

Example 1. Xience-like stent with a disconnected diagonally placed strut
emerging from vertex ṽ is exposed to uniform compression and bending.
Figure 7 shows the bending moments for a non-fractured Xience-like stent,
with a strut that is to be disconnected from vertex ṽ shown in black. Figure 8
shows radial displacement under uniform compression of the fractured stent.
The disconnected strut is shown in light blue (cyan). The two views show that
the strut disconnected from vertex ṽ protrudes into the lumen of the stented
vessel by around 30% of the reference radius, causing potential for complica-
tions associated with in-stent thrombosis, as observed in clinical practice [13].

Figure 9 shows that the deformation of the disconnected strut causes
higher contact moments. A comparison between the numbers on the scale
shown on the left in Figures 7 and 9 indicate that the maximum bending
moment for the deformed stent with a disconnected diagonally placed strut

Fig. 8. Fractured Xience-like stent under uniform pressure load (three different
views). The dislocated stent strut is shown in blue (cyan). The dots on the figure
denote the points corresponding to the fractured vertex of a stent where the dislo-
cated strut was broken away from the reference stent frame. The stent is colored
based on the magnitude of the radial displacement.

Fig. 9. Fractured Xience-like stent from Figure 8 under uniform pressure load. The
stent is colored based on the magnitude of the contact moment.
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is two times the contact moment of a non-fractured stent exposed to uniform
compression. This is a precursor for possible further stent fractures that may
be associated with this highly flexible and compliant stent.

Bending

Figure 10 shows contact moments for Xience-like stent exposed to bending
forces. The bottom figure indicates the strut that is to be disconnected from
vertex ṽ (shown in black). The result of the bending load applied to the
Xience-like stent with a disconnected diagonally placed strut is shown in
Figure 11. The stent bends more than the non-fractured one. The calculated
bending factors (reciprocal of the radius of curvature) for the non-fractured
Xience-like stent (Stent X) and the fractured Xience-like stent (Stent X-frac1)
are shown in Figure 19. Figure 11, top shows the stent from the side view, and
the bottom figure shows the same stent from the bottom view. The two black
dots denote the disconnected vertex, viewed from below of the curved stent.

Example 2. Xience-like stent with a disconnected horizontally placed strut
emerging from vertex ṽ is exposed to uniform compression and bending, see
Figure 12. Figure 8 shows radial displacement under uniform compression of
the fractured stent (the magnitude of the radial displacement is shown in the
scale bar on the left of the figure). The disconnected strut is shown in light
blue (cyan). The two views show that the disconnected strut protrudes into
the lumen of the stented vessel causing potential for complications associated
with thrombosis.
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Fig. 10. Non-fractured Xience-like stent exposed to bending forces. Stent struts are
colored based on the magnitude of the contact moment. The strut shown in black
(right figure) denotes the strut that will be disconnected from the vertex denoted
with a black dot.



A Comparison Between Fractured Xience-Like and Palmaz-Like Stents 53

0.00188742

–0.00192236

0.005

0.000

0.000 0.005 0.010 0.015

–0.005

0.005
0.000

–0.005

0.00188742

0.005

0.000

0.000 0.005 0.010 0.015

–0.005

–0.005

0.000
0.005

–0.00192236

Fig. 11. Fractured Xience-like stent exposed to bending forces. Stent struts are
colored based on the magnitude of the radial displacement. Two views are shown: a
side view (top) and a view from the bottom of the deformed stent (bottom).

Fig. 12. Fractured Xience-like stent under uniform pressure load. Stent struts are
colored based on the magnitude of the radial displacement. The circles on the figure
denote the points corresponding to the fractured vertex of a stent. The disconnected
strut, shown in blue, protrudes into the lumen with the largest radial displacement
of all the struts.

Bending

Figure 13 shows a catastrophic deformation of a Xience-like stent with a
disconnected horizontal strut under bending load. The disconnected strut is
placed at the bottom, at the center of the bent stent. Figure 13 shows two
views of the stent: the side view and the view from the bottom where the
center of curvature of the bent stent lies. This deformation is too large for the
model presented in this paper to be used to calculate accurate displacement
and/or moments of the deformed stent. Our simulation, however, indicates
that a disconnection of a central horizontal strut in a Xience-like stent will
likely lead to unacceptable deformation under bending forces.
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0.00313337

–0.00351404

0.005
0.005

0.000

0.000

0.000 0.005 0.010 0.015

–0.005

–0.005 0.00313337

–0.00351404

0.005

0.000

0.000 0.005 0.010 0.015
–0.005

0.005
0.000

–0.005

Fig. 13. Bending of a fractured Xience-like stent. Struts are colored based on the
magnitude of the radial displacement. Two views are shown: a side view (left) and
a view from the bottom of the stent (right). Catastophic deformation is observed.

Fig. 14. A photograph of Palmaz stent by Cordis.

Fig. 15. Non-fractured Palmaz-like stent under uniform compression. Stent struts
are colored based on the magnitude of contact moments (top) and radial displace-
ment (bottom). Negligible radial displacement is observed.

3.2 Palmaz-Like Stent (Stent P) (Uniform Geometry)

A Palmaz-like stainless steel stent (316L) such as the one shown in Figure 14,
with uniform geometry containing nC = 6 vertices in the circumferential di-
rection and nL = 24 vertices in the longitudinal (axial) direction is consid-
ered. The stent has been expanded to the radius of 1.5mm into its reference
configuration.

Figure 15 shows contact moments and radial displacement of a Palmaz-
like stent under uniform compression. This stent deforms more at the end
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Fig. 16. Fractured Palmaz-like stent under uniform compression. Struts are colored
based on the magnitude of radial displacement. The disconnected strut is shown in
blue, with the black dot denoting the vertex from which the strut is disconnected.
Two views are shown: a side view (left) and an axial view (right). The displacement
of the disconnect strut is only 0.5% of the reference configuration.

Fig. 17. Non-fractured Palmaz-like stent exposed to bending forces. Same bending
forces are use as those corresponding to Figure 10. Stent struts are colored based on
the magnitude of contact moment. Much smalled bending can be observed in com-
parison with the bending of a non-fractured Xience-like stent, shown in Figure 10.

points (radial displacement shown in light blue) than at the center (radial
displacement shown in red). One of the diagonally placed struts was discon-
nected from a vertex ṽ at the “center” of the stent, shown in Figure 16 with
a black dot.

We see that, although the disconnected strut deforms more than the neigh-
boring struts (shown in light blue versus red in Figure 16), the deformation
is 25 times smaller (2 × 10−5 versus 5 × 10−4 m) than the deformation of the
Xience-like stent with an “equivalent” disconnected strut shown in Figure 8.
Thus, we conclude that a Palmaz-like stent with a disconnected strut in the
center of a stent deforms less under uniform compression than a Xience-like
stent with an equivalent disconnected strut (diagonally placed), see Figure 8.

Bending

In the remainder of this section we study the behavior of a fractured Palmaz-
like stent under bending forces. Figure 17 shows the magnitude of the contact
moment under the same bending forces as those that were applied to the
Xience-like stent, shown in Figure 10. It is obvious that Palmaz-like stents
have much higher bending rigidity than Xience-like stents. Figure 18 shows
the magnitude of the contact moment for a Palmaz-like stent under bending
forces with a disconnected strut from the vertex, shown in Figure 18 with a
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Fig. 18. Fractured Palmaz-like stent exposed to bending forces. Stent struts are
colored based on the magnitude of contact moment. The black dot denotes the vertex
from which a diagonally placed strut was disconnected. Much smaller bending can
be observed in comparison with the bending of a fractured Xience-like stent shown
in Figure 11.
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Fig. 19. Graphs showing the bending factor for the five stents: non-fractured Xience-
like stent (stent X), fractured Xience-like stent from Example 1 (stent X-frac1),
fractured Xience-like stent from Example 2 (stent X-frac2), non-fractured Palmaz-
like stent (stent P) and fractured Palmaz-like stent (stent P-frac). Bending factor
is calculated as the reciprocal of the radius of curvature for each deformed stent.
Left: stents were exposed to the same uniform compression forces, as described at
the beginning of Section 3. Right: stents were exposed to the same bending forces,
as described at the beginning of Section 3.

black dot. Very small difference between the behavior of a non-fractured stent
shown in Figure 17 and a fractured Palmaz-like stent shown in Figure 18 is
observed.

4 Conclusions

Our model, based on the approximation of a three-dimensional stent strut
mesh as a collection of slender curved rods, enables fast and accurate simu-
lation of mechanical behavior of stents in their expanded state [21]. We used
this model to study deformation of Palmaz-like stent and Xience-like stent
with a fracture introduced prior to the simulation. The stent fractures consid-
ered in this manuscript correspond to a disconnection of one stent strut from
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one vertex. Drastic differences between the mechanical responses to uniform
compression and bending of the Xience-like stent and of the Palmaz-like stent
were detected. The following conclusions were obtained:

1. Palmaz-like stent is much stiffer than the Xience-like stent both under uni-
form compression and under bending force (compare Figures 7 and 15, and
Figures 10 and 17). This, in turn, implies less deformation of a fractured
Palmaz-like stent, see Figure 16, than the Xience-like stent, see Figure 8,
and the overall smaller contact moments in the Palmaz-like stent intro-
duced by a disconnection of a strut from the stent frame.

2. Disconnection of a horizontally placed strut in a Xience-like stent may lead
to catastrophic deformation when such a stent is located in the tortuous
(curved) geometry, which is the typical application of Xience-like stents,
where the stent is naturally exposed to bending forces. See Figure 11.

3. Disconnection of any one strut in a Xience-like stent causes protrusion
of a stent strut into the lumen of a stented artery by around 30% of its
expanded radius, providing an environment that promotes coronary in-
stent thrombosis and in-stent restenosis as clinicaly observed in [13, 18].
See Figure 8.

4. Disconnection of a diagonally-placed strut in a Xience-like stent causes
visible bending of the stent even when the stent is exposed to uniform
compression forces. See Figure 8 bottom and graphs in Figure 19 left.

5. Deformation of a fractured Xience-like stent (with one strut separated
from one vertex) is significantly larger than the deformation of a fractured
Palmaz-like stent when exposed to uniform compression during arterial
pulsation and bending.
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Summary. In this paper a review by the research work of the authors on the
stochastic modelling of interacting individuals is presented. Both cases of direct and
indirect interaction (via underlying fields) are considered. Due to the strong cou-
pling among individuals, the evolution of each individual is governed by a stochas-
tic equation whose parameters are themselves stochastic; as a consequence we are
dealing with a doubly stochastic system, and this is a source of complexity which
may tremendously increase as the number of individuals becomes extremely large.
A possible way to reduce complexity is to apply suitable laws of large numbers, at a
mesoscale, in order to obtain a mean field governed now by deterministic PDEs. In
this way we may obtain an approximation of the driving fields which are determinis-
tic at the macroscale, thus driving, at the microscale, a simply stochastic evolution
for the individuals. Such models are called hybrid models.

Key words: Stochastic differential equations, measure-valued processes, empirical
measures, law of large numbers, invariant measures, ant colonies, tumour-induced
angiogenesis, hybrid models, multiscales

1 Introduction

In biology and medicine it is possible to observe a wide spectrum of formation
of patterns and clustering, usually due to self-organization phenomena. This
may happen at any scale; from the cellular scale of embryonic tissue formation,
wound healing or tumor growth, and angiogenesis, the microscopic scale of life
cycles of bacteria or social amoebae, to the larger scale of animal grouping.
Patterns are usually explained in terms of forces, external and/or internal,
acting upon individuals. In this way formation of aggregating networks are
shown as a consequence of collective behavior. Evidence of stochasticity are
often shown. A fruitful approach to the mathematical description of such
phenomena, suggested since long by various authors [10, 14, 19, 23, 28, 29], is
based on the so called individual based models, i.e. the “movement” of each
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individual embedded in the total population is described. This is known as
Lagrangian approach, i.e. individuals are followed in their motion. Possible
randomness may be included in the motion, so that the variation in time
of the (random) location of the individuals in a group composed of N(t)
individuals at time t ≥ 0, Xk

N (t) ∈ R
d, k = 1, . . . , N(t), is described by a

family of stochastic equations. On the other hand, particles are subject to
specific forces of interaction which are responsible of the reaction term.

A classical widespread approach has been given in terms of PDEs [20,
24, 25]. This is due, above all, to the wider spread knowledge on nonlinear
PDEs; so grouping behavior has been described by relevant quantities such as
scalar or vector fields. Such kind of models are often called Eulerian models,
since they describe the evolution of population densities; they are based on
continuum equations, typically (deterministic) partial differential equations of
the advection–reaction–diffusion type

ρt + ∇ · (vρ) = ∇ · (D∇ρ) + ν(ρ), (1)

where ρ is the population density and v is the velocity field, and ν(ρ) is a
possible additive reaction term which may include birth and death processes.
The advection term may describe the interaction mechanisms among individ-
uals (via the velocity v), while the non-convective (diffusive) flux takes into
account the spatial spread of the population.

In conclusion, the two different approaches (Lagrangian and Eulerian) de-
scribe the system at different scales: the finer scale description is based on
the (stochastic) behavior of individuals (microscale), and the larger scale
description is based on the (continuum) behavior of population densities
(macroscale). The central problem is to determine how information is trans-
ferred across scales; one of the aims of the modelling is to catch the main fea-
tures of the interaction at the scale of single individuals that are responsible,
at a larger scale, for a more complex behavior that leads to the formation of
patterns [10]. Often a multiple scale approach is preferable: the global behav-
ior of the population is described, at the macroscopic scale, by a continuum
density whose evolution in terms of integro-differential equations is derived
by a limiting process from the empirical distribution associated with a large
number of particles. From the mathematical point of view this means to per-
form some kind of law of large numbers, in such a way that one may identify
a possibly regular measure of the population distribution, having a density
which satisfies a PDE similar to the equation (1).

This is a way to reduce the complexity of Lagrangian models. Indeed, the
evolution equation of each individual is usually a stochastic equation whose
parameters are themselves stochastic. This is a source of complexity which
may tremendously increase as the number of individuals becomes extremely
large, as it may happen in many cases of real interest. Applying suitable laws
of large numbers at the mesoscale, we obtain an approximation of the driving
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fields which are deterministic at the macroscale. They drive, at the microscale,
a simply stochastic evolution for the individuals. Here we consider a review
of the investigation programme on the subject, that the authors have been
carrying out during the last decade [1, 2, 5, 6, 21–23].

In Section 2 we discuss the mathematical modelling of the stochastic inter-
acting population when the number of individuals is finite, both in the cases
of direct and indirect interaction. We consider both Lagrangian and Eulerian
(discrete) descriptions. In Sections 3 and 4, we look at two specific cases:
a model for stochastic aggregating–repelling individuals (direct interaction),
and a model for a branching and growth of vessels in tumor induced angio-
genesis, an example of stochastic fiber processes, coupled with the continuum
underlying field of a chemoattractor released by the tumor (indirect interac-
tion). In Section 5 we study the derivation of the corresponding hybrid models,
for the two working examples. In the first one we recall the mathematically
rigorous derivation of the limit model as the number of individuals increases
to infinity, via a law of large numbers; in the second example, we handle a
heuristic derivation of an hybrid model. Finally in Section 6, we address the
problem of the long time behavior of a stochastic interacting particle model,
as the number of particle N is still finite. In particular, we consider the case
of example one, discussed previously.

2 Individuals, Interactions and Evolution

We consider a population composed, at time t ≥ 0, by a (possibly random)
number N(t) of individuals. Let the random variable Xk

N (t) represent the
random state in R

d, e.g., the spatial location, of the kth individual, for
k = 1, . . . , N(t). From a Lagrangian point of view, the state of the sys-
tem of N(t) particles may be described as a family of N(t) stochastic pro-
cesses {Xk

N(t)}t∈R+ , k = 1, . . . , N(t), defined on a common probability space
(Ω,F , P ) and valued in (Rd,BRd), where BRd is the usual Borel σ-algebra gen-
erated by intervals. A convenient description of the state of the kth individual
may achieved via a random Dirac-measure εXk

N (t), defined as follows:

εXk
N (t)(B) =

{
1 if Xk

N (t) ∈ B
0 if Xk

N (t) /∈ B
∀B ∈ R

d. (2)

It is a random element of MP (Rd), the space of probability measures on R
d;

for any sufficiently smooth function f : R
d → R

∫
Rd

f(y)εXk
N (t)(dy) = f

(
Xk
N (t)

)

is a real valued random variable.



62 V. Capasso and D. Morale

For any t ≥ 0, given the particle locations Xk
N (t), k = 1, . . . , N(t), an

Eulerian (discrete) description of the system can be given in terms of the
random probability measure on R

d

XN (t) =
1

N(t)

N(t)∑
k=1

εXk
N (t) ∈ MP (Rd). (3)

This measure may be regarded as the empirical distribution of the location of
a single particle of the system in R

d at time t ∈ R+. Note that the number
of particles may be either constant over time, say N(t) = N , for all t ∈ R+,
or a dynamical variable itself, described, e.g., by a suitable birth and death
process.

A key question concerns the modelling of the interaction; interaction
among particles may be direct or indirect. In the first case individuals inter-
act directly, i.e. the force exerted on each of them depends on the distribution
of the individuals in the population. In the case of indirect interaction the
force exerted on each particle depends on an underlying field whose evolu-
tion depends on the distribution of the entire population; as a consequence
the dependence of the evolution of the spatial distribution of a single individ-
ual upon the spatial distribution of the whole population is mediated by the
underlying field.

2.1 Direct Interaction and System Evolution

For sake of simplicity, let N(t) = N, independent of t ∈ R+. Generally speak-
ing, in this first case we may describe the evolution of the system by a system
of N random equations

dXk
N (t) = hN (X1

N (t), . . . , XN
N (t), Bt, t) dt, k = 1, 2, . . . , N, (4)

where hN : (Rd)n × R
d × R+ → R is a suitable function modelling the in-

teraction. The random perturbing function Bt may model a random forcing
factor.

If we consider pairwise interaction, the interaction between a couple of
individuals is mathematically modelled by a reference potential K1, depend-
ing on the distance between the two particles. In this way the range of the
potential kernel represents the spatial region of influence of the interaction.

A good choice is K1 = W1 ∗ W1, a kernel given by the convolution of
a sufficiently regular probability density W1 with itself; we assume that the
interaction of two particles, out of N , located in x and y, respectively, is
modelled by

1
N
KN(x − y), where KN(z) = NβK1(Nβ/dz), (5)

which expresses the rescaling of K1 with respect to the total member N of
particles, in terms of a scaling coefficient β ∈ [0, 1]. Particles X i

N and Xj
N
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interact if the supports of the associated smoothed measuresWN∗εXl
N

, l = i, j,
overlap. As a consequence, if we denote by WN (z) = NβW1(Nβ/dz), the
interaction of the single k-particle, out of N , located at Xk

N(t), with all the
others in the population is given by

J
(
X1
N(t), . . . , XN

N (t)
)
(Xk

N (t)) =
1
N

∑
j

∫
Rd

WN (Xk
N − y)WN (y −Xj

N)dy

= (WN ∗WN ∗XN(t))(Xk
N (t))

=
N∑
i=1

1
N
KN

(
X i
N (t) −Xk

N (t)
)

= (KN ∗XN (t))(Xk
N (t))

=: I [XN(t)] (Xk
N (t)). (6)

In many cases a convenient way to model randomness is to consider an
independent additive noise, acting on each particle; so that a possible model
for (4) is

dXk
N (t) =

[
fkN (t) + I [XN (t)] (Xk

N (t))
]
dt+ σdW k(t), k = 1, . . . , N ; (7)

the term given in (6) describes any interaction of the kth particle with other
particles in the system, the function fkN : R+ → R describes the individual
dynamics which may depend only on time or on the state of the particle itself,
and, finally, {W k}, k = 1, . . . N is a family of independent standard Wiener
processes. In this review the diffusion coefficient σ is kept constant.

The system (7) offers a Lagrangian description of the stochastic model;
from the fact that for any real function g on R

d × R+,

∫
Rd

g(x, t)XN (t)(dx) =
1
N

N∑
k=1

g(Xk
N (t), t).

Itô’s formula leads to the Eulerian (discrete) description via an evolu-
tion equation for the empirical measure XN (t) [4, 6, 23]; indeed, for any
g ∈ C2,1

b (Rd × R+),

∫
Rd

g(x, t)XN (t)(dx) =
∫

Rd

g(x, 0)XN (0)(dx) +
∫ t

0

Op1 (XN(s), g(·, s)) ds

+MN [X,W ] (t), (8)

where

MN [X,W ] (t) =
∫ t

0

σ

2N

N∑
k=1

∇g(Xk(s), s)dW k(s) (9)
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is a zero mean martingale, so that, by the Doob inequality [4],

E

[
sup
t≤T

|MN [X,W ] (t)|
]2

≤ E

[
sup
t≤T

|MN [X,W ] (t)|2
]

≤ 4
4σ2

N2

N∑
k=1

E

[∫ T

0

|∇g(Xk
N (s), s)|2ds

]

≤ 4σ2‖∇g‖2
∞T

N
. (10)

2.2 Indirect Interaction and System Evolution

As said above, in the case of indirect interaction the force exerted on each par-
ticle depends on an external field. As an example of self-organization mediated
by a system of underlying fields, we may consider a process of individual or-
ganization that occurs at a microscopic scale, while diffusion of an underlying
field occurs at a macroscopic scale. The dynamics of the field depends on the
individuals themselves (for example, a degradation phenomenon may be due
to an interaction with individuals at relevant spatial locations). Let ZkN (t)
be the state of the kth individual out of N(t), at time t. Again, note that
N(t) may be itself a stochastic process. A general model might appear of the
following form: for any t ≥ 0

dZkN (t) = F [C(·, t)] (ZkN (t))dt+ σ dW k(t), k = 1, . . . , N(t), (11)
∂

∂t
C(x, t) = Op2(C(·, t))(x) + Ĩ[ZN(t)](x), x ∈ R

d. (12)

In this case the evolution of an individual state ZkN (t) is driven by an
underlying field C(x, t), via the operator F [C(·, t)] depending on the field
and acting on each individual; on the other hand, the evolution equation of
the field C(x, t) depends itself upon the structure of the system of individuals
by means of Ĩ[ZN(t)](x), an operator which depends on the empirical measure

ZN (t) =
1

N(t)

N(t)∑
k=1

εZk
N (t)

of individuals, acting at a spatial location x. For simplicity, also here we
consider a diffusion coefficient σ in the SDEs (11) constant in time and space.
Note that also the evolution of the stochastic process {N(t)}t∈R+ may depend
upon the underlying field C(t, x).

Again, Itô’s formula may lead to an Eulerian (discrete) description of the
spatial structure of the population ZN (t) coupled with the equation (12) for
C(x, t), i.e. for any g ∈ C2,1

b (Rd × R+),
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∫
Rd

g(x, t)ZN (t)(dx) =
∫

Rd

g(x, 0)ZN (0)(dx)

+
∫ t

0

Op3 (ZN(s), C(x, t), g(·, s)) ds+MN [Z,W ] (t). (13)

In the next two sections we provide two examples of self organization
phenomena, in which the dynamics depends upon direct interaction among
individuals, in the first case, and upon indirect interaction in the second case.

3 Direct Interaction: an Aggregation–Repulsion Model

As an example of direct interaction we consider a stochastic system of
N(t) ≡ N individuals, subject to an advection term and a stochastic indi-
vidual component. Here we specify the advection components on the basis
of possible assumptions inducing self-organization of biological populations.
“Social” forces are responsible for interaction of each individual with other
individuals in the population within suitable neighborhoods. We consider
both aggregating and repelling forces, which compete, but act at different
scales. They are modelled by two regular kernels G,KN : R

d → R, with
G,KN ∈ C2

b (R
d,R+), as given by (6).

In the case of aggregation the parameter β in (6) is equal to zero,
so that the aggregating force exerted on the kth individual is given by
(∇G ∗ XN (t))Xk

N (t) (McKean–Vlasov interaction); in the case of repulsion,
the repelling force is given by (∇KN ∗ XN (t))Xk

N (t), with β ∈ (0, 1), where
KN and the empirical measure XN are given by (5) and (3) (moderate inter-
action) [23, 26, 27]. It is clear how the choice of β may determine the range
and the strength of the influence of neighboring particles; indeed, any par-
ticle interacts (repelling) with O(N1−β) other particles in a volume of order
O(N−β).

Additionally, the movement of each individual particle might be driven
by an external information coming from the environment, expressed via a
suitable potential U : R

d → R. The potential

U ∈ C2
b (R

d,R+) (14)

is taken as a smooth non-negative even function; we assume that it satisfies
the following condition [33–35]: there exist constants M0 ≥ 0 and r > 0 such
that (

∇U(x),
x

|x|

)
≤ − r

|x| , |x| ≥M0, (15)

where (·, ·) denotes the usual scalar product in R
d.

Again the stochastic component is modelled by a family of independent
standard Wiener processes {W k, k = 1, . . .}. These systems have been already
discussed by the authors in several papers [1, 2, 6, 21–23].
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Based on these modelling assumptions, we consider the following system
of SDEs:

dXk
N (t) =

[
γ1∇U(Xk

N (t)) + γ2 (∇ (G−KN) ∗XN) (Xk
N (t))

]
dt+ σdW k(t),

k = 1, . . . , N, (16)

where γ1, γ2, σ ∈ R+. In the case γ1 = 0, the system is a purely diffusive
interacting particle system.

By standard arguments [4], we can prove that the system admits a unique
solution X(t) = (X1

N (t), · · · , XN
N (t)) for all t ∈ [0, T ], with almost surely

continuous trajectories [6]. From the system (16), Itô’s formula applied to a
function f ∈ C2,1

b (Rd×R+) ofXk
N(t), for any k = 1, . . . , N , gives the evolution

equation of the empirical measure (3) as follows:
∫

Rd

f(x, 0)XN (s)(dx) =
∫

Rd

f(x, 0)XN (0)(dx)
∫ t

0

∫
Rd

([γ1∇U + γ2 (∇ (G−KN) ∗XN )] (x)

∇f(x, s))XN (s)(dx)ds

+
∫ t

0

∫
Rd

(
σ2

2
�f(x, s) +

∂

∂s
f(x, s)

)
XN (s)(dx)ds

+ σ
1
N

∫ t

0

N∑
k=1

∇f
(
Xk
N (s), s

)
dW k(s), (17)

where again the last term in (17) is a zero mean martingale with respect to
the natural filtration of the process {XN(t), t ∈ R+}.

In conclusion in the example presented here, the Lagrangian description of
the system (7), discussed in the previous section, has the form of the system
(16), while its Eulerian (discrete) description is given by the system (17). In
Figure 1 simulation results for the same initial condition, and for different
drifts, are shown. For more simulation results and comparison with experi-
mental data, the interested reader may refer to [1, 22, 23].

4 Interaction via Underlying Fields:
A Birth and Growth Model

An interesting example of formation of patterns may be found in the process of
tumor growth and in particular in angiogenesis. Tumor-induced angiogenesis
is believed to occur when normal tissue vasculature is no longer able to support
growth of an avascular tumor. At this stage the tumor cells, lacking nutrients
and oxygen, become hypoxic. This is assumed to trigger cellular release of
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Fig. 1. Configuration of 100 particles for parameters values σ = 0.02, β = 0.5: (up
left) T = 0, (up right) T = 500, γ1 = 0, γ2 = 1, (down left) T = 1000, γ1 = γ2 = 1,
∇U(x) = x/(1 + |x|), (down right) T = 100, γ1 = γ2 = 1, ∇U(x) = |x|2.

tumor angiogenic factors, TAF, which start to diffuse into the surrounding
tissue and approach endothelial cells (ECs) of nearby blood vessels [13]. ECs
subsequently respond to the TAF concentration gradients by forming sprouts,
dividing and migrating towards the tumor. So, at an individual level, cells in-
teract and perform a branching process coupled with elongation, under the
stimulus of a chemical field produced by a tumor. In this way formation of ag-
gregating networks (vessels) are shown as a consequence of collective behavior.

The initiation of sprouting from preexisting parental vessels is not consid-
ered here; in order to avoid further mathematical technicalities, we assume
a given number N0 of initial capillary sprouts; we refer to literature [16] for
details on this topic. Let N(t) be the number of tips at time t, and X i(t) ∈ R

d

the location of the tip of the ith vessel at time t. Furthermore, let us denote
by Ti the branching time of the ith tip, i.e. the random time when the ith tip
branches from an existing vessel. We model sprout extension by tracking the
trajectory of individual capillary tips. The movement (extension) of the tips
follows a Langevin model; at any t > T i and for any k ∈ {1, . . . , N(t)} we
have

dX i(t) = vi(t)(1 − γIX(t)(X i(t))dt,

dvi(t) =
(
−kvi(t) + F

(
C(t,X i(t))

))
dt+ σdW i(t),

(18)
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where vi(t) is the velocity of the ith tip at time t. According to a typical
chemotaxis, velocity vi(t) is driven by a function F of the underlying field C.
An example is F (C(t,X i(t))) = ∇C(t,X i(t), so that vessels follow the in-
creasing density of the chemoattractor; the advection term includes the typical
inertial component −kvi(t). A family of independent Wiener processes W i(t)
model stochasticity. Finally, the network of endothelial cells is described by

X(t) =
N(t)⋃
i=1

{X i(s), Ti ≤ s ≤ t},

the union of the trajectories of the tips. In the equation (18) the parameter
γ may assume only the 0 and 1 values; γ = 0 means that no impingement is
considered; otherwise, for γ = 1 the phenomenon of anastomosis is taken into
account (see [7] and references therein, for further information).

The branching process ΦN (ds, dx) is modelled as a marked counting pro-
cess with stochastic intensity

α(t, x) = αh(C(t, x))
N(t−)∑
i=1

δXi(t)(x), (19)

where h ∈ Cb(Rd) is a non negative function. The equation (19) means that
the probability that branching occurs exactly at the kth tip is given by

prob
(
Φ(]t, t+ dt] ×Xk(t)) | Ft−

)
=

α(t,Xk(t))∫
Rd α(t, x)dx

dt.

The counting process N(t) is given by N(t) = ΦN (]−∞, t] ,Rd), so that the
probability of having a new tip during the time interval ]t, t+ dt] is

prob (N(t+ dt) −N(t) = 1 | Ft−) =
N(t−)∑
i=1

α(t,X i(t))dt;

when a tip located in x branches, the initial value of the state of the new tip
is taken as (XN(t)+1, vN(t)+1) = (x, v0), where v0 is a non random velocity.

The chemotactic field C(t, x) diffuses and degradates; the consumption
is proportional to the extension velocities vi, i = 1, . . . , N(t). So, for any
(t, x) ∈ R+ × R

d,

∂

∂t
C(t, x) = c1δA(x)+d1�C(t, x)− ηC(t, x)

1
N

N(t)∑
i=1

(vi(t)δXi(t) ∗Vε)(x). (20)

We have considered a mollified version of the relevant random distribu-
tions, by means of a convolution with the kernel Vε(x), a smooth function
with compact support of order ε. From a mathematical point of view, the use
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Fig. 2. A vessel network (on the left) interacting with a degrading TAF field (on
the right) (d1 = 0, γ = 0).

of mollifiers reduces analytical complexity; from a modelling point of view this
might correspond to a nonlocal reaction with the relevant underlying fields.
Parameters c1, d1, η ∈ R

+ in the equation (20) represent the rate of produc-
tion of a source located in a region A ⊂ R

d, modelling, e.g., a tumor mass,
the diffusivity and the rate of consumption, respectively. We have denoted by
δXi(t)(x) the random distribution (Dirac density) localized at the tip X i(t),
for i = 1, . . . , N(t). Note that the equation (20) is a random partial differen-
tial equations, since the degradation term depends on the stochastic processes
{(X i(t), vi(t))}t, for any i = 1, . . . , N(t). The stochasticity of the underlying
field leads to the stochasticity of the kinetic parameters of birth and growth of
vessels. Figure 2 shows a simulation of the network coupled with a degradating
field (for technical simplicity we have taken d1 = 0, γ = 0).

To this process we may associate two fundamental random spatial mea-
sures, describing the network at time t; given a suitable scale parameter
N , QN , the empirical measure associated with the processes (Xk(t), vk(t)),
k = 1, . . . , N(t), is given by

QN (t) =
1
N

N(t)∑
i=1

ε(Xk(t),vk(t)), (21)

while, VN (t), the empirical spatial distribution of velocities, is given by

VN (t) =
1
N

N(t)∑
i=1

vk(t)εXk(t) =
∫
·×Rd

v QN (t)(d(x, v)).

We may write the equation (20) in the following form:

∂

∂t
C(t, x) = c1δA(x) + d1�C(t, x) − ηC(t, x)(VN (t) ∗ Vε)(x). (22)
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Given a smooth function g ∈ Cb(Rd × R
d), by Itô’s formula we obtain an

evolution equation for the random measure QN [7]
∫
B

g(x, v)QN (t)d(x, v) =
∫
B

g(x, v)QN (0)d(x, v)

+
∫ t

0

∫
B

[
∇xg(x, v)v + g(x, v)α1(s, x)δv0 (v)

−∇vg(x, v) [kv − F (C(t, x))]

+
σ2

2
Δvg(x, v)

]
QN (t)(d(x, v))ds + M̃N(t), (23)

where the last term

M̃N(t) =
∫ t

0

∫
Rn

[
ΦN (ds, dx) −Nα(s, x)QN (t)(dx × R

d) ds
]

+
∫ t

0

σ

2N

N(t)∑
k=1

∇vg((Xk(t), vk(t)))dW k(t)

is a zero mean martingale, such that again by the Doob inequality, for N
sufficiently large

E

[
sup
t≤T

|M̃N (t)|
]2

≤ C
TN(t)
N2

(‖g‖2
2 + ‖∇g‖2

2) < C
T

N
. (24)

In conclusion in the example presented here, the Lagrangian description
of the system (11)–(12), discussed in the previous section, has the form of the
system (18), (19) and (20), while the Eulerian discrete description (12)–(13)
is given by the system (22)–(23).

5 Hybrid Models: Large Population Behavior

Let us place our attention on the following facts. In the detailed models, in
both examples, the evolution equation of each individual (either an individual
in a population, or a tip in a vessel network) is a stochastic equation whose
parameters are themselves stochastic; as a consequence we are dealing with
a doubly stochastic system. A major difficulty, both analytical and computa-
tional, derives from the fact that, indeed, the parameters are {Ft−}-stochastic,
i.e. their value at time t > 0 depends upon the actual history Ft of the whole
system up to time t−.

Let us remind the main features of the discrete systems, as already dis-
cussed in Section 2.



Stochastic Modelling of Interacting Populations 71

Direct Interaction

In this case each individual k, out of N , satisfies a system of SDEs of the form

dXk
N (t) = Op [XN(t)] (Xk

N (t))dt+ σdW k(t), k = 1, . . . , N, (25)

where

XN(t) =
1
N

N∑
j=1

εXj
N (t)

is the empirical measure at time t, and Op is a suitable operator which ex-
presses the specific model of interaction.

Hence the analysis and the computation of the above system requires the
knowledge of the evolution of all individuals up to time t; clearly XN(t) is an
{Ft}-stochastic quantity.

Indirect Interaction

In this case the individual dynamics is described by a system of the form

dZkN (t) = Op [C(·, t)] (ZkN (t))dt + σ dW k(t), k = 1, . . . , N(t), (26)

whose kinetic parameters depend upon a biochemical underlying field C(x, t)
which obeys to a random evolution equation of the form

∂

∂t
C(x, t) = Op1[C(·, t)](x) +Op2 [ZN(t), C(·, t)] (x), (27)

where ZN (t) is the empirical measure of the states ZkN(t), and Op1 and Op2
are suitable operators which express the specific model of spatial spread and
the interaction with the field produced by the whole system of individuals,
respectively.

Once again, the analysis and the computation of the above system requires
the knowledge of the evolution of all individuals up to time t; clearly ZN (t)
is an {Ft−}-stochastic quantity (in this case also the evolution of N(t) is
involved).

The strong coupling with the field (produced by the individuals themselves,
in the first case, and external, in the second case) is a source of complexity
which may tremendously increase as the number of individuals becomes ex-
tremely large, as it may happen in many cases of real interest. Under these
circumstances, a possible way to reduce complexity, which has been suggested
by the authors and by a large literature, is to apply suitable laws of large num-
bers at the mesoscale, i.e. in a suitable neighborhood of any relevant point
x ∈ R

d, such that, at that scale we may approximate, in the first case, XN (t)
by a deterministic measureX(t), possibly having a density ρ(x, t) with respect
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to the usual Lebesgue measure; in the second case we may approximate ZN (t)
by a deterministic measure, possibly having a density w(x, t) with respect to
the usual Lebesgue measure. The relevant densities ρ(x, t), and w(x, t) will
satisfy suitable deterministic evolution equations. In this way we obtain an
approximation of the driving fields which are deterministic at the macroscale,
which now drive, at the microscale, a simply stochastic evolution for the in-
dividuals. More specifically, a typical individual k in the first model (25) will
satisfy the following SDE:

dY k(t) = Op [ρ(·, t)] (Y k(t))dt+ σdW k(t), k = 1, . . . , N, (28)

coupled with a deterministic equation for ρ(x, t). For the second model (26)–
(27), a typical individual k will satisfy the following SDE:

dY k(t) = Op
[
C̃(·, t)

]
(Y k(t))dt + σ dW k(t), k = 1, . . . , N(t), (29)

where the evolution equation for the underlying field has become

∂

∂t
C̃(x, t) = Op1[C̃(·, t)](x) +Op2

[
w(·, t), C̃(·, t)

]
(x), (30)

coupled with a deterministic equation for w(x, t).
A more detailed analysis follows for the two models described in Sections

3 and 4. Though, for the aggregation–repulsion model we have been able to
carry out a detailed rigorous analysis, while for tumor-driven angiogenesis
only an heuristic derivation has been obtained, which leads to a system of
evolution equations which is compatible with existing deterministic models
already available in literature [30–32].

We wish to stress that anyhow substituting mean densities of individu-
als in the first model, or mean densities of tips in the second model, to the
corresponding stochastic quantities, leads to an acceptable coefficient of vari-
ation (percentage error) only when a law of large numbers can be applied, i.e.
whenever the relevant numbers per unit volume are sufficiently large; other-
wise stochasticity cannot be avoided, and, in addition, to mean values, the
mathematical analysis and/or simulations should provide confidence bands
for all quantities of interest. Indeed, numerical simulations carried out for the
fully stochastic model show that local coefficients of variation are, indeed,
much smaller in regions of largely crowded populations (either individuals or
vessels) [3].

5.1 The Aggregation–Repulsion Model

Following [6], we show how to derive rigorously an hybrid model, as described
at the beginning of this section in the case of the aggregation–repulsion model
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described in Section 3. For details the interested reader may refer to [6]. First
note that from (17) we get an averaged equation

E [〈XN (t), f(·, t)〉] = E [〈XN(0), f(·, 0)〉]

+ E

[∫ t

0

〈XN(s), [γ1∇U + γ2 (∇ (G−KN) ∗XN )] (·)∇f(·, s)〉 ds

+
∫ t

0

〈
XN (s),

σ2

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

]
. (31)

Furthermore, thanks to the inequality (10), the quadratic variation of the
martingale term vanishes, in a finite time interval [0, T ]. So we might expect
a deterministic behavior of the system in the limit.

Let us sketch the mathematically rigorous proof of this behavior in the
case of large populations.

A Relative Compactness Result

We assume some regularity conditions for the initial empirical measureXN (0),

sup
N∈N

E

[∫
Rd

|x|XN (0)(dx)
]
<∞, (32)

sup
N∈N

E

[∫
Rd

|hN (x, 0)|2dx
]

= sup
N∈N

E
[
||hN (·, 0)||22

]
<∞, (33)

where
hN(x, t) = (WN ∗XN (t))(x), (34)

is a mollified measure.
Furthermore, let us impose the following restriction on β in the definition

of the scaled kernel (5), β ∈ (0, d/(d+ 2)).
We have proven [6] the tightness and then the boundedness of small

variations of the process XN , in the bounded Lipschitz metric [6]. This
leads, by means of the characterization of relative compactness by Ethier
and Kurtz [11], to the following result on the sequence of laws L(XN ) of
XN = {XN (t), t ∈ R+, N ∈ N}:

Theorem 1 ([6]). Under the hypotheses listed above and in Section 3, the se-
quence {L(XN )}N∈N is relatively compact in the spaceMP (C([0, T ],MP(Rd))).

This is the main result needed for the asymptotics of the evolution equa-
tion of the measure-valued process {XN (t), t ∈ R+}. Indeed, Theorem 1 im-
plies the existence of a subsequence Nk ⊂ N, N1 < N2 < . . ., such that the
sequence {L(XNk

)}k∈N converges in MP(C([0, T ],MP(Rd))) to some limit
L(X), which is the distribution of some process X = {X(t), t ∈ [0, T ]},
with trajectories in C([0, T ],MP(Rd)). We discuss the uniqueness of the limit
later on. By now we assume uniqueness, so that we may take {Nk} = N;
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by Skorokhod theorem [4] we may assert that, corresponding to the possible
unique limit law, we can also have an almost sure convergence, i.e.

lim
N→∞

sup
t≤T

dBL(XN (t), X(t)) = 0 P − a.s. (35)

Regularity Properties of the Limit Measure

It is possible to show that there exists a positive (random) function h defined
on [0, T ] × R

d such that

lim
N→∞

E

[∫ T

0

∫
Rd

|hN (x, t) − h(x, t)|2dxdt
]

= 0. (36)

The equation (36) shows that the limit measure X ∈ MP ([0, T ] × R
d) has

P -a.s. a density
h ∈ L2

(
[0, T ] × R

d
)

(37)

withrespecttotheLebesguemeasureon[0, T ]×R
d, i.e. foranyf ∈ Cb([0, T ]×R

d)

∫ T

0

∫
Rd

f(t, x)X(dx, dt) =
∫ T

0

∫
Rd

f(t, x)h(t, x)(dx, dt). (38)

By now, we do not know neither whether the measure X(t) has a density
for any fixed t ∈ [0, T ] nor that the density is deterministic. The next step is
the identification of the limit by acquiring information on the limit dynamics.
We have proven the following:

Proposition 1. Let us suppose that a law of large numbers holds at initial
time

lim
N→∞

L(XN (0)) = δμ0 in MP(MP(Rd)), (39)

where μ0 has a density p0 in L2(Rd). Then, almost surely, for any f ∈
C2,1
b (Rd,R+), 0 ≤ t ≤ T ,

〈X(t), f(·, t)〉 = 〈μ0, f(·, 0)〉 +
∫ t

0

〈h(·, s), 1
2
σ2Δf(·, s) +

∂

∂s
f(·, s)

+ [(∇Ga ∗ h(·, s))(·) + ∇U(·) −∇h(·, s)] · ∇f(·, s)〉ds. (40)

This means that any limit measure X ∈ C([0, T ],MP (Rd)) is a solution of
the equation (40), with h ∈ L2

(
[0, T ] × R

d
)
, satisfying the relation (38).

So we have proven that for any t ∈ [0, T ], the measure X(t) is absolutely
continuous with respect to the Lebesgue measure, so that it admits a density
for each t. We prove it by showing that the Fourier transform of the measure
X(t) is in L2 for any t ∈ [0, T ], so that a density exists and the latter is also in
L2(Rd) and we prove that it is also L2 uniformly bounded. So we have shown
the following result:
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Theorem 2. Under the hypotheses of Theorem 1, let us suppose that a law of
large numbers applies at initial time

lim
N→∞

L(XN (0)) = δμ0 in MP(MP(Rd)), (41)

where μ0 has a density p0 in L2(Rd) ∩ C2
b (R

d). Then, almost surely, the se-
quence X converges in law to a deterministic measure X. For any t ∈ [0, T ]
the measure XN (t) has a density h(·, t) such that, for any f ∈ C2,1

b (Rd,R+),
0 ≤ t ≤ T ,

〈h(·, t), f(·, t)〉 = 〈μ0, f(·, 0)〉 +
∫ t

0

〈h(·, s), 1
2
σ2Δf(·, s) +

∂

∂s
f(·, s)

+ [(∇Ga ∗ h(·, s))(·) + ∇U(·) −∇h(·, s)] · ∇f(·, s)〉ds. (42)

One can easily see that the equation (42) is the weak form of the following
partial differential equation:

∂

∂t
ρ(x, t) =

σ2

2
�ρ(x, t) + ∇ · (ρ(x, t)∇U(x))

+ ∇ · [ρ(x, t)∇(ρ(x, t) −G ∗ ρ(·, t))(x)], x ∈ R
d, t ≥ 0, (43)

ρ(x, 0) = p0(x), x ∈ R
d.

Regularity Properties of the Limit Measure

The uniqueness of the limit h derives from the uniqueness of the weak solution
of the viscous equation (43), which can be achieved by classical arguments [12].

Hybrid Model

The equation (43) describes a mean field due to the large number of individ-
uals. As far as the individual dynamics is concerned, for any k, we have that
the typical particle Xk(t) ∼ Y k(t), follows the SDE:

dY k(t) = −
[
∇U(Y k(t)) + ∇Ga ∗ ρ(·, t)(Y k(t)) −∇ρ(Y k(t))

−∇U(Y k(t))
]
dt+ σdW k(t),

subject to the initial condition Y k(0) = Xk(0). While the Brownian stochas-
ticity of the movement of each particle is preserved, the drift is now the same
for each particle and depends on the mean field ρ in the equation (43).

5.2 The Branching and Growth Process

As discussed in [7], in the case of the branching and growth process described
in Section 4, we may only give an heuristic convergence result. Starting from
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the system (23), if, formally, we take QN (t)(d(x, v)) → Q∞(t)(d(x, v)) =
p(t, x, v)dxdv, then
∫
B

g(x, v)p(t, x, v)dxdv =
∫ t

0

∫
B

p(s, x, v)ds dxdv
[
σ2

2
Δvg(x, v)

+ ∇xg(x, v)v + g(x, v)α1(s, x)δ{v0}(v)

−∇vg(x, v)
[
kv − F

(
C̃(t, x)

)]]
(44)

∂

∂t
C̃(t, x) = c1δA(x) + d1�C̃(t, x) − ηC̃(t, x )

∫
Rd

p(t, x, v)dv.

(45)

The equation (44) may be seen as the weak form of the following partial
differential equation for the density p(t, x, v):

∂

∂t
p(t, x, v) = −v · ∇xp(t, x, v) + k∇v · (vp(t, x, v)) + α1(t, x)p(t, x, v0)

−∇v ·
[
F
(
C̃(t, x)

)
p(t, x, v)

]
+
σ2

2
Δvp(t, x, v). (46)

The individual processes (Y i(t), vi(t))t obey to the following stochastic
system:

dY i(t) = vi(t)dt,

dvi(t) =
(
−kvi(t) + F (C̃(t, Y i(t)))

)
dt+ σdW i(t),

(47)

coupled with a branching process with intensity

α(t, x) = αh(C̃(t, x))
N(t−)∑
i=1

δY i(t)(x). (48)

Note that both (47) and (48) depend on the mean field C̃(t, x) in the
equation (45).

6 Long Time Behavior

In this section we investigate the long time behavior of the particle system
described in Section 3, for a fixed number N of particles.

6.1 Interacting–Diffusing Particles

First of all, let us consider the system (16) with γ1 = 0, i.e. the case in which
the advection is due only to interactions among particles. Following [17], from
(16) it follows that the location of the center of mass X̄N of the N particles,
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X̄N (t) =
1
N

N∑
k=1

Xk
N (t),

evolves according the following equation:

dX̄N (t) = − 1
N2

N∑
k,j=1

∇(KN −G)(Xk
N (t) −Xj

N (t))dt+ σdW̄ (t), (49)

where W̄ (t) = 1
N

∑N
k=1W

k(t) is still a Brownian motion; by the symmetry of
the kernels K1 and G, the first term on the right-hand side vanishes and we
get

dX̄N (t) = σdW̄ (t), (50)

i.e. the stochastic process X̄N is a Wiener process. Hence, its law, conditional
upon the initial state, is

L
(
X̄N (t)|X̄N (0)

)
= L

(
X̄N (0), σ2W̄ (t)

)
= N

(
X̄N (0),

σ2

N
t

)
;

with variance σ2

N t, which, for any fixed N , increases as t tends to infinity.
Consequently, we may claim that the probability law of the system does not
converge to any non trivial probability law, since otherwise the same would
happen for the law of the center of mass.

6.2 Complete System

Let us now consider the complete system of SDEs (16) with γ1 > 0. This
means that particles are also subject to a confining potential U . Equations of
the type

dXt = −∇P (Xt) + σdWt (51)

have been thoroughly analyzed in literature; under the sufficient condition of
strict convexity of the symmetric potential U [8, 9, 17, 18], it has been shown
that (51) does admit a nontrivial invariant distribution. From a biological
point of view a strictly convex confining potential is difficult to explain; it
would mean an infinite range of attraction of the force which becomes infinitely
strong at infinity, with an at least constant drift even far from origin.

A weaker sufficient condition for the existence of a unique invariant mea-
sure has been more recently suggested by Veretennikov [34, 35], following
Has’minski [15]. This condition states that there exist constants M0 ≥ 0 and
r > 0 such that for |x| ≥M0

(
−∇P (μ)(x),

x

|x|

)
≤ − r

|x| . (52)

It is ease to prove that without any further condition on the interaction
kernels KN and G, by considering the condition (15) on U , we may apply the
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results by Veretennikov and prove the existence of an invariant measure for
the joint law of the particles locations. The condition (15) means that ∇U
may decay to zero as |x| tends to infinity, provided that its tails are sufficiently
“fat”.

Proposition 2. Under the hypotheses for the existence and uniqueness (hy-
potheses stated in Section 3) and the condition (15), the system (16) admits
a unique invariant measure.

Let now P x0
N (t) denote the joint distribution of the N particles at time t,

conditional upon a non random initial condition x0, and let PS denote the
invariant distribution. As far as the convergence of P x0

N (t) is concerned, for t
tending to infinity, as in [34], one can prove the following result.

Proposition 3. Under the same assumptions of Proposition 2, for any k,
0 < k < r̃ − Nd

2 − 1 with m ∈ (2k + 2, 2r̃ −Nd) and r̃ = γ1Nr, there exists a
positive constant c such that

∣∣P x0
N (t) − PSN

∣∣ ≤ c(1 + |x0|m)(1 + t)−(k+1),

where
∣∣P x0
N (t) − PSN

∣∣ denotes the total variation distance of the two measures,
i.e. ∣∣P x0

N (t) − PSN
∣∣ = sup

A∈B
Rd

[
P x0
N (t)(A) − PSN (A)

]
,

and x0 the initial data.

So Proposition 2 states a polynomial convergence rate to invariant mea-
sure. To improve the rate of convergence, one has to consider more restricted
assumptions on U [35].
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27. K. Oelschläger. On the derivation of reaction-diffusion equations as lilit dynam-
ics of systems of moderately interacting stochastic processes. Probab. Theory
Relat. Fields, 82:565–586, 1989.



80 V. Capasso and D. Morale

28. A. Okubo. Dynamical aspects of animal grouping: swarms, school, flocks and
herds. Adv. BioPhys., 22:1–94, 1986.

29. A. Okubo and S. Levin. Diffusion and ecological problems: Modern perspectives.
Springer, Heidelberg, 2002.

30. M. J. Plank and B. D. Sleeman. A reinforced random walk model of tumour
angiogenesis and anti-angiogenic strategies. IMA J. Math. Med. Biol., 20:135–
181, 2003.

31. M. J. Plank and B. D. Sleeman. Lattice and non-lattice models of tumour an-
giogenesis. Bull. Math. Biol., 66(6):1785–1819, 2004.

32. S. Sun, M. F. Wheeler, M. Obeyesekere, and C. W. Patrick Jr. A deterministic
model of growth factor-induced angiogenesis. Bull. Math. Biol., 67(2):313–337,
2005.

33. A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential
equations. Stochastic Process. Appl., 70:115–127, 1997.

34. A. Y. Veretennikov. On polynomial mixing and convergence rate for stochastic
differential equations. Theory Probab. Appl., 44:361–374, 1999.

35. A. Y. Veretennikov. On subexponential mixing rate for Markov processes. The-
ory Probab. Appl., 49:110–122, 2005.



Remarks on the Controllability of Some

Parabolic Equations and Systems

Enrique Fernández-Cara

University of Sevilla, Dpto. E.D.A.N., Aptdo. 1160, 41080 Sevilla, Spain,
cara@us.es

Summary. This paper is devoted to present a review of recent results concerning
the controllability of some (linear and nonlinear) parabolic systems. Among oth-
ers, we will consider the classical heat equation, the Burgers, Navier–Stokes and
Boussinesq equations, etc.

1 Introduction: Controllability and Observability

Let us first recall some general ideas. Suppose that we are considering an
abstract state equation of the form

{
yt −A(y) = Bv, t ∈ (0, T ),
y(0) = y0,

(1)

which governs the behavior of a physical system. It is assumed that

• y : [0, T ] �→ H is the state, i.e. the variable that serves to identify the
physical properties of the system.

• v : [0, T ] �→ U is the control, i.e. the variable we can choose (for simplicity,
we assume that U and H are Hilbert spaces).

• A : D(A) ⊂ H �→ H is a (generally nonlinear) operator with A(0) = 0,
B ∈ L(U ;H) and y0 ∈ H .

Suppose that (1) is well-posed in the sense that, for each y0 ∈ H and each
v ∈ L2(0, T ;U), it possesses exactly one solution. Then the null controllability
problem for (1) can be stated as follows:

For each y0 ∈ H, find v ∈ L2(0, T ;U) such that the corresponding
solution of (1) satisfies y(T ) = 0.

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 81
Computational Methods in Applied Sciences 15, DOI 10.1007/978-90-481-3239-3 7,
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More generally, the exact controllability to the trajectories problem for (1) is
the following:

For each free trajectory y : [0, T ] �→ H and each y0 ∈ H, find v ∈
L2(0, T ;U) such that the corresponding solution of (1) satisfies y(T ) =
y(T ).

Here, by a free or uncontrolled trajectory we mean any (sufficiently regular)
function y : [0, T ] �→ H satisfying y(t) ∈ D(A) for all t and

yt −A(y) = 0, t ∈ (0, T ).

Notice that exact controllability to the trajectories is a very useful property
from the viewpoint of applications: if we can find such a control, then after
time T we can switch off the control and the system will follow the “ideal”
trajectory y.

For each system of the form (1), these problems lead to several interesting
questions. Among them, let us mention the following:

• First, are there controls v such that y(T ) = 0 and/or y(T ) = y(T )?
• Then, if this is the case, which is the cost we have to pay to drive y to

zero and/or y(T )? In other words, which is the minimal norm of a control
v ∈ L2(0, T ;U) satisfying these properties?

• How can these controls be computed?

The controllability of differential systems is a very relevant area of research
and has been the subject of many papers the last years. In particular, in the
context of partial differential equations, the null controllability problem was
first analyzed in [26, 29–31, 33, 34]. For semilinear systems of this kind, the
first contributions have been given in [9, 19, 35].

In this paper, we will be mainly concerned with the case of parabolic
partial differential systems. The typical situation corresponds to the classi-
cal heat equation in a bounded N -dimensional domain, complemented with
appropriate initial and boundary-value conditions; see Section 2.

The paper is organized as follows. In Section 2, we consider the heat
equation and some linear variants. We explain the role of observability and
Carleman estimates in control theory, we recall the main results in this frame-
work and we mention some open problems. Section 3 deals with the viscous
Burgers equation. We show that, for this equation, the null controllability
problem (with distributed and locally supported control) is well understood.1

In Sections 4 and 5, we consider the Navier–Stokes and Boussinesq equations
and some other systems from mechanics. We recall several results concerning
the local exact controllability to the trajectories and we explain how to deal
with a reduced number of controls. Several open problems are also indicated.

1 More precisely, if we denote by T ∗(r) the minimal time needed to drive any
initial state with L2 norm ≤ r to zero, we show that T ∗(r) > 0, with explicit
sharp estimates from above and from below.
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2 The Classical Heat Equation: Observability
and Carleman Estimates

Let us consider the following control system for the heat equation:
⎧⎪⎨
⎪⎩
yt −Δy = v1ω, (x, t) ∈ Ω × (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

y(x, 0) = y0(x), x ∈ Ω.
(2)

Here (and also in the following sections), Ω ⊂ R
N is a nonempty regular

and bounded domain, ω ⊂⊂ Ω is a (small) nonempty open subset (1ω is the
characteristic function of ω) and y0 ∈ L2(Ω).

It is well known that, for every y0 ∈ L2(Ω) and every v ∈ L2(ω ×
(0, T )), there exists a unique solution y to (2), with y ∈ L2(0, T ;H1

0 (Ω)) ∩
C0([0, T ];L2(Ω)).

In this context, the null controllability problem reads:

For each y0 ∈ L2(Ω), find v ∈ L2(ω × (0, T )) such that the associated
solution of (2) satisfies y(x, T ) = 0 in Ω.

Since the state equation (2) is linear, null controllability is equivalent in
this case to exact controllability to the trajectories. This means that, for any
uncontrolled solution y and any y0 ∈ L2(Ω), there exists v ∈ L2(ω × (0, T ))
such that the associated state y satisfies

y(x, T ) = y(x, T ) in Ω.

A related notion is approximate controllability. It is said that (2) is ap-
proximately controllable in L2(Ω) at time T if, for any y0, y1 ∈ L2(Ω) and
any ε > 0, there exist controls v ∈ L2(ω×(0, T )) such that the solutions to (2)
associated to these v and the initial state y0 satisfy

‖y(· , T ) − y1‖L2 ≤ ε. (3)

It is not difficult to prove that this is weaker notion: the null controllability
of (2) at any time T implies the approximate controllability of (2) in L2(Ω)
at any T . On the other hand, since ω ⊂⊂ Ω, in view of the regularizing ef-
fect of the heat equation, exact controllability, i.e. approximate controllability
with ε = 0, does not hold.

Together with (2), for each ϕ1 ∈ L2(Ω), we can introduce the associated
adjoint system

⎧⎪⎨
⎪⎩

−ϕt −Δϕ = 0, (x, t) ∈ Ω × (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

ϕ(x, T ) = ϕ1(x), x ∈ Ω.
(4)
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Then, it is well known that the null controllability of (2) is equivalent to the
following property:

There exists C > 0 such that

‖ϕ(·, 0)‖2
L2 ≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt ∀ϕ1 ∈ L2(Ω). (5)

This is called an observability estimate for the solutions of (4). We thus find
that, in order to solve the null controllability problem for (2), it suffices to
prove (5).

The estimate (5) is implied by the so called global Carleman inequalities.
These have been introduced in the context of the controllability of PDEs by
Fursikov and Imanuvilov, see [19,26]. When they are applied to the solutions
of the adjoint system (4), they take the form

∫∫
Ω×(0,T )

ρ2 |ϕ|2 dx dt ≤ K

∫∫
ω×(0,T )

ρ2 |ϕ|2 dx dt ∀ϕ1 ∈ L2(Ω), (6)

where ρ = ρ(x, t) is an appropriate weight depending on Ω, ω and T and the
constant K only depends on Ω and ω.2

Combining (6) and the dissipativity of the backwards heat equation (4),
it is not difficult to deduce (5) for some C only depending on Ω, ω and T .

As a consequence, we have:

Theorem 1. The linear system (2) is null controllable. In other words, for
each y0 ∈ L2(Ω), there exists v ∈ L2(ω × (0, T )) such that the corresponding
solution of (2) satisfies

y(x, T ) = 0 in Ω. (7)

Remark 1. Notice that Theorem 1 ensures the null controllability of (2) for
any ω and T . This is a consequence of the fact that, in a parabolic equation,
the transmission of information is instantaneous. For instance, this is not the
case for the transport equation. Thus, let us consider the control system

⎧⎪⎨
⎪⎩
yt + yx = v1ω, (x, t) ∈ (0, L) × (0, T ),
y(0, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L),

(8)

with ω = (a, b) ⊂⊂ (0, L). Then, if 0 < T < a, null controllability does not
hold, since the solution always satisfies

y(x, T ) = y0(x− T ) ∀x ∈ (T, a),

independently of the choice of v; see [7] for more details and similar results
concerning other control systems for the wave, Schrödinger and Korteweg–
De Vries equations.
2 In order to prove (6), we have to use a weight ρ decreasing to zero, as t → 0 and

also as t → T , for instance, exponentially.
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There are many generalizations and variants of Theorem 1 that provide
the null controllability of other similar linear (parabolic) state equations:

• Time–space dependent (and sufficiently regular) coefficients can appear in
the equation, other boundary conditions can be used, boundary control
(instead of distributed control) can be imposed, etc.; see [19]. For a review
of recent applications of Carleman inequalities to the controllability of
parabolic systems, see [11].

• The null controllability of Stokes-like systems can also be analyzed with
these techniques. This includes systems of the form

yt −Δy + (a · ∇)y + (y · ∇)b+ ∇p = v1ω, ∇ · y = 0, (9)

where a and b are regular enough. See, for instance, [14]; see also [8] for
other controllability properties.

• Other linear parabolic (non-scalar) systems can also be considered, etc.

However, there are several interesting problems related to the controlla-
bility of linear parabolic systems that still remain open. Let us mention two
of them.

First, let us consider the controlled system
⎧⎪⎨
⎪⎩
yt − ∇ · (a(x)∇y) = v1ω, (x, t) ∈ Ω × (0, T ),

y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

y(x, 0) = y0(x), x ∈ Ω,
(10)

where y0 and v are as before and the coefficient a is assumed to satisfy

a ∈ L∞(Ω), 0 < a0 ≤ a(x) ≤ a1 < +∞ a.e. (11)

It is natural to consider the null controllability problem for (10). Of course,
this is equivalent to the observability of the associated adjoint system

⎧⎪⎨
⎪⎩

−ϕt − ∇ · (a(x)∇ϕ) = 0, (x, t) ∈ Ω × (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

yϕ(x, T ) = ϕ1(x), x ∈ Ω,
(12)

that is to say, to the fact that an inequality like (5) holds for the solutions
to (12).

To our knowledge, it is at present unknown whether (10) is null control-
lable. In fact, it is also unknown whether approximate controllability holds.

Remark 2. Recently, some partial results have been obtained in this context.
Thus, when N = 1, the null controllability of (10) has been established in [1].
When N ≥ 2, the best known result up to now is that this property holds
under the following assumption:

∃ smooth open set Ω0 ⊂⊂ Ω such that a is C1 in Ω0 and Ω \Ω0. (13)
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This has been proved in [28]. In both cases, the proofs use that a is independent
of t in an essential way. In fact, it is an open question whether a Carleman
estimate like (6) holds for the solutions to (12) even if N = 1 or (13) holds.

Our second open problem concerns the system
⎧⎪⎨
⎪⎩
yt −DΔy = Ay +Bv1ω, (x, t) ∈ Ω × (0, T ),

y(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

y(x, 0) = y0(x), x ∈ Ω,
(14)

where y = (y1, . . . , yn) is the state, v = (v1, . . . , vm) is the control and D, A
and B are constant matrices, with D,A ∈ L(Rn; Rn) and B ∈ L(Rm; Rn). It
is assumed that D is definite positive, that is,

Dξ · ξ ≥ d0|ξ|2 ∀ξ ∈ R
n, d0 > 0. (15)

When D is diagonal (or similar to a diagonal matrix), the null controlla-
bility problem for (14) is well understood. In view of the results in [2], (14) is
null controllable if and only if

rank[(−λiD +A);B] = n ∀i ≥ 1, (16)

where the λi are the eigenvalues of the Dirichlet–Laplace operator and, for
any matrix H ∈ L(Rn; Rn), [H ;B] stands for the n× nm matrix

[H ;B] := [B|HB| · · · |Hn−1B].

Therefore, it is natural to search for (algebraic) conditions on D, A and
B that ensure the null controllability of (14) in the general case. But, to our
knowledge, this is unknown.

Remark 3. The results in [2] have been extended recently to the case of any
D having no eigenvalue of geometric multiplicity > 3; see [10].

Remark 4. As we have said, global Carleman estimates are the main tool we
can use to establish the observability property (5). These two open questions
can be viewed as consequences of the limitations of Carleman estimates: first,
they need regular coefficients; then, they are, in fact, a tool proper of scalar
equations.

As mentioned above, an interesting question related to Theorem 1 concerns
the cost of null controllability. One has the following result from [16]:

Theorem 2. For each y0 ∈ L2(Ω), let us denote by C(y0) the minimal norm
in L2(ω × (0, T )) of a control v such that the associated solution of (2) satis-
fies (7). Then, for some C only depending on Ω and ω, the following estimate
holds:

C(y0) ≤ exp
[
C

(
1 +

1
T

)]
‖y0‖L2 . (17)
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Remark 5. We can be more explicit on the way C depends on Ω and ω: there
exist “universal” constants C0 > 0 and m ≥ 1 such that C can be taken of
the form

C = exp (C0‖ψ‖mC2) ,

where ψ ∈ C2(Ω) is any function satisfying ψ > 0 in Ω, ψ = 0 on ∂Ω
and ∇ψ �= 0 in Ω \ ω. All this is a consequence of the particular form that
must have ρ in order to ensure (6); see [16] for more details.

3 Positive and Negative Controllability Results
for the One-Dimensional Burgers Equation

In this section, we will be concerned with the null controllability of the fol-
lowing system for the viscous Burgers equation:

⎧⎪⎨
⎪⎩
yt − yxx + yyx = v1ω, (x, t) ∈ (0, 1) × (0, T ),
y(0, t) = y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1).

(18)

Recall that some controllability properties of (18) have been studied in [19,
Chapter 1, Theorems 6.3 and 6.4]. There, it is shown that, in general, a sta-
tionary solution of (18) with large L2-norm cannot be reached (not even ap-
proximately) at any time T . In other words, with the help of one control, the
solutions of the Burgers equation cannot go anywhere at any time.

For each y0 ∈ L2(0, 1), let us introduce

T (y0) = inf{T > 0 : (18) is null controllable at time T }.

Then, for each r > 0, let us define the quantity

T ∗(r) = sup{T (y0) : ‖y0‖L2 ≤ r}.

Our main purpose is to show that T ∗(r) > 0, with explicit sharp estimates
from above and from below. In particular, this will imply that (global) null
controllability at any positive time does not hold for (18).

More precisely, let us set φ(r) = (log 1
r )

−1. We have the following result
from [13]:

Theorem 3. One has

C0φ(r) ≤ T ∗(r) ≤ C1φ(r) as r → 0, (19)

for some positive constants C0 and C1 not depending of r.
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Remark 6. The same estimates hold when the control v acts on system (18)
through the boundary only at x = 1 (or only at x = 0). Indeed, it is easy to
transform the boundary controlled system

⎧⎪⎨
⎪⎩
yt − yxx + yyx = 0, (x, t) ∈ (0, 1) × (0, T ),
y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1)

(20)

into a system of the kind (18). The boundary controllability of the Burgers
equation with two controls (at x = 0 and x = 1) has been analyzed in [23].
There, it is shown that even in this more favorable situation null controlla-
bility does not hold for small time. It is also proved in that paper that exact
controllability does not hold for large time.3

The proof of the estimate from above in (19) can be obtained by solving
the null controllability problem for (18) via a (more or less) standard fixed
point argument, using global Carleman inequalities to estimate the control
and energy inequalities to estimate the state and being very careful with the
role of T in these inequalities.

The proof of the estimate from below is inspired by the arguments in [3]
and is implied by the following property: there exist positive constants C0 and
C′

0 such that, for any sufficiently small r > 0, we can find initial data y0 and
associated states y satisfying ‖y0‖L2 ≤ r and

|y(x, t)| ≥ C′
0r for some x ∈ (0, 1) and any t : 0 < t < C0φ(r).

For more details, see [13].

4 The Navier–Stokes and Boussinesq Systems

There are a lot of more realistic nonlinear equations and systems from me-
chanics that can also be considered in this context. First, we have the well
known Navier–Stokes equations:

⎧⎪⎨
⎪⎩
yt + (y · ∇)y −Δy + ∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,
y(x, 0) = y0(x), x ∈ Ω.

(21)

Here and below, Q and Σ respectively stand for the sets Q = Ω × (0, T )
and Σ = ∂Ω × (0, T ), where Ω ⊂ R

N is a nonempty regular and bounded
domain, N = 2 or N = 3 and (again) ω ⊂⊂ Ω is a nonempty open set.

3 Let us remark that the results in [23] do not allow to estimate T (r); in fact, the
proofs are based in contradiction arguments.
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In (21), (y, p) is the state (the velocity field and the pressure distribution)
and v is the control (a field of external forces applied to the fluid particles
located at ω). To our knowledge, the best results concerning the controlla-
bility of this system have been given in [14, 15].4 Essentially, these results
establish the local exact controllability of the solutions of (21) to uncontrolled
trajectories.

In order to be more specific, let us recall the definition of some usual spaces
in the context of Navier–Stokes equations:

V =
{
y ∈ H1

0 (Ω)N : ∇ · y = 0 in Ω
}

and
H = {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω}.

Of course, it will be said that (21) is exactly controllable to the trajectories if,
for any trajectory (y, p), i.e. any solution of the uncontrolled Navier–Stokes
system

{
yt + (y · ∇)y −Δy + ∇p = 0, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ

(22)

and any y0 ∈ H , there exist controls v ∈ L2(ω × (0, T ))N and associated
solutions (y, p) such that

y(x, T ) = y(x, T ) in Ω. (23)

At present, we do not know any global result concerning exact controlla-
bility to the trajectories for (21). However, the following local result holds:

Theorem 4. Let (y, p) be a strong solution of (22), with

y ∈ L∞(Q)N , y(· , 0) ∈ V. (24)

Then, there exists δ > 0 such that, for any y0 ∈ H ∩ L2N−2(Ω)N satisfying
‖y0−y0‖L2N−2 ≤ δ, we can find a control v ∈ L2(ω×(0, T ))N and an associated
solution (y, p) to (21) such that (23) holds.

In other words, the local exact controllability to the trajectories holds for
(21) in the space X = L2N−2(Ω)N ∩H ; see [14] for a slightly stronger result.
Similar questions were addressed (and solved) in [17, 18]. The fact that we
consider here Dirichlet boundary conditions and locally supported distributed
control increases a lot the mathematical difficulty of the control problem.

Remark 7. It is clear that we cannot expect exact controllability for the
Navier–Stokes equations with an arbitrary target function, because of the
dissipative and non reversible properties of the system. On the other hand,
4 The main ideas come from [20,27]; some additional results will appear soon in [21].
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approximate controllability is still an open question for this system. Some
results in this direction have been obtained in [6] for different boundary con-
ditions (Navier slip boundary conditions) and in [8] for a different nonlinearity.
However, the notion of approximate controllability does not appear to be op-
timal from a practical viewpoint. Indeed, even if we could reach an arbitrary
neighborhood of a given target y1 at time T by the action of a control, the
question of what to do after time T to stay in the same neighbourhood would
remain open.

The proof of Theorem 4 can be obtained as an application of Liusternik’s
inverse mapping theorem in an appropriate framework.

A key point in the proof is a related null controllability result for the
linearized Navier–Stokes system at (y, p), that is to say

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt + (y · ∇)y + (y · ∇)y −Δy + ∇p = v1ω, (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,
y(x, 0) = y0(x), x ∈ Ω.

(25)

This control result is a consequence of a global Carleman inequality of the
kind (6) that can be established for the solutions to the adjoint of (25), which
is the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ϕt − (∇ϕ+ ∇ϕt) y −Δϕ+ ∇π = g, (x, t) ∈ Q,
∇ · ϕ = 0, (x, t) ∈ Q,
ϕ = 0, (x, t) ∈ Σ,
ϕ(T ) = ϕ0, x ∈ Ω.

(26)

The details can be found in [14].
Similar results have been given in [22] for the Boussinesq equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt + (y · ∇)y −Δy + ∇p = v1ω + θ eN , ∇ · y = 0 (x, t) ∈ Q,
θt + y · ∇θ −Δθ = h1ω, (x, t) ∈ Q,
y = 0, θ = 0, (x, t) ∈ Σ,
y(x, 0) = y0(x), θ(x, 0) = θ0(x), x ∈ Ω.

(27)

Here, the state is the triplet (y, p, θ) (θ is interpreted as a temperature
distribution) and the control is (v, h) (as before, v is a field of external forces;
h is an external heat source).

An interesting question concerning both (21) and (27) is whether we can
still get local exact controllability to the trajectories with a reduced number of
scalar controls. This is partially answered in [15], where the following results
are proved:
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Theorem 5. Assume that the following property is satisfied:

∃x0 ∈ ∂Ω, ∃ε > 0 such that ω ∩ ∂Ω ⊃ B(x0; ε) ∩ ∂Ω. (28)

Here, B(x0; ε) is the ball centered at x0 of radius ε. Then, for any T > 0, (21)
is locally exactly controllable at time T to the trajectories satisfying (24) with
controls v ∈ L2(ω × (0, T ))N having one component identically zero.

Theorem 6. Assume that ω satisfies (28) with nk(x0) �= 0 for some k < N .
Then, for any T > 0, (27) is locally exactly controllable at time T to the
trajectories (y, p, θ) satisfying (24) and

θ ∈ L∞(Q), θ(· , 0) ∈ H1
0 (Ω). (29)

with controls v ∈ L2(ω × (0, T ))N and h ∈ L2(ω × (0, T )) such that vk ≡
vN ≡ 0. In particular, if N = 2, we have local exact controllability to these
trajectories with controls v ≡ 0 and h ∈ L2(ω × (0, T )).

The proofs of Theorems 5 and 6 are similar to the proof of Theorem 4. We
have again to rewrite the controllability property as a nonlinear equation in
a Hilbert space. Then, we have to check that the hypotheses of Liusternik’s
theorem are fulfilled.

Again, a crucial point is to prove the null controllability of certain lin-
earized systems, this time with reduced controls. For instance, when dealing
with (21), the task is reduced to prove that, for some ρ = ρ(x, t) and K > 0,
the solutions to (25) satisfy the following Carleman-like estimates:
∫∫

Ω×(0,T )

ρ2|ϕ|2 dx dt ≤ K

∫∫
ω×(0,T )

ρ2(ϕ2
1 + ϕ2

2) dx dt ∀ϕ1 ∈ L2(Ω). (30)

This inequality can be proved using the assumption (28) and the incom-
pressibility identity ∇ · ϕ = 0; see [15].

5 Some Other Nonlinear Systems from Mechanics

The previous arguments can be applied to other similar partial differential
systems arising in mechanics. For instance, this is made in [12] in the context
of micro-polar fluids.

To fix ideas, let us assume that N = 3. The behavior of a micro-polar
three-dimensional fluid is governed by the following system:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt −Δy + (y · ∇)y + ∇p = ∇ × w + v1ω, ∇ · y = 0, (x, t) ∈ Q,
wt + (y · ∇)w −Δw −∇(∇ · w) = ∇× y + u1ω, (x, t) ∈ Q,
y = 0, w = 0 (x, t) ∈ Σ,
y(x, 0) = y0(x), w(x, 0) = w0(x) x ∈ Ω.

(31)
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Here, the state is (y, p, w) and the control is (v, u). As usual, y and p stand
for the velocity field and pressure and w is the microscopic velocity of rotation
of the fluid particles. Then, the following result holds:

Theorem 7. Let (y, p, w) be such that

y, w ∈ L∞(Q) ∩ L2(0, T ;H2(Ω)), yt, wt ∈ L2(Q) (32)

and ⎧⎪⎨
⎪⎩
yt −Δy + (y · ∇)y + ∇p = ∇ × w, ∇ · y = 0, (x, t) ∈ Q,
wt + (y · ∇)w −Δw −∇(∇ · w) = ∇× y, (x, t) ∈ Q,
y = 0, w = 0 (x, t) ∈ Σ.

(33)

Then, for each T > 0, (31) is locally exactly controllable to (y, p, w) at time T .
In other words, there exists δ > 0 such that, for any initial data (y0, w0) ∈
(H2(Ω) ∩ V ) ×H1

0 (Ω) satisfying

‖(y0, w0) − (y(· , 0), w(· , 0))‖H2×H1
0
≤ δ, (34)

there exist L2 controls u and v and associated solutions (y, p, w) satisfying

y(x, T ) = y(x, T ), w(x, T ) = w(x, T ) in Ω. (35)

Notice that this case involves a nontrivial difficulty. Indeed, w is a non-
scalar variable and the equations satisfied by its components wi are coupled
through the second-order terms ∂i(∇ · w). This is a serious inconvenient. An
appropriate strategy has to be applied in order to deduce the required Carle-
man estimates.

Let us also mention [4, 24, 25], where the controllability of the MHD and
other related equations has been analyzed.

For all these systems, the proof of the controllability can be achieved argu-
ing as in the first part of the proof of Theorem 4. This is the general structure
of the argument:

• First, rewrite the original controllability problem as a nonlinear equation
in a space of admissible “state-control” pairs.

• Then, prove an appropriate global Carleman inequality and a regularity
result and deduce that the linearized equation possesses at least one solu-
tion. This provides a controllability result for a related linear problem.

• Check that the hypotheses of a suitable implicit function theorem are
satisfied and deduce a local result.

Remark 8. Recall that an alternative strategy was introduced in [35] in the
context of the semilinear wave equation: first, consider a linearized similar
problem and rewrite the original controllability problem in terms of a fixed
point equation; then, prove a global Carleman inequality and deduce an ob-
servability estimate for the adjoint system and a controllability result for the
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linearized problem; finally, prove appropriate estimates for the control and
the state (this usually needs some kind of smallness of the data), prove an
appropriate compactness property of the state and deduce that there exists
at least one fixed point. This method has been used in [21] to prove a result
similar to Theorem 4.

Remark 9. Observe that all these results are positive, in the sense that they
provide local controllability properties. At present, no negative result is known
to hold for these nonlinear systems (except for the already considered one-
dimensional Burgers equation).

To end this section, let us mention another system from fluid mechanics,
apparently not much more complex than (21), for which local exact control-
lability (and even local null controllability) is an open question:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt + (y · ∇)y −∇ · (ν(|Dy|)Dy) + ∇p = v1ω, (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,
y(x, 0) = y0(x), x ∈ Ω.

(36)

Here, Dy = 1
2 (∇y+∇yt) and ν : R+ �→ R+ is a regular function (for example,

we can take ν(s) ≡ a+ bsr−1 for some a, b, r > 0).
This system models the behavior of a quasi-Newtonian fluid; for a math-

ematical analysis, see [5, 32]. In view of the new nonlinear diffusion term
∇·(ν(|Dy|)Dy), its control properties are much more difficult to analyze than
for (21).
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1 Introduction

Adaptive finite element methods for the numerical solution of partial differ-
ential equations consist of successive cycles of the loop

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE.

Here, SOLVE stands for the finite element solution of the problem with re-
spect to a given triangulation of the computational domain. The following
step ESTIMATE is devoted to the estimation of the global discretization er-
ror in some appropriate norm or a user specified quantity of interest by a
cheaply computable a posteriori error estimator. The estimator is assumed
to consist of local contributions whose actual magnitude is then used in the
step MARK to specify elements of the triangulation for refinement. The fi-
nal step REFINE deals with the generation of a new triangulation based on
the refinement of the elements selected in the previous step according to spe-
cific refinement rules. Adaptive finite elements are by now well established.
There are various approaches such as residual-type a posteriori error esti-
mators which rely on the proper evaluation of the residuals with respect to
a computed approximation in the norm of the dual space and hierarchical
type estimators where the equation satisfied by the error is suitably localized
along with a solution of the local problems by higher order finite elements (cf.,
e.g. [1, 3, 35]). Averaging-type estimators typically use some sort of gradient
recovery on element-related patches (cf., e.g. [1, 35]), whereas the theory of
guaranteed error majorants provides reliable upper bounds for the error (see
[31]). Finally, the goal oriented weighted dual approach extracts information
on the error via the dual problem (cf. [4, 12]).
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As far as the optimal control of PDEs are concerned, the goal oriented
dual weighted approach has been applied to unconstrained problems in [4,5],
to control constrained ones in [17, 36] and to state constrained problems in
[16, 19]. Residual-type a posteriori error estimators for control constrained
problems have been developed and analyzed in [13,14,18,20,23,26,27]. State
constrained optimal control problems are more difficult to handle than con-
trol constrained ones, since the Lagrange multiplier for the state constraints
typically lives in a measure space. An appropriate way to cope with this prob-
lem is to use a regularization of the state constrained problems by means
of mixed control-state constraints (Lavrentiev regularization). With regard
to numerical solution techniques the regularized problems can be formally
treated as in the case of control constraints (cf., e.g. [2, 9, 29, 32–34]).

In this paper, we will develop, analyze and implement the goal oriented
weighted dual approach to mixed control-state constrained distributed opti-
mal control problems for linear second order elliptic boundary value problems.
The paper is organized as follows: In Section 2, we consider a model distributed
optimal control problem for a two-dimensional, second order elliptic PDE with
a quadratic objective functional and mixed unilateral constraints on the state
and on the control. The finite element discretization is based on standard
P1 conforming finite elements with respect to simplicial triangulations of the
computational domain and gives rise to a finite dimensional constrained mini-
mization problem. In both the continuous and discrete regime, the optimality
conditions are stated in terms of the associated Lagrangians. Section 3 is
devoted to a representation of the error in the quantity of interest which is
chosen as the objective functional. The error representation involves primal–
dual residuals, a primal–dual mismatch in complementarity due to a possible
mismatch between the continuous and discrete active and non-active sets, and
data oscillation terms. In Section 4, we derive the goal oriented a posteriori
error estimator based on appropriate upper bounds both for the primal–dual
residuals and the primal–dual mismatch in complementarity. The final section,
Section 5 contains a brief description of the marking and refinement strategy
as well as numerical results for an example illustrating the performance of the
error estimator.

2 The Mixed Control-State Elliptic Optimal Control
Problem and Its Finite Element Approximation

We assume Ω to be a bounded domain in R
2 with boundary Γ := ΓD ∪ ΓN ,

ΓD ∩ ΓN = ∅. We use standard notation from Lebesgue and Sobolev space
theory. In particular, we refer to L2(Ω) as the Hilbert space with inner product
(·, ·)0,Ω and norm ‖ · ‖0,Ω and to Hk(Ω), k ∈ N, as the Sobolev space with
norm ‖·‖k,Ω. The set L2

+(Ω) stands for the positive cone in L2(Ω) with respect
to the canonical ordering.



Goal Oriented Mesh Adaptivity 99

Given a desired state yd ∈ L2(Ω), a shift control ud ∈ L2(Ω), regula-
rization parameters α > 0, ε > 0, and a function ψ ∈ L∞(Ω), we consider the
mixed control-state constrained distributed optimal control problem:
Find (y, u) ∈ V × L2(Ω), where V := {v ∈ H1(Ω) | v|ΓD = 0}, such that

inf
y,u
J(y, u) :=

1
2
‖y − yd‖2

0,Ω +
α

2
‖u− ud‖2

0,Ω, (1a)

subject to a(y, v) = (u, v)0,Ω , v ∈ V, (1b)

εu+ y ∈ K := {v ∈ L2(Ω) | v(x) ≤ ψ(x) f.a.a. x ∈ Ω}. (1c)

Here, a(·, ·) : V × V → R stands for the bounded, V -elliptic bilinear form

a(u, v) :=
∫
Ω

(∇u · ∇v + cuv) dx, c ∈ R+.

Denoting by A : V → V ∗ the operator associated with a(·, ·), we introduce
the Lagrangian L : V × L2(Ω) × V × L2

+(Ω) → R according to

L(y, u, p, σ) := J(y, u) + 〈Ay − u, p〉 + (εu+ y − ψ, σ)0,Ω, (2)

where 〈·, ·〉 denotes the dual pairing between V ∗ and V . Then, the minimiza-
tion problem (1a)–(1c) can be equivalently stated as the saddle point problem

inf
y,u

sup
p,σ

L(y, u, p, σ). (3)

Setting x := (y, u, p) ∈ X := V × L2(Ω) × V , the optimality conditions read
as follows:

∇xL(x, σ) = 0, (4a)

∇σL(x, σ)(μ − σ) ≤ 0, μ ∈ L2
+(Ω), (4b)

where ∇xL(x, σ) and ∇σL(x, σ) stand for the derivatives of L with respect to
x and σ in (x, σ). The multiplier p is referred to as the adjoint state. We note
that (4a) gives rise to the state equation (1b), the adjoint state equation

a(p, v) = (yd − y − σ, v)0,Ω , v ∈ V, (5)

and the equation
p = α(u− ud) + εσ, (6)

whereas the variational inequality (4b) can be equivalently written in terms
of the complementarity conditions

σ ∈ L2
+(Ω), ψ − (εu+ y) ∈ L2

+(Ω), (εu+ y − ψ, σ)0,Ω = 0. (7)
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We define the active set A as the maximal open set A ⊂ Ω such that εu(x) +
y(x) = ψ(x) f.a.a. x ∈ A and the inactive set I according to I :=

⋃
κ>0Bκ,

where Bκ is the maximal open set B ⊂ Ω such that εu(x) + y(x) ≤ ψ(x) − κ
for almost all x ∈ B.

For the finite element discretization of (1a)–(1c) we consider a family
{T�(Ω)} of shape-regular simplicial triangulations of Ω which align with ΓD,
ΓN on Γ . We denote by N�(D) and E�(D), D ⊆ Ω, the sets of vertices and
edges of T�(Ω) in D ⊆ Ω, and we refer to hT and |T | as the diameter and the
area of an element T ∈ T�(Ω), whereas hE stands for the length of an edge
E ∈ E�(D). For E ∈ E�(Ω) such that E = T+ ∩ T−, T± ∈ T�(Ω), we define
ωE := T+ ∪T−. Further, we denote by S� := {v� ∈ C0(Ω) | v�|T ∈ P1(T ), T ∈
T�(Ω)} the finite element space of continuous, piecewise linear finite elements
and we refer to V� as its subspace V� := {v� ∈ S� | v�|ΓD = 0}. We will also use
the following notation: If A and B are two quantities, then A � B means that
there exists a positive constant C such that A ≤ CB, where C only depends
on the shape regularity of the triangulations, but not on their granularities.

Then, given approximations yd� ∈ S�, ud� ∈ S� and ψ� ∈ S� of yd, ud and
ψ, the finite element approximation of (1a)–(1c) is given by
Find (y�, u�) ∈ V� × S� such that

inf
y�,u�

J�(y�, u�) :=
1
2
‖y� − yd� ‖2

0,Ω +
α

2
‖u� − ud�‖2

0,Ω, (8a)

subject to a(y�, v�) = (u�, v�)0,Ω, v� ∈ V�, (8b)
εu� + y� ∈ K� := {v� ∈ S� | v� ≤ ψ� in Ω}. (8c)

We proceed as in the continuous regime and introduce the Lagrangian L� :
V� × S� × V� × (S� ∩ L2

+(Ω)) by

L�(y�, u�, p�, σ�) := J�(y�, u�) + 〈Ay� − u�, p�〉 + (εu� + y� − ψ�, σ�)0,Ω (9)

such that (8a)–(8c) is equivalent to the saddle point problem

inf
y�,u�

sup
p�,σ�

L�(y�, u�, p�, σ�). (10)

The optimality conditions turn out to be

∇xL�(x�, σ�) = 0, (11a)

∇σL�(x�, σ�)(μ� − σ�) ≤ 0, μ� ∈ S� ∩ L2
+(Ω), (11b)

where x� := (y�, u�, p�) ∈ X� := V� × S� × V�. Again, (11a) comprises the
discrete state equation (8b), the discrete adjoint state equation

a(p�, v�) = (yd� − y� − σ�, v�)0,Ω, v� ∈ V�, (12)

and the equation
p� = α(u� − ud� ) + εσ�. (13)
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On the other hand, (11b) represents the discrete complementarity conditions

σ� ∈ S� ∩L2
+(Ω), ψ�− (εu�+ y�) ∈ S� ∩L2

+(Ω), (εu�+ y�−ψ�, σ�)0,Ω = 0.
(14)

We define the discrete active set A� according to A� := {x ∈ Ω | εu�(x) +
y�(x) = ψ�(x)} and refer to I� := Ω \ A� as the discrete inactive set.

3 Error Representation in the Quantity of Interest

We derive an error representation in the quantity of interest which involves
the second derivative of the Lagrangian L with respect to x. Since this second
derivative does depend neither on x nor on σ, we simply write ∇xxL(z, z′),
z, z′ ∈ X , instead of ∇xxL(x, σ)(z, z′). We will use the same simplifying no-
tation for the second derivative of Lh.

Theorem 1. Let (x, σ) ∈ X×L2
+(Ω) and (x�, σ�) ∈ X�× (S�∩L2

+(Ω)) be the
solutions of (3) and (10), respectively. Then there holds

J(y, u)− J�(y�, u�) = −1
2
∇xxL�(x�−x, x�− x)+ (εu�+ y�−ψ, σ)0,Ω + osc(1)

� ,

(15)
where osc(1)

� stands for the data oscillations

osc(1)
� :=

∑
T∈T�(Ω)

osc(1)
T , (16)

osc(1)
T := (y� − yd� , y

d
� − yd)0,T + α(u� − ud� , u

d
� − ud)0,T

+
1
2
‖yd − yd� ‖2

0,T +
α

2
‖ud − ud�‖2

0,T .

Proof. We note that for z� = (δy�, δu�, δp�) ∈ X� there holds

L(x, σ�) = L(x, σ) + (εu+ y − ψ, σ� − σ)0,Ω, (17a)
∇xL(x�, σ�)(z�) = ∇xL(x�, σ�)(z�) + (εδu� + δy�, σ� − σ)0,Ω . (17b)

Using the optimality conditions (4a), (4b) and (11a), (11b) as well as (17a),
(17b), Taylor expansion yields

J(y, u) − J�(y�, u�)L(x, σ) − L�(x�, σ�)

= L(x, σ) − L�(x, σ�) −∇xL�(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)

= J(y, u) − J�(y, u) − (εu+ y − ψ�, σ�)0,Ω

−∇xL�(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)
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= −∇xL(x, σ�)(x� − x) − 1
2
∇xxL�(x� − x, x� − x)

− (εu+ y − ψ�, σ�)0,Ω + osc(1)
�

= −1
2
∇xxL�(x� − x, x� − x) − (εu+ y − (εu� + y�), σ�)0,Ω

+ (εu� + y� − (εu+ y), σ − σ�)0,Ω + osc(1)
�

= −1
2
∇xxL�(x� − x, x� − x) + (εu� + y� − ψ, σ)0,Ω + osc(1)

� ,

from which we conclude. �
Remark 1. We note that the error representation (15) reduces to the result
from [5] in the unconstrained case, i.e. when σ = σ� = 0.

For a further evaluation of the error, we introduce interpolation operators

iy� : V → V�, ip� : V → V�, iu� : L2(Ω) → S�, iσ� : L2(Ω) → S�, (18)

such that for all y, p ∈ V and u ∈ L2(Ω) there holds

‖iy�y − y‖2
0,T + h

1/2
T ‖iy�y − y‖2

0,∂T � hT ‖y‖1,DT ,

‖ip�p− p‖2
0,T + h

1/2
T ‖ip�p− p‖2

0,∂T � hT ‖p‖1,DT ,

‖iu�u− u‖0,T , ‖iσ� σ − σ‖0,T → 0 as hT → 0.

whereDT := {T ′ ∈ T�(Ω) | N�(T ′)∩N�(T ) �= ∅}. We may choose, for instance,
Clément-type quasi-interpolation operators (cf., e.g. [35]) or the Scott–Zhang
interpolation operators (cf., e.g. [8]).

Theorem 2. In addition to the assumptions of Theorem 1, let ix� = (iy� , i
u
� , i

p
� )

be the interpolation operators as given by (18). Then there holds

J(y, u)−J�(y�, u�) = −r(iy� y−y)−r(i
p
�p−p)+μ�(x, σ)+osc(1)

� +osc(2)
� , (19)

where r(iy� y − y) and r(ip�p− p) stand for the primal–dual residuals

r(iy� y − y) :=
1
2
(
(y� − yd� + σ�, i

y
� y − y)0,Ω + (∇p�,∇(iy� y − y))0,Ω

)
, (20a)

r(ip�p− p) :=
1
2

((∇y�,∇(ip�p− p))0,Ω − (u�, i
p
�p− p)0,Ω) , (20b)

Moreover, μ�(x, σ) is the primal–dual mismatch in complementarity and osc(2)
�

a further data oscillation term given by

μ�(x, σ) :=
1
2

((εu� + y� − ψ, σ)0,Ω + (ψ� − (εu+ y), σ�)0,Ω) , (21a)

osc(2)
� :=

1
2
(yd − yd� , y� − iy� y)0,Ω +

1
2
(yd − yd� , i

y
�y − y)0,Ω

+
α

2
(ud − ud� , u� − iu� u)0,Ω +

α

2
(ud − ud� , i

u
� u− u)0,Ω. (21b)
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Proof. Using (11a) and (17b), for z� = (δy�, δu�, δp�) ∈ X� we find

0 = ∇xL(x, σ)(z�)
= ∇xL(x�, σ�)(z�) + ∇xxL(x − x�, z�) + (εδu� + δy�, σ − σ�)0,Ω
= ∇xxL(x− x�, z�) + (εδu� + δy�, σ − σ�)0,Ω + (yd� − yd, δy�)0,Ω

+ α(ud� − ud, δu�)0,Ω,

from which we deduce

∇xL(x�, σ)(x − x� − z�) = ∇xxL(x� − x, x− x� − z�), (22a)
∇xxL(x� − x, x� − x) = ∇xxL(x� − x, x� − x+ z�)

− (εδu� + δy�, σ − σ�)0,Ω. (22b)

Taking advantage of (22a),(22b) in (15), it follows that

J(y, u) − J�(y�, u�)

=
1
2
∇xxL(x, σ�)(x − x�, x� − x+ z�)

+
1
2
(εδu� + δy�, σ − σ�)0,Ω +

1
2
(yd� − yd, δy�)0,Ω

+
α

2
(ud� − ud, δu�)0,Ω + (εδu� + y� − ψ, σ)0,Ω + osc(1)

�

= −1
2
∇xL(x�, σ�)(x� − x+ z�) +

1
2
(εu� + y� − (εu+ y), σ� + σ)0,Ω

+
1
2
(yd − yd� , y� − y)0,Ω +

α

2
(ud� − ud, δu�)0,Ω + osc(1)

� .

We conclude by choosing z� = (iy� y − y�, i
p
�p − p�, i

u
� − u�) and observing (7)

and (14). �
Remark 2. The primal–dual residuals r(iy� y− y) and r(ip�p− p) will be further
estimated in the following section and will be made fully a posteriori in a
standard way (cf., e.g. [4]). The term μ�(x, σ) as given by (21a) represents
the primal–dual mismatch in complementarity due to a possible mismatch in
the approximation of the active and inactive sets A and I by their discrete
counterparts A� and I�. In its present form it is not yet a posteriori. In the
subsequent section, we will show how μ�(x, σ) can be made fully a posteriori
and thus be included in the refinement strategy. A similar remark applies
to the term osc(2)

� which is essentially a data oscillation term, but as given
by (21b) not a posteriori due to the occurrence of y. It will be made fully a
posteriori as well.

4 Weighted Primal–Dual A Posteriori Error Estimator

By straightforward estimation of the right-hand sides in the representations
(20a), (20b) of the primal–dual residuals the following result can be easily
established.
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Theorem 3. The primal–dual residuals can be estimated according to

|r(iy� y − y)| �
∑

T∈T�(Ω)

ωyTρ
y
T , (23a)

|r(ip�p− p)| �
∑

T∈T�(Ω)

ωpTρ
p
T . (23b)

Here, ρyT and ρpT are the L2-norms of the residuals associated with the state
and the adjoint state equation

ρyT :=
(
‖u�‖2

0,T + h−1
T ‖1

2
ν · [∇y�]‖2

0,∂T

)1/2

, (24a)

ρpT :=
(
‖y� − yd� − σ�‖2

0,T + h−1
T ‖1

2
ν · [∇p�]‖2

0,∂T

)1/2

. (24b)

The corresponding dual weights ωyT and ωpT are given by

ωyT :=
(
‖ip�p− p‖2

0,T + hT ‖ip�p− p‖2
0,∂T

)1/2
, (25a)

ωpT :=
(
‖iy�y − y‖2

0,T + hT ‖iy�y − y‖2
0,∂T

)1/2
. (25b)

Remark 3. If the state y of the purely state constrained problem (i.e. ε = 0)
is in W 1,r(Ω) for some r > 2 and hence represents a continuous function, the
adjoint state p lives in W 1,s(Ω) with s being conjugate to r. The multiplier
σ turns out to be a bounded Borel measure, and the discrete multipliers σ�
are chosen as a linear combination of Dirac delta functionals associated with
the nodal points of the triangulation. In this case, the primal–dual residuals
have to be estimated in the respective Lr- and Ls-norms and the multipliers
have to be treated separately (cf. [19]).

There are several ways to provide approximations of the weights ωyT and
ωpT , T ∈ T�(Ω). We refer to [4] for a detailed discussion. Here, we use piecewise
quadratic interpolations iy�,2y� and ip�,2p� of the computed P1 approximations
y� and p� of the state y and the adjoint state p with respect to the coarser
triangulation T�−1(Ω). This results in the computable weights

ω̂yT :=
(
‖ip�,2p� − p�‖2

0,T + hT ‖ip�,2p� − p�‖2
0,∂T

)1/2

, (26a)

ω̂pT :=
(
‖iy�,2y� − y�‖2

0,T + hT ‖iy�,2y� − y�‖2
0,∂T

)1/2

. (26b)

We now concentrate on the primal–dual mismatch in complementarity
μ�(x, σ) where for notational simplicity we drop the argument (x, σ). Taking
the complementarity conditions (7) and (14) into account, we find
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μ�|I∩I�
= 0, (27a)

μ�|A∩I�
=

1
2
(
(εu� + y� − ψ, iσ� σ)0,A∩I�

+ (εu� + y� − ψ, σ − iσ� σ)0,A∩I�

)
, (27b)

μ�|I∩A�
=

1
2
(ψ� − (εu+ y), σ�)0,Ω

=
1
2
(
(ε(u� − iu� u) + y� − iy�y, σ�)0,I∩A�

+ (ε(iu� u− u) + iy�y − y, σ�)0,I∩A�

)
, (27c)

μ�|A∩A�
=

1
2

((εu� + y� − ψ, σ)0,A∩A�
+ (ψ� − (εu+ y), σ�)0,A∩A�

)

=
1
2
(
(ψ� − ψ, iσ� σ + σ�)0,A∩A�

+ (ψ� − ψ, σ − iσ� σ)0,A∩A�

)
. (27d)

We further need to provide computable approximations of the sets A and I.
We use a modification of the approximation of the indicator function χ(A) of
the continuous coincidence set A from [26] (cf. also [17]) according to

χA
� := 1 −

ψ − (εiu�,2u� + iy�,2y�)
γhr� + ψ − (εiu�,2u� + iy�,2y�)

, (28)

where 0 < γ ≤ 1 and r > 0 are fixed and iu�,2u� is defined in the same way as
iy�,2y�. Indeed, for T ⊂ A we find

‖χ(A) − χA
� ‖0,T ≤ min(|T |1/2, γ−1h−r� ‖εu+ y − (εiu�,2u� + iy�,2y�)‖0,T )

which converges to zero whenever ‖εu + y − (εiu�,2u� + iy�,2y�)‖0,T = O(hq�),
q > r. By the same arguments, for T ⊂ I one can show as well that ‖χ(A) −
χA
� ‖0,T → 0 as h� → 0. Now, for fixed 0 < κ ≤ 1 and 0 < s ≤ r we provide

approximations Â� of A and Î� of I according to

Â� :=
⋃

{T ∈ T�(Ω) | χA
� (x) ≥ 1 − κhs� for all x ∈ T }, (29a)

Î� :=
⋃

{T ∈ T�(Ω) | χA
� (x) < 1 − κhs� for some x ∈ T }. (29b)

We define approximations TA∩A�
, TI∩A�

and TA∩I�
of A ∩ A�, I ∩ A� and

A ∩ I� by means of

TA∩A�
:= Â� ∩ A�, TI∩A�

:= Î� ∩ A�, TA∩I�
:= Â� ∩ I�.

We further define

ω̃yT := ‖iy�,2y� − y�‖0,T ,

ω̃uT := ‖iu�,2u� − u�‖0,T ,

ω̃σT := ‖iσ�,2σ� − σ�‖0,T ,
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where iσ�,2σ� is also given by piecewise quadratic interpolation. Then, we can
estimate the contributions to the primal–dual mismatch in complementarity
in (27b)–(27d) according to

|μ�|A∩I�
| ≤

∑
T∈TA∩I�

μ̄
(1)
T , (30a)

μ̄
(1)
T :=

1
2
‖εu� + y� − ψ‖0,T (‖iσ�,2σ�‖0,T + ω̃σT ),

|μ�|I∩A�
| ≤

∑
T∈TI∩A�

μ̄
(2)
T , (30b)

μ̄
(2)
T := ‖σ�‖0,T (εω̃uT + ω̃yT ),

|μ�|A∩A�
| ≤

∑
T∈TA∩A�

μ̄
(3)
T , (30c)

μ̄
(3)
T :=

1
2
‖ψ� − ψ‖0,T (‖iσ�,2σ� + σ�‖0,T + ω̃σT ).

This leads to the following upper bound for the primal–dual mismatch in
complementarity:

|μ�(x, σ)| ≤
∑

T∈T�(Ω)

μ̄T , (31)

where

μ̄T :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, T ∈ TI∩I�
,

μ̄
(1)
T , T ∈ TA∩I�

,

μ̄
(2)
T , T ∈ TI∩A�

,

μ̄
(3)
T , T ∈ TA∩A�

.

The oscillation term osc(2)
� as given by (21b) is treated analogously which

results in

|osc(1)
� + osc(2)

� | ≤
∑

T∈T�(Ω)

oscT , oscT := osc(1)
T + osc(2)

T , (32)

where osc(1)
T is given by (16) and osc(2)

T by

osc(2)
T := ω̃yT ‖yd − yd� ‖0,T + ω̃uT ‖ud − ud�‖0,T .

Hence, we end up with the computable upper bound

|J(y, u) − J�(y�, u�)| �
∑

T∈T�(Ω)

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) . (33)
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5 Numerical Results

The marking strategy for selection of elements of the triangulation for refine-
ment is based on a bulk criterion (cf. [11,30]) where we select a set M� ⊂ T�(Ω)
of elements such that with respect to a given constant 0 < Θ < 1 there holds

Θ
∑

T∈T�(Ω)

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) ≤

∑
T∈M

(ω̂yTρ
y
T + ω̂pTρ

p
T + μ̄T + oscT ) .

The bulk criterion is realized by a greedy algorithm (cf., e.g. [23]). The refine-
ment is realized by newest vertex bisection.

We conclude this section with the results for an example which was chosen
as a test case in [28]. The data of the problem are as follows:

Ω := B(0, 1), ΓD = ∅, α := 1.0, c = 1.0,

yd(r) := 4 +
1
π

− 1
4π
r2 +

1
2π

ln(r),

ud(r) := 4 +
1
4π
r2 − 1

2π
ln(r), ψ(r) := r + 4.

The optimal solution in the pure state constrained case is given by

y(r) ≡ 4, p(r) =
1
4π
r2 − 1

2π
ln(r),

u(r) ≡ 4, σ = δ0.

As regularization parameter ε for the Lavrentiev regularization we have chosen
ε = 10−4. The finite element discretized optimal control problem has been
solved by the Moreau–Yosida based active set strategy from [6]. Moreover,
Θ = 0.4 has been used for the bulk criterion in the step MARK of the adaptive
loop.

Figure 1 shows the computed optimal state (left) and optimal control
(right). We note that the peaks at the origin are numerical artefacts due
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Fig. 1. Optimal state (left) and optimal control (right).
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Fig. 2. Optimal adjoint state (left) and adaptively refined triangulation after 14
refinement steps of the adaptive loop (right).
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Fig. 3. Decrease of the quantity of interest δ� := |J(y, u)− J�(y�, u�)| as a function
of the total number of degrees of freedom for adaptive and uniform refinement.

to the singularity of the optimal adjoint state in the origin (see Figure 2
(left)). Figure 2 (right) displays the computed adaptively refined mesh after
14 refinement steps of the adaptive loop. Finally, Figure 3 shows the decrease
of the error δ� := |J(y, u)− J�(y�, u�)| measured in the quantity of interest as
a function of the total number of degrees of freedom on a logarithmic scale
both for adaptive and uniform refinement.
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Control Synthesis for a Class of Quantum
Control Problems
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NC 27695-8205, USA, kito@unity.ncsu.edu

Summary. Control of quantum systems described by the linear Schrödinger equa-
tion are considered. Control inputs enter through coupling operators and results in
a bilinear control system. Feedback control laws are developed for the orbit tracking
and the performance of the feedback control laws is demonstrated by the stable and
accurate numerical integrations of the closed-loop system. The receding horizon con-
trol synthesis is applied to improve the performance of the feedback law. The second
order accurate numerical integrations via time-splitting and the monotone conver-
gent iterative scheme are combined to solve the optimality system, i.e., the two-pint
boundary value problem on a given time horizon. The feasibility of the proposed syn-
thesis is demonstrated by numerical tests and the performance is greatly improved
if we apply the receding horizon control.

1 Introduction

Consider a quantum system with internal Hamiltonian H0 prepared in the
initial state Ψ0(x), where x denotes the relevant spatial coordinate. The state
Ψ(x, t) satisfies the time-dependent Schrödinger equation. In the presence of
an external interaction taken as an electric field modeled by a coupling opera-
tor with amplitude ε(t) ∈ R and a time independent dipole moment operator
μ results in the controlled Hamiltonian H = H0 + ε(t)μ and the following
dynamical system:

i
∂

∂t
Ψ(x, t) = (H0 + ε(t)μ)Ψ(x, t), Ψ(x, 0) = Ψ0(x). (1)

where H0 is a positive, closed, self-adjoint operator in the Hilbert space H ,
μ ∈ L(H) is self-adjoint, and ε ∈ L1(0,∞) is the control input.

We consider the control problem of driving the state Ψ(t) of (1) to an orbit
O(t) of the uncontrolled dynamics

i
d

dt
O(t) = H0O(t), (2)

W. Fitzgibbon et al. (eds.), Applied and Numerical Partial Differential Equations, 113
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specifically to the one that corresponds to an eigen-state or the manifold
spanned by finite many eigen-states, in general. An element ψ ∈ dom(H0) is
an eigen-state of H0 if H0ψ = λψ for λ > 0. Then, the corresponding orbit is
given by

O(t) = e−i(λt−θ)ψ, (3)

where θ ∈ [0, 2π) is the phase factor. We have |O(t)|H = 1 if ψ is normalized
as |ψ|H = 1. We consider the discrete spectrum case: i.e. assume H0 only
has discrete eigenvalues {λk}, the family of eigenfunctions {ψk}∞k=1 forms an
orthonormal basis of H and that {λk} are arranged in increasing order.

We employ a variational approach based on the Lyapunov functional

V (t) = V (Ψ(t),O(t)) =
1
2
|Ψ(t) −O(t)|2X . (4)

The variational approaches were previously discussed in [1,4,8], for example.
We shall see in Sections 2 and 3 that |Ψ(t)|H = 1 for all t ≥ 0. Together

with |O(t)|H = 1 this implies that the functional V can equivalently be ex-
pressed as

V (Ψ(t),O(t)) = 1 − Re(O(t), Ψ(t))H . (5)

It will be shown that

d

dt
V (Ψ(t),O(t)) = ε(t) Im(O(t), μΨ(t))H . (6)

We propose the feedback law

ε(t) = − 1
α

(u(t) + β sign(u(t))V (t)γ) = F (Ψ(t),O(t)),

u(t) = Im(O(t), μΨ(t))X , V (t) = V (Ψ(t),O(t)),
(7)

for α > 0, β ≥ 0, γ ∈ (0, 1]. The case β = 0 is analyzed in [4]. From (6)

d

dt
V (Ψ(t),O(t)) = − 1

α
(|u(t)|2 + β|u(t)|V (t)γ). (8)

Note that u(t) is a linear in Ψ(t). It will be shown in Section 5 that the perfor-
mance of feedback laws significantly increases by incorporating the switching
control term with β > 0.

The well-posedness of the closed loop system with the feedback law (7) is
established in [5]. For the asymptotic tracking V (Ψ(t),O(t)) → 0 as t → ∞,
note that from (8) we have

∫ T

0

|u(t+ s)|2 ds→ 0, as t→ ∞.

Our analysis of the asymptotic tracking is based on the LaSalle invariance
principle, i.e. suppose
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Ψ∞(τ) = lim
tn→∞

Ψ(tn + τ) =
∞∑
k=0

Ake
iψk

be a ω-orbit of (1)–(7), we have the invariant set

∫ T

0

|u(τ))|2 dτ = 0 for all T > 0

u(τ) = Im(O∞(τ), μΨ∞(τ)) = Im

( ∞∑
k=1

Ake
i((λk−λk0 )τ−θk+θ̃k0)

) (9)

for the ω limit. Based on this and the Ingham theorem [2], one can prove a
sufficient condition for the asymptotic tracking by a single control [4]:

Theorem 1. Assume that all moments are non-vanishing:

μkk0 = (ψk0 , μψ)H �= 0.

If there exits a constant δ > 0 such that |λk + λ� − 2λk0 | ≥ δ for all k, � ≥ 1
with � �= k0, and |λk − λ�| ≥ δ for all k �= �, then limt→∞ V (Ψ(t),O(t)) = 0,
for the feedback law (7).

For example, consider the harmonic oscillator case:

H0ψ = − d2

dx2
ψ + x2ψ, x ∈ R = Ω.

Then the eigen-pairs {(λk, ψk)}∞k=1 are given by

λk = 2k − 1, ψk(x) = ĉHk−1(x)e−
x2
2

where Hk is the Hermite polynomial of degree k and ĉ is a normalizing factor.
In this case we have

λk0−� − λk0 = −(λk0+� − λk0 ), 1 ≤ � ≤ k0 − 1,

and the gap condition |λk + λ� − 2λk0 | > δ is not satisfied. The invariant set
(9) implies

Im
(
Ak0+�e

i(λ�τ−θk0+�+θ̃k0 )μk0+�k0
+Ak0−�e

−i(λ�τ−θk0−�+θ̃k0 )μk0−�k0

)
= 0

for 1 ≤ � < k0. That is, Ak0−� and Ak0−� are not necessary zero and thus
Ψ∞(τ) is distributed over energy levels 1 ≤ � ≤ 2k0 − 1.

Consider the multiple control potentials of the form

μ(t) =
m∑
j=1

εj(t)μj . (10)
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The corresponding feedback law is given by

εj(t) = − 1
α

(uj(t) + β sign(uj(t))V (t)γ), uj(t) = Im(O(t), μjΨ(t))X .

Assume pairs (ki, �i) are degenerated:

λki + λ�i − 2λk0 = 0

with �i �= k0. It is shown in [4] that if the rank condition

rank

(
(μ1)ki

k0
(μ1)�ik0

(μ2)ki

k0
(μ2)�ik0

)
= 2 (11)

holds for each i, then Aki = A�i = 0, and in particular Ak = 0 for all k, i.e.,
limt→∞ V (Ψ(t),O(t)) = 0.

The nonlinear feedback method out-performs the linear one (β = 0) sig-
nificantly (see Section 5). In our numerical tests numerical integrations of (1)
and (7) via the Strang operator-splitting method is used and its convergence
property is analyzed in Section 5. It is very efficient, second order accurate
and unconditionally stable. The other contribution of this paper is to apply
the receding control synthesis to further improve the tracking performance
of the feedback law. Our implementation of the receding control uses the
monotone convergent iterative scheme to solve the optimality system on a
given time horizon. It is an iterative scheme for the two-pint boundary value
problem and the monotone convergence property of fully discretized scheme is
established. The effectiveness of the receding control synthesis is demonstrated
via numerical tests in Section 5.

2 Control Formulation

Associated to the closed, positive, self-adjoint operator H0 densely defined in
the Hilbert space H , we define the closed linear operator A0 in H ×H by

A0 =

(
0 H0

−H0 0

)

with dom(A0) = dom(H0)×dom(H0). Here Ψ = (Ψ1, Ψ2) ∈ H×H is identified
with Ψ = Ψ1 + i Ψ2 ∈ X . We note that

|(Ψ1, Ψ2)|H×H = |Ψ |X and (Φ, Ψ)H×H = Re(Φ, Ψ)X

and that A0 is skew-adjoint, i.e.

(A0Ψ, Ψ̂)H×H = −(A0Ψ̂ , Ψ)H×H for all Ψ, Ψ̂ ∈ dom(A0).
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Thus by the Stone theorem [9], A0 generates C0-group on X and |S(t)Ψ0|X =
|Ψ0|X .

Associated to the self-adjoint operator μ ∈ L(H) we define the skew-
adjoint operator

B =
(

0 μ
−μ 0

)

Then for ε ∈ L2(0, T ) there exists a unique mild solution Ψ(t) ∈ C(0, T ;X)
to

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)ε(s)BΨ(s) ds, t ∈ [0, T ], (12)

and
d

dt
Ψ = A0Ψ(t) + ε(t)BΨ(t) in (dom(A0))∗ (13)

[3, Chapter 2], [9, Chapter 4]. Equivalently

d

dt
Ψ(t) = −i (H0Ψ(t) + ε(t)μΨ(t)).

Since O(t) ∈ C(0, T ; dom(A0)) ∩C1(0, T ;X), we have

d

dt
O(t) = −iH0O(t) in H. (14)

Thus,

d

dt
Re(O(t), Ψ(t))X

= Re ((−iH0O(t), Ψ(t))X + (O(t),−i(H0Ψ(t) + ε(t)μΨ(t))X ))
= Re (i ε(t)(O(t), μΨ(t)))X = −ε(t) Im(O(t), μΨ(t))X ,

which proves (6). Thus, we obtain the closed loop system of the form

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)F (Ψ(s),O(s))BΨ(s) ds. (15)

3 Operator Splitting Method

Since the Hamiltonian is the sum of H0 and ε(t)μ it is very natural to consider
time integration based on the operator splitting method. For the stepsize h > 0
consider the Strang splitting method:

Ψ̂k+1 − Ψ̂k
h

= εkB
Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S

(
h

2

)
Ψk,

Ψk+1 = S

(
h

2

)
Ψ̂k+1,

(16)
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where

εk =
1
h

∫ (k+1)h

kh

ε(s) ds.

For time integration of the controlled Hamiltonian we employ the Crank–
Nicholson scheme since it is a norm preserving scheme. In fact, since B is
skew adjoint (

Ψk+1 − Ψ̂k
h

, Ψk+1 + Ψ̂k

)

X

= 0,

and thus |Ψk+1|2X = |Ψ̂k|2X . The Strang splitting is of second order as time-
integration. We have the convergence of (16).

Theorem 2. If we define Ψh(t) = Ψk on [kh, (k + 1)h), then

|Ψh(t) − Ψ(t)|X → 0 uniformly in t ∈ [0, T ],

where Ψ(t), t ≥ 0, satisfies

Ψ(t) = S(t)Ψ0 +
∫ t

0

S(t− s)ε(s)BΨ(s) ds.

Proof. Define the one step transition operator

Ψk+1 = Th(t)Ψk

by

Th(t) = S

(
h

2

)(
I − εkh

2
B

)−1 (
I +

εkh

2
B

)
S

(
h

2

)
Ψ.

Then, |Th(t)Ψ |X = |Ψ |X and

Ah(t)Ψ =
Th(t)Ψ − Ψ

h
= S

(
h

2

)
Jh/2(εkB) − I

h/2
S

(
h

2

)
Ψ +

S(h)Ψ − Ψ

h

where

Jh/2(εkB) =
(
I − εkh

2
B

)−1

.

Since for Ψ ∈ X
lim
h→0+

Jh/2(εkB) − I

h/2
Ψ = ε(t)BΨ

and for Ψ ∈ dom(A)

lim
h→0+

S(h)Ψ − Ψ

h
= A0Ψ,

we have for Ψ ∈ dom(A) and ε ∈ C(0, T )

|Ah(t)Ψ − (A0Ψ + ε(t)BΨ)|X → 0 as h→ 0+.
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It thus follows from the Chernoff theorem [3] that |Ψh(t) − Ψ(t)|X → 0 uni-
formly in t ∈ [0, T ].

Note that

Ψk+1 = S(h)Ψk + hS

(
h

2

)
εkJh/2(εkB)S

(
h

2

)
Ψk

and thus

Ψm = S(mh)Ψ0 +
m∑
k=1

hS((m− k)h)S
(
h

2

)
εkBJh/2(εkB)S

(
h

2

)
Ψk−1.

Thus, letting h→ 0 in this expression, Ψ(t) ∈ C(0, T ;X) satisfies (12).

For (16) there exists an εk on [kh, (k + 1)h) [5] such that for Ok+1/2 =
S(h2 )Ok

εk = F (Ψk+1/2,Ok+1/2) =
1
α

(uk+1/2 + β sign(uk+1/2)V
γ
k ),

uk+1/2 = (Ok+1/2, BΨk+1/2), Ψk+1/2 =
Ψ̂k+1 + Ψ̂k

2
.

(17)

Then Ψk satisfies closed loop system

Ψ̂k+1 − Ψ̂k
h

= εkB
Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S

(
h

2

)
Ψk,

εk = F (Ψk+1/2,Ok+1/2), Ψk+1 = S

(
h

2

)
Ψ̂k+1.

(18)

Since

V

(
S

(
h

2

)
Ψ̂k+1, S

(
h

2

)
Ok+1/2

)
= V (Ψ̂k+1,Ok+1/2),

the discrete analog of (8)

V (Ψk+1,Ok+1) = V (Ψk,Ok) +
1
α

(
|uk|2 + β|uk|V (Ψk,Ok)γ

)

holds for the closed loop (18).

4 Receding Horizon Control Synthesis

In this section we consider the receding horizon control synthesis [6]. The
receding horizon method is the time-decomposition technique for the longer
horizon [0, Tf ]. Consider the sequence of the finite horizon problem on
[Tt, Ti + T ]

min
∫ Ti+T

Ti

1
2
(|Ψ(t)−O(t)|2 +α|ε(t)|2) dt+ 1

2
|Ψ(Ti + T )−O(Ti + T )|2 (19)
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subject to (13). We have the two types

(I) (Instantaneous Receding Horizon) Given Ψ(Ti) we compute the optimal
control εi on the horizon [Ti, Ti + kΔT ], k ≥ 1 and then execute the
control on [Ti, Ti+Δ], where ΔT > 0 is small and denotes the execution
duration.

(II) (Regular Receding Horizon) Given Ψ(Ti) we compute the optimal control
εi on the horizon [Ti, Ti + T ] and the execute the control on [Ti, Ti + T ],
where T is relative large.

In any case the receding horizon synthesis is a feedback control in the sense
that εi on [Ti, Ti+T ] is a function of Ψ(Ti). It is shown in [3] that the necessary
optimality condition for ε = εi is given by

dt

dt
Ψ(t) = (A+ ε(t)B)Ψ(t), ε(t) =

1
α

(BΨ(t), χ(t)),

−dt
dt
χ(t) = (A+ ε(t)B)∗χ(t) −O(t), χ(Ti + T ) = O(Ti + T ).

(20)

Consider the following iterative method to solve the two-point boundary value
problem (20):

d

dt
Ψk+1 = (A+ εk+1B)Ψk+1,

εk+1 = (1 − δ)ε̃k +
δ

α
(BΨk+1, χk),

− d

dt
χk+1 = (A+ ε̃k+1B)∗χk+1 + O(t), χk+1 = O(Ti + T ),

ε̃k+1 = (1 − η)εk+1 +
η

α
(BΨk+1, χk+1),

(21)

where δ, η ∈ (0, 2) are the relaxation parameters. We let for k = 1

ε̃0 = F (Ψ(t),O(t)).

It can be proved [7] that

J(εk−1) − J(εk) =
α

2

∫ T

0

(
2
δ
− 1

)
|εk − ε̃k−1|2 +

(
2
η
− 1

)
|εk−1 − ε̃k−1|2 dt.

That is, one can improve the performance index as the number of iterates
increases and (21) is called the monotone scheme.

4.1 Time-Discretization

In this section we discuss the time-discretization of (19) using the splitting
method (16). Consider the problem

Jh(ε) =
1
2
|Ψm−Om|2Δt

m−1∑
j=0

(
α

2
|εj |2 +

1
2
(Ψ̂j+1 −Oj+1/2|2 + |Ψ̂j −Oj+1/2|2)

)
,

(22)
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subject to (16);

Ψ̂j = S

(
h

2

)
Ψj ,

Ψ̂j+1 − Ψ̂j
Δt

= εjB
Ψ̂j+1 + Ψ̂j

2
, Ψj+1 = S

(
h

2

)
Ψ̂j+1.

Define the Lagrangian

L(ε, Ψ, χ) = Jh(ε) +
m−1∑
j=0

χ̂j + χ̂j+1

2

(
Ψ̂j+1 − Ψ̂j

Δt
− εjB

Ψ̂j+1 + Ψ̂j
2

)
Δt.

Then, we obtain the necessary optimality condition

χ̂j+1 = S

(
h

2

)∗
χj+1, − χ̂j − χ̂j+1

Δt
= εjB

∗ χ̂j + χ̂j+1

2
+ Oj+1/2,

χj = S

(
h

2

)∗
χ̂j , εj =

1
α

(
χ̂j + χ̂j+1

2
, B
Ψ̂j+1 + Ψ̂j

2

)
.

The corresponding monotone scheme is given by

Ψ̂k+1
j = S

(
h

2

)
Ψk+1
j ,

Ψ̂k+1
j+1 − Ψ̂k+1

j

Δt
= εk+1

j B
Ψ̂k+1
j+1 + Ψ̂k+1

j

2
,

Ψk+1
j+1 = S

(
h

2

)
Ψ̂k+1
j+1 ,

εk+1
j = (1 − δ)ε̃kj +

δ

α

(
B
Ψ̂k+1
j + Ψ̂k+1

j+1

2
,
χ̂kj + χ̂kj+1

2

)
,

χ̂k+1
j+1 = S

(
h

2

)∗
χk+1
j+1 , −

χ̂k+1
j − χ̂k+1

j+1

Δt
= ε̃k+1

j B∗ χ̂
k+1
j ,+χ̂k+1

j+1

2
+ Oj+1/2,

χk+1
j = S

(
h

2

)∗
χ̂k+1
j ,

ε̃k+1
j = (1 − η)εk+1

j +
η

α

(
B
Ψ̂k+1
j + Ψ̂k+1

j+1

2
, B
χ̂k+1
j+1 + χ̂k+1

j

2

)
,

where Ψk+1
0 = Ψ0 and χk+1

m = Om

Theorem 3

Jh(εk−1)−Jh(εk) =
αΔt

2

m∑
j=1

(
2
δ
− 1

)
|εkj − ε̃k−1

j |2 +
(

2
η
− 1

)
|εk−1
j − ε̃k−1

j |2.
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Proof. Since |Ψkj | = 1, |Oj | = 1, we have

J(εk+1) − J(εk) = −(Ψk+1
m − Ψkm,Om)

−Δt
m−1∑
j=0

(
Ψ̂k+1
j+1 + Ψ̂k+1

j

2
−
Ψ̂kj+1 + Ψ̂kj

2
,Oj+ 1

2

)
+
αΔt

2

m−1∑
j=0

[|εk+1
j |2 − |εkj |2].

Note that Ψk0 = Ψk+1
0 = Ψ0 and we use the following equality:

m−1∑
j=0

(
Ψ̂j+1 − Ψ̂j

Δt
,
χ̂j+1 + χ̂j

2

)
+

(
Ψ̂j+1 + Ψ̂j

2
,
χ̂j+1 − χ̂j

Δt

)

=
m−1∑
j=0

(
Ψ̂j+1

Δt
, χ̂j+1

)
−
(
Ψ̂j
Δt
, χ̂j

)

=
1
Δt

((Ψ̂m, χ̂m) − (Ψ̂0, χ̂0)) =
1
Δt

((Ψm, χm) − (Ψ0, χ0)).

Thus, we have

− (Ψk+1
m − Ψkm,Om) −Δt

m−1∑
j=0

(
Ψ̂k+1
j+1 + Ψ̂k+1

j

2
−
Ψ̂kj+1 + Ψ̂kj

2
,Oj+ 1

2

)

= Δt

m−1∑
j=0

{
B

([
εk+1
j

Ψ̂k+1
j + Ψ̂k+1

j+1

2
− εkj

Ψ̂kj + Ψ̂kj+1

2

]
,
χ̂kj + χ̂kj+1

2

)

+

(
Ψ̂k+1
j + Ψ̂k+1

j+1

2
−
Ψ̂kj + Ψ̂kj+1

2
, Bε̃kj

χ̂kj + χ̂kj+1

2

)}

= −αΔt
m−1∑
j=0

1
δ
(εk+1
j − ε̃kj , ε

k+1
j − (1 − δ)ε̃kj ) +

1
η
(εkj − ε̃kj , ε̃

k
j − (1 − η)εkj )

and hence we have

J(εk+1) − J(εk) = −αΔt
m−1∑
j=0

1
δ
(εk+1
j − ε̃kj , ε

k+1
j − (1 − δ)ε̃kj )

+
1
η
(εkj − ε̃kj , ε̃

k
j − (1 − η)εkj ) −

1
2
|εk+1
j |2 +

1
2
|εkj |2

= −αΔt
2

m−1∑
j=0

(
2
δ
− 1

)
|ε̃kj − εk+1

j |2 +
(

2
η
− 1

)
|εkj − ε̃kj |2 ≤ 0.

5 Numerical Tests

In this section we demonstrate the feasibility of our proposed feedback laws
using a test example. We set H = L2(0, 1) and
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H0ψ =
∞∑
k=1

λk(ψ, ψk)Hψk,

where
ψk(x) =

√
2 sin(kπx) and λk = kπ.

The control Hamiltonians are given by

(μiΨ)(x) = bi(x)Ψ(x), x ∈ (0, 1),

with i = 1, 2. For computations we truncated the expansion of H0 at N = 99,
so that

SN (h)Ψ0 =
N∑
k=1

e−iλkh(Ψ0, ψk)ψk.

To integrate the control Hamiltonian term, the collocation method was used
in the form

(BNi ψ)(xNn ) = bi(xNn )ψ(xNn ), i = 1, 2,

where xNn = n
N , 1 ≤ n ≤ N−1. Thus, we implemented the feedback law based

on the Strang splitting method in the form

Ψk+1 = SN

(
h

2

)
FN

(
I − εk

1

h

2
BN

1 − εk
2

h

2
BN

2

)−1 (
I + εk

1

h

2
BN

1 + εk
2

h

2
BN

2

)
SN

(
h

2

)

εk
i = Fi(Ψ

k+1/2,Ok+1/2), i = 1, 2,

where FN and F−1
N are the discrete Fourier sine transform and its inverse

transform, respectively and BNi is the diagonal matrix with diagonal

bi(xN1 ), · · · , bi(xNN−1) for each i = 1, 2.

This is an implicit method and its well-posedness is discussed in Section 3
for given β > 0 and γ ∈ [0, 1]. The numerical tests that we report on are
computed with h = 0.01, α = 1/500 and

b1(x) = (x− .5) + 1.75(x− .5)2, b2(x) = 2.5(x− .5)3 − 2.5(x− .5)4.

These control potentials satisfy the rank condition in Section 1 and are selected
by minimizing the tracking time by trial and error tests. Figure 1 shows the
orbit tracking performance V = 1

2 |Ψ(t)−O(t)|2X comparison between different
β and different power γ of V . As β increases, the performance V is significantly
improved and the 10% performance level is achieved in much shorter horizon.
By decreasing the power of V , the performance V improves also and more
rapidly in the beginning of the time horizon.

Figure 2 shows the tracked state (real and imaginary parts) after 50 time
units compared to the desired orbit. The imaginary part of the desired state
is zero at T and there remains some tracking error. On the right the tracking
error in terms of V1(Ψk,Ok) is shown.
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In Section 4.1, we describe applying the monotone scheme with relaxation
constant δ, η ∈ (0, 2) for the receding horizon control synthesis. As shown
in Figure 3, we observe that the under-relaxation performs better than the
over-relaxation.

In Figure 4 we show numerical results for the instantaneous receding hori-
zon method with ΔT = .01. We observe that the receding horizon synthesis
improves the performance of the tracking feedback law significantly.

The end performance at Tf = 200 for the instantaneous receding hori-
zon control is V (Tf ) = 6.95 · 10−4 compared with V (Tf ) = 1.49 · 10−3 for
original feedback law. Also it is observed that the performance improves with
increasing receding step k.
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Table 1. Performance of regular receding horizon control, Tf = 200, β = 0.1

T m |Ψ(Tf ) − O(Tf )|2
1 1 1.60 · 10−4

1 2 8.66 · 10−5

0.5 1 3.14 · 10−4

In Table 1 we show numerical results for the regular receding horizon for
different numbers of iteration m for the monotone scheme in Section 4.1. It is
observed that the performance increases with m as we expected. A larger hori-
zon T = 1 performs much better than a shorter horizon T = .5 as should be.
The regular receding horizon control performs better than the instantaneous
receding horizon control but has more computational cost.
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Summary. The velocity field of binary mixture of incompressible miscible liquids
is non-solenoidal when the densities of the two liquids are different. If the mixture
density is linear in the volume fraction, as is the case of liquids which satisfy the
law of additive volumes, then the velocity can be decomposed into a solenoidal
and expansion part. Here we propose a theory for liquids which do not satisfy the
law of additive volumes. In this theory the mixture density is again given by a
linear form but the densities of the liquids are scaled by the factor expressing the
change of the volume of the mixture upon mixing. The dynamical theory of simple
mixtures of incompressible liquids can be formed as the correct form of the Navier–
Stokes equations in which the compressibility of the mixture is recognized. A rigorous
form of the diffusion equation, different than the usual one, is also derived from
first principles. The diffusion equation is based a non-linear form of Fick’s law,
expressed in terms of gradients of the chemical potential. It is argued that the
diffusion of species (of heat and in general) is impossible; signals must move with a
finite speed though they may rapidly decay to diffusion. The underlying equation for
the evolution of species and heat in the linear case is a damped wave equation rather
than the conventional diffusion equation. The Navier–Stokes theory can be identified
as a mass transport theory. The solenoidal part of the velocity satisfies an equation
which can be shown to govern the transport of volume; it differs from the mass
transport velocity by an irrotational expansion velocity associated with the dilitation
of the mixture. The equations governing the transport of mass and volume differ
from one another by well-defined mathematical transformations; the choice of one
or the other is a matter of convenience. However, a genuine difference is associated
with boundary conditions. The conventional assumption that the mass transport
velocity vanishes is supported by calculations from molecular dynamics but these
calculations employ entirely different assumptions and, hence, lack authority. The
idea that gradients of composition ought to induce stresses and not just diffusion has
been considered and is modeled by a second-order theory introduced by Korteweg
1901. There is not strong evidence that these stresses are important except in regions
of strong gradients where a relaxation theory rather than a second-order theory
ought to apply. A relaxation theory for stresses due to gradients of composition
which relaxes into the second-order theory when the gradients are small is proposed
and applied to explain observations of a transient interfacial tension which may be
traced to a difference between the relaxation times for diffusion and stresses.
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1 Introduction

Joseph [18], Galdi et al. [13], Hu and Joseph [16], Joseph et al. [19, 22] and
Camacho and Brenner [6] developed a theory of non-solenoidal velocity effects
and Korteweg stresses in simple mixtures of incompressible liquids. The theory
may be framed in terms of a mass transport velocity u, which is not solenoidal;
and a volume transport velocity w, which is solenoidal. The equations which
govern the mass transport are appropriately described as Navier–Stokes equa-
tions for the mixture; they may also be described in terms of molecular mod-
eling as mass averaged whilst the velocity w is volume averaged.

The effects of diffusion in miscible liquids are believed to be well under-
stood. It is not so well known but obvious that diffusion is impossible; the
propagation of changes of composition, heat and other diffusing scalars must
initially occur as a wave, which typically rapidly decays to diffusion. These
kinds of effects can be modeled (Section 7) by assuming that the flux of
species depends on the time rate of change of flux as well as the gradients of
the concentration of species.

The possibility that motions can be driven by additional stresses associ-
ated with gradients of composition can also be considered. Dynamical effects
can arise in thin mixing layers where the gradients of composition are large.
This possibility was already recognized in discussions given by Korteweg [25]
following earlier work by Van der Waals [45] in which he proposes a consti-
tutive equation includes the stresses induced by gradients of density and by
gradients of composition which could give rise to effects which mimic surface
tension in regions where the gradients are large. Various theories based on
thermodynamic arguments in which the consequences of the assumption that
density gradients give rise to stresses, even when these stresses are induced
in single component liquids by temperature gradients have been put forward
by Brenner (see [4] and the references there). Serrin [43] has considered the
form of interfacial surfaces produced by density variations in Korteweg’s the-
ory of phase equilibria. He shows “...that, unless rather special conditions
are satisfied, the only geometric phase boundaries which are consistent with
Korteweg’s theory are spherical, cylindrical, or planar”.

A review of literature about effects which mimic interfacial tension be-
tween diffusing liquids is given by Joseph [18] and Joseph and Renardy [22].
Experiments show that the shape of sharp interfaces in the presence of slow
diffusion resemble familiar shapes which can be seen in immiscible liquids with
real interfacial tension.

Attempts to model the aforementioned effects with Korteweg stresses
use the fact that these stresses are large when and where the gradients are
large and they are infinitely large at surfaces of discontinuity. These models
are very difficult to evaluate since the model parameters are not known and
even when the parameters are chosen to fit, the fits are far from perfect.
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One flaw of the theory is that higher tensions at the early times when
diffusion starts are destroyed rapidly by diffusion, even when diffusion is slow.
The Korteweg stresses arise from the simplest constitutive assumption in
which the compositional stress is determined by the present value of com-
positional gradients. A properly invariant theory of this kind leads to the
quadratic expression (23); in the sense and in analogy with facts well known
in rheological modeling, this can be called a second order model. Relaxation
effects which may be expected for discontinuous initial data are not present
in Korteweg’s theory.

The modeling of interfacial stresses for miscible liquids should be framed
as a small part of the general problem of modeling stresses which arise from
gradients of composition. The Korteweg model is one among possibly many.
It is not yet clear what may be the observable consequences of such stresses.

2 Simple Mixtures and the Law of Additive Volume

Suppose there are two species, for example, glycerin and water, designated
with subscripts g and w. If the volume V of a mixture of the two liquids does
not change, then V = Vw + Vg and the mixture density can be expressed in
terms of the volume fraction of one of them, say φ = Vw/V ,

ρ(φ) = ρwφ+ ρg(1 − φ), (1)

where ρw and ρg are the handbook values of water and glycerin and

mw = ρwVw,

mg = ρgVg
(2)

are the mass of water and the mass of glycerin in the mixture. The equation
V = Vw + Vg which states that the total volume is the sum of the volumes of
the two constituents is called the law of additive volumes.

In general, the volume of the mixture is not the same as the volume of the
mixture. The new volume

U = V f(φ) (3)

is more or less than the original one and the dilation factor f depends on φ
with

f(0) = f(1) = 1. (4)

The dilation factor is nearly one for glycerin and water with a maximum near

f(1/2) = 1.01.

The maximum deviation of ethanol and water solutions is about 3%.



130 D.D. Joseph

Noting now that in the mixtures the masses mw and mg do not change,
we may assume that the same dilation f(φ) of V , applies also to Vw and Vg,
so that

Uw = Vwf(φ),

Ug = Vgf(φ).
(5)

Hence
mw = ρ∗wUw,

mg = ρ∗gUg
(6)

and
U = Uw + Ug (7)

is a restatement of the “law of additive volumes”. The new volume fraction

φ∗ = Uw/U = Vw/V = φ (8)

is the same as the old one.
The new mixture density is the same as the old mixture density

ρ∗(φ) = ρ∗wφ+ ρ∗g(1 − φ) = ρ(φ)/f(φ) (9)

with the caveat that ρ∗w = ρw/f(φ) and ρ∗g = ρg/f(φ) given by (2), (5) and
(6) are no longer table values.

The continuity equation is

dρ∗

dt
=

dρ∗

dφ
dφ
dt

= −ρ∗ div u, (10)

where

dρ∗

dt
= ρ̄(φ)

dφ
dt

(11)

and
ρ̄(φ) = d[ρ(φ)/f(φ)]/dφ (12)

is not zero. If
dφ
dt

=
∂φ

∂t
+ u · ∇φ �= 0, (13)

the flow cannot be solenoidal.
Volume changes due to mixing require that distances between molecules

change; such molecular rearrangements produce work and energy in the form
of exothermic reactions. Thermodynamics of miscible mixtures which do not
satisfy the law of additive volumes should be considered.
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3 Mass Transport Equations for Simple Mixtures
of Incompressible Miscible Liquids

The governing equations ([22, Vol. 2, Chapter X], [19, 28]) expressing the
diffusion of species, balance of mass and momentum for simple incompressible
binary mixtures can be formulated as

∂φ

∂t
+ ∇ · (φu) = ∇ ·

(
D

1 − ζφ
∇φ

)
, (14)

∇ ·
(
u − ζD

1 − ζφ
∇φ

)
= 0, (15)

and

ρ

(
∂u
∂t

+ (u · ∇)u
)

= ρg −∇p+ μ

{
1
3
∇(∇ · u) + ∇2u

}

− 2
3
(∇μ)(∇ · u) + 2∇μ · D[u], (16)

where φ is the volume fraction, u is the mass averaged velocity, ζ = 1 −
ργ/ρv > 0 is the normalized density difference, D is the diffusion coefficient,
ρ is the density and μ is the viscosity. Note that D, ρ and μ are functions of
φ. Equation (16) is the Navier–Stokes equation for a compressible mixture of
two miscible incompressible liquids in which the acceleration and viscous stress
are expressed in terms of the mass averaged velocity and the bulk viscosity
is chosen according to Stokes hypothesis which forces the stress deviator to
have a zero trace.

The expansion velocity ue

ue
def= ∇h =

ζD

1 − ζφ
∇φ (17)

and the solenoidal velocity w

w def= u − ue. (18)

The expansion velocity ue has a zero curl and a non-zero divergence and
∇∧ u = ∇ ∧ w. The function

h = h(φ) =
∫ φ

0

ζD

1 − ζφ
dφ (19)

is a chemical potential derived in [22, eq. (4e.7)] using the theory presented in
[26, p. 357]. The equation (15) is derived (see [13]) from manipulations using
the continuity equation (10) written for simple mixtures satisfying the law of
additive volumes and the diffusion equation (14). The decomposition of the
velocity into a solenoidal part and a gradient is a realization the Helmholtz
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decomposition. The same manipulations do not lead to a similar decomposi-
tion when the theory (5) of volume changes due to mixing is applied. Here ζ
is a primary parameter. The expansion velocity ue is proportional to ζ and
D, the diffusion coefficient, and is zero for two species with the same density.

If D is constant, then

h = −D log[1 − ζ]. (20)

The viscosity μ = μ(φ) is a rapidly varying function, in general. We could
think of φ as the water fraction of glycerin–water mixture, then empirically
[42] μ(φ) may be approximated by μG exp[α1φ + α2φ

2 + α3φ
3] and, for ex-

ample, at 60◦C, the coefficients are α1 = −10.8, α2 = 9.47, and α3 = −3.83.
And, according to the simple mixture assumption, the density is given by
ρ = ρG(1 − ζφ). In the case of glycerin–water mixtures, the model gives
less than 1 % error with the maximum error near φ = 0.5. Values of D(φ)
for glycerin–water mixtures may be obtained from the paper on miscible dis-
placement in capillary tubes by Petitjeans and Maxworthy [37, Table 1]. (They
measured D(Cg), where Cg is the percentage of glycerin by weight, over the
whole range 0 ≤ Cg ≤ 1.) Their paper and the companion papers on numer-
ical simulation of miscible displacement by Chen and Meiburg [9, 10] make
some comparisons between the usual solenoidal theories in which the weight
difference is neglected and the non-solenoidal theory under study here. They
appear to have neglected the effects of the dilatational stress which is impor-
tant when div u does not vanish and the viscosity and viscosity gradients are
large as in glycerin–water mixtures.

4 Volume Transport Equations for Simple Mixtures
of Incompressible Miscible Liquids

In terms of w, h and φ, the governing equations (14), (15), (16) can be written
as

∂h

∂t
+ (w · ∇)h = D∇2h−∇h · ∇h, (21)

∂φ

∂t
+ (w · ∇)φ = ∇ · (D∇φ), (22)

∇ · w = 0 (23)

and

ρ

(
∂w
∂t

+ (w · ∇)w + (∇w) · ∇h−∇h · (∇w)
)

+ρ∇
{
D∇2h− 1

2
(∇h · ∇h)

}

= ρg−∇p+μ∇2w+
1
3
μ∇(∇2h)− 2

3
(∇μ)∇2h+2∇μ•D[w]+2∇μ•D[∇h].

(24)
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5 Boundary Conditions at a Solid Wall

The diffusive flux of any species across an impermeable, bounding surface
vanishes. If n is the outward at such a surface (from the fluid to solid), we
have

n · ∇φ = 0 (25)

at an impermeable boundary.
The nature of the boundary condition for the velocity at a solid wall can

be considered [28]. For miscible liquids, like glycerin and water, the mixture
looks and feels like any other liquid and it is natural to think that the no-slip
condition u = 0 which applies to solutions of the Navier–Stokes equation, like
(3) ought to apply. This is the point of view adopted by Landau and Lifshitz
[27], by Camacho and Brenner [6] and in our earlier work (see [22]) and here.
However, in mixtures we do not know, at present, what is the appropriate
average of the species velocities to insert in the viscous stress terms in the
momentum balance, or in the no-slip condition at a solid boundary.

Gases are different than liquids, because the molecules between species
of different types are not held together by short range forces at a distance;
collisions are the dominating dynamical process. It is perhaps more natural
to consider averages over the two species of a binary mixture of gases, which
unlike the constituents of miscible liquids, are not tied together in lock step by
molecular fields of force. When viewed in this way, we may identify u with the
mass averaged velocity and the solenoidal part w with the volume averaged
velocity. We may then consider whether w, u or some combination of these
ought to vanish at a solid wall.

Careful experiments on isobaric interdiffusion of binary gases in porous
plugs by Graham [15] and others lead to the conclusion that the total mass
flux does not vanish even though the pressure is the same at either end of
a capillary tube. Jackson [17] has shown that Graham’s law which implies
the existence of a mass flux in isobaric conditions holds from free molecule to
continuum flow. Jackson [17, pp. 25–33] generalized a kinetic theory argument
of Maxwell for a pure gas to a gas consisting of a mixture of two substances
to show that a weighted mass averaged velocity, which is neither the mass or
volume averaged velocity ought to vanish at a solid wall.

Mo and Rosenberger [34] did molecular-dynamics simulations of flow of
gases with binary diffusion in a two-dimensional channel with atomically rough
walls. They found that the no-slip condition for the mass averaged velocity
arises when the mean free path in the gas mixture is of the same order of
magnitude or smaller than the atomic-wall-roughness amplitude. However,
if there are concentration gradients along the wall, the component veloci-
ties at the wall do not vanish. Thus, the no-slip condition is established via
the mutual cancellation of the non-vanishing, opposing slip velocities of the
components. Mo and Rosenberger note that their work does not settle the ap-
parent contradiction between the results of isobaric interdiffusion experiments



134 D.D. Joseph

and the expected vanishing of the mass averaged velocity at all locations; they
speculate about possible reasons for the discrepancy.

On the other hand, Koplick and Banavar [24] did molecular dynamic simu-
lations of the flow of liquids with binary diffusion in a two-dimensional channel
with atomically rough walls. Their simulations indicate that the velocity of
each individual liquid species satisfies the no-slip condition and, therefore, so
do mass and volume averages. Certain mathematical problems are associated
with this approach; if the velocity of each species of a binary mixture vanishes,
then the second order diffusion equation is well-posed with one boundary con-
dition, (25), but not with two.

The sidewall effects, would disappear if the volume averaged velocity were
to vanish at solid wall. This possibility seems to have been rejected by all
workers in this subject, but the nature of the boundary conditions at a solid
wall still needs clarification.

6 Korteweg Stresses

Korteweg [25], following his teacher Van der Waals [45], gave a theory of equi-
librium surface tension in which the surface of discontinuity between a liquid
and its vapor is replaced by a transition layer. He proposed that the stress
in a compressible fluid is the usual one plus another stress which depends
on gradients ∂ρ/∂x of the density. Van der Waals reduced the form of the
added stress to a quadratic form by requiring that the relation between the
density gradient and the stress be form invariant under rigid body transforma-
tions. Korteweg suggested in [25, footnote] that his theory could be adapted
for miscible mixtures using φ instead of ρ. This theory is different than his
equilibrium theory because it is tied to diffusion and ultimately to motion.

The stress is given by
T = T(1) + T(2), (26)

where
T(1) = −p1 + 2μD[u] − 2

3
1 divu (27)

and

T(2) = δ̂∇φ⊗∇φ+ γ̂∇ ⊗ ∇φ, (28)

T
(2)
ij = δ̂

∂φ

∂xi

∂φ

∂xj
+ γ̂

∂2φ

∂xi∂xj
(29)

is the Korteweg stress. Invariance requires that T (2)
ij is invariant to a change

from ∂x to −∂x. This symmetry means those linear terms in ∇φ cannot
appear. The coefficients δ̂ and γ̂ are unknown and experiments in which they
may be measured are also not known.

Here is a simple way to think about the Korteweg stresses. Since terms
linear in ∇φ are excluded, we suppose that
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T
(2)
ij =

∂2F (φ)
∂xi∂xj

= F ′′(φ)
∂φ

∂xi

∂φ

∂xj
+ F ′ ∂2φ

∂xi∂xj
. (30)

The Navier–Stokes equation for simple mixtures of incompressible miscible
liquids with the Korteweg stresses are given in Section 2 and

ρ
du
dt

= −∇p+ div(T(1) + T(2)). (31)

7 Relaxation Effects

Diffusion of initially discontinuous data is impossible. This data must propa-
gate as a damped wave governed by a damped wave equation rather than a
diffusion equation. If the damping is rapid as is usually true for heat conduc-
tion; this is just as true for the propagation of species concentration; a change
of concentration at some point cannot be felt instantly at distant points.

A simple model for the propagation of heat by damped waves was first
given by Cattaneo [8] who assumed that the temperature gradient depends
on the rate of change of the heat flux as well as its present value. A similar
assumption was made for gases, but not pursued, by Maxwell [32]. The litera-
ture on heat waves was reviewed and evaluated by Joseph and Preziosi [20,21].
These reviews have stimulated a topic of heat transfer research called hyper-
bolic heat conduction. The goals of research on hyperbolic heat conduction
are to identify the applications in which relaxation effects are important, to
study different models relating the heat flux to the temperature gradient, to
investigate effects of a spectrum of relaxation times rather than a single one, to
determine the conditions which lead to the smoothing of waves and to develop
analytic and numerical methods to solve outstanding problems. Some of these
research directions are discussed in papers by Joseph and Preziosi and others
are readily found in internet search. Maddox [30] commented on issues raised
in the papers by Joseph and Preziosi in the “News and Views” section of Na-
ture; he wrote “Heat conduction is a can of worms”. In commenting on Fick’s
law, Malone and Wheatley [31] have written a similar note “A bigger can of
worms”. Heat conduction satisfying Fourier’s law has the same problems and
possibly the same remedies as the diffusion of species following Fick’s law.

The basic idea is to replace Fourier’s law q = −k∇T with a relaxation law

λ
dq
dt

+ q = −k∇T, (32)

where q is the heat flux, k is the conductivity, T the temperature, and λ a
relaxation time. The energy equation is

ρCp
dT
dt

= − divq (33)
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if q = −k∇T , then
dT
dt

=
k

ρCp
∇2T (34)

giving rise to diffusion.
On the other hand, using the relaxation equation (32), we get

λ
d2T

dt2
+

dT
dt

=
k

ρCp
∇2T. (35)

The equation (35) is a damped wave equation. When λ is small (35) reduces
to diffusion. When λ is large (35) reduces to a wave equation. Waves of the
form T (x− ct) propagate with a speed

c =
√
k/ρCpλ. (36)

Suppose that the temperature T (0, t) of a semi-infinite solid, initially at a uni-
form temperature, is suddenly raised to T0 > 0. In the classical case, the news
of this change is felt immediately at infinitely distant points; the temperature
distribution is self similar and is described by an error function of argument
proportional x/

√
t (see [7, p. 94]). In the hyperbolic case (35), the speed of

the wave (36) is finite and the temperature in front of the wave is identically
zero with a diffusion like profile behind. A dimensionless formulation of the
initial value problem just described is

∂θ

∂t̂
+
∂2θ

∂t̂2
=
∂2θ

∂x̂2
, θ = T/T0, θ(0, t̂) = H(t), θ(x̂, 0) =

∂θ(x̂, 0)
∂t̂

= 0,

where θ is bounded as x̂→ ∞, x̂ = x
√
ρCp/λk, t̂ = t/λ.

The solution (see Figure 1) of this problem is well known [36].
The diffusion of species is typically modeled in the same way as the diffu-

sion of heat. In the classical case of diffusion we have

x=0.4ˆ
x=1.1ˆ
x=2.0ˆ

t̂

x=tˆ

x̂

ˆ

c = k=PCpl

1

q

Fig. 1. Heat conduction into a semi-infinite region x̂ > 0 initially at a temperature
θ = 0. At t̂ = 0+, the temperature at x̂ = 0 is raised to 1 and, therefore, propagates
as a decaying wave, with θ = 0 in front and diffusion behind.
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∂φ

∂t
= − divqφ, diffusion equation (37)

qφ = −D∇φ, Fick’s law (38)
∂φ

∂t
= D∇2φ. parabolic equation (39)

Suppose now that we have relaxation instead of Fick’s law. Then

λ3
∂qφ
∂t

+ qφ = −D∇φ, (40)

and

λ3
∂2φ

∂t2
+
∂φ

∂t
= D∇2φ. (41)

A typical problem is the smoothing an initial discontinuity of composition as
studied by Liao and Joseph [28] but with effects of sidewalls neglected. The
composition for x > 0 is initially, φ = 1 (all water) and φ = 0 for x < 0
(all glycerin). Then, the species mix so that the final composition tends to 1

2 .
Of course, the uniform concentration cannot be established on the infinite
domain but more and more of the fluid comes under the influence of diffusion
in the region around x = 0 behind the waves composition propagating to
the left and right. In a bounded domain we eventually get complete mixing,
by diffusion alone when λ3 = 0 and, in principle, by repeated reflection of
waves of composition off the bounding walls. In practice, the decay of the
wave amplitude may be so rapid that the waves could not be observed (see
Figure 2).

The modeling of the relaxation between the species flux qφ and the species
concentration φ in the nonlinear case is complicated and, in fact, there are
many different models which satisfy the requirement of form invariance. For
example,

λ3
�
qφ + qφ = −Dγ(φ)∇φ, (42)

where
�
q is an invariant derivative of a vector discussed in [18, pp. 13–44].

1

1/2

0

x

f

t1 t2

c 2= D/l3

Fig. 2. Mixing of initial discontinuity by a damped wave. The discontinuity prop-
agates as wave; faraway there is no mixing. Diffusion acts behind the wave. The
amplitude of the wave decays. After some time the wave collapses to diffusion.



138 D.D. Joseph

8 Relaxation Effects in the Modeling
of Gradient Stresses

The Korteweg stress (28) is large where and when the gradient of composition
is large. The stresses are infinite across surfaces of discontinuity such as when
fresh water is put into contact with pure glycerin. The discontinuity is im-
mediately smoothed by diffusion; this smoothing occurs so rapidly that the
molecular rearrangement of glycerin and water could not occur. As in other
problems eventually governed by diffusion, the initial response is momentarily
elastic, the glycerin and water relax into diffusion.

A template for modeling relaxation effects is provided by the vast liter-
ature modeling the relation of stress and deformation in fluids. Many mod-
els are possible, these models are required to be form invariant under rigid
body motions. This kind of invariance was established by Van der Waals for
the Korteweg stresses depending on the gradients of density. His analysis is
rigorous and modern. The modeling of relaxation effects satisfying the re-
quirements of invariance is more complicated than the simple theory given
in section. The modeling of relaxation effects for heat and temperature was
treated in a comprehensive manner by Joseph and Preziosi [20, 21].

To describe the relaxation of stresses due to gradients of composition to
the Korteweg stresses a templet leading to an upper converted Maxwell model
can be considered. The mass transport equations for this model are (14) and
(15) and

ρ
du
dt

= ρg − ∇p+ div[τ (1) + τ (2)], (43)

where

λ1

�
τ (1) + τ (1) = 2μD[u] − 2

3
1 div u (44)

for the stresses due to motion and

λ2

�
τ (2) + τ (2) = δ̂∇φ⊗∇φ + ∇⊗∇φ (45)

for the Korteweg stress where

�
τ =

∂τ

∂t
+ (u · ∇)τ − 2Lτ − 2τLT (46)

and L = ∇uT . If the relaxation time λ1 for stresses is different than the
relaxation time λ2 for composition, very interesting short time effects can be
expected.
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9 Transient Interfacial Tension

The possibility that forces associated with steep gradient of composition can
lead to transient effects mimicking interfacial tension has been considered.
It is necessary to recognize the difference between liquids which mix in all
proportions and those which only partially mix. Liquids which partially mix
are immiscible, but the partially mixed fluids are not pure. Interfacial tension
in the classical sense applies to them but the tension between the pure liquids
will be greater than the final tension between the partially mixed liquids.
Dynamic tension describes the reduction in tension during mixing.

Freundlich [12] says that

We have only to remember here we are in the end always dealing with
solutions. For the one liquid will always be soluble in the other to
some degree, however small. Hence the dynamic tension of liquids,
when first brought into contact, is to be distinguished from the static
tension, when the two liquids are mutually saturated. Not only do
liquids which are not miscible in all proportions have a mutual surface
tension; even two completely miscible liquids, before they have united
to form one phase, exhibit a dynamic interfacial tension. For we get by
careful overlaying of any two liquids a definite meniscus, a jet of one
liquid may be generated in another, and so on. The tension decreases
rapidly during the process of solution, and becomes zero as soon as
the two liquids have mixed completely.

A few attempts were made to measure the tension at early times t. Quinke
[40] got 0.8–3.0dyn/cm for ethyl alcohol/salt water. Smith et al. [44] got
1 dyn/cm for 1 cs/2,000 of silicone oil.

Davis [11] used the Irving–Kirkwood pressure tensor to evaluate the jump
of pressure across a plane mixing layer. The Irving–Kirkwood pressure tensor
gives the pressure in terms of the square of the concentration, something like
the Korteweg stresses. The tension is expressed as a jump of pressure across
the layer; it is a function of time due to the diffusive spreading of the front. He
concludes that the tension of a diffusing mixing zone between miscible liquids
while small, is nevertheless not zero.

Joseph [18] and Joseph et al. [19] used the full set of basic equations
for mixing liquids to study transient tension. They found that the Korteweg
stresses do not enter into the jump of the normal stress ΔP at a plane layer.
At a spherical layer centered on r0

ΔP =
2
r0

√
D

t

(
164

−δ̂
D

− 429

)
.

To get positive tension

−164
δ̂

D
− 429 > 0.
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Lowengrub and Truskinovsky [29] presented a model for a binary miscible
mixture in a narrow transition layer in which Korteweg-like dynamics involv-
ing motion and diffusion determine the internal structure of the layer. The
effects of surface tension are determined by the pressure drop across the layer.

Pojman et al. [38] and Zoltowski et al. [46] presented evidence for the
existence of effective interfacial tension between several binary mixtures of
miscible fluids. These liquids mix in certain properties at one temperature
and in all proportions at another. They used a spinning drop tensionmeter to
measure the tension after erasing the solubility threshold. A rather complete
review of the literature on this topic is given in these papers.

The effects of relaxation on transient tension have not been systematically
studied. The effects of different rates of relaxation for stresses due to motion
and stresses due to composition are of interest. These effects would be mag-
nified in binary mixtures of fluids with high viscosity and low diffusion, as in
the experiments of Mungall [35] and Runge and Frischat [41].

Mungall [35] developed a relaxation theory for gradient stresses between
silicate melts. He models these fluids as viscoelastic compressible solids in
which the compressibility may be induced by density gradients of heat or
composition. His viscoelastic compressible Maxwell solid presumably reduces
to a viscous fluid after the stress relaxes but a description of the reduction to
diffusion is not presented. His model does not relax to Korteweg’s and may not
be an appropriate description of mixtures of incompressible miscible liquids.
The diffusion of species in Mungall’s theory is classical without relaxation
effects. He gets interfacial effects by comparing the classical diffusion time
with the Maxwell relaxation time. He says that

I present observations of interfacial tension between miscible pairs
of silicate liquid and propose a theoretical model that quantitatively
accounts for them. Viscoelastic rheology of the liquids permits the es-
tablishment of gradient stress completely analogous to thermal stress
in the Maxwell solids; this is expected whenever the time scale of dif-
fusion is shorter than the Maxwell relaxation time. The existence of
gradient stress may profoundly affect interface processed during the
mixing of miscible fluids.

He presents data from an experiment which appears to support his ideas
about transient interfacial tension (see Figure 3):

I observed interfacial tension in molten silicates at 1300◦C and 1 bar
pressure ... they correspond to the natural lava types trachyte (P16a)
and basalt (146). Each experiment consisted of a block of basaltic
glass situated underneath a block of trachytic glass, in contact at a
polished planar horizontal interface, in an open Pt crucible. The fin-
ished assembly was hung with Pt wire within the hotspot of the 1 atm
tube furnace and brought to temperature within 2min. One experi-
ment was quenched immediately upon reaching the run temperature
of 1300◦C whereas the others had durations of 17 and 84min after
reaching 1300◦C...
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Fig. 3. Back-scattered electron micrographs of results of experiments.

Backscattered scanning electron micrographs of vertical sections
through the run products are shown in Figure 1 [in the next slide].
...At the time of first melting of the glasses the interface was perfectly
planar. The interface as it appeared after quench is clearly visible
and in all four experiments forms a meniscus (see figure caption).
In the reversed experiment the sense of curvature of the meniscus is
also reversed [our emphasis]. Since basaltic and trachytic liquids are
completely miscible, the classic concept of a surface tension cannot be
applied to this case.

Runge and Frischat [41] presented data on glass melts containing Al2O3

which can be interpreted as giving rise to strong effects of transient tension
(see Figures 4 and 5). Their binary system is high viscosity, slow diffusion and
surely viscoelastic:

Al2O3-containing droplets (“model cords”) were placed on an Al2O3-
free matrix glass of the system Na2O–CaO–SiO2 and were allowed
to sink in and react with the glass melt. From a comparison using
Al2O3-free substances it could be shown that the Al2O3-containing
droplets achieved only by assuming an acting interfacial energy in the
contact zone between the two glass melts. From the droplet contours
an effective interfacial tension between 0.4 and 1.1mNm−1 could be
calculated. The interdiffusion profiles in the contact zone showed that
although Al2O3 and SiO2 equilibriated slowly by diffusion, both Na2O
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Fig. 4. Droplets after nearly totally dipped cord performs at νmax = 1,045◦C,
cylindric droplet performs of 3mm in height and 3mm in diameter, matrix Al2O3-
free glass, droplet Al2O3-containing glass (left column) and Al2O3-free glass (right
column), respectively. Before dipping the matrix melt was held at νmax. (a) th = 15,
(b) 30, (c) 45, and (d) 60 min, respectively. Bar = 1mm [41].

3 cm

3 cm

1000 C

Fig. 5. Droplets after sink-in experiments at umax = 996◦C, similar conditions
as in [their] Figure 2; (a) th = 0, (b) 7.5, (c) 15, (d) 30, (e) 45, and (f) 60 min,
respectively. Bar = 1 mm [41].
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and CaO withstand equilibriation by uphill diffusion. In conclusion,
both the effective interfacial energy and the uphill diffusion prevent a
rapid dissolution of Al2O3-containing cords [our emphasis].

10 Discussion

A brief summary of the issues raised in generalizing the Navier–Stokes
equations for mixtures of incompressible miscible liquids to accommodate
for the effects of a nonzero irrotational expansion and diffusion is given in
the abstract to this paper. We have argued that diffusion is impossible be-
cause the news of a finite change of composition cannot be felt everywhere
instantly; the news of such a change must travel to distant places with a
finite speed. Typically the amplitude of the wave front decays to zero, and
the species profile behind the wave decays to diffusion. In the linear case,
the diffusion of species is governed by a damped wave equation. Elements of
a theory of mixtures which do not satisfy the law of additive volumes were
proposed; the energy equation for non-simple mixtures ought to considered
because changing the distance between molecules will generate large amounts
of heat. Gradients of composition do not only enter into diffusion but they can
be expected to generate stresses which may be modeled by the second-order
theory of Korteweg [25]. The central question is the nature of stresses induced
by gradients of composition. Korteweg’s model is one constitutive assumption
relating stresses to gradients of composition. Other constitutive assumptions
could be considered. The effects of the Korteweg stresses seem to be negligible
except when the gradients are large and then the effects of stress relaxation
should be considered. We introduced a viscoelastic model which reduces to
Korteweg’s after stress relaxation and a Cattaneo type of diffusion model
which reduces to Fick’s law and has a different time of relaxation. It remains
to see if this model can be tuned to explain the pseudo-transient interfacial
effects observed in experiments.
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Summary. Demand forecasting problems frequently arise in logistics and supply
chain management. The Newsboy Problem is one such problem. In this paper, we
present an improved solution method using application of the Black–Scholes model
incorporating stochastic processes used in financial engineering for option pricing.
Through numerical experiments using real-world data, the proposed model is demon-
strated to be effective.

1 Introduction

In demand forecasting problems, the quantity of expected demand and the
most suitable wholesale quantity are sought. They are important problems
in Effective Demand Management; the problems often appear in the fields of
logistics and supply chain management. Demand forecasting systems are ex-
pected to support the purchasing/procurement and sales departments of com-
panies. They are intended to reduce differences between sales and demand.
In recent years, various means have been adopted to determine quantities of
demand and optimal wholesale size. Makridakis and Wheelwright [3] clas-
sified forecast methods into quantitative forecasting, judgment forecasting,
and technological forecasting. Sekine [6] presented a forecasting system used
by KAO Corp., which includes forecasting according to season, daily goods,
new products, commodity switching, and similar goods. Munakata and Saito
[5] proposed a forecast technique for new products based on short-term time
series data, quantities of accumulated aggregate demand, and product life
cycles. In contrast, few studies have examined Newsboy Problems (NBPs).
Some commodities become worthless after a certain time passes: newspapers,
perishable foods, etc. For stock control of such commodities, the daily deci-
sion for wholesale quantity becomes an important problem. Such problems are
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designated simply as Problems herein. Masui [4] proposed a method of finding
optimal wholesale size that minimizes expected values of the loss and maxi-
mizes expected profit for various wholesale quantities. Kawarada and Hachiya
[2] reformulated it using the Martingale theory and the Black–Scholes model.
In this formulation, the Black–Scholes model, which is widely used in finan-
cial engineering, is adopted. The opportunity and disposal losses correspond
respectively to call and put options.

In this study, we present practical methods of finding an optimal wholesale
quantity and evaluate it through numerical experiments using time series data
in a retail shop. In Section 2, the Newsboy Problem is described. Section 3
presents an outline of the formulation of Kawarada and Hachiya. Section 4
describes validation data. Section 5 shows the verification method and a result
obtained using real-world data. Section 6 explains our salient conclusions.

2 Outline of the Newsboy Problem

We respectively denote the wholesale price and profit margin of the commodity
as α, and β, so the retail price of the commodity is

γ = (α+ β) × (1 + rc), (1)

where rc is a consumption tax rate.
Variables v and u respectively represent demand and wholesale quantities.

In the case where a commodity remains unsold, i.e. v ≤ u, a disposal loss of

ld(v, u) = α(u − v)+ (v, u ∈ Z+) (2)

is incurred, where

(x)+ =

{
x, x > 0,
0, x ≤ 0,

(3)

and Z+ represents the set of positive integers.
For a sold out condition, i.e. v > u, the firm realizes an opportunity loss of

lo(v, u) = β(v − u)+, v, u ∈ Z+. (4)

Consequently, the total loss l(v, u) is expressed as

l(v, u) = ld(v, u) + lo(v, u), v, u ∈ Z+. (5)

Figure 1 portrays this relation.
We regard v as a random variable that represents a demand quantity

distribution subject to a probability density function f(v), v > 0. Therefore,
we can define the expected value E(l(·, u)) of loss function l(v, u). An optimal
wholesale value is defined as the wholesale value u∗ that gives the minimum
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of the expected loss. The demand quantity distribution f(v) is assumed to be
a continuous type. The expected value L(u) of the loss is written as

L(u) = E(l(·, u)) = α

∫ u

0

(u− v)+f(v)dv + β

∫ ∞

u

(v − u)+f(v)dv. (6)

The derivative of the equation (6) with respect to u is

dL

du
= α

∫ u

0

f(v)dv − β

∫ ∞

u

f(v)dv. (7)

Then, by setting (7) to zero, the optimal wholesale quantity u∗ is character-
ized as ∫ u∗

0

f(v)dv =
β

γ/(1 + rc)
. (8)

3 Black–Scholes Models

Black and Scholes described an uncertain time-variation of stock value by
Brownian motion [1]. They obtained an equation representing the valuation
of option prices using the probability process theory. Ito’s Lemma played an
important role in this procedure.

The Black–Scholes equation for the value of the call option c(t, S) is writ-
ten as

∂c

∂t
+ rS

∂c

∂S
+

1
2
σ2S2 ∂

2c

∂S2
− rc = 0, 0 < S <∞, 0 ≤ t < T, (9)
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where t, S, r, T , and σ respectively signify time, the current price of a stock,
the current continuously compounded risk-free interest rate, the end of a time
period, and the standard deviation of the continuously compounded annual
rate of return Pr(t), which is defined as

Pr(t) =
S(t+1) − S(t)

S(t)
=

�
S(t)

S(t)
. (10)

Boundary and initial conditions are

c(t, 0) = 0, 0 ≤ t < T, (11)
c(t, S) → S, S → ∞, 0 ≤ t < T, (12)
c(T, S) = (S −X)+, 0 < S <∞, (13)

where X indicates the strike price of the option. The equation (13) denotes
the payoff of a European call option at t = T .

In the model, the call option price c(t, S) depends on the volatility, which
describes a random characteristic of the asset price. The volatility influences
the distribution of the asset price at the end of a time period. Consequently,
it influences the expected earnings from the option.

In fact, the equation (9) can be transformed to a heat equation through
variable redefinitions. Then, using the solution of the heat equation, the solu-
tion of the equation (9) at time t = 0 is obtained as

c (0, S) = S ·N(d1) −X · e−rTN(d2), (14)

where

N(x) =
1√
2π

∫ x

−∞
e−

y2
2 dy, (15)

d1 =
ln
(
S
X

)
+
(
r + σ2

2

)
T

σ
√
T

, (16)

d2 =
ln
(
S
X

)
+
(
r − σ2

2

)
T

σ
√
T

. (17)

Here N(d) is the standard normal cumulative distribution function.
Then, we set the current value of the call option C = c(0, S) as a function

of strike price X

C(X) = S ·N(d1) −X · e−rTN(d2). (18)

On the other hand, the current value of a put option can be derived as

P (X) = −S ·N(−d1) +X · e−rTN(−d2), (19)

similarly.
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By combining the call (18) and put (19) options, we obtain the put-call
parity formula as

C(X) = P (X) + S −X · e−rT . (20)

By differentiating the equation (18) with respect to X , we obtain

dC

dX
= −e−rTN(d2). (21)

In [2], the option pricing theory is related to demand forecasting as follows:

• The payoff in option pricing theory is replaced by the loss function of
the Newsboy problem. Then, the option prices are corresponding to the
current price of the loss in demand forecasting.

• Strike prices X in option pricing correspond to optimal wholesale u∗ in
demand forecasting.

Hypotheses in the correspondence between the option pricing theory (OP)
and demand forecasting (DF) are as follows:

(H1) OP: The option price follows the Ito process.
DF: The time series of demand quantity follows the Ito process.

(H2) OP: The option can be exercised only at the end of the period (European
option).
DF: Profit margin and losses of the commodities are calculable at the
pull date.

(H3) OP: It is possible to sell short.
DF: A deposit is charged before the reservation would be accepted.

(H4) OP: The dealing cost is not necessary.
DF: Extra costs other than the wholesale price are unnecessary.

(H5) OP: Riskless arbitrage does not exist.
DF: Disposal and opportunity losses always exist.

(H6) OP: Dealings are done continuously.
DF: Commodities are sold continuously.

(H7) OP: A risk-free interest rate is constant and equal at any expiration
period.
DF: The rate of natural increase of demand is constant and the same in
any forecasting period.

By letting opportunity and disposal losses correspond to call and put options,
respectively, the expected value of the loss function can be represented as

E (l (·, X)) = α · P (X) + β · C(X). (22)

By substituting (20) into (22), we obtain

E (l (·, X)) = γ · C(X) − α · S + α ·X · e−rT , (23)
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where we regard r as the natural demand increasing rate corresponding to the
risk-free interest rate in the option pricing theory. By differentiating the equa-
tion (23) with respect to X , setting it to zero, and substituting the equation
(21) and the equation (1), we obtain

N (d2) =
α

γ/(1 + rc)
. (24)

By transforming the equation (24) using the equations (15), (16) and (17),
and replacing strike price X with optimal wholesale quantity u∗, we obtain

u∗ = exp
{(

r − 1
2
σ2

)
T − σN−1

(
α

γ/(1 + rc)

)√
T

}
S. (25)

This is the optimal wholesale quantity, by which the loss at T is expected to
be minimal.

4 Validation Data

4.1 Original Data

For this study, the quantity of wholesale and retail sales of rice balls and
sandwiches, and the number of customers that passed the checkout counter
at each time period were provided by the Okayama University Co-operative,
which manages a retail shop located on the Okayama University campus.
Details of the data are as follows:

(a) “Tuna and mayonnaise rice balls” are adopted among the various brands
of rice balls and sandwiches because that commodity was sold throughout
the target period duration.

(b) Shop hours are 8:00 to 23:00.
(c) The wholesale price of the commodity α = 70 (JPY), the profit margin is

β = 30 (JPY) and the retail price γ = 105 (JPY).
(d) The commodities remaining unsold are disposed at the end of shop hours.
(e) In case 1, we prepare the sequential dataset “Monday, Tuesday,

Wednesday, Thursday, Friday, Monday, Tuesday, Wednesday, Thursday,
Friday, . . ., Monday, Tuesday, Wednesday, Thursday, Friday” excluding
Saturdays, Sundays, and holidays.
In case 2, for comparison, we prepare five sequential datasets consist-
ing of the same days of the week, “Monday, . . ., Monday”, “Tuesday,
. . ., Tuesday”, “Wednesday, . . . Wednesday”, “Thursday, . . ., Thursday”,
“Friday, . . ., Friday”, and excluding Saturdays, Sundays, and holidays.

(f) The target period was 30 weeks (147 days) during 21 May 2007–28 March
2008.
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Table 1. Number of customers in each time period

Time period (h)
Date (d) 8 9 10 · · · 20 21 22

21/05/07 11 64 163 · · · 106 71 2
22/05/07 15 63 205 · · · 92 56 1
...

...
...

...
. . .

...
...

...
27/03/08 0 1 43 · · · 50 66 8
28/03/08 0 2 43 · · · 75 78 8

Table 2. Wholesale/retail quantities and final sales time

Date (d) Retail sale (vr) Wholesale (u) Final sales time (Ts)

21/05/07 25 25 21:09
22/05/07 20 20 12:21
...

...
...

...
27/03/08 26 26 17:26
28/03/08 28 30 17:20

(g) Table 1 presents an example of the number of customers A(d, h) that
passed the checkout counter during each time period of each day. Therein,
d is the date and h is time period from 8 to 22.
Table 2 portrays an example of data for quantity of retail sales vr, the
quantity of wholesale u, and the final sales time Ts on each day.

(h) If a part of the commodity remains unsold, regard the quantity of sales vr
itself as the quantity of the demand v. If the commodity is sold out and
the final sales time is earlier than the end of the shop hours, the amount
of the demand vd is estimated as

vd =
vr ×

∑22
h=8A(d, h)∑Tz

h=8A(d, h)
, (26)

where Tz is the integer portion of Ts.
This procedure is used for inferring the likely quantity of the net demand
on the day using the fraction of customers who have purchasing intentions
for “Tuna and mayonnaise rice ball” among all customers.

4.2 Calculation and Loss Evaluation

We compare three techniques, the Black–Scholes model, simple linear extrap-
olation, and the decision by a real expert buyer who makes decisions of whole-
sale quantity every day at an actual retail shop.
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Black–Scholes Model

Step 1. We construct the datasets of D days long s(d, z), 1 ≤ d ≤ D, 1 ≤
z ≤ Z. Parameter D denotes the segment length. The total number
of evaluation data is Z = 147 −D, where 147 is the total number of
days of the data included in the target period of this study.

Step 2. Compute Pr(s(d, ·), k) from (10) and volatility σ as follows:

σ(s(d, ·)) =

√√√√ 1
D − 2

D−2∑
k=1

(Pr (s (d, ·) , k))2 −
(
D−2∑
k=1

Pr (s (d, ·) , k)
)2

.

(27)

Step 3. In the expression (25), T = 1 and the data of (D − 1)th day is used
as S. The forecast value is rounded off and the integer is taken.

Linear Extrapolation

Step 1. Compute a and b that minimize

D−1∑
d=1

|vr − (ad+ b)|2.

Step 2. Compute vD = aD+b using a and b obtained in Step 1. vD is rounded
off and the integer is taken.

Expert Buyer

The wholesale quantity u decided by the expert buyer working in the actual
retail shop is used.

5 Numerical Experiments and Result

5.1 Aspects of the Techniques

In fact, Figure 2 portrays an example of the forecasted wholesale quantity
using the three techniques to view their aspects. In this example, D is set at
6 for B-S model and linear extrapolation and r is set at 0.2 for B-S model.
The days from the 47th to 56th are the sales campaign period, during which
the price of a certain commodity is set at lower price for sales promotion.

It is apparent that the Black–Scholes model and linear extrapolation lag
a few days after the change of the real demand and can not react to a rapid
change in the demand at the sales campaign period. This is not so strange
because the real expert buyer knows when the sales campaign starts. Fur-
thermore, the forecasted value by B-S model drops down to zero because the
volatility σ in (25) becomes very large. Such a sales campaign period is beyond
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the scope of the demand forecasting model examined in this study. Therefore,
we exclude the sales campaign periods from our numerical experiments. Con-
sequently, the total days of data become 119.

Respectively, Figures 3 and 4 show time histories of disposal and opportu-
nity losses over an interval excluding sales campaign period. Results show that
the occurrence frequency of disposal losses is lower than that of opportunity
losses and that the expert buyer makes decisions that bring about disposal
losses only rarely.

5.2 Selection of Parameters

Black–Scholes Model

In the Black–Scholes model, unknown parameters are the natural demand
increase rate r and segment length D. To fix these parameters, an iterative
procedure is adopted as follows:

Step 1. Provide segment length D between 5 and 99.
Step 2. For each D, the optimal r is sought by testing various values between

0.01 and 1.00. In this test, the demand on (D−1)th day is forecasted
using the demand on (D − 2)th day. Finally, the optimal r, which
minimizes the loss on (D − 1)th day, is obtained.

Step 3. Using r fixed at Step 2 and the real demand of the (D − 1)th day,
compute the loss l(v, u) on the Dth day.
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Step 4. Compute the averaged loss of the last m days of the total data, where
m is the average number of business days in one month:

lm =

∑Z
z=Z−m+1 l (vz, uz)

m
. (28)

Linear Extrapolation

In linear extrapolation, the parameter is segment length D only, which is
provided same as Step 1 of the previous subsection. The average loss is also
computed over the same m days.

5.3 Result of Case 1

Actually, Figure 5 shows the dependence of the total loss on segment length
D in the case that all days through the weeks are used sequentially. Because
the expert buyer does not possess the parameter of the segment length, the
loss takes a constant value in this figure. The following have been read from
Figure 5:

1. In linear extrapolation, the total loss l(v, u) grows as D increases and
approaches a constant value. In forecasting using linear extrapolation,
smaller D seems to be appropriate to reflect tendency changes adequately.
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2. For the B-S model, the total loss l(v, u) becomes smaller as D increases,
which indicates that the B-S model, as a method based on stochastic
processes, seems to need longer D to use more appropriate σ.

5.4 Result of Case 2

Figures 6 and 7 show the total losses obtained using the data divided into
each day of the week. By this treatment, the performance of B-S model is
considerably improved. For Tuesdays, Wednesdays, and Thursdays, it can do
better than the expert buyer by taking the sufficient segment length. The
reason might be that the target retail shop is located on a university campus
and the trend of customers must be strongly dependent on the day of the
week.

6 Conclusion

This study evaluated the performance of a demand forecasting strategy based
on stochastic processes using real-world data. Results show that the B-S model
proposed by Kawarada and Hachiya can reduce the total loss by taking the
appropriate segment length. Unfortunately, regarding the data used for this
study, the proposed methods were not always superior to the predictions by
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the expert buyer. The reason might be that the expert buyer incorporates
much information into forecasts and tries to make the disposal loss as low
as possible. Nevertheless, the methods described herein can be very useful in
retail shops that have no expert buyers.

As a technical problem, the method of presuming the quantity of demand
using final sales time data is expected to be improved in the future.

Acknowledgement. The authors thank the Okayama University Co-operative, which
kindly provided sales data for their retail shop.
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Summary. This paper is concerned with computing analytic lower and upper
bounds for diagonal elements of f(A) where A is a real symmetric matrix and f
is a smooth function. The mathematical tools to be used are Riemann–Stieltjes
integrals, orthogonal polynomials, Gauss quadrature and the Lanczos algorithm.

1 Introduction

In this paper we are concerned with computing analytic lower and upper
bounds for diagonal elements of f(A) where A is a real symmetric matrix and
f is a smooth function. Typical examples are f(x) = 1/x or f(x) = exp(x).
This leads to compute bounds for (ei)T f(A)ei where ei is the ith column of
the identity matrix. This problem was considered in Golub and Meurant [3]
for f(A) = A−1. This idea developed in this paper is to write the quadratic
form as a Riemann–Stieltjes integral and to approximate this integral by a
2-point Gauss or Gauss–Radau quadrature rule. When the derivatives of the
function f have a constant sign over the interval of integration this will lead
to lower and upper bounds for the quadratic form. The nodes and weights of
the quadrature formulas are obtained by doing two iterations of the Lanczos
algorithm. This can be done analytically and it provides formulas for these
lower and upper bounds. Of course, except in very special cases, the bounds
are not sharp since doing more Lanczos iterations (that is to say increasing
the number of points of the quadrature rule) will improve the bounds.

The contents of the paper are the following. In Section 2 we review how
the elements of f(A) can be written as a Riemann–Stieltjes integral and how
the nodes and weights of the Gauss quadrature rules are obtained. Section 3
describes how results were obtained in [3] for the inverse of the matrix A.
Section 4 generalizes these results to the case of a general function f with an
application to the exponential function.
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2 Quadratic Forms and Gauss Quadrature Rules

Since the matrix A is assumed to be symmetric we have A = QΛQT where Q
is the orthonormal matrix whose columns are the normalized eigenvectors of
A and Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi
of A which we order as

λ1 ≤ λ2 ≤ · · · ≤ λn.

By definition of a function of a symmetric matrix, we have

f(A) = Qf(Λ)QT .

Therefore, if u is a given vector, we have

uT f(A)u = uTQf(Λ)QTu,

= βT f(Λ)β,

=
n∑
i=1

f(λi)β2
i .

This last sum can be considered as a Riemann–Stieltjes integral,

I[f ] = uT f(A)u =
∫ b

a

f(λ) dα(λ), (1)

where the measure α is piecewise constant and defined by

α(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if λ < a = λ1,
i∑

j=1

β2
j if λi ≤ λ < λi+1,

n∑
j=1

β2
j if b = λn ≤ λ.

We remark that α is an increasing positive function. The integral in the equa-
tion (1) can be approximated by Gauss quadrature rules. A general rule is
written as

I[f ] =
∫ b

a

f(λ) dα(λ) =
N∑
j=1

wjf(tj) +
M∑
k=1

vkf(zk) +R[f ], (2)

where the weights [wj ]Nj=1, [vk]Mk=1 and the nodes [tj ]Nj=1 are unknowns and the
nodes [zk]Mk=1 are prescribed, see [1, 2, 5]. We are interested in the case where
we have two nodes. That is the 2-point Gauss rule (with no prescribed node)
for which N = 2 and M = 0 and the Gauss–Radau rule (with one prescribed
node) for which N = 1, M = 1. The prescribed node is either a or b, the ends
of the integration interval.
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The remainder term is written as

R[f ] =
f (2N+M)(η)
(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)

⎡
⎣ N∏
j=1

(λ− tj)

⎤
⎦

2

dα(λ), a < η < b. (3)

Therefore, if the sign of the derivative is constant on the integration interval,
we know the sign of the remainder.

How are the nodes and weights obtained? The nodes are the eigenvalues
of the tridiagonal matrix J constructed with the coefficients of the three-term
recurrence relation satisfied by the orthogonal polynomial associated with the
measure α. The weights are the squares of the first elements of the normalized
eigenvectors, see [5]. It can be also shown (see [3]) that

I[f ] = (e1)T f(J)e1 +R[f ].

The matrix J is obtained by running the Lanczos algorithm (see, for instance,
[4]) with the matrix A and a starting vector u/‖u‖. In the cases we are inter-
ested in J is a 2 × 2 matrix. The last diagonal element of this matrix has to
be modified for the Gauss–Radau rule to obtain the prescribed eigenvalue.

3 Analytic Bounds for the Diagonal Elements
of the Inverse

We consider obtaining analytical bounds for the entries of the inverse of A
by doing two iterations of the Lanczos algorithm. This is obtained from the
general framework of Section 2 by considering the function

f(λ) =
1
λ
, 0 < a ≤ λ ≤ b,

for which the derivatives are

f (2k+1)(λ) = −(2k + 1)!λ−(2k+2), f (2k)(λ) = (2k)!λ−(2k+1).

Therefore, the even derivatives are positive on [a, b] when a > 0 and the odd
derivatives are negative which implies that the Gauss rule gives a lower bound
and the Gauss–Radau rule gives lower and upper bounds depending on the
prescribed node. We obtain the following bounds, see [3].

Theorem 1. Let A be a symmetric positive definite matrix with elements ai,j.
Let

s2i =
∑
j �=i

a2
ji, i = 1, . . . , n.
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We have the following bounds for the diagonal entries of the inverse given
respectively by the Gauss and Gauss–Radau quadrature rules:

∑
k �=i

∑
l �=i ak,iak,lal,i

ai,i
∑

k �=i
∑
l �=i ak,iak,lal,i −

(∑
k �=i a

2
k,i

)2 ≤ (A−1)i,i,

ai,i − b+ s2i
b

a2
i,i − ai,ib+ s2i

≤ (A−1)i,i ≤
ai,i − a+ s2i

a

a2
i,i − ai,ia+ s2i

.

Proof. We choose the initial vector v1 = ei and we apply the Lanczos algo-
rithm computing the elements of the symmetric tridiagonal matrix J and the
Lanczos vectors vi. The first step of the Lanczos algorithm (see [4]) gives

α1 = (ei)TAei = aii,

η1v
2 = (A− α1I)ei.

Let si be defined by
s2i =

∑
j �=i

a2
ji,

and
di = (a1,i, . . . , ai−1,i, 0, ai+1,i, . . . , an,i)T .

Then
η1 = si, v2 =

1
si
di.

From this, we have

α2 = (Av2, v2) =
1
s2i

∑
k �=i

∑
l �=i

ak,iak,lal,i.

We can now compute the Gauss rule and obtain a lower bound on the diagonal
element by considering the matrix

J2 =
(
α1 η1
η1 α2

)
,

and its inverse

J−1
2 =

1
α1α2 − η2

1

(
α2 −η1
−η1 α1

)
.

The lower bound is given by (e1)TJ−1
2 e1, the (1, 1) entry of the inverse

(e1)TJ−1
2 e1 =

α2

α1α2 − η2
1

=

∑
k �=i

∑
l �=i ak,iak,lal,i

ai,i
∑

k �=i
∑

l �=i ak,iak,lal,i −
(∑

k �=i a
2
k,i

)2 .
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Note that this bound does not depend on the extreme eigenvalues of A. To
obtain an upper bound we consider the Gauss–Radau rule. Then, we have to
modify the (2, 2) element of the Lanczos matrix as

J̃2 =
(
α1 η1
η1 ξ

)
,

to obtain the prescribed node. The eigenvalues λ of J̃2 are the roots of (α1−λ)
(ξ − λ) − η2

1 = 0, which gives the relation

ξ = λ+
η2
1

α1 − λ
.

To obtain an upper bound, we impose to have an eigenvalue equal to the lower
bound of the eigenvalues of A, λ = a. The solution is

ξ = ξa = a+
η2
1

α1 − a
,

from which we can compute the (1, 1) element of the inverse of J̃2,

(e1)T J̃−1
2 e1 =

ξ

α1ξ − η2
1

.

Using b as a prescribed node gives a lower bound.

Of course, as we said before these bounds are not sharp since they can be
improved by doing more Lanczos iterations, except if the Lanczos algorithm
converges in two iterations. Using more iterations can eventually be done
analytically by using a symbolic calculation software.

4 Analytic Bounds for Elements of Other Functions

If we would like to obtain analytical bounds of diagonal elements for other
functions, we see from the derivation of Section 3 for the inverse that all
we have to do is to compute f(J) (and, in fact, only the (1,1) element) for a
symmetric matrix J of order 2 whose coefficients are known or the eigenvalues
and eigenvectors if f(J) is not available. Let

J =
(
α η
η ξ

)
.

If we are interested in the exponential function we have to compute exp(J).
This can be done using a symbolic mathematics package. For instance, in the
Matlab symbolic toolbox (from MathWorks) there is a function giving the
exponential of a symbolic matrix. The result is the following.
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Theorem 2. Let α = ai,i, η = si using the notations of the previous section.
The element ξ is either α2 or ξa (or ξb) and let

δ = (α − ξ)2 + 4η2,

γ = exp
(

1
2
(α+ ξ −

√
δ)
)
,

ω = exp
(

1
2
(α+ ξ +

√
δ)
)
.

Then, the (1, 1) element of the exponential of J is

1
2

[
γ + ω +

ω − γ√
δ

(α − ξ)
]
.

Although these expressions are quite complicated, if we substitute the val-
ues of the parameters as functions of the elements of A we obtain analytically
a lower bound of [exp(A)]i,i from the Gauss rule and an upper bound (with
ξa) from the Gauss–Radau rule.

For other functions which are not available in symbolic packages we can
compute analytically the eigenvalues and eigenvectors of J . In fact, we just
need the first components of the eigenvectors. The eigenvalues are

λ+ =
1
2
(α + ξ +

√
δ), λ− =

1
2
(α+ ξ −

√
δ).

The matrix of the unnormalized eigenvectors is

Q =
(
θ μ
1 1

)
,

where
θ = − 1

2η
(α − ξ +

√
δ), μ = − 1

2η
(α− ξ −

√
δ).

The first components of the normalized eigenvectors are θ/
√

1 + θ2 and
μ/
√

1 + μ2. Then we have to compute the (1, 1) element of Q̃f(Λ)Q̃T where
Λ is the diagonal matrix of the eigenvalues λ+ and λ− and Q̃ is the matrix of
the normalized eigenvectors. We need the values θ2/(1 + θ2) and μ2/(1 +μ2).

Lemma 1. We have

θ2

1 + θ2
=
α− ξ +

√
δ

2
√
δ

,
μ2

1 + μ2
= −α− ξ −

√
δ

2
√
δ

.

From this lemma we obtain the (1, 1) element of f(J).

Theorem 3. Using the notations of Theorem 2, the (1, 1) element of f(J) is

1
2
√
δ

[
(α− ξ)(f(λ+) − f(λ−)) +

√
δ(f(λ+) + f(λ−))

]
.
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Proof. Clearly the (1, 1) element is

θ2

1 + θ2
f(λ+) +

μ2

1 + μ2
f(λ−).

Using the expressions of Lemma 1 and simplifying, we obtain the result.

We see that if f is the exponential function we recover the results of
Theorem 2. From the last theorem we can obtain analytic bounds for the
(i, i) element of f(A) for any function for which the integral exists and for
which we can compute f(λ+) and f(λ−). Wether we obtain lower and upper
bounds depend on the sign of the third and fourth derivatives of f .

Bounds for off diagonal elements of f(A) can be obtained by using the
nonsymmetric Lanczos algorithm, see [3].

References

1. P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press,
Orlando, FL, second edition, 1984.

2. W. Gautschi. Orthogonal polynomials: computation and approximation. Oxford
University Press, New York, 2004.

3. G. H. Golub and G. Meurant. Matrices, moments and quadrature. In D. F.
Griffiths and G. A. Watson, editors, Numerical Analysis 1993 (Dundee, 1993),
volume 303 of Pitman Res. Notes Math. Ser., pages 105–156, Harlow, 1994.
Longman Sci. Tech.

4. G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

5. G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math.
Comp., 23:221–230, 1969.





Numerical Methods for Ferromagnetic Plates

Michel Flück, Thomas Hofer, Ales Janka, and Jacques Rappaz
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1 Introduction

We present two numerical methods for the simulation of ferromagnetic
phenomenons in a metallic plate, with or without holes. First we briefly recall
the physical model we use for describing the ferromagnetic phenomenon. This
model is based on the use of a scalar potential while other models rather
use a vector potential as in [1] or [2]. Next we present the discretization
methods we use. We then apply these methods on the simple test-case of a
thin ferromagnetic plate placed in front of a rectilineal electric conductor. We
show the various obtained results: magnetic field on a line perpendicular to
the plate and relative permeability on a given line in the plate. Finally we
illustrate our results with an industrial device.

2 Modeling of Ferromagnetism

Let Λ ⊂ R
3 be a domain with boundary ∂Λ occupied by a ferromagnetic

material with relative magnetic permeability μr(‖H‖) ≥ 1 depending on the
Euclidean norm of the magnetic field H, denoted by ‖H‖. In the following,
we suppose that Λ is a bounded open, possibly non simply connected set,
surrounded by known stationary electric currents denoted by j0. We denote
by n the unit normal on ∂Λ, external to Λ. Moreover, we assume that all the
external currents are not modified by the presence of the ferromagnetic mate-
rial and no electric current flows in the domain Λ. The goal of this paragraph
is to establish a modeling of the screen effect due to the presence of Λ on the
magnetic fields.

Without the ferromagnetic material, it is possible to explicit the magnetic
induction field B0 due to j0 by using Biot–Savart law:

B0(x) = μ0

∫
R3

∇xG(x,y) ∧ j0(y) dy, ∀x ∈ R
3, (1)
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where μ0 is the magnetic permeability of the void, G(x,y) is the Green kernel
given by

G(x,y) =
1
4π

1
‖x − y‖ with x,y ∈ R

3,x �= y, (2)

and ∇x denotes the gradient with respect to the variable x.
Let us remark that if H0 is the magnetic field corresponding to B0, we

have in the whole space R
3 without ferromagnetic materials

B0 = μ0H0, (3)
div B0 = 0, (4)

curlH0 = j0. (5)

Due to the presence of the ferromagnetic domain Λ, the magnetic field H
and the induction field B cannot be explicitly given in function of j0, but they
are governed by the following relationships (the Maxwell equations), true in
the whole space R

3:

B = μ0μrH, (6)
div B = 0, (7)

curlH = j0. (8)

We note that outside the domain Λ we have μr = 1. Since the magnetiza-
tion field M is defined by M = μ0 (μr − 1)H, we will be able to compute M
if we are able to calculate H. In the following, we are looking for the field H.

2.1 A Scalar Potential Model

By subtracting (5) and (8) we obtain the existence of a continuous function
ψ satisfying

H(x) − H0(x) = −∇ψ(x) ∀x ∈ R
3. (9)

By using the equalities (3), (4) and (6), (7) together with (9), we easily verify
that

− div (μr∇ψ) = − div (μr − 1)H0 in R
3. (10)

In order to obtain a finite energy, we assume that

ψ(x) = O
(

1
‖x‖

)
when ‖x‖ tends to infinity. (11)

Let Λ′ be the exterior open domain Λ′ = R
3 \Λ. Since μr = 1 in Λ′, we obtain

Δψ = 0 in Λ′, (12)

where Δ is the Laplace operator.
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In fact, the equation (10) is non-linear and it is necessary to precise what is
μr, which is a discontinuous function since μr = 1 in Λ′ and μr = μr(‖H‖) in
Λ. In order to write correctly the model, we define the mapping μ̄ : R

3×R
+ →

R
+ by

μ̄(x, s) =

{
1 if x ∈ Λ′, s ∈ R

+,

μr(s) if x ∈ Λ, s ∈ R
+,

(13)

where μr(s) is the relative magnetic permeability of the ferromagnetic material
occupying Λ given in function of s = ‖H‖. Since H = H0 − ∇ψ, it follows
that the model consists to find ψ : R

3 → R satisfying

− div(μ̄(·, ‖H0 − ∇ψ‖)∇ψ) = − div(μ̄(·, ‖H0 − ∇ψ‖) − 1)H0 in R
3, (14)

with

ψ(x) = O
(

1
‖x‖

)
when ‖x‖ → ∞. (15)

In order to simplify the notation, we will leave out in the following the argu-
ment of the mapping μ̄, knowing that it depends on x ∈ R

3 and ‖H0 −∇ψ‖,
in order to write

⎧⎨
⎩

− div (μ̄∇ψ) = − div (μ̄− 1)H0 in R
3,

ψ(x) = O
(

1
‖x‖

)
when ‖x‖ → ∞.

(16)

Remark that H0 need not be known in R
3 but only on Λ because μ̄ = 1

outside Λ.

3 Two Formulations of the Scalar Potential Problem

Let us now focus on two weak formulations of this scalar potential model. The
main difficulty with the problem (16) is that we seek a function ψ defined in
the whole space R

3.
We will use two different ways to overcome this problem: the first one uses

an integral formulation on ∂Λ to replace the so-called “exterior” problem by
a relation valid on the boundary of Λ; the numerical approximation leads in
practice to a big non sparse matrix to “invert”.

The other way uses a Schwarz decomposition method with overlapping
technique. By introducing a ball containing the ferromagnetic object Λ, we
solve the problem exterior to that ball by means of the Poisson representation
formula.

We have seen that the scalar potential model leads to find a mapping ψ
satisfying (16). Since div H0 = 0 in R

3, we can write this problem in the form

div (μ̄(H0 − ∇ψ)) = 0 in R
3 (17)
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with ψ(x) = O( 1
‖x‖ ) when ‖x‖ → ∞. If W 1(R3) is the Beppo Levi space given

by

W 1(R3) =
{
v : R

3 → R :
v(x)

1 + ‖x‖ ∈ L2(R3),∇v ∈ L2(R3)
}
, (18)

it is proven in [8] that there exists a unique ψ ∈ W 1(R3) satisfying
∫

R3
μ̄ (H0 − ∇ψ) · ∇ϕdx = 0, ∀ϕ ∈W 1(R3). (19)

It follows that the problem (16) possesses a unique weak solution ψ ∈W 1(R3).
We now present two different approaches to compute the scalar potential ψ.

3.1 Boundary Integral Formulation of the Scalar Potential Model

It is known [7] that if v is a harmonic function in Λ and in Λ′ satisfying
v(x) = O(‖x‖−1) when ‖x‖ → ∞, and sufficiently regular (say C1 in Λ and
in Λ′), then we have for x ∈ ∂Λ:

1
2
(vE(x) + vI(x)) =

−
∫
∂Λ

⌊
∂v

∂n
(y)

⌋
∂Λ

G(x,y) ds(y) +
∫
∂Λ

 v(y)!∂Λ
∂G(x,y)
∂n(y)

ds(y), (20)

where vE is the restriction of v to Λ′, vI is the restriction of v to Λ and
 v!∂Λ = vE − vI is the jump of v through the boundary ∂Λ of Λ.

If ψ is the solution of (17), let w be a harmonic function in Λ∪Λ′ satisfying
w = ψ on ∂Λ, w(x) = O

(
‖x‖−1

)
when ‖x‖ → ∞. Clearly, because ψ is

harmonic in Λ′, we have w = ψ in Λ
′
. Moreover, by using the relationship

(20) with v = w in Λ and v = ψ in Λ′, we obtain for x ∈ ∂Λ

ψ(x) = −
∫
∂Λ

(
∂ψE

∂n
(y) − ∂wI

∂n
(y)

)
G(x,y) ds(y), (21)

which is equivalent to
∫
∂Λ

ψη ds = −
∫
∂Λ

η(x) ds(x)
∫
∂Λ

(
∂ψE

∂n
(y) − ∂wI

∂n
(y)

)
G(x,y) ds(y), (22)

for all η ∈ H−1/2(∂Λ).1

By using the fact that divH0 = 0 in R
3, we have

∫
R3

H0 · ∇ϕdx = 0, ∀ϕ ∈W 1(R3), (23)

1 We note by H1(Λ) the classical Sobolev space of order 1, H1/2(∂Λ) the space of
traces on ∂Λ of mappings belonging to H1(Λ) and H−1/2(∂Λ) its dual space.
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and with the weak formulation (19):
∫

R3
μ̄∇ψ · ∇ϕdx =

∫
R3

(μ̄− 1)H0 · ∇ϕdx, ∀ϕ ∈ W 1(R3). (24)

Since μ̄ = 1 outside Λ we obtain for all ϕ ∈W 1(R3):
∫
Λ

μ̄∇ψ · ∇ϕdx+
∫
Λ′

∇ψ · ∇ϕdx =
∫
Λ

(μ̄− 1)H0 · ∇ϕdx, (25)

and, by integrating by parts (n is pointing inside Λ′ and Δψ = 0 in Λ′), for
all ϕ ∈W 1(R3):

∫
Λ

μ̄∇ψ · ∇ϕdx−
∫
∂Λ′

∂ψE

∂n
ϕds =

∫
Λ

(μ̄− 1)H0 · ∇ϕdx. (26)

Since w is harmonic in Λ, we have w ∈ H1(Λ) satisfying w = ψ on ∂Λ and∫
Λ∇w · ∇v dx = 0, for all v ∈ H1

0 (Λ).
By using the definition (13) of μ̄, we can replace μ̄ in (26) by μ̄ = μr(‖H0−

∇ψ‖) and, by setting λ = ∂ψE

∂n (external Steklov–Poincaré operator) in (22),
(26), we obtain the nonlinear problem:

Find ψ ∈ H1(Λ), w ∈ H1(Λ) and λ ∈ H− 1
2 (∂Λ) satisfying w = ψ on ∂Λ

and for all ϕ ∈ H1(Λ), v ∈ H1
0 (Λ), η ∈ H− 1

2 (∂Λ):
∫
Λ

μr∇ψ · ∇ϕdx−
∫
∂Λ

λϕds =
∫
Λ

(μr − 1)H0 · ∇ϕdx, (27)
∫
Λ

∇w · ∇v dx = 0, (28)
∫
∂Λ

ψη ds = −
∫
∂Λ

η(x) ds(x)
∫
∂Λ

(
λ(y) − ∂w

∂n
(y)

)
G(x,y) ds(y); (29)

here μr = μr(‖H0 − ∇ψ‖).

3.2 A Domain Decomposition Formulation
for the Scalar Potential Problem

Let us now introduce another way to reduce the “exterior” problem to a
problem expressed in a bounded domain.

Let BR be the ball of radius R > 0 and Br be the ball of radius r with
R > r > 0, both centered at the origin, and such that Λ ⊂ Br.

From (16) we obtain

Δψ = 0 in R
3 \ Br, (30)

ψ(x) = O
(

1
‖x‖

)
when ‖x‖ → ∞ (31)
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and
− div (μ̄∇ψ) = − div (μ̄− 1)H0 in BR. (32)

We use the Poisson formula which says that since ψ is a harmonic function
outside the ball Br and radially decreasing at infinity, then for each point x
outside the ball Br we have

ψ(x) =
‖x‖2 − r2

4πr

∫
∂Br

ψ(y)
‖y − x‖3

ds(y). (33)

By using this formula for x ∈ ∂BR, we obtain the formulation: find ψ ∈
H1(BR) satisfying for all ϕ ∈ H1

0 (BR),
∫
BR

μ̄∇ψ · ∇ϕdx =
∫
Λ

(μ̄− 1)H0 · ∇ϕdx, (34)

ψ(x) =
R2 − r2

4πr

∫
∂Br

ψ(y)
‖y − x‖3

ds(y), (35)

for all points x ∈ ∂BR; here μ̄ = μ̄(·, ‖H0 − ∇ψ‖).

4 Discretization and Numerical Methods

Before we describe the methods we derived from the above formulations, let
us introduce some notations of discretization spaces, common for all of them.

Let us assume that the ferromagnetic domain Λ is a polyhedron. Let us
also consider polyhedra BRh and Brh approximating the big and the small
balls BR, resp. Br.

Definition 1 (Interior and boundary mesh). Let Ω be a polyhedral
domain.

1. Let us denote τh(Ω) the tetrahedral mesh of Ω with conforming tetrahedra,
in the finite-element sense. The tetrahedron K ∈ τh(Ω) is understood as a
closed tetrahedron.

2. The set of all internal and external faces of the tetrahedral mesh τh(Ω) is
denoted Fh(Ω).

3. Let us denote τh(∂Ω) the trace of the mesh τh(Ω) on the boundary ∂Ω.
The boundary mesh τh(∂Ω) is composed of all triangular faces F ∈ Fh(Ω)
such that F ⊂ ∂Ω.

Definition 2 (Finite element spaces). Let Ω be a polyhedral domain,
τh(Ω) its tetrahedral mesh and τh(∂Ω) the corresponding boundary mesh.

1. On the tetrahedral mesh τh(Ω), we define:
a) The finite element space P1h(Ω) of continuous functions which are

piecewise polynomial of degree 1 on K ∈ τh(Ω).
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b) The finite element space P1h0(Ω) of functions w ∈ P1h(Ω) such that
w = 0 on ∂Ω.

c) The finite element space P0h(Ω) of piecewise constant functions on K ∈
τh(Ω).

2. On the boundary mesh τh(∂Ω) we define
a) The finite element space P0h(∂Ω) of piecewise constant functions on

the faces F ∈ τh(∂Ω).
b) The finite element space P1h(∂Ω) of continuous functions which are

piecewise polynomial of degree 1 on each face F ∈ τh(∂Ω).

4.1 Boundary Integral Method for the Scalar Potential Model

Let us approximate the spaces H1(Λ), resp. H− 1
2 (∂Λ) by the space P1h(Λ)

of piecewise linear functions, resp. by the space P0h(∂Λ) of piecewise con-
stant functions on the boundary mesh. We can write the discrete formulation
corresponding to the problem (27)–(29):

Find (ψh, λh, wh) ∈ P1h(Λ) × P0h(∂Λ) × P1h(Λ), wh = ψh on ∂Λ such
that ∫

Λ

μ̃∇ψh · ∇ϕh dx−
∫
∂Λ

λhϕh ds =
∫
Λ

(μ̃− 1)H0 · ∇ϕh dx, (36)
∫
∂Λ

ψh · ηh ds+
∫
∂Λ

ηh(x) ds(x)
∫
∂Λ

(
λh(y) − ∂wh

∂n
(y)

)
G(x,y) ds(y) = 0,

(37)∫
Λ

∇wh · ∇vh dx = 0, (38)

for all (ϕh, ηh, vh) ∈ P1h(Λ)×P0h(∂Λ)×P1h0(Λ). The function μ̃ ∈ P0h(Λ)
is the approximation of μr in Λ defined by

μ̃ = μr (‖QhH0 − ∇ψh‖) , (39)

where Qh : L2(Λ)3 → P0h(Λ)3 is the L2-orthogonal projection.
Note that all integrals are done exactly except for the one involving the

Green kernel G which must be numerically approximated.
The nonlinear problem (36)–(38) is solved using a standard fixed point

method, cf. Algorithm 1. The convergence of this fixed point method is proven
in [8].

Algorithm 1 (Boundary integral method for scalar potential)
Let us set ψ0

h ∈ P1h(Λ), ψ0
h = 0.

For k = 1, . . . , J do

1. Evaluate μ̃k = μr
(
‖QhH0 − ∇ψk−1

h ‖
)
.

2. Find (ψkh, λ
k
h, w

k
h) ∈ P1h(Λ) × P0h(∂Λ) × P1h(Λ), wkh = ψkh on ∂Λ such

that
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∫
Λ

μ̃k∇ψkh · ∇ϕh dx−
∫
∂Λ

λkhϕh ds =
∫
Λ

(μ̃k − 1)QhH0 · ∇ϕh dx,

∫
∂Λ

ψkh · ηh ds+
∫
∂Λ

ηh(x) ds(x)
∫
∂Λ

(
λkh(y) − ∂wkh

∂n
(y)

)
G(x,y) ds(y) = 0,

∫
Λ

∇wkh · ∇vh dx = 0,

for all (ϕh, ηh, vh) ∈ P1h(Λ) × P0h(∂Λ) × P1h0(Λ)

until estimated convergence.

In the applications, the ferromagnetic structures are often thin and their
discretizations contain a lot of triangles on their surfaces. The main drawback
arising from the formulation (36)–(38) is that the second term of the equation
(37) leads in this case to a full matrix with a big order. Consequently, the
formulation (36)–(38) imposes an important restriction on the mesh, which is
not operational in a lot of applications on the presented form.

4.2 Scalar Potential Problem with Poisson Formula
Boundary Condition

Let us now discretize the formulation (34)–(35). We are approximating the
functional space H1(BR) by the space P1h(BRh) by assuming that ∂Λ and
∂Brh are made of faces of Fh(BRh).

The discrete formulation for (34)–(35) reads: find ψh ∈ P1h(BRh) such
that for all ϕh ∈ P1h0(BRh) we have

∫
BRh

μ̃∇ψh · ∇ϕh dx =
∫
Λ

(μ̃− 1)QhH0 · ∇ϕh dx, (40)

ψh(xi) =
R2 − r2

4πr

∫
∂Brh

ψh(y)
‖y − xi‖3

ds(y), (41)

point-wise for all vertices xi of the mesh τh(∂BRh). Here, μ̃ ∈ P0h(BRh) is the
piecewise-constant approximation of μ̄ defined as in (39) with μ̃ = 1 outside Λ.

Note that all integrals are done exactly except for the one on ∂Brh. In that
case, first recall that the sphere is approximated by a triangular mesh, second
on each of these triangles we use a simple Gauss integration scheme.

The problem (40)–(41) is nonlinear. Moreover, the coupling of (40) and
(41) is non-local, thus filling the matrix of the underlying linear system with
full blocks. This is why we propose in Algorithm 2 a fixed point iteration, com-
bined with a multiplicative Dirichlet–Dirichlet domain decomposition between
the meshed interior and the exterior, represented by the Poisson representa-
tion formula (41) (see [8] for some aspects of convergence).

Algorithm 2 (Domain decomposition for scalar potential)
Let us set ψ0

h ∈ P1h(BRh), ψ0
h = 0.

For k = 1, . . . , J do



Numerical Methods for Ferromagnetic Plates 177

1. Define ψk−
1
2

h ∈ P1h(∂BRh) such that

ψ
k− 1

2
h (xi) =

R2 − r2

4πr

∫
∂Brh

ψk−1
h (y)

‖y − xi‖3
ds(y), (42)

point-wise on each vertex xi of the mesh τh(∂BRh),
2. Evaluate μ̃k ∈ P0h(BRh) by

μ̃k =

{
μr

(
‖QhH0 − ∇ψk−1

h ‖
)

in Λ,
1 otherwise,

3. Find ψkh ∈ P1h(BRh), ψkh = ψ
k− 1

2
h on ∂BRh, such that for all ϕh ∈

P1h0(BRh) there is
∫
BRh

μ̃k∇ψkh · ∇ϕh dx =
∫
Λ

(μ̃k − 1)QhH0 · ∇ϕh dx (43)

until estimated convergence.

To solve (43) approximatively, we use several iterations of an algebraic
multigrid AMG [9]. Moreover, let us remark that computation of (42) can be
easily parallelized.

5 Numerical Results

Our aim here is not to give a comprehensive comparison of results obtained by
the above described algorithms. This can be found in [4] where several other
methods are described to approximate this ferromagnetic problem. We just
show a simple example exhibiting the screen effect produced by ferromagnetic
materials.

5.1 A Thin Steel Plate Placed in Front of a Conductor

We consider a simple ferromagnetic rectangular plate which is placed in front
of an idealized infinitely long wire with zero section (see Figure 1). A given
constant electric current runs in the wire. Omitting the plate, this current
would produce an induction field B0 (suggested in Figure 1) given by Biot–
Savart law. In the presence of the plate, the induction field B will be modified,
due to ferromagnetic response of the steel plate.

We want to simulate the screen effect of the ferromagnetic plate, i.e., the
attenuation of the induction field “behind” the plate. For this, we will compare
B and B0 along some “observation lines” (see Figure 1): line 1 is orthogonal to
the plate; lines 2 and 3 are located in the plate to measure the magnetization
in it.
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electrix conductor

Line 1

line 2

line 3

plate

H0 field

Fig. 1. Geometry of the test-case: the rectangular plate and current support.

Fig. 2. Material properties of the ferro-material: the H-B diagram without hystere-
sis (left), relative permeability μr(‖H‖) as a function of ‖H‖ (right).

The nonlinear material behaviour is characterized by the B−H diagram,
or by the relative magnetic permeability function μr(‖H‖) given in Figure 2.

In order to apply our algorithms, we take the small ball Br near the plate
and we take BR in such a way that the ratio of their radiuses is 1.5. Both balls
have their center at the center of the plate.

We then mesh the whole ball BR in order to obtain a mesh compatible
with the boundary of Br and with the plate as well. We also refine twice
this mesh to get three meshes, so we can check convergence in space of our
approximations.
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Fig. 3. Magnetic induction B = (Bx, By , Bz) on the observation line, on the
screened side of the plate. Left: component Bx, right: component Bz. Here ‘scal’
stands for Algorithm 2 and ‘bem-fem’ for Algorithm 1.

5.2 Screen Effect Behind the Plate

Let us compare the two presented algorithms on the described plate case. To
demonstrate the screen effect on the plate, we plot in Figure 3 induction B0

(in dotted line) and B (in full line) along observation line 1.
The plate is located on the right of each plot, distance to the plate is

given with negative values. The left plot represents the Bx component of
induction and the right plot represents the Bz component. We first remark
both algorithms give very similar results. It is clear from the right plot that
component Bz is attenuated while component Bx should be vanishing.

5.3 Magnetization in the Plate

In Figure 4 we see the plots of μr on the observation lines 2 and 3 inside the
plate. The first plot corresponds to the observation line 2 (horizontal line),
the second one corresponds to the observation line 3 (vertical line). Results
for both methods are superposed in one plot. We can see that parts of the
plate which are the nearest of the conductor are magnetically saturated, while
parts of the plate which are the most away from the conductor are not.

5.4 An Industrial Application

Let us finish by presenting an industrial application of our model. On an
industrial scale, aluminum is produced by electrolysis of alumine Al2O3. This
process is realized in big cells 10m long, 4m wide and 1m high in which
aluminum as well as the electrolytic bath containing the alumine are liquid.
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Fig. 4. Relative permeability μr on observation line 2 (horizontal line) and line 3
(vertical line) in the plate. As for previous plot ‘scal’ stands for Algorithm 2 and
‘bem-fem’ for Algorithm 1.

Fig. 5. Contour plot of electric potential for an electrolysis cell: current enters the
cell through red parts and quits the cell through blue parts, steel shell is colored in
gray.

Strong continuous electric currents run vertically through the cell allowing
electrolysis to happen. These currents, coupled to the magnetic induction
field induced by currents in the cell as well as by currents going from one cell
to the other produce an important Lorentz force. This force causes fluids to
move, which can perturb the efficiency of electrolysis. The fact that such cells
are built in a 2 cm thick steel shell has an appreciated effect: the ferromag-
netic response of this steel shell, in fact, protects in some extent the fluids
inside the cell from magnetic induction produced by currents feeding the cell.
Thus, modeling ferromagnetic screen effect produced by this steel shell is an
important step in the full modelization of an electrolysis cell. Figure 5 shows
a typical example of a cell colored by electric potential: current enters the cell
through red parts and quits the cell through blue parts, steel shell is colored
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Fig. 6. Same cell as previous with only ferromagnetic parts colored by relative
permeability: low permeability is colored in blue, high permeability is colored in
red.

in gray. Figure 6 shows only the steel container which has been colored by
relative permeability: low permeability is colored in blue, high permeability is
colored in red.

6 Conclusion and Remarks

As a known problem for this approximation, both methods produce spurious
oscillations of the magnetization vector in the plate. These oscillations are
due both to the fact that the plate is thin and to the important jump in
permeability when crossing the plate boundary (see [3]). These oscillations
can be considerably reduced by simply applying a smoothing operator after
computing the induction.

It is clear that the boundary integral formulation leads to a dense matrix
to be solved, which is a severe penalty. However, we think it is possible to
circumvent this difficulty by using some multipole technique. This method
also needs some critical calculations involving a singular kernel which can be
found in [5].

The domain decomposition formulation, on the contrary is very fast, since
we only solve a Laplacian problem outside the ferromagnetic domain. This is
done with best efficiency using an algebraic multigrid algorithm as described
in [9]. However, it is not always a trivial problem to mesh the domain between
the ferromagnetic material and the sphere ∂BR, knowing that this mesh will
also have an influence on the precision of the approximation.

For simplicity, we used the fixed point method to solve the non-linear
problem involved in our formulations, but it is of course possible to use Newton
process as well.

Acknowledgement. The authors are grateful to the Alcan-Péchiney Company for
supporting this work.
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2. O. B́ıró, K. Preis, and K. R. Richter. On the use of the magnetic vector potential
in the nodal and edge finite element analysis of 3D magnetostatic problems. IEEE
Trans. Magn., 32(3):651–654, 1996.

3. J. Descloux, M. Flueck, and M. V. Romerio. A problem of magnetostatics related
to thin plates. RAIRO Modél. Math. Anal. Numér., 32(7):859–876, 1998.

4. M. Flück, T. Hofer, A. Janka, and J. Rappaz. Numerical methods for ferro-
magnetic plates. Research report 08.2007, Institute of Analysis and Scientific
Computing (IACS), EPFL, 2007.

5. A. Masserey, J. Rappaz, R. Rozsnyo, and M. Swierkosz. Numerical integration of
the three-dimensional Green kernel for an electromagnetic problem. J. Comput.
Phys., 205(1):48–71, 2005.

6. A. Masud and T. J. R. Hughes. A stabilized mixed finite element method for
Darcy flow. Comput. Methods Appl. Mech. Engrg., 191(39–40):4341–4370, 2002.
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9. P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based
on smoothed aggregation. Numer. Math., 88(3):559–579, 2001.



Two-Sided Estimates of the Solution Set

for the Reaction–Diffusion Problem
with Uncertain Data

Olli Mali1 and Sergey Repin2

1 Department of Mathematical Information Technology, P.O. Box 35 (Agora),
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Summary. We consider linear reaction–diffusion problems with mixed Dirichlét–
Neumann–Robin conditions. The diffusion matrix, reaction coefficient, and the coef-
ficient in the Robin boundary condition are defined with an uncertainty which allow
bounded variations around some given mean values. A solution to such a problem
cannot be exactly determined (it is a function in the set of “possible solutions”
formed by generalized solutions related to possible data). The problem is to find
parameters of this set. In this paper, we show that computable lower and upper
bounds of the diameter (or radius) of the set can be expressed throughout problem
data and parameters that regulate the indeterminacy range. Our method is based on
using a posteriori error majorants and minorants of the functional type (see [5,6]),
which explicitly depend on the coefficients and allow to obtain the corresponding
lower and upper bounds by solving the respective extremal problems generated by
indeterminacy of coefficients.

1 Introduction

This paper is concerned with boundary-value problems for partial differential
equations of elliptic type coefficients of which contain an indeterminacy. Such
a situation is quite typical in real-life problems where parameters of mathe-
matical model cannot be determined exactly and instead one knows only that
the coefficients belong to a certain set of “admissible” data Λ. In view of this
fact, instead of a single exact solution “u”, we have to consider a “set of so-
lutions” (we denote it by S(Λ)). As a result, the error control problem comes
in a more complicated form in which approximation errors must be evaluated
together with errors arose due to indeterminant data (various approaches that
can be used for such an analysis are exposed in, e.g. [1, 2, 8]).
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In this paper, we establish explicit relations between the sets Λ and S(Λ)
for the reaction–diffusion problem with mixed Dirichlét–Robin boundary con-
ditions (we call it P) defined by the system

− div(A∇u) + ρu = f in Ω (1)
u = 0 on Γ1 (2)

n · A∇u = F on Γ2 (3)
αu+ n · A∇u = G on Γ3. (4)

Here, Ω ∈ R
d is a bounded and connected domain with Lipschitz continuous

boundary Γ1 ∪ Γ2 ∪ Γ3 and f �= 0. We assume that exact A, ρ, and α are
unknown. Instead, we know that A ∈ ΛA, ρ ∈ Λρ, and α ∈ Λα, where

ΛA := {A ∈ L2(Ω,Md×d) | A = A0 + δ1Ψ, ‖Ψ‖L∞(Ω,Md×d) ≤ 1}
Λρ := {ρ ∈ L2(Ω) | ρ = ρ0 + δ2ψρ, ‖ψρ‖L∞(Ω) ≤ 1}
Λα := {α ∈ L2(Γ3) | α = α0 + δ3ψα, ‖ψα‖L∞(Γ3) ≤ 1}.

In other words, we assume that the sets of admissible data are formed by
some (limited) variations of some known “mean” data (which are denoted by
subindex 0). The parameters δi, i = 1, 2, 3, represent the magnitude of these
variations. Thus, in the case considered,

Λ := ΛA × Λρ × Λα.

We note that such a presentation of the data arises in many engineering
problems where data are given in a form mean±error. The solution associated
to non-perturbed data A0, ρ0, and α0 is denoted by u0.

Our goal is to give computable estimates of the radius of S(Λ) (we denote
this quantity by rS). The value of rS has a large significance for practical
applications because it shows an accuracy limit defined by the problem state-
ment. Attempts to find approximate solutions having approximation errors
lesser then rS have no practical sense.

The generalized statement of Problem (P) is as follows: Find u ∈ V0 such
that

a(u,w) = l(w) ∀w ∈ V0, (5)

where space V0 and functionals a : V0 × V0 → R and l : V0 → R are defined
by the relations

V0 := {w ∈ H1(Ω) | w|Γ1
= 0},

a(u,w) :=
∫
Ω

A∇u · ∇w dx+
∫
Ω

ρuw dx+
∫
Γ3

αuw ds,

l(w) :=
∫
Ω

fw dx+
∫
Γ2

Fw ds+
∫
Γ3

Gw ds.
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We assume that

c1|ξ|2 ≤ A0ξ · ξ ≤ c1|ξ|2 ∀ξ ∈ R
d on Ω,

c2 ≤ ρ0 ≤ c2 on Ω,
c3 ≤ α0 ≤ c3 on Γ3,

where ci > 0. In view of the above-stated conditions, the “mean” problem is
evidently elliptic and has a unique solution u0. The condition

0 ≤ δi < ci, i = 1, 2, 3,

guarantees that the perturbed problem remains elliptic and possesses a unique
solution u.

For each A, ρ, α ∈ Λ, the corresponding problem of P(Λ) is natural to
analyze using the (energy) norm

|||v|||2A,ρ,α := a(v, v) =
∫
Ω

A∇v · ∇v dx+
∫
Ω

ρv2 dx+
∫
Γ3

αv2 ds. (6)

For the sake of simplicity we will also use an abridged notation |||v||| for the
norm |||v|||A,ρ,α. For the “mean” problem, we use the norm |||v|||A0,ρ0,α0 , which
is also denoted by |||v|||0. It is easy to see that the norms |||v|||0 and |||v||| are
equivalent and satisfy the relation

C|||v|||2 ≤ |||v|||20 ≤ C|||v|||2, (7)

where
C := max

i∈{1,2,3}

ci
ci − δ

and C := min
i∈{1,2,3}

ci
ci + δi

(8)

These constants C and C depend only on the problem data and indeterminacy
range. They play an important role in our analysis.

Now, we can define the quantity we are interested in

rS := sup
ũ∈S

|||u0 − ũ|||0. (9)

A normalized counterpart of rS is defined by the relation

r̂S := sup
ũ∈S

|||u0 − ũ|||0
|||u0|||0

.

2 Lower Bound of rS

Problem P has a variational statement and the solution u can be considered
as a minimizer of the functional

J(v) :=
1
2
a(v, v) − l(v)
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on the set V0. Using this statement, we can easily derive computable lower
bounds of the difference between u and an arbitrary function v ∈ V0 in terms
of the energy norm (see [5] where such bounds have been derived for a wide
class of variational problems).

First, we use the identity

|||u − v|||2 = a(u− v, u− v) = 2(J(v) − J(u)), (10)

which for quadratic functionals is established in [4]. Let w be an arbitrary
function in V0. Then,

J(v) − J(u) ≥ J(v) − J(v + w)

and by (10) we conclude that

|||u− v|||2 ≥ −a(w + 2v, w) + 2l(w) ∀w ∈ V0. (11)

We note that for w = u− v the estimate (11) holds as equality, so that there
is no “gap” between the left- and right-hand sides of (11). The right-hand
side of (11) is explicitly computable. It provides the so-called functional error
minorant, which we denote by MA,ρ,α

� (v, w) (if no confusion may arise, we
also use a simplified notation M�(v, w)). This functional serves as the main
tool when deriving the lower bound of rS .

Theorem 1. Assume that all the assumptions of Section 1 hold. Then

r2S ≥ C sup
w∈V0

MrS
� (u0, w), (12)

where w is an arbitrary function in V0 and

MrS
� (u0, w) := −|||w|||20 + δ1

∫
Ω

|∇w + 2∇u0| |∇w| dx

+ δ2

∫
Ω

|(w + 2u0)w| dx + δ3

∫
Γ3

|(w + 2u0)w| ds. (13)

Proof. We have

rS = sup
ũ∈S

|||u0 − ũ|||0 ≥ C sup
ũ∈S

|||u0 − ũ|||. (14)

On the other hand,

sup
ũ∈S

|||u0 − ũ|||2 = sup
ũ∈S

{
sup
w∈V0

M�(u0, w)
}

= sup
w∈V0

{
sup

A∈ΛA,ρ∈Λρ,α∈Λα

MA,ρ,α
� (u0, w)

}
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and we conclude that

r2S ≥ C sup
w∈V0

{
sup

A∈ΛA,ρ∈Λρ,α∈Λα

MA,ρ,α
� (u0, w)

}
. (15)

Now our goal is to estimate the right-hand side of (15) from below. For this
purpose, we exploit the structure of the minorant, which allows to explicitly
evaluate effects caused by indeterminacy of the coefficients.

It is easy to see that the minorant can be represented as follows:

MA,ρ,α
� (u0, w) = −

∫
Ω

(A0 + δ1Ψ)(∇w + 2∇u0) · ∇w dx

−
∫
Ω

(ρ0 + δ2ψρ)(w + 2u0)w dx

−
∫
Γ3

(α0 + δ3ψα)(w + 2u0)w ds+ 2l(w). (16)

Note that ∫
Ω

(A0∇u0 · ∇w dx + ρ0u0w) dx+
∫
Γ3

α0u0w ds = l(w).

Hence,

MA,ρ,α
� (u0, w) = −

∫
Ω

A0∇w · ∇w dx−
∫
Ω

ρ0w
2 dx−

∫
Γ3

α0w
2 ds

− δ1

∫
Ω

Ψ(∇w + 2∇u0) · ∇w dx− δ2

∫
Ω

ψρ(w + 2u0)w dx

− δ3

∫
Γ3

ψα(w + 2u0)w ds (17)

and we obtain

sup
A∈ΛA,ρ∈Λρ,α∈Λα

MA,ρ,α
� (u0, w) = −|||w|||20

+ δ1 sup
|Ψ |≤1

∫
Ω

Ψ(∇w + 2∇u0) · ∇w dx+ δ2 sup
|ψρ|≤1

∫
Ω

ψρ(w + 2u0)w dx

+ δ3 sup
|ψα|≤1

∫
Γ3

ψα(w + 2u0)w ds. (18)

The integrand of the first integral in the right-hand side of (18) can be pre-
sented as Ψ : τ , where

τ = ∇w ⊗ (∇w + 2∇u0)
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and ⊗ stands for the diad product. For the first supremum we have

sup
|Ψ |≤1

{∫
Ω

Ψ : τ dx
}

=
∫
Ω

|τ | dx. (19)

Analogously, we find that

sup
|ψρ|≤1

∫
Ω

ψρ(w + 2u0)w dx ≤
∫
Ω

|(w + 2u0)w| dx, (20)

sup
|ψα|≤1

∫
Ω

ψρ(w + 2u0)w dx ≤
∫
Γ3

|(w + 2u0)w| ds. (21)

By (18)–(21), we arrive at the relation

sup
A,ρ,α

MA,ρ,α
� (u0, w) = −|||w|||20 + δ1

∫
Ω

|(∇w + 2∇u0) ⊗∇w| dx

+ δ2

∫
Ω

|(w + 2u0)w| dx + δ3

∫
Γ3

|(w + 2u0)w| ds, (22)

which together with (15) leads to (12).

Theorem 1 gives a general form of the lower bound of rS . Also, it creates
a basis for practical computation of this quantity. Indeed, let V0h ⊂ V0 be a
finite dimensional space. Then

r2S ≥ C sup
w∈V0h

MrS
� (u0, w). (23)

It is worth noting that the wider set V0h we take the better lower bound of
the radius we compute. However, as it is shown below, a meaningful lower
bound can be deduced even analytically.

Corollary 1. Under assumptions of Theorem 1,

r2S ≥ Cr2S� and r̂2S ≥ Cr̂2S�, (24)

where

r2S� =
|||u0|||4δ

|||u0|||20 − |||u0|||2δ
≥ Θ2

1 −Θ
|||u0|||20, (25)

where
|||u0|||2δ := δ1‖∇u0‖2

Ω + δ2‖u0‖2
Ω + δ3‖u0‖2

Γ3

and
Θ := min

i∈{1,2,3}

δi
ci
.

For the normalized radius, we have

r̂2S� =
Θ2

1 −Θ
. (26)
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Proof. Use (12) and set
w = λu0, (27)

where λ ∈ R. Then we observe that

r2S ≥ C
(
−λ2|||u0|||20 + λ(λ + 2)|||u0|||2δ

)
. (28)

The right-hand side of (28) is a quadratic function with respect to λ. It attains
its maximal value if

λ|||u0|||20 = (λ+ 1)|||u0|||2δ ,

that is, if

λ =
|||u0|||2δ

|||u0|||20 − |||u0|||2δ
.

Substituting this λ, we arrive at (25). Note that

|||u0|||20 =
∫
Ω

(A0∇u0 · ∇u0 + ρ0u
2
0 dx+

∫
Γ3

α0u0 ds

≥
∫
Ω

(c1∇u0 · ∇u0 + c2u
2
0) dx+

∫
Γ3

c3u0 ds

> δ1‖∇u0‖2
Ω + δ2‖u0‖2

Ω + δ3‖u0‖2
Γ3

= |||u0|||2δ , (29)

so that λ (and the respective lower bound) is positive. Moreover,

|||u0|||2δ ≥ δ1
c1

∫
Ω

A0∇u0 · ∇u0 dx+
δ2
c2

∫
Ω

ρ0u
2
0 dx+

δ3
c3

∫
Γ3

α0u
2
0 ds

≥ Θ|||u0|||20. (30)

Also,

|||u0|||20 − |||u0|||2δ

=
∫
Ω

(A0 − δ1I)∇v · ∇v dx+
∫
Ω

(ρ0 − δ2)v2 dx+
∫
Γ3

(α0 − δ3)v2 ds

≥
(

1 − δ1
c1

)∫
Ω

A0∇v ·∇v dx+
(

1 − δ2
c2

)∫
Ω

ρ0v
2 dx+

(
1 − δ3

c3

)∫
Γ3

α0v
2 ds

≥ max
i=1,2,3

(
1 − δi

ci

)
|||u0|||20 = (1 −Θ)|||u0|||20. (31)

By (30) and (31), we arrive at the relation

r2S� ≥ Θ2

1 −Θ
|||u0|||20, (32)

which implies (25) and (26).
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3 Upper Bound of rS

A computable upper bound of rS can be derived with the help of a posteriori
error majorant of the functional type, which are derived by purely functional
methods without attracting any information on the mesh and method used.
For a wide class of problems they were derived in [5–7] by variational tech-
niques and in [7, 9, 10] by transformations of integral identities (see also the
papers cited therein). Below we derive functional error majorant for our class
of problems using the latter method based on transformations of the respec-
tive integral identity. After that, we use it’s properties to derive the desired
upper bound in Section 3.2.

3.1 Error Majorant

Let v ∈ V0 be an admissible approximation of the exact solution u (generated
by A, !, and α). From (5) it follows that for any w ∈ V0

a(u− v, w) =
∫
Ω

fw dx+
∫
Γ2

Fw ds+
∫
Γ3

Gw ds

−
∫
Ω

A∇v · ∇w dx −
∫
Ω

ρvw dx−
∫
Γ3

αvw ds

+
∫
Ω

(div(y)w + y · ∇w) dx−
∫
Γ2∪Γ3

(y · ν)w ds, (33)

where ν denotes unit outward normal to Γ and

y ∈ H+(div, Ω) := {y ∈ H(div, Ω) | y · ν ∈ L2(Γ2 ∪ Γ3)}.

We note that the last line is zero for all y ∈ H(Ω, div) (in view of the
integration-by-parts formula). We regroup the terms and rewrite the relation
as follows:

a(u − v, w) = I1 + I2 + I3 + I4, (34)

where

I1 :=
∫
Ω

r1(v, y)w dx :=
∫
Ω

(f − ρv + div(y))w dx,

I2 :=
∫
Ω

r2(v, y)w dx :=
∫
Γ3

(G− αv − y · ν )w ds,

I3 :=
∫
Γ2

(F − y · ν )w ds,

I4 :=
∫
Ω

(y −A∇v) · ∇w dx.



Solution Set for the Reaction–Diffusion Problem with Uncertain Data 191

Now we can estimate each term separately by the Friedrich and trace
inequalities (which holds due to our assumptions concerning Ω). We have

‖w‖2
Ω ≤ C1(Ω)‖∇w‖2

Ω ∀w ∈ V0,

‖w‖2
2,Γ2

≤ C2(Ω,Γ2)‖w‖2
Ω ∀w ∈ V0,

‖w‖2
2,Γ3

≤ C3(Ω,Γ3)‖w‖2
Ω ∀w ∈ V0.

When estimating the integrands of I1 and I2, we introduce additional
functions μ1 and μ2, which have values in [0, 1]:

I1 =
∫
Ω

μ1√
ρ
r1(v, y)

√
ρw dx+

∫
Ω

(1 − μ1)r1(v, y)w dx

≤
∥∥∥∥ μ1√

ρ
r1(v, y)

∥∥∥∥
Ω

‖√ρw‖Ω + σ1‖(1− μ1)r1(v, y)‖Ω
(∫

Ω

A∇w · ∇w dx
)1/2

and

I2 =
∫
Γ3

μ2√
α
r2(v, y)

√
αw dx+

∫
Γ3

(1 − μ2)r2(v, y)w dx

≤
∥∥∥∥ μ2√

α
r2(v, y)

∥∥∥∥
Γ3

‖
√
αw‖Γ3

+ ‖(1 − μ2)r2(v, y)‖Γ3σ3

(∫
Ω

A∇w · ∇w dx
)1/2

,

and

I3 ≤ ‖F − y · ν ‖Γ2σ2

(∫
Ω

A∇w · ∇w dx
)1/2

, (35)

where

σ1 =

√
C1(Ω)
c1

, σ2 =

√
C1(Ω)C2(Ω,Γ2)

c1
, σ3 =

√
C1(Ω)C3(Ω,Γ3)

c1
.

We note that a similar approach was used in [9] for the reaction–diffusion
problem and in [10] for the generalized Stokes problem. In these publications
it was shown that splitting of the residual term (performed with the help of a
single function μ) allows to obtain error majorants that are insensitive with
respect to small values of the lower term coefficient and at the same time
sharp (i.e. have no irremovable gap between the left- and right-hand sides).
In our case, we have two lower terms, so that we need two functions μ1 and
μ2 to split the respective residual terms.

The term I4 is estimated as follows:

I4 ≤ D(∇v, y) 1
2

(∫
Ω

A∇w · ∇w dx
)1/2

, (36)
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where
D(∇v, y) =

∫
Ω

(y −A∇v) · (∇v −A−1y) dx. (37)

We collect all the terms and obtain

a(u− v, w) ≤
(
D(∇v, y)1/2 + σ1‖(1 − μ1)r1(v, y)‖Ω

+ σ3‖(1 − μ2)r2(v, y)‖Γ3 + σ2‖F − y · ν ‖Γ2

)(∫
Ω

A∇w · ∇w dx
)1/2

+
∥∥∥∥ μ1√

ρ
r1(v, y)

∥∥∥∥
Ω

‖√ρw‖Ω +
∥∥∥∥ μ2√

α
r2(v, y)

∥∥∥∥
Γ3

‖
√
αw‖Γ3 . (38)

Set w = u− v and use the Cauchy–Schwartz inequality

d∑
i=1

xiyi ≤

√√√√ d∑
i=1

x2
i

√√√√ d∑
i=1

y2
i . (39)

Then, we arrive at the estimate

|||u− v|||2 ≤
(
D(∇v, y)1/2 + σ1‖(1 − μ1)r1(v, y)‖Ω

+ σ3‖(1 − μ2)r2(v, y)‖Γ3 + σ2‖F − y · ν ‖Γ2

)2

+
∥∥∥∥ μ1√

ρ
r1(v, y)

∥∥∥∥
2

Ω

+
∥∥∥∥ μ2√

α
r2(v, y)

∥∥∥∥
2

Γ3

. (40)

It is worth remarking that the estimate (40) provides a guaranteed upper
bound of the error for any conforming approximation of the problem (1)–(4).
The estimate has a form typical for all functional a posteriori estimates: it is
presented by the sum of residuals of the basic relations with multipliers that
depend on the constants in the respective functional (embedding) inequalities
for the domain and boundary parts.

However, for our subsequent goals, it is desirable to have the majorant in
a form that involve only quadratic terms. Such a form can be easily derived
from (40) if we square both parts and apply the algebraic inequality (39) to
the first term (with multipliers γi > 0, i = 1, 2, 3, 4). Then, we obtain

|||u− v|||2 ≤ κ
(
γ1D(∇v, y) + γ2‖(1 − μ1)r1(v, y)‖2

Ω

+ γ3‖(1 − μ2)r2(v, y)‖2
Γ3

+ γ4‖F − y · ν ‖2
Γ2

)

+
∥∥∥∥ μ1√

ρ
r1(v, y)

∥∥∥∥
2

Ω

+
∥∥∥∥ μ2√

α
r2(v, y)

∥∥∥∥
2

Γ3

, (41)
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where

κ :=
1
γ1

+
σ2

1

γ2
+
σ2

2

γ3
+
σ2

3

γ4
.

We note that (41) coincides with (40) if

γ1 = γ̄1 := D(∇v, y)−1/2, (42)

γ2 = γ̄2 :=
σ1

‖(1 − μ1)r1(v, y)‖Ω
, (43)

γ3 = γ̄3 :=
σ2

‖(1 − μ2)r2(v, y)‖Γ3

, (44)

γ4 = γ̄4 :=
σ3

‖F − y · ν ‖Γ2

. (45)

Certainly, the estimate (41) looks more complicated with respect to (40).
However, it has an important advantage: the weight functions μ1 and μ2

enter it as quadratic integrands, so that we can easily find their optimal form
adapted to a particular v and the respective error distribution.

In the simplest case, we take μ1 = μ2 = 0, which yields the estimate

|||u− v|||2 ≤ κ×
(
γ1D(∇v, y) + γ2‖r1(v, y)‖2

Ω

+ γ3‖r2(v, y)‖2
Γ3

+ γ4‖F − y · ν ‖2
Γ2

)
. (46)

Another estimate arises if we set μ1 = μ2 = 1. In this case, the terms with
factors σ1 and σ3 in (40) are equal to zero, so that subsequent relations do
not contain the terms with multipliers formed by γ2 and γ3. Hence, we arrive
at the estimate

|||u− v|||2 ≤
(

1
γ1

+
σ2

3

γ4

)
×
(
γ1D(∇v, y) + γ4‖F − y · ν ‖2

Γ2

)

+
∥∥∥∥ 1
√
ρ
r1(v, y)

∥∥∥∥
2

Ω

+
∥∥∥∥ 1√

α
r2(v, y)

∥∥∥∥
2

Γ3

. (47)

The estimate (47) involves “free” parameters γ1 and γ4 and a “free” vector-
valued function y (which can be thought of as an image of the true flux).
There exists a combination of these free parameters that makes the left-hand
side of the estimate equal to the right-hand one. Indeed, set y = A∇u. Then

r1(v, y) = ρ(u− v) in Ω,
r2(v, y) = α(u− v) on Γ3,

F − y · ν = 0 on Γ2

and we find that for γ4 tending to infinity and for any γ1 > 0 the right-hand
side of (47) coincides with the energy norm of the error. However, the estimate
(47) has a drawback: it is sensitive with respect to ρ and α and may essentially
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overestimate the error if ρ or α are small. On the other hand, the right-hand
side of (46) is stable with respect to small values of ρ and α. Regrettably,
it does not possess the “exactness” (in the above-discussed sense) because it
may have a “gap” between the left- and right-hand sides for any y.

An upper bound of the error that combines positive features of (46) and
(47) can be derived (as in [9,10]) if a certain optimization procedure is used in
order to select optimal functions μ1 and μ2. If y is given, then optimal μ1 and
μ2 can be found analytically. It is not difficult to see that μ1 must minimize
the quantity ∫

Ω

(
κγ2(1 − μ1)2 +

μ2
1

ρ

)
r1(v, y)2 dx. (48)

The quantity attains its minimum with

μ1(x) = μopt1 (x) :=
κγ2

κγ2 + ρ(x)−1
in Ω. (49)

Similarly, we find that the integrals associated with Γ3 attain minimum if

μ2(x) = μopt2 (x) :=
κγ3

κγ3 + α(x)−1
on Γ3. (50)

Substituting these values to (41) results in the estimate

|||u− v|||2 ≤ κ

⎛
⎝γ1D(∇v, y) + γ2

∥∥∥∥∥
√
κ2γ2

2ρ+ 1
κγ2ρ+ 1

r1(v, y)

∥∥∥∥∥
2

Ω

+ γ3

∥∥∥∥∥
√
κ2γ2

3α+ 1
κγ3α+ 1

r2(v, y)

∥∥∥∥∥
2

Γ3

+ γ4‖F − y · ν‖2
Γ2

⎞
⎠ . (51)

Remark 1. For practical computations, it may be easier to use (41) and di-
rectly minimize its right-hand side with respect to μi, γi, and y using the
following iteration procedure:

Step 1. Keep γi and μj fixed in (41) and minimize resulting quadratic func-
tional of y in suitable finite subspace. This task can be reduced to
solving a system of linear equations.

Step 2. Compute γopti .
Step 3. Compute μoptj and repeat from Step 1.

We denote the right-hand side of (41) by M⊕(v, y, γ, μ1, μ2). This error
majorant provides a guaranteed upper bound of the error, i.e.

|||u− v|||2 ≤ M⊕(v, y, γ, μ1, μ2). (52)

It is exact (in the above-discussed sense). Indeed, for y = A∇u and μ1 = μ2 = 1
we obtain

inf
γi>0

M⊕(v,A∇u, γ, 1, 1) = |||u − v|||2. (53)

Also, it directly follows from the structure of (51) that the right-hand side is
insensitive to small values of ρ and α.



Solution Set for the Reaction–Diffusion Problem with Uncertain Data 195

3.2 Upper Bound

In this section, we derive an upper bound of rS . For this purpose, we use the
majorant M⊕(v, y, γ, μ1, μ2). Since the majorant nonlinearly depends on A,
ρ, and α, taking supremum over the respective indeterminacy sets imposes
a more complicated task than that for the minorant. For a class of diffusion
problems this task was solved in [5, 8]. Below, we deduce a simpler estimate,
which can be easily exploited in practical computations and serves as a natural
counterpart for the lower bound derived in Corollary 1.

Proposition 1. Assume that all the assumptions of Section 1 hold. Then

r2S ≤ Cr2S⊕ and r̂2S ≤ Cr̂2S⊕, (54)

where

r2S⊕ =
δ21

c1 − δ1
‖∇u0‖2

Ω +
δ22

c2 − δ2
‖u0‖2

Ω +
δ23

c3 − δ3
‖u0‖2

Γ3
(55)

and

r̂2S⊕ = max
i∈{1,2,3}

δ2i
ci(ci − δi)

. (56)

Proof. By properties of the majorant, we have

sup
ũ∈S

|||u0 − ũ|||2 = sup
ũ∈S

{
inf

y,μi,γj

MA,ρ,α
⊕ (u0, y, γ, μ1, μ2)

}

≤ inf
y,μi,γj

{
sup
A,ρ,α

MA,ρ,α
⊕ (u0, y, γ, μ1, μ2)

}
.

Applying (7), we obtain

r2S ≤ C inf
y,μi,γj

{
sup
A,ρ,α

MA,ρ,α
⊕ (u0, y, γ, μ1, μ2)

}
. (57)

Our task is to explicitly estimate the term in brackets. For this purpose, we
estimate from above the last two terms of the majorant and represent it in
the form

MA,ρ,α
⊕ (u0, y, γ, μ1, μ2)

≤ κ

(
γ1D(∇v, y) +

∥∥∥∥∥
√
γ2κ(1 − μ1)2 +

μ2
1

κ(c2 − δ2)
r1(v, y)

∥∥∥∥∥
2

Ω

+
∥∥∥∥
√
γ3κ(1 − μ2) +

μ2

κ(c3 − δ3)
r2(v, y)

∥∥∥∥
2

Γ3

+ γ4‖F − y · ν ‖2
Γ2

)
. (58)

Now, we find upper bounds with respect to A ∈ ΛA, ρ ∈ Λρ, and α ∈ Λα
separately.
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First, we consider the term D generated by A and A−1:

sup
A∈ΛA

D(∇u0, y) = sup
|Ψ |<1

∫
Ω

(A0 + δ1Ψ)−1|(A0 + δΨ)∇u0 − y|2 dx

≤ 1

c1 − δ1
sup
|Ψ |<1

{
‖A0∇u0 − y‖2 + 2δ1

∫
Ω

Ψ∇u0 · (A0∇u0 − y) dx + δ2
1‖Ψ∇u0‖2

}

≤ 1

c1 − δ1

(
‖A0∇u0 − y‖2

Ω + 2δ1

∫
Ω
|∇u0| |A0∇u0 − y| dx + δ2

1‖∇u0‖2
Ω

)
. (59)

For the term related to the error in equilibrium equation, we have

sup
ρ∈Λρ

‖rρ1(u0, y)‖2
Ω = sup

|ψ2|<1

∫
Ω

(f − (ρ0 + δ2ψ2)u0 + div y)2 dx

= sup
|ψ2|<1

∫
Ω

(div y − div(A0∇u0) − δ2ψ2u0)
2 dx

≤ ‖ div(y −A0∇u0)‖2
Ω + 2δ2

∫
Ω

| div(y −A0∇u0)| |u0| dx+ δ2‖u0‖2. (60)

Similarly, for the term related to the error in the Robin boundary condition
we have

sup
α∈Λα

‖rα2 (u0, y)‖2
Γ3

≤
∥∥∥∥∂(y −A0∇u0)

∂ν

∥∥∥∥
2

Γ3

+ 2δ3
∫
Γ3

∣∣∣∣∂(y −A0∇u0)
∂ν

∣∣∣∣ |u0| ds+ δ23‖u0‖2
Γ3
. (61)

It is clear that for y = y0 := A0∇u0, the estimates (59)–(61) attain minimal
values. In addition, we set in (58) μ1 = μ2 = 1 and find that

MA,ρ,α
⊕ (u0, A0∇u0, γ, 1, 1)

≤ κ

(
δ21γ1

c1 − δ1
‖∇u0‖2

Ω +
δ22

c2 − δ2
‖u0‖2

Ω +
δ23

c3 − δ3
‖u0‖2

Γ3

)
. (62)

Now we tend γ2, γ3 and γ4 (which are contained in κ) to infinity. Then, (62)
and (57) imply (55). An upper bound for the normalized radius follows from
the relation

MA,ρ,α
⊕ (u0, A0∇u0, γ, 1, 1)

≤ δ2
1

c1(c1 − δ1)

∫
Ω

A∇u0 ·∇u0 dx+
δ2
2

c2(c2 − δ2)
‖√ρ0u0‖2

Ω +
δ2
3

c3(c3 − δ3)
‖√α0u0‖2

Γ3

≤ max
i∈{1,2,3}

δ2
i

ci(ci − δi)
|||u0|||2,

which leads to (56).
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Remark 2. The normalized lower bound in Corollary 1 is less than the upper
bound established in Proposition 1. Indeed, using

(
1 − min

i

δi
ci

)−1

=
(

max
i

(
1 − δi

ci

))−1

=
(

min
i

ci
ci − δi

)

to r̂2S�, we arrive at the following relation between bounds:

Cr̂2
S⊕

Cr̂2
S�

=

(
max

i

ci
ci−δi

) (
max

i

δ2
i

ci(ci−δi)

)
(

min
i

ci
ci+δi

) (
min

i

δ2
i

c2i

) (
min

i

ci
ci−δi

)

=

(
max

i

ci

ci − δi

) (
max

i

δ2
i

ci(ci − δi)

) (
max

i

ci + δi

ci

)(
max

i

c2i
δ2
i

)(
max

i

ci − δi

ci

)
.

Maximums can be estimated from below by setting i = 1 everywhere. The
expression simplifies to

Cr̂2S⊕
Cr̂2S�

≥ c1
c1

(
c1 + δ1
c1 − δ1

)
≥ 1. (63)
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5. P. Neittaanmäki and S. Repin. Reliable methods for computer simulation. Error
control and a posteriori estimates. Elsevier, Amsterdam, 2004.

6. S. Repin. A posteriori error estimation for variational problems with uniformly
convex functionals. Math. Comp., 69(230):481–500, 2000.

7. S. Repin. Two-sided estimates of deviation from exact solutions of uniformly
elliptic equations. In Proc. of the St. Petersburg Mathematical Society, Vol. IX,
pages 143–171, 2001. Translation in Amer. Math. Soc. Transl. Ser. 2, 209, Amer.
Math. Soc., Providence, RI, 2003.

8. S. Repin. A posteriori error estimates taking into account indeterminacy of the
problem data. Russian J. Numer. Anal. Math. Modelling, 18(6):507–519, 2003.



198 O. Mali and S. Repin

9. S. Repin and S. Sauter. Functional a posteriori estimates for the reaction-
diffusion problem. C. R. Math. Acad. Sci. Paris, 343(5):349–354, 2006.

10. S. Repin and R. Stenberg. A posteriori error estimates for the generalized Stokes
problem. J. Math. Sci. (N. Y.), 142(1):1828–1843, 2007.



Guaranteed Error Bounds for Conforming

Approximations of a Maxwell Type Problem
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Summary. This paper is concerned with computable error estimates for approxi-
mations to a boundary-value problem

curl μ−1 curlu + κ2u = j in Ω,

where μ > 0 and κ are bounded functions. We derive a posteriori error estimates
valid for any conforming approximations of the considered problems. For this pur-
pose, we apply a new approach that is based on certain transformations of the basic
integral identity. The consistency of the derived a posteriori error estimates is proved
and the corresponding computational strategies are discussed.

Key words: A posteriori estimates, the Maxwell equation, guaranteed bounds of
approximation errors

1 Introduction

Boundary-value problems related to the Maxwell equation are interesting from
the mathematical viewpoint and arise in numerous applications. Existence and
regularity properties of solutions and viable methods of approximation are well
investigated and presented in the literature. Approximation methods for the
Maxwell equation were investigated in, e.g. [5,6,8,11]. A posteriori estimates
were obtained in [1] in the framework of the residual approach and in [2] with
the help of equilibrated approach. A posteriori estimates for nonconforming
approximations of H(curl)-elliptic partial differential equations were studied
in [7].

In this paper, we derive consistent a posteriori estimates by a different
method, which is based upon purely functional analysis of the problem in
question and do not attract specific properties of approximations or exact
solutions. Earlier, such type of methods were applied to many other classes
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of boundary-value problems (see [10, 12, 13, 16] and the references therein).
The so-called functional error majorants derived by this techniques are able
to estimate the error for any conforming approximation of the exact solution.
We show that for the Maxwell type problem (1) such estimates follow from
the corresponding generalized statement (integral identity), which defines a
weak solution to the problem. The integral identity can be transformed in
various ways. The more sophisticated methods of transforming (3) we apply
the better estimates of the difference between an approximate solution v and
the exact one u we obtain.

The outline of the paper is as follows. Section 2 contains definitions and
the generalized statement of the primal problem. In Section 3, we derive a
posteriori error estimate of the first type using the simple modus operandi. For
problems with κ > 0 the respective estimate is presented in Proposition 1. This
estimate consists of two parts related to errors in the duality relations and in
the differential equation and contains no geometrical constants. An important
property of this estimate is that it gives a guaranteed upper bound of the
error, which is as close to the exact error as it is required provided that the
parameters of the majorant are properly selected. However, as the estimates
derived for the reaction-diffusion problem the estimate looses the efficiency
for small κ. In Section 4, we derive another upper bound of the error, which
is insensitive with respect to small values of the coefficients. This estimate
contains global constants that depend only on Ω. Regrettably, we cannot
prove that error majorants established in Propositions 2 and 3 are equal to
the corresponding error norms if the “free” function y is properly selected.
Thus, the estimates exposed in Sections 3 and 4 has certain drawbacks that
may affect practical efficiency of error estimation. A way out is presented in
Section 5, which is devoted to establishing a more general error majorant. The
latter encompasses majorants derived in the previous sections as special cases.
The majorants defined in Propositions 4 and 5 are also insensitive with respect
to small values of the coefficients and as the estimate obtained in Section 3
have no gap between its right- and left-hand sides (so that a computable upper
bound of the error can be as close to the exact error as it is required).

2 Notation and Basic Relations

We consider the simplest version of the Maxwell equation

curlμ−1 curlu+ κ2u = j in Ω, (1)

where Ω is a bounded domain in R
d, j is a given current density, and μ is the

permeability of a medium (may be a positive constant or a positive bounded
function). The case κ = 0 corresponds to stationary transverse magnetic (TM)
or transverse electric (TE) equations that arise if one of the components of
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the electromagnetic field is excluded (e.g., see [8, 11]). The equation (1) with
positive κ arises in semidiscrete approximations of the evolutionary Maxwell
problem.

On Γ the condition
n× u = 0 (2)

is stated. Here, n denotes the unit outward normal to Γ . By V (Ω) we denote
the space H(Ω, curl), which is a Hilbert space endowed with the norm

‖w‖curl :=
(
‖w‖2 + ‖ curlw‖2

)1/2
.

Here and later on, the symbol := means ‘equals by definition’ and ‖ · ‖ stands
for L2-norm of scalar- and vector-valued functions.

The generalized solution u ∈ V0 is defined by the integral relation
∫
Ω

μ−1 curlu · curlw + κ2u · w dx =
∫
Ω

j · w dx, (3)

where u · w means scalar product of vector-valued functions u and w and

V0 := {w ∈ V | w × n = 0 on ∂Ω}.

Henceforth, we assume that j satisfies the condition
∫
Ω

j · ∇φdx = 0 ∀φ ∈
◦
H1(Ω) (4)

and

0 < μ� ≤ μ(x) ≤ μ⊕, (5)
0 < κ� ≤ κ(x) ≤ κ⊕. (6)

By scaling arguments, we can set μ⊕ = 1 without a loss of generality.
Our goal is to derive computable estimates of the difference u − v where

v ∈ V0 is a function viewed as an approximation of u. Estimates are obtained
for the weighted energy norm defined by the relation

|[w]|2(γ,δ) :=
∫
Ω

(γ| curlw|2 + δ|w|2) dx.

The derivation method is based on transformations of the integral relation (3).
It does not use specific properties of the exact solution or its approximation v
(e.g., Galerkin orthogonality). Therefore, the estimates are valid for conform-
ing approximations of all types regardless of the numerical method applied for
their construction. These estimates belong to the class of functional a posteri-
ori error estimates that has been derived for some other elliptic and parabolic
problems (see [10, 13, 16] and the references therein).
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3 A Posteriori Error Estimates of the First Type

3.1 Upper Bound of the Error

Proposition 1. Assume that κ > 0 and v ∈ V0 is an approximation of u. For
any y ∈ H(Ω, curl) the following estimate holds:

|[u− v]|2(μ−1,κ2) ≤ M2
1(v, y) :=

∥∥∥∥ 1
κ

r(v, y)
∥∥∥∥

2

+ ‖μ1/2d(v, y)‖2, (7)

where
r(v, y) := j − curl y − κ2v,

d(v, y) := y − μ−1 curl v.

Proof. From (3) it follows that

∫
Ω

(
μ−1 curl(u − v) · curlw + κ2(u− v) · w

)
dx

=
∫
Ω

(j · w − μ−1 curl v · curlw − κ2v · w) dx. (8)

Take y ∈ H(Ω, curl) and use the identity

(curl y) · w = div(y × w) + y · curlw. (9)

Since ∫
Ω

div(y × w) dx =
∫
∂Ω

n · (y × w) ds =
∫
∂Ω

y · (w × n) ds = 0,

we find that ∫
Ω

(curl y · w − y · curlw) dx = 0 ∀w ∈ V0. (10)

By (8) and (10) we obtain

∫
Ω

(
μ−1 curl(u − v) · curlw + κ2(u− v) · w

)
dx

=
∫
Ω

(j − curl y − κ2v) · w dx+
∫
Ω

(y − μ−1 curl v) · curlw dx. (11)

Set w = u− v and estimate two integrals in the right-hand side by the Hölder
inequality. We have

|[u− v]|2(μ−1,κ2) ≤
∥∥∥∥ 1
κ

r(v, y)
∥∥∥∥ ‖κ(u− v)‖ + ‖μ1/2d(v, y)‖‖μ−1/2 curl(u− v)‖,

which implies (7).



Error Bounds for Conforming Approximations of a Maxwell Problem 203

The estimate (7) shows that the distance between u and v measured in
terms of the weighted norm |[u−v]|(μ−1,κ2) is bounded from above by the sum
of two residuals r(v, y) and d(v, y) that are associated with the decomposition
of (1), which has the form

curl p+ κ2u− j = 0,

p = μ−1 curlu.

We note that the estimate (7) has no gap between its left- and right-hand
sides. Indeed, if we set y = μ−1 curlu then

‖μ1/2d(v, y)‖ = ‖μ−1/2 curl(u− v)‖

and ∥∥∥∥ 1
κ

r(v, y)
∥∥∥∥ = ‖κ(u− v)‖

so that (7) holds as the equality. However, for small κ the estimate becomes
sensitive with respect to r(v, y) and may loose practical efficiency if the value
of this residual is not much smaller than r(v, y).

Remark 1. If κ > 0 only in Ω+ ⊂ Ω, then (11) can be transformed as follows:
∫
Ω

(
μ−1 curl(u − v) · curlw + κ2(u− v) · w

)
dx

=
∫
Ω+

(j − curl y − κ2v) · w dx+
∫
Ω

(y − μ−1 curl v) · curlw dx,

which implies the estimate

|[u− v]|2(μ−1,κ2) ≤
∥∥∥∥ 1
κ

r(v, y)
∥∥∥∥

2

Ω+

+ ‖μ1/2d(v, y)‖2.

3.2 Lower Bound of the Error

A lower bound of the error norm is derived by the following arguments. First,
we note that

sup
w∈V0

∫
Ω

(
μ−1 curl(u − v) · curlw

+ κ2w · (u− v) − 1
2
(μ−1 curlw · curlw + κ2w · w)

)
dx

≤ sup
τ∈L2(Ω,Rd)

w∈L2(Ω,Rd)

∫
Ω

(
μ−1 curl(u− v) · τ − 1

2
μ−1τ · τ

+ κ2w · (u− v) − 1
2
κ2w · w

)
dx =

1
2
|[u− v]|2(μ−1,κ2).
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On the other hand,

sup
w∈V0

∫
Ω

(
μ−1 curl(u − v) · curlw

+ κ2w · (u− v) − 1
2
(μ−1 curlw · curlw + κ2w · w)

)
dx

≥
∫
Ω

(
μ−1 curl(u − v) · curl(u− v)

+ κ2(u− v) · (u − v) − 1
2
(μ−1| curl(u− v)|2 + κ2|u− v|2)

)
dx

=
1
2
|[u− v]|2(μ−1,κ2).

Thus, we conclude that

1
2
|[u− v]|2(μ−1,κ2) = sup

w∈V0

∫
Ω

(
μ−1 curl(u− v) · curlw

+ κ2w · (u − v) − 1
2
(μ−1 curlw · curlw + κ2w · w)

)
dx.

By (3), we obtain
|[u− v]|2(μ−1,κ2) ≥ M2

�(v, w), (12)

where

M2
�(v, w) :=

∫
Ω

(
2j · w − μ−1| curlw|2 − κ2|w|2

− 2μ−1 curl v · curlw − 2κ2v · w
)
dx.

For any w ∈ V0 the quantity M2
�(v, w) provides a lower bound of the error.

Certainly, the sharpest bound is given by the quantity

M2
�(v) := sup

w∈V0

M2
�(v, w).

It is not difficult to prove that this quantity coincides with the squared error
(to prove that it suffices to set w = u− v).

3.3 Practical Implementation

Practically computable upper (lower) bounds can be determined if minimiza-
tion of the majorant (maximization of the minorant) is performed over a
finite-dimensional subspace Vk ⊂ V , dimVk = k (V0m ⊂ V0, dimV0m = m).
Then, finding the quantities

Mk⊕(v) := inf
y∈Vk

M2
⊕(v, y), (13)
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Mm�(v) := sup
w∈V0m

M2
�(v, w) (14)

requires solving quadratic type minimization (maximization) problems what
can be done by standard methods.

We note that conforming approximations in V (and in V0) are usually
constructed by the Nédélec elements (see [9]), which are also natural to use
for the construction of Vk (and V0m). If Vk and V0m are limit dense in V and
V0, respectively (for k,m→ +∞), then it is easy to prove that

Mk⊕(v) → |[u− v]|(μ−1,κ2) and Mm�(v) → |[u− v]|(μ−1,κ2).

The ratio

ikm :=
Mk⊕(v)
Mm�(v)

is, indeed, computable. It shows the efficiency of the error estimation.

4 A Posteriori Error Estimate of the Second Type

In this section, we derive a posteriori estimates of a more general type as-
suming that κ is a positive constant. By the Helmholtz decomposition of a
vector-valued function, we represent the exact solution u

u = u0 + ∇ψ,

where u0 is a solenoidal vector-valued function and ψ ∈
◦
H1(Ω). Since

curl∇ψ = 0, we rewrite (3) as follows:
∫
Ω

μ−1 curlu0 · curlw + κ2(u0 + ∇ψ) · w dx =
∫
Ω

j · w dx. (15)

Next, we make the same decomposition for the trial function and set w =
w0 + ∇φ. Recall that

∫
Ω

j · ∇φdx =
∫
Ω

u0 · ∇φdx =
∫
Ω

w0 · ∇ψ dx = 0.

We observe that∫
Ω

(μ−1 curlu0 · curlw0 + κ2u0 · w0 + κ2∇ψ · ∇φ) dx =
∫
Ω

j · w0 dx. (16)

In (16), we set w0 = 0 and φ = ψ. We find that ‖∇ψ‖ = 0. Hence, u is a
divergence-free function.

We use this fact to rearrange (11) in a different way. We have
∫
Ω

r(v, y) ·w dx =
∫
Ω

r(v, y) · (w0 +∇φ) dx ≤ ‖r(v, y)‖ (‖w0‖ + ‖∇φ‖) . (17)
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Note that φ satisfies the relation
∫
Ω

∇φ · ∇φ̃ dx =
∫
Ω

w · ∇φ̃ dx = −
∫
Ω

(divw)φ̃ dx ∀φ̃ ∈
◦
H1(Ω), (18)

which implies the estimate

‖∇φ‖ ≤ C1(Ω)‖ divw‖, (19)

where C1(Ω) is the constant in the Friedrich inequality for the domain Ω. For
solenoidal fields we also have the estimate (see, e.g. [4, 8, 18])

‖w0‖ ≤ C2(Ω)‖ curlw0‖ = C2(Ω)‖ curlw‖. (20)

Hence,
∫
Ω

r(v, y) · w dx ≤ ‖r(v, y)‖ (C1(Ω)‖ divw‖ + C2(Ω)‖ curlw‖) (21)

and we arrive at the estimate
∫
Ω

(μ−1| curl(u− v)|2 + κ2|u− v|2) dx

≤ (‖d(v, y)‖ + C2(Ω)r(v, y)) ‖ curl(u− v)‖

+ C1(Ω)‖r(v, y)‖‖ div(u − v)‖ ≤ α

4
(‖d(v, y)‖ + C2(Ω)r(v, y)‖)2

+
1
α
‖ curl(u − v)‖2 + C1(Ω)‖r(v, y)‖‖ div v‖, (22)

where α ≥ μ.
Hence, we arrive at the following result:

Proposition 2. If κ is a positive constant and v ∈ V0 ∩H(Ω, div) then for
any y ∈ H(Ω, curl)

|[u− v]|2(( 1
μ− 1

α ),κ2) ≤ α

4
(‖d(v, y)‖ + C2(Ω)‖r(v, y)‖)2

+ C1(Ω)‖r(v, y)‖‖ div v‖. (23)

If div v = 0, then the estimate is simplified and has the form

|[u− v]|(( 1
μ− 1

α ),κ2) ≤
√
α

2
(‖d(v, y)‖ + C2(Ω)‖r(v, y)‖) . (24)

We can use a somewhat different way and estimate the first term in the
right-hand side of (11) as follows:
∫
Ω

r(v, y) · w dx ≤ ‖r(v, y)‖
(
C1(Ω)‖ divw‖ + C2(Ω)μ1/2

⊕ ‖μ−1/2 curlw‖
)
.

(25)
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Set w = u− v and note that div(u− v) = div v. Then we obtain

|[u− v]|2(μ−1,κ2) ≤ C1(Ω)‖ div v‖‖r(v, y)‖

+
(
C2(Ω)μ1/2

⊕ ‖r(v, y)‖ + ‖μ1/2d(v, y)‖
)
‖μ−1/2 curl(u − v)‖

≤ C1(Ω)‖ div v‖‖r(v, y)‖

+
(
C2(Ω)μ1/2

⊕ ‖r(v, y)‖ + ‖μ1/2d(v, y)‖
)
|[u− v]|(μ−1,κ2) (26)

and arrive at the following result.

Proposition 3. If κ is a positive constant and v ∈ V0 ∩H(Ω, div) then for
any y ∈ H(Ω, curl)

|[u− v]|(μ−1,κ2) ≤ M2(v, y) :=
R2

2
+

√
R1 +

R2
2

4
, (27)

where
R1 = C1(Ω)‖ div v‖‖r(v, y)‖

and
R2 := C2(Ω)μ1/2

⊕ ‖r(v, y)‖ + ‖μ1/2d(v, y)‖.

If, in addition, div v = 0, then

|[u− v]|(μ−1,κ2) ≤ R2. (28)

Remark 2. If κ = 0, then (28) has the form

‖μ−1 curl(u− v)‖ ≤ R2. (29)

For κ = 0, this estimate was earlier derived in [14, 15].

The estimates (23) and (27) are insensitive with respect to small values of
κ (what differs them from (7)). However, we made a certain overestimation of
the right-hand side in the last transformation of (22). Therefore, we cannot
guarantee that this upper bound has no gap (substitution of y = μ−1 curlu
does not make the respective right-hand sides equal to the error).

5 A Posteriori Estimate of the Third Type

5.1 An Advanced Form of the Error Majorant

To derive upper bounds that possess all positive features of the estimates of
the first and second types we use a more sophisticated method.
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Proposition 4. Let v and y satisfy the assumptions of Proposition 2. Then

|[u− v]|2γ,δ ≤ M2
3(λ, α1, α2, v, y), (30)

where

M2
3(λ, α1, α2, v, y) := R1(λ, v, y) +

α1

4
R2

2(λ, v, y) +
α2

4
R2

3(λ, v, y),

α1 and α2 are arbitrary numbers in [1,+∞),

γ =
(

1 − 1
α1

)
μ−1, δ =

(
1 − 1

α2

)
κ2,

λ ∈ I[0,1] := {λ ∈ L∞(Ω) | λ(x) ∈ [0, 1] for a.e. x ∈ Ω},

and Ri, i = 1, 2, 3, are defined by (33)–(35).

Proof. With the help of λ we decompose the integral identity (11) as follows
(in [17], a similar method was used for the decomposition of the reaction-
diffusion equation):

∫
Ω

(
μ−1 curl(u − v) · curlw + κ2(u− v) · w

)
dx

=
∫
Ω

λ(j − curl y − κ2v) · w dx+
∫
Ω

(1 − λ)(j − curl y − κ2v) · w dx

+
∫
Ω

(y − μ−1 curl v) · curlw dx, (31)

where λ ∈ I[0,1]. Since
∫
Ω

λr(v, y) · (u− v) dx ≤
∥∥∥∥λκ r(v, y)

∥∥∥∥ ‖κ(u− v)‖

and
∫
Ω

(1 − λ)r(v, y) · (u− v) dx

≤ ‖(1 − λ)r(v, y)‖
(
C1(Ω)‖ div v‖ + C2(Ω)μ1/2

⊕ ‖μ−1/2 curl(u− v)‖
)
,

we obtain
∫
Ω

(
μ−1| curl(u − v)|2 + κ2|u− v|2

)
dx

≤ R1 +R2‖μ−1/2 curl(u− v)‖ +R3‖κ(u− v)‖, (32)

where

R1(λ, v, y) = C1(Ω)‖(1 − λ)r(v, y)‖‖ div v‖, (33)
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R2(λ, v, y) = C2(Ω)μ1/2
⊕ ‖(1 − λ)r(v, y)‖ + ‖μ1/2d(v, y)‖, (34)

R3(λ, v, y) =
∥∥∥∥λκ r(v, y)

∥∥∥∥ . (35)

By applying the Young inequality to the right-hand side of (32), we obtain

∫
Ω

(
1 − 1

α1

)
μ−1| curl(u− v)|2 dx+

∫
Ω

(
1 − 1

α2

)
κ2|u− v|2 dx

≤ R1 +
α1

4
R2

2 +
α2

4
R2

3, (36)

which implies (30).

Corollary 1. If α1 = α2 = 2 then (30) comes in the form

|[u− v]|2(μ−1,κ2) ≤ 2R1(λ, v, y) +R2
2(λ, v, y) +R2

3(λ, v, y). (37)

The proposition below shows that the estimate (30) possesses the same
principal property as (7): it has no gap between the left- and right-hand sides.

Proposition 5. If α1 = α2 = 2, then

|[u− v]|2(μ−1,κ2) = M⊕(v), (38)

where

M⊕(v) := inf
λ∈I[0,1],

y∈H(Ω,curl)

{
2R1(λ, v, y) +R2

2(λ, v, y) +R2
3(λ, v, y)

}
. (39)

Proof. Obviously,

M⊕ ≤ 2R1(1, v, p) +R2
2(1, v, p) + R2

3(1, v, p),

where p = μ−1 curlu. Note that

R1(1, v, p) = 0,

R2(1, v, p) = ‖μ−1/2 curl(u− v)‖,
R3(1, v, p) = ‖κ(u− v)‖.

Therefore,

M⊕ = ‖μ−1/2 curl(u− v)‖2 + ‖κ(u− v)‖2 = |[u− v]|2(μ−1,κ2).
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5.2 Optimal Form of λ

Now our goal is to derive the sharpest upper bound by defining the function
λ(x) in an “optimal” way. For this purpose, we first reform (36) by introducing
positive parameters α3 and α4 and noting that

R1(λ, v, y) ≤ α3

2
C2

1 (Ω)‖(1 − λ)r(v, y)‖2 +
1

2α3
‖ div v‖2,

R2
2(λ, v, y) ≤ (1 + α4)C2

2 (Ω)μ⊕‖(1 − λ)r(v, y)‖2

+
(

1 +
1
α4

)
‖μ1/2d(v, y)‖2.

Therefore, (36) implies

∫
Ω

(
1 − 1

α1

)
μ−1| curl(u − v)|2 dx +

∫
Ω

(
1 − 1

α2

)
κ2|u − v|2 dx

≤
∫
Ω

(
(1 − λ)2P + λ2Q

)
r2(v, y) dx+

(
1 +

1

α4

)
α1

4
‖μ1/2d(v, y)‖2+

1

2α3
‖div v‖2,

(40)

where
P =

α3

2
C2

1 (Ω) + (1 + α4)
α1

4
C2

2 (Ω)μ⊕,

Q =
α2

4κ2
.

Optimal λ is defined by the relation

λ =
P

P +Q
∈ [0, 1]

and the respective estimate reads

∫
Ω

(
1 − 1

α1

)
μ−1| curl(u− v)|2 dx+

∫
Ω

(
1 − 1

α2

)
κ2|u− v|2 dx

≤
∫
Ω

PQ

P +Q
r2(v, y) dx+

(
1 +

1
α4

)
α1

4
‖μ1/2d(v, y)‖2 +

1
2α3

‖ div v‖2. (41)

Remark 3. Note that
PQ

P +Q
≤ min{P,Q}.

Therefore, the estimate (41) is insensitive to small values of κ2.
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2. D. Braess and Schöberl. Equilibrated residual error estimator for Maxvell’s equa-
tion. To appear.

3. G. Duvaut and J.-L. Lions. Les inéquations en mécanique et en physique. Dunod,
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7. P. Houston, I. Perugia, and D. Schötzau. An a posteriori error indicator for dis-
continuous Galerkin discretizations of H(curl)-elliptic partial differential equa-
tions. IMA J. Numer. Anal., 27(1):122–150, 2007.

8. P. Monk. Finite element methods for Maxwell’s equations. Oxford University
Press, New York, 2003.
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Summary. A linear complementarity problem (LCP) is formulated for the price
of American options under the Bates model which combines the Heston stochastic
volatility model and the Merton jump-diffusion model. A finite difference discretiza-
tion is described for the partial derivatives and a simple quadrature is used for the
integral term due to jumps. A componentwise splitting method is generalized for the
Bates model. It is leads to solution of sequence of one-dimensional LCPs which can
be solved very efficiently using the Brennan and Schwartz algorithm. The numerical
experiments demonstrate the componentwise splitting method to be essentially as
accurate as the PSOR method, but order of magnitude faster. Furthermore, pric-
ing under the Bates model is less than twice more expensive computationally than
under the Heston model in the experiments.

1 Introduction

During the last couple of decades, the trading of options has grown to tremen-
dous scale. The most basic options give either the right to sell (put) or buy
(call) the underlying asset with the strike price. European options can be
exercised only at the expiry time while American options can be exercised
any time before the expiry. Usually American options need to be priced nu-
merically due to the early exercise possibility. One approach is to formulate a
linear complementarity problem (LCP) or variational inequality with a partial
(integro-)differential operator for the price and then solve it numerically after
discretization. Since the books by Glowinski, Lions, and Trémolières [17] and
by Glowinski [14], these problems have been extensively studied.

For pricing options, a model is needed for the behavior of the value of the
underlying asset. Many such models of varying complexity have been devel-
oped. More complicated models reproduce more realistic paths for the value
and match between the market price and model prices of options is better,
but they also make pricing more challenging. In the Black–Scholes model
[5], the value is a geometric Brownian motion. The Merton model [26] adds
log-normally distributed jumps to the Black–Scholes model while in the Kou
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model [23], the jumps are log-doubly-exponentially distributed. The Heston
model [19] makes the volatility also stochastic in the Black–Scholes model.
The Bates model [4] which is also sometimes called as the Heston–Merton
model adds to the Heston model log-normally distributed jumps. The corre-
lated jump model [12] allows also the volatility in the Bates model to jump.

Many methods have been proposed for solving the resulting LCPs. The
Brennan and Schwartz algorithm [6] is a direct method for pricing American
options under the Black–Scholes model; see also [21]. Numerical methods pric-
ing under the Heston model have been considered in [8, 20, 22, 27, 35]. The
treatment of the jumps in the Merton and Kou models have been studied in
[2, 3, 9, 10, 25, 32]. Pricing under the Bates model has been considered in [7]
and under the correlated jump model in [13].

In this paper, we consider pricing American call options under the Bates
model. We discretize the spatial partial derivatives in the resulting partial
integro-differential operator using a seven-point finite difference stencil. The
integral term is discretized using a simple quadrature. The Rannacher scheme
[29] is employed in the time stepping. We treat the LCP by introducing a
generalization for the componentwise splitting method in [20]. The numerical
experiments demonstrate that the proposed method is orders of magnitude
faster than the PSOR method.

The outline of the paper is the following. The Bates model and an LCP
for an American call option is described in Section 2. The discretization of
LCPs is constructed in Section 3. The componentwise splitting method is
proposed in Section 4. Numerical experiments are presented in Section 5 and
conclusions are given in Section 6.

2 Option Pricing Model

In the following, we give coupled stochastic differential equations describing
the Bates model. Then, we give an LCP for the price of an American call
option when the market prices of the volatility and jump risks are zero.

2.1 Bates Model

The Bates stochastic volatility model with jumps [4] combines the Merton
jump model [26] and the Heston stochastic volatility model [19]. It describes
the behavior of the asset value x and its variance y by the coupled stochastic
differential equations

dx = (μ− λξ)xdt +
√
yxdw1 + (J − 1)xdn,

dy = κ(θ − y)dt+ σ
√
ydw2,

(1)

where μ is the growth rate of the asset value, κ is the rate of reversion to the
mean level of y, θ is the mean level of y, and σ is the volatility of the variance y.
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The two Wiener processes w1 are w2 have the correlation ρ. The Poisson
arrival process n has the rate λ. The jump size J is taken from a distribution

f(J) =
1√

2πδJ
exp

(
− [lnJ − (γ − δ2/2)]2

2δ2

)
, (2)

where γ and δ define the mean and variance of the jump. The mean jump ξ
is given by ξ = exp(γ) − 1.

2.2 Linear Complementarity Problem for American Options

We define a partial integro-differential operator L acting on a price function
u as

Lu = uτ − 1
2
yx2uxx − ρσyxuxy − 1

2
σ2yuyy − (r − q − λξ)xux

− κ(θ − y)uy + (r + λ)u − λ

∫ ∞

0

u(Jx, y, τ)f(J)dJ, (3)

where τ = T − t is the time to expiry and q is the dividend yield. For compu-
tations, the unbounded domain is truncated to be

(x, y, τ) ∈ (0, X) × (0, Y ) × (0, T ] (4)

with sufficiently large X and Y .
The initial value for u is defined by the payoff function g(x, y) which gives

the value of option at the expiry. In the following, we consider only call options.
A similar approach can be also applied for put options. The payoff function
for a call option with the strike price K is

g(x, y) = max{x−K, 0}, x ∈ (0, X), y ∈ (0, Y ). (5)

The price u of an American option satisfies an LCP
{
Lu ≥ 0, u ≥ g,

(Lu) (u− g) = 0.
(6)

We pose the boundary conditions

u(0, y, τ) = g(0, y), u(X, y, τ) = g(X, y), y ∈ (0, Y ),
uy(x, Y, τ) = 0, x ∈ (0, X).

(7)

Beyond the boundary x = X , the price u is approximated to be the same as
the payoff g, that is, u(x, y, τ) = g(x, y) for x ≥ X . On the boundary y = 0,
the LCP (6) holds and no additional boundary condition needs to be posed.
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3 Discretization

We approximate the price u on a space–time grid defined by the grid points
(xi, yj , τk), 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l.

3.1 Discretization of Spatial Differential Operator

We use a uniform space grid with the grid steps in the x-direction and y-
direction being Δx = X/m and Δy = Y/n, respectively. Figure 1 shows a
coarse space grid. A semidiscrete approximation for the price u is given by
the time-dependent grid point values

ui,j(τ) ≈ u(xi, yj , τ) = u(iΔx, jΔy, τ), 0 ≤ i ≤ m, 0 ≤ j ≤ n. (8)

We need to discretize the spatial partial derivatives in L given by

a11uxx + a12uxy + a22uyy + b1ux + b2uy + cu, (9)

where

a11 = −1
2
yx2, a12 = −ρσyx, a22 = −1

2
σ2y,

b1 = −(r − q − λξ)x, b2 = −κ(θ − y), c = r + λ.
(10)

The spatial partial derivatives are discretized using finite differences. For the
non cross-derivatives, we use the standard central difference approximations

uxx(xi, yj , τ) ≈ 1
(Δx)2

(2u(xi, yj , τ) − u(xi −Δx, yj , τ) − u(xi +Δx, yj , τ)) ,

uyy(xi, yj , τ) ≈ 1
(Δy)2

(2u(xi, yj , τ) − u(xi −Δx, yj , τ) − u(xi +Δx, yj , τ)) ,

ux(xi, yj , τ) ≈ 1
2Δx

(u(xi +Δx, yj , τ) − u(xi −Δx, yj , τ)) ,

uy(xi, yj , τ) ≈ 1
2Δy

(u(xi +Δx, yj , τ) − u(xi −Δx, yj , τ)) .

(11)

y

Y

0
0 X x

Fig. 1. A coarse 17× 9 uniform grid for the computational domain (0, X)× (0, Y ).
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Fig. 2. A seven-point finite difference stencil used with a negative correlation ρ < 0
between the Wiener processes for the asset value x and its variance y.

In this paper, we assume that the correlation ρ is negative and we use a seven-
point stencil shown in Figure 2. A similar stencil has been described in [7].
For a positive correlation ρ, a suitable seven-point stencil is given in [20, 22].
The cross-derivative uxy is approximated by

uxy(xi, yj , τ) ≈ 1
2ΔxΔy

(2u(xi, yj , τ) − u(xi −Δx, yj +Δy)

−u(xi +Δx, yj −Δy) − (Δx)2uxx(xi, yj , τ) − (Δy)2uyy(xi, yj , τ)
)
. (12)

Due to additional derivative terms in (12), we define modified coefficients for
uxx and uyy as

ã11 = a11 +
1
2
Δx

Δy
a12, and ã22 = a22 +

1
2
Δy

Δx
a12. (13)

It is well-known that the central finite differences can lead to positive
weights in difference stencil when the convection dominates the diffusion. To
avoid positive weights, we add some artificial diffusion according to

â11 = min
{
ã11,−

1
2
b1Δx,

1
2
b1Δx

}
(14)

and

â22 = min
{
ã22,−

1
2
b2Δy,

1
2
b2Δy

}
. (15)

This is equivalent to using a combination of one-sided and central differences
for the convection. The resulting matrix is an M-matrix. Its off-diagonals are
nonpositive and the diagonal is positive. It is strictly diagonally dominant
when c = r + λ > 0.

3.2 Discretization of Integral Term

The integral term due to the jumps in (3) needs to computed at each grid
point x = xi. We denoted it by

Ii =
∫ ∞

0

u(Jxi, y, τ)f(J)dJ. (16)
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In order to perform the integration, we make a change of variable J = es

which leads to
Ii =

∫ ∞

−∞
u(esxi, y, τ)p(s)ds, (17)

where p is the probability density function of the normal distribution with the
mean γ − δ2/2 and the variance δ2 given by

p(s) =
1√
2πδ

exp
(
− [s− (γ − δ2/2)]2

2δ2

)
. (18)

We decompose Ii into integrals over grid intervals as

Ii =
n−1∑
j=0

Ii,j +
∫ ∞

ln xn−lnxi

g(esxi, y)p(s)ds, (19)

where

Ii,j =
∫ ln xj−lnxi

ln xj+1−lnxi

u(esxi, y, τ)p(s)ds. (20)

The price function u(x, y, τ) needs to be approximated between each grid
point pair (xi, xi+1). For this, we use a piecewise linear interpolation

u(x, y, τ) ≈ xi+1 − x

xi+1 − xi
u(xi, y, τ) +

x− xi
xi+1 − xi

u(xi+1, y, τ) (21)

for x ∈ [xj , xj+1].
By performing the integration, we obtain

Ii,j ≈ eγ

2

[
erf

(
si,j+1 − γ − δ2/2

δ
√

2

)
− erf

(
si,j − γ − δ2/2

δ
√

2

)]
αjxi

+
1
2

[
erf

(
si,j+1 − γ + δ2/2

δ
√

2

)
− erf

(
si,j − γ + δ2/2

δ
√

2

)]
βjxi, (22)

where erf(·) is the error function, si,j = lnxj − lnxi,

αj =
u(xj+1, y, τ) − u(xj , y, τ)

xj+1 − xj
, and βj =

u(xj , y, τ)xj+1 − u(xj+1, y, τ)xj
xj+1 − xj

.

(23)

3.3 Semidiscrete LCP

The space discretization leads to an LCP
{

uτ + Au + a ≥ 0, u ≥ g,
(uτ + Au + a)T (u − g) = 0,

(24)
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where A is (m+1)(n+1)× (m+1)(n+1) matrix, a is a vector resulting from
the second term in (19), u and g are vectors containing the grid point values
of the price u and the payoff g, respectively. In the above LCP, the inequalities
hold componentwise. The entries in the rows of A corresponding to the grid
points on the boundaries x = 0 and x = X are set to zero. The submatrix of
A corresponding to the grid points not on the boundaries x = 0 and x = X
is an M-matrix. When the numbering of the grid points first goes through the
grid points in the x-direction and then in the y-direction, the (n+1)× (n+1)
diagonal blocks of A are essentially full matrices due to the jump term.

3.4 Time Discretization

We use the Rannacher scheme [29] with nonuniform time steps. It takes a few
first time steps with the implicit Euler method and then it uses the Crank–
Nicolson method. This leads to better stability properties than using just the
Crank–Nicolson method. The solution vector u is approximated at times

τk =

⎧⎪⎪⎨
⎪⎪⎩

(
k

2l

)2

T, k = 0, 1, 2, 3,
(
k − 2
l− 2

)2

T, k = 4, 5, . . . , l.
(25)

In order to simplify the following notations, we define time step sizes Δτk =
τk+1 − τk, k = 0, 1, . . . , l − 1.

In order to simplify the notations in the following, we denote by
LCP(B,u,b,g) the linear complementarity problem

{
(Bu − b) ≥ 0, u ≥ g,
(Bu − b)T (u − g) = 0.

(26)

The Rannacher time stepping leads to the solution of the following se-
quence of LCPs:

LCP(B(k+1),u(k+1),b(k+1),g), (27)

where u(k) denotes the vector u at the time τk. For the first four time steps
k = 0, 1, 2, 3, we use the implicit Euler method defined by

B(k+1) = I +ΔτkA and b(k+1) = Δτku(k) −Δτka. (28)

The rest of the time steps k = 4, 5, . . . , l − 1 are performed using the Crank–
Nicolson method defined by

B(k+1) = I+
1
2
ΔτkA and b(k+1) =

(
I − 1

2
ΔτkA

)
u(k)−Δτka. (29)
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4 Componentwise Splitting Method

Componentwise splitting methods are inspired by ADI (Alternating Direction
Implicit) schemes which were introduced in [11, 28]. Instead of treating a
part of operator explicitly, we use fully implicit splittings considered in
[15, 16, 24, 33], for example. For the Heston model, the componentwise split-
ting method were introduced in [20] with a positive correlation ρ. In [7], the
splitting method was considered in the case of a negative correlation.

The matrix A is split into three matrices which correspond to the cou-
plings in the x-direction, y-direction, and diagonal direction. Figure 3 shows
the matrix splitting and also the corresponding splitting of the finite dif-
ference stencil. The simplest fractional step method based on the implicit
Euler method is given in Figure 4. The formal accuracy of this method is
O(Δτl−1) = O

(
1
l

)
.

We increase the accuracy of the splitting method by performing a Strang
symmetrization [30] and use the Crank–Nicolson method; see also [15]. This
leads one time step to have the following fractional steps:

Step 1. LCP
(
I +

Δτk
4

Ay,u(k+1/5),

(
I − Δτk

4
Ay

)
u(k),g

)

Step 2. LCP
(
I +

Δτk
4

Ad,u(k+2/5),

(
I − Δτk

4
Ay

)
u(k+1/5),g

)

Step 3. LCP
(
I +

Δτk
2

Ax,u(k+3/5),

(
I − Δτk

2
Ax

)
u(k+2/5) −Δτka,g

)

Step 4. LCP
(
I +

Δτk
4

Ad,u(k+4/5),

(
I − Δτk

4
Ay

)
u(k+3/5),g

)

Step 5. LCP
(
I +

Δτk
4

Ay,u(k+1),

(
I − Δτk

4
Ay

)
u(k+4/5),g

)

In order to maintain the good stability of the Rannacher scheme, we use the
implicit Euler method instead the Crank–Nicolson method for the first four
time steps k = 0, 1, 2, 3 in the above symmetrized splitting method.

4.1 Solution of One-Dimensional LCPs

For an American call option, typical early exercise boundaries at different
times are shown in Figure 5. The boundary can be described by a relation

A

�
�

�
���

� � �

��

=

= Ax

� � � � +

+ Ay

�

�

�

+

+ Ad

�
�

�
��

�

�

Fig. 3. The matrix splitting of A and the corresponding splitting of the finite
difference stencil.
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1. LCP(I +ΔτkAy,u(k+1/3), Δτku(k),g)
Solve the sequence of one-dimensional LCPs:

2. LCP(I +ΔτkAd,u(k+2/3), Δτku(k+1/3),g)
Solve the sequence of one-dimensional LCPs:

3. LCP(I +ΔτkAx,u(k+1), Δτku(k+2/3) −Δτka,g)
Solve the sequence of one-dimensional LCPs:

Fig. 4. Three fractional splitting steps for performing the time step from τk to τk+1.

 0
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Fig. 5. The time evolution of the early exercise boundaries for an American call
option.

y = h(x, τ), where h an increasing function with respect to x. Thus, a given
point (x, y, τ) belongs to

• The hold region if y > h(x, τ) or
• The early exercise region if y ≤ h(x, τ)

Similarly, the early exercise boundary divides each x-directional line, y-
directional line, and (1,−1)-directional line into two parts. Due to this solution
structure and the tridiagonal matrices defining the LCPs in the y-direction
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and (1,−1)-direction, the Brennan and Schwartz algorithm can be used to
solve these problems. The LCPs in the x-direction have full matrices due to
the integral term. An iterative solution procedure for these problems is de-
scribed in the end of this section.

Brennan and Schwartz Algorithm

The Brennan and Schwartz algorithm for American put options under the
Black–Scholes model was described in [6]. The algorithm can be modified to
use a standard LU-decomposition [1, 21]. We formulate it for a tridiagonal
linear complementarity problem:

Tx =

⎛
⎜⎜⎜⎜⎝

T1,1 T1,2

T2,1
. . . . . .
. . . Tm−1,m−1 Tm−1,m

Tm,m−1 Tm,m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xm

⎞
⎟⎟⎟⎠ ≥

⎛
⎜⎜⎜⎝

b1

b2

...
bm

⎞
⎟⎟⎟⎠ = b, (30)

x ≥ g, (Tx − b)T (x − g) = 0. (31)

The Brennan and Schwartz algorithm assumes the solution x to be such that
for some integer k it holds that

xi > gi, i = 1, . . . , k, and
xi = gi, i = k + 1, . . . ,m.

(32)

The algorithm with LU-decomposition is described as follows:

Brennan and Schwartz algorithm
Computation of LU-decomposition and forward substitution:
U1,1 = T1,1

y1 = b1

Do i = 2, . . . ,m
Li,i−1 = Ti,i−1/Ui−1,i−1

Ui−1,i = Ti−1,i

Ui,i = Ti,i − Li,i−1Ui−1,i

yi = bi − Li,i−1yi−1

End Do
Backward substitution with a projection:
xm = ym/Um,m

xm = max{xm, gm}
Do i = m− 1, . . . , 1

xi = (yi − Ui,i+1xi+1)/Ui,i

xi = max{xi, gi}
End Do

In this algorithm the only modification to a standard solution with LU-
decomposition is the additional projection in the backward substitution.
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After a suitable numbering of unknowns the assumption (32) holds for
the one-dimensional LCPs in all three directions. The Brennan and Schwartz
algorithm can be use directly to solve the one-dimensional LCPs in the y-
direction and in the (1,−1)-direction.

LCPs with Full Matrices Associated to the x-Direction

A matrix associated to one-dimensional LCP in the x-direction is denoted by
B. It has a regular splitting [34]

B = T − J, (33)

where −J is a full matrix resulting from the integral term and T is the rest
which a tridiagonal matrix. We generalize a fixed point iteration described in
[31] and used in [2,10,32]. The fixed point iteration for LCP(B,x,b,g) reads

LCP(T,xj+1,b + Jxj ,g), j = 0, 1, . . . (34)

Each iteration requires the solution of an LCP with the tridiagonal T and
the multiplication of a vector by J. The Brennan and Schwartz algorithm
can be used to solve the LCPs (34). The iteration converges very rapidly and
only a couple of iterations are needed to reach sufficient accuracy for practical
purposes.

5 Numerical Experiments

In the numerical experiments for call options, we use the model parameter
values:

• The risk free interest rate r = 0.03
• The dividend yield q = 0.05
• The strike price K = 100
• The correlation between the price and variance processes ρ = −0.5
• The mean level of the variance θ = 0.04
• The rate of reversion to the mean level κ = 2.0
• The volatility of the variance σ = 0.25
• The jump rate λ = 0.2
• The mean jump γ = −0.5
• The variance of jump δ = 0.4

The computational domain is (x, y, τ) ∈ [0, 400]× [0, 1] × [0, 0.5].
Our first experiment compares the PSOR method and the Strang sym-

metrized componentwise splitting method for call options under the Heston
model, that is, λ = 0. In this case, the LCPs in the x-direction are tridiagonal
and they can be solved using the Brennan and Schwartz algorithm without
the iteration (34).
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Table 1. The numerical results for the Heston model

Method Grid (m,n, l) Iteration Error Ratio CPU

PSOR (64, 32, 8) 34.6 0.14470 0.05
(128, 64, 16) 42.3 0.05607 2.58 0.48
(256, 128, 32) 95.3 0.01006 5.58 8.18
(512, 256, 64) 196.6 0.00350 2.87 128.51

(1024, 512, 128) 372.2 0.00066 5.31 1890.76

Componentwise (64, 32, 8) 0.14412 0.01
splitting (128, 64, 16) 0.05621 2.56 0.06

(256, 128, 32) 0.01019 5.51 0.51
(512, 256, 64) 0.00355 2.87 6.36

(1024, 512, 128) 0.00067 5.28 58.27

Table 1 reports the numerical results. It (and also Table 2) has the fol-
lowing columns: Grid (m,n, l) defines the number of grid steps in x, y, and τ
to be m, n, and l, respectively. Iteration gives the average number of PSOR
iterations on each time step with the relaxation parameter ω = 1.5. With the
componentwise splitting method iteration specifies the number of iterations
(34) to solve the LCPs in the x-direction at each time step. Error column
gives the root mean square relative error given by

error =

[
1
5

5∑
i=1

(
u(xi, θ, T ) − U(xi, θ, T )

U(xi, θ, T )

)2
]1/2

, (35)

where x = (80, 90, 100, 110, 120)T and U is the reference price. Ratio is the
ratio of the consecutive root mean square relative errors. CPU gives the CPU
time in seconds on a 3.8 GHz Intel Xeon PC. The reference prices under the
Heston model at (xi, θ, T ), i = 1, 2, . . . , 5, are 0.131563, 1.255396, 4.999888,
11.680219, 20.325463 which were computed using the componentwise splitting
method on the grid (4096, 2048, 512).

We can observe from Table 1 that the discretizations with both methods
appears to be roughly second-order accurate as the ratio is four on average.
Furthermore, the splitting increases the error only about 2%. On the coarsest
grid, the splitting method is five times faster than the PSOR method, and on
the finest grid it is 32 times faster.

In our second experiment, we performed the same comparison under the
Bates model. The reference prices computed using the componentwise split-
ting method on the grid (4096, 2048, 512) are 0.328526, 2.109397, 6.711622,
13.749337, 22.143307. In the componentwise splitting method, the LCPs in the
x-direction lead to full matrices and the iteration (34) is employed to solve
them. Based on a few experiments, we observed that already after two iter-
ations the accuracy is sufficient. Thus, we use two iterations in our compari-
son. The multiplication by the matrix J is the most expensive operation in the
iteration. In order to perform it efficiently, we collected all n multiplications
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Table 2. The numerical results for the Bates model

Method Grid (m, n, l) Iteration Error Ratio CPU

PSOR (64, 32, 8) 39.6 0.10887 0.16
(128, 64, 16) 48.1 0.03803 2.86 2.14
(256, 128, 32) 108.2 0.00670 5.68 138.92
(512, 256, 64) 222.6 0.00209 3.20 8605.09

(1024, 512, 128) 420.5 0.00034 6.13 275191.73

Componentwise (64, 32, 8) 2.0 0.10833 0.01
splitting (128, 64, 16) 2.0 0.03790 2.86 0.09

(256, 128, 32) 2.0 0.00668 5.67 0.81
(512, 256, 64) 2.0 0.00210 3.19 10.18

(1024, 512, 128) 2.0 0.00035 6.07 109.45

corresponding to all x-grid lines together and then performed the resulting
matrix–matrix multiplication using the optimized GotoBLAS library [18].

The numerical results under the Bates model are given in Table 2. Absolute
errors are comparable to the ones under the Heston model, but as the option
prices are higher under the Bates model the relative errors reported in the
table are smaller. Again roughly second-order accuracy is observed with both
methods. The CPU times with the componentwise splitting method were less
than twice the times under the Heston model. The componentwise splitting
method is 16 times faster on the coarsest grid, and it is about 2,500 times
faster on the finest grid. On finer grids, the PSOR method leads to infeasible
CPU times while the times with componentwise splitting method are still
reasonable.

6 Conclusions

We described a linear complementarity problem (LCP) for pricing American
options under the Bates model and we considered a finite difference discretiza-
tion. We proposed a componentwise splitting method to solve approximately
the LCPs. It leads to a sequence of LCPs with tridiagonal matrices. The
Brennan and Schwartz algorithm can solve these LCPs efficiently.

Our numerical experiments showed that the additional splitting error do
not essentially increase the discretization error. The componentwise splitting
method is orders of magnitude faster than the PSOR method under the Bates
model. Pricing under the Bates model was at most two times more expensive
than under the Heston model with the componentwise splitting method.
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discussions on operator splitting methods. The author is grateful to Dr. Samuli
Ikonen for many fruitful discussions on numerical methods for option pricing.
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Summary. In this paper we summarize our recent results on the exact boundary
controllability of a trapezoidal time discrete wave equation in a bounded domain.
It is shown that the projection of the solution in an appropriate space in which the
high frequencies have been filtered is exactly controllable with uniformly bounded
controls (with respect to the time-step). By classical duality arguments, the problem
is reduced to a boundary observability inequality for a time-discrete wave equation.
Using multiplier techniques the uniform observability property is proved in a class
of filtered initial data. The optimality of the filtering parameter is also analyzed.

Key words: Exact controllability, observability, time discretization, wave equation,
multiplier technique, filtering.

1 Introduction

Let Ω be an open bounded domain in R
d (d ∈ N

∗) with C2 boundary Γ . Let
T > 0 be a given time duration. We consider the following wave equation with
a state y = y(x, t) and a controller u = u(x, t) acting on the nonempty subset
Γ0 of the boundary Γ = ∂Ω:

⎧⎪⎨
⎪⎩
ytt −Δy = 0 in (0, T ) ×Ω,

y = u1Γ0 on (0, T ) × Γ,

y(0) = y0, yt(0) = y1 in Ω.
(1)

Here 1Γ0 is the characteristic function of the set Γ0.
This paper is devoted to analyze whether the known controllability results

for (1) can be recovered as a consequence of similar results for the time-discrete
versions. This kind of problems has been the object of intensive research in
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the past few years but mainly in the context of space semi-discretizations.
In the present paper we summarize the main results by the authors [14] in the
time discrete case. This issue is of interest from a numerical analysis point of
view but also in what concerns the link between the control properties of time
continuous and time-discrete distributed parameter systems. The topic of nu-
merical approximation of boundary controls for wave equations was initiated
by R. Glowinski, J.-L. Lions and coworkers (see, for instance, [3,14]) and has
motivated intensive research (we refer to [17] for a survey).

The exact controllability of (1) requires that the subset Γ0 of the boundary
fulfills some geometric conditions. It holds, in particular, for those subsets that
are obtained through the multiplier method. More precisely, fix some x0 ∈ R

d,
and put ⎧⎨

⎩
R � max

x∈Ω
|x− x0|,

Γ0 � {x ∈ Γ | (x − x0) · ν(x) > 0},
(2)

where ν(x) is the unit outward normal vector of Ω at x ∈ Γ . For these subsets
Γ0 the exact controllability property of (1) holds provided T > 2R.

To be more precise, the following exact controllability result for (1) is well
known (see [6]): For any (y0, y1) ∈ L2(Ω) × H−1(Ω), there exists a control
u ∈ L2((0, T ) × Γ0) such that the solution y = y(t, x) of (1), defined by the
classical transposition method, satisfies

y(T ) = yt(T ) = 0 in Ω. (3)

By classical duality arguments [6], the above controllability property is equiv-
alent to a (boundary) observability one of the following uncontrolled wave
equation: ⎧⎪⎨

⎪⎩
ϕtt −Δϕ = 0, in (0, T ) ×Ω

ϕ = 0 on (0, T ) × Γ

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, in Ω,
(4)

i.e. to the fact that solutions of (4) satisfy

E(0) ≤ C

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dΓ0dt, ∀(ϕ0, ϕ1) ∈ H1
0 (Ω) × L2(Ω). (5)

Here and thereafter, we will use C to denote a generic positive constant (de-
pending only on T , Ω and Γ0) which may vary from line to line. On the other
hand, E(0) stands for the energy E(t) of (4) at t = 0, with

E(t) =
1
2

∫
Ω

[
|ϕt(t, x)|2 + |∇ϕ(t, x)|2

]
dx, (6)

which remains constant, i.e.

E(t) = E(0), ∀t ∈ [0, T ].
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The inequality (5) can be proved by several methods including multiplier
techniques [6], microlocal analysis [1] and Carleman inequalities [13]. In the
particular case of subset Γ0 as above and T > 2R, the inequality (5) can
be proved easily by the method of multipliers [6] that in the present paper we
adapt to time-discrete equations.

Note, however, that the subsets Γ0 of the boundary and the values of the
minimal control time obtained in this way are not optimal. The obtention of
optimal control subsets and times requires the use of methods of geometric
optics (see [1]).

In this paper, we analyze time semi-discretization schemes for the systems
(1) and (4). We are thus replacing the continuous dynamics (1) and (4) by
time-discrete ones and analyze their controllability/observability properties.
Here we take the point of view of numerical analysis and, therefore, we analyze
the limit behavior as the time-step tends to zero.

More precisely, we set the time step h by h = T/K, where K > 1 is a
given odd integer. Denote by yk and uk respectively the approximations of
the solution y and the control u of (1) at time tk = kh for any k = 0, . . . , K.
We then introduce the following trapezoidal time semi-discretization of (1):
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yk+1 + yk−1 − 2yk

h2
−Δ

(
yk+1 + yk−1

2

)
= 0, in Ω, k = 1, . . . ,K − 1,

yk = uk1Γ0 , on Γ, k = 0, . . . ,K,

y0 = y0, y1 = y0 + hy1, in Ω.
(7)

Here (y0, y1) ∈ L2(Ω) × H−1(Ω) are the data in the system (1). We refer
to Theorem 1 below for the well-posedness of the system (1) by means of a
transposition method.

The controllability problem for the system (7) is formulated as follows: For
any (y0, y1) ∈ L2(Ω) × H−1(Ω), to find a control {uk ∈ L2(Γ0)}k=1,...,K−1

such that the solution {yk}k=0,...,K of (7) satisfies:

yK−1 = yK = 0 in Ω. (8)

Note that (8) is equivalent to the condition yK−1 = (yK − yK−1)/h = 0 that
is a natural discrete version of (3).

As in the context of the above continuous wave equation, we also consider
the uncontrolled system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕk+1 + ϕk−1 − 2ϕk

h2
−Δ

(
ϕk+1 + ϕk−1

2

)
= 0, in Ω, k = 1, . . . ,K − 1,

ϕk = 0, on Γ, k = 0, . . . ,K

ϕK = ϕh0 + hϕh1 , ϕK−1 = ϕh0 , in Ω,
(9)

where (ϕh0 , ϕ
h
1 ) ∈ (H1

0 (Ω))2. In particular, to guarantee the convergence of the
solutions of (9) towards those of (4), one considers convergent data such that
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⎧⎪⎨
⎪⎩

ϕh0 → ϕ0 strongly in H1
0 (Ω),

ϕh1 → ϕ1 strongly in L2(Ω),

hϕh1 → ϕ1 is bounded in H1
0 (Ω),

as K → ∞ (or h→ 0). (10)

Obviously, because of the density of H1
0 (Ω) in L2(Ω), this choice is always

possible.

Remark 1. Note that the choice of the values of ϕK and ϕK−1 in (9) is mo-
tivated by the definition of the solution of the time-discrete non-homogenous
problem (7) in the sense of transposition (see Definition 1).

The energy of the system (9) is given by

Ekh � 1
2

∫
Ω

(∣∣∣∣ϕ
k+1 − ϕk

h

∣∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx, k = 0, . . . ,K − 1,

which is a discrete counterpart of the continuous energy E in (6). It is easy
to show that Ekh is conserved in the discrete time variable k = 0, . . . , K − 1.
Consequently, the scheme under consideration is stable and its convergence
(in the classical sense of numerical analysis) is guaranteed (in the finite-energy
space H1

0 (Ω) × L2(Ω) of the system (4)).
By means of classical duality arguments, it is easy to show that the above

controllability property (8) is equivalent to the following boundary observ-
ability property for solutions {ϕk}k=0,...,K of (9):

E0
h ≤ Ch

K−1∑
k=1

∫
Γ0

∣∣∣∣ ∂∂ν
(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0, ∀(ϕh0 , ϕ
h
1 ) ∈ (H1

0 (Ω))2. (11)

As we mentioned above, the controllability/observability properties of nu-
merical approximation schemes for the wave equation have been the object of
intensive studies. However, most analytical results concern the case of space
semi-discretizations (see [17] and the references cited therein). In practical
applications, fully discrete schemes need to be used. The most typical ex-
ample is the classical fully-discrete central scheme which converges under a
suitable CFL condition [3,4,11]. However, in the present setting in which the
space Laplacian Δ is kept continuous, without discretizing it, this scheme is
unsuitable since it is unstable. Indeed, it is easy to see that the scheme

ϕk+1 + ϕk−1 − 2ϕk

h2
−Δϕk = 0 (12)

is unstable since −Δ, with homogenous Dirichlet conditions, is a positive self-
adjoint operator with an infinite sequence of eigenvalues {μ2

j}j≥1 tending to
infinity. The stability of (12) would be equivalent to the stability of the scheme
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ϕk+1 + ϕk−1 − 2ϕk

h2
+ μ2

jϕ
k = 0

for all values of μ2
j , j ≥ 1. This stability property fails clearly, regardless

how small h is, when μ2
j is large enough. Hence, we choose the trapezoidal

scheme (9) for the time-discrete problem, which is stable (due to the property
of conservation of energy), as mentioned before.

Let us now return to the analysis of (7) and (9). Noting that the spaces
in which the solutions of these systems evolve are infinite dimensional while
the number of time-steps is finite, it is easy to conclude that: For any given
h > 0, the inequality (11) fails and the system (7) is not exactly controllable.
Accordingly, to make the observability inequality possible, one has to restrict
the class of solutions of the adjoint system (9) under consideration by filtering
the high frequency components. Similarly, since the property of exact control-
lability of the system (7) fails, the final requirement (8) has to be relaxed by
considering only low frequency projections of the solutions. Controlling such
a projection can be viewed as a partial controllability problem. This filtering
method has been applied successfully in the context of controllability of time
discrete heat equations in [15] and space semi-discretization schemes for wave
equations in [5, 16, 17].

In this paper, we sketch the discrete version of the classical multiplier
approach developed in [14] which allows to derive the uniform observability
estimate (with respect to the time step h) for the system (9) with initial
data in a suitable filtered space, which, in turn, by duality, implies the partial
controllability of (7), uniformly on h.

As in the continuous case, the multiplier technique applies mainly to the
case when the controller/observer Γ0 is given in (2) and some variants [9],
but does not work when (T,Ω, Γ0) is assumed to satisfy the sharp Geometric
Control Condition (GCC) in [1]. As we shall see, the main advantage of our
multiplier approach is that the filtering parameter we use has the optimal
scaling in what concerns the frequency of observed/controlled solutions with
respect to h.

The rest of the paper is organized as follows. In Section 2 we state the main
results, i.e. the uniform controllability and observability of the systems (7) and
(9) after filtering, respectively. In Section 3 we give a heuristic explanation of
the necessity of the filtering analyzing the bicharacteristic rays and the group
velocity. The key ingredients in the proof of the uniform observability results
will be sketched in Sections 4 and 5. Finally, in Section 6, we shall briefly
discuss some open problems and closely related issues.

2 Main Results

We begin with the well-posedness of the system (7). For this purpose, for any
{fk ∈ L2(Ω)}k=1, ...,K−1, and any {gk ∈ H1

0 (Ω)}k=1, ...,K with g1 = gK = 0,
we consider the following adjoint problem of the system (7):
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζk+1 + ζk−1 − 2ζk

h2
−Δ

(
ζk+1 + ζk−1

2

)

= fk +
gk+1 − gk

h
, in Ω, k = 1, . . . ,K − 1,

ζk = 0, on Γ, k = 0, . . . ,K,
ζK = ζK−1 = 0, in Ω.

(13)

It is easy to see that (13) admits a unique solution {ζk ∈ H1
0 (Ω)}k=0, ...,K .

Moreover, this solution has the regularity

∂

∂ν

(
ζk+1 + ζk−1

2

)
∈ L2(Γ ) for k = 1, . . . ,K − 1.

Put

H =
{
{yk}k=0,...,K | yi+1 + yi−1 ∈ L2(Ω) for i = 1, . . . ,K − 1,

yj+1 − yj

h
+
yj−1 − yj−2

h
∈ H−1(Ω) for j = 2, . . . ,K − 1

}
. (14)

We introduce the following:

Definition 1. {yk}k=0, ...,K ∈ H is said to be a solution of (7), in the sense of
transposition, if y0 = y0, y1 = y0+hy1, and for any {fk ∈ L2(Ω)}k=1, ...,K−1,
and {gk ∈ H1

0 (Ω)}k=1, ...,K with g1 = gK = 0, it holds

h

K−1∑
k=1

∫
Ω

fk yk+1 + yk−1

2
dx−h

K−1∑
k=2

〈
gk,

yk+1 − yk

2h
+

yk−1 − yk−2

2h

〉
H1

0 (Ω),H−1(Ω)

=
〈
ζ0, y1

〉
H1

0 (Ω),H−1(Ω)
−
∫

Ω

ζ1 − ζ0

h
y0dx−h

K−1∑
k=1

∫
Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0,

(15)

where {ζk ∈ H1
0 (Ω)}k=0,...,K is the solution of (13).

The above definition can be viewed as a discrete version of the classical
transposition approach [6]. It is motivated by the following observation: When
the control {uk}k=0, ...,K and the initial data (y0, y1) are sufficiently smooth,
multiplying both sides of (13) by (yk+1 + yk−1)/2, integrating the resulting
identity in Ω and summing it for k = 1, . . . , K − 1, one obtains (15).

The well-posedness of the system (7) is stated as follows:

Theorem 1. Assume(y0, y1) ∈ L2(Ω)×H−1(Ω)and{uk ∈ L2(Γ0)}k=1,...,K−1.
Then the system (7) admits one and only one solution {yk}k=0, ...,K ∈ H in

the sense of Definition 1. Moreover,
(
y2�, y

2�+1−y2�

h

)
∈ L2(Ω) × H−1(Ω) for

� = 0, 1, . . . , [K2 ], and
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max
�=0,1,...,[ K

2 ]

∥∥∥∥
(
y2�,

y2�+1 − y2�

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

≤ C

(
‖(y0, y1)‖2

L2(Ω)×H−1(Ω) + h

K−1∑
k=1

∥∥uk∥∥2

L2(Γ0)

)
. (16)

We refer to [14] for the proof of Theorem 1 by means of a discrete multiplier
approach.

Next, assume {Φj}j≥1 ⊂ H1
0 (Ω) to be an orthonormal basis of L2(Ω)

consisting of the eigenvectors (with eigenvalues {μ2
j}j≥1) of the Dirichlet

Laplacian: {
−ΔΦj = μ2

jΦj , in Ω

Φj = 0, on Γ.

For any s > 0, we set

C1,s =

⎧⎨
⎩f(x) | f(x) =

∑
μ2

j<s

ajΦj(x), aj ∈ C

⎫⎬
⎭ ⊂ H1

0 (Ω), (17)

C0,s =

⎧⎨
⎩g(x) | g(x) =

∑
μ2

j<s

bjΦj(x), bj ∈ C

⎫⎬
⎭ ⊂ L2(Ω), (18)

and

C−1,s =

⎧⎨
⎩z(x) | z(x) =

∑
μ2

j<s

cjΦj(x), cj ∈ C

⎫⎬
⎭ ⊂ H−1(Ω), (19)

subspaces of H1
0 (Ω), L2(Ω) and H−1(Ω), respectively, with the induced

topologies. It is clear that
⋃∞
k=1 C1,k is dense in H1

0 (Ω), and the same can
be said for

⋃∞
k=1 C0,k in L2(Ω) and

⋃∞
k=1 C−1,k in H−1(Ω). Denote by π1,s,

π0,s and π−1,s the projection operators from H1
0 (Ω), L2(Ω) and H−1(Ω) to

C1,s, C0,s and C−1,s, respectively.
Our main results are stated as follows:

Theorem 2. Let T > 2R. Then there exist three constants h0 > 0, δ > 0
and C > 0, depending only on T , R and the dimension d, such that for all
(ϕ0, ϕ1) ∈ C1,δh−2 × C0,δh−2 , the corresponding solution {ϕk}k=0, ...,K of (9)
satisfies

E0
h ≤ Ch

K−1∑
k=1

∫
Γ0

∣∣∣∣ ∂∂ν
(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0, ∀h ∈ (0, h0]. (20)
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Remark 2. We refer to (38) for the exact form of δ, which depends only on d,
T and R. In particular, it indicates that δ decreases as T decreases. This is
natural since, as T decreases, less and less time-step iterations are involved
in the system (9) and, consequently, less Fourier components of the solutions
may be observed. Further, δ tends to zero as T tends to 2R. This is natural
too since our proof of (20) is based on the method of multipliers which works
at the continuous level for all T > 2R but that, at the time-discrete level, due
to the added dispersive effects, may hardly work when T is very close to 2R,
except if the filtering is strong enough.

Remark 3. The problem considered in this paper could have been addressed, in
1−d, using discrete Ingham inequalities as those in [8]. When doing that, one
would get similar results. In [2] the problem of observability of time-discrete
linear conservative systems is addressed in an abstract context including wave,
plate and Schrödinger equations. The techniques employed in [2] are inspired
in those in [10] based on resolvent estimates, which allow to derive, in a
systematic way, observability results for time-discrete systems as consequences
of those that are by now well-known for time-continuous ones. The results in
[2] can be applied to the time-discrete wave equation considered in this article.
The main drawback of the results in [2] is that the observability time one gets
seems to be far from the expected optimal one. Another different approach,
which gives weaker results, is viewing (by extension to continuous time) the
solutions of (9) as perturbed solutions of the continuous conservative wave
equation (4). Absorbing the remainder terms then requires stronger filtering
than the multiplier method.

Remark 4. As shown in [14], the order h−2 of the filtering parameter (in
Theorem 2) is optimal. This corresponds precisely to filtering numerical solu-
tions whose wave length is of the order of the mesh-size h, for which resonance
phenomena may arise. However, our analysis in the next section indicates that
the inequality (20) may hold within the class C1,δh−2 × C0,δh−2 for any δ > 0.
This can be proved to hold by applying the abstract results in [2] to the
present problem. The multiplier method we develop here needs to impose a
smallness condition on δ. It is an interesting open problem to see if the multi-
plier method can be adapted to deal with arbitrarily large values of δ. But it
is well known, even at the continuous level, that the method of multipliers is
often unable to yield observability results that can be obtained by other ways.

As a consequence of the partial observability result in Theorem 2, by du-
ality, we can derive the following uniform partial controllability result:

Theorem 3. Let T , h0 and δ be given as in Theorem 2. Then for any h ∈
(0, h0] and any (y0, y

1−y0

h ) ∈ L2(Ω) ×H−1(Ω), there exists a control {uk ∈
L2(Γ0)}k=0, ...,K such that the solution of (7) satisfies the following:

(i) It holds
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π0,δh−2yK−1 = π−1,δh−2

(
yK − yK−1

h

)
= 0 in Ω; (21)

(ii) There exists a constant C > 0, independent of h, y0 and y1, such that

h

K−1∑
k=1

∫
Γ0

∣∣∣∣u
k+1 + uk−1

2

∣∣∣∣
2

dΓ0 ≤ C

∥∥∥∥
(
y0,

y1 − y0

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

;

(iii) When h→ 0,

Uh �
K−1∑
k=1

uk(x)1[kh,(k+1)h)(t) −→ u strongly in L2((0, T ) × Γ0), (22)

where u is a control of the system (1), fulfilling (3);
(iv) When h→ 0,

yh � y01{0}(t) +
1
h

K−1∑
k=0

[
(t− kh)yk+1 − (t− (k + 1)h) yk

]
1(kh,(k+1)h](t)

−→ y strongly in C([0, T ];L2(Ω)) ∩H1([0, T ];H−1(Ω)), (23)

where y is the solution of the system (1) with the limit control u as above.

Remark 5. The above theorem contains two results: the uniform partial con-
trollability and the convergence of the controls and states as h → 0. The
proof is standard. Indeed, the partial controllability statement follows from
Theorem 2 and classical duality arguments [6]; while for the convergence re-
sult, one may use the approach developed in [17].

It is important to note that, in the limit, one can recover the controllability
of (1) for all T > 2R, i.e. the same results as the multiplier method applied
directly to the time-continuous wave equation yields, as we have shown in the
last two properties of Theorem 3. Indeed, given any T > 2R, one can choose a
sufficiently small δ such that Theorem 3 guarantees the controllability of the
projections π0,δh−2 in time T . Since these projections involve the frequencies
μ2
j such that μ2

j < δh−2, it is clear that, as h → 0, this range of frequencies
eventually covers the whole spectrum of the time-continuous wave equation.
It is, however, important to underline that the filtering parameter δ has to be
chosen depending on the value of T and that δ → 0 as T approaches 2R, as
indicated in Remark 2.

By duality, Theorem 3 is a consequence of Theorem 2. Hence, in the sequel
we shall concentrate mainly on the proof of Theorem 2. To show Theorem 2,
we shall develop a multiplier approach, which is a discrete analogue of the
classical one for the time-continuous case [6]. There are two key ingredients
when doing this. One is a basic identity for the solutions of (9) obtained by
means of multipliers, which is a discrete version of the classical one on the
time-continuous wave equation [6]. The other one is the construction of the
filtering operator to guarantee the uniform observability of (9) after filtering.
We shall explain them in more detail later in this paper.
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3 Bicharacteristic Rays and Group Velocity

Before entering into the details of the proofs, we give an heuristic explanation
of the necessity of the above filtering mechanism in terms of the group veloc-
ity of propagation of the solutions of the time-discrete system (see [12, 17]).
For doing that we consider the time-discrete wave equation (9) in the whole
space R

d. Applying the Fourier transform (the continuous one in space and
the discrete one in time), we deduce that the symbol of the time semi-discrete
system (9) is

ph(τ, ξ) = −
4 sin2 τh

2

h2
+ |ξ|2 cos(τh), (τ, ξ) ∈

[
− π

2h
,
π

2h

]
× R

d.

It is easy to see that, for all τ ∈ [−π(2h)−1, π(2h)−1], ph(τ, ξ) has two non-
trivial roots ξ± ∈ R

d. The bicharacteristic rays are defined as the solutions of
the following Hamiltonian system:

⎧⎪⎪⎨
⎪⎪⎩

dx(s)
ds

= 2ξ cos(τh),
dt(s)
ds

= −2 sin(τh)
h

− |ξ|2h sin(τh),

dξ(s)
ds

= 0,
dτ(s)
ds

= 0.

As in the continuous case, the rays are straight lines. However, both the
direction and the velocity of propagation of the rays in this time-discrete
setting case are different from the time-continuous one.

Let us now, for instance, illustrate the existence of bicharacteristic rays
whose projection on R

d propagates at a very low velocity or even does not
move at all. For this, we fix any x0 = (x0,1, . . . , x0,d) ∈ Ω and choose the
initial time t0 = 0. Also, we choose the initial microlocal direction (τ0, ξ0) =
(τ0, ξ0,1, . . . , ξ0,d) to be a root of ph, i.e.

|ξ0|2 =
4 sin2 τ0h

2

h2 cos(τ0h)
, τ0 ∈

(
− π

2h
,
π

2h

)
.

Note that the above condition is satisfied for ξ0,1 = 2h−1 sin τ0h
2 cos−1/2(τ0h)

and ξ0,2 = · · · = ξ0,d = 0, for instance. In this case we get

dx

dt
=
dx/ds

dt/ds
= −cos3/2(τ0h)

cos τ0h2

and dx2(t)/dt = · · · = dxd(t)/dt = 0. Thus, xj(t) for j = 2, . . . , d remain
constant and

x1(t) = x0,1 − t cos3/2(τ0h) cos−1 τ0h

2

evolves with speed − cos3/2(τ0h) cos−1 τ0h
2 , which tends to 0 when τ0h→ π

2−,
or τ0h → −π

2 +. This allows us to show that, as h → 0, there exist rays that
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remain trapped on a neighborhood of x0 for time intervals of arbitrarily large
length. In order to guarantee the boundary observability, these rays have to
be cut-off by filtering. This can be done by restricting the Fourier spectrum
of the solution to the range |τ | ≤ ρπ

2h with 0 < ρ < 1. This corresponds to

|ξ|2 ≤ 4 sin2(ρπ/2)
h2 cos(ρπ/2)

, (24)

for the root of the symbol ph.
This is the same scaling of the filtering operators we imposed in Theorems

2 and 3, namely, μ2
j ≤ δ/h2. Note, however, that in (24), as ρ→ 1, the filtering

parameter

δ =
4 sin2(ρπ/2)
cos(ρπ/2)

−→ ∞.

Thus, in principle, as mentioned above, the analysis of the velocity of propa-
gation of bicharacteristic rays does not seem to justify the need of letting the
filtering parameter δ small enough as in Theorems 2 and 3. Thus, this last
restriction seems to be imposed by the rigidity of the method of multipliers
rather than by the underlying wave propagation phenomena.

We can reach similar conclusions by analyzing the behavior of the so-called
group velocity. Indeed, following [12], in 1−d the group velocity has the form

C(ξ) =
4

(2 + h2ξ2)
√

4 + h2ξ2
,

with the graphs as in Figure 1. Obviously, it tends to zero when h2ξ2 tends to
infinity. This corresponds precisely to the high frequency bicharacteristic rays
constructed above for which the velocity of propagation vanishes. Based on
this analysis one can show that, whatever the filtering parameter δ is, uniform
observability requires the observation time to be large enough with T (δ) ↗ ∞
as δ ↗ ∞. This may be done using an explicit construction of solutions
concentrated along rays (see, for instance, [7]). The positive counterpart of
this result guaranteeing that, for any value of the filtering parameter δ > 0,
uniform observability/controllability holds for sharp large enough values of
time, is an interesting open problem whose complete solution will require the
application of microlocal analysis tools. At this respect it is worth mentioning
that, although the results in [2] can be applied for any δ > 0, the value of the
time they yield is larger than the one predicted by the analysis in this section.

4 A Key Identity via Multipliers

In this section we present the first key point of the proof of Theorem 2, i.e.
an identity for the solutions of (9).

The desired identity is as follows:
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Fig. 1. The diagram of the group velocity C(ξ). h = 0.1 (solid line) vs. h = 0.01
(dashed line). The thick horizontal segment corresponds to the theoretical group
velocity C(ξ) = 1 (in the continuous case, i.e. for h = 0).

Lemma 1. For any h > 0 and any solution {ϕk}k=0,...,K of (9), it holds

h

2

K−1∑
k=0

∫
Ω

(∣∣∣∣ϕ
k+1 − ϕk

h

∣∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx+X + Y + Z

=
h

2

K−1∑
k=1

∫
Γ

(x− x0) · ν
∣∣∣∣ ∂∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ, (25)

where

X =
∫
Ω

[
(x− x0) · ∇

(
ϕK + ϕK−2

2

)
+
d− 1

2
ϕK

]
ϕK − ϕK−1

h
dx

−
∫
Ω

[
(x− x0) · ∇

(
ϕ2 + ϕ0

2

)
+
d− 1

2
ϕ0

]
ϕ1 − ϕ0

h
dx, (26)

Y =
d

2

[
h2

K−1∑
k=1

∫
Ω

Δ

(
ϕk+1 + ϕk−1

2
ϕk − ϕk−1

h

)
dx

−h
∫
Ω

∣∣∣∣ϕ
K − ϕK−1

h

∣∣∣∣
2

dx

]

+
∫
Ω

(x− x0) ·
[
∇
(
ϕK−1 − ϕK−2

2

)
ϕK − ϕK−1

h

+∇
(
ϕ2 − ϕ1

2

)
ϕ1 − ϕ0

h

]
dx, (27)
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Z =
(d− 2)h

8

K−1∑
k=1

∫
Ω

∣∣∇(ϕk+1 − ϕk−1)
∣∣2 dx

− (d− 1)h
4

K−1∑
k=0

∫
Ω

∣∣∇ (
ϕk+1 − ϕk

)∣∣2 dx

− (d− 1)h
4

∫
Ω

(
∇ϕK · ∇ϕK−1 + ∇ϕ1 · ∇ϕ0

)
dx

+
(d− 2)h

4

∫
Ω

(
|∇ϕK−1|2 + |∇ϕ1|2

)
dx. (28)

Proof. Multiplying the first equation of (9) by (x − x0) · ∇(ϕk+1 + ϕk−1)/2
(which is a discrete version of the classical multiplier (x − x0) · ∇ϕ for the
wave equation), integrating it in Ω, summing it up from 1 to K− 1 and using
integration by parts, we obtain

h
K−1∑
k=1

∫
Ω

(x − x0) · ∇
(
ϕk+1 + ϕk−1

2

)
ϕk+1 + ϕk−1 − 2ϕk

h2
dx

= h
K−1∑
k=1

∫
Ω

(x− x0) · ∇
(
ϕk+1 + ϕk−1

2

)
Δ

(
ϕk+1 + ϕk−1

2

)
dx. (29)

One can check that the left-hand side term of (29) coincides with

d

2
h

K−1∑
k=0

∫
Ω

∣∣∣∣ϕ
k+1 − ϕk

h

∣∣∣∣
2

dx+ Y

+
∫
Ω

(x− x0) · ∇
[(
ϕK + ϕK−2

2

)
ϕK − ϕK−1

h
−
(
ϕ2 + ϕ0

2

)
ϕ1 − ϕ0

h

]
dx,

(30)

where Y is defined as in (27). We now use the classical multiplier identity for
the Laplacian

∫
Ω

(x−x0) ·∇ψΔψdx =
1
2

∫
Γ

(x−x0) ·ν
∣∣∣∣∂ψ∂ν

∣∣∣∣
2

dΓ − 2 − d

2

∫
Ω

|∇ψ|2dx, (31)

which holds for all ψ ∈ H2 ∩H1
0 (Ω) [6]. Then, using the identity (a + b)2 =

2(a2 + b2) − (a − b)2 for any a, b ∈ R, the right-hand side term of (29) may
be written as
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h

2

K−1∑
k=1

∫
Γ

(x− x0) · ν
∣∣∣∣ ∂∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ

+
(d− 2)h

2

{
K−1∑
k=0

∫
Ω

|∇ϕk+1|2 + |∇ϕk|2
2

dx

−
K−1∑
k=1

∫
Ω

∣∣∣∣∇
(
ϕk+1 − ϕk−1

2

)∣∣∣∣
2

dx −1
2

∫
Ω

(
|∇ϕK−1|2 + |∇ϕ1|2

)
dx

}
. (32)

On the other hand, multiplying the first equation of (9) by ϕk (which is
a discrete version of the multiplier ϕ in the time-continuous setting, which
allows establishing the identity of equipartition of energy), integrating it in
Ω, summing it up for k = 1, . . . , K − 1 and using integration by parts, as
above, we obtain the following equipartition of energy identity:

h
K−1∑
k=0

∫
Ω

(∣∣∣∣ϕ
k+1 − ϕk

h

∣∣∣∣
2

− |∇ϕk+1|2 + |∇ϕk|2
2

)
dx

= −h
2

K−1∑
k=0

∫
Ω

∣∣∇(ϕk+1 − ϕk)
∣∣2 dx− h

2

∫
Ω

(
∇ϕK · ∇ϕK−1 + ∇ϕ1 · ∇ϕ0

)
dx

+
∫
Ω

(
ϕK − ϕK−1

h
ϕK − ϕ1 − ϕ0

h
ϕ0

)
dx. (33)

By (29)–(33), recalling (26) and (28) respectively for X and Z, we arrive at
the desired identity (25).

Remark 6. The identity (25) is a time-discrete analogue of the following well-
known identity for the wave equation (9) obtained by multipliers [6]:

1
2

∫ T

0

∫
Ω

[
|ϕt|2 + |∇ϕ|2

]
dxdt+ X =

1
2

∫ T

0

∫
Γ

(x− x0) · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dΓdt, (34)

where

X =
∫
Ω

[
(x− x0) · ∇ϕ+

d− 1
2

ϕ

]
ϕtdx

∣∣∣∣
T

t=0

.

There are clear analogies between (25) and (34). In fact, the only major differ-
ences are that, in the discrete version (25), two extra remainder terms (Y and
Z) appear, which are due to the time discretization. It is easy to see, formally,
that Y and Z tend to zero as h → 0. But this convergence does not hold
uniformly for all solutions. Consequently, these added terms impose the need
of using filtering of the high frequencies to obtain observability inequalities
out of (25) and modify the observability time, as we shall see.
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5 Filtering and Uniform Observability

In this section, we present the second key ingredient of the proof of Theorem 2,
i.e. the choice of the filtering parameter which, combined with the identity in
Lemma 1, leads to the desired uniform observability inequality in Theorem 2.

For this, we first derive the following result, which provides an estimate
on the remainder term X + Y + Z in Lemma 1 in terms of the energy:

Lemma 2. Let K be an even integer, s > 0 and T > 0. Then, for any
(ϕ0, ϕ

1−ϕ0

h ) ∈ C1,s × C0,s, for the corresponding solution {ϕk}k=0,...,K of (9),
it holds

X + Y + Z ≥ −
[
2R+ a1h+ 3R

√
sh+ T

(
d

2
√
sh+ a2sh

2

)]
E0
h, (35)

where

a1 = 3d− 2 + max
(
d− 1

2
, 2
)
, a2 = min

(
1, (2 − d)+

)
+
d− 1

2
. (36)

Proof. For any (ϕ0, ϕ
1−ϕ0

h ) ∈ C1,s × C0,s, in view of the Fourier series decom-
position of the corresponding solution {ϕk}k=0,...,K of (9), one sees that, for
any k, we have

∫
Ω

|∇(ϕk − ϕk−1)|2dx ≤ s

∫
Ω

|ϕk − ϕk−1|2dx,
∫
Ω

∣∣∣∣Δ
(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx ≤ s

∫
Ω

∣∣∣∣∇
(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx.

(37)

Recalling (26)–(28) and using (37), and noting T = Kh and that the energy
of the system (9) is conservative, we can show that

|X | ≤
[
2R+ 2(d− 1)h+Rh

√
s
]
E0
h, |Y | ≤ h

[
d

(√
sT

2
+ 1

)
+ 2R

√
s

]
E0
h,

Z ≥ −h
{[

min(1, (2 − d)+) +
d− 1

2

]
shT + max

(
d− 1

2
, 2
)}

E0
h,

which gives (35).

Finally, Theorem 2 follows from Lemmas 1 and 2 immediately. Indeed,
combining (25) and (35) and recalling the definition of Γ0 in (2), we deduce
that

{
T

(
1 − d

2
√
sh− a2sh

2

)
−
[
2R+ a1h+ 3R

√
sh
]}
E0
h

≤ R

2
h

K−1∑
k=1

∫
Γ0

∣∣∣∣ ∂∂ν
(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0.
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For this inequality to yield an estimate on E0
h we need to choose s = δh−2

with h small enough such that

a2δ +
d

2

√
δ < 1,

or, more precisely,

0 <
√
δ <

4√
d2 + 16a2 + d

. (38)

Once this is done, for h ∈ (0, h0), T has to be chosen such that

T >
2R+ a1h0 + 3R

√
δ

1 − d
2

√
δ − a2δ

≥ 2R. (39)

Hence, (20) holds for h ∈ (0, h0].
Conversely, for any T > 2R one can always choose h0 and δ small enough

so that (38) and (39) hold, guaranteeing the uniform observability inequal-
ity (20).

6 Further Comments and Open Problems

Fully Discrete Schemes

The analysis in this paper can be combined with previous works (see, for in-
stance, [17]) concerning space semi-discretizations to deal with full discretiza-
tion schemes. This has been done in [2] in a more abstract setting. But a
complete analysis of this issue is still to be done.

Other Equations

The approach and results in this paper can be extended to other PDEs of
conservative nature such as the Schrödinger, plate, Maxwell equations, and so
on. There is a fruitful literature on the use of multiplier techniques for these
models in the continuous setting (see, for instance, [6]). But, the analysis of
the corresponding time-discrete systems, adapting the techniques developed
in this paper, remains to be done.

Variable Coefficients and Nonlinear Problems

It is well-known that, in the continuous case, the multiplier approach can be
applied to obtain the controllability/observability of the conservative PDEs
with constant coefficients. As for the problems with variable coefficients
and/or the nonlinear ones, one has to use microlocal analysis [1] and/or
Carleman estimates [13] to get sharp results. In this time-discrete setting,
it would be interesting to develop these other approaches to cover the same
class of models as in the PDE setting. This is still to be done.
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Čanić, S., 41–57
Capasso, V., 59, 61
Cattaneo, C., 135
Chen, C.Y., 132

D
Davis, H.T., 139
Di Cesare, N., 27, 28

E
Ethier, S.N., 73

F
Fernández-Cara, E., 81–93
Fitzgibbon, W.E., 1–4
Flück, M., 169–181
Freundlich, H., 139
Frischat, G.H., 140
Fursikov, A.V., 84

G
Galdi, P., 128
Glowinski, R., 27, 213

Golub, G.H., 161
Gunzburger, M.D., 27

H
Hachiya, H., 148
Haslinger, J., 34
Has’minski, R.Z., 77
He, J., 27
Heston, S., 214
Hintermüller, M., 97–108
Hofer, T., 169–181
Hoppe, R.H.W., 97–108
Hu, H.H., 128

I
Imanuvilov, O.Yu., 84
Ito, K., 113–125

J
Jackson, R., 133
Janka, A., 169–181
Joseph, D.D., 127–128, 135, 137–139,

143

K
Kawarada, H., 147–160
Koplick, J., 134
Korteweg, D., 128, 134, 143
Kou, S.G., 213
Kurtz, T.G., 73

L
Landau, L.D., 133
Liao, T.Y., 137



248 Index

Lifshitz, E.M., 133
Lions, J.-L., 213
Lowengrub, J., 140

M
Maddox, J., 135
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