
 
 
 

 
Systems, Structure and Control 

 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
Systems, Structure and Control 

 

 
 

Edited by 
Petr Husek 

 

 
 
 

 
 

 
 
 
 
 

 
 

 
I-Tech  



IV        

 
 
 

 
 
 
 
 
 
 
 
Published by In-Teh 

 
 
In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria. 

 
Abstracting and non-profit use of the material is permitted with credit to the source. Statements and 
opinions expressed in the chapters are these of the individual contributors and not necessarily those of 
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the 
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or 
property arising out of the use of any materials, instructions, methods or ideas contained inside. After 
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in 
any publication of which they are an author or editor, and the make other personal use of the work.  

 
© 2008 In-teh 
www.in-teh.org 
Additional copies can be obtained from:  
publication@ars-journal.com 

 
First published August 2008 
Printed in Croatia 

 
 

 
A catalogue record for this book is available from the University Library Rijeka under no. 111221000 

System, Structure and Control, Edited by Petr Husek  
               p.  cm. 
ISBN 978-953-7619-05-3 
1. Systems. 2. Control. I. Petr Husek 

 
 

 

 

 

 



 
 

Preface 
 

The title of the book System, Structure and Control encompasses broad field of theory 
and applications of many different control approaches applied on different classes of dy-
namic systems. Output and state feedback control include among others robust control, op-
timal control or intelligent control methods such as fuzzy or neural network approach, dy-
namic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, 
onedimensional or multidimensional. The applications cover all branches of human activi-
ties including any kind of industry, economics, biology, social sciences etc. Naturally it is 
not purpose of this book in few chapters neither to provide a comprehensive survey of all 
the above mentioned disciplines nor to give a detailed study of any of them. Nevertheless, 
the following 11 chapters demonstrate that even today after several decades of intensive ef-
fort of many researchers and practitioners the area of control of dynamic systems still brings 
new challenging problems and produces solutions of many of them. 

The brief outline of the volume is as follows. 
In chapter 1 a new method for design of state-derivative feedback control of linear sys-

tems is presented. State–derivative feedback can be considered as a generalization of classi-
cal state feedback in those applications where state derivative is easier to obtain then the di-
rect state, e.g. in vibration attenuation control of many mechanical systems including car 
suspension systems, bridge cables or landing gear components. In the contribution an exten-
sion of known methods for descriptor systems with polytopic parameter uncertainty is pre-
sented. 

Chapter 2 is concerned with the problem of stability analysis of linear systems with time 
delays. Such systems naturally occur very often, e.g. in network control or remote control 
via satellite. Time-delayed systems are of great interest for many decades but still many 
questions remain unanswered or achieved results are too conservative. Here an improved 
time-domain delay-dependent (i.e. taking into account the magnitude of time delay) ap-
proach result for both continuous and discrete time systems is presented. The obtained re-
sult is also applied on stability analysis of large scale systems. 

The problem of state observation of nonlinear systems using differential neural network 
is addressed in chapter 3. State observation is very important in those applications where we 
would like to use the advantages of state feedback but the states are not accessible. Many 
different techniques have been already used to solve the problem. In the contribution ap-
proximation properties of a class of dynamic neural networks are used for state observation 
of uncertain nonlinear systems affected by bounded external perturbations. 

In chapter 4 sliding mode control is designed and applied on control of electric power 
systems. Such systems are modeled as complex large-scale systems which are difficult to 
control. Sliding mode control is one of the most used and effective control approaches to 
nonlinear systems, especially when disturbances and parameter variations are present. In 
the contribution combination of block control, integral sliding control and nested sliding 
mode control is applied. 



  

Chapter 5 deals with the problem of robust stability analysis of linear systems with pa-
rametric uncertainty. The case is considered where the coefficients of characteristic polyno-
mial depend polynomically on system parameters that are allowed to vary in prescribed 
mutually independent intervals. Such problem is generally difficult to solve due to its non-
convexity. Here an iterative algorithm based on testing the value set is introduced. 

Parameter estimation applied on fouling detection in ducts presented in chapter 6 dem-
onstrates practical usability of theoretical methods. Electric pulses of ultrasonic transducers 
are transmitted through the pipelines and received, amplified and filtered. The ultrasonic 
pulses are modeled as a nonlinear process affected by Gaussian noise. The parameters of the 
model are estimated using nonlinear estimation methods. 

In chapter 7 fuzzy controllers are designed for stabilization of nonlinear systems de-
scribed by Takagi-Sugeno fuzzy models. Takagi-Sugeno fuzzy models proved to be a useful 
tool for modeling nonlinear systems which offers systematic way for analysis of their behav-
ior. The feedback controllers and the controlled systems do not share the same membership 
functions that makes the controller design more complicated. The design is based on mem-
bership function dependent Lyapunov approach with common Lyapunov matrix consid-
ered for all subsystems. 

Global synchronization of Kuramoto coupled oscillators is studied in chapter 8. 
Kuramoto models serve as good approximation of many systems in different fields, e.g. bi-
ology, physics or mechanics. In recent years much attention has been devoted to investiga-
tion of local stability properties but  collective synchronization which is important in many 
applications has been studied only for last few years. The contribution stresses the impor-
tance of algebraic structure of interconnection graphs for ensuring the global attraction do-
main of coupled oscillators. 

Chapter 9 is devoted to stability analysis of n-D systems that are widely used e.g. in 
modeling of parameter distributed systems. The contribution shows differences between 
stability definitions of univariate and multivariate polynomials and presents an algorithm 
for Schur stability test of bivariate polynomials. The algorithm is also used for Hurwitz sta-
bility analysis of continuous-time polynomials employing generalization of Moebius trans-
formation. 

In chapter 10 problem of tuning of fixed order and fixed structure controllers for linear 
systems in LQ and H2 framework is addressed. Tuning is employed by open loop frequency 
response shaping which is very popular because it guarantees not only stability of closed 
loop but also good performance even if some uncertainty is present. The method can be 
used e.g. for tuning of PID controllers – the most used controllers in industry. 

Utilization of exponential holder together with sliding mode control for sampled data 
systems is the topic of chapter 11. The contribution demonstrates the advantage of exponen-
tial holder to zero order hold by ensuring asymptotic tracking of reference signal when the 
proposed controller is applied on the original continuous system. In this case ripple-free be-
havior of closed loop system even for nonconstant reference signal is guaranteed.  
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Control Designs for Linear Systems Using 
State-Derivative Feedback 

Rodrigo Cardim, Marcelo C. M. Teixeira, Edvaldo Assunção 
 and Flávio A. Faria 

UNESP - São Paulo State University, Department of Electrical Engineering 
Brazil 

1.  Introduction 
From classical control theory, it is well-known that state-derivative feedback can be very 
useful, and even in some cases essential to achieve a desired performance. Moreover, there 
exist some practical problems where the state-derivative signals are easier to obtain than the 
state signals. For instance, in the following applications: suppression of vibration in 
mechanical systems, control of car wheel suspension systems, vibration control of bridge 
cables and vibration control of landing gear components. The main sensors used in these 
problems are accelerometers. In this case, from the signals of the accelerometers it is possible 
to reconstruct the velocities with a good precision but not the displacements. Defining the 
velocities and displacement as the state variables, then one has available for feedback the 
state-derivative signals. Recent researches about state-derivative feedback design for linear 
systems have been presented. The procedures consider, for instance, the pole placement 
problem (Abdelaziz & Valášek, 2004; Abdelaziz & Valášek, 2005), and the design of a Linear 
Quadratic Regulator (Duan et al., 2005). Unfortunately these results are not applied to the 
control of uncertain systems or systems subject to structural failures. Another kind of 
control design is the use of state-derivative and state feedback. It has been used by many 
researches for applications in descriptor systems (Nichols et al., 1992; A. Bunse-Gerstner & 
Nichols, 1999; Duan et al., 1999; Duan & Zhang, 2003). However, usually these designs are 
more complex than the design procedures with only state or state-derivative feedback. 
In this chapter two new control designs using state-derivative feedback for linear systems 
are presented. Firstly, considering linear descriptor plants, a simple method for designing a 
state-derivative feedback gain using methods for state feedback control design is proposed. 
It is assumed that the descriptor system is a linear, time-invariant, Single-Input (SI) or 
Multiple-Input (MI) system. The procedure allows that the designers use the well-known 
state feedback design methods to directly design state-derivative feedback control systems. 
This method extends the results described in (Cardim et al., 2007) and (Abdelaziz & Valášek, 
2004) to a more general class of control systems, where the plant can be a descriptor system. 
As the first design can not be directly applied for uncertain systems, then a design 
considering LMI formulation is presented. This result can be used to solve systems with 
polytopic uncertainties in the plant parameters, or subject to structural failures. 
Furthermore, it can include as design specifications the decay rate and bounds on the output 
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peak, and on the state-derivative feedback matrix K. When feasible, LMI can be easily solved 
using softwares based on convex programming, for instance MATLAB. These new control 
designs allow new specifications, and also consider a broader class of plants than the related 
results available in the literature (Abdelaziz & Valášek, 2004; Duan et al., 2005; Assunção et 
al., 2007c). The proposed method extends the results presented in (Assunção et al., 2007c), 
because it can also be applied for the control of uncertain systems subject to structural 
failures. Examples illustrate the efficiency of these procedures. 

2. Design of State-Derivative Feedback Controllers for Descriptor Systems 
Using a State Feedback Control Design 
In this section, a simple method for designing a state-derivative feedback gain using 
methods for state feedback control design, where the plant can be a descriptor system, is 
proposed. 

2.1 Statement of the Problem 
Consider a controllable linear descriptor system described by 

 0( ) ( ) ( ), (0) ,Ex t Ax t Bu t x x= + =  (1) 

where , ( )n n nE x t×∈ ∈  is the state vector and ( ) mu t ∈  is the control input vector. It is 

assumed that 1 m n≤ ≤ , and also, n nA ×∈  and n mB ×∈  are time-invariant matrices. 
Now, consider the state-derivative feedback control 

 ( ) ( )du t K x t= − . (2) 

Then, the problem is to obtain a state-derivative feedback gain Kd, using state feedback 
techniques, such that the poles of the controlled system (1), (2) are arbitrarily specified by a 
set { 1 2, ,..., nλ λ λ }, where iλ ∈  and iλ  ≠ 0, i = 1, 2,..., n, such that this closed-loop systems 
presents a suitable performance. The motivation of this study was to investigate the 
possibility of designing state-derivative gains using state feedback design methods. This 
procedure allows the designers to use well-known methods for pole-placement using state 
feedback, available in the literature, for state-derivative feedback design (Chen, 1999; 
Valášek & Olgac, 1995a; Valášek & Olgac, 1995b). To establish the proposed results, consider 
the following assumptions: 
(A) rank [E |B] = n; 
(B) rank [A]  =  n; 
(C) rank [B]  =  m. 
Remark 1. It is known (Bunse-Gerstner et al, 1992; Duan et al, 1999) that if Assumption (A) 
holds, then there exists Kd such that: 

 rank[E + BKd] = n. (3) 

Assumption (B) was also considered in (Abdelaziz & Valášek, 2004) and, as will be 
described below, is important for the stability of the system (1), with the proposed method 
and the control law du K x= − . Assumption (C) means that B is a full rank matrix. For Kd 
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such that (3) holds, then from (2) it follows that (1) can be rewrite such as a standard linear 
system, given by: 

 ( ) ( ) ( ),dEx t Ax t BK x t= −  (4) 

 1( ) ( ) ( ).dx t E BK Ax t−= +  (5) 

From (5) note that if rank(A) < n, then the controlled system (1), (2) given by (5) is unstable, 
because it presents at least one pole equal to zero. It is known that the stability 
problem for descriptor systems is much more complicated than for standard systems, 
because it is necessary to consider not only stability, but also regularity (Bunse-Gerstner 
et al., 1992; S. Xu & J. Lam, 2004). In this work, a descriptor system is regular if it has 
uniqueness in the solutions and avoid impulsive responses. In the next section, the 
proposed method is presented. 

2.2 Design of State-Derivative Feedback Using a State Feedback Design 
Lemma 1 below will be very useful in the analysis of the method that solves the proposed 
problem. 
Lemma 1. Consider a matrix n nZ ×∈ , with rank(Z) = n and eigenvalues equal to 1 2, ,..., nλ λ λ . 

Then, the eigenvalues of 1Z −  are the following: 1 1 1
1 2, ,..., n
− − −λ λ λ . 

Proof: For each eigenvalue λ ∈  { 1 2, ,..., nλ λ λ } of Z, there exists an eigenvector v such that 

 Z = λv v . (6) 

Considering that rank(Z) = n, then λ  ≠ 0. Therefore, from (6), 

 1 1 1Z Z− − −= λ ⇒ λ =v v v v , (7) 

and so 1−λ is an eigenvalue of 1Z − . 
Remark 2. Consider that a jbλ = +  is an eigenvalue of Z. Then, from Lemma 1, 

1 1
2 2 2 2( ) a ba jb j

a b a b
− −λ = + = −

+ +
 is also an eigenvalue of 1Z − . Therefore, note that the real parts of the 

λ  and 1−λ  present the same signal. So, if Z is Hurwitz (it has all eigenvalues with negative real 
parts), then 1Z − will be also Hurwitz. 
Now, the main result of this section will be presented.  
Theorem 1. Define the matrices: 

 1 1
n nA A E B A B− −= = −and  (8) 

and suppose that (An, Bn) is controllable. Let Kd be a state feedback gain, such that 
{ 1 1 1

1 2, ,..., n
− − −λ λ λ } are the poles of the closed-loop system 

 ( ) ( ) ( )n n n n nx t A x t B u t= + , (9) 

 ( ) ( )n d nu t K x t= − , (10) 
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where iλ ∈  and iλ  ≠ 0, i = 1,2,...,n, are arbitrarily specified. Then, for this gain Kd, 
{ 1 2, ,..., nλ λ λ } are the poles of the controlled system with state-derivative feddback (1), (2) and also, 
the condition (3) holds. 
Proof: Considering that (An, Bn) is controllable, then one can find a state feedback gain Kd 

such that the controlled system with state feedback (9), (10), given by 

 ( ) ( ) ( )n n n d nx t A B K x t= − . (11) 

has poles equal to 1 1 1
1 2, ,..., n
− − −λ λ λ  (Chen, 1999). Now, from ,1 1  n nA A E B A B− −= = −  and 

0iλ ≠ , i = 1, 2,..., n, note that 

 1 1 1( ) [ ( )]n n d dA B K A E BK− − −− = +  (12) 

 1( )dE BK A−= +  (13) 

and from (11) and Lemma 1, 1 2, ,..., nλ λ λ  are the eigenvalues of 1( )dE BK A−+ . Therefore 
(3) holds, the state-derivative feedback system (1) and (2) can be described by (5) and 
presents poles equal to 1 2, ,..., nλ λ λ . 
This result is a generalization of the methods proposed in (Abdelaziz & Valášek, 2004) and 
(Cardim et al., 2007), because it can be applied in the control of descriptor systems (1), with 
det(E) = 0. 

2.3 Examples 
The effectiveness of the proposed methods designs is demonstrated by simulation results. 
First Example 
A simple electrical circuit, can be represented by the linear descriptor system below (Nichols 
et al, 1992): 

 1 1

2 2

( ) ( )0 1 1 0 0
( )

( ) ( )0 0 0 1 1
x t x t

u t
x t x t
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, (14) 

where x1 is the current and the x2 is the potential of a capacitor. In this system one has: 

 
0 1 1 0 0

, ,
0 0 0 1 1

E A B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (15) 

Consider the pole placement as design technique, using the state derivative feedback (2) 
with the feedback gain matrix Kd. In this example, the suitable closed-loop poles for the 
controlled system (2) and (14) are the following: 

 1 22 1 , 2 1i iλ = − + λ = − −   

Note that, the system (14) with the control signal (2) satisfies the Assumptions A, B and C. 
From (8) one has: 
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0 1 0

,
0 0 1n nA B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
, (16) 

and (An, Bn) is controllable. 
From Theorem 1, the poles for the new closed-loop system with state feedback (9) and (10) 
with An and Bn given in (8) are the following: 

1 1
1 20.40 0.20 , 0.40 0.20 .i i− −λ = − − λ = − +  

So, one can obtain by using the command acker of MATLAB (Ogata, 2002), the feedback gain 
matrix Kd below: 

 Kd = [ -0.20     -0.80 ]. (17) 

Figures 1 and 2 show the simulation results of the controlled system (5) with the initial 
condition x(0) = [1 0]T. In this example the validity and simplicity of the proposed method 
can be observed. 
Example 2 
Consider a linear descriptor MI system described by the following equations: 

 1 1

2 2

( ) ( )0 0 0.800 0.020 0.050 1
( )

( ) ( )1 0 0.020 0 0.001 0
x t x t

u t
x t x t

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, (18) 

where u(t) = [u1(t)  u2(t)]T. 
The wanted poles for closed-loop system with the control law ( ) ( )du t K x t= −  are given by: 

1 22 1 , 2 1i iλ = − + λ = − − . 

 

Observe that, the system (18) with the control signal (2) satisfies the Assumptions A, B and 
C. From (8) one has: 

 
50 0 0.050 0

,
2000 0 0.500 50n nA B
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
, (19) 

and (An, Bn) is controllable. 
From Theorem 1, the poles for the new closed-loop system with state feedback (11), with An 

and Bn given in (19) are the following: 

1 1
1 20.40 0.20 , 0.40 0.20 .i i− −λ = − − λ = − +  

So, with these parameters, one can obtain with the command place of MATLAB, the 
feedback gain matrix Kd below: 

 
992.0000 4.0000
49.9240 0.0480dK

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. (20) 
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Figures 3 and 4 show the simulation results of the controlled system with state-derivative 
feedback, given by  (2),  (18) and (20) that can be described by (5), with the initial condition 
x0 = [1 0]T. 

 
Figure 1. Transient response of the controlled system (Example 1), for x0 = [1 0]T 

 
Figure 2. Control inputs of the controlled system (Example 1), for x0 = [1 0]T 

 
Figure 3. Transient response of the controlled system (Example 2), for x0 = [1 0]T 
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Figure 4. Control inputs of the controlled system (Example 2), for x0 = [1 0]T 
Example 3 
In this example, is considered that the matrix E = I. So, the system (1) is in the standard 
space state form. The idea was to show that, for the case where det(E) ≠ 0, the proposed 
method is also valid. 
Consider the mechanical system shown in Figure 5. It is a simple model of a controlled 
vibration absorber, in the sense of reducing the oscillations of the masses m1 and m2. In this 
case, the model contains two control inputs, u1(t) and u2(t). This system is described by the 
following equations (Cardim et al., 2007): 

 1 1 1 1 2 1 1 1

2 2 1 2 1 2 2 2

( ) ( ( ) ( )) ( ) ( ),
( ) ( ( ) ( )) ( ) ( ).

m y t b y t y t k y t u t
m y t b y t y t k y t u t

+ − + =⎧
⎨ + − + =⎩

 (21) 

The state space rorm of the mechanical system in Figure 5 is represented in equation (1) 
considering as state variables x(t) = [x1(t) x2(t) x3(t) x4(t)]T, where x1(t) = y1(t), x2(t) = 1y (t), 
x3(t) = y2(t), x4(t) = 2y (t), u(t) = [u1(t) u2(t)]T and: 

 

1 1 1

1 1 1 1

1 2 1

22 2 2

0 1 0 0 0 0
1 0 0 0 10 0
0 1 0 0

, ,
0 0 1 0 0 0 0 1 0 0
0 0 0 1 100

k b b
m m m m

E A B

b k b
mm m m

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

. (22) 

For a digital simulation of the control system, assume for instance that m1 = 10kg, m2 = 30kg, 
k1 = 2.5kN/m, k2 = 1.5kN/m and b1 = 30Ns/m. Consider the pole placement as design 
technique, and the following closed-loop poles for the controlled system: 

1 2 3,410, 15, 2 10 .iλ = − λ = − λ = − ±  
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Figure 5. Multivariable (MI) mass-spring system with damping 

With these parameters and from (8), one has: 

3

3

0.0120 0.0040 0.0120 0 0.4000 10 0
1.0000 0 0 0 0 0

, ,
0.0200 0 0.0200 0.0200 0 0.6667 10

0 0 1.0000 0 0 0

n nA B

−

−

⎡ ⎤− − ×⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥− − ×⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

(23) 

and (An, Bn) is controllable. 
From Theorem 1, the poles for the new closed-loop system with state feedback (11), with An 

and Bn given in (23) are the following: 

1 1 1
1 2 3,40.1000, 0.0667, 0.0192 0.0962 .i− − −λ = − λ = − λ = − ±  

So, with these parameters, one can obtain through the command place of MATLAB, the 
feedback gain matrix Kd below: 

 
. . .  .
. 0 . . 0 .dK

−⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

178 9532 6 4647 323 3542 19 8478
79 637 11 4321 152 32 4 26 1863

. (24) 

Figures 6 and 7 show the simulation results of the controlled system (1), (2), (22), (24), that 
can be given by (5), with the initial condition x(0) = [0.1  0  0.1  0]T. 
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Figure 6. Transient response of the controlled system (Example 3), with x(0) = [0.1  0  0.1  0]T 

 
Figure 7. Control inputs of the controlled system (Example 3), with x(0) = [0.1  0  0.1  0]T 

3. LMI-Based Control Design for State-Derivative Feedback 
Consider the linear time-invariant uncertain polytopic system, described as convex 
combinations of the polytope vertices: 

 1 1

( ) ( ) ( ),

( ) ( ) ( ) ( ),

a br r

i i j j
i j

x t A x t B u t

A x t B u t

α β

α β
= =

= +

= +

∑ ∑  (25) 

and 

 1

1

0, 1,..., , 1,

0, 1,..., , 1,

a

b

r

i a i
i

r

j b j
j

i r

j r

=

=

⎫
⎪α ≥ = α =
⎪⎪
⎬
⎪β ≥ = β = ⎪
⎪⎭

∑

∑
 (26) 
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where ( ) nx t ∈  is the state vector, ( ) mu t ∈  is the input vector, ra and rb are the numbers 
of polytope vertices of the matrices ( )A α  and ( )B β , respectively. For i = 1, ... ,ra and j =1, 

...,rb one has: n n
iA ×∈  and n m

jB ×∈  are constant matrices and iα  and jβ are constant 

and unknown real numbers. 
From (8) and (25), one has: 

 1 1( ) ( ) ( )n nA A E B A Bα α β− −= = −and , (27) 

Then, for the control design of the system (25) with Theorem 1, is necessary to know the real 
numbers iα  and jβ . However, in the practical problems these parameters are unknown. 

Therefore, Theorem 1 can not be directly applied in the control design of the system (25). For 
the solution of this problem, in this section sufficient Linear Matrix Inequalities (LMI) 
conditions for asymptotic stability of linear uncertain systems using state-derivative 
feedback are presented. The LMI formulation has emerged recently (Boyd et al., 1994) as an 
useful tool for solving a great number of practical control problems such as model 
reduction, design of linear, nonlinear, uncertain and delayed systems (Boyd et al., 1994; 
Assunção & Peres, 1999; Teixeira et al., 2001; Teixeira et al., 2002; Teixeira et al., 2003; 
Palhares et al., 2003; Teixeira et al., 2005; Assunção et al., 2007a; Assunção et al., 2007b; 
Teixeira et al., 2006). The main features of this formulation are that different kinds of design 
specifications and constraints that can be described by LMI, and once formulated in terms of 
LMI, the control problem, when it presents a solution, can be efficiently solved by convex 
optimization algorithms (Nesterov & Nemirovsky, 1994; Boyd et al., 1994; Gahinet et al., 
1995; Sturm, 1999). The global optimum is found with polynomial convergence time (El 
Ghaoui & Niculescu, 2000). The state-derivative feedback has been examined with various 
approaches (Abdelaziz & Valášek, 2004; Kwak et al., 2002; Duan et al., 2005; Cardim et al., 
2007), but neither them can be applied for uncertain systems or systems subject to structural 
failures (Isermann, 1997; Isermann & Ballé, 1997; Isermann, 2006). Robust state-derivative 
feedback LMI-based designs for linear time-invariant and time-varying systems were 
recently proposed in (Assunção et al., 2007c), but the results does not consider structural 
failures in the control design. Structural failures appear of natural form in the systems, for 
instance, in the following cases: physical wear of equipments, or short circuit of electronic 
components. 
Recent researches for detection of the structural failures (or faults) in systems, have been 
presented in LMI framework (Zhong et al., 2003; Liu et al., 2005; D. Ye & G. H. Yang, 2006; S. 
S. Yang & J. Chen, 2006). 
In this section, we will show that it is possible to extend the presented results in (Assunção 
et al., 2007c), for the case where there exist structural failures in the plant. A fault-tolerant 
design is proposed. The methods can include in the LMI-based control designs the 
specifications of bounds: on the decay rate, on the output peak, and on the state-derivative 
feedback matrix K. These design procedures allow new specifications and also, they 
consider a broader class of plants than the related results available in the literature. 

3.1 Statement of the Problem 
Consider a homogeneous linear time-invariant system given by 



Control Designs for Linear Systems Using State-Derivative Feedback 

 

11 

 ( ) ( )Nx t A x t=  (28) 

It is known from literature that the linear system (28) is asymptotically stable if there exist a 
symmetric matrix P satisfying the Lyapunov conditions (Boyd et al., 1994): 

 
0,

0.
and

N N

P

A P PA

> ⎫
⎪
⎬
⎪′ + < ⎭

 (29) 

This result is useful for the design of the proposed controller. 
In this work, structural failure is defined as a permanent interruption of the system's ability 
to perform a required function under specified operating conditions (Isermann & Ballé, 
1997). 
Systems subject to structural failures can be described by uncertain polytopic systems (25) 
(see Section 3.5 for details). Now, suppose that all poles of (25) are different from zero (the 
matrix ( )A α  must have a full rank). Then, the proposed problem is defined below.  

Problem 1: Find a constant matrix m nK ×∈ such that the following conditions hold: 
1. ( ( ) )I B K+ β has a full rank; 
2. the closed-loop system (25) with the state-derivative feedback control 

 ( ) ( )u t Kx t= − , (30) 

is asymptotically stable.  
Note that from (25) and (30) it follows that 

( ) ( ) ( ) ( ) ( )x t A x t B Kx t= −α β  

or 

( ( ) ) ( ) ( ) ( )I B K x t A x t+ =β α . 

When ( ( ) )I B K+ β  has a full rank, the closed-loop system is well-defined and given by 

 1( ) ( ( ) ) ( ) ( )x t I B K A x t−= + β α . (31) 

This condition was also assumed in other related researches (Kwak et al., 2002; Abdelaziz & 
Valášek, 2004; Assunção et al., 2007c; Cardim et al., 2007). 

3.2 Robust Stability Condition for State-derivative Feedback 
The main results of this section is presented in the next theorem, that solves Problem 1 
(Assunção et al., 2007c). For the proof of this theorem, the following result will be useful. 
Remark 3. Recall that for any nonsymetric matrix ( ), , 0n nM M M M if M M×′ ′≠ ∈ + < , 
then M  has a full rank. 
Theorem 2. A sufficient condition for the solution of Problem 1 is the existence of matrices 

'Q Q= and Y , where n nQ ×∈ and m nY ×∈ , such that: 
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 0Q > , (32) 

 0i i j i i jQA A Q B YA AY B′ ′ ′ ′+ + + <  (33) 

where i = 1, ... ,ra and j = 1, ... ,rb. Furthermore, when (32) and (33) hold, a state-derivative feedback 
matrix that solves the Problem 1 is given by: 

 1K YQ−=  (34) 

Proof:   Supposing that (32) and (33) hold, then multiplying both sides of (33) by i jα β , for i 

= 1, ... , ra and j = 1, ... , rb and considering (26), it follows that 

 

1 1

1 1 1 1

1 1

( ) 0, , ,

( )
a b

a a b a

a b

i j i i j i i j

r r

i j i i j i i j
i j

r r r r

i i i i j j i i
i i j i

r r

i i j j
i j

QA A Q B YA AY B i j

QA A Q B YA AY B

Q A A Q B Y A

A Y B

= =

= = = =

= =

′ ′ ′ ′+ + + < ∀

′ ′ ′ ′⇔ + + + =

′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
′⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟ ′+ <
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∑

∑ ∑ ∑ ∑

∑ ∑

α β

α β

α α β α

α β 0

 (35) 

Then, from (25) one has 
( ) ( ) ( ) ( ) ( ) ( ) 0QA A Q B YA A Y B′ ′ ′ ′α + α + β α + α β < . 

Replacing Y KQ=  and 1=PQ −  one obtains 

 
1 1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ( ) ) ( ) ( ) ( ( ) ) 0

P A A P B KP A A P K B

I B K P A A P I B K

− − − −

− −

′ ′ ′ ′+ + + =

′ ′+ + + <

α α β α α β
β α α β

 (36) 

From Remark 3, it follows that the matrix ( 1( ( ) ) ( )I B K P A− ′+ β α  has a full rank, and so the 
matrices ( ( ) )I B K+ β and ( )A ′α have a full rank too. Now, premultiply by 

1( ( ) )P I B K −+ β , posmultiply by 1[( ( ) ) ]I B K P−′+ β in both sides of (36) and replace 
1( , ) ( ( ) ) ( )NA I B K A−= +α β β α  to obtain 

 
1 1( ) [( ( ) ) ] ( ( ) ) ( )

( , ) ( , ) 0N N

A I B K P P I B K A
A P PA

− −′ ′+ + + =
′ + <

α β β α
α β α β

 (37) 

Observe that, when the LMI (32) and (33) hold, the system (31) satisfies the Lyapunov conditions 
(29), considering 1( , ) ( ( ) ) ( )NA I B K A−= +α β β α . Therefore, when the LMI (32) and (33) hold 
the system (31) is asymptotically stable and a solution that solves Problem 1 is given by (34). 
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When (32) and (33) are feasible, they can be easily solved using available softwares, such as 
LMISol (de Oliveira et al, 1997), that is a free software, or MATLAB (Gahinet et al, 1995; 
Sturm, 1999). These algorithms have polynomial time convergence. 
Remark 4. From the analysis presented in the proof of Theorem 2, after equation (36), note that when 
(32) and (33) are feasible, the matrix ( )A α , defined in (25), has a full rank. Therefore, ( )A α  with a 
full rank is a necessary condition for the application of Theorem 2. Moreover, from (25), observe that 
for iα  = 1 and kα  = 0, i k≠ , i, k = 1, 2,... , ra, then ( ) iA A=α . So, if ( )A α  has a full rank, then 

iA , i = 1, 2,... , ra has a full rank too. 
Usually, only the stability of a control system is insufficient to obtain a suitable performance. 
In the design of control systems, the specification of the decay rate can also be very useful. 

3.3 Decay Rate Conditions 
Consider, for instance, the controlled system (31). According to (Boyd et al., 1994), the decay 
rate is defined as the largest real constant , 0>γ γ , such that 

( ) 0t
t e x t→∞ =γlim  

holds, for all trajectories ( ), 0x t t ≥ . 
One can use the Lyapunov conditions (29) to impose a lower bound on the decay rate, 
replacing (29) by 

 0, ( , ) ( , ) 2N NP and A P PA P′> + < −α β α β γ . (38) 

where γ  is a real constant (Boyd et al., 1994). Sufficient conditions for stability with decay 
rate for Problem 1 are presented in the next theorem (Assunção et al., 2007c). 
Theorem 3. The closed-loop system (31), given in Problem 1, has a decay rate greater or equal to γ  

if there exist a symmetric matrix n nQ ×∈  and a matrix m nY ×∈  such that 

 0Q >  (39) 

 0
/ (2 )

i i j i i j j

j

QA A Q B YA AY B Q B Y

Q Y B Q

′ ′ ′ ′+ + + +⎡ ⎤
⎢ ⎥ <

′ ′+ −⎢ ⎥⎣ ⎦γ
 (40) 

where i = 1, ... , ra and j = 1, ..., rb. Furthermore, when (39) and (40) hold, then a robust state-
derivative feedback matrix is given by: 

 1K YQ−= . (41) 

Proof:  Following the same ideas of the proof of Theorem 2, multiply both sides of (40) by 
i jα β , for i = 1, ... , ra and j = 1, ..., rb and consider (26), to conclude that 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

( ) / (2 )
QA A Q B YA A Y B Q B Y

Q Y B Q
′ ′ ′ ′+ + + +⎡ ⎤

<⎢ ⎥′ ′+ −⎣ ⎦

α α β α α β β
β γ

 

Now, using the Schur complement (Boyd et al., 1994), the equation above is equivalent to: 
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( )1

( ) ( ) ( ) ( ) ( ) ( )

( ( ) )2 ( ) 0

QA A Q B YA A Y B

Q B Y Q Q B Y−

′ ′ ′ ′+ + +

′+ + + <

α α β α α β

β γ β
 (42) 

Replacing Y KQ=  and 1Q P−=  one obtains 

 

1 1

1 1

1 1

1

( ( ) ) ( ) ( ) ( ( ) )

( ( ) ) (2 ) ( ( ) )

( ( ) ) ( ) ( ) ( ( ) )

( ( ) )(2 )( ( ) ) 0

I B K P A A P I B K

I B K P P P I B K

I B K P A A P I B K

I B K P I B K

− −

− −

− −

−

′ ′+ + +

′+ + + =

′ ′+ + +

′+ + + <

β α α β
β γ β

β α α β
β γ β

 (43) 

Premultiplying by 1( ( ) )P I B K −+ β  , posmultiplying by 1[( ( ) ) ]I B K P−′+ β in both sides of 

(43) and replacing 1( , ) ( ( ) ) ( )NA I B K A−= +α β β α one obtain 

 
1 1( ) [( ( ) ) ] ( ( ) ) ( ) 2 0

( , ) ( , ) 2 ,N N

A I B K P P I B K A P
A P PA P

− −′ ′+ + + + <
′⇔ + < −

α β β α γ
α β α β γ

 (44) 

that is equivalent to the Lyapunov condition (38). Then, when (39) and (40) hold, the system 
(31) satisfies the Lyapunov conditions (38), considering 1( , ) ( ( ) ) ( )NA I B K A−= +α β β α . 
Therefore, the system (31) is asymptotically stable with a decay rate greater or equal to γ , 
and a solution for the problem can be given by (41). 
Due to limitations imposed in the practical applications of control systems, many times it 
should be considered output constraints in the design. 

3.4 Bounds on Output Peak 
Consider that the output of the system (25) is given by: 

 ( ) ( )y t Cx t= , (45) 

where ( ) py t ∈  and p nC ×∈ . Assume that the initial condition of (25) and (45) is x(0). If 
the feedback system (31) and (45) is asymptotically stable, one can specify bounds on output 
peak as described below: 

 02( ) ( ) ( )y t y t y t′= < ξmax max  (46) 

for 0t ≥ , where 0ξ  is a known positive constant. From (Boyd et al., 1994), (46) is satisfied 
when the following LMI hold: 

 
1 (0)

0,
(0)

x
x Q

′⎡ ⎤
>⎢ ⎥

⎣ ⎦
 (47) 

 2
0

0,
Q QC

CQ I

′⎡ ⎤
>⎢ ⎥

ξ⎢ ⎥⎣ ⎦
 (48) 



Control Designs for Linear Systems Using State-Derivative Feedback 

 

15 

and the LMI that guarantee stability (Theorem 2), given by (32) and (33), or stability and 
decay rate (Theorem 3), given by (39) and (40). 
In some cases, the entries of the state-derivative feedback matrix K must be bounded. In 
(Assunção et al., 2007c) is presented an optimization procedure to obtain bounds on the 
state-derivative feedback matrix K, that can help the practical implementation of the 
controllers. The result is the following: 
Theorem 4. Given a constant 0 0>μ , then the specification of bounds on the state-derivative 
feedback matrix K can be described by finding the minimum value of , 0>β β , such that 

2
0/KK I′ < β μ . The optimal value of β  can be obtained by the solution of the following 

optimization problem: 
min β  
s.t. 

 0
I Y

Y I
⎡ ⎤

>⎢ ⎥′⎣ ⎦

β
, (49) 

 0Q I> μ , (50) 

(Set of LMI), 

where the Set of LMI can be equal to (33), or (40), with or without the LMI (47) and (48). 
Proof: See (Assunção et al., 2007c) for more details. 
In the next section, a numerical example illustrates the efficiency of the proposed methods 
for solution of Problem 1. 

3.5 Example 
The presented methods are applied in the design of controllers for an uncertain mechanical 
system subject to structural failures. For the designs and simulations, the software MATLAB 
was used. 
Active Suspension Systems 
Consider the active suspension of a car seat given in (E. Reithmeier and G. Leitmann, 2003; 
Assunção et al., 2007c) with other kind of control inputs, shown in Figure 8. The model 
consists of a car mass Mc and a driver-plus-seat mass ms. Vertical vibrations caused by a 
street may be partially attenuated by shock absorbers (stiffness k1 and damping b1). 
Nonetheless, the driver may still be subjected to undesirable vibrations. These vibrations, 
again, can be reduced by appropriately mounted car seat suspension elements (stiffness k2 
and damping b2). Damping of vibration of the masses Mc and ms can be increased by 
changing the control inputs u1(t) and u2(t). The dynamical system can be described by 

 

1 1

2 21 2 2 1 2 2

3 3

4 42 2 2 2

0 0 1 0 0 0
( ) ( )0 0 0 1 0 0
( ) ( ) 1 1

( )
( ) ( )
( ) ( ) 10

c c c c c c

ss s s s

x t x t
x t x tk k k b b b

u t
M M M M M Mx t x t

x t x tk k b b
mm m m m

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

, (51) 
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1

1 2

2 3

4

( )
( ) ( )1 0 0 0
( ) ( )0 1 0 0

( )

x t
y t x t
y t x t

x t

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥
⎣ ⎦

. (52) 

The state vector is defined by 1 2 1 2( ) [ ( ) ( ) ( ) ( )]Tx t x t x t x t x t= . 
As in (E. Reithmeier and G. Leitmann, 2003), for feedback only the accelerations signals 

1( )x t  and 2 ( )x t  are available (that are measured by accelerometer sensors). The velocities 

1( )x t  and 2 ( )x t  are estimated from their measured time derivatives. Therefore the 
accelerations and velocities signals are available (derivative of states), and so one can use the 
proposed method to solve the problem. 
Consider that the driver weight can assume values between 50kg and 100kg. Then the 
system in Figure 8 has an uncertain constant parameter ms such that, 70kg ≤  ms ≤  120kg. 
Additionally, suppose that can also happen a fail in the damper of the seat suspension (in 
other words, the damper can break after some time). The fault can be described by a 
polytopic uncertain system, where the system parameters without failure correspond to a 
vertice of the polytopic, and with failures, the parameters are in another vertice. Then, one 
can obtain the polytopic plant given in (25) and (26), composed by the polytopic sets due the 
failures and the uncertain plant parameters. 
 

 
Figure 8. Active suspension of a car seat 
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The damper of the seat suspension b2 can be considered as an uncertain parameter such that: 
b2 = 5 x 102Ns/m while the damper is working and b2 = 0 when the damper is broken. 
Hence, and supposing Mc = 1500kg (mass of the car), k1 = 4 x 104N/m (stiffness), k2 = 5 x 
103N/m (stiffness) and b1 = 4 x 103Ns/m (damping), the plant (51) and (52) can be described 
by equations (25), (26) and (45), and the matrices Ai and Bj, where ra = 4, rb, = 2, are given by: 

1 2

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

,
30 3.33 3 0.33 30 3.33 3 0.33

71.43 71.43 7.143 7.143 41.67 41.67 4.167 4.167

A A

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

, 

while the damper is working (in this case b2 = 5 x 102 Ns/m, ms = 70kg in A1 and ms = 120kg 
in A2), 

3 4

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

,
30 3.33 2.67 0 30 3.33 2.67 0

71.43 71.43 0 0 41.67 41.67 0 0

A A

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

, 

when the damper is broken (in this case b2 = 0, ms = 70kg in A3 and ms = 120kg in A4) and 

1 24 4 4 4

2 3

0 0 0 0
0 0 0 0

,
6.67 10 6.67 10 6.67 10 6.67 10

0 1.43 10 0 8.33 10

B B− − − −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥× − × × − ×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥× ×⎣ ⎦ ⎣ ⎦

, 

because the input matrix ( )B β depends only on the uncertain parameter ms (in this case ms 
= 70kg in B1 and ms = 120kg in B2). Specifying an output peak bound 0ξ  = 300, an initial 
condition x(0) = [0.1  0.3  0 0]T and using the MATLAB (Gahinet et al, 1995) to solve the LMI 
(32) and (33) from Theorem 2, with (47) and (48), the feasible solution was: 

4 4 4 4

4 4 4 4

4 4 5 4

4 4 4 5

2.4006 10 2.2812 10 4.1099 10 2.6578 10

2.2812 10 2.3265 10 2.1628 10 2.9019 10

4.1099 10 2.1628 10 5.29 10 8.3897 10

2.6578 10 2.9019 10 8.3897 10 1.8199 10

Q

⎡ ⎤× × − × − ×
⎢ ⎥

× × − × − ×⎢ ⎥
= ⎢ ⎥

− × − × × ×⎢ ⎥
⎢ ⎥− × − × × ×⎣ ⎦

, 

6 7 6 8

6 6 6 7

7.9749 10 3.0334 10 4.4436 10 6.5815 10

1.7401 10 2.2947 10 8.0344 10 1.616 10
Y

⎡ ⎤− × − × − × ×
= ⎢ ⎥

× × − × − ×⎢ ⎥⎣ ⎦
. 

From (34), we obtain the state-derivative feedback matrix below: 
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3 3. 10 923.6 442.06 4.3902 10

498.14 471.29 22.567 75.996
K

⎡ ⎤× − ×= ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

2 894 
. (53) 

The locations in the s-plane of the eigenvalues iλ , for the eight vertices (Ai, Bj), i = 1, 2, 3, 4 
and j = 1, 2, of the robust controlled system, are plotted in Figure 9. There exist four 
eigenvalues for each vertice. 
Consider that driver weight is 70kg, and so ms = 90kg. Using the designed controller (53) 
and the initial condition x(0) defined above, the controlled system was simulated. The 
transient response and the control inputs (30), of the controlled system, while the damper is 
working are presented in Figures 10 and 11. Now suppose that happen a fail in the damper 
of the seat suspension b2 after 1s (in other words, b2 = 5 x 102Ns/m if t ≤  1s and b2 = 0 if t > 
1s). Then, the transient response and the control inputs (30), of the controlled system, are 
displayed in Figures 12 and 13. The required condition 0( ) ( ) 300max y t y t′ < ξ =  was 
satisfied. 
 

 
Figure 9. The eigenvalues in the eight vertices of the controlled uncertain system 

 
Figure 10. Transient response of the system with the damper working 
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Figure 11. Control inputs of the controlled system with the damper working 

 
Figure 12. Transient response of the system with a fail in the damper b2 after 1s 

 
Figure 13. Control inputs of the controlled system with a fail in the damper b2 after 1s 
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Observe in Figures 10 and 12, that the happening of a fail in the damper b2 does not change 
the settling time of the controlled system, and had little influence in the control inputs. 
Furthermore, as discussed before, considering ms = 90kg and the controller (53), the matrix 
( ( ) )I B K+ β  has a full rank (det ( ( ) )I B K+ β = 0.85868 ≠  0). 
There exist problems where only the stability of the controlled system is insufficient to 
obtain a suitable performance. Specifying a lower bound for the decay rate equal γ  = 3, to 
obtain a fast transient response, Theorem 3 is solved with (47) and (48) ( 0ξ  = 300). The 
solution obtained with the software MATLAB was: 

3 3 4 4

3 3 4 4

4 4 5 5

4 4 5 5

. 10 3.1064 10 2.6316 10 1.6730 10

. 0 10 3.6868 10 1.3671 10 1.8038 10

. 10 1.3671 10 5.3775 10 1.0319 10

1.6730 10 1.8038 10 1.0319 10 1.9587 10

Q

⎡ ⎤× × − × − ×
⎢ ⎥

× × − × − ×⎢ ⎥
= ⎢ ⎥

− × − × × ×⎢ ⎥
⎢ ⎥− × − × × ×⎣ ⎦

3 9195

3 1 64

2 6316
, 

7 7 8 8

6 6 6 7

4.3933 10 2.8021 10 7.9356 10 1.6408 10

1.3888 10 1.8426 10 9.1885 10 1.69 10
Y

⎡ ⎤× × − × − ×
= ⎢ ⎥

× × − × − ×⎢ ⎥⎣ ⎦
. 

From (41), we obtain the state-derivative feedback matrix below: 

 
3 3621 3.8664 10 1.452 10 230.33

313.58 365.55 8.79 74.77
K

⎡ ⎤− × − ×= ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 (54) 

The locations in the s-plane of the eigenvalues iλ , for the eight vertices (Ai, Bj), i = 1, 2, 3, 4 
and j = 1, 2, of the robust controlled system, are plotted in Figure 14. There exist four 
eigenvalues for each vertice. 
 

 
Figure 14. The eigenvalues in the eight vertices of the controlled uncertain system 



Control Designs for Linear Systems Using State-Derivative Feedback 

 

21 

From  Figure 14, one has that all eigenvalues of the vertices have real part lower than 
3−γ = − . Therefore, the controlled uncertain system has a decay rate greater or equal to γ .  

Again, considering that ms = 90kg and using the designed controller (54) the matrix 
( ( ) )I B K+ β  has a full rank (det ( ( ) )I B K+ β = 0.026272). For the initial condition x(0) 
defined above, the controlled system was simulated. The transient response and the control 
inputs (30) of the controlled system are presented in Figures 15, 16, 17 and 18, respectively. 

 
Figure 15. Transient response of the system with the damper working 

Observe that, the settling time in Figures 15 and 17 are smaller than the settling time in 
Figures 10 and 12, where only stability was required and also, ( ) ( )max y t y t′  is equal to 

0.31623 < 0 300ξ = . Then, the specifications were satisfied by the designed controller (54). 
Moreover, the happening of a fail in the damper b2 does not significantly change the settling 
time (Figures 15 and 17) of the controlled system. In spite of the change in the control inputs 
from Figures 16 and 18, the fail in the damper does not changed the maximum absolute 
value of the control signal (u(t) = 1.1161 x 105N). 

 
Figure 16. Control inputs of the controlled system with the damper working 
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Figure 17. Transient response of the system with a fail in the damper b2 after 0.3s 

 

 
Figure 18. Control inputs of the controlled system with a fail in the damper b2 after 0.3s 

Note that some absolute values of the entries of (53) and (54) are great values and it could be 
a trouble for the practical implementation of the controller. For the reduction of this problem 
in the implementation of the controller, the specification of bounds on the state-derivative 
feedback matrix K can be done using the optimization procedure stated in Theorem 4, with 

0μ = 0.1. The optimal values, obtained with the software MATLAB, for Theorem 4 
considering: (33) for stability, or (40) for stability with bound on the decay rate ( γ  = 3), and 
(47) and (48) ( 0ξ  = 300) are displayed in Table 1. Considering that ms = 90kg and the initial 
condition x(0) defined above, the transient response and the control inputs obtained by 
Theorem 4 considering (33) or (40), are displayed in Figures 19, 20, 21 and 22 respectively. 
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Theorem 4 with (33) Theorem 4 with (40) 

Q =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1.2265 1.5357 -1.667 -5.8859
1.5357 2.5422 0.6289 -5.1654
-1.667 0.6289 27.177 30.007
-5.8859 -5.1654 30.007 67.502

 

0.16831 0.088439 0.52166 0.25122
.088439 0.56992 0.07813 2.3703
0.52166 0.07813 5.1595 2.9849

0.25122 2.3703 2.9849 43.238

0
 Q

− −
− −

− − −
− −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Y = ⎡ ⎤
⎢ ⎥⎣ ⎦

17.423 19.928 -13.793 12.407
-25.896 20.088 -2.8711 0.69624

 Y =
⎡ ⎤
⎢ ⎥
⎣ ⎦

3918.06 749.73 -3.3745×10 204.86
330.057 468.97 -102.46 -3.5475×10

 

K = ⎡ ⎤
⎢ ⎥⎣ ⎦

39.536 -6.5518 -2.7229 4.3402
-276.41 173.56 -17.953 -2.829

 K =
⎡ ⎤
⎢ ⎥
⎣ ⎦

34.7321×10 859.72 -121.49 70.976
-559.07 664.62 -98.521 -55.661

 

Table 1. The solutions with Theorem 4 

 
 

 

 
Figure 19. Transient response of the system with a fail in the damper b2 after 1s, obtained 
with Theorem 4 and (33) 
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Figure 20. Control inputs of the controlled system with a fail in the damper b2 after 1s 

 
Figure 21. Transient response of the system with a fail in the damper b2 after 0.3s, obtained 
with Theorem 4 and (40) 

 
Figure 22. Control inputs of the controlled system with a fail in the damper b2 after 0.3s 
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The matrix norm of the controller (53) obtained with Theorem 2 is equal to K  = 5.3628xl03 

and the maximum absolute value of the control signal is u(t) = 6.0356 x 104N, while that the 
matrix norm of the same controller obtained with Theorem 4 considering (33) is equal to 

K = 328.96 and the maximum absolute value of the control signal is u(t) = 68.111N. 
Then, Theorem 4 was able to stabilize the controlled system with a smaller state-derivative 
feedback matrix gain. The similar form, the maximum absolute value of the control signal 
u(t) from (54), obtained with Theorem 3 is u(t) = 1.1161 x 105N, and of the same controller 
obtained with Theorem 4 considering (40) is u(t) = 2.0362 x 103N. This example shows that 
the proposed methods are simple to use and it is easy to specify the constraints in the 
design. 

4. Conclusions 
In this chapter two new control designs using state-derivative feedback for linear systems 
were presented. Firstly, considering linear descriptor plants, a simple method for designing 
a state-derivative feedback gain (Kd) using methods for state feedback control design was 
proposed. The descriptor linear systems must be time-invariant, Single-Input (SI) or 
Multiple-Input (MI) system. The procedure allows that the designers use the well-known 
state feedback design methods to directly design state-derivative feedback control systems. 
This method extends the results described in (Cardim et al, 2007) and (Abdelaziz & Valášek, 
2004) to a more general class of control systems, where the plant can be a descriptor system. 
As the first design can not be directly applied for uncertain systems, then a design 
considering sufficient stability conditions based on LMI for state-derivative feedback, that 
provide an extension of the methods presented in (Assunção et al., 2007c) were presented. 
The designers can include in the LMI-based control design, the specification of the decay 
rate and bounds on output peak and on state-derivative feedback gains. The plant can be 
subject to structural failures. So, in this case, one has a fault-tolerant design. Furthermore, 
the new design methods allow a broader class of plants and performance specifications, 
than the related results available in the literature, for instance in (E. Reithmeier and G. 
Leitmann, 2003; Abdelaziz & Valášek, 2004; Duan et al., 2005; Assunção et al., 2007c; Cardim 
et al., 2007). The presented method offers LMI-based designs for state-derivative feedback 
that, when feasible, can be efficiently solved by convex programming techniques. In Sections 
2.3 and 3.5, the validity and simplicity of the new control designs can be observed with 
some numerical examples. 
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1. Introduction 
The problem of investigation of time delay systems has been exploited over many years. 
Time delay is very often encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The 
existence of pure time lag, regardless if it is present in the control or/and the state, may 
cause undesirable system transient response, or even instability.  
During the last three decades, the problem of stability analysis of time delay systems has 
received considerable attention and many papers dealing with this problem have appeared 
(Hale & Lunel, 1993). In the literature, various stability analysis techniques have been utilized 
to derive stability criteria for asymptotic stability of the time delay systems by many 
researchers (Yan, 2001; Su, 1994; Wu & Muzukami, 1995; Xu, 1994; Oucheriah, 1995; Kim, 2001).  
The developed stability criteria are classified often into two categories according to their 
dependence on the size of the delay: delay-dependent and delay-independent stability 
criteria (Hale, 1997; Li & de Souza, 1997; Xu et al., 2001). It has been shown that delay-
dependent stability conditions that take into account the size of delays, are generally less 
conservative than delay-independent ones which do not include any information on the size 
of delays.  
Further, the delay-dependent stability conditions can be classified into two classes: 
frequency-domain (which are suitable for systems with a small number of heterogeneous 
delays) and time-domain approaches (for systems with a many heterogeneous delays).  
In the first approach, we can include the two or several variable polynomials (Kamen 1982; 
Hertz et al. 1984; Hale et al. 1985) or the small gain theorem based approach (Chen & 
Latchman 1994).  
In the second approach, we have the comparison principle based techniques 
(Lakshmikantam & Leela 1969) for functional differential equations (Niculescu et al. 1995a; 
Goubet-Bartholomeus et al. 1997; Richard et al. 1997) and respectively the Lyapunov 
stability approach with the Krasovskii and Razumikhin based methods (Hale & Lunel 1993; 
Kolmanovskii & Nosov 1986). The stability problem is thus reduced to one of finding 
solutions to Lyapunov (Su 1994) or Riccati equations (Niculescu et al., 1994), solving linear 
matrix inequalities (LMIs) (Boyd et al. 1994; Li & de Souza, 1995; Niculescu et al., 1995b; Gu 
1997) or analyzing eigenvalue distribution of appropriate finite-dimensional matrices (Su 
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1995) or matrix pencils (Chen et al., 1994). For further remarks on the methods see also the 
guided tours proposed by (Niculescu et al., 1997a; Niculescu et al., 1997b; Kharitonov, 1998; 
Richard, 1998; Niculescu & Richard, 2002; Richard, 2003).  
It is well-known (Kolmanovskii & Richard, 1999) that the choice of an appropriate 
Lyapunov–Krasovskii functional is crucial for deriving stability conditions. The general 
form of this functional leads to a complicated system of partial differential equations 
(Malek-Zavareiand & Jamshidi, 1987). Special forms of Lyapunov–Krasovskii functionals 
lead to simpler delay-independent (Boyd et al., 1994; Verriest & Niculescu, 1998; 
Kolmanovskii & Richard, 1999) and (less conservative) delay-dependent conditions (Li & de 
Souza, 1997; Kolmanovskii et al., 1999; Kolmanovskii & Richard, 1999; Park, 1999; Lien et al., 
2000; Niculescu, 2001). Note that the latter simpler conditions are appropriate in the case of 
unknown delay, either unbounded (delay-independent conditions) or bounded by a known 
upper bound (delay-dependent conditions).  
In the delay-dependent stability case, special attention has been focused on the first delay 
interval guaranteeing the stability property, under some appropriate assumptions on the 
system free of delay. Thus, algorithms for computing optimal (or suboptimal) bounds on the 
delay size are proposed in (Chiasson, 1988; Chen et al., 1994) (frequency-based approach), in 
(Fu et al., 1997) (integral quadratic constraints interpretations), in (Li & de Souza, 1995; 
Niculescu et al., 1995b; Su, 1994) (Lyapunov-Razumikhin function approach) or in (Gu, 
1997) (discretization schemes for some Lyapunov- Krasovskii functionals). For computing 
general delay intervals, see, for instance, the frequency based approaches proposed in 
(Chen, 1995). 
In the past few years, there have been various approaches to reduce the conservatism of 
delay-dependent conditions by using new bounding for cross terms or choosing new 
Lyapunov–Krasovskii functional and model transformation. The delay-dependent stability 
criterion of (Park et al., 1998; Park, 1999) is based on a so-called Park’s inequality for 
bounding cross terms. However, major drawback in using the bounding of (Park et al., 1998) 
and (Park, 1999) is that some matrix variables should be limited to a certain structure to 
obtain controller synthesis conditions in terms of LMIs. This limitation introduces some 
conservatism. In (Moon et al., 2001) a new inequality, which is more general than the Park’s 
inequality, was introduced for bounding cross terms and controller synthesis conditions 
were presented in terms of nonlinear matrix inequalities in order to reduce the 
conservatism. It has been shown that the bounding technique in (Moon et al., 2001) is less 
conservative than earlier ones. An iterative algorithm was developed to solve the nonlinear 
matrix inequalities (Moon et al., 2001). 
Further, in order to reduce the conservatism of these stability conditions, various model 
transformations have been proposed. However, the model transformation may introduce 
additional dynamics. In (Fridman & Shaked, 2003) the sources for the conservatism of the 
delay-dependent methods under four model transformations, which transform a system 
with discrete delays into one with distributed delays are analyzed. It has been demonstrated 
that descriptor transformation, that has been proposed in (Fridman & Shaked, 2002a), leads 
to a system which is equivalent to the original one, does not depend on additional 
assumptions for stability of the transformed system and requires bounding of fewer cross-
terms. In order to reduce the conservatism, (Han, 2005a; Han, 2005b) proposed some new 
methods to avoid using model transformation and bounding technique for cross terms. 
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In (Fridman & Shaked, 2002b) both the descriptor system approach and the bounding 
technique using by (Moon et al., 2001) are utilized and the delay-dependent stability results 
are performed. The derived stability criteria have been demonstrated to be less conservative 
than existing ones in the literature.  
Delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) have been 
obtained for retarded and neutral type systems. These conditions are based on four main 
model transformations of the original system and application mentioned inequalities. 
The majority of stability conditions in the literature available, of both continual and discrete 
time delay systems, are sufficient conditions. Only a small number of works provide both 
necessary and sufficient conditions, (Lee & Diant, 1981; Xu et al., 2001; Boutayeb & 
Darouach, 2001), which are in their nature mainly dependent of time delay. These 
conditions do not possess conservatism but often require more complex numerical 
computations. In our paper we represent some necessary and sufficient stability conditions. 
Less attention has been drawn to the corresponding results for discrete-time delay systems 
(Verriest & Ivanov, 1995; Kapila & Haddad, 1998; Song et al., 1999; Mahmoud, 2000; Lee & 
Kwon, 2002; Fridman & Shaked, 2005; Gao et al., 2004; Shi et al., 2000). This is mainly due to 
the fact that such systems can be transformed into augmented high dimensional systems 
(equivalent systems) without delay (Malek-Zavarei & Jamshidi, 1987; Gorecki et al., 1989). 
This augmentation of the systems is, however, inappropriate for systems with unknown 
delays or systems with time varying delays. Moreover, for systems with large known delay 
amounts, this augmentation leads to large-dimensional systems. Therefore, in these cases 
the stability analysis of discrete time delay systems can not be to reduce on stability of 
discrete systems without delay. 
In our paper we present delay-dependent stability criteria for particular classes of time 
delay systems: continuous and discrete time delay systems and continuous and discrete 
time delay large-scale systems. Thereat, these stability criteria are express in form necessary 
and sufficient conditions. 
The organization of this chapter is as follows. In section 2 we present necessary and 
sufficient conditions for delay-dependent asymptotic stability of particular class of 
continuous and discrete time delay systems. Moreover, we show that in the paper of (Lee & 
Diant, 1981) there are some mistakes in formulation of particular theorems. We correct these 
errors and extend derived results on discrete time delay systems. Further extensions of these 
results to the class of continuous and discrete large scale time delay systems are presented in 
the section 3. All theoretical results are supported by suitable chosen numerical examples. 
And section 4 discuss and summarizes contributions. 

2. Time delay systems 
Throughout this chapter we use the following notation.  and denote real (complex) 
vector space or the set of real (complex) numbers, T+ denotes the set of all non-negative 
integers, *λ  means conjugate of λ ∈  and F∗ conjugate transpose of matrix n nF ×∈ .  
Re(s) is the real part of s∈ . The superscript T denotes transposition. For real matrix F  the 
notation F 0>  means that the matrix F  is positive definite. ( )i Fλ  is the eigenvalue of 

matrix  F . Spectrum of matrix F  is denoted with ( )Fσ  and spectral radius with ( )Fρ .  
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2.1 Continuous time delay systems 
For the sake of completeness, we present the following result (Lee & Diant, 1981). Considers 
class of continuous time-delay systems described by 

 ( ) ( ) ( ) ( ) ( )0 1x t A x t A x t , x t t , t 0= + − τ = − τ ≤ <ϕ  (1) 

Theorem 2.1.1 (Lee & Diant, 1981) Let the system be described by (1). If for any given matrix 
*Q Q 0= >  there exist matrix *P P 0= > , such that  

 ( )( ) ( )( )T
0 0P A T 0 A T 0 P Q+ + + = −  (2) 

where ( )T t is continuous and differentiable matrix function which satisfies 

 ( ) ( )( ) ( ) ( )0 1A T 0 T t , 0 t , T A
T t

0 , t

⎧ + ≤ ≤ τ τ =⎪= ⎨
> τ⎪⎩

 (3) 

then the system (1) is asymptotically stable.   
In paper (Lee & Diant, 1981) it is emphasized that the key to the success in the construction 
of a Lyapunov function corresponding to the system (1) is the existence of at least one 
solution ( )T t  of (3) with boundary condition ( ) 1T Aτ = . In other words, it is required that 

the nonlinear algebraic matrix equation 

 ( )( ) ( )0A T 0
1e T 0 A

+ τ
=  (4) 

has at least one solution for ( )T 0 . It is asserted, there, that asymptotic stability of the system 
(Theorem 2.1.1) can be determined based on the knowledge of only one or any, solution of the 
particular nonlinear matrix equation.  
We now demonstrate that Theorem 2.1.1 should be improved since it does not take into 
account all possible solutions for (4). The counterexample, based on our approach and 
supported by the Lambert function application, is given in (Stojanovic & Debeljkovic, 2006).  
Conclusion 2.1.1 (Stojanovic & Debeljkovic, 2006) If we introduce a new matrix,  

 ( )1R A T 0+  (5) 

then condition (2) reads  

 *PR R P Q+ = −  (6) 

which presents a well-known Lyapunov’s equation for the system without time delay.  
This condition will be fulfilled if and only if R is a stable matrix i.e. if  

 ( )Re R 0iλ <  (7) 

holds. 
Let TΩ  and RΩ  denote sets of all solutions of eq. (4) per T(0) and (6) per R, respectively.  
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Conclusion 2.1.2 (Stojanovic & Debeljkovic, 2006) Eq. (4) expressed through matrix R can be 
written in a different form as follows, 

 R
0 1R A e A 0− τ− − =  (8) 

and there follows 

 ( )R
0 1det R A e A 0− τ− − =  (9) 

Substituting a matrix variable R by scalar variable s in (7), the characteristic equation of the 
system (1) is obtained as 

 ( ) ( )s
0 1f s det sI A e A 0− τ= − − =  (10) 

Let us denote 

 ( ){ }s|f s 0Σ =  (11) 

a set of all characteristic roots of the system (1). The necessity for the correctness of desired 
results, forced us to propose new formulations of Theorem 2.1.1. 
Theorem 2.1.2 (Stojanovic & Debeljkovic, 2006) Suppose that there exist(s) the solution(s) 

( ) TT 0 ∈Ω  of (4). Then, the system (1) is asymptotically stable if and only if any of the two 
following statements holds: 

1. For any matrix *Q Q 0= >  there exists matrix *
0 0P P 0= >  such that (2) holds for all 

solutions ( ) TT 0 ∈Ω  of (4). 

2. The condition (7) holds for all solutions ( )1 RR A T 0= + ∈Ω  of (8).  
Conclusion 2.1.3 (Stojanovic & Debeljkovic, 2006) Statement Theorem 2.1.2 require that 
condition (2) is fulfilled for all solutions  ( ) TT 0 ∈Ω  of (4).  In other words, it is requested 
that condition (7) holds for all solution R of (8) (especially for maxR R= , where the matrix 

m RR ∈Ω  is maximal solvent of (8) that contains eigenvalue with a maximal real part 

∈Σ
λ ∈Σ λ =m m

s
: Re max Re s ). Therefore, from (7) follows condition ( )i mRe R 0λ < . These 

matrix condition is analogous to the following known scalar condition of asymptotic 
stability: System (1) is asymptotically stable if and only if the condition Res 0<  holds for all 
solutions s of (10) (especially for ms = λ ).  
On the basis of Conclusion 2.1.3, it is possible to reformulate Theorem 2.1.2 in the following 
way.  
Theorem 2.1.3 (Stojanovic & Debeljkovic, 2006) Suppose that there exists maximal solvent 

mR  of (8). Then, the system (1) is asymptotically stable if and only if any of the two 
following equivalent statements holds: 

1. For any matrix *Q Q 0= >  there exists matrix *
0 0P P 0= >  such that (6) holds for 

the solution mR R=  of (8). 
2. ( )i mRe R 0λ < .  
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2.2 Discrete time delay systems 

2.2.1 Introduction 
Basic inspiration for our investigation in this section is based on paper (Lee & Diant, 1981), 
however, the stability of discrete time delay systems is considered herein.  
We propose necessary and sufficient conditions for delay dependent stability of discrete 
linear time delay system, which as distinguished from the criterion based on eigenvalues of 
the matrix of equivalent system (Gantmacher, 1960), use matrices of considerably lower 
dimension. The time-dependent criteria are derived by Lyapunov’s direct method and are 
exclusively based on the maximal and dominant solvents of particular matrix polynomial 
equation. Obtained stability conditions do not possess conservatism but require complex 
numerical computations. However, if the dominant solvent can be computed by Traub’s or 
Bernoulli’s algorithm, it has been demonstrated that smaller number of computations are to 
be expected compared with a traditional stability procedure based on eigenvalues of matrix 
Aeq  of equivalent (augmented) system (see (14)). 

2.2.2. Preliminaries  
A linear, discrete time-delay system can be represented by the difference equation 

  ( ) ( ) ( )0 1x k 1 A x k A x k h+ = + −  (12) 

with an associated function of initial state 
  ( ) ( ) { }x ψ , h, h 1, ... , 0θ = θ θ∈ − − +  (13) 

The equation (12) is referred to as homogenous or the unforced state equation.  
Vector ( ) nx k ∈  is a state vector and n n

0 1A , A ×∈  are constant matrices of appropriate 

dimensions, and pure system time delay is expressed by integers h ∈T+ . System (12) can be 
expressed with the following representation without delay, (Malek-Zavarei & Jamshidi, 
1987; Gorecki et al., 1989).  

  

( ) ( ) ( ) ( )

( ) ( )

T T T N
eq

N N
eq eq eq eq

0 I 0n

0 0 In
A 0 A1 0

x k x k h x k h 1 x k , N ˆ n(h 1)

x k 1 A x k , A ×

⎡ ⎤= − − + ∈ = +⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥+ = = ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

 (14) 

The system defined by (14) is called the equivalent (augmented) system, while matrix Aeq, 
the matrix of equivalent (augmented) system. Characteristic polynomial of system (12) is 
given with: 

  ( ) ( ) ( )
n(h 1)

j h 1 h
j j n 0 1

j 0
f ˆ detM a , a ,      M I A A

+
+

=
λ = λ = λ ∈ λ = λ − λ −∑  (15) 

Denote with 

  ( ){ } ( )eqˆ |f 0 AΩ = λ λ = = λ  (16) 
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the set of all characteristic roots of system (12). The number of these roots amounts to 
n(h 1)+ . A root mλ  of Ω with maximal module: 

  ( )m m eq: max Aλ ∈Ω λ = λ  (17) 

let us call maximal root (eigenvalue). If scalar variable λ in the characteristic polynomial is 
replaced by matrix n nX ×∈  the two following monic matrix polynomials are obtained 

  ( ) h 1 h
0 1M X X A X A+= − −  (18) 

  ( ) h 1 h
0 1F X X X A A+= − −  (19) 

It is obvious that ( ) ( )F Mλ = λ . For matrix polynomial ( )M X , the matrix of equivalent 
system Aeq represents block companion matrix. 
A matrix n nS ×∈  is a right solvent of ( )M X if 

  M(S) 0=  (20) 

If  

  F(R) 0=   (21) 

then n nR ×∈  is a left solvent of ( )M X , (Dennis et al., 1976).  
We will further use matrix S to denote right solvent and matrix R to denote left solvent of 

( )M X . 

In the present paper the majority of presented results start from left solvents of ( )M X . In 

contrast, in the existing literature right solvents of ( )M X were mainly studied. The 
mentioned discrepancy can be overcome by the following Lemma. 
Lemma 2.2.1 (Stojanovic & Debeljkovic, 2008.b).  Conjugate transpose value of left solvent of 

( )M X  is also, at the same time, right solvent of the following matrix polynomial 

  ( ) h 1 T h T
0 1X X A X A+= − −M   (22) 

Conclusion 2.2.1 Based on Lemma 2.2.1, all characteristics of left solvents of ( )M X  can be 

obtained by the analysis of conjugate transpose value of right solvents of ( )XM .  

The following proposed factorization of the matrix ( )M λ  will help us to better understand 
the relationship between eigenvalues of left and right solvents and roots of the system.  
Lemma 2.2.2 (Stojanovic & Debeljkovic, 2008.b).  The matrix ( )M λ  can be factorized in the 
following way 

  ( ) ( ) ( ) ( ) ( )
h h

h h i i 1 h h i i 1
n 0 n n n 0

i 1 i 1
M I S A S I S I R I R R A− − − −

= =

⎛ ⎞ ⎛ ⎞
λ = λ + − λ λ − = λ − λ + λ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (23) 
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Conclusion 2.2.2 From (15) and (23) follows ( ) ( )f S f R 0= = , e.g. the characteristic 

polynomial ( )f λ  is annihilating polynomial for right and left solvents of M(X) . Therefore, 

( )Sλ ⊂ Ω  and ( )Rλ ⊂ Ω  hold. 
Eigenvalues and eigenvectors of the matrix have a crucial influence on the existence, 
enumeration and characterization of solvents of the matrix equation (20), (Dennis et al., 
1976; Pereira, 2003). 
Definition 2.2.1 (Dennis et al., 1976; Pereira, 2003). Let ( )M λ  be a matrix polynomial in λ. If 

iλ ∈  is such that ( )idetM 0λ = , then we say that λi is a latent root or an eigenvalue of 

( )M λ . If a nonzero n
iv ∈  is such that ( )i iM v 0λ =  then we say that vi is a (right) latent 

vector or a (right) eigenvector of ( )M λ , corresponding to the eigenvalue λi.  

Eigenvalues of matrix ( )M λ  correspond to the characteristic roots of the system, i.e. 
eigenvalues of its block companion matrix Aeq, (Dennis et al., 1976). Their number is 

( )n h 1⋅ + . Since ( ) ( )* *F λ = λM  holds, it is not difficult to show that matrices ( )M λ  and 

( )λM  have the same spectrum. 
In papers (Dennis et al., 1976, Dennis et al., 1978; Kim, 2000; Pereira, 2003) some sufficient 
conditions for the existence, enumeration and characterization of right solvents of 

( )M X were derived. They show that the number of solvents can be zero, finite or infinite.  
For the needs of system stability (12) only the so called maximal solvents are usable, whose 
spectrums contain maximal eigenvalue mλ . A special case of maximal solvent is the so 
called dominant solvent, (Dennis et al., 1976; Kim, 2000), which, unlike maximal solvents, 
can be computed in a simple way. 
Definition 2.2.2 Every solvent mS  of ( )M X , whose spectrum ( )mSσ  contains maximal 
eigenvalue mλ  of Ω is a maximal solvent. 
Definition 2.2.3 (Dennis et al., 1976; Kim, 2000). Matrix A dominates matrix B if all the 
eigenvalues of A are greater, in modulus, then those of B. In particular, if the solvent 1S  of 

( )M X  dominates the solvents 2 lS , ,S…  we say it is a dominant solvent.  
Conclusion 2.2.3 The number of maximal solvents can be greater than one. Dominant 
solvent is at the same time maximal solvent, too. The dominant solvent 1S  of ( )M X , under 
certain conditions, can be determined by the Traub, (Dennis et al., 1978) and Bernoulli 
iteration (Dennis et al., 1978; Kim, 2000). 
Conclusion 2.2.4 Similar to the definition of right solvents Sm and S1 of ( )M X , the 

definitions of both maximal left solvent, Rm, and dominant left solvent, R1, of ( )M X can be 

provided. These left solvents of ( )M X  are used in a number of theorems to follow. Owing 

to Lemma 2.2.1, they can be determined by proper right solvents of ( )XM . 
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2.2.3. Main results 
Theorem 2.2.1 (Stojanovic & Debeljkovic, 2008.b).  Suppose that there exists at least one left 
solvent of ( )M X and let mR  denote one of them. Then, linear discrete time delay system 

(12) is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 
*P P 0= >  such that  

  *
m mR PR P Q− = −   (24) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) { } ( ) ( ) ( ) ( )
h

k k
j 1

x x k , h, h 1, ... , 0 , z x x k T j x k j
=

= + θ θ∈ − − + = + −∑  (25) 

where, ( ) n nT k ×∈  is, in general, some time varying discrete matrix function. The 
conclusion of the theorem follows immediately by defining Lyapunov functional for the 
system (12)  as 

  ( ) ( ) ( )* *
k k kV x z x Pz x , P P 0= = >   (26) 

It is obvious that ( )kz x 0=  if and only if kx 0= , so it follows that ( )kV x 0>  for kx 0∀ ≠ . 
The forward difference of (26), along the solutions of system (12)  is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *
k k k k k kV x z x Pz k z x P z x z x P z xΔ = Δ + Δ + Δ Δ   (27) 

A difference of ( )kz xΔ can be determined in the following manner 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

h

k 0 n 1
j 1

h

j 1

z x x k T j x k j , x k A I x k A x k h

T j x k j T 1 x k x k 1 T h x k h 1 x k h

T 1 x k T h x k h T 2 T 1 x k 1

T h T h 1 x k h 1

=

=

Δ = Δ + Δ − Δ = − + −

Δ − = ⎡ − − ⎤ + + ⎡ − + − − ⎤⎣ ⎦ ⎣ ⎦

= − − + − − +

+ − − − +

∑

∑  (28) 

Define a new matrix R by  

  ( )0R A T 1= +  (29) 
If 

  ( ) ( )1T h A T hΔ = −   (30) 

then ( )kz xΔ has a form 

  ( ) ( ) ( ) ( ) ( )
h

k n
j 1

z x R I x k T j x k j
=
⎡ ⎤Δ = − + Δ ⋅ −⎣ ⎦∑  (31) 
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If one adopts 

  ( ) ( ) ( )nT j R I T j , j 1,2, ... , hΔ = − =  (32) 

then (27) becomes 

  ( ) ( )( ) ( )* *
k k kV x z x R PR P z xΔ = −   (33) 

It is obvious that if the following equation is satisfied  

  * *R PR P Q, Q Q 0− = − = >    (34) 

then ( )k kV x 0, x 0Δ < ≠ . 

In the Lyapunov matrix equation (34), of all possible solvents R of ( )M X , only one of 
maximal solvents is of importance, for it is the only one that contains maximal eigenvalue 

mλ ∈Ω , which has dominant influence on the stability of the system. So, (24) represent 
stability sufficient condition for system given by (12). 
Matrix ( )T 1  can be determined in the following way. From (32), follows 

  ( ) ( )hT h 1 R T 1+ =   (35) 

and using (29)-(30) one can get (21), and for the sake of brevity, instead of matrix T(1) , one 
introduces simple notation T. 
If solvent which is not maximal is integrated into Lyapunov equation, it may happen that 
there will exist positive definite solution of Lyapunov matrix equation (24), although the 
system is not stable. 
Necessary condition. If the system (12) is asymptotically stable then all roots iλ ∈Ω  are 
located within unit circle. Since ( )mRσ ⊂ Ω , follows ( )mR 1ρ < , so the positive definite 
solution of Lyapunov matrix equation (24) exists. 
Corollary 2.2.1 Suppose that there exists at least one maximal left solvent of ( )M X  and let 

mR  denote one of them. Then, system (12) is asymptotically stable if and only if ( )mR 1ρ < , 
(Stojanovic & Debeljkovic, 2008.b). 
Proof. Follows directly from Theorem 2.2.1. 
Corollary 2.2.2 (Stojanovic & Debeljkovic, 2008.b) Suppose that there exists dominant left 
solvent 1R  of ( )M X . Then, system (12) is asymptotically stable if and only if ( )1R 1ρ < . 
 Proof. Follows directly from Corollary 2.2.1, since dominant solution is, at the same time, 
maximal solvent. 
Conclusion 2.2.5 In the case when dominant solvent 1R  may be deduced by Traub’s or 
Bernoulli’s algorithm, Corollary 2.2.2 represents a quite simple method. If aforementioned 
algorithms are not convergent but still there exists at least one of maximal solvents Rm, then 
one should use Corollary 2.2.1. The maximal solvents may be found, for example, using the 
concept of eigenpars, Pereira (2003). If there is no maximal solvent Rm, then proposed 
necessary and sufficient conditions can not be used for system stability investigation. 
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Conclusion 2.2.6 For some time delay systems it holds  

( ) ( ) ( ) ( ) ( )1 m i eqdim R dim R dim A n dim A n h 1= = = = +  

For example, if time delay amounts to h 100= , and the row of matrices of the system is 
n 2= , then: 2 2

1 mR , R ×∈  and 202 202
eqA ×∈ .  

To check the stability by eigenvalues of matrix Aeq, it is necessary to determine 202 
eigenvalues, which is not numerically simple. On the other hand, if dominant solvent can be 
computed by Traub’s or Bernoulli’s algorithm, Corollary 2.2.2 requires a relatively small 
number of additions, subtractions, multiplications and inversions of the matrix format of 
only 2×2. 
So, in the case of great time delay in the system, by applying Corollary 2.2.2, a smaller 
number of computations are to be expected compared with a traditional procedure of 
examining the stability by eigenvalues of companion matrix Aeq. An accurate number of 
computations for each of the mentioned method require additional analysis, which is not the 
subject-matter of our considerations herein. 

2.2.4. Numerical examples  
Example 2.2.1 (Stojanovic & Debeljkovic, 2008.b). Let us consider linear discrete systems 
with delayed state (12) with 

0 1
7 /10 1 /2 1 /75 1 /3

A , A
1 /2 17 /10 1 /3 49 /75

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,  

A. For h 1=  there are two left solvents of matrix polynomial equation (21) 
( 2

0 1R RA A 0− − = ): 

1 2
19 /30 1 /6 1 /15 1 /3

R , R
1 /6 29 /30 1 /3 11 /15

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,  

Since ( ) { }1R 4 5 ,4 5λ = , ( ) { }2R 2 5,2 5λ = , dominant solvent is 1R . As we have 

( )1 2V R ,R  nonsingular, Traub’s or Bernoulli’s algorithm may be used. Only after 

( )4 3+  iterations for Traub’s algorithm (Dennis et al., 1978) and 17 iterations for 
Bernoulli algorithm (Dennis et al., 1978), dominant solvent can be found with accuracy 
of 410− . Since ( )1R 4 5 1ρ = < , based on Corollary 2.2.2, it follows that the system under 
consideration is asymptotically stable. 

B. For h 20=  applying Bernoulli or Traub’s algorithm for computation the dominant 
solvent 1R  of matrix polynomial equation  (21) ( 21 20

0 1R R A A 0− − = ) , we obtain 

1
0.6034 0.5868

R
0.5868 1.7769

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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Based on Corollary 2.2.2, the system is not asymptotically stable because 
( )1R 1.1902>1ρ = .  

Finally, let us check stability properties of the system using his maximal eigenvalue: 

{ } 40x2 40x40
max eq max

0 2x2 2x2 1

0 I
A 1.1902 1A 0  ... 0  A  

⎡ ⎤
λ = λ = >⎢ ⎥

⎢ ⎥⎣ ⎦
 

Evidently, the same result is obtained as above. 

3. Large scale time delay systems 
3.1 Continuous large scale time delay systems 

3.1.1 Introduction 
There exist many real-world systems that can be modeled as large-scale systems: examples 
are power systems, communication systems, social systems, transportation systems, rolling 
mill systems, economic systems, biological systems and so on. It is also well known that the 
control and analysis of large-scale systems can become very complicated owing to the high 
dimensionality of the system equation, uncertainties, and time-delays. During the last two 
decades, the stabilization of uncertain large-scale systems becomes a very important 
problem and has been studied extensively (Siljak, 1978; Mahmoud et al., 1985). Especially, 
many researchers have considered the problem of stability analysis and control of various 
large-scale systems with time-delays (Wu, 1999; Park, 2002 and references therein). 
Recently, the stabilization problem of large-scale systems with delays has been considered 
by (Lee & Radovic, 1988; Hu, 1994; Trihn & Aldeen 1995a; Xu, 1995). However, the results in 
(Lee & Radovic, 1988; Hu, 1994) apply only to a very restrictive class of systems for which 
the number of inputs and outputs is equal to or greater than the number of states. Also, 
since the sufficient conditions of (Trinh & Aldeen 1995a; Xu, 1995) are expressed in terms of 
the matrix norm of the system matrices, usually the matrix norm operation makes the 
criteria more conservative.  
The paper (Xu, 1995) provides a new criterion for delay-independent stability of linear large 
scale time delay systems by employing an improved Razumikhin-type theorem and M-
matrix properties. In (Trinh & Aldeen, 1997), by employing a Razumikhin-type theorem, a 
robust stability criterion for a class of linear system subject to delayed time-varying 
nonlinear perturbations is given.  
The basic aim of the above mentioned works was to obtain only sufficient conditions for 
stability of large scale time delay systems. It is notorious that those conditions of stability are 
more or less conservative. 
In contrast, the major results of our investigations are necessary and sufficient conditions of 
asymptotic stability of continuous large scale time delay autonomous systems. The obtained 
conditions are expressed by nonlinear system of matrix equations and the Lyapunov matrix 
equation for an ordinary linear continuous system without delay. Those conditions of 
stability are delay-dependent and do not possess conservatism. Unfortunately, viewed 
mathematically, they require somewhat more complex numerical computations. 
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3.1.2 Main Results  
Consider a linear continuous large scale time delay autonomous systems composed of N  
interconnected subsystems. Each subsystem is described as: 

  ( ) ( ) ( )
N

i i i ij j ij
j 1

x t A x t A x t
=

= + − τ∑ , 1 i N≤ ≤  (36) 

with an associated function of initial state ( ) ( )i ix θ = ϕ θ , 
im , 0 , 1 i N⎡ ⎤θ∈ −τ ≤ ≤⎣ ⎦ . 

( ) in
ix t ∈  is state vector, i in n

iA ×∈  denote the system matrix, i jn n
ijA R ×∈  represents 

the interconnection matrix between the i -th and the j -th subsystems, and ijτ  is constant 

delay. For the sake of brevity, we first observe system (36) made up of two subsystems 
( N 2= ). For this system, we derive new necessary and sufficient delay-dependent 
conditions for stability, by Lyapunov's direct method. The derived results are then extended 
to the linear continuous large scale time delay systems with multiple subsystems. 
a) Large scale systems with two subsystems 
Theorem 3.1.1. (Stojanovic & Debeljkovic, 2005). Given the following system of matrix 
equations (SME) 

  
 

1 11 1 211 1 11 2 21A e A e S A 0− τ − τ− − − =R RR  (37) 

  
 

1 12 1 221 2 2 2 12 2 22S S A e A e S A 0− τ − τ− − − =R RR  (38) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (36) for N 2= , in  subsystem 
orders and ijτ  pure time delays of the system. If there exists solution of SME (37)-(38) upon 

unknown matrices 
 

1 1n n
1 C ×∈R  and 1 2n n

2S C ×∈ , then the eigenvalues of matrix 
 1R  

belong to a set of roots of the characteristic equation of system (36)  for N 2= . 
Proof. By introducing the time delay operator se−τ , the system (36)  can be expressed in the 
form 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12

21 22

s s T1 11 12 T T
1 2s s

21 2 22

A A e A e
x t x t A s x t , x t x t x te

A e A A e

−τ −τ

−τ −τ

⎡ ⎤+ ⎡ ⎤⎢ ⎥= = = ⎣ ⎦⎢ ⎥+⎣ ⎦
(39) 

Let us form the following matrix 

  ( ) ( )
11 12

1
1 2 21 22

2

s s
n 1 11 12

ij n n s s
21 n 2 22

sI A A e A e
F s F (s) sI A se

A e sI A A s

−τ −τ

+ −τ −τ

⎡ ⎤− − −
⎢ ⎥⎡ ⎤= = − =⎣ ⎦ ⎢ ⎥− − −⎣ ⎦

 (40) 

Its determinant is 

  
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

11 12 11 2 21 12 2 22

21 22 21 22

11 2 12 2
2

21 22

F s F s F s S F s F s S F s
detF s det det

F s F s F s F s

G s,S G s,S
det detG s,S

G s G s

⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

 (41) 
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  ( ) 11 21s s
11 2 n1 1 11 2 21G s,S sI A A e S A e−τ −τ= − − −   (42) 

  ( ) 12 22s s
12 2 2 2 2 12 2 22G s,S sS S A A e S A e−τ −τ= − − −  (43) 

Transformational matrix 2S  is unknown for the time being, but condition determining this 
matrix will be derived in a further text. 
The characteristic polynomial of system (36) for N 2= , defined by 

  ( ) ( )( ) ( )N 2f s ˆ det sI A s =detG s,Se= −   (44) 

is independent of the choice of matrix 2S , because the determinant of matrix ( )2G s,S  is 
invariant with respect to elementary row operation of type 3. Let us designate a set of roots 
of the characteristic equation of system (36) by ( ){ }ˆ s|f s 0∑ = = . Substituting scalar variable 

s  by matrix X  in ( )2G s,S  we obtain  

  ( ) ( ) ( )
( ) ( )

11 2 12 2
2

21 22

G X,S G X,S
G X,S

G X G X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (45) 

If there exist transformational matrix 2S  and matrix 
 

1 1n n
1 C ×∈R such 

that ( )
 11 1 2G ,S 0=R and ( )

 12 1 2G ,S 0=R  is satisfied, i.e. if (37)-(38) hold, then 

  ( ) ( ) ( )
   1 11 1 2 22 1f =detG ,S detG 0⋅ =R R R   (46) 

So, the characteristic polynomial (44) of system (36)  is annihilating polynomial (Lancaster & 
Tismenetsky, 1985) for the square matrix

 1R , defined by (37)-(38). In other words, 

( )
 1σ ⊂ ∑R .  

Theorem 3.1.2 (Stojanovic & Debeljkovic, 2005) Given the following SME 

  
 

2 12 2 222 2 1 12 22A e S A e A 0− τ − τ− − − =R RR  (47) 

  
 

2 11 2 212 1 1 1 1 11 21S S A e S A e A 0− τ − τ− − − =R RR   (48) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (36) for N 2= , in  subsystem 
orders and ijτ time delays of the system. If there exists solution of SME (47)-(48) upon 

unknown matrices 
 

2 2n n
2 C ×∈R  and 2 1n n

1S C ×∈ , then the eigenvalues of matrix 
 2R  

belong to a set of roots of the characteristic equation of system (36)  for N 2= . 
Proof. Proof is similarly with the proof of Theorem 3.1.1. 
Corollary 3.1.1 If system (36) is asymptotically stable, then matrices 

 1R  and 
 2R , defined 

by SME (37)-(38) and (47)-(48), respectively, are stable ( ( )
 iRe 0λ <R , 1 i 2≤ ≤ ).  
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Proof. If system (36) is asymptotically stable, then s , Res 0∀ ∈Σ < . Since ( )
 iσ ⊂ ∑R , 

1 i 2≤ ≤ , it follows that ( )
 i , Re 0∀ λ ∈σ λ <R , i.e. matrices 

 1R  and 
 2R  are stable.  

Definition 3.1.1 The matrix 
 1R  (

 2R ) is referred to as solvent of SME  (37)-(38) or (47)-(48). 
Definition 3.1.2 Each root mλ  of the characteristic equation (44) of the system (36) which 
satisfies the following condition: Re maxRes, smλ = ∈Σ  will be referred to as maximal root 
(eigenvalue) of system (36). 
Definition 3.1.3 Each solvent 1mR  ( 2mR ) of SME (37)-(38) or (47)-(48), whose spectrum 
contains maximal eigenvalue mλ  of system (36), is referred to as maximal solvent of SME (37)
-(38)  or (47)-(48). 
Theorem 3.1.3 (Stojanovic & Debeljkovic, 2005) Suppose that there exists at least one 
maximal solvent of SME (47)-(48) and let 1mR  denote one of them. Then, system (36), for 

N 2= , is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 
*P P 0= >  such that 

  *
1m 1mP P Q+ = −R R  (49) 

Proof. Sufficient condition. Similarly (Lee & Diant, 1981), define the following vector 
continuous functions 

 ( ) ( ) ( ) ( ) ( )
ji

i

2 2

ti i m t1 t2 i i ji i
i 1 j 1 0

x x t , , 0 , z x ,x S x t T x t d
τ

= =

⎛ ⎞
⎜ ⎟⎡ ⎤= + θ θ∈ −τ = + η − η η⎣ ⎦ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫  (50) 

where ( ) i in n
jiT t C ×∈ , j 1,2=  are some time varying continuous matrix functions and 

11 nS I= , 1 2n n
2S C ×∈ . 

The proof of the theorem follows immediately by defining Lyapunov functional for system 
(36) as 

  ( ) ( ) ( )* *
t1 t2 t1 t2 t1 t2V x ,x z x ,x Pz x ,x , P P 0= = >  (51) 

Derivative of (51), along the solutions of system (36) is  

  ( ) ( ) ( ) ( ) ( )* *
t1 t2 t1 t2 t1 t2 t1 t2 t1 t2V x ,x z x ,x P z x ,x z x ,x P z x ,x= +   (52) 

  ( ) ( ) ( ) ( )
ji2 2

t1 t2 i i ji i
i 1 j 1 o

dz x ,x S x t T x t d
dt

τ

= =

⎛ ⎞
⎜ ⎟= + η − η η⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫   (53) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ji ji

'
ji i ji i ji i ji ji i ji

0 0

d T  x t  d T  x t  d T 0  x t T  x t
dt

τ τ

η − η η = η − η η + − τ − τ∫ ∫  (54) 



Systems, Structure and Control 

 

44 

Therefore 

  

( ) ( ) ( )

( )( ) ( ) ( ) ( )
ji

2 2

t1 t2 i i ji i
i 1 j 1

2 2
'

j ji i ji ji i ji i ji i
j 1 j 1 0

z x ,x S A T 0 x t

S A S T x t S T x t d

= =

τ

= =

⎧ ⎛ ⎞⎪ ⎜ ⎟= +⎨ ⎜ ⎟⎪ ⎝ ⎠⎩
⎫
⎪+ − τ − τ + η − η η ⎬
⎪⎭

∑ ∑

∑ ∑ ∫

 (55) 

 If we define new matrices 

  ( )
2

i i ji
j 1

A T 0 , i 1,2
=

= + =∑R  (56) 

and if one adopts 

  ( )i ji ji j jiS T S A , i, j 1,2τ = =   (57) 

  ( ) ( )'
i ji 1 i ji i i 1 iS T S T , S S , i, j 1,2η = η = =R R R   (58) 

then 

  ( ) ( ) ( ) ( )( ) ( )* *
t1 t2 1 t1 t2 t1 t2 t1 t2 1 1 t1 t2z x ,x z x ,x , V x ,x z x ,x P P z x ,x= = +R R R   (59) 

It is obvious that if the following equation is satisfied 

  *
1 1P P Q 0+ = − <R R ,  (60) 

then ( )t1 t2V x ,x 0< , tix 0∀ ≠ .  
In the Lyapunov matrix equation (49), of all possible solvents 1R  only one of maximal 
solvents 1mR  is of importance, because it is containing maximal eigenvalue mλ ∈Σ , which 
has dominant influence on the stability of the system.  
If a solvent, which is not maximal, is integrated into Lyapunov equation (49), it may happen 
that there will exist positive definite solution of this equation, although the system is not 
stable. 
Necessary condition. Let us assume that system (36) for N 2=  is asymptotically stable, i.e. 

s∀ ∈Σ , Res 0<  hold. Since ( )1mσ ⊂ ΣR  follows ( )1mRe 0λ <R  and the positive definite 
solution of Lyapunov matrix equation (49) exists.  
From (57)-(58) follows 

  ( ) 1 ji
1j ji i ji 1 n ,S A e S T 0 , S I i 1,2, j 1,2τ= = = =R   (61) 

Using (56) and (61), for i 1= , we obtain (37).  
Multiplying (56) (for i 2= ) from the left by matrix 2S  and using (58) and (61) we obtain (38) 
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Taking a solvent with eigenvalue mλ ∈Σ  (if it exists) as a solution of the system of 
equations (37)-(38), we arrive at a maximal solvent 1mR . 
Theorem 3.1.4 (Stojanovic & Debeljkovic 2005) Suppose that there exists at least one 
maximal solvent of SME (47)-(48) and let 2mR  denote one of them. Then, system (36), for 

N 2= , is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 
*P P 0= >  such that 

  *
2m 2mP P Q+ = −R R  (62) 

Proof. Proof is almost identical to that exposed for Theorem 3.1.3. 
Conclusion 3.1.1 The proposed criteria of stability are expressed in the form of necessary 
and sufficient conditions and as such do not possess conservatism unlike the existing 
sufficient criteria of stability. 
Conclusion 3.1.2 To the authors’ knowledge, in the literature available, there are no 
adequate numerical methods for direct computations of maximal solvents 1mR  or 2mR . 
Instead, using various initial values for solvents iR , we determine imR  by applying 
minimization methods based on nonlinear least squares algorithms (see Example 3.1.1). 
b) Large scale system with multiple subsystems 
Theorem 3.1.5. (Stojanovic & Debeljkovic, 2005) Given the following system of matrix 
equations  

  k ji k i
k

N
n n

k i i i j ji i k n
j 1

S S A e S A 0, S C , S I , 1 i N− τ ×

=
− − = ∈ = ≤ ≤∑ RR   (63) 

for a given k , 1 k N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system  (36) 

and jiτ  is time delay in the system. If there is a solvent of (63) upon unknown matrices 

k kn n
k C ×∈R  and iS , 1 i N≤ ≤ , i k≠ , then the eigenvalues of matrix kR  belong to a set of 

roots of the characteristic equation of system (36). 
Proof. Proof of this theorem is a generalization of proof of Theorem 3.1.1 or Theorem 3.1.2.  
Theorem 3.1.6 (Stojanovic & Debeljkovic, 2005) Suppose that there exists at least one 
maximal solvent of (63) for given k , 1 k N≤ ≤  and let kmR  denote one of them. Then, 
linear discrete large scale time delay system (36) is asymptotically stable if and only if for 
any matrix *Q Q 0= >  there exists matrix *P P 0= >  such that 

  *
km kmP P Q+ = −R R  (64) 

Proof. Proof is based on generalization of proof for Theorem 3.1.3 and Theorem 3.1.4.  
It is sufficient to take arbitrary N instead of N 2= .  

3.1.3 Numerical example  
Example 3.1.1 Consider following continuous large scale time delay system with delay 
interconnections 



Systems, Structure and Control 

 

46 

  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 12 2 12

2 2 2 21 1 21 23 3 23

3 3 3 31 1 31 32 2 32

x t A x t A x t

x t A x t A x t A x t

x t A x t A x t A x t

= + − τ

= + − τ + − τ

= + − τ + − τ

  (65) 

1 12 2 21,

-6 2 0 3 -2 0 -1.87 4.91 10.30 -1 0 -2
A 0 -7 0 A 0 0 3 , A -2.23 -16.51 -24.11 , A 3 0 5

0 0 -10.9 -2 1 2 1.87 -3.91 -10.30 1 0 2
= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

23 3 31 32

-1 -1
-18.5 -17.5 4 -2 1 1 2 -1

A 3 2 , A , A , A
-13.5 -18.5 2 0 1 3 2 0

1 1
= = = =
⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

, 

Applying Theorem 3.1.5 to a given system, for k 1= , the following SME is obtained 

  

1 21 1 31

1 12 1 32

1 23

1 1 2 21 3 31

1 2 2 2 12 3 32

1 3 3 3 2 23

A e S A e S A 0

S S A e A e S A 0

S S A e S A 0

  

    

− τ − τ

− τ − τ

− τ

− − − =

− − − =

− − =

R R

R R

R

R

R

R

 (66) 

If for pure system time delays we adopt the following values: 12 5τ = , 21 2τ = , 23 4τ = , 

31 5τ =  and 32 3τ = , by applying the nonlinear least squares algorithms, we obtain a great 
number of solutions upon 1R  which satisfy SME (66): 
Among those solutions is a maximal solution: 

1m

-0.0484 -0.0996 0.0934
0.2789 -0.3123 0.2104
1.1798 -1.1970 -0.3798

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=R  

The eigenvalues of matrix 1mR  amount to: 1 0.2517λ = − , 2,3 = 0.2444 j 0.3726λ − ± .  

Therefore, for a maximal eigenvalue mλ one of the values from the set { }2 3,λ λ  can be 
adopted. Based on Theorem 3.1.6, it follows that the large scale time delay system is 
asymptotically stable. 

3.2 Discrete large scale time delay systems 

3.2.1 Introduction 
Recently, the stability and stabilization problem of large-scale systems with delays has been 
considered by (Lee & Radovic, 1987, 1988), (Hu, 1994), (Trinh & Aldeen, 1995b), (Xu, 1995), 
(Huang et al., 1995), (Lee & Hsien 1997), (Wang & Mau 1997) and (Park, 2002).  
Most related works treated the stabilization problem in the continuous-time case. Since most 
modern control systems are controlled by a digital computer, it is natural to deal with the 
problem in a discrete-time domain.  
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Based on the Lyapunov stability theorem associated with norm inequality techniques, in 
(Lee & Hsien, 1997) the stability testing problem for discrete large-scale uncertain systems 
with time delays in the interconnections is investigated. Three classes of uncertainties are 
treated: nonlinear, linear unstructured and linear highly structured uncertainties. A criterion 
to guarantee the robust stabilization and the state estimation for perturbed discrete time-
delay large-scale systems is proposed in (Wang & Mau, 1997). This criterion is independent 
of time delay and does not need the solution of a Lyapunov equation or Riccati equation. 
In paper (Park, 2002) the synthesis of robust decentralized controllers for uncertain large-
scale discrete-time systems with time delays in the subsystem interconnections is 
considered. Based on the Lyapunov method, a sufficient condition for robust stability is 
derived in terms of a linear matrix inequality. Further, (Park et al., 2004) was discussed how 
to solve dynamic output feedback controller design problem for decentralized guaranteed 
cost stabilization of large-scale discrete-delay system by convex optimization. The problems 
of robust non-fragile control for uncertain discrete-delay large-scale systems under state 
feedback gain variations are investigated in (Park, 2004). 
In this section the necessary and sufficient conditions for the asymptotic stability of a 
particular class of large-scale linear discrete time-delay systems are considered. The 
obtained conditions of stability are derived by Lyapunov’s direct method and expressed by 
system of matrix polynomial equations. The conditions are not conservative against the 
majority of results reported in the literature available. In the case of great time delays in the 
system and a great number of subsystems, by applying the derived results it has been 
demonstrated that a smaller number of computations are to be expected compared with a 
classical stability criteria based on eigenvalues of matrix of equivalent system. 

3.2.2. Preliminaries 
Consider a large-scale linear discrete time-delay systems composed of N  interconnected 

iS . Each subsystem iS , 1 i N≤ ≤  is described as 

  ( ) ( ) ( )
N

i i i i ij j ij
j 1

:   x k 1 A x k A x k h
=

+ = + −∑S  (67) 

with an associated function of initial state 

  ( ) ( ) { }i ii i m mx ψ , h , h 1  ,  ,  0θ = θ θ∈ − − + …  (68) 

where ( ) in
ix k ∈  is state vector, i in n

iA ×∈  denotes the system matrix, 

i jn n
ijA ×∈ represents the interconnection matrix between the i -th and the j -th 

subsystems and the constant delay ijh ∈T+ . 

In the following lemma necessary and sufficient condition for asymptotic stability of system 
(67) has been given, expressed via eigenvalues the so called equivalent matrix A . This 
condition is based upon the fact that the observed system is finite-dimensional. The order of 
this system is very high and time delay dependent. 
Lemma 3.2.1 System (67) will be asymptotically stable if and only if  

  ( ) 1ρ <A   (69) 
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holds, where matrix 

  ( )i i

N
N Ne eij i i i m m ji

ji 1
e, N N , N n h 1 , h maxh×

=

⎡ ⎤∈ = = + =⎣ ⎦= ∑A A  (70) 

is defined in the following way  

  

ii ij

i i i i i

i

 1                 h 1                           1      h 1              

i ii ij

n N N N N
ii ij

n

A 0 A 0 0 0 A 0
I 0 0 0 0 0 0 0,

0 0 0 I 0 0 0 0

↓ ↓↓ ↓

+ +

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ∈ = ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A A (71) 

where iA  and ijA , 1 i N≤ ≤ , 1 j N≤ ≤ , are matrices of system (67).  

Proof. It is not difficult to demonstrate that system (67) can be given in the following 
equivalent form 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )i

  TT T T
1 2 N

  TT T T
i i i i m

ˆ ˆ ˆ ˆ ˆ ˆx k 1 x k , x k x k x k x k  1 i N

x̂ k x k x k 1 x k h

⎡ ⎤+ = = ≤ ≤⎣ ⎦

⎡ ⎤= − −⎣ ⎦

A
  (72) 

wherefrom a given condition for asymptotic stability follows directly. 

3.2.3. Main results  
Using Lyapunov's direct method, necessary and sufficient conditions for delay-dependent 
stability for system (67), are derived.  
Prior to it, we demonstrate that the spectrum of matrix, which is integrated into Lyapunov 
equation, is a subset of spectrum of matrix A , i.e. a set of characteristic roots of system (67). 
Theorem 3.2.1. (Stojanovic & Debeljkovic, 2008.a) Given the following system of monic 
matrix polynomial equations (SMPE)  

  m jim m ii i i
N h hh 1 h n n

i i i j ji i n
j 1

S S A S A 0, S , S I−+ ×

=
− − = ∈ =∑R R R  (73) 

for a given , 1 N≤ ≤ , , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system (67) 

and jih  is time delay in the system, 
im ji

j
h maxh , 1 i N= ≤ ≤ .  

If there is a solution of SMPE (73) upon unknown matrices n n×∈R  and iS , 1 i N≤ ≤ , 
i ≠ , then ( ) ( )

 
λ ⊂ λ AR holds, where matrix A  is defined by (70)-(71). 

Proof. By introducing time-delay operator hz− , system (67) can be expressed in the 
following form 



Asymptotic Stability Analysis of Linear Time-Delay Systems: Delay Dependent Approach 

 

49 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
1N11

N1 NN

TT T T
1 2 N

hh
1 11 1N

h h
N1 N NN

e

e

x k 1 A z x k , x k x k x k x k

A A z A z
A z

A z A A z

−−

− −

⎡ ⎤+ = = ⎣ ⎦
⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (74) 

Let us form the following matrix. 

  ( ) ( )
1N11

1

e
N1 NN

N

hh
n 1 11 1N

N ij
h h

N1 n N NN

e

zI A A z A z
F z zI A z F (z)

A z zI A A z

−−

− −

⎡ ⎤− − −
⎢ ⎥

⎡ ⎤ ⎢ ⎥= − = =⎣ ⎦ ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

 (75) 

If we add to the arbitrarily chosen  - th block row of this matrix the rest of its block rows 
previously multiplied from the left by the matrices jS 0≠ , 1 j N≤ ≤ , j ≠  respectively, we 

obtain 

  ( )

( )

( ) ( )

( )

( )

( ) ( )

( )

11 1N

N N

1 j j1 j jNN
j 1 j 1
j j

N1 NN

F z F z

F z S F z F z S F zdetF z det

F z F z

= =
≠ ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ += ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑  (76) 

After multiplying i -th of the block column, 1 i N≤ ≤ , of the preceding matrix by mihz  and 
after integrating the matrix nS I= , the determinant of matrix ( )F z  equals 

 

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) { }

N
i mi

i 1

mm N1

mm N1

mm N1

n h

hh
11 1N

11 1N

N Nhh
j j1 j jN 1 N

j 1 j 1

N1 NN
hh

N1 NN

1 N

z det

z F z z F z
G z G z

z S F z z S F zdet det G z,S G z,S

G z G z
z F z z F z

detG z,S , S S , ,S

=

= =

∑

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

= =

∑ ∑

F z =

= (77) 

The -th block row of the N N×  block matrix ( )G z,S  is defined by 
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 ( ) m m m jii i i
Nh 1 h h h

i i i j ji ni
j 1

G z,S z S z S A z S A , 1 i N, S I
+ −

=
= − − ≤ ≤ =∑   (78) 

The relation (76) was obtained by applying a finite sequence of elementary row operations 
of type 3 over matrix ( )F z , (Lancaster & Tismenetsky, 1985). Transformation matrices 

1 NS , ,S , with the exception of matrix nS I= , are unknown for the time being, but in a 

further text a condition will be derived that the unknown matrices are determined upon.  
The characteristic polynomial of system (67), (Gorecki et al., 1989)  

  ( ) ( ) ( )i

N Ne j
j i m j

j 0 i 1
e eg z ˆ detG z,S a z , N n h 1 , a , 0 j N

= =
= = = + ∈ ≤ ≤∑ ∑  (79) 

does not depend on the choice of transformation matrices 1 NS , ,S ), (Lancaster & 
Tismenetsky, 1985).  
Let us denote 

  ( ){ }ˆ z|g z 0∑ = =   (80) 

a set of all characteristic roots of system (67). This set of roots equals the set ( )λ A . 

Substituting a scalar variable z  by matrix n nX ×∈  in ( )G z,S , a new block matrix is 

obtained ( )G X,S . If there exist the transformation matrices Si, 1 i N≤ ≤ , i ≠  and solvent 
n n×∈R  such that for the -th block row of ( )G X,S  holds ( )iG ,S 0, 1 i N= ≤ ≤R  

i.e. holds (73), then 

  ( )g 0=R  (81) 

Therefore, the characteristic polynomial of system (67) is annihilating polynomial for the 
square matrix 

 
R  and ( )

 
λ ⊂ ∑R  holds. The mentioned assertion holds , 1 N∀ ≤ ≤ . 

Definition 3.2.1 The matrix R  is referred to as solvent of equations (73) for the given , 
1 N≤ ≤ . 
From (73) for the given , 1 N≤ ≤ , transformation matrices jS  1 j N≤ ≤  and solvent 

R are computed, the latter being used further for examining the stability of system (67). 
Definition 3.2.2 The characteristic root mλ  of system (67) with maximal module: 

  ( )m m i
i

: max maxλ ∈Σ λ = Σ = λ A  (82) 

will be referred to as maximal root (eigenvalue) of system (67).  
Definition 3.2.3 Each solvent mR  of SMPE (73), for the given , 1 N≤ ≤ , whose 
spectrum contains maximal eigenvalue mλ  of system (67), is referred to as maximal solvent 
of (73). 
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Theorem 3.2.2 (Stojanovic & Debeljkovic, 2008.a) Suppose that there exist at least one , 
1 N≤ ≤ , that there exists at least one maximal solvent of SMPE (73) and let mR  denote 
one of them. Then, linear discrete large-scale time-delay system (67) is asymptotically stable 
if and only if for any matrix *Q Q 0= >  there exists matrix *P P 0= >  such that 

  *
mm P P Q− = −R R . (83) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) ( ) ( ) ( ) ( ) { }
ji

i

hN N

k1 kN i i ji i ki i m
i 1 j 1 l 1

v x , ,x S x k T l x k l , x x k , h , ,0
= = =

⎡ ⎤
⎢ ⎥= + − = + θ θ∈ −
⎢ ⎥
⎣ ⎦

∑ ∑ ∑ …  (84) 

where ( ) i in n
jiT k ×∈ , 1 j N≤ ≤ , 1 i N≤ ≤  are, in general, some time-varying discrete 

matrix functions and nS I= , in n
iS ×∈ , 1 i N≤ ≤ , i ≠ . The conclusion of the theorem 

follows immediately by defining Lyapunov functional for system (67) as 

  ( ) ( ) ( )* *
k1 kNV x , ,x v , , P v , , , P P 0= ⋅ ⋅ ⋅ ⋅ = >  (85) 

It is obvious that ( )V , , 0⋅ ⋅ >  for kix 0∀ ≠ , 1 i N≤ ≤ . The forward difference of (85), along 
the solutions of system (67) is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *V , , v , , P v , , v , , P v , , v , , P v , ,⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅Δ Δ Δ Δ Δ   (86) 

A difference of ( )v , ,⋅ ⋅  can be determined in the following manner 

 ( ) ( ) ( ) ( )
jihN N

i i ji i
i 1 j 1 l 1

v , , S x k T l x k l
= = =

⎡ ⎤
⎢ ⎥⋅ ⋅ = + −
⎢ ⎥
⎣ ⎦

∑ ∑ ∑Δ Δ Δ  (87) 

  ( ) ( ) ( ) ( )i

N

i i n i ij j ij
j 1

x k A I x k A x k h
=

= − + −∑Δ   (88) 

Then 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i

ji

N N N

i i n ji i ji ji i ji
i 1 j 1 j 1

h 1N N

ji i ij j ij
j 1 l 1 j 1

v , , S A I T 1 x k T h x k h

T l x k l A x k h

= = =

−

= = =

⎡⎛ ⎞
⎢⎜ ⎟⋅ ⋅ = − + + −
⎜ ⎟⎢⎝ ⎠⎣

⎤
⎥+ − + −
⎥
⎦

∑ ∑ ∑

∑ ∑ ∑

Δ

Δ

  (89) 

If we define new matrices 
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  ( )
N

i i ji
j 1

A T 1
=

= +∑R , 1 i N≤ ≤   (90) 

then ( )v , ,⋅ ⋅Δ  has a form 

  

( ) ( ) ( ) ( )( ) ( )

( ) ( )Δ

i

ji

N N

i i n i j ji i ji ji i ji
i 1 j 1

h 1N

i ji i
j 1 l 1

v , , S I x k S A S T h x k h

S T l x k l

= =

−

= =

⎡
⎢⋅ ⋅ = − + − −
⎢⎣

⎤
⎥+ −
⎥
⎦

∑ ∑

∑ ∑

RΔ

 (91) 

If 

  ( ) ( )j ji i ji ji i ji jiS A S T h S T h , 1 i N, 1 j N− = ≤ ≤ ≤ ≤Δ   (92) 

  ( ) ( )ii i n n iS I I S , 1 i N− = − ≤ ≤R R   (93) 

  ( ) ( ) ( )i ji n i jiS T l I S T l , 1 i N, 1 j N= − ≤ ≤ ≤ ≤RΔ   (94) 

then 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
nv , , I v , , , V , , v , , P P v , ,⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅R R RΔ Δ  (95) 

It is obvious that if the following equation is satisfied  

  * *P P Q, Q Q 0− = − = >R R  (96) 

then ( )V , , 0⋅ ⋅ <Δ , kix 0∀ ≠ , 1 i N≤ ≤ . 
In the Lyapunov matrix equation (83), of all possible solvents R  of (73), only one of 
maximal solvents mR  is of importance, for it is the only one that contains maximal 
eigenvalue mλ ∈Σ  (Definition 3.2.3), which has dominant influence on the stability of the 
system. If a solvent which is not maximal is integrated into Lyapunov equation (83), it may 
happen that there will exist a positive definite solution of this equation, although the system 
is not stable. Accordingly, condition (83) represents sufficient condition of the stability of 
system (67). 
If it exists, maximal solvent mR  can be determined in the following way. From (92) and 
(94) we obtain 

  ( )
 

jih
j ji i ji n ,S A S T 1 , S I 1 i N, 1 j N= = ≤ ≤ ≤ ≤R  (97) 

Multiplying i -th equation of the system of matrix equations (90) from the left by matrix 

  

m ih
iSR  and using (93) and (97), we obtain equation (73). Taking solvent with eigenvalue 
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mλ ∈Σ  (if it exists) as a solution of the system of equations (73), we arrive at maximal 
solvent mR . 
Necessary condition. If system (67) is asymptotically stable, then i∀λ ∈Σ , i 1λ < . Since 

( )mλ ⊂ ΣR ,it follows that ( )m 1ρ <R , therefore the positive definite solution of 
Lyapunov matrix equation (67)  exists.  
 Corollary 3.2.1 Suppose that for the given , 1 N≤ ≤ , there exists matrix R  being 
solution of SMPE (73). If system (67) is asymptotically stable, then matrix R  is discrete 
stable ( ( ) 1ρ <R ). 

Proof. If system (67) is asymptotically stable, then z z 1∀ ∈∑ < . Since ( )λ ⊂ ∑R , it 

follows that ( ) , 1∀ λ ∈λ λ <R , i.e. matrix R  is discrete stable. 
Conclusion 3.2.1 It follows from the aforementioned, that it makes no difference which of 
the matrices mR , 1 N≤ ≤  we are using for examining the asymptotic stability of system 
(67). The only condition is that there exists at least one matrix for at least one . Otherwise, 
it is impossible to apply Theorem 3.2.2. 

Conclusion 3.2.2 The dimension of system (67) amounts to ( )j
N

j mj 1eN n h 1== +∑ . 

Conversely, if there exists a maximal solvent, the dimension of mR  is multiple times 
smaller and amounts to n . That is why our method is superior over a traditional 
procedure of examining the stability by eigenvalues of matrix A . 
The disadvantage of this method reflects in the probability that the obtained solution need 
not be a maximal solvent and it can not be known ahead if maximal solvent exists at all. 
Hence the proposed methods are at present of greater theoretical than of practical 
significance. 

3.2.4 Numerical example 
Example 3.2.1 Consider a large-scale linear discrete time-delay systems, consisting of three 
subsystems described by Lee, Radovic (1987) 

( ) ( ) ( ) ( )1 1 1 1 1 1 12 2 12:  x k 1 A x k B u k A x k h+ = + + −S , 

( ) ( ) ( ) ( ) ( ),2 2 2 2 2 2 21 1 21 23 3 23:  x k 1 A x k B u k A x k h A x k h+ = + + − + −S  

( ) ( ) ( ) ( )3 3 3 3 3 3 31 1 31:  x k 1 A x k B u k A x k h+ = + + −S , 

, , ,1 2 1 12 2

0.7 0 0.5 0 0.1
0.8 0.6 0.1 0.1 0 0.1

A A 0.1 6 0.1 B A , B 0.1 0.2
0.4 0.9 0.1 0.1 0 0.1

0.6 1 0.8 0 0.1

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = − − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

, 

, , ,21 23 3 3 31

0.1 0.2 0.1 0
1 0.1 0.1 0 0.1 0.2

A 0.3 0.1 A 0.2 0.2 , A B A
0.1 0.8 0 0.1 0.1 0.2

0.1 0.2 0.1 0

− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 



Systems, Structure and Control 

 

54 

The overall system is stabilized by employing a local memory-less state feedback control for 
each subsystem 

( ) ( )i i iu k K x k= , [ ], ,1 2 3
7 45 10 5 1

K 6 7 K K
4 4 4 1 4

− − − −⎡ ⎤ ⎡ ⎤
= − − = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

Substituting the inputs into this system, we obtain the equivalent closed loop system 
representations 

( ) ( ) ( )
3

i i i i ij j ij
j 1

ˆ: x k 1 A x k A x k h , 1 i 3
=

+ = + − ≤ ≤∑S ,   i i i iÂ A B K= +  

For time delay in the system, let us adopt: 12h 5= , 21h 2= , 23h 4=  and 31h 5= . Applying 
Theorem 3.2.1 to a given closed loop system, we obtain the following SMPE for 1=  

   

6 5 3
1 1 1 1 2 21 3 31Â S A S A 0− − − =R R R , 

  

6 5
1 2 1 2 2 12

ˆS S A A 0− − =R R , 

  

5 4
1 3 1 3 3 2 23

ˆS S A S A 0− − =R R . 

Solving this SMPE by minimization methods, we obtain  

,
 1 2 3

0.6001 0.3381 0.0922 1.3475 0.5264 0.6722 -0.3969
, S S

0.6106 0.3276 0.0032 1.3475 0.4374 1.3716 -1.0963
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R . 

Eigenvalue with maximal module of matrix 
 1R  equals 0.9382. Since eigenvalue mλ  of 

40 40×∈A  also has the same value, we conclude that solvent 
 1R  is maximal solvent 

(
  1m 1=R R ). Applying Theorem 3.2.2, we arrive at condition ( )

 1m 0.9382<1ρ =R  
wherefrom we conclude that the observed closed loop large-scale time-delay system is 
asymptotically stable. 
The difference in dimensions of matrices 

 

2 2
1

×∈R  and 40 40×∈A  is rather high, even 
with relatively small time delays (the greatest time delay in our example is 5). So, in the case 
of great time delays in the system and a great number of subsystems N , by applying the 
derived results, a smaller number of computations are to be expected compared with a 
traditional procedure of examining the stability by eigenvalues of matrix A . 
An accurate number of computations for each of the mentioned method require additional 
analysis, which is not the subject-matter of our considerations herein. 

4. Conclusion  
In this chapter, we have presented new, necessary and sufficient, conditions for the 
asymptotic stability of a particular class of linear continuous and discrete time delay 
systems. Moreover, these results have been extended to the large scale systems covering the 
cases of two and multiple existing subsystems. 
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The time-dependent criteria were derived by Lyapunov’s direct method and are exclusively 
based on the maximal and dominant solvents of particular matrix polynomial equation. It 
can be shown that these solvents exist only under some conditions, which, in a sense, limits 
the applicability of the method proposed. The solvents can be calculated using generalized 
Traub’s or Bernoulli’s algorithms. Both of them possess significantly smaller number of 
computation than the standard algorithm.  
Improving the converging properties of used algorithms for these purposes, may be a 
particular research topic in the future. 
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1. Introduction    
The control and possible optimization of a dynamic process usually requires the complete 
on-line availability of its state-vector and parameters. However, in the most of practical 
situations only the input and the output of a controlled system are accessible: all other 
variables cannot be obtained on-line due to technical difficulties, the absence of specific 
required sensors or cost (Radke & Gao, 2006). This situation restricts possibilities to design 
an effective automatic control strategy. To this matter many approaches have been proposed 
to obtain some numerical approximation of the entire set of variables, taking into account 
the current available information. Some of these algorithms assume a complete or partial 
knowledge of the system structure (mathematical model). It is worth mentioning that the 
influence of possible disturbances, uncertainties and nonlinearities are not always 
considered.  
The aforementioned researching topic is called state estimation, state observation or, more 
recently, software sensors design. There are some classical approaches dealing with same 
problem. Among others there are a few based on the Lie-algebraic method (Knobloch et. al., 
1993), Lyapunov-like observers (Zak & Walcott, 1990), the high-gain observation (Tornambe 
1989), optimization-based observer (Krener & Isidori 1983), the reduced-order nonlinear 
observers (Nicosia et. al.,1988), recent structures based on sliding mode technique (Wang & 
Gao, 2003), numerical approaches as the set-membership observers (Alamo et. al., 2005) and 
etc. If the description of a process is incomplete or partially known, one can take the 
advantage of the function approximation capacity of the Artificial Neural Networks (ANN) 
(Haykin, 1994) involving it in the observer structure designing (Abdollahi et. al., 2006), 
(Haddad, et. al. 2007), (Pilutla & Keyhani, 1999).  
There are known two types of ANN: static one, (Haykin, 1994) and dynamic neural networks 
(DNN).  The first one deals with the class of global optimization problems trying to adjust 
the weights of such ANN to minimize an identification error. The second approach, 
exploiting the feedback properties of the applied Dynamic ANN, permits to avoid many 
problems related to global extremum searching. Last method transforms the learning 
process to an adequate feedback design (Poznyak et. al., 2001). Dynamic ANN’s provide an 
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effective instrument to attack a wide spectrum of problems, such as parameter 
identification, state estimation, trajectories tracking, and etc. Moreover, DNN demonstrates 
remarkable identification properties in the presence of uncertainties and external 
disturbances or, in other words, provides the robustness property. 
In this chapter, we discuss the application of a special type of observers (based on the DNN) 
for the state estimation of a class of uncertain nonlinear system, which output and state are 
affected by bounded external perturbations. The chapter comprises four sections. In the first 
section the fundamentals concerning state estimation are included. The second section 
introduces the structure of the considered class of Differential Neural Network Observers 
(DNNO) and their main properties. In the third section the main result concerning the 
stability of estimation error, with its analysis based on the Lyapunov-Like method and 
Linear Matrix Inequalities (LMI) technique is presented. Moreover, the DNN dynamic 
weights boundedness is stated and treated as a second level of the learning process (the first 
one is the learning laws themselves). In the last section the implementation of the suggested 
technique to the chemical soil treatment by ozone is considered in details. 

2. Fundamentals 
2.1 Estimation problem  
Consider the nonlinear continuous-time model given by the following ODE: 

 ( )( )
η(t)Cx(t)y(t)

)  x(ξ(t),tux(t),fx(t)
dt
d

+=

+= fixed is0  (1) 

where 
nx(t) ℜ∈  -  state-vector at time   0t ≥ ,    

my(t) ℜ∈  - corresponding measurable 
output, 

nmC ×ℜ∈  - the known matrix  defining the 
state-output transformation, 

( ) rtu ℜ∈  - the bounded control action  
( )nr ≤   belonging to the 
following admissible set 
( ) ( ){ }∞<ϒ≤= utu:tu:U adm , 

ξ(t)  and η(t)  - noises in the state dynamics and 
in the output, respectively,  

nrn:f ℜ→×ℜ  . 
The software sensor design, also called state estimation (observation) problem, consists in 
designing a vector-function n(t)x̂ ℜ∈ , called “estimation vector”, based only the available 
data information (measurable) ( ){ } [ ]t,τu(t),ty 0∈  in such a way that it would be "closed" to 

its real (but non-measurable) state-vector x(t) .  The measure of that "closeness" depends on 
the accepted assumptions on the state dynamics as well as the noise effects. The most of 
observers usually have ODE-structure: 
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 ( ) [ ]  vectorfixed a is , 0ˆ0ˆˆ x t,t,τy,tu(t),xF(t)x
dt
d

⎟
⎠
⎞⎜

⎝
⎛

∈=   (2) 

Here the mapping  nmLrn:F ℜ→+ℜ××ℜ×ℜ  defines the structure of the observer to be 
implemented.  

2.2 Physical Constraints of the state vector 
To realize the state observation objective, many authors have taken advantages of the 
physical state constraints. Some examples of these techniques employing “a priori” 
information on states are: interval observers (Dochain, 2003) and moving horizon state 
estimation (Valdes-González et. al., 2003). In the present study, some physical restrictions 
are considered and using previous results given in (García, et. al. 2007). The main property 
of an observer, which are looked for, is to keep the generated state estimates (t)x̂  within the 
given compact set X (even in the presence of noise), that is:                 

 X(t)x ∈ˆ    (3) 

In different problems the compact set  X    has a concrete physical sense. For example, the 
dynamic behaviors of some reagents, participating in chemical reactions, always keep their 
nonnegative current values. Similar remark seems to be true for other physical variables 
such as temperature, pressure, light intensity and etc. To complete (3) the next projectional 
observer is proposed: 

 
( )

( ) [ ] )h( t,dττ,τ,sy,τu,)(x̂F
t

thtτ
h(t))(tx̂Xπ(t)x̂ 00 >

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

∈∫
−=

+−= τ   (4) 

Here  ( ) 1Cth ∈  fulfills ( ) 0≤th . The operator  {}⋅Xπ   is the projector to the given convex 
compact set  X   possessing the property 

 { } zxzxXπ −≤−    (5) 

for any nx ℜ∈  and any  Xz ∈  . The operator  {}⋅Xπ   may be defined by different ways. 
Two examples of  {}⋅Xπ   are given below. 
Example 1 (Saturation function):  

 
{ } ( ) Τ

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛= nxsatxsatxXπ …1   (6)  

where for any i=1..n 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+≥+

+<<−

−≤−

=

)i(xix)i(x

)i(xix)i(xix

)i(xix)i(x

):isat(x    (7) 
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with  +<− )i(x)i(x   as an extreme point a priori  known. 
Example 2 (Simplex): If  X   is the  n-simplex, i.e.,  

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑≥ ==∈=
=

11
1

0 i
n

i
i

n zn,...,iRzX  , z:   (8) 

then  { }xXπ   can be found numerically by at least within  n-steps. The case  3n =   is 
illustrated by Figure 1. 

 
Figure 1.  Projectional operator over a simplex (n=3) 

An important point is that with the projectional operator implementations the trajectories  
( ){ }tx̂  , generated by (4), are not differentiable for any 0>≥ h(t)t . 

3 Structures of DNN Observers  
3.1 State estimation under complete information 
If the right-hand side  ( )x(t)f   of the dynamics (1) is known then the structure  F   of the 
observer (4) is usually selected in the, so-called, Luenberger-type form: 

 ( ) ( )( ) ( ) ( )( )(t)x̂Cy(t)tKu(t)(t),x̂ft,ty,tu(t),x̂F −+=   (9) 

So, it repeats the dynamics of the plant and, additionally, contains the correction term, 
proportional to the output error (see, for example Yaz & Azemi, 1994; Poznyak, 2004).  The 
adequate selection of the matrix-gain ( )tK  provides a good-enough state estimation. 

3.2 Differential Neural Network Observer,  the "grey-box" case 
In the case when the right-hand side  ( )ux,f   of the dynamics (1) is unknown, there is 

suggested to apply some guessing of it, say,  ( )W(t)|u(t)x(t),f   where  nf ℜ∈   defines the 
approximating map depending on the time-varying parameters  W(t) , which should be 
adjusted by a "adaptation law" suggested by a designer or derived, using some stability 
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analysis method. According to the DNN-approach (Poznyak et. al., 2001) we may 
decompose  ( )W(t)|u(t)x(t),f   in two parts: first one, approximates the linear dynamics part 

by a Hurwitz fixed matrix  nnA ×ℜ∈   (selected by the designer) and the second one, uses 
the ANN reconstruction property for the nonlinear part by means of variable time 
parameters  (t),W 21   with a set of basis functions, that is, 

 

( ) ( )

( )
( ) rq ,qn(t)W

p σ,pn(t) W,nnA

u(t)x(t)(t)Wx(t)(t)σWAx(t):(t),W|u(t)x(t),f

×ℜ∈⋅×ℜ∈

×ℜ∈⋅×ℜ∈×ℜ∈

++=⎟
⎠
⎞⎜

⎝
⎛

ϕ

ϕ

2

1
1

2121

  (10) 

The activation vector (the basis) function  ( )⋅σ   and matrix-function  ( )⋅ϕ   are usually 
selected as functions with sigmoid-type components, i.e.: 

 ( ) n, j,(t)jxjc
n

j
expjbja:x(t)jσ 1

1

1
1 =

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

−+=    (11) 

and 

 ( ) r,j;q, i,(t)sx
si,

c
n

s
exp

ji,
bji,a:x(t)ji, 11

1

1
1 ==

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

−+=ϕ   (12) 

It is easy to see that the activation functions satisfy the following sector conditions 

 ( ) ( ) 22

σΛ
(t)xx(t)σL

σΛ
(t)xσx(t)σ ′−≤′−    (13) 

 ( ) ( ) 22

ϕ
ϕϕ

ϕϕ
Λ

(t)xx(t)LΛ(t)xx(t) ′−≤′−    (14) 

and stay bounded on  nℜ  . In (10), the constant parameter A , as well as the time-varying 
parameters (t),W 21 , should be properly adjusted to guarantee a good state approximation. 

Notice that for any fixed matrices  2121 ,Ŵ(t),W =   the dynamics (1) always could be 

represented as 

 
( ) ( )

( ) ⎟
⎠
⎞⎜

⎝
⎛−=

++++=

21

21

,Ŵ|x(t)fx(t)f:(t)f~

ξ(t)(t)f~u(t)x(t)Ŵx(t)σŴAx(t)x(t)
dt
d ϕ

   (15) 
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where  ( )tf~   is referred to as a modeling error vector-field called the "unmodelled dynamics". 
In view of the corresponding boundedness property, the following inequality for the 
unmodelled dynamics  ( )tf~   takes place: 

 
T

f~Λf~ Λ,T
fΛf Λ,f~Λ,f Λ;f~ ,f~

f~Λ
x(t)f~f~

fΛ(t)f~

⎟
⎠
⎞

⎜
⎝
⎛==>>

+≤

1101010

2
110

2

  (16) 

3.3 Structure DNN observers considering state physical constraints  
Introduce the following projectional DNNO:  

 
( )

( ) ( )[ ]
)t(x̂C)t(y:)t(e

d)(Ke)(u)(x)((W)(x̂)(W)(x̂A
t

tht
))t(ht(x̂X)t(x̂

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++∫
−=

− ττττϕττσττ
τ

π 21+=   (17) 

Here the weights matrices  ( )tW1   and  ( )tW2   supply the adaptive behavior to this class of 
observers if they are adjusted by an adequate manner. We derived (see Appendix) the 
following nonlinear weight updating laws based on the Lyapunov-like stability analysis: 

 

( ) ( ) ( )

( )

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ Λ+Λ=Π

−=−+Π=Ω

−Ω
−

−=

IPNCTCN

;Ŵ)t(W:)t(W~       ; ))t(ht(eTCN)t(x̂)t(W~:)t(

tW~
dt

)t(dk
)t(x̂T)t(P

)t(k
tW

dt
d

ϖϖϖ

ϖσ

σ

23

1112

1
1

2

1
1

1

  (18) 

 

( ) ( )( ) ( )

( )

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ Λ+Λ=Ξ

−=−+Ξ=Φ

−Φ
−

−=

IPNCTCN

;Ŵ)t(W:)t(W~       ; ))t(ht(eTCN)(u)(x̂)((W~:)t(

tW~
dt

)t(dk
x̂T)(Tu)t(P

)t(k
tW

dt
d

ϖϖϖ

ϖττϕτ

τϕτ

67

22222

2
2

2

1
2

2

  (19) 

where: 

0
1

>
−
⎟
⎠
⎞⎜

⎝
⎛ += ϖϖϖ  ,ICTCN  

To improve the behavior of this adaptive laws, the matrix  21,Ŵ   can be "provided" by one 

of the, so-called, training algorithms (see, for example, Chairez et. al., 2006; Stepanyan & 
Hovakimyan, 2007). Both present least square solutions considering some identification 
structure for possible set of fictitious values or even an available set of directly measured 
data of the process. 
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4. DNN Observers Stability   
4.1 Behavior of weights dynamics 
Here we wish to show that under the adapting weights laws (18) and (19) the weights  

( )tW1   and  ( )tW2   are bounded. 
Theorem 1 (bounded adaptive weights): If  (t)ik    ( )21,i =   in (18) and (19) satisfy  

 

( )( ) ( ) ( ){ }
( ) ( ){ } ( ) ( )[ ]

( ) ( ) ( )( ){ }
( ) ( ){ } ⎟

⎠
⎞⎜

⎝
⎛ −+

Φ
−≤

−+

Ω
−≤

min,k)t(k)t(cktW~TtW~tr

tx̂T)t(Tu)t(PtW~tr)t(k
)t(k

dt
d

minktktcktW~tTW~tr

)t(x̂T)t(PtTW~trtk
)t(k

dt
d

22222

2
2

22
2

11111

1
2

12
1

ϕ

σ

   (20) 

then  ( ) ( ){ }tW~tTW~tr 11   is monotonically non-increasing function. 

Proof: Considering the dynamics for the weight matrix  ( )tW~1   and the following candidate 
Lyapunov function  ( ).twV    

 ( ) ( ) ( ){ } ( )[ ]2114112
1

+−+= minktkctW~tTW~tr:twV   (21) 

where  

 ( )[ ] ( ) ( )
( )⎩

⎨
⎧

<
≥

=+ 00
0

tz
tztz

:tz   (22) 

Then, one has  

 ( ) ( ) ( ) ( ) ( )[ ]211
11

11 2 +
− −+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= min

T
w ktk

dt
)tk(dctW

dt
dtW~tr:tV

dt
d    (23) 

By (18) it follows 
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dt
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   (24) 

The property  ( ) 0twV
dt
d ≤  results from (20). 

Some examples of  )t(ik ( )21,i = are given below 
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a. Introduce the following auxiliary function 

( ) ( )( )
( ) ( ) ( ){ }
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Leading to 
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The last inequality is fulfilled if the weight dependent parameter  ⎟
⎠
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⎝
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b. Analogously, for  ( )tTW~2  : 

( ) ( )( )
( ) ( ) ( )( ){ }

( )
+⎥⎦
⎤

⎢⎣
⎡ −

Φ−
=⎟

⎠
⎞⎜

⎝
⎛ −

min,ktkc

x̂T)(Tu)t(PtTW~trtk
:thte,tTW~s

22

2
1

2
2

τϕτ
 

( )
( )

( )

⎟
⎠
⎞⎜

⎝
⎛ −−<

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ −+

⎟
⎠
⎞⎜

⎝
⎛ −

−=

>+
⎟
⎠
⎞⎜

⎝
⎛ −+

=

))t(ht(e),t(TW~s

tjbexp))t(ht(e),t(TW~a

btexpjb))t(ht(e),t(TW~a
)(k:)t(k

dt
d

jmin,k   ,jmin,k
btexp))t(ht(e),t(TW~a

)(k:tk

2

21

2
022

0
21

0
2

 



Differential Neural Networks Observers: development, stability analysis and implementation 

 

69 

It is worth to notice that the learning law (18) and (19) must be realized on-line in parallel 
with the gain-parameter adaptation procedure (20). By this reason, this structure can be 
considered as a second adaptation level. 

4.2 Main theorem on an upper bound for the observation error 
For the stability analysis of the proposed DNNO, the next assumptions are accepted: 

A1) the function  nn:f ℜ→ℜ   is Lipschitz continuous in  Xx ∈  , that is, for all  Xxx, ∈′   
there exist constants  21,L   such that 

 
( ) ( )

( ) ∞<≤ℜ∈ℜ∈≤

−+−≤−

2101
200

21
L,L;mv,u;ny,x  ;Ct,,f

vuLyxLt,v,yft,u,xf
   (25) 

A2) The pair  ( )CA,   is observable, that is, there exists a gain matrix  mnK ×ℜ∈   such that 
matrix  

 ( ) KCA:KA~ −=    (26) 

is stable (Hurwitz). 
A3) The noises  ξ(t)   and  η(t)   in the system (1) are uniformly (on t ) bounded such that 

 ηηΛ
η(t) ,ξξΛ

ξ(t) ϒ≤ϒ≤ 22    (27) 

where  ξΛ   and  ηΛ   are known "normalizing" non-negative definite matrices, which 

permit to operate with vectors having components of different physical nature (for 
example, meters, voltage and etc.). 

Theorem (Upper error for DNNO). Under assumptions A1-A3 and if there exist matrices  

0>= T
iΛiΛ  , nn

iΛ
×ℜ∈  ,  ,i 101…=    ,nnQ ×ℜ∈0    mnK ×ℜ∈   and positive parameters  

,ϖ    2μ,1μ   and  3μ   such that the following LMI 
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with  { } ,iΘtr 1<    321 ,,i =   and 
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has positive definite solution P, then the projectional DNNO, with the weight's learning 
laws, given by (18), (19), (20) and with  h(t)   satisfying  

 10 <<<→
∞→

 εε,h(t)lim
t

   (29) 

Provides the following upper bound for the "averaged estimation" error 
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where  zx
Xzx,

supDiam(x) −
∈

= ,  and ( ) ( ) ( )txtx̂:tδ −=   is the state estimation error.  The 

proof of this theorem is presented in the appendix A. 
Remark 1: It is easy to see that in the absence of noises ( 0ξ(t)η(t) ==  ) and unmodelled 
dynamics ( 0=f~  ), we can prove that: 

 00
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τ
d)(h(Q))(h(TT
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5. Numerical Example Implementation 
5.1 Algorithm of Implementation 
As it follows from the presentation above, to realized the suggested approach one needs to 
fulfill the following steps: 
• Define the projector. 
• Select Matrices  A   and  Ŵ   (some hints are given in Chairez, et. al. 2006; Stepanyan & 

Hovakimyan, 2007). 
• Select  K   such that   KCA −   is stable, with  C   defined by the output of the system. 
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• Find  P   as the solution of the  LMI   problem (28). 
• Introduce  P   into the adapting weight law (18), (19) and (20) and realized them on-

line. 

5.2 DNNO implementation (Contaminated Soil Treatment by Ozonation) 
High oxidation process employing ozone is one of the most recent approaches in the 
treatment of the contaminated soil with chemical compounds such as polyaromatic 
hydrocarbons. The next simplified model (32) describes the ozonization of one contaminant 
in the solid and gas phases in a semi-continuous reactor (Poznyak T., et. al. 2007). 
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   (32) 

Here in (32)  η(t)(t)xy(t) += 1   (see Figures 2 and 3 ) is the ozone concentration (mole/L) at 
the output of the reactor assumed to be on-line measurable,  (t)x2   (mole) is the ozone 
amount absorbed by the soil, which is not reacting with the contaminant,  (t)x3   (mole) is 
the ozone amount absorbed by the soil and reacting with the contaminant, and  (t)x4   

(mole/g) is the current contaminant concentration, inC  is the ozone concentration at the 

reactor input (mole/L), free_abs
maxQ  is the maximum amount of ozone, which can be 

absorbed by the soil, Wgas  is the gas flow (L/s) (established  as a  constant value), Vgas is 
the volume of the gas phase.  

(L). 

Figure 2.  Contaminated soil ozonation procedure in a semi-continuous batch reactor 
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It is worth notice that the model is employed only as a data source; any structural 
information (mathematical model) has been used in the projectional DNNO design. 
The convex compact set  X   according to the physical system constrictions is given as: 
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Projectional operator is defined as in (6), and the corresponding observer parameters are 
defined by: 
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Figures 4-7 represent the results of   3x   and  4x   estimation from the measurable output. 
We have compared the projectional DNNO against a DNNO without projection operator, it 
means, with and without considering physical restrictions in the DNNO structure. 
Simulation have been realized in the presence of "quasi-white noise"  )t(η    

(amplitude ). 51060 −×=   and with the same initial conditions in both cases. 
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Figure 3.   Measurable output (available information) 



Differential Neural Networks Observers: development, stability analysis and implementation 

 

73 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10-3

Time [s]

m
ol

e x3 min

x3 DNN Observer without projection

x3 Projectional DNN Observer

x3

 
Figure 4.  Estimation of x3(t) (2 s) 
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Figure 5.  Estimation of x3(t) (20 s) 
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Figure 6.  Estimation of x4(t) (1 s) 
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Figure 7.  Estimation of x4(t) (5 s) 

As it can be seen, the projectional DNNO has significantly better quality in state estimation, 
especially in the beginning of the process, when negative values and over-estimation have 
been obtained by a non-projectional DNNO.  
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6. Conclusion and future work  
The complete convergence analysis for this class of adaptive observer is presented. Also the 
boundedness property of the adaptive weights in DNN was proven. Since the projection 
method leads to discontinuous trajectories in the estimated states, a nonstandard Lyapunov 
- Krasovski functional is applied to derive the upper bound for estimation error (in "average 
sense"), which depends on the noise power (output and dynamics disturbances) and on an 
unmodelled dynamic. It is shown that the asymptotic stability is attained when both of these 
uncertainties are absent. The illustrative example confirms the advantages, which the 
suggested observers have being compared with traditional ones. 

Appendix (proof of Theorem 2) 
Evidently that 
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where  ( ) ( ) ( )txtx̂:tδ ′−′=′   is the state estimation error at time t . 
Consider the next "nonstandard" Lyapunov-Krasovskii ("energetic") function 
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where .ŴW(τ((ττ)W~ −=   Since the problem under consideration contains uncertainties and 
external output disturbances we won't demonstrate that the time-derivative of this energetic 
function is strictly negative. Instead, we will use it to obtain an upper bound for the 
averaged state estimation error. Taking time derivative of Lyapunov-Krasovski function and 
considering the property (5), the assumption A2, and in view of (29) we have: 
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The term  ( )tβ   is expanded as 
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( )
( )

( ) ( )[

]

( )
( ) ( ) ( )

( )
( ) ( ) ( )

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++∫
−=

+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++∫
−=

≤−−++

+++∫
−=

=

ττξττηττϕ
τ

τττϕττστσττδ
τ

τττξτηττϕ

ττϕττστσττδ
τ

α

dppf~pKp)(u)(~Ŵ
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)(u)(x̂)((W~)(~Ŵ)(x̂)(W~)(A~
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Each term of  tα  and )t(β  is upper bounded, next facts are used. Norm inequality  AB  ≤  
BA  and the matrix inequality  
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valid for any  srRYX, ×∈   and any  ssT RΛΛ ×∈=<0   (Poznyak, 2001).   
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where: 
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Considering 
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that can be obtained selecting 
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Finally: 
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or in the short form: 
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Dividing by  T   and taking the upper limit we finally get (30). 



Differential Neural Networks Observers: development, stability analysis and implementation 

 

81 

8. References 
Abdollahi, F. Talei, A., & Patel R. (2006). A stable neural network based observer with 

application to flexible joint manipulators. IEEE Transactions on Neural Networks. Vol 
17. No 1 pp 118-129. 

Alamo, T., Bravo, J. M. & Camacho, E. F. (2005). Guaranteed state estimation by zonotopes. 
Automatica vol 41 pp 1035-1043. 

Chairez, I., Poznyak, A. & Poznyak, T. (2006). New Sliding mode learning law for Dynamic 
Neural Network Observer. IEEE Transactions on Circuits Systems II. Vol 53. Pp 1338-
1342. 

Dochain, D. (2003). State and parameter estimation in chemical and biochemical processes: a 
tutorial. Journal of Process Control. Vol 13. pp 801-818. 

García, A., Poznyak, A., Chairez, I. & Poznyak T. (2007)  Projectional dynamic neural 
network observer. In proceedings 3rd IFAC symposium on system, structure and control. 
Brazil. 

Haddad, W. Bailey, J.,  Hayakawa T., & Hovakimnayan, N. (2007). Neural Network 
adaptive output feedback control for intensive care unit sedation and 
intraoperative anesthesia. IEEE Transactions on Neural Networks. Vol 18 pp. 1049-
1065.  

Haykin, S (1994). Neural Networks, A comprehensive foundation. IEEE Press New York. 
Knobloch, H., Isidori, A. & Flocherzi, D. (1993). Topics in Control Theory, Birkhauser Verlag, 

Basel-Boston Berlin. 
Krener, A. J. & Isidori (1983). Linearization by output injection and nonlinear observers. 

System an Control Letters Vol3, pp 47-52 
Nicosia, S., Tomei, P. & A. Tornambe (1988), A nonlinear observer for elastic robot, IEEE 

Journal of Robotics and Automation, v.4,pp  45-52. 
Pilutla, S. & Keyhani, A. (1999). Neural Network observers for on-line tracking of 

synchronous generator parameters. IEEE Transactions on Energy Conversion. Vol 14. 
pp 23-30.  

Poznyak, A., Sanchez, E. & Wen Y. (2001). Differential Neural Networks for robust nonlinear 
control. World Scientific. 

Poznyak, A. (2004). Deterministic output noise effects in sliding mode observation. In 
variable structure system: from principles to implementation. IEE Control Engineering 
series. pp 45-80. 

Poznyak, T., García, A., Chairez, I.,  Gómez M & Poznyak, A. (2007). Application of the 
differential neural network observer to the kinetic parameters identification of the 
anthracene degradation contaminated model soil. Journal of Hazardous Materials. Vol 
146, pp 661-667. 

Radke, A. & Gao, Z.(2006). A survey of state an disturbance observers for practitioners, 
Proceedings of the American Control Conference, Minneapolis, Minnesota USA, pp 
5183-5188 

Stepanyan, V. & Hovakimyan, N. (2007). Robust Adaptive Observer Design for uncertain 
systems with bounded disturbances. IEEE Transactions on Neural Networks. Vol. 18, 
pp 1392-1403. 

Tornambe, :A..(1989), Use of asymptotic observers having high-gains in the state and 
parameter estimation, In Proc. 28th Conf. Dec. Control, Tampa, Florida ·, pp 1791-
1794. 



Systems, Structure and Control 

 

82 

Valdes-González, H., Flaus, J., Acuña G. (2003). Moving horizon state estimation with global 
convergence using interval techniques: application to biotechnological processes. 
Journal of Process Control. Vol 13. pp 325-336. 

Wang, W., & Gao, Z. (2003). A comparison study of advanced state observer design 
techniques, In Proceedings of the American Control Conference. Pp 4754-4759. 

Yaz E. & AzemiA. (1994). Robust-adaptive observers for systems having uncertain functions 
with unknown bounds, Proceedings of Amer.Contr.Conf., NY, USA, v.1,pp. 73-74. 

Zak H., & B. L.Walcott. (1990). State observation of nonlinear control systems via the 
method of Lyapunov. in Zinober, A.S.I. (ed.), Deterministic Control of Uncertain 

 
Systems, pp 333-350 Peter Peregrinus, Stevenage UK, 1990. 



4 

Integral Sliding Modes with Block Control of 
Multimachine Electric Power Systems 
Héctor Huerta, Alexander Loukianov and José M. Cañedo 

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 
Unidad Guadalajara 

Jalisco, México  

1. Introduction     
Over last 15 years the problem of rotor angle stability of electric power systems (EPS) has 
received a great attention. A fundamental problem in the design of feedback controllers for 
EPS is that of robust stabilizing both rotor angle and voltage magnitude, and achieving a 
specified transient behavior. Robustness implies operation with adequate stability margins 
and admissible performance level in spite of plant parameters variations and in the presence 
of external disturbances. 
The EPS have nonlinearities and are subject to variations as a result of a change in the 
systems loading and/or configuration. Then, the EPS are modeled as complex large-scale 
nonlinear systems and the generators may be interconnected over several kilometers in very 
large power systems. Thus, the controller design is a challenging problem. A complete 
centralized control scheme could be difficult to implement in EPS, due to the reliability and 
distortion in information transfer. On the other hand, accurate prediction of system 
responses and system robustness to disturbances under different operation conditions are 
guarantee by robust decentralized control schemes. The decentralized controllers are locally 
implemented, so do not need system information communication among subsystems. In 
each subsystem, the effects of the other subsystems are considered as a disturbance. To 
design decentralized control schemes for EPS, a controller is designed for each generator 
connected to the system.  
The control schemes of power systems are commonly based on reduced order linearized 
model and classical control algorithms that ensure asymptotic stability of the equilibrium 
point under small perturbations (Anderson & Fouad, 1994, DeMello & Concordia, 1969). 
Improvements on linear techniques have been analyzed in (Wang et al., 1998, Djukanovic et 
at., 1998a, Djukanovic et al., 1998b). Nevertheless, these controllers have been designed by 
using linear models. To analyze the EPS entire operation region, nonlinear control design 
techniques are more appropriate. Various nonlinear techniques have been implemented, 
e.g., control based on direct Lyapunov method (Machowsky et al., 1999), feedback 
linearization (FL) technique (Akhkrif, et al, 1999, Wu & Malik, 2006, ) including 
backstepping (Jung et al., 2005 King et al., 1994), intelligent neural networks 
(Venayagamoorthy et al., 2003, Mohagheghi et al., 2007), fuzzy logic (Yousef & Mohamed,  
2004) and normal form analysis (Kshatriya, et al., 2005, Liu et al., 2006).  
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All of the mentioned controllers provide larger stability margins with respect to traditional 
ones. But these control schemes were designed for reduced order plant. The unmodelled 
electrical dynamics can affect the electromechanical dynamics in case of large perturbations. 
The detailed 7-th order model of synchronous machine (five equations for electrical 
dynamics and two for mechanical dynamics) has been considered and a nonlinear controller 
using this model and FL technique has been designed to enhance transient stability 
(Akhkrif, et al., 1999).  The proposed nonlinear control law is a function of all plant 
parameters and disturbances. In practice some of these parameters are subjected to 
variations as a result of a change in the system loading and/or configuration. Since the 
detailed model is so involved, a direct use of the FL technique results in a computationally 
expensive control algorithm. Moreover, this control scheme does not take into account 
practical limitation on the magnitude of the excitation voltage, and an observer design 
problem was not solved. 
On the other hand, sliding mode control  (SMC), (Utkin, et al., 1999) is one of the most 
effective strategies to deal with robust nonlinear controllers.  SMC enables high accuracy 
and robustness to disturbances and plant parameter variations.  Moreover, the control 
variables of the basic sliding mode control law rapidly switch between extreme limits, 
which are ideal for the direct operation of the switched mode power converters of 
synchronous generators.  Sliding mode controllers for power systems have been designed in 
(Dash et al., 1996, Bandal et al., 2005), however for reduced order plants only, the best of our 
knowledge. Application of these controllers to full order plant would cause undesirable 
chattering, since unmodelled dynamics can be excited. 
In (Loukianov et al., 2004) it was designed a sliding mode controller to regulate the terminal 
voltage and power angle for a single machine infinite-bus system, based on the eighth order 
generator model (two equations for mechanical dynamics and six equations for electrical 
ones for thermo electrical power system). In this case, an information about the power angle 
reference, refδ , is required. To overcome this restriction, in (Loukianov et al., 2006) a 
decentralized robust sliding mode control scheme was proposed to regulate the voltages 
and stabilize the speed in a multi machine power system. 
In this paper an eighth order model for each generator of the multimachine power systems 
is considered. Sliding mode controller is designed by using the combination of three 
techniques: block control (Loukianov, 1998), integral sliding mode control (Utkin et al., 
1999), and nested sliding mode control (Adhami-Mirhosseini and Yazdanpanah, 2005). The 
block control technique is used to design a nonlinear sliding surface in such a way that the 
sliding mode dynamics are represented by a linear system with desired eigenvalues. The 
integral sliding mode control combined with nested control technique are applied to reject 
perturbations. The controller designed in this way is computationally low demanding and 
takes into account structural constraints of the control input. The main feature of the 
proposed control scheme is robustness with respect to the both matched and unmatched 
perturbations and only local information is required. Moreover, a nonlinear observer for the 
unmeasureable estates of the systems such as the rotor fluxes of the generators is presented. 
This chapter is organized as follows. Section 2 presents a general mathematical description 
of the EPS (nonlinear eight order electrical generator, electrical network and loads models). 
Section 3 deals with the problem of nonlinear robust controller for the class of the nonlinear 
systems represented in the nonlinear block controllable form, the Integral Sliding Modes 
with Block Control technique is analyzed. Section 4 shows the design of a nonlinear robust 



Integral Sliding Modes with Block Control of Multimachine Electric Power Systems 

 

85 

control scheme for EPS, as well as a generator rotor fluxes observer. The results of the 
simulations in an equivalent of the WSCC, that illustrates the properties of the controller 
designed, can be found in section 5, followed by conclusions in section 6.  

2. EPS Model 
This section copes with the mathematical description of the EPS. The multimachine EPS 
model considers the generators model, the electrical network model and loads. 

2.1 Generator model 
The electrical dynamics comprised the field winding, rotor and stator windings, after the 
Park’s transformation, can be expressed as follows (Anderson & Fouad, 1994): 

 1 1 1( )
d dt
d dt

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

λ λ v
A T

i i v
   (1) 

where 1 ( , , , )T
f g kd kqλ λ λ λ=λ , ( , )T

d qi i=i , ( , )T
d qv v=v , 1 ( , 0, 0, 0)T

fv=v , fλ  is the 

field flux, kdλ , kqλ  and gλ  are the direct-axis and quadrature-axis damper windings fluxes 

respectively, di  and qi  are the stator currents, ω  is the angular speed, fv  is the excitation 

control input, dv  and qv  are the direct-axis and quadrature-axis terminal voltages, 

respectively. The matrices 1 1( ) ( )ω ω− −⎡ ⎤= − ⋅ +⎣ ⎦A T R L W T , , ,T R L  and ( )ωW  are 

defined in Appendix. 
The complete mathematical description includes also the swing equation given by 

 
( 2 ) ( )

b

b m e

d dt
d dt H T T

δ ω ω
ω ω

= −
= −

  (2) 

where δ  is the power angle, bω  is the rated synchronous speed, H is the inertia constant, 

mT  is the mechanical torque applied to the shaft, and eT  is the electromagnetic torque, 
expressed in terms of the linked fluxes and currents as follows: 

 1 2 3 4 5e f q g d kd q kq d d qT a i a i a i a i a i iλ λ λ λ= − + − −   (3) 

where 1 5,...,a a  are constants defined in Appendix. The mechanical torque mT  it is assumed 
to be a slowly varying and bounded function of time. Thus: 

 0mT = .   (4) 

Since the multimachine EPS has at least one more differential equation than is needed to 
solve the system, then, it is possible to define the angle relative to the generator 1 of the 
form: 

1
ˆ , 1, 2, ,i i i nδ δ δ= − = …  
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where n is the number of generators in the system. Thus 

 1
1

ˆˆ
0, , 2,3, ,i

i
dd

i n
dt dt

δδ ω ω= = − = … .   (5) 

From (1)-(5), the nonlinear state-space presentation of the thi  generator in the multimachine 
power system is derived of the form 
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( ) ( )2, , 0, , , , 0
T

i i i mi i i i miT g T= ⎡ ⎤⎣ ⎦g x i x i . The perturbation term ( )2ig ⋅  includes variations of 

the generator parameters in the function ( )ifω ⋅  and the mechanical torque miT  (external 
disturbance), i. e. 

2 2 4 3 5 4 6 5 ,( ) [ ], , 2,...,5,i m mi i i di i i qi i i di i di qi ij ij n ijg d T a x i a x i a x i a i i a a a j⋅ = − Δ + Δ + Δ + Δ = + Δ =  

where ,ij na  and ijaΔ  are the nominal value and variation, respectively, of the parameter ija . 

Moreover { } 2zirank =A  for all admissible values of 2ix . 
To neglect the fast dynamics in the electric networks that in turn permits to simplify and 
simulate the complete power system by a differential algebraic equation (DAE) (Anderson & 
Fouad, 1994) we use the singular perturbation technique (Khalil, 1996).  Thus, setting 0μ =  
in (7) results in 

 20 ( ) ( )zi i i zi i i ix= + +A i f x H v   (8) 

The solution of (8) for ii  is calculated as 



Integral Sliding Modes with Block Control of Multimachine Electric Power Systems 

 

87 

 ( , )i zi i i=i g x v   (9) 

where ( )1
2( ) ( )zi zi i zi i i ix−= − +g A f x H v . Finally, equations (6) and (9) give the following DAE 

system for the thi  generator: 

 ( ) ( )1 1 1, , , ,i i i i mi i fi i i i miT v T= + +x f x i b g x i   (10) 

 ( )2 2 ,i i i i=x f x i   (11) 

 ( , )i zi i i=i g x v .    (12) 

 

2.2 Electrical network model 

Since the fast dynamics reduction for the generator was achieved in the last subsection, it is 
possible to neglect the dynamics of the loads and transmission lines. Then, considering the 
loads as constant impedances, the electrical network can be modeled using the phasorial 
nodal method. Moreover, all the nodes, except for the generator ones, can be reduced 
(Kron’s reduction). Therefore the network algebraic equation can be expressed as (Anderson 
& Fouad, 1994) 

 ( )1, , nδ δI = Y V…   (13) 

where 1 1, ,
T

d q dn qnv jv v jv⎡ ⎤= + +⎣ ⎦V  and 1 1, ,
T

d q dn qni ji i ji⎡ ⎤= + +⎣ ⎦I  are the complex 

terminal generators voltages and currents, respectively, ( )⋅Y  is the reduced transformed 
admittance matrix and its entry jk is given by: 

( )j k
jk jke

δ δ−=Y Y  

with the elements jkY  calculated by using the nodal method. It is more convenient to 
express the equation (13) of the form  

 ( ) ( ) 2 2
1, , , n n

n Rδ δ ×⋅ ∈I = Y V Y…   (14) 

where 1 1, ,..., ,
T

d q dn qnv v v v⎡ ⎤= ⎣ ⎦V  and 1 1 1... , ,..., ,
T TT T

n d q dn qni i i i⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦I i i  are the phasors 

components of the voltages and currents, respectively. Thus, the multimachine EPS model is 
given by (10)-(12) and (14).  It is important to note that the vector I  coincides with the 
generator currents dii  and qii . 

3. Integral Sliding Modes with Block Control 
The Integral Sliding Modes with Block Control (ISM) technique (Huerta-Avila et al., 2007a, 
Huerta-Avila et al.,  2007b) is shown in this section. The description of the ISM is presented 
in generic terms to show the generality of the approach. In the next section a robust 
controller for the electrical power system will be designed by using this methodology. 
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3.1 Problem statement 

In this work, the class of nonlinear systems presented in the NBC (nonlinear block 
controllable) form is studied. The NBC form consist of r blocks (Loukianov, 1998): 

 
( ) ( ) ( )
( ) ( ) ( )

1

1

,

, , 1,..., 1,
i i i i i i i

r r r r

t

t i r
+= + +

= + + = −
=

x f x B x x g x

x f x B x u g x
y x

   (15) 

where, [ ]1
T n

r R∈x = x … x  is the state vector, in
i R∈x , [ ]1

T
i ix = x … x ; mR∈u  is the control 

vector. Moreover, ( )⋅f  and the columns of ( )⋅B  are smooth vector fields, ( )i ⋅g  is a bounded 
unknown perturbation term due to parameter variations and external disturbances, and 

( ) ,1i i irank n⎡ ⎤ = ∀⎣ ⎦B x ,…, x x . 

The integers  1,..., rn n  define the dimension of the ith block (system structure) and satisfy 

1 2 1
, r

r ii
n n n m n n

=
≤ ≤ ≤ = =∑ . 

The control objective is to design a controller such that the output y in (15) tracks a desired 
reference ( )ref tx  with bounded derivatives, in spite of unknown but bounded perturbations. 
To induce quasi sliding mode in the ith block of the system (15), the continuously 
differentiable sigmoid function ( )/sigm υ ε  defined as 

( ) ( )/ tanh /sigm υ ε υ ε= ,     ( )
/ /

/ /tanh / e e
e e

υ ε υ ε

υ ε υ ευ ε
−

−

−=
+

 

where 1/ε  is the slope of the sigmoid function at 0υ = , will be used since 

( ) ( )
0

lim /sigm sign
ε

υ ε υ
→

= . 

3.2 Control design 

According to the block control technique (Loukianov, 1998), the state 1, 1, ..., 1i i r+ = −x  is 
considered as a virtual control vector in the ith block of the system (15). The design 
procedure is described in r steps. 
Step 1. The control error in the first block of the system (15) is defined as 

( )1 1 1 1:ref= − =z x x ψ x  

then 

 ( ) ( ) ( )1 1 1 1 1 2 1 ,t= + +z f x B x x g x    (16) 

with ( ) ( )1 1, , reft t= −g x g x x . 
And the virtual control 2x  in (16) is redefined of the form 

 2 2,0 2,1+x = x x   (17) 
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where the nominal part, 2,0x  is selected to eliminate the old dynamics in (16) and introduce 
the new desired ones, 1 1 1, 0k k >z , i. e. 

 ( ) ( )( )2,0 1 1 1 1 1 1 1 2 1, 0k k+− − >x = B x f x + z E z   (18) 

where 2
2

nR∈z  is a new variables vector, 1 2

11 0 n n
n R ×⎡ ⎤= ∈⎣ ⎦E I  and 1

+B  is the right pseudo-

inverse of 1B , defined as 1
1 1 1 1( )T T+ −=B B B B . 

In order to reject the perturbation term ( )1 ,tg x  in (16), the second part of the virtual control 
(17), 2,1x  is designed by using the integral sliding mode technique (Utkin et al., 1999). The 
pseudo-sliding manifold 1s  is chosen as 

 1 1 1 0=s = z + σ  ,      1
1 1, nR∈s σ .  (19) 

Then, from (16)-(19) it follows 

 ( ) ( )1 1 1 1 2 1 1 2,1 1 1,k t= − + + + +s z E z B x x g x σ .   (20) 

Choosing the dynamics for the integral variable 1σ  of the form 

 ( ) ( )1 1 1 1 2 1 1, 0 0k= − = −σ z E z σ z   (21) 

the equation (20) becomes 

 ( ) ( )1 1 1 2,1 1 ,t= +s B x x g x .   (22) 

The control input 2,1x  in (22) is selected as follows: 

 ( )2,1 1 1 1 1 1( ) /sigmρ ε+= −x x B s   (23) 

where ( ) ( ) ( )11 1 1,1 1 1, 1/ / , , /
T

nsigm sigm s sigm sε ε ε⎡ ⎤= ⎣ ⎦s … . Substituting (17), (18) and (23) in (16) 

results in 

 ( ) ( )1 1 1 1 2 1 1 1 1 1( ) / ,k sigm tρ ε−z = - z + E z x s + g x .  (24) 

If the matrix ( ) 2 1 2( )
1 1

n n nR − ×∈M x  is chosen such that the square matrix 

( ) ( ) ( )2 1 1 1 1 1
T

= ⎡ ⎤⎣ ⎦B x B x M x  has full rank, the new variables vector 2z  can be obtained from 
equations (17), (18) and (23) as 

 ( ) ( ) ( )
1

1 1 1 1 1 1 1
2 2 2 2 21

( )
:

0

k sigmρ
ε

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟= + =⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

sf x ψ x x
z B x ψ x   (25) 
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where [ ]2 1 2
Tx = x x . The procedure describe above can be achieved in the ith block of (15) as 

follows. 
Step i. At this step, the dynamics of the transformed ith block of the system (15) are given by 

 ( ) ( ) ( )1 ,i i i i i i i t+= + +z f x B x x g x   (26) 

where in
i R∈z  is a new variables vector, ( ) ( ) ( )1 1 1 1 1, , ( )i i i i i it t d dt sigmρ ε− − − − −= − ⎡ ⎤⎣ ⎦g x g x x s , 

( )i i i=z ψ x  and i i i=B B B . The virtual control 1i+x  in (26) is redefined as 

 1 1,0 1,1i i i+ + ++x = x x .  (27) 

Taking into account the procedure achieved in step 1, 1,0i+x  and 1,1i+x  are selected, 
respectively, of the form 

 ( ) ( )( )1,0 1 , 0i i i i i i i i i ik k+ +− − >+x = B x f x + z E z   (28) 

 ( )1,1 ( ) / , 0i i i i i i isigmρ ε ρ+
+ = − >x x B s   (29) 

where 1
1

in
i R +
+ ∈z  is a new variables vector, 10 i i

i

n n
i n R +×⎡ ⎤= ∈⎣ ⎦E I  and 1( )T T

i i i i
−=+B B B B . The 

proposed pseudo-sliding manifold and its derived dynamics, respectively, are: 

0i i i =s = z + σ  ,      , in
i i R∈s σ ,   

 ( ) ( )1 1,1 ,i i i i i i i i i ik t+ += − + + + +s z E z B x x g x σ .  (30) 

If iσ  satisfies 

 ( ) ( )1, 0 0i i i i i i ik += − = −σ z E z σ z   (31) 

the equation (30) can be rewritten as 

( ) ( )( ) / , , ( ) 0i i i i i i i isigm tρ ε ρ= − + >s x s g x x . 

The substitution of (28) and (29) in the block (26) yields 

( ) ( )1 ( ) / ,i i i i i i i i i ik sigm tρ ε+ −z = - z + E z x s + g x . 

Again, choosing a 1 1( )i i in n n−+ +×  matrix ( )i iM z  such that the square matrix 

( ) ( ) ( )1

T

i i i i i i+ ⎡ ⎤= ⎣ ⎦B x B x M x  has full rank, the new variables vector 1i+z  can be obtained 

from equations (26)-(29) as 

( ) ( )

( )

1 1 1

1 1

( )
, 2,..., 1,

0

: .

i
i i i i i i i

i i i i

i i

k sigm
i r

ρ
ε+ + +

+ +

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟= + = −⎝ ⎠⎢ ⎥

⎢ ⎥
⎣ ⎦

=

sf x ψ x x
z B x

ψ x
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Step r. At the last step, the transformed complete system can be presented in the new 
variables 1z ,…, rz  as 

 
( ) ( )

( ) ( )
( ) ( ) ( )

1 ( ) / ,

( ) / ,

, , 1, , 1

i i i i i i i i i i

i i i i i i

r r r r

k sigm t

sigm t

t i r

ρ ε
ρ ε

+= − + − +

= − +

= + + = −

z z E z x s g x

s x s g x

z f x B x u g x …

  (32) 

where ( ) ( ) ( )1r r r−⋅ = ⋅ ⋅B B B  has full rank since rn m= . Design the control input u  in (32) as 

 0 1= +u u u    (33) 

and define a sliding variable rn
r R∈s  of the form 

 r r r= +s z σ , rn
r R∈σ .   (34) 

Then 

 ( ) ( ) ( ) ( )0 1 ,r r r r r rt= + + + +s f x B x u B x u g x σ .  (35) 

Choosing 

( ) ( ) ( ) ( )0 , 0 0r r r r r= − − = −σ f x B x u σ z  

simplifies the equation (35) to 

 ( ) ( )1 ,r r r t= +s B x u g x .  (36) 

The second part of the control input (33) is selected as 

 ( )1
1 ( ) , ( ) 0r r r rsignρ ρ−= − >u x B s x .  (37) 

Under the condition ( ) ( )1( ) ,r r r tρ −>x B x g x  sliding mode occurs on the manifold 0r =s  (34) 

in a finite time. Solving (36) for ,1ru , formally setting 0r =s , shows 

( ) ( )1
1eq ,r r t−=u B x g x  

where ( )1eq ,tu x  is the equivalent control (Utkin et al., 1999). Therefore, the integral control 

(37) rejects the perturbation term ( ),r tg x  in the last block of (32):  

( ) ( ) ( ) ( )0 1 ,r r r r eq r t= + + +z f x B x u B x u g x  

and we have 

( ) ( ) 0r r r= +z f x B x u . 

Now, choosing 
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( ) ( )1
0 , 0r r r r rk k− ⎡ ⎤= − + >⎣ ⎦u B x f x z  

the sliding mode dynamics are described by 

 
( )

( ) ( )
1 ( ) ( / ) ,

( ) / ,
, 1, , 1.

i i i i i i i i i i

i i i i i i

r r r

k sigm t

sigm t
k i r

ρ ε
ρ ε

+= − + − +

= − +
= − = −

z z E z x s g x

s x s g x
z z …

   (38) 

Now, it is possible to establish the following result: 
Theorem 1. If  
H1) the unmatched ( ) ( )1 1, ..., r −⋅ ⋅g g  and matched ( )r ⋅g  perturbations are bounded, i.e., there exist a 
known scalar function ( )iβ x  such that 

1,...,( , ) ( ),i i i rt β≤ =xg x  

then, there exist constants 1 1,..., rh h −  such that the states of the system (38), are uniformly  bounded, 
i. e. 

 ( ) , 1,... 1.i it h i r≤ = −z  

Moreover the perturbed system (38) reaches to a neighborhood of the output 1=y x  in finite time and 
remains in this neighborhood. 
Proof. The proof is constructive and consists of r steps, begin with the step r. 
Step r. First, the sliding variable rs  stability is analyzed. Considering the Lyapunov function 

T
r r r=V s s , it follows: 

 ( ) ( )( ) ,T
r r r r rsign tρ= ⎡− + ⎤⎣ ⎦V s x s g x .  (39) 

Under the assumption H1, the equation (39) can be written as 

 
( )( )

( ) .

( )

( )

T
r r r r r

r r r

signρ

ρ

β
β

= ⎡− + ⎤⎣ ⎦
⎡ ⎤≤ − +⎣ ⎦

V s x s

s x

x

x
  (40) 

From (40) it is easy to see that under the condition 

( ) ( )r rρ β>x x  

the derivative rV  is definite negative and the equivalent control ( ),1eq ,r tu x  satisfies 

( ),1eq ,r r t= −u g x  

rejecting the perturbation term ( ),r tg x  in the last block of (38). Now, it is necessary to 

analyze the stability of the last block. Using the Lyapunov function 1
2

T
r r r=V z z , leads to  

2 , 0r r r rk k≤ − >V z . 
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Thus, the trajectories of the last variables vector rz  are asymptotically stable. 
Step r-1. Proceeding in similar way as in previous step, the Lyapunov function 1 1 1

T
r r r− − −=V s s  

is proposed, then 

 ( ) ( )1 1 1 1 1 1( ) ,T
r r r r r rsigm tρ− − − − − −= ⎡− + ⎤⎣ ⎦V s x s g x .   (41) 

In the region 1 1r rε− −>s  the equation (41) becomes 

 
( ) ( )

( )
1 1 1 1 1 1

1 1 1 1

( ) ,

( ) ,

T
r r r r r r

r r r r

sign t

t

ρ

ρ
− − − − − −

− − − −

= ⎡− + ⎤⎣ ⎦
⎡ ⎤≤ − +⎣ ⎦

V s x s g x

s x g x
.   (42) 

Moreover, under the condition ( )1 1 1( , )r r r tρ − − −>x g z , 1r −s  will be decreasing until it 

reaches the set { }1 1r rε− −≤s  in a finite time and it remains inside. The upper bound of this 
reaching time can be calculated by using the comparison lemma (Khalil, 1996) as follows: 

( )1 1 10r r rt ε− − −≤ −s . 

Furthermore the equivalent control 1,1r eq−x  fulfills 

 1 1,1 1 1 1( , )r r eq r r rt ε− − − − −= + =s x g z γ    (43) 

where 1 1r rε − −γ  is the error introduced by using the control law (29). To analyze the stability 

of the r-1 block of the system (38), the Lyapunov function 1 1 1
1

2
T

r r r− − −=V z z  is considered 

and its time derivative is given by 

( )

( )

1
1 1 1 1 1 1 1 1

1

2 1
1 1 1 1 1 1

1

( ) ,

( ) , .

T r
r r r r r r r r r

r

r
r r r r r r r

r

k sigm t

k sigm t

ρ ε

ρ ε

−
− − − − − − − −

−

−
− − − − − −

−

⎡ ⎤⎛ ⎞= − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞≤ − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

sV z z E z x g z

sz z z x g z
 

In the region 1 1r rε− −>s , the derivative 1r −V  becomes 

( )2 1
1 1 1 1 1 1

1

2
1 1 1 1

,r
r r r r r r r

r

r r r r r

k sign t

k

ρ ε
−

− − − − − −
−

− − − −

⎡ ⎤⎛ ⎞≤ − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤≤ − + +⎣ ⎦

sV z z z g z

z z z s
 

and considering (43), it can be rewritten as 

 2
1 1 1 1 1 1r r r r r r rk ε− − − − − −⎡ ⎤≤ − + +⎣ ⎦V z z z γ .   (44) 

Suppose that 1 1r rε − −γ  satisfies the following bound: 

1 1 1 1 1 1 1, ,r r r r r r r Rε α β α β− − − − − − −≤ + ∈γ z . 

Then it is possible to present the equation (44) of the form 
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( )

2
1 1 1 1 1 1 1

1 1 1 1 1

r r r r r r r r

r r r r r r

k

k

α β

α β
− − − − − − −

− − − − −

⎡ ⎤≤ − + + +⎣ ⎦
⎡ ⎤≤ − − − −⎣ ⎦

V z z z z

z z z
 

which is negative in the region 

 1 1 1r r r rδ λ− − −> +z z   (45) 

where 1
1 1

1
r

r rk
δ

α−
− −

=
−

 and 1
1

1 1

r
r

r rk
βλ

α
−

−
− −

=
−

. Moreover 1rδ −  and 1rλ −  are positive for 

1 1r rk α− −> . Thus the trajectories of the vector state enter ultimately in the region defined by 

1 1 1r r r rδ λ− − −≤ +z z . 

Step i. The step r-1 can be generalized for the block i, with i=r-1, r-2, …, 1.  
In the region i iε>s  the derivative of the Lyapunov function T

i i i=V s s , is calculated as 

 
( ) ( )

( )
( ) ,

( ) , .

T
i i i i i i

i i i i

sign t

t

ρ

ρ

= ⎡− + ⎤⎣ ⎦
⎡ ⎤≤ − +⎣ ⎦

V s x s g x

s x g x
   (46) 

Again, under the condition ( )( ) ,i i i tρ >x g z , is  enter in the region { }i iε≤s  in a finite time 
given by 

( )0i i it ε≤ −s . 

The equivalent control ,1i eqx  satisfies 

 ,1 ( , )i i eq i i it ε= + =s x g z γ .  (47) 

Considering the function 1
2

T
i i i=V z z  inside the subspace i iε>s , it follows 

( )2
1

2
1

( ) ,i
i i i i i i i i

i

i i i i i

k sign t

k

ρ ε+

+

⎡ ⎤⎛ ⎞≤ − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤≤ − + +⎣ ⎦

sV z z z x g z

z z z s
 

and with (47), iV  becomes 
2

1i i i i i i ik ε+⎡ ⎤≤ − + +⎣ ⎦V z z z γ  
Supposing that i iε γ  fulfills 

, ,i i i i i i i Rε α β α β≤ + ∈γ z  

then 

( ) 1i i i i i i ik α β+⎡ ⎤≤ − − − −⎣ ⎦V z z z  

which is negative in the region 
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1i i i iδ λ+> +z z  

where 1
i

i ik
δ

α
=

−
 and i

i
i ik
βλ

α
=

−
, which are positive for i ik α> . Therefore a solution for iz  

is ultimately bounded by 

1i i i iδ λ+≤ +z z . 

Then with the bound 

, 1,2,..., 1i i i i i i rε α β≤ + = −γ z  

the convergence region is defined by: 

1 1 1 1

2 2 1 2 2

1 1 2 1 1

:

:

: .

r r r r r

r r r r r

h

h

h

δ λ
δ λ

δ λ

− − − −

− − − − −

> + =

> + =

> + =

z z

z z

z z

 

4. PES control design 
Since the subsystem (10) has the NBC form, the ISM technique will be applied to design a 
robust controller for EPS.  First, the rotor speed stability will be achieved. Secondly, the 
terminal voltage generator controller is outlined. Then, a switching logic is proposed to 
coordinate the operation of both controllers. Finally, an EPS observer is introduced. 

4.1 Integral Sliding Mode Speed Stabilizer (ISMSS) 

To achieve the first control objective, that is, the rotor speed stability enhancement, define 
the control error as (Huerta-Avila et al., 2007a, Huerta-Avila et al., 2007b) 

 2 2i i bz x ω= − .  (48) 

Taking the time derivative of (48) along the trajectories of (10) yields 

 2 3 2( , ) ( , ) ( , , )i i i i i i i i i i i miz f q x g Tω= − +x v x v x v   (49) 

where ( )1 2
T

i i i=x x x , ( ) 0, 0iq t t> ∀ > . 
Redefine the virtual control, 3ix  in (49) as 

 3 3 ,0 3 ,1i i ix x x= + .   (50) 

The desired dynamics for 2iz  is chosen of the form 

 2 2 3 3 ,1 2( , ) ( , , ), 0i i i i i i i i i i i mi iz k z z q x g T k= − + + + >x v x v   (51) 

These dynamics can be obtained by choosing 3 ,0ix  as  
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 ( ) ( )1
3 ,0 2 3, ,i i i i i i i i i ix q f k z zω

−
= − ⎡ ⎤ ⎡ + − ⎤⎣ ⎦ ⎣ ⎦x v x v   (52) 

where 3iz  is a new variable. To design the second part  of (50), 3 ,1ix , define a pseudo-sliding 
variable 2is  as 

2 2 2i i is z σ= +  

with  the integral variable 2iσ . Using (49)-(51), it follows 

 ,2 0 2 3 3 ,1 2 2( , ) ( , )i i i i i i i i i i i mi iq xs k z z g T σ+ += − + +x v vx   (53) 

Choosing  

2 2 2 3 2 2, (0) (0)i i i i i ik z z zσ σ= − = −  

the equation (53) becomes 

,2 2 3 ,1( , )( , )i i i i mi i i i iq xs g T += v x vx . 

Select 3 ,1ix  of the form 

 3 ,1 2 2 2( / ), 0i i i i ix sigm sρ ε ρ= − > .   (54) 

Then, the sliding variable 3i is zω =  is defined from (50), (52) and (54) of the form 

 ( )3 0 2 2 2( , ) ( , ) /i i i i i i i i i i i i is f q x k z sigm sω ω ρ ε= + + +x v x v .  (55) 

Thus, straightforward algebra reveals 

 ( , ) ( , )i s i i i si i i f is f b vω = +x v x v    (56) 

where ( )sif ⋅  is a continuous function and 4( ) ( )si i ib q b⋅ = ⋅ .  
Considering (56), under the condition  

1( , ) ( , )gi si i i si i ik b f−> x v x v  

the proposed discontinuous control law  

 ( ), 0f i gi i giv k sign s kω= − >   (57) 

ensures the convergence of the state to the manifold 3 0i is zω = =  (55) in a finite time (Utkin 
et al., 1999). The sliding mode motion on this manifold is governed by the reduced order 
system 

 
1 2

,2 0 2 2 2 2

,2 2 2 2

,

( / )

( / )

( , )
( , )

i i

i i i i i i i i i mi

i i i i i i i mi

x z

z k z sigm s

sigm s

g T
s g T

ρ ε
ρ ε

=

= − − +

− +=
v

v

x
x

  (58) 
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 ( )2 2 2 2 ,i i i i i i= +x A x f x v   (59) 

Now, choosing iε  be sufficiently small and under the condition 

( )2 2 , ,i i i i m ig Tρ > x v  

a quasi sliding mode motion is enforced in a small iε -vicinity of 2 0is = . Thus, if 0iε →  

then the perturbation term ( )2 , ,i i i m ig Tx v  in (59) is rejected, and the linearized mechanical 

dynamics can be represented as 

 
1 2

2 0 2

i i

i i i

x z

z k z

=

= −
  (60) 

with the desired eigenvalue 0ik− . 
The equation (59) represents the rotor flux internal dynamics. The matrix 2iA  is Hurwitz 

and the nonvanishing perturbation ( )2 ,i i if x V  is a continuous function. Therefore there 
exists an admissible region where a solution 2 ( )i tx  of (60) is ultimately bounded (Khalil, 
1996). Moreover, the control error 2iz  (48) tends exponentially to zero, and the angle 1ix  
tends to a constant steady state, ssiδ . 
Remark: Since the initial conditions of the EPS are availabe, it is possible to apply the integral 
sliding modes technique. 

4.2 Sliding Mode Voltage Regulator 

In this subsection, the voltage regulation problem is studied. The terminal voltage, giv , is 
defined as  

 2 2 2
gi di qiv v v= + .  (61) 

Using (8), div  and qiv  are calculated of the form 

 1[ ( )]di
i i zi i zi i

qi

v
v

−⎡ ⎤
= = − +⎢ ⎥
⎣ ⎦

v H A i f x .  (62) 

Then, the dynamics for terminal voltage, giv  can be obtained from (61), (62), (6), and (7) as 
(Loukianov, et al., 2006) 

 ( , ) ( , , )gi vi i i vi fi vi i i miv f b v g T= + +x i x i   (63) 

where ( , )vi i if x i  is the nominal part of the voltage dynamics and the perturbation term 
( , , )vi i i mig Tx i  contains parameter variations and external disturbances, 2 4vi i ib h b= , 
( ), 0vib t t∀ ≥ . For the details see Appendix.  

Defining the voltage control error  
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vi gi refie v v= −  

and the control input fiv   

 ,0 ,1fi fi fiv v v= +    (64) 

we have 

 ,0 ,1( , ) ( , , )v i vi i i vi fi vi fi vi i i mie f b v b v g T= + + +x i x i    (65) 

where refiv  is the constant reference voltage. To design a robust controller we use the 
integral sliding mode approach (Utkin et al., 1999). In order to reject the perturbation term 

( , , )vi i i mig Tx i  in (65) a sliding variable vis R∈  is formulated as 

 vi vi vis e σ= +   (66) 

with the integral variable vi Rσ ∈ . Then from (65) and (66) it follows 

 ,0 ,1( , ) ( , , )v i vi i i vi fi vi fi vi i i mi vis f b v b v g T σ= + + + +x i x i   (67) 

Choosing 

,0( , ) , (0) (0)vi vi i i vi fi vi vif b v eσ σ= − − = −x i  

results in  

 ,1 ( , , )v i vi fi vi i i mis b v g T= + x i  (68) 

Select ,1f iv  in (68) as 

 ,1 2 2( ), 0f i i vi iv sign sρ ρ= − > .  (69) 

From (68), under the condition 1
2 ( , , )i v i v i i i mib g Tρ −> x i  a sliding mode is enforced on the 

manifold 0v is =   (66) from the initial time instant 0t = . The equivalent control 

1
,1 ( , , )f i eq vi vi i i miv b g T−= − x i  

calculated as a solution of 0vis =  (67), compensates exactly the perturbation term 
( , , )vi i i mig Tx i  in (63) (Utkin et al., 1999), and the sliding mode motion is described by the 

unperturbed system 

 ,0( , )v i vi i i vi fie f b v= +x i .  (70) 

Now, it is necessary to achieve the terminal voltage regulation, i. e. the control input  ,0fiv  in 
(70) is selected of the form 

 ( ),0fi g viv k sign e= −   (71) 

From (70) and (71), we have 
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 ( )( , )v i vi i i g vi v ie f k b sign e= −x i .    (72) 

Then, under the condition 
 1 ( , )g vi vi i ik b f−> x i    (73) 

the terminal voltage control error vie  tends to zero in a finite time (Utkin et al., 1999). 

4.3 Control logic 

There are two control objectives: the rotor speed stabilization and the terminal voltage 
regulation for each generator in the EPS. However, only one control input is available, the 
excitation voltage fiv . Then, the following control logic is proposed:  

 
( )

1 3

2 2 3

( ),
,

( ),
gi i i i i vi i

fi i
g vi i vi i i i vi i

k sign s if s if
v

k sign e sign s if s if
ω ω

ω

β β β β
β

ρ β β β β

⎧− > ⎧ >⎪ ⎪= =⎨ ⎨
− − ≤ ≤⎪⎪ ⎩⎩

   (74) 

with 2 1i iβ β< . Basically, a hierarchical control action through the proposed logic (74) is 
presented. First, the mechanical dynamics is stabilized by means of the ISMSS, yielding the 
stabilization of the speed switching manifold isω . When isω  reaches to a region defined by 

1iβ , the control resources are dedicated to stabilize the terminal voltage error viβ . After the 

convergence of viβ  such that 3vi iβ β≤ , the control logic reduces the isω  boundary layer 
width from  1iβ  to 2iβ . Thus, the controller maintains the value of isω  within desired 

accuracy 2i isω β≤  and 3vi ie β≤ . Figure 1 shows the schematic diagram of the proposed 

controller. 
 

 
Figure 1. Proposed controller schematic diagram 
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4.4 EPS observer 

Since the control scheme (74) needs the values of the rotor fluxes, it is neccesary to design a 
observer for the EPS. Assume that the power angle, 1ix , rotor speed, 2ix  and stator currents 

dii  and qii  can be measured.  
The rotor fluxes , ,3 4 5i i ix x x  and 6ix  can be estimated by means of the following observer: 

 

3 1 3 2 5 3 4

1 4 2 6 34

1 3 2 5 35

1 4 2 6 3
6

ˆ ˆ ˆ
ˆ ˆˆ 0
ˆ ˆ 0ˆ
ˆ ˆ 0ˆ

i i i i i i di i

i i i i i qii
fi

i i i i i dii

i i i i i qi
i

x b x b x b i b
c x c x c ix

v
d x d x d ix
r x r x r ix

⎡ ⎤ + +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

  (75) 

where [ ]3 4 5 6ˆ ˆ ˆ ˆ ˆ, , , T
i i i i ix x x x=x  are the estimate of the rotor fluxes. The convergence of the 

observer (75) can be analyzed by the error dynamics obtained from (75) and (6), given by the 
linear system: 

 0i i=e A   (76) 

with [ ]3 6, ,i i ie e=e … , , 3,...,6ˆji ji ji je x x == − , 

1 2

1 2
0

1 2

4 2

0 0
0 0

0 0
0 0

i i

i i
i

i i

i i

b b
c c

d d
r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A . 

The eigenvalues of the matrix 0iA  calculated as 

( )

( )

2 2
1,2 1 2 1 2 1 2 2 1

2 2
3,4 1 2 1 2 1 2 2 1

1 1 2 4 ,
2 2
1 1 2 4
2 2

i i i i i i i i i

i i i i i i i i i

p c r c r c r c r

p b d b d b d b d

= + ± + − +

= + ± + − +
 

are real and negative. Therefore, the solution of the subsystem (76) is exponentially stable. 
The resulting estimates rotor fluxes are employed in the control logic (74) instead of the real 
variables. 

5. Simulations results 
The proposed control algorithm was tested on the equivalent model of the WSCC, (Western 
System Coordinating Council, Nine buses, three generators, three loads), fig. 2, (Anderson & 
Fouad, 1994). The parameters of the generators and network used in the simulation were 
taken from (Anderson & Fouad, 1994) (see Appendix).  
Figures 3-8 depict results under four different events: 
a. at t = 1 s, experienced a pulse 0.5 p.u. for 1 s in the generator 2, 
b. at t = 4 s until t = 4.15 s, a three-phase short circuit is simulated in the terminals of 

generator 1,  
c. at t = 10 s, a three-phase short circuit during 150 ms is applied in the line 5-7 (see fig. 2); 

the fault is cleared by opening the line, and 
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d. at t=15 s, it was introduced a parametric variations, by incrementing up to 25% the 
parameters miL  in the generators. 

Figures 3 and 5 show the relative angles and speed response of the close-loop system, 
respectively with a type I excitation system with PSS (Anderson & Fouad, 1994, EPRI, 1977). 
Figure 8 show the proposed observer converge in spite of perturbations. 
Figures 4-7 reveal some important aspects: 
1. The state variables fastly reach a steady state condition after small and large 

disturbances, showing the robust stability of the closed-loop system. 
2. The controller is able to improve both, the power system stabilization and the post-fault 

terminal voltage regulation. 
Comparing the transient speed response of the generators in case of ISMSS /SMVR and 
AVR/ PSS controllers shown in Figures 6 and 5 respectively, we have some important 
observations: 
1. The traditional AVR/PSS stabilizes the system. However, the transient response of the 

classical controller is more oscillatory than the response given by the proposed 
nonlinear ISMSS /SMVR one since the latter adds significantly better damping in the 
power oscillations. It is possible to observe that the overshoot and settling time are 
reduced as well. 

2. The performance of the ISMSS /SMVR is robust under different operating conditions. 
Figures 4 and 6 show clearly that the robustness of the controller under generators 
parameters variations and changes on the network configuration, such as disconnection 
of lines and incrementing and /or decrementing of loads. Thus the performance of the 
proposed ISMSS /SMVR controller tends to be unaffected. 

3. Since the ISMSS /SMVR adds additional damping, the transient response controller is 
better compared to other ones (see for instance (Ahmed at al., 1996)). With the ISMSS 
/SMVR, the settling time is lesser and the overshot is shorter than the shown by the 
suboptimal robust controller presented in (Ahmed at al., 1996). 

 
 

 
Figure 2. WSCC diagram 
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Figure 3. Relative angles response with classical control 

 

 
Figure 4. Relative angles response with the proposed controller 

 

 
Figure 5. Speed of the three generators response with classical control 
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Figure 6. Speed of the three generators response with the proposed controller 

 
Figure 7. Terminal voltage of the three generators response with the proposed controller 

 
Figure 8. Field flux of the three generators response 
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6. Conclusions 
The ISM with block control technique as a novel nonlinear control technique for the class of 
nonlinear systems presented in the NBC form was presented. The control methodology was 
explained step-by-step, and the stability conditions were found for each step. The ISM 
technique is robust under unknown but bounded matched and/or unmatched 
perturbations.  
Then, in order to test the effectiveness of the ISM technique, a controller for EPS was 
designed. A plant model used for control is fully detailed nonlinear, and this model takes 
into account all interactions in power system between the electrical and mechanical 
dynamics and load constraints. With the proposed control scheme, the only local 
information is required. The stability analysis of the closed-loop EPS controller, including an 
observer was carried out. The designed ISMSS/SMVR was tested through simulation under 
the most important perturbations in the EPS:  

1. Variation of the mechanical torque.  
2. Large fault (a 150 ms short circuit). 
3. Loads variations. 
4. Generator parameter variations. 

The simulation results show that the sliding mode controller with the proposed logic is able 
to achieve the mechanical dynamics and the generator terminal voltages robust stability 
under small and large disturbances. 
The proposed performance of the nonlinear ISMSS/ SMVR control system (74) is 
independent from the operating point of the system. It is important to note that the 
proposed nonlinear control scheme ensures cancellation of the interactions between the 
subsystems provided an additional damping with respect to classical controllers. 
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8. Appendix 
8.1 Matrices used in generator model (1)  
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dL and qL  are the direct-axis and quadrature-axis self-inductances, fL  is the field self-
inductance, gL , kdL and kqL  are the damper windings self-inductances, mdL and mqL  are the 
direct-axis and quadrature-axis magnetizing inductances 

4
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T

T T
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1 1 1 1 1
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= − −
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T I L L L L L L L
T I L L L L L

, 2I  and 4I  are identity matrices of 

dimension 2 and 4, respectively.  

8.2 Generators parameters 
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Generator 1 2 3 
MVA 247.5 192.0 128.0 

kV 16.5 18.0 13.8 
P.F. 1.0 0.85 0.85 

Type Hydro Steam Steam 
Speed 180 r/min 3600 r/min 3600 r/min 

Xd 0.1460 0.8958 1.3125 
Xq 0.0969 0.8645 1.2587 
Xd’ 0.0608 0.1198 0.1813 
Xq’ 0.0969 0.1969 0.2500 
τd0’ 8.9600 6.0000 5.8900 
τq0’ 0.0000 0.5350 0.6000 
Xd’’ 0.0400 0.0600 0.0800 
Xq’’ 0.0400 0.0600 0.0800 
τd0’’ 0.2000 0.3000 0.4000 
τq0’’ 0.2000 0.3000 0.4000 
Xl 0.0336 0.0521 0.0742 
ra 0.0000 0.0000 0.0000 
H 23.6400 6.4000 3.0100 

Table 1. Parameters of generator model (6)-(7) 

 Gen. 1 Gen. 2 Gen. 3  Gen. 1 Gen. 2 Gen. 3 
a1 0.1003 0.1644 0.0945 e3 -5.000 -4.0 -2.5 
a2 1.13 1.1787 0.9458 h1 -1256 -9424 -4712 
a3 0.0403 0.0119 0.0203 h2 273.4 863.6 141.3 
a4 1.2552 1.0145 1.0239 h3 0.5 -6.6 3.2 
a5 0.020 0.01 0.010 h4 -31 -50.2 -16.4 
b1 -0.017 -0.0251 -0.0114 h5 18.8 97.1 29.7 
b2 0.522 2.4483 1.8567 h6 -0.1 -0.3 -0.3 
b3 -0.5075 -2.4185 -1.8659 h7 -4.2 -25.4 -12.8 
b4 376.991 376.991 376.991 h8 0.1 1.3 0.9 
c1 -0.07 -0.022 -0.0472 k1 -1885 -7539 -5385 
c2 0.6453 10.6390 11.4979 k2 1.7 11.8 6.4 
c3 -0.5348 -10.611 -11.4581 k3 5.1 6.9 34.5 
d1 0.1360 -0.2257 0.2267 k4 31.5 8.37 39.9 
d2 -3.79 -3.0659 -2.2838 k5 0.5 3.3 0.7 
d3 -3.33 -3.333 -2.5 k6 -5.7 -23.6 -13.5 
e1 0.2665 0.5792 0.4395 k7 -0.1 -0.8 -1.1 

e2 -0.7899 -3.2871 -2.1290     

Table 2. Generators parameters 
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 Gen. 1 Gen. 2 Gen. 3  Gen. 1 Gen. 2 Gen. 3 
a1 0.2175 0.0916 0.03 e3 -5.000 -4.0 -2.5 
a2 1.1324 1.1787 0.9458 h1 -1256 -9424 -4712 
a3 0.0403 0.0119 0.0203 h2 126.1 1549 233.1 
a4 1.2552 1.0145 1.0239 h3 5 -6.8 3.2 
a5 0.020 0.010 0.010 h4 -14.5 -100.3 -25.8 
b1 -0.003 -0.005 -0.0023 h5 19 108.3 28.4 
b2 0.1044 0.4897 0.3713 h6 -0.1 -0.3 -0.3 
b3 -0.0601 -0.0844 -0.0358 h7 -3.2 -25.4 -12.8 
b4 376.991 376.991 376.991 h8 1 1.3 0.9 
c1 -0.07 -0.022 -0.0472 k1 -1885 -7539 -5385 
c2 0.6453 10.6390 11.4979 k2 1.7 11.8 6.4 
c3 -0.5348 -10.611 -11.4581 k3 5.1 69.2 34.5 
d1 0.1360 -0.2257 0.2267 k4 31.5 83.7 39.9 
d2 -8.2182 -1.7090 -1.3842 k5 1.1 1.8 0.4 
d3 -5.0 -3.333 -2.5 k6 -5.7 -23.6 -13.5 
e1 0.2665 0.5792 0.4395 k7 -0.1 -0.8 -1.1 
e2 -0.7899 -3.2871 -2.1290     

Table 3. Perturbed generators parameters 

 Generator 1 Generator 2 Generator 3 
kgi 0.02 0.02 0.03 
k0i 7.5 5 6 
ρ2i 8 10 9 
e1 0.9 0.8 1.2 
e2 0.01 0.03 0.02 
e3 0.001 0.002 0.001 

Table 4. Controllers parameters 
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8.3 Functions used in controllers design  
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1. Introduction  
When dealing with systems with parameter uncertainty most attention is paid to robustness 
analysis of linear time-invariant systems. In literature the most often investigated topic of 
analysis of linear time-invariant systems with parametric uncertainty is the problem of 
stability analysis of polynomials whose coefficients depend on uncertain parameters. The 
aim is to verify that all roots of such a polynomial are located in some prescribed set in 
complex plane or to find a bound within that uncertain parameters can vary from nominal 
ones preserving stability. The former problem is studied in this contribution. 
The formulations of basic robustness problems and their first solutions for special cases are 
very old. For example, in the work (Neimark, 1949) some effective techniques for small 
number of parameters are presented. A powerful result concerning the stability analysis of 
polynomials with multilinear dependency of its coefficients is given in the book (Zadeh & 
Desoer, 1963). Also in Siljak’s book (Siljak, 1969) special classes of robust stability analysis 
problems with parametric uncertainty are studied. Nevertheless, the starting point of an 
intensive interest in this area was the celebrated Kharitonov theorem (Kharitonov, 1978) 
dealing with interval polynomials. This elegant theorem with surprisingly simple result is 
considered as the biggest achievement in control theory in last century. When analysing 
stability of a polynomial with some dependency of its coefficients on interval parameters the 
solution becomes more complicated. The Edge theorem (Bartlett et al., 1988) claims that for 
linear (affine) dependency it is sufficient to check polynomials on exposed edges, the 
Mapping theorem (Zadeh & Desoer, 1963) provides a simplified sufficient stability condition 
for systems with multilinear parameter dependency. 
To date there are only few results solving the problem of robust stability of polynomials 
with polynomic structure of coefficients (polynomic interval polynomials) that occur very 
often e.g. as characteristic polynomials in feedback control of uncertain plant with a fixed 
controller. None of the results is as elegant as those mentioned earlier. There are two basic 
approaches – algebraic and geometric. The first one is based on utilization of criteria 
commonly used for stability analysis of fixed polynomials – Hurwitz or Routh criterion – 
and their generalization for uncertain polynomials. The second one transforms the 
multidimensional problem in twodimensional test of frequency plot of the polynomial in 
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complex plane using zero exclusion principle. Very interesting algorithm using the latter 
approach is based on Bernstein expansion of a multivariate polynomial  (Garloff, 1993).  
In this chapter an algorithm for stability analysis of polynomials with polynomic parameter 
dependency based on geometric approach is presented. It consists in determination of a 
convex polygon overbounding the value set for each frequency and simple performance of 
the zero exclusion test. The method provides a sufficient stability condition for a 
continuous-time polynomial with polynomic coefficient dependency. An arbitrary stability 
region can be chosen.  
The presented procedure is demonstrated and compared with the known results on 
benchmark example - control of Fiat Dedra engine corresponding to 7-th order polynomial 
with 7 uncertain parameters. 

2. State of the art 
There is no elegant result on robust stability of polynomic interval polynomial in 
comparison with interval, affine linear interval or multilinear interval polynomials. There 
are only few methods, which solve the problem, however almost all of them treat a little 
different problem and/or are applicable for polynomials dependent only on small number 
of parameters or polynomials of lower degree. 
(De Gaston and Safonov, 1988) determine the stability margin of a multivariate feedback 
system with uncertainties entering independently into each feedback loop (which 
corresponds to multilinear parameter uncertainty) using the Mapping theorem. The box of 
uncertainties is iteratively splitted so that the value of stability margin is improved. The 
extension to the case of repeated parameters (polynomic parameter uncertainty) is due to 
(Sideris and de Gaston, 1986). A computational improvement of this method was done by 
(Sideris and Sanchez Pena, 1989). The algorithm is based on positivity testing of elements 
appearing in the first column of Routh table. This leads to determination of roots of 
multivariate polynomial which causes big numerical problems if the number of uncertain 
parameters and/or degree of the polynomial is even moderate. An improvement of the 
algorithm using frequency domain splitting is presented in (Chen & Zhou, 2003). 
(Vicino et. al., 1990) suggested an algorithm for computing the stability margin in the l∝ 
norm, i.e. the radius of the maximal ball in parameter space centered at a stable nominal 
point preserving stability, for uncertain systems affected by polynomially correlated 
perturbations. The original constrained nonlinear programming problem, which is generally 
nonconvex and may admit local extremes, is transformed into a signomial programming 
problem. An iterative procedure determining a sequence of lower and upper bounds 
converging to the global extreme is applied. 
(Walter and Jaulin, 1994) characterize the set of all the values of the parameters of a linear 
time-invariant model that are associated with a stable behaviour. A formal Routh table is 
used to formulate the problem as one of set inversion, which is solved approximately but 
globally with tools borrowed from interval analysis. 
(Kaesbauer, 1993) computes the stability radius for polynomic interval polynomial by 
solving a system of algebraic equations numerically using the Groebner basis. The method 
can be practically used up to five or six parameter case. 
The most effective algorithm treating the problem of checking stability of polynomials with 
polynomic parameter uncertainty seems to be the one based on Bernstein expansion 
(Garloff, 1993) and its improvements (Garloff et al., 1997; Zettler & Garloff, 1998). The 
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procedure uses suitable properties of the Bernstein form of a multivariate polynomial and 
test stability by successive subdivision of the original parameter domain and checking 
positivity of a multivariate polynomial. It can be used in both algebraic (checking positivity 
of Hurwitz determinant) or geometric (testing the value set) approaches.  
Conceptually the same approach is adopted by (Siljak and Stipanovic, 1999). They check 
robust stability by positivity test of the magnitude of frequency plot by searching 
minorizing polynomials and using Bernstein expansion. Methods of interval arithmetic are 
employed in (Malan et al., 1997). Solution of the problem using soft computing methods is 
presented in (Murdoch et al., 1991). 

3. Backgrounds 
At first let us introduce the basic terms and general results used in robust stability analysis 
of linear systems with parametric uncertainty. 
DEFINITION 1 (Fixed polynomial)   A polynomial p(s) is said to be fixed polynomial of 
degree n, if 
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DEFINITION 2 (Uncertain parameter)   An l-dimensional column vector Qqq T
l ∈= ],,[ 1 …q  

represents uncertain parameter. Q is called the uncertainty bounding set. In the whole work  

 { }liqqqQ iii
l ,,2,1for    : …=≤≤ℜ∈= +−q , (2) 

where liqq ii ,,2,1  ,, …=+−  are the specified bounds for the i-th component qi of q. Such a Q 
is called a box. 
DEFINITION 3 (Uncertain polynomial)   A polynomial  

 ( ) ( ) ( ) ( ) ( ) Qasasasasp n
n

n

j

j
j ∈+++==∑

=

qqqqqq   ; , 01
0

. (3) 

is called an uncertain polynomial. 
DEFINITION 4 (Polynomic uncertainty structure)  An uncertain polynomial (3) is said to have 
a polynomic uncertainty structure if each coefficient function )(qja , nj ,,0…=  is a 
multivariate polynomial in the components of q. 
DEFINITION 5 (Stability, Hurwitz stability)   A fixed polynomial p(s) is said to be stable if all 
its roots lie in the strict left half plane. 
DEFINITION 6 (Robust stability)   A given family of polynomials }:),({ QpP ∈⋅= qq  is said 
to be robustly stable if, for all Q∈q , ( , )p s q  is stable; that is, for all Q∈q , all roots of 

( , )p s q  lie in the strict left half plane.  
THEOREM 1 (Zero exclusion principle) 
The family of polynomials P mentioned above of invariant degree is robustly stable if and 
only if 
a. there exists a stable polynomial ∈( , )p s Pq  
b. ( ) 0 allfor   ,0 ≥∉ ωω qjp   ♣ 
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The set ),( qωjp  for any ω > 0 is called the value set. 
The Zero exclusion principle can be used to derive computational procedures for robust 
stability problems of interval polynomials and polynomials with affine linear, multilinear 
and polynomic uncertainty. Moreover, for more complicated uncertainty structures where 
no theoretical results are available the graphical test of zero exclusion can be applied. One 
can take many points of uncertainty set Q, plot the corresponding value sets and visually 
test if zero is excluded from all of them. The main problem consists in the choice of 
“sampling“ density in some direction of an l-dimensional uncertain parameter q especially 
for high values of l.  

4. Polynomials with quadratic parametric uncertainty 
An efficient method analyzing robust stability of polynomials with uncertain coefficients 
being quadratic functions of interval parameters is presented in this section. A sufficient 
condition is derived by overbounding the (generally nonconvex) value set by a convex hull 
(polygon) for an arbitrary point in the complex plane lying on the boundary of chosen 
stability region and by determination whether zero is excluded from or included in this 
polygon. This test can be done either in computational or in graphical way. Profiting from 
appropriate properties of presented procedure the former is recommended especially for 
high number of parameters. This method can be used in principle for polynomials where the 
coefficients are arbitrary polynomic functions, which is shown in section 5.  

4.1 Basic concept 
Let us consider a polynomic interval family of polynomials  

( ) ( ) ( ) ( ) , , 01 qqqq cscscsP n
n +++= [ ]T

l
l qqQ ,,  , 1 …=ℜ⊂∈ qq  

 [ ] liqqqqqqqqqQ iiiiill ,,1   ,   , , , ],[],[ 11 …=<∈××= +−+−+−+− . (4) 

Let us suppose that each coefficient )(qkc , = …0, ,k n  can be expressed as 

 ( ) ( ) ,n,kvvc klkllkkTkkT
k …0  ,  ,  , , )()(,)()()()( =ℜ∈ℜ∈ℜ∈++= dBqdqBqq . (5) 

Such a function is called a quadratic function and the polynomial P(s,q) is referred to as a 
quadratic interval polynomial. To avoid dropping in degree, ≠( ) 0nc q  for all q∈Q is 
assumed. 
In the section if B∈ℜl,l is a )( ll ×  matrix then bij denotes the element of B lying on the 
position (i, j), if d∈ℜl is a vector then di denotes the element of d lying on the i-th position. 

4.2 Determination of a convex polygon 
Presented method deals with the value set of P(s,q) evaluated at some complex point 

0
00

ψjesss == . The image P(s0,q) can be expressed as 

 ( ) ( ) ( ) ( )qqqq 00
ImRe

0
00 ., ss

n

k

k
k cjcscsP +==∑
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where ( ) ( )qq 00
ImRe  , ss cc  are real quadratic functions and are given by 
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s kscckscc
0

00Im
0

00Re sin    ,cos 00 ψψ qqqq . (7) 

The idea consists in determining the minimum and maximum differences ( ) ( )ϕϕ 00
maxmin  , ss hh  

of the point [0, j0] from the set P(s0,q) in the complex plane in some direction ϕ, ],0[ πϕ ∈ , 
respectively (see Fig. 1). 
REMARK 1   It is worth noting that the difference is measured from the point [0, j0] in the 
direction ϕ, ],0[ πϕ ∈ . It means that the difference can be negative (in such a case the 
difference is measured from the point [0, j0] in the direction π +ϕ). 

ϕ

)(0
Im q
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( )ϕ0
min
sh

( )ϕ0
max
sh

),( 0 qsP

ϕ,
max

0sp

ϕ,
min

0sp

ϕp

[0,j0]  
Figure 1. Minimum and maximum distance of P(s0,q) from [0, j0] in a direction ϕ 

It can be easily shown that finding the minimum and maximum differences is equivalent to 
finding the minimum and maximum value of the function ( )q0scϕ , 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0
Re Im Re Imcos sin ,  . cos ,sin

Ts s s s sc c c c cφ φ φ φ φ⎡ ⎤= + = ⎡ ⎤⎣ ⎦⎣ ⎦q q q q q  (8) 

over the set Q. 
From (8) it follows that ( )q0scϕ  is a real quadratic function of q. It means that ( )q0scϕ  is 

bounded and ( ) ( )ϕϕ 00
maxmin  , ss hh  are both finite. 

The problem of finding extreme values of ( )q0scϕ  on a box Q is a task of mathematical 

programming. General formulation of a task of mathematical programming is as follows.  
Let us consider the problem of minimization of a function f0(x), where the constraints are 
given in the form of inequalities 

 ( ){ }mjbff jj ,,1,)(min 0 …=≤xx  (9) 
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DEFINITION 7   Let a point 0x satisfy all constraints of (9). Let J(0x) be the set of indices, for 
which the corresponding constraints are active (i.e., inequality changes to equality): 

 ( ) ( ){ }jj bfjJ == xx 00  (10) 

The point 0x is said to be a regular point of the set X given by constraints in (9) if the 
gradients )( x0jf∇ are linearly independent for all j∈J(0x). 

Necessary conditions for the extreme values can be formulated by the following theorem. 
THEOREM 2 (Kuhn-Tucker conditions (Kuhn & Tucker, 1951)) 
Let *x be a regular point of a set X and a function f0(x) has in some neighbourhood of *x 
continuous first partial derivatives. If the function f0(x) has in the point *x the local minimum 
on X, then there exists a (Lagrange) vector *λ∈ℜm such that 
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hold for all j = 1,...,m. 
REMARK 2 For maximization of a function f0(x) the last inequality of (11) is replaced by 

0* ≤jλ . 

To apply Theorem 2 for solving the problem it is necessary to check whether the 
preconditions of this theorem are satisfied. As ( )q0scϕ  is a quadratic function, its first partial 

derivatives are continuous ∀q∈Q and the second assumption is satisfied. In our case 
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Then 
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where e(i) = [0,...,0,1,0,...,0]T with 1 being on the i-th position. Because for any q∈Q only even 
or only odd constraints (or none of them) can be active liqq ii ,,1 )( …=∀< +− , the gradients 

( )qjf∇  are linearly independent ∀q∈Q, j∈J(q). It means that all points q∈Q are regular. 

Due to Theorem 2 it is necessary to determine the gradient ( )q0scϕ∇ . From (8) 
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The components of ( )qkc∇ , 
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From (7) 
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After substituting (12), (13), (14), (15), (16) and (17) to (11) the following system of equations 
and inequalities is obtained: 
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where 
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( ) ( ) ( ) ( )

.,,1,

sin. sin.cos. cos.

sin. sin. cos. cos. 

0
00

)(

0
00

)(

0
00

)()(

0
00

)()(

lvu

ksdksdw

ksbbksbbW

n

k

kk
u

n

k

kk
uu

n

k

kk
vu

k
uv

n

k

kk
vu

k
uvuv

…=

⎥⎦

⎤
⎢⎣

⎡+⎥⎦

⎤
⎢⎣

⎡=

⎥⎦

⎤
⎢⎣

⎡ ++⎥⎦

⎤
⎢⎣

⎡ +=

∑∑

∑∑

==

==

ϕψϕψ

ϕψϕψ

 

The important fact is that the equation (18) is linear. The computational way of solving the 
system (18-19) runs as follows. First all the solutions of (19) are determined. This 
corresponds to determining of all the parts of the box Q – interior and all the parts of the 
boundary of Q (all manifolds with the dimension i, i = 0,..., l-1 containing only points on the 
boundary of Q). Each solution of (19) corresponds to 2l linear equations (from (19) it follows 
that at least one of λ2i-1, λ2i, i = 1,..., l has to equal zero; if λ2i-1 = 0 then either λ2i = 0 or qi = - qi-, 
if λ2i = 0 then either λ2i-1 = 0 or qi = qi+ i = 1,..., l).  These 2l equations together with l equations 
of (18) form 3l linearly independent linear equations for 3l unknown variables. It means that 
there exists a unique solution (*λ,*q) (for each solution of (19)) of system (18-19). Denote by 
Tmin (Tmax) the set of t for which these conditions are satisfied, 
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Then 
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The minimum and maximum differences indicate that the set P(s0,q) lies in the complex 
plane in the space between the lines ϕ,

min
0sp  and ϕ,

max
0sp :  
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In order to determine a convex hull overbounding the set P(s0,q), q∈Q, the procedure 
described above is performed for a set of Φ∈rϕ , 
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It means that the system (18-19) is solved for a set of ϕ. The higher the number R is, the 
"more tight" convex hull is obtained. 
If one wants to determine the convex polygon computationally the set VΦ(s0) of the 
intersections of the following lines has to be determined: 
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where insec(px, py) denotes the intersection of the lines px and py (see Fig. 2). 
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Figure 1. Convex hull VΦ(s0) for R = 5 

The coordinates of intersections are given by 
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where term stands for min or max. 
Now the key theorems can be stated. 
THEOREM 3 (Convex polygons overbounding the value set) 
Denote by conv A the convex hull of a set A. Then 

 ( ) ( ) CssVsP ∈∀⊆ Φ 000   conv,q  (26) 

Using Theorem 1 the Zero exclusion principle gives a necessary condition for stability of a 
family of polynomials (4). 
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THEOREM 4 (Sufficient robust stability condition) 
The family of polynomials (4) of constant degree containing at least one stable polynomial is 
robustly stable with respect to S if  

 ( ) SssV ∂∈∉ Φ 00  allfor     conv0  (27) 

where ∂S denotes the boundary of S. 
 The zero exclusion test can be performed in both graphical and computational way. 
The latter is recommended as described below because of saving a lot of time. 
THEOREM 5 
0∉conv VΦ(s0) if and only if there exists at least one Φ∈ϕ , such that 

 ( ) ( ) ( ) ( )  0 0or    0 0 0000
maxminmaxmin ≤∧≤≥∧≥ ϕϕϕϕ ssss hhhh  (28) 

Theorem 5 makes it possible to decide about zero exclusion or inclusion without computing 
the set of intersections VΦ(s0). Proofs of all three theorems are evident from the construction 
of convex polygons and Zero exclusion theorem. 
Let us illustrate the described procedure of checking robust stability of quadratic interval 
polynomials on two examples. As arbitrary stability region can be chosen a discrete-time 
uncertain polynomial will be considered at first. 
EXAMPLE 1   Let a family of discrete-time polynomials be given by 

( ) ( ) ( ) ( )qqqq 01
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2, czczczP ++=  
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The question is whether this family of polynomials is Schur stable. 
In this case the stability region S is the unit circle, therefore its boundary ωjeS =∂ , 

]2,0[ πω ∈ . The Zero exclusion principle will be tested graphically. Due to symmetry it is 

sufficient to plot the value set only for the points ωjes =0 , ω π∈[0, ] . The corresponding 
plot of the value sets and their convex hulls is shown in Fig. 3 and Fig. 4 (R = 6) respectively. 
As 0∉VΦ(s0) for all s0∈∂S, the polynomial P(z,q) is robustly Schur stable. In Fig. 5 and Fig. 6 
the value set and the convex hull for 3/

0
πjes =  and different number of angles rϕ  is 

plotted (R = 4 and R = 14 respectively). 
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Figure 2. Plot of the value set for ωjes =0 , ω π∈[0, ]  
 
 

 
Figure 3. Plot of the convex hulls of the value set 
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Figure 4. The value set and the convex hull for 3/
0

πjes =  and R = 4 

 

Figure 5. The value set and the convex hull for 3/
0

πjes =  and R = 14 

EXAMPLE 2   Let a family of continuous-time polynomials be given by 

( ) ( ) ( ) ( ) ( )qqqqq 01
2

2
3

3, cscscscsP +++=  
where 

[ ] [ ]1,0  ,, 21 ∈= i
T qqqq  
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The question is whether this family of polynomials is Hurwitz stable. 

 
Figure 7. Plot of the convex hulls of the value sets for s0 = jω, ω∈[0,5] 

 
Figure 8. Plot of the convex hulls of the value sets for s0 = jω, ω∈[0,1] 
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Figure 9. Plot of the determinant of the matrix )(2 qH  

Here the stability region S is the imaginary axis, therefore the boundary ωjS =∂ , 
],[ ∞−∞∈ω . Due to symmetry it is sufficient to plot the value set only for s0 = jω, 

],0[ ∞∈ω . The corresponding plot of the convex hulls for ]5,0[∈ω  is shown in Fig. 7. As 
from this figure it is not apparent, whether zero is included or not, the same plot for 

]1,0[∈ω  is shown in Fig. 8. From that it is clear that 0∉VΦ(s0) for all s0∈∂S. The polynomial 
P(s,q) is robustly Hurwitz stable.  
The obtained result can be confirmed by plotting the determinant of the (n-1)-th order 
Hurwitz matrix )(2 qH  and checking its positivity as )(0 qc  is positive for admissible q 
evidently. Fig. 9 confirms the obtained result. 

4. Polynomials of general polynomic parameter uncertainty 
The result obtained in Theorem 5 is applicable for uncertain polynomials with arbitrary 
polynomic parameter dependency as well. In such case it is necessary to determine if the 
function )(0 qscϕ  is positive or negative on the set Q or it allows both positive and negative 

values on this set, i.e., if there exists a q1∈Q such that 0)( 10 >qscϕ  and q2∈Q such that 

0)( 20 <qscϕ . Since )(0 qscϕ  is a polynomic function its positivity can be tested by effective 
algorithm of Bernstein expansion (Garloff, 1993). 
The algorithm gives only sufficient stability condition. If for all s0∈∂S at least one rϕ  is 

determined, such that the function )(0 qscϕ  is only positive or only negative on the set Q, 
then the origin is excluded from the convex hulls of value sets for all s0∈∂S and therefore 
also from the value set itself and the family of polynomials is stable. If not, it is not possible 
to decide about robust stability of the family. 
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The main advantage of this algorithm is that the number of coefficients of multivariate 
polynomic function )(0 qscϕ  is considerably smaller than the of Hurwitz determinant 

))(det( 1 qH −n  especially for higher number of uncertain parameters (however still moderate) 
because using the value set algorithm only the coefficients of tested polynomial are needed 
to store. For example, a polynomial of degree n = 5 with l = 4 uncertain parameters with 
highest degree equal to 4 appearing in each variable in each original coefficient contains 
generally 120 coefficients. The determinant of (n-1)-th order Hurwitz matrix, which has to be 
tested for positivity, contains generally 83521 coefficients. If the number of parameters is 
doubled (l = 8), the uncertain polynomial contains 240 coefficients, but the determinant of 
(n-1)-th order Hurwitz matrix contains huge 6.98⋅109 coefficients which is out of memory for 
standard computers. Therefore this algorithm can deal with much larger problems. This is 
demonstrated on the benchmark example of Fiat Dedra engine. 
The proposed algorithm will be demonstrated on some examples and its efficiency 
compared with the of original application of algorithm of Bernstein expansion. 
EXAMPLE 3   Let a family of continuous-time polynomials be given by 
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The dependency of polynomial coefficients = …( ), 0, ,3jc jq  is no longer quadratic and 
Bernstein algorithm will be used to check positivity or negativity of all the distances. The 
algorithm checks in 0.34 seconds that for ω∈[0,2] with step 0.01 (R=10) the origin is excluded 



Systems, Structure and Control 

 

126 

from all the convex hulls of value sets and therefore also from the value set itself and the 
family of polynomials is stable. This result is also confirmed by plotting the value set (Fig. 
10). The Bernstein algorithm (Zettler & Garloff, 1998) applied on value sets gives the same 
result in 0.94s. The algorithm of Bernstein expansion can be also employed on positivity test 
of Hurwitz determinant. Using symbolic computations for determination of determinant of 
Hurwitz matrix the Bernstein algorithm reports the same result after 3.54s. 

 
Figure 10. Plot of the value sets of ( , )P s q  for [0,1.5]ω ∈  

5. Fiat-Dedra engine 
Let us consider a model of the Fiat Dedra engine given in (Barmish, 1994). The focal point is 
the idle speed control problem, which is particularly important for city driving; that is, fuel 
economy depends strongly on engine performance when idling.  
The model has 7 uncertain parameters and a design of a fixed output controller leads to 
characteristic polynomial of 7-th order,  

 ( ) ( )
=

=∑
7

0
,  j

j
j

p s a sq q  (29) 

The coefficients )(qja , j = 0,…,7 being polynomic functions of the parameters qi, i = 1,...,7 
are listed in (Barmish, 1994). 
The parameters and the frequency are supposed to vary inside the following intervals: 

 
1 2 3

4 5 6

7

[2.1608,  3.4329];  [0.1027,  0.1627];  [0.0357,  0.1139];  
[0.2539,  0.5607];  [0.0100,  0.0208];  [2.0247,  4.4962];   
[1.0000,  10.000];  [0.0000,  2.3410]

q q q
q q q
q ω

∈ ∈ ∈
∈ ∈ ∈
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 (30) 
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The question is whether the uncertain polynomial (29) is robustly stable for the parameters 
and frequency given in (30). 
Firstly it has to be noted that this problem is relatively large and it is not possible to 
compute the determinant of the 6-th order Hurwitz matrix because storage capacity of a 
standard computer is too low to store all its coefficients. 
The frequency step was chosen 0.01, the sufficient number of direction angles was 10. The 
described algorithm reports in 5.53s that the characteristic polynomial (29) is stable that 
corresponds to the result obtained by the Bernstein expansion (Zettler and Garloff, 1998) in 
7.48s. All the computations were performed on a Pentium 4 CPU 3GHz 504MB RAM. 

7. Conclusion 
The algorithm checking robust stability of polynomials with polynomic dependency of its 
coefficients on vector interval parameter was presented. The method is based on testing the 
value set in frequency domain. The value set evaluated in a point lying on the boundary of 
stability region is overbounded by a convex polygon. The zero exclusion test is performed 
by positivity checking of multivariate polynomic functions using the Bernstein algorithm. 
The procedure results in sufficient stability condition. The main advantage of the presented 
algorithm over those based on computation of Hurwitz determinant consists in its capability 
of treating relatively large problems because of the low requirements on computer storage 
capacity. Moreover, arbitrary stability region can be chosen. Efficiency of the algorithm was 
verified on the benchmark example of the Fiat Dedra engine control by comparison with the 
Bernstein expansion algorithm. 
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1. Introduction   
A severe problem that may occur when fluids are transported in duct systems and pipelines 
is the slow accumulation of organic or inorganic substances along the inner surface over 
time. Such accumulation of unwanted material is denoted fouling, and occasionally appears 
simultaneously with tube corrosion. Both, fouling and corrosion are major concerns for 
plant operation and lifetime in chemical, petroleum, food and pharmaceutical industries, 
due to the detrimental impact of such phenomenon on the reliability and security (Rose, 
1995), (Cam et al., 2002), (Hay & Rose, 2003), (Siqueira et al., 2004). Tube corrosion is related 
to the presence of chemically aggressive trace elements and compounds in the transported 
materials, usually attributed to presence of sulfur or halogens. A sketch of the two 
occasionally simultaneously appearing processes is illustrated in Fig. 1, where the corrosion 
related shrinking of wall thickness is related to the growing fouling layer. 

 
Figure 1. Cross-section view of tube aging processes: inhomogeneous fouling layer (a), 
corrosion (b), corrosion and fouling (c) 

An example of tube fouling, observed in a selected duct section of an oil refining plant, is 
presented in Fig. 2. This duct is under test at the LIEC (Electronic Instrumentation and 
Control Laboratory) of Federal University of Campina Grande (UFCG). 
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The deposition rate commonly is very low, and it may take several months until critical 
thickness values are reached. Fouling in chemical plant duct systems and pipelines accounts 
for severe problems in plant operation as: reduction of the internal diameter of the tube; 
reduction of mechanical integrity and strength, reduction of plant operation lifetime, 
increase of the applied pressure to maintain flow through-put, crack formation and possibly 
catastrophic break-up. The associated increase of the energy consumption also comes along 
with higher operation and maintenance costs. 

 
Figure 2.  Photography showing the fouling layer formed in a duct section that transports 
crude oil (Petrobras-BR) 

Duct systems and pipelines thus require regular and periodic inspection. Several methods 
have been proposed for early fouling detection in ducts, based on mass flow reduction 
(Krisher, 2003), electric resistance (Panchal, 1997) and ultrasonic techniques (Silva et al., 
2005), (Lohr & Rose, 2002). 
The key idea of the mass flow reduction technique is to monitor the corrosion process of a 
plate, made of  the same material as the ducts. Such plate is put inside the pipe to obtain 
information regarding the fouling process (Krisher, 2003). The second group of methods, 
named electric resistance sensor techniques, is based on the analysis of the sensor resistance 
value to identify modifications in the pipe inner surface (Panchal, 1997). These two methods 
are intrusive, i.e. the elements for monitoring must be put inside the pipeline. This is a 
disadvantage, since plant operation should be interrupted for installation and analysis of the 
elements. On the other hand, the methods based on ultrasound are advantageous over those 
aforementioned methods, since those methods are not intrusive (Silva et al., 2005). 
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Guided acoustic waves are generated by the interference of Longitudinal (L) and Transverse 
(T) wave types: The longitudinal wave is generated when the movement of the particles is 
parallel to the wave propagation direction. The transverse wave is generated when the 
movement of the particles is perpendicular to the wave propagation direction. Guided 
waves are generated by the interference of these two wave types, when the thickness of the 
wall under test is smaller or equal than the wavelength of wave (Rose, 1995), (Lohr & Rose, 
2002). Fig. 3 shows the formation of guided waves in a plate, when the thickness (d) of the 
plate is smaller or equal to the wavelength of wave (λ) (Silva et al., 2007). 

 
Figure 3. Representation of guided acoustic waves 

Thus, to generate guided waves, two basic conditions are necessary: First, the pipe wall 
thickness under test should be smaller or equal than the wavelength of the spread signal, 
and this is possible adjusting the excitation frequency of the pulser; second, the angles of the 
used transducers must be chosen adequately. The angles of the transducers are determined 
by the shape of the wedge couplers that are made of acrylic. In the present case, it was 
observed that for angles larger than 40 deg the guided waves were not generated and the 
receiver didn't detect the transmitted signal (Silva, 2005). The transmitted waves were 
detected for wedge angles of 30 deg and 40 deg (commercial angular transducers are usually 
provided for 30 deg, 40 deg and 45 deg angles) (Silva, 2005).   
Guided waves can travel up to 200 m, but there is a reduction in the amplitude of the signal 
due the attenuation in the medium and the distance (Rose, 1995). For the studied pipe, tests 
were accomplished with a distance variation among the transducers from 5 to 70 cm (size of 
the removable part of the pipe) and no amplitude reduction was observed, without fouling.  
The ultrasonic transducers are typically excited with pulses and amplitudes that vary 
between 100 and 1000 V. The received signal can vary from microvolts to some volts. The 
received signal may exhibit frequency characteristics very different from the pulses used to 
excite the transmitter transducer, due the characteristics of the propagation media 
(Fortunko, 1991). 
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After recording at the receiver, the signals are amplified and filtered. The parameters like 
gain and bandwidth of the receiver are adjusted in agreement with the characteristics of the 
system under test. Choice of gain and bandwidth are also influenced by the used 
transducer, discontinuities and characteristics of the frequency response of the pulser. When 
the ultrasonic signal encounters a new interface (different material), the signal spreads also 
into this interface, and modifies the characteristics of the transmitted signal. 
This chapter presents the use of a model for ultrasonic pulses, which spread through guided 
waves in a pipe, for fouling detection. The main goal is to estimate the parameters of the 
model and to observe the variations of these parameters with the presence of the fouling.  
This chapter is organized in six sections:  the first part is the introduction; section 2, the 
models and estimation method for ultrasonic pulses, in section 3 the proposed system, in 
section 4  the simulation results, experimental results in section 5 and concluding remarks 
are outlined in section 6. 

2. Models and estimation for ultrasonic pulses 
Some models of ultrasonic pulses are based on the diffraction scalar theory, while piezo-
electric transducers were employed (Calmon et al, 2000). 
When an ultrasonic pulse spreads through a layer of a medium of different material, the 
waveform of the pulse is modified, due to the attenuation and dispersion. In many media, a 
characteristic attenuation, which increases with frequency, has been observed. As result, the 
high frequency components of the pulse are more attenuated than the low frequency 
components. After crossing the layer, the transmitted pulse differs from the incident pulse, 
and it presents a different form (amplitude, frequency, phase) (He, 1998). 
The patterns of ultrasonic pulses present important information regarding form, size and 
orientation of the reflections, as well as, the micro-structure of the propagation media of the 
pulses (Dermile & Saniie, 2001a), (Dermile & Saniie, 2001b). 
Models of parametric signals are used to analyze ultrasonic pulses. These models are 
sensitive to the characteristics of the signal as bandwidth factor, return time, central 
frequency, amplitude and phase of the ultrasonic pulse. Some advantages have been 
discovered using signal modeling. First, estimates of parameters with high resolution can be 
found; second, the accuracy of the estimation can be evaluated; third, the analytical 
relationships between the parameters of the model and physical parameters of the system 
can be established. The ultrasonic pulses can be modeled in terms of Gaussian pulses, 
affected by noise. Each Gaussian pulse in the model is a non-linear function of the following 
parameters: bandwidth (α), return time (τ), central frequency (fc), amplitude (β) and phase 
(φ). The estimation of these parameters can be obtained by non-linear parameter estimation 
techniques (Dermile & Saniie, 2001a), (Dermile & Saniie, 2001b). 
Equation (1) is used by Dermile & Saniie (Dermile & Saniie, 2001a), (Dermile & Saniie, 
2001b) to model the ultrasonic pulses. 

 ))(2cos(),( 2)( ϕτπβθ τα +−= −− tfcetS t
   (1) 

Where θ = [α τ fc β φ] represents the parameters to be estimated. The bandwidth determines 
the pulse time duration in the time domain, the return time is related with the location of the 
reflecting surface, the central frequency is governed by the frequency of the displacements 
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in the material. The pulse displays an amplitude and a phase, according to the impedance, 
size and orientation of the reflecting surface. This model is used for parameter estimation, in 
combination with tests that use the pulse-echo method, and a transducer that operates as 
both, a pulser and receiver. 
Considering the effect of the noise in the estimation, a noise process can be included to the 
model (Dermile & Saniie, 2001a), (Dermile & Saniie, 2001b). Thus, the ultrasonic pulse can be 
modeled by equation (2): 

 ( ) ( , ) ( )x t S t e tθ= +   (2)  

Where S(θ,t) denotes the model of the ultrasonic pulse and e(t) denotes the additive white 
Gaussian noise. 
This model can be extended to consider multiple ultrasonic pulses by equation (3): 

  1

( ) ( , ) ( )
M

m
m

y t S t e tθ
=

= +∑
   

(3)
 

Each parametric vector θm defines the form and location of the corresponding pulse 
completely. For computer programming purposes, the observation model expressed by 
equation (2) for an ultrasonic pulse can be written in the discrete form (Dermile & Saniie, 
2001a), (Dermile & Saniie, 2001b), (Silva et al., 2007). 
The Gaussian pulse model has been chosen as the algorithm for parameter estimation, since 
this model is more accurate and the parameters resemble the ultrasonic pulse in a more 
complete approach. The Gaussian pulse model is thus appropriate to determine the 
parameters of the guided waves method and the analysis of the fouling process is achieved 
by observing the variation of the estimated parameters. 
The estimation problem relies on the determination of the parameters of the model, and 
modifications of these parameters in presence of fouling. Here, the non-linear estimation 
approach is employed, using programs developed with the MATLAB code (Hansenlman & 
Littlefield, 1996). 

3. Proposed system 
The proposed system for fouling monitoring using ultrasonic transducers is illustrated by 
the block diagram presented in Fig. 4. This system is composed by the ultrasonic pulser and 
receiver which are connected to the transducers and coupled to the pipe, in order to 
generate longitudinal guided waves. 
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Figure 4. Block diagram of the proposed system with the pulser and receiver 

The block diagram of the pulser circuit is shown in Fig. 5. The diagram comprises basically a 
DC power supply and a pulse wave generator, used to activate an analog switch, to obtain 
the pulses with the amplitude and frequency necessary to excite the ultrasonic transducer. A 
current drive is used to supply the current required by the analog switch. 

 
Figure 5. Block diagram of the pulser circuit 

The waveform of the pulser output signal is shown in Fig. 6. This signal has 80 V maximum 
amplitude and 500 kHz frequency. These values are necessary for generation of the guided 
waves and monitoring at the receiver. 
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Figure 6. Waveform of the pulser output signal 

The excitement signal of the pulser is a train of pulses with 80 V amplitude and 500 kHz 
frequency. This amplitude guarantees a minimum level of received signal (in the mV range), 
for smaller amplitude the received signal is too low to excite the receiver transducer. This 
frequency is necessary to guarantee the generation of the guided waves, once the 
propagation speed in the galvanized iron is known (4600 m/s) and the wavelength should 
be larger or equal than the pipe wall thickness (2.0 mm) (Silva et al., 2005). 
A simplified block diagram of the receiver is presented in Fig. 7.  In this diagram an initial 
amplification stage is used to increase the amplitude of the received signal, and a narrow 
band RF-filter to select the monitored signals. 
 
 

 
Figure 7. Simplified block diagram of the receiver 

The receiver is designed, using amplification and filtering stages to detect the signals from 
the receiving transducer. The receiver circuit utilizes the integrated circuit AD8307, which is 
a logarithmic amplifier. Its output is a voltage value, proportional to the logarithm of the 
input signal amplitude, and its input impedance is equal to 50 Ω.  
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The waveform of the receiver output signal is presented in Fig. 8. This signal has 100 mV 
maximum amplitude and frequency in the MHz range, representing the typical feature of 
ultrasonic signals. 

 
 Figure 8. Waveform of the receiver output signal 

The signals are monitored, using a digital oscilloscope. To detect the fouling layer, initially 
the amplitude reduction of the signals has been considered. However, towards an accurate 
analysis, other relevant features of the received signals are required as: frequency variations 
and phase. As mentioned before, the goal is to determine the parameters of a model for 
ultrasonic pulses and to analyze the variations of these parameters, under the effect of the 
fouling in the system. The fouling process was emulated by means of an experimental 
platform, in which the temperature, pressure and flow are monitored and controlled. Before 
each experiment, the tube was taken out of the experimental platform and the accelerated 
fouling layer deposition process inside the tube initiated. To speed up the fouling process, 
the same substances related to actual petroleum exploration were mixed with water and put 
into the pipe. The proportions of the substances deposited in the tube were subsequently 
increased. For 100 l of water, the following concentrations were used: 24.05 g of Ca(OH)2; 9.9 
g of MgSO4; 2.472 kg of NaCl; and 16.99 g of BaSO4. These proportions are the same, as 
found in the petroleum treatment factory of Petrobras in Guamare-RN-Brazil. 
As outlined before, the model is used to determine the parameters using the method of the 
guided waves and the variation of the estimated parameters in the model of Gaussian 
pulses. 
A diagram of the experimental platform for data acquisition is shown in Fig. 9. This 
platform was developed, in which the temperature, pressure and flow are monitored and 
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controlled (Silva, 2005). The tubes were used as a medium to guide ultrasonic waves and 
periodically over several weeks measurements were performed to monitor the fouling 
process (Silva et al., 2007). 

 
Figure 9. Diagram of the experimental platform 

With the acquired data and using the models, the estimated parameters of the system have 
been used to analyze the behavior of the ultrasound signal and to observe the influence of 
the fouling. The non-linear estimation methods (least square non-linear) were used, with the 
software MATLAB, to determine the model parameters (Hansenlman & Littlefield, 1996). 

4. Simulation results 
A preliminary simulation study was accomplished by using the model for ultrasonic pulses 
provided in (1). The single pulse case was simulated and the parameter vector θ was 
estimated, using a program developed with MATLAB. In Table 1, the values obtained with 
the simulation for a single pulse are shown. The choice of θ0, the initial parameter vector, is 
quite critical to obtain good results with relatively few iteration steps. The selection of the 
initial parameter relies on the characteristics of the observed signal. 

 Real Parameters Estimated Parameters
α 38.00 36.00 
τ 0.70 0.50 
fc 18.00 16.00 
β 0.80 0.70 
φ 0.90 0.80 

Table 1. Simulation results with single pulses 
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A signal with multiple pulses was also simulated with a program using MATLAB. In Table 
2 are presented the values obtained with the simulation for multiple pulses. 

 Real Parameters Estimated Parameters
α0 38.00 36.00 
τ0 0.70 0.50 
fc0 18.00 16.00 
β0 0.80 0.70 
φ0 0.90 0.80 
α1 38.00 36.00 
τ1 1.50 1.40 
fc1 16.00 14.00 
β1 0.60 0.50 
φ1 0.85 0.80 

Table 2. Simulation results with multiple pulses 

The results of simulation for the parameter estimation of a single pulse are presented in Fig. 
10. The estimated parameters curve is quite similar with the real parameters curve. For this 
simulation the processing time is 4.42 s, the measurement error is 0.0099 (quadratic medium 
error) and the number of iterations is 20. The results of simulation for the parameter 
estimation of the signal with multiple pulses are presented in Fig. 11; this simulation also 
provides an excellent result in relation to the estimated parameters. For this simulation the 
processing time is 215.37 s, the measurement error is 0.0331 and the number of iterations is 
40 (Silva et al., 2007). 

 
Figure 10. Results of the simulation for a single pulse: The points represent the real signal 
and the full line represents the estimated signal 
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Figure 11. Results of the simulation for a multiple pulse: The points represent the real signal 
and the full line represents the estimated signal 

As the number of ultrasonic pulses increases, the dimension of the parameter vector 
increases and, consequently the number of iteration steps also increases. To reduce the 
number of parameters to be estimated, we have employed spectral analysis (FFT) to 
determine what frequencies are present in the signal detected with multiple pulses, using 
MATLAB. The results of the simulation of a signal with multiple pulses and the FFT of this 
signal are presented in the Figs. 12 and 13 respectively. It was considered as parameters for 
the real signal: α0 = 38, τ0 = 0.5, fc0 = 20, β0 = 0.8, φ0 = 1; and α1 = 28, τ1 = 1.0, fc1 = 15, β1 = 0.6, 
φ1 =0.80; and α2 = 14, τ2 = 1.5, fc2 = 10, β2 = 0.9, φ2 = 0.90. Using the FFT, the present 
frequencies in the signal can be determined accurately, thus reducing the number of 
parameters to be estimated. Fig. 13 shows the three present frequencies in the signal of the 
Fig. 12 (Silva et al., 2007). 
With these simulations, it is possible to observe the behavior of the Gaussian pulses and to 
analyze the estimated parameters for these pulses, as well as to test the quality of the 
developed programs and to evaluate its performance. An important result in relation to the 
estimation procedure is the choice of the initial parameters, which is obtained from an 
observation of the measured signals. A bad choice increases the processing time 
substantially, and the estimation error. 
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Figure 12. Representation of a signal with multiple pulses 

 
Figure 13. Representation of FFT for the signal of the Fig. 12. 
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5. Experimental results 
A calibration step to define the pipeline signature is initially carried out and the pipe is 
completely cleaned, ensuring absence of a fouling layer. The inclination angle of the used 
transducers is 300. The maximum frequency of operation is 2 MHz, the transmitter is excited 
with pulses of 80 V and the sampling frequency is 100 MHz. The received signal is 
monitored, and the characteristics of these signals (amplitude, frequency, etc) are taken as 
reference for fouling detection. 
The new results presented in this section were obtained with the same methodology 
presented in Silva (Silva et al., 2007). 
In the experimental platform, it was possible to acquire the data in the receiver output by 
means of a digital oscilloscope. The obtained ultrasonic signals are illustrated in Figs. 14, 15 
and 16, respectively. The signal shown in Fig. 14 represents the pipe signature, i.e., the pipe 
without fouling. The signal shown in Fig. 15 presents the pipe with 1 mm of fouling and Fig. 
16 depicts an ultrasonic signal related to a pipe exhibiting a 3 mm fouling layer.  
For the signal of Fig. 14, the processing time is 145.35 s, the measurement error is 2.65 
(quadratic medium error) and the number of iterations is 8. For the signal of the Fig. 15 the 
processing time is 38.30 s, the measurement error is 1.25 and the number of iterations is 6. 
And for the signal of the Fig. 16 the processing time is 34.25 s, the measurement error is 1.15 
and the number of iterations is 4. 
 
 
 

 
Figure 14. Representation of the receiver output signal without fouling using MATLAB 
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Figure 15. Representation of the receiver output signal with 1 mm of fouling using MATLAB 

 
Figure 16. Representation of the receiver output signal with 3 mm of fouling using MATLAB 
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From the analysis of the ultrasonic signal, it was found that the amplitude reduction 
provides important information regarding the fouling process. This effect occurs, since the 
fouling layer modifies the propagation medium of the ultrasonic signals, thus providing a 
second leakage path in the received signal. 
A further program, developed with MATLAB was used to determine the spectral features 
and frequencies in the measured signals in the time domain from Figs. 14, 15 and 16 
respectively. The signals obtained with the FFT are represented in Figs. 17, 18 and 19 
respectively. For the first signal, the determined frequency is 29 MHz, for the second signal 
(with 1 mm of fouling) the determined frequency is 27 MHz and for the third signal (with 3 
mm of fouling) the determined frequency is 24 MHz. The estimated parameters for the 
frequency of the three signals represent a good approximation in relation to the measured 
real signal. 
With the use of FFT, it was possible to determine the frequencies that are present in the 
ultrasonic signals. Since the frequencies of the pulses are not needed of being estimated and 
the number of parameters is reduced, the estimation times and the iteration numbers are 
also reduced. 
 
 
 

 
Figure 17. Representation of FFT for the measured signal without fouling 

With the model for Gaussian pulses and using a program developed in MATLAB, it was 
possible to identify the parameters for the measured signal that are represented in Figs. 14, 
15 and 16. The results with the parameter estimation for these signals are illustrated in Figs. 
20, 21 and 22 respectively, and we can observe that the parameter modifications are due the 
fouling process in tubes.  
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Figure 18. Representation of FFT for the measured signal with 1 mm of fouling 

 

 
Figure 19. Representation of FFT for the measured signal with 3 mm of fouling 
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Figure 20. Representation of the measured signal (dashed signal) and of the estimated 
(continuous signal) without fouling 

 

 
Figure 21. Representation of the measured signal (dashed signal) and of the estimated 
(continuous signal) with 1 mm of fouling 
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Figure 22. Representation of the measured signal (dashed signal) and of the estimated 
(continuous signal) with 3 mm of fouling 

The estimated parameters for the signals are presented in the Table 3. 

 
Signal 

without 
fouling 

Signal with 
1 mm of 
fouling 

Signal with 
3 mm of 
fouling 

α 85.0 80.0 75.0 
τ 0.16 1.95 2.10 
fc 30.0 27.0 24.0 
β 0.18 0.14 0.09 
φ 0.80 0.85 0.90 

Table 3. Estimated parameter values for the measured signal 

Analyzing the data in Table 3, we observe that the parameters bandwidth (α), central 
frequency (fc) and amplitude (β) decrease with the increase of the fouling layer, while the 
parameters return time (τ) and phase (φ) increase.  
The presented models are considered as a good approach to resemble recorded real signals.  
Parameter variations resulting from the presence of tube fouling are well resolved. The 
absolute values of the signals are compared and modifications, as increase or reduction, of 
the absolute parameter values are easily observable.  

6. Concluding remarks 
In this chapter, a signal analysis method of ultrasonic signals has been presented and this 
method utilizes a parameter estimation algorithm for fouling detection. The model is based 
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on Gaussian pulses, therefore this model is more complete and the parameter estimation 
provides higher accuracy. Results were obtained with simulations and with acquired 
experimental data. For treating of a non-linear system, this problem cannot be solved using 
optimization algorithms as efficient as the least square method. 
Thus, programs were developed with MATLAB for estimation of non-linear systems. With 
the use of the Fast Fourier Transform (FFT) algorithm the spectral features i.e. frequencies 
present in the ultrasonic signals were resolved. Since the number of parameters is lowered, 
also the estimation time and number of required iterations are reduced. 
With this approach presence of fouling layers can be easily detected, taking as reference the 
estimated parameters of the clean, fouling free tube section. Systematic variations of these 
parameters originate from inner tube fouling deposits. Different points of the pipe have 
been evaluated to identify their exact positions. 
It is anticipated in future investigations to extend the analysis and include the attenuation 
rate of the received signal amplitude, in accordance with the amount of substance deposited 
onto the inner tube surface, and to verify the variation of the oscillations as a function of the 
substance type deposited inside the pipeline. In addition, it is also desired to evaluate other 
methods with ultrasonic waves, such as the circumferential guided wave method.  
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1.  Introduction 
Fuzzy-model-based (FMB) control approach provides a systematic and effective way to 
control nonlinear systems.  It has been shown by various applications (Lam et al., 1998; Lian 
et al., 2006; (b)Tanaka et al., 1998) that FMB control approach performs superior to some 
traditional control approaches.  Based on the T-S fuzzy model (Sugeno & Kang, 1988; Takagi 
& Sugeno, 1985) the system dynamics of the nonlinear can be represented by some local 
linear models in the form of linear state-space equations. With the fuzzy logic technique, the 
overall system dynamics of the nonlinear plant is a fuzzy combination of the local linear 
models. Consequently, the fuzzy model offers a systematic way and general framework to 
represent the nonlinear plants in the form of averaged weighted sum of local linear systems.  
This particular structure exhibits favourable property to facilitate the system analysis and 
control synthesis. 
In general, the stability analysis for FMB control systems can be classified into two 
categories, i.e., membership function (MF)-independent (Chen et al.,1993; Tanaka & Sugeno, 
1992) and MF-dependent (Fang et al., 2006; Feng, 2006; Kim & Lee 2000; Liu & Zhang, 2003a; 
Liu & Zhang, 2003b; Tanaka et al., 1998a; Teixeira et al.,2003) stability analysis approaches.  
Under the MF-independent stability analysis, the membership functions of both fuzzy 
model and fuzzy controller are not considered during stability analysis.  The system 
stability is guaranteed to be asymptotically stable if there exists a common positive definite 
matrix to a set of stability conditions in the form of Lyapunov inequalities (Chen et al.,1993; 
Tanaka & Sugeno, 1992). The main advantages under the MF-independent analysis 
approach are 1). The membership functions of the fuzzy controller can be designed freely.  
Some simple and easy-to-implement membership functions can be employed to realize the 
fuzzy controller to lower the implementation cost.  2). The grades of membership functions 
of the fuzzy model are not necessarily known which implies parameter uncertainties of the 
nonlinear plant are allowed.  Consequently, the fuzzy controller exhibits an inherent 
robustness property for nonlinear plant subject to parameter uncertainties. However, the 
membership function mismatch (both fuzzy model and fuzzy controller do not share the 
same membership functions) leads to very conservative stability analysis results.  
Furthermore, it can be shown that the fuzzy controller designed based on the stability 
conditions in (Chen et al.,1993; Tanaka & Sugeno, 1992) can be replaced by a liner controller.  
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Under the MF-dependent stability analysis approach, the membership functions of both 
fuzzy model and fuzzy controller are considered.  In (Wang et al., 1996), the importance of 
the membership functions to the stability analysis was shown.  By sharing the same premise 
membership functions between fuzzy model and fuzzy controller which leads to perfect 
match of membership functions, relaxed stability conditions were achieved.  Further relaxed 
MF-independent stability conditions were reported (Fang et al., 2006; Feng, 2006; Kim & Lee 
2000; Liu & Zhang, 2003a; Liu & Zhang, 2003b; Tanaka et al., 1998a; Teixeira et al.,2003).  As 
to achieve perfect match of membership functions between fuzzy model and fuzzy 
controller which implies the membership functions of the fuzzy model must be known, the 
design flexibility and inherent robustness property of the fuzzy controller are lost.  In both 
MF-independent and dependent stability analysis approaches, the stability conditions can 
be represented in the form of linear matrix inequalities (Boyd et al., 1994), some convex 
programming techniques (e.g., MATLAB LMI toolbox) can be employed to solve the 
solution to the stability conditions numerically and effectively. 
It can be seen that fuzzy controller designed based on stability conditions under MF-
dependent or -independent stability analysis approaches offers different favourable and 
undesired properties. It is a good idea to get the most out of these two analysis approaches 
by combining the advantages and alleviate the disadvantages of them, thus, to widen the 
applicability of the FMB control approach. This idea motivates the investigation in this 
chapter. In this chapter, MF-dependent stability analysis approach is employed to 
investigate the stability of the FMB control systems under the condition of imperfect match 
of membership functions. As a result, the design flexibility and inherent robustness of the 
fuzzy controller can be retained (due to the imperfect match of the membership functions) 
and the stability conditions can be relaxed (due to the MF-dependent stability analysis 
approach). In order to strengthen the stabilization ability of the fuzzy controller, fuzzy 
feedback gains, which enhance the nonlinearity compensation ability, are introduced. In 
order to carry out stability analysis under MF-dependent Lyapunov-based approach, 
membership function conditions are proposed to guide the design of the membership 
functions. Based on membership function conditions, some free matrices can be introduced 
to the stability analysis and relax the stability conditions. 
This chapter is organized as follows. In section II, the fuzzy model and the proposed fuzzy 
controller are introduced. In section III, system stability of FMB control system is 
investigated using Lyapunov’s stability theory under MF-dependent stability analysis 
approach. LMI-based stability conditions are derived to aid the design of the fuzzy 
controller for the nonlinear plant. In section IV, simulation examples are given to illustrate 
the effectiveness of the proposed approach. In section V, a conclusion is drawn. 

2. Fuzzy Model and Enhanced Fuzzy Controller 
A fuzzy-model-based control system comprising a nonlinear plant represented by a fuzzy 
model and an enhanced fuzzy controller connected in a closed loop is considered. 

2.1 Fuzzy Model 
Let p be the number of fuzzy rules describing the nonlinear plant.  The i-th rule is of the 
following format: 
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Rule i: IF ))((1 tf x  is i
1M  AND … AND ))(( tf xΨ  is i

ΨM  

 THEN )()()(  ttt ii uBxAx +=  (1) 

where i
αM  is a fuzzy term of rule i corresponding to the known function ))(( tf xα , α = 1, 2, 

..., Ψ; i = 1, 2, ..., p; Ψ is a positive integer; nn
i

×ℜ∈A  and mn
i

×ℜ∈B  are known constant 
system and input matrices respectively; 1)( ×ℜ∈ ntx  is the system state vector and 1)( ×ℜ∈ mtu  
is the input vector. The system dynamics are described by, 
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is a nonlinear function of x(t) and )))(((M tfi xαα
μ , α = 1, 2, …, Ψ, is the grade of membership 

corresponding to the fuzzy term of i
αM . 

2.2.  Enhanced Fuzzy Controller 
A fuzzy controller with p rules is considered.  The j-th rule of the fuzzy controller is defined 
as follows. 

Rule j: IF ))((1 tg x  is j
1N  AND … AND ))(( tg xΩ  is j

ΩN  

 THEN ( ) )()()( ttt j xxGu = , j = 1, 2, ..., p (5) 

where j
βN  is a fuzzy term of rule j corresponding to the function ))(( tg xβ , β = 1, 2, ..., Ω;  j = 

1, 2, ..., p; Ω is a positive integer; ( ) nm
j t ×ℜ∈)(xG  is the constant and time-varying feedback 

gains of rule j.  The time-varying feedback gain is defined as, 
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where nm
jk

×ℜ∈G  are constant feedback gains. The inferred enhanced fuzzy controller is 
defined as, 
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where 
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is the normalized grade of membership which is a nonlinear function of x(t).   )))(((
N

tgj xβ
β

μ , 

j = 1, 2, ..., p, is the grade of membership corresponding to the fuzzy term j
βN . 

Remark 1:  It should be noted that the proposed enhanced fuzzy controller of (7) is reduced 
to the traditional fuzzy controller (Chen et al., 1993; Fang et al., 2006; Feng, 2006; Liu & 
Zhang, 2003a; Liu & Zhang, 2003b; Tanaka et al., 1998a; Teixeira et al., 2003; Wang et al., 
1996) when Gjk = Fj for all j where nm

j
×ℜ∈F  are the constant feedback gains. 

3. Stability Analysis 
In this section, the system stability of fuzzy-model-based control system formed by a 
nonlinear plant in the form of (2) and the enhanced fuzzy controller of (7) connected in a 
closed loop, is considered. Based on the Lyapunov stability theory, LMI-based stability 
conditions are derived to guarantee the asymptotic stability of the fuzzy-model-based 
control systems. For brevity, wi(x(t)) and mj(x(t)) are denoted as wi and mj respectively. The 

property of the membership functions in (3) and (8), i.e. ∑
=
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i
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 = ∑
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i
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 = ∑∑

= =
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1 1

 = 1 is 

utilized to facilitate the stability analysis. From (2) and (7), we have, 
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kji xGBA +=∑∑∑

= =

 (10) 

As the membership functions of wi and mj do not match, which is one of the sources of 
conservativeness, the MF-dependent stability analysis approach in (Fang et al., 2006; Feng, 
2006; Liu & Zhang, 2003a; Liu & Zhang, 2003b; Tanaka et al., 1998a; Teixeira et al., 2003) 
cannot be applied. In the following, membership function conditions are proposed to 
alleviate the conservativeness of stability analysis due to the imperfect match of 
membership functions. To proceed with the stability analysis, the following Lyapunov 
function candidate is employed to investigate the fuzzy-model-based control system of (10). 

 )()()( T tttV Pxx=  (11) 

where 0T >ℜ∈= ×nnPP .  From (10) and (11), 
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where )()( 1 tt xXz −=  and nn×− ℜ∈= 1PX .  Let 1−= XNG jkjk  where nm
jk

×ℜ∈N .  From (12), we 
have, 
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where TTT
ijkjkiiiijk BNNBXAXAΘ +++= .  To facilitate the stability analysis, the 

membership functions of the fuzzy controllers are designed as follows. 

 ( ) 0>+−= iiiii mww σρ , i = 1, 2, ..., p (14) 

where ρi and σi are scalars to be determined.  From (12), we have, 
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To alleviate the conservativeness of the stability analysis, from (14), we consider the 
following conditions. 

 ( ) ( ) ( ) 0<+−=+−+− iiiiiiiiiii mwmmw ζγζγσρ , i = 1, 2, ..., p (16) 
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where γi and ζi are scalars to be determined.  The membership function conditions of (14) 
and (16) offer the condition to guide the design of the membership functions of fuzzy 
controller.  Under these conditions, some free matrices can be introduced to relax the 
conservativeness of stability analysis due to the imperfect match of membership functions.  
From (16), we consider the following condition to introduce some free matrices to (15). 
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We consider the first term of (18) shown as follows. 

 ijk

p

i

p

j

p

k
kji mmm ΞΞ ∑∑∑

= =

=
=1 1 1

 (19) 
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From (19), by employing similar analysis procedure in (Fang et al., 2006), we have, 

 

( )

( )kjikijjkijikikjijk

p

i

p

ij

p

jk
kji

jiiijiiij

p

i

r

ij
j

jiiii

p

i
i

mmm

mmm

ΞΞΞΞΞΞ

ΞΞΞΞΞ

++++++

+++=

∑ ∑ ∑

∑∑∑

− −

+= +=

≠
=

2

1=

1

1 1

1= 1

2

1=

3

 (21) 

Define nn
ijk

×ℜ∈Y , T
iiiiii YY = , i = 1, 2, ..., p, T

jiiiij YY = , i, j = 1, 2, ..., p; i ≠ j, T
ikjijk YY = , 

T
jkijik YY =  and T

kjikij YY = , i = 1, 2, ..., p – 2; j = 1, 2, ..., p – 1; k = 1, 2, ..., p.  Let 

 iiiiii ΞY > , i = 1, 2, ..., p (22) 

 jiiijiiijjiiijiiij ΞΞΞYYY ++≥++ , i, j = 1, 2, ..., p; i ≠ j (23) 

kjikijjkijikikjijkkjikijjkijikikjijk ΞΞΞΞΞΞYYYYYY +++++≥+++++  

 , i = 1, 2, ..., p – 2; j = 1, 2, ..., p – 1; k = 1, 2, ..., p (24) 
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From (21) to (24), we have, 
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From (18) and (25), we have, 
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Define nn
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×ℜ∈= TRR , i, j, k = 1, 2, ..., p.  Let 
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From (26) and (27), we have, 
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of (10).  The stability analysis results are summarized in the following theorem. 
Theorem 1:  The fuzzy-model-based control system of (10), formed by the nonlinear system in the 
form of (2) and the proposed enhanced fuzzy controller of (7) connected in closed loop, is guaranteed 
to be asymptotically stable if the membership functions are designed to satisfy the membership 
function conditions of ( ) 0))(())(())(( >+−= iiiii tmtwtw σρ xxx  and ( ) 0))(())(( <+− iiii tmtw ζγ xx  
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gains are designed as 1−= XNG jkjk , j, k = 1, 2, ..., p. 

4.  Simulation Examples 
Two simulation examples are given in this section to illustrate the effectiveness of the 
proposed approach. 

4.1  Simulation Example 1 
A numerical example is given in this sub-section to investigate the stability region of the 
fuzzy-model-based control systems.  Consider the following fuzzy model similar to that in 
(Fang et al., 2006). 

 Rule i:  IF x1(t) is i
1M  THEN )()()( tutt ii BxAx += , i = 1, 2, 3 (29) 
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B  where [ ]T

21 )()()( txtxt =x , 4 ≤ a ≤ 12 and 4 ≤ b ≤ 12.  From (2), the inferred 

fuzzy model is given as follows. 
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i
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 (30) 

It is assumed that the fuzzy model works in the operating domain of [ ]ππ−=)(1 tx .  The 
membership functions of the fuzzy model are chosen arbitrarily as  
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and 

))(( 13 txw  = ))(( 1M3
1

txμ  = ))(())((1 1211 txwtxw −−  

A three-rule fuzzy controller with the following rules is designed for the fuzzy model of 
(30). 



Enhanced Fuzzy Controller for Nonlinear Systems:  
Membership-Function-Dependent Stability Analysis Approach 

 

159 

 Rule i:  IF x1(t) is i
1N  THEN  ( ) )()()( tttu j xxG= , i = 1, 2, 3 (31) 

From (7), the inferred enhanced fuzzy controller is given as follows. 
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The membership functions of the enhanced fuzzy controller are chosen as 
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It can be shown that the membership conditions of (14) and (16) are satisfied with ρ1 = ρ2 = 
0.945, ρ3 = 0.915; σ1 = σ2 =0.0005, σ3 = 0.009; γ1 = γ2 = 0.11, γ3 = 0.12; ζ1 = ζ2 = ζ3 = 0. 
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Figure 1.   Stability regions for stability conditions in Theorem 1 indicated by “o” and in 
(Fang et al., 2006) indicated by indicated by “×” 

 Theorem 1 are employed to investigate the stability region of the fuzzy-model-based control 
system formed by (30) and (32). Fig. 1 shows the stability region indicated by “o”. For 
comparison purpose, the stability conditions in (Fang et al., 2006) is employed to investigate 
the stability region of the fuzzy-model-based control system. Fig. 1 shows the stability region 
given by the stability conditions in (Fang et al., 2006) indicated by “×”.  It should be noted that 
the stability conditions in (Fang et al., 2006;  Kim & Lee 2000; Liu & Zhang, 2003a; Liu & 
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Zhang, 2003b; Tanaka et al., 1998a; Teixeira et al.,2003; Wang et al., 1996) can be applied to 
fuzzy-model-based control systems with both fuzzy model and fuzzy controller sharing the 
same membership functions. It was reported in (Fang et al., 2006) that the stability conditions 
in (Fang et al., 2006;  Kim & Lee 2000; Liu & Zhang, 2003a; Liu & Zhang, 2003b; Tanaka et al., 
1998a; Teixeira et al.,2003) are subset of that in (Fang et al., 2006). In this example, in order to 
obtain the stability region for the stability conditions in (Fang et al., 2006), the fuzzy controller 
takes the membership functions of the fuzzy model.  Referring to figure 1, it can be seen that 
the proposed enhanced fuzzy controller offers a larger stability region. Furthermore, as the 
proposed enhanced fuzzy controller does not need to share the same membership functions 
with the fuzzy model, simple membership functions can be employed to realize the fuzzy 
controller which can lower the implementation cost. 

4.2. Simulation Example 2 
In this example, the proposed enhanced fuzzy controller is designed based on Theorem 1 for an 
inverted pendulum which is described by the following dynamic equations (Ma & Sun, 2001). 
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where x1(t) and x2(t) denote the angular displacement (rad) and the angular velocity (rad/s) 
of the pendulum from vertical respectively, x3(t) and x4(t) denote the displacement (m) and 
the velocity (m/s) of the cart respectively, g = 9.8 m/s2 is the acceleration due to gravity,  m 
= 0.22 kg is the mass of the pendulum, M = 1.3282 kg is the mass of the cart, l = 0.304 m is 
the length from the center of mass of the pendulum to the shaft axis, J = ml2/3 kgm2 is the 
moment of inertia of the pendulum around the center of mass, F0 = 22.915 N/m/s and F1 = 
0.007056 N/rad/s are the friction factors of the cart and the pendulum respectively, and u(t) 
is the force (N) applied to the cart. 
In this example, the control objective is to balance the pole and drive the cart to the origin, 
i.e., xk(t) → 0, k = 1, 2, ,3, 4, as time tends to infinite. To facilitate the design of fuzzy 
controller, the following fuzzy model for the inverted pendulum of (33) to (36) is considered 
(Ma & Sun, 2001). 

 Rule i:  IF x1(t) is i
1M  THEN )()()( tutt ii BxAx += , i = 1, 2 (37) 

The inferred system dynamics of the fuzzy model are described by, 

 ( )∑
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+=
2

1
1 )()())(()(

i
iii tuttxwt BxAx  (38) 
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which are shown as the bell shape in Fig. 2. 
Based on the fuzzy model of (38), a two-rule enhanced fuzzy controller is employed to 
realize stabilize the plant. The rule of the fuzzy controller is of the following format. 

 Rule j:  IF x1(t) is 1N i  THEN ( ) )()()( tttu j xxG= , j = 1, 2 (39) 

From (7), the inferred enhanced fuzzy controller is given as follows. 
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shown as the trapezoids in Fig. 2.  It can be shown that the membership conditions of (14) and 
(16) are satisfied with ρ1 = 0.99, ρ2 = 0.95; σ1 =0.07, σ2 = 0.02; γ1 = γ2 = 0.05; ζ1 = 0.1, ζ2 = 0.085. 
 
 

-1.5 -1-0.9 -0.5 -0.2 0 0.2 0.5 0.9 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.925

1

x1(t) (rad)

G
ra

de
 o

f M
em

be
rs

hi
p

 
a)  ))(( 1M1

1
txμ  (bell) and ))(( 1N1

1
txμ  (trapezoid) 

-1.5 -1-0.9 -0.5 -0.2 0 0.2 0.5 0.9 1 1.5
0

0.075
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1(t) (rad)

G
ra

de
 o

f M
em

be
rs

hi
p

 
b)  ))(( 1M 2

1
txμ  (bell) and ))(( 1N2

1
txμ  (trapezoid) 

Figure 2.  Membership functions of fuzzy model and fuzzy controller in simulation example 2 
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Figure 3.  System state responses for the fuzzy-model-based control system under different 
initial system state conditions in simulation example 2 
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To obtain the feedback gains for the enhanced fuzzy controller of (40), stability conditions in 
Theorem 1 are employed to achieve a stabilizing fuzzy controller of (40). With the help of 
Matlab LMI toolbox to solve the solution to the stability conditions in Theorem 1, we have 
G11 = [702.0204   51.4864   3.1163   54.5589], G12 = [707.8873   48.2611   3.0247   53.4503], G21 = 
[707.8873   48.2611   3.0247   53.4503] and G22 = [965.2063   63.0629   3.7704   60.9679].  Fig. 3 
shows the system state responses for the fuzzy-model-based control system with x(0) = 
[7π/18   0   0   0]T and [7π/36   0   0   0]T respectively.  It can be seen that the proposed 
enhanced fuzzy controller is able to stabilize the nonlinear plant. It is worth noting that the 
stability conditions in (Fang et al., 2006; Kim & Lee 2000; Liu & Zhang, 2003a; Liu Zhang, 
2003b; Tanaka et al., 1998a; Teixeira et al., 2003; Wang et al., 1996) cannot apply to design the 
fuzzy controller as the members functions for both fuzzy model and fuzzy controllers are 
different in this example. 

5. Conclusion 
The system stability of fuzzy-model-based control systems has been investigated in this 
chapter. An enhanced fuzzy controller has been proposed for the control process. The 
stabilization ability of the proposed fuzzy controller is strengthened by the enhanced 
nonlinear feedback gains. Imperfect match of membership functions between fuzzy model 
and fuzzy controller has been considered. Compared to the existing approaches, greater 
design flexibility can be achieved due to the membership functions for the fuzzy controller 
can be designed freely. Under such a situation, most of the published stability conditions 
cannot be applied for the design of stable fuzzy-model-based control systems. To alleviate 
the conservativeness of stability analysis due to imperfect match of membership functions, 
membership function conditions have been proposed to govern the design of the 
membership functions of the fuzzy controller. With such membership function conditions, 
free matrices can be introduced to the Lyapunov-based stability analysis to relax the 
stability conditions. Simulation examples have been given to illustrate the effectiveness of 
the proposed approach. 
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1. Introduction 
A few decades ago, Y. Kuramoto introduced a mathematical model of weakly coupled 
oscillators that gave a formal framework to some of the works of A.T. Winfree on biological 
clocks [Kuramoto (1975), Kuramoto (1984), Winfree (1980)]. The model proposes the idea 
that several oscillators can interact in a way such that the individual oscillation properties 
change in order to achieve a global behavior for the interconnected system. The Kuramoto 
model serves as a good representation of many systems in several contexts: biology, 
engineering, physics, mechanics, etc. [Ermentrout (1985), York (1993), Strogatz (1994), 
Dussopt et al. (1999), Strogatz (2000), Jadbabaie et a. (2003), Rogge et al. (2004), Marshall et 
al. (2004), Moshtagh et al. (2005)]. 
Recently, many works on the control community have focused on the analysis of the 
Kuramoto model, specially the one with sinusoidal coupling. The consensus or collective 
synchronization of the individuals is particularly important in many applications 
representing coordination, cooperation, emerging behavior, etc. Local stability properties of 
the consensus have been initially explored in [Jadbabaie et al. (2004)]. It must be noted that 
little attention has been devoted to the influence of the underlying interconnection graph on 
the stability properties of the system. The reason could be the fact that the local stability 
does not depend on the interconnection [van Hemmen et al. (1993)]. Global or almost global 
dynamical properties were studied in [Monzón et al. (2005), Monzón (2006), Monzón et al. 
(2006)]. In these works, the relevance of the interconnection graph of the system was hinted. 
In the present chapter, we go deeper on the analysis of the relationships between the 
dynamical properties of the system and the algebraic properties of the interconnection 
graph, exploiting the strong algebraic structure that every graph has. We step forward into a 
classification of the interconnection graphs that ensure almost global attraction of the set of 
synchronized states. 
In Section 2 we present the Kuramoto model for sinusoidally coupled oscillators, its general 
properties and the notion of almost global synchronization; in Section 3 we review some 
basic facts on algebraic graph theory; the symmetric Kuramoto model and the block analysis 
are presented in Sections 4 and 5; Section 6 gives some examples and applications of the 
main results; Section 7 presents the problem of classification of almost global synchronizing 
topologies. 
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2. The Kuramoto model  
In the 1970s, Kuramoto proposed a model to describe a population of weakly coupled 
oscillators. In this model, each individual oscillator is described by its phase and the 
coupling between two individuals is a function of the phase difference. The general 
Kuramoto model takes the following form [Strogatz (2000)]: 

( ) Ni
N

j
jiijii ,...,1,

1

=−Γ+= ∑
=

θθωθ  

where ijΓ  are the interaction functions that represent the coupling and N is the total number 

of oscillators. Since each angle )2,0[ πθ ∈i , the corresponding state space is the N-

dimensional torus NT . We consider the particular case of sinusoidally coupled oscillators, 

 ( ) Ni
N
K

iNj
jiii ,...,1,sin. =−+= ∑

∈

θθωθ  (1) 

where iN  refers to the set of index of agents that affect the behavior of agent i -the neighbors 
of i- and K is the strength of the coupling. We will assume that all the agents have the same 
natural frequency. So, with a suitable shift, and simplifying the notation by eliminating the 

factor 
N
K

 -this amount for to renormalizing time- we can write the previous model as 

 ( ) Ni
iNj

jii ,...,1,sin =−= ∑
∈

θθθ  (2) 

We want to emphasize the following aspects of system (2): 
• The dynamic depends only on the phase difference of the oscillators. Then, there are 

several properties that are invariant under translations on the torus. For example, if θ  
is an equilibrium point, so is1 Nc 1.+θ  for every )2,0[ π∈c .  

• As was done by Kuramoto [Kuramoto (1984)], we associate the individual oscillator 
phases to points running around the circle of radius 1 in the complex plane. Then, each 

oscillator can be described by the unitary phasor ij
i eV θ= . 

Equation (2) has always two kinds of trivial equilibria: 
• We call consensus or synchronization the state where all the phase differences are zero, 

i.e. the diagonal of the state space. Every consensus state is of the form Nc 1.=θ , with 
)2,0[ π∈c . We have a closed curve of consensus points. Observe that at a consensus 

point, all the associated phasors coincide. 

                                                                 
1 p1  denotes the column vector in pR  with all the elements equal to one. Analogously, p0  denotes 

the column vector in pR  with all the elements equal to zero. 
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• We say we have partial synchronization when all the phasors are parallel but they are not 
synchronized; i.e. most of the phases takes the value 0 (taking a suitable reference), but 
there are m agents with phase π± , for some Nm ≤< 20 . 

• The other equilibrium points have non-parallel phasors and we refer to them as non 
synchronized. 

Example 2.1: Consider the graph G shown at the left of Figure 1. A non synchronized 
equilibrium point of (2) with interconnection graph G is given by 

[ ]T180,0,09.19,90,91.160,09.19,90,95.160 −−−=θ  

and it is shown at the right of Figure 1 (the angles are measured in degrees).  ♦ 

 

Figure 1. Phasor representation of the equilibrium point θ  of Example 2.1. The underlying 
graph is shown on the left 

The key question we try to answer in this work is whether or not the system behavior of (2) 
reaches consensus, since this particular equilibrium may represent a desired behavior of the 
system. Recently, the Kuramoto model has received the attention of control theorists 
interested in the coordination and consensus of multi-agent systems (see [Jadbabaie et al 
(2004)] and references there in). We focus on the global properties of the consensus 
equilibrium. Since the system has many equilibria, we can not talk about global stability or 
global synchronization. But we may wonder if the system present the so called almost global 
stability property, that is, if the set of initial conditions that no lead to synchronization has 
zero Lebesgue measure. From an engineering point of view, this is a nice property [Rantzer 
(2001)], specially when it is combined with local stability. When the system has the almost 
global stability property, almost every initial condition leads to the synchronization of the 
system. So, we will use the expression almost global synchronization and the abbreviation 
a.g.s. 

2.1 General properties 
The following results are true for the general dynamic (2) 
Proposition 2.1: At any equilibrium point θ  of (2), it must be true that the phasors ∑

∈ iNh
hV  

and iV  are parallel in the complex plane, for every i. 
Proof: For Ni ,...,1= , consider the number  
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( ) ( ) ( )∑∑∑∑
∈∈∈

−

∈

−+−===
iii

ih

i Nh
ih

Nh
ih

Nh

j

Nh i

h
i je

V
V θθθθα θθ sin.cos  

Since θ  is an equilibrium point, iα is a real number and ii
Nh

h VV
i

.α=∑
∈

. ♦ 

Important consequences of Proposition 2.1 will be presented in further sections. 
Nevertheless, we can write a direct corollary. 
Corollary 2.1: Consider an agent i such that }{kNi = , ki ≠ . Then, at an equilibrium point 

θ , it must be true that ki θθ =  or πθθ += ki . ♦ 
For example, if the underlying graph is a tree (see Section 3), an iterative application of 
Corollary 2.1 shows that the only equilibria are full or partial synchronized points. 
To conclude this Section, we introduce the concept of phase-locking solution. We say that a 
solution )(tθ  is phase-locking when the phase difference between any two agents remains 

constant in time. It follows that for Ni ,...,1= , we have Ω=iθ  and ii tt 0)( θθ +Ω= . For 
the particular case of 0=Ω , we have the equilibrium points described above. Phase-locking 
solutions with 0≠Ω  correspond to closed periodic orbits in NT  and play important roles 
in many contexts, such pace generators or muscular contractions in biology [Ermentrout 
(1985)], cyclic pursuit problems [Marshall et al. (2004)] or circular polarization generation 
with antennas [Dussopt et al. (1999). 

3. Brief review of algebraic graph theory 
We will use a graph to naturally describe the interconnection topology between the agents 
in the Kuramoto model. In this Section we review the basic facts on algebraic graph theory 
that will be used along the article. A more detailed introduction to this theory can be found 
in [Biggs (1983); Cvetkovic et al. (1979)]. A graph G consists in a set of n nodes or vertices 

{ }nvvVG ,...,1=  and a set of m links or edges { }meeEG ,...,1=  that describes how the nodes 
are related to each other. If n=1 the graph is called trivial. We say that two nodes are 
neighbors or adjacent if there is a link in EG  between them. If all the vertices are pairwise 
adjacent the graph is called complete or all to all and written nK . A walk is a sequence 

lvvv ,...,, 10  of adjacent vertices. If the vertices are different except the first and the last 
which are equal ( jivv ji <<≠ 0,  and lvv =0 ) the walk is called a cycle. A graph with no 

cycle is called acyclic. The graph is connected if there is a walk between any given pair of 
vertices. A tree is an acyclic connected graph and has m=n-1 edges. The graph is oriented if 
every link has a starting node and a final node. The topology of an oriented graph may be 
described by the incidence matrix B with n rows and m columns: 

⎪
⎩

⎪
⎨

⎧
−=

otherwise
nodeleavesedgeif
nodereachesedgeif

ij
ij

Bij

0
1

1
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Observe that 01 =n
TB . The semidefinite matrix BBL T=  is called the Laplacian of G and 

contains the spectral information of the graph. The vertex space and the edge space of G are the 
sets of real functions with domain VG and EG respectively, which we sometimes will 
identify, respectively, with the vectors spaces nR  and mR . Thus, the incidence matrix B can 
be seen as a linear transformation from the edge space to the vertex space. The kernel of B is 
called the cycle space of the graph G and its elements are called flows. Every flow can be 
thought as a vector of weights assigned to every link in a way that the total algebraic sum at 
each node is zero. The cycle space is spanned by the flows determined by the cycles: given a 
cycle 00 ,..., vvv l = , its associated flow )(efC  is 1±  if e leaves some iv  and reaches 1±iv  
and 0 otherwise. 
If the graph G is the union of two nontrivial graphs 1G  and 2G  with one and only one node 

iv  in common, then iv  is called a cut-vertex of G. A connected graph with more than two 
vertices and no cut-vertex is called 2-connected and it follows that for every pair of nodes, 
there are at least two different walks between them. A bridge is a link with the following 
particular property: if it is removed, the resulting graph is not connected. Given a subset 

VGV ⊂1 , its induced subgraph is 1V , with vertex set 1V  and edge set 

{ }1: VeEGe ofverticesjoins∈ . The maximal induced subgraphs of G with no cut-
vertex, are called the blocks of G. Every graph has the form of Figure 2: a collection of blocks 
joined by cut-vertices. For a complete graph, there is only one block, the graph itself. A tree 
can be seen as a collection of 2K .  

 
Figure 2. Representation of a graph as a union of blocks 

The complement G  of a graph G is another graph with the same nodes as G and such that 
two nodes are related in G  if and only if they are not related in G. It follows that GG +  is a 
complete graph, where the sum of two graphs with the same set of nodes is defined as a 
new graph which has all the edges of the original graphs. 
We will use the following vector notation: given a n-dimensional vector [ ]nθθθ ,...,1= , then 

[ ]jiji θθθ ,...,):( =  and ii θθ =)( . 

4. Symmetric Kuramoto model 
4.1. Dynamics 
The dynamic of a given agent depends on the sine of its phase differences with its 
neighbors. Symmetry is characterized by ik NkNi ∈⇒∈ . As in [Jadbabaie et al. (2003)], we 
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can build a directed graph G with the agents as nodes and the edges representing the 
relationships between agents. We only put one link between neighbors, with arbitrary 
orientation. Let M be the number of edges. We construct the incidence matrix MNB ×  as in 
previous Section. In matrix notation, the dynamic (2) can be written as 

 ( )θθ TBB sin.−=  (3) 

We must emphasize that equation (3) does not depend on the particular orientation we have 
chosen for the links of the underlying graph. First of all, we show that the only phase-
locking solutions of a symmetric system are the ones with 0=Ω . 
Lemma 4.1: The only phase-locking solutions of system (3) are equilibrium points.  
Proof: Symmetry implies that the sum of all the phases is a constant magnitude of the 
system: 

( ) 0sin..1.1
11

=−===∑∑
==

θθθθ TTT
N

i
i

N

i
i BB

dt
d

 

since 01. =TB . At a phase-locking solution, 01. =Ω=θ . Then, Ω=Ω== .1.1..10 NTT θ  
So, 0=Ω  and we have an equilibrium point.  ♦ 
We remark that through this article, we deal with connected graph topologies. 

4.1. Stability analysis  
Local stability of the consensus point for system (3) was studied in [Jadbabaie et al. (2004)] 
using La Salle's invariance principle [Khalil (1996)]. The function  

 ( )θθ TT
M BMU cos.1)( −=  (4) 

is non-negative, and such that the system can be written in the gradient form: )(θθ U−∇= . 

In particular this implies that the derivative of U  along the trajectories is 
2

)( θθ −=U . 

Hence, the function U  is non-increasing along the trajectories. Since 0≡U  at the 
consensus set, it is a local Lyapunov function for the consensus set, meaning that if we start 
near enough to this set, we will converge to it. Since the state space is compact, every 
trajectory has a non-empty ω-limit set [Guckenheimer et al. (1983)]. La Salle's result ensures 
that every trajectory goes to the set 

⎭
⎬
⎫

⎩
⎨
⎧ =−== 0)(:

2
θθθ UW  

which consists only of equilibrium points. In particular, this proves that the system admits 
no closed limit cycles and we recover the conclusion of Lemma 4.1. In order to establish 
almost global attraction of the consensus set (almost global synchronization, a.g.s.), it must 
be true that this set is the only attractor. Frequently, when we are dealing with an a.g.s. 
system, we will say that the underlying graph G is a.g.s.. The next Example shows a system 
without the a.g.s. property. 
Example 4.1: Consider the case with N=6 in which the dynamics of the agents are as follows: 
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( ) ( ) Niiiiii ,...,1sinsin 11 =−+−= +− θθθθθ  

Here the configuration is circular; we identify 7θ  with 1θ  and 0θ  with 6θ . Consider the 
equilibrium point showed in Figure 3. Using an approach that will be presented later, it can 
be shown that this configuration is locally attractive.  ♦ 

3πφ =  

 
Figure 3. Stable non-consensus equilibrium for the Kuramoto model of Example 4.1 

We thus see that guaranteeing almost global asymptotical consensus is more involved. We 
will analyze the stability of the equilibrium points using Jacobian linearization. A first order 
approximation of the system at an equilibrium point θ  takes the form δθθδ .A= , with 

θθδθ −=  and A the symmetric matrix NN ×  with entries 

( )
( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪⎩

⎪
⎨
⎧

∈
∈−=

−=−−= ∑
∈

i

iik
hi

i
Nk

ikii

Nh
Nha

a
i

,0
,cos

cos

θθ

αθθ

 

with iα  defined as in Proposition 2.1. The matrix A can be written as 

 ( )( ) TT BBdiagBA .cos. θ−=  (5) 

and can be seen as a weighted Laplacian, since TBBLA .−=−= at a consensus equilibrium. 
Two facts must be remarked. First of all, A is symmetric, reflecting the bidirectional 
influence of the agents. This implies that it is a diagonalizable matrix, with real eigenvalues. 
Note also that 01. =NA . Hence, A always has the zero eigenvalue, with associated 
eigenvector N1 . We will analyze the transversal stability of the consensus set [Khalil (1996)], 
that is, the convergence to the consensus set. 
The following results are true for general graph topologies. Their were originally introduced 
in [Monzón et al. (2005), Monzón (2006) and Monzón et al. (2006)]. 
Lemma 4.2: Let θ  be an equilibrium point of (3), such that at least one 0<iα . Then, θ  is 
unstable.  
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Proof: The numbers iα−  appear at the diagonal of the matrix symmetric A. So, a negative 

iα  implies that A has a positive eigenvalue. Then, θ  is unstable.  ♦ 

Lemma 4.3: Let θ  be an equilibrium point of (3), such that ( ) 0cos >− ik θθ  for every iNk ∈ , 

Ni ,...,1= . Then, θ  is stable.  
Proof: Since the underlying graph G is connected, 0 is a simple eigenvalue of the Laplacian 
matrix TBBL = [Biggs, (1993)]. The linearization matrix A described in (5) is a weighted 
version of L. Since the weigths are all positive, i.e., the matrix ( )[ ]θTBdiag cos  is positive 

definite, θ  is stable.  ♦ 
Example 4.2: Lemma 4.3 explains Example 4.1. In that case, the characteristic polynomial of 

the linear approximation has the roots 0 and -2 (simple), and 2
1−  and 2

3−  (double). 

Indeed, for large N, there can be equilibrium configurations with all neighboring angles 

lesser than 2
π , and thus provide other attractors than the consensus set.  ♦ 

Proposition 4.1: Let θ  be a partial consensus equilibrium point of (3). Then θ  is unstable. 
Proof: At a partial equilibrium point, we have agents at phase 0  and agents at phase π . 
Define the vector ( )θcos=v , which only contains 1  and 1− . Then, an element of vector 

vBT .  is null if the link related to the l-h row of TB  joins agents with distinct phases. Then, 
after some calculus, we have that cvAv T .4.. = , where c is the number of links that join 
agents of the two groups. Then, A has a positive eigenvalue and then, θ  is unstable.  ♦ 
If for a given graph G we can prove that the only equilibrium points correspond to partial or 
total consensus, we can ensure the almost global stability of the synchronized state. This 
observation leads us to our first main result. 
Lemma 4.4: Consider the system (3) with an associated graph G that is a tree. Then, the only 
equilibrium points are the trivial ones: partial or full consensus. 
Proof: With an appropriate reference, a (partial or total) consensus state θ  is such that 

( ) 0sin =θTB . In order to have only partial or total consensus equilibria, 0 must be the only 
solution of the equation: 0=B.x. That is, the cycle space must be trivial. Observe that for a 
connected graph, the matrix B, with N rows and e columns, has always rank N-1. Then, the 
previous equation has only the trivial solution when e=N-1, that is, it has full column rank. 
The only connected graphs with N-1 links are the trees.  ♦ 
Theorem 4.1: Consider the system (3). If the associated graph G is a tree, it is almost globally 
stable. 
Proof: The result is a direct consequence of Lemma 4.3 and Proposition 4.1.  ♦ 
If we have several systems with underlying topology given by trees, we can interconnect 
them using single links, keeping the almost global synchronization property. The next 
Example illustrates that fact. 
Example 4.3: A star graph is a connected tree graph that has a particular node, a hub, which is 
related with all of the rest of the nodes, while all the rest of the nodes are related to the hub 
only. The graph can be sketched as a star and it models several examples of centralized 
interactions between agents. It is a particular case of Theorem 4.1. The synchronized state is 



Almost Global Synchronization of Symmetric Kuramoto Coupled Oscillators 

 

175 

an almost global attractor. Moreover, if we have two star graphs and we couple them 
through their hubs, as in Figure 4, (or through any pair of agents), we obtain a new almost 
globally stable system (a kind of synchronization preserving interconnection). If we add one 
more link to a connected tree, we must have a cycle, and we may lose the almost global 
stability property, as in Example 4.1.  ♦ 
To conclude this Section we present another important result. It states that complete graphs 
are always a.g.s. The result was originally hinted in several works [Jadbabaie et al. (2004); 
van Hemmen et al. (1993)]. The prove can be found in [Monzón et al. (2005)]. 
Theorem 4.2:  Consider the system (3). If the underlying graph G is complete, the consensus 
set is almost globally stable.  ♦ 

 
Figure 4. Two star graphs coupled through their hubs (Example 4.3) 

5. Block analysis and synchronizing interconnection  
In this Section we present some results that help to answer the question of whether or not a 
graph is a.g.s. They were originally presented in [Monzón et al. (2007); Canale et al. (2007)]. 
Here, we give a longer presentation.  
From equation (3) we see that a phase angle vector θ  is an equilibrium point if and only if 

( )θTBsin  is a flow on G. Thus, it should be possible that the equilibrium points of (3) could 
be obtained from the equilibrium points of the blocks of the graph G. In fact, this is exactly 
what happens. Furthermore, the stability of these equilibria depends only on the stability of 
the associated equilibrium points of the blocks. Firstly, we present some basic results. We 
include two different proofs for Lemma 5.1, in order to show two distinct interpretations of 
the same facts: one based on linear algebra, the other using graph theory elements. Then, we 
study the relationship between the equilibria of G and the equilibria of its blocks, which will 
follow directly from Lemma 5.1. After that we focus on the stability properties. 
Lemma 5.1: Consider a graph G, with v a cut-vertex between 1G  and 2G . Then, an edge 
space element REGf →:  is a flow on G, if and only if 

1
|EGf  and 

2
|EGf  are a flows on 

1G  and 2G  respectively.  
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Proof 1: Suppose that the i vertices of 1G  and its k edges come first in the chosen labelling. 
Suppose, also, that ivv = , then B has the following form: 

 
 

 
 
 
 
where 1w  and 2w  are column vectors with appropriate dimensions. With this notation, the 
incidence matrices of 1G and 2G  are, respectively 

 

 
 
 

Besides, 1B , as incidence matrix, verifies 01 1 =BT
i , thus 01 11)1( =+−

TT
i wW , so  

 1)1(1 1 Ww T
i

T
−−=  (6) 

Let f be a flow on G. In order to prove that 
1

|1 EGff =  is a flow on 1G , we must show that 

0. 11 =fB , i.e. )1(11 0. −= ifW  and 0. 11 =fwT . The former is true because since f is a flow on 

G, 0. =fB  and )1:1)(.(. 11 −= ifBfW . On the other hand, by (6), we have that,  

00.1)..(1).1(. )1()1(11)1(11)1(11 =−=−=−= −−−− i
T
i

T
i

T
i

T fWfWfw . With the same arguments, we 

obtain that 
2

|2 EGff =  is a flow on 2G . 

Conversely, if 1f  and 2f  are flows on 1G and 2G  respectively, we have that 

ifBiBf 0.)1:1)(( 11 ==−  and )1(22 0.):1)(( +−==+ infBniBf . Finally, a direct calculation 

gives 000..))(( 2211 =+=+= fwfwiBf TT . ♦ 
Proof 2: Following [Biggs (1993), Lemma 5.1, Theorem 5.2], given a spanning tree T of G, we 
obtain a basis of the cycle space in the following form: for each edge ETEGEe \=∈ ' , we 
have a unique cycle ),( eTcyc  which determines a flow eTf , . The set Β  of these flows is a 

basis of the cycle-space. However, since v is a cut-vertex, any cycle is included either in 1G  
or in 2G , so its associated flow is null either in 1G  or  in 2G . If we regard a flow on G which 
is null in 1EG  as a flow on 2G , we can split Β  into two sets 1Β  and 2Β ,  cycle-space basis 
of 1G and 2G  respectively. Thus the cycle-space of G is the direct sum of the cycle-spaces of 

1G and 2G .  ♦ 

Lemma 5.2: Let G be a graph, VGV ⊂1  and 11 VG =  the subgraph of G induced by the 

vertices 1V  with incidence matrix 1B . Let RRH →:  be any real function, RVG →:θ  an 

element of the vertex-space of G and ( )θTBHf = . Then, if 
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11
|,|: 11 VGEGff θθ =  

it is true that 

( )111 θTBHf =  

Proof: Suppose that the i vertices and k edges of 1G  come first in the chosen labelling. Then, 

for some 'B , ''B  and 2θ , we have that 
 
 
 
 

Thus, ( ) 11):1( θθ TT BkB = , and ( ) ( )[ ] ( )11 1):1():1():1( θθθ TTT BHkBHkBHkff ==== .  ♦ 

5.1 Equilibria 

If RVG →11 :θ  is in the vector space of a subgraph 1G  of G, we will regard it also as its 
unique extension to the vector space of G which is null elsewhere of 1G . The same for an 
element of the edge space. 
Proposition 5.1: Consider the graph G with a cut-vertex v between 1G  and 2G . If θ  is an 

equilibrium point of G, then 
1

|1
VG

θθ =  and 
2

|2
VG

θθ =  are equilibrium points of 1G  and 

2G  respectively. Conversely, if 1θ  and 2θ  are equilibrium points of 1G  and 2G  

respectively, there exists a real number α  such that kN −+= 1' 22 αθθ  is an equilibrium 

point of 2G  and 21 θθθ +=  is an equilibrium point of G. 

Proof: Let B, 1B , 2B , etc. like in Lemma 5.1. If θ  is an equilibrium point of G, then 

( )θTBf sin=  is a flow on G, thus, by Lemma 5.1, 
1

|1 EGff =  is a flow on 1G . Thus, it is 

enough to prove that ( )111 sin θTBf = , which follows from Lemma 5.2, taking )sin()( xxH =  
and noticing that 1G  is an induced subgraph of G. The case for 2G  follows by the same 
arguments. 
Now, assume that 1θ  and 2θ  are equilibrium points of 1G  and 2G  respectively. Let 

)()( 21 vv θθα −= , kN −+= 1' 22 αθθ , 21 'θθθ += , and ( )θTBf sin= . Then, by Lemma 

5.2, ( )111 sin|
1

θT
EG Bff ==  and ( )111 sin|

1
θT

EG Bff == . On the other hand, due to the 

invariance of the system we have remarked on Section 2, the vector 2'θ  is also an 
equilibrium point of 2G , and then, 1f  and 2f  are flows in 1G  and 2G  respectively. 
Therefore, by Lemma 5.1, 21 ff +  is a flow on G. But 21 fff += , because 

Φ=∩ 21 EGEG . ♦ 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ×

21

11

2

11

'''''
0

' θθ
θ

θ
θθ

BB
B

BB
BB

T
ki

T
T  



Systems, Structure and Control 

 

178 

5.2 Stability analysis 
We will relate the stability properties of the graph G with a cut-vertex with the stability 
properties of the subgraphs 1G  and 2G  joined by it. Since every equilibrium of G defines an 
equilibria for 1G  and 2G , we wonder whether or not the dynamical characteristics of these 
equilibria are or not the same. We will use Jacobian linearization. Recall that the zero 
eigenvalue is always present due to the invariance of the system by translations parallel to 

n1 . If the multiplicity of the zero eigenvalue is more than one, Jacobian linearization may 
fail in classifying the equilibria. In this work, we assume that we always have a single null 
eigenvalue. We do not present here the study of this particular problem. 
Theorem 5.1:  Consider the graph G, with a cut-vertex v joining the subgraphs 1G  and 2G  of 

graph G. Let nR∈θ  be an equilibrium point of G. Then, θ  is locally stable if and only if 

1
|1 VGθ  and 

2
|2 VGθ  are locally stable and coincide in 21 VGVGv ∩= . 

Proof: Recall that the first order approximation of the system around an equilibrium point is 
given by 

( )( ) TT
G BBdiagBA .cos. θ−=  

Suppose that 1G  has i vertices, that they come first in the chosen labelling and that v is the 
last of them ( )ivv = . Then, a direct calculation gives: 

 21 AAAG +=  (7) 

with 
 
 
 
and 
 
 
 
Observe that these matrices partially overlap, so the matrix A takes the form: 
 
 
 
 
 
 
First of all, we consider the case with 1θ  and 2θ  stable and )1()( 21 θθ =i . Then, 

1GA  and 

2GA  are stable and equation (7) holds for ( )):2(, 21 in −= θθθ . So, GA  is the sum of two 

semidefinite negative matrices which gives rise a semidefinite negative one. Besides, the 
kernel of GA  has dimension 1, since if 0=wAG , then 0=wAw G

T . Thus, 

021 =+ wAwwAw TT . But, 111 1
wAwwAw G

TT =  and 222 2
wAwwAw G

TT =  for 
1

|1 VGww =  and 
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2
|2 VGww = . Then 02211 21

=+ wAwwAw G
T

G
T . That can happen if only if 011 1

=wAw G
T  and 

022 2
=wAw G

T . But the kernels of 
1GA  and 

2GA  are spanned by i1  and 11 +−in  respectively. 

Thus iw 1.1 α=  and inw −= 1.1 β . Since )()1()( 21 iwwiw == , we have βα =  and 

nw 1.α= . This proves the stability of GA . 

Now, we focus on the case with 1θ  or 2θ  unstable. We analyze the first case, since the other 
is similar. Suppose that 

1GA  has a positive eigenvalue with associated eigenvector 1w , thus 

011 1
>wAw G

T  

Define the column vector 

⎥
⎦

⎤
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1).( inin iw
iw

iw
w

w  

Then, 

11
2
111 11).(

21 +−+−+= inG
T

inG
T

G
T AiwwAwwAw  

which actually is 011 1
>wAw G

T  since 011).( 11
2
1 2

=+−+− inG
T

in Aiw . Then, θ  is unstable.  ♦ 

We are now ready to state and prove one of the main results of this Chapter. 
Theorem 5.2: Consider the graph G, with a cut-vertex iv  joining the subgraphs 1G  and 2G . 
Then, 1G  and 2G  have the almost global synchronization property if and only if G does. 

Proof: First of all, let θ  be an equilibrium point of G. According to Theorem 5.1., θ  is stable 
only if 

1
|1 VGθθ =  and 

2
|2 VGθθ =  are too. If 1G  and 2G  are a.g.s., the only locally stable 

set is the consensus, and since they have a vertex in common, the only locally stable 
equilibria of G is also the consensus and G is a.g.s. 
In the other direction, if 1θ  is a locally stable equilibrium of 1G , we chose 

( )111 1).(, −= niθθθ  and we construct a stable equilibrium for G (as we have mentioned 
before, a consensus equilibrium is always locally stable [Jadbabaie et al. (2004)]. Since G is 
a.g.s., θ , and so 1θ , must be consensus equilibrium points.  ♦ 
Theorem 5.2 has many direct consequences. We point out some of them, with a brief hint of 
the respective proofs. 
Proposition 5.2: Consider a graph G with a bridge ke  between the nodes iv  and jv  and let 

1G  and 2G  be the connected components of }keG {\ . Then, G is a.g.s. if and only if 1G  and 

2G  are. 
Proof: If a graph has a bridge, the behavior of the system depends only on the parts 
connected by the bridge. Indeed, the bridge together with its ends vertices form a block, 
which is in fact a complete graph and its vertices are cut-vertices of the graph, as is shown in 



Systems, Structure and Control 

 

180 

Figure 5. Since any complete graph is a.g.s., the a.g.s. character of the original graph 
depends on the other blocks.  ♦ 

 
Figure 5. A graph with a bridge 

 
Figure 6. A graph with arboricities 

We are now ready to present a different proof of Theorem 4.1: 
Proof 2: We can iteratively apply Proposition 5.2, since in a tree, every link is a bridge. 
If we have a graph with arboricities, like the one shown in Figure 6, we can neglect the trees 
in order to prove the a.g.s. property.  ♦ 
Corollary 5.1:A graph with the structure shown in Figure 6 is a.g.s. if and only if the graph 

1G  is. 
Proof: The result is a straightforward application of Theorem 5.2.  ♦ 
Now, we state an important result in order to classify a.g.s. graphs: 
Theorem 5.3: A graph G is a.g.s. if and only if every block of G is a.g.s.  
Proof: The graph G can be partitioned into its blocks. Then, G can be thought as a collection 
of subgraphs connected by cut-vertices. An iterative use of Theorem 5.2 leads us to the 
result.  ♦ 
Theorem 5.3 reduces the characterization of the family of a.g.s. graphs to the analysis of 2-
connected graphs. As an application, consider the case where we connect two a.g.s. graphs 
through another a.g.s. graph. In this way, we construct a new a.g.s. graph. Figures 7 and 8 
illustrate the situation. Using the known fact that every complete graph is a.g.s., we derive 
the following result. 
Theorem 5.4: If G is a graph such that all its blocks are complete graphs, then G is a.g.s.  
Proof: As we have seen in Theorem 4.2, complete graphs are always a.g.s. So, the conclusion 
follows from Theorem 5.3.  ♦ 
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Figure 7. Two graphs connected by an a.g.s. graph 

 
Figure 8. Two graphs connected by a tree 

Finally, we present two direct consequences of Theorem 5.3. They are illustrated in Figure 9.  

 
Figure 9. Situation of Propositions 5.3 and 5.4 

Proposition 5.4: If G is a tree and we build a new graph K replacing some (or every) edges of 
G by an a.g.s. graph, then K is a.g.s.  ♦ 
Proposition 5.5: If G is a tree and we build a new graph K replacing some (or every) nodes of 
G by an a.g.s. graph, then K is a.g.s.  ♦ 
Previous results, specially Theorem 5.3, imply that in order to establish that a graph is a.g.s., 
we only need to deal with its blocks. So, we must focus in the general analysis of 2-
connected graphs, as structural pieces of every connected graph. We know that complete 
graphs are a.g.s. 2-connected graphs. As long as we are able to find new a.g.s. 2-connected 
graphs, we are moving forward on the classification of all a.g.s. graphs. 
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6. Examples 
In this Section we present some examples that illustrate applications of the theoretical 
results we have presented. 
Example 6.1: Consider two Kuramoto systems with complete underlying interconnection 
graphs 31 KG =  and 51 KG =  (both a.g.s.). Starting from arbitrary initial conditions, each 
system quickly reaches a consensus state. At time T=3 seconds, we connect the two systems 
through a bridge between an arbitrary pair of agents. Then, the whole systems reaches a 
new consensus state. Observe that this convergency is slower than the previous (for the rate 
of local convergency, see [Jadbabaie et al. (2004)). Figure 10-left shows the results obtained 
from the simulation. They perfectly agree with Proposition 5.2.  ♦ 

 
Figure 10. Left: two a.g.s. systems connected by a bridge; the connection takes place at time 
T=3 seconds. Right: two a.g.s. systems that become connected by a vertex; the connection 
takes place at time T=5 seconds 

Example 6.2:  Consider two a.g.s. systems, with underlying graphs 51 KG =  and 71 KG = . 
They run independently and at time T=5 seconds, an agent of the first system gets connected 
with some agents of the second one. Then, the new system has a new underlying graph G 
which has a vertex at this agent. Figure 11-right shows the evolution of the system.  ♦ 

7. On the classification of A.G.S. graphs  
In this Section, we introduce two operations on graphs. The first one transforms any 
connected graph into an a.g.s. graph. The second one destroy the a.g.s. property. Firstly, we 
introduce the idea of twin vertices. 
Definition 7.1:  We said that two vertices u and v are twins if their have the same common 
neighbors: 

}{\}{\ uNvN vu =  

Previous definition does no assume that u and v are adjacent vertices. So, we will 
distinguish between two cases. 

7.1 Adjacent twin vertices 
The following Lemma generalizes previous results for complete graphs. 
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Lemma 7.1:  Let θ  be a stable equilibrium point of (5), then any set of adjacent twin vertices 
should be synchronized. 
Proof: Let },...,{ kvvS 1=  a set of twin vertices with the set SN  of adjacent twins and their 
common neighbors. Let α  be the sum of all the phasors of SN . Then 

( )ii

ij
SNj i

j
i

SNj
j V

V
V

VV αα +=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+== ∑∑
≠

∈∈

1.1.  

with iα  as in Proposition 2.1.  First, notice that all the iV  should be parallel. Otherwise, let 

iV   and jV  be linearly independent. Since ( ) ( )jjii VV ααα +==+ 1.1. , we should have 

( ) 01 =+ iα , thus 1−=iα  and, by Lemma 4.2, the equilibrium can not be stable. So, we 
have a group of say a vertices of SN  in phase 0θ  and another group of b=k-a ones in phase 

πθ +0 . We claim that b should be zero. Indeed, let iv  and jv  vertices of SN in the first and 

second group respectively, then: 

( )∑
∈

−+−−=
SSNl

li ba
\

θθα 0cos)1(  

and 

( )∑
∈

−++−−=
SSNl

lj ab
\

θπθα 0cos)1(  

But, ( ) ( )ll θθθπθ −−=−+ 00 coscos , thus 2−=+ ji αα  and at least one of them should be 

negative. This means that θ  is unstable.  ♦ 
As a consequence of this Lemma, we have a new way to prove that any complete graph is 
a.g.s. since all its vertices are adjacent twins. But, as we will prove, we have even more, if the 
identification of adjacent twin vertices give rise a tree, then the graph is a.g.s. Since being 
adjacent (or itself) and twin is an equivalence relation we can make the quotient graph by this 
relation. In the quotient graph, the vertices are the classes of the equivalence and two 
vertices are adjacent in the quotient if the classes have adjacent vertices. We will say that a 
graph is a twin cover of its quotient graph. 
Theorem 7.1:  Consider a given graph G and its quotient graph QG  by the adjacent-twin 

relation. If QG  is a tree, G is a.g.s. 

Proof: Let θ  be a stable equilibrium point of G. Then, ( )θTBsin  is a flow on it. This flow 
gives rise the following flow in the quotient graph. Consider two adjacent vertices u and v in 
G which are not twins. Then, the classes [ ]u  and [ ]v  are adjacent in QG . Since θ  is stable, 
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by Lemma 7.1, all the neighbors of u have the phase uθ . In the same way, we define vθ . 
Assign the number 

[ ] [ ] ( )uvvu θθ −sin..  

to the edge in QG  joining the node classes [ ]u  and [ ]v  ( [ ]u denotes the number of 

elements of the class [ ]u ). We affirm that this assignment is a flow in QG . Indeed, 

[ ] [ ] ( )
[ ] [ ]

[ ] [ ] ( )
[ ] [ ]
∑∑
∈∈

−=−
uu Nv

uv
Nv

uv vuvu θθθθ sin..sin..  

Observe that if [ ]u\uNv ∈  in G, then, the term ( )vu θθ −sin  appears [ ]v  times in the 

expression of uθ . Then, 

[ ] ( )
[ ] [ ]

( )
[ ]

0sinsin. ==−=− ∑∑
∈∈

θ
θθθθθ u

Nv
uv

Nv
uv

uu

v
u\

 

So, the stable equilibrium point θ  of G induces another equilibrium point Qθ  in QG . If QG  

is a tree, Qθ  is a partial or full synchronized point. If it is a partial synchronization state, the 

phase value of each class in QG  is 0 or π  (taking a suitable reference) and θ  is also a 

partial synchronization state and so is unstable, which contradicts the hypothesis. Then, Qθ  

and θ  are consensus equilibrium and G is a.g.s.  ♦ 
The opposite result is obviously not true. We present several corollaries that recover some 
known results and introduce tools for building a.g.s. graphs. 
Corollary 7.1: Any complete graph is a.g.s. 
Proof: Its quotient graph is the trivial one.  ♦ 
Corollary 7.2: Any complete graph minus an edge is a.g.s. 
Proof: Its quotient graph is a  tree: the only one with three vertices.  ♦ 
Corollary 7.3: Any complete graph minus any proper subset of the edges adjacent to a given 
vertex is a.g.s. 
Proof: Its quotient graph is again the only tree with three vertices. The three groups of twins 
are: first the vertex that lost more edges, those who lost only one edge and those who did 
not lose any edge.  ♦ 
The following Theorem shows that a connected graph G can be enlarged, adding twin 
vertices, in order to obtain a new a.g.s. graph. 
Lemma 7.2: In a connected graph, no equilibrium but the synchronized one is possible with 
all phasors in a half of the unit circle. 
Proof: Indeed, by absurd, suppose that there are unsynchronized vertices and without loss 
of generality that [ ]πθ ,0∈i  for all i, then Mm iiii θθθθ =<= maxmin . We claim that there 
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should exists an agent j achieving the minimum but unsynchronized with at least one of its 
neighbors. Indeed, it suffices to consider a walk from vertex mi  to vertex Mi  and the first 

moment when the angle grows. Thus, for some j, for all jNi ∈  we have 0≥− ji θθ ,  and 

0≥− jk θθ for someb 
jNk ∈ . But since the angles are in [ ]π,0 , we hace such 

( ) 0sin >− jk θθ . Therefore, 

( ) 0sin >−∑
∈ jNi

ji θθ  

 contradicting the equilibrium hypothesis.  ♦ 
Theorem 7.2: Any connected graph G admits an a.g.s. twin cover. 
Proof: Remember that by Lemma 7.1, twin vertices in a stable equilibrium should be 
synchronized. Thus, we can restrict our study to a set },...,{ nvvV 1=  of representants of the 
twins. We will identify V with the vertices of G. Furthermore, we will prove that given 

0>ε , there is a twin cover such that for any stable equilibrium θ , the angle differences 

ji θθ −  are less than ε  for all pairs ( )ji vv ,  of adjacent vertices. Thus, if the graph is 

connected with diameter D, the result will follow by taking D
πε =  and applying Lemma 

7.2. Notice that we can restrict our self to pairs ( )ji vv ,   in a spanning tree. 

Let us suppose that we have constructed the cover by splitting each vertex iv  of G in a 
number ia  of twins vertices. Then, the flow equation for (any twin of) vertex iv  in the new 
graph becomes: 

( ) 0sin. =−∑
∈ iNj

ijja θθ  

Then, for any iNk ∈  

( ) ( )∑
≠

∈
−−=−

kj
Nj

ijjikk
i

aa θθθθ sin.sin.  

and 

( )
k

kjNj
j

ik
a

a
i

∑
≠∈≤− ,sin θθ  

So, in order to find an upper bound for the difference ik θθ −  it is enough to find an upper 

bound for the last term together with a lower one for ( )ik θθ −cos . Now, we will construct 
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the spanning tree T. Let iS  be the vertices at distance i from vertex  1v  (i.e. the sphere in the 
graph of center 1v  and ratio i). Then, sort each set iS  with an order i< . We consider the 
following lexicographical order: given two vertices iSv ∈  and jSw ∈ , we say that wv <  if 

ji <  or if ji =  and wv i< . The order defined in this way is total, so we can relabel the 

vertices following this order, having nvvv <<< ...21 . Next, set ( ) in
ia −Δ= ε (rounded up) 

where Δ  is the maximum degree of a vertex in G. Then T will be the spanning subgraph of 
G that joins vertices iv  and jv  if { }l

Nl
i aa

j∈
= max . We claim that T is a tree. Indeed, it is 

acyclic, because for each i>1, any vertex in iS  is adjacent to exactly one vertex in 1−iS . 
Besides any vertex reaches vertex 1v , thus T is connected as well. 

Let us now find an upper bound for the sine of the difference between adjacent vertices of T. 
Let iv  and kv  be adjacent vertices of T with ki > . Then 

( ) ( ) ( )[ ]
( )

ε
ε
εθθ <

Δ
+Δ−Δ≤≤− −

−−
≠∈

∑
kn

kn

k

kjNj
j

ik
a

a
i 1.1sin

1
,  

for any Δ<ε . On the other hand, since the equilibrium is stable we have that 

( ) 0cos.1 ≥−+− ∑
∈ iNj

ijji aa θθ  

Thus, by the same argument 

( )
( )

( )1, 1.

cos.

cos −≠∈ Δ+−>

−+

−≥−
∑

ε

θθ

θθ
k

kjNj
ijji

ki
a

aa
i  

Thus, choosing ε  small enough we will have that the angles differ in less than any 
prescribed  'ε . ♦ 
We can prove a dual version of this theorem which says that if we add an enough amount of 
vertices to an edge which is not a bridge we will obtain a non a.g.s. graph. 
Theorem 7.3 Let e be an edge of a graph G. Then, if e is not a bridge, there is an integer 0n  

such that the graph obtained from G by making 0nn >  subdivisions of e is not a.g.s. 

Proof: The idea is the following. Consider the cycle nC , with 6≥n . As was mentioned in 

Example 4.1 and Lemma 4.3, nC  is not a.g.s. because 
n

i
πθ 2=  is an equally distributed stable 

equilibrium point. Consider also the graph }{\ eG , obtained from G by removing the edge 

e. Take a edge of nC , say uv and replace it by }{\ eG , joining the vertices of e with u and v. 
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The new graph we have obtained is the original G with the edge e split into several edges 
(see the sketch of Figure 11). 

 
Figure 11. Situation of Theorem 7.3 

The idea is the following: if n is large enough, the force induced by nC  will be weak enough 
to change the trivial equilibrium point of G to another still stable one. 
Let mvv ,...,1  be the vertices of G and let 21vve = . Since e is not a bridge, }{\ eGG ='  is 

connected and m0  is an stable equilibrium point of 'G . Now, connect the vertices 1v  and 2v  

of 'G  through a path 211 ,...,: vwwvP nn ==  to obtain a graph G~  with vertices 

{ }mn vvwwV ,...,,,...,~
31= . We want to prove that for n large enough, there exist an 0>ε  

and angles εθi ,  mi ≤≤1 , such that the point RVi →~:εθ  defined by: 

i

i

i
x vx

wxi
=
=

⎩
⎨
⎧

=
if
if

,
,

/ ε
εε

θ
ε

θθ  

is a stable equilibrium point of G~ .  In order for εθ  to be an equilibrium it must satisfies: 

( ) Vx
xNy

xy
~,0sin ∈=−∑

∈

εε θθ  

where xN  is the set of neighbors of vertex x in graph G~ . These equations are trivially 

fulfilled for 12 ,..., −= nwwx . Thus, it remains the following set of equations: 

( )
( )

( ) { }⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈=∑ −

=−∑ −

=+∑ −

∈

∈

∈

21

2' 2

1' 1

,~0sin

0)sin(sin

0)sin(sin

vvVx
xNy

xy

vNy
vy

vNy
vy

\εε

εε

εε

θθ

εθθ

εθθ

 

where N and N’ denote neighbors in G and G’ respectively. This system can be thought as an 
ε --perturbation of the system that defines the equilibrium of G’. Moreover, if we add an 
adequate equation, e.g. 0

1
=vθ , the system verifies the hypothesis of the implicit function 

theorem for m0=θ  and 0=ε . Thus, it implicitly defines the angles εθ x  as a function of ε , 
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for each GVx ∈ , in a neighborhood ( )00 ,εε−  of 0. Moreover, we will have that εθ  is a ∞C  

curve in nR  passing through m0  for 0=ε . 

Finally, in order to prove stability, we notice that when 0=ε , all the cosines ( )εε θθ ji −cos  are 
positive, thus, the eigenvalues of the Jacobian linearization are negative, by Lemma 4.3. 
Thus, by the continuous dependence of the eigenvalues, 0ε  could be taken in such a way to 

assure the stability of equilibrium points εθ  for each ( )00 ,εεε −∈ . Therefore it suffices to 

take 00 2 επ>n , and for each 0nn > ,  to set nπε 2= . ♦ 

7.2 Non adjacent twins 
When the vertices are twins but not adjacent, previous arguments does not work, but 
something interesting can however be said. Indeed, let { }tvvS ,...,1=  a set of non adjacent 
twin vertices with the set SN  of common neighbors. As in Proposition 2.1, let α  be the sum 
of the phasors of SN. Then 

tiV
V
V

VV ii
SNj i

j
i

SNj
j ,...,1,.. ==== ∑∑

∈∈

αα  

So if two of them, say iV  and jV  are linearly independent, then, one of them is linearly 

independent to any of the others. So, kα  should be zero for any tk ,...,1= .  
Otherwise, if all of them are parallel, but non synchronized, we have a group of say a 
vertices of SN in a phase 0θ  and another group of atb −=  ones in phase πθ +0 .  Let iv  

and jv  be in each group. Then: 

( )∑
∈

−=
SNl

li θθα cos    and ( )∑
∈

−+=
SNl

lj θπθα cos    

But, ( ) ( )ll θθθπθ −−=−+ coscos  , thus 0=+ ji αα . As this argument could be repeated for 

any of the others pair of not synchronized vertices, if 1, >ba , we have a consistent 
homogeneous system of equations which has the null solution as the only one. Then, each 

iα  should be zero. If a or b is 1, either both iα  and jα  are null or some of them is negative. 
Summing all this up we have the following result. 
Lemma 7.3: Let θ  be an equilibrium point of (3), then any set of t twin vertices should have 

their iα  equal to 0 if the equilibrium is stable or the synchronized twins are more than one. ♦ 
In that case, the matriz A of (5) will have a block of zeros (the one corresponding to the set of 
twins), thus either A has a kernel of dimension greater than one or it has positive 
eigenvalues and so is unstable. Thus we have the following result. 
Proposition 7.1:  Let θ  be a non degenerated stable equilibrium point of (3), then any set of 
non adjacent twin vertices should be synchronized.  ♦ 
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8. Conclusions  
In this work we have introduced the idea of almost global synchronization  (a.g.s.) of 
Kuramoto coupled oscillators. Local stability properties of the synchronization were 
recently stated and the are independent of the underlying interconnection graph. We have 
shown that the algebraic properties of this graph  play a fundamental role when we look for 
global properties. Algebraic and dynamical properties are extremely related for these kind 
of systems. So, we presented the idea of a.g.s. graphs and started a characterization of this 
family of graphs. We have shown that the trees, the simplest graphs, are a.g.s. We have 
proved that complete graphs, the most complex, are also a.g.s. Several counterexamples 
illustrates that there are non a.g.s. graphs. We have proved that the characterization of a.g.s 
graphs can be reduced to the analysis of 2-connected graphs, since a graph is a.g.s. if and 
only if its block are. Typical techniques for graphs classification, like the use of 
homeomorphisms, can not be applied here, since we have shown that the a.g.s. property is 
not preserved by this way. Then, a different approach must be considered to go on with the 
classification. 

9. References 
Biggs, N. (1993). Algebraic Graph Theory, Cambridge University Press. 
Canale, E. & Monzón, P. (2007). Gluing Kuramoto coupled oscillators networks, 46th IEEE 

Conference on Decisión and Control, pp. 4596-4601, New Orleans, USA. 
Cvetkovic, D; Doob, M. & Sachs, H. (1979) Spectra of Graphs: theory and applications. Ney York 

Academic Press. 
Dussopt, L. & Laheurte, J. (1999). Coupled oscillator array generating circular polarization, 

IEEE Microwave Guided Wave Letters, vol. 9, Nº4, pp.160-162. 
Ermentrout, G. (1985). The behavior of ring coupled oscillators, Journal of Mathematical 

Biology, vol. 23, pp.55-74. 
Guckenheimer, J. & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations 

of vector fields, Applied Mathematical Sciences 42, Springer-Verlag. 
Jadbabaie, A.; Lin, J. & Morse, S. (2003). Coordination of groups of mobile autonomous 

agents using nearest neighbor rules, IEEE Trans. on Automatic Control, vol. 48, Nº6, 
pp.988-1000. 

Jadbabaie, A.; Barahona, M. & Motee, N. (2004). On the stability of the Kuramoto model of 
coupled nonlinear oscillators, in Proc. of the Amerincan Control Conference. 

Khalil, H. (1996). Nonlinear Systems, Prentice-Hall. 
Kuramoto, Y. (1975). In International Symposium on Mathematical problems in Theoretical 

Physics, Lecture Notes on Physic, vol. 39, pp.420. 
Kuramoto, Y. (1984) Cooperative dynamics of oscillator community, Progress of Theoretical 

Physics Suppl., Nº 79, pp.223-240. 
Marshall, J.; Broucke, M. & Francis, B. (2004). Formations of vehicles in cyclic pursuit, IEEE 

Trans. on Automatic Control, vol. 49, Nº11, pp.1963-1974. 
Moshtagh, N.; Jadbabaie, A. & Daniilidis, K. (2005). Distributed geodesic control laws for 

flocking of nonholonomic agents, in Proc. of the Joint 44th  IEEE Conference on 
Decision and Control and European Control Conference, pp. 2835-2838, Seville. 



Systems, Structure and Control 

 

190 

Monzón, P & Paganini, F. (2005). Global considerations on the Kuramoto model of 
sinusoidally coupled oscillators, in Proc. of the Joint 44th  IEEE Conference on Decision 
and Control and European Control Conference, pp.3923-3928, Seville. 

Monzón, P. (2006). Almost global stability of dynamical systems, Ph.D. Dissertation, 
Universidad de la República, Uruguay. 

Monzón, P & Paganini, F. (2006). Global properties of symmetric coupled oscillators with 
non complete associated interconnection graph, in Congresso Brasileiro de 
Automática, pp.470-475, Bahia, Brazil. 

Monzón, P. & Canale, E. (2007). Single interconnection of Kuramoto coupled oscillators, 3rd 
IFAC Symposium on System, Structure and Control, WM2-5, Foz de Iguaçu, Brasil. 

Rantzer, A. (2001). A dual to Lyapunov’ stability Theorem, Systems & Control Letters, 42(3), 
pp.161-168. 

Rogge, J.A. & Aeyels, R.D. (2004). Stability of phase-locking solutions in a ring of 
unidirectionally coupled oscillators, Journal of Physics A: Mathematical and General, 
vol. 37, pp.11135-11148. 

Strogatz, S. (1994). Nonlinear Dynamics and Chaos: with applications to Physics, Biology, 
Chemistry and Engineering. Perseus. 

Strogatz, S. (2000).From Kuramoto to Crawford: exploring the onset of synchronization in 
populations of coupled nonlinear oscillators”, Physica D, Nº143, pp.1-20. 

van Hemmen, J.L. & Wreszinski, W.F. (1993). Lyapunov function for the Kuramoto model of 
nonlinearly coupled oscillators, Journal of Statistical Physics, 72(1/2), pp.145-166. 

Winfree, A. (1980). The Geometry of Biological Time, Springer. 
York, R. (1993). Nonlinear analysis of phase relationships in quasi-optical oscillator arrays, 

IEEE Trans. on Microwave Theory and Applications, vol. 41, Nº 10, pp.1799-1808. 
 



9 

On Stability of Multivariate Polynomials 
E. Rodriguez-Angeles 

Mexico State Autonomous University, Engineering Faculty 
Mexico 

1. Introduction  
In the univariate polynomial case there are only two notions of stability: Hurwitz stability 
for continuous polynomials, and Schur stability for discrete polynomials. However, in the 
multivariate polynomial case there exists a more complex situation since there are more 
classes of stability: Wide Sense Stable (WSS), Scattering Hurwitz Stable (SHS) and Strict 
Sense Stable (SSS) for continuous polynomials (Fettweis & Basu, 1987), and Wide Sense 
Schur Stable (WSSS), Scattering Schur (SS) and Strict Sense Schur Stable (SSSS) for discrete 
polynomials (Basu & Fettweis, 1987). These classes have different properties, for example 
some classes reduce to the Hurwitz or antiSchur univariate notion and some polynomials 
from some classes may lose their stability property in the presence of arbitrary small 
coefficient variations. Besides, between these classes has not been possible to establish a 
similar relationship as it does for Hurwitz and Schur univariate polynomials by the Moebius 
transformation (Bose, 1982). 
For a long time, SSS and SSSS polynomials have been employed to obtain key properties of 
stability and robust stability in their own domain because they have more coincident 
characteristics with Hurwitz and Schur univariate notions than the other multivariate 
classes have (Basu & Fettweis, 1987; Fettweis & Basu, 1987). Despite of this, in this work the 
interest is focused in two different notions of stability: Stable class for the continuous case 
(Kharitonov & Torres-Muñoz, 1999), and Schur Stable class for the discrete case (Torres-
Muñoz et al., 2006). The reason is twofold: firstly, both classes have the property of being the 
largest classes preserving stability when faced to arbitrary small coefficient variations, and 
secondly, it has been recently shown that any member of the Stable class is associated, by a 
bilinear transformation, to one member of the Schur Stable class in the same way that 
Hurwitz and Schur univariate polynomials are related by the Moebius transformation 
(Torres-Muñoz et al., 2006). Besides, both classes are the natural extension of their univariate 
counterpart: Hurwitz and Schur univariate classes. 
In general, in the analysis and control of any system is important to have efficient, from the 
computational point of view, criteria to test the stability of its characteristic polynomial. For 
the univariate case, there is a big variety of well-known efficient algorithms to deal with the 
Hurwitz and Schur stabilities (Barnett, 1983; Parks & Hahn, 1992; Bhattacharyya, 1995). 
However, in the multivariate case this problem is more complex: in the m -variate ( 2>m ) 
case there are few algorithms reported and they have the problem of their efficiency (Bose, 
1982). Despite of this, in the bivariate ( 2=m ) case there are a lot of algorithms to deal with 
the Schur Stable bivariate issue and some of them are efficient (Anderson & Jury, 1973; 
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Maria & Fahmy, 1973; Siljak, 1975; Bose, 1977; Jury, 1988; Yang & Unbehauen, 1998; Bistritz, 
2002; Xu et al., 2004; Dumitrescu, 2006). In contrast, in the continuous bivariate case the 
reported algorithms are devoted to the SSS class (Zeheb & Walach, 1981; Bose, 1982), i.e. 
there are no reported algorithms dealing with the Stable bivariate class. In this work an 
attempt is made to give a simple and efficient criterion to the Stable bivariate class. 
In the univariate case, the fact that the Moebius transformation of any Hurwitz polynomial 
gives a Schur polynomial and viceversa has allowed extending stability and robust stability 
results from one domain to the other (Parks & Hahn, 1992). In this work it is used a similar 
fact between the Stable and Schur Stable bivariate classes in the following way: firstly it is 
obtain the discrete counterpart of a given continuous bivariate polynomial, next its Schur 
stability is proved, and finally the Schur stability of this polynomial implies the stability of 
the continuous polynomial. For this, a new Schur Stable bivariate test is developed by 
constructing a reduced order polynomial array for univariate Schur polynomials with literal 
coefficients in such a way that the Schur stability of these polynomials together with specific 
coefficient conditions implies the stability of the original polynomial. 
This work begins with the introduction of some preliminaries notions and notation of 
multivariate polynomials and a summary of some key properties of the Stable and Schur 
Stable classes. Next the problem is clearly defined, following with the presentation of the 
Schur Stable and Stable tests. Finally, some examples and conclusions remarks are given. 

2. Preliminaries of multivariate polynomials 
(Bose, 1982) A multivariate polynomial in the variable vector ( )msss ,,, 21 …=s  is a finite sum 
of the form 

 ( ) ∑∑ ∑
= = =
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sssap s   (1) 

where ks , mk ,,2,1 …=  are the independent variables of partial degree ( ){ }spn kk deg= , 
mk ,,2,1 …= . The coefficients 

miiia
21

 are given real (or complex numbers). One may define, 

following the lexicographic order of the indices, the coefficient vector 

( )
mnnnaaaa …

21
,,,, 020010000=a . 

In the analysis of multivariate polynomials is very useful to write the polynomial ( )sp  as an 
univariate polynomial with polynomial coefficients, i.e. 
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for mi ,,2,1 …= , and where the coefficients 
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are ( )1−m -variate polynomials. In this case, the free and the main polynomial coefficients 
with respect to the variable is  correspond to 0=k  and ink =  respectively. 
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A root of ( )sp  is a vector ( )02010 ,,, msss …=0s  such that ( ) 0=0sp . If ( ) ( )0,302032 ,,,,, mm ssssss …… =  
are fixed to some arbitrary value, then ( )0201 ,,, msssp …  is an univariate polynomial in the 
variable 1s  of degree 1n . In conclusion, and in contrast with the univariate case, a 
multivariate ( )sp  has a finite number of root manifolds in a n -dimensional complex space. 
Besides, in contrast with the univariate case, two multivariate polynomials may be coprime 
but possessing common roots (Kharitonov & Torres-Muñoz, 1999). 
Let us denote the set of constant degree m -variate polynomials by 

( ) ( ){ }{ }nssn == ppP deg|  

where ( )mnnn ,,, 21 …=n , N∈in , is the vector of constant partial degrees. Similar definitions 
will hold for univariate polynomials. 
In the analysis of the continuous multivariate polynomials is often used the notion of the 
conjugate polynomial. The conjugate polynomial of ( )sp  with respect to the variable 1s , 
using ( )sp  as in the decomposition (2) with respect to the variable 1s , is given by 

 ( ) ( ) ( )( ) ( )∑
=

−=−=
1

0
132

1
21

* ,,,,,,
n

k

k
mkm ssssassspp ……s   (3) 

where ( ) ( )mk sssa ,,, 32
1 …  means that all coefficients and variables msss ,,, 32 …  are changed by 

their complex conjugates. Clearly, the conjugate polynomial can be taken from one until m  
variables. Hereafter it will be considered, unless otherwise stated, the conjugate ( )s*p  with 
respect to the variable 1s . 
To distinguish the discrete polynomials from the continuous case, and for tradition, a 
discrete multivariate polynomial is notated as ( )zq , the variable vector  and the coefficient 
vector used are ( )mzzz ,,, 21 …=z  and ( )

mnnnbbbb …
21

,,,, 020010000=b  respectively. Besides, the 

structure of a discrete polynomial is the same as (1) and it is also possible to write it as in the 
decomposition (2).  
In the analysis of the discrete multivariate polynomials is often used the notion of the 
reciprocal conjugate polynomial. The reciprocal conjugate polynomial of ( )zq  with respect 
to the variable 1z , using ( )zq  as in the decomposition (2) with respect to the variable 1z , is 
given by 

 ( ) ( ) ( )( )∑
=

−−⊗ ==
1

11

0
132

1
12

1
11 ,,,,,,

n

k

k
mk

n
m

n zzzzbzzzzqzq ……z   (4) 

where ( )( )mk zzzb ,,, 32
1 …  means that all coefficients and variables mzzz ,,, 32 …  are changed by 

their complex conjugates. Clearly, the reciprocal conjugate polynomial can be taken from 
one until m  variables. Hereafter it will be considered, unless otherwise stated, the conjugate 

( )z⊗q  with respect to the variable 1z . 

2.1 Stable multivariate polynomials 
In the continuous case consider the following polydomain 
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( ) ( ) ( ){ }missss imm ,,2,1,0Re|,,, 21
0 …… =≥=Γ  

together with its essential boundary 

( ) ( ) ( ){ }missss im
m ,,2,1,0Re|,,, 21 …… ===Ω . 

Definition 1: A multivariate polynomial ( ) ns Pp ∈  is called Stable if it satisfies the following 
conditions 
1) ( ) ( )00 mp Γ∈∀≠ ss . 
2) Main ( )1−m -variate polynomials ( ) ( )mii

i
n sssssa

i
,,,,,, 1121 …… +− , for mi ,,2,1 …= , are Stable 

polynomials, according to this definition, with degree ( )mii nnnnn ,,,,,, 1121 …… +− . 
A polynomial satisfying just condition 1 is called Strict Sense Stable (SSS). Such class of 
polynomials has played an important role in stability and robust stability analysis (Feetweis 
& Basu, 1987). This class reduces to the standard notion of Hurwitz stability in the 
univariate case, but may lose its stability property in the presence of small arbitrary 
coefficients perturbations (Kharitonov & Torres-Muñoz, 1999). This fragility is very 
undesirable when one studies the robustness issue. 
Note that the stable class is a proper subclass of the SSS class, as it is the largest multivariate 
class preserving stability under small coefficient variations (Kharitonov & Torres-Muñoz, 
1999). Besides, the stable class reduces to the traditional Hurwitz class in the univariate case, 
so the stable class also preserves several useful properties of univariate Hurwitz 
polynomials too (Kharitonov & Torres-Muñoz, 1999; Kharitonov & Torres-Muñoz, 2002). A 
summary of some of properties of the stable multivariate class is the following. 
Lemma 1: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Let 1s  be fixed at some value 10s  such 
that ( ) 0Re 10 ≥s . Then the ( )1−m -variate polynomial ( )msssp ,,, 210 …  is a stable polynomial of degree 
( )mnnn ,,, 32 … . 
Lemma 2: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Assume that 01 >n , then the 
polynomial ( ) ( )m

n ssspsp ,,,ˆ 2
1

11
1 …−=s  is a stable multivariate polynomial of the same degree as ( )sp . 

Notice that, by successive aplication, in Lemma 1 and Lemma 2 can be taken from one until 
m  variables. 
Next result is the extension of the Lucas’ Theorem for the Hurwitz univariate polynomials 
(Marden, 1949), i.e. it shows the invariance of the stability property under differentiation 
that can be taken, by successive application, from one until m  variables. 
Theorem 3: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Assume that 01 >n , then the 

polynomial ( ) ( )
1

21 ,,,~
s

sssp
p m

∂
∂

=
…s  is a stable multivariate polynomial of degree ( )mnnn ,,,1 21 …− . 

Lemma 4: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Then all ( )1−m -variate polynomial 
coefficients  ( ) ( )mii

i
k sssssa ,,,,,, 1121 …… +−  for ink ,,1,0 …= , in the decomposition (2) with respect to 

the variable is  for mi ,,2,1 …= , are stable polynomials of degree ( )mii nnnnn ,,,,,, 1121 …… +− . 
Next property is the extension of the classical Stodola’s Condition for Hurwitz univariate 
polynomials (Gantmacher, 1959). 



On Stability of Multivariate Polynomials 

 

195 

Theorem 5: Let ( ) ns Pp ∈  be a stable multivariate polynomial with real coefficients. Then all 
coefficients  

miiia
21

of the polynomial have the same sign: either all of them are positive, or all of them 

are negative. 
Lemma 6: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Then the main coefficient 

mnnna
21

 is not 

zero. 
Proof: For the case 1=m the statement is obvious. 
For 2=m , consider a stable  bivariate polynomial ( )21, ssp  of degree ( )21,nn . By Definition 1, its 
main univariate polynomial coefficient ( ) ( )2

1
1

san , in the decomposition (2) with respect to the variable 

1s , is a Hurwitz stable polynomial of degree 2n , i.e. coefficient 0
21

≠nna . 
Assume that the statement is true for ( )1−m -variate polynomials and consider the m -variate case. 
Given a stable multivariate polynomial ( )sp  of degree ( )mnnn ,,, 21 … , from Definition 1 follows that 
its main ( )1−m -variate polynomial coefficient ( ) ( )mn sssa ,,, 32

1
1

… , in the decomposition (2) with 

respect to the variable 1s , is a stable ( )1−m -variate polynomial of degree ( )mnnn ,,, 32 … , then, by the 
induction hypothesis, coefficient 0

21
≠

mnnna . 

Next results show that for stable multivariate polynomials the robust stability can be 
considered without structural restrictions on uncertain parameters, and that a stable 
multivariate polynomial has no roots close to the essential boundary. 
Theorem 7: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Then there always exists 0>ε  such 
that every multivariate polynomial with a coefficient vector lying in the ε -neighbourhood of the 
coefficient vector of ( )sp  is stable too. 
Theorem 8: Let ( ) ns Pp ∈  be a stable multivariate polynomial. Then there always exists 0>ε  such 

that it has no roots in the ε -neighbourhood of the essential boundary ( )mΩ . 

2.2 Schur Stable multivariate polynomials 
In the discrete domain consider the polydisc given by 

( ) ( ){ }mizzzzU imm ,,2,1,1|,,, 21
0 …… =≥=  

and its essential boundary given by 

( ) ( ){ }mizzzzT im
m ,,2,1,1|,,, 21 …… === . 

Definition 2: A multivariate polynomial ( ) nz Pq ∈  is called Schur Stable if  ( ) ( )00 mUq ∈∀≠ zz . 
The so-called Strict Sense Schur Stable (SSSS) class is often employed in the literature and it 
considers a ( ) nz Pq ∈  SSSS if ( ) 0≠zq for all ( ){ }mizzzz im ,,2,1,1|,,, 21 …… =≤∈z , (Basu & 
Feetweis, 1987). Despite of SSSS class preserves stability under small coefficient variations, it 
reduces to the standard antiSchur polynomials notion in the univariate case, so some key 
properties of Schur univariate polynomials can not be extended to the multivariate case as the 
invariance of the Schur stability property under differentiation (Torres-Muñoz et al., 2006). 
The Schur stable class, in the sense of Definition 2, is also used in the literature (Huang, 
1972; Kaczorek, 1985). Actually, it is the reciprocal class of the SSSS class and also preserves 
stability under small coefficient variations. Besides, the Schur stable class reduces to the 
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standard Schur class in the univariate case, so several useful properties may be extended 
from the univariate Schur polynomials to the multivariate case (Torres-Muñoz et al., 2006). 
A summary of some of the properties of the Schur stable multivariate class is the following. 
Lemma 9: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Let 1z  be fixed at some value 10z  
such that 110 ≥z . Then the ( )1−m -variate polynomial ( )mzzzq ,,, 210 …  is a Schur stable polynomial 
of degree ( )mnnn ,,, 32 … . 
Lemma 10: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Assume that 01 >n , then the 
polynomial ( ) ( )mzzzqq ,,,~

21 …−=z  is a Schur stable multivariate polynomial of the same degree as 
( )zq . 

Theorem 11: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Assume that 01 >n , then the 

polynomial ( ) ( )
1

21 ,,,~
z

zzzq
q m

∂
∂

=
…z  is a Schur stable multivariate polynomial of degree 

( )mnnn ,,,1 21 …− . 
Notice that Lemma 9, Lemma 10 and Theorem 11 are the discrete version of Lemma 1, 
Lemma 2 and Theorem 3 respectively, then it can be also taken from one until m  variables. 
Lemma 12: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Then the main ( )1−m -variate 
polynomial coefficients ( ) ( )mii

i
n zzzzzb

i
,,,,,, 1121 …… +− , for mi ,,2,1 …= , in the decomposition (2) with 

respect to the variable iz , are Schur stable polynomials of degree ( )mii nnnnn ,,,,,, 1121 …… +− . 
It is worth to mention that other polynomial coefficients, different from the main 
polynomial coefficients, in the decomposition (2), are not necessarily Schur stable (Torres-
Muñoz et al., 2006). 
Next property is the extension of the classical coefficient condition for Schur univariate 
polynomials (Bhattacharyya, 1995). 
Lemma 13: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Then the coefficient condition 

mnnnbb
21000 <  is hold. 

Corollary 14: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Then the main coefficient 

mnnnb
21

 is not zero. 

Proof: It directly follows from Lemma 13 and the fact that 0000 b≤ . 
Next results show that the Schur stable multivariate class is suitable to study the robustness 
issue. 
Theorem 15: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Then there always exists 0>ε  
such that every multivariate polynomial with a coefficient vector lying in the ε -neighbourhood of the 
coefficient vector of ( )zq  is Schur stable too. 
Theorem 16: Let ( ) nz Pq ∈  be a Schur stable multivariate polynomial. Then there always exists 0>ε  

such that it has no roots in the ε -neighbourhood of the essential boundary ( )mT . 

3. Problem statement 
From a practical point of view is essential to dispose of computationally feasible polynomial 
stability criteria. For the univariate case, there are some very well-known efficient stability 
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criteria (Barnett, 1983; Parks & Hahn, 1992; Bhattacharyya, 1995), but for the m -variate case 
there aren’t. However, there are some criteria for the bivariate case (Jury, 1988; Bistritz, 2002; 
Xu et al., 2004; Dumitrescu, 2006), but their implementation in the multivariate case is not 
easy.  In this work the main goal is to tackle the following. 
Problem: Given a continuous bivariate polynomial ( )21, ssp , find an efficient polynomial coefficients 
dependent criterion allowing to conclude whether or not it belongs to the stable class, in the sense of 
Definition 1. This criterion must be also potentially suitable for its extension to the multivariate case. 
At first glance, by nature of the continuous stable class, trying to obtain non-recursive 
criteria might be a hard task. This contrasts with the discrete Schur case where research 
efforts leaded to reliable algorithms allowing to analyze stability depending on the 
polynomial coefficients in a finite number of steps. 
In the univariate polynomial case, Hurwitz stability implies Schur stability and viceversa. 
This correspondence has allowed to translate stability results between continuous and 
discrete domains. For instance, translation of Routh-Hurwitz stability criterion inspired the 
development of coefficient-based algorithms for Schur stability (Parks & Hahn, 1992). 
In such a vein, the belief that SSS bivariate polynomials are in strict equivalence with Schur 
stable bivariate polynomials was in the center of earlier attempts to develope a bivariate 
stability theory. In these attempts were used a different transformation of transformation 
(5). Unfortunately, the early conclusion was only SSS stability is implied by Schur stability 
and not in the reverse sense (Bose, 1982). The same conclusion is obtained using 
transformation (5): consider the SSS polynomial ( ) 1221 ++= sssp s , it turns out that the 
transformed discrete polynomial, using transformation (5), ( ) 13 2121 ++−= zzzzq z  is not 
Schur stable as it has the root ( ) ( )0

21,1 U∈− , (Torres-Muñoz et al., 2006) . Therefore, there is no 
way to infer stability results between SSS and Schur stable classes. 
However, recently was shown that the multivariate stable class in the sense of Definition 1 is 
the counterpart of the multivariate Schur stable class in the sense of Definition 2. 
Theorem 17: (Torres-Muñoz et al., 2006) The polynomial ( )sp  of degree ( )mnnn ,,, 21 …  is stable if 
and only if the polynomial 
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is a Schur stable polynomial of degree ( )mnnn ,,, 21 … . 
Observe that this transformation is the natural extension of the Moebius univariate 
transformation. This result was used as a bridge to translate properties and stability results 
from the continuous domain to the discrete one and viceversa (Torres-Muñoz et al., 2006). 

4. An indirect criterion for continuous bivariate polynomial stability 
On the basis of Theorem 17, an indirect bivariate continuous stability algorithm can be 
stated as follows: 
Given a continuous bivariate polynomial 
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1. Construct the discrete polynomial ( )zq  using the transformation (5). If ( )zq  has the 
same degree as ( )sp , then continue. If it is not the case, then the polynomial ( )sp  is not 
stable. 

2. Apply any Schur bivariate stability test to ( )zq . 
3. If ( )zq  is Schur stable, then the polynomial ( )sp  is stable. If it is not the case, then the 

polynomial ( )sp  is not stable. 
It is worth noticing that there exists a variety of criteria for the Schur bivariate stability case 
(Jury, 1988; Bistritz 2002) that might be potentially adapted to the case of continuous 
bivariate stable polynomials in the step 2. However, a new simple Schur stability test was 
introduced recently as one alternative way to tackle the problem of giving a reliable criterion 
for the continuous stable class (Rodriguez-Angeles et al., 2007). The underlying philosophy 
is, inspired on the univariate case, to try to find an array of reduced degree polynomials 
whose stability will imply stability of the original polynomial (Bhattacharyya et al., 1995). 
Theorem 18: (Rodriguez-Angeles et al., 2007) The polynomial ( ) nPzzq ∈21,  is Schur stable if and 
only if 
i) ( ) 0, 210 ≠zzq  for all 12 ≥z  and for a fixed 101 zz =  such that 110 ≥z . 
ii) Given the following polynomial sequence 

 ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]{ }⊗
−

+ −= 20120
,1

020120
,1

1
201

1 ,,1,
1

zzqzbzzqzb
z

zzq jjjj
jn

j   (6) 

the following inequality holds 

 ( )( ) ( )( )20
,1

020
,1

1
zbzb jj

jn >−   (7) 

for all 202 zz =  such that 120 =z , where ( )( ) ( )201201
0 ,, zzqzzq =  and ( )( )20

,1 zb j
k  is the k -th coefficient 

of the j –th polynomial ( )( )201, zzq j  for 1,,1,0 1 −= nj … . 
The Schur bivariate stability algorithm, based on Theorem 18, can be stated as follows: 
Given a discrete bivariate polynomial in the decomposition (2) with respect to the variable 1z  

( ) ( ) ( )∑∑∑
== =

==
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n
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n
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ii
ii zzbzzbq z  

1. Verify if the univariate polynomial ( )2,1 zq  is Schur stable. If it is Schur stable, then 
continue. If it is not the case, then the bivariate polynomial ( )zq  is not Schur stable. 

2. Verify step by step if the inequality 

( ) ( ) ( ) ( )θθ jjjj
jn ebeb ,1

0
,1

1
>−  

holds for all [ ]πθ 2,0∈  and for 1,,1,0 1 −= nj … , and where coefficients ( ) ( )θjj
jn eb ,1

1−  and ( ) ( )θjj eb ,1
0  

are obtained from sequence (6) with θjez =2 . If all inequalities hold, then the bivariate 
polynomial ( )zq  is Schur stable. If one of the coefficient conditions fails, then stop and the 
bivariate polynomial ( )zq  is not Schur stable. 
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Actually, the step 2 can be implemented in a numerical and graphical way providing a 
simple test for Schur bivariate stability. Besides, notice that the graphical testing is just 
needed in a bounded interval independently of the polynomial vector degree. 
Example 1: Determine the stability of the continuous bivariate polynomial 

( ) ( ) ( ) ( ) 2
1

2
221

2
22

2
22 75.2325.132125.175.0 ssssssssp ++++++++=s . 

According to Theorem 17 the stability of ( )sp  is equivalent to the Schur stability of the 
transformed polynomial ( )zq  given by 

( ) ( ) ( ) ( ) 2
1

2
221

2
22

2
2 5.025.05.025.025.0 zzzzzzzq +++++=z . 

Hence ( )zq  has the same degree as ( )sp , one has to check the Schur stability of ( )zq . 
Following the algorithm for Schur bivariate stability, one may verify the step 1. Then let us 
tackle the step 2. 
The first polynomial of the sequence (6) is 

( ) ( ) ( ) ( ) ( ) 2
1

2
1

22
1

0 5.025.05.025.025.0, zeezeeeezq jjjjjj θθθθθθ +++++= . 

From Figure 1 one can see that the inequality ( ) ( ) ( ) ( )θθ jj ebeb 0,1
0

0,1
2 >  holds for all [ ]πθ 2,0∈ . 

Then, let us continue with the test. 
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Figure 1. Coefficient condition for the 1st polynomial ( ) ( )θjezq ,1

0  of the polynomial sequence 

The second polynomial of the sequence (6) is 
( ) ( ) ( ) ( ) 1

222
1

1 25.025.0625.0625.025.1125.025.025.05.0, zeeeeeeeezq jjjjjjjj θθθθθθθθ ++++++++= −−− . 

From Figure 2 one can see that the inequality ( ) ( ) ( )( )θθ jj ebeb 1,1
0

1,1
1 >  holds for all [ ]πθ 2,0∈ . 

Then the discrete bivariate polynomial ( )zq  is Schur stable as it is reported in several papers 
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(Huang, 1972; Jury, 1988; Bistritz, 2002). Therefore, the continuous bivariate polynomial 
( )sp  is stable. 
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Figure 2. Coefficient condition for the 2nd polynomial ( ) ( )θjezq ,1

1  of the polynomial sequence 

5. Numerical examples 
The aim is to show the potential applicability of the indirect algorithm presented in the 
previous section when dealing with bivariate polynomials of relatively high degree. From a 
computational point of view, it is instrumental to take into account the relationship between 
the coefficients of a continuous multivariate polynomial ( )sp  and those of its discrete 
counterpart ( )zq . Actually, the coefficients of the bivariate polynomials ( )21, ssp  and 

( )21, zzq  are related by a linear transformation as it is expressed in the following. 
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Corollary 20: Let ( )sp  and ( )zq  two bivariate polynomials related as in (8) with coefficient vectors 
a  and b  respectively. The coefficient vectors are related through the matrix equation Tab = . This 
relationship can be expressed as 
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Notice that previous statements may be deduced by straightforward matrix calculations 
from the transformation (8). 
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Besides, for the computational implementation it is useful to write a polynomial 
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Example 2:  Check the stability of the  ( )6,11 -degree continuous polynomial ( )sp  expressed in the 
form (9) with 
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Applying Theorem 19 or Corollary 20 it is possible to find its discrete counterpart 
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Hence ( )zq  has the same degree as ( )sp , one has to check the Schur stability of ( )zq . 
Following the Schur bivariate stability algorithm, it is easy to check that step 1 holds. Then 
let us proceed to check step 2 of the algorithm. 
Actually, the sequence of polynomials (6) and the coefficient conditions (7) of the Schur 
bivariate stability algorithm may be easily implemented in a numerical way. Indeed one 
may generate step by step a sequence of graphics allowing to decide if such conditions are 
satisfied. In this example we have the following graphics. 
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Figure 3. Coefficient condition for the 1st polynomial ( ) ( )θjezq ,1

0  of the polynomial sequence 
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Figure 4. Coefficient condition for the 2nd polynomial ( ) ( )θjezq ,1

1  of the polynomial sequence 
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Figure 5. Coefficient condition for the 3rd polynomial ( ) ( )θjezq ,1

2  of the polynomial sequence 

 

 

 

0 1 2 3 4 5 6 7
0

5

10

15

20

25

θ

|b8
(1,3)(ejθ)|

|b0
(1,3)(ejθ)|

 
Figure 6. Coefficient condition for the 4th polynomial ( ) ( )θjezq ,1

3  of the polynomial sequence 

The first graphics, Figure 3, Figure 4 and Figure 5, show that condition (7) is hold. However, 
the last graphic, Figure 6, shows that condition (7) is not respected. Certainly, polynomial 

( )zq  is not Schur stable and by consequence polynomial ( )sp  is not stable. 
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7. Conclusions 
In this work, an unified multivariate polynomial stability theory was considered and it is 
based on the Stable and the Schur stable multivariate classes, for continuous and discrete 
domains respectively. The main focus was to give feasible criteria to determine whether or 
not a continuous bivariate polynomial belongs to the Stable class. 
In a direct approach, the recursive nature of the continuous Stable class imposes the needing 
of checking Hurwitz stability of the two main univariate polynomial coefficients, where 
partial degree preservation is required as well, and the SSS stability of the original 
polynomial. To check the first items one can use every of the well-known univariate criteria, 
and to check the SSS stability there are some criteria that can be used, but them have some 
efficient problems. 
In an indirect approach, the stability of a continuous bivariate polynomial is deduced by 
analyzing the Schur stability of its discrete bivariate polynomial counterpart. Firstly, the 
method presented in this work requires of checking Schur stability of a constant coefficients 
univariate polynomial, and secondly checking Schur stability of an univariate polynomial 
with literal coefficients. To check the first item there are no problem. To check the last item it 
is necessary the fulfilment of a sequence of coefficient conditions, of the form (7), in the finite 
frequency interval [ ]πθ 2,0∈ . If these two items are satisfied, then the continuous 
polynomial belongs to the Stable class. Because of its simplicity, coefficient conditions are 
feasible in a graphical manner and, by construction, the complexity of the algorithm is 
independent of the polynomial degree. 
In a future work, the extension of the proposed indirect bivariate algorithm to the 
multivariate case can be analyzed, and there are another way to use the relationship 
between Stable and Schur stable multivariate polynomials: obtain a direct continuous 
stability criterion by translating, through the relation (5), an existing Schur stable test. 
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LQ and H2 Tuning of Fixed-Structure Controller 
for Continuous Time Invariant System 

with H∞ Constraints 
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Russia 

1. Introduction 
The problem of fixed-order and fixed-structure controller tuning has been known for more 
than half a century and is a one of the classic problems of the control theory. Great number 
of papers and several monographs are devoted to this problem (e.g., Rotach et al., 1984; 
Datta, 1998; Datta et al., 2000; Astrom & Hagglund, 2006). Analytic methods based on 
information on structure and form of plant mathematical model play the main role among 
the methods for solving this problem. These include: 
• tuning methods based on single-stage solution of controller parameters synthesis 

problem (Rotach et al., 1984; Astrom & Hagglund, 2006); 
• automatic tuning methods based on application of relay feedback (Rotach et al., 1984; 

Datta, 1998; Datta et al., 2000; Hjalmarsson, 2002; Astrom & Hagglund, 2006); 
• methods based on indirect adaptive control, or implicit reference model (internal model 

control) (Petrov & Rutkovskiy, 1965; Datta, 1998; Datta et al., 2000; Astrom & Hagglund, 
2006). 

For recent two decades, many papers devoted to application of powerful 2H  and ∞H  
optimization tools to design and tuning problems for fixed-structure controllers have been 
presented (McFarlane & Glover, 1992; Zhou et al., 1996; Balandin & Kogan, 2007). Moreover, 
the concepts of robust design have brought to a new view of known controller tuning 
methods. 
In (McFarlane & Glover, 1992), a practically effective solution for fixed-order controller 
tuning problem was obtained. It is based on shaping frequency responses of open control 
loop by means of pre- and post-filters (loop shaping) in conjunction with minimizing ∞H  
norm of closed-loop system. The main advantage of this approach consists in that the 
resulting controller is not only stabilizing, but possesses assured performance characteristics 
in conditions of uncertainty. The method has been successfully applied for synthesis of PID 
(Proportional-Intagrating-Derivative) controller for SISO (Single-Input Single-Output) plant, 
as well as multiloop PID controller for MIMO (Multi-Input Multi-Output) plant. The 
controller tuning problem is close to the plant identification problem that implies using of 
constrained and unconstrained optimization technique for finding optimal controller tuning 
algorithms in model matching problem (Poznyak, 1991) and, in particular, in internal model 
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control. In (Tan et al., 2002), for solving the problem of PID controller design for MIMO 
plant the authors use BMI (bilinear matrix inequality) technique and minimization of ∞H  
norm of adjusted system transfer function introduced in (McFarlane & Glover, 1992). In 
(Balandin & Kogan, 2007), the authors present the synthesis method for adjusted system 
with fixed-order controller based on LMI (linear matrix inequality) technique guaranteeing 
boundedness of 2H  norm of the adjusted system transfer matrix together with its stability. 
In (Bao et al., 1999), the authors introduce a technique for multiloop PID controller tuning 
based on Bounded Real Lemma (BRL) allowing to obtain the numerical solution via semi-
definite programming. This method of controller tuning based on direct synthesis 
algorithms with application of LMI technique has certain advantages, namely: 
• This is the first LMI-based controller tuning method that has shown its validity and 

effectiveness in solving a number of applied problems. 
• There is standard software tools (e.g., Matlab) for implementation of this method. 
But this tuning method also has a number of drawbacks: 
• This approach poorly fits for synthesis from viewpoint of required control performance. 
• The synthesis problem solution results in controller of general full-order observer form. 

It requires solving additional approximation problem in frequency domain for PID 
controller tuning. 

• For fixed-structure controller, the method requires use of pre- and post-filters and, in 
general case, results in solving BMIs. 

• The solution depends on choosen initial conditions. 
The problem of fixed-order and fixed-structure controller tuning formulated in terms of 
quadratic optimization was solved in (Yadykin, 1985). It results in classic least-squares 
method of controller tuning algorithm synthesis. This approach is based on application of 
indirect adaptive control with implicit reference model of linear plant (also called internal 
model control). The principal distinction between this approach and other methods 
mentioned before consists in that the adjusted system performance is given directly by fixed 
parameters of the implicit reference model. Criterion of proximity for dynamic 
characteristics of the adjusted control system and its reference model can be expressed in 
terms of Frobenius norm for coefficients of polynomials generated by transfer functions of 
the control system and its reference model. The main idea of new approach introduced in 
this Chapter consists in replacement of the aforementioned tuning functional by 2H  norm of 
difference between transfer functions of closed-loop adjusted and reference systems and 
switching from unconstrained optimization to optimization under constraints in form of 
LMIs guaranteeing bounded ∞H  norm of transfer function of closed-loop system. By virtue 
of Parseval’s Theorem, it is the 2H  norm of difference between transfer functions of closed-
loop adjusted and reference systems gives direct estimation of difference between transients 
in the closed-loop adjusted and reference systems. Thus, the tuning objective consists in 
providing the adjusted system with transient performance of the reference model. 

2. Problem Statement 
Consider linear continuous time invariant control system consisting of the dynamic plant 
and fixed-structure controller 
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where ( ) pn
px t ∈R  is the plant state, 1( )y t ∈R  is the plant output, 1( )u t ∈R  is the control, 
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cx t ∈R  is the controller state, 1( )g t ∈R  is the reference signal, and the matrices ,pA  ,pB  
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defined at the earlier stage of parametric identification. Also assume 2( ) [0, ).g t ∈ +∞L  We are 
interested in tracking the reference input ( )g t  for an arbitrary set of plant parameters inside 
of some bounded region .Σ  It is assumed that controller (2) has fixed structure.  The feature 
of this controller tuning problem is in that the controller structure does not change in tuning 
process, i.e. the matrices cmA  and cmC  are fixed, and only elements of the vector cB  and 
scalar value cD  are to be adjusted. Such situation appears, for instance, when controller (2) 
is a PID controller. Denote the generalized tuning vector 
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The goal of controller tuning on the base of principle of internal model of control loop 
consists in reaching the identity 
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where 1( )my t ∈R  is the output of implicit (virtual) reference model of system (1)–(2) under 
assumption that the plant input is fed by the test signal ( )g t  and the plant parameters 
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⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5) 

 0
( ) ( )

( ) : , (0) ,( ) ( ) ( )
cm cmcm cm

m cm cm
cm cmm m

A Bx t x t
K s x xC Du t g t y t

⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6) 

where the state vectors of reference plant and controller, as well as the reference plant output 
and control have the same dimensions as their counterparts in system (1)–(2). Naturally, 
reference closed-loop system (5), (6) is assumed to be stable. The standard controller tuning 
procedure after plant identification consists of two stages (Astrom & Hagglund, 2006): 
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• synthesis of the controller parameters in nominal mode; 
• optimal controller tuning according to given tuning criterion. 
At that, it is assumed that the plant parameters at zero time take on any constant values 
from the admissible set .Σ  
Tuning objective (4) in frequency domain under assumption of zero initial conditions is 
equivalent to the identities 

 ( ) ( ) ( , ),mj jΦ ω ≡ Φ ω ∀ω∈ −∞ +∞  (7) 

 ( ) ( ) ( , ),mW j W jω ≡ ω ∀ω∈ −∞ +∞  (8) 

where ( )W s  and ( ) ( )/(1 ( ))s W s W sΦ = +  are the transfer functions of open- and closed-loop 
systems, respectively. Denote in advance that identities (7) and (8) are equivalent if some 
conditions, namely, full adaptability conditions hold true. The conditions (criteria) of weak, 
full, and partial adaptability of a control system (Yadykin, 1981) are some generalizations of 
controllability and observability criteria. Similar to the latter criteria, adaptability of a 
system can be determined in terms of ranks of some special adaptability matrices. The 
notion of system adaptability will be considered in the next section. 
Condition (8) expresses the requirement of proximity of the dynamic operators of the 
adjusted and reference open-loop systems along the whole set of admissible plant 
parameters .Σ  This is equivalent to proximity of transient responses of these systems when 
their inputs are fed with the unit step. Condition (7) expresses the same requirement for the 
closed-loop systems. In nominal mode we obviously have ( ) ( ).mW j W jω = ω  
Let us pass from the identity of transfer functions to the identity of polynomials generated 
by these transfer functions. The transfer functions of plant (1) and controller (2), as well as 
transfer functions of reference plant (5) and controller (6) are given by 

 1( ) ( ) ,p p pP s C sI A B−= −  (9) 

 1( ) ( ) ,cm cm c cK s C sI A B D−= − +  (10) 

 1( ) ( ) ,m pm pm pmP s C sI A B−= −  (11) 

 1( ) ( ) ,m cm cm cm cmK s C sI A B D−= − +  (12) 

respectively. Substituting expressions (9)–(12) into identity (8), we obtain the following 
polynomial controller tuning equation: 

 
1 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( ) .
p p p cm cm c p p p c

pm pm pm cm cm cm pm pm pm cm

C sI A B C sI A B C sI A B D

C sI A B C sI A B C sI A B D

− − −

− − −

− − + −

= − − + −
 (13) 

Applying series expansion of resolvents in left-hand and right-hand parts of the last equality 
and multiplying its both parts to the product of characteristic polynomials of the plant, 
controller, and implicit reference plant and controller models, we obtain the following 
equation for the controller tuning polynomial (Datta, 1998): 

2 1
1 1 2 1 2 1 2 2( ) ( ) ( ) 0.c p

c p c p c p c p

n n
n n n n n n n nP N s P N s P N+ −

+ − + − + +− + + − + − =  

Define the adaptability matrices 
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 1 2 ,L L Lμ μ= ⎡ ⎤⎣ ⎦  T T T
1 2N N Nμ μ⎡ ⎤= ⎣ ⎦  (14) 

 and the linear-quadratic (LQ) tuning functional 1J  as follows 

 
2 1

T
1 1 2 1 2

0
tr( ) ( ), , ,

c pn n

c cJ P N P N P L B L D N N N
+ −

μ μ μ μ μ μ μ μ μ μ
μ=

= − − = + = +∑  (15) 

11 1

1 1 1 2 1
0 0 0

, ,
p pc c c cn nn n n n

i j i j
m cm j p p p cm cm m cm i p p p

i j i j
L a a a C A B C A L a a a C A B

−− −
− −

μ σ η+ + μ σ ν +
σ= = η=ν σ= = ν=

= =∑ ∑ ∑ ∑ ∑ ∑  

11 1

1 1 1 2 1
0 0 0

, ,

, , : ,

p pc c c cn nn n n n
i j i j

cm i pm pm pm cm cm cm cm i pm pm pm cm
i j i j

N a a a C A B C A B N a a a C A B D

j j

−− −
− −η−ν

μ σ η+ + μ σ ν +
σ= = η=ν σ= = ν=

= =

∀σ ν σ + ν + = μ

∑ ∑ ∑ ∑ ∑ ∑

 

where ,ia  ,mia  cmia  are the coefficients of the characteristic polynomials of the plant, as 
well as implicit reference model of plant and controller, correspondingly. 
Identity (8) can be rewritten as 

( ) ( ) ( ) ( )( ) ( ) ( , ),
( ) ( ) ( ) ( ) ( ) ( )

c p cm pmo om

c p o om cm pm

M j M j M j M jM j M j
Q j Q j Q j Q j Q j Q j

ω ω ω ωω ω
= ≡ = ∀ω∈ −∞ +∞

ω ω ω ω ω ω
 

where ( ),oM s  ( ),cM s  ( )pM s  are the numerator polynomials of transfer functions of the 
open-loop system, controller, and plant, ( ),oQ s  ( ),cQ s  ( )pQ s  are the respective denominator 
polynomials of these transfer functions. Let us denote 

( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ).o o cm o om o o o oP s M s Q s N s M s Q s F s P s N s= = = −  

Then 
2 1

0
( ) ( ) .

c pn n
i

o i i
i

F s P N s
+ −

=
= −∑  

Let us also consider another one tuning functional 

 2
2 2

1( ) ( ) ( ( ) ( ))( ( ) ( ))
2m m mJ s s j j j j d

+∞

−∞

= Φ − Φ = Φ − ω − Φ − ω Φ ω − Φ ω ω
π ∫  (16) 

as a criterion of proximity of the adjusted and reference closed-loop systems.  
Having introduced the tuning functionals 1J  and 2 ,J  let us formulate the following two 
tuning problems for given plant (1), the controller matrices ,cmA  ,cmC  and reference 
model (5), (6). 

Problem 1 (LQ Optimal Controller Tuning): Find 
TT

c cG B D⎡ ⎤= ⎣ ⎦  such that 

 1 min.
G

J →  (17) 
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Problem 2 ( 2H  Optimal Controller Tuning): Find G  such that 

 2 min.
G

J →  (18) 

Before giving solutions to the established problems, we need consider the notice of control 
system adaptability and properties of the adaptability matrices in some more details. 

3. Adaptability of Control System and Properties of Adaptability Matrices 
Adaptability is a structural property of a control system. It characterizes the potential ability 
of the control system to retain its dynamic characteristics when adjusting the parameters of 
the system toward its given reference model in the situation where the parameter set of the 
plant scatters around the parameter set of the nominal (reference) operating conditions of 
the control system (Yadykin, 1999). 
Let us consider a control system consisting of plant (1) and controller (2) given stable closed-
loop reference model (5), (6). It is assumed that plant (1) is completely controllable and 
observable, and the state-space realizations ( , , )p p pA B C ∈Σ  and ( , , , )cm c cm cA B C D  are 
minimal. Define the output error of system (1), (2) with respect to reference model (5), (6) as 

 ( ) ( ) ( ).me t y t y t= −  (19) 

Definition 1 (Complete Adaptability): Control system (1), (2) is said to be completely 
adaptable with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  there 

exists a unique vector 
TT

c cG B D∗ ∗ ∗⎡ ⎤= ⎣ ⎦  such that 

0 0 0 0 2( , , )
inf ( , , , , , , , , , ) 0

p p p
p c pm cm p p pA B C

e t g x x x x A B C G∗

∈Σ
=  

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  

Definition 2 (Partial Adaptability): Control system (1), (2) is said to be partially adaptable 
with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  and any vectors 

G  there exists a unique vector G∗  such that 

0 0 0 0 0 0 0 02 2( , , )
inf ( , , , , , , , , , ) ( , , , , , , , , , )

p p p
p c pm cm p p p p c pm cm p p pA B C

e t g x x x x A B C G e t g x x x x A B C G∗

∈Σ
=

 

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  

Definition 3 (Weak Adaptability): Control system (1), (2) is said to be weakly adaptable 
with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  and any vectors 

G  there exists a set of vectors G∗  such that 

0 0 0 0 0 0 0 02 2( , , )
inf ( , , , , , , , , , ) ( , , , , , , , , , )

p p p
p c pm cm p p p p c pm cm p p pA B C

e t g x x x x A B C G e t g x x x x A B C G∗

∈Σ
=

 

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  
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Notice that all three kinds of adaptability characterize structural properties of the control 
system but not of the plant characterized by the invariant properties called controllability, 
observability, stabilizability, and detectability. Also denote that the adaptability property 
can be verified experimentally. 
The above adaptability definitions can be extended onto linear discrete time invariant 
systems, dynamic systems with static nonlinearities, bilinear control systems, as well as onto 
MIMO linear and bilinear control systems (Yadykin, 1981, 1983, 1985, 1999; Morozov & 
Yadykin, 2004; Yadykin & Tchaikovsky, 2007). 
Adaptability matrices (14) possess the following properties (Yadykin, 1999): 
1. The adaptability matrix L  is the block Toeplitz matrix for MIMO systems. For SISO 

systems L  is the Toeplitz matrix. 
2. The adaptability matrix L  has maximal column rank if and only if 

 det( ) 0.p pC B ≠  (20) 

Condition (20) is the necessary and sufficient condition of partial adaptability of control 
system (1), (2), as well as the necessary condition of its complete adaptability. 

3. Each block Nμ  of the block adaptability matrix N  equals to (block) scalar product of 
the (block) row of the matrix L  and column vector G  where all variables subscripts are 
added with subscript m  in the cases when it is absent, and vice versa. 

4. Each block of the matrix L  is a linear combination of block products of the plant 
matrices ,i j

p p pC A B−  controller matrices ,cm cmC Aη−ν  ,cB  ,cD  and products of the 
coefficients of the characteristic equations of the plant, controller, and their reference 
models. 

5. Upper and lower square blocks of the adaptability matrix L  have upper and lower 
triangle form, respectively. 

4. Solutions to LQ and H2 Tuning Problems 
In this section we consider the solutions of LQ and 2H  optimal tuning problems (17) and 
(18) for fixed-structure controllers formulated in Section 2 and briefly outline an approach to 
LQ optimal multiloop PID controller tuning for bilinear MIMO control system. 

4.1 LQ Optimal Tuning of Fixed-Structure Controller 
Let us determine the gradient of the tuning functional 1J  given by (15) with respect to 
vector argument using formula 

Ttr( ) .Ax A
x

∂
=

∂
 

Applying this formula to expression (15), we obtain 
2 1

T T1

0
2 ( ) , , , 0,2 1.

p cn n

p c
P P LJ P N L L n n

G G G G

+ −
μ μ μ

μ μ μ μ
μ=

∂ ∂ ∂∂ = − = = μ = + −
∂ ∂ ∂ ∂∑  

Thus, the necessary minimum condition for the tuning functional 1J  is 
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 T1 ( ) 0.J L LG N
G

∂ = − =
∂

 (21) 

In paper (Yadykin, 2008) it has been shown that necessary minimum condition (21) holds 
true in the following two cases: 
1. If 0LG N− =  then system (1), (2) is completely adaptable. 
2. If 0LG N− ≠  but T( ) 0L LG N− =  then system (1), (2) is partially or weakly adaptable. 
In the first case (complete adapatability), the equation 

 0LG N− =  (22) 

has a unique exact solution. In this case, necessary minimum condition (21) is also sufficient. 
In the second case (partial or weak adaptability), equation (22) does not have an exact 
solution, but the equation 

 T( ) 0L LG N− =  (23) 

has a unique approximate solution or a set of approximate solutions. Thus, if the matrix L  
has maximal column rank, then the vector (matrix) 

 T 1 T( )G L L L N L N∗ − += =  (24) 

is the solution to equation (23). In expression (24), L+  denotes Moore-Penrose generalized 
inverse of the matrix L  (Bernstein, 2005). 
The following Theorem establishing the necessary and sufficient conditions of complete and 
partial adaptability of system (1), (2) follows from the theory of matrix algebraic equations 
(Gantmacher, 1959). 
Theorem 1: Let plant (1) be completely controllable and observable, and the state-space 
realizations ( , , )p p pA B C  and ( , , , )cm c cm cA B C D  be minimal. Control system (1), (2) is 
completely adaptable with respect to the output ( )y t  if and only if 

 Im Im ,N L⊆  (25) 

 Ker 0,L =  (26) 

where Im  denotes the matrix image and Ker  denotes the matrix kernel. Control system (1), 
(2) is partially adaptable with respect to the output ( )y t  if and only if condition (26) holds. 
To illustrate LQ optimal tuning algorithm (24), let us consider a simple example. 
Example 1: Let control system (1), (2) consists of a linear oscillator and PI (Proportional-
Intagrating) controller in forward loop closed by the negative unitary feedback. The state-
space realizations of the plant and controller are given by 

0 1 0 0
1 1/(2 ) , .0 1

1 0 0

p p cm c P I
p p

p cm c P

A B A B k k
T bC C D k

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥

= − − ς = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎣ ⎦
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We suppose that { }: , 0 .b b b b bΣ = ≠  The transfer functions of the plant and controller, 

as well as the reference plant and controller are as follows: 

1

2 2
1( ) , ( ) ,

2 1
ImP I

P P Im
p p p

k sk kbP s K s k k k
s sT s T s

− += = + =
+ ς +

 

1

2 2
1( ) , ( ) .

2 1
m Im

m m Pm Im
pm pm pm

b k sP s K s k k
sT s T s

− += =
+ ς +

 

Substituting these expressions into identity (8) and eliminating equal factors, we obtain 

P m Pmbk b k=  

from which it follows that LQ optimal tuning of the controller parameters is given by 

 1 .P m Pmk b b k∗ −=  (27) 

Thus, for any values of the plant coefficient b  from the admissible set Σ  tuning 
algorithm (27) provides identical coincidence of the transfer functions of the open-loop 
adjusted system and its reference model. This means that the considered system is 
completely adaptable with respect to the output in terms of Definition 1 in the class of the 
linear oscillators with a single variable parameter (coefficient b ). 
Let as now assume that the plant is characterized by three variable parameters: 

{ }, , : , , , 0 .p p p p p p p pb T b b b T T T bΣ = ς ς ς ς ≠  

We are interested in tuning of two parameters of PI controller, Pk  and ,Ik  or, equivalently, 
the scalars cB  and .cD  Applying formulas (15), one can easily obtain the following 
expressions for the adaptability matrices: 

2 2

2 3

0
2 2

, ,2 2

0

m cm

pm pm m cm p p m cm

p pm pm m cm p m cm p p

p m cm p

b b B
bT b b B T b D

L NbT bT b B T b D T

bT b D T

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ς ς +⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ς + ς
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where ,cm Pm ImB k k=  .cm PmD k=  Denote that the elements of the matrix L  are periodic: 

11 22 21 32 31 42 41 12, , , .l l l l l l l l= = = =  

According to LQ tuning algorithm (24), the optimal controller parameters are defined as 

T

12 2 4 2

2 22 2 2 4

2 3

1 0
2 1 21 4 2 (1 )

.2 22 (1 ) 1 4
0

cm

pm pm cm p p cmpm pm p pm pm pc m

p pm pm cm p cm p ppm pm p pm pm pc

p cm p

B
T B T DT T T TB b

T T B T D Tb T T T TD
T D T

−∗

∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ς ς +⎡ ⎤⎡ ⎤ + ς + ς + ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ς + ςς + + ς +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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4.2 LQ Optimal PID Controller Tuning for Bilinear MIMO System 
Let us outline an approach to extension of LQ optimal fixed-structure (PID) controller 
tuning algorithm presented in Subsection 4.1 onto the class of bilinear continuous time 
invariant MIMO systems with piecewise constant input signals. This approach can be found 
in more details in papers (Morozov & Yadykin, 2004; Yadykin & Tchaikovsky, 2007). 
Let us consider the bilinear continuous time-invariant plant described by the equations 

 1
( ) ( ) ( ) ( ) ( ),

( ) ( ),

r

p p pi i
i

p

x t A x t B u t N x t u t

y t C x t
=

⎫
= + + ⎪

⎬
⎪= ⎭

∑  (28) 

where ( ) n
px t ∈R  is the plant state, [ ]T

1( ) ( ) ( ) r
ru t u t u t= ∈R  is the control, ( ) ry t ∈R  is 

the plant output, and the matrices ,pA  ,pB  ,pC  ,piN  1, ,i r=  have compatible dimensions. 
Also consider the fixed-structure controller, namely, multiloop PID controller for plant (28) 
with transfer matrix 

 { }1( ) diag ( ), , ( ) ,rK s K s K s= …  (29) 

where 

1 1( ) 1 .
1i i i

i i
K s k TD s

TS s TL s
⎛ ⎞= + +⎜ ⎟ +⎝ ⎠

 

The state-space equations for PID controller (29) are given by (2) with 

{ }

[ ] [ ]{ } { }
−

− ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= = = ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

= =

= = = − +

… …

… …

1 21 2
1

1

31 3

1 2
1 3 2

0
diag , , , , diag , , ,

0 0

diag 1 1 , , 1 1 , diag , , ,

( ) , / , / ( / / ).

i r
c c cr ci c

r

c c r

i i i i i i i i i i i i i i

k k k
A A A A B

k k

C D k k

k TL k k TD L k k TL k TS k TD TL

 

The reference plant model is given by 

 1
( ) ( ) ( ) ( ) ( ),

( ) ( ),

r

m pm m pm m pmi m mi
i

m pm m

x t A x t B u t N x t u t

y t C x t
=

⎫
= + + ⎪

⎬
⎪= ⎭

∑  (30) 

where all vectors and matrices have the same dimensions as their counterparts in actual 
plant (28). The reference controller has the same structure as controller (29): 

 { }1( ) diag ( ), , ( ) ,m m mrK s K s K s= …  (31) 

where 

1 1( ) 1 ,
1mi mi m mi

m mi m mi
K s k T D s

T S s T L s
⎛ ⎞= + +⎜ ⎟ +⎝ ⎠
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and its state-space equations are given by (6) with corresponding structure of the realization 
matrices. 
We are interested in tuning the parameters ,ik  ,iTD  ,iTS  ,iTL  1, ,i r=  of controller (29) 
such that to ensure the identity 

( ) ( )my t y t≡  

in steady-state mode provided that the parameters of plant (28) and control signal vary as 
step functions of time within some bounded regions ,Σ  .Ω  
The main idea of applying approach described in Subsection 4.1 for solving this problem 
consists in linearization of bilinear plant (28) and reference plant (30) with respect to the 
deviations from the steady-state values. In this case we obtain the linearized model of the 
actual plant 

 
( ) ( )

,( ) ( )0
p pp p

p

A Bx t x t
y t u tC

⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (32) 

o o

1
( ), , ,

r

p p pi i i p p p p
i

A A N u u B B C C
=

= + + Δ = =∑  

and the reference plant 

 
( ) ( )

,( ) ( )0
pm pmpm pm

m mpm

A Bx t x t
y t u tC

⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (33) 

o o

1
( ), , .

r

pm pm pmi i i pm pm pm pm
i

A A N u u B B C C
=

= + + Δ = =∑  

Then, the problem of PID controller tuning for bilinear plant (28) reduces to Problem 1, and 
we can apply LQ optimal controller tuning algorithm described in Subsection 4.1 to solve it.  

4.3 H2 Optimal Tuning of Fixed-Structure Controller 
To evaluate the squared 2H  norm of difference between the transfer functions of the 
adjusted and reference closed-loop systems, we need the following result. 
Lemma 1: Let ( ) ( , , )W s A B C=  be the strictly proper transfer function of a stable dynamic 
system of order n  without multiple poles. Let ( , , )A B C -realization of the transfer function 

( )W s  be the minimal realization. Then the following relations hold 

 2
2

1 1

( ) ( )( ) ( ) ( ) ,
( ) ( )

i i

n n

i i d
i i ds s s

M s M sW s W s sW s
Q s Q s

−

+ −
+ −

− − + −
= = =

= =∑ ∑Re  (34) 

 

1 1

0 1 0 12
2

0

0 0 0

( 1 )

( ) ,

( 1)

n n n n
j j

i j i jn j j

n n ni j j jj
j j ji i i

j j j

s a CA B s a CA B

W s

a s ja s a s

−λ− −λ−λ λ λ
− −

λ= =λ+ λ= =λ+

=
− − −

= = =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪−⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭=

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪−⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑ ∑
∑

∑ ∑ ∑
 (35) 
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where is +  are the poles of the main system, is −  are the poles of the adjoint system, that is, 
( 1) ,i is s+ −= − ⋅  ja  are the coefficients of the characteristic polynomial of the matrix ,A  

( ) ( )( ) , ( ) ,
( ) ( )

( ) ( ), ( ) ( ), ( ) ( ) , ( ) ( ) ,

( ) 0, ( ) 0.
s s s s

i i

M s M sW s W s
Q s Q s

M s M s Q s Q s M s M s Q s Q s

Q s Q s

+ −
+ −

+ −

+ + − −
=− =−

+ −
+ −

= =

= = = =

= =

 

Proof: When the Lemma 1 assumptions hold true, we have for the main and adjoint systems 

 1 1( ) ( )( ) ( ) , ( ) ( ) .
( ) ( )

M s M sW s C sI A B W s C sI A B
Q s Q s

+ −
+ − − −

+ −= − = = − − =  (36) 

As is well known, the resolvent of the matrix A  has the following series expansion (Strejc, 
1981): 

 
1

11

0 10

1( ) .
n n

j i j
in i

j i jii

sI A s a A
a s

−
− −−

= = +=

− = ∑ ∑
∑

 (37) 

Substitution of (37) into (36) gives 

 
1

1

0 1 0
( ) , ( ) ,

n n n
j i j i

i i
j i j i

M s s a CA B Q s a s
−

− −+ +

= = + =
= =∑ ∑ ∑  (38) 

 
1

1

0 1 0
( ) ( 1) , ( ) ( 1) .

n n n
j j i j i i

i i
j i j i

M s s a CA B Q s a s
−

− −− −

= = + =
= − = −∑ ∑ ∑  (39) 

By definition of 2H  norm, 

2
2

1( ) ( ) ( ) .
2

W s W j W j d
+∞

−∞

= − ω ω ω
π ∫  

Since by assumption the integration element in the last integral is strictly proper rational 
function, let us apply the Theorem of Residues forming closed contour C  consisting of the 
imaginary axis and semicircle with infinitely big radius and center at the origin at the right 
half of the complex plain. Inside of this contour, there are only isolated singularities defined 
by the roots of the characteristic equation ( ) 0Q s− =  of the adjoint system. It follows that 

1

1 1

( ) ( )1 ( ) ( )
2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).
( ) ( )

i i

i i

n

d d
i ds ds s s

n n

i id
i ids s s

M s M sW j W j d
Q s Q s Q s Q s

M s M s W s sW s
Q s Q s

−

−

+∞ + −

− + + −
=−∞ =

+ −
+ −

− −+ −
= ==

− ω ω ω =
π +

= =

∑∫

∑ ∑ Re

 

Applying (38), (39), we obtain expression (35). 



LQ and H2 Tuning of Fixed-Structure Controller  
for Continuous Time Invariant System with H∞ Constraints 

 

219 

Correctness of the following equalities in notation of Section 2 can be proved by direct 
substitution: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ,
( ) ( ) ( ) ( )

o om om o o
m

o om o om

M s Q s M s Q s F sW s W s
Q s Q s Q s Q s

−
− = =  (40) 

 ( )( ) ( ) .
( ( ) ( ))( ( ) ( ))

o
m

o o om om

F ss s
Q s M s Q s M s

Φ − Φ =
+ +

 (41) 

It is obvious that if the adjusted system is completely adaptable then ( ) 0oF s ≡  and 

1 2Arg min Arg min .
G G

J J=  

The following Theorem answer the question: Whether this equality retains when the system 
is not completely adaptable? 
Theorem 2: Let plant (1) be completely controllable and observable, the transfer functions 

( ) ( , , )p p pP s A B C=  and ( ) ( , , , )c c c cK s A B C D=  be strictly proper rational functions with no 
multiple and right poles. Then the following statements hold true: 
1. The necessary minimum conditions for functionals 1J  and 2J  coincides and are given 

by either 
 0LG N− =  (42) 

or 0,LG N− ≠  but 
  T( ) 0.L LG N− =  (43) 

2. If equation (42) has a unique solution, then the necessary minimum condition is also 
sufficient. 

3. The optimal controller tuning algorithms for functionals 1J  and 2J  coincide and are 
given by 

 .G L N∗ +=  (44) 

Proof: Applying Lemma 1 and equality (41), we obtain 

 2
1 1

( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

p c p c

c c
i mi

n n n n
o o o o

d d
o om om o o om om oi ids dss s s s

F s F s F s F sJ
R s R s R s R s R s R s R s R s

− −

+ ++ − + −

+ + − − + + − −
= == =

= +∑ ∑  (45) 

where ( ) ( ) ( )o o oR s Q s M s= +  and ( ) ( ) ( )om om omR s Q s M s= +  are the characteristic polynomials 
of closed-loop system and its implicit reference model (superscripts “ + ” and “ − ” are used 
for the main and adjoint systems, respectively), c

is −  and c
mis −  are the poles of the adjoint 

system and its reference model. Denoting 

2 1 2 1 2 12 2( ) 1 , ( ) 1 ( 1) ,c p c p c pn n n n n nS s s s s S s s s s+ − + − + −+ −⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦  

one can put down 
{ } T Ttr ( )( ) ( )1 1( ( ) ( )) ( ) .

( ) ( ) ( ) ( ) ( ) ( )m o
o om o om o om

S s LG N L S sW s W s F s
G N s N s G N s N s G N s N s

∂ −∂ ∂− = = =
∂ ∂ ∂

(46) 
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Applying expressions (40), (45), and (46) to the transfer functions and characteristic 
polynomials of the main and adjoint systems, we have 

 2 2 2 ,
I II

J J J
G G G

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (47) 

where 

 

2

1

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) (( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

p c

c
i

n n
o oo oG G

d d
I o om om o o om om oi ds ds s s

o oo oG G
d

o om o om o omds

F s F sF s F sJ
G R s R s R s R s R s R s R s R s

F s F sF s F s
R s R s R s R s R s R s

−

+ + −− +∂ ∂
∂ ∂
+ + − − + + − −

= =

+ −− +∂ ∂
∂ ∂
+ + − − + +

⎧ ⎫∂ ⎪ ⎪⎛ ⎞ = +⎨ ⎬⎜ ⎟∂⎝ ⎠ ⎪ ⎪⎩ ⎭

+ +

∑

1

)
,

( ) ( )

p c

c
mi

n n

d
o omi ds s s

R s R s
−

+

− −
= =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑
 (48) 

 

2
2 2

1

2
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( ( )) ( ) ( ) ( ) ( ) ( ) ( )( ( ))

( ) ( ) ( )
( ( )) ( ) ( )
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c
i

n n d
ooo o o o GG ds

d d
II o om om o o om om oi ds ds s s

o o oG
d

o om o omds

R sR sF s F s F s F sJ
G R s R s R s R s R s R s R s R s

R s F s F s
R s R s R s R

−

+ −++ − + − ∂∂
∂∂

+ + − − + + − −
= =

+ + −∂
∂

+ + − −

⎧ ⎫∂ ⎪ ⎪⎛ ⎞ = −⎨ ⎬⎜ ⎟∂⎝ ⎠ ⎪ ⎪⎩ ⎭

−

∑

2
1

( )( ) ( ) .
( ) ( ) ( ) ( )( ( ))

p c

c
mi

n n d
oo o G ds

d
o om o omi ds s s

R sF s F s
s R s R s R s R s

−

+ −+ − ∂
∂

+ + − −
= =

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

∑
 (49) 

With (45) and (46) in mind, denoting 

{ }1 2( 1)( ) diag ( 1) ,j jH s s− −= −  

let us transform expressions (48), (49) into 

 

2

1

1

( ) ( )1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

p c

c
i

p c

n n

d d
I o om om o o om om oi ds ds s s

n n

d d
o om o om o om o omi ds ds

H s H sJ
G R s R s R s R s R s R s R s R s

H s H s
R s R s R s R s R s R s R s R s

−

+

+ + − − + + − −
= =

+

+ + − − + + − −
=

⎧ ⎧ ⎫∂ ⎪ ⎪ ⎪⎛ ⎞ = +⎨ ⎨ ⎬⎜ ⎟∂⎝ ⎠ ⎪ ⎪⎪ ⎩ ⎭⎩

⎧ ⎫⎪ ⎪+ +⎨ ⎬
⎪ ⎪⎩ ⎭

∑

T2 ( ),
c
mis s

L LG N
−=

⎫
⎪ ⋅ −⎬
⎪⎭

∑

 (50) 
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+ −∂
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2
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H s R s LG N
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H s R s LG NLG N
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+ −∂
∂
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⎨ ⎬
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 (51) 
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For the numerator polynomial of the open-loop system we have 

0

( ) .
co n i

mii

LGM s
a s=

=
∑

 

Differentiating the last expression, we obtain 

T T T T
1 1( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ,o o o o
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where 
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Using these formulas, it is not hard to obtain 
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 (52) 

From (50) and (52) it follows that all terms of sum (47) are the products of the complex 
matrices being the values of the complex-valued diagonal matrices with compatible 
dimensions in the poles of the adjoint closed-loop system and its reference model and the 
matrix factors of the form T( )L LG N−  and T( ) .LG N−  Since the complex-valued matrix 
factors cannot be identically zero on the set ,Σ  the necessary conditions for minimum of the 
functional 2J  are given by (42) or (43) and coincide with the necessary minimum conditions 
for the functional 1.J  Thus, the first statement of the Theorem is proved. 
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Let equation (43) have a unique solution for any given point of the plant parameter set .Σ  
Then this solution is given by (44) and determines one of the local minimums of the 
functionals 1J  and 2 .J  The analytic expressions for the functionals 1J  and 2J  include as 
factors the polynomials ( )oF s+  and ( )oF s−  that equal to zero according to (7). Since equality 
(42) holds true, conditions (21) hold and, consequently, the mentioned minimums must be 
global and coinciding. This proves the second and third statements of the Theorem. 
The tuning procedure determined by (44) gives the solution to unconstrained minimization 
problem for the criteria 1J  and 2 .J  But it does not guarantee stability of the adjusted system 
for the whole set .Σ  
The main drawback of this tuning algorithm consists in that the direct control of stability 
margin of the adjusted system is impossible. This drawback can be partially weakened by 
evaluating the characteristic polynomial of the closed-loop system or its roots. Let us 
consider another approach to managing the mentioned drawback. 

5. H2 Tuning of Fixed-Structure Controller with H∞ Constraints 
The most well-known and, perhaps, the most efficient approach to solving this problem is 
the direct minimization of ∞H  norm of transfer function of the adjusted system on the base 
of loop-shaping (McFarlane & Glover, 1992; Tan et al., 2002). The main advantages of this 
approach consist in the direct solution to the controller tuning problem via synthesis, 
simplicity of the design procedure subject to internally contradictory criteria of stability and 
performance, as well as good interpretation of engineering design methods. 
Drawbacks consist in need for design of pre- and post-filters complicating the controller 
structure, as well as in optimization result dependence on chosen initial approach. Bounded 
Real Lemma allows expressing boundedness condition for ∞H  norm of transfer function of 
the adjusted system in terms of linear matrix inequality for rather common assumptions on 
the control system properties (Scherer, 1990). Consider application of Bounded Real Lemma 
to forming linear constraint for the constrained optimization problem. 
The feature of mixed tuning problem statement is that the linear constraints guarantee some 
stability margin, but not performance, since it is assumed that performance can be provided 
by proper choice of matrices of the implicit reference model, and then performance can only 
be maintained by means of adaptive controller tuning. 
The problem statement is as follows. Let us consider the closed-loop system consisting of 
plant (1) and fixed-structure controller (2) 

 cl clcl cl

cl

( ) ( )
( ) : 0( ) ( )

A Bx t x t
s Cy t g t

⎡ ⎤ ⎡ ⎤⎡ ⎤
Φ =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 (53) 

with 

cl cl

cl
,0

0 0

p p c p p cm p c

c p cm c

p

A B D C B C B DA B
B C A BC
C

⎡ ⎤−
⎡ ⎤ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 

and the closed-loop reference model 
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 cl clcl cl

cl

( ) ( )
( ) : ,0( ) ( )

m mm m
m

mm

A Bx t x t
s Cy t g t

⎡ ⎤ ⎡ ⎤⎡ ⎤
Φ =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 (54) 

 ( ) .m ms ∞Φ < γ  (55) 

We are interested in finding the controller parameters cB  and cD  such that 

 2 2 ,
( ) ( ) min,

c c
m B D

J s s= Φ − Φ →  (56) 

 ( )s ∞Φ < γ  (57) 

, ,p p pA B C∀ ∈Σ  and the matrix clA  be Hurwitz.  
By virtue of Theorem 2, the necessary condition for minimum of functional (56) is 

 
TT T T 0c cL L B D L N⎡ ⎤ − =⎣ ⎦  (58) 

, , .p p pA B C∀ ∈Σ  According to Bounded Real Lemma (Scherer, 1990), condition (57) holds 

true if and only if there exists a solution T 0X X= >  to matrix inequality 

 

T T
cl cl cl cl

T
cl

cl

0 0.
0

XA A X XB C

B X I
C I

⎡ ⎤+
⎢ ⎥

−γ <⎢ ⎥
⎢ ⎥−γ⎢ ⎥⎣ ⎦

 (59) 

Matrix inequality (59) is not linear and jointly convex in variables ,X  ,cB  and .cD  In order 
to pass from inequality (59) to LMI constraints, let us use a technique similar to (Gahinet & 
Apkarian, 1994; Balandin & Kogan, 2007). Define the matrix of the controller parameters 

cm c

cm c

A B
C D
⎡ ⎤Θ = ⎢ ⎥
⎣ ⎦

 

and represent the closed-loop system matrices as 

cl 0 cl 0 1 cl 0 2, , ,A A B C B B B D C C D C= + Θ = + Θ = + Θ  

0 0 0 1 2
00 0 0

, 0, 0 , , , , 0.00 0 0
p p

p
p

IA B
A B C C B C D DCI I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = = = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

Substitute these expressions into (59) and represent the resulting inequality as linear matrix 
inequality with respect to :Θ  

 T T T 0,P Q Q PΨ + Θ + Θ <  (60) 

[ ]
T T
0 0 0

T
1

0

0
0 0 , 0 , 0 0 .

0

A X XA C
I P C D Q B X

C I

⎡ ⎤+
⎢ ⎥ ⎡ ⎤Ψ = −γ = =⎢ ⎥ ⎣ ⎦
⎢ ⎥−γ⎣ ⎦

 



Systems, Structure and Control 

 

224 

According to Projection Lemma (Gahinet & Apkarian, 1994), inequality (60) is solvable with 
respect to the matrix Θ  if and only if 

 

T T T T
0 0 0 0 0 0

T T

0 0

0 0
0 0 0, 0 0 0,

0 0
P P Q Q

A X XA C A X XA C
W I W W I W

C I C I

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥−γ < −γ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−γ −γ⎣ ⎦ ⎣ ⎦

 (61) 

where the columns of the matrices PW  and QW  form the respective bases of KerP  and 
Ker .Q  To eliminate the unknown matrix X  from the matrix ,Q  let us represent 

T
0 0

0 0 , 0 0 ,
0 0

X
Q R I R B

I

⎡ ⎤
⎢ ⎥ ⎡ ⎤= = ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 

from which it follows that 

1 0 0
0 0 .
0 0

Q R

X
W I W

I

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Substituting this expression into (61) and denoting 1 ,Y X −=  we obtain the following result. 
Theorem 3: Given 0,γ >  fixed-structure controller (2) providing minimum for the tuning 
functional 2J  and ensuring condition (57) exists if and only if there exist the inverse 
matrices T 0X X= >  and T 0Y Y= >  such that 

 

T T T T
0 0 0 0 0 0

T T

0 0

0 0
0 0 0, 0 0 0, .

0 0
P P R R

A X XA C A Y YA YC
W I W W I W XY I

C I C Y I

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥−γ < −γ < =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−γ −γ⎣ ⎦ ⎣ ⎦

 (62) 

If conditions (62) hold true, and the matrices X  and Y  are found, the controller parameters 
cB  and cD  are defined from solution of linear matrix inequality (60) subject to equality 

constraint (58). 
Denote that further simplification of (62) via respective choice of the matrices PW  and RW  
is possible (see, e.g., Gahinet & Apkarian, 1994), but this is not required by the numerical 
algorithm for solving linear matrix inequalities with respect to inverse matrices presented in 
(Balandin & Kogan, 2005). 
Taking into account the block structure of the controller matrix Θ  that includes constant 
and variable blocks, let us consider some aspects of solving inequality (60). Let the matrix 
X  satisfying (62) be found. Partition it into the blocks 

11 12
T
12 22

X X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

in accordance with the orders of plant and controller. Then 
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T T T
11 11 12

T
12

0

0 0 0 ,
0 0 0

0 0

p p p p

p

p

A X X A A X C

X A
I

C I

⎡ ⎤+
⎢ ⎥
⎢ ⎥Ψ = ⎢ ⎥−γ⎢ ⎥
⎢ ⎥−γ⎣ ⎦

 (63) 

T
12 22

T T
11 12

0 0 0 0 0
, ,0 0 0 0p p p

I X X
P QC I B X B X

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

12 11 12 11 12 11
T T T

22 12 22 12 22 12T

( ) 0

( ) 0 .
0 0 0 0
0 0 0 0

c p c p cm p cm c p c

c p c p cm p cm c p c

X B X B D C X A X B C X B X B D

X B X B D C X A X B C X B X B DQ P

− + + +⎡ ⎤
⎢ ⎥− + + +⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (64) 

Substituting (63) and (64) into (60), one can obtain linear matrix inequality with respect to 
the unknown controller parameters cB  and .cD  
Thus, the procedure of 2H  optimal controller tuning with ∞H  constraints consists of two 
stages. At the first stage, one need find two inverse positive-definite matrices X  and Y  
satisfying (62) with .mγ = γ  At the second stage, when the matrices X  and Y  are obtained, 
the controller parameters cB  and cD  can be found from linear matrix inequality (60), (63), 
(64) subject to equality constraint (58). Numerical solution to linear matrix inequality subject 
to linear equality constraints can be obtained using Matlab software toolbox SeDuMi 
Interface (Peaucelle, 2002). 
For the purpose of numerical illustration, let us give a simple numerical example. 
Example 2: Consider the problem of a first-order controller tuning for a second-order 
unstable linear oscillator. The reference model is given by (5), (6) with 

 
5

7

0 1 1 23.33604 2.54 10
100 0.3 0 , ,0 9.09 10 31.62046
1 0 0

pm pm cm cm

pm cm cm

A B A B
C C D

−

−

⎡ ⎤
⎡ ⎤− − ⋅⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎢ ⎥ − ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦

⎣ ⎦

 (65) 

at that 1,2( ) 0.15 9.9989 .pmA jλ = ±  The reference model controller ( )mK s  is a solution to the 
following ∞H  suboptimal problem: find fixed-order controller (6) for plant (5) guaranteeing 
internal stability of reference closed-loop system (54) and fulfilment of condition (55) with 

1.02mγ =  (Balandin & Kogan, 2007). In this example, we consider the actual plant given 
by (1) with two sets of parameters: 

 1,2

0 1 0.6
140 0.5 0 , ( ) 0.25 11.8295 ,0
1.4 0 0

p p
p

p

A B
A jC

⎡ ⎤
⎡ ⎤ ⎢ ⎥

= − λ = ±⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (66) 

and 
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 1,2

0 1 1.4
60 0.1 0 , ( ) 0.05 7.7458 .0

0.6 0 0

p p
p

p

A B
A jC

⎡ ⎤
⎡ ⎤ ⎢ ⎥

= − λ = ±⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (67) 

Given controller structure and order ( ,c cmA A=  c cmC C= ), we are interested in finding the 
matrices cB  and cD  such that conditions (56), (57) hold with .mγ = γ  
At the first stage of tuning process described above we have obtained the following 
numerical solutions to dual LMI (56) with 1.02 :mγ = γ =  

0.0754 0.0003 0.0304 13.4456 6.9922 0.3846
0.0003 0.0005 0.0001 , 6.9922 1836.7693 0.3456
0.0304 0.0001 1.0646 0.3846 0.3456 0.9503

X Y
− −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

for plant (1) with realization (65) and 

0.0687 0.0001 0.0000 14.5580 1.4755 0.0000
0.0001 0.0011 0.0000 , 1.4755 873.4150 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
X Y

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

for plant (1) with realization (66). 
At the second stage, solving LMI (60), (63), (64) subject to equality constraint (58) we have 
obtained the controller 

 7

23.33604 104.30004

9.09 10 52.71044
cm c

cm c

A B

C D

∗

−∗

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥− ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (68) 

for realization (66) and 

 
7

7

23.33604 1.44589 10

9.09 10 17.71328
cm c

cm c

A B

C D

∗ −

∗ −

⎡ ⎤ ⎡ ⎤− − ⋅
⎢ ⎥ ⎢ ⎥=

− ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (69) 

for realization (67). Denote that controller (68) results in ( ) 1.0125 1.02,s ∞Φ = < γ =  and 

controller (69) results in ( ) 1.0069 1.02.s ∞Φ = < γ =  
Simulation results for reference system (65), as well as for actual plants (66), (67) with 
controllers (68), (69), respectively, are presented in Fig. 1. The left red-coloured diagrams 
correspond to plant (66) and controller (68), whereas the right blue-coloured diagrams show 
transients and control for plant (67) and controller (69). The diagrams for the reference 
system are shown in black colour. At the top diagrams, the step responces of reference and 
actual plants are presented. The middle plots show the step responces of closed-loop 
reference and actual systems. The control signals generated by reference and adjusted 
controllers are given at the bottom diagrams. One can denote good visual proximity of step 
responces of the reference and adjusted closed-loop systems at the middle diagrams. 
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Figure 1. Step responces and control for reference and actual systems 
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Figure 2. Bode diagram for reference system 
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Figure 3. Bode diagrams for actual systems 

The Bode diagrams for the reference and actual systems are shown in Fig. 2 and Fig. 3, 
correspondingly, including diagrams for plants (blue lines), controllers (green lines), and 
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closed-loop systems (red lines). At Fig. 3, the left plots correspond to plant (66) and 
controller (68), the right plots represent plant (67) and controller (69). 

6. Conclusion 
One of the main results of this Chapter consists in that the necessary minimum conditions 
for the functional given by 2H  norm of the difference between the transfer functions of the 
closed-loop adjusted and reference systems coincide with the necessary minimum 
conditions for Frobenius norm of the controller tuning polynomial generated by these 
transfer functions that have been obtained earlier. 
Theorem 2 shows that in spite of complexity of analytic expressions for the “direct” tuning 
functionals 1J  and 2 ,J  optimal values of the adjusted parameters can be found via 
comparatively simple pseudosolution of linear matrix algebraic equation. This approach 
ensures proximity of transient responses of the adjusted and reference systems and, 
consequently, the best (in sense of 2H  norm) stability of performance indicies of the 
adjusted system. 
The properties of complete, partial, and weak adaptability of a system with respect to its 
output belongs to the system invariants. The adaptability criteria, just as Kalman’s criteria of 
controllability and observability, are formulated in terms of rank properties of the 
adaptability matrices. One of the main properties of the adaptabilty matrices is Toeplitz 
property. 
Although 2H  norm in functional 2J  is defined for the closed-loop systems, the elements of 
the adaptability matrices depend only on the coefficients of the characteristic polynomials, 
matrices and matrix coefficients of the resolvent series expansions of the plant, controller, 
and their reference models. An advantage of finding optimal controller parameters via the 
mentioned pseudosolution consists in that individual plant poles can be unstable on 
condition that all poles of adjusted closed-loop system are stable. 
The main drawback of LQ and 2H  optimal tuning algorithms consists in that the direct 
control of stability margin of the adjusted system is impossible. This drawback can be 
partially weakened by evaluating the characteristic polynomial of the closed-loop system or 
its roots. This drawback can be eliminated by use of 2H  optimal tuning algorithm together 
with ∞H  constraint. 
Another one important result of this Chapter consists in the presented 2H  optimal fixed-
structure controller tuning algorithm with ∞H  constraint for SISO systems represented by 
minimal state-space realization that can be easily extended onto MIMO systems. This 
approach is based on minimization of 2H  criterion of proximity of transient responses of the 
closed-loop system and its implicit reference model subject to constraint onto ∞H  norm of 
the transfer function of the closed-loop system formulated in terms of LMIs. 
The obtained algorithms of optimal tuning of multiloop PID controller for bilinear MIMO 
plant have the same structure as the similar algorithms for linear MIMO plant (Morozov & 
Yadykin, 2004; Yadykin & Tchaikovsky, 2007). However, the optimal tuning procedures for 
the bilinear plant are more complex than similar procedures for the linear plant: 
• Identification procedures for bilinear plants depend on operating point of the process, 

increment of piecewise-constant control, and its sign in various combinations. This 
gives rise to need in considering many modes of identification and tuning. 
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• The models of bilinear plant and reference system, as well as tuning criteria and 
algorithms have to be matched. 

• Dynamics of transients in the adjusted system depends on the sign and magnitude of 
the test control increment. For positive increments, the transients, in general, accelerate 
and their decrement decrease, whereas for negative increments the transient decrement 
increase and it decelerate. 

The obtained results can be also considered as a solution to the controller design problem 
for linear time invariant SISO and MIMO systems on the base of the constrained 
minimization of 2H  norm of the difference between the transfer functions of the closed-loop 
designed and reference systems subject to constraint onto ∞H  norm of the transfer function 
of the designed system established in terms of LMIs. 
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Abstract  
In a general command tracking and disturbance rejection problem, it is known that a 
sampled-data controller using zero-order hold may only guarantee asymptotic tracking at 
the sampling instances, but in general cannot guarantee the absence of ripples between the 
sampling instants. In this paper, a discrete robust regulator and a sampled-data robust 
regulator using slide modes techniques and exponential holder are presented. In particular, 
it is shown that the controller proposed for the sampled-data system ensures asymptotic 
tracking when applied to the continuous-time system. 

1. Introduction 
The extensive use of digital computers has introduced a great flexibility on the 
implementation of control laws but has also, in some cases, given rise to some problems 
related to the dynamic behavior to the coupling of continuous-time systems with digital 
devices via A/D and D/A converters. In fact, when a control law is implemented via digital 
devices, two ways are possible. The first is to design a continuous control law and use 
sufficiently small sampling periods with respect to the plant dynamics, to approximate by a 
discrete system the original continuous controller. The second approach consists in 
discretizing the plant dynamics and to design a digital control law on the basis of the 
sampled measurements. The output of the digital controller is then converted to continuous 
signal generally using zero orders holders. This second solution is in general more adequate 
since some of the structural properties may be ensured, even if only at the sampling 
instants, since in the intersampling time the system is in open-loop. In particular, for 
nonconstant reference signals, a digital control law applied via zero order holders to a 
continuous time system may cause the presence of ripple in the output tracking error signal. 
This means that the asymptotic output tracking is guaranteed only at the sampling instants, 
where the steady-state output error is zero. This can be explained by the fact that a 
necessary and sufficient condition for guaranteeing a ripple-free tracking is that an internal 
model of the reference and/or disturbance is present in the controller structure ([2], [3], [5], 
[11]). Clearly, when using zero-order holders, it is not possible to reconstruct the internal 
model, except for the constant signals. 
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For sampled-data linear systems, in [5] among others, a hybrid controller was presented; 
pointing out that a continuous internal model is necessary and sufficient to provide ripple-
free response. Along the same lines, in [4], a hybrid robust controller consisting of a discrete-
time linear controller and an analog linear immersion which guarantees a ripple free 
behavior was presented. In [6] a more general setting using a so-called exponential holder 
for nonlinear systems was presented. 
Based on these ideas, in this work we present a ripple-free sampled-data robust regulator 
with sliding modes control scheme for linear systems. We formulate the design of a robust 
controller on the basis of sampling a continuous-time linear systems and then introducing 
the sliding mode approach, which permits to guarantee the stabilization property relaxing 
the requirements of the existence of a linear stabilizing control law and using the 
exponential holder to guarantee the existence of the internal model inside the controller 
structure... The paper is organized as follows: in Section 2 we give some preliminaries on the 
robust regulator by sliding modes techniques, while in Section 3 we introduce the main 
result of the paper. Section 4 is devoted to an illustrative example and finally, some 
conclusions are drawn.   

2. Basic results on Robust Regulation 

A central problem in control theory is that of manipulating the inputs of a system in such a 
way that the outputs track, at least asymptotically, a defined reference signals, preserving at 
the same time some desired stability property of the close-loop system. In [14], a 
discontinuous regulator using a sliding modes control technique is proposed, where the 
underlying idea is to design a sliding surface on which the dynamics of the system are 
constrained to evolve by means of a discontinuous control law, instead of designing a 
continuous stabilizing feedback, as in the case of the classical regulator problem. The sliding 
surface is constructed with the steady-state surface, and the state of the system is forced to 
reach the sliding surface in finite time with a sliding control. 
To precise the ideas, let us consider a continuous-time linear system described by 

 ( ) ( ) ( ) ( )x t Ax t Bu t Pw t
•

= + +  (1) 

 ( ) ( )w t Sw t
•

=  (2) 

 ( ) ( ) ( )e t Cx t Rw t= −  (3) 

where  mu ∈ℜ   is the input signal,  nx ∈ℜ   is the state of the system,  pw∈ℜ   
represents the state of an external signal generator, described by (2), which provides the 
reference and/or perturbation signals. Equation (3) describes the output tracking error  

qe ∈ ℜ   defined as the difference between the system output and the reference signal. 
For this system, the mentioned problem has been treated under different approaches, 
among which is the regulator theory by sliding modes techniques. In general terms, this 
problem consists in finding a submanifold (the steady state submanifold) on which the 
output tracking error is zeroed, as well as an input signal (the steady state input) which 
makes this submanifold invariant and attractive. The sliding regulator problem approach 
has been studied in the linear case ([Louk:99],[Louk:99b]). 
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Since we are concerned with a discrete controller, the discretization of the continuous 
system (1)-(3) can be described by 
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where  iP   can be computed iteratively from 

0 1; ; 1, 2,....i
i iP P P AP PS i−= = + =  

The classical Robust Regulator Problem with Measurement of the Output for system (1)-
(3) consists in finding a dynamic controller 

( ) ( ) ( )
( )e

t F t Ge t
u H t

ξ ξ
ξ

•
= +
=

 

such that the following requirements hold: 
S) The equilibrium point  ( , ) (0,0)x ξ =   of the closed loop system without disturbances  

( ) ( ) ( )

( ) ( ) ( )

ex t Ax t BH t

t F t GCx t

ξ

ξ ξ

•

•

= +

= +
 

is exponentially stable. 
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R) For each initial condition  0 0 0( , , )x w ξ  , the dynamics of the system 

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ))

( ) ( )

ex t Ax t BH t Pw t

t F t G Cx t Rw t

w t Sw t

ξ

ξ ξ

•

•

•

= + +

= + −

=

 

satisfy that  
lim ( ) 0.
t

e t
→∞

=  

A solution to this problem can be found in [1]. This solution is stated in terms of the 
existence of mappings  ;ss ssx w wξ= Π = Σ   satisfying the Francis equations 

 

0

eS A BH P
S F

C R

Π = Π + Σ +
Σ = Σ

= Π −
 (4) 

for all admissible values of the systems parameters.  More precisely, the solution can be 
stated in terms of the existence of mappings  ,ss ssx w u w= Π = Γ   solving the equations 

 S A B PΠ = Π + Γ +  (5) 

 0 C R= Π −  (6) 

from which  we reckon 

1

1
0 1 1....

q

q
q

S

S
a a S a S

−

−
−

Γ⎛ ⎞
⎜ ⎟Γ⎜ ⎟
⎜ ⎟Σ =
⎜ ⎟Γ⎜ ⎟
⎜ ⎟− Γ − Γ − − Γ⎝ ⎠

 

where the polynomial  
1

1 1 0..... 0q q
qs a s a s a−

−+ + + + =  

is the characteristic polynomial of  .S   The mapping  ssx w= Π   represents the steady 

state zero output subspace and  ssu w= Γ   is the steady-state input which make invariant 
that subspace. This steady-state input can be generated, independently of the values of the 
parameters of the system and thanks to the Cayley-Hamilton Theorem, by the linear 
dynamical system 
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 η η
•

= Φ  (7a) 

 ssu Hη=  (7b) 

where  1 1{ ,... }; { , ..., }m mdiag H diag H HΦ = Φ Φ =   and  

0 1 2 1

1

0 1 0
0 0 1 0

;
0 0 0 1

(1 0 0) .

i

q

i q

a a a a

H
−

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ =
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

=

 

Defining the transformation  1 2; ,z x w z η= − Π =   the system can be rewritten as 

 1 1 2z Az BHz Bu
•

= − +  (8) 

 2 2z z
•

= Φ  (9) 

 [ ] 1

2

( ) 0
z

e t C
z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (10) 

Finally, a controller which solves the problem can be constructed as an observer for system 
(8)-(9), namely  

 

1 0 1 0 1 0 2 0 1

2 2 0 1 2 2

1 2

( )A G C B H B u G e

G C G e
u K H

ξ ξ ξ

ξ ξ ξ
ξ ξ

•

•

= − − + +

= − + Φ +
= +

 (11) 

where  0 0 0, ,A B C   are the nominal values of the matrices of the system (1)-(3) and  K   

and  1 2,G G   make stable the matrices  0 0( )A B K+   and  

 ( )10 0
0

2

0 .
0

GA B H
C

G
− ⎛ ⎞⎛ ⎞

− ⎜ ⎟⎜ ⎟Φ⎝ ⎠ ⎝ ⎠
 (12) 

When dealing with controllers implemented via digital devices and zero order holders, the 
sampled data version of the controller could render unstable the closed-loop system. In this 
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work we will take the approach of designing a hybrid controller consisting in two parts: a 
discrete sliding mode controller ensuring the stabilization of the closed-loop system, and a 
continuous part containing the internal model dynamics (internal model) obtained from the 
continuous model.  

3. The Continuous Sliding Robust Regulator 
Analogously to the case of the Robust Regulator Problem, we formulate the Sliding Mode 
Robust Regulator Problem ([13], [14], [15]) as the problem of finding a sliding surface 

 1( ) 0, ( ( ),..., ( )) mcolσ σ ξ σ σ ξ σ ξ= = =  (13) 

and a dynamic compensator 

 ( , )g eξ ξ
•

=  (14) 

with the control action defined as  

 
( ) ( ) 0

{ , 1,...,
( ) ( ) 0

      
   

      
i i

i
i i

u
u i m

u
ξ σ ξ
ξ σ ξ

+

−

>
= =

<
 (15) 

where the mappings  ( ),iu ξ+    ( )iu ξ−   and   ( )iσ ξ   are calculated in order to induce an 

asymptotic convergence to the sliding surface  ( )iσ ξ   0=    and such that, for all admissible 
parameter values in a suitable neighborhood    of the nominal parameter vector, the 
following conditions hold: 

(SS c  ) The equilibrium point  ( , ) (0,0)x ξ =   of the closed-loop system is asymptotically 
stable. 

(SM c ) The sliding surface is attractive, namely the state of the closed loop system 
converges to the manifold  ( ) 0.σ ξ =   

(SR c  ) The output tracking error tends asymptotically to zero, namely 

lim ( ) 0
t

e t
→∞

=  

Now, to introduce the sliding mode approach into the regulator problem, we will chose the 
control input  ( )u t   as 

( ) slid equ t u u= +  

instead of  1 2( )u t K Hξ ξ= +   as taken in the controller (11), where we impose that  equ   

must be equal to  2Hξ   when  ( ) 0σ ξ =  . Note that the stabilizing part  1Kξ   will now be 

substituted by the term  slidu   which will be calculated to make attractive the sliding 
surface. 
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To be more precise, let us consider the switching surface  

 [ ] 10 ,σ ξ ξ= Σ = Σ  (16) 

where  mσ ∈ℜ  ,  mxnΣ ∈ℜ   with  rank    0B mΣ =  . 
Differentiating this function, and from the first equation of (11) we reckon 

1 0 1 0 1 0 2 0 1

0 1 0 1 0 2 0 1

[( ) ]
( )

A G C B H B u G e
A G C B H B u G e

σ ξ ξ ξ
ξ ξ

• •
= Σ = Σ − − + +
= Σ − − Σ + Σ + Σ

 

from which the equivalent control  equ   is obtained from the condition  0σ =   as  

[ ]1
0 0 1 0 1 0 2 1( ) ( )equ B A G C B H G eξ ξ−= − Σ Σ − − +  

Defining the estimation errors as  1 1 1zε ξ= −   and  2 2zε = −    2ξ  , we may substitute  

equ   into equation  (8) at the nominal values of the parameters to get the sliding motion 

dynamics  

1 1
1 0 0 0 1 0 0 0 1 0 1 0 2[ ( ) ] ( ) ( )nz I B B A z B B A G C B Hε ε

•
− −= − Σ Σ + Σ Σ − −  

where the estimation errors satisfy the dynamics  

1 0 1 0 1 0 2

2 2 0 1 2

( )

.

A G C B H

G C

ε ε ε

ε ε ε

•

•

= − −

= − + Φ
 

Note that these dynamics are asymptotically stable thanks to the observability assumption 
of matrix (12). 
Lemma 1. [14] Define the operator  D   as   1( ( ) )nD I B B −= − Σ Σ  . Then the relation  

 ( ) 0D A S PΠ − Π + =  (17) 

 is true if and only if  there exist matrices  Π    and  Γ   such that  

 .A S P BΠ − Π + = Γ  (18) 

Proof.  The operator  D  is a projection operator along the rank of  B  over the null space of  
Σ    [16], namely  

1

1 1 1 1 1

( ( ) ) 0

, { | 0}

  
  
n

n

DB I B B B

Dz z z z z

−= − Σ Σ =

= ∀ ∈ℵ ℵ = ∈ℜ Σ =
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Thus, if condition (18) holds, then it follows that  ( ) 0.D A S P DBΠ − Π + = Σ =   

Conversely, if condition (17) holds, then  ( )A S DΠ − Π +   must be in the image of  B  this 
is,  ( )A S D BΠ − Π + = Γ   for some matrix  .Γ    ■ 
A condition for the solution of the Sliding Mode Regulator Problem can be given in the 
following result. 
Proposition 2.  Assume the following assumptions: 
H1) The matrix  S   has all its eigenvalues on the imaginary axis 
H2) The pair  0 0( , )A B   is stabilizable 

H3) The pair [ ]0 0 ,C    0 0

0
A B H−⎡ ⎤
⎢ ⎥Φ⎣ ⎦

  is observable. 

Then the Sliding Mode Regulator Problem is solvable if there exists a matrix  Π   solving the 
equations 

 A S P BΠ − Π + = − Γ  (19) 

 0C RΠ − =  (20) 

for some matriz  ,Γ  and or all admissible values of the system parameters. 
Proof .  Let us choose the control as 

( ) ,equ Msign uσ= − +  

with  ( ); 0,i iM diag m m= >   and  1( ) [ ( ), ...., ( )] .T
msign sign signσ σ σ=   This 

control action guarantees a sliding mode motion on the surface  0.σ =   Then, assuming 
that the observer estimation error decays rapidly by appropriate choice of the gains  1 2,G G   
we have that  

1
1 0 1 0| zz DA z

•

Σ ==  

Since the matrix  Σ   by assumption H2 can be chosen such that  BΣ   is invertible, and the  

( )n m−   eigenvalues of  0DA   can be arbitrarily placed in  ,C−   then  1( ) 0z t →   as  

t → ∞   satisfying condition (SS c ).   Now, since the tracking error equation is given by  

0 1( ) ( ),e t C z t=   then it follows that  ( )e t   goes to zero asymptotically, satisfying 

condition (SR c ).  ■ 
Note that when the state of the system is on the sliding surface, the control signal is exactly  

equ   which in turn comes to be  2 ,eq ssu H uξ= =   namely, the steady-state input. This 

steady -state input guarantees that the output tracking error stays at zero. This property will 
be used later. 
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4. A Sliding Robust Regulator for Discrete Systems 
For the discrete case, the problem can be formulated in a similar way to the continuous case. 
To this end, let us consider the discretization of system (8)-(10), this is 

 1, 1 1,

2, 1 2,0 0
k kd d

k
k kd

z zA B
u

z z
+

+

−Λ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

 (21) 

 [ ] 1,

2,
0 k

k d
k

z
e C

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (22) 

where 

0

0

0 0 0 00

0 00

, ,

, ( ) ( );

, 0 .

 

 

TA T A
d d

T
d

T A
d

A e e B Hd C C

e u kT u kT

B e B d T

θ

θ

θ

θ

θ θ

Φ

= Λ = =

Φ = + =

= ≤ ≤

∫

∫

 

For this system, the Sliding Regulator Problem can be set as the problem of finding a sliding 
surface  kσ   and a dynamic controller 

 1k d k d kF G eξ ξ+ = +  (23) 

 ( , )k d k ku eα ξ=  (24) 

such that, for all admissible parameter values in a suitable neighborhood    of the nominal 
parameter vector, the following conditions hold: 

(SS d  ) The equilibrium point  ( , ) (0, 0)x ξ =   of the closed-loop system is asymptotically 
stable. 

(SM d ) The sliding surface is attractive, namely the state of the closed loop system 
converges to the manifold  ( ) 0.k kσ ξ =   

(SR d  ) For each initial condition  0 0 0( , , )x w ξ  , the dynamics of the closed-loop system 

1

1

1

( , )
( )

k d k d d k k k

k k d k d k

k d k

x A x B e Pw
F G C x R w

w S w

α ξ
ξ ξ

+

+

+

= + +
= + −
=

 

where  ST
dS e=   guarantees that  lim 0.k ke→∞ =   

Assume the following conditions hold: 
( dH1 ) All the eigenvalues of matrix  dS   lie on the unitary circle. 
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( dH2 ) The pair  { }0 0,d dA B   is stabilizable, 

( dH3 )  There exists a solution  ,d dΠ Γ   to the regulator  equations 

 d d d d d d dS A B PΠ = Π + Γ +  (25) 

 0 d d dC R= Π −  (26) 

( dH4 ) The pair  [ ] 0
0 0 ,

0
d

d
d

A
C

−Λ⎡ ⎤
⎢ ⎥Φ⎣ ⎦

  is observable. 

Then, a classic robust regulator can be constructed as 

 
1, 1 0 1 0 1, 2, 0 1

2, 1 2 0 1, 2, 2

1, 2,

( )k d d d k k d k d k

k d d k d k d k

k d k k

A G C B u G e

G C G e

u K H

ξ ξ ξ
ξ ξ ξ

ξ ξ

+

+

= − − Λ + +

= − + Φ +

= +

 (27) 

where  dK   and  1 2,d dG G   make stable the matrices  0 0( )d d dA B K+   and  

 ( )0 1
0

2

0 .
0
d d

d
d d

A G
C

G
−Λ⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟Φ⎝ ⎠ ⎝ ⎠
 (28) 

respectively. 
For the Discrete Sliding Regulator Problem, we can chose a sliding surface 

 [ ] 1,0 ,k d k d kσ ξ ξ= Σ = Σ  (29) 

and calculate the equivalent control. The following result, which can be proved similarly to 
the continuous case, gives a solution to the Discrete Sliding Regulator Problem: 

Proposition 3.  Assume that assumptions  H1d    through  H4d   hold. Then the Discrete Sliding 
Regulator Problem is solvable. Moreover, the controller solving the problem can be chosen as 

1
, 0 0 1 0 1, 2, 1( ) ( ) .k eq k d d d d d d k k d ku u B A G C G eξ ξ− ⎡ ⎤= = − Σ Σ − − Λ +⎣ ⎦  

Proof.  Calculating 

1 1, 1

0 1 0 1, 2, 0 1[( ) ]
k d k

d d d d k k d k d kA G C B u G e

σ ξ
ξ ξ

+ += Σ

= Σ − − Λ + +
 

we can calculate the equivalent control from the condition  1 0,kσ + =   namely: 

1
, 0 0 1 0 1, 2, 1( ) ( ) .eq k d d d d d d k k d ku B A G C G eξ ξ− ⎡ ⎤= − Σ Σ − − Λ +⎣ ⎦  
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Note that this control makes also the sliding surface attractive, since the same control 
guarantees that  0k jσ + =   for  j 1.  Now, substituting  equ   in the first equation of (21) 

we obtain 

1
1, 1 0 0 0 1,

1
0 0 0 1 0 1, 2,

[ ( ) ]

( ) ( )
k n d d d d d k

d d d d d d d k k

z I B B A z

B B A G C ε ε

−
+

−

= − Σ Σ

+ Σ Σ − − Λ
 

where  1, 1, 1, ;k k kz ξ= −  2, 2, 2, .k k kz ξ= −  As in the continuos case, if the gains  

1 2,d dG G   are appropriately chosen, the estimation errors  1,k   and  2,k   will converge to 

zero and then  

1, 1 0 1,k d kz DA z+ =  

where  1
0 0[ ( ) ].n d d d dD I B B −= − Σ Σ   Since the matrix  dΣ   by assumption H2 d   can be 

chosen such that  0d dBΣ   is invertible, and the  (n-m)  eigenvalues of  0dDA   can be 

arbitrarily placed inside the unitary circle,  then  1, 0kz →   as  k → ∞   satisfying 

condition (SS d ).   Now, since the tracking error equation is given by  0 1, ,k d ke C z=   then it 

follows that  ke   goes to zero asymptotically, satisfying condition (SR d ). ■ 
Note that when the state of the system is on the sliding surface, the control signal is exactly  

equ   which in turn comes to be  2 ,eq ssu H uξ= =   namely, the steady-state input. 

Again note that when the solution of the system is on the sliding surface, the control signal 
is exactly  equ which in turn, since  0 ,dB HΛ =   comes to be   

1
0 2, 2,( ) ,eq d d d k ku B Hξ ξ−= Σ Σ Λ =  

namely, the steady-state input. 
Clearly, this controller guarantees zero output tracking error only at the sampling instants, 
but not at the intersampling. To force the output tracking error to converge to zero also in 
the intersampling time, in the following section we will formulate the a ripple-free sliding 
regulator problem.  

5. A Ripple-Free Sliding Robust Regulator for Sampled Data Linear Systems 
From the previous discussion it is clear that  implementing a Sliding Mode Robust Regulator 
for the discretization of the continuous linear system, this will guarantee only that the 
output tracking error will be zeroed only at the sampling instant. In order to eliminate the 
possible ripple, it is necessary to reproduce the internal model (7) from its discrete time 

realization. To do this, we note that the solution of (7) can be written as  ( ) (0),tt eξ ξΦ=   

and setting  t kT θ= +   with  [0, )Tθ ∈   we have  



Systems, Structure and Control 

 

242 

( )( ) (0) (0)
( )

( ) ( ) ( )

k kT

ss

k e e e
e kT

u kT H kT He kT

δ θ θ

θ

θ

ξ δ θ ξ ξ
ξ

θ ξ θ ξ

Φ + Φ Φ

Φ

Φ

+ = =
=

+ = + =
 

which describe exactly the behavior also in the intersampling. The term  e θΦ   is known as 
the exponential holder. 
We can now formulate the Ripple-Free Sliding Robust Regulator Problem  as the problem 
of finding a sliding surface 

 k kσ ξ= Σ  (30) 

and a dynamic controller 

 1k k kF Geξ ξ+ = +  (31) 

 ( )( ) , , ;k ku kT eθ α ξ θ+ =  (32) 

0 .Tθ≤ ≤  

such that, for all admissible parameter values in a suitable neighborhood    of the nominal 
parameter vector, the following conditions hold: 

(SS r  ) The equilibrium point  ( ) ( ), 0,0k kx ξ =   of the system in closed-loop is 

asymptotically stable. 

(SM r  ) The sliding surface is attractive, namely the state of the closed loop system 
converges to the manifold  ( ) 0.k kσ ξ =   

(SR r  ) For each initial condition  0 0 0( , , )x w ξ  , the dynamics of the closed-loop system 

( )
1

( ) ( ) , , ( )
( )

( ) ( )

k k

k k d k d k

x t Ax t B e Pw t
F G C x R w

w t Sw t

α ξ θ
ξ ξ

•

+

= + +
= + −
=

 

guarantees that  
( ) 0.lim

t
e t

→∞
=  

In order to solve the Ripple-Free Sliding Robust Regulator Problem, the following 
assumptions will be considered: 
H1)  The matrix  S   has all its eigenvalues on imaginary axis 
H2)  The pair  0 0( , )A B   is stabilizable 

H3)  The equations (5), (6) have solution  ,Π Γ   for all admissible values of the system 
parameters. 
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H4) The pair  [ ]0 ,dC   
0

d d

d

A M−⎡ ⎤
⎢ ⎥Φ⎣ ⎦

 is detectable, where  

0 ( )
00 .T A T

dM e B He dθ θ θ− Φ= ∫  
For this case, and taking the previous results, we now state the following result. 
Theorem 4.  Let us assume assumptions H1) to H4) hold. Then the RFSRRP is solvable. Moreover, 
the controller which solves the problem is given by 

 

1, 1 0 1 0 1, 2, 0 1

2, 1 2 0 1, 2, 2

1
0 0 1 0 1, 0 2, 1

( )

( ) ( )

k d d d k d k d k d k

k d d k d k d k

k d d d d d d k d k d k

A G C M B u G e

G C G e

u B A G C B He G eθ

ξ ξ ξ
ξ ξ ξ

ξ ξ

+

+

− Φ

= − − + +

= − + Φ +

⎡ ⎤= − Σ Σ − − +⎣ ⎦

 (33) 

Proof. In order to implement the discretized controller, we consider again the transformed 
continuous system 

 1 1 2z Az BHz Bu
•

= − +  (34) 

 2 2z z
•

= Φ  (35) 

 [ ] 1

2

( ) 0
z

e t C
z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (36) 

 .w Sw
•

=  (37) 

Substituting  ku   in the equation (34) gives: 

1
1 1 2 0

0 1 0 1, 0 2, 1

( )

( )
d d d

d d d k d k d k

z Az BHz B B

A G C B He G eθξ ξ

•
−

Φ

= − − Σ Σ ×

⎡ ⎤− − +⎣ ⎦
 

whose discretization, together with that of (35)  is be given by 

1
1, 1 0 0 0 1,

1
0 0 0 1 0 1, 2,

2, 1 2.

[ ( ) ]

( ) ( )

.

k n d d d d d k

d d d d d d d k k

k d k

z I B B A z

B B A G C

z z

ε ε

−
+

−

+

= − Σ Σ +

+ Σ Σ − − Λ

= Φ

 

As in the case of discrete sliding regulator, an observer may be constructed as 

1, 1 0 1 0 1, 2, 0 1

2, 1 2 0 1, 2, 2

( )

.
k d d d k d k d k d k

k d d k d k d k

A G C M B u G e

G C G e

ξ ξ ξ
ξ ξ ξ

+

+

= − − + +

= − + Φ +
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Defining a switching function as 

[ ] 1,0k d k d kσ ξ ξ= Σ = Σ  

and proceeding as in the discrete case, we may show that by a proper choice of the gains  

1, 2 ,d dG G   the estimation errors converge to zero and the matrix  d kDA z   where  
1

0 0[ ( ) ]n d d d dD I B B −= − Σ Σ   has all the eigenvalues inside the unitary circle. Thus  

0ke →   when  .k → ∞   To see that the error is eliminated also during the interval  

( )1kT k Tθ< ≤ +   ,   0,1,2,...k =  , we observe that when  0,ke =   the control law  

ku   is 

2,

2

( ) ku kT He

H

θθ ξ
ξ

Φ+ =

=
 

which is exactly the continuous steady-state input needing to zeroing the continuous output  
tracking error, so requirement SR r   is also fulfilled.  ■ 

6. An illustrative example 
Consider the model of a DC motor given by: 

1

0 1

m t
a

a
m a

dw k i
dt J J
di Rw i u
dt L L L

τ

λ

= −

= − − +
 

where  ai   is the armature current,  mw   is the  shaft speed,  R  is armature resistance,  oλ   

is the back-EMF constant,  1τ   is the load torque,  u   is the terminal voltage, J  is the inertia 

of the motor, rotor and load,  L   is the armature inductance and  tk   is the torque constant. 

Defining  1 mx w=    and   2 ,ax i=   and assuming that  1τ   is a known constant we have: 

1 1

202

00
1

0

tk
xx J u J
xRx LL L

w Sw

τ

λ

•

•

•

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥ −⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=
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where  ( )1 2 3, , ,Tw w w w=    

0 0 0
0 0 ,
0 0

S α
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  1, 2 ,  refy x y w= =     1 1w τ=   and  

1 ,L mH=    0.5 ,R = Ω    20.001 ,J Kgm=    10.001 ,o V s radλ −= × ×       
10.01 ,Nm s radβ −= × ×    10.008 .tk NmA−=      

From this, we can calculate 

2
0 1 2

0 1 2

0 1 0
0 0 1 , 0, , 0.a a a
a a a

α
⎡ ⎤
⎢ ⎥Φ = = = =⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Discretizing the system with a sampling of  T=0.3 s and choosing a reference  
0.1sin(5 )refy t= ,  the discrete robust controller with no exponential holder is 

constructed with: 

0.5399 1.0201 0 0 0
0.0645 0.1218 0 0 0
0.8072 0 0 1 0

1.3671 0 0 0 1
1.3775 0 1 1.1414 1.1414

dF

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

[ ]1.802 0.1481 0.8072 1.3671 1.3775 T
dG = − −  

where 

[ ]

[ ] [ ] [ ]

0.9996 2.2284
0.1194 1 ,

0.00027 0.8603

0.343 0.279 , 1 0 , 1 0 0

 d d

T
d d

A

B C H

⎡ ⎤
Σ = = ⎢ ⎥−⎣ ⎦

= = =

 

As is shown in Figure 1, as expected for the Discrete Sliding Regulator, the output tracking 
error is zero at the sampling instant, but different from zero in the intersampling times. 
Constructing now the controller (33) with an exponential holder we obtain 

[ ]1.802 0.156 1.199 0.992 35.054 T
dG = − −  
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0.531 1.0201 0 0 0
0.0634 0.1218 0 0 0
1.1993 0 1 0.1994 0.0371

0.9922 0 0 0.0707 0.1994
35.0536 0 0 4.9874 0.0707

dF

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

where 

1 0.2sin(5 ) 0.04cos(5 ) 0.04
0 cos(5 ) 0.2sin(5 )
0 5sin(5 ) cos(5 )

e θ

θ θ
θ θ
θ θ

Φ

− +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Figure 1. Output tracking error for the Discrete Sliding Robust Regulator 

As shown in Figure 2, the sliding discretized controller with exponential holder present a 
remarkable performance guaranteeing zero output trackin error also in the intersampling. 
Finally, variations on the values of the parameters ranging up to  25%±   for  R  and  

12%±   for   L   were introduced. As may be observed in  Figure 3, the controller is able to 
cope with these variations, maintaining the asymptotic tracking property as well. 



A Sampled-data Regulator using Sliding Modes and Exponential Holder for Linear Systems 

 

247 

  
Figure 2. Output tracking error for the Ripple-Free Slidng Robust Regulator 

 
Figure 3. Output tracking error for the Ripple-Free Slidng Robust Regulator with parametric 
variations 

7. Conclusions 
In this paper, we presented an extensión to the Continuous Sliding Robust Regulator to the 
Dicrete case. A Ripple-Free Sliding Robust Regulator which guarantees that the output 
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tracking error is zeroed not only at the sampling instants, but also in the intersampling 
behavior was alsoformulated and a solution was obtained. The controller has two 
components: one of them depending of the discrete dynamics of the system, and the other 
containing the internal model of the reference and/or perturbations generator. This feature 
allows the implementation of the controller on a digital device. An illustrative example 
shows the performance of the presented scheme. 
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