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Preface

This volume provides an introduction to the theory and design of compos-
ite structures of steel and concrete. Readers are assumed to be familiar
with the elastic and plastic theories for the analysis for bending and shear
of cross-sections of beams and columns of a single material, such as
structural steel, and to have some knowledge of reinforced concrete. No
previous knowledge is assumed of the concept of shear connection within
a member composed of concrete and structural steel, nor of the use of
profiled steel sheeting in composite slabs. Shear connection is covered in
depth in Chapter 2 and Appendix A, and the principal types of composite
member in Chapters 3, 4 and 5.

All material of a fundamental nature that is applicable to structures for
both buildings and bridges is included, plus more detailed information
and a fully worked example relating to buildings. The design methods are
illustrated by calculations. For this purpose a single problem, or variations
of it, has been used throughout the volume. The reader will find that the
dimensions for this structure, its loadings, and the strengths of the materi-
als soon remain in the memory. The design is not optimal, because one
object here has been to encounter a wide range of design problems, whereas
in practice one seeks to avoid them.

This volume is intended for undergraduate and graduate students, for
university teachers, and for engineers in professional practice who seek
familiarity with composite structures. Most readers will seek to develop the
skills needed both to design new structures and to predict the behaviour of
existing ones. This is now always done using guidance from a code of
practice. The British code for composite beams, BS 5950:Part 3, Section
3.1, is associated with BS 5950:Part 1 for steel structures and BS 8100 for
concrete structures. These are all being superseded by the new European
codes (‘Eurocodes’), and will be withdrawn within a few years. The
Eurocodes are being published by the standards institutions for most Eur-
opean countries as EN 1990 to EN 1999, each of which has several Parts.
These have been available as ENV (preliminary) codes for several years.

x



In the UK, their numbers are BS EN 1990, etc., and in Germany (for
example) DIN EN 1990, etc. Each code includes a National Annex, for
use for design of structures to be built in the country concerned. Apart
from these annexes and the language used, the codes will be identical in
all countries that are members of the European Committee for Standardi-
zation, CEN.

The Eurocode for composite structures, EN 1994, is based on recent
research and current practice, particularly that of Western Europe. It has
much in common with the latest national codes in this region, but its scope
is far wider. It has many cross-references to other Eurocodes, particularly:

• EN 1990, Basis of Structural Design,
• EN 1991, Actions on Structures,
• EN 1992, Design of Concrete Structures and
• EN 1993, Design of Steel Structures.

All the design methods explained and used in this volume are those of
the Eurocodes. The worked example, a multi-storey framed structure for a
building, includes design for resistance to fire. Foundations are not included.

The Eurocodes refer to other European (EN) and International (ISO)
standards, for subjects such as products made from steel and execution.
‘Execution’ is an example of a word used in Eurocodes with a particular
meaning, which is replacing the word in current usage, construction. Other
examples will be explained as they occur.

Some of these standards may not yet be widely available, so this volume
is self-contained. Readers do not need access to any of them; and should
not assume that the worked examples here are fully in accordance with
the Eurocodes as implemented in any particular country. This is because
Eurocodes give only ‘recommended’ values for some numerical values,
especially the γ and ψ factors. The recommended values, which are used
here, are subject to revision in National Annexes. However, very few of
them are being changed.

Engineers who need to use a Eurocode in professional practice should
also consult the relevant Designers’ Guide. These are being published in
the UK for each Eurocode, and are suitable only for use with the code and
those to which it refers. They are essentially commentaries on a clause-
by-clause basis, and start from a higher level of prior knowledge than is
assumed here. The Guide to EN 1994-1-1, Design of composite steel and
concrete structures – General rules and rules for buildings is consistent
with this book, being written by the present author and D. Anderson.
Corresponding publications in other languages are appearing, each relat-
ing the Eurocodes to the national codes of the country concerned.
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The previous edition of this volume was based on the ENV Eurocodes.
The many changes made in the EN versions have led to extensive revision
and a complete re-working of the examples.

The author has for several decades shared the challenge of drafting the
General, Buildings and Bridges parts of EN 1994 with other members of
multi-national committees, particularly Henri Mathieu, Karlheinz Roik,
Jan Stark, Gerhard Hanswille, Bernt Johansson, Jean-Paul Lebet, Joel
Raoul, Basil Kolias and David Anderson. The substantial contributions
made by these friends and colleagues to the author’s understanding of the
subject are gratefully acknowledged. However, responsibility for what is
presented here rests with the writer, who would be glad to be informed of
any errors that may be found.

Thanks are due also to the School of Engineering, University of
Warwick, for facilities provided, and most of all to the writer’s wife
Diana, for her unfailing support.

R.P. Johnson

Cover photograph shows composite decking prior to concreting (courtesy
of The Steel Construction Institute).
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Symbols, terminology and units

The symbols used in this volume are, wherever possible, the same as
those in EN 1994 and in the Designers’ Guide to EN 1994-1-1. They are
based on ISO 3898:1987, Bases for design of structures – Notation –
General symbols. They are more consistent than those used in the British
codes, and more informative. For example, in design one often compares
an applied ultimate bending moment (an ‘action effect’ or ‘effect of action’)
with a bending resistance, since the former must not exceed the latter.
This is written

MEd ≤ MRd

where the subscripts E, d and R mean ‘effect of action’, ‘design’ and
‘resistance’, respectively.

For longitudinal shear, the following should be noted:

• v, a shear stress (shear force per unit area), with τ used for a vertical
shear stress;

• vL, a shear force per unit length of member, known as ‘shear flow’;
• V, a shear force (used also for a vertical shear force).

For subscripts, the presence of three types of steel leads to the use of ‘s’
for reinforcement, ‘a’ (from the French ‘acier’) for structural steel, and ‘p’
or ‘ap’ for profiled steel sheeting. Another key subscript is k, as in

MEd = γFMEk

Here, the partial factor γF is applied to a characteristic bending action
effect to obtain a design value, for use in a verification for an ultimate
limit state. Thus ‘k’ implies that a partial factor (γ) has not been applied,
and ‘d’ implies that it has been. This distinction is made for actions and
resistances, as well as for the action effect shown here.
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Other important subscripts are:

• c or C for ‘concrete’;
• v or V, meaning ‘related to vertical or longitudinal shear’.

Terminology

The word ‘resistance’ replaces the widely-used ‘strength’, which is reserved
for a property of a material or component, such as a bolt.

A useful distinction is made in most Eurocodes, and in this volume,
between ‘resistance’ and ‘capacity’. The words correspond respectively to
two of the three fundamental concepts of the theory of structures, equilib-
rium and compatibility (the third being the properties of the material).
The definition of a resistance includes a unit of force, such as kN, while
that of a ‘capacity’ does not. A capacity is typically a displacement, strain,
curvature or rotation.

Cartesian axes
In the Eurocodes, x is an axis along a member. A major-axis bending
moment My acts about the y axis, and Mz is a minor-axis moment. This
differs from current practice in the UK, where the major and minor axes
are xx and yy, respectively.

Units
The SI system is used. A minor inconsistency is the unit for stress, where
both N/mm2 and MPa (megapascal) are found in the codes. Similarly,
kN/mm2 corresponds to GPa (gigapascal). The unit for a coefficient of
thermal expansion may be given as ‘per °C’ or as ‘K−1’, where K means
kelvin, the unit for the absolute temperature scale.

Symbols

The list of symbols in EN 1994-1-1 extends over eight pages, and does
not include many symbols in clauses of other Eurocodes to which it
refers. The list can be shortened by separation of main symbols from
subscripts. In this book, commonly-used symbols are listed here in that
format. Rarely-used symbols are defined where they appear.

Latin upper case letters
A accidental action; area
B breadth

xiv Symbols, terminology and units



C factor
E modulus of elasticity; effect of actions; integrity criterion (fire)
F action; force
G permanent action; shear modulus
H horizontal load or force per frame per storey
I second moment of area; thermal insulation criterion (fire)
K stiffness factor (I/L); coefficient
L length; span; system length
M moment in general; bending moment
N axial force
P shear resistance of a shear connector
Q variable action
R resistance; response factor
S stiffness; width (of floor)
V shear force; vertical load per frame per storey
W section modulus; wind load
X property of a material
Z shape factor

Greek upper case letters
∆ difference in . . . (precedes main symbol)
Ψ combination factor for variable action

Latin lower case letters
a dimension; geometrical data; acceleration
b width; breadth; dimension
c outstand; thickness of concrete cover; dimension
d diameter; depth; effective depth
e eccentricity; dimension
f strength (of a material); natural frequency; coefficient; factor
g permanent action; gravitational acceleration
h depth of member
i radius of gyration
k coefficient; factor; property of composite slab; stiffness
l length; buckling length
m property of composite slab; mass per unit length; number
n modular ratio; number
q variable action
r radius; ratio
s spacing
t thickness
u dimension; perimeter
v shear stress; shear force per unit length
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w crack width; load per unit length
x dimension to neutral axis; depth of stress block; co-ordinate along

member
y major axis; co-ordinate
K distance of excluded area from centre of area
z lever arm; dimension; co-ordinate

Greek lower case letters
α angle; ratio; factor
β angle; ratio; factor; coefficient
γ partial factor
δ steel contribution ratio; deflection
ε strain; coefficient
ζ critical damping ratio
η coefficient; degree of shear connection; resistance ratio (fire)
θ angle; slope; temperature
λ (or l if non-dimensional) slenderness ratio
µ coefficient of friction; ratio of bending moments; exponent (superscript)
υ Poisson’s ratio
ρ reinforcement ratio; density (unit mass)
σ normal stress
τ shear stress
φ diameter of a reinforcing bar; rotation; angle of sidesway
χ reduction factor (for buckling)
ϕ creep coefficient

Subscripts
A accidental; area; structural steel
a structural steel; spacing
b buckling; bolt; beam; bearing
C concrete
c compression; concrete; composite
cr critical
cu concrete cube
d design; dynamic
E effect of action
eff effective
e effective (with further subscript); elastic
el elastic
F action
f flange; full shear connection; front; finish (in hf); full

interaction
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fi fire
G permanent (referring to actions)
g centroid
H horizontal
h haunch
hog hogging bending
i index (replacing a numeral); thermal insulation
ini initial
j joint
k characteristic
L longitudinal (in vL, shear flow)
LT lateral-torsional
l (or �) longitudinal; lightweight-aggregate
M material; bending moment
m (allowing for) bending moment; mean; mass
max maximum
min minimum
N (allowing for) axial force
n number; neutral axis
o particular value
p profiled steel sheeting; point (concentrated) load; perimeter;

plastic
pa,pr properties of profiled sheeting (Section 3.3.1)
pl plastic
Q variable action
R resistance
r reduced; rib
rms root mean square
S reinforcing steel
s reinforcing steel; shear span; slab
sag sagging bending
sc shear connector
T tensile force
t tension; torsion; time; transverse; top; total
u ultimate
V shear
Vs shear (composite slab)
v vertical; shear; shear connection
w web
x axis along member
y major axis of cross-section; yield
z minor axis of cross-section
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0, 1, 2, etc. particular values
0 combination value (in Ψ0); fundamental (in f0)
1 frequent value (in Ψ1); uncracked
2 quasi-permanent value (in Ψ2); cracked reinforced
0.05, 0.95 fractiles
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1

Chapter 1

Introduction

1.1 Composite beams and slabs

The design of structures for buildings and bridges is mainly concerned
with the provision and support of load-bearing horizontal surfaces. Except
in some long-span structures, these floors or decks are usually made of
reinforced concrete, for no other material provides a better combination of
low cost, high strength, and resistance to corrosion, abrasion and fire.

The economical span for a uniform reinforced concrete slab is little
more than that at which its thickness becomes sufficient to resist the point
loads to which it may be subjected or, in buildings, to provide the sound
insulation required. For spans of more than a few metres, it is cheaper to
support the slab on beams, ribs or walls than to thicken it. Where the
beams or ribs are also of concrete, the monolithic nature of the construc-
tion makes it possible for a substantial breadth of slab to act as the top
flange of the beam that supports it.

At spans of more than about 10 m, and especially where the suscepti-
bility of steel to loss of strength from fire is not a problem, as in most
bridges, steel beams often become cheaper than concrete beams. It was at
first customary to design the steelwork to carry the whole weight of the
concrete slab and its loading; but by about 1950 the development of shear
connectors had made it practicable to connect the slab to the beam, and so
to obtain the T-beam action that had long been used in concrete construc-
tion. The term ‘composite beam’ as used in this book refers to this type of
structure.

The same term is in use for beams in which prestressed and in situ
concrete act together; and there are many other examples of composite
action in structures, such as between brick walls and beams supporting
them, or between a steel-framed shed and its cladding; but these are
outside the scope of this book.

No income is received from money invested in construction of a multi-
storey building such as a large office block until the building is occupied.
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The construction time is strongly influenced by the time taken to construct
a typical floor of the building, and here structural steel has an advantage
over in situ concrete.

Even more time can be saved if the floor slabs are cast on permanent
steel formwork, which acts first as a working platform and then as bottom
reinforcement for the slab. The use of this formwork, known as profiled
steel sheeting, commenced in North America [1], and is now standard
practice in Europe and elsewhere. These floors span in one direction only,
and are known as composite slabs. Where the steel sheet is flat, so that
two-way spanning occurs, the structure is known as a composite plate.
These occur in box-girder bridges.

Steel profiled sheeting and partial-thickness precast concrete slabs are
known as structurally participating formwork. Cement or plastic profiled
sheeting reinforced by fibres is sometimes used. Its contribution to the
strength of the finished slab is normally ignored in design.

The degree of fire protection that must be provided is another factor
that influences the choice between concrete, composite and steel structures,
and here concrete has an advantage. Little or no fire protection is required
for open multi-storey car parks, a moderate amount for office blocks, and
most of all for public buildings and warehouses. Many methods have
been developed for providing steelwork with fire protection.

Design against fire and the prediction of fire resistance is known as fire
engineering [2]. Several of the Eurocodes have a Part 1.2 devoted to it.
Full or partial encasement in concrete is an economical method for steel
columns, since the casing makes the columns much stronger. Full encase-
ment of steel beams, once common, is now more expensive than the use
of lightweight non-structural materials. Concrete encasement of the web
only, done before the beam is erected, is more common in continental
Europe than in the UK, and is covered in EN 1994-1-1 [3]. It enhances
the buckling resistance of the member (Section 4.2.4) as well as providing
fire protection.

The choice between steel, concrete and composite construction for a
particular structure thus depends on many factors that are outside the
scope of this book. Composite construction is particularly competitive for
medium- or long-span structures where a concrete slab or deck is needed
for other reasons, where there is a premium for rapid construction, and
where a low or medium level of fire protection to steelwork is sufficient.

1.2 Composite columns and frames

When the columns in steel frames were first encased in concrete to protect
them from fire, they were designed for the applied load as if uncased. It
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was then found that encasement reduced the effective slenderness of the
column, and so increased its buckling load. Empirical methods for cal-
culating the reduced slenderness still survive in some design codes for
steelwork.

This simple approach is not rational, for the encasement also carries its
share of both the axial load and the bending moments. More rational
methods, validated by tests, are given in EN 1994 (Section 5.6).

A composite column can also be constructed without the use of form-
work, by filling a steel tube with concrete. A notable early use of filled
tubes (1966) was in a four-level motorway interchange [4]. Their design
is covered in Section 5.6.7.

In framed structures, there may be steel members, composite beams,
composite columns, or all of these, and there are many types of beam-to-
column connection. Their behaviour can range from ‘nominally pinned’
to ‘rigid’, and influences bending moments throughout the frame. Two
buildings with rigid-jointed composite frames were built in England in
the early 1960s, one in Cambridge [5] and one in London [6]. Current
practice is mainly to use nominally pinned joints. In buildings it is expen-
sive to make joints so stiff that they act as ‘rigid’. Joints are usually
treated as pins, even though many have sufficient stiffness to reduce
deflections of beams to a useful extent. Intensive research in recent
years [7, 8, 9] has enabled comprehensive design rules for joints in steel
and composite frames to be given in Eurocodes 3 [10] and 4. Some of
them lead to extensive calculation, but they provide the basis for design
aids that, when available, may bring semi-rigid connections into general
use.

1.3 Design philosophy and the Eurocodes

1.3.1 Background

In design, account must be taken of the random nature of loading, the
variability of materials, and the defects that occur in construction, to
reduce the probability of unserviceability or failure of the structure during
its design life to an acceptably low level. Extensive study of this subject
since about 1950 has led to the incorporation of the older ‘safety factor’
and ‘load factor’ design methods into a comprehensive ‘limit state’ design
philosophy. Its first important application in British standards was in 1972,
in CP 110, The structural use of concrete. It is used in all current British
codes for the design of structures.

Work on international codes began after the Second World War, first on
concrete structures and then on steel structures. A committee for composite
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structures, set up in 1971, prepared the Model Code of 1981 [11]. The
Commission of the European Communities has supported work on
Eurocodes since 1982, and has delegated its management to the Comité
Europeén Normalisation (CEN), based in Brussels. This is an association
of the national standards institutions (NSIs) of the countries of the Euro-
pean Union, the European Free Trade Area, and a growing number of
other countries from central and eastern Europe.

The Eurocodes EN 1990 to 1999, with over 50 Parts, each with a
national annex, are being published by the NSIs, from 2002 until about
2007, as explained in the Preface. Those most relevant to this book are
listed as References 3, 10 and 12–16, with the expected or actual date of
publication in English by the British Standards Institution. They provide a
coherent system, in which duplication of information has been minimised.
For example, EN 1994 refers to EN 1990, Basis of structural design [12],
for design philosophy, most definitions, limit state requirements, and val-
ues of partial factors for loads and other actions.

Values for loads and other actions that do not depend on the material
used for the structure (the great majority) are given in EN 1991, Actions
on structures [13]. All provisions for structural steel that apply to both
steel and composite structures are in EN 1993, Design of steel structures
[15]. Similarly, for concrete, EN 1994 refers to but does not repeat mater-
ial from EN 1992, Design of concrete structures [14].

Even within Eurocode 4, material is divided between that which applies
to both buildings and bridges, to buildings only, and to bridges only. The
first is found in the ‘General’ clauses of EN 1994-1-1, the second in
clauses in EN 1994-1-1 marked ‘for buildings’, and the third in EN 1994-
2, ‘Rules for bridges’. Structural fire design is found in EN 1994-1-2 [16],
which cross-refers for the high-temperature properties of materials to the
‘Fire’ parts of EN 1992 and EN 1993, as appropriate.

Design of foundations is covered in EN 1997, Geotechnical design, and
seismic design in EN 1998, Design of structures for earthquake resistance.

This book presents the theories, methods, and models of the ‘General’
and ‘for buildings’ rules of Eurocode 4, including relevant material from
Eurocodes 1, 2 and 3, but does not refer to or comment on specific
clauses. Commentary on EN 1994-1-1 will be found in Reference [17],
and on the other codes in the relevant ‘Designers’ Guides’, such as
Reference [18].

The British codes current in 2004 that are most relevant to this book are
Part 3: Section 3.1 and Part 4 of BS 5950 [19]. They have much in
common with EN 1994 as they were developed in parallel with it, but
their scope is narrower. For example, columns, web-encased beams, and
box girders are not covered.
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1.3.2 Limit state design philosophy

1.3.2.1 Basis of design, and actions

Parts 1.1 of ENs 1992, 1993 and 1994 each have a Section 2, ‘Basis of
design’, that refers to EN 1990 for the presentation of limit state design as
used in the Eurocodes. Its Section 4, ‘Basic variables’, classifies these as
actions, environmental influences, properties of materials and products,
and geometrical data (e.g., initial out-of-plumb of a column). Actions are
either:

• direct actions (forces or loads applied to the structure) or
• indirect actions, such as deformations imposed on the structure, for

example by settlement of foundations, change of temperature, or shrink-
age of concrete.

‘Actions’ thus has a wider meaning than ‘loads’. Similarly, the Eurocode
term ‘effect of actions’ has a wider meaning than ‘stress resultant’, because
it includes stresses, strains, deformations, crack widths, etc., as well as
bending moments, shear forces, etc. The Eurocode term for ‘stress resultant’
is ‘internal force or moment’.

The scope of the following introduction to limit state design is limited
to that of the design examples in this book. There are two classes of limit
states:

• ultimate (denoted ULS), which are associated with structural failure,
whether by rupture, crushing, buckling, fatigue or overturning, and

• serviceability (SLS), such as excessive deformation, vibration, or width
of cracks in concrete.

Either type of limit state may be reached as a consequence of poor design,
construction, or maintenance, or from overloading, insufficient durability,
fire, etc.

There are three types of design situation:

• persistent, corresponding to normal use;
• transient, for example during construction, refurbishment or repair;
• accidental, such as fire, explosion or earthquake.

There are three main types of action:

• permanent (G or g), such as self-weight of a structure (formerly ‘dead
load’) and including shrinkage of concrete;
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• variable (Q or q), such as imposed, wind or snow load (formerly ‘live
load’) and including expected changes of temperature;

• accidental (A), such as impact from a vehicle and high temperature
from a fire.

The spatial variation of an action is either:

• fixed (typical of permanent actions) or
• free (typical of other actions), and meaning that the action may occur

over only a part of the area or length concerned.

Permanent actions are represented (and specified) by a characteristic
value, Gk. ‘Characteristic’ implies a defined fractile of an assumed statist-
ical distribution of the action, modelled as a random variable. For perman-
ent loads, it is usually the mean value (50% fractile).

Variable actions have four representative values:

• characteristic (Qk), normally the upper 5% fractile;
• combination (ψ0Qk), for use where the action is assumed to accom-

pany the design ultimate value of another variable action, which is the
‘leading action’;

• frequent (ψ1Qk), for example, occurring at least once a week, and
• quasi-permanent (ψ2Qk).

Recommended values for the combination factors ψ0, ψ1 and ψ2 (all less
than 1.0) are given in EN 1990. Definitive values, usually those recom-
mended, are given in national annexes. For example, for imposed loads
on the floors of offices, the recommended values are ψ0 = 0.7, ψ1 = 0.5,
and ψ2 = 0.3.

Design values of actions are, in general, Fd = γFFk, and in particular,

Gd = γGGk (1.1)

Qd = γQQk or Qd = γQψiQk (1.2)

where γG and γQ are partial factors for actions, recommended in EN 1990
and given in national annexes. They depend on the limit state considered,
and on whether the action is unfavourable or favourable for (i.e., tends to
increase or decrease) the action effect considered. The values used in this
book are given in Table 1.1.

The effects of actions are the responses of the structure to the actions:

Ed = E(Fd) (1.3)
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where the function E represents the process of structural analysis. Where
the effect is an internal force or moment, verification for an ultimate limit
state consists of checking that

Ed ≤ Rd (1.4)

where Rd is the relevant design resistance of the system or member or
cross-section considered.

1.3.2.2 Resistances

Resistances, Rd, are calculated using design values of properties of mater-
ials, Xd, given by

Xd = Xk/γM (1.5)

where Xk is a characteristic value of the property and γM is the partial
factor for that property.

The characteristic value is typically a 5% lower fractile (e.g., for
compressive strength of concrete). Where the statistical distribution is not
well established, it is replaced by a nominal value (e.g., the yield strength
of structural steel), so chosen that it can be used in design in place of Xk.

The subscript M in γM is often replaced by a letter that indicates the
material concerned, as shown in Table 1.2, which gives the values of γM

Table 1.2 Recommended values for γM for strengths of materials and for
resistances

Material Structural Profiled Reinforcing Concrete Shear

steel sheeting steel connection

Property fy fy fsk fck or fcu PRk

Symbol for γM γA γA γS γC γV or γVs

Ultimate limit states 1.0 1.0 1.15 1.5 1.25
Serviceability limit states 1.0 1.0 1.0 1.0 1.0

Notation: for concrete, fck and fcu are respectively characteristic cylinder and cube strengths; symbol γVs is
for shear resistance of a composite slab.

Table 1.1 Values of γG and γQ for persistent design situations

Type of action Permanent Permanent Variable Variable

unfavourable favourable unfavourable favourable

Ultimate limit states 1.35* 1.35* 1.5 0
Serviceability limit states 1.0 1.0 1.0 0

*Except for checking loss of equilibrium, or where the coefficient of variation is large
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used in this book. A welded stud shear connector is treated like a single
material, even though its design resistance to shear, PRk/γV, is influenced
by the properties of both steel and concrete. For resistance to fracture of a
steel cross-section in tension, γA = 1.25.

1.3.2.3 Combinations of actions

The Eurocodes treat systematically a subject for which many empirical
procedures have been used in the past. For ultimate limit states, the prin-
ciples are:

• permanent actions are present in all combinations;
• each variable action is chosen in turn to be the ‘leading’ action (i.e., to

have its full design value) and is combined with lower ‘combination’
values of other variable actions that may co-exist with it;

• the design action effect is the most unfavourable of those found by
this process.

The use of combination values allows for the limited correlation between
time-dependent variable actions.

As an example, it is assumed that a bending moment MEd in a member
is influenced by its own weight, G, by an imposed vertical load, Q1, and
by wind loading, Q2. The fundamental combinations for verification for
persistent design situations are:

γGGk + γQ1Qk,1 + γQ2ψ0,2Qk,2 (1.6)

and

γGGk + γQ1ψ0,1Qk,1 + γQ2Qk,2 (1.7)

Each term in these expressions gives the value of the action for which a
bending moment is calculated, and the + symbols apply to the bending
moments, not to the values of the actions. This is sometimes indicated by
placing each term between quotation marks.

In practice, it is usually obvious which combination will govern. For
low-rise buildings, wind is rarely critical for floors, so Expression 1.6
with imposed load leading would be used; but for a long-span lightweight
roof, Expression 1.7 would govern, and both positive and negative wind
pressure would be considered, with the negative pressure combined with
Qk,1 = 0.

The combination for the accidental design situation of ‘fire’ is given in
Section 3.3.7.
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For serviceability limit states, three combinations are defined. The most
onerous, the ‘characteristic’ combination, corresponds to the fundamental
combination (above) with the γ factors reduced to 1.0. For the example in
Expressions 1.6 and 1.7, it is

Gk + Qk,1 + ψ0,2Qk,2 (1.8)

and

Gk + ψ0,1Qk,1 + Qk,2 (1.9)

It is normally used for verifying irreversible limit states, for example,
deformations that result from the yielding of steel.

Assuming that Q1 is the leading variable action, the others are:

• frequent combination,

Gk + ψ1,1Qk,1 + ψ2,2Qk,2 (1.10)

• quasi-permanent combination,

Gk + ψ2,1Qk,1 + ψ2,2Qk,2 (1.11)

The frequent combination is used for reversible limit states, for example,
the elastic deflection of a floor under imposed loading. However, if that
deformation causes cracking of a brittle floor finish or damage to fragile
partitions, then the limit state is not reversible, and the check should
be done for the higher (less probable) loading of the characteristic
combination.

The quasi-permanent combination is used for long-term effects (e.g.,
deformations from creep of concrete) and for the appearance of the
structure.

Some combination factors used in this book are given in Table 1.3.

1.3.2.4 Comments on limit state design philosophy

The use of limit states has superseded earlier methods, partly because
limit states provide identifiable criteria for satisfactory performance.

Table 1.3 Combination factors

Factor y0 y1 y2

Imposed floor loading in an office area of a building 0.7 0.5 0.3
Wind loading on a building 0.6 0.2 0.0
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Stresses cannot be calculated with the same confidence as resistances of
members, and high values may or may not be significant.

An apparent disadvantage of limit states design is that several sets of
design calculations may be needed whereas, with some older methods,
one was sufficient. This is only partly true, for it has been found possible
to identify many situations in which design for, say, an ultimate limit state
will ensure that certain types of unserviceability will not occur, and vice
versa. In the rules of EN 1994 for buildings it has generally been possible
to avoid specifying limiting stresses for serviceability limit states by using
other methods to check deflections and crack widths.

1.4 Properties of materials

Information on the properties of structural steel, profiled sheeting, concrete
and reinforcement is readily available. Only that which has particular
relevance to composite structures is given here.

In the determination of the bending moments and shear forces in a
beam or framed structure (known as ‘global analysis’), all the materials
can be assumed to behave in a linear-elastic manner, though an effective
modulus is used for the concrete to allow for its creep under sustained
compressive stress. Its tensile strength need not be taken as zero, provided
account is taken of reductions of stiffness caused by cracking. The effects
of its shrinkage are rarely significant in buildings.

Rigid-plastic global analysis can sometimes be used (Section 4.3.3)
despite the profound difference between a typical stress–strain curve for
concrete in compression and those for structural steel or reinforcement, in
tension or compression, that is illustrated in Fig. 1.1.

Figure 1.1 Stress–strain curves for concrete and structural steel
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Concrete reaches its maximum compressive stress at a strain of between
0.002 and 0.003, and at higher strains it crushes, losing almost all of its
compressive strength. It is very brittle in tension, having a strain capacity
of only about 0.0001 (i.e., 0.1 mm per metre) before it cracks. Figure 1.1
also shows that the maximum stress reached by concrete in a beam or
column is well below its cube strength.

Steel yields at a strain similar to that given for the maximum stress in
concrete, but on further straining the stress continues to increase slowly,
until (for a typical structural steel) the total strain is at least thirty times
the yield strain. Its subsequent necking and fracture is of little significance
for composite members because the useful resistance of a cross-section is
reached when all of the steel has yielded, when steel in compression
buckles, or when concrete crushes.

Resistances of cross-sections are determined using plastic analysis wher-
ever possible because results of elastic analyses are unreliable, unless
careful account is taken of the cracking, shrinkage, and creep of concrete
(which is difficult), and also because plastic analysis is simpler and leads
to more economical design.

The use of a higher value of γM for concrete than for steel (Table 1.2)
includes allowance for the higher variability of the strength of test speci-
mens, and the variation in the strength of concrete over the depth of a
member, due to migration of water before setting. It also allows for the
larger errors in the dimensions of cross-sections, particularly in the posi-
tions of reinforcing bars.

Brief comments are now given on individual materials.

Concrete
In EN 1992, a typical strength class for normal-density concrete is denoted
C25/30, where the specified characteristic compressive strengths at age 28
days are fck = 25 N/mm2 (cylinder test) and fcu = 30 N/mm2 (cube test). The
design formulae in EN 1994 use fcd, which is fck/γC. The normal-density
concrete used in worked examples here is ‘Grade 30’ (in British terminology),
with fck taken as 25 N/mm2. It is used for the columns and for encasement
of beam webs. The floor slabs are constructed with lightweight-aggregate
concrete of grade LC25/28, with oven-dry density 1800 kg/m3. Other
properties for these two concretes are given in Table 1.4.

For densities, EN 1991-1-1 uses kN/m3 units, and so gives densities about
2% higher than those of EN 1992-1-1, since 1800 kg/m3 is 17.65 kN/m3.
The higher values are used here.

Reinforcing steel
Strength grades for reinforcing steel are given in EN 10080 [20] in terms
of a characteristic yield strength fsk. The value used here is 500 N/mm2,
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for both ribbed bars and welded steel fabric. The modulus of elasticity for
reinforcement, Es, is normally taken as 200 kN/mm2; but in a compos-
ite section it may be assumed to have the value for structural steel, Ea =
210 kN/mm2, as the error is negligible.

Structural steel
Strength grades for structural steel are given in EN 10025 [21] in terms of
a nominal yield strength, fy, and ultimate tensile strength, fu. The grade
used in worked examples here is S355, for which fy = 355 N/mm2, fu =
510 N/mm2 for elements of all thicknesses up to 40 mm.

The density of structural steel is assumed to be 7850 kg/m3. Its coefficient
of linear thermal expansion is 12 × 10−6 per °C. The difference between
this value and that for normal-density concrete, 10 × 10−6 per °C, can usually
be ignored.

Profiled steel sheeting
This product is available with yield strengths ranging from 235 N/mm2 to
at least 460 N/mm2, in profiles with depths ranging from 45 mm to over
200 mm, and with a wide range of shapes. These include both re-entrant ribs,
and trapezoidal troughs as in Fig. 3.9. There are various methods of
achieving composite action with a concrete slab, discussed in Section 2.4.3.

Sheets are normally between 0.8 mm and 1.5 mm thick, and are protected
from corrosion by a zinc coating about 0.02 mm thick on each face.
Elastic properties of the material may be assumed to be as for structural
steel.

Shear connectors
In the early years of composite construction, many types of connector
were in use. This market is now dominated by automatically-welded headed
studs. Details of these and the measurement of their resistance to shear are
given in Chapter 2.

Table 1.4 Properties of concretes used in the examples, at age
28 days

Concrete grade C25/30 LC25/28

Characteristic cylinder strength,  N/mm2 fck 25 25
Mean cylinder strength,  N/mm2 fcm 33 33
Lower tensile strength,  N/mm2 fct,0.05 1.80 1.60
Mean tensile strength,  N/mm2 fctm 2.60 2.32
Upper tensile strength,  N/mm2 fct,0.95 3.30 2.94
Mean elastic modulus,  kN/mm2 Ecm 31.0 20.7
Weight density, reinforced concrete, kN/m3 25.0 19.5
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1.5 Direct actions (loading)

The characteristic loadings to be used in worked examples are now given.
They are taken from EN 1991.

The permanent loads (dead load) are the weight of the structure and its
finishes. The structural steel or profiled sheeting component of a composite
member is invariably built first, so a distinction must be made between
load resisted by the steel component only, and load applied to the member
after the concrete has developed sufficient strength for composite action
to become effective. The division of the permanent load between these
categories depends on the method of construction.

Composite beams and slabs are classified as propped (‘shored’ in North
America) or unpropped. In propped construction, the steel member is
supported at intervals along its length until the concrete has reached a
certain proportion, usually three-quarters, of its design strength. When the
props are removed, the whole of the dead load is assumed to be carried by
the composite member. Where no props are used, it is assumed in elastic
analysis that the steel member alone carries its own weight and that of the
formwork and the concrete slab. Other dead loads such as floor finishes
and internal walls are added later, and so are assumed to be carried by the
composite member. In ultimate-strength methods of analysis (Section 3.5.3),
inelastic behaviour causes extensive redistribution of stress before failure,
and it can be assumed that the whole load is applied to the composite
member, whatever the method of construction.

The principal vertical variable action in a building is a uniformly-
distributed load on each floor. EN 1991-1-1 gives ranges of loads, depend-
ing on the use to be made of the area, with a recommended value. For
‘office areas’, this value is

qk = 3.0 kN/m2 (1.12)

Account is taken of point loads (e.g., a safe being moved on a trolley
with small wheels) by defining an alternative point load, to be applied
anywhere on the floor, on an area about 50 mm square. For the type of
area defined above, this is

Qk = 4.5 kN (1.13)

Where a member such as a column is carrying loads qk from n storeys
(n > 2), the total of these loads may be multiplied by a reduction factor αn.
The recommended value is

αn = [2 + (n − 2)ψ0]/n (1.14)
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where ψ0 is the combination factor (e.g., as in Table 1.3). This allows for
the low probability that all n floors will be fully loaded at once.

In an office block, the location of partitions is unknown at the design
stage. Their weight is usually allowed for by increasing the imposed
loading, qk, by an amount that depends on the expected weight per unit
length of the partitions. The increases given in EN 1991-1-1 range from
0.5 to 1.2 kN/m2.

The principal horizontal variable load for a building is wind. These
loads are given in EN 1991-1-4. They usually consist of pressure or
suction on each external surface. On large flat areas, frictional drag may
also be significant. Wind loads rarely influence the design of composite
beams, but can be important in framed structures not braced against side-
sway and in tall buildings.

Methods of calculation for distributed and point loads are sufficient for
all types of direct action. Indirect actions such as subsidence or differen-
tial changes of temperature, which occasionally influence the design of
structures for buildings, are not considered in this book.

1.6 Methods of analysis and design

The purpose of this section is to provide a preview of the principal methods
of analysis used for composite members and frames, and to show that
most of them are straightforward applications of methods in common use
for steel or reinforced concrete structures.

The steel designer will be familiar with the elementary elastic theory of
bending, and the simple plastic theory in which the whole cross-section of
a member is assumed to be at yield, in either tension or compression. Both
theories are used for composite members, the differences being as follows:

• concrete in tension is usually neglected in elastic theory, and always
neglected in plastic theory;

• in the elastic theory, concrete in compression is ‘transformed’ into an
equivalent area of steel by dividing its breadth by the modular ratio
Ea/Ec;

• in the plastic theory, the design ‘yield stress’ of concrete in compression
is taken as 0.85fcd, where fcd = fck/γC. Transformed sections are not
used. Examples of this method are given in Sections 3.4.2 and 3.11.1.

In the strength classes for concrete in EN 1992, the ratios fck/fcu range
from 0.78 to 0.83, so for γC = 1.5, the stress 0.85fcd corresponds to a value
between 0.44fcu and 0.47fcu. This agrees closely with BS 5950 [19], which
uses 0.45fcu for the plastic resistance of cross-sections.
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The factor 0.85 takes account of several differences between a standard
cylinder test and what concrete experiences in a structural member. These
include the longer duration of loading in the structure, the presence of a
stress gradient across the section considered, and the differences in the
boundary conditions for the concrete.

The concrete designer will be familiar with the method of transformed
sections, and with the rectangular-stress-block theory outlined above. The
basic difference from the elastic behaviour of a reinforced concrete beam
is that the steel section in a composite beam is more than tension re-
inforcement. It has a significant bending stiffness of its own, and resists
most of the vertical shear.

The formulae for the elastic properties of composite sections are more
complex than those for steel or reinforced concrete sections. The chief
reason is that the neutral axis for bending may lie in the web, the steel
flange, or the concrete flange of the member. The theory is not in prin-
ciple any more complex than that for a steel I-beam.

Longitudinal shear
Students usually find this subject troublesome, even though the formula

τ = VAK/Ib (1.15)

is familiar from their study of vertical shear in elastic beams, so a note on
its use may be helpful. Its proof can be found in any undergraduate-level
textbook on strength of materials.

First, let us consider the shear stresses τ in the elastic I-beam shown in
Fig. 1.2, due to a vertical shear force V. For a cross-section 1–2 through
the web, the ‘excluded area’, A in the formula, is the top flange, of area Af.
The distance K of its centroid from the neutral axis (line X–X in Fig. 1.2)
is (h − tf)/2. The shear stress τ12 on plane 1–2, of breadth tw, is therefore

τ12 = VAf(h − tf)/(2Itw) (1.16)

where I is the second moment of area of the whole cross-section about the
axis X–X through its centre of area.

This result may be recognised as the vertical shear stress at this cross-
section. However, a shear stress is always associated with a complemen-
tary shear stress at right angles to it and of equal value; in this case, the
longitudinal shear stress. This will now be denoted by v, rather than τ, as
v is used in EN 1994.

If the cross-section in Fig. 1.2 is a composite beam, with the cross-
hatched area representing the transformed area of a concrete flange, shear
connection is required on plane 1–2. It has to resist this longitudinal shear
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stress over a width tw, so the shear force per unit length is vtw. This is
named the shear flow, and has the symbol vL. From these results,

vL,12 = VAf(h – tf)/(2I) (1.17)

Consideration of the longitudinal equilibrium of the small element 1234
in Fig. 1.2 shows that if its area twtf is much less than Af, the shear flows
on planes 1–4 and 2–3 are each approximately vL,12/2, and the mean shear
stress on these planes is given approximately by

τ14tf = τ12tw/2

This stress is needed for checking the resistance of the concrete slab to
longitudinal shear.

Repeated use of Equation 1.15 for various cross-sections shows that the
variation of longitudinal shear stress is parabolic in the web and linear in
the flanges, as shown in Fig. 1.2.

The second example is the elastic beam shown in section in Fig. 1.3.
This represents a composite beam in sagging bending, with the neutral
axis at depth x, a concrete slab of thickness hc, and the interface between
the slab and the structural steel (which is assumed to have no top flange)
at level 6–5. The concrete has been transformed to steel, so the cross-
hatched area is the equivalent steel section. The concrete in area ABCD is

Figure 1.2 Shear stresses in an elastic I-section
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Figure 1.3 Shear stresses in a composite section with the neutral
axis in the concrete slab

assumed to be cracked. As in the theory for reinforced concrete beams, it
resists no longitudinal stress but is capable of transferring shear stress.

Equation 1.15 is based on rate of change along the beam of bending
stress, so in applying it here, area ABCD is omitted when the ‘excluded
area’ is calculated. Let the cross-hatched area of flange be Af, as before.
The longitudinal shear stress on plane 6–5 is given by

v65 = VAfK/Itw (1.18)

where K is the distance from the centroid of the excluded area to the
neutral axis, not to plane 6–5. If A and K are calculated for the cross-
hatched area below plane 6–5, the same value v65 is obtained, because it is
the equality of the two products ‘AK’ that determines the value x.

The preceding theory relies on the assumption that the flexibility of
shear connectors is negligible, and is used in bridge design and for fatigue
generally. Ultimate-strength theory (Sections 3.3.2 and 3.6.2) provides an
alternative that takes advantage of the plastic behaviour of stud connec-
tors and is widely used in design for buildings.

For a plane such as 2–3 in Fig. 1.3, the shear flow is

vL,23 = VA23K/I (1.19)

The design shear stress for the concrete on this plane is vL,23/hc. It is not
equal to vL,23/x because the cracked concrete can resist shear. The depth hc
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does not have to be divided by the modular ratio, even though the trans-
formed section is of steel, because the transformation is of widths, not
depths. An alternative explanation is that shear flows from equations such
as Equation 1.19 are independent of the material considered, because
transformation does not alter the ratio A23/I.

Longitudinal slip
Shear connectors are not rigid, so that a small longitudinal slip occurs
between the steel and concrete components of a composite beam. The
problem does not arise in other types of structure, and relevant analyses
are quite complex (Section 2.6 and Appendix A). They are not needed in
design, for which simplified methods have been developed.

Deflections
The effects of creep and shrinkage make calculation of deflections in
reinforced concrete beams more complex than for steel beams, but the
limiting span/depth ratios given in codes such as BS 8110 [22] provide a
simple means of checking for excessive deflection. These ratios are unre-
liable for composite beams, especially where unpropped construction is used.
Examples of checks on deflections are given in Sections 3.4.5 and 3.11.3.

Vertical shear
The stiffness in vertical shear of the concrete slab of a composite beam is
usually much less than that of the steel component, and is neglected in
design. For vertical shear, the methods used for steel beams are applicable
also to composite beams.

Buckling of flanges and webs of beams
This will be a new problem to many designers of reinforced concrete. It
leads to restrictions on the breadth/thickness ratios of unstiffened steel
webs and flanges in compression (Section 3.5.2). These do not apply to
the steel part of the top flange of a composite T-beam at mid-span, because
local buckling is prevented by its attachment to the concrete slab.

Crack-width control
The maximum spacings for reinforcing bars given in codes for reinforced
concrete are intended to limit the widths of cracks in the concrete, for
reasons of appearance and to avoid corrosion of reinforcement. In composite
structures for buildings, cracking is likely to be a problem only where the
top surfaces of continuous beams support brittle finishes or are exposed
to corrosion. The principles of crack-width control are the same as for
reinforced concrete. The calculations are different, but can normally be
avoided by using the simplified methods given in EN 1994.
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Continuous beams
The Eurocode design methods for continuous beams (Chapter 4) make
use of both simple plastic theory (as for steel beams) and redistribution of
moments (as for concrete beams).

Columns
The only British code that gives a design method for composite columns
is BS 5400:Part 5, Composite bridges. EN 1994 gives a newer and simpler
method, which is described in Section 5.6.

Framed structures for buildings
Composite members normally form part of a frame that is essentially
steel, rather than concrete, so the design methods of EN 1994 are based
on those of EN 1993 for steel structures. Beam-to-column joints are class-
ified in the same way; the same assumptions are made about geometrical
imperfections, such as out-of-plumb columns; and similar allowance is
made for second-order effects (increases in bending moments and reduc-
tion in stability, caused by interaction between vertical loads and lateral
deflections). Frame analysis is outlined in Section 5.4.5. It may be more
complex than in current practice, but includes methods for unbraced frames.
Eurocodes EN 1993 and 1994 contain much new material on the design
of joints.

Structural fire design
The high thermal conductivity and slenderness of structural steel members
and profiled sheeting cause them to lose strength in fire more quickly than
concrete members do. Structures for buildings are required to have fire
resistance of minimum duration (typically, 30 minutes to 2 hours) to
enable occupants to escape and to protect fire fighters. This has led to the
provision of minimum thicknesses of concrete and areas of reinforcement
and of thermal insulation of steelwork.

Extensive research and the recent subject of fire engineering [2] have
enabled the Eurocode rules for resistance to fire to be less onerous than
older rules. Advantage is taken in design of membrane effects associated
with large deformations, and of the provisions for accidental design sit-
uations. These allow for over-strength of members and the use of ‘frequent’
rather than ‘characteristic’ load levels. Explanations and worked examples
are given in Sections 3.3.7, 3.4.6, 3.10, 3.11.4 and 5.6.2.
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Chapter 2

Shear connection

2.1 Introduction

The established design methods for reinforced concrete and for structural
steel give no help with the basic problem of connecting steel to the con-
crete. The force applied to this connection is mainly, but not entirely,
longitudinal shear. As with bolted and welded joints, the connection is a
region of severe and complex stress that defies accurate analysis, and so
methods of connection have been developed empirically and verified by
tests. They are described in Section 2.4.

The simplest type of composite member used in practice occurs in floor
structures of the type shown in Fig. 3.1. The concrete floor slab is con-
tinuous over the steel I-sections, and is supported by them. It is designed
to span in the y-direction in the same way as when supported by walls or
the ribs of reinforced concrete T-beams. When shear connection is pro-
vided between the steel member and the concrete slab, the two together
span in the x-direction as a composite beam. The steel member has not
been described as a ‘beam’, because its main function at mid-span is to
resist tension, as does the reinforcement in a T-beam. The compression
is assumed to be resisted by an ‘effective’ width of slab, as explained in
Section 3.5.1.

In buildings, but not in bridges, these concrete slabs are often com-
posite with profiled steel sheeting (Fig. 2.8), which rests on the top flange
of the steel beam. Other types of cross-section that can occur in composite
beams are shown in Fig. 2.1.

The ultimate-strength design methods used for shear connection in
beams and columns in buildings are described in Sections 3.6 and 5.6.6,
respectively.

The subjects of the present chapter are: the effects of shear connection
on the behaviour of very simple beams, current methods of shear connec-
tion, standard tests on shear connectors, and shear connection in com-
posite slabs.
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Figure 2.1 Typical cross-sections of composite beams

2.2 Simply-supported beam of rectangular cross-section

Flitched beams, whose strength depended on shear connection between
parallel timbers, were used in mediaeval times, and survive today in the
form of glued-laminated construction. Such a beam, made from two
members of equal size (Fig. 2.2), will now be studied. It carries a load w
per unit length over a span L, and its components are made of an elastic
material with Young’s modulus E. The weight of the beam is neglected.

Figure 2.2 Effect of shear connection on bending and shear stresses
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2.2.1 No shear connection

It is assumed first that there is no shear connection or friction on the
interface AB. The upper beam cannot deflect more than the lower one,
so each carries load w/2 per unit length as if it were an isolated beam of
second moment of area bh3/12, and the vertical compressive stress across
the interface is w/2b. The mid-span bending moment in each beam is
wL2/16. By elementary beam theory, the stress distribution at mid-span is
given by the dashed line in Fig. 2.2(c), and the maximum bending stress
in each component, σ, is given by
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The maximum shear stress, τ, occurs near a support. The two parabolic
distributions given by simple elastic theory are shown in Fig. 2.2(d); and
at the centre-line of each member,
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The maximum deflection, δ, is given by the usual formula
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The bending moment in each beam at a section distant x from mid-span is
Mx = w(L2 − 4x 2)/16, so that the longitudinal strain εx at the bottom fibre
of the upper beam is
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8
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There is an equal and opposite strain in the top fibre of the lower beam, so
that the difference between the strains in these adjacent fibres, known as
the slip strain, is 2εx.

It is easy to show by experiment with two or more flexible wooden
laths or rulers that, under load, the end faces of the two-component beam
have the shape shown in Fig. 2.3(a). The slip at the interface, s, is zero
at x = 0 (from symmetry) and a maximum at x = ±L/2. The cross-section
at x = 0 is the only one where plane sections remain plane. The slip strain,
defined above, is not the same as slip. In the same way that strain is rate
of change of displacement, slip strain is the rate of change of slip along
the beam. Thus from Equation 2.4,
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Figure 2.3 Deflections, slip strain and slip
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Integration gives
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The constant of integration is zero, since s = 0 when x = 0, so that
Equation 2.6 gives the distribution of slip along the beam.

Results (2.5) and (2.6) for the beam studied in Section 2.7 are plotted
in Fig. 2.3. This shows that at mid-span, slip strain is a maximum and slip
is zero and, at the ends of the beam, slip is a maximum and slip strain is
zero. From Equation 2.6, the maximum slip (when x = L/2) is wL3/4Ebh2.
Some idea of the magnitude of this slip is given by relating it to the
maximum deflection of the two beams. From Equation 2.3, the ratio of
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slip to deflection is 3.2h/L. The ratio L/2h for a beam is typically about
20, so that the end slip is less than a tenth of the deflection. This shows
that shear connection must be very stiff if it is to be effective.

2.2.2 Full interaction

It is now assumed that the two halves of the beam shown in Fig. 2.2 are
joined together by an infinitely stiff shear connection. The two members
then behave as one. Slip and slip strain are everywhere zero, and it can
be assumed that plane sections remain plane. This situation is known as
full interaction. Except in design with partial shear connection (Sections
3.5.3 and 3.7.1), all design of composite beams and columns in practice is
based on the assumption that full interaction is achieved.

For the composite beam of breadth b and depth 2h, I = 2bh3/3, and
elementary theory gives the mid-span bending moment as wL2/8. The
extreme fibre bending stress is
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The vertical shear at section x is

Vx = wx (2.8)

so the shear stress at the neutral axis is
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and the maximum shear stress is
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The stresses are compared in Figs 2.2(c) and (d) with those for the non-
composite beam. The provision of the shear connection does not change
the maximum shear stress, but the maximum bending stress is halved.

The mid-span deflection is
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which is one-quarter of the previous deflection (Equation 2.3). Thus the
provision of shear connection increases both the strength and the stiffness of
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a beam of given size, and in practice leads to a reduction in the size of the
beam required for a given loading, and usually to a reduction in its cost.

In this example – but not always – the interface AOB coincides with
the neutral axis of the composite member, so that the maximum longitudi-
nal shear stress at the interface is equal to the maximum vertical shear
stress, which occurs at x = ±L/2 and is 3wL/8bh, from Equation 2.10.

The shear connection must be designed for the longitudinal shear per unit
length, vL, which is known as the shear flow. In this example it is given by

v b
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h
L x x,     = =τ

3

4
(2.12)

The total shear flow in a half span is found, by integration of equation
(2.12), to be 3wL2/(32h). Typically, L/2h � 20, so the shear connection in
the whole span has to resist a total shear force
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Thus, this shear force is eight times the total load carried by the beam.
A useful rule of thumb is that the resistance of the shear connection for a
beam should be an order of magnitude greater than the load to be carried;
it shows that shear connection must be very strong.

In elastic design, the shear connectors are spaced in accordance with
the shear flow. Thus, if the design shear resistance of a connector is PRd,
the pitch or spacing at which they should be provided, p, is given by
pvL,x n PRd. From Equation 2.12 this is

p
P h
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n

4

3
Rd (2.13)

This is known as ‘triangular’ spacing, from the shape of the graph of vL

against x (Fig. 2.4).

Figure 2.4 Shear flow for ‘triangular’ spacing of connectors
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Figure 2.5 Uplift forces

2.3 Uplift

In the preceding example, the stress normal to the interface AOB (Fig. 2.2)
was everywhere compressive, and equal to w/2b except at the ends of the
beam. The stress would have been tensile if the load w had been applied
to the lower member. Such loading is unlikely, except when travelling
cranes are suspended from the steelwork of a composite floor above; but
there are other situations in which stresses tending to cause uplift can
occur at the interface. These arise from complex effects such as the tor-
sional stiffness of reinforced concrete slabs forming flanges of composite
beams, the triaxial stresses in the vicinity of shear connectors and, in box-
girder bridges, the torsional stiffness of the steel box.

Tension across the interface can also occur in beams of non-uniform
section or with partially completed flanges. Two members without shear
connection, as shown in Fig. 2.5, provide a simple example. AB is sup-
ported on CD and carries distributed loading. It can easily be shown by
elastic theory that if the flexural rigidity of AB exceeds about one-tenth
of that of CD, then the whole of the load on AB is transferred to CD at
points A and B, with separation of the beams between these points. If AB
were connected to CD, there would be uplift forces at mid-span.

Almost all connectors used in practice are therefore so shaped that
they provide resistance to uplift as well as to slip. Uplift forces are so
much less than shear forces that it is not normally necessary to calculate
or estimate them for design purposes, provided that connectors with some
uplift resistance are used.

2.4 Methods of shear connection

2.4.1 Bond

Until the use of deformed bars became common, most of the reinforce-
ment for concrete consisted of smooth mild-steel bars. The transfer of
shear from steel to concrete was assumed to occur by bond or adhesion at
the concrete–steel interface. Where the steel component of a composite
member is surrounded by reinforced concrete, as in an encased beam,
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Fig. 2.1(c), or an encased stanchion, Fig. 5.14, the analogy with re-
inforced concrete suggests that no shear connectors need be provided.
Tests have shown that this can be true for cased stanchions and filled
tubes, where bond stresses are usually low, and also for encased beams
in the elastic range. In design it is necessary to restrict bond stress to a
low value, to provide a margin for the incalculable effects of shrinkage of
concrete, poor adhesion to the underside of steel surfaces, and stresses
due to variations of temperature.

Research on the ultimate strength of encased beams has shown that,
at high loads, calculated bond stresses have little meaning, due to the
development of cracking and local bond failures. If longitudinal shear
failure occurs, it is invariably on a surface such as AA in Fig. 2.1(c), and
not around the perimeter of the steel section. For these reasons, codes of
practice do not allow ultimate-strength design methods to be used for
composite beams without shear connectors.

Most composite beams have cross-sections of types (a) or (b) in Fig. 2.1.
Tests on such beams show that, at low loads, most of the longitudinal shear
is transferred by bond at the interface, that bond breaks down at higher
loads, and that once broken it cannot be restored. So in design calcula-
tions, bond strength is taken as zero and, in research, the bond is deliber-
ately destroyed by greasing the steel flange before the concrete is cast. For
uncased beams, the most practicable form of shear connection is some form
of dowel welded to the top flange of the steel member and subsequently
surrounded by in situ concrete when the floor or deck slab is cast.

2.4.2 Shear connectors

The most widely used type of connector is the headed stud (Fig. 2.6).
These range in diameter from 13 to 25 mm, and in length, h, from 65 to
150 mm, though longer studs are sometimes used. Studs should have an

Figure 2.6 Headed stud shear connector
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ultimate tensile strength of at least 450 N/mm2 and an elongation of at
least 15%. The advantages of stud connectors are that the welding process
is rapid, they provide little obstruction to reinforcement in the concrete
slab, and they are equally strong and stiff in shear in all directions normal
to the axis of the stud.

There are two factors that influence the diameter of studs. One is the
welding process, which becomes increasingly difficult and expensive at
diameters exceeding 20 mm, and the other is the thickness, t (Fig. 2.6), of
the plate or flange to which the stud is welded. A study made in the USA
[23] found that the full static strength of the stud can be developed if d/t
is less than about 2.7, and a limit of 2.5 is given in EN 1994-1-1. Tests
using repeated loading have led to the rule that where the flange plate is
subjected to fluctuating tensile stress, d/t may not exceed 1.5. These rules
prevent the use of welded studs as shear connection in composite slabs.

The maximum shear force that can be resisted by a 25-mm stud is
relatively low, about 130 kN. Other types of connector with higher strength
have been developed, primarily for use in bridges. These are bars with
hoops (Fig. 2.7(a)), tees with hoops, horseshoes and channels (Fig. 2.7(b)).

Figure 2.7 Other types of shear connector
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Bars with hoops are the strongest of these, with ultimate shear strengths
up to 1000 kN. Design rules are given in BS 5400:Part 5 and in the
preliminary Eurocode 4, ENV 1994-1-1, but were omitted from EN 1994-
1-1 because they are now rarely used. Epoxy adhesives have been tried,
but it is not clear how resistance to uplift can reliably be provided where
the slab is attached to the steel member only at its lower surface.

2.4.3 Shear connection for profiled steel sheeting

This material is commonly used as permanent formwork for floor slabs in
buildings, then known as composite slabs. Typical cross-sections are shown
in Figs 2.8, 2.14, 2.20 and 3.12. As it is impracticable to weld shear
connectors to material that may be less than 1 mm thick, shear connection
is provided either by pressed or rolled dimples that project into the
concrete, or by giving the steel profile a re-entrant shape that prevents
separation of the steel from the concrete.

The resistance of composite slabs to longitudinal shear is covered in
Section 2.8, and their design in Section 3.3.

2.5 Properties of shear connectors

The property of a shear connector most relevant to design is the relation-
ship between the shear force transmitted, P, and the slip at the interface, s.
This load–slip curve should ideally be found from tests on composite
beams, but in practice a simpler specimen is necessary. Most of the data
on connectors have been obtained from various types of ‘push-out’ or
‘push’ test. The flanges of a short length of steel I-section are connected
to two small concrete slabs. The details of the standard push test of EN
1994-1-1 are shown in Fig. 2.9. The slabs are bedded onto the lower
platen of a compression-testing machine or frame, and load is applied to
the upper end of the steel section. Slip between the steel member and the

Figure 2.8 Composite slab
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Figure 2.9 Standard push test

two slabs is measured at several points, and the average slip is plotted
against the load per connector. A typical load–slip curve is shown in
Fig. 2.10, from a test using composite slabs [24].

In practice, designers normally specify shear connectors for which
strengths have already been established, for it is an expensive matter to
carry out sufficient tests to determine design strengths for a new type of
connector. If reliable results are to be obtained, the test must be specified

Figure 2.10 Typical load–slip curve for 19-mm stud connectors in a
composite slab
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in detail, as the load–slip relationship is influenced by many variables,
including:

(1) number of connectors in the test specimen,
(2) mean longitudinal stress in the concrete slab surrounding the

connectors,
(3) size, arrangement and strength of slab reinforcement in the vicinity

of the connectors,
(4) thickness of concrete surrounding the connectors,
(5) freedom of the base of each slab to move laterally, and so to impose

uplift forces on the connectors,
(6) bond at the steel–concrete interface,
(7) strength of the concrete slab, and
(8) degree of compaction of the concrete surrounding the base of each

connector.

The details shown in Fig. 2.9 include requirements relevant to items
1 to 6. The amount of reinforcement specified and the size of the slabs are
greater than for the British standard test, which has barely changed since
it was introduced in 1965. The Eurocode test gives results that are less
influenced by splitting of the slabs, and so give better predictions of the
behaviour of connectors in beams [17].

Tests have to be done for a range of concrete strengths, because the
strength of the concrete influences the mode of failure, as well as the
failure load. Studs may reach their maximum load when the concrete
surrounding them fails, but in stronger concrete, they shear off. This is
why the design shear resistance of studs with h/d ≥ 4 is given in Eurocode
4 as the lesser of two values:
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where fu is the ultimate tensile strength of the steel (≤ 500 N/mm2), and
fck and Ecm are the cylinder strength and mean secant (elastic) modulus
of the concrete, respectively. Dimensions h and d are shown in Fig. 2.6.
The value recommended for the partial safety factor γV is 1.25, based
on statistical calibration studies. When fu = 450 N/mm2, Equation 2.14
governs when fck exceeds about 30 N/mm2.
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Ignoring γV, it is evident that Equation 2.14 represents shear failure in
the shank of the stud at a mean stress of 0.8fu. To explain Equation 2.15,
it is assumed that the force PR is distributed over a length of connector
equal to twice the shank diameter, because research has shown that the
bearing stress on a shank is concentrated near the base, as sketched in
Fig. 2.11. An approximate mean stress is then 0.145 ( fckEcm)1/2. Its value,
using data from EN 1992, ranges from 110 N/mm2 for class C20/25 con-
crete to 171 N/mm2 for class C40/50 concrete, so for these concretes the
mean bearing stress at concrete failure ranges from 5.5fck to 4.3fck. This
estimate ignores the enlarged diameter at the weld collar at the base of the
stud, shown in Fig. 2.6; but it is clear that the effective compressive
strength is several times the cylinder strength of the concrete.

This very high strength is possible only because the concrete bearing
on the connector is restrained laterally by the surrounding concrete, its
reinforcement, and the steel flange. The results of push tests are likely to
be influenced by the degree of compaction of the concrete, and even by
the arrangement of particles of aggregate, in this small but critical region.
This is thought to be the main reason for the scatter of the results obtained.

The usual way of allowing for this scatter is to specify that the charac-
teristic resistance PRk be taken as 10% below the lowest of the results
from three tests, and then corrected for any excess of the measured strength
of the connector material above the minimum specified value.

The other property that can be deduced from a push-test result is the
slip capacity, δu. This is defined in EN 1994-1-1 as the maximum slip at
the load level PRk, normally on the falling branch of the load–slip curve.
The characteristic slip capacity, δuk, is the minimum value of δu from a set
of tests, reduced by 10%, unless there are sufficient test results for the 5%
lower fractile to be determined.

In EN 1994-1-1, a connector may be taken as ‘ductile’ if δuk ≥ 6 mm.
The use of ductile connectors leads to simpler design, as explained in
Section 3.6.2.

The load–slip curve for a connector in a beam is influenced by the
difference between the longitudinal stress in a concrete flange and that in
the slabs in a push test. Where the flange is in compression the load/slip

Figure 2.11 Bearing stress on the shank of a stud connector
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ratio (the stiffness) in the elastic range exceeds the push-test value, but the
ultimate strength is about the same. For slabs in tension (e.g., in a region
of hogging moment), the connection is significantly less stiff [25] but the
ultimate shear resistance is only slightly lower. The reduction in stiffness
is one reason why partial shear connection (Section 3.6) is allowed in
Eurocode 4 only in regions of sagging bending moment.

There are two situations in which the resistance of a connector found
from push tests may be too high for use in design. One is repeated load-
ing, such as that due to the passage of traffic over a bridge. The other is
where the lateral restraint to the concrete in contact with the connector is
less than that provided in a push test, as in a haunched beam with con-
nectors too close to a free surface (Fig. 2.12). For this reason, the use of
the standard equations for resistance of connectors is allowed in haunched
beams only where the cross-section of the haunch satisfies certain con-
ditions. In EN 1994-1-1 these are that the concrete cover to the side of
the connectors may not be less than 50 mm (line AB in Fig. 2.13), and
that the free concrete surface may not lie within the line CD, which runs
from the base of the connector at an angle of 45° with the steel flange. A
haunch that just satisfies these rules is shown as EFG.

There are also rules for the detailing of reinforcement for haunches,
which apply also at the free edge of an L-beam.

Tests show that the ability of lightweight-aggregate concrete to resist
the high local stresses at shear connectors is slightly less than that of

Figure 2.13 Detailing rules for haunches

Figure 2.12 Haunch with connectors too close to a free surface
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Figure 2.14 Composite beam and composite slab spanning in the
same direction

normal-density concrete of the same cube strength. This is allowed for in
EN 1994-1-1 by the lower value of Ecm that is specified for lightweight
concrete (Table 1.4).

2.5.1 Stud connectors used with profiled steel sheeting

Where profiled sheeting is used, stud connectors are located within con-
crete ribs that have the shape of a haunch, which may run in any direction
relative to the direction of span of the composite beam. Tests show that
the shear resistance of connectors is sometimes lower than it is in a solid
slab, for materials of the same strength, because of local failure of the
concrete rib.

For this reason, EN 1994-1-1 specifies reduction factors, applied to the
resistance PRd found from Equation 2.14 or 2.15. For sheeting with ribs
parallel to the beam, the factor is
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where the dimensions b0, hp and h are illustrated in Fig. 2.14, and h is
taken as not greater than hp + 75 mm.

For sheeting with ribs transverse to the beam the factor is
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where nr is the number of connectors in one rib where it crosses a beam,
not to be taken as greater than 2 in calculations. EN 1994-1-1 gives upper
limits to kt that range from 0.6 to 1.0. The limit depends on the thickness
of the sheeting, the diameter of the studs, and on whether nr is 1 or 2. For
nr > 2, comment is given in Section 3.11.2. The limits also distinguish
between studs welded to the steel flange through a hole in the sheeting
(the usual practice in some countries) and the British (and North American)
practice of ‘through-deck welding’.
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Figure 2.15 Simply-supported composite beam

2.6 Partial interaction

In studying the simple composite beam with full interaction (Section 2.2.2),
it was assumed that slip was everywhere zero. However, the results of
push tests show (e.g., Fig. 2.10) that, even at the smallest loads, slip is not
zero. It is therefore necessary to know how the behaviour of a beam is
modified by the presence of slip. This is best illustrated by an analysis
based on elastic theory. It leads to a differential equation that has to be
solved afresh for each type of loading, and is therefore too complex for
use in design offices. Even so, partial-interaction theory is useful, for it
provides a starting point for the development of simpler methods for pre-
dicting the behaviour of beams at working load, and finds application in
the calculation of interface shear forces due to shrinkage and differential
thermal expansion.

The problem to be studied and the relevant variables are defined below.
The details of the theory, and of its application to a composite beam, are
given in Appendix A. The results and comments on them are given below
and in Section 2.7.

Elastic analysis is relevant to situations in which the loads on con-
nectors do not exceed about half their ultimate strength. The relevant part
OB of the load–slip curve (Fig. 2.10) can be replaced with little error by
the straight line OB. The ratio of load to slip given by this line is known
as the connector modulus, k.

For simplicity, the scope of the analysis is restricted to a simply sup-
ported composite beam of span L (Fig. 2.15), carrying a distributed load w
per unit length. The cross-section consists of a concrete slab of thickness
hc, cross-sectional area Ac, and second moment of area Ic, and a symmetrical
steel section with corresponding properties hs, Aa and Ia. The distance
between the centroids of the concrete and steel cross-sections, dc, is given by
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h h
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Shear connectors of modulus k are provided at uniform spacing p along
the length of the beam.

The elastic modulus of the steel is Ea, and that of the concrete for short-
term loading is Ec. Allowance is made for creep of concrete by using an
effective modulus E ′c in the analysis, where

E ′c = kcEc

and kc is a reduction coefficient, calculated from the ratio of creep strain
to elastic strain. The modular ratio n is defined by n = Ea/Ec, so that

′ =E
k E
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The concrete is assumed to be as stiff in tension as it is in compression,
for it is found that tensile stresses in concrete are low enough for little
error to result in this analysis, except when the degree of shear connection
is very low.

The results of the analysis are expressed in terms of two functions of
the cross-section of the member and the stiffness of its shear connection,
α and β. These are defined by the following equations, in which notation
that was established in CP117:Part 2 [26] has been used.
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In a composite beam, the steel section is thinner than the concrete
section, and the steel has a much higher coefficient of thermal conductiv-
ity. Thus the steel responds more rapidly than the concrete to changes of
temperature. If the two components were free, their lengths would change
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at different rates; but the shear connection prevents this, and the resulting
stresses in both materials can be large enough to influence design. The
shrinkage of the concrete slab has a similar effect. A simple way of
allowing for such differential strains in this analysis is to assume that,
after connection to the steel, the concrete slab shortens uniformly, by an
amount εc per unit length, relative to the steel.

It is shown in Appendix A that the governing equation relating slip s to
distance along the beam from mid-span, x, is
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and that the boundary conditions for the present problem are:
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The solution of Equation 2.25 is then
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Expressions for the slip strain and the stresses throughout the beam can
be obtained from this result. The stresses at a cross-section are found to
depend on the loading, boundary conditions and shear connection for the
whole beam. They cannot be calculated from the bending moment and
shear force at the section considered. This is the main reason why design
methods simple enough for use in practice have to be based on full-
interaction theory.

2.7 Effect of slip on stresses and deflections

Full-interaction and no-interaction elastic analyses are given in Section 2.2
for a composite beam made from two elements of equal size and stiffness.
Its cross-section (Fig. 2.2(b)) can be considered as the transformed sec-
tion for the steel and concrete beam shown in Fig. 2.16. Partial-interaction
analysis of this beam (Appendix A) illustrates well the effect of connector
flexibility on interface slip and hence on stresses and deflections, even
though the cross-section is not one that would be used in practice.
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Figure 2.16 Transformed section of steel and concrete beam

The numerical values, chosen to be typical of a composite beam, are
given in Section A.2. Substitution in Equation 2.27 gives the relation
between s and x for a beam of depth 0.6 m and span 10 m as

104s = 1.05x − 0.0017 sinh(1.36x) (2.28)

The maximum slip occurs at the ends of the span, where x = ±5 m. From
Equation 2.28, it is ±0.45 mm.

The results obtained in Sections 2.2.1 and 2.2.2 are also applicable to
this beam. From Equation 2.6, the maximum slip if there were no shear
connection would be ±8.1 mm. Thus the shear connectors reduce end
slip substantially, but do not eliminate it. The variations of slip strain and
slip along the span for no interaction and partial interaction are shown in
Fig. 2.3.

The connector modulus k was taken as 150 kN/mm (Appendix A). The
maximum load per connector is k times the maximum slip, so the partial-
interaction theory gives this load as 67 kN, which is sufficiently far below
the ultimate strength of 100 kN per connector for the assumption of a
linear load–slip relationship to be reasonable. Longitudinal strains at mid-
span given by full-interaction and partial-interaction theories are shown
in Fig. 2.17. The increase in extreme-fibre strain due to slip, 28 × 10−6,

Figure 2.17 Longitudinal strains at mid-span
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is much less than the slip strain at the interface, 104 × 10−6. The max-
imum compressive stress in the concrete is increased by slip from 12.2
to 12.8 N/mm2, a change of 5%. This higher stress is 43% of the cube
strength, so the assumption of elastic behaviour is reasonable.

The ratio of the partial-interaction curvature to the full-interaction cur-
vature is 690/610, or 1.13. Integration of curvatures along the beam shows
that the increase in deflection, due to slip, is also about 13%. The effects
of slip on deflection are found in practice to be less than is implied by this
example, because here a rather low value of connector modulus has been
used and the effect of bond has been neglected.

The longitudinal compressive force in the concrete at mid-span is propor-
tional to the mean compressive strain. From Fig. 2.17, this is 305 × 10−6

for full interaction and 293 × 10−6 for partial interaction, a reduction of 4%.
The influence of slip on the flexural behaviour of the member may

be summarised as follows. The bending moment at mid-span, wL2/8, can
be considered to be the sum of a ‘concrete’ moment Mc, a ‘steel’ moment
Ma, and a ‘composite’ moment Fdc (Fig. A.1):

Mc + Ma + Fdc =
wL2

8

In the full-interaction analysis, Fdc contributes 75% of the total moment,
and Mc and Ma 12.5% each. The partial-interaction analysis shows that
slip reduces the contribution from Fdc to 72% of the total, so that the
contributions from Mc and Ma rise to 14%, corresponding to an increase in
curvature of (14 – 12.5)/12.5, or 12%.

The interface shear force per unit length, vL,x is given by Equation 2.12
for full interaction and by Equations A.1 and 2.28 for partial interaction.
The expressions for vL,x over a half span are plotted in Fig. 2.18. They
show that, in the elastic range, the distribution of loading on the con-
nectors is similar to that given by full-interaction theory. The reasons for
using uniform rather than ‘triangular’ spacing of connectors are discussed
in Section 3.6.

Figure 2.18 Longitudinal shear force per unit length
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Figure 2.19 Critical sections for a composite slab

2.8 Longitudinal shear in composite slabs

There are three types of shear connection between a profiled steel sheet
and a concrete slab. At first, reliance was placed on the natural bond
between the two. This is unreliable unless separation at the interface
(‘uplift’) is prevented, so sheets with re-entrant profiles, such as Holorib,
were developed. This type of shear connection is known as ‘frictional
interlock’. The second type is ‘mechanical interlock’, provided by press-
ing dimples or ribs (Fig. 2.8) into the sheet. The effectiveness of these
embossments depends entirely on their depth, which must be accurately
controlled during manufacture. The third type of shear connection is ‘end
anchorage’. This can be provided where the end of a sheet rests on a steel
beam, by means of shot-fired pins, or by welding studs through the sheeting
to the steel flange.

2.8.1 The m–k or shear-bond test

The effectiveness of shear connection is studied by means of loading tests
on simply-supported composite slabs, as sketched in Fig. 2.19. Specifica-
tions for such tests are given in clause B.3 of EN 1994-1-1. The length of
each shear span, Ls, is usually L/4, where L is the span, which is typically
about 3.0 m. There are three possible modes of failure:

• in flexure, at a cross-section such as 1–1 in Fig. 2.19,
• in longitudinal shear, along a length such as 2–2, and
• in vertical shear, at a cross-section such as 3–3.

The expected mode of failure in a test depends on the ratio of Ls

to the effective depth dp of the slab, shown in Fig. 2.20. In tests to EN
1994-1-1, the results are plotted on a diagram with axes V/bdp and Ap/bLs

(Fig. 2.21), for reasons that are now explained.
At high Ls /dp, flexural failure occurs. The maximum bending moment,

Mu, is given by
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Mu = VLs (2.29)

where V is the maximum vertical shear, assumed to be much greater than
the self-weight of the slab. A test specimen, of breadth b, should include
a number of complete wavelengths of sheeting, of total cross-sectional
area Ap. Flexural failure is modelled by simple plastic theory, with all the
steel at its yield stress, fyp (Fig. 2.20), and sufficient concrete at 0.85fc,
where fc is the cylinder strength, for longitudinal equilibrium. The lever
arm is a little less than dp, but approximately,

Mu ∝ Ap fypdp (2.30)

From Equation 2.29
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A f

bLp
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p s

p yp
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    = ∝ (2.31)

The strength fyp is not varied during a series of tests, and has no influence
on longitudinal shear failure. It is therefore omitted from the axes on
Fig. 2.21, and Equation 2.31 shows that flexural failure should plot as a
straight line through the origin, (1) in Fig. 2.21.

At low Ls/dp, vertical shear failure occurs. The mean vertical shear
stress on the concrete is roughly equal to V/bdp. It is assumed in current

Figure 2.20 Bending resistance of a composite slab

Figure 2.21 Definition of m and k
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codes that the ratio Ap/bLs has little influence on its ultimate value, so
vertical shear failures are represented by a horizontal line. However, Patrick
& Bridge [27] have shown that this should be a rising curve, (3) in
Fig. 2.21.

Longitudinal shear failures occur at intermediate values of Ls/dp, and lie
near the line
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as shown by AB on Fig. 2.21, where m and k are constants to be deter-
mined by testing. Design based on Equation 2.32 is one of the two methods
given in EN 1994-1-1. The other is treated in Section 3.3.2. The present
method is similar to one that has been widely used for several decades
[19], known as the ‘m–k method’. It is given in BS 5950:Part 4. In that
method, m and k are usually defined by the equation
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where fc is the measured cylinder or cube strength of the concrete. This
equation can give unsatisfactory results for m and k when fc varies widely
within a series of tests, so fc has been omitted from Equation 2.32. A
comparison of the two methods [17] has shown that this has little effect
on m; but the two equations give different values for k, in different units.
A value found by, for example, the method of BS 5950:Part 4 cannot be
used in design to Eurocode 4; but a new value can sometimes be deter-
mined from the original test data [28].

A typical set of tests consists of a group of three, with Ls/dp such that
the results lie near point A on Fig. 2.21, and a second group with lower
Ls/dp, such that the results lie near point B. Values of m and k are found
for a line drawn below the lowest result in each group, at a distance that
allows for the scatter of the test data.

All six failures have to be in longitudinal shear. These failures typically
commence when a crack occurs in the concrete under one of the load
points, associated with loss of bond along the shear span and measurable
slip at the end of the span. If this leads to failure of the slab, the shear
connection is classified as ‘brittle’. Such failures occur suddenly, and
are penalised in design to EN 1994-1-1 by a 20% reduction in design
resistance.

Where the eventual failure load exceeds the load causing a recorded
end slip of 0.1 mm by more than 10%, the failure is classified as ‘ductile’.
Recently-developed profiles for sheeting have better mechanical interlock
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than earlier shapes, which relied more on frictional interlock and were
more susceptible to ‘brittle’ failure. The influence of bond is minimised,
in the standard test, by the application of several thousand cycles of
repeated loading up to 60% of the expected failure load, before loading
to failure.

When a new profile is developed, values of m and k have to be deter-
mined, in principle, for each thickness of sheeting, each overall depth
of slab to be used, and for a range of concrete strengths. Codes allow
some simplification, but the testing remains a long and costly process.
The m–k test is also unsatisfactory in other ways [17].
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Chapter 3

Simply-supported composite
slabs and beams

3.1 Introduction

The subjects of this and subsequent chapters are treated in the sequence in
which they developed. Relevant structural behaviour is discovered by
experience or research, and is then represented by mathematical models.
These make use of standardised properties of materials, such as the yield
strength of steel, and enable the behaviour of a member under load to be
predicted. The models are developed into design rules, as found in codes
of practice, by simplifying them wherever possible, defining their scope
and introducing partial factors.

Research workers often propose alternative models, and language barriers
are such that the model preferred in one country may be little known
elsewhere. The writers of codes try to select the most rational and widely-
applicable of the available models, but must also consider existing design
practices and the need for simplicity. The design rules used in this book
are taken from the Eurocodes, which differ slightly from the correspond-
ing British codes; but the underlying models are usually the same, and
significant differences will be explained.

The methods to be described are illustrated by the design calculations
for part of a framed structure for a building. To avoid repetition, the
results obtained at each stage are used in subsequent work.

The notation used is that explained and listed in the section ‘Symbols,
terminology and units’.

3.2 Example: layout, materials and loadings

In a framed structure for a wing of a building, the columns are arranged at
4 m centres in two rows 9 m apart. A design is required for a typical floor,
which consists of a composite floor slab supported by, and composite
with, steel beams that span between the columns as shown in Fig. 3.1.
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Properties of concrete
Lightweight-aggregate concrete grade LC25/28 will be used for the floor
slabs and normal-density concrete grade C25/30 for the encasement of the
columns and the webs of the beams. The properties of these concretes are
given in Table 1.4. The design compressive strengths for both of these
concretes are:

fcd = fck/γC = 25/1.5 = 16.7 N/mm2

The short-term elastic moduli and modular ratios are:

LC25/28: Ecm = 20.7 kN/mm2; n0 = 210/20.7 = 10.1
C25/30: Ecm = 31.0 kN/mm2; n0 = 210/31 = 6.8

The long-term compressive strain of these concretes under permanent
loads is about three times the initial elastic strain, due to creep. In elastic
analysis, this would require separate calculations for permanent and vari-
able loads. For buildings, EN 1994 permits the simplification that all
strains may be assumed to be twice their short-term value. This is done by
using modular ratios n = 2n0. Hence,

for grade LC25/28, n = 20.2; for grade C25/30, n = 13.6

Properties of other materials
The partial factors γM to be used are those recommended in the Eurocodes.
A national annex may prescribe other values. The following grades of the
materials are those widely used:

Figure 3.1 Design example – structure for a typical floor
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structural steel: yield strength fy = fyd = 355 N/mm2 (γA = 1.0)
profiled steel sheeting: yield strength fyp = fyp,d = 350 N/mm2 (γA = 1.0)
reinforcement: yield strength fsk = 500 N/mm2, fsd = 435 N/mm2 (γS = 1.15)
welded fabric: yield strength fsk = 500 N/mm2, fsd = 435 N/mm2 (γS = 1.15)
shear connectors; 19-mm headed studs 100 mm high;

ultimate strength fu = 500 N/mm2, fud = 400 N/mm2 (γV = 1.25)

The elastic modulus for structural steel is Ea = 210 kN/mm2. In design
of beams and slabs, the value for reinforcement is assumed, for simplicity,
also to be 210 kN/mm2; but the more accurate value, Es = 200 kN/mm2 is
used in column design.

Resistance of the shear connectors
The design shear resistance is given by Equation 2.15 and is

PRd = 0.29 × 192 (25 × 20 700)0.5/(1.25 × 1000) = 60.2 kN (3.1)

Equation 2.14 gives the higher value 91 kN, and so does not apply.

Permanent actions
From Table 1.4, the unit weights of the concretes, including reinforcement,
are:

for LC25/28, 19.5 kN/m3; for C25/30, 25.0 kN/m3

For design of formwork, each value is increased by 1 kN/m3 (from EN
1991-1-1) to allow for the higher moisture content of fresh concrete.

The unit weight of structural steel is taken as 77 kN/m3.
The characteristic weight of floor and ceiling finishes is taken as 1.3 kN/m2.

Variable actions
The floors to be designed are assumed to be in category C3 of EN 1991-
1-1: [13] ‘Areas where people may congregate, without obstacles for moving
people’ (e.g., exhibition rooms, etc.). The characteristic loadings are:

qk = 5.0 kN/m2 on the whole floor area or any part of it (3.2)

or

Qk = 4.0 kN on any area 50 mm square (3.3)

The load qk is high for a building not intended for storage or industrial
use. Its use here enables many aspects of design to be illustrated. For
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comparison, typical imposed loads for office areas are given by Equations
1.12 and 1.13. An allowance of 1.2 kN/m2 for non-structural partition
walls is treated as an additional imposed load, because their positions are
unknown.

3.3 Composite floor slabs

Composite slabs have for many decades been the most widely used method
of suspended floor construction for steel-framed buildings in North
America. Within the last thirty years there have been many advances in
design procedures, and a wide range of profiled sheetings has become
available in Europe. The British Standard for the design of composite
floors [19] first appeared in 1982. There are Eurocodes for design of both
the sheeting alone [15] and the composite slab [3].

The steel sheeting has to support not only the wet concrete for the floor
slab, but other loads that are imposed during concreting. These may include
the heaping of concrete and pipeline or pumping loads. For construction
loading, EN 1991-1-6 recommends a distributed loading between 0.75
and 1.5 kN/m2. The loading used here is:

qk = 1.0 kN/m2

Profiled steel sheeting
The sheeting is very thin for economic reasons, usually between 0.8 mm
and 1.2 mm. It has to be galvanised to resist corrosion, and this adds
about 0.04 mm to the overall thickness. It is specified in EN 1993-1-3 that
where design is based on the nominal thickness of the steel, the sheet
must have at least 95% of that thickness – but it is not a simple matter for
the user to check this. The sheets are pressed or cold rolled and are
typically about 1-m wide and up to 6-m long. They are designed to span
in the longitudinal direction only. For many years, sheets were typically
50-mm deep and the limiting span was about 3 m. The cost of propping
the sheets during concreting, to reduce deflections, led to the development
of deeper profiles; but design of composite slabs is still often governed by
a limit on deflection.

The local buckling stress of a flat panel within sheeting should ideally
exceed its yield strength; but this requires breadth/thickness ratios of less
than about 35. Modern profiles have local stiffening ribs, but it is difficult
to achieve slendernesses less than about 50, so that for flexure, the sections
are in Class 4 (i.e., the buckling stress is below the yield stress). Calcula-
tion of the resistance to bending then becomes complex and involves
iteration.
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The specified or nominal yield strength is that of the flat sheet from
which the sheeting is made. In the finished product, the yield strength is
higher at every bend and corner, because of work hardening.

To enable it to fulfil its second role, as reinforcement for the concrete
slab, dimples are pressed into the surface of the sheeting, to act as shear
connectors. These dimpled areas may not be fully effective in resisting
longitudinal stress, so both they and the local buckling reduce the second
moment of area (I) of the sheeting to below the value calculated for the
gross steel section.

For these reasons, manufacturers commission tests on prototype sheets,
and provide designers either with test-based values of resistance and stiff-
ness, or with ‘safe load’ tables calculated from those values.

Design of composite slab
The cross-sectional area of steel sheeting that is needed for the construc-
tion phase often provides more than enough bottom reinforcement for the
composite slab. It is then usual to design the slabs as simply-supported.
The concrete is of course continuous over the supporting beams, and the
sheets may be as well (e.g., if 6-m sheets are used for a succession of
3-m spans).

These ‘simply-supported’ slabs require top longitudinal reinforcement
at their supports, to control the widths of cracks. The amount is specified
in EN 1994-1-1 as 0.2% of the cross-sectional area of concrete above the
steel ribs for unpropped construction and 0.4% for propped construction.

Long-span slabs are sometimes designed as continuous over their sup-
ports. They are analysed as described in Section 4.7. Several action effects
that have to be considered in the design of composite slabs are now con-
sidered. The methods are illustrated by the worked example in Section 3.4.

3.3.1 Resistance of composite slabs to sagging bending

The width of slab considered in calculations, b, is usually taken as one
metre, but for clarity only a width of one wavelength is shown in Fig. 3.2.
The overall thickness h is required by EN 1994-1-1 to be not less than
80 mm; and the thickness of concrete above the ‘main flat surface’ of the
top of the ribs of the sheeting, to be not less than 40 mm. Normally, this
thickness is 60 mm or more, to provide sufficient sound or fire insulation,
and resistance to concentrated loads.

Except where the sheeting is unusually deep, the neutral axis for bending
lies in the concrete, where there is full shear connection; but in regions
with partial shear connection, there is usually a second neutral axis within
the steel section. Local buckling of compressed sheeting then has to be
considered. This is done by using effective widths for flat regions of



Simply-supported composite slabs and beams 49

sheeting. These widths are allowed (in EN 1994-1-1) to be up to twice the
limits given for Class 1 steel web plates in beams, because the concrete
prevents the sheeting from buckling upwards, which shortens the wave-
length of the buckles.

For sheeting in tension, the width of embossments should be neglected
in calculating the effective area, unless tests have shown that a larger area
is effective.

For these reasons, the effective area of width b of sheeting, Ap, and the
height of the centre of area above the bottom of the sheet, e, are usually
based on tests. These usually show that ep, the height of the plastic neutral
axis of the sheeting, is different from e.

Because local buckling is allowed for in this way, the bending resistance
of width b of composite slab can be calculated by simple plastic theory.
There are three situations, as follows.

(1) Neutral axis above the sheeting
The assumed distribution of longitudinal bending stresses is shown in
Fig. 3.2(b). There must be full shear connection, so that the design com-
pressive force in the concrete, Nc,f, is equal to the yield force for the steel:

Nc,f = Ap fyp,d (3.4)

where fyp,d is the design yield strength of the sheeting. The depth of the
stress block in the concrete is given by

x = xp1 = Nc,f/(0.85fcdb) (3.5)

For simplicity, and consistency with the method for composite beams, the
depth to the neutral axis is assumed also to be xpl, even though this is not
in accordance with EN 1992. This method is therefore valid when

Figure 3.2 Cross-section of composite slab, and stress blocks for
sagging bending
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xp1 ≤ hc

and gives

MRd = Nc,f(dp − 0.5xpl) (3.6)

where MRd is the design resistance to sagging bending.

(2) Neutral axis within the sheeting, and full shear connection
The stress distribution is shown in Fig. 3.2(c). The force Nc,f is now less
than that given by Equation 3.4 and is

Nc,f = 0.85fcdbhc (3.7)

because compression within ribs is neglected, for simplicity. There is a
compressive force Nac in the sheeting. There is no simple method of
calculating x or the force Nac, because of the complex properties of profiled
sheeting, so the following approximate method is used. The tensile force in
the sheeting is decomposed, as shown in Figs 3.2(d) and (e), into a force
at the bottom equal to Nac (the compressive force) and a force Np, where

Np = Nc,f (3.8)

The equal and opposite forces Nac provide a resistance moment Mpr,
equal to the resistance moment for the sheeting, Mpa, reduced by the effect
of the axial force Nc,f. It should be noted that, in EN 1994-1-1, the value
represented by the symbol Nc,f depends on the ratio x/hc. It is the lesser of
the two values given by Equations 3.4 and 3.7. This can be confusing; so
for clarity here, a further symbol, Npa, is introduced. It always has the value

Npa = Ap fyp,d (3.9)

The subscript f in Nc,f denotes full shear connection. Where there is partial
shear connection, the compressive force in the concrete slab is Nc, which
cannot exceed Nc,f.

The relationship between Mpr/Mpa and Nc,f/Npa depends on the profile,
but is typically as shown by the dashed curve ABC in Fig. 3.3(a). This is
approximated in Eurocode 4 by the equation

Mpr = 1.25Mpa[1 − (Nc,f /Npa)] ≤ Mpa (3.10)

which is shown as ADC. The resistance moment is then given by

MRd = Nc,f z + Mpr (3.11)
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as shown in Fig. 3.2(d) and (e). The lever arm z is found by the approx-
imation shown by line EF in Fig. 3.3(b). This is clearly correct when
Nc,f = Npa, because Nac is then zero, so Mpr is zero. Equation 3.6 with xpl =
hc then gives MRd. The lever arm is

z = dp − 0.5hc = h − e − 0.5hc (3.12)

as given by point F.
To check point E, we assume that Nc,f is nearly zero (e.g., if the concrete

is very weak), so that Mpr � Mpa. The neutral axis for Mpa alone is at height
ep above the bottom of the sheet, and the lever arm for the force Nc,f is

z = h − ep − 0.5hc (3.13)

as given by point E. This method has been validated by tests.
The line EF is given by

z = h − 0.5hc − ep + (ep − e)Nc,f /Npa (3.14)

(3) Partial shear connection
The compressive force in the slab, Nc, is now less than Nc,f and is deter-
mined by the strength of the shear connection. The depth x of the stress
block is given by

x = Nc/(0.85fcdb) ≤ hc (3.15)

There is a second neutral axis within the steel sheeting. The stress blocks
are as shown in Fig. 3.2(b) for the slab (with force Nc, not Nc,f), and
Fig. 3.2(c) for the sheeting. The calculation of MRd is as for method (2),
except that Nc,f is replaced by Nc, and hc by x, so that:

z = h − 0.5x − ep + (ep − e)Nc/Npa (3.16)

Figure 3.3 Equations 3.10 and 3.14
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Mpr = 1.25Mpa[1 − (Nc/Npa)] ≤ Mpa (3.17)

MRd = Ncz + Mpr (3.18)

3.3.2 Resistance of composite slabs to longitudinal shear

For profiled sheeting that relies on frictional interlock to transmit longit-
udinal shear, there is no satisfactory conceptual model. This led to the
development of the shear-bond test, described in Section 2.8.1, and the
empirical ‘m–k’ method of design, where the shear resistance is given
by an equation based on Equation 2.33, in the British code [19], or on
Equation 2.32, in EN 1994-1-1. With the safety factor added, the Eurocode
equation is

V�,Rd = bdp[mAp/(bLs) + k]/γVs (3.19)

where m and k are constants with dimensions of stress, determined from
shear-bond tests, and V�,Rd is the design vertical shear resistance for a
width of slab b. This must exceed the vertical shear at an end support at
which longitudinal shear failure could occur in a shear span of length Ls,
shown by line 2–2 in Fig. 2.19.

For uniformly-distributed load on a span L, the length Ls is taken as
L/4. The principle that is used when calculating Ls for other loadings is
now illustrated by an example.

Calculation of Ls

The composite slab shown in Fig. 3.4(a) has a distributed load w per unit
length and a centre point load wL, so the shear force diagram is as shown

Figure 3.4 Calculation of Ls for composite slab
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in Fig. 3.4(b). A new shear force diagram is constructed for a span with two
point loads only, and the same two end reactions, such that the areas of
the positive and negative parts of the diagram equal those of the original
diagram. This is shown in Fig. 3.4, in which each shaded area is 3wL2/8.
The positions of the point loads define the lengths of the shear spans.
Here, each one is 3L/8.

Defects of the m–k method
The method has proved to be an adequate design tool for profiles with
short spans and rather brittle behaviour, which have been widely used in
North America. However, to exploit fully the ductile behaviour of profiles
now available, with good mechanical interlock and longer spans, it is
necessary to use a partial-interaction method, as explained below.

The defects of the m–k method and of profiles with brittle behaviour
are given in papers that set out the new methods, by Bode & Sauerborn in
Germany [29] and by Patrick & Bridge in Australia [30]. They are as
follows.

(1) The m–k method is not based on a mechanical model, so that con-
servative assumptions have to be made in design when the dimen-
sions, materials or loading differ from those used in the tests. The
calculation of Ls, above, is an example of this.

(2) Many additional tests are needed before the range of application can
be extended; for example, to include end anchorage or the use of
longitudinal reinforcing bars.

(3) The method of evaluation of test data is the same, whether the fail-
ure is brittle or ductile. The use in EN 1994-1-1 of a penalty factor
of 0.8 for brittle behaviour does not adequately represent the advan-
tage of using sheeting with good mechanical interlock, because the
advantage increases with span.

(4) The method does not allow correctly for the beneficial effect of
friction above supports, which is greater in short shear spans.

Partial-interaction design
This method is based on results from shear-bond tests [29]. For composite
slabs of given cross-section and materials, the result of each test on a
profile with ductile behaviour enables the degree of partial shear connec-
tion in that test to be calculated. This gives the compressive force, Nc,
transferred from the sheeting to the slab within the shear span of known
length, Ls. It is assumed that, before maximum load is reached, there is
complete redistribution of longitudinal shear stress at the interface, so a
value for the mean ultimate shear stress τu can be calculated. This is done
for a range of shear spans, and the lowest τu thus found is the basis for a
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design value, τu,Rd. (This is where the greater effect of friction in short
spans is neglected.)

At an end support, the bending resistance of the slab is that of the
sheeting alone (unless it is enhanced by the use of end anchorage, as
described later). At any cross-section at distance x from the support, the
compressive force in the slab can be calculated from τu,Rd. This force may
optionally be increased by µREd, where µ is a coefficient of friction and
REd is the support reaction. The partial-interaction method of Section
3.3.1(3) enables the bending resistance, MRd, at that cross-section to be
calculated. There may be a mid-span region where full shear connection
is achieved and MRd is independent of x.

For safe design, this curve of MRd as a function of x (the resistance
diagram) must at all points lie above the bending-moment diagram for the
applied loading. If the loading is increased until the curves touch, the
position of the point of contact gives the location of the cross-section of
flexural failure and, if the interaction is partial, the length of the shear span.

The resistance diagram can easily be modified to take advantage of any
end anchorage or slab reinforcement, and the loading diagram can be of
any shape.

A worked example using data from shear-bond tests is given in Section
3.4.3.

The only type of end anchorage for which design rules are given in
British or European codes is the headed stud, welded through the sheeting
to the top flange of a steel beam. The resistance of the anchorage is based
on local failure of the sheeting, as explained elsewhere [17].

3.3.3 Resistance of composite slabs to vertical shear

Tests show that resistance to vertical shear is provided mainly by the
concrete ribs. For open profiles, their effective width b0 should be taken as
the mean width, though the width at the centroidal axis (Fig. 3.2(a)) is
accurate enough. For re-entrant profiles, the minimum width should be
used.

This shear resistance is given by the method of EN 1992-1-1 for con-
crete beams. Reinforcement contributes to the resistance only where it is
fully anchored beyond the cross-section considered. The sheeting is un-
likely to satisfy this condition. The resistance of a composite slab with
ribs of effective width b0 at spacing b is then

VRd = (b0/b)dpvmin per unit width (3.20)

where dp is the depth to the centroidal axis (Fig. 3.2(a)) and vmin is the
shear strength of the concrete.
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The recommended value for vmin is

vmin = 0.035[1 + (200/dp)
1/2]3/2f ck

1/2 (3.21)

with dp in mm, taken as not less than 200, and vmin and fck in N/mm2 units.
The expression [1 + (200/dp)

1/2]3/2 allows approximately for the reduction
in shear strength of concrete that occurs as the effective depth increases.

In reality, the shear stress in the side walls of the steel troughs may be
quite high during the construction phase. This can be ignored when check-
ing the composite slab, and VEd should be taken as the whole of the
vertical shear, including that initially resisted by the sheeting.

Resistance to vertical shear is most likely to be critical in design where
span/depth ratios are low, as is the case for beams.

3.3.4 Punching shear

Where a thin composite slab has to be designed to resist point loads (e.g.,
from a steel wheel of a loaded trolley), resistance to punching shear should
be checked. Failure is assumed to occur on a ‘critical perimeter’, of length
cp, which is defined as for reinforced concrete slabs. For a loaded area ap

by bp, remote from a free edge, and 45° spread through a screed of thick-
ness hf, it is as shown in Fig. 3.5(a):

cp = 2πhc + 2(bp + 2hf) + 2(ap + 2hf + 2dp − 2hc) (3.22)

A reinforcing mesh is likely to be present above the sheeting. Let its areas
of steel be As,x and As,y, per unit width of slab. The effective depth of the
slab may be taken as hc (Fig. 3.5(b)), giving the reinforcement ratios as
ρx = As,x/hc and ρy = As,y/hc. The effective ratio is given in EN 1992-1-1 as

Figure 3.5 Critical perimeter for punching shear
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ρ = (ρxρy)
1/2 ≤ 0.02

and the design shear stress as

vRd = (0.18/γC)[1 + (200/d)1/2](100ρ fck)
1/3 ≥ vmin (3.23)

where:

vmin is given by Equation 3.21,
d is the mean of the effective depths of the two layers of reinforcement,
but not less than 200 mm,
γC has the recommended value 1.50, and the units are as for Equation 3.21.

The punching shear resistance is

VRd = vRdcpd (3.24)

It is not clear from EN 1994-1-1 whether account can be taken of contri-
butions from the concrete ribs and the sheeting. None has been assumed
here, so Equation 3.24 is likely to give a conservative result.

3.3.5 Bending moments from concentrated point and line loads

Since composite slabs span in one direction only, their ability to carry
masonry partition walls or other heavy local loads is limited. Rules are
given in EN 1994-1-1 (and in the British code) for widths of composite
slabs effective for bending and vertical shear resistance, for point and line
loads, as functions of the shape and size of the loaded area. These are
based on a mixture of simplified analyses, test data and experience.

Where transverse reinforcement is provided with a cross-sectional area
of at least 0.2% of the area of concrete above the ribs of the sheeting, no
calculations are needed for characteristic concentrated loads not exceed-
ing 7.5 kN.

The rules for use where this simplification does not apply are now
explained, with reference to a rectangular loaded area ap by bp, with its
centre distance Lp from the nearer support of a slab of span L, as shown in
Fig. 3.6(a). The load may be assumed to be distributed over a width bm,
defined by lines at 45° (Fig. 3.6(b)), where

bm = bp + 2(hf + hc) (3.25a)

and hf is the thickness of finishes, if any. The code does not refer to
distribution in the spanwise direction, but it would be reasonable to use
the same rule, and take the loaded length as
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Figure 3.6 Effective width of composite slab, for concentrated load

am = ap + 2(hf + hc) (3.25b)

The width of slab assumed to be effective for global analysis and for
resistance is given by

bem = bm + kLp[1 − (Lp/L)] ≤ width of slab (3.26)

where k is taken as 2 for bending and longitudinal shear (except for
interior spans of continuous slabs, where k = 1.33) and as 1 for vertical
shear. These rules become unreliable where the depth of the ribs is a high
proportion of the total thickness. Their use is limited in EN 1994-1-1 to
slabs with hp/h ≤ 0.6.

For a simply-supported slab of span L and a point load QEd, the sagging
moment per unit width of slab on line AD in Fig. 3.6(a) is thus

mEd = QEdLp[1 − (Lp/L)]/bem (3.27)

which is a maximum when Lp = L/2.
The variation of bem with Lp is shown in Fig. 3.6(a). The load is as-

sumed to be uniformly-distributed along line BC, whereas the resistance
is distributed along line AD, so there is sagging transverse bending under
the load. The maximum sagging bending moment is at E, and is given by

MEd = QEd(bem − bm)/8 (3.28)

The sheeting has no tensile strength in this direction because the corruga-
tions can open out, so bottom reinforcement (Fig. 3.6(b)) must be provided.
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It is suggested that this reinforcement should be spread over the length am

given by Equation 3.25b.
Vertical shear should be checked along a line such as FG, when Lp is

such that FG is above the edge of the flange of the steel beam. It rarely
governs design.

3.3.6 Serviceability limit states for composite slabs

Cracking of concrete
The lower surface of the slab is protected by the sheeting. Cracking will
occur in the top surface where the slab is continuous over a supporting
beam, and will be wider if each span of the slab is designed as simply-
supported, rather than continuous, and if the spans are propped during
construction.

For these reasons, longitudinal reinforcement should be provided above
internal supports. The minimum amounts are given by EN 1994-1-1 as
0.2% of the area of concrete above the sheeting for unpropped construc-
tion, and 0.4% if propping is used. These amounts may not ensure that
crack widths do not exceed 0.3 mm. If the environment is corrosive (e.g.,
de-icing salt on the floor of a parking area), the slabs should be designed
as continuous, with cracking controlled in accordance with EN 1992-1-1.

Deflection
Where composite slabs are designed as simply-supported and are not
hidden by false ceilings, deflection may govern design. The maximum
acceptable deflection is more a matter for the client than the designer; but
if predicted deflections are large, the designer may have to allow for the
extra weight of concrete in floors that are cast with a horizontal top
surface, and provide clearance above non-structural partitions.

Limiting deflection/span ratios are given, for guidance, in national an-
nexes. Both the ratios and the load combination for which the deflection is
calculated depend on whether the deflection is reversible or not, and whether
brittle finishes or partitions are at risk. The deflections of the beams that
support the composite slab are also relevant.

It is known from experience that deflections are not excessive when
span-to-depth ratios are kept within certain limits. In EN 1994-1-1, calcula-
tions of deflections of composite slabs may be omitted if both:

• the degree of shear connection is such that end slip does not occur
under service loading, and

• the ratio of span to effective depth is below a limit given in EN 1992-
1-1. The recommended limit for a simply-supported slab is 20, but this
can be modified by a national annex.
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The provision of anti-crack reinforcement, as specified above, should
reduce deflection by a useful amount. For internal spans, the Eurocode
recommends that the second moment of area of the slab should be taken
as the mean of values calculated for the cracked and uncracked sections.
Some of these points are illustrated in the worked example in Section 3.4.

3.3.7 Fire resistance

All buildings are vulnerable to damage from fire, which is usually the first
accidental design situation to be considered in design, and is the only one
treated in this book.

In the worked example, design is in accordance with the Eurocodes.
The concepts and methods used are now introduced. Italic print is used
for terms that are defined in EN 1991-1-2, Actions on structures exposed
to fire [13] or in EN 1994-1-2, Structural fire design [16].

Buildings are divided by separating members into fire compartments.
A fire is assumed to be confined to one compartment only, which must be
designed to contain it for a specified failure time (or fire resistance time)
when subjected to a given temperature–time environment or fire exposure.
A standard fire exposure is given in EN 1991-1-2, and other curves are
available that depend on the fire load density (calorific energy per unit area,
for complete combustion of all combustible materials) within the compart-
ment considered. These temperature–time curves are reproduced in furnaces
for fire testing, and are simplified models of the effects of real fires.

The walls, floor and ceiling that enclose a compartment must have a
separating function. This is defined using two criteria:

• thermal insulation criterion, denoted I, concerned with limiting the
transmission of heat by conduction, and

• integrity criterion, denoted E, concerned with preventing the passage
of flames and hot gases into an adjacent compartment.

The structure of a compartment must have a load bearing function,
denoted R (resistance), to ensure that it can resist the design effects of
actions specified for the fire situation, including the effects of thermal
expansion, for a period not less than the specified failure time. The fire
resistance class of a member or compartment is denoted (for example)
R60, which means that its failure time is not less than 60 minutes.

Criterion I is met mainly by specifying minimum thicknesses of incom-
bustible insulating materials. These also contribute to meeting criterion E,
which has structural implications as well. For example, excessive thermal
hogging of a beam heated from below can create a gap between it and a
separating wall below.
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Codes give limits to the temperature rise of non-exposed surfaces,
relevant to criterion I, and detailing rules relevant to criteria I and E.
Design calculations relate mainly to criterion R, and only these are further
discussed in this book.

It will be seen that, for practicable design, it is necessary to simplify
the predictions of both the action effects and the resistances, to a greater
extent than for ‘cold’ design. This last term refers to the normal design for
persistent situations and ultimate limit states.

3.3.7.1 Partial safety factors for fire

It is recommended in EN 1990 that all factors γF for accidental actions
should be 1.0; i.e., that these actions should be so defined that γF,fi = 1.0 is
the appropriate factor. Subscript fi means ‘fire’.

For materials, design is based essentially on characteristic or nominal
properties; so for most materials, and for shear connection, γM,fi = 1.0. The
reduction below γM for persistent design situations is then significant for
concrete (1.5 → 1.0) and zero for structural steel (1.0 → 1.0).

3.3.7.2 Design action effects for fire

For a structural member with one type only of permanent loading and no
prestress, the combination for accidental design situations given in EN
1990 [12] simplifies to:

Gk + Ad + ψ1,1Qk,1 + ψ2
1

,i k,i
i

Q
>

∑ (3.29)

where Ad is the design value of the accidental action, and other symbols
are as in Section 1.3.2.

A floor structure for a building is usually designed for distributed loads
gk and qk and, for fire, Ad can be taken as zero. For beams and slabs, the
‘simply-supported’ moments and shears are proportional to the total load
per unit area. To avoid additional global analyses for fire, the action
effects Efi,d are related to those for cold design for ultimate limit states by

Efi,d = ηfiEd (3.30)

where, in the simple case considered here, ηfi depends on the ratio qk/gk

and the values of γF and ψ1 as follows. From Equations 3.29 and 3.30, and
Expression 1.6 with Qk,2 = 0, and ψ1 = 0.7 (Table 1.3):
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The value of ηfi falls from 0.74 to 0.55 as the ratio qk/gk rises from zero to
2.0. A note in EN 1994-1-2 gives, as a simplification, the recommended
value ηfi = 0.65.

It often occurs in cold design that the resistance provided, Rd, exceeds
the relevant action effect, Ed. This is allowed for in fire design as follows.
A resistance ratio ηfi,t is calculated from

ηfi,t = ηfi(Ed/Rd) (3.32)

Using Equation 3.30, the verification condition (Rfi,d ≥ Efi,d) then becomes

Rfi,d ≥ ηfiEd = ηfi,tRd (3.33)

This enables tabulated design data to be presented in terms of ηfi,t, which
typically lies between 0.3 and 0.7.

3.3.7.3 Thermal properties of materials

Stress–strain properties for concrete and reinforcement, and for steel are
given as functions of temperature, θ, in ENs 1992-1-2 and 1993-1-2,
respectively. These are used as required in the worked example.

3.3.7.4 Design methods for resistance to fire

The three methods given in EN 1994-1-2 are outlined below. The first
(given last in the code) has the widest scope, but is the most complex. It
is primarily a research tool, used to validate simpler methods.

(1) Advanced calculation models
These methods rely mainly on finite-element computations, which are done
in three stages, starting with a given structure, materials and fire exposure.

(a) The theory of heat transfer is used to obtain distributions of temp-
erature, θ, throughout the structure as functions of the time, t, since
the start of the fire.

(b) From the temperatures, distributions of thermal strains and of the
stiffness and strength of the materials throughout the structure are
computed, for various times, t.

(c) The design resistances of the structure are computed at various times,
t, using data from stage (b). These resistances diminish as t increases,
and eventually one of them falls below the corresponding design
action effect. The structure satisfies criterion R if the time when this
occurs exceeds the specified failure time.
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(2) Simple calculation models
These methods enable the three preceding stages to be applied, in simplified
form, in checks on the resistances of cross-sections. These are normally
done only for the temperature distribution at the specified failure time,
assuming that beams and slabs are simply-supported and columns are pin-
ended at each floor level. The model for a composite slab is explained in
Section 3.3.7.5.

(3) Tabulated data
For cross-sections of beams and columns that are often used in practice,
results of calculations by method (1) or (2) are presented in EN 1994-1-2
as tabulated values of minimum dimensions, areas of reinforcement, etc.,
for each fire resistance class. Methods of this type are used for the beams
and columns of the worked example in this book.

3.3.7.5 Simple calculation model for unprotected composite slab

It is assumed that the dimensions and properties of materials for the slab
are known, and that its cold design was for distributed loading on simply-
supported spans, for which the bending moments Rd and Ed are known, so
that ηfi,t (Equation 3.32) is known.

It is assumed that the required fire resistance period (tfi,d) is 60 minutes,
and that the profiled sheeting, not protected by insulation, is heated from
below by the standard fire.

Thermal insulation criterion
An equation in EN 1994-1-2 gives the fire resistance time for thermal
insulation, ti, as a function of the dimensions of the cross-section, defined
in Fig. 3.7, and the density of the concrete. For the worked example that
follows, it gives ti = 157 minutes, so the slab can prevent fire spreading to
the floor above, provided that it does not collapse. This criterion is not
considered further.

Load bearing function
For the bending resistance of the slab, the strength of the steel sheeting
after 60 minutes’ exposure is very low, and the tensile strength of the

Figure 3.7 Dimensions of composite slab
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concrete is ignored, so reinforcing bars have to be provided within the
ribs. Their temperature, and hence their yield strength, depends on their
effective distance from the hot surfaces, represented by z, defined by

z u u u  /   /   /= + +1 1 11 2 3 (3.34)

where u1 to u3 are distances (mm) shown in Fig. 3.8(a).
Equations and tabulated data are given in EN 1994-1-2 for the temp-

eratures of the profiled sheeting and of reinforcement in the slab in terms
of the period of exposure, the geometry, and the density of the concrete.
Reference to the data on strengths of materials at high temperatures enables
the resisting tensile forces in these parts of the cross-section to be determined.

The concrete near the top of the slab is well protected from fire, so its
compressive strength is assumed not to be reduced.

These assumptions enable the sagging moment of resistance, Rfi,d, to be
calculated. If this does not exceed ηfi,tRd (Equation 3.33); the difference
can sometimes be made up by using hogging resistance at the end of each
span. The top reinforcement, provided initially to control cracking, may
not be weakened by fire if it has the minimum top cover; but if it rests on
the ribs of the sheeting, the compressive strength of the concrete below it
will be too low for useful bending resistance to be developed.

It may be possible to neglect the concrete in the ribs, and use design
data for uniform reinforced concrete slabs, from EN 1992-1-2. As an
example, Fig. 3.8(b) gives the data for a uniform slab of lightweight-
aggregate concrete, heated from below and not insulated, for a fire dura-
tion of 60 minutes. For concrete located x mm above the under-side of the
slab, curve θc gives its temperature, and route ABCD gives its compressive
strength, for a ‘cold’ cylinder strength of 25 N/mm2.

Further explanation is given in Section 3.4.6.

Figure 3.8 Design data for a composite slab in fire
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Figure 3.9 Typical cross-section of profiled sheeting and
composite slab

3.4 Example: composite slab

The strengths of materials and characteristic actions for this structure are
given in Section 3.2, and a typical floor is shown in Fig. 3.1. The following
calculations illustrate the methods described in Section 3.3. In practice,
the calculations may be done by the provider of the sheeting, and presented
as ‘safe load tables’; but here it is assumed that only the manufacturer’s
test data are available.

For unpropped construction, the sheeting for a span of 4 m would need
to be over 100 mm deep. To reduce the floor thickness, it is assumed that
the sheets will be propped at mid-span during construction. The profile
chosen for trial calculations is shown in Fig. 3.9. Its overall depth is
70 mm, but the cross-section is such that the span/depth ratio based on
this depth (28.6) is misleading. A more realistic value is 2000/55, which
is 36.4. This may be adequate, as there is continuity over the prop between
the two 2-m spans.

The next step is to choose a thickness for the composite slab, which
will be designed as simply-supported over each 4-m span. The centroid of
the sheeting is 30 mm above its lower surface, so the effective depth (dp)
is 120 mm and the span/depth ratio, for a slab 150 mm thick, is 4000/120,
or 33.3. This is rather high for simply-supported spans, but the top re-
inforcement above the supporting beams will provide some continuity.
From preliminary calculations, it appears that sheeting of nominal thickness
0.9 mm may be sufficient.

It is instructive to discover why a deeper profile should have been
chosen, so these initial choices are not changed.

Resistances to longitudinal shear of profiled sheetings, determined in
accordance with EN 1994-1-1, are not available at the time of writing; but
test data for this sheeting are sufficient to enable its shear resistance to be
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approximated. This has been done in the Designers’ Guide to EN 1994-1-1
[17]. The data used here are given below and in Fig. 3.9.

Guaranteed minimum yield strength, fyp = 350 N/mm2

Design thickness, allowing for zinc coating, tp = 0.86 mm
Effective area of cross-section, Ap = 1178 mm2/m
Second moment of area, Ip = 0.548 × 106 mm4/m
Characteristic plastic moment of resistance, Mpa = 6.18 kN m/m
Distance of centroid above base, e = 30 mm
Distance of plastic neutral axis above base, ep = 33 mm
Characteristic resistance to vertical shear, Vpa = 60 kN/m (approx.)
For resistance to longitudinal shear, m = 184 N/mm2

k = 0.0530 N/mm2

For partial-interaction design, τu,Rd = 0.144 N/mm2

Volume of concrete, 0.125 m3 per sq. m of floor
Weight of sheeting, 0.10 kN/m2

Weight of composite slab at 19.5 kN/m3,
gk = 0.10 + 0.125 × 19.5 = 2.54 kN/m2

These data are illustrative only, and should not be relied upon in engineer-
ing practice.

3.4.1 Profiled steel sheeting as shuttering

In EN 1991-1-1, the density of ‘unhardened concrete’ is increased by
1 kN/m3 to allow for its higher moisture content, and the imposed load
during construction is 1.0 kN/m2 (Section 3.3), so the design loads for the
sheeting are:

• permanent:

gd = (2.54 + 0.125) × 1.35 = 3.60 kN/m2 (3.35)

• variable:

qd = 1.0 × 1.5 = 1.5 kN/m2 (3.36)

The top flanges of the supporting steel beams are assumed to be at least
150 mm wide. The bearing length for the sheeting should be at least
50 mm. Assuming that the sheeting is supported 25 mm from the flange
tip (Fig. 3.10) gives the effective length of each of the two spans as

Le = (4000 − 150 + 50)/2 = 1950 mm (3.37)
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Flexure and vertical shear
The most adverse loading for sagging bending is shown in Fig. 3.10, in
which the weight of the sheeting alone in span BC is neglected. Elastic
analysis gives the maximum design bending moments as:

• sagging:

MEd = 0.0959 × (3.6 + 1.5) × 1.952 = 1.86 kN m/m

• hogging (both spans loaded):

MEd = 0.125 × 5.1 × 1.952 = 2.42 kN m/m

With γA = 1.0, the design resistance is MRd = Mpa = 6.18 kN m/m, which
is ample.

Vertical shear rarely governs design of profiled sheeting. Here, the
maximum value, to the left of point B in Fig. 3.10, is

VEd = 0.625 × 5.1 × 1.95 = 6.2 kN/m

which is far below the design resistance of about 60 kN/m.

Deflection
The characteristic permanent load for the sheeting is 2.66 + 1.0 = 3.66
kN/m2. It is assumed that the prop does not deflect. The maximum deflec-
tion in span AB, if BC is unloaded and the sheeting is held down at C, is
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This is span/784, which is satisfactory.

3.4.2 Composite slab – flexure and vertical shear

This continuous slab is designed as a series of simply-supported spans.
For bending, the reactions from the beams are assumed to be located as in

Figure 3.10 Profiled sheeting during construction
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Fig. 3.10, so Le = 3.90 m. For vertical shear, the span is taken as 4.0 m, so
that the whole of the slab is included in the design loading for the beams.

From Section 3.2, the characteristic loadings are:

• gk = 2.54 (slab) + 1.3 (finishes) = 3.84 kN/m2

• qk = 5.0 (imposed) + 1.2 (partitions) = 6.2 kN/m2

The design ultimate loadings are:

• permanent:

gd = 3.84 × 1.35 = 5.18 kN/m2

• variable:

qd = 6.2 × 1.5 = 9.30 kN/m2

The mid-span bending moment is

MEd = 14.48 × 3.92/8 = 27.6 kN m/m

For the bending resistance, from Equation 3.4,

Nc,f = 1178 × 0.35/1.0 = 412 kN/m (3.39)

The design compressive strength of the concrete is 0.85 × 25/1.5 =
14.2 N/mm2 so, from Equation 3.5, the depth of the stress block, for full
shear connection, is

x = 412/14.2 = 29.0 mm (3.40)

This is less than hc (which can be taken as 95 mm for this profile (Fig. 3.9)),
so from Equation 3.6 with dp = 120 mm,

MRd = 412(0.12 − 0.015) = 43.3 kN m/m (3.41)

The bending resistance is sufficient, subject to a check on longitudinal
shear.

The design vertical shear for a span of 4 m is

VEd = 2(5.18 + 9.3) = 29.0 kN/m

For the shear resistance, from Equation 3.21 with dp taken as 200 mm,

vmin = 0.035 × 23/2 × 251/2 = 0.49 N/mm2
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From Equation 3.20 with b0 = 162 mm, b = 300 mm (Fig. 3.9),

VRd = (162/300) × 120 × 0.49 = 31.7 kN/m (3.42)

which is just sufficient.

3.4.3 Composite slab – longitudinal shear

Longitudinal shear will be checked by both the ‘m–k’ and ‘partial-
interaction’ methods, which are explained in Section 3.3.2. From Equa-
tion 3.19, the m–k method gives the vertical shear resistance as

V�,Rd = bdp[mAp/(bLs) + k]/γVs = 25.9 kN/m (3.43)

The values used are:

b = 1.0 m m = 184 N/mm2

dp = 120 mm k = 0.0530 N/mm2

Ap = 1178 mm2/m γVs = 1.25
Ls = L/4 = 1000 mm

where γVs is taken from Table 1.2, and the other values are explained above.
The design vertical shear is 29.0 kN/m (Section 3.4.2), so the slab is

not strong enough, using this method.

Partial-interaction method
The mean design resistance to longitudinal shear, τu,Rd, is taken as 0.144
N/mm2 for this slab (Section 3.4). Account is taken of the shape of the
profile when this value is determined from test data, so the shear resistance
per metre width of sheeting is 0.144 kN per mm length. For full shear
connection, the plastic neutral axis is in the slab, so the compressive force
in the slab, Nc,f, is 412 kN/m, from Equation 3.39. The required length of
shear span to develop this force (in the absence of any end anchorage) is

Lsf = Nc,f/(bτu,Rd) = 0.412/0.144 = 2.86 m (3.44)

The depth of the resulting stress block in the concrete, now denoted xf, is
29 mm, from Equation 3.40. At a distance Lx (< Lsf) from an end support,
the degree of shear connection is given by

η = Lx/Lsf = Nc/Nc,f = x/xf (3.45)

where Nc is the force in the slab and x the depth of the stress block.
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Figure 3.11 Partial-interaction method, for longitudinal shear

Equations 3.16 to 3.18 then become:

z = 150 – 0.5xf – 33 + 3η = 102.5 + 3η mm

Mpr = 1.25 × 6.18(1 − η) ≤ 6.18 kN m

MRd = 418η(z/1000) + Mpr kN m (3.46)

These enable MRd to be calculated for any value of η between zero and
1.0 (and hence, of Lx, from Equation 3.45). The curve so obtained is given
in Fig. 3.11. The bending-moment diagram for the loading, also shown, is
a parabola with maximum value 27.6 kN m/m, at mid-span (from Section
3.4.2). (A slightly more favourable curve is obtained if account is taken of
the increase in lever arm, z, because the partial-interaction stress block
has depth ηxf, not xf; but it does not give sufficient resistance here.)

It is evident that the resistance is not quite sufficient where Lx ≈ 1.0 m
(MRd = 20.2 kN m, MEd = 21.0 kN m). It would be sufficient if the curve
for MRd could be moved about 0.1 m to the left. This can be achieved by
the use of end anchorage. Since τu,Rd is 0.144 N/mm2, an extra ‘shear
span’ of 0.1 m would increase Nc by 14.4 kN. Assuming that one 19-mm
stud connector will be welded through each trough to the supporting
beam, there are 3.3 per metre, so each stud has to provide 14.4/3.3 =
4.4 kN of anchorage. It will be shown in Section 3.11.2 that the reduction
in the resistance of these studs to longitudinal shear (about 40 kN) by a
force of 4.4 kN in the perpendicular direction is negligible, so the studs
can provide sufficient anchorage.

Another source of increased shear resistance is the friction between the
sheeting and the slab above an end support. The whole of the vertical



70 Composite Structures of Steel and Concrete

shear is assumed to be resisted by the concrete. The coefficient of friction
recommended in EN 1994-1-1 is 0.5, so the additional resistance is 0.5 VEd,
or 14.5 kN here. Coincidentally, this is precisely the force required, so end
anchorage need not be relied upon.

Use of the partial-interaction method therefore enables the slab to be
verified for longitudinal shear.

3.4.4 Local effects of point load

The design point load is QEd = 4.0 × 1.5 = 6.0 kN on any area 50 mm
square, from Equation 3.3. The slab should be checked for punching shear
and local bending. It is assumed that the thickness hf of floor finish is at
least 20 mm, so the data for Fig. 3.5 are:

bp = ap = 50 mm hf = 20 mm dp = 120 mm

The small ribs at the top of the sheeting (Fig. 3.9) are neglected, so the
thickness of slab above the sheeting is taken as hc = 95 mm.

Punching shear
From Equation 3.22 in Section 3.3.4:

cp = 2πhc + 2(bp + 2hf) + 2(ap + 2hf + 2dp − 2hc) = 1023 mm

Assuming that A193 mesh reinforcement (7-mm bars at 200-mm spacing,
both ways) is provided, resting on the sheeting, the effective depths in the
two directions are 76 mm and 83 mm. The reinforcement ratios are:

ρx = 0.193/76 = 0.0025 ρy = 0.193/83 = 0.0023

so

ρ = (ρxρy)
1/2 = 0.0024

From Equation 3.23:

vRd = 0.12 × 21/2 × (0.24 × 25)1/3 = 0.31 N/mm2

From Equation 3.24:

VRd = vRdcpd = 0.31 × 1.023 × 79 = 25 kN

This is a conservative value, because the ribs and sheeting have been
ignored, but it far exceeds QEd.
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Local bending
From Equations 3.25 in Section 3.3.5,

am = bm = 50 + 2(20 + 80) = 250 mm

The most adverse situation for local longitudinal sagging bending is when
the load is at mid-span, so Lp (Fig. 3.6) is 1.95 m. From Equation 3.26, the
effective width of slab is

bem = bm + 2Lp[1 − (Lp/L)] = 0.25 + 3.9 × 0.5 = 2.20 m

From Equation 3.27, the sagging moment per unit width with Lp = L/2 is

mEd = QEdLp[1 − (Lp/L)]/bem = 2.66 kN m/m

which is well below the resistance of the slab, 43.3 kN m/m.
The transverse sagging moment under the load is given by Equation 3.28:

MEd = QEd(bem − bm)/8 = 1.46 kN m

This is resisted by a breadth am of reinforced concrete slab (Fig. 3.6), so
the moment per unit width is

mEd = 1.46/0.25 = 5.85 kN m/m

For the A193 mesh defined above, the effective depth is 76 mm and the
force at yield is

193 × 0.500/1.15 = 83.9 kN

The depth of the concrete stress block is

x = 83.9/(0.85 × 25/1.5) = 5.9 mm

so the lever arm is 76 − 2.95 � 73 mm and

mRd = 83.9 × 0.073 = 6.12 kN m/m

which exceeds mEd.
It will be found later that, for this slab, other limit states govern much

of the slab reinforcement; but in regions where they do not, fabric of area
193 mm2/m would probably be used, as it provides more than 0.2%, and
so satisfies the empirical rule given in Section 3.3.5.
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3.4.5 Composite slab – serviceability

Cracking of concrete above supporting beams
Following Section 3.3.6, continuity across the steel beams should be pro-
vided by reinforcement of area 0.4% of the ‘area of concrete on top of the
steel sheet’. For the profile of Fig. 3.9, it is not obvious whether hc should
be taken as 80 mm or 95 mm. The choice can be based on the direction of
the tensile force. Here, 95 mm is used. Hence,

As = 0.004 × 1000 × 95 = 380 mm2/m (3.47)

The detailing is best left until fire resistance has been considered.

Deflection
The characteristic load combination is used. The reinforcement of area As,
calculated above, will provide continuity over the supports, and so reduce
deflections. For this situation, EN 1994-1-1 permits the second moment of
area of the slab, I, to be taken as the mean of the ‘cracked’ and ‘uncracked’
values for the section in sagging bending, and the use of a mean value of
the modular ratio. This is n = 20.2, from Section 3.2. These values of I are
8.27 m2 mm2 and 13.5 m2 mm2, respectively, so the mean value is

I = 10.9 m2 mm2/m (3.48)

The self-weight of the slab is 2.54 kN/m2, so the load on the prop at B
(Fig. 3.10), treated as the central support of a two-span beam, is

F = 2 × 0.625 × 2.54 × 1.95 = 6.2 kN/m

This is assumed to act as a line load on the composite slab, when the props
are removed. There is in addition a load of 1.3 kN/m2 from finishes (g),
1.2 kN/m2 from partitions (q), and an imposed load (also q) of 5.0 kN/m2.

Assuming that the props do not deflect during concreting, the mid-span
deflection (for a simply-supported slab) is
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with L = 3.90 m and E = 210 kN/mm2. Hence, δ/L = 13.3/3900 = 1/293.
This ratio is within the range of limits recommended in the British

national annex to EN 1990 [12]. Examples are L/300 for removable parti-
tions and plastered ceilings, L/250 for flexible floor coverings and L/200
for suspended ceilings.
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However, the ends of the slab follow the deflections of their supporting
beams. It will be found that, when these are added, the total deflection
may be excessive.

3.4.6 Composite slab – fire design

The slab is designed for a standard fire duration of 60 minutes, using
methods that are explained in Section 3.3.7, with all partial factors taken
as 1.0. The effects of propping are ignored, so the characteristic loads are:

gk = 3.84 kN/m2 and qk = 6.2 kN/m2

so, from Equation 3.31,

ηfi = 0.56

For cold design, from Section 3.4.2, the mid-span bending moments are:

Ed = 27.6 kN m/m

Rd = 43.3 kN m/m

so, from Equation 3.32,

ηfi,t = 0.56(27.6/43.3) = 0.36

and from Equation 3.33,

Rfi,d ≥ 0.36 × 43.3 = 15.6 kN m/m (3.50)

For bending resistance at mid-span, it is assumed that 8-mm reinforcing
bars are located above each rib in the position shown to scale in Fig. 3.8,
and also in Fig. 3.12(a). This enables them to be fixed to the A193 mesh that
rests on the small top ribs shown in Fig. 3.9. Their area is 168 mm2/m.
The dimensions to the hot steel surfaces are then:

u1 = 72 mm u2 = 102 mm u3 = 60 mm

From Equation 3.34,

z = 0.346

Using formulae from Annex B of EN 1994-1-2, the temperature of this
reinforcement after 60 minutes’ exposure to the standard fire is found to
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be 780°C, at which the design tensile stress for the steel has fallen to
about 56 N/mm2. The temperature of the profiled sheeting is higher, and
its mean design strength is about 26 N/mm2. Hence the tensile force avail-
able to resist bending is about

1.178 × 26 + 0.168 × 56 = 40 kN/m (3.51)

Assuming that the concrete at the top of the slab has not weakened, its
stress block is about 3 mm deep, so the mean lever arm for sagging
bending is about 95 mm, and

MRd,fi,sag = 40 × 0.095 = 3.8 kN m/m (3.52)

This is less than one-quarter of the required value (Equation 3.50), so
the contribution from crack-control reinforcement at the supports is now
considered, using data from EN 1994-1-2 to find the hogging moment of
resistance.

It is assumed that 8-mm bars at 150 mm spacing (336 mm2/m) are
provided with 20 mm of top cover, as shown in Fig. 3.12(a). The yield
force per unit width is

336 × 0.500 = 168 kN/m

As A193 mesh has been provided at the bottom of the slab, to resist
local bending, the total transverse reinforcement above the beams is 336 +
193 = 529 mm2/m, which satisfies the need for 380 mm2/m for control of
cracking (Section 3.4.5).

The compressive resistance of the concrete is reduced by its exposure
to the fire. The concrete within the ribs is (conservatively) neglected,
leaving a uniform slab of effective thickness 95 mm. The effective depth
is 95 − 20 − 4 = 71 mm.

Figure 3.12 Composite slab – design for fire resistance
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Figure 3.8(b), based on data from EN 1992-1-2 and EN 1994-1-2,
shows the variation of temperature θc of the lightweight-aggregate con-
crete with its distance from the soffit of the slab, for a fire duration of 60
minutes. Following a route such as ABCD gives the design compressive
strength of the concrete in fire, fc,θ, assuming γC = 1.0, because this is an
accidental design situation.

For the lowest 14 mm, fc,θ ≈ 15 N/mm2, so this depth of slab can resist
a compressive force 15 × 14 × 0.85 = 178 kN/m. This just exceeds the
yield force in the top reinforcement. Hence, the lever arm is about
71 − 7 = 64 mm, Fig. 3.12(b), and the bending resistance is

MRd,fi,hog = 168 × 0.064 = 10.7 kN m/m (3.53)

Based on a simple three-hinge plastic collapse mechanism, the total
bending resistance for an internal span of floor slab is

MRd,fi = 3.8 + 10.7 = 14.5 kN m/m (3.54)

which is still below the 15.6 kN m/m required. The deficit for an end span
would be larger. Provision of more reinforcement is one remedy; others
are to provide fire protection below the sheeting, or to use a deeper slab.

3.4.7 Comments on the design of the composite slab

It was remarked in Section 3.4 that the chosen depth of slab and size of
sheeting could be inadequate for the required span and loading. The prob-
lems encountered are:

• propping was required during construction;
• the mid-span deflection of the slab may be too large when combined

with the mid-span deflection of its supporting beams;
• verification for fire required extensive calculation. Verification is clearly

possible for internal spans, using slightly heavier reinforcement, but
there are two unsolved problems: fire resistance of an end span, and
the possibility (not explored) that reliance on the top transverse re-
inforcement above the beams leaves the beams vulnerable to longitu-
dinal shear failure.

3.5 Composite beams – sagging bending and vertical shear

Composite beams in buildings are usually supported by joints to steel or
composite columns. The cheapest joints have little flexural strength, so it
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is convenient to design the beams as simply-supported. Such beams have
the following advantages over beams designed as continuous at supports:

• very little of the steel web is in compression, and the steel top flange
is restrained by the slab, so the resistance of the beam is not limited by
buckling of steel;

• webs are less highly stressed, so it is easier to provide holes in them
for the passage of services;

• bending moments and vertical shear forces are statically determinate,
and are not influenced by cracking, creep, or shrinkage of concrete;

• there is no interaction between the behaviour of adjacent spans;
• bending moments in columns are lower, provided that the frame is

braced against sidesway;
• no concrete at the top of the slab is in tension, except over supports;
• global analyses are simpler and design is quicker.

The disadvantages are that deflection at mid-span or crack width at
supports may be excessive, and structural depth is greater than for a
continuous beam.

The behaviour and design of mid-span regions of continuous beams are
similar to those of simply-supported beams, considered in this chapter.
The other aspects of continuous beams are treated in Chapter 4.

3.5.1 Effective cross-section

The presence of profiled steel sheeting in a slab is normally ignored when
the slab is considered as part of the top flange of a composite beam.
Longitudinal shear in the slab (explained in Section 1.6) causes shear
strain in its plane, with the result that vertical cross-sections through the
composite T-beam do not remain plane when it is loaded. At a cross-
section, the mean longitudinal bending stress through the thickness of the
slab varies across the width of the flange, as sketched in Fig. 3.13.

Simple bending theory can still give the correct value of the maximum
stress (at point D) if the true flange width, B, is replaced by an effective
width, b (or beff), such that the area GHJK equals the area ACDEF. Research
based on elastic theory has shown that the ratio b/B depends in a complex
way on the ratio of B to the span L, the type of loading, the boundary
conditions at the supports, and other variables.

For simply-supported beams in buildings, EN 1994-1-1 gives the effect-
ive width as Le/8 on each side of the steel web, where Le is the distance
between points of zero bending moment. The width of steel flange occupied
by shear connectors, b0, can be added, so

b = Le/4 + b0 (3.55)
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provided that a width of slab Le/8 is present on each side of the shear
connectors.

Where profiled sheeting spans at right angles to the span of the beam
(as in the worked example here), only the concrete above its ribs can
resist longitudinal compression (e.g., its effective thickness in Fig. 3.9 is
80 mm). Where ribs run parallel to the span of the beam, the concrete
within ribs can be included, though it is rarely necessary to do so.

Longitudinal reinforcement within the slab is usually neglected in regions
of sagging bending.

3.5.2 Classification of steel elements in compression

Because of local buckling, the ability of a steel flange or web to resist
compression depends on its slenderness, represented by its width/thickness
ratio, c/t. In design to EN 1994-1-1, as in EN 1993-1-1, each flange or
web in compression is placed in one of four classes. The highest (least
slender) class is Class 1 (plastic). The class of a cross-section of a com-
posite beam is the lower of the classes of its web and compression flange,
and this class determines the design procedures that are available.

This well-established system is summarised in Table 3.1. The Eurocodes
allow several methods of plastic global analysis, of which rigid-plastic
analysis (plastic hinge analysis) is the simplest. This is considered further
in Section 4.3.3.

The Eurocodes give several idealised stress–strain curves for use in
plastic section analysis, of which only the simplest (rectangular stress
blocks) are used in this book.

The class boundaries are defined by limiting slenderness ratios that are
proportional to ( fy)

−0.5, where fy is the nominal yield strength of the steel.
This allows for the influence of yielding on loss of resistance during

Figure 3.13 Use of effective width to allow for shear lag
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buckling. The ratios in EN 1993-1-1 for steel with fy = 355 N/mm2 are
given in Table 3.1 for uniformly compressed flanges of rolled I-sections
with outstands of width c and thickness t. The root radius is not treated as
part of the outstand.

Encasement of webs in concrete, illustrated in Fig. 3.31, is done primar-
ily to improve resistance to fire (Section 3.10). It also prevents rotation of
a flange towards the web, which occurs during local buckling, and so
enables higher c/t ratios to be used at the Class 2/3 and 3/4 boundaries,
as shown. At the higher compressive strains that are relied on in plastic
hinge analysis, the encasement is weakened by crushing of concrete, so
the c/t ratio at the Class 1/2 boundary is unchanged.

The class of a steel web is strongly influenced by the proportion of its
clear depth, d, that is in compression, as shown in Fig. 3.14. For the Class
1/2 and 2/3 boundaries, plastic stress blocks are used, and the limiting d/t
ratios are given in EN 1993-1-1 as functions of α, defined in Fig. 3.14.
The curves show, for example, that a web with d/t = 40 moves from Class
1 to Class 3 when α increases from 0.7 to 0.8. This high rate of change is
significant in the design of continuous beams (Section 4.2.1).

For the Class 3/4 boundary, elastic stress distributions are used, defined
by the ratio ψ. Pure bending (no net axial force) corresponds not to α =
0.5, but to ψ = −1. In a composite T-beam in hogging bending, the elastic
neutral axis is normally higher than the plastic neutral axis, and its posi-
tions for propped and unpropped construction are different, so the curve
for the Class 3/4 boundary is not comparable with the others in Fig. 3.14.

For simply-supported composite beams, the steel compression flange is
restrained from local buckling (and also from lateral buckling) by its
connection to the concrete slab, and so is in Class 1. The plastic neutral
axis for full interaction is usually within the slab or steel top flange, so the
web is not in compression, when flexural failure occurs, unless partial

Table 3.1 Classification of cross-sections, and methods of analysis

Slenderness class and name 1 2 3 4

Plastic Compact Semi-compact Slender

Method of global analysis plastic(4) elastic elastic elastic
Analysis of cross-sections plastic(4) plastic(4) elastic(1) elastic(2)

Maximum ratio c/t for flanges
of rolled I-sections:(3)

uncased web 7.32 8.14 11.4 no limit
encased web 7.32 11.4 16.3 no limit

Notes: (1) hole-in-the-web method enables plastic analysis to be used;
(2) with reduced effective width or yield strength;
(3) for S 355 steel (fy = 355 N/mm2);
(4) elastic analysis may be used, but is more conservative.
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Figure 3.14 Class boundaries for webs, for fy = 355 N/mm2

shear connection (Section 3.5.3.1) is used. Even then, α is sufficiently
small for the web to be in Class 1 or 2. (This may not be so for the much
deeper plate or box girders used in bridges.)

During construction of a composite beam, the steel beam alone may be
in a lower slenderness class than the completed composite beam, and may
be susceptible to lateral buckling. Design for this situation is governed by
EN 1993-1-1 for steel structures.

3.5.3 Resistance to sagging bending

3.5.3.1 Cross-sections in Class 1 or 2

The methods of calculation for sections in Class 1 or 2 are in principle the
same as those for composite slabs, explained in Section 3.3.1, to which
reference should be made. The main assumptions are as follows:

• the tensile strength of concrete is neglected;
• plane cross-sections of the structural steel and reinforced concrete

parts of a composite section each remain plane;

and, for plastic analysis of sections only:

• the effective area of the structural steel member is stressed to its
design yield strength fyd (= fy/γA) in tension or compression;

• the effective area of concrete in compression resists a stress of 0.85fcd

(where fcd = fck/γC), which is constant over the whole depth between
the plastic neutral axis and the most compressed fibre of the concrete.



80 Composite Structures of Steel and Concrete

In deriving the formulae below, it is assumed that the steel member is a
rolled I-section, of cross-sectional area Aa, and the slab is composite, with
profiled sheeting that spans between adjacent steel members. The com-
posite section is in Class 1 or 2, so that the whole of the design load can
be assumed to be resisted by the composite member, whether the con-
struction is propped or unpropped. This is because the inelastic behaviour
that precedes flexural failure allows internal redistribution of stresses to
occur.

The effective section is shown in Fig. 3.15(a). As for composite slabs,
there are three common situations, as follows. The first two occur only
where full shear connection is provided.

(1) Neutral axis within the concrete or composite slab
The stress blocks are shown in Fig. 3.15(b). The depth xc, assumed to give
the position of the plastic neutral axis, is found by resolving longitudinally:

Nc,f = Aa fyd = beff xc(0.85fcd) (3.56)

This method is valid when:

xc ≤ hc

Figure 3.15 Resistance to sagging bending of composite section in
Class 1 or 2



Simply-supported composite slabs and beams 81

Taking moments about the line of action of the force in the slab,

Mpl,Rd = Aa fyd(hg + ht − xc/2) (3.57)

where hg defines the position of the centre of area of the steel section,
which need not be symmetrical about its major (y–y) axis.

(2) Neutral axis within the steel top flange
If Equation 3.56 gives xc > hc, then it is replaced by:

Nc,f = beffhc(0.85fcd) (3.58)

This force is now less than the yield force for the steel section, denoted by

Na,pl = Aa fyd (3.59)

so the plastic neutral axis is at depth xc > ht, and is at first assumed to lie
within the steel top flange (Fig. 3.15(c)). The condition for this is

Nac = Na,pl − Nc,f ≤ 2btf fyd (3.60)

The distance xc is most easily calculated by assuming that the strength of
the steel in compression is 2 fyd, so that the force Na,pl and its line of action
can be left unchanged. Resolving longitudinally to determine xc:

Na,pl = Nc,f + Nac = Nc,f + 2bf(xc − ht) fyd (3.61)

Taking moments about the line of action of the force in the slab,

Mpl,Rd = Na,pl(hg + ht − hc/2) − Nac(xc − hc + ht)/2 (3.62)

If xc is found to exceed ht + tf, the plastic neutral axis lies within the
steel web, and Mpl,Rd can be found by a similar method.

(3) Partial shear connection
The symbol Nc,f was used in paragraphs (1) and (2) above for consistency
with the treatment of composite slabs in Section 3.3.1. In design, its value
is always the lesser of the two values given by Equations 3.56 and 3.58. It
is the force that the shear connectors between the section of maximum
sagging moment and each free end of the beam (a ‘shear span’) must be
designed to resist, if full shear connection is to be provided.

Let us suppose that the shear connection is designed to resist a force Nc,
smaller than Nc,f. If each connector has the same resistance to shear, and
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the number in each shear span is n, then the degree of shear connection is
defined by:

degree of shear connection = η = n/nf = Nc/Nc,f (3.63)

where nf is the number of connectors required for full shear connection.
The plastic moment of resistance of a composite slab with partial shear

connection had to be derived in Section 3.3.1(3) by an empirical method
because the flexural properties of profiled sheeting are so complex. For
composite beams, simple plastic theory can be used [31].

The depth of the compressive stress block in the slab, xc, is given by

xc = Nc /(0.85fcdbeff) (3.64)

and is always less than hc. The distribution of longitudinal strain in the
cross-section is intermediate between the two distributions shown (for
stress) in Fig. 2.2(c), and is shown in Fig. 3.15(d), in which C means
compressive strain. The neutral axis in the slab is at a depth xn, slightly
greater than xc, as shown.

In design of reinforced concrete beams and slabs it is generally assumed
that xc/xn is between 0.8 and 0.9. The less accurate assumption xc = xn is
made for composite beams and slabs to avoid the complexity that otherwise
occurs in design when xc ≈ hc or, for beams with non-composite slabs,
xc ≈ ht. This introduces an error in Mpl that is on the unsafe side, but is
negligible for composite beams. It is not negligible for composite columns,
where it is allowed for (Section 5.6.5.1).

There is a second neutral axis within the steel I-section. If it lies within
the steel top flange, the stress blocks are as shown in Fig. 3.15(c), except
that the concrete block for the force Nc,f is replaced by a shallower one of
depth xc, for force Nc.

Resolving longitudinally,

Nac = Na,pl − Nc

The depth of the neutral axis in the steel is found from

xa = ht + Nac/(2bf fyd) (3.65)

Taking moments about the line of action of Nc,

MRd = Na,pl(hg + ht − xc/2) − Nac(xa + ht − xc)/2 (3.66)

If the second neutral axis lies within the steel web, the stress blocks are
as shown in Fig. 3.15(e), and MRd can be found by a method similar to
that for Equation 3.66.
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Use of partial shear connection in design
The curve ABC in Fig. 3.16 shows a typical relationship between MRd/
Mpl,Rd and degree of shear connection η, found by using the preceding
equations for assumed values of η. When Nc is taken as zero, then

MRd = Mpl,a,Rd

where Mpl,a,Rd is the resistance of the steel section alone.
The curve is not valid for very low degrees of shear connection, for

reasons explained in Section 3.6.2. Where it is valid, it is evident that a
substantial saving in the cost of shear connectors can be obtained (e.g., by
using η = 0.7) when the required bending resistance MEd is only slightly
below Mpl,Rd.

Where profiled sheeting is used, there is sometimes too little space in
the troughs for nf connectors to be provided within a shear span, and then
partial-connection design becomes essential.

Unfortunately, curve ABC in Fig. 3.16 cannot be represented by a simple
algebraic expression. In practice, it is therefore sometimes replaced (con-
servatively) by the line AC, given by

Nc = Nc,f(MRd − Mpl,a,Rd)/(Mpl,Rd − Mpl,a,Rd) (3.67)

In design, MRd is replaced by the known value MEd, and Mpl,Rd, Mpl,a,Rd

and Nc,f are easily calculated, so this equation gives directly the design
force Nc, and hence the number of connectors required in each shear span:

n = nf Nc/Nc,f = Nc /PRd (3.68)

where PRd is the design resistance of one connector.
The design of shear connection is further discussed in Section 3.6.

Figure 3.16 Design methods for partial shear connection
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Variation in bending resistance along a span
In design, the bending resistance of a simply-supported beam is checked
first at the section of maximum sagging moment, which is usually at mid-
span. For a steel beam of uniform section, the bending resistance else-
where within the span is then obviously sufficient; but this may not be so
for a composite beam. Its bending resistance depends on the number of
shear connectors between the nearer end support and the cross-section
considered. This is shown by curve ABC in Fig. 3.16, because the x-
coordinate is proportional to the number of connectors.

Suppose, for example, that a beam of span L is designed with partial
shear connection and n/nf = 0.5 at mid-span. Curve ABC is re-drawn in
Fig. 3.17(a), with the bending resistance at mid-span, MRd,max, denoted by
B. Length BC of this curve is not now valid, because shear failure would
occur in the right-hand half span. If the connectors are uniformly spaced
along the span, as is usual in buildings, then the axis n/nf is also an axis
x/L, where x is the distance from the nearer support and n is the number of
connectors effective in transferring the compression to the concrete slab
over a length x from a free end. Only these connectors can contribute to
the bending resistance MRd,x at that section, denoted E in Fig. 3.17(b). In
other words, bending failure at section E would be caused (in the design
model) by longitudinal shear failure along length DE of the interface
between the steel flange and the concrete slab.

Which section would in fact fail first depends on the shape of the
bending-moment diagram for the loading. For uniformly-distributed load-
ing, the curve for MEd,x is parabolic, and curve OFB in Fig. 3.17(a) shows
that failure would occur at or near mid-span. The addition of significant
point loads (e.g., from small columns) at the quarter-span points changes

Figure 3.17 Variation of bending resistance along a span
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the curve from OFB to OGB. Failure would occur near section E. A design
in which MEd at mid-span was equated to MRd,max would be unsafe.

This is why design codes would not allow the 0.5nf connectors to be
spaced uniformly along the half span, for this loading. The number required
for section E would be calculated first, and spaced uniformly along DE.
The remainder would be located between E and mid-span, at wider spacing.
Spacing of connectors is further discussed in Section 3.6.1.

3.5.3.2 Cross-sections in Class 3 or 4

The resistance to bending of a beam of semi-compact or slender section is
governed usually by the maximum stress in the steel section, calculated
by elastic theory. Account has to be taken of the method of construction
(propped or unpropped) and of the creep of concrete. The resistance may
be as low as 0.7 Mpl,Rd, so it is fortunate that, in design for buildings, it is
almost always possible to ensure that sections in sagging bending are in
Class 1 or 2. This is more difficult for hogging bending, as explained in
Section 4.2.1.

3.5.4 Resistance to vertical shear

In a simply-supported steel beam, bending stresses near a support are
within the elastic range even when the design ultimate load is applied;
but, in a composite beam, maximum slip occurs at end supports, so bending
stresses cannot be found accurately by simple elastic theory based on
plane sections remaining plane.

Vertical shear stresses are calculated from rates of change (dσ/dx) of
bending stresses σ, and so cannot easily be found near an end of a com-
posite beam. It has been shown in tests that some of the vertical shear is
resisted by the concrete slab, but there is no simple design model for this.
The contribution from the slab is influenced by whether it is continuous
across the end support, by how much it is cracked, and by local details of
the shear connection.

It is therefore assumed in practice that vertical shear is resisted by the
steel beam alone, exactly as if it were not composite. The web thickness
of most rolled steel I-sections is sufficient to avoid buckling in shear, and
then design is simple. The shear area Av for such a section is given in EN
1993-1-1 [15] as

Av = Aa − 2bftf + (tw + 2r)tf (3.69)

with root radius r and other notation as in Fig. 3.15(a). This shows that
some of the vertical shear is resisted by the steel flanges.
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The shear resistance is calculated by assuming that the yield strength in
shear is fyd/ 3 (von Mises yield criterion), and that the whole of area Av

can reach this stress:

Vpl,a,Rd = Av( fyd/ 3) (3.70)

This is a ‘rectangular stress block’ plastic model, based essentially on test
data.

The maximum slenderness of an unstiffened web for which shear buck-
ling can be neglected is given in Eurocode 4 as

hw/tw ≤ 72ε

where hw is the clear distance between the flanges.
Where the steel web is encased in concrete in accordance with rules

given in EN 1994-1-1, shear buckling can be neglected if

d/tw ≤ 124ε (3.71)

The dimensions d and tw are shown in Fig. 3.15(a), and

ε = (235/fy)
1/2 (3.72)

with fy in N/mm2 units. This allows for the influence of yielding on shear
buckling.

Interaction between bending and shear can influence the design of con-
tinuous beams, and is treated in Section 4.2.2. The large openings in webs
often required for services can reduce their resistance to vertical shear. A
design aid is available [32].

3.6 Composite beams – longitudinal shear

3.6.1 Critical lengths and cross-sections

As noted in Section 3.5.3.2, the bending moment at which yielding of
steel first occurs in a simply-supported composite beam can be below
70% of the ultimate moment. If the bending-moment diagram is parabolic,
then at ultimate load partial yielding of the steel beam can extend over
half of the span.

At the interface between steel and concrete, the distribution of longi-
tudinal shear is influenced by yielding, and also by the spacing of the
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connectors, their load/slip properties, and shrinkage and creep of the
concrete slab. For these reasons, no attempt is made in design to calculate
this distribution. Wherever possible, connectors are uniformly spaced along
the span.

It was shown in Section 3.5.3 that this cannot always be done. For beams
with all critical sections in Class 1 or 2, uniform spacing is allowed by EN
1994-1-1 along each critical length, which is a length of the interface
between two adjacent critical cross-sections. These are:

• sections of maximum bending moment,
• supports,
• sections subjected to concentrated loads or reactions,
• places where there is a sudden change of cross-section of the beam, and
• free ends of cantilevers.

There is also a definition for tapering members.
Where the design ultimate loading is uniformly-distributed, a typical

design procedure, for half the span of a beam, whether simply-supported
or continuous, would be as follows.

(1) Determine the compressive force required in the concrete slab at the
section of maximum sagging moment, as explained in Section 3.5.3.
Let this be Nc.

(2) Determine the tensile force in the concrete slab at the support that is
assumed to contribute to the bending resistance at that section (i.e.,
zero for a simple support, even if crack-control reinforcement is
present; and the yield force in the longitudinal reinforcement, if the
span is designed as continuous). Let this force be Nt.

(3) If there is a critical cross-section between these two sections, deter-
mine the force in the slab at that section. The bending moment will
usually be below the yield moment, so elastic analysis of the section
can be used.

(4) Choose the type of connector to be used, and determine its design
resistance to shear, PRd, as explained in Section 2.5.

(5) The number of connectors required for the half span is
n = (Nc + Nt )/PRd. (3.73)

The number required within a critical length, where the change in longi-
tudinal force is ∆Nc, is ∆Nc/PRd.

An alternative to the method of step (3) would be to use the shear
force diagram for the half span considered. Such a diagram is shown in
Fig. 3.18 for the length ABC of a span AD, which is continuous at A and
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Figure 3.18 Vertical shear in a beam with an off-centre point load

has a heavy point load at B. The critical sections are A, B and C. The total
number of connectors is shared between lengths AB and BC in proportion
to the areas of the shear force diagram, OEFH and GJH.

In practice it might be necessary to provide a few extra connectors
along BC, because codes limit the maximum spacing of connectors to
prevent uplift of the slab relative to the steel beam, and to ensure that the
steel top flange is sufficiently restrained from local and lateral buckling.

3.6.2 Ductile and non-ductile connectors

The use of uniform spacing is possible because all connectors have some
ductility, or slip capacity. Its determination from push tests is explained in
Section 2.5.

The slip capacity of headed stud connectors increases with the diameter
of the shank, and has been found to be about 6 mm [33] for 19-mm studs
in solid concrete slabs. Higher values have been found in tests with single
studs placed centrally within the troughs of profiled steel sheeting. Off-
centre studs in troughs can be much less ductile.

Slip enables longitudinal shear to be redistributed between the connec-
tors in a critical length, before any of them fail. The slip required for this
purpose increases at low degrees of shear connection, and as the critical
length increases (a scale effect). A connector that is ‘ductile’ (has sufficient
slip capacity) for a short span becomes ‘non-ductile’ in a long span, for
which a more conservative design method must be used.

The definitions of ‘ductile’ connectors given in EN 1994-1-1 for headed
studs welded to a steel beam with equal flanges and S355 steel are shown
in Fig. 3.19. The more liberal definition given by the dashed line, for use
where the slab is composite, is subject to several restrictions, based on the
limited scope of current research data on slip capacity.

No design data are given in EN 1994-1-1 for shear connectors other
than headed studs. If used, they should be treated as non-ductile unless
their characteristic slip capacity is at least 6 mm.
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Where partial shear connection is used and the connectors are ‘ductile’,
the bending resistance of cross-sections in Class 1 or 2 may be found by
plastic theory (Equation 3.66). Otherwise, elastic theory is required, which
is more complex and gives a lower resistance. Also, ductile connectors
may be spaced uniformly along a critical length whereas, for non-ductile
connectors, the spacing must be based on elastic analysis for longitudinal
shear.

These and other rules are intended to ensure that sudden longitudinal
shear failures do not occur; for example, by ‘unzipping’ of the shear
connection, commencing from a simply-supported end of a beam. There
is further explanation in Reference 17.

3.6.3 Transverse reinforcement

The reinforcing bars shown in Fig. 3.20 are longitudinal reinforcement for
the concrete slab, to enable it to span between the beam shown and those
on each side of it, but they also enhance the resistance to longitudinal
shear of vertical cross-sections such as B–B. Bars provided for that purpose
are known as ‘transverse reinforcement’, as their direction is transverse to
the axis of the composite beam. Like stirrups in the web of a reinforced
concrete T-beam, they supplement the shear strength of the concrete, and
their behaviour can be represented by a truss analogy.

The design rules for these bars are extensive, as account has to be taken
of many types and arrangements of shear connectors, of haunches, of the
use of precast or composite slabs, and of interaction between the longi-
tudinal shear stress on the section considered, v, and the transverse bending
moment, shown as Ms in Fig. 3.20. The loading on the slab also causes
vertical shear stress on surfaces such as B–B; but this is usually so much
less than the local longitudinal shear stress, that it can be neglected.

Figure 3.19 Definition of ‘ductile’ for welded studs, for steel
sections with equal flanges
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Figure 3.21 T-beam with asymmetrical concrete flange

The word ‘surface’ is used here because EFGH in Fig. 3.20, although
not a plane, is another potential surface of shear failure. In practice, the rules
for minimum height of shear connectors ensure that in slabs of uniform
thickness, surfaces of type B–B are more critical; but this may not be so
for haunched slabs, considered later.

The design longitudinal shear per unit length (‘shear flow’, denoted vL)
for surface EFGH is almost the same as that for the shear connection, and
in a symmetrical T-beam half of that value is assumed to be transferred
through each of the planes B–B and D–D. For an L-beam (Fig. 3.21) or
where the flange of the steel beam is wide, the more accurate expressions
should be used:

vL,BB = vLb1/b and vL,DD = vLb2/b (3.74)

where vL is the design shear flow for the shear connection and b is the
effective width of the concrete flange.

Effective area of reinforcement
For planes such as B–B in Fig. 3.20, the effective area of transverse
reinforcement per unit length of beam, Ae, is the whole of the reinforce-
ment that is fully anchored on both sides of the plane (i.e., able to develop
its yield strength in tension). This is so even where the top bars are fully
stressed by the bending moment Ms, because this tension is balanced by

Figure 3.20 Surfaces of potential failure in longitudinal shear
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transverse compression, which enhances the shear resistance in the region
CJ by an amount at least equivalent to the contribution the reinforcement
would make, in the absence of transverse bending.

3.6.3.1 Design rules for transverse reinforcement in solid slabs

For this subject, EN 1994-1-1 refers to EN 1992-1-1 for concrete struc-
tures. Its rules for transverse reinforcement are based on a truss analogy
in which the slope of the diagonal members, θf, may be chosen, within
defined limits, by the designer. In this explanation, the long-established
angle of 45° is used.

Part of a composite beam is shown in plan in Fig. 3.22. The truss model
for transverse reinforcement is illustrated by triangle ACE, in which CE
represents the reinforcement for a unit length of the beam, of area Ae, and
vL is the design shear flow for a cross-section of type B–B (Fig. 3.20)
above the edge of the steel flange (shown by a dashed line). The shear
flow for the connectors, 2vL, is applied at point A, and is transferred by
concrete struts AC and AE, at 45° to the axis of the beam.

The strut force is balanced at C by compression in the slab and tension
in the reinforcement. The model fails when the reinforcement yields. The
tensile force in it is equal to the shear on a plane such as B–B caused
by the force vL. The design equation gives the minimum area Ae of
reinforcement:

vL,Ed < vL,Rd = Ae fsd (3.75)

Another requirement is that concrete struts such as AC do not fail in
compression. Their design compressive stress is given in EN 1992-1-1 as

0.6(1 − fck/250) fcd (3.76)

Figure 3.22 Truss model for transverse reinforcement
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with fck in N/mm2 units. The width of strut per unit length of beam is
1/ 2 , and the force in the strut is 2 vL,Ed, so this condition is

vL,Ed < 0.6(1 − fck/250) fcdhf/2 (3.77)

This rule is for normal-density concrete. For lightweight concrete, with
oven-dry density ρ kg/m3, the expression is replaced by

vL,Ed < 0.5(0.4 + 0.6ρ/2200)(1 − flck/250) flcdhf/2 (3.78)

This allows for the reduction in the ratio Ecm/flck as the density of the
concrete reduces.

These results are assumed to be valid whatever the length of the notional
struts in the slab (e.g., FG), and rely to some extent on the shear flow vL

being fairly uniform within the shear span, because the reinforcement
associated with the force 2vL at A is in practice provided at cross-section
A, not at some point between A and mid-span. The type of cracking
observed in tests where shear failure occurs, shown in Fig. 3.22, is con-
sistent with the model.

Haunched slabs
Further design rules are required for the transverse reinforcement in
haunches of the type shown in Fig. 2.1(b). These are not discussed here.
Haunches encased in thin steel sheeting are considered below.

3.6.3.2 Transverse reinforcement in composite slabs

Where profiled sheeting spans in the direction transverse to the span of
the beam, as shown in Fig. 3.15(a), it can be assumed to be effective as
bottom transverse reinforcement where the sheets are continuous over the
beam. Where they are not, as in the figure, the effective area of sheeting
depends on how the ends of the sheets are attached to the steel top flange.

Where studs are welded to the flange through the sheeting, resistance to
transverse tension is governed by local yielding of the thin sheeting around
the stud. The design bearing resistance of a stud with a weld collar of
diameter ddo in sheeting of thickness t is given in Eurocode 4 as

Ppb,Rd = kϕddotfyp,d (3.79)

where

kϕ = 1 + a/ddo ≤ 6.0 (3.80)
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fyp,d is the yield strength of the sheeting, and dimension a is shown in
Fig. 3.23. The formula corresponds to the assumption that yielding of the
sheet occurs in direct tension along BC and in shear, at stress fyp,d/2, along
AB and CD. For pairs of studs at longitudinal spacing s (one near each
edge of the steel flange), Equation 3.75 is replaced by

vL,Ed < Ae fsd + Ppb,Rd/s (3.81)

The resulting reduction in the required area Ae is significant in practice
where conventional studs are used; but small-diameter shot-fired pins are
less effective, because of the limit kϕ ≤ 6 .

Where the span of the sheeting is parallel to that of the beam, transverse
tension causes the corrugations to open out, so its contribution to trans-
verse reinforcement is ignored.

3.6.4 Detailing rules

Where shear connectors are attached to a steel flange, there will be trans-
verse reinforcement, and there may be a haunch (local thickening of the
slab, as in Fig. 2.1(b)) or profiled steel sheeting. No reliable models exist
for the three-dimensional state of stress in such a region, even in the
elastic range, so the details of the design are governed by arbitrary rules
of proportion, based essentially on experience.

Several of the rules given in EN 1994-1-1 are shown in Fig. 3.24. The
left-hand half shows profiled sheeting that spans transversely, and the
right-hand half shows a haunch.

The minimum dimensions for the head of a stud, the rule h ≥ 3d, and
the minimum projection above bottom reinforcement, are to ensure suffi-
cient resistance to uplift. The 40-mm dimension shown is reduced to
30 mm where there is no haunch.

Figure 3.23 Bearing resistance of profiled sheeting, acting as
transverse reinforcement
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The rule d ≤ 2.5tf is to avoid local failure of the steel flange, caused by
load from the connector. For repeated (fatigue) loading, the limit to d/tf is
reduced to 1.5.

The 50-mm side cover to a connector and the ≤45° rule are to prevent
local bursting or crushing of the concrete at the base of the connector; and
the 20-mm dimension to the flange tip is to avoid local over-stress of the
flange and to protect the connector from corrosion.

The minimum centre-to-centre spacing of stud connectors of diameter d
is 5d in the longitudinal direction, 2.5d across the width of a steel flange
in solid slabs, and 4d in composite slabs. These rules are to enable concrete
to be properly compacted, and to avoid local overstress of the slab.

The maximum longitudinal spacing of connectors in buildings is limited
to the lesser of 800 mm and six times the total slab thickness, because the
transfer of shear is assumed in design to be continuous along the span,
and also to avoid excessive uplift.

All such rules relevant to stresses should in principle give ratios of
dimensions; where actual dimensions are given, there may be an implied
assumption (e.g., that studs are between 16 mm and 22 mm in diameter),
or it may be that corrosion or crack widths are relevant.

3.7 Stresses, deflections and cracking in service

A composite beam is usually designed first for ultimate limit states. Its
behaviour in service must then be checked. For a simply-supported beam,
the most critical serviceability limit state is usually excessive deflection,

Figure 3.24 Detailing rules for shear connection
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which can govern the design where unpropped construction is used. Floor
structures subjected to dynamic loading (e.g., as in a dance hall or gymna-
sium) are also susceptible to excessive vibration (Section 3.11.3.2).

The width of cracks in concrete needs to be controlled in web-encased
beams, and in hogging regions of continuous beams (Section 4.2.5).

Excessive stress in service is not itself a limit state. It may however
invalidate a method of analysis (e.g., linear-elastic theory) that would
otherwise be suitable for checking compliance with a serviceability criter-
ion. No stress limits are specified in EN 1994-1-1. Where elastic analysis
is used, with appropriate allowance for shear lag and creep, the policy is
to modify the results, where necessary, to allow for yielding of steel and,
where partial shear connection is used, for excessive slip.

If yielding of structural steel occurs in service, in a simply-supported
composite beam for a building, it will be in the bottom flange, near mid-
span. The likelihood of this depends on the ratio between the character-
istic variable and permanent loads, given by

r = qk/gk

on the partial safety factors used for both actions and materials, on the
method of construction used, and on the ratio of the design resistance to
bending for ultimate limit states to the yield moment, which is

Z = Mpl,Rd/Mel,Rk (3.82)

where Mel,Rk is the bending moment at which yield of steel first occurs.
For sagging bending, and assuming γA for steel is 1.0, the ratio Z is
typically between 1.25 and 1.35 for propped construction, but can rise to
1.45 or above, for unpropped construction.

Deflections are usually checked for the characteristic combination of
actions, given in Equation 1.8. So, for a beam designed for distributed
loads gk and qk only, the ratio of design bending moments (ultimate/
serviceability) is
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(3.83)

This ratio ranges from 1.42 at r = 0.8 to 1.45 at r = 2.0.
From these expressions, the stress in steel in service will reach or exceed

the yield stress if Z > µ. The values given above show that this is unlikely
for propped construction, but could occur for unpropped construction.

Where the bending resistance of a composite section is governed by
local buckling, as in a Class 3 section, elastic section analysis is used for
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ultimate limit states, and then stresses and/or deflections in service are
less likely to influence design.

As shown below, elastic analysis of a composite section is more com-
plex than plastic analysis, because account has to be taken of the method
of construction and of the effects of creep. In principle, the following
three types of loading then have to be considered separately:

• load carried by the steel beam,
• short-term load carried by the composite beam, without creep, and
• long-term load carried by the composite beam, with creep.

However, as an approximation, the composite beam may be analysed for
its whole loading using a reduced value for the creep coefficient.

3.7.1 Elastic analysis of composite sections in sagging bending

It is assumed first that full shear connection is provided, so that the effect
of slip can be neglected. All other assumptions are as for the elastic
analysis of reinforced concrete sections by the method of transformed
sections. The algebra is different because the flexural rigidity of the steel
section alone is much greater than that of reinforcing bars.

For generality, the steel section is assumed to be asymmetrical (Fig. 3.25)
with cross-sectional area Aa, second moment of area Ia, and centre of area
distance zg below the top surface of the concrete slab, which is of uniform
overall thickness ht and effective width beff.

The modular ratio for short-term loading is

n0 = Ea/Ecm

where the subscript ‘a’ refers to structural steel and Ecm is the mean value
of the elastic modulus for concrete, given in EN 1992-1-1. For long-term
loading, a value 3n0 is a good approximation. For simplicity, a single
value 2n0 is permitted for use with both types of loading. From here
onwards, the symbol n is used for whatever modular ratio is appropriate,
so it is defined by

n = Es/Ec′ (3.84)

where Ec′ is the relevant effective modulus for the concrete. (Note: the
symbol n is also used for number of shear connectors.)

It is usual to neglect reinforcement in compression, concrete in tension,
and also concrete between the ribs of profiled sheeting, even when the
sheeting spans longitudinally. The condition for the neutral-axis depth x
to be less than hc is
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Figure 3.25 Elastic analysis of cross-section of composite beam in
sagging bending

Aa(zg − hc) < beffhc
2/(2n) (3.85)

The neutral-axis depth is then given by the usual ‘first moments of area’
equation,

Aa(zg − x) = beff x
2/(2n) (3.86)

and the second moment of area, in ‘steel’ units, by

I = Ia + Aa(zg − x)2 + beff x
3/(3n) (3.87)

If Condition 3.85 is not satisfied, then the neutral-axis depth exceeds hc,
as in Fig. 3.25, and is given by

Aa(zg − x) = beffhc(x − hc/2)/n (3.88)

The second moment of area is

I = Ia + Aa(zg − x)2 + (beffhc/n) [hc
2/12 + (x − hc /2)2] (3.89)

In global analyses, it is sometimes convenient to use values of I based
on the uncracked composite section. The values of x and I are then given
by Equations 3.88 and 3.89 above, whether x exceeds hc or not. In sagging
bending, the difference between the ‘cracked’ and ‘uncracked’ values of I
is usually small.

Stresses due to a sagging bending moment M are normally calculated in
concrete only at level 1 in Fig. 3.25, and in steel at levels 3 and 4. These
stresses are, with tensile stress positive:

σc1 = −Mx/(nI ) (3.90)
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σa3 = M(ht − x)/I (3.91)

σa4 = M(ha + ht − x)/I (3.92)

Deflections
Deflections are calculated by the well-known formulae from elastic theory,
using Young’s modulus for structural steel. For example, the deflection of
a simply-supported composite beam of span L due to distributed load q
per unit length is

δc = 5qL4/(384EaI ) (3.93)

Where the shear connection is partial (i.e., η < 1, with η from Equation
3.63), the increase in deflection due to longitudinal slip depends on the
method of construction. The total deflection δ is given approximately in
BS 5950 [19] as

δ = δc[1 + k(1 − η)(δa/δc − 1)] (3.94)

with k = 0.5 for propped construction and k = 0.3 for unpropped construc-
tion, where δa is the deflection for the steel beam acting alone.

This expression is obviously correct for full shear connection (η = 1),
and gives too low a result when η = 0.

EN 1994-1-1, unlike BS 5950, allows this increase in deflection to be
ignored in unpropped construction where:

• either η ≥ 0.5 or the forces on the connectors found by elastic analysis
do not exceed 0.8 PRk, where PRk is their characteristic resistance, and

• for slabs with ribs transverse to the beam, the height of the ribs does
not exceed 80 mm.

The arbitrary nature of these rules arises from the difficulty of predict-
ing deflections accurately.

3.7.2 The use of limiting span-to-depth ratios

Calculations using formulae like those derived above are not only long;
they are also inaccurate. It is almost as much an art as a science to predict
during design the long-term deflection of a beam in a building. It is
possible to allow in calculations for some of the factors that influence
deflection, such as creep and shrinkage of concrete; but there are others that
cannot be quantified. In developing the limiting span/depth ratios for the
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British code CP 110, Beeby [34] identified nine reasons why deflections
of reinforced concrete beams in service were usually less than those cal-
culated by the designers, and increased his theoretical span/depth ratios
by 36% to allow for them. Many of the reasons apply equally to compos-
ite beams, the most significant of them being the variations in the elastic-
ity, shrinkage and creep properties of the concrete, the stiffening effect of
finishes, and restraint and partial fixity at the supports.

The other problem is the difficulty of defining when a deflection becomes
‘excessive’. In practice, complaints often arise from the cracking of plaster
on partition walls, which can occur when the deflection of the supporting
beam is as low as span/800 [34]. For partitions and in-fill panels generally,
the relevant deflection is that which takes place after their construction.
This can exceed that due to the finishes and imposed load, for dead-load
creep deflections continue to increase for several years after construction.

It is good practice to provide partitions with appropriate joints and
clearances. When this is not done the deflection under the characteristic
load combination should not exceed span/300, or span/500 if the parti-
tions are of brittle construction. Where appearance is the only criterion, a
greater deflection may be acceptable where there is a suspended ceiling,
and for roof beams constructed to a fall. The difficulty of assessing the
accuracy and significance of a calculated deflection is such that simplified
methods of calculation are justified.

3.8 Effects of shrinkage of concrete and of temperature

In the fairly dry environment of a building, an unrestrained concrete slab
can be expected to shrink by 0.03% of its length (3 mm in 10 m) or more.
In a composite beam, the slab is restrained by the steel member, which
exerts a tensile force on it, through the shear connectors near the free ends
of the beam, so its apparent shrinkage is less than the ‘free’ shrinkage.
The forces on the shear connectors act in the opposite direction to those
due to the loads, and so can be neglected in design.

The stresses due to shrinkage develop slowly, and so are reduced by
creep of the concrete, but the increase they cause in the deflection of a
composite beam may be significant. An approximate and usually con-
servative rule of thumb for estimating this deflection in a simply-supported
beam is to take it as equal to the long-term deflection due to the weight of
the concrete slab, excluding finishes, acting on the composite member.

In the beam studied in Section 3.11, this rule gives an additional deflec-
tion of 5.4 mm, whereas the calculated long-term deflection due to a
shrinkage of 0.03% (with a modular ratio n = 20.2) is 5.9 mm.
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In beams for buildings, it can usually be assumed that recommended limit-
ing span/depth ratios are sufficiently conservative to allow for shrinkage
deflections; but the designer should be alert for situations where the prob-
lem may be unusually severe (e.g., thick slabs on small steel beams,
electrically heated floors, and concrete mixes with high ‘free shrinkage’).

In EN 1994-1-1, the effects of shrinkage need not be considered when
the span/depth ratio of the beam is less than 20. For dry environments, typ-
ical values of the free shrinkage strain are given as 0.0325% for normal-
weight concrete and 0.05% for lightweight concrete.

Composite beams also deflect when the slab is colder than the steel
member. Such differential temperatures rarely occur in buildings, but are
important in beams for bridges.

3.9 Vibration of composite floor structures

In British Standard 6472, Guide to evaluation of human exposure to
vibration in buildings [35], the performance of a floor structure is consid-
ered to be satisfactory when the probability of annoyance to users of the
floor, or of complaints from them about interference with activities, is
low. There can be no simple specification of the dynamic properties that
would make a floor structure ‘serviceable’ in this respect, because the
local causes of vibration, the type of work done in the space concerned,
and the psychology of its users are all relevant.

An excellent guide to this complex subject is available [36]. It and BS
6472 provided much of the basis for the following introduction to vibra-
tion design, which is limited to the situation in the design example – a
typical floor of an office building, shown in Fig. 3.1.

Sources of vibration excitation
Vibration from external sources, such as highway or rail traffic, is rarely
severe enough to influence design. If it is, the building should be isolated
at foundation level.

Vibration from machinery in the building, such as lifts and travelling
cranes, should be isolated at or near its source. In the design of a floor
structure, it should be necessary to consider only sources of vibration on
or near that floor. Near gymnasia or dance floors, the effects of rhythmic
movement of groups of people can be troublesome; but in most buildings
only two situations need be considered:

• people walking across a floor with a pace frequency of between
1.4 Hz and 2.5 Hz; and

• an impulse, such as the effect of the fall of a heavy object.
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Typical reactions on floors from people walking have been analysed by
Fourier series. The fundamental component has an amplitude of about
240 N. The second and third harmonics are smaller, but are relevant to
design. Fundamental natural frequencies of floor structures ( f0) often lie
within the frequency range of third harmonics (4.2 Hz to 7.5 Hz). The
number of cycles of this harmonic, as a person walks across the span of a
floor, can be sufficient for the amplitude of forced vibration to approach its
steady-state value. This situation will be considered in more detail later.

Pedestrian movement causes little vibration of floor structures with f0

exceeding about 7 Hz, but these should be checked for the effect of an
impulsive load. The consequences that most influence human reactions
are then the peak vertical velocity of the floor, which is proportional to
the impulse, and the time for the vibration to decay, which increases with
reduction in the damping ratio of the floor structure.

Human reaction to vibration
Models for human response to continuous vibration are given in BS 6472.
For vibration of a floor that supports people who are standing or sitting,
rather than lying down, the model consists of a base curve of root-mean-
square (r.m.s.) acceleration against the fundamental natural frequency of
the floor, and higher curves of similar shape. These are shown in the
double logarithmic plot of Fig. 3.26. Each curve represents an approx-
imately uniform level of human response. The base curve, denoted by R =
1, where R is the response factor, corresponds to a ‘minimal level of
adverse comment from occupants’, of sensitive locations such as hospital
operating theatres and precision laboratories.

Figure 3.26 Curves of constant human response to vibration, and
Fourier component factor
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Curves for other values of R are obtained by multiplying the ordinates
of the base curve by R. Those for R = 4, 8 and 16 are shown. The
appropriate value of R for use in design depends on the environment. The
British Standard gives:

R = 4 for offices,
R = 8 for workshops,

with the comment that use of double those values ‘may result in adverse
comment’, which ‘may increase significantly’ if the magnitudes of vibration
are quadrupled.

Some relaxation is possible if the vibration is not continuous. Wyatt
[36] recommends that a floor subject to a person walking at resonant
frequency once a minute could reasonably be permitted, a response double
the value acceptable for continuous oscillation.

3.9.1 Prediction of fundamental natural frequency

In composite floors that need checking for vibration, damping is sufficiently
low for its influence on natural frequencies to be neglected. For free
elastic vibration of a beam or one-way slab of uniform section, the funda-
mental natural frequency is

f0 = K(EI/mL4)1/2 (3.95)

where K = π/2 for simple supports and K = 3.56 for both ends fixed
against rotation.

Values for other end conditions and multi-span members are given by
Wyatt. The relevant flexural rigidity is EI (per unit width, for slabs), L is
the span, and m the vibrating mass per unit length (beams) or unit area
(slabs). Concrete in slabs should normally be assumed to be uncracked, and
the dynamic modulus of elasticity should be used for concrete, in both
beams and slabs. This modulus, Ecd, is typically about 8 kN/mm2 higher
than the static modulus, for normal-density concrete, and 3 to 6 kN/mm2

higher, for lightweight-aggregate concretes of dry density not less than
1800 kg/m3. For composite beams in sagging bending, approximate allow-
ance for these effects can be made by increasing the value of I by 10%.

Unless a more accurate estimate can be made, the mass m is usually
taken as the mass of the characteristic permanent load plus 10% of the
characteristic variable load.

A convenient method of calculating f0 is to find first the mid-span
deflection, δm say, caused by the weight of the mass m. For simply-
supported members this is
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δm = 5mgL4/(384EI )

Substitution for m in Equation 3.95 gives

f0 17 8= . / δm (3.96)

with δm in millimetres.
Equation 3.96 is useful for a beam or slab considered alone. However,

in a typical floor, with composite slabs continuous over a series of parallel
composite beams, the total deflection (δ, say) is the sum of deflections δs,
for the slab relative to the beams that support it, and δb, for the beams. A
good estimate of the fundamental natural frequency is then given by

f0 = 17.8/ δ (3.97)

It follows from Equations 3.96 and 3.97 that

1 1 1

0
2

0
2

0
2f f f

    = +
s b

(3.98)

where f0s and f0b are the frequencies for the slab and the beam, respect-
ively, each considered alone. Equations 3.97 and 3.98 can be used also for
members that are not simply-supported.

For a single-span layout of the type shown in Fig. 3.1, each beam
vibrates as if simply-supported, so the length Leff of the vibrating area can
be taken as the span, L. The width, S, of the vibrating area will be several
times the beam spacing, s. A cross-section through this area is likely to be
as shown in Fig. 3.27, with most spans of the composite slab vibrating as
if fixed-ended. It follows from Equation 3.95 that:

• for the beam:

f0b = (π/2)(EIb/msL4)1/2 (3.99)

• for the slab:

f0s = 3.56(EIs/ms4)1/2 (3.100)

Figure 3.27 Cross-section of vibrating floor structure showing
typical fundamental mode
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where m is the vibrating mass per unit area, s is the spacing of the beams,
and subscripts b and s mean beam and slab, respectively.

3.9.2 Response of a composite floor to pedestrian traffic

A method for checking the response to a single pedestrian is now given. It
is assumed that the floor reaches its steady state of damped vibration
under harmonic excitation from a person walking at between 1.4 Hz and 2
Hz, and that for the floor, f0 > 3 Hz, to avoid resonance with the first
harmonic, of typical amplitude 240 N. The effective force amplitude is

J = 240Cf (3.101)

where Cf is the Fourier component factor. It takes account of the differ-
ence between the frequency of the pedestrian’s paces and the natural
frequency of the floor, and is given as a function of f0 in Fig. 3.26.

The static deflection of the floor is J/ke, where ke is an effective stiffness.
The magnification factor at resonance is 1/(2ζ), where ζ is the critical
damping ratio. This should normally be taken as 0.03 for open-plan offices
with composite floors, though Wyatt [36] reports values as low as 0.015
for unfurnished floors. The vertical displacement y for steady-state vibra-
tion thus has frequency f0 and is given approximately by

y = (J/(2keζ)) sin 2π f0t

The r.m.s. value of the acceleration is found by differentiating twice
and dividing by 2 :

arms = 4π2f 0
2J/(2 2 keζ) (3.102)

The effective stiffness ke depends on the vibrating area of floor, LS. The
width S can be computed in terms of the relevant flexural rigidities per
unit width of floor, which are Is and Ib/s. It is given by Wyatt as

S = 4.5(EIs/mf 0
2)1/4 (3.103)

This can be explained as follows. For a typical floor, f0b is several times f0s

so, from Equation 3.98, f0b is a good estimate of f0. Substituting mf 0
2 from

Equation 3.99 into Equation 3.103 gives

S/L = 3.6(Iss/Ib)
1/4

Thus, the higher the ratio between the stiffnesses of the slab and the
beam, the greater is the ratio of the equivalent width of the slab to the
span of the beams, as would be expected.
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By analogy with a simple spring–mass system, the fundamental fre-
quency can be defined by

f0 = (1/2π)(ke/Me)
1/2 (3.104)

where ke is the effective stiffness. The effective mass Me is given approx-
imately by

Me = mSL/4

From Equation 3.104,

ke = π2f 0
2mSL

With J from Equation 3.101, Equation 3.102 then gives

arms = 340Cf/(mSLζ) (3.105)

with S given by Equation 3.103.
From the base curve in Fig. 3.26, for 4 < f0 < 8 Hz,

arms = 5 × 10−3R m/s2

so from Equation 3.105,

R = 68 000Cf /(mSLζ) (3.106)

in kg,m units. This equation is given on p. 28 of Reference 36.
For floors with layouts of the type shown in Fig. 3.1, and that satisfy

the assumptions made above, checking for susceptibility to vibration caused
by pedestrian traffic consists of finding f0 from Equation 3.98, and arms or
R, as given above, and comparing the result with the target response
curve, as in Fig. 3.26.

Relevant calculations are given in Section 3.11.3.2.
The preceding summary is intended only to provide an introduction to

a versatile design method, and to apply it to a single type of structure.

3.10 Fire resistance of composite beams

Fire design, based on EN 1994-1-2, Structural fire design, is introduced in
Section 3.3.7, the whole of which is applicable to composite beams, as
well as to slabs, except Section 3.3.7.5.
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Figure 3.28 Tabulated data for web-encased beams, class R60

Beams rarely have insulation or integrity functions, and have then to be
designed only for the load-bearing function, R. The fire resistance class is
normally the same as that of the slab that acts as the top flange of the
beam, so only the structural steel section needs further protection. This
may be provided by full encasement in concrete or a lightweight fire-
resisting material. A more recent method, included in EN 1994, is to
encase only the web in concrete. This can be done before the beam is
erected (except near end connections), and gives a cross-section of the
type shown in Fig. 3.31.

In a fire, the exposed bottom flange loses its strength, but the protected
web and top flange do not. For the higher load levels, given by ηfi,t

(defined in Section 3.3.7.2), and longer periods of fire resistance, min-
imum areas of longitudinal reinforcement within the encasement, As, are
specified, in terms of the cross-sectional area, Af, of the steel bottom
flange. The minimum depth, ha, and breadth, bf, of the steel I-section are
also specified, for each standard fire resistance period. The notation for
the steel section is as in Fig. 3.15.

The requirements of EN 1994-1-2 for 60 minutes’ fire exposure (class
R60) are shown in Fig. 3.28. The minimum dimensions, ha and bf, in-
crease with ηfi,t as shown by the three sets of lines in Fig. 3.28(a). For
other values of ηfi,t, interpolation may be used.

The minimum ratios As/Af are zero for ηfi,t = 0.3 (ABC) and ηfi,t = 0.5
(ADE). For ηfi,t = 0.7, they are indicated within the regions where they
apply. To ensure that the additional reinforcement maintains its strength
for the period of fire exposure, minimum distances u1 and u2 are specified,
in terms of the specified minimum bf and the fire class. Those for class
R60 are shown in Fig. 3.28(b).
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The validity of tabulated data of this type is inevitably limited. The
principal conditions for its use, given in the Eurocode, are as follows.

(a) The composite beam must be simply-supported, with

tw ≤ bf/15 tf ≤ 2tw fy ≤ 355 N/mm2 beff ≤ 5 m

(b) The thickness of the concrete slab must be at least 120 mm, but
‘thickness’ is not defined. It is not clear if a value exceeding hc in
Fig. 3.15 could be used.

(c) If the slab is composite, the voids formed above the steel beam by
trapezoidal profiles must be filled with fire-resistant material.

(d) The web must be encased in concrete, held in place by stirrups, fabric
or stud connectors that pass through or are welded to the steel web.

The data given in Fig. 3.28 are used for the design example in Section
3.11.4. The Eurocode also gives both simple and advanced calculation
models, which are often less conservative than the tabulated data, and
have wider applicability. Those for beams and columns are outside the
scope of this book. Other guidance is available [2].

3.11 Example: simply-supported composite beam

In this example, a typical composite T-beam is designed for the floor
structure shown in Fig. 3.1, using the materials specified in Section 3.2, and
the floor design given in Section 3.4. Ultimate limit states are considered
first. An appropriate procedure that minimises trial and error is as follows.

(1) Choose the types and strengths of the materials to be used.
(2) Ensure that the design brief is complete. For this example it is

assumed that:
• no special provision of holes for services is required;
• the main source of vibration is pedestrian traffic on the floor,

and occupants’ sensitivity to vibration is typical of that found in
office buildings;

• the specified fire resistance class is R60.
(3) Make policy decisions. For this example:

• the steel member is to be a rolled universal beam (UB) section;
• propped construction is to be avoided, even if this involves pre-

cambering the steel beam;
• fire resistance is to be provided by encasing the web, but not the

bottom flange, in concrete;
• nominally-pinned beam-to-column joints are to be used.
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(4) With guidance from typical span-to-depth ratios for composite
beams, guess the overall depth of the beam. Assuming that the
floor slab has already been designed, this gives the depth ha of the
steel section.

(5) Guess the weight of the beam, and hence estimate the design mid-
span bending moment, MEd.

(6) Assume the lever arm to be (in the notation of Fig. 3.15)

(ha/2 + ht − hc/2)

and find the required area of steel, Aa, if full shear connection is to
be used, from

Aa fyd(ha/2 + ht − hc/2) ≥ MEd (3.107)

For partial shear connection, Aa should be increased.
(7) If full shear connection is to be used, check that the yield force in

the steel, Aa fyd, is less than the compressive resistance of the con-
crete slab, beffhc(0.85 fcd). If it is not, the plastic neutral axis will be
in the steel – unusual in buildings – and Aa as found above will be
too small.

(8) Knowing ha and Aa, select a rolled steel section. Check that its web
can resist the design vertical shear at an end of the beam.

(9) Design the shear connection to provide the required bending resist-
ance at mid-span.

(10) Check deflections and vibration in service.
(11) Design for fire resistance.

3.11.1 Composite beam – full-interaction flexure and vertical shear

From Section 3.4, the uniform characteristic loads from a 4.0-m width of
floor are:

• permanent,

gk1 = 2.54 × 4 = 10.2 kN/m on steel alone
gk2 = 1.3 × 4 = 5.2 kN/m on the composite beam

• variable,

qk = 6.2 × 4 = 24.8 kN/m on the composite beam

The weight of the beam and its fire protection is estimated to be 2.2
kN/m, so the design ultimate loads are:

gd = 1.35(15.4 + 2.2) = 23.7 kN/m

qd = 1.5 × 24.8 = 37.2 kN/m
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The estimated depth of the steel H-section for the supporting columns
is 200 mm, and the effective point of support for the beam is assumed to
be 100 mm from the face of the H section, so the simply-supported span
is 9.0 − 4 × 0.10 = 8.6 m.

The mid-span bending moment for L = 8.6 m is:

MEd = 60.9 × 8.62/8 = 563 kN m (3.108)

Vertical shears are required for the design of the columns and are
calculated for a span of 9.0 m. It is assumed that external walls and any
other load outside a 9-m width of floor are carried by edge beams that
span between adjacent columns.

The design vertical shear is

VEd = 60.9 × 9/2 = 274 kN (3.109)

It has been assumed that the composite section will be in Class 1 or 2,
so that the effects of unpropped construction can be ignored at ultimate
limit states.

Deflection of this beam is likely to influence its design, because of the
use of steel with fy = 355 N/mm2, lightweight-aggregate concrete and
unpropped construction. The relatively low span-to-depth ratio of 16 is
therefore chosen, giving an overall depth of 8600/16 = 537 mm. The slab
is 150 mm thick (Fig. 3.9) so, for the steel beam, ha ≈ 387 mm. From
Equation 3.107 the required area of steel is

Aa ≈
×

+ −
=

( / . )(     )
   

563 10

355 1 0 194 150 40
5217

6

mm2

A suitable rolled I-section appears to be 406 × 140 UB 46 (Aa =
5900 mm2); but its top flange may be unstable during erection, or too
narrow for the profiled sheeting and shear connection. Also, with profiled
sheeting it is usually necessary to use partial shear connection, so a signi-
ficantly larger section is chosen, 406 × 178 UB 60. Its relevant properties
are shown in Fig. 3.29. For its compression flange, with root radius r =
10.2 mm, the flange outstand is given by

c = (178 − 7.8)/2 − 10.2 = 74.9 mm, so c/t = 74.9/12.8 = 5.9

which is well below the Class 1 limit of 7.32 (Table 3.1).
The weight of this beam, with normal-density web encasement at

25 kN/m3, is
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Figure 3.29 Cross-section and stress blocks for composite beam in
sagging bending

gk = 0.060 × 9.81 + 25 × (0.406 × 0.178 − 0.0076) = 2.20 kN/m

so the weight assumed earlier is correct.
For the effective flange width, it is assumed that two rows of stud

connectors are 0.1 m apart, so from Equation 3.55

beff = 8.6/4 + 0.1 = 2.25 m (3.110)

Assuming that for full shear connection, the depth x of the plastic
neutral axis is less than hc (80 mm), x is found from Equation 3.56 with
fcd = 25/1.5 = 16.7 N/mm2:

Nc,f = 7600 × 0.355 = 2.25x(0.85 × 16.7)

whence

x = 84.6 mm

This exceeds hc, so the correct Nc,f is given by Equation 3.58:

Nc,f = 2.25 × 80(0.85 × 16.7) = 2555 kN

From Equation 3.59,

Na,pl = Aa fyd = 7600 × 0.355 = 2698 kN (3.111)

Assuming that the neutral axis is in the steel top flange, Equations 3.61 give

Nac = 2698 − 2555 = 143 kN

and

143 = 2 × 178(xc − 150) × 0.355
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whence

xc = 151.1 mm

The stress blocks are as shown in Fig. 3.15(c). The distance of force Nac

below force Nc,f is 151.1 − 40 = 111 mm so, from Equation 3.62,

Mpl,Rd = 2698(0.353 − 0.04) − 143 × 0.111 = 829 kN m (3.112)

This exceeds MEd by 47%, so partial shear connection will be used, giving
a concrete stress block much less than 80 mm deep.

From Equation 3.69 the shear area of this rolled section, with
r = 10.2 mm, is

Av = 7600 − 2 × 178 × 12.8 + 12.8(7.8 + 2 × 10.2) = 3404 mm2

From Equation 3.70 the resistance to vertical shear is

Vpl,a,Rd = 3404(0.355/ 3) = 697 kN (3.113)

which far exceeds VEd, as is usual in composite beams for buildings when
rolled steel I-sections are used.

Buckling
It is obvious that web buckling need not be considered. The steel top
flange is restrained by its connection to the composite slab, and so is
stable. However, its stability during erection should be checked. It is
helped by the presence of web encasement. The calculation, to EN 1993-
1-1, is not given here. Lateral stability of continuous beams is considered
in Section 4.6.3 and in Reference 17.

3.11.2 Composite beam – partial shear connection, and

transverse reinforcement

The minimum degree of shear connection is found next, as it may be
sufficient. The condition for stud connectors to be treated as ductile when
the span is 8.6 m is given by Fig. 3.19 as

n/nf ≥ 0.51

To provide an example of the use of the equilibrium method, the bending
resistance is now calculated using n = 0.51nf. The notation of Fig. 3.15
is used. The force Nc is 0.51 times the full-interaction value. With
Nc,f = 2555 kN from Section 3.11.1,
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Nc = 0.51 × 2555 = 1303 kN (3.114)

Since, for Nc,f,

x = 80 mm xc = 0.51 × 80 = 40.8 mm

With reference to the stress blocks in Fig. 3.15(c), with Na,pl = 2698 kN,
(Equation 3.111),

Nac = 2698 − 1303 = 1395 kN

Assuming that there is a neutral axis within the steel top flange, the
depth of flange in compression is

1395/(0.178 × 2 × 355) = 11.0 mm

This is less than tf (12.8 mm) so the assumption is correct, and the stress
blocks are as shown in Fig. 3.29(b). Taking moments about the top sur-
face of the slab,

Mpl,Rd = 2698 × 0.353 − 1303 × 0.020 − 1395 × 0.156

= 709 kN m (3.115)

which exceeds MEd (563 kN m).
The interpolation method gives Mpl,Rd = 630 kN m with n/nf = 0.51, so

the equilibrium method is significantly less conservative. For this example,
n/nf = 0.51 will be used.

Number and spacing of shear connectors
It is assumed that 19-mm stud connectors will be used, 125 mm long. The
length after welding is about 5 mm less, so the height of the studs is taken
as 120 mm. The design shear resistance PRd is given by Equation 3.1 as
60.2 kN per stud.

For the sheeting used here, the width b0 (Fig. 2.14) is 162 mm, from
Fig. 3.9, and the other dimensions that influence the reduction factor kt for
the resistance of studs in ribs are:

hp = 70 mm h = 120 mm

So from Equation 2.17,

kt = (0.7/ nr )(162/70)[(120/70) − 1] = 1.16 (nr = 1)

= 0.82 (nr ≥ 2)
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For 0.9-mm sheeting, and 19-mm studs welded through the sheeting, EN
1994-1-1 gives the following upper limits for kt, which govern here:

for nr = 1, kt = 0.85, so PRd = 51.2 kN
for nr = 2, kt = 0.70, so PRd = 42.1 kN

From Equation 3.114 the number of single studs needed in each half span
is

n = Nc/PRd = 1303/51.2 = 25.4, say 26

For the detailing shown in Fig. 3.30, the lateral spacing of the two studs is
118 mm, or 6.2d. This exceeds the minimum given in EN 1994-1-1, which
is 4d. If the separation is large, Equation 2.17 should obviously be used
with nr = 1, assuming that there is no interaction between the local stresses
around the two studs, and giving kt = 0.85. If it is small (e.g., 4d ), then nr

is presumably taken as 2, so kt = 0.7; and if there are two studs side-by-
side on each side of the steel web, nr = 4.

No upper limit for kt is given in EN 1994-1-1 for kt = 4, nor is ‘large’
separation defined. In a situation not covered by the code being used, as
here, one has to use judgement or refer to research. Here, the separation
exceeds 4d, and kt = 0.7 will be used for nr ≥ 2.

There is one trough every 300 mm, or 16 in a half span, so it is assumed
that 32 studs are provided, one in each rib on each side of the web. In
Section 3.4.3, each stud was used to provide an anchorage force of 4.4 kN
for the sheeting, perpendicular to the direction in which resistance is now
required. The corrected values for PRd are as follows:

for nr = 1, P2
Rd = 51.22 − 4.42 so PRd ===== 51.0 kN

for nr = 2, P2
Rd = 42.12 − 4.42 so PRd ===== 42.0 kN (3.116)

For 32 studs, the resistance is

NRd = 32 × 42 = 1344 kN

This is sufficient, so use 1 stud in each trough on each side of the web.

Transverse reinforcement
Rules for the use of profiled sheeting as transverse reinforcement are
explained in Section 3.6.3.2. The cross-section in Fig. 3.30 illustrates
compliance with the rule that the sheeting should extend at least 2ddo

beyond the centre of a stud welded through it, where ddo is an estimate
of the diameter of the stud weld, taken as 1.1d, or 20.9 mm here.
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This gives the 42-mm end distance shown. The 30-mm dimension just
satisfies the relevant rule shown in Fig. 3.24. The clear gap of 34 mm
between the ends of the sheeting may be reduced by tolerances, but should
not fall below the minimum needed for satisfactory placing of concrete
(about 25 mm).

The design longitudinal shear on a plane such as D–D in Fig. 3.30 is
based on the resistance of the studs, not on the design shear flow. For
PRd = 42 kN, the total longitudinal shear resistance is

vL = 2 × 42/0.3 = 280 kN/m

The design shear for reinforcement of plane D–D is just under half this,
so vL,Rd must be at least 140 kN/m.

The contribution from the sheeting is calculated next. Using Equations
3.79 and 3.80 with a = 42 mm,

kϕ = 1 + 42/20.9 = 3.0 t = 0.9 mm fyp = 350 N/mm2 and γAp = 1.0

so Ppb,Rd = 3.0 × 20.9 × 0.9 × 0.350 = 19.7 kN

For the studs at 0.3 m spacing, Ppb,Rd/s = 65.8 kN/m. This must not exceed
the tensile strength of the sheeting, which is about 412 kN/m.

Equation 3.81 is now used to find the required area of transverse
reinforcement:

140 = 0.435Ae + 65.8 whence Ae = 171 mm2/m (3.117)

Figure 3.30 Detail of shear connection
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For control of cracking of the slab above the beam, it was found (Equa-
tion 3.47) that 380 mm2/m is required, and this governs. The detail pro-
posed in Section 3.4.6 (8-mm bars at 150 mm spacing) plus the A193
mesh gives 529 mm2/m. The 8-mm bars shown adjacent to the stud con-
nector in Fig. 3.12(a) are only needed near mid-span of the slab and
could, if convenient, be bent up as alternate top bars above the beams.

3.11.3 Composite beam – deflection and vibration

3.11.3.1 Deflection

The characteristic load combination for the beam is:

permanent (steel beam) g1 = 10.2 + 2.2 = 12.4 kN/m

permanent (composite beam) g2 = 5.2 kN/m (3.118)

variable (composite beam) q = 24.8 kN/m

For a simply-supported span of 8.6 m with distributed load w kN/m and
second moment of area I mm4, the mid-span deflection is

δ    
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    = =
× ×
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= ×
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4 4 9
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w

I

w

I
mm (3.119)

For the steel beam, I = 215 × 106 mm4, so its deflection during construc-
tion is

δa = 339 × 12.4/215 = 19.5 mm (span/441)

From Section 3.2, the short-term elastic modulus for the concrete is
20.7 kN/mm2, so for variable loading the modular ratio is

n0 = 210/20.7 = 10.1

The modular ratio for permanent load is around 3n0 but, for simplicity,
creep will be allowed for by using n = 2n0 for all loading.

The second moment of area of the composite section is calculated using
Equations 3.85 to 3.89. From Fig. 3.29, relevant values are:

Aa = 7600 mm2 zg = 353 mm beff = 2250 mm Ia = 215 × 106 mm4

The minimum thickness of the slab is 80 mm, but for over 90% of its area
it is at least 95 mm thick (Fig. 3.9). For deflection and vibration, mean
values of I are appropriate, so hc is here taken as 95 mm.

5
4
6
4
7
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Assuming that the neutral-axis depth exceeds hc, Equation 3.88 gives x,
now written as xc, as

xc = 176 mm (3.120)

From Equation 3.89,

10−6I = 215 + 7600(0.353 − 0.176)2 +
2250 95

20 2

0 095

12
0 128

2
2

.

.
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×
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⎞
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= 215 + 240 + 181 = 636 mm4 (3.121)

(Numerical values are of more convenient size in this calculation if 10−6I
is calculated, rather than I. With other values in N and mm units, bending
moments are then conveniently in kN m as required, rather than N mm
units.)

The deflection of the composite beam due to permanent load is

δg = 339 × 5.2/636 = 2.8 mm

and its deflection due to variable load is

δq = 339 × 24.8/636 = 13.2 mm (3.122)

The total deflection is thus 19.5 + 2.8 + 13.2 = 35.5 mm.
No account has yet been taken of any increase in deflection due to slip.

From Section 3.7.1, EN 1994-1-1 permits it to be neglected where n/nf >
0.5, which is just satisfied by the ratio 0.51 used here. However, it is
instructive to calculate the maximum shear force per connector given by
elastic theory, using the characteristic load applied to the composite beam.
This is 5.2 + 24.8 = 30 kN/m, so the maximum vertical shear is

VEk = 4.5 × 30 = 135 kN

Using the well-known result:

vL = VEk(Ac/n)(x − hc/2)/I (i.e., v = VAK/I)

with

Ac = 2250 × 95 mm2 n = 20.2 hc = 95 mm

and x and I from Equations 3.120 and 3.121 gives the longitudinal shear
flow at a support:
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vL = 286 kN/m

The shear per connector is

PEk = 286 × 0.3/2 = 43 kN

From Equation 3.116, 80% of PRk is:

0.8PRk = 0.8 × 1.25 × 42.1 = 42.1 kN

since γV = 1.25, so the alternative condition given in Section 3.7.1 is not
quite satisfied.

The reader may inquire why the shear per stud for a loading of 30
kN/m, 43 kN, is almost the same as the resistance provided, 42 kN per stud
(Equation 3.116), for an ultimate loading of 60.9 kN/m. The reason is that
these calculations for a serviceability limit state do not allow any redistri-
bution of force per stud along a half span. This doubles the maximum
force per stud, in this case. The elastic model with full interaction and the
ultimate-strength model with partial interaction happen to give similar
compressive forces in the slab, for a given bending moment. The force
per stud is then unaltered when the bending moment is halved.

This beam is evidently close to the borderline for deflection due to slip
that underlies the rules in EN 1994-1-1. The effect of slip on deflection is
now estimated, using Equation 3.94 with k = 0.3, n/nf = η = 0.51, and
δc = 16.0 mm, as found above.

A load of 12.4 kN/m caused the steel beam to deflect 19.5 mm, so δa,
for the total load on the composite beam, is

δa = 19.5(5.2 + 24.8)/12.4 = 47.2 mm

From Equation 3.94,

δ = 16[1 + 0.3 × 0.49(47.2/16 − 1)] = 20.6 mm

Slip thus increases a deflection of 16 mm to over 20 mm, and the total
deflection to 40 mm (span/215).

This exceeds the limit recommended in Section 3.7.2 (span/300), so the
steel beam should either be propped during construction, or be cambered
by an amount at least equivalent to the deflection due to permanent load,
which is

δg = 19.5 + 2.8 = 22 mm
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The use of 25-mm camber reduces the subsequent deflection to about
15 mm, or span/573, which should be satisfactory in most circumstances.

In practice, deflections would be slightly reduced by the stiffness of the
concrete in the bottom 55 mm of the slab, and by the stiffness of the
beam-to-column connections.

The use of camber was included here to illustrate the method. In prac-
tice, a better solution could be to use semi-rigid beam-to-column joints.

Maximum bending stress in the steel section
It is clear from the preceding results that yielding of the steel member
under service loading is unlikely, so no allowance is needed for the effect
of yielding on deflection. The maximum bending stress in the steel occurs
in the bottom fibre at mid-span. It is now calculated, to illustrate the
method.

Separate calculations are needed for the loadings given in Equations
3.118. For distributed load w per unit length, the stress is

σ = My/I = wL2 y/(8I ) = 9.25wy/I

where y is the distance of the bottom fibre below the neutral axis. From
values given above, the stresses are:

for g1: σ = 9.25 × 12.4 × 203/215 = 108 N/mm2

for g2 and q: σ = 9.25 × 30 (556 − 178)/636 = 165 N/mm2

The total stress is 273 N/mm2, well below the yield stress of 355 N/mm2.
Other bending stresses can be calculated in the same way.

3.11.3.2 Vibration

The method given in Section 3.9 is used. It is assumed that the source of
vibration is intermittent pedestrian traffic. The target value for the re-
sponse factor R is 4, if the traffic is continuous, increasing to 8, if there is
about one disturbance per minute.

Fundamental natural frequency
From Equations 3.118, the permanent load per beam is 17.6 kN/m. The
total imposed (variable) load is 24.8 kN/m, and only one-tenth of this will
be included, because vibration is likely to be worse where there are few
partitions and little imposed load. The design load is thus 20.1 kN/m for
beams at 4 m centres, giving a vibrating mass:

m = 20 100/(4 × 9.81) = 512 kg/m2
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For vibration, the short-term modular ratio, n0 = 10.1, is used, and I is
increased by 10% (Section 3.9.1). Values corresponding to those from
Equations 3.120 and 3.121 are, from Table 4.5:

x = 129 mm 10−6Ib = 1.1 × 751 = 826 mm4

For the slab, the ‘uncracked’ value found in Section 3.4.5 is too low,
because n = 20.2 was used. Similar calculations for n0 = 10.1, with a 10%
increase, give

10−6Is = 20.5 mm4/m

From Equation 3.99 with s = 4 m, L = 8.6 m,
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From Equation 3.100,
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From Equation 3.98,

f0 = 5.9 Hz

This is below 7 Hz, so no check need be made for impulsive loads.

Response of composite floor
Following Section 3.9.2, Cf = 0.2 from Fig. 3.26. From Equation 3.103,
the vibrating width of slab is

S =
×

×
⎛
⎝

⎞
⎠ = .

  .

  .
  .  

/

4 5
210 000 20 5

512 5 9
17 7

2

1 4

m

or the actual dimension of the floor normal to the span of the beams, if
less. For a small value of S, the natural frequency would be higher than f0

as calculated here, so it is assumed that the building considered is more
than 17.7 m long, and this value is used.

With the critical damping ratio ζ = 0.03, Equation 3.106 gives the
response factor:

R = (68 000 × 0.2)/(512 × 17.7 × 8.6 × 0.03) = 5.8



120 Composite Structures of Steel and Concrete

This value exceeds 4 but is well below 8. The conclusion is that con-
tinuous pedestrian traffic might result in adverse comment, but the level
of movement typical of an open-plan office would not do so.

3.11.4 Composite beam – fire design

The method used below is explained in Sections 3.3.7 and 3.10.
From Equations 3.118 the characteristic loads per unit length of beam

are:

gk = 17.6 kN/m qk = 24.8 kN/m so qk/gk = 1.41

From Equation 3.31,

ηfi

  .   .

.   .   .
  .=

+ ×
+ ×

=
1 0 7 1 41

1 35 1 5 1 41
0 57

The beam will be designed to have a bending resistance at mid-span in
fire resistance class R60. The design bending moment at mid-span for cold
design is 563 kN m, from Equation 3.108 and the resistance is 709 kN m,
from Equation 3.115. The resistance ratio (Equation 3.32) is

ηfi,t = 0.57(563/709) = 0.45

Fire protection is provided by encasing the web in normal-density con-
crete, as shown in Fig. 3.31, and by filling the voids above the steel top

Figure 3.31 Detail of concrete-encased web
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flange with fire-resistant material. This satisfies conditions (b) and (c) of
Section 3.10; and all of conditions (a) are satisfied.

For the steel beam, ha = 406 mm and bf = 178 mm. This plots as point
H in Fig. 3.28(a). As ηfi,t < 0.5, these dimensions qualify, and no addi-
tional reinforcement As′ is required.

Web encasement for fire resistance is specified in EN 1994-1-2. Stir-
rups should be at least 6 mm in diameter, with cover not exceeding 35 mm,
at spacing not exceeding 250 mm, with longitudinal bars at least 8 mm in
diameter at their corners. The concrete should be connected to the steel
web by one or more of:

• welding of the stirrups,
• bars passing through holes in the web,
• stud connectors.

The encasement does not increase the resistance of the composite sec-
tion to sagging bending, because all of the concrete is in longitudinal
tension and the additional reinforcement is neglected. The width of cracks
in the concrete should be controlled, and Eurocode 4 gives rules for this
purpose. Where the design crack width is 0.5 mm, it requires that the
spacing of longitudinal bars should not exceed 250 mm.

A possible design for the web encasement, in accordance with these
rules, is shown in Fig. 3.31. The 6-mm stirrups are either welded to the
web or passed through holes in it.

In a fire, the web encasement preserves the resistance of the beam to
vertical shear, and the slab is thick enough to protect the top transverse
reinforcement and the shear connection.
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Chapter 4

Continuous beams and slabs,
and beams in frames

4.1 Introduction

A continuous beam in a building may be interrupted by its supporting
internal columns; and these members are usually part of a framed structure.
The type of beam-to-column joints used influences the global analysis of
all the members in their vicinity. The terminology and definitions for
joints used in EN 1994-1-1 follow those given in EN 1993-1-8, Design of
joints [10], which are now summarised.

• Connection: location at which two members are interconnected, and
assembly of connection elements and – in the case of a major axis
joint – the load introduction into the column web panel.

• Joint: assembly of basic components that enables members to be
connected together in such a way that the relevant internal forces and
moments can be transferred between them.

Thus, the joint in Fig. 5.2(b), between a beam and an interior column,
consists of two connections. Each connection consists of a beam end-
plate, a column flange and six bolts, plus a share of the column web panel.
This panel is part of both connections.

The column is part of a frame in the plane of the diagram. It could also
be part of another frame, the beams of which would be attached to its web
(e.g., as in Fig. 5.2(c)). This ‘joint’ then has two more ‘connections’; but
in practice this four-connection assembly is designed and detailed as two
joints, one in each frame, without interaction between the two designs.

The term ‘joint’ is sometimes used less precisely, both here and in the
Eurocodes, where the context is obvious.

Beam-to-column joints are classified both by stiffness and by strength.
The categories are:

• for stiffness: rigid, semi-rigid, and nominally pinned;
• for strength: full-strength, partial-strength, and nominally pinned.
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Table 4.1 Global analysis, and types of joint and joint model

Method of Classification of joint

global analysis

Elastic
Rigid-plastic
Elastic-plastic

Type of joint model

Semi-rigid
Partial-strength
Semi-rigid and partial-strength
Semi-rigid and full-strength
Rigid and partial-strength

Semi-continuous

Nominally pinned
Nominally pinned
Nominally pinned

Simple

Rigid
Full-strength
Rigid and
full-strength

Continuous

The links between appropriate methods of global analysis, these cat-
egories, and the three types of joint model are defined in EN 1993-1-8, as
shown in Table 4.1.

The most widely-used joint models in current practice are ‘continuous’
for bridges, and ‘simple’, for buildings. The scope of this book is limited
to the types of joint used in the examples, which are either ‘nominally
pinned’ or ‘rigid and full strength’, and to global analyses that are either
elastic or rigid-plastic.

A summary of the relevant requirements for these joints, from EN
1993-1-8, is given in Table 4.2.

The use of nominally-pinned joints simplifies analysis of the structure
because, at the assumed location of the pin, there is no bending moment.
Action effects in beams are then independent of the properties of the
columns that support them. Rigid joints transmit bending moments as

Table 4.2 Properties of beam-to-column joints in composite frames

Type of joint Stiffness Strength

Nominally pinned

Rigid and full strength

Capable of transmitting the
internal forces, without
developing significant moments
that might adversely affect
members of the structure

Capable of accepting the resulting
rotations under the design loads

Has stiffness such that its
deformation has no significant
influence on the distribution of
internal forces and moments in
the structure, nor on its overall
deformation

Capable of transmitting the forces
and moments calculated in design

As given for Stiffness

Has a design resistance not
less than the resistances of
the members connected

Has rigidity such that, under
the design loads, the
rotations of the necessary
plastic hinges do not exceed
their rotation capacities



124 Composite Structures of Steel and Concrete

well as shear forces, and the bending moments depend on the relative
stiffnesses of the members joined.

If the columns of the framed structure shown in Fig. 3.1 were not
encased in concrete, and the beam-to-column joints were nominal pins,
the columns would be designed to EN 1993. However, the frame still
satisfies the definition of ‘composite frame’ in EN 1994-1-1:

‘composite frame: a framed structure in which some or all of the ele-
ments are composite members and most of the remainder are structural
steel members’.

The columns shown in Fig. 3.1 are composite, and some of the top
reinforcement in each floor slab may be continued into the columns, to
control cracking above the ends of the beams.

In EN 1994-1-1, the definition of ‘composite joint’ is:

‘composite joint: a joint between a composite member and another
composite, steel, or reinforced concrete member, in which reinforce-
ment is taken into account in design for the resistance and the stiff-
ness of the joint’.

It follows that if the top reinforcement is ‘taken into account in design’,
the joint is composite. It is permitted, however, to ignore light crack-
control reinforcement in design for ultimate limit states, and then to
design the structural steel components of the joint to EN 1993.

The example used in Chapter 5 is the two-bay nine-storey frame
shown in Fig. 5.1. If nominally-pinned joints are used, the member ABC
is designed as a beam with two simply-supported spans. If rigid joints are
used at B, normally it is the column, not the beam, that is continuous
through the joints at B, and the member ABC consists of two beams in a
frame. The bending moments are found from analysis of the frame, or of
a local region of it.

If, however, the line of columns B, E, etc., is replaced by a wall, then
member ABC can be continuous at B, with no transfer of bending moment
to the supporting wall. If nominally-pinned joints are used at A and C, the
model for analysis is a two-span continuous beam, as in the example in
Section 4.6, rather than beams in a frame. Such a beam does not contribute
to the resistance of the frame to horizontal loading; for example, from
wind. In the example in Chapter 5, this resistance is provided by reinforced
concrete walls at each end of the building, to which horizontal loads are
transferred by the floor slabs.

The rest of Chapter 4 refers to ‘continuous beams’. In general, it applies
also to ‘beams in frames’. For those, the difference lies in the location and
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design of the joints, and in the discontinuity in the bending-moment
diagram at a supporting internal column, caused by the flexural stiffness
of the column.

For a given floor slab and design load per unit length of beam, the
advantages of continuous beams over simple spans are:

• higher span/depth ratios can be used, for given limits to deflections;
• cracking of the top surface of a floor slab near internal columns can be

controlled, so that the use of brittle finishes (e.g., terrazzo) is feasible;
• the floor structure has a higher fundamental frequency of vibration,

and so is less susceptible to vibration caused by movements of people;
• the structure is more robust (e.g., in resisting the effects of fire or

explosion).

The principal disadvantage is that design is more complex. Actions
on one span cause action effects in adjacent spans. Even where the steel
section is uniform, the stiffness and bending resistance of a composite
beam vary along its length, because of cracking of concrete, changes in
effective width, and variation in longitudinal reinforcement in the con-
crete flange.

It is not possible to predict accurately the stresses or deflections in a
continuous beam, for a given set of actions. Apart from the variation over
time caused by the shrinkage and creep of concrete, there are the effects
of cracking of concrete. In reinforced concrete beams, these occur at cross-
sections of both sagging and hogging bending, and so have little influence
on distributions of bending moment. In composite beams, significant
tension in concrete occurs only in hogging regions. It is influenced by
the sequence of construction of the slab, the method of propping used
(if any), and by effects of temperature, shrinkage and longitudinal slip.

The flexural stiffness (EI ) of a fully cracked composite section can be
as low as a quarter of the ‘uncracked’ value, so a wide variation in flexural
stiffness can occur along a continuous beam of uniform section. This
leads to uncertainty in the distribution of longitudinal moments, and hence
in the amount of cracking to be expected. The response to a particular set
of actions also depends on whether it precedes or follows another set of
actions that causes cracking in a different part of the beam.

For these reasons, and also for economy, design is based as far as
possible on predictions of ultimate strength (which can be checked by
testing) rather than on analyses based on elastic theory. Methods have
been developed from simplified models of behaviour. The limits set to
the scope of some models may seem arbitrary, as they correspond to the
range of available research data, rather than to known limitations of the
model.
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Almost the whole of Chapter 3, on simply-supported beams and slabs,
applies equally to the sagging moment regions of continuous members.
The properties of hogging moment regions of beams are treated in Section
4.2, which applies also to cantilevers. Then follows the global analysis of
continuous beams and the calculations of stresses and deflections.

Both rolled steel I- or H-sections and small plate or box girders are con-
sidered, with or without web encasement and composite slabs. It is always
assumed that the concrete slab is above the steel member, because the use
of slabs below steel beams with which they are composite is rare in build-
ings, though it occurs in bridges. The depth of a beam can be reduced by
partial embedment of the steel section within the concrete slab [37].

The use of precast or prestressed concrete floor slabs in composite
frames provides an alternative to composite slabs [38]. It is outside the
scope of this book.

4.2 Hogging moment regions of continuous

composite beams

4.2.1 Classification of sections, and resistance to bending

4.2.1.1 General

Section 3.5.1, on effective cross-sections of beams, is applicable, except
that the effective width of the concrete flange is usually less at an internal
support than at mid-span. This width defines the region of the slab where
longitudinal reinforcement may be assumed to contribute to the hogging
moment of resistance of the beam. The plastic neutral axis always lies
below the slab, so the only contribution from concrete in compression is
from the web encasement, if any.

In EN 1994-1-1, the effective width in hogging bending is as explained
in Section 3.5.1, except that the effective span Le is the approximate
length of the hogging moment region, which can be taken as one-quarter
of each span. So at a support between spans of length L1 and L2, Equation
3.55 for effective width of a T-beam with pairs of stud connectors at
lateral spacing b0 becomes

beff = [(L1 + L2)/4]/4 + b0 = (L1 + L2)/16 + b0 (4.1)

provided that at least beff/2 is present on each side of the web. There is a
different rule for cantilevers.

The rules for the classification of steel elements in compression
(Section 3.5.2) strongly influence the design of hogging moment regions.
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The proportions of rolled steel I-sections are so chosen that when they act
in bending, most webs are in Class 1 or 2. But in a composite section,
addition of longitudinal reinforcement in the slab rapidly increases the
depth of steel web in compression, αd in Fig. 3.14. This figure shows that
when d/t > 60, an increase in α of only 0.05 can move a web from Class
1 to Class 3, which can reduce the design moment of resistance of the
section by up to 30%. This anomaly has led to a rule [3, 19] that allows a
web in Class 3 to be replaced (in design) by an ‘effective’ web in Class 2.
This ‘hole-in-the-web’ method is explained later. It does not apply to
flanges, which can usually be designed to be in Class 1 or 2, even where
plate girders are used.

Design of hogging moment regions is based on the use of full shear
connection (Section 4.2.3).

4.2.1.2 Plastic moment of resistance

A cross-section of a composite beam in hogging bending is shown in
Fig. 4.1(a). The numerical values are for the cross-section that is used in
the following worked example and the diagram is to scale for these values
(except for beff). The steel bottom flange is in compression, and its class
is easily found, as explained in Section 3.5.2. To classify the web, the
distance xa of the plastic neutral axis above G, the centre of area of the
steel section, must first be found.

Let As be the effective area of longitudinal reinforcement within the
effective width beff of the slab. Welded mesh is normally excluded, because

Figure 4.1 Cross-section and stress distributions for composite
beam in hogging bending
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it may not be sufficiently ductile to ensure that it will not fracture before
the design ultimate load for the beam is reached. The design tensile force
in this reinforcement is

Ns = As fsk/γS = As fyd (4.2)

where fsk is its characteristic yield strength.
If there were no tensile reinforcement, the bending resistance would be

that of the steel section,

Mpl,a,Rd = Wa fyd = Naza (4.3)

where Wa is the plastic section modulus and fyd is the design yield strength.
For rolled sections it is not necessary to calculate the forces Na in the
stress blocks of depth ha/2, nor the lever arm za, because values of Wa are
tabulated; but for plate girders Na and za have to be calculated.

The simplest way of allowing for the force in the reinforcement is
to assume that the stress in a depth xa of web changes from tension to
compression, where xa is given by

xatw (2fyd) = Ns (4.4)

provided that (as is usual)

xa ≤ ha/2 − tf

The depth of web in compression is given by

αd = d/2 + xa (4.5)

Knowledge of α , d /tw and fy enables the web to be classified, as shown in
Fig. 3.14 for fy = 355 N/mm2. If, by this method, a web is found to be in
Class 4, the calculation should be repeated using the elastic neutral axis,
as the curve that separates Class 3 from Class 4 is based on the elastic
behaviour of sections. This is why, in Fig. 3.14, the ratio ψ is used, rather
than α .

Concrete-encased webs in Class 3 are treated as if in Class 2
(Table 3.1), because the encasement helps to stabilise the web.

The lever arm z for the two forces Ns in Fig. 4.1(b) is given by

z = ha/2 + hs − xa /2
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where hs is the height of the reinforcement above the interface. If both the
compression flange and the web are in Class 1 or 2, this is the appropriate
model, and the moment of resistance is

MRd = Mpl,a,Rd + Nsz (4.6)

If the flange is in Class 1 or 2 and the (uncased) web is in Class 3, it is
still possible to use plastic section analysis, by neglecting a region in the
centre of the compressed part of the web, that is assumed to be ineffective
because of buckling. The calculations are more complex, as explained
elsewhere [17], because this assumption changes the position of the plastic
neutral axis, and in plate girders may even move it into the steel top flange.
This ‘hole-in-the-web’ method is not available where the compression
flange is in Class 3 or 4.

Example: cross-section in hogging bending
Figure 4.1(a) shows a cross-section in a region of hogging moment where
the steel section is 406 × 178 UB 60 with fyd = 355 N/mm2 and dimensions
as shown. Its plastic section modulus, from tables, is Wa = 1.194 × 106 mm3.
At an internal support between two spans each of 9.0 m, the longitudinal
reinforcement is T12 bars, with fsk = 500 N/mm2, at 200 mm spacing. The
thickness of slab above the profiled sheeting is 80 mm, so the reinforce-
ment ratio is 36π/(200 × 80) = 0.71%.

The top cover is 20 mm to 8-mm transverse bars (Fig. 3.12), so these
bars are 20 + 8 + 12/2 = 34 mm below the top of the slab, increased to
35 mm to allow for the ribs on both bars, giving

hs = 150 − 35 = 115 mm

What are the class of the section and its design resistance to hogging
moments?

From Equation 4.1, assuming that b0 = 0.1 m,

beff = (L1 + L2)/16 + b0 = 18/16 + 0.1 = 1.225 m

so that six T12 bars are effective, and As = 679 mm2. It is assumed
initially that the web is in Class 1 or 2, so that the rectangular stress
blocks shown in Fig. 4.1(b) are relevant. The bottom (compression) flange
has c/t = 5.9 (Section 3.11.1) and so is in Class 1.

From Equation 4.2 with γS = 1.15,

Ns = As fsk/γS = 679 × 0.500/1.15 = 295 kN
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From Equation 4.4,

xa = Ns/(2tw fyd) = 295/(15.6 × 0.355) = 53 mm

From Equation 4.5, the ratio α is

α = 0.5 + xa/d = 0.5 + 53/360 = 0.647

The ratio d/t is 46.1. The maximum ratio in EN 1993-1-1 for a Class 2
web is 456ε/(13α − 1) where ε = (235/355)1/2 = 0.814, so the limit is

d/t ≤ 456 × 0.814/(13 × 0.647 − 1) = 50.1

and the web is within Class 2. This can also be seen from Fig. 3.14.
From Fig. 4.1(b), the lever arm for the forces Ns is

z = ha/2 + hs − xa/2 = 203 + 115 − 27 = 291 mm

For the steel section,

Mpl,a,Rd = Wa fyd = 1.194 × 355 = 424 kN m

so from Equation 4.6

Mpl,Rd = 424 + 295 × 0.291 = 510 kN m

4.2.1.3 Elastic moment of resistance

In the preceding calculation, it was possible to neglect the influence of the
method of construction of the beam, and the effects of creep, shrinkage
and temperature, because these are reduced by inelastic behaviour of the
steel, and become negligible before the plastic moment of resistance is
reached.

Where elastic analysis is used, creep is allowed for in the choice of the
modular ratio n (=Ea/Ec,eff), and so has no influence on the properties of
all-steel cross-sections. In buildings the effects of shrinkage and tempera-
ture on moments of resistance can usually be neglected, but the method of
construction should be allowed for. Here, we assume that, at the section
considered, the loading causes hogging bending moments Ma,Ed in the
steel member alone, and Mc,Ed in the composite member. The small differ-
ence (≈ 3%) between the elastic moduli for reinforcement and structural
steel is usually neglected.
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The height xe of the elastic neutral axis of the composite section
(Fig. 4.1(c)) above that of the steel section is found by taking first
moments of area about the latter axis:

xe(Aa + As) = As(ha/2 + hs) (4.7)

and the second moment of area of the composite section is

I = Ia + Aaxe
2 + As(ha/2 + hs − xe)

2  (4.8)

The yield moment is almost always governed by the total stress in the
steel bottom flange (at level 4 in Fig. 3.25(a)). The compressive stress due
to the moment Ma,Ed is:

σ4,a = Ma,Ed(ha/2)/Ia (4.9)

The remaining stress available is fyd − σ4,a, so the yield moment is:

Ma,Ed + Mc,Rd = Ma,Ed + (   )

( /   )
,f I

h x
yd a

a e

−
+
σ4

2
 (4.10)

The design condition is

Mc,Ed ≤ Mc,Rd (4.11)

The bending moment Ma,Ed causes no stress in the slab reinforcement.
In propped construction, for which Ma,Ed ≈ 0, the tensile stress σs in these
bars may govern design. It is

σs = Mc,Ed(ha/2 + hs − xe)/I (4.12)

and must not exceed fsd.

Example: elastic resistance to bending
Let us now assume that the composite section shown in Fig. 4.1(a) is in
Class 3, and that, at the ultimate limit state, a hogging moment of 163 kN m
acts on the steel section alone, due to the use of unpropped construction.

What is the design resistance of the section to hogging moments?
From Equation 4.7 the position of the elastic neutral axis of the com-

posite section, neglecting concrete in tension, is given by

xe = 679 203 115

7600 679

(   )+
+

= 26 mm
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From Equation 4.8, the second moment of area is

10−6I = 215 + 7600 × 0.0262 + 679(0.203 + 0.115 − 0.026)2

= 278 mm4

From tables, the elastic section modulus for the steel section is 1.058 ×
106 mm3, so the moment Ma,Ed causes a compressive stress at level 4 (the
bottom flange):

σ4,a = 163/1.058 = 154 N/mm2

The design yield strength is 355 N/mm2, so this leaves 201 N/mm2 for
resistance to the load applied to the composite member. The distance of
the bottom fibre from the elastic neutral axis is ha/2 + xe = 203 + 26 =
229 mm, so the remaining resistance is

Mc,Rd = σI/y = 201 × 278/229 = 244 kN m

It is evident from the stress distributions in Fig. 4.1(c) that yield occurs
first in the bottom fibre. The design resistance is

Mel,Rd = Ma,Ed + Mc,Rd = 163 + 244 = 407 kN m

From the preceding worked example, the shape factor is

S = Mpl,Rd/Mel,Rd = 510/407 = 1.25

4.2.2 Vertical shear, and moment-shear interaction

As explained in Section 3.5.4, vertical shear is assumed to be resisted by
the web of the steel section (Equations 3.69 and 3.70). The action effect
VEd must not exceed the plastic shear resistance Vpl,Rd (or some lower
value if shear buckling, not considered here, can occur).

The design rule of EN 1994-1-1 for resistance in combined bending
(whether hogging or sagging) and shear is shown in Fig. 4.2. It is based
on evidence from tests that there is no reduction in bending resistance
until VEd > 0.5 Vpl,Rd (point A in the figure), and the assumption that the
reduction at higher shears follows the parabolic curve AB. At point B the
remaining bending resistance Mf,Rd is that contributed by the flanges of
the composite section, including the reinforcement in the slab. Along
curve AB, the reduced bending resistance is given by

Mv,Rd = Mf,Rd + (MRd − Mf,Rd) 1
2

1

2

    − −
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V

V
Ed

pl,Rd

≤ Mb,Rd (4.13)
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Figure 4.2 Resistance to combined bending and vertical shear

where MRd is the resistance when VEd = 0, and Mb,Rd is the resistance to
lateral bucking (Section 4.2.4).

When calculating Mf,Rd, it is usually accurate enough to ignore the
reinforcement in the slab. When it is included, or where the steel flanges
are of unequal size, only the weaker of the two flanges will be at its
design yield stress.

4.2.3 Longitudinal shear

Section 3.6 on longitudinal shear is applicable to continuous beams and
cantilevers, as well as to simply-supported spans. Some additional com-
ments, relevant to continuous beams, are now given.

For a typical span with uniformly distributed loading, there are only
three critical cross-sections: at the supports and at the section of max-
imum sagging moment. Points of contraflexure are not treated as critical
sections because their location is different for each load case; a complica-
tion best avoided. From Equation 3.73, the number of shear connectors
required for a typical critical length is

n = (Nc + Nt )/PRd (4.14)

where Nt is the design tensile force in the reinforcement that is assumed to
contribute to the hogging moment of resistance, and Nc is the compressive
force required in the slab at mid-span, which may be less than the full-
interaction value.

Full shear connection is assumed in regions of hogging moment, when
n is calculated; but as the connectors may be spaced uniformly between a
support and the critical section at mid-span, the number provided in the
hogging region may not correspond to the force Nt.
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There are several reasons for the apparently conservative requirement
of EN 1994-1-1 that full shear connection be provided in hogging regions:

(1) To compensate for some simplifications that may be unconservative:
• neglect of the tensile strength of concrete,
• neglect of strain-hardening of reinforcement,
• neglect of shear due to reinforcement (e.g., welded mesh) provided

for crack-width control that is neglected at ultimate limit states.
(2) Because the design resistance of connectors, PRd, is assumed not to

depend on whether the surrounding concrete is in compression or
tension. There is evidence that this is slightly unconservative for
hogging regions [25], but slip capacity is probably greater, which is
beneficial.

(3) For simplicity in design, including design for lateral buckling
(Section 4.2.4) and for vertical shear with tension-field action [39].

The worked example in Section 4.6 illustrates the situation where the
design resistance to hogging bending is that of the steel section alone, so
that Nt = 0 in Equation 4.14, even though light reinforcement is present.
It would be prudent then to provide shear connection for that reinforce-
ment, as otherwise the uniform spacing of connectors could lead to under-
provision in the sagging region.

Transverse reinforcement
As explained for regions of sagging bending, this reinforcement should be
related to the shear resistance of the connectors provided, even where, for
detailing reasons, their resistance exceeds the design longitudinal shear.

4.2.4 Lateral buckling

Conventional ‘non-distortional’ lateral torsional buckling occurs where
the top flange of a simply-supported steel beam of I section has insuffi-
cient lateral restraint in the mid-span region. Both flanges are assumed to
be restrained laterally at the supports, where the member may be free to
rotate about a vertical axis. The top flange, in compression, is prevented
by the web from buckling vertically, but if the ratio of its breadth bf to
the span L is low, it may buckle laterally as shown in Fig. 4.3(a). The
cross-section rotates about a longitudinal axis, but maintains its shape.

It has to be checked that lateral-torsional buckling does not occur dur-
ing casting of the concrete for an unpropped composite beam; but once
the concrete has hardened, the shear connection prevents buckling of this
type. The relevant design methods, being for non-composite beams, are
outside the scope of this book.
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Figure 4.3 Lateral buckling

Figure 4.4 Typical deformation of steel bottom flange in
distortional lateral buckling

Near internal supports of continuous beams, the compressed bottom
flange of the steel section receives lateral support only through a flexible
web; but the slab does prevent twisting of the steel section as a whole.
The flange can only buckle if the web bends, as shown in Fig. 4.3(b).
This is known as ‘distortional’ lateral buckling, and is the subject of this
Section.

The buckle consists of a single half-wave each side of an internal
support, where lateral restraint is invariably provided. The half-wave
extends over most of the length of the hogging moment region. It is not
sinusoidal, as the point of maximum lateral displacement is within two or
three beam depths of the support, as shown in Fig. 4.4.

It is unlike local flange buckling, where the movement is essentially
vertical, not lateral, and where the cross-section of maximum displacement
is within one flange width of the support. There is some evidence from
tests [40] that local buckling can initiate lateral buckling, but in design
they are considered separately, and in different ways. Local buckling is
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allowed for by the classification system for steel elements in compression
(Section 3.5.2). Lateral buckling is avoided by reducing the design moment
of resistance at the internal support, MRd, to a lower value, Mb,Rd. Local
buckling occurs where the breadth-to-thickness ratio of the flange (bf/tf) is
high; lateral buckling occurs where it is low.

Where, as is usual in buildings, the beam is one of several parallel
members, all attached to the same concrete or composite slab, design is
usually based on the ‘continuous inverted-U-frame’ model. The tendency
for the bottom flange to displace laterally causes bending of the steel web,
and twisting at top-flange level, which is resisted by bending of the slab,
as shown in Fig. 4.3(c).

4.2.4.1 Elastic critical moment

Design to EN 1994-1-1 is based on the elastic critical moment Mcr at
the internal support. The theory for Mcr considers the response of a single
U-frame (ABCD in Fig. 4.3(c)) to equal and opposite horizontal forces F
at bottom-flange level. It leads to the following rather complex expression
for Mcr:

Mcr = (kcC4/L)[(GIat + ksL
2/π2)EaIafz]

1/2 (4.15)

where:

Ea and G are the elastic modulus and shear modulus of steel,
Iat is the St Venant torsion constant for the steel section,
Iafz is bf

3tf /12 for the steel bottom flange, and
L is the span.

Where the steel section is symmetric about both axes, kc is a property of
the composite section (with properties A and Iy) given by

kc =
h I I

h I I A

e
h

s y ay

s ay az a
s

2

/
/   (   )/4 + +

+
(4.16)

where

e =
AI

A z A A
ay

a ac(   )−
(4.17)

and Aa, Iay and Iaz are properties of the structural steel section. (It should
be noted that in Eurocodes, and here, subscripts y and z refer to the major
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Figure 4.5 Inverted-U frame

and minor axes of a steel section, respectively. British practice has been
to use x and y.) The dimensions hs and zc are shown in Fig. 4.5.

The term ks is the stiffness of the U frame, per unit length along the
span, that opposes lateral displacement of the bottom flange. It relates a
disturbing force F per unit length of beam (Fig. 4.3(c)) to the lateral
displacement of a flange, δ, caused by force F, as follows. The rotation at
B that would cause displacement δ is δ/hs; and the bending moment at B
is Fhs. The stiffness ks is moment/rotation, so

ks = Fhs/(δ/hs) hence, δ = Fhs
2/ks

The flexibility 1/ks is the sum of the flexibilities of the slab, denoted 1/k1,
and of the steel web, denoted 1/k2, so that

ks = k1k2/(k1 + k2) (4.18)

The stiffness of the slab is represented by k1. Where the slab is in fact
continuous over the beams, even when it is designed as simply-supported,
the stiffness may be taken as

k1 = 4EaI2/a (4.19)

where a is the spacing of the beams and EaI2 is the ‘cracked’ flexural
stiffness of the slab above the beams.

The stiffness of the web is represented by k2. For an uncased web,

k2 =
E t

h
a w

a

3

s4 1 2(   )− ν
(4.20)
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Figure 4.6 Factor C4 for an end span of a continuous beam

where va is Poisson’s ratio for steel. For an I-section with the web (only)
encased in concrete, as used in the design example here,

k
E t b

h nt b
2

16 1 4
=

+(   / )
a w f

s w f

2

 (4.21)

where n is the modular ratio for long-term effects, and bf is the width of
the steel flange. Equation 4.21 was derived by elastic theory, treating the
concrete on one side of the web (Fig. 3.31) as a strut that restrains upwards
movement of the steel bottom flange below it.

The buckling moment Mcr is strongly influenced by the shape of the
bending-moment distribution for the span considered. This is allowed for
by the factor C4, values for which were obtained by finite-element analyses.
They range from 6.2 for uniform hogging moment, to above 40 where the
region of hogging moment is less than one-tenth of the span, and are
given in Reference 17. Values relevant to the design example are given in
Fig. 4.6.

In Equation 4.15 the term GIat gives the contribution from St Venant
torsion of the section. It is usually small compared with ksL

2/π2 and can
then be neglected with little loss of economy. The expression then becomes

Mcr ≈ (kcC4/π)(ksEaIafz)
1/2 (4.22)

which is independent of the span L. This enables the values of C4 to be
used for all span lengths.

Equation 4.15 for Mcr is valid only where rules for minimum spacing of
connectors, bending stiffness of the composite slab, and proportions of
the steel I-section, are satisfied. A more detailed explanation of this method
and simplified versions of some of its rules are available [17].
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4.2.4.2 Buckling moment

The value Mcr is relevant only to an initially perfect member that remains
elastic. Evidence is limited on the influence of initial imperfections,
residual stresses and yielding of steel on this type of buckling; but the
Perry–Robertson formulation and the strut curves developed for overall
buckling of steel columns provide a suitable basis. The method of EN
1994-1-1 is therefore as follows.

The slenderness lLT is given for a Class 1 or 2 section by

lLT = (MRk/Mcr)
1/2 (4.23)

where MRk is the value that would be obtained for MRd in hogging bending
if the partial factors γA and γS were taken as 1.0. This is because these
factors do not occur in the calculation of Mcr. For a Class 3 section, MRk is
the characteristic yield moment.

The buckling moment is given by

Mb,Rd = χLTMRd (4.24)

where χLT is a function of lLT that in practice is taken from the relevant
strut curve in Eurocode 3: Part 1.1. For rolled steel sections this curve is
given by

χLT = [ΦLT + (Φ2
LT − l2

LT)1/2]−1 but χLT ≤ 1 (4.25)

where

ΦLT = 0.5[1 + αLT(lLT − lLT,0) + βl2
LT]  (4.26)

and αLT is an imperfection factor. For rolled sections, αLT = 0.21 where
ha/bf ≤ 2 and αLT = 0.34 otherwise.

For rolled or equivalent welded steel sections, national annexes may
give values for lLT,0 that are ≤ 0.4, and for β that are ≥ 0.75. EN 1993-1-
1 recommends the use of these limiting values. Their effect is that lateral
buckling does not reduce MRd until lLT > 0.4.

Simplified expression for –lLT

For cross-sections in Class 1 or 2, and with some loss of economy, Equa-
tion 4.23 can be replaced by

lLT
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provided that the steel section is symmetrical about both axes. Further
details and an account of its derivation are available [17].

Exemption from check on buckling
Extensive computations based on lLT = 0.4 have enabled conditions to
be given in EN 1994-1-1 under which no detailed check on resistance
to lateral buckling need be made. The principal condition relates to the
overall depth ha of the steel I-section. For IPE sections of steel with
fy = 355 N/mm2,

ha ≤ 400 mm (4.27)

or, if the web is encased,

ha ≤ 600 mm (4.28)

The European IPE sections generally have thicker webs than British
UB sections, many of which do not qualify for this relaxation. A method
for determining which sections qualify is given elsewhere [17].

4.2.4.3 Use of bracing

Where the buckling resistance of a beam has to be checked, and has been
found using Equation 4.24 to be less than the required resistance, the
possibilities are as follows.

(1) Use a steel section with a less slender web or an encased web.
(2) Provide lateral bracing to compression flanges in the hogging

moment region.

Lateral bracing is commonly used in bridges, but is less convenient in
buildings, where the spacing between adjacent beams is usually wider,
relative to their depth. Some examples of possible types of bracing are given
in a book that covers lateral buckling of haunched composite beams [41].

Little else has been published on the use of bottom-flange bracing for
beams in buildings. It interferes with the provision of services, and is best
avoided.

4.2.5 Cracking of concrete

‘Cracking is normal in reinforced concrete structures subject to bend-
ing, shear, torsion, or tension resulting from either direct loading or
restraint of imposed deformations.’
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This clause from EN 1992-1-1 distinguishes between two types of crack-
ing. These are treated separately in EN 1994-1-1, which follows closely
the rules for crack-width control given in EN 1992. Even where no re-
inforcement is required to resist ‘direct loading’, it is necessary to limit the
widths of cracks that result from tensile strains imposed on the element
considered. The origin of these strains can be ‘extrinsic’ (external to the
member), such as differential settlement of the supports of a continuous
beam, or ‘intrinsic’ (inherent in the member), such as a temperature gradient
or shrinkage of the concrete.

In reinforced concrete, cracking has little influence on tensile forces
caused by direct loading, but it reduces stiffness, and so reduces the tensile
force caused by an imposed deformation. For example, the tensile force in
a restrained member caused by shrinkage of concrete is reduced when the
member cracks.

Calculations for load-induced cracking are therefore based on the tensile
force in the reinforcement after cracking (i.e., on the analysis of cracked
cross-sections), whereas calculations for restraint cracking are based on
the tensile force in the concrete just before it cracks.

These concepts are more difficult to apply to composite members,
where there is local restraint from the axial and flexural stiffnesses of the
structural steel component, applied through the shear connectors or by
bond. In a web-encased beam, for example, where the steel tension flange
is stressed by direct loading, the resulting strains and curvature impose a
deformation on the concrete that encases the web.

The presence of structural steel members, and the differences between
beam-to-column joints in composite and reinforced concrete frames, made
it impossible to cover cracking in Eurocode 4 simply by cross-reference
to Eurocode 2 for reinforced concrete. This led to a ‘stand-alone’ treat-
ment of cracking in a slab that is part of the tension flange of a composite
beam, and in the concrete encasement of a steel web.

‘Cracking shall be limited to an extent that will not impair the proper
functioning or durability of the structure or cause its appearance to be
unacceptable.’

This quotation, also from EN 1992-1-1, refers to function and
appearance. For the concrete of composite members for most types of
building, the most likely cause of impairment to ‘proper functioning’ is
corrosion of reinforcement, following breakdown of its protection by the
surrounding concrete. Design is based on the exposure classes given in
EN 1992-1-1. The relevant class is likely to be X0 (very dry environment)
or XC1 (dry environment). For these classes, the limiting surface crack
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width under the quasi-permanent load combination is recommended to be
0.4 mm, with the following comment.

‘For X0, XC1 exposure classes, crack width has no influence on
durability, and this limit is set to guarantee acceptable appearance. In
the absence of appearance conditions, this limit may be relaxed.’

Tighter control of crack width is normal in bridges, and is sometimes
needed in buildings: for example, in the humid environment of a laundry,
or in an open-air multi-storey car park. For these and most other environ-
ments, the recommended limiting crack width is 0.3 mm for reinforced
concrete, or 0.2 mm for some types of prestressed concrete. Prestressing
of composite members is rare, and is not considered further. The exposure
class also influences the specification for type of concrete and for minimum
cover to reinforcement.

The appearance of a concrete surface may be important where a
web-encased beam is visible from below, but the top surface of a slab is
usually concealed by the floor finish or roof covering. Where the finish is
flexible (e.g., a fitted carpet) there may be no need to specify a limit to the
width of cracks; but for brittle finishes or exposed concrete surfaces,
crack-width control is essential.

Limiting crack widths are normally specified as a characteristic value
wk, though EN 1992-1-1 refers also to a ‘limiting calculated crack width,
wmax’, for which the same limiting values, 0.2 mm to 0.4 mm, are used.
The usual interpretation of a characteristic value is one with a 5% prob-
ability of exceedence. Crack width is a random variable, but the concept
of ‘probability of exceedence’ is difficult to apply in practice [42].

Design rules are given in EN 1994-1-1 for the following situations:

(1) where ‘the control of crack width is of no interest’ and beams are
designed as simply-supported although the slab is continuous over
supports;

(2) for the control of restraint-induced cracking, based on the tensile
strength of the concrete;

(3) for load-induced cracking, with control of crack width to 0.2, 0.3 or
0.4 mm;

(4) for the calculation of estimated crack width and maximum final
crack spacing.

For cases (1) to (3), simplified rules are given that do not involve the
calculation of crack widths. These are outlined below. For case (4), refer-
ence is made to provisions in EN 1992-1-1 for reinforced concrete mem-
bers. This situation rarely arises in buildings and is not considered further.
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4.2.5.1 No control of crack width

‘No control’ is relevant to serviceability limit states. It is still necessary to
ensure that the concrete retains sufficient integrity to resist shear at ultimate
limit states, by acting as a continuum. It is required that the minimum longi-
tudinal reinforcement in a concrete flange in tension shall be not less than:

• 0.4% of the area of concrete, for propped construction, or (4.29)
• 0.2% of the area of concrete, for unpropped construction. (4.30)

These bars are likely to yield at cracks, which may be about 0.5 mm wide,
but they ensure that several cracks form rather than just one, which could
be much wider. The presence of profiled steel sheeting is usually ignored,
which may be conservative in some situations.

4.2.5.2 Control of restraint-induced cracking

Uncontrolled cracking between widely-spaced bars is avoided, and crack
widths are limited, by:

• using small-diameter bars, which have better bond properties and have
to be more closely spaced than larger bars;

• using ‘high bond’ (ribbed) bars or welded mesh;
• ensuring that the reinforcement remains elastic when cracking first

occurs.

The last of these requirements is relevant to restraint cracking and leads
to a design rule for minimum reinforcement, irrespective of the loading,
as follows.

Let us assume that an area of concrete in uniform tension, Act, with an
effective tensile strength fct,eff, has an area As of reinforcement with char-
acteristic yield strength fsk. Just before the concrete cracks, the force in it
is approximately Act fct,eff. Cracking transfers the whole of the force to the
reinforcement, which will not yield if

As fsk ≥ Act fct,eff (4.31)

This condition is modified, in EN 1994-1-1, by a factor 0.8 that takes
account of self-equilibrating stresses within the member (that disappear
on cracking), and by a factor

kc =
1

1 2 0  ( / )+ h zc

+ 0.3 ≤ 1.0 (4.32)
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that allows for the non-uniform tension in the concrete prior to cracking.
In Equation 4.32, hc is the thickness of the concrete flange, excluding any
ribs, and z0 is the distance of the centroid of the uncracked composite
section (for short-term loading) below the centroid of the concrete flange.
For composite beams, the ratio z0/hc typically increases with the span.
Where it exceeds 1.17, kc = 1.0, and the tension is effectively treated as
uniform over the thickness of the concrete flange.

Finally, fsk in Equation 4.31 is replaced by σs, the maximum stress
permitted in the reinforcement immediately after cracking (≤ fsk), which
influences the crack width. This leads to the design rule

As ≥ 0.8kc fct,eff Act/σs (4.33)

To use this rule, it is necessary to estimate the value of the tensile
strength fct,eff when the concrete first cracks. If the intrinsic deformation
due to the heat of hydration or the shrinkage of the concrete is large,
cracking could occur within a week of casting, when fct,eff is still low.
Where this is uncertain, EN 1994-1-1 permits the use of the mean value
of the tensile strength corresponding to the specified 28-day strength of
the concrete, fctm, which is approximately 0.1 fck, or 0.08 fcu, where fcu is the
specified cube strength.

The choice of the stress σs depends on the design crack width, wk, the
diameter φ of the reinforcing bars, and the value of fct,eff. Figure 4.7 gives

Figure 4.7 Maximum steel stress for minimum reinforcement, high
bond bars
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the diameters φ*, for concrete with the reference strength fct,0 = 2.9 N/mm2.
For other concrete strengths, the diameter is given in EN 1994-1-1 by

φ = φ*fct,eff /fct,0

The stress σs may not exceed fsk for the bars to be used.

4.2.5.3 Control of load-induced cracking

A global analysis is required, to determine the bending moment at the
cross-section considered. This is usually a cross-section at an internal
support, where the hogging bending moment is a maximum.

In EN 1992-1-1, the use of the quasi-permanent load combination
(Section 1.3.2.3) is recommended. Imposed loads are then lower than for
the characteristic combination, which is used for deciding where minimum
reinforcement is required. The resulting bending-moment envelope thus
has a lower proportion of each span subjected to hogging bending.

The use of the quasi-permanent combination also implies that there are
no adverse effects if the cracks are wider for short periods when heavier
variable loads are present. It may sometimes be necessary to check crack
widths for a less probable load level, either ‘frequent’ or ‘characteristic’.
Where unpropped construction is used, load resisted by the steel member
alone is excluded.

Elastic global analysis (Section 4.3.2) is used. If relative stiffnesses are
based on uncracked concrete in regions where the slab is in tension, the
hogging moments will be overestimated, typically by about 10%.

The tensile stress in the reinforcement nearest to the relevant concrete
surface is calculated by elastic section analysis, neglecting concrete in
tension. This stress, σs,o, is then increased to a value σs by a correction for
tension stiffening, given by

σs = σs,o + 0.4 fctmAct/(αstAs) (4.34)

where α st = AI2/AaIa. The values A and I2 are for the cracked transformed
composite section, and Aa and Ia are for the structural steel section. Elastic
properties of the uncracked section are also needed, to find Act, the area of
concrete in tension. This is not divided by the modular ratio. As is the area
of reinforcement within the area Act.

The correction to σs,o is largest for lightly reinforced slabs (high Act/As)
of strong concrete (high tensile strength, fctm). The basis of Equation 4.34 is
that, until cracking is fully developed, the curvature of the steel beam equals
the mean curvature of the slab, which is above-average at cracks (which
increases the mean stress σs,o to σs), and below-average between cracks.
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Figure 4.8 Maximum bar spacing for high bond bars

Crack control is achieved by limiting the spacing of the longitudinal
reinforcing bars to the values shown in Fig. 4.8, which depend on σs and
wk, or by limiting the bar diameter in accordance with Fig. 4.7. It is not
necessary to satisfy both requirements, for they have a common basis.
This is that crack-width control relies on the bond-stress/slip property of
the surface of the reinforcement, which is almost independent of bar
diameter. The higher the stress σs, the greater is the bar perimeter required
to limit the bond slip at cracks to an acceptable level.

For bars of total area As per unit width of slab, of diameter φ and at
spacing s, the total bar perimeter is u = πφ/s, and As = πφ2/(4s). From
these equations,

u = 4As/φ = 2 (πAs /s)1/2

Thus, for a given area As, limiting either φ or s will give the required
value of u. The limits to φ and s become more severe as σs is increased
and as wk is reduced, as shown in Figs 4.7 and 4.8.

Fuller explanation and discussion of crack-width control for concrete
flanges of composite beams is available [17, 42].

4.3 Global analysis of continuous beams

4.3.1 General

The subject of this Section is the determination of design values of
bending moment and vertical shear for ‘continuous beams’ as defined in
Section 4.1, caused by the actions specified for both serviceability and
ultimate limit states.
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Methods based on linear-elastic theory, treated in Section 4.3.2, are
applicable for all limit states and all four classes of cross-section. The use
of rigid-plastic analysis, also known as plastic hinge analysis, is applicable
only for ultimate limit states, and is subject to the restrictions explained in
Section 4.3.3. Where it can be used, the resulting members may be lighter
and/or shallower, and the analyses are simpler. This is because the design
moments for one span are in practice independent of the actions on adjac-
ent spans, of variation along the span of the stiffness of the member, of
the sequence and method of construction, and of the effects of tempera-
ture and of creep and shrinkage of concrete. Accurate elastic analysis has
none of these advantages, so simplifications have to be made.

Section 3.5.1, on effective cross-sections, applies also to mid-span
regions of continuous beams. For analysis of cross-sections, effective
widths of hogging moment regions are generally narrower than those of
mid-span regions (Section 4.2.1) but, for simplicity, effective widths for
global analysis are assumed to be constant over the whole of each span,
and are taken as the value at mid-span. This does not apply to cantilevers,
where the value at the support is used.

It is assumed in global analysis that the effects of longitudinal slip are
negligible. This is correct for hogging moment regions, where the use of
partial shear connection is not permitted. Its use in a mid-span region
slightly reduces the flexural stiffness, but for current levels of minimum
shear connection, the uncertainty is probably less than that which results
from cracking of concrete in hogging regions.

4.3.2 Elastic analysis

Elastic global analysis requires knowledge of relative (but not absolute)
values of flexural stiffness (EI) over the whole length of the member
analysed. Several different values of EI are required at each cross-section,
as follows:

(a) for the steel member alone (EaIa), for actions applied before the
member becomes composite, where unpropped construction is used;

(b) for permanent loading on the composite member (EaI), where I is
determined, in ‘steel’ units, by the method of transformed sections
using a modular ratio, n = Ea/E ′c, where E′c is an effective modulus
that allows for creep of concrete;

(c) for variable loading on the composite member, as above, except that
the modular ratio is n0 = Ea/Ecm, and Ecm is the mean secant modulus
for short-term loading.

The values (b) and (c) also depend on the sign of the bending moment.
In principle, separate analyses are needed for the actions in (a), in (b), and
for each relevant arrangement of variable loading in (c).
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In practice, the following simplifications are made wherever possible.

(1) A value I calculated for the uncracked composite section (denoted I1

in EN 1994-1-1) is used throughout the span. This is referred to as
‘uncracked’ analysis.

(2) A single value of I, based on a modular ratio that is approximately
1
2[(Ea/E′c) + (Ea/Ecm)], is used for analyses of both types (b) and (c).

(3) Where all spans of the beam have cross-sections in Class 1 or 2
only, the influence of method of construction is neglected in analyses
for ultimate limit states only, and actions applied to the steel member
alone are included in analyses of type (b).

Separate analyses of type (c) are always needed for different arrange-
ments of variable loading. It is often convenient to analyse the member
for unit distributed loading on each span in turn, and then obtain the
moments and shears for each load arrangement by scaling and combining
the results.

The alternative to ‘uncracked’ analysis is to use in regions where the
slab is cracked a reduced value of I (denoted I2 in EN 1994-1-1), calcu-
lated neglecting concrete in tension but including its reinforcement. This
is known as ‘cracked’ analysis. Its weakness is that there is no simple or
accurate method for deciding which parts of each span are ‘cracked’.
They are different for each load arrangement, and are modified by the
effects of tension stiffening, previous loadings, temperature, creep, shrink-
age and longitudinal slip. A common assumption is that 15% of each
span, adjacent to each internal support, is ‘cracked’.

In practice, ‘uncracked’ analysis is usually preferred for ultimate limit
states, with allowance for cracking by redistribution of moments. Deflec-
tions should be estimated with allowance for cracking, as explained in
Section 4.3.2.3.

4.3.2.1 Redistribution of moments in continuous beams

Redistribution is a well-established and simple approximate method for
modifying the results of an elastic global analysis. It allows for the inelastic
behaviour that occurs in all materials in a composite beam before maximum
load is reached, and for the effects of cracking of concrete at serviceability
limit states. It is also used in the analysis of beams and frames of structural
steel and of reinforced concrete, with limitations appropriate to the mater-
ial and type of member.

It consists of modifying the bending-moment distribution found for a
particular loading while maintaining equilibrium between the actions (loads)
and the bending moments. Moments are reduced at cross-sections where
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the ratio of action effect to resistance is highest (usually, at the internal
supports). The effect is to increase the moments of opposite sign (usually,
in the mid-span regions).

For continuous composite beams, the ratio of action effect to resistance
is higher at internal supports, and lower at mid-span, than for most beams
of a single material, and the use of redistribution is essential for economy
in design. It is limited by the onset of local buckling of steel elements in
compression, as shown in Table 4.3, which is given for ultimate limit
states in EN 1994-1-1.

The differences between the two sets of figures show that ‘uncracked’
analyses have been assumed to give hogging moments that are higher
than those from ‘cracked’ analyses by amounts that are respectively 12%,
13%, 9% and 10% for Classes 1 to 4 (e.g., 140/125 = 1.12 for Class 1).

The hogging moments referred to are the peak values at internal sup-
ports, which do not include supports of cantilevers (at which the moment
is determined by equilibrium and cannot be changed). Where the com-
posite section is in Class 3 or 4, moments due to loads on the steel
member alone are excluded. The values in Table 4.3 are based on research
(e.g., Reference 40).

The use of Table 4.3, and the need for redistribution, is illustrated in
the following example. The Eurocode also allows limited redistribution
from mid-span regions to supports, but this is rare in practice.

4.3.2.2 Example: redistribution of moments

A composite beam of uniform section (apart from reinforcement) is con-
tinuous over three equal spans L. The cross-sections are in Class 1. For
the ultimate limit state, the design permanent load is g per unit length, and
the variable load is q per unit length, with q = 2g. The sagging moment of
resistance, MRd, is twice the hogging moment of resistance, M′Rd. Find the
minimum required value for MRd:

(a) by elastic analysis without redistribution;
(b) by elastic analysis with redistribution to Table 4.3;
(c) by rigid-plastic analysis.

Table 4.3 Limits to redistribution of hogging moments, per cent of the initial
value of the bending moment to be reduced

Class of cross-section in hogging moment region 1 2 3 4

For ‘uncracked’ elastic analysis 40 30 20 10
For ‘cracked’ elastic analysis 25 15 10 0
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For simplicity, only the middle span is considered, and only symmetrical
arrangements of variable load.

Bending moment distributions for the middle span, ABC, given by
‘uncracked’ elastic analysis are shown in Fig. 4.9 for permanent load plus
the following arrangements of variable load:

(1) q on all spans,
(2) q on the centre span only,
(3) q on the end spans only.

The moments are given as multiples of gL2/8. Questions (a) to (c) are
now answered.

(a) Without redistribution, the peak hogging moment, 2.4gL2/8, curve
(1), governs the design, and since MRd = 2M′Rd,

MRd ≥≥≥≥≥ 4.8gL2/8

(b) The peak hogging moment at each support is reduced by 40%
to 1.44gL2/8, curve (4). The corresponding sagging moment is
(0.6 + 0.96)gL2/8 = 1.56gL2/8. Elastic analysis for loadings (2) and
(3) gives curves (2) and (3), respectively. Redistribution of 10% is
used, so that their peak hogging moments are also 1.44gL2/8. This
value governs the design, so that

MRd ≥≥≥≥≥ 2.88gL2/8

(c) The method used is explained in Section 4.3.3. Redistribution is unlim-
ited, so that support moments for loading (1) are reduced by 58%, to

Figure 4.9 Bending moment diagrams with redistribution
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1.0gL2/8. The corresponding sagging moment is (0.6 + 1.4)gL2/8,
(curve (5)). Smaller redistributions are required for the other loadings.
The available resistances at the supports and at mid-span are fully
used, when

MRd ===== 2.0gL2/8

The preceding three results for MRd show that the resistance required is
significantly reduced when the degree of redistribution is increased.

For some composite beams, use of rigid-plastic analysis can imply even
larger redistribution than the 58% found here. However, design is then
usually governed by serviceability criteria.

4.3.2.3 Corrections for cracking and yielding

Cracking of concrete and yielding of steel have less influence on deflections
in service than they do on analyses for ultimate limit states, because the
design loads are lower. In short cantilevers and at some internal supports
there may be very little cracking, so deflections may be over-estimated by
an analysis where redistribution is used as explained above. Where a low
degree of shear connection is used, deflections may be increased by longi-
tudinal slip between the slab and the steel beam.

For these reasons, design codes give modified methods of elastic analysis
for the prediction of bending moments at internal supports of continuous
beams. First, a method from BS 5950 for uniform beams is given that
allows only for the effects of support moments. Let these hogging moments
be M1 and M2, for a loading that would give a maximum sagging moment
M0 and a maximum deflection δ0, if the span were simply-supported. It
can be shown by elastic analysis of a uniform member with uniformly-
distributed load, that the moments M1 and M2 reduce the mid-span deflec-
tion from δ0 to δc, where

δc = δ0[1 − 0.6(M1 + M2)/M0] (4.35)

This equation is quite accurate for other realistic loadings. It shows the
significance of end moments. For example, if M1 = M2 = 0.42M0, the
deflection δ0 is halved. It is not strictly correct to assume that the max-
imum deflection always occurs at mid-span but the error is negligible.

For cracking and yielding, the methods of EN 1994-1-1 are now
described, followed by those of BS 5950. Shear lag has little effect on
deflections, but section properties based on the effective flange width are
often used, as they are needed for other calculations.

The general method given for allowing for the effects of cracking at inter-
nal supports is for beams with all ratios of span lengths, and is applicable
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for both serviceability and ultimate limit states. It involves two stages of
calculation. The ‘uncracked’ flexural stiffness EaI1 is needed for each
span, and also the ‘cracked’ flexural stiffness EaI2 at each internal support.

For the load arrangement considered, the bending moments due to the
load applied to the composite member are first calculated using stiffnesses
EaI1. At each internal support, the maximum tensile stress in the concrete
due to the relevant moment is calculated. This is repeated for other relevant
load arrangements. Let the highest tensile stress thus found, at a particular
support, be σct. If this stress exceeds 2fctm (where fctm is the mean tensile
strength of the concrete), the stiffness EaI1 is replaced by EaI2 over 15% of
the length of the span on each side of that support.

The analyses for bending moments are then repeated using the modi-
fied stiffnesses, and the results are used whether the new values σct exceed
2fctm, or not. This method is based on one that has been used for com-
posite bridge beams since the 1960s.

EN 1994-1-1 gives an alternative to re-analysis of the structure, applic-
able for beams with critical sections in Class 1, 2 or 3. It is that at every
support where σct > 1.5fctm, the bending moment is multiplied by a reduc-
tion factor f1, and corresponding increases are made in the sagging moments
in adjacent spans. For general use, f1 = 0.6, but a higher value, given by

f1 = (EaI1/EaI2)
−0.35 ≥ 0.6 (4.36)

is permitted for internal spans with equal loadings and approximately
equal length.

Where unpropped construction is used and a high level of redistribution
(e.g., 40%) is made in global analyses for ultimate limit states, it is likely
that serviceability loads will cause local yielding of the steel beam at
internal supports. In design to EN 1994-1-1, allowance may be made for
this by multiplying the moments at relevant supports by a further factor f2,
where:

f2 = 0.5, if fy is reached before the concrete slab has hardened;
f2 = 0.7, if fy is reached due to extra loading applied after the concrete has
hardened.

These methods are used in the example in Section 4.6.5.
In BS 5950, the simplified methods given are based on global analyses

where the ‘uncracked’ stiffnesses EaI1 are used, and variable load is present
on all spans. The hogging moments so found are reduced by empirical
factors that take account of other arrangements of variable load.

Local yielding of the steel beam, if it occurs, causes an additional
permanent deflection. This is referred to as ‘shakedown’ in BS 5950, and
is allowed for by further reducing the hogging moments at the supports.



Continuous beams and slabs 153

The calculation of deflections, with allowance for the effects of slip, is
treated in Section 4.4.

4.3.3 Rigid-plastic analysis

For composite beams, use of rigid-plastic analysis can imply even larger
redistributions of elastic moments than the 58% found in the example of
Section 4.3.2.2, particularly where spans are of unequal length, or support
concentrated loads.

Redistribution results from inelastic rotations of short lengths of beam
in regions where ‘plastic hinges’ are assumed in the theory. Rotation may
be limited either by crushing of concrete or buckling of steel. Rotation
capacity depends on the proportions of the relevant cross-sections, as well
as on the shape of the stress–strain curves for the materials.

The formation of a collapse mechanism is a sequential process. The
first hinges to form must retain their resistance while undergoing suff-
icient rotation for plastic resistance moments to be reached at the locations
where the last hinges form. Thus, the rotation capacity at each hinge
location must exceed the rotation required. Neither of these quantities is
easily calculated, so the requirement is in practice replaced by limitations
on the use of the method, based on research. Those given in the Eurocodes
include the following.

(1) At each plastic hinge location:
• lateral restraint to the compression flange should be provided;
• the effective cross-section should be in Class 1;
• the cross-section of the steel component should be symmetrical

about the plane of its web.
(2) All effective cross-sections in the member should be in Class 1 or

Class 2.
(3) Adjacent spans should not differ in length by more than 50% of the

shorter span.
(4) End spans should not exceed 115% of the length of the adjacent span.
(5) The member should not be susceptible to lateral-torsional buckling

(i.e., lLT ≤ 0.4).
(6) In any span L, where more than half of the design load is concentrated

within a length of L/5, at any sagging hinge, not more than 15% of
the overall depth of the member should be in compression, unless it
can be shown that the hinge will be the last to form in that span.

The method of analysis is well known, being widely used for steel-
framed structures, so only an outline is given here. The principal assump-
tions are as follows.



154 Composite Structures of Steel and Concrete

(1) Collapse (failure) of the structure occurs by rotation of plastic hinges
at constant bending moment, all other deformations being neglected.

(2) A plastic hinge forms at any cross-section where the bending moment
due to the actions reaches the bending resistance of the member.

(3) All loads on a span increase in proportion until failure occurs, so the
loading can be represented by a single parameter.

The value of this parameter at collapse is normally found by assuming
a collapse mechanism, and equating the loss of potential energy of the
loads, due to a small movement of the mechanism, with the energy dissi-
pated in the plastic hinges.

For a beam of uniform section with distributed loading w per unit
length, the only properties required are the moments of resistance at mid-
span, Mp say, and at the internal support or supports, M′p. Let

M ′p/Mp = µ (4.37)

If the beam is continuous at both ends, Fig. 4.10(a), hinges occur at the
ends and at mid-span, and

(1 + µ)Mp = wL2/8 (4.38)

If the beam is continuous at one end only, the bending moment diagram
at collapse is as shown in Fig. 4.10(b). It can easily be shown that

β = (1/µ)[√(1 + µ) − 1] (4.39)

and

Mp = wβ2L2/2 (4.40)

Figure 4.10 Rigid-plastic global analysis
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4.4 Stresses and deflections in continuous beams

Values of bending stresses at serviceability limit states may be needed
in calculations for control of load-induced cracking of concrete (Section
4.2.5.3), and for prediction of deflections where unpropped construction
is used. Bending moments are determined by elastic global analysis
(Section 4.3.2). Those at internal supports are then modified to allow for
cracking and yielding (Section 4.3.2.3). Stresses are found as in Section
3.5.3 for sagging moments, or Section 4.2.1 for hogging moments.

Deflections are much less likely to be excessive in continuous beams than
in simply-supported spans, but they should always be checked where design
for ultimate limit states is based on rigid-plastic global analysis. For simply-
supported beams, the increase in deflection due to the use of partial shear
connection can be neglected in certain circumstances (Section 3.7.1) and
can be estimated from Equation 3.94. These same rules can be used for
continuous beams, where they are a little conservative because partial
shear connection is used only in regions of sagging bending moment.

The influence of shrinkage of concrete on deflections is treated in
Section 3.8. For continuous beams, the method of calculation is rather
complex, because shrinkage causes bending moments as well as sagging
curvature; but its influence on deflection is much reduced by continuity.

4.5 Design strategies for continuous beams

Until experience has been gained, the design of a continuous beam may
involve much trial and error. There is no ideal sequence in which decisions
should be made, but the following comments on this subject may be useful.

It is assumed that the span and spacing of the beams is known, that the
floor or roof slab spanning between them has been designed, and that
most or all of the loading on the beams is uniformly-distributed, being
either permanent (g) or variable (q). The beams add little to the total load,
so g and q are known.

One would not be designing a continuous beam if simply-supported
spans were satisfactory, so it can be assumed that simple spans of the
maximum available depth are too weak, or deflect or vibrate too much; or
that continuity is needed for seismic design, or to avoid wide cracks in the
slab, or for some other reason.

The provision for services must be considered early. Will the pipes and
ducts run under the beams, through the holes in the webs, or above the
slab? Heavily-serviced buildings needing special solutions (castella beams,
stub girders, haunched beams, etc.) are not considered here. The provision
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of holes in webs of continuous beams is easiest where the ratio q/g is low
[32], and a low q/g is also the situation where the advantages of continu-
ity over simple spans are greatest.

Continuity is more advantageous in beams with three or more spans
than where there are only two; and end spans should ideally be shorter
than interior spans. The least benefit is probably obtained where there are
two equal spans. The example in Section 4.6 illustrates this. Using a steel
section that could span 9.0 m simply-supported, it is quite difficult to use
the same cross-section for two continuous spans of 9.5 m.

A decision with many consequences is the Class of the composite
section at internal supports. Two distinct strategies are now compared.

(1) Minimal top longitudinal reinforcement is provided in the slab. If the
composite beam is in Class 1, rigid-plastic global analysis can be used,
unless lLT > 0.4 (Section 4.2.4). If the beam is in Class 2, the hogging
bending moment will be redistributed as much as permitted, to enable
good use to be made of the available bending resistance at mid-span.

(2) The reinforcement in the slab at internal supports is heavier, with an
effective area at least 1% of that of the slab. The composite section
will certainly be in Class 2, perhaps Class 3. Restrictions on redistribu-
tion of moments will probably cause the design hogging moments,
M′Ed, to increase (cf. case (1)) faster than the increase in resistance,
M′Rd, provided by the reinforcement, and further increase in the latter
may put the section into Class 4. So the steel section may have to be
heavier than for case (1), and there will be more unused bending
resistance at mid-span. However, that will allow a lower degree of
shear connection to be used. With higher M′Ed the bending-moment
diagram for lateral-torsional buckling is more adverse. Deflections
are less likely to be troublesome, but the increase in the diameter of
the reinforcing bars makes crack-width control more difficult.

The method of fire protection to be used may have consequences for
the structural design. For example, web encasement improves the class of
a steel web that is otherwise in Class 3, but not if it is in Class 2; and it
improves resistance to lateral buckling.

Finally, it has to be decided whether construction will be propped or
unpropped. Propped construction allows a shallower steel beam to be used
– but it will be less stiff, so the dynamic behaviour may be less satisfactory.
Propped construction costs more, and crack-width control is more difficult;
but design is much less likely to be governed by excessive deflection.

The design presented next is based on strategy (1) above, using a
lightweight-concrete slab and an encased web. This is done to illustrate
methods. It may not be the best solution.
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4.6 Example: continuous composite beam

4.6.1 Data

So that use can be made of previous work, the design problem is identical
with that of Chapter 3, except that the building (Fig. 3.1) now consists of
two bays each of span 9.5 m. The transverse beams at 4 m centres are
assumed to be continuous over a central longitudinal wall. They are attached
to columns in the outer walls, as before, by nominally-pinned joints located
0.2 m from the centres of the columns. No account is taken of the width
of the central wall. Thus, each beam is as shown in Fig. 4.11.

The use of continuity should offset the increase in span from 9 m to
9.5 m, so it is assumed initially that the designs of the slab and the mid-
span region of the beam are as before, with the same materials, loads, and
partial safety factors. The design loads per unit length of beam, repres-
ented by the general symbol w, and the corresponding values of the bend-
ing moment wL2/8 for a span of 9.3 m are as given in Table 4.4.

Figure 4.11 Continuous beam with dead load, plus imposed load
on span AB only

Table 4.4 Loads and bending moments for a span of 9.3 m

Characteristic loads Ultimate loads

Load wL2/8 Load wL2/8

(kN/m) (kN m) (kN/m) (kN m)

Permanent, on steel beam 12.4 134 16.7 181
Permanent, composite 5.2 56 7.0 76
Variable, composite 24.8 268 37.2 402
Total 42.4 458 60.9 659
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Other design data from Chapter 3 are as follows:

structural steel: fy = 355 N/mm2 fy/γA = 355 N/mm2

concrete: fck = 25 N/mm2 fck/γC = 16.7 N/mm2

bar reinforcement: fsk = 500 N/mm2 fsk/γS = 435 N/mm2

welded fabric: fsk = 500 N/mm2 fsk/γS = 435 N/mm2

shear connectors: PRk = 75.2 kN PRk/γV = 60.2 kN
profiled steel sheeting: details as shown in Fig. 3.9; nominal thickness,

0.9 mm
composite slab: 150 mm thick, with T8 bars at 150 mm (top) above the

steel beams, and at 300 mm (bottom), shown in Fig. 3.12, and concrete
of Grade LC25/28

composite beam: steel section 406 × 178 UB 60, shown in Fig. 3.29, with
shear connection as in Fig. 3.30 and encased web as in Fig. 3.31, using
Grade C25/30 concrete. The properties of the concretes are given in
Table 1.4.

Many properties of the composite cross-section are required, so it is
useful to assemble them in a table, for ease of reference. The elastic and
plastic properties for major-axis bending, used in Chapter 3 or in this
chapter, are given in Table 4.5. The values of A and I for transformed
cross-sections are based on E = 210 kN/mm2. Values headed ‘reinforced’
are for a cross-section with 679 mm2 of top longitudinal reinforcement.
As explained later, the thickness of concrete slab above the sheeting is
taken as 95 mm for elastic properties and as 80 mm for plastic properties,
with the exception shown in Table 4.5. The depths xc are from the top of
the concrete slab.

Table 4.5 Properties of cross-sections of a composite beam

Type of section Cracked Uncracked unreinforced Cracked

unreinforced reinforced

(I-section only)

Effective breadth, beff, mm — 2250 2250 1225 1225 1225
Modular ratio, n — 10.1 20.2 10.1 20.2 —
Transformed cross-section, 7600 28 760 18 180 17 300 12 450 8279

A, mm2

Depth xc of elastic neutral 353 129 176 177 231 327
axis, mm (hc = 95) (hc = 95) (hc = 80) (hc = 80)

Second moment of area, 215 751 636 — 508 278
10−6I, mm4

Depth xc of plastic neutral 353 151 151 — — 300
axis, mm (hc = 80) (hc = 80)

Mpl,Rd, kN m 424 829 829 — — 510
sagging sagging hogging
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The mid-span effective breadth of 2250 mm was found for a 8.6-m
span. The increase for a 9.3-m span has little effect on the properties and
has been ignored.

Other properties, not in Table 4.5, are as follows:

for the steel section:

10−6Wa,pl = 1.194 mm3 10−6Iaz = 12.0 mm4 Vpl,Rd = 697 kN

4.6.2 Flexure and vertical shear

A rough check on the adequacy of the assumed beam section is provided
by rigid-plastic global analysis. The value of wL2/8 that can be resisted by
each span is a little less than

Mpl,Rd + 0.5Mpl,a,Rd = 829 + 212 = 1041 kN m

neglecting the reinforcement in the slab at the internal support, B in
Fig. 4.11. This is well above wL2/8 for the loading (659 kN m, from
Table 4.4).

Minimum reinforcement at the internal support
It is assumed that the exposure class is X0 or XC1 (Section 4.2.5) and that
the limiting crack width is 0.4 mm under quasi-permanent loading. It is
assumed initially that the top longitudinal reinforcement at support B is
six T12 bars (As = 679 mm2) at 200 mm spacing. The cross-section is then
as shown in Fig. 4.1. It was found in Section 4.2.1.2 that its hogging
resistance is Mpl,Rd = 510 kN m, with effective flange width beff = 1.225 m.

The area As may be governed by the rules for minimum reinforcement
(Section 4.2.5.2). These require calculation of the distance z0 in Fig. 4.14(a)
for the uncracked unreinforced composite section with n = 10.1. Initial
cracking is likely to occur above the small top ribs of the sheeting, where
the slab thickness is 80 mm, so the assumption hc = 95 mm, made for
serviceability checks at mid-span, is not appropriate.

The transformed area of the uncracked section is

A = 7600 + 1225 × 80/10.1 = 17 300 mm2

Taking moments of area about the top of the slab for the neutral-axis
depth xc,

17 300xc = 7600 × 353 + 9700 × 40 whence xc = 177 mm
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Hence,

z0 = 177 − 40 = 137 mm

From Equation 4.32,

kc = 1/(1 + 80/274) + 0.3 = 1.07 but ≤ 1.0

The elastic neutral axis is below the slab, so

Act = 1225 × 80 = 98 000 mm2

The stress fct,eff is taken as the mean 28-day tensile strength of the Grade
LC 25/28 concrete, given in Table 1.4 as 2.32 N/mm2.

As a guessed area of longitudinal reinforcement is being checked, it
is simplest next to use Expression 4.33 as an equality to calculate σs.
Hence,

σs = 0.8kc fct,eff Act/As = 0.8 × 1 × 2.32 × 98 000/679 = 268 N/mm2

The characteristic crack width is now found. Interpolating on Fig. 4.7,
the maximum bar diameter for wk = 0.4 mm and σs = 268 N/mm2 is
φ* = 17.2 mm. This is for the reference concrete strength fct,0 = 2.9 N/mm2.
The correction for concrete strength gives

φmax = 17.2 × 2.32/2.9 = 13.8 mm

The 12-mm bars proposed should therefore control crack widths from
imposed deformation to better than 0.4 mm.

A similar calculation finds that, for wk = 0.3 mm, φ < 10.6 mm, so that
10-mm bars would be needed.

Classification of cross-sections
It is easily shown by the methods of Section 4.2.1 that the steel compres-
sion flange is in Class 1 at support B. Calculations in Section 4.2.1.2
that ignored the web encasement found that the web was in Class 2, and
that Mpl,Rd = 510 kN m. Web encasement enables a Class 3 web to be up-
graded to Class 2; but promotion from Class 2 to Class 1 is not permitted,
because crushing of the encasement in compression may reduce the rotation
capacity in hogging bending to below that required of a Class 1 section.
It is therefore not possible to use plastic global analysis, but Mpl,Rd can be
used as the bending resistance at support B, subject to checks for vertical
shear and lateral buckling.
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Vertical shear
The maximum vertical shear occurs at support B (Fig. 4.11) when both
spans are fully loaded. Ignoring the effect of cracking of concrete (which
reduces the shear at B) enables results for beams of uniform section to be
used. From elastic theory,

VEd,B = 5wL/8 = 5 × 60.9 × 9.3/8 = 354 kN

From Equation 3.113,

Vpl,a,Rd = 697 kN so VEd/VRd = 0.51

This exceeds 0.5, so Mpl,Rd should be reduced; but, from Equation 4.13,
the reduction is obviously negligible.

Redistribution of bending moment from B reduces VEd,B, but shear
resistance of a beam may conservatively be checked ignoring this, as the
redistribution may not occur; for example, because the top reinforcement
is stronger than has been assumed in design. However, in global analyses
leading to column design, the design vertical shears should be consistent
with the design bending moments.

Bending moments
Ignoring cracking, the maximum hogging bending moment at B occurs
when both spans are fully loaded, and is

MEd,B = wL2/8 = 60.9 × 9.32/8 = 658 kN m

From Table 4.3, the maximum permitted redistribution for a Class 2 mem-
ber is 30%, giving

MEd,B = 658 × 0.7 = 461 kN m

which is below Mpl,Rd (510 kN m, from Section 4.2.1.2).
The maximum sagging bending moment in span AB occurs with min-

imum load on span BC. Elastic analysis neglecting cracking gives the
results shown in Fig. 4.11. There is no need for redistribution from support
B. The maximum sagging moment, MEd = 449 kN m, is lower than that
given by Equation 3.108, 563 kN m, for the simply-supported beam; and
the vertical shear at A is lower than that at B.

4.6.3 Lateral buckling

The lateral stability of the steel bottom flange adjacent to support B is
checked using the ‘continuous U-frame’ model explained in Section 4.2.4
and the bending-moment distribution shown for span BC in Fig. 4.11(b).
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If it can be shown that the UB steel section used here qualifies for the
relaxation given by Equation 4.28, then no check on lateral buckling is
needed. It can be shown to qualify, by a new method given elsewhere
[17]; but its resistance to lateral buckling is now determined, to illustrate
the method of Equations 4.22 to 4.24.

In Equation 4.22,

Mcr ≈ (kcC4/π)(ksEaIafz)
1/2 (4.22)

the term ks represents the stiffness of the U-frame:

ks = k1k2/(k1 + k2) (4.18)

Equation 4.21 gives k2 for a concrete-encased web. It is assumed that
the normal-density encasement has a modular ratio of 20.2 for long-term
effects, so that

k2 =
E t b
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= 1.82 × 106 Ν

From Equation 4.19, k1 = 4EaI2/a, where EaI2 is the ‘cracked’ stiffness of
the composite slab in hogging bending. To calculate I2 the trapezoidal rib
shown in Fig. 3.9 is replaced by a rectangular rib of breadth 162 − 13 =
149 mm. Using a modular ratio n = 20.2, the transformed width of rib
is 149/(0.3 × 20.2) = 24.6 mm per metre width of slab, since the ribs are
at 0.3 m spacing. The transformed section is thus as shown in Fig. 4.12.
Reinforcement within the rib (Fig. 3.12) is neglected.

The position of the neutral axis is given by

1
2 × 24.6x2 = 336(126 − x) whence x = 47 mm

then

10−6I2 = 336 × 0.0792 + 24.6 × 0.473/3 = 2.95 mm4/m

Figure 4.12 Cracked section of composite slab, for hogging bending
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From Equation 4.19, with the beam spacing a = 4.0 m,

k1 = 4 × 210 000 × 2.95/4 = 0.619 × 106 N

From Equation 4.18,

ks = 0.619 × 1.82 × 106/2.44 = 0.463 × 106 N

For the steel bottom flange,

Iafz = bf
3tf /12 = 1783 × 12.8/12 = 6.01 × 106 mm4

Factor kc, Equation 4.16, is concerned with stiffness, so the appropriate
depth of slab, hc, is 95 mm, not 80 mm. The following values are now
required (see Fig. 4.5):

hs = 406 − 13 = 393 mm zc = 353 − 95/2 = 306 mm

also,

A = Aa + As = 7600 + 679 = 8279 mm2

From Equation 4.17,

e
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The second moment of area of the cracked composite section is found
in the usual way, Section 4.2.1.3. The elastic neutral axis is 26 mm above
the centroid of the steel section, and

10−6Iy = 215 + 7600 × 0.0262 + 679 × 0.2922 = 278 mm4

From Equation 4.16,
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Where As/Aa is small, it is simpler, and conservative, to take kc as 1.0.
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Factor C4 is now found, using Fig. 4.6. From Fig. 4.11, for span BC,

M0 = 23.7 × 9.32/8 = 256 kN m so ψ = 457/256 = 1.78

From Fig. 4.6, C4 = 17.4.
The effect of including in Equation 4.15 the St Venant torsion constant

for the steel section is negligible, so the simpler Equation 4.22 can be
used. It gives:

Mcr = (1.12 × 17.4/π)(0.463 × 210 000 × 6.01)1/2 = 4742 kN m

The characteristic plastic bending resistance at support B is required for
use in Equation 4.23. The design value was found in Section 4.2.1.2 to
be 510 kN m. Replacing the γS factor for reinforcement (1.15) by 1.0
increases it to Mpl,Rk = 579 kN m.

The slenderness lLT is given by Equation 4.23, which is

lLT = (Mpl,Rk/Mcr)
1/2 = (579/4742)1/2 = 0.35

This is less than 0.4, so Mpl,Rd need not be reduced to allow for lateral
buckling.

4.6.4 Shear connection and transverse reinforcement

For sagging bending, the resistance required, 449 kN m, is well below the
resistance with full shear connection, 829 kN m, so the minimum degree
of shear connection may be sufficient. For spans of 9.3 m, and an effect-
ive span of 9.3 × 0.85 = 7.9 m, this is given by Fig. 3.19 as

n/nf ≥ 0.49

In Equation 3.67, Nc/Nc,f may be replaced by n/nf. This equation for the
interpolation method (Fig. 3.16) then gives

MRd = Mpl,a,Rd + (n/nf)(Mpl,Rd − Mpl,a,Rd) = 424 + 0.49(847 − 424)

= 631 kN m

which is sufficient.
From Equation 3.116, the resistances of the stud connectors are 51.0 kN

and 42.0 kN, for one and two studs per rib, (nr = 1 and nr = 2, respect-
ively). From Section 3.11.1, Nc,f = 2555 kN, so

Nc = 0.49 × 2555 = 1250 kN
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There are 13 troughs at 0.3 m spacing in the 3.84-m length AD in Fig. 4.11.
The choice of nr is discussed in Section 3.11.2. Assuming that nr ≥ 2, the
number of studs needed is 1250/42 = 30, so four studs are provided in
each of the two troughs nearest to support A, and two in each of the other
11 troughs; total, 30.

From Fig. 4.11, the length DB is 5.46 m. Its sheeting has 5.46/0.3 = 18
troughs. The force to be resisted is 1250 kN plus 295 kN (Section 4.2.1.2)
for the reinforcement at cross-section B, at yield; total, 1545 kN, requir-
ing 37 studs at 42 kN each. The provision of four studs in the trough nearest
to support B, and two in each of the other 17 gives 38 studs, which is
sufficient.

The transverse reinforcement should be as determined for the sagging
region in Chapter 3.

4.6.5 Check on deflections

The limits to deflections discussed in Section 3.7.2 correspond to the
characteristic combination of loading (Expression 1.8). Where there is
only one type of variable load, as here, this is simply gk + qk, but three sets
of calculations may be required, because part of the permanent load g acts
on the steel member and part on the composite member, and two modular
ratios are needed for the composite member.

In practice, it is usually accurate enough to combine the two calcula-
tions for the composite member, using a mean value of the modular ratio
(e.g., n = 20.2 here).

For design purposes, maximum deflection occurs when the variable
load is present on the whole of one span, but not on the other span. The
three loadings are shown in Fig. 4.13, with the bending-moment distribu-
tions given by ‘uncracked’ elastic analyses, in which the beam is assumed

Figure 4.13 Loading for deflection of span AB
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Table 4.6 Calculation of maximum deflection

w M0 MB f1 f2 M1 10−−−−−6I1 δδδδδc

(kN/m) (kN m) (kN m) (kN m) (mm4) (mm)

g on steel 12.4 134 134 — — 134 215 10.7
g on composite 5.2 56 56 0.6 0.7 24 636 2.8
q on composite 24.8 268 134 0.6 0.7 56 636 15.9

Figure 4.14 Elastic properties of composite section

to be of uniform section. The data and results are summarised in
Table 4.6, where MB is the hogging moment at support B at this stage of
the analysis.

Following the method of Section 4.3.2.3, the maximum tensile stress in
the uncracked composite section at B, σct, is now found, using an effect-
ive width of 1.225 m, Fig. 4.14(a). This stress will occur when variable
load acts on both spans, and is calculated using n = 20.2 for all load on
the composite member. Using data from Table 4.5,

σct N/mm=
⎛
⎝⎜

⎞
⎠⎟

=
+ ×

×
=∑   

(   )  

.
  .  

Mx

nI1

256 268 231

20 2 508
7 3

where nI1 is the ‘uncracked’ second moment of area in ‘concrete’ units.
This stress exceeds 1.5flctm (3.48 N/mm2). To avoid re-analysis with

spans of non-uniform section, the correction factor f1 given by Equation
4.36 can be used. For these ‘external’ spans, f1 = 0.6.

The maximum compressive stress in the steel bottom fibre is now
calculated, to determine whether the correction factor f2 for yielding is
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required. As for σct, variable load should be assumed to act on both spans.
Using data from Section 4.6.1 and Fig. 4.14(b),

σ4,a =
⎛
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⎞
⎠⎟

=
×

+
+ ×∑   

(   )  Mx

I
4

2

134 203

215

56 268 229

278

= 126 + 267 = 393 N/mm2

where x4 is the distance of the relevant neutral axis above the bottom
fibre. The result shows that yielding occurs (393 > 355), but not until after
the slab has hardened (126 < 355), so from Section 4.3.2.3, f2 = 0.7. The
hogging moments M1 for use in Equation 4.35 are

M1 = f1 f2MB

and are given in Table 4.6. The other end moment, M2, is zero.
Deflections δ0 for each loading acting on a simply-supported span are

now required. These are, in general:
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with w in kN/m and I1 in mm4. Using values from Table 4.6 in Equation
4.35 gives the total deflection:

δc = 464 × 106 Σ[(w/I1)(1 − 0.6M1/M0)]

= 464[(12.4/215) × 0.4 + (5.2/636)(1 − 0.6 × 24/56)]

+ 464[(24.8/636)(1 − 0.6 × 56/268)]

= 10.7 + 2.8 + 15.9 = 29.4 mm

This result is probably too high, because the factor f1 may be conservative,
and no account has been taken of the stiffness of the web encasement.
This total deflection is span/316, less than the guideline of L/300 given in
the UK’s national annex to EN 1990 [12], for floors with plastered ceil-
ings and/or non-brittle partitions.

The total deflection of the simply-supported span of 8.6 m, for the same
loading, was found to be 35.5 mm. This would be 35.5 × (9.3/8.6)4 =
48.5 mm for the present span. The use of continuity at one end has reduced
this value by 19.1 mm, or 39%.

Even so, these deflections are fairly large for a continuous beam with a
ratio of span to overall depth of only 9300/556 = 16.7. This results from the
use of unpropped construction, high-yield steel and lightweight concrete.
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Deflections of a similar propped structure in mild steel and normal-
density concrete would be much lower.

4.6.6 Control of cracking

The widest cracks will occur at the top surface of the slab, above an
internal support. The reinforcement at this cross-section is 12-mm bars at
200 mm spacing (As = 679 mm2). It was shown in Section 4.6.2 that this
can control the widths of cracks from imposed deformation to below
0.4 mm. The crack width caused by the characteristic loading is now
found, using Section 4.2.5.3.

The bending moments MB given in Table 4.6 are applicable, except that
MB for imposed load must be doubled, as for this purpose it acts on both
spans. For deflections, use of the reduction factor f1 = 0.6 probably under-
estimated MB. For checking crack width, any approximation should be an
over-estimate. In Table 4.3 for limits to redistribution of moments, it is
assumed that cracking causes a 15% reduction in a Class 2 section, so f1 is
taken as 0.85.

The factor f2 for yielding of steel is not applied, as the yield strength of
the steel is likely to be higher than specified. Hence, for cracking,

MB = (56 + 2 × 134) × 0.85 = 275 kN m

For the cracked composite section, 10−6I2 = 278 mm4, from Table 4.5, so
the stress in the reinforcement, at distance 292 mm above the neutral axis, is

σs,o = 275 × 292/278 = 289 N/mm2

This must be increased to allow for tension stiffening between cracks.
From Section 4.2.5.3,

αst = AI2/AaIa = 8279 × 278/(7600 × 215) = 1.41

From Section 4.6.2, the cracked area of concrete is

Act = beffhc = 1225 × 80 = 98 000 mm2

From Equation 4.34, with flctm from Table 1.4,

σs = σs,o + 0.4 flctmAct /(αstAs)

= 289 + 0.4 × 2.32 × 98 000/(1.41 × 679) = 384 N/mm2

This is below the yield strength, so the existing 12-mm bars are satisfactory
if a non-brittle floor finish is to be used, such that cracks will not be visible.
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If, however, control of crack widths to 0.4 mm were required, reference to
Fig. 4.7 shows that 8-mm bars would be required. To provide 679 mm2,
their spacing would have to be 90 mm, or bars in pairs at 180 mm.

The alternative of increasing the top reinforcement to, say, 10-mm bars
at 100 mm (883 mm2) would require some re-calculation. It increases the
ultimate hogging bending moment MEd,B and so makes susceptibility to
lateral buckling more likely. It is not obvious whether it would reduce the
value of the tensile stress σs to below 360 N/mm2, the limit given in both
Figs 4.7 and 4.8 for crack control to 0.4 mm. This illustrates interactions
that occur in design of a hogging moment region.

4.7 Continuous composite slabs

The concrete of a composite slab floor is almost always continuous over
the supporting beams, but the individual spans are often designed as
simply-supported (Sections 3.3 and 3.4), for simplicity. Where deflections
are found to be excessive, continuous design may be used, as follows.

Elastic theory is used for the global analysis of continuous sheets acting
as shuttering. Variations of stiffness due to local buckling of compressed
parts can be neglected. Resistance moments of cross-sections are based on
tests (Section 3.3).

Completed composite slabs are generally analysed for ultimate bending
moments in the same way as continuous beams with Class 2 sections.
‘Uncracked’ elastic analysis is used, with up to 30% redistribution of
hogging moments, assuming that the whole load acts on the composite
member. Rigid-plastic global analysis is allowed by EN 1994-1-1 where
all cross-sections at plastic hinges have been shown to have sufficient
rotation capacity. This has been established for spans less than 3.0 m with
reinforcement of ‘high ductility’ as defined in EN 1992-1-1 for reinforced
concrete. No check on rotation capacity is then required.

At internal supports where the sheeting is continuous, resistance to
hogging bending is calculated by rectangular-stress-block theory, as for
composite beams, except that local buckling is allowed for by using an
effective width for each flat panel of sheeting in compression. This width
is given in EN 1994-1-1 as twice the value specified for a Class 1 steel
web, thus allowing for the partial restraint from the concrete on one side
of the sheet. Where the sheeting is not continuous at a support, the section
is treated as reinforced concrete.

For the control of cracking at internal supports, EN 1994-1-1 refers to
EN 1992-1-1. In practice, the reinforcement to be provided may be gov-
erned by design for resistance to fire, as in Section 3.3.7, or by the trans-
verse reinforcement required for the composite beam that supports the slab.
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Chapter 5

Composite columns and frames

5.1 Introduction

A definition of composite frame is given in Section 4.1, with discussion of
joints, connections, and of the relationship between these and the methods
of global analysis (Table 4.1).

To illustrate the presentation of continuous beams in the context of
buildings, it was necessary to use, in Section 4.6, an atypical example:
a two-span beam with a wall as its internal support, with no transfer of
bending moment between the wall and the beam.

Where a beam is supported by a column through a joint that is not
‘nominally pinned’, the bending moments depend on the properties of the
joint, the beam and the column. They form part of a frame, which may
have to provide resistance to horizontal loads such as wind (an ‘unbraced
frame’); or these loads may be transferred to a bracing structure by the
floor slabs.

Where the lateral stiffness of the bracing structure is sufficient, the
frame can be designed to resist only the vertical loads (a ‘braced frame’).
The lift and staircase regions of multi-storey buildings often have con-
crete walls, for resistance to fire. These can provide stiff lateral restraint,
as can the end walls of long narrow buildings. The frames can then be
designed as ‘braced’.

Unbraced frames require stronger members and joints. The long-
standing empirical ‘wind-moment’ design method [43], in current use
for frames of moderate height, is not given in EN 1994-1-1.

Some of the design rules of Eurocodes 3 and 4 for semi-rigid and
partial-strength joints are so recent that there is little experience of their
use in practice. The scope of this chapter is limited to braced frames with
beam-to-column joints that are either ‘nominally pinned’ or ‘rigid and full
strength’. The structure shown in Fig. 5.1 is used as an example. Typical
plane frames such as DEF are at 4.0-m spacing, and support composite
floor slabs as designed in Section 3.4. Each frame has ten two-span beams
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Figure 5.1 A composite frame (simplified)

identical with those designed in Section 4.6, except that the wall that
provided the internal support is replaced by composite columns (B, E, etc.)
at 4.0-m spacing, with rigid and full strength beam-to-column joints.

The joints to the external columns, near points A, C, D, F, etc., are
nominally pinned. The design bending moments for the columns depend on
the assumed location of these pins, which is discussed in Section 5.4.4.2.

The building is assumed to be 60 m long. Lateral support is provided
by shear walls at each end (Fig. 5.1(a)), and a lift and staircase tower (the
‘core’) at mid-length, 4 m wide. Horizontal loads normal to the length of
the building are assumed to be transferred to these bracing elements by
each floor slab, spanning (60 − 4)/2 = 28 m between the core and an end
wall. These slabs are quite thin, but as horizontal beams they are about
19 m deep. Their span/depth ratio is so low (28/19 = 1.47) that for lateral
load they are very stiff, and stresses are low.

The effect of horizontal forces in other directions is assumed to be
negligible. External walls are assumed to be supported by edge beams
such as JC and CF, spanning between the external columns. These beams
will not be designed.

This structure is used here as the basis for explanation of behaviour and
design methods, and is not fully realistic. For example, it lacks means of
escape near its two ends.

The layouts of most multi-storey buildings are such that their frames
can be designed as two-dimensional. The columns are usually designed
with their webs co-planar with those of the main beams, as shown in
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Fig. 5.1(a), so that beam–column interaction causes major-axis bending in
both members.

For global analysis for gravity loads, each plane frame is assumed to
be independent of the others. For each storey-height column length, an
axial load Ny and end moments M1,y and M2,y are found for the major-axis
frame, and corresponding values Nz, M1,z and M2,z for the minor-axis
frame such as HAD in Fig. 5.1. The column length is then designed (or an
assumed design is checked) for axial load Ny + Nz and for the bi-axial
bending caused by the four end moments.

In the design of a multi-storey composite plane frame, allowance must
be made for imperfections. Global imperfections, such as out-of-plumb
columns, influence lateral buckling of the frame as a whole (‘frame instab-
ility’). Member imperfections, such as bow of a column length between
floor levels, influence the buckling of these lengths (‘member instability’),
and may even affect the stability of a frame.

Global analysis is usually linear-elastic, with allowance for creep, crack-
ing and the moment–rotation properties of the joints. First-order analysis
is used wherever possible, but checks must first be made that second-
order effects (additional action effects arising from displacement of nodes
or bowing of members) can be neglected. If not, second-order analysis
is used.

A set of flow charts for the design of such a frame, given elsewhere
[17], is too extensive to reproduce here. However, the sequence of these
charts will be followed for the frame shown in Fig. 5.1(b), which will be
found to be free from many of the complications referred to above.

Columns and joints are discussed separately in Sections 5.2 and 5.3.
The Eurocode methods for analysis of braced frames are explained in
Section 5.4, with a worked example. Details of the design method of EN
1994-1-1 for columns are then given, followed by calculations for two of
the columns in the frame.

5.2 Composite columns

Steel columns in multi-storey buildings need protection from fire. This is
often provided by encasement in concrete. Until the 1950s, it was normal
practice to use a wet mix of low strength, and to neglect the contribution
of the concrete to the strength and stability of the column. Tests by Faber
[44] and others then showed that savings could be made by using better-
quality concrete and designing the column as a composite member. This
led to the ‘cased strut’ method of design. This was originally (in BS 449)
a permissible-stress method for the steel member, which had to be of H-
or I-section. It then became available in limit-state form [19]. In this



Composite columns and frames 173

method, the presence of the concrete is allowed for in two ways. It is
assumed to resist a small axial load; and to reduce the effective slender-
ness of the steel member, which increases its resistance to axial load.
Resistance to bending moment is assumed to be provided entirely by the
steel. No account is taken of the resistance of the longitudinal reinforce-
ment in the concrete.

Tests on cased struts under axial and eccentric load show that this
cased strut method gives a very uneven and usually excessive margin of
safety. For example, Jones & Rizk [45] quote load factors ranging from
4.7 to 6.7, and work by Faber [44] supports this conclusion. The method
was improved in BS 5950, but is still generally very conservative. Its
main advantage is that it is simpler than the more rational and economical
methods now available.

One of the earliest methods to take proper account of the interaction
between steel and concrete in a concrete-encased H-section column is due
to Basu & Sommerville [46]. It has been extended to include bi-axial
bending, and agrees quite well with the results of tests and numerical
simulations [47, 48]. It was thought to be too complex for routine use for
columns in buildings, but is included in the British code for composite
bridges. Its scope includes concrete-filled steel tubes [49], which have been
used as bridge piers, for example in multi-level motorway interchanges.

The Basu and Sommerville method is based on the use of algebraic
approximations to curves obtained by numerical analyses. For Eurocode
4:Part 1.1, preference was given to a method developed by Roik, Bergmann
and others at the University of Bochum. It has wider scope, is based on
a clearer conceptual model, and is slightly simpler. It is described in
Section 5.6, with a worked example.

5.3 Beam-to-column joints

5.3.1 Properties of joints

Three types of joint between a steel beam and the flange of an H-section
steel column are shown in Fig. 5.2, and a short end-plate joint is shown in
Fig. 5.22. They are all bolted, because they are made on site, where weld-
ing is expensive and difficult to inspect. The column shown in Fig. 5.2(a)
is in an external wall. At an internal column, another beam would be
connected to the other flange. There may also be minor-axis beams, con-
nected to the column web as shown in Fig. 5.2(c).

Where the beams are composite and the column is internal, longitudinal
reinforcement in the slab will be continuous past the column, as shown in
Fig. 5.2(c). It may be provided only for the control of cracking; but if it
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Figure 5.2 Elevations of beam-to-column joints

consists of individual bars, rather than welded fabric, the tension in the
bars may be assumed to contribute to the bending resistance of the joint,
as shown in Fig. 5.2(d). Small-diameter bars may fracture before the
rotation of the hogging region of the beam becomes large enough for the
resistance of the joint to reach its design value, so these bars should be at
least 16 mm in diameter [8].

In the fin-plate joint of Fig. 5.2(a), the bolts are designed mainly for
vertical shear, and the flexural stiffness is low. The end-plate joint of
Fig. 5.2(c) is likely to be ‘semi-rigid’ (defined later). The bolts at A are
usually designed for tension only, and bolts in the compression zone (B
and C) are designed for vertical shear only.

To achieve a ‘rigid’ connection it may be necessary to use an extended
end plate and to stiffen the column web in regions D and E, as shown in
Fig. 5.2(b).

Resistance of an end-plate joint
Until tabulated data become available, design of a semi-rigid partial-strength
end-plate joint, as in Fig. 5.2(c), requires extensive calculations. These are
explained, with an example, in the Designers’ Guide to EN 1994-1-1 [17].
An outline of the method is now given, assuming beams of the same
depth on opposite sides of the column.

The rotation capacity of the joint is ensured by using a thin end plate,
so that yield lines form in it before the bolts at A fracture in tension.
Plastic bending of the column flange and yielding of the column web at D
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may also occur. The check on bolt fracture may need to allow for prying
action (increase of bolt tension caused by compressive force where the
edges of the end plate bear against the column flange). The tensile resist-
ance of the top bolts FT,Rd is given by the weakest of these types of
deformation.

The longitudinal reinforcement in the slab is assumed to be at yield in
tension, so the force Ft,s,Rd is known.

Assuming that any axial force in the beam is negligible, the compress-
ive force at the bottom of the joint cannot exceed FT,Rd + Ft,s,Rd. Failure
could occur by buckling of the column web at E, so this resistance is
found next, allowing for the axial compression in the column. If buckling
governs, a stiffener can be added, but this is rarely necessary. The com-
pressive force to cause yielding of the bottom flange, Fa,fl,Rd, is then found.
If it is less than the total tensile force, an area of web is assumed also to
yield, such that

Fa,fl,Rd + Fa,web,Rd = FT,Rd + Ft,s,Rd

The lines of action of these four forces are known, so the bending
resistance of the joint, Mj,Rd, is found.

For beams of unequal depth, or at an external column, checks are also
needed on the resistance of the column web to shear and the transfer to
the column of the unbalanced tensile force in the slab reinforcement. The
methods can also allow for concrete encasement to the column and/or the
webs of the beams.

The resistance of the joint to vertical shear is normally provided by the
bolts at B and C, and may be limited by the bearing strength of the end
plate or column flange. The allocation of some of the shear to the bolts at
A would reduce their design resistance to tension.

Moment–rotation curve for an end-plate joint
The other information needed for design is a curve of hogging bending
moment against rotation of the joint, φ. This is defined as the rotation
additional to that which would occur if the joint were rigid and the beam
continued to its intersection with the centre-line of the column, as shown
in Fig. 5.3. For steel connections, methods are given in EN 1993-1-1 [15]
for the prediction of this curve. They are applicable also to composite
joints, with modifications given in Annex A of EN 1994-1-1. These allow
for the effect of slip of the shear connection on the longitudinal stiffness
of the top reinforcement, and are explained in Reference 17. The elastic
properties of the components give the initial elastic stiffness, Sj,ini. This is
assumed to be applicable for bending moments Mj,Ed up to 2Mj,Rd/3, where
Mj,Rd is the bending resistance of the joint.
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At higher bending moments, EN 1993-1-8 gives the stiffness as

Sj,ini/Sj = (1.5Mj,Ed/Mj,Rd)ψ

where ψ depends on the type of joint, and is 2.7 for a welded or bolted
end-plate joint. The moment–rotation curve for ψ = 2.7 is shown as 0ABC
in Fig. 5.4, in which φ0.67 is the rotation for Mj,Ed = 2Mj,Rd/3.

It is inconvenient for analysis to have a joint stiffness that depends on
the bending moment. For beam-to-column joints, EN 1993-1-8 permits
the simplification that for all values of Mj,Ed, Sj = Sj,ini/2. This is line OB in
Fig. 5.4.

5.3.2 Classification of joints

As shown in Table 4.1, beam-to-column joints are classified in Eurocode
4, as in Eurocode 3, by rotational stiffness, which is relevant to elastic
global analysis, and by resistance to bending moment, which is relevant to
the resistance of a frame to ultimate loads. The three stiffness classes are
shown in Fig. 5.5.

Figure 5.3 Rotation of a joint

Figure 5.4 Moment–rotation curve for an end-plate joint
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Figure 5.5 Classification of joints by initial stiffness

A nominally pinned joint has

Sj,ini ≤ 0.5EaIb/Lb (5.1)

where EaIb is the rotational stiffness of the connected beam, of length Lb.
The value of EaIb should be consistent with that taken for a cross-section
adjacent to the joint in global analysis of the frame. The significance
of this limit to Sj,ini can be illustrated by considering a beam of span Lb

and uniform section that is connected at each end to rigid columns, by
connections with Sj,ini = 0.5EaIb/Lb. It can be shown by elastic analysis
that for a uniformly-distributed load w per unit length, the restraining
(hogging) moments at each end of the beam are

Mel = (wLb
2/8)/7.5 (5.2)

These end moments act also on the columns, the flexibility of which
would in practice reduce the moments below Mel. In design with the
pins on the column centre-line, it is being assumed that columns designed
for Mel = 0 are not ‘adversely affected’ by bending moment from the
joint.

A joint is rigid if

Sj, ini ≥ kbEaIb/Lb

where kb = 8 for a braced frame (defined in EN 1993-1-8).
The amount of redistribution of elastic moments caused by the flexibility

of a connection that is just ‘rigid’ can be quite significant. As an example,
we consider the same beam as before, with properties EaIb and Lb, sup-
ported at each end by rigid columns, with uniform load such that both end
moments are 2Mj,Rd/3, when the joints have stiffness Sj,ini = 8EaIb/Lb.
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Elastic analysis for a uniform beam shows that the end moments are
wL2/15. They would be wL2/12 if the joints were truly rigid, so their
flexibility causes a 20% redistribution of hogging moment. The situation
for a composite beam in practice is more complex because EaIb is not
uniform along the span, and the columns are not rigid.

A semi-rigid joint has an initial rotational stiffness between these two
limits, Fig. 5.5.

The classification of joints by strength is as follows.
A joint with design resistance Mj,Rd is classified as nominally pinned if

Mj,Rd is less than 25% of the bending resistance of the weaker of the
members joined, and if it has sufficient rotation capacity. It is not difficult
to design connections that satisfy these conditions. An example is given
in Section 5.10.

A full-strength joint has a design resistance (to bending, taking account
of co-existing shear) at least equal to Mpl,Rd for the members joined. There
is a separate requirement to check that the rotation capacity of the connec-
tion is sufficient. This can be difficult. It is waived if

Mj,Rd ≥ 1.2Mpl,Rd (5.3)

so in practice a ‘full-strength’ connection may be designed to satisfy
Condition 5.3. It can then be assumed that inelastic rotation occurs in the
beam adjacent to the connection. The rotation capacity is then assured by
the classification system for steel elements in compression.

A partial-strength joint has a resistance less than that of the members
joined; but must have sufficient rotation capacity, if it is at the location of
a plastic hinge, to enable all the necessary plastic hinges to develop under
the design loads.

5.4 Design of non-sway composite frames

5.4.1 Imperfections

The scope of this Section is limited to multi-storey structures of the type
shown in Fig. 5.1, modelled as two sets of plane frames as explained in
Section 5.1. It is assumed that the layout of the beams and columns and
the design ultimate gravity loads on the beams are known.

The first step is to define the imperfections of the frame. These arise
mainly from lack of verticality of columns, but also have to take account
of lack of fit between members, effects of residual stresses in steelwork,
and other minor influences, such as non-uniform temperature of the struc-
ture. The term ‘column’ is here used to mean a member that may extend
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over the whole height of the building. A part of it with a length equal to
a storey height is referred to as a ‘column length’, where this is necessary
to avoid ambiguity.

Imperfections within a storey-height column of length L are repres-
ented by an initial bow, e0. This ranges from L/100 to L/300, depending
on the type of column and the axis of bending. For major-axis bending of
the columns shown in Fig. 5.1(a), EN 1994-1-1 specifies a bow of L/200,
or 20 mm in 4.0 m. This has to be allowed for in verification of the
member, but not in first-order global analysis. The condition of EN 1994-
1-1 for neglecting member imperfections in second-order analysis is,
essentially, that NEd ≤ 0.25Ncr, where Ncr is the elastic critical axial normal
force for the member, allowing for creep, given by Equation 5.20.

A bow of 20 mm in 4 m exceeds the tolerance that would be acceptable
in construction because it allows also for other effects, such as residual
stresses in steel. The out-of-straightness e0 is assumed to occur at mid-
length. No assumption is made about the shape of the imperfection.

Imperfections in beams are allowed for in the classification system for
steel elements in compression, and in design for lateral buckling.

Frame imperfections are represented by an initial side-sway, φ, as shown
in Fig. 5.6(a) for a single column length of height h, subjected to an axial
load N. The action effects in the column are the same as if it were vertical
and subjected to horizontal forces Nφ, as shown.

It is assumed that the angle φ for a composite frame is the same as for
the corresponding steel frame. This is given in EN 1993-1-1 as a function

Figure 5.6 Unbraced and braced frames
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of the height of the structure in metres, h, and the number of columns in
the plane frame considered, m, as follows:

φ = αhαm/200 (5.4)

where

αh = 2/ h with 2/3 ≤ αh ≤ 1 (5.5)

and

αm = (0.5 + 1/m)1/2 (5.6)

Thus, in the frame in Fig. 5.1(b), h = 36 m, αh = 2/3, m = 3, αm =
0.816, and

φ = 0.67 × 0.816/200 = 1/366

This initial sway applies in all horizontal directions, and is uniform over
the height of the frame. In this example, the overall out-of-plumb of each
column is assumed to be 36 000/366 = 98 mm.

Let the total design ultimate gravity load on the frame, for a particular
combination of actions, be G + Q per storey. The imperfections can then
be represented by a notional horizontal force φ(G + Q) at each floor level
– but there may or may not be an equal and opposite reaction at founda-
tion level.

To illustrate this, we consider the single-bay single-storey unbraced
frame ABCD shown in Fig. 5.6(b), with pin joints at A and D, and
assume sin φ = φ, cos φ = 1. The use of additional forces Nφ at B and C
is associated with the assumption that the loads N still act along the
columns, as shown. There are obviously horizontal reactions Nφ at A and
D; but the vertical reactions N are replaced by reactions N(1 ± 2φh/b) at
angle φ to the vertical. The total horizontal reaction at A is therefore

Nφ − Nφ(1 − 2φh/b) = 2Nφ2h/b ≈ 0

The maximum first-order bending moment in the perfect frame is zero.
The imperfection φ increases it to Nφh, at corners B and C, which may not
be negligible.

If there are pin joints at these corners, the frame has to be braced
against side-sway by connection to the top of a stiff vertical cantilever EF
(Fig. 5.6(c)). The external reactions now do include horizontal forces Nφ
at A and D, with an opposite reaction 2Nφ at F; and the vertical reactions
at A and D are independent of φ.
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These simple analyses are first order. That is, they neglect any increase
in the assumed sway φ caused by the deformations of the structure under
load. Analyses that take account of this effect are referred to as second
order. A simple example is the elastic theory for the lateral deformation
of an initially crooked pin-ended strut.

5.4.2 Elastic stiffnesses of members

The determination of these properties requires consideration of the
behaviour of joints and of creep and cracking of concrete. Creep in beams
will be allowed for by using a modular ratio n = 2n0 = 20.2, as before. For
columns, EN 1994-1-1 gives the effective modulus for concrete as

Ec = Ecm/[1 + (NG,Ed/NEd)ϕt] (5.7)

where NEd is the design axial force, NG,Ed is the part of NEd that is per-
manent, and ϕt is the creep coefficient. Expressions for the stiffnesses of
composite columns are given in Section 5.6.3 in terms of Ec. Typical
values for the short-term elastic modulus Ecm are given in Section 3.2.

For cracking it will be assumed, from Section 4.3.2, that the ‘cracked
reinforced’ section of each beam is used for a length of 15% of the span
on each side of the central column. The joints are assumed to be rigid
at the central column and nominally-pinned at the external columns, as
explained earlier.

5.4.3 Method of global analysis

The condition of EN 1993-1-1 for the use of first-order analysis is
αcr ≥ 10, where αcr is the factor by which the design loading would have
to be increased to cause elastic instability in a sway mode.

There is a well-known hand method of calculation of αcr for simple
frames involving s and c functions, which have been tabulated [50]. Com-
puter programs are available for more complex frames. For beam-and-
column plane frames in buildings, EN 1993-1-1 gives the approximation

αcr = (HEd/VEd) (h/δH,Ed) (5.8)

to be satisfied separately for each storey of height h. In this expression,
VEd and HEd are the total vertical and horizontal reactions at the bottom
of the storey, with forces Nφ included in HEd, and δH,Ed is the change in
lateral deflection over the height h.

It will be shown later that, for the frame in Fig. 5.1, the lateral stiffness
of the floor slabs is so much greater than that of the columns that almost
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the whole of the lateral load is transferred to the core and end walls.
These are stiff enough for δH,Ed to be very small, so αcr for each storey far
exceeds 10. Hence, first-order global analysis can be used for each frame.
The shear walls require a separate check.

5.4.4 First-order global analysis of braced frames

5.4.4.1 Actions

This Section should be read with reference to Section 4.3, on global
analysis of continuous beams, much of which is applicable. Braced frames
do not have to be designed for horizontal actions, so the load cases are
similar to those for beams. Imposed load is the leading variable action,
and neither wind nor the Nφ horizontal forces need be included.

No serviceability checks are normally required for braced frames, or
for composite columns. The columns are designed using elastic global
analysis and plastic section analysis; that is, as if their cross-sections were
in Class 2. The method of construction, propped or unpropped, is there-
fore not relevant.

For most types of imposed load, the probability of the occurrence of
the factored design load becomes less as the loaded area increases. EN
1991-1-1 recommends that the imposed load on a floor or roof with a
loaded area of A m2 may be reduced by a factor αA, given by:

αA = 5ψ0/7 + A0/A ≤ 1.0 (5.9)

where A0 = 10.0 m2 and ψ0 is the combination factor for the relevant
type of imposed load. For the loading used in the example, ψ0 = 0.7, so
αA = 1.0 (no reduction) for loaded floor areas of less than 20 m2.

The characteristic imposed load on a column that carries load from n
storeys may be reduced by applying the recommended factor

αn = [2 + (n − 2)ψ0]/n (5.10)

For ψ0 = 0.7, this gives αn < 1 for three or more storeys.
Maximum bending moments in columns in rigid-jointed frames occur

when some of the nearby floors do not carry imposed load. For a column
length AB in a frame with many similar storeys, the most adverse
combination of axial load and bending moment is likely to occur when
the imposed load is applied as in Fig. 5.7(a), for an external column, or
Fig. 5.7(b), for an internal column. The bending-moment distributions for
these columns are likely to be as shown.
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Figure 5.7 Arrangements of imposed load, for column design

5.4.4.2 Eccentricity of loading, for columns

The use of ‘nominally-pinned’ beam-to-column joints reduces bending
moments in the columns, with corresponding increases in the sagging
moments in the beams. For the beams, it is on the safe side to assume that
the moments in the connections are zero. If this were true, the load from
each beam would be applied to the column at an eccentricity slightly
greater than half the depth, ha, of the steel column section (Fig. 5.2(a) ) for
major-axis connections.

An elastic analysis that modelled the real (non-zero) stiffness of the con-
nection would give an equivalent eccentricity greater than this. The real
behaviour is more complex. Initially, the end moments increase the tend-
ency of each column length to buckle; but as the load increases, the column
becomes less stiff, the end moments change sign, and the greater the
stiffness of the connections, the more beneficial is restraint from the beams
on the stability of the column.

Typically, British codes of practice for steel columns have allowed
for this stabilising effect by modelling each storey-height column with
an ‘effective length’ of between 70% and 85% of its actual length (e.g.,
Le/L ≈ 0.7), but have specified an ‘equivalent eccentricity of loading’,
ec ≈ 0.5ha + 100 mm, for the calculation of end moments. For the
206 × 204 UC section to be used here, it will be assumed that the load
from a supported major-axis beam acts at 0.2 m from the axis of the
column. This applies a bending moment to the column that is independ-
ent of its stiffness, and reduces the design span of the beam by 0.2 m at
each joint.

In some other European countries, the practice has been to assume
Le ≈ L, which makes buckling more critical, and ec = 0, which eliminates
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these bending moments from columns. One justification for using ec = 0 is
that the bending moments in the beams are calculated using the span
between column centres, rather than the smaller span between the centres
of the ‘pin’ connections. Eurocodes 3 and 4 at present give no guidance
on this subject.

In the following example, it will be assumed that Le = L and that the
load from a nominally pinned connection acts at 100 mm from the face of
the steel column section, so that

ec = 0.5ha + 100 mm

The beam is assumed to be simply-supported at the pin, so its span is less
than that to the column centre-line.

5.4.4.3 Elastic global analysis

This method of analysis is generally applicable to braced composite frames
with rigid or nominally pinned joints. The flexural stiffness of hogging
moment regions of beams is treated as in Section 4.3.2. For columns,
concrete is assumed to be uncracked, and the stiffness of the longitudinal
reinforcement is usually included, as it may not be negligible.

Bending moments in beams may be redistributed as in Section 4.3.2,
but end moments found for composite columns may not be reduced,
because there is insufficient knowledge of the rotation capacity of
columns.

Where the beam-to-column joints are nominally pinned, as in the
external columns in the example in Section 5.7, the bending moments
in a column are easily found by moment distribution for that member
alone.

5.4.4.4 Rigid-plastic global analysis

The use of this method for a braced frame is not excluded by EN 1994-1-
1, but there are several conditions, which make it unattractive in practice.
In addition to the conditions that apply to beams (Section 4.3.3), these
include the following.

(1) All connections must be shown to have sufficient rotation capacity, or
must be full-strength connections with Mj,Rd ≥ 1.2Mpl,Rd, as explained
in Section 5.3.2.

(2) Unless verified otherwise, it should be assumed that composite
columns do not have rotation capacity.
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5.4.5 Outline sequence for design of a composite braced frame

This over-view is intended to provide an introduction to the subject; it is
not comprehensive. Its scope is limited to regular multi-storey braced
frames of the type used in the examples in Chapters 3, 4 and 5. It is
assumed that the detailing will provide the required resistance to fire, and
that the following decisions are made at the outset:

• number of storeys, storey heights, column positions, layout and spans
of beams;

• use of floors to transfer lateral forces to bracing elements;
• type and location of bracing elements;
• imposed floor loadings and wind loading;
• type(s) of beam-to-column joints (pinned, semi-rigid, or rigid);
• nominal eccentricity for any nominally-pinned joints to columns;
• strengths of materials and densities of concretes to be used.

Ultimate limit states
(1) Design the floor slabs (concrete or composite), spanning between

the beams.
(2) Find imposed-load reductions (if any) for the beams.
(3) Do preliminary designs for beams, neglecting interaction with

internal columns, as these have little influence, even if joints are
rigid. Use of nominally-pinned joints to external columns enables
their influence on beam design also to be ignored. Include the
flexibility of any semi-rigid joints in analyses of continuous beams.

(4) Find imposed-load reductions for columns, and do preliminary
designs. Check that columns are not so slender that their imperfec-
tions should be included in global analysis.

(5) Consider creep and cracking of concrete, and find elastic stiffnesses
for all beams and columns.

(6) Do elastic first-order global analyses for all frames, for gravity
loads only, to find action effects in beams and columns. Moments
in beams may be redistributed, within permitted limits. Neglect
frame and member imperfections.

(7) Check beam designs. Revise if necessary.
(8) Increase bending moments in each column to allow for second-

order effects within the column length and for column imperfections.
Check column designs and revise if necessary.

(9) Allow for frame imperfections by notional horizontal forces.
Compare these with forces from wind, and decide whether, for
horizontal loading, the leading variable action should be imposed
gravity loading or wind loading.
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(10) Do preliminary designs for bracing elements, to find their
stiffnesses.

(11) Do elastic first-order global analyses for the complete structure,
for horizontal loads plus appropriate gravity loads, to find lateral
deflections. The arrangement of imposed loading should be that
which gives maximum side-sway.

(12) Repeat (11) with all beam–column intersections displaced laterally
by the amounts found in step (11). Check that the increases in the
action effects that govern design of members are all less than 10%.
(This condition for the use of first-order global analyses is assumed
to be satisfied.)

(13) Check the design of the bracing elements, taking account of imper-
fections and second-order effects. (The example in this chapter
does not include this.)

Design for serviceability limit states
Re-analyse the frames for unfactored vertical loads to check deflections
and susceptibility to vibration. Detail reinforcement to control crack widths,
as necessary.

5.5 Example: composite frame

5.5.1 Data

To enable previous calculations to be used, the structure to be designed
has a composite slab floor that spans 4.0 m between two-span continuous
composite beams with spans of 9.5 m. There are nine storeys, each with
floor-to-floor height of 4.0 m, as shown in Fig. 5.1. The outer columns are
assumed to be nominally pinned at ground level, and the internal columns
to be nominally pinned at basement level, 4.0 m below the beam at ground
level. For simplicity, it is assumed that the roof has the same loading
and structure as the floors, though this would not be so in practice. The
building stands alone, and the horizontal span of its floors between lateral
restraints is 28 m, as explained earlier.

The materials and loadings are as used previously, Sections 3.2, 3.11
and 4.6, and the composite floor is as designed in Section 3.4. The two-
span composite beams are as designed in Section 4.6, with nominally-
pinned connections to the external columns (Section 5.10), except that
they are not continuous over a central point support. There is instead a
composite column at mid-length of each beam, to which each span is
connected by a ‘rigid’ and ‘full-strength’ joint. These terms are defined in
Section 5.3.2.
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The only gravity loads additional to those carried by the beams are the
weight of the columns and the external walls. The characteristic values
are assumed to be as follows:

• for each column, gk = 3.0 kN/m = 12.0 kN per storey
• for each external wall, gk = 60 kN per bay per storey

The 60-kN load is for 4 × 4 = 16 m2 of wall, which is assumed to be
supported at each floor level by a beam spanning 4.0 m between adjacent
columns.

The design ultimate gravity load per storey for each column is therefore
the load from one main beam plus:

• for the internal column, 12 × 1.35 = 16.2 kN 5
6

• for an external column, 72 × 1.35 = 97.2 kN 7
(5.11)

The characteristic wind load is based on wind in a direction parallel to
the longitudinal axes of the main beams. It causes pressure on the wind-
ward wall and suction (i.e., pressure below atmospheric) on the leeward
wall. The sum of these two effects is assumed to be:

qk,wind = 1.5 kN/m2 of windward wall (5.12)

The effects of wind blowing along the building are not considered.
The properties of materials are as summarised in Section 4.6.1, except

that the concrete in the composite columns is of normal density, with
properties

fck = 25 N/mm2 Ecm = 31.0 kN/mm2 (5.13)

The design initial side-sway of a frame such as DEF in Fig. 5.1 was found
in Section 5.4.1 to be φ = 1/366.

5.5.2 Design action effects and load arrangements

The whole of the design variable load for a typical frame is transferred
to its three columns by the major-axis beams. Permanent loading is
symmetrical about the plane of the frame, so the minor-axis bending
moments applied to the columns are negligible. The additional gravity
loads (Expressions 5.11) are assumed to cause no major-axis bending
moments. These are caused in the external columns only by the loads
from the major-axis beams.
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Figure 5.8 Beam loading for maximum hogging bending
moment at B

Load arrangements
For each action effect in a member, the appropriate arrangement of
imposed load is that which gives the most adverse value (usually, the
highest value).

For hogging bending in a beam, and for axial force in columns,
imposed load should be applied to both spans of every beam. From
Table 4.4, the design loads are as shown in Fig. 5.8. The loaded floor area
is 18.6 × 4 = 72.4 m2 so, from Equation 5.9, a reduction factor αA = 0.5 +
10/72.4 = 0.64 could be applied. This is not done, for simplicity, so that
earlier results can be used.

From symmetry, the loading causes no bending in the internal column.
From Section 4.6.2, the bending moment in the beam at B, after 30%
redistribution of moments, is

MEd,B ===== 461 kN m (5.14)

From equilibrium of length AB, the shear force in each beam at B is

VEd,B = 60.9 × 9.3/2 + 461/9.3 = 333 kN (5.15)

To obtain the shear forces at the pins at A and C, each span is increased
to 9.5 m, so that the loads on the external columns include the correct
width of floor. Resolving vertically for span AB,

VA,Ed ===== VC,Ed = 60.9 × 9.5 − 333 = 246 kN (5.16)

For maximum sagging bending moment in a beam, it is accurate enough
to analyse the limited frame of Fig. 5.8 with the loading on one span
reduced to 23.7 kN/m, the design dead load (Table 4.4).

For the columns, the arrangement of variable load shown in Fig. 5.9,
with full variable load on all upper floors, will provide an adverse com-
bination of axial force and single-curvature bending in both the column
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lengths AB and CD. It is assumed that column length DE can have an
increased cross-section, if necessary.

The example is continued after the design methods for composite
columns have been explained.

5.6 Simplified design method of EN 1994-1-1, for columns

5.6.1 Introduction

Background information for this Section is provided in Sections 5.1 and
5.2. Global analysis provides for each column length in a plane frame
a design axial force, NEd, and applied end moments M1,Ed and M2,Ed. By
convention, M1 is the greater of the two end moments, and they are both
of the same sign where they cause single-curvature bending.

Initially, concrete-encased H- or I-sections are considered (Fig. 5.10(a)
and (b)). Where methods for concrete-filled steel tubes (Fig. 5.10(c)) are
different, this is explained in Section 5.6.7. The encased sections are
assumed to have bi-axial symmetry, and to be uniform along each column
length. Applied moments are resolved into the planes of major-axis and
minor-axis bending of the column, and their symbols have additional
subscripts (y and z, respectively) where necessary.

The two ends of a column length are assumed each to be connected to
one or more beams and to be braced laterally at these points, distance L
apart. The effective length of each column length is here assumed to be L,
as explained in Section 5.4.4.2. Lateral loads on columns are assumed to
be applied only at the ends of each column length.

Figure 5.9 Arrangement of variable load for maximum bending in
columns AB and CD
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Figure 5.10 Typical cross-sections of composite columns

The methods explained below are applied separately for each plane of
bending. It often happens that all significant bending occurs in one plane
only. If this is minor-axis bending, no major-axis verification is needed.
If it is major-axis bending, minor-axis buckling must be checked, as
explained in Section 5.6.5.2, because of interaction between the axial load
and the minor-axis imperfections.

These methods are different from column design to BS 5400:Part 5,
and also from design of steel columns to EN 1993-1-1.

5.6.2 Fire resistance, and detailing rules

Before doing calculations based on an assumed cross-section for a com-
posite column, it is wise to check that the section satisfies relevant limits
to its dimensions.

The resistance to fire of a concrete-encased I-section column is deter-
mined by the thickness of the concrete cover to the steel section and the
reinforcement. For a 90-minute period of resistance and a cross-section
with dimensions hc and bc of at least 250 mm (for example), the limits to
cover given by EN 1994-1-2 are 40 mm to the steel section and 20 mm to
the reinforcement.

The rules of EN 1992-1-1 for minimum cover and reinforcement, and
for maximum and minimum spacing of bars, should be followed. These
ensure resistance to corrosion, safe transmission of bond forces, and avoid-
ance of spalling of concrete and buckling of longitudinal bars. The ratio
of area of reinforcement to area of concrete allowed for in calculating
resistances should satisfy

0.003 ≤ As/Ac ≤ 0.06 (5.17)
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The upper limit is to ensure that the bars are not too congested at overlaps.
The thickness of concrete cover to the steel section that may be used in

calculations has upper limits cy = 0.4b, cz = 0.3h. These relate to the
proportions of columns for which this design method has been validated.
The steel contribution ratio δ and the slenderness l (Section 5.6.3.1) are
limited for the same reason.

The steel contribution ratio is defined by

δ = Aa fyd/Npl,Rd (5.18)

where fyd is the design yield strength of the structural steel, with the
condition

0.2 ≤ δ ≤ 0.9

If δ < 0.2, the column should be treated as reinforced concrete; and if
δ > 0.9, as structural steel. The term Aa fyd is the contribution of the struc-
tural steel section to the plastic resistance Npl,Rd, given by Equation 5.24.

5.6.3 Properties of column lengths

The characteristic elastic flexural stiffness of a column cross-section about
a principal axis (y or z) is the sum of contributions from the structural
steel (subscript a), the reinforcement (subscript s) and the concrete (sub-
script c), and so has the format:

(EI)eff = EaIa + EsIs + KcEc,eff Ic (5.19)

where E is the elastic modulus of the material and I the second moment of
area of the relevant cross-section.

The elastic critical normal force is found from

Ncr = π2(EI )eff /L
2 (5.20)

where L should be taken as the length between the lateral restraints in the
plane of buckling considered. The ‘concrete’ term in Equation 5.19 is
based on calibration of results from this method against test data. It was
found that Kc = 0.6 and that creep should be allowed for by reducing the
mean short-term elastic modulus for concrete, Ecm, as follows:

Ec,eff = Ecm/[1 + (NG,Ed/NEd)ϕt] (5.21)

where the symbols are defined after Equation 5.7.
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As Ncr does not depend on strengths of materials, no partial factors are
involved. It is treated as a ‘characteristic’ value. The use of the charac-
teristic value of EI, denoted (EI)eff, is therefore appropriate. A lower
‘design’ value is also needed, for analysis of second-order effects within a
column length. This is given in EN 1994-1-1 as

(EI)eff,II = 0.9(EaIa + Es Is + 0.5Ec,effIc) (5.22)

with Ec,eff from Equation 5.21. The factor 0.5 allows for cracking, and the
0.9 is based on calibration work.

5.6.3.1 Relative slenderness

The non-dimensional relative slenderness of a column length for buckling
about a particular axis is defined by

l = √(Npl,Rk/Ncr) (5.23)

The design resistance to axial load of a straight column too short to
buckle, known as the ‘squash load’, is given by

Npl,Rd = Aa fyd + As fsd + 0.85Ac fcd (5.24)

where the design strengths of the materials are:

• for structural steel, fyd = fy/γA (not fyk because fy is a
nominal value)

• for reinforcement, fsd = fsk/γS

• for concrete in compression, fcd = fck/γC

and the γs are the usual partial factors for ultimate limit states. The area
Ac is conveniently calculated from

Ac = bchc − Aa − As (5.25)

For calculating l, Npl,Rd is replaced by the characteristic squash load,

Npl,Rk = Aa fy + As fsk + 0.85Ac fck (5.26)

because Ncr is a characteristic value.
The following method of column design, from EN 1994-1-1, is limited

to column lengths with l ≤ 2. This limit is rarely exceeded in practice.



Composite columns and frames 193

5.6.4 Resistance of a cross-section to combined compression

and uni-axial bending

Design for a combination of load along the x-axis and bending about the
y- or z-axis is based on an interaction curve between resistance to com-
pression, NRd, and resistance to bending about the relevant axis, MRd. The
method is explained with reference to Fig. 5.11. The plastic resistance
Npl,Rd is given above.

The complexity of hand methods of calculation for Mpl,Rd and other
points on the curve has been a disincentive to the use of composite
columns. It is quite easy to prepare a spreadsheet to do this. However, it
should be noted that when a rolled I- or H-section is represented by three
rectangles, as in the algebra given in Reference 17 and outlined below,
results will differ slightly from those by hand calculation, unless the
corner fillets are allowed for.

The assumptions are those used for calculating Mpl,Rd for beams: rectan-
gular stress blocks with structural steel at a stress ± fyd, reinforcement at
± fsd, and concrete at 0.85fcd in compression or cracked in tension. Full
shear connection is assumed.

The complexity appears in the algebra. For major-axis bending of the
section shown in Fig. 5.10(a), there are five possible locations of the
plastic neutral axis, each leading to different expressions for NRd and MRd.
A practicable method is to guess a position for the neutral axis, and
calculate NRd by summing the forces in the stress blocks, and MRd by
taking moments of these forces about the centroid of the uncracked sec-
tion. This gives one point on Fig. 5.11. Other points, and hence the curve,
are found by repeating the process.

Figure 5.11 Polygonal approximation to M–N interaction curve
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The simplification made in EN 1994-1-1 is to replace the curve by a
polygonal diagram, AECDB in Fig. 5.11. An ingenious and fairly simple
method of calculating the co-ordinates of points B, C and D was given in
the ENV version of EN 1994-1-1, and is now explained in an Appendix
of Reference 17. It is used in Section 5.7.2.

For major-axis bending of encased I-sections, AC may be taken as a
straight line, but for other situations an intermediate point, E, should be
found, as line AC can be too conservative. For point E, the first guessed
neutral-axis position is usually good enough. A similar method is used for
the interaction polygon for axial load and minor-axis bending.

Transverse shear force may be assumed to be resisted by the steel section
alone. The design method for moment-shear interaction in beams (Section
4.2.2) may be used. In columns, VEd is usually less than 0.5Vpl,Rd, and then
no reduction in bending resistance need be made. None is assumed here.

5.6.5 Verification of a column length

5.6.5.1 Design action effects, for uni-axial bending

It is assumed that the interaction curve or polygon, Fig. 5.11, has been
determined, and that the design axial force NEd and the end moments M1,Ed

and M2,Ed have been found by global analysis. It is rare for a vertical
column length in a building to be subjected to significant transverse load
within its length, and none is assumed here.

If, as is likely, member imperfections (see Section 5.4.1) were omitted
from the global analysis of the frame, the initial bow, of amplitude e0, is
allowed for now. Its first-order effect is to increase the bending moment at
mid-length of the column by NEde0.

The condition in EN 1994-1-1 for neglect of second-order effects is

Ncr,eff ≥ 10NEd (5.27)

where Ncr,eff is found from Equation 5.20 with (EI)eff replaced by (EI)eff,II

from Equation 5.22. If this condition applies, the design bending moment
MEd for the column is the greatest value given by the curve in Fig. 5.12(a).
Otherwise, a second-order analysis is required, or the following simplified
methods from EN 1994-1-1 should be used.

Second-order effects in a column length
Second-order effects of the end moments and from the NEde0 moment are
found separately, and can be superimposed. This is possible because they
both result from the same axial force. They are always added, because the
imperfection e0 can occur in any lateral direction. Subscripts ‘end’ and
‘imp’ are now used, respectively, for these two sets of moments.
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Figure 5.12 First-order and second-order bending moments in a
column length

The greatest first-order bending moment is multiplied by a factor kend

given by

k = β/[1 − (NEd/Ncr,eff) ] (5.28)

where

β = 0.66 + 0.44(M2/M1) ≥ 0.44 (5.29)

with Ncr,eff as above. The coefficient β allows for the more adverse effect
of single-curvature bending than of double-curvature bending, for which
M2/M1 is negative.

In EN 1994-1-1, Equation 5.28 appears with the further condition
k ≥ 1.0. It is over-conservative to apply this when combining two sets of
second-order effects, and βend is often such that kend < 1. This value need
not be increased to 1.0. The first-order end moments, for example AB in
Fig. 5.12(c), are replaced by an equivalent uniform moment βendM1,Ed,
which is increased to kendM1,Ed at mid-length to allow for second-order
effects, as shown. This always exceeds βendM1,Ed, from Equation 5.28.

For the bending moment from the member imperfection, EN 1994-1-1
specifies βimp = 1.0 so, from Equation 5.28, kimp always exceeds 1.0,
Fig. 5.12(d).

The design bending moment for the column length is usually

MEd = kendM1,Ed + kimpNEde0 (5.30)

but is M1,Ed, if greater.
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Verification, for uni-axial bending
The column is strong enough if its cross-section can resist the combina-
tion of MEd with NEd. The bending resistance MRd in the presence of axial
compression NEd is found from the interaction diagram, explained in
Section 5.6.4.

A correction is required for the unconservative assumption that the
rectangular stress block for concrete extends to the plastic neutral axis
(Section 3.5.3.1). It is made by reducing the bending resistance, so that
the verification condition is

MEd ≤ αMMRd (5.31)

where αM = 0.9 for steel grades up to S355, for which fy = 355 N/mm2 for
sections of thickness up to 40 mm. It is reduced to 0.8 for stronger steels,
to take account of the adverse effect of their higher yield strain on the
load at which concrete begins to crush.

5.6.5.2 Bi-axial bending

It has to be decided in which plane of bending failure is expected to
occur. This is usually obvious. The bending moment NEde0 is included
only for this plane. The axial load NEd and the maximum design bending
moments about both axes, My,Ed and Mz,Ed, are found, as in Section 5.6.5.1.
The verification consists of checking Expression 5.31 separately for each
axis and, in addition, satisfying Expression 5.32:

My,Ed/My,Rd + Mz,Ed/Mz,Rd ≤ 1.0 (5.32)

5.6.6 Transverse and longitudinal shear

For applied end moments M1 and M2, as defined in Section 5.6.1, the
transverse shear in a column length is (M1 − M2)/L. An estimate can be
made of the longitudinal shear stress at the interface between steel and
concrete, by elastic analysis of the uncracked composite section. This
is rarely necessary in multi-storey structures, where these stresses are
usually very low.

Higher stresses may occur near joints at a floor level where the axial
load added to the column is a high proportion of the total axial load. Load
added after the column has become composite, NEd say, is assumed to
be transferred initially to the steel section, of area Aa. It is then shared
between the steel section and its encasement on a transformed area basis:

NEd,c = NEd(1 − Aa/A) (5.33)
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where NEd,c is the force that causes shear at the surface of the steel section
and A is the transformed area of the column in ‘steel’ units. There must be
a ‘clearly defined load path . . . that does not involve an amount of slip at
this interface that would invalidate the assumptions made in design’ (from
EN 1994-1-1).

There is no well-established method for calculating longitudinal shear
stress at the surface of the steel section, τEd. Design is usually based on
mean values, found by dividing the force by the perimeter of the section,
ua, and an assumed ‘load introduction length’, �V:

τEd = NEd,c/ua�V (5.34)

It is recommended in EN 1994-1-1 that �V should not exceed the least
of 2bc, 2hc (Fig. 5.10) and L /3, where L is the column length.

Design shear strengths τRd due to bond and friction are given in EN
1994-1-1 for several situations. For completely encased sections,

τRd = 0.3 N/mm2 (5.35)

This is a low value, to take account of the approximate nature of τEd.
Where τEd is less than τRd, no account need be taken of the further

transfer of force by shear between steel and concrete as failure is
approached. The best protection against local failure is provided by the
transverse reinforcement (links) which are required by EN 1992-1-1 to be
more closely spaced near beam–column intersections than elsewhere.

In regions where τRd is exceeded, shear connectors should be provided
for the whole of the shear. These are best attached to the web of a steel
H- or I-section, because their resistance is enhanced by the confinement
provided by the steel flanges. Design rules are given in EN 1994-1-1.

5.6.7 Concrete-filled steel tubes

A typical cross-section of a column of this type is shown in Fig. 5.10(c). To
avoid local buckling of the steel, slendernesses of the walls must satisfy

h/t ≤ 52ε (5.36)

where

ε = (235/fy)
0.5

and fy is the yield strength in N/mm2 units. For concrete-filled circular
hollow sections of diameter d the limit is more generous:

d/t ≤ 90ε2 (5.37)
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Design is essentially as for encased H-sections, except that in calculat-
ing the squash load Npl,Rd, account is taken of the higher resistance of the
concrete, caused by lateral restraint from the steel tube, as follows.

The factor 0.85 in Equations 5.24 and 5.26 is replaced by 1.0. Also, for
circular sections only, fcd is increased to an extent that depends on the ratios
t/d, fy/fck, l and MEd/(NEdd ), provided that the relative slenderness l ≤ 0.5.

For a circular section, there is also a reduction in the effective yield
strength of the steel wall used in calculating Npl,Rd, to take account of the
circumferential tensile stress in the wall. This stress provides restraint to
lateral expansion of the concrete caused by the axial load on the column.
These rules are based on extensive testing.

5.7 Example: external column

5.7.1 Action effects

The use of nominally-pinned joints and a braced frame enables the design
of an external column to be completed without further global analysis of
the frame of Fig. 5.1. From Section 5.5, the design ultimate shear force
from a fully-loaded beam is 246 kN. The size of the external column is
governed by the length 0–1 in Fig. 5.13(a). This supports load from nine
floors, so from Equation 5.10 the reduction factor for imposed load, with
ψ0 = 0.7 as before, is

αn = (2 + 7 × 0.7)/9 = 0.767

Figure 5.13 Dimensions and action effects for external column
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From Table 4.4, the variable load provides 37.2/60.9 = 61% of the shear
force. Hence, the shear force at each pin joint is

VEd = 246 × 0.61 × 0.767 + 246 × 0.39 = 115 + 96 = 211 kN
(5.38)

It is assumed that the steel section for the column will be from the
203 × 203 UC serial size, so the eccentricity at the pin joint is 0.203/2 +
0.1 = 0.20 m, and the major-axis bending moment applied to the column
at each loaded floor level is

MEd = 211 × 0.2 = 42.2 kN m (5.39)

The bending moment in length 0–1 is determined mainly by the load
from level 1, so factor αn is taken as 1.0 at that level, giving the applied
moments and shears shown in Fig. 5.13(a). The bending moments in the
lower part of the column, found by moment distribution, are shown in
Fig. 5.13(b).

For minor-axis bending, all the loading is permanent, and equal on the
two sides of the column, so bending moment arises only from the initial
bow of the member.

Including the permanent load from Equation 5.11, the axial load for
length 0–1 is:

NEd = 9 × 97 + 8 × 211 + 246 = 2807 kN (5.40)

5.7.2 Properties of the cross-section, and y-axis slenderness

A cross-section for the column must now be assumed, and is shown
in Fig. 5.14. Applying the usual partial factors to the properties of the

Figure 5.14 Assumed cross-section for external column length 0–1
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materials given in Section 4.6.1 and Equation 5.13, the design properties
are:

fyd = 355 N/mm2 fsd = 435 N/mm2,

0.85fcd = 14.2 N/mm2 Ecm = 31.0 kN/mm2

The assumed concrete cover to the reinforcement, 30 mm, and to the
structural steel, 57 mm, satisfy the requirements for 90 minutes’ fire
resistance. From EN 1992-1-1, 30 mm cover should be sufficient if the
external face of the column is protected; but if it is exposed to rain and/
or freeze/thaw, it would be necessary to increase either the cover or the
grade of the concrete.

The cross-sectional areas of the three materials are:

Aa = 6640 mm2 As = 804 mm2 Ac = 94 950 mm2

The ratio As/Ac is 0.0085, which satisfies Expression 5.17.
From Equation 5.24, the design plastic resistance to axial load is

Npl,Rd = 6640 × 0.355 + 804 × 0.435 + 94.95 × 14.2

= 2357 + 350 + 1345 = 4052 kN (5.41)

With the partial factors taken as 1.0, from Equation 5.26,

Npl,Rk = 2357 + 350 × 1.15 + 1345 × 1.5 = 4776 kN (5.42)

From Equation 5.18,

δ = 2357/4052 = 0.582

which is within the permitted range.
Second moments of area of the uncracked section are needed for the

calculation of the elastic critical load, Ncr.

For the steel section, from tables, 10−6Ia = 52.6 mm4

For the reinforcement, 10−6Is = 804 × 0.1152 = 10.6 mm4

For the concrete, 10−6Ic = 3202 × 0.322/12 − 52.6 − 10.6 = 811 mm4

The long-term creep coefficient for the column, ϕ(t0,∞), is needed for
Equation 5.21. It depends on the relative humidity, taken as 50% for a
centrally-heated building, on the cross-section of the concrete, and on the
‘age at first loading’, t0. There is, of course, no single age for the bottom
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length of a column; but the result is not sensitive to ages exceeding
28 days. Assuming a (conservative) mean age at first loading of 40 days,
EN 1992-1-1 gives ϕ(t0,∞) = 3.0.

From Equations 5.38 and 5.40,

NG,Ed/NEd = (9 × 96 + 9 × 97)/2807 = 0.62

From Equation 5.21,

Ec,eff = 31/(1 + 0.62 × 3) = 10.8 kN/mm2

From Equation 5.19,

10−12(EI)eff = 0.21 × 52.6 + 0.20 × 10.6 + 0.6 × 0.0108 × 811

= 11.05 + 2.12 + 5.26 = 18.4 N mm2 (5.43)

It is notable that the allowance made in design for creep and cracking
of the concrete encasement, including second-order effects, reduces the
contribution from the concrete to the effective flexural stiffness of this
cross-section to 29%. The initial unfactored uncracked value, using EcmIc,
is 66%.

From Equation 5.22,

10−12(EI)eff,II = 0.9(11.05 + 2.12 + 0.5 × 0.0108 × 811)

= 15.8 N mm2 (5.44)

From Equation 5.20,

Ncr = π2 × 18.4 × 1000/42 = 11 350 kN (5.45)

From Equations 5.23, 5.42 and 5.45,

l = √(4776/11350) = 0.65

This is less than 2.0, so the design method of Section 5.6 is applicable.

Interaction polygon for major-axis bending
Co-ordinates for the polygonal interaction diagram for major-axis bending
are now calculated, using the notation shown in Fig. 5.15 and dimensions
from Fig. 5.14. It is assumed that the plastic neutral axis for pure bending,
line B–B, lies between the steel flanges, as shown, with the region above
B–B in compression.
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Figure 5.15 Plastic neutral axes for encased I-section

The plastic section moduli for the three materials, assuming that con-
crete is as strong in tension as in compression, are:

10−6Wpa = 0.568 mm3 (from tables)

10−6Wps = Asez = 0.804 × 0.115 = 0.0925 mm3

10−6Wpc = bchc
2/4 − 0.568 − 0.0925 = 7.53 mm3

For rectangular stress blocks with stresses fyd = ±355 N/mm2 in steel,
fsd = ±435 N/mm2 in reinforcement and 0.85fcd = 14.2 N/mm2 in con-
crete, in compression only, it is found from longitudinal equilibrium with
NEd = 0 that hn = 67 mm.

Plastic section moduli for the region of depth 2hn between lines B–B
and C–C in Fig. 5.15 are now found:

10−6Wpa,n = twhn
2 = 8 × 0.0672 = 0.036 mm3

10−6Wpc,n = (bc − tw)hn
2 = (320 − 8) × 0.0672 = 1.40 mm3

At point D on the interaction polygon of Fig. 5.11, the neutral axis is line
D–D in Fig. 5.15. The longitudinal forces in the steel section and the
reinforcement sum to zero, from symmetry, so the axial compression is
Npm,Rd/2, where

Npm,Rd = 0.85Ac fcd (5.46)

Hence,

0.5Npm,Rd = 0.5 × 94.95 × 14.2 = 673 kN
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Figure 5.16 Interaction diagram for major-axis bending of external
column

The bending resistance at point D, with Wpc halved to allow for cracking, is

Mmax,Rd = Wpa fyd + Wps fsd + 0.85Wpc fcd/2

= 0.568 × 355 + 0.0925 × 435 + 7.53 × 14.2/2

= 295 kN m (5.47)

When the plastic neutral axis moves from D–D to C–C, the axial
compression changes from Npm,Rd/2 to Npm,Rd, because the changes in axial
force are of the same size (but of opposite sign) as when it moves from
D–D to B–B.

When the plastic neutral axis moves from B–B to C–C, the resultant of
all the changes in axial force passes through G (from symmetry), so that
the bending resistances at points B and C are the same, and are

Mpl,Rd = Mmax,Rd − Wpa,n fyd − Wpc,n .fcd/2

= 295 − 0.036 × 355 − 1.4 × 14.2/2

= 272 kN m (5.48)

The axial force at point C is

Npm,Rd = 1346 kN (5.49)

so the position of line AC in Fig. 5.11 is as shown in Fig. 5.16.

5.7.3 Resistance of the column length, for major-axis bending

The design axial compression is NEd = 2807 kN from Equation 5.40; and
from Equation 5.44:

Ncr,eff = π2 × 15.8 × 1000/42 = 9750 kN
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The condition Ncr,eff ≥ 10NEd (Equation 5.27) is not satisfied, so second-
order effects must be allowed for.

From Fig. 5.13(b),

M1,Ed = 19 kN m and M2,Ed = 0

From Equation 5.29,

βend = 0.66

From Equation 5.28,

kend = 0.66/(1 − 2807/9750) = 0.66 × 1.404 = 0.93

For the initial bow e0 = 20 mm (Section 5.4.1), βimp = 1.0, and

NEde0 = 2807 × 0.02 = 56 kN m

From Equation 5.28,

kimp = 1.404

From Equation 5.30, and as shown in Fig. 5.17,

My,Ed = 0.93 × 19 + 1.4 × 56 = 18 + 78 = 96 kN m (5.50)

From Fig. 5.16,

My,Rd = 125 kN m (5.51)

Figure 5.17 Major-axis bending-moment diagrams for external column
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Figure 5.18 Interaction diagram for minor-axis bending of external
column

From Equation 5.31,

αMMy,Rd = 0.9 × 125 = 113 kN m (5.52)

This exceeds My,Ed, so this column length has sufficient major-axis
resistance. It can be shown that although the length above has a higher
end moment, 30 kN m, it also is strong enough, because it is in double-
curvature bending.

5.7.4 Resistance of the column length, for minor-axis bending

The margin of resistance to major-axis bending (above) is quite low, so
two more T16 reinforcing bars were added to the cross-section, as shown
in Fig. 5.18(a), to increase minor-axis resistance.

The cross-sectional areas given in Section 5.7.2 now become:

Aa = 6640 mm2 As = 1206 mm2 Ac = 94 550 mm2

and Npl,Rd is increased from 4052 kN to 4224 kN.
The second moments of area are:

for the steel section, from tables, 10−6Ia = 17.7 mm4

for the reinforcement, 10−6Is = 1206 × 0.1152 = 15.9 mm4

for the concrete, 10−6Ic = 3202 × 0.322/12 − 17.7 − 15.9 = 840 mm4

With Ec,eff = 10.8 kN/mm2 (Section 5.7.2), and from Equation 5.22,

10−12(EI)eff,II = 0.9(0.21 × 17.7 + 0.20 × 15.9 + 0.5 × 0.0108 × 840)

= 10.3 N mm2
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Using this value in Equation 5.20,

Ncr,eff = π2 × 10.3 × 1000/42 = 6353 kN

With βimp = 1.0 as before, and from Equation 5.28,

kimp = 1/(1 − 2807/6353) = 1.79

From EN 1994-1-1, the initial bow for the minor axis is L/150 = 27 mm
so, from Equation 5.30,

Mz,Ed = 1.79 × 2807 × 0.027 = 136 kN m (5.53)

Interaction diagram for minor-axis bending
The method of calculation is similar to that used in Section 5.7.2. The
plastic neutral axis for pure bending usually intersects the steel flanges,
but not the web, and was found for this cross-section to be as shown in
Fig. 5.18(a), with hn = 6.2 mm.

The required plastic section moduli are:

10−6Wpa = 0.263 mm3 (from tables)

10−6Wps = 1.206 × 0.115 = 0.139 mm3

10−6Wpc = 3.23/4 − 0.263 − 0.139 = 7.79 mm3

10−6Wpa,n = 0.004 mm3

10−6Wpc,n = 0.010 mm3

As in Equation 5.47,

Mmax,Rd = 0.263 × 355 + 0.139 × 435 + 7.79 × 14.2/2 = 209 kN m

As in Equation 5.48,

Mpl,Rd = 209 − 0.004 × 355 − 0.010 × 14.2/2 = 208 kN m

From Equation 5.46,

Npm,Rd = 94.55 × 14.2 = 1343 kN

The interaction polygon, shown in Fig. 5.18(b), gives

Mz,Rd ===== 102 kN m (5.54)
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From Equation 5.31,

αMMz,Rd = 0.9 × 102 = 92 kN m (5.55)

This is less than Mz,Ed, so this column length is found to be too weak in
minor-axis bending, when the polygonal approximation for curve AC in
Fig. 5.18(b) is used.

Using the computed curve, Mz,Rd is found to be 149 kN m, which appears
to be sufficient; but resistance to bi-axial bending must be checked.

Bi-axial bending
For the bi-axial check to Expression 5.32, the initial bow is assumed to be
in the more adverse plane, so either My,Ed or Mz,Ed is reduced. Here, NEde0 is
greater for minor-axis bending, so My,Ed is reduced from 96 kN m to 18 kN m,
Fig. 5.17. From Equations 5.51 and 5.53, and using Mz,Rd = 149 kN m,

18/125 + 136/149 = 0.14 + 0.91 = 1.05

but should not exceed 1.0. To satisfy this check, Mz,Rd would have to be
increased to 136/0.86 = 158 kN m. This could be done by providing more
reinforcement.

5.7.5 Checks on shear

These checks are described in Section 5.6.6. The major-axis design trans-
verse shear is greatest in column length 1–2, and is

VEd = (M1 − M2)/L = (24 + 30)/4 = 13.5 kN

This is obviously negligible; Vpl,Rd for the web of the steel section is over
300 kN.

From Fig. 5.13(b), the total vertical load applied to the column at level
1 is 246 + 97 kN, but the self-weight of the column can be deducted,
giving NEd = 327 kN. Any load transferred to the concrete encasement by
direct bearing of the three steel beams connected to the column at this
floor level is conservatively neglected. Creep reduces the load transfer, so
the short-term modular ratio, n0 = 10.1 is used for the transformed area of
the column cross-section, A. With areas from Section 5.7.4,

10−3A = 6.64 + 1.206 + 94.55/10.1 = 17.2 mm2

From Equation 5.33,

NEd,c = 327(1 − 6.64/17.2) = 201 kN
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The perimeter of the steel section is ua = 1140 mm. Assuming a trans-
mission length of 640 mm, twice the least lateral dimension, Equation
5.34 gives

τEd = NEd,c/ua�V = 201/(1.14 × 640) = 0.27 N/mm2

This is less than τRd, Equation 5.35, so local bond stress is not excessive,
and shear connection is not required.

This completes the validation for this column length, provided that
analysis for lateral loading (Section 5.9) confirms the assumption that it is
all transferred by the floors to the end walls and the central core.

5.8 Example (continued): internal column

A typical internal column between level 0 and level 1 is now designed,
for the arrangement of variable loading shown in Fig. 5.9. Full permanent
load acts on all of the beams. Variable load acts on all beams at levels 2
to 9, but not on beams AD and CG, as this increases the single-curvature
bending moment in length CD of the column. Any rotational restraint
from point E, at basement level, is neglected.

In Section 5.7.1, the live-load reduction factor was found to be
αn = 0.767. This reduces the design ultimate load on each beam from
60.9 kN/m (Table 4.4) to 52.2 kN/m. This reduction is not made for the
beams that cause bending in the column, so the beam loadings for the
global analysis are as shown in Fig. 5.19.

Figure 5.19 Loadings and major-axis bending moments for an
internal column
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Global analysis
It is assumed that the major-axis joints between the beams and the inter-
nal column are rigid and full-strength, and that the frame is braced against
sidesway. The uncracked unreinforced second moment of area of the beam,
with n = 20.2, is given in Table 4.5 as I = 636 × 106 mm4, so

(EI)beam = 636 × 210 × 106 = 1.34 × 1011 kN mm2 (5.56)

The column was at first assumed to have a 254 × 254 UC73 steel
section, encased to 400 mm square, and with longitudinal reinforcement
of six T20 bars. To obtain its stiffness, an effective modulus for the
concrete is required. A low value, relative to that for the beams, reduces
the bending moments in the column, so the creep coefficient ϕ = 3.0, used
in Section 5.7.2 for resistance, may be too high. The design is relatively
insensitive to this assumption, so the value n = 2n0 is now used for the
whole loading, as for the beams. For the Grade C25/30 normal-density
concrete used, Ecm = 31 kN/mm2, so n = 2 × 210/31 = 13.6. This leads to

(EI)column = 0.60 × 1011 kN mm2 (5.57)

The beam members in Fig. 5.19 are over twice as long as the column
members, so the stiffnesses (EI)/L of beams and columns at nodes C, D,
etc., are similar. Moment distribution for this limited frame gives the
bending moments shown in Fig. 5.19, plotted on the tension side of each
member.

For the beams, from Section 4.2.1.2, the bending resistance at the
internal column is

Mpl,Rd = 510 kN m

Cracking and inelastic behaviour are assumed to reduce the beam moments
that exceed 510 kN m to that value, by redistribution of moments to mid-
span, without altering the column moments. This enables the shear force
in each beam at nodes C, D, etc., to be found, and hence, the total axial
load in the column just above node D, including its weight. The result is

NEd ===== 5401 kN (5.58)

Resistance of an internal column
Approximate calculations then showed that the initial column cross-
section was too weak. The larger doubly-symmetric cross-section shown
in Fig. 5.20 was assumed. Its resistance was checked by the methods used
in Section 5.7 for external columns, taking account of the single-curvature
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bending moments My,Ed,1 = 81 kN m and My,Ed,2 = 68 kN m (Fig. 5.19),
the NEde0 moments, and the second-order moments about both axes; and
checking uni-axial and bi-axial bending.

Major-axis bending was found to be the most critical, with My,Ed =
216 kN m and 0.9My,Rd = 443 kN m, when NEd = 5401 kN. The margins
on bending resistance so found were assumed to be sufficient to cover the
increase in the end moments caused by the change in column cross-
section, and the small increase in NEd from the heavier column.

Comment on column design
It is evident, above, that response to the uncertainties of loading, cracking,
creep and inelastic behaviour involve some judgement and approximation.
A small increase in the cross-section of a column reduces its slenderness
(and hence, the secondary bending moments) as well as increasing all its
resistances (NRd, My,Rd, etc.); so there is little saving in cost from seeking
an ‘only-just-adequate’ design.

5.9 Example (continued): design for horizontal forces

As explained in Section 5.1, horizontal loads in the plane of a typical
frame, such as DEF in Fig. 5.1(a), are transferred by the floor slabs to a
central core and to two shear walls at the ends of the building, Fig. 5.21.
It will be shown by approximate calculation that the system is so stiff, and
the relevant stresses are so low, that rigorous verification is unnecessary.

It is shown in Section 5.4.1 that allowance for the frame imperfections
is made by applying at each floor level of each frame a notional horizontal
force HEd = (G + Q)/366, where G and Q are the total design ultimate
dead and imposed loads for the relevant storey.

Figure 5.20 Part cross-section of revised internal column length 0–1



Composite columns and frames 211

From EN 1994-1-1, second-order effects may be neglected in the glo-
bal analysis if the deformations from first-order global analysis increase
the relevant internal action effects by less than 10%. It will be found that
this exemption applies.

It is assumed that the concrete above the profiled sheeting in each floor
slab acts as a reinforced concrete beam of breadth 80 mm (its thickness)
and depth 19 m, spanning 28 m. For simplicity, this span is assumed to be
simply-supported. The lateral stiffnesses of these deep ‘beams’ and of the
shear walls are so much higher than that of each frame, such as DEF in
Fig. 5.21, that the presence of the frames can be ignored.

Design loadings, ultimate limit state
The force HEd is greatest when live load is applied to all floors, so the
reduction factor αn = 0.767 (Section 5.7.1) is applicable. From Table 4.4,
the imposed beam loading is

0.767 × 37.2 = 28.5 kN/m

Dead loads are as in Section 5.5.1, except that the design weight of a 4-m
length of internal column has increased from 16.2 kN to 30.0 kN.

The total permanent load per storey from a 4-m length of the building
is

G = 23.7 × 19 + 2 × 97.2 + 30 = 675 kN

The imposed load is

Q = 28.5 × 19 = 542 kN

Figure 5.21 Part plan of typical floor slab
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From Section 5.5.1, with γF = 1.5, the design wind load is

W = 1.5 × 1.5 × 4 × 4 = 36 kN

These values are such that wind should be taken as the leading variable
action. For imposed load, the combination factor ψ0 = 0.7, and φ = 1/366,
so

HEd = W + (G + ψ0Q)φ = 36 + (675 + 0.7 × 542)/366 = 39 kN

The lateral load applied to one edge of each floor is

hEd = 39/4 = 9.8 kN/m

and for the 28-m span of the floor,

MEd = hEdL2/8 = 9.8 × 282/8 = 960 kN m

Stresses and stiffness
Assuming a lever arm of about 0.8 × 19 = 15.2 m, the area of reinforce-
ment needed near each edge of each floor slab, Fig. 5.21, is tiny:

As = (960/15.2)/0.435 = 145 mm2

The shear force applied to each shear wall is

9.8 × 28/2 = 137 kN per storey

The reinforced concrete wall HJ in Fig. 5.21 is a cantilever 36 m high. For
storeys 4 m high, the horizontal load in its plane is

137/4 = 34.3 kN/m

The bending moment at its base is

MEd = 34.3 × 362/2 = 22 230 kN m

Elastic analysis for a beam 19 m deep and 200 mm wide gives the
maximum bending stress as less than 2 N/mm2. The in-plane deflection at
the top of the wall, including shear deformation, and with n = 2n0 = 13.6
(as for the columns), is less than 6 mm. This is an additional sidesway
of 6/36 000 = 1/6000, which is less than 10% of the frame imperfection of
1/366. The resulting increase in action effects is less than 10%, so the use
of first-order global analysis is confirmed.
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5.10 Example (continued): nominally-pinned joint to

external column

The design vertical shear for this joint is 246 kN, from Equation 5.16.
From standard details for partial-depth end-plate joints [51, 52], the initial
design of the joint is as shown in Fig. 5.22, with six M20 8:8 bolts. The
220 mm × 150 mm end plate is of S275 steel and only 8 mm thick, so that
its plastic deformation can provide the necessary end rotation for the
beam while transmitting very little bending moment to the column.

Preliminary calculation showed that a four-bolt joint is just adequate
for the vertical shear. However, it may be necessary to resist a tensile
force of about 75 kN, depending on how the robustness of the structure is
to be assured. Also, the greater depth of a six-bolt joint provides better
torsional restraint to the beam during erection.

Detailed calculations to EN 1993-1-1 and EN 1993-1-8 are not given,
as this is not a composite joint; but the results may be of interest. The
calculated resistances are as follows:

• shear of six M20 bolts, VRd = 565 kN;
• bearing of bolts on end plate, ∑Fb,Rd = 471 kN;
• shear resistance of 6-mm fillet welds to beam web, Vw,Rd = 377 kN;
• shear resistance of 220-mm depth of beam web, VRd = 767 kN;
• block tearing failure of end plate, both sides on surfaces ABC

(Fig. 5.22), VRd = 412 kN.

Thus, the resistance of the joint to vertical shear, neglecting bending
moment and axial tension, is 377 kN, which provides sufficient margin
for these other effects.

Figure 5.22 End-plate joint to major axis of external column
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Appendix A

Partial-interaction theory

A.1 Theory for simply-supported beam

This subject is introduced in Section 2.6, which gives the assumptions and
notation used in the theory that follows. On first reading, it may be found
helpful to rewrite the algebraic work in a form applicable to a beam with
the very simple cross-section shown in Fig. 2.2. This can be done by
making these substitutions.

Replace Ac and Aa by bh, and dc by h.
Replace Ic and Ia by bh3/12.
Put kc = n = 1, so that E ′c, Ec and Es are replaced by E.

The beam to be analysed is shown in Fig. 2.15, and Fig. A.1 shows in
elevation a short element of the beam, of length dx, distant x from the
mid-span cross-section. For clarity, the two components are shown separ-
ated, and displacements are much exaggerated. The slip is s at cross-
section x, and increases over the length of the element to s + (ds/dx) dx,
which is written as s+. This notation is used in Fig. A.1 for increments in
the other variables, Mc, Ma, F, Vc and Va, which are respectively the
bending moments, axial force and vertical shears acting on the two com-
ponents of the beam, the subscripts c and a indicating concrete and steel.
It follows from longitudinal equilibrium that the forces F in steel and
concrete are equal. The interface vertical force r per unit length is un-
known, so it cannot be assumed that Vc equals Va.

If the interface longitudinal shear is vL per unit length, the force on
each component is vLdx. It must be in the direction shown, to be consistent
with the sign of the slip, s. The load–slip relationship is

pvL = ks (A.1)

since the load per connector is pvL.
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Figure A.1 Elevation of element of composite beam

We first obtain equations deduced from equilibrium, elasticity and com-
patibility, then eliminate M, F, V and vL from them to obtain a differential
equation relating s to x, and finally solve this equation and insert the
boundary conditions. These are as follows.

(1) Zero slip at mid-span, from symmetry, so

s = 0 when x = 0 (A.2)

(2) At the supports, M and F are zero, so the difference between the
longitudinal strains at the interface is the differential strain, εc, and
therefore

d

d
c

s

x
= −ε when x = ±

L

2
(A.3)

Equilibrium
Resolve longitudinally for one component:
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Take moments:
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The vertical shear at section x is wx, so

Vc + Va = wx (A.6)

Now 1
2(hc + hs) = dc, so from Equations A.5 and A.6,

d

d

d

d
c a

L c
M

x

M

x
wx v d      + + = (A.7)

Elasticity
In beams with adequate shear connection, the effects of uplift are negligi-
ble in the elastic range. If there is no gap between the two components,
they must have the same curvature, φ, and simple beam theory gives the
moment–curvature relations. Using Equation 2.19 for E ′c, then

φ    = =
M

E I
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k E I
a

s a

c

c a c

(A.8)

The longitudinal strains in concrete along AB (Fig. A.1) and in steel
along CD are:

ε φ εAB c
c a c
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2
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(A.9)
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2
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where εc is the free shrinkage strain of the concrete, taken as positive.

Compatibility
The difference between εAB and εCD is the slip strain, so from Equations
A.9 and A.10, and putting 1

2(hc + hs) = dc,
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It is now possible to derive the differential equation for s. Eliminating Mc

and Ma from Equations A.7 and A.8,

E
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φ
(A.12)

From Equations A.1 and 2.22,
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d
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Differentiating Equation A.11 and eliminating φ from Equation A.13, F
from Equation A.4, and vL from Equation A.1:
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Introducing A′ from Equation 2.21, α2 from Equation 2.23 and β from
Equation 2.24 gives Result 2.25, which is in a standard form:

d

d

2

2
2 2s

x
s wx    − = −α α β (2.25)

Solving for s,

s = K1 sinh αx + K2 cosh αx + βwx (A.14)

The boundary conditions, Equations A.2 and A.3, give

K2 = 0 εc = −K1α cosh(αL/2) − βw

and substitution in Equation A.14 gives s in terms of x:

s wx
w L

x     sec  sinh= −
+⎛

⎝⎜
⎞
⎠⎟

⎛
⎝

⎞
⎠β

β ε
α

α
αc h

2
(2.27)

Other results can now be found as required. For example, the slip strain at
mid-span is
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and the slip at x = L/2 due to εc alone (i.e. with w = 0), is

( )   tanh/s
L
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⎝
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⎠2

2

ε
α

αc (A.16)

A.2 Example: partial interaction

These calculations are introduced in Section 2.7. They relate to a beam
shown in section in Fig. 2.16, which carries a distributed load w per unit
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length over a simply-supported span L. The materials are assumed to be
concrete with a characteristic cube strength of 30 N/mm2 and mild steel,
with a characteristic yield strength of 250 N/mm2. Creep is neglected (kc =
1) and we assume n = 10, so for the concrete Ec = E ′c = 20 kN/mm2, from
Equation 2.19.

The dimensions of the beam (Fig. 2.16) are so chosen that the trans-
formed cross-section is square: L = 10 m, b = 0.6 m, hc = hs = 0.3 m. The
steel member is thus a rectangle of breadth 0.06 m, so that Aa = 0.018 m2,
Ia = 1.35 × 10−4 m4.

The design of such a beam on an ultimate-strength basis is likely to
lead to a working or ‘service’ load of about 35 kN/m. If stud connectors
19 mm in diameter and 100 mm long are used in a single row, an appro-
priate spacing would be 0.18 m. Push-out tests give the ultimate shear
strength of such a connector as about 100 kN, and the slip at half this load
is usually between 0.2 and 0.4 mm. Connectors are found to be stiffer in
beams than in push-out tests, so a connector modulus k = 150 kN/mm will
be assumed here, corresponding to a slip of 0.33 mm at a load of 50 kN
per connector.

The distribution of slip along the beam and the stresses and curvature at
mid-span are now found by partial-interaction theory, using the results
obtained in Section A.1, and also by full-interaction theory. The results
are discussed in Section 2.7.

First α and β are calculated. From Equation 2.22 with Ic = nIa (from the
shape of the transformed section) and kc = 1, I0 = 2.7 × 10−4 m4.

From Equation 2.20 with Ac = nAa and kc = 1, A0 = 0.009 m2.
From Equation 2.21, 1/A′ = 0.32 + (2.7 × 10−4)/0.009 = 0.12 m2.
From Equation 2.23, with k = 150 kN/mm and p = 0.18 m,

α2 2150 0 12

0 18 200 0 27
1 85

  .

.     .
  .  =

×
× ×

= −m

whence α = 1.36 m−1. Now L = 10 m, so αL/2 = 6.8 and sech(αL/2) =
0.002 23. From Equation 2.24,

β
.   .

.     
  .    =

×
× ×

= × −0 18 0 3

0 12 150 1000
3 0 10 6 m/kN

We assumed w = 35 kN/m, so βw = 1.05 × 10−4 and βw/α = 0.772 ×
10−4 m. An expression for the slip in terms of x is now given by Equation
2.27 with εc = 0:

104s = 1.05x − 0.0017 sinh(1.36x) (2.28)
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This gives the maximum slip (when x = ±5 m) as ±0.45 mm.
This may be compared with the maximum slip if there were no shear

connection, which is given by Equation 2.6 as
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The stresses at mid-span can be deduced from the slip strain and the
curvature. Differentiating Equation 2.28 and putting x = 0,
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so the slip strain at mid-span is 105 × 10−6. From Equation A.13,
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Using Equation 2.28 for s and integrating,

106φ = −81.5x2 − 0.585 cosh(1.36x) + K

The constant K is found by putting φ = 0 when x = L/2, whence at x = 0,

φ = 0.0023 m−1

The corresponding change of strain between the top and bottom faces of
a member 0.3 m deep is 0.3 × 0.0023, or 690 × 10−6. The transformed
cross-section is symmetrical about the interface, so the strain in each
material at this level is half the slip strain, say 52 × 10−6, and the strain
distribution is as shown in Fig. 2.17. The stresses in the concrete, found
by multiplying the strains by Ec (20 kN/mm2), are 1.04 N/mm2 tension
and 12.8 N/mm2 compression. The tensile stress is below the cracking
stress, as assumed in the analysis.

The maximum compressive stress in the concrete is given by full-
interaction theory (Equation 2.7) as
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Note: references to ‘beams’ and to
‘columns’ are to composite members

actions, xiii, 5–7
accidental, 6, 8, 60
arrangements of, 187–9
characteristic, xiii, 6, 9
combination of, 6, 8–9

accidental, 60
characteristic, 9, 72, 95, 115, 145
frequent, 9, 145
fundamental, 8
quasi-permanent, 9, 145

concentrated, 13, 46, 55, 70–71, 84,
87, 153

design, xiii, 6
direct, 13–14
effects of, xiii, 5–6, 123, 187–9
favourable, 6–7
for fire, 59
frequent, 6
horizontal, 180, 187, 210–12
imposed, 182
impulsive, 100–101, 119
indirect, 14
leading, 8, 185, 212
permanent, 5, 8, 13, 46
quasi-permanent, 6
repeated, 33, 94
variable, 6, 8, 13, 46–7

analysis, elastic, of cross-sections,
14–19, 130–31

see also beams, columns
analysis, finite-element, 61, 138
analysis, global, 10, 76, 78, 97, 123

elastic, 13, 123, 147–9, 172, 184
first-order, 172, 181

for profiled sheeting, 169
of continuous beams, 125, 146–54
of frames, 171–2, 182–4, 209–211
rigid-plastic, 10, 75, 78, 123,

149–51, 153–4, 159, 169, 184
for composite slabs, 75, 169

second-order, 172, 181, 194, 211
uncracked, 148–9

analysis, partial-interaction, 37–9,
214–19

anchorage, end, 53–4, 69
Annex, National, see National Annex
axes, xiv

beams, 1–2, 22–5, 75–107
bending resistance of,

hogging, 85–6, 126–31
sagging, 75–85, 108–111

concrete-encased, 2, 27, 78, 95,
106, 126, 128

continuous, 19, 76, 122–57
cross-sections of,

classification of, 77–9, 109,
126–9, 160

critical, 86–8, 133
elastic analysis of, 14, 78, 85, 89,

95–8
plastic analysis of, 78–85, 89
second moments of area of, 97,

158
see also slabs, composite; slabs,

concrete
design procedure for, 87, 107–108,

155–6
effective width of, 20, 76–7, 110,

126, 147
in frames, 124–5
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haunched, 33–4, 92–4
imperfections in, 139, 179
L-section, 33
minor-axis, 173
of non-uniform section, 26
shear connection for, see shear

connection
shear resistance of, 85–6, 111
simply-supported, 44, 75–107, 125
stresses in, 10, 95–8, 118, 125, 155
see also analysis; buckling;

cracking of concrete;
deflections; fire, resistance to;
interaction; resistance; shear,
longitudinal; stiffness, flexural;
vibration; webs

bending moments,
in columns, 189–90, 194–6
elastic critical, 136–9
redistribution of, 148–51, 161, 169,

188, 209
bond, see shear connection
box girders, 2, 26, 79, 126
bracing system, 170
bracing to bottom flanges, 140
breadth of flange, effective, see beams;

slabs, composite; slabs, concrete
bridges, 2, 4, 126

beams in, 140, 142, 152
joints in, 123

British Standards, x, 3–4
BS 5400, 19, 190
BS 5950, x, 4, 14, 42, 52, 151–2,

173
BS 6472, 100–101
BS 8110, x, 18
CP110, 3, 99
CP117, 36

buckling, 111
in columns, 172, 175, 191–2
in frames, 181–2
lateral, 79, 134–40, 153, 161–4,

172
local, 18, 48, 76–9, 95, 135–6,

149, 169, 197–8
see also beams, cross-sections of

of profiled sheeting, 47–9
of webs in shear, 85–6

cambering of steel beams, 117–18
cantilevers, 87, 126, 147

capacity, xiv
cased struts, see columns
CEN (Comité Européen

Normalisation), xi, 4
characteristic value, see actions,

characteristic; resistance
class of section, see beams, cross-

sections of
Codes of Practice, British, see British

Standard
column length, 179, 191–2
columns, 2–3, 124, 172–3

bi-axial bending in, 173, 190, 196,
207

cased-strut design of, 172–3
concrete-encased, 2, 27
concrete-filled, 3, 27, 173, 189,

197–8
cross-sections of, 193–4, 199–203

interaction diagram for, 193–4,
201–203, 206–207

section moduli for, 202, 206
design method for, 19, 82, 182,

189–98
eccentricity of loading for, 183–4,

199
effective length of, 183–4, 189
effective stiffness of, 181, 191–2
elastic critical load, 191, 200–201
imperfections in, 172, 178–80,

194–5, 206
loading for, 13, 182, 189, 198, 208
moment-shear interaction in, 194,

196, 201–203, 206
second-order effects in, 194–6, 204
slenderness of, 191–2, 201
squash load of, 192, 200
steel contribution ratio for, 191, 200
transverse shear in, 196, 207
see also buckling; bending

moments; column length;
concrete-filled tubes; fire,
resistance to; rotation capacity;
shear, longitudinal; stiffness;
stresses, residual

concrete, 10–11
dynamic modulus of, 102
lightweight-aggregate, 11–12, 33–4,

45, 63, 75, 102
partial factors for, 7, 45
properties of, 10–11, 45, 65, 74
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concrete (continued)
strength classes for, 11
see also cracking of concrete; creep

of concrete; shrinkage of
concrete

concrete-filled tubes, see columns,
concrete-filled

connections, beam-to-column, see
joints

connector modulus, 35–8, 214, 218
construction, xi

loads, 47, 65
methods of, 2, 130
propped, 13, 48, 64, 156
unpropped, 13, 48, 95, 98, 152

cracking of concrete, 76, 95, 125,
140–46, 151–2, 201

and global analysis, 181
control of, 18, 115, 121

load-induced, 141–2, 145–6,
168–9

restraint-induced, 141–5, 159–60
creep of concrete, 10, 36, 130

in columns, 191, 200–201
see also modular ratio; modulus of

elasticity
cross-sections, see beams; columns

damping in floor structures, 101,
104–105, 119

data, geometrical, 5
decking, metal, see sheeting, profiled

steel
deflections, 9

analysis for, 151–2
due to shrinkage, 99–100
due to slip, 39, 98, 116–17
limits to, 72–3, 99
of beams, 18, 76, 94–5, 98–9, 109,

115–18, 125, 151, 155, 165–8
of composite slabs, 58–9, 72–3, 75
of profiled sheeting, 66

deformation, imposed, 141
see also deflections

Designers’ Guides, xi, xiii, 4, 65, 174
design, methods of, see beams;

columns
design philosophy, 3–10
design situations, see situations,

design
durability, 200

effect of action, see actions, effects of
effective length, see columns
effective width, see beams; slabs,

concrete
effects, second-order, 19
ENV Eurocodes, x
equilibrium, static, 7
Eurocodes, x–xi, 2, 4, 44, 47

commentaries on, see Designers’
Guides

EN 10025, 12
EN 10080, 11
EN 1990, xi, 4–6, 60
EN 1991, xi, 4, 11, 13–14, 46,

182
EN 1992, xi, 4–5
EN 1992–1–1, 14, 54–6, 58, 91,

140–41, 190
EN 1992–1–2, 59
EN 1993, xi, 3, 5, 124
EN 1993–1–1, 79, 85, 139, 175,

179, 181, 190
EN 1993–1–2, 59
EN 1993–1–8, 122–3, 176, 212
EN 1994, xi–xii, 3–5, 11, 18

European Communities, Commission
of the, 4

European Standard, xi
examples, 44–7

classification of section, 129–30
comments on, 75, 210
composite beam,

continuous, 157–68
simply-supported, 107–121

composite column, 198–210
composite frame, 124, 170–72,

186–9, 210–12
composite slab, 64–75
materials, properties of, 44–6
nominal-pin joint, 213
partial interaction, 217–19
redistribution of moments, 149–51
resistance to hogging bending,

129–32
execution, see construction
exposure classes, 141–2, 159

factors, combination, 6, 9, 212
factors, partial, 6–7, 31, 60, 192
factors, reduction, for loading, 13,

189, 198
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fatigue, see actions, repeated
fire compartment, 59
fire exposure, 59, 106
fire load density, 59
fire resistance class, 59, 106, 120
fire, resistance to, 2, 6, 19, 59–63,

105–107, 120–21, 156
of columns, 172, 190–91
tabulated data for, 62, 106–107

fit, lack of, 178
flanges, concrete, see beams; slabs,

concrete
formwork, permanent, see sheeting,

profiled steel
foundations, 4
frame, composite, 2–3, 19, 122–4,

170–72
braced, 76, 170, 172
design of 170–72, 178–86
imperfections in, 19, 172, 178–81,

186
unbraced, 14, 170
see also buckling

frame, inverted-U, 136–40, 161–4
frequency, natural, 101–105, 118–19,

125

haunches, see beams, haunched
hole-in-web method, 78, 127, 129

imperfections, see beams; columns;
frames

insulation criterion, 59
integrity criterion, 59
interaction,

full, 24–5
partial, 35–9, 53–4, 214–19
see also shear connection

ISO standards, xi, xiii

joints, 19, 122–4, 170–72
beam-to-column, 3, 173–8
classification of, 122–3, 176–8
end-plate, 174–6, 213
fin-plate, 174
full-strength, 122, 178
nominally pinned, 3, 122–4, 177–8,

183–4, 213
partial-strength, 122–3, 174–6,

178
rigid, 3, 122–4, 177–8

rotation of, 123, 175–6, 213
semi-rigid, 122–3, 174–6, 178
simple, see nominally pinned

length, critical, 86–8, 133
length, effective, 65–7

see also columns
limit states, 3, 5, 7

serviceability 5, 9, 182, 186
ultimate, 5, 8, 185–6

loadbearing function, 59, 106
loads

critical, see columns
imposed, 7, 46–7
see also actions; wind, effects of

load-slip curve, 29–31

m – k method, 42–3, 52–3, 68
m – k test, 40–43

see also slabs, composite
materials,

properties of, 7, 10–12
thermal properties of, 61
see also concrete; steel

mesh, welded, see reinforcement,
welded mesh

modular ratio, 36, 45, 72, 96, 115,
181, 209

modulus of elasticity, 12, 46, 102,
130

effective, 10, 96, 181
moments, see bending moments

National Annex, xi, 6, 58, 72, 139,
167

notation, see symbols

partial factors, xiii
γM, for materials and resistances,

7–8, 11, 45–6, 60
γF, for actions, 6–7, 60

partitions, 9, 14, 47, 56, 99
pins, shot-fired, 40, 93
plastic theory, see analysis, global,

rigid-plastic
plates, composite, 2
prestressing, 142
propping, see construction, methods of
prying, 175
push tests, see shear connectors, tests

for



228 Index

redistribution, see bending moments;
shear, longitudinal

reinforcement,
fracture of, in joints, 128, 174
in beams, 121, 124, 156, 173–4

minimum area of, 106, 143–5,
159–60

spacing of, 146
transverse, 89–93, 113–15, 134,

169
in columns, 200
in haunches, see beams, haunched
truss analogy for, in slabs, 91–2
welded mesh (fabric), 12, 46, 127
see also slabs, composite

reinforcing steel, 10–12, 46
representative value, 6
resistance, xiii–xiv, 7–8, 11

ratio, 61, 120
see also beams, bending resistance

of
response factor, 101, 105, 119
rigidity, see stiffness, flexural
rotation capacity, 123, 153, 174, 184
rotation of joint, 175–6, 213

safety factors, see partial factors
sections, see beams; columns
serviceability, see limit states
services, 76, 155
shape factor, 132
shear, see shear, longitudinal
shear-bond test, see m – k test
shear connection, 15–18, 20–43

brittle, 42, 53
by bond, 26–7, 43, 197
by end anchorage, 40, 54, 113
by friction, 40, 52–4, 69–70, 197
degree of, 68, 82, 111
design of, 111–13, 133–4, 164–5
detailing of, 93–4, 113
ductile, 42
for composite slabs, 29, 48–54,

68–70
full, 24–5, 133–4
in columns, 197
mechanical, 43
partial, 33, 81–5, 89, 111–13, 147

equilibrium method for, 111–12
interpolation method for, 112,

164

see also reinforcement, in beams,
transverse; shear connectors;
slip, longitudinal

shear connectors, 1, 12, 27–35
ductility of, 32, 88–9, 111
flexibility of, 17, 35, 37, 218
height of, 90
in haunches, 34
in lightweight concrete, 33–4
in slabs in tension, 33
partial safety factors for, 7, 31
resistance of, 134
spacing of, 25, 39, 84–9, 94,

112–13, 133
tests for, 29–34, 218
types of, 27–9
see also connector modulus; studs,

welded
shear flow, xiii, 16–18, 25, 90
shear lag, see slabs, concrete, effective

width of
shear, longitudinal, 15–18, 26–7,

86–94, 133–4
in columns, 196–7, 207–208
notation for, xiii
redistribution of, 53
see also shear connection; slabs,

composite
shear, punching, see slabs, composite
shear span, 52–3, 81
shear, vertical, xiii, 15, 18, 85–6, 161,

175
and bending moment, 86, 132–3
see also buckling; slabs, composite

shear walls, 171, 182, 212
sheeting, fibre-reinforced, 2
sheeting, profiled steel, 2, 12, 47–8,

143, 169
and shear connection, 38–43
as transverse reinforcement, 92–3,

113–14
design of, 65–6
effective area of, 49
embossments on (dimples in), 49
properties of, 12, 46–8
safe loads for, 64
see also buckling; deflections;

slabs, composite
shrinkage of concrete, effects of, 5,

10, 99–100, 130, 216
see also deflections
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situation, design, 5, 7–8
slabs, composite, 2, 20, 29, 47–75

as diaphragms, 171, 212
bending moments in, 48–52, 57,

66–8
concentrated loads on, 56–8, 70–71
cracking in, 58, 72
dimensions of, 48–9
effective thickness of, 72, 77, 115,

163
effective width of, 54, 57, 76–7
end anchorage in, 53
fire resistance of, 62–3, 73–5
global analysis of, 169
local bending in, 56–8
partial-interaction design of, 53–4,

68–70
partial shear connection in, 48,

51–2, 83
reinforcement in, 48, 53–9, 63,

70–71, 73–4
transverse, 92–3

serviceability of, 58–9, 72–3
shear, longitudinal, in, 34, 40–43,

52–4, 68–70
shear, punching, in, 55–6, 70–71
shear, vertical, in, 41–2, 52, 54–5,

58, 67–8, 89
span/depth ratio of, 64
tests on, 40–43
see also deflections; m – k method;

sheeting, profiled steel; slabs,
concrete

slabs, concrete, 1–2, 126
effective width of, 76–7
flexural stiffness of, 137
reinforcement in, 91–2
see also slabs, composite

slabs, form-reinforced, see slabs,
composite

slenderness ratios, limiting, see beams,
cross-sections of

slip capacity, 32, 88
slip, longitudinal, 18, 22–5, 29–33,

35–9, 147, 175, 214–17
and deflections, 39, 98, 116–17

slip strain, 22–3, 37, 216–17
span-to-depth ratio, 18, 98–100
squash load, see columns, squash load

of
standards, see British Standards; CEN

steel, see reinforcing steel; structural
steels; yielding of steel

steel contribution ratio, see columns
stiffness, flexural, 104, 125, 152, 181,

191–2, 201
strain, see slip strain
strength, see resistance
strength, characteristic, 7
strength, nominal, 7
stresses, see beams, stresses in
stresses, residual, 139, 178
stress resultant, 5
structural steels, 10, 12, 196

nominal strength of, 7
studs, welded, 12, 27–8, 46

length after welding, 112
resistance of,

in composite slabs, 34
in solid slabs, 29–34, 46

weld collar of, 32, 92
with profiled sheeting, 29, 69,

92–4
see also shear connection, detailing

of; shear connectors
subscripts, xiii–xiv, xvi–xviii
supports, friction at, 54
sway frames, see frames, unbraced
symbols, xiii–xviii, 136–7

temperature, effects of, 36–7, 100,
130

tension stiffening, 145–6, 168
terminology, xiv
testing, see shear connectors; slabs,

composite
through-deck welding, see welding,

through-deck
torsion, 138, 164
transformed sections, method of, 15,

96, 148, 158
tubes, steel, see columns, concrete-

filled

U-frame, see frame, inverted-U
units, xiv
uplift, 26, 88, 216

variables, basic, 5
verification, 7
vibration, 95, 100–105, 118–20

human response to, 101–102
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webs, 76, 137–8
Class of, 78–9
encased, 2, 78, 86, 106, 120–21,

128, 138, 162
cracking in, 95

see also hole-in-web method; shear,
vertical

welding, through-deck, 34, 54

width, effective, see beams; slabs,
composite; slabs, concrete

wind, effects of, 8, 14, 187
worked examples, see examples

yielding of steel in service, 11, 95,
131

and deflections, 152
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