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Preface

In the last decades the field of metaheuristics has grown considerably. Seen
both from the technical point of view and from the application-oriented side,
these optimization tools have established their value in a remarkable story of
success. Researchers have demonstrated the ability of these methods to solve
hard combinatorial problems of practical sizes within reasonable computa-
tional time. In this collection we highlight the recent developments made in
the area of Simulated Annealing, Path Relinking, Scatter Search, Tabu Search,
Variable Neighbourhood Search, Iterated Local Search, GRASP, Memetic
Algorithms, evolutionary-inspired algorithms like Genetic Algorithms, Ant
Colony Optimization or Swarm Intelligence, and several other paradigms for
a variety of well-known application areas, like location problems, the travel-
ling salesman and vehicle routing problems, timetabling problems and others.
A specific part of this volume is also dedicated to papers addressing dynamic
and stochastic problems, multi-objective optimization, parallel computation,
as well as the discussion of general themes like the exploration of distance
metrics for comparing solutions, cooperative learning and the use of statisti-
cal methods in metaheuristics’ design.

The book is organized as follows. In the first four parts, metaheuristics ap-
plications to several combinatorial optimization problems are collected, where
each part is dedicated to a particular solution technique. Part V treats prob-
lems with dynamic and stochastic characteristics, while Part VI addresses the
design and application of distributed and parallel algorithms. The final part,
Part VII, collects articles dealing with some ideas on algorithm tuning and
design and the presentation of general, reusable software tools.

The first two papers in this volume deal with the application of Scatter
Search to the multidemand multidimensional knapsack problem (Hvattum and
Løkketangen) and for the fixed-charge multicommodity flow network design
problem (Gendreau and Crainic). The main focus of both papers is the adap-
tion of different algorithmic ideas and concepts of Scatter Search in respective
application domains and the empirical analysis of these design decisions.
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The next two topics cover Tabu Search and its use to solve large scale set
covering problems and full truckload routing problems. Reflecting the matu-
rity of Tabu Search, the paper by Caserta intertwines a Tabu Search based
primal intensive scheme with a Lagrangian based dual intensive scheme to
design a dynamic primal-dual algorithm that progressively reduces the gap
between the upper and lower bound, while the paper by Hirsch and Gronalt
presents a successful application of Tabu Search which solves a real world
pickup and delivery problem of full truckloads in the timber industry.

Part III focuses on some recent bio-inspired methods. The paper of Aras et
al. deals with the capacitated multi-facility Weber problem and among three
nature-inspired methods developed and implemented for this problem, Simu-
lated Annealing was found to outperform the competing approaches. In the
paper of Schirrer et al., the reviewer assignment problem is solved by using a
Memetic Algorithm. The algorithm developed is applied to the data gathered
from the MIC 2001 and 2003 conferences and then used to solve the reviewer
assignment problem for the MIC 2005.

A GRASP application to the TSP (Golbarg et al.) and a randomized it-
erative improvement algorithm for the university course timetabling problem
(Abdullah et al.) are grouped in Part IV. In the former paper GRASP is hy-
bridized with a path-relinking procedure, while the latter one uses a composite
neighbourhood structure to further enhance the solution quality of the basic
versions of the respective algorithms.

Uncertainty and/or dynamic problem formulations are the joint charac-
teristics of the papers collected in Part V. which highlights the diversity of
metaheuristic approaches and application domains.

Dejan Jovanović et al. present a new method for the probabilistic logic sat-
isfiability problem, based on the Variable Neighborhood Search metaheuris-
tic. The next paper by Mauro Birattari et al. introduces ACO/F-Race, an
algorithm for tackling general combinatorial optimization problems under un-
certainty, and addresses the TSP as an illustration. Abdunnaser Younes et
al. present an idea of using diversity to guide evolutionary algorithms and
investigate its merit on dynamic combinatorial optimization problems, exem-
plifying an implementation for the dynamic TSP. Joana Dias et al. develop
a Memetic Algorithm for capacitated and uncapacitated dynamic location
problems. Alba et al. compare different genetic algorithms applied to the non-
stationary knapsack problem and study potentials and difficulties of applying
GAs in dynamic contexts. Finally, Bartz-Beielstein and Blum present a Parti-
cle Swarm Optimization algorithm for problems in noisy environments. While
the first five papers deal with uncertainty or dynamics with respect to some
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problem data, the last paper addresses the influence of noise in the evaluation
of a solution on the convergence properties of a metaheuristic algorithm. It
also combines the metaheuristic approach with noise reducing methods from
statistics.

The application of metaheuristics to notoriously difficult (NP-hard) opti-
mization problems has become a viable approach with the development of ever
increasing computational power. However, as more and richer real world con-
straints are included into existing models with constantly increasing problem
sizes, the inherent complexity asks for even more sophisticated computational
methods, including parallel implementations of well-known metaheuristics,
as well as the adaption of existing techniques for parallel architectures and
the exploitation of parallelism within the algorithms. In this volume, two pa-
pers address these issues. Fischer and Merz propose a distributed version of
the chained Lin-Kernighan algorithm for the Traveling Salesman Problem and
show that – given an equivalent amount of computation time – the distributed
version outperforms the original algorithm. Araújo et al. present four slightly
differing strategies for the parallelization of an extended GRASP with iterated
local search for the mirrored traveling tournament problem, with the objec-
tive of harnessing the benefits of grid computing. Computational grids are
distributed high latency environments which offer significantly more comput-
ing power than traditional clusters. Experiments on such a dedicated cluster
illustrate the effectiveness and the scalability of the proposed strategies.

The four papers grouped together in the last part of the book describe new
methods with respect to algorithm tuning and design and reusable software
tools for designing metaheuristics. First, Paquete et al. describe the usage of
experimental design to analyze stochastic local search algorithms for multi-
objective problems, particularly exemplified for the biobjective quadratic as-
signment problem. The goal of the paper is to enhance understanding of the
influence of particular algorithm design decisions on the quality of the solu-
tions and the dependance of this influence on problem instance features and
characteristics, e.g. correlation between the objectives. Next, Kubiak intro-
duces distance measures and a fitness-distance analysis for the capacitated
vehicle routing problem based on a statistical analysis of the fitness landscape
of problem instances. Halim and Lau present tuning strategies for tabu search
via visual diagnosis, where the user and the computer can collaborate to di-
agnose the occurrence of negative incidents along the search trajectory on a
set of training instances. Finally, Dorne et al. exhibit a software toolkit iOpt
which provides reusable code to solve combinatorial optimization problems.
A solution procedure for the vehicle routing problem is composed by using
this toolkit. The authors explain in detail how to make use of the modeling
and solving facilities available in iOpt to tackle this problem. At each step
of this building process, they discuss the benefits of using iOpt rather than
starting building a solution from scratch. The overall conclusion of this work
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is that the toolkit allows the user to maximize reuse of his code, significantly
reduce the development time and focus attention on the design rather than
the coding.

Given the range of potential design decisions and applications of meta-
heuristics, the 20 papers presented here can only scratch the surface of this
vast research field. We hope that this post conference volume will encourage
further work in the area of metaheuristic search techniques.

Editing the post conference volume for MIC 2005 would not have been
possible without the most valuable input of a large number of people. First of
all, we wish to thank all the authors for their contributions. Furthermore we
greatly appreciate the valuable help from the referees. Last but not least we
are grateful to Monika Treipl for designing and implementing the online re-
viewing system and to Verena Schmid for editing the final version of the book.

Vienna, Montreal, Graz, Zurich Karl F. Doerner
Michel Gendreau
Peter Greistorfer

Walter J. Gutjahr
Richard F. Hartl

Marc Reimann
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Éric Taillard (CH)
Jacques Teghem (BE)
Paolo Toth (IT)
Michael Trick (US)
Vicente Valls (ES)
Stefan Voss (DE)
Andres Weintraub (CL)
Marino Widmer (CH)
David Woodruff (US)
Ming-Jong Yao (TW)



Part I

Scatter Search



Chapter 1 

EXPERIMENTS USING SCATTER SEARCH FOR 
THE MULTIDEMAND MULTIDIMENSIONAL 
KNAPSACK PROBLEM 
 

Lars Magnus Hvattum and Arne Løkketangen 
Molde University College, Molde, Norway 

Abstract: The evolutionary, population based metaheuristic called Scatter Search has 
been successfully applied to many combinatorial optimization problems. 
Within the Scatter Search framework, however, there are numerous 
alternatives for how to implement the different components of the search. In 
this paper we explore a variety of these alternatives in a Scatter Search for 
solving the demand constrained multidimensional knapsack problem. Our best 
Scatter Search implementations produce good results, compared both to 
previous heuristic work as well as to exact solvers.  

 

Key words:  Scatter Search, 0/1 Multidemand Multidimensional Knapsack Problem 

1. INTRODUCTION 

Although the concepts of Scatter Search were first proposed in the 1970s, 
most of its applications (see, e.g., Glover, Laguna and Martí, 2002) are 
recent. Such applications have proved successful in producing good 
solutions for many different types of problems from combinatorial and non-
linear optimization. As is normally the case for metaheuristics, one has to 
adapt the solution procedure to the problem at hand in order to achieve a 
well functioning solver. In this paper we focus on the application of Scatter 
Search to a formulation of the 0/1 Integer Programming Problem, and, 
through experimenting with the different components of a Scatter Search 
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implementation, try to discover how variations of the search affect the 
solution quality. The implementations are tested on instances of the 
Multidemand Multidimensional Knapsack Problem, as put forward by 
Cappanera and Trubian (2004). 

After this brief introduction, Section 2 contains problem formulations for 
the Multidemand Multidimensional Knapsack Problem and the 0/1 Integer 
Programming Problem. A very basic Scatter Search implementation is 
outlined in Section 3. Various extensions and improvements of this basic 
Scatter Search are described in Section 4. In Section 5 the computational 
results are reported, while conclusions and suggestions for future work are 
found in Section 6. 

2. PROBLEM FORMULATION 

Before introducing the problem for which our heuristic solution methods 
are developed, we point out that our main interest is to study the behavior of 
the Scatter Search itself and to test different alternative implementations. 
Our treaty of the Multidemand Multidimensional Knapsack Problem 
(MDMKP) is therefore not extensive. For those interested in more 
information about the MDMKP and its applications, we recommend 
Cappanera (1999), Plastria (2001), and Romero-Morales, Carrizosa, and 
Conde (1997). 

The original formulation of the MDMKP in Cappanera and Trubian 
(2004) is as follows, 

(MDMKP) 
n

j
jj xc

1
max   (1)

subject to 
n

j
ijij bxa

1
 mi ,...,1  (2)

 
n

j
ijij bxa

1
 qmmi ,...,1 (3)

 1,0jx  nj ,...,1 , (4)

where  and  0ib 0ija qmi ,...,1 , nj ,...,1 . The m  
constraints of family (2) are called knapsack constraints, while the q  
constraints (3) are referred to as demand constraints.  

The solution methods presented in this paper, however, solve the more 
general 0/1 Integer Programming Problem (0/1 IP), where constraints (2) 
and (3) above can be replaced by 
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n

j
ijij bxa

1

**  qmi ,...,1 , (5) 

where  and  can take any value The transformation from the 
MDMKP to the 0/1 IP is straightforward. The reader may notice that, due to 
having constraints of both type (2) and (3), obtaining feasible solutions is not 
trivial, and any heuristic solution method must take this into consideration. 

*
ib *

ija

3. BASIC SCATTER SEARCH 

As a basis for further investigation of the Scatter Search paradigm, this 
section contains a description of a basic Scatter Search implementation. The 
Scatter Search is usually described through the following five components 
(see, e.g., Laguna and Martí, 2003, or Martí, Laguna, and Glover, 2006): 

1. Diversification Generation Method 
2. Improvement Method 
3. Reference Set Update Method 
4. Subset Generation Method 
5. Solution Combination Method 
The Scatter Search procedure combines these five components in hope of 

finding good solutions. In our implementation, the Diversification 
Generation Method and the Improvement Method are first used to produce a 
pool of solutions. Each solution is encoded as a 0/1 vector. The Reference 
Set Update Method then chooses among the available solutions to build a 
reference set. Subsequently, the Subset Generation Method selects a family 
of subsets of the reference set, which are input to the Solution Combination 
Method. The output of the Solution Combination Method is then a set of 
solutions called trial solutions, which after being subjected to the 
Improvement Method are fed to the Reference Set Update Method. At this 
point one can repeat from the application of the Subset Generation Method if 
the Reference Set Update Method has altered the reference set, or 
alternatively stop or restart from scratch. In our basic Scatter Search 
implementation, the search continues, by restarting if necessary, until a time 
limit has been exceeded. Next follows a description of the five components 
as chosen for our basic Scatter Search implementation. 

3.1 The Diversification Generation Method 

The purpose of the Diversification Generation Method is to produce a set 
of diverse solutions. Although using systematic and deterministic procedures 
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or controlled randomization is advocated in the Scatter Search methodology, 
the method introduced in our basic Scatter Search implementation is totally 
randomized. Each solution vector x  is initialized component by component, 
by assigning, with equal probability, either 0jx  or 1jx . New 
solutions are subjected to the Improvement Method and inserted in an initial 
pool of solutions until p  unique solutions have been generated. 

3.2 The Improvement Method 

Solutions generated randomly, as in the Diversification Generation 
Method described above, are likely to be of very poor quality, and not 
necessarily feasible with respect to the set of constraints. The Improvement 
Method chosen here is a simple steepest ascent local search, using a flip-
neighborhood (that is, the neighborhood consists of all solutions of 
Hamming distance one from the current solution) and moving to the best 
solution in the current neighborhood until no improving move is found. To 
handle infeasible solutions we evaluate solution vectors using two measures: 

 
 n

j
jj xcxz

1

)(  

xSi

n

j
ijij bxaxv

1

** )()(   ,  . 
n

j
ijijx bxaiS

1

**:

 

 

Here  gives the objective function value of )(xz x , whereas  is the 
sum of violations in the set  of violated constraints. We use these two 
values to compare two solutions and say that  is better than  if either 

 or both  and . Note that a 
solution  is feasible if and only if . 

)(xv
S

1x 2x
)()( 21 xvxv )()( 21 xvxv )()( 21 xzxz

1x 0)( 1xv
In Section 4.1 we discuss other alternatives for the Improvement Method. 

3.3 The Reference Set Update Method 

From a large number of solutions produced by the Diversification 
Generation Method, the task of the Reference Set Update Method is to select 
a smaller set of interesting solutions, called the reference set, which will be 
the input to the Subset Generation Method. The Reference Set Update 
Method will also be used to update the reference set with trial solutions 
generated by the Solution Combination Method. 

Typically, the reference set consists of 1b  solutions of high quality and 
2  solutions that are diverse (with respect to the high quality solutions and 

each other), for a total of  solutions. Thus, the reference set is 
b

21 bbb
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said to have two tiers, one with good solutions and one with diverse 
solutions. In our implementation, the reference set is (re-)built by the 
following steps: 

1. Choose the 1  best solutions available from the pool generated by the 
Diversification Generation Method, from the previous reference set, 
and from the set of trial solutions. 

b

2. Choose the 2  most diverse solutions available from the pool 
generated by the Diversification Generation Method and from the 
previous reference set. 

b

For every solution that is accepted into the reference set, a diverseness 
measure is updated for all solutions that are candidates to be selected during 
step 2. The diverseness measure is the minimum Hamming distance from a 
solution to any solution selected for the reference set. High values of the 
diverseness measure thus indicate that a solution is diverse with respect to all 
solutions in the reference set. Note that in this implementation the trial 
solutions are considered for inclusion based only on quality, and not on 
diversity. 

3.4 The Subset Generation Method 

This method generates subsets of the reference set, after which each 
subset is used to create trial solutions by the Solution Combination Method. 
The basic implementation simply generates all subsets consisting of exactly 
two solutions where at least one of the solutions was added to the reference 
set since the last execution of the Subset Generation Method. 

3.5 The Solution Combination Method 

There are numerous alternatives for the Solution Combination Method, 
several of which will be discussed further in Section 4.4. The method 
selected for our basic Scatter Search, however, produces five trial solutions 
for each pair of solutions selected by the Subset Generation Method. Letting 

 and  be two reference solutions, they will be combined in the 
following way (as suggested in Laguna and Martí, 2003): 

1x 2x

1.  is such that  (i.e., the intersection of ones). ax 21
jj

a
j xxx

2.  is such that  (i.e., the union of ones). bx a
jjj

b
j xxxx 21

3.  is such that  (i.e., the ones that belong to  but 
not ). 

cx )1( 21
jj

c
j xxx 1x

2x
4.  is such that  (i.e., the ones that belong to  but 

not ). 

dx )1( 12
jj

d
j xxx 2x

1x
5.  is such that  (i.e., the symmetric difference of  

and ). 

ex d
j

c
j

e
j xxx 1x

2x

Experiments using Scatter Search 
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Each of the five resulting solutions is subjected to the Improvement 
Method before being added to the set of trial solutions. 

3.6 Parameter Testing 

There are three parameters in the above description for which good 
values are difficult to ascertain a priori, namely p , 1  and 2b . Typically, 
the reference set has 20 solutions or less, while the size of the initial pool, 

, is suggested to be no more than 100 (see Glover, Laguna and Martí, 
2003). In order to perform empirical tests on parameter settings, four test 
instances were chosen from a larger set of 836 instances (see description in 
Section 5): 100-100-1-1, 100-10-1-0-0, 250-30-30-1-0, and 500-5-2-0-0. 
They have from 100 to 500 variables and from 7 to 101 constraints 
(knapsack constraints and demand constraints counted together).  

b

p

We first tested different values of 1b  and 2  while setting b 100p . 
Figure 1-1 illustrates average best value found on ten runs of 240 seconds 
each and with different random seeds for instance 100-10-1-0-0. The test 
instance 100-10-1-0-0 has 100 variables, 10 knapsack constraints and 1 
demand constraint, and the optimal solution is known to be 28504. The 
reference set tiers were varied in size, with 1b  from zero to thirty-five and 

2  from zero to twenty-five, both with a step length of five. It is clear from 
the tests that the size of the reference set should not be too small in our basic 
Scatter Search implementation, thus slightly contradicting the rule of thumb 
stated in the previous paragraph. Good results were often found when using 

2  equal either to zero or five, and with 1b  close to thirty. Similar results 
were found on the other test instances, based on which a choice was made to 
continue with  and . 

b

b

251b 52b
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Figure 1-1. Average best values for different sizes of the reference set 

Having decided the size (and partitioning) of the reference set, the effect 
of the size of the initial pool of solutions was examined. Different values for 
p  was tried, from 30 to 300. Preliminary testing indicated a best value for 

the size of the initial pool to be 200 different solutions. 
Table 1-1 in Section 5 contains results for an entire test set of 836 

instances using the basic Scatter Search implementation just described with 
the parameter settings outlined above, and limited to 240 seconds per 
instance. Evidently, even though the selected components seemed fairly 
sensible, its performance is poor in comparison to previous heuristic 
methods developed for the MDMKP, as well as to exact methods. However, 
it does succeed at finding feasible solutions to all but three instances, while 
other methods fail to find feasible solutions for as many as 28 (Cappanera 
and Trubian) to 72 (CPLEX) instances. The results presented are from a 
single run, but since they are summarized by class, and each class contains 
45 instances (except one class containing 26 instances), some indication of 
the performance of the solution methods can be inferred. 

4. EXPERIMENTS WITH DIFFERENT SCATTER 
SEARCH COMPONENTS 

This section of the paper examines several improvements/alternatives to 
the components in the basic Scatter Search, and attempts to provide an 
insight into how the components can interact to create high quality solutions. 

 

Experiments using Scatter Search 
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4.1 Alternatives for the Improvement Method 

We now examine different strategies for improving the solutions 
encountered during the search, which shows to have a significant impact on 
the final solution. The first alternative is a slightly modified steepest ascent 
local search. In the regular steepest ascent the stop criterion ensures that the 
next solution visited must be better than the current solution. Here we 
change the stop criterion so that the search continues as long as the next 
solution is better than the previous solution. This allows, in situations where 
there are many local optimas – several of which are close to each other with 
respect to a given neighborhood operator, the search to continue from one 
local optimum to the next (plotting the objective function value for each 
iteration will yield a jagged curve, hence we label it “jagged steepest 
ascent”). There is no danger of looping since solutions may not be repeated; 
as the neighborhood is symmetric and we move to the best neighbor, the 
worst we can do is to go back to the previous solution – which is disallowed 
since a solution is never better than itself. 

Rather than relying only on neighborhoods in which the members differ 
from the current solution in one variable only, one can inspect 
neighborhoods that flips two or more variables. Cappanera and Trubian 
(2004) used a swap move, limited to search in feasible space, where a zero 
variable and a one variable interchange values. Since the 0/1-IP model 
allows arbitrary values for the  variables one must also consider the flip 
of two zero variables or two one variables (i.e., this gives a double flip 
neighborhood, rather than a swap neighborhood), and since we have ordered 
the infeasible solutions (through ), the neighborhood may be used also 
in infeasible parts of the search space. 

*
ija

)(xv

Cappanera and Trubian also occasionally apply a double swap move, 
where two zero variables and two one variables interchange values. Similar 
to the previous neighborhood, swaps are replaced by flips, yielding a 
quadruple-flip neighborhood rather than a double swap neighborhood. In the 
approach tested here the neighborhood is only examined when the current 
solution is feasible. Then the neighborhood is explored by looking at 
variables that have the better influence on the objective function value first, 
and the first improving move found is accepted. 

We now summarize the available improvement methods, presented in 
increasing order of merit when tested in a 300 seconds multi-start local 
search: 

 NONE – do not apply any improvement method. 
 SA – a steepest ascent local search, using single-flip moves only. 
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 JSA – a jagged steepest ascent local search, which extends SA by 
allowing the search to continue if the next solution is better than the 
previous. 

 2SA – a steepest ascent local search which, at each iteration, combines 
the single-flip neighborhood with the double-flip neighborhood 
described above.  

 J2SA – same as 2SA, but the search is allowed to continue as long as 
the next solution is better than the previous. 

 4SA – similar to 2SA, but if the current solution is feasible and locally 
optimal with respect to 2SA, then the quadruple-flip neighborhood 
described above is searched. 

 J4SA – similar to the J2SA, but the quadruple-flip neighborhood is 
searched when no improved solution can be reached otherwise. That 
is, quadruple-flip moves will not be considered, unless two 
consecutive moves by the combined single- and double-flip 
neighborhoods do not improve the solution. 

4.2 A Systematic Diversification Generation Method 

We also tried a diversification generator that does not rely on 
randomization, but which attempts to produce diverse solutions in a more 
systematic way. The approach is similar to one described by Glover (1998). 

 
Let  be a solution vector used to seed the generator, and let o  

(offset),  (step size) and  (cluster size) be parameters that decide how the 
next solution is generated. Let the length of the solution vectors be , and 
let the separate variables in this case be denoted 110 . For given 
values of the parameters two solutions  and  are generated as follows: 

seedx
s c

n
,...,, nxxx

1x 2x
 
1. Set . seedxx1

2. For , where  is the largest 
integer such that  and for 

scooscoscooj *...,,2,, *o
nscoo * )1(,...,0 ci , with 

, set . njik mod)( seed
kk xx 11

3. Let  be the complement of . 2x 1x
 
We produce solutions by setting  with 2/,...,2,1 nc cns 5/,...,2,1  

and . Note that when  there is no need of generating 
the complement solution . Empirically, this scheme is found to allow 
more than  unique solutions to be generated from each seed, which is 
sufficient for large . For small  the generator may be restarted using a 
different seed. In our implementation the first seed is the solution vector with 
only 0’s and if another seed is needed then this is generated randomly. 

1,...,1,0 sco sn
2x

10/2n
n n

Experiments using Scatter Search 
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Using the systematic diversification generator, one achieves an increase 
in the number of restarts per second, indicating that it is either quicker to 
produce starting solutions without calls to the pseudorandom number 
generator, or that each starting solution may be, on average, closer to a local 
optimum. With the exception of NONE and JSA the results are better, 
although often found later. In fact, if the runs were stopped after 60 seconds 
it seemed that generating all starting solutions randomly led to the better 
solutions. Thus, this systematic diversification generator may need long time 
before being useful vis-à-vis a purely randomized scheme. One should note, 
though, that the goal of this diversification generator is not to generate better 
solutions when used in a multi-start local search, but to generate diverse 
solutions for a population based metaheuristic. 

4.3 Elaborations of the Reference Set Update Method 

The Reference Set Update Method used in the implementation described 
in Section 3 has a two-tier based selection process, where one tier is based 
on solution quality and the other is based on solution diversity. A third tier, 
as suggested in Laguna and Martí (2003), could be based on including 
solutions that have contributed to high quality solutions when used in the 
Solution Combination Method. Thus, an alternative update of the reference 
set could be as follows. 

1. Choose the 1  best solutions available from the pool generated by the 
Diversification Generation Method, from the previous reference set 
and from the set of trial solutions. 

b

2. Choose the 3  solutions that have contributed to the best solutions 
after being input to the Solution Combination Method. Only solutions 
that have previously been selected for the reference set need to be 
considered. 

b

3. Choose the 2  most diverse solutions available from the pool 
generated by the Diversification Generation Method and from the 
previous reference set. 

b

In some preliminary testing, with , 101b 102b  and otherwise using 
the basic Scatter Search implementation outlined in Section 3, we varied 3  
from 0 to 21 in steps of three, in order to assess the value of including such a 
tier in the reference set. The results were not unanimous, but in all cases 
using small non-zero values for  was better than not including the tier 
at all.  

b

3b

One way of changing the Reference Set Update Method that conflicts 
slightly with the approach usually considered in Scatter Search is to rebuild 
the reference set using trial solutions only (akin to the generational approach 
in Genetic Algorithms, see Reeves, 2003). Since solutions that are in the 
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current reference set are not permitted among the trial solutions, the 
reference set will change completely between iterations. Using 251b  and 

 this approach gave good results on the four instances selected for 
testing, with the best solution from ten runs being better than the best 
solution using the regular update mechanism on all four instances and the 
average results being better on three out of the four instances. The improved 
results can be explained by the avoidance of restarts, as restarting (which 
occurs when the reference set is not updated after the generation of trial 
solutions) will squander the information about good solutions that have been 
gained thus far, whereas the generational approach will to some extent carry 
over such information. 

52b

4.4 Variations of the Subset Generation and Solution 
Combination Methods 

Since the Subset Generation Method and the Solution Combination 
Method are tightly connected, we examine these together. As the 
deterministic manner in which pairs of solutions were combined in the 
Scatter Search of Section 3.5 seems rather limiting, we examine different 
approaches. However, the focus here is mainly on methods that combine 
only two solutions at a time, although combinations of three or more 
solutions are encouraged in the literature (e.g., Glover, Laguna and Martí, 
2003). 

Only one approach for combining three solutions has been tested. It is 
similar to the approach described in Section 3.5, and creates the following 
combinations from ,  and : 1x 2x 3x

1. , in which  iff at least one of ,  and  is one ax 1a
jx 1

jx 2
jx 3

jx
2. , in which  iff exactly one of ,  and  is one bx 1b

jx 1
jx 2

jx 3
jx

3. , in which  iff exactly two of ,  and  are one cx 1c
jx 1

jx 2
jx 3

jx
4. , in which  iff two or three of ,  and  are one dx 1d

jx 1
jx 2

jx 3
jx

5. , in which  iff exactly three of ,  and  are one ex 1e
jx 1

jx 2
jx 3

jx
For combining two solutions, a few other approaches have been tried. An 

option is to use the concept of path relinking, where the idea is to create a 
path between two solutions,  and , consisting of moves as defined 
through a neighborhood operator (see Glover, 1998, for more on path 
relinking). One of the solutions encountered on this path is considered as 
output from the Solution Combination Method, either the best solution found 
(having a certain minimum distance from the combined solutions, as both of 
these are locally optimal with respect to the choice of Improvement Method 
and one does not want to return to the same local optimum when applying 
the Improvement Method on the resulting solution), or the solution found in 
the middle of the path, i.e. equally far from  and . We consider both 

1x 2x

1x 2x

Experiments using Scatter Search 
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starting the path in  as well as in , since the two directions are likely to 
yield different paths. In addition there is the option of simultaneous path 
relinking, where the path is built starting from both solutions, merging 
somewhere in between after extending each path segment in turn towards the 
other. The paths are generated by using the single-flip neighborhood 
described in Section 3.2. For more about path relinking and its relation to 
Scatter Search, see Martí, Laguna, and Glover (2006). 

1x 2x

All combination methods presented so far have been completely 
deterministic. Since the type of solutions they can produce may seem 
somewhat limited, we have also tested two combination methods that rely on 
randomized choice. The first method is inspired from the one-point cross-
over operator used in Genetic Algorithms (see, e.g., Reeves, 2003), where a 
cross-over point is selected, dividing two parent solutions in two parts, and 
two offspring solutions are generated by combining one part from each 
parent. Since two given solutions are combined only once in the Scatter 
Search paradigm, it may be promising to repeat the procedure with different 
cross-over points. Thus, in the approach implemented here we first 
preprocess the parent solutions, finding all possible distinct cross-over 
points, and then choose a number cp  of these cross-over points, resulting in 
a total of cp  trial solutions from each pair of reference set solutions that 
are combined. 

n
n2

The second combination method using randomization is inspired by a 
description in Laguna and Martí (2003), page 63. Suppose the solutions  
and  are to be combined. For each variable calculate 

1x
2x

 =)(iscore
)()(
)()(

21

2211

xzxz
xxzxxz ii , 

and then, using a randomly drawn number 1,0ir , let 
 

 . 
)(
)(

0
1

iscorer
iscorer

if
if

x
i

i
i

Thus, good solutions have a greater influence than poor solutions. 
However, two weaknesses need to be mended. Firstly, if both  and  are 
infeasible the score will be misleading as to which solution is better. In such 
cases a better choice for computation of score is 

1x 2x

 =)(iscore
)()(
)()(

21

1221

xvxv
xxvxxv ii , 

where the infeasibility level is used instead of the objective function 
value. Secondly, the method is not able to create solutions with variables 
different from both  and ; if both  and  are one (or zero), then the 1x 2x 1

ix 2
ix
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new solution will have i  equal to one (or zero). The following formula has 
proven useful to generate sb  solutions from each pair of reference set 
solutions, allowing variables that are different from both solutions: 

x
n

 =)(iscore
j

ii

offsetxzxz
xxzxxz

)()(
)()(

21

2211

, 

where  for )2/( sbsbj njoffsetoffset 1,...,0 sbnj . A similar 
change is made in the formula for when  and  are both infeasible. 1x 2x

The different combination methods can be summarized thus: 
 D2S – Combine two solutions deterministically using five different 

formulas (see Section 3.5). 
 D3S – Combine three solutions deterministically using five different 

formulas. 
 D2/3S – Apply both D2S and D3S. 
 PRL-B – Combine two solutions using path relinking (both ways, 

output best solution). 
 PRL-M – Combine two solutions using path relinking (both ways, 

output middle solution). 
 SPRL – Combine two solutions using simultaneous path relinking (i.e., 

by extending paths from both solutions, which merge into one path 
somewhere in between). 

 COO – Combine two solutions using a cross-over operator. 
 SB – Combine two solutions using a score based scheme. 
Otherwise using the basic Scatter Search with the parameters described in 

Section 3, these methods have been tested on our selection of four test 
instances. Since the methods may yield quite different results on each test 
instance, we report the average gap, over ten runs of 240 seconds for each 
instance, to the best upper bound found by running the exact solver CPLEX 
9.0 (see Section 5). Figure 1-2 shows the gap for the eight methods on the 
list above, as well as the gap when no combination method is used (NONE, 
which corresponds to just generating random solutions and subjecting them 
to the improvement method, without combining them). The corresponding 
gap for CPLEX is 0.066, and four of the methods tested gave better gaps 
than CPLEX on the selected set of test instances. Methods based on path 
relinking seems to perform best here, but the poor results of the two methods 
that combine three solutions (D3S and D2/3S) is apparently caused by using 
a too large reference set for the largest instances. 

For the cross-over based method (COO), one need to decide the 
maximum number of solutions to generate from each pair of reference set 
solutions, cp . Different values from zero to twenty were tested, and it 
turned out that all values from three to twenty worked well. A decision was 
made to use , which seemed quite robust for all problem sizes. 

n

5cpn

Experiments using Scatter Search 
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The score based method (SB) was found to be rather robust with respect 
to the two parameters sb  and , with the best combination on the 
four selected test instances being and 

n sboffset
4sbn 1.0sboffset . Both methods 

that incorporate random choices perform better than all the deterministic 
methods, but the difference is small compared to the best path relinking 
based combination method. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

NONE D2S D3S D2/3S PRL-B PRL-M SPRL COO SB

 

Figure 1-2. Average gap to CPLEX upper bound for different combination methods 

4.5 Restarts 

Deciding what to do when the search has converged, i.e., does not 
produce trial solutions that are included in the reference set, may be 
important, depending on how the different components are selected. In our 
case, when using a relatively large reference set, the search does not 
converge quickly for the larger problem instances. In our basic Scatter 
Search the decision was simply to restart from scratch by disregarding all 
solutions found thus far, and in Section 4.3 we mentioned a Reference Set 
Update Method that removed the need for restarts by replacing the entire 
reference set every iteration. A third option is to carry over a number, co ,  
of the best solutions of the current reference set to be included in the pool 
when restarting. This will preserve some information about good solutions, 
making the convergence more rapid for the following reference set. 

n
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Based on preliminary testing using the basic SS settings, it seems that an 
advantage can be gained from using . 2con

4.6 Combining the different components into a complete 
Scatter Search 

Having established that there are many viable alternatives to each of the 5 
components of the basic Scatter Search implementation, we can try to 
combine them into a well functioning Scatter Search. Optimally we would 
like to test the different parameters for each of the alternative components 
together, but since this represents a too heavy computational effort we 
instead select some good values for the parameters, as found in Sections 4.1-
4.5, and create a few combinations of the components to inspect further. 
These are then assembled into complete Scatter Search implementations and 
tested on the full set of test instances (see Section 5). The following 
complete implementations are considered, here summarized with respect to 
the choice of methods: 1) Diversification Generation, 2) Improvement,

ration, and 5) Solution Combination. 3) Reference Set Update, 4) Subset Gene
 BASIC SS – using only very basic and straightforward components. 
1. Starting solutions are generated using pure random choice. 
2. Every solution encountered is improved using SA. 
3. The reference set is updated as explained in Section 3.3, with b1=25 

and b2=5. 
4. All subsets of size two are generated from the reference set, with the 

restriction that at least one of the solutions in each subset was 
included in the reference set during the previous iteration. 

5. The solutions are combined using deterministic formulas, yielding 
five different new solutions for every pair of reference set solutions 
combined. 

 DET SS – combining the deterministic components with best test 
results in Section 4. 

1. Using the strategic diversification generator, with the only 
randomization appearing on the rare occasion that the generator 
needs a new seed. 

2. Every solution encountered is improved using J2SA. 
3. The reference set is updated as explained in Section 4.3, with b1=20, 

b2=5, and b3=3. 
4. Same as for BASIC SS. 
5. The solutions are combined using path relinking, and the solution 

subjected to improvement is the solution that is encountered on the 
path equidistant from the combined solutions (PRL-M). This 

Experiments using Scatter Search 
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potentially produces two new solutions, as a path is generated 
starting from each of the two solutions in the subset. 

 SB SS – based around the score based combination method. 
1. Start solutions are generated using pure random choice. 
2. 3. and 4. same as for DET SS. 
5. Solutions are combined using score based scheme, with nsb=4 and 

offsetsb=0.1. 
 GA SS – based on concepts from Genetic Algorithms 

1. and 2. same as for SB SS. 
3. In this approach the reference set is rebuilt using trial solutions only 

(cf. the generational approach). There is no need for the third tier, so 
we use b1=20, b2=5, and b3=0. 

4. All subsets of size two is generated at each iteration, yielding 300 
different subsets when using the specified reference set size of 25. 

5. Solutions are combined using the cross-over based method, with 
ncp=5. 

 D2/3S SS – based on combining sets of both two and three solutions 
1. Using the strategic diversification generator, with the only 

randomization appearing on the rare occasion that the generator 
needs a new seed. 

2. Every solution encountered is improved using J2SA. 
3. Since we assume the poor performance of the Solution Combination 

Method D2/3S during testing was due to the large reference set 
used, we alter the reference set size to the more standard size, with 
 with b1=5, b2=4, and b3=1. 

4. All subsets of size two and three are generated from the reference 
set, with the restriction that at least one of the solutions in each 
subset was included in the reference set during the previous 
iteration. 

5. The solutions are combined using deterministic formulas, yielding 
five different new solutions for every pair and every triple of 
reference set solutions combined. 

Each of these four implementations are limited to run for 240 seconds per 
instance, although they are only aborted after the Solution Combination 
Method has been completed, which on the larger test instances may cause a 
slight violation of the time limit to incur. A summary of results is reported in 
Section 5. 
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5. COMPUTATIONAL RESULTS 

There are in total 836 test instances, which in this presentation are 
divided in 19 classes. One class, called Obnoxious, consists of 26 instances 
whose structure is based on the problem of simultaneously locating 
obnoxious facilities and routing obnoxious materials. These instances all 
have 100 variables and one demand constraint, with either 50 or 100 
knapsack constraints. The other 18 classes have 45 instances each, and are 
randomly generated based on modifications of Multidimensional Knapsack 
Problems (see Cappanera and Trubian, 2004, for more information regarding 
the generation of test instances). These classes are named - -n m x , where n  
is the number of variables,  is the number of knapsack constraints and m x  
is 0 if all cost coefficients are positive or 1 if there exists negative cost 
coefficients. Each class have fifteen instances with 1q , 2/mq  and 

 demand constraints respectively. The instances can thus be described 
using the notation - - -

mq
n m q x - , where  is the instance number, except for 

the instances of class Obnoxious, which are labelled - - - t . All 
problem instances, except for the class Obnoxious, are, at the time of 
writing, publicly available from Beasley (1995). The class Obnoxious can be 
obtained from the authors of Cappanera and Trubian (2004). 

t t
n m q

All the instances have been attempted solved by the commercially 
available, exact solver CPLEX 9.0, running for one hour on a standard 
2.6GHz Pentium 4. These runs produce upper bounds for the optimal values, 
and the different methods are compared by calculating average gap in % 
from the upper bound given by CPLEX 9.0 to the best solution found (G). 
Also reported are the number of instances for which no feasible solution was 
found (F) and the average time spent before the best solution was found 
(TB). In some cases the average total time spent (TT) is reported, rather than 
the time to best. Note that the gap is calculated as the average over the 
instances for which the method finds feasible solutions, and that the gap can 
be quite large depending on ability of CPLEX to find good upper bounds. 

Table 1-1 contains results by the exact solver CPLEX, as well as 
previous heuristic work by Cappanera and Trubian (2004). Their heuristic 
NT (Nested Tabu search), was run on a 600 MHz Pentium III for a given 
number of iterations. For CPLEX and NT we report both total running time 
and time to best solution. Cappanera and Trubian presented results by 
CPLEX 7.0 for comparisons, but these results are neglected, since they are 
very much similar to the results of CPLEX above, only slightly worse. 
Results for the BASIC SS is also presented in Table 1-1, and note that total 
running time is not stated, since this was limited to 240 seconds per run. The 
final row (Average*) of the table shows average values over all the classes, 

Experiments using Scatter Search 



20 Chapter 1
 
except that solution values are only averaged over instance classes where 
CPLEX finds feasible solutions. 

 

Table 1-1. Comparison of overall results for the basic Scatter Search implementation 
 CPLEX NT BASIC SS 

Class G F TB TT G F TB TT G F TB 

Obnoxious 0.41 0 363 1130 0.50 0 73 105 1.15 0 115 

100- 5-0 0.00 0 14 61 0.07 0 19 39 0.56 0 100 

100- 5-1 0.00 0 16 103 0.25 0 20 37 2.16 0 103 

100-10-0 0.13 0 316 1678 0.47 0 25 49 1.48 0 123 

100-10-1 0.16 0 248 1004 0.64 0 27 47 2.67 0 118 

100-30-0 4.44 18 1455 3600 4.37 14 94 207 8.15 1 121 

100-30-1 8.92 22 912 2262 8.23 14 84 267 18.67 2 131 

250- 5-0 0.04 0 404 2697 0.22 0 140 217 1.16 0 135 

250- 5-1 0.20 0 704 2843 1.04 0 152 198 4.51 0 123 

250-10-0 0.41 0 1685 3600 0.92 0 146 230 2.65 0 157 

250-10-1 0.79 0 984 3593 1.68 0 147 212 4.50 0 156 

250-30-0 4.38 10 2195 3600 2.72 0 385 627 6.31 0 187 

250-30-1 13.15 11 1927 3600 5.55 0 372 588 10.51 0 179 

500- 5-0 0.05 0 1232 3591 0.24 0 606 875 2.37 0 195 

500- 5-1 0.17 0 1364 3599 0.97 0 615 791 7.20 0 197 

500-10-0 0.21 0 1512 3600 0.64 0 627 867 4.40 0 224 

500-10-1 0.54 0 1662 3600 1.48 0 616 814 6.92 0 218 

500-30-0 3.56 5 1695 3600 1.71 0 1176 1836 11.05 0 220 

500-30-1 7.28 6 1801 3600 2.91 0 946 1361 13.13 0 229 

Average* 0.24 3.8 1078 2703 0.70 1.5 330 493 3.21 0.2 160 

 
Results for the four Scatter Search implementations based on the 

different components tested in Section 4 are reported in Table 1-2. These 
runs, with headings DET SS, SB SS, GA SS, and D2/3S SS, were also 
limited to 240 seconds per instance. The best overall results seems to be 
produced by DET SS, being better than NT on 17 of the 19 classes but better 
than CPLEX on only 6 classes. The running time of the Scatter Search 
implementations are much shorter than those of CPLEX, though, whereas it 
is more difficult to compare running times with NT. The only method that 
finds a feasible solution to all problems in one run is SB SS. For the other 
Scatter Search implementations it is two particular problem instances that 
are most difficult, one in class 100-30-0 and one in 100-30-1. Both CPLEX 
and NT fail to find feasible solutions to many problems (14-22 instances per 
class) in these classes. It is interesting to note that each of the other 
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implementations improve upon the BASIC SS with quite a large margin, 
even when considering the enhancements in the Improvement Method and 
the Solution Combination Method. 

 

Table 1-2. Overall results for different Scatter Search implementations 
DET SS SB SS GA SS D2/3S SS 

Class G F TB G F TB G F TB G F TB 

Obnoxious 0.41 0 20 0.41 0 11 0.49 0 16 0.42 0 21 

100- 5-0 0.03 0 21 0.01 0 42 0.04 0 46 0.03 0 64 

100- 5-1 0.06 0 17 0.02 0 20 0.08 0 23 0.20 0 55 

100-10-0 0.29 0 42 0.23 0 57 0.27 0 58 0.30 0 79 

100-10-1 0.37 0 34 0.23 0 40 0.28 0 37 0.43 0 79 

100-30-0 4.95 1 60 4.92 0 77 5.48 1 96 5.76 1 112 

100-30-1 13.09 0 55 13.05 0 88 13.36 1 95 14.57 1 106 

250- 5-0 0.09 0 108 0.15 0 123 0.15 0 186 0.27 0 140 

250- 5-1 0.44 0 101 0.52 0 127 0.47 0 179 1.01 0 129 

250-10-0 0.62 0 126 0.70 0 138 0.76 0 197 0.84 0 150 

250-10-1 1.15 0 110 1.25 0 133 1.14 0 177 1.63 0 135 

250-30-0 2.10 0 152 2.77 0 213 2.77 0 224 2.60 0 197 

250-30-1 4.27 0 160 5.71 0 207 5.84 0 220 5.70 0 187 

500- 5-0 0.13 0 164 1.12 0 228 1.86 0 221 0.51 0 221 

500- 5-1 0.48 0 178 1.28 0 228 1.92 0 224 1.79 0 199 

500-10-0 0.45 0 201 1.52 0 229 1.86 0 225 1.10 0 200 

500-10-1 1.01 0 224 2.18 0 227 2.63 0 215 2.31 0 203 

500-30-0 2.18 0 217 3.14 0 196 3.24 0 187 2.91 0 184 

500-30-1 3.84 0 215 5.11 0 199 5.30 0 191 5.21 0 205 

Average* 0.43 0.1 121 0.77 0.0 143 0.96 0.1 156 0.87 0.1 147 

 
We have also tested the same four Scatter Search implementations, but 

where the stopping criterion is not time, but rather that no new solutions 
have been included in the reference set during the last iteration. The results 
on the smaller instances are inferior, as they no longer benefit from the 
restarts. They get better results on the larger instances, but using almost as 
much time as CPLEX on the largest ones, as can be seen in Table 1-3. 

 The best of these implementations, DET(1)SS, gets better results than 
the nested tabu search method (NT) of Cappanera and Trubian on 15 of 19 
problem classes, and, due to the stopping criterion, uses on average only 2-4 
seconds per instance on the four problem classes on which it performs worse 
than NT. 

Experiments using Scatter Search 
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Table 1-3. Overall results for different Scatter Search implementations, using convergence of 
reference set as stopping criterion. 

DET(1)SS SB(1)SS GA(1)SS D2/D3(1)SS 

Class G F TT G F TT G F TT G F TT 

Obnoxious 0.45 0 10 0.41 0 17 0.42 0 27 0.47 0 22 

100- 5-0 0.12 0 2 0.13 0 6 0.17 0 11 0.25 0 5 

100- 5-1 0.27 0 3 0.27 0 5 0.32 0 9 0.85 0 5 

100-10-0 0.52 0 4 0.43 0 10 0.53 0 17 0.66 0 8 

100-10-1 0.77 0 4 0.68 0 8 0.78 0 14 1.17 0 8 

100-30-0 5.68 1 15 5.37 1 39 5.83 1 49 6.49 1 33 

100-30-1 14.6 1 14 12.78 2 36 14.36 1 47 16.33 1 31 

250- 5-0 0.14 0 27 0.17 0 97 0.22 0 162 0.31 0 87 

250- 5-1 0.56 0 32 0.61 0 82 0.67 0 130 1.07 0 84 

250-10-0 0.69 0 43 0.73 0 134 0.82 0 212 0.86 0 141 

250-10-1 1.26 0 46 1.29 0 113 1.33 0 166 1.74 0 108 

250-30-0 2.15 0 116 2.14 0 409 2.27 0 455 2.42 0 284 

250-30-1 4.37 0 125 4.36 0 366 4.46 0 436 5.1 0 279 

500- 5-0 0.13 0 188 0.15 0 698 0.19 0 1350 0.25 0 829 

500- 5-1 0.45 0 229 0.49 0 575 0.54 0 1075 0.9 0 736 

500-10-0 0.41 0 283 0.46 0 995 0.56 0 1629 0.56 0 1119

500-10-1 0.88 0 314 1.01 0 827 1.07 0 1236 1.32 0 854 

500-30-0 1.27 0 798 1.36 0 2310 1.42 0 3012 1.46 0 2422

500-30-1 1.96 0 819 2.09 0 2209 2.14 0 2681 2.56 0 1926

Average* 0.51 0.1 162 0.53 0.2 470 0.59 0.1 669 0.80 0.1 473 

 
 

6. CONCLUSIONS AND FUTURE WORK 

Through experimenting with the different components of the Scatter 
Search methodology, this work has shown that the Scatter Search is quite 
robust with respect to the choices made for each component. Four quite 
different implementations, based on good deterministic components 
(DET SS, D2/3S SS), based on randomized components (SB SS), and based 
on components inspired by Genetic Algorithms (GA SS) have all produced 
competitive results on problem instances of the Multidemand 
Multidimensional Knapsack Problem. Even though our methods have been 
designed to solve the more general 0/1 Integer Programming Problem, and 
previous heuristic work (NT) has been designed to take advantage of 
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problem specific features, feasible solutions are found on most instances 
with small gaps to the optimal solutions. 

One could point out that the parameters to neither of the Scatter Search 
implementations have been fine tuned, and that the parameter search was 
conducted from the perspective of the basic Scatter Search, rather than in 
combination with the particular implementation in which the parameters 
were later incorporated. Thus one might expect that each method could 
perform better if important parameters were retuned. 

Since the empirical parameter testing showed that a rather large (as 
compared to the recommended figures) reference set was useful, one of the 
drawbacks of the different implementations of Scatter Search was the quite 
high associated computational effort. However, there is probably a 
connection between the size of the reference set and the ability to find good 
solutions on problems with many constraints (and many local optima). A 
small reference set would probably find a quite good solution relatively fast, 
whereas a larger reference set increases the possibility of finding better 
solutions, albeit at a later time. As the initial parameter tests were allotted 
240 seconds per run, this may have favored the latter strategy. 

For several components one has the option of either relying on 
randomized choices (random initial solution, making combinations of 
solutions with random variations) or deterministic choices (strategically 
generated initial solutions, combining solutions deterministically, etc.). 
Although the best overall Scatter Search results were obtained by a pure 
(with disregard to the rare event of restarting the algorithm for generating 
initial solutions) deterministic method (DET SS), making randomized 
decisions does seem to have some merit, and on some problem classes the 
methods incorporating randomized choices performs well: the SB SS being 
the only method to find feasible solutions to all instances in one run, and in 
general being the best heuristic method for the classes with small (100 
variables) problems. 

The particular choice of Improvement Method seems to have an impact 
on solution quality that is easily recognizable, though the cooperation with 
other mechanisms in the Scatter Search framework will improve the solution 
quality. Relying blindly on the most simple steepest ascent (or descent) local 
search may be dangerous, and very simple extensions (extending 
neighborhoods or changing the stopping criterion) can be helpful. 

For future work, it may be interesting to delve into the effects of 
changing the size of the reference set. Preliminary experimental results 
indicated that large reference sets were more appropriate than the sizes 
usually recommended in the literature. There seems to be a trade-off 
between obtaining good results quickly and getting very good results in the 
long run. This suggests an idea that the size of the reference set should be 

Experiments using Scatter Search 
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dynamic, starting out small and growing as the solution quality improves. 
Bearing in mind that the Reference Set Update Method which was based on 
the generational approach from Genetic Algorithms also performed well, a 
combination of this strategy and a growing reference set, could lead to more 
robust methods of maintaining the reference set. 

Although this work has focused mainly on Combination Methods based 
on combining pairs of solutions, the possibility of combining several 
solutions simultaneously should not be neglected. However, there seems to 
be a conflict between using large reference sets and allowing combinations 
of more than two solutions, since the number of possible combinations 
grows rapidly. Whether or not larger reference sets, combinations of more 
than two solutions at a time, both, or neither of these choices are to be 
preferred, is ostensibly a problem specific issue, and may need further 
investigation based on this perspective. 
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Abstract The Fixed-Charge Capacitated Multi-commodity Network Design
(CMND) problem consists in finding the optimal configuration, i.e., the
arcs to include in the final design, of a network on which the flows
of several products (“commodities”) must be routed to satisfy given
demands between origin-destination pairs. Each of the arcs that can
possibly be included in the design is characterized by its capacity (the
maximum amount of flow of all commodities it can support), a fixed cost
to be incurred if the arc is selected, and a variable cost for each unit of
flow that uses the arc. The objective of the problem is to minimize the
total system cost (the sum of the fixed costs of selected arcs and routing
costs), while respecting capacity limits.

In this paper, we report on an extensive investigation of different
variants of a new metaheuristic, based on the Scatter Search concept
originally proposed by Glover, for the CMND. Computational results
on a set of small and medium size benchmark instances show that while
scatter search is not yet able to match the results of the best existing
metaheuristics for the problem, all variants are successful in finding
better solutions on some instances.
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Keywords: scatter search; network design; multi-commodity flows; fixed-charge
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1. Introduction
The fixed-charge capacitated multicommodity network design prob-

lem (CMND) is a generic model that covers a wide range of network
planning problems in the areas of transportation, logistics, telecommu-
nication, and production management [2, 14, 15]. The problem con-
sists in finding the optimal configuration, i.e., the arcs to include in
the final design, of a network on which the flows of several products
(or “commodities”) must be routed to satisfy given demands between
origin-destination pairs. Each of the arcs that can possibly be included
in the design is characterized by its capacity (the maximum amount of
flow of all commodities it can support), a fixed cost to be incurred if
the arc is selected, and a variable cost for each unit of flow that uses
the arc. The objective of the problem is to minimize the total system
cost, computed as the sum of the fixed costs of selected arcs and routing
costs, while respecting capacity limits.

The CMND problem is usually modeled as a 0–1 mixed integer pro-
gramming problem and it has been shown to be NP-hard in the strong
sense. Not surprisingly, even though significant efforts have been devoted
to the development of exact methods for this problem (see, e.g., [3, 5,
12]), heuristics must be resorted to when dealing with large instances
with several commodities.

Over the last few years, two main approaches based on metaheuris-
tics have been proposed for the general CMND model. The first, which
was developed by Crainic, Gendreau, and Farvolden [4], is a tabu search
heuristic for the path-based formulation of the problem. It exploits the
fixed-charge nature of the problem by exploring the space of the contin-
uous path-flow variables using pivot-like moves in a column generation
environment. This method produces impressive results compared to
simple heuristics, but its efficiency remains limited by the fact that each
move considers the impact of changing the flow of only one commodity (a
pivot from one path to another), thus making it difficult to properly ac-
count for the multi-commodity nature of the problem. To overcome this
limitation, Ghamlouche, Crainic, and Gendreau [6] proposed another
tabu search heuristic, but for the arc-based formulation of the problem.
The key element of this heuristic was a new neighbourhood structure
for the CMND, the so-called “cycle-based neighbourhood”, that allows
changing the flow pattern of several commodities simultaneously, as well
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as opening and closing several arcs. In spite of the fact that the global
search strategy used in this paper amounted to a fairly basic tabu search
scheme, it was at the time the best approximate solution method for the
CMND in terms of robust performance, solution quality, and computing
efficiency. The authors extended their approach in a second paper [7] in
which tabu search was combined with Path Relinking [9–11] to yield an
enhanced and more effective search strategy. As far as we know, this is
currently the most effective method for tackling large CMND instances.
However, for some of the larger and more complex instances, the rela-
tive gaps observed between the lower bounds computed using Lagrangian
relaxation [3, 5] and the best solutions obtained by the combined tabu
search-path relinking hybrid heuristic can be as large as 20.9%, thus sug-
gesting that there might exist significantly better solutions than these.
It is therefore relevant to pursue examining other heuristic approaches
for the CMND.

The purpose of this paper is to report on an extensive investigation
of different variants of a new metaheuristic for the CMND. This new
heuristic is based on the Scatter Search concept originally introduced by
Glover [8, 9].

The remainder of the paper is organized as follows. In section 2, we
recall the arc-based formulation of the CMND, as well as some of its
basic properties that will be exploited in our scatter search heuristic.
Following a brief outline of the scatter search methodology, section 3
details our scatter search implementation for the CMND. Computational
results are reported and analyzed in section 4; we compare, in particular,
the scatter search results to those obtained by the path relinking hybrid.
Section 5 concludes the paper and suggests future research directions for
the application of scatter search to network design problems.

2. Formulation and basic properties
Let G = (N ,A) be a network with set of nodes N and set of directed

arcs A. Let P denote the set of commodities to move using this network
and for each p ∈ P, let dp denote the required amount of flow of com-
modity p to be shipped from its origin o(p) to its destination s(p). The
total flow on each arc (i, j) ∈ A is limited by the capacity uij . There are
two costs involved in the network. The unit cost of moving commodity
p ∈ P through the arc (i, j), denoted cpij , and the fixed cost of including
arc (i, j) in the design of the network, denoted fij. The problem con-
sists in minimizing the sum of all costs while satisfying the demand of
transportation.
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The arc-based formulation of the CMND can then be written as

min z(x, y) =
∑

(i,j)∈A
fijyij +

∑
p∈P

∑
(i,j)∈A

cpijx
p
ij (1)

subject to

∑

j∈N+(i)

xpij −
∑

j∈N−(i)

xpji =

⎧⎨
⎩
dp if i = o(p)
−dp if i = s(p) ∀i ∈ N ,∀p ∈ P,
0 otherwise.

(2)

∑
p∈P

xpij ≤ uijyij ∀(i, j) ∈ A, (3)

xpij ≥ 0 ∀(i, j) ∈ A,∀p ∈ P, (4)
yij ∈ {0, 1} ∀(i, j) ∈ A (5)

where yij, (i, j) ∈ A, represent the design variables that equal 1 if
arc (i, j) is selected in the final design (and 0 otherwise), xpij stand for
the flow distribution decision variables indicating the amount of flow of
commodity p ∈ P on arc (i, j), and N+(i)/N−(i) denotes the set of
outward/inward neighbours of node i.

The objective function (1) accounts for the total system cost, the
fixed cost of arcs included in a given design plus the cost of routing the
demand of all commodities, and aims to select the minimum cost design.
Constraints (2) represent the network flow conservation relations, while
constraints (3) state that for each arc, the total flow of all commodities
cannot exceed its capacity if the arc is opened (yij = 1) and must be
0 if the arc is closed (yij = 0). Relations (4) and (5) are the usual
non-negativity and integrality constraints for decision variables.

For a given design vector ȳ, the arc-based formulation of the CMND
becomes a capacitated multicommodity minimum cost flow problem
(CMCF)

min z(x(ȳ)) =
∑
p∈P

∑
(i,j)∈A(ȳ)

cpijx
p
ij (6)

subject to (2) plus
∑
p∈P

xpij ≤ uij ȳij ∀(i, j) ∈ A(ȳ),

xpij ≥ 0 ∀(i, j) ∈ A(ȳ),∀p ∈ P,
where A(ȳ) stands for the set of arcs corresponding to the design ȳ. A
solution to the CMND may thus be viewed as an assignment ȳ of 0 or 1
to each design variable, plus the optimal flow pattern of the correspond-
ing multicommodity minimum cost flow problem x∗(ȳ). Similarly, the
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objective function value associated with a solution (ȳ, x∗(ȳ)) is the sum
of the fixed cost of the open arcs in ȳ and the objective function value
of the CMCF associated with ȳ

z(ȳ, x∗(ȳ)) =
∑

(i,j)∈A(ȳ)

fij ȳij + z(x∗(ȳ)). (7)

3. Scatter search
Scatter search is a population-based search heuristic that was origi-

nally introduced by Glover in 1977 [8]. The basic idea of the method is
to create new (hopefully) interesting solutions to a problem by combin-
ing values from elite solutions previously obtained either by some other
(meta-)heuristic or by the method itself. As in genetic algorithms, the
key idea behind the method is that the best solutions to a problem must
share some common attributes. Scatter search is particularly well-suited
to problems with continuous decision variables, since elite solutions can
then be combined through linear intra- or extrapolation. However, it
can also be applied to combinatorial problems, but this requires some
ingenuity in the definition of the procedures used to combine elite so-
lutions, as we shall see in the following. The basic template for scatter
search as proposed by Glover in 1998 [9] is as follows:

Scatter search template

1 Generate an initial population of good and diverse solutions.

2 Select a subset of the population to form the Reference Set (RS).

3 Extract N solutions from RS to create the Candidate Set (CS).

4 Create new solutions by combining the solutions from CS.

5 If necessary, repair these solutions to make them feasible.

6 Improve the new solutions.

7 Update the reference set and go back to step 3.

Interested readers will find more details on scatter search in the orig-
inal papers by Glover [8, 9] or in the book by Laguna and Mart́ı [13].

Our implementation of scatter search for the CMND focuses on the yij
design variables; the continuous flow variables are computed by solving
the associated CMCF subproblem. The initial population of solutions
is obtained by applying the cycle-based tabu search of Ghamlouche,
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Crainic, and Gendreau [6] until it has performed a pre-set number of it-
erations without improvement (20, in the current implementation). The
reference set is made up of S local optima extracted from the initial
population. If more than S local optima are identified, we keep the S
best ones; if there are less than S local optima, we complete RS with the
best solutions encountered by tabu search that were not local optima.
At each iteration, the candidate set is created by selecting the best so-
lution in RS, along with the one that is farthest from it; if N > 2, CS is
completed by randomly chosen solutions in RS.

We create a single new solution from the candidate set. To combine
solutions yl, 1, ..., N, of CS, we first compute for each arc (i, j) a desir-
ability factor, 0 ≤ mij ≤ 1, :

mij =
∑
l wly

l
ij∑

l wl
,∀(i, j),

where wl represents the weight of solution yl. Three alternate variants
were examined to define the weights:

Voting (V): wl = 1,∀l;
Cost (C): wl = 1/(cost difference between solution l and the best
solution), ∀l;
Distance (H): wl = 1/(Hamming distance between solution l and
the best solution), ∀l.

In a fourth variant (Frequency – F), desirability factors were weighted
with respect to the frequency of appearance of each arc in the best solu-
tions encountered so far. Note that in variants (C) and (H), if solution
l is the best solution, its weight is set to 100.

The desirability factor of each arc is then assessed on a desirability
scale ranging from 0 (do not open the arc) to 1 (absolutely open the
arc). We define two thresholds tc ≤ to on this scale and perform the
following comparisons:

if 0 ≤ mij < tc, the arc is closed in the new solution;

if tc ≤ mij ≤ to, the arc is undecided;

if to < mij ≤ 1, the arc is open in the new solution.

To complete this solution, we first solve a modified CMCF problem
using CPLEX. In this modified CMCF, the capacity of closed arcs is set
to 0, while the variable cost for undecided arcs is set to (fij/uij) + cij ,
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i.e., the cost of arcs in the linear relaxation of CMND. The optimal solu-
tion of this problem is then used to create a feasible solution for CMNF
by opening all arcs on which there is flow. The cycle-based tabu search
is launched from that solution in the hope of finding an improved solu-
tion. In a variant of the algorithm, an intensification phase is applied
to the best solution obtained by TS. This intensification phase is similar
to the one described in the original tabu search procedure of Gham-
louche, Crainic, and Gendreau [6]; it involves iteratively modifying the
flow distribution of a single commodity at the time and only accepting
improving moves. If the best solution found by the above procedure is
better than the worst solution in the reference set, it replaces it.

4. Computational results
Computational experiments were performed to first identify good pa-

rameter values, and then to evaluate the performance of the method by
comparing the results that it produces with those of the path relinking
heuristic.

For these experiments, we used one of the original data sets used by
Ghamlouche, Crainic, and Gendreau to test the tabu search heuristic [6]
and the path relinking method [7]. The 43 problems in this set are
general transshipment networks with no parallel arcs. Each commodity
corresponds to a single origin-destination pair. On each arc, routing
costs are the same for all commodities. Problem instances have been
generated to offer for each network size (20 to 100 nodes, 100 to 700
arcs, 10 to 400 commodities), a variety of fixed cost to routing cost
ratios and capacity to demand ratios. Each instance is thus uniquely
identified by a label consisting of five entries:

1 Number of nodes,

2 Number of arcs,

3 Number of commodities,

4 A letter indicating if variable (V) or fixed (F) costs are dominant
in the objective,

5 A letter indicating if capacity constraints are tight (T) or loose
(L).

Instance difficulty is largely driven by the number of commodities in-
volved. For a given number of commodities, instance difficulty increases
in general with the number of nodes and arcs. For a given network
size and number of commodities, problems with tight capacities (T) and
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where fixed costs dominate (F) are the most difficult. A detailed descrip-
tion of problem instances is given in Crainic, Frangioni, and Gendron [3].
The problem generators as well as the problem instances can be obtained
from the authors.

The computer code is written in C++. The exact evaluation of the
CMNF problems is done using the LP solver of cplex 7.5. All tests were
conducted on one 400MHz processor of a 64-processor Sun Enterprise
10000 with 64 Gigabyte of RAM, operating under Solaris 8.

Preliminary testing was performed to find good parameter values on
a subset of 10 representative instances. In particular, two values were
tested for (tc, to): (0.25, 0.75) and (0.4, 0.6). These tests indicated that
the second combination performed significantly better and all further
tests were conducted with (tc, to) = (0.4, 0.6). Extensive computational
experiments were performed for several values of N using the four vari-
ants for combinations, with or without intensification. Different versions
of the basic method involving different ways of building the reference set
were also considered and tested. The analysis of the results of these
various runs, some of which will not be reported in detail here, allowed
several conclusions to be drawn:

1 The use of intensification does not significantly improve the results
obtained.

2 The best values of N range between 3 and 5; in particular, using
N = 2 produces markedly inferior results.

3 It is important to use a sufficiently large reference set and to ensure
that it is full at initialization step.

4 The combination rule based on frequencies (F) is clearly inferior
to the three other ones.

On the basis of these conclusions, we now report on the most interest-
ing variants and combinations. In these, intensification is not used and
the size of the reference set is fixed to 20, a value that provides sufficient
diversity in the set. Furthermore, as indicated in section 3, at initializa-
tion, if less than 20 local optima have been identified by tabu search, the
reference set is filled with the best solutions encountered by tabu search
that were not local optima, since preliminary testing showed that this
had a positive impact on results. In Table 2.1, we report the percentage
gaps observed between the solutions obtained with scatter search for
N = 3, 4, 5 and for combination rules (V), (C) and (H) with those
produced by path relinking [7] for the 43 instances tested. These gaps
are computed as the difference between the value of the scatter search
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solutions and the average value of the path relinking solutions divided
by this path relinking value; negative gaps indicate that scatter search
produced a better solution than path relinking. Summary statistics for
all 43 runs are provided in Table 2.2.

These tables show that the performance of the scatter search heuristic
varies quite significantly from one instance to another (with gaps rang-
ing from -3.51 to 10.07%) and sometimes between variants for a given
instance (see, e.g. instance (100,400,30,F,L) for which gaps range from
-2.11 to 5.42%). In general, scatter search does fairly well, but no single
variant outperforms path relinking on average. It is interesting to note
that, with an average gap of 0.47%, the variant that displays the best
overall performance is (N = 3, V), which is the “simplest” one, since
it requires less solutions than others and combines them in the most
straightforward way.

More detailed statistics by problem class (see Table 2.3) and by prob-
lem size (see Table 2.4) confirm the slight superiority, on average, of the
Voting combination rule over the others, but also highlight the fact that
there are problem classes and problem sizes where combining more than
3 solutions pays off. Furthermore, one may notice that there are indeed
problem classes ((F, L) instances for (N = 4, V) ) and problem sizes
(100–200 commodities for (N = 3, V or C)) for which scatter search can
do better on average than path relinking.

A more interesting conclusion can be drawn, however, by considering
the minimum gap observed over all 9 runs reported here for a given
instance: on average, it is equal to -0.37%. By considering multiple runs
of scatter search, it is thus possible to obtain better results on average
than with path relinking. We pushed this analysis further to determine
what could be said about the best solutions obtained by considering
the three combinations for a given value of N or the three values of
N for any combination rule. In all cases, we observed, unfortunately,
positive average gaps. Therefore, if we consider independent runs of
scatter search, we probably need to combine all 9 variants to outperform
path relinking. There is, however, a good reason for not accepting this
as a final answer in the search for methods capable of doing better than
path relinking and this is running times. These running times (in CPU
seconds) are reported for the case N = 3 in Table 2.5; similar, but in
general somewhat longer times were observed for N = 4 or 5. As one
may easily remark, running times are reasonable for the smaller instance
sizes, but they grow quite rapidly. Moreover, one must also note that
the running times for scatter search are, except for a very few cases,
consistently higher (often 3 to 5 times higher) than the times required
by path relinking.
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Table 2.1. Percentage gaps between the scatter search and the path relinking heuris-
tics

Problem N = 3 N = 4 N = 5
(V) (C) (H) (V) (C) (H) (V) (C) (H)

25,100,10,V,L 0.76 0.69 0.00 0.00 0.69 0.00 0.69 0.76 0.00
25,100,10,F,L 0.75 0.75 -0.54 0.75 0.75 -0.54 1.65 -1.81 -0.54
25,100,10,F,T 1.20 2.89 -0.33 2.02 2.65 0.36 3.79 0.81 2.76

100,400,10,V,L 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
100,400,10,F,L 1.65 1.88 1.83 -1.21 0.07 -1.21 -0.22 -0.16 -0.22
100,400,10,F,T 7.54 9.55 10.07 7.01 8.58 9.21 9.75 6.40 7.22

25,100,30,F,L -1.81 0.86 -0.09 -0.66 0.24 0.80 0.23 1.69 2.90
25,100,30,V,T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25,100,30,F,T 2.62 2.02 2.02 0.79 1.35 1.21 1.29 1.45 1.82

100,400,30,F,L 0.94 1.03 1.52 1.76 -1.60 2.42 -0.84 5.42 -2.11
100,400,30,V,T -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02
100,400,30,F,T 1.04 1.06 1.01 0.51 0.73 0.33 0.33 1.29 0.41

20,230,40,V,L 0.23 0.33 0.23 0.24 0.33 0.43 0.23 0.33 0.23
20,230,40,V,T 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.07 -0.01
20,230,40,F,T 0.62 0.66 0.80 0.70 0.70 0.70 0.80 0.82 0.82

20,300,40,V,L 0.01 0.19 0.10 0.16 0.10 0.09 0.05 0.17 0.00
20,300,40,F,L 0.27 0.99 0.87 0.74 0.99 0.99 0.99 0.82 0.99
20,300,40,V,T 0.18 0.17 0.17 0.17 0.17 0.18 0.18 0.21 0.17
20,300,40,F,T 0.38 0.47 0.56 0.25 0.64 0.92 0.80 -0.03 0.24

30,520,100,V,L 1.52 2.01 2.70 2.73 2.20 2.62 2.87 3.04 2.72
30,520,100,F,L -0.11 -0.11 0.13 0.24 -0.35 1.02 0.84 -1.81 0.86
30,520,100,V,T 1.54 1.89 1.64 1.79 1.80 1.81 1.54 1.88 1.66
30,520,100,F,T 4.68 4.92 4.24 1.54 4.68 3.72 3.39 4.98 5.79

30,700,100,V,L 1.22 1.22 1.22 1.22 1.22 1.22 1.42 1.22 1.22
30,700,100,F,L 1.80 1.58 1.89 0.29 3.06 1.86 0.46 1.55 2.36
30,700,100,V,T 1.39 1.39 2.08 1.84 1.87 1.89 1.66 2.05 1.91
30,700,100,F,T 2.04 1.60 1.21 1.81 1.84 2.06 2.55 1.76 2.55

20,230,200,V,L -2.81 -1.28 -1.40 -1.03 -0.77 0.75 -0.54 0.06 1.00
20,230,200,F,L -1.84 -3.26 -1.82 -1.72 -2.08 -1.46 -1.81 -0.84 -1.81
20,230,200,V,T -1.53 -2.09 1.05 -0.26 -0.65 0.75 -0.77 -0.96 1.30
20,230,200,F,T -0.61 -3.26 -0.97 -1.09 -1.05 -0.54 -0.86 -0.21 -0.53

20,300,200,V,L -2.80 -1.67 -0.47 -1.26 -1.75 -1.42 -0.21 -0.67 -1.31
20,300,200,F,L -1.04 -0.69 0.12 -1.44 -1.14 -0.92 1.18 -2.21 2.01
20,300,200,V,T -2.23 -1.69 1.05 0.42 -1.64 0.42 0.86 1.18 -0.97
20,300,200,F,T -3.10 -2.90 -1.94 -2.88 -2.50 -3.41 -1.89 -3.51 -2.31

30,520,400,V,L 1.38 0.52 -0.84 0.38 0.26 1.45 0.97 0.57 0.10
30,520,400,F,L -0.40 -0.92 -0.38 -1.71 -0.80 -1.91 -1.48 -0.73 0.68
30,520,400,V,T 0.92 0.84 0.93 1.02 0.89 1.21 1.30 1.04 0.81
30,520,400,F,T -0.32 -0.28 1.16 0.88 0.88 0.82 -0.20 -0.20 0.54

30,700,400,V,L 1.55 1.40 4.51 3.15 1.70 2.90 2.21 2.34 3.97
30,700,400,F,L 0.62 -1.02 3.39 -0.88 1.72 0.62 -1.06 0.60 0.21
30,700,400,V,T 1.78 1.47 -0.08 1.59 1.64 1.18 1.46 1.44 1.37
30,700,400,F,T 0.27 0.08 0.94 1.60 0.84 1.68 -0.20 1.76 1.04
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Table 2.2. Percentage gaps between the scatter search and the path relinking heuris-
tics – Global statistics

N = 3 N = 4 N = 5
(V) (C) (H) (V) (C) (H) (V) (C) (H)

Average 0.47 0.54 0.90 0.50 0.66 0.80 0.78 0.76 0.93
Std. dev. 1.88 2.12 1.99 1.61 1.88 1.87 1.89 1.85 1.83
Minimum -3.10 -3.26 -1.94 -2.88 -2.50 -3.41 -1.89 -3.51 -2.31
Maximum 7.54 9.55 10.07 7.01 8.58 9.21 9.75 6.40 7.22

Table 2.3. Average percentage gaps by problem class between the scatter search and
the path relinking heuristics

Problem N = 3 N = 4 N = 5
class # (V) (C) (H) (V) (C) (H) (V) (C) (H)

V,L 10 0.11 0.35 0.61 0.57 0.41 0.81 0.78 0.79 0.80
F,L 11 0.08 0.10 0.63 -0.35 0.08 0.15 -0.01 0.23 0.48
V,T 10 0.21 0.20 0.69 0.66 0.41 0.75 0.63 0.69 0.62
F,T 12 1.36 1.40 1.56 1.10 1.61 1.42 1.63 1.28 1.70

All 43 0.47 0.54 0.90 0.50 0.66 0.80 0.78 0.76 0.93

Table 2.4. Average percentage gaps by problem size between the scatter search and
the path relinking heuristics

Number of N = 3 N = 4 N = 5
commodities # (V) (C) (H) (V) (C) (H) (V) (C) (H)

10 – 40 19 0.87 1.24 0.96 0.70 0.87 0.84 1.04 0.96 0.78
100 – 200 16 -0.12 -0.15 0.67 0.14 0.30 0.65 0.67 0.47 1.03

400 8 0.73 0.26 1.20 0.75 0.89 0.99 0.38 0.85 1.09

All 43 0.47 0.54 0.90 0.50 0.66 0.80 0.78 0.76 0.93
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Table 2.5. Running times (in seconds) for the scatter search (N = 3) and the path
relinking heuristics

Problem Scatter search Path
(V) (C) (H) Relinking

25,100,10,V,L 30 16 50 13
25,100,10,F,L 84 91 79 16
25,100,10,F,T 107 43 152 25

100,400,10,V,L 347 1044 419 99
100,400,10,F,L 796 641 710 112
100,400,10,F,T 2,475 2,351 1,413 201

25,100,30,F,L 431 282 349 79
25,100,30,V,T 69 42 124 93
25,100,30,F,T 90 58 211 100

100,400,30,F,L 2,959 4,279 2,137 301
100,400,30,V,T 927 2,279 3,500 451
100,400,30,F,T 3,886 2,623 2,581 579

20,230,40,V,L 258 148 507 132
20,230,40,V,T 385 418 514 149
20,230,40,F,T 198 440 305 146

20,300,40,V,L 447 784 719 247
20,300,40,F,L 464 117 913 241
20,300,40,V,T 218 620 965 246
20,300,40,F,T 534 733 751 138

30,520,100,V,L 13,840 3,057 13,187 1,351
30,520,100,F,L 9,932 10,400 19,370 1,843
30,520,100,V,T 3,817 6,090 5,902 1,423
30,520,100,F,T 10,256 13,336 12,196 1,371

30,700,100,V,L 6,453 6,860 14,220 1,899
30,700,100,F,L 8,707 18,718 16,131 2,190
30,700,100,V,T 7,489 7,933 13,755 1,674
30,700,100,F,T 4,948 5,244 7,211 1,765

20,230,200,V,L 7,943 7,413 10,119 2,035
20,230,200,F,L 3,080 7,011 6,090 2,508
20,230,200,V,T 4,412 6,116 5,814 1,946
20,230,200,F,T 6,390 10,082 7,919 2,954

20,300,200,V,L 11,017 11,583 11,238 3,561
20,300,200,F,L 8,276 10,416 8,026 3,913
20,300,200,V,T 11,088 12,352 18,681 3,860
20,300,200,F,T 7,365 9,832 9,318 4,001

30,520,400,V,L 29,581 35,185 101,605 31,546
30,520,400,F,L 104,151 90,483 113,216 35,671
30,520,400,V,T 15,674 38,438 39,859 23,546
30,520,400,F,T 67,333 94,994 83,548 60,123

30,700,400,V,L 100,944 112,100 74,263 19,433
30,700,400,F,L 107,977 131,285 120,494 58,762
30,700,400,V,T 31,122 88,147 115,992 32,450
30,700,400,F,T 111,778 93,911 106,186 51,235
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Table 2.6. Number of iterations, new solutions, and reference set updates (N = 3)

Problem (V) (C) (H)
#iter new upd. #iter new upd. #iter new upd.

100,400,10,F,L 68 57 11 49 42 8 47 41 9
100,400,10,F,T 72 64 13 51 48 10 35 34 6
100,400,10,V,L 22 19 3 56 45 16 23 23 4

100,400,30,F,L 66 56 13 102 92 24 43 37 12
100,400,30,F,T 51 50 10 32 29 7 33 30 7
100,400,30,V,T 12 12 2 27 26 7 39 34 9

25,100,10,F,L 73 60 13 73 60 13 61 51 11
25,100,10,F,T 58 50 12 20 19 4 78 71 15
25,100,10,V,L 35 25 6 16 13 3 47 39 9

25,100,30,F,L 150 143 32 85 83 18 105 103 20
25,100,30,F,T 24 23 5 15 14 2 49 47 16
25,100,30,V,T 19 15 3 10 10 3 29 28 8

20,230,40,V,L 20 20 6 11 11 2 35 35 7
20,230,40,V,T 28 28 7 28 28 7 33 33 8
20,230,40,F,T 15 15 4 29 28 6 19 19 5

20,230,200,V,L 116 113 25 95 92 31 115 114 28
20,230,200,F,L 43 43 11 96 92 20 71 70 15
20,230,200,V,T 66 66 13 85 81 20 70 68 14
20,230,200,F,T 90 89 20 126 121 35 93 87 17

20,300,40,V,L 23 22 5 35 32 11 32 30 6
20,300,40,F,L 22 20 4 6 6 0 38 35 8
20,300,40,V,T 11 11 2 25 25 7 36 35 9
20,300,40,F,T 25 23 5 32 30 7 31 30 6

20,300,200,V,L 114 113 26 115 109 26 94 93 19
20,300,200,F,L 85 84 18 100 94 26 66 63 15
20,300,200,V,T 114 111 24 113 107 29 166 163 36
20,300,200,F,T 83 81 15 97 96 21 82 81 16

30,520,100,V,L 94 84 26 21 20 5 82 74 18
30,520,100,F,L 73 72 14 73 72 14 134 134 23
30,520,100,V,T 29 28 8 44 41 11 39 38 10
30,520,100,F,T 81 79 22 99 93 26 81 79 18

30,520,400,V,L 49 49 15 49 42 15 124 117 30
30,520,400,F,L 183 183 38 130 128 26 137 136 27
30,520,400,V,T 27 25 6 54 47 12 48 47 11
30,520,400,F,T 106 106 24 125 115 27 88 87 19

30,700,100,V,L 30 29 9 31 30 7 57 51 14
30,700,100,F,L 42 37 11 85 77 21 70 68 12
30,700,100,V,T 32 32 8 32 32 8 53 53 10
30,700,100,F,T 24 21 5 25 21 5 31 27 6

30,700,400,V,L 119 118 25 134 128 29 61 58 14
30,700,400,F,L 125 124 29 142 138 30 109 108 20
30,700,400,V,T 35 35 10 96 90 21 120 116 23
30,700,400,F,T 148 142 36 92 90 17 89 87 19
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Regarding running times, it is interesting to examine the breakdown
of CPU times with respect to the different steps of the proposed algo-
rithm. Detailed statistics were collected for a representative subset of 10
instances using profiling software. These statistics clearly show that the
tabu search step is the most time-consuming one: on average, it requires
80% of the CPU time. This figure somewhat varies among instances
and it can be observed that the instances that are solved faster than
comparable-size ones (e.g., (30,520,400,V,T)) have a smaller fraction of
the CPU time used devoted to tabu search. This simply reflects the
fact that these instances are require less CPU time, because the tabu
search step is, in general, shorter. The initialization phase of the algo-
rithm (i.e., steps 1 and 2) takes on average 5% of the total running time
and the remainder of the procedure (steps 3, 4, 5, and 7) the last 15%.

Another critical issue with respect to the performance of a scatter
search procedure is its ability to explore new, meaningful portions of the
solution space, since it is in these portions that one hopes to find better
solutions. Table 2.6 provides detailed statistics on the search performed
when N = 3 for combination rules (V), (C) and (H) on all 43 instances
of the benchmark. For each instance, we report the number of iterations
performed, the number of new solutions (i.e., solutions not present in
the reference set) generated, and the number of times the reference set
was updated (because the current solution was better than the worst
solution in the reference set). On average, more than 60 iterations of
the procedure are performed and more than 90% of these iterations yield
“new” solutions, while the reference set is updated in more than 20% of
iterations. This confirms that the procedure is consistently able to yield
new solutions of high quality.

5. Conclusion and future research directions
In this paper, we have proposed a scatter search heuristic for the fixed-

charge capacitated multicommodity network design problem (CMND).
As far as we know, this is the first time that scatter search is applied to
the generic CMND formulation. Our heuristic, which is based upon the
integer design variables, allows for several variants that use different rules
for combining previously obtained solutions. Extensive computational
experiments performed on a fairly large set of benchmark problems have
shown that, on average, the most effective variants of the scatter search
heuristic do not perform better than the best existing method for the
problem (a path relinking approach), but that they do come very close.

Further analysis of the computational results has highlighted the fact
that multiple runs of scatter search could lead to better results than path
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relinking, but at the price of very high computational requirements. We
believe, however, that a more refined parallel scatter search approach,
involving for instance parallel search threads which exchange meaning-
ful information, could better exploit the full potential of scatter search
and thus prove much more effective (see, e.g., [1]). We intend to start
investigating such an approach in the very near future.

Another possibility for further work would be to go in the completely
opposite direction and to use a simpler local search scheme than the
cycle-based tabu search to improve solutions. This would allow one to
perform more iterations for a given allotment of CPU time and perhaps
to explore a wider range of potentially interesting solutions.
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Abstract This paper presents an algorithm for the Set Covering Problem whose
centerpiece is a new primal-to-dual scheme aimed at linking any primal
solution to the dual feasible vector that best reflects the quality of the
primal solution. This new mechanism is used to intertwine a tabu search
based primal intensive scheme with a Lagrangian based dual intensive
scheme to design a dynamic primal-dual algorithm that progressively
reduces the gap between upper and lower bound. The algorithm has
been tested on benchmark problems from the literature: the gap be-
tween upper and lower bound in 6 instances of problems whose optimal
solution is not known has been further reduced, 4 of them via improve-
ments in the lower bound, and 4 by producing a solution that is better
than the best solution provided by other procedures.

Keywords: Set Covering; Tabu Search; Metaheuristic; Primal-to-Dual.

1. Introduction
Our interest toward the set covering problem (SCP) is motivated by

its use in the minimization of the number of patterns required to discrim-
inate observations from a given population. Having an effective SCP al-
gorithm, designed to tackle very large instances of SCP, is vital in order



44 Chapter 3

to define a pattern generation and pattern minimization scheme with
high classification power. This paper is devoted to the development of a
tabu search-based metaheuristic algorithm for very large scale set cover-
ing instances. We design a dynamic primal-and-dual scheme especially
suited for large instances of SCP that are typical in the classification of
data from massive data sets.

The set covering problem is a 0 − 1 integer problem with m rows in
M = {1, . . . ,m}, and n columns in N = {1, . . . , n}. A mathematical
formulation for SCP is

(SCP) : min {z = cx : Ax ≥ 1,x ∈ Bn} ,
where c ∈ Zn+ and A is a matrix of 0’s and 1’s. In the following, we
call cover a binary vector x ∈ Bn that is a feasible solution of SCP,
while a prime cover is a cover with no redundant columns. Also, let
Ji = {j ∈ N : aij = 1} be the index set of columns covering row i, and
Ij = {i ∈M : aij = 1} the index set of rows covered by column j.

Many real-world applications can be formulated as SCP, including
traditional delivery and routing problems, as well as scheduling and lo-
cation problems. More recent applications of SCP are found in probe
selection in hybridization experiments for DNA sequencing (e.g., Borne-
man et al., 2001) and feature selection and pattern construction in LAD,
the logical analysis of numerical data (e.g., Boros et al., 1996).

SCP isNP-complete (Garey and Johnson, 1979), hence exact solution
procedures are doomed to fail in solving practical SCP problems. Fur-
thermore, it is parameterized intractable, which is, W [2]−complete with
respect to the parameter “solution size” (Downey and Fellows, 1999; Nie-
dermeier, 2006; Dom et al., 2006). Supported by its applicability, the
need for solution procedures that can efficiently handle large-scale in-
stances of SCP has attracted a vast amount of interest in the optimiza-
tion community in the past four decades and a great deal of effort has
been directed, especially in the past two decades, toward the develop-
ment of approximate algorithms for SCP. As a result, some algorithms
are capable of solving SCPs with thousands of rows and millions of
columns (e.g., Ceria et al., 1998, Caprara et al., 1999).

To summarize, most approximate solution procedures for SCP are
dual heuristic procedures based upon the solution of the Lagrangian
relaxations of SCP via subgradient optimization (e.g. Caprara et al.,
1999, Ceria et al., 1998, Balas and Carrera, 1996, Fisher and Kedia,
1990, Vaasko and Wilson, 1984, and Balas and Ho, 1980). As the
dual procedures require greedy-type primal heuristics in order to build
a primal cover, they can also be viewed as primal-and-dual algorithms
with “dual-to-primal” mechanisms. In addition, more “advanced” dual
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procedures for SCP typically feature some forms of probing and variable
fixing schemes that dynamically update primal and dual information of
SCP and aid in finding more effective solutions of SCP (e.g., Caprara
et al., 1999, Ceria et al., 1998, Balas and Carrera, 1996, and Beasley,
1990). Most algorithms designed to tackle very large scale instances work
on a subset of variables, called “core problem” or “kernel problem”. An
interesting approach aimed at identifying the kernel problem has been
proposed by Weihe, 1998, whose paper presents an effective data reduc-
tion technique that has been tested on very large railway problems. The
objective is to select the minimum set of stations needed to cover a given
set of trains. Real-world instances from the German and European Rail-
road network have been successfully solved by the author. The proposed
scheme can be divided into two phases: first, the irreducible core prob-
lem is identified via dominance and equivalence relations; next, the core
instance is solved via brute-force, when possible, or via heuristic scheme,
when the dimensions of the core make an exhaustive search still too ex-
pensive. The author proposes an interesting approach, since he suggests
that, when dealing with large scale instances, one should first work on
the preprocessing scheme and, afterwards, design the routine that will
work on the core instances, since it is only then that the characteristics
of the core instances are known.

A major contribution of the paper is the development of a “primal-to-
dual” (p2d) mechanism that, for any given primal solution, constructs
a feasible dual vector that minimizes the gap between the upper bound
of SCP given by the cover and the lower bound given by a feasible dual
solution with respect to the sufficient optimality conditions presented
in Theorem 3.1. The benefit of the primal-to-dual mechanism is two-
fold: (i) if the current cover is optimal to SCP, it verifies the optimality
and the search process can be terminated; (ii) otherwise, it constructs
a dual vector u that serves as a new starting vector for subgradient
optimization. If different prime covers are provided, the primal-to-dual
scheme constructs different u’s, allowing subgradient optimization to
explore different regions of the dual solution space. This, in turn, allows
greedy-type dual-to-primal heuristics to construct different prime covers
for SCP.

In this paper we integrate effective dual-to-primal mechanisms from the
literature and a specialization of the novel primal-to-dual mechanism pro-
vided in Caserta and Ryoo, 2001 for SCP. We develop a primal-intensive,
“dynamic” primal-and-dual metaheuristic for large-scale SCP. Compu-
tational experiments with the proposed metaheuristic on 94 benchmarks
from Caprara et al., 1999, Balas and Carrera, 1996, and Wedelin, 1995
indicate that the proposed algorithm advances the state-of-the-art
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in SCP quite substantially. Out of 94 benchmark problems, 21 of them
have not been solved to optimality. For 6 of these 21 problems, our algo-
rithm reduces the gap between best lower and upper bounds: new best
solutions to 4 problems are found and the lower bounds of 4 problems
have been improved. For the 73 benchmarks solved to optimality, the
proposed algorithm finds the optimal solutions.

The proposed algorithm is made up of metaheuristic components that
contribute to the efficiency and efficacy of the proposed algorithm. We
first present an overview of the overall algorithm in Section 2. Subse-
quently, we present the metaheuristic components of the proposed algo-
rithm in Sections 3-7. Computational experiments with 94 SCP bench-
mark problems are summarized in Section 8 and concluding remarks are
provided in Section 9.

2. Overall Algorithm
In this section we present the overall algorithm, while the remaining

sections will clarify each step of the proposed scheme. The basic idea
of the proposed scheme is related to the development of a mechanism
that connects the search in the primal space with the exploration of
the dual space. This scheme, called (p2d), is thoroughly presented in
Section 6 and is what makes the algorithm quite effective. The reason
why (p2d) sensibly improves the performance of the algorithm is that it
allows to create “synergies” between the primal phase, based upon the
Tabu Search paradigm, and the dual phase, based upon the Lagrangian
Relaxation technique coupled with subgradient optimization.

The pseudocode of Algorithm PD_SCA() along with Figure 3.1 provide
a first overview of the general algorithm.

3. Tabu Search Metaheuristic
The tabu search metaheuristic of the proposed algorithm is the re-

sult of a specialization of the meta-strategy provided in Caserta and
Ryoo, 2001 for SCP. For reasons of space, we provide details for those
components that are problem-specific in nature for SCP. The proposed
scheme is aimed at thoroughly exploring the feasible space along with
a portion of the infeasible space. Furthermore, by introducing random
and memory-based mechanisms, it aims at striking the balance between
diversification and intensification.

The overall tabu search metaheuristic procedure is summarized in
Procedure Tabu_Search_Metaheuristic(), while the remainder of the
section is devoted to explaining the different ingredients of such proce-
dure.
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Algorithm PD_SCA();
initialize u via (3.3)
call Define_Core_Problem() {Section 7}
K =

⌈ |N |
|NC |

⌉
{total number of core problems examined}

k = 0 {cycles counter}
while k < K do

call Tabu_Search_Metaheuristic() {Section 3}
solve (p2d) {Section 6}
call Define_Core_Problem() {Section 7}
call Lagrangian_Optimization() {Section 5}
call Fixing_to_Zero() {Section 7}
call Fixing_to_One() {Section 7}
k ← k + 1 {increase cycles counter}

end while

Procedure Tabu_Search_Metaheuristic();
Input: x∗, UB, x0 (initial cover), T L, (core) problem instance
Output: x∗, UB, T L

for phase ∈ regular, intensification, diversification do
k ← 0 {# excursions into allowed infeasible region}
• = − {start with the releasing phase}
t← 0 {tabu search counter}
while k < 2 do

call Composite_Move_Assignment()
if xt+1 ∈ X then

if cxt+1 < UB then
x∗ ← xt+1; UB ← cxt+1 {update primal information}

end if
if (xt ∈ X) and (xt+1 ∈ X) then
k ← k + 1 {end tabu iteration}

end if
if (xt+1 ∈ X) and (xt ∈ X) then

solve (p2d) {see Section 6}
partial pricing {see Section 7}
call Lagrangian_Optimization() {see Section 5}

end if
end if

end while
end for
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Let xk denote the current prime cover. Let us denote by B the index
set of columns that take value 1 in xk. Let M0 = {i ∈M : Ji ∩ B = ∅}
denote the set of rows that are uncovered in xk. With this notation, the
feasible space of SCP can be defined as X :=

{
x ∈ {0, 1}n :

∣∣M0
∣∣ = 0

}
.

In contrast to X, let us define X :=
{
x ∈ {0, 1}n :

∣∣M0
∣∣ ≤ αm} \ X

as the “allowed infeasible space” of SCP, where α is a predetermined
parameter chosen in [0, 1). A key feature of the proposed tabu search
metaheuristic is its ability to escape from a locally optimal solution via
an excursion into the allowed infeasible space. Owing to the monotone
decreasing property of the objective function in x, solutions in X are,
usually, more attractive than the feasible solutions. Thus, even if xk is
a locally dominant prime cover, the search path will be able to escape
from it to a remote, different prime cover xk+1 through a sequence of
1-neighborhood moves in X ∪X.

Each composite move, from xk to xk+1, is comprised of a sequence of
a finite number of 1-neighborhood moves, selected in such a way that
a monotonic property in the search path is preserved with respect to
|M0|, a measurement of the amount of infeasibility associated with xk

(see Figure 3.1-(a).) Furthermore, let us indicate with I−j = {i ∈ Ij :
|Ji ∩ B| = 1} the set of rows uniquely covered, in the current solution
xk, by a column j ∈ B, and with I+

j = Ij ∩M0 the set of rows currently
uncovered that would be covered by adding a column j ∈ N \ B to the
partial cover xk. Finally, let us indicate with T L the tabu list. The
primal phase is made up by two sub-phases, which allow to implement
a strategic oscillation mechanism around the boundaries of the feasible
region:
1. ascending sub-phase: columns are constantly ‘released’ (set to
zero), in such a way that, on the one hand, the objective function value
monotonically improves and, on the other hand, the infeasibility level
monotonically increases. During this phase, at each iteration, a non-
tabu move (j /∈ T L) is chosen as j1 ∈ Γ−, where:

Γ− :=
{
jl ∈ B, I−jl 	= ∅, jl /∈ T L : cjl |I−jl | ≥ cjl+1|I−jl+1|

}

2. descending sub-phase: columns are constantly ‘added’ (set to
one), such that the infeasibility level monotonically decreases, eventually
reaching a prime cover. During this phase, at each iteration, a non-tabu
move (j /∈ T L) is chosen as j1 ∈ Γ+, where:

Γ+ :=
{
jl ∈ N \B, I+

jl
	= ∅, jl /∈ T L : rjl ≤ rjl+1

}

with rj := cj −
∑

i∈I+
j
ui.
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We switch from one sub-phase to the other when the corresponding
Γ• is empty. To allow the search path to deviate from following a pre-
determined trajectory given by the use of the greedy merit functions, at
each iteration we select j1 probabilistically, as indicated by the scheme
Select_First_Move(). Each move is, in turn, classified as either a
regular, diversified or intensified move depending upon the way j1 is
selected.

Let x∗ denote the best solution found so far and let 0 < γ1 < γ2 < 1.
Let j• indicate a 1-neighborhood move that sets the j−th component of
xt to 1 if • = + (a set covering move) and to 0 if • = − (a set releasing
move) and let • denote the move in the opposite direction of •. Then,
each composite move from xt to xt+1 is comprised of a sequence of a
finite number of 1-neighborhood moves, and the choice of the first move
plays a critical role in the proposed meta-strategy.

Procedure Select_First_Move();
Input: • (= + or −), x∗, xt, T L
Output: j1

generate a random number γ in [0, 1]
if γ ∈ [0, γ1] then

select a move in Γ• {normal scheme}
else if γ ∈ (γ1, γ2] then

randomly select j1 among j ∈ N , j• 	∈ T L {random scheme}
else
Id• :=

{
j ∈ N, j• 	∈ T L : xtj 	= x∗j

}

if Id• = ∅ then
select a move in Γ• {memory-based scheme}

else
randomly select j1 from Id•

end if
end if

Remark. In order to allow for a more rigorous search of the solution
space, we recur to three different strategies that define three search
phases of the algorithm, namely the regular, diversification, and intensi-
fication phases. During the regular phase, we use γ1 = 0.8 and γ2 = 0.9
for the procedure Select_First_Move(), in such a way that the nor-
mal scheme is privileged above the random and memory-based scheme.
For the diversification phase, we increase the probability of selecting a
random move by using γ1 = 0.6 and γ2 = 0.9. Likewise, for the inten-
sification phase, we use γ1 = 0.6 and γ2 = 0.7, thus granting a higher
chance to the selection of a memory-based move.
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Finally, the overall definition of a composite move is illustrated in
Procedure Composite_Move_Assignment(). Denote by •el a unit vector
whose l−th component is−1 if • = − and +1 otherwise. We first identify
the portion of the search space that is being explored. It the boundary
of the “allowed infeasible region” has been reached or if feasibility has
been restored (lines 2,3), then the sub-phase is inverted and the process
is restarted. On the other hand, if the algorithm is currently in an
ascending or descending phase, mainly within the X region, the first
(ascending or descending) move is executed (line 5). The next steps are
aimed at identifying a set of moves that go in the opposite direction
of the first move. For example, if the algorithm is ascending into the
“allowed infeasible space”, we want to identify a set of descending moves
in such a way that the net effect is still to uncover rows. To illustrate, if
the first ascending move is such that column j1 ∈ B is set to 0, with the
consequence that |I−j | rows will be uncovered, a set of descending moves
ζ+ will be identified in such a way that the number of rows uncovered
by j1 is higher than the number of rows covered by all the moves in ζ+.
This is accomplished as illustrated in lines 6–10. Finally, lines 10 and
11 show how the composite move is executed and how the tabu list is
updated.

Procedure Composite_Move_Assignment();
Input: •, xt, T L, (core) problem instance
Output: •, xt+1, T L

1: call Select_First_Move() {identify j1 in Γ•}
2: if (xt + •ej1 	∈ X ∪X) or (xt ∈ X) then
3: • ← •, go to line 1 {invert search direction}
4: end if
5: T L ← T L ∪ {j1} {set first move as tabu}
6: if |I•

jt1
| ≥∑j∈Γ• |I•j | then

7: ζ• := Γ• {identify set of opposite moves}
8: else
9: ζ• :=

{
j1, . . . , ji ∈ Γ• : |I•

jt1
| ≥∑ji

j=j1
|I•j |, |I•jt1 | <

∑ji+1
j=j1
|I•j |
}

10: end if
11: xt+1 ← xt + •ej1 +

∑
j∈ζ• •ej {execute composite move}

12: T L ← T L ∪ {jl : jl ∈ ζ•} {update tabu status}

Remark. Note in the above that each move is selected in such a way
that a monotonic property in the search path is preserved with respect
to |M0|, a measurement of the amount of infeasibility associated with
xt.
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Remark. Since the algorithm is especially designed to handle large-scale
instances of SCP, we always work on a subset of columns NC ⊂ N and
we employ pricing techniques to add or remove columns to and from NC

(See section7). Consequently, each occurrence of N in the definition of
neighborhoods must be replaced by NC .

4. Lagrangian Relaxation & Greedy Heuristics
The best known primal heuristic is the greedy one, which uses the

reduced cost information provided by the dual phase to construct a prime
cover. Balas and Ho, 1980, presented a list of scores based upon the
column cost per row covered to create a prime cover. Vaasko and Wilson,
1984, selected a column to be added to the partial cover according to the
value of a score function, randomly chosen among a pool of functions
based upon the column cost per row covered. At every iteration the
primal heuristic is run 30 times with randomly chosen score functions.
Beasley, 1990, proposed a Lagrangian based primal heuristic scheme that
extended the partial cover of the Lagrangian problem to a prime cover.
A score based upon the column cost per row covered is used to rank the
columns. Fisher and Kedia, 1990, proposed as score the reduced cost
computed using only the multipliers of rows left uncovered, rather than
the actual reduced cost. Bricker and Techapicjetvanich, 1993, studied
the effectiveness of five different primal heuristic scores, based upon the
column cost per row covered and the reduced cost per row covered, both
the real and the modified reduced cost. Balas and Carrera, 1996, coupled
the approach of Vaasko and Wilson, 1984, with a primal scheme that
creates a prime cover extending the partial cover of the Lagrangian phase
by choosing columns based upon their reduced cost. The primal scheme,
as a byproduct, produces an improved dual vector.

Let M0 denote the set of rows left uncovered by x, and B denotes the
set of columns fixed to 1 in the current (partial) cover x. Let |Ij ∩M0|
be the number of rows currently uncovered that would be covered by
setting xj to 1. During the dual Lagrangian phase we use the score

s(j) =

cj −
∑

i∈Ij∩M0

ui

|Ij ∩M0| ,

as in Fisher and Kedia, 1990, within the simple heuristic described in
Procedure Greedy_Heuristic().
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Figure 3.1. Dynamic Primal-and-Dual scheme: (a) from the feasibility point of view;
(b) from the objective function value point of view.
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Procedure Greedy_Heuristic();
Input: u
Output: x
M0 ←M ; x← 0; B ← ∅ {initialization}
while M0 	= ∅ do
j ← argmin

j∈NC\B
{s(j)} {make a cover}

xj ← 1; M0 ←M0 \ Ij ; B ← B ∪ {j} {updating}
end while
remove redundancy in x {prime cover is obtained}

5. Subgradient Optimization
The Lagrangian relaxation of SCP is defined as

L(x,u) = min
x∈{0,1}n

n∑
j=1

rjxj +
m∑
i=1

ui,

where rj (the reduced cost for j, j = 1, . . . , n) is defined as cj −
∑

i∈Ij ui
and requires u such that an optimal vector xL minimizing the La-
grangian function can be computed by a standard technique:

xLj =

{
1, if cj −

∑
i∈Ij ui < 0

0, otherwise
, j ∈ N (3.1)

It is worth noting that, since vector xL is optimal to the Lagrangian
problem, L(u) provides a valid lower bound for SCP. For this reason,
we are interested in finding the vector u that solves the Lagrangian dual
problem, which is

LD(u) = max
u∈Rm+

L(x,u).

Most successful approaches for SCP in the literature solve a series
of Lagrangian relaxations of SCP and use the subgradient optimization
technique to generate a near-optimal vector u for �LD(u). For subgradi-
ent optimization, we use the formula of Held and Karp, 1971:

uk+1
i = max

{
uki + λ

UB − LB
‖s(uk)‖2 si(u

k), 0
}
, i ∈M, (3.2)

where UB and LB are the upper and lower bounds of the optimum
of SCP, λ is the step size parameter, and si(xk) = 1 − ∑j∈Ji xj is
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the component i of the subgradient. As in Caprara et al., 1999, u0 is
initialized as

u0
i = min

j∈Ji
cj
|Ij| , i ∈M (3.3)

and λ is updated after every p = 20 iterations, utilizing the best and
worst lower bounds information obtained during the last p iterations.
In addition, if the lower bound improvement in the last 4p iterations
is below the threshold limit of 1%, we apply a “perturbation scheme”
based upon the primal-to-dual scheme of Section 6 to enforce a drastic
modification of the vector u. We summarize the steps of the Lagrangian
optimization phase in Procedure Lagrangian_Optimization().

6. Primal-to-Dual Scheme
Let xP and xL denote a prime cover for SCP and a Lagrangian so-

lution for a given vector u ∈ Rm+ , respectively. Denote by z(•) and
L(•,u) the objective value of SCP and the value of the Lagrangian
function evaluated at •, respectively. Let BP = {j ∈ N : xPj = 1},
BL = {j ∈ N : xLj = 1}, BLP = BL \BP and BPL = BP \BL.

Lema 3.1. Suppose that xP ∈ {0, 1}n, xL ∈ {0, 1}n, and u ∈ Rm+
satisfy ui(

∑
j∈Ji x

P
j − 1) = 0, for all i ∈ M . Then, z(xP )− L(xL,u) =∑

j∈BPL rj −
∑

j∈BLP rj .

Proof. We have

L(xL,u) =
∑
i∈M

ui +
∑
j∈BL

(cj −
∑
i∈Ij

ui)

=
∑
i∈M

ui
∑
j∈Ji

xPj +
∑
j∈BL

cj −
∑
j∈BL

∑
i∈Ij

ui

=
∑
j∈BL

cj +
∑
j∈BP

∑
i∈Ij

ui −
∑
j∈BL

∑
i∈Ij

ui

=
∑
j∈BL

cj +
∑

j∈BPL

∑
i∈Ij

ui −
∑

j∈BLP

∑
i∈Ij

ui,
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Procedure Lagrangian_Optimization();
Input: LB, UB, x∗, u0

Output: LB, UB, x∗
k ← 0 {Lagrangian iteration counter}
w← 0 {perturbation scheme counters}
xold = 0, λ0 = 0.1
while lower bound termination tolerance is not met do

if (k mod 20) = 0 then
if LBbest − LBworst > 0.01LBbest then
λk ← 0.5λk {modify step size}
w ← 0 {reset perturbation scheme counter}

else
w ← w + 1 {increase perturbation scheme counter}
if w < 4 then
λk ← 1.5λk

else
λk = 0.1 {apply perturbation scheme}
call p2d(xk,uk) {see Section 6}
if xold = xk then
δ = random(0, 0.1umax), where umax = mini∈M{ui}
ui ← δui for randomly chosen 10% of u

else
xold = xk

end if
end if

end if
LBbest = LBworst = L(xL,u) {set best and worst LB}

end if {new step size available}
k ← k + 1 {increase Lagrangian iteration counter}
update u via (3.2) {perform kth Lagrangian iteration}
solve Lagrangian relaxation via (3.1) {xL is obtained}
if L(xL,u) > LB then
LB ← L(xL,u) {update lower bound on SCP}

end if
if L(xL,u) > LBbest then
LBbest ← L(xL,u) {update best lower bound}

else if L(xL,u) < LBworst then
LBworst ← L(xL,u) {update worst lower bound}

end if
end while {lower bound termination tolerance met}
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where the second equality is obtained via ui(
∑

j∈Ji x
P
j − 1) = 0,∀i ∈M .

Now, we have

z(xP )− L(xL,u) =
∑
j∈BP

cj −
∑
j∈BL

cj −
∑

j∈BPL

∑
i∈Ij

ui +
∑

j∈BLP

∑
i∈Ij

ui

=
∑

j∈BPL
cj −

∑
j∈BLP

cj −
∑

j∈BPL

∑
i∈Ij

ui +
∑

j∈BLP

∑
i∈Ij

ui

=
∑

j∈BPL
(cj −

∑
i∈Ij

ui)−
∑

j∈BLP
(cj −

∑
i∈Ij

ui)

=
∑

j∈BPL
rj −

∑
j∈BLP

rj.

Theorem 3.1 (Sufficient Conditions). Suppose that xP ∈ {0, 1}n, xL ∈
{0, 1}n, and u ∈ Rm+ satisfy:

(i) ui(
∑
j∈Ji

xPj − 1) = 0, ∀i ∈M

(ii) rj = cj −
∑
i∈Ij

ui = 0, ∀j ∈ BP

(iii) rj = cj −
∑
i∈Ij

ui ≥ 0, ∀j ∈ N \BP

Then, xP solves SCP to optimality.

Proof. We need to show that both feasibility and optimality are ensured.
Feasibility of xP is enforced via conditions (ii) and (iii), while optimality
is ensured by conditions (i) and (ii), along with x∗ ∈ {0, 1}n.

The sufficient optimality conditions of x∗ for SCP in Theorem 3.1
can be exploited in the derivation of a mechanism that constructs a
“feasible” dual solution u that properly reflects the importance of each
constraint of SCP with respect to the characteristics of xP .

First, note that Conditions (ii) and (iii) of Theorem 3.1, along with the
requirement u ∈ Rm+ give the feasibility of u to the dual linear program
of the linearized SCP. Conditions (i) and (ii), along with x∗ ∈ {0, 1}n
ensure that the primal and dual solutions are optimal to their respective
programs. Let M1 := {i ∈M :

∑
j∈Ji x

P
j = 1} be the set of rows covered

only once by a given solution xP . Furthermore, let NC ⊆ N be the set
of columns in the current core problem, with |NC | � |N |. Consider the
following linear program:
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(p2d):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min g =
∑

j∈BP \BL
(cj −

∑
i∈Ij

ui)

s.t. cj −
∑

i∈Ij∩M1

ui = 0, j ∈ BL ∩BP

cj −
∑

i∈Ij∩M1

ui ≥ 0, j ∈ NC \BP

ui ≥ 0, i ∈M1

It is worth noting that (p2d) is a LP with |(NC \ BP ) ∪ (BP ∩ BL)|
rows and |M1| columns. Also, note that the two non-trivial constraints
of (p2d) set ui = 0 for all i ∈ M \ M1, and, through the minimiza-
tion process, (p2d) modifies the remaining components of the vector u
feasible to the dual of the linearized SCP that satisfies the sufficiency
conditions of Theorem 3.1 “as much as possible” to yield u that reflects
the characteristics of xP . It is easy to see that, if (p2d) has a feasible
solution, such solution is dual feasible and, consequently,

∑
i ui provides

a valid lower bound for SCP.
The following is an obvious consequence of (p2d) and Theorem 3.1:

Corollary 3.1. If the optimum of (p2d) is equal to zero, then xP solves
SCP.

The following also holds true:

Theorem 3.2. Of all dual feasible u ∈ Rm+ , u∗ obtained from solving
(p2d) minimizes the gap z(xP ) − L(xL,u∗) with respect to xP and xL

and Condition (i) of Theorem 3.1.

Proof. The dual feasibility of u∗ is immediate. The formulation of (p2d)
and Theorem 3.1 easily show that z(xP )−L(xL,u∗) is minimized by the
xP and u∗ pair.

7. Variable Fixing, Pricing and Core Problem
Generation

In this section we present the variables fixing schemes for SCP. When
probing xj at 1, not only the Lagrangian multipliers of all rows i ∈ Ij
must be set to 0 but also all rq, q ∈ Ji for every i ∈ Ij , must be reduced
to properly update the importance of the columns after setting xj = 1.
Let:

δ+
j :=

∑
i∈Ij

ui × (|q ∈ Ji : rq ≤ 0| − 1)

The proposed score is embedded in the Fixing_to_Zero() scheme as
in Balas and Carrera, 1996:
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Procedure Fixing_to_Zero();
Input: N , NC , LB, UB, u
Output: N , NC

for j ∈ NC \BP do
if �LB + rj + δ+

j � ≥ UB then
NC ← NC \ {j} {eliminate column from core problem}
N ← N \ {j} {permanently eliminate column}

end if
end for

Remark. Ceria et al., 1998, fixed a variable to zero if its reduced cost is
greater than the gap between upper and lower bound. Balas and Carrera,
1996, computed a factor Δj for every column j ∈ N \ B defined as the
improvement in the value of the vector u obtained by fixing xj to one.
Subsequently, one column j is fixed to zero if �LB + rj + Δj� ≥ UB.

To fix a column j ∈ BP permanently at 1 compute, for each i ∈ I−j ,
the variation of ui required in order for at least another column q ∈ Ji,
q 	= j to have a non-positive reduced cost. This amount of modification
required by ui is

δ−j =
∑

i∈I−j

min
q∈Ji
{rq},

and xj , j ∈ BP , can be permanently fixed to 1 if �LB− rj + δ−j � ≥ UB.
Procedure Fixing_to_One() summarizes the scheme used.

Procedure Fixing_to_One();
Input: N , NC , LB, UB, F , u
Output: N , NC , F

for j ∈ BP do
if �LB − rj + δ−j � ≥ UB then
xj ← 1
NC ← NC \ {j} {eliminate column from core problem}
F ← F ∪ {j} {include column in fixed columns set F}

end if
end for

To define core problems NC ⊆ N , we employ a pricing scheme that
resembles the one presented in Caprara et al., 1999. We first add to the
core problem NC all the columns whose reduced cost is less than 0.1.
Subsequently, whenever possible, for each row i ∈ M , we add enough
columns j ∈ Ji to NC in such a way that each row is covered by at least
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5 columns in the core problem. These columns are added according to
the reduced cost value.

8. Computational Results on SCP Benchmarks
In this section we present the results obtained by testing the algorithm

on benchmark problems. The algorithm was implemented in C++ and
compiled with the GNU C++ compiler with the -O2 option. The (p2d)
problem is solved using the linear programming solver Clp() of COIN-
OR Library (Lougee-Heimer, 2003). The computing platform used is a
Linux workstation with Intel Pentium 4 1.1GHz processor and 256 Mb
of RAM memory.

The parameters value for the tabu search metaheuristic are: θ = 2
(number of excursion into the infeasible region for each TS phase), α =
0.1 (maximum infeasibility allowed) and τ ∈ [τmin, τmax] (tabu tenure),
where:

τmax = α× |x|, τmin = 0.1τmax

The value of τ is set to τmin every time a new best solution is found
and increased every time dominated solutions are visited. The rationale
behind such a choice is that, on the one hand, we want to thoroughly
explore promising regions, in which “good” feasible solutions are found,
while, on the other hand, we aim at escaping from unattractive regions
by increasing the tabu tenure, thus forcing the algorithm to move toward
a different region.

Computational results for Beasley’s OR Library (Beasley, 1990) are
not reported because the algorithm always finds the optimal, or the best
known, solution. We only report, in Table 3.1, the results of Beasley’s
OR Library RAIL problems. The table shows that to 4 out of 7 instances
the gap between upper and lower bound has been further reduced. In
addition, for the two biggest instances a new best result is found, which
indicates that the algorithm is especially suited for very large scale prob-
lems. Finally, Table 3.2 reports the results on the instances appeared
in Wedelin, 1995. Out of 6 instances, for 4 of them the algorithm finds
the optimal solution, and for the last two it finds a solution that is better
than any other solution found so far.

9. Conclusions
We have presented a new dynamic scheme for large scale set covering

problems. The backbone of the algorithm is a new primal-to-dual mech-
anism that, given any prime cover, constructs the dual feasible vector
that better reflects the quality of the prime cover. Using this new mech-
anism, the algorithm updates the status of the search in the dual space
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any time a new prime cover is found and vice versa, dynamically linking
the primal intensive phase with the dual intensive phase.

When tested on benchmark problems, the algorithm improved the
best known results on 6 instances, 2 of them by providing a better lower
bound, 2 by finding a solution that is better that any other solution
found so far, and 2 by improving both upper and lower bound.

Owing to the intensive use of primal-based schemes, the algorithm is
especially suited for those instances of SCP with a number of rows much
larger than the number of columns. Considering a classification problem,
where a set of observations is partitioned into true and false, one wants
to classify future observations based upon the value of certain attributes.
The problem of selecting the smallest support set of attributes needed to
classify a population can be formulated as SCP. However, if we indicate
with m the number of observations, equally divided between positive
and negative observations, the number of rows of SCP is of the order
of O(m2), leading to SCPs with m � n. For this reason, some new
applications of SCP, such as probe selection problem for hybridization
experiment as well as attributes identification and patterns selection in
logical analysis of data, can be better tackled with a primal intensive
approach rather that via the traditional Lagrangian based approach.
This approach could be fostered by the design of a parallel algorithm
for very large instances of SCP and, hence, applied to large problems in
data mining and genetics.

Finally, it is also worth noting that the technique proposed in Sec-
tion 3 of this paper, dealing with the swap of columns within and outside
of the current solution is a generalization of oscillation mechanisms as
well as k-flip mechanisms, such as the ones of Glover and Kochenberger,
1996, Chu and Beasley, 1998, Caserta et al., 2006 or Yagiura et al., 2006.
The results obtained on SCPs by these authors along with the promising
results of the proposed scheme endorse the idea that oscillating mech-
anisms (continually crossing the boundaries of the feasible region) are
very powerful ingredients of a metaheuristic scheme when it comes to
solving large scale combinatorial optimization problems.
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Abstract: The Austrian forest sector has experienced extensive development in recent 
years. In 2003, approximately 27.9 million cubic meters of logs were 
processed in Austria. In order to enable a stable supply, an efficient and 
economical operation for round timber transport is necessary. In this paper, we 
present a Tabu Search based solution method for log-truck scheduling. A fleet 
of m log-trucks that are situated at the respective homes of the truck drivers 
must fulfill n transports of round timber between various wood storage 
locations and industrial sites. All of the transports are carried out as full 
truckloads. Since the full truck movements are known, our objective is to 
minimize the overall duration of empty truck movements. In addition to the 
standard VRP, we have to take into consideration weight constraints on the 
road network, multi-depots, and time windows at the industrial sites and 
homes of the truck drivers. We applied the Unified Tabu Search method and 
modified it by an oscillating change of the neighborhood size in some selected 
iteration steps. Our heuristics are verified with extensive numerical studies. 
The Tabu Search based heuristics are able to solve real-life problems within a 
reasonable timeframe by providing good solution quality. 

Keywords: Log-truck scheduling; Timber Transport Vehicle Routing Problem; Tabu 
Search 

1. INTRODUCTION AND PROBLEM 
DESCRIPTION 

The Austrian forest sector has experienced extensive development in 
recent years. With respect to the Austrian economy, forest based industry is 
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in second place in terms of exporting goods and services. In 2003, Austria 
had 1,400 sawmills, 30 pulp mills, ground wood pulp mills, and paper mills, 
and 39 chipboard factories that processed approximately 27.9 million cubic 
meters of logs (Schwarzbauer, 2005). In order to enable a stable supply, an 
efficient and economical operation for round timber transport is necessary. A 
number of natural restrictions, such as regional topology, storms, and heavy 
snow may hinder a steady supply for industrial recipients. In this regard, the 
availability of the forest road network is of great importance. A number of 
research efforts mainly focus on information supply and the provision of GIS 
based applications for supporting truck drivers in finding storage locations 
and to further support wood transfer. Moreover, there exist numerous 
proposals for the efficient use of wood transportation systems. In order to 
sustain the competitiveness of the Austrian forest based industry 
improvements in transportation logistics are often considered an essential 
starting point. Our work focuses on the log-truck scheduling problem, which 
typically has many sources and few recipients. At the beginning of a 
planning period, the transportation orders are given. Here, we are 
considering full truckloads when it is that the truck moves from the wood 
storage location to a particular industrial site. When starting at the home 
location, and after unloading at the mill, we have to decide where the trucks 
should collect a new load in order to minimize the overall empty truck 
movements. 

The problem we are discussing here is relevant for large forestry 
companies that serve a number of different mills; it describes the challenge 
of reducing the mileage of log-trucks. In our background forestry 
application, 10 trucks and approximately 30 trips are scheduled daily. In 
Austria, forest owners usually need to organize the log transport by 
employing forwarding companies. These forwarders usually serve several 
forest owners per day and aim to minimize their transportation costs. With 
this respect, the presented scheduling problem is highly relevant for log 
transport companies. 

The emerging vehicle routing problem is denoted as a Timber Transport 
Vehicle Routing Problem (TTVRP) (see also Karanta et al., 2000 and 
Weintraub et al., 1996). It can be characterized as follows: a heterogeneous 
fleet of m log-trucks that are situated at the respective homes of truck drivers 
must fulfill n transports of logs between various wood storage locations and 
industrial sites, such as pulp mills and sawmills, during a specified 
timeframe. All of the transports are carried out as full truckloads; the vehicle 
is loaded at the wood storage location and unloaded at the industrial site. 
Each route commences at the home of the truck driver who leaves with an 
empty truck for loading round timber. Subsequently, he drives to the 
designated industrial site and completes the transport. The truck driver can 
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now finish his tour and return back home or start a new delivery. Due to the 
transportation orders, each wood storage location and industrial site can be 
visited more than once during the planning horizon. 

Log transport has a few specific constraints to consider such as the fact 
that some parts of the forest road networks are unsuitable for larger trucks, 
as their weight occasionally damages the road. Therefore, some wood 
storage locations can only be reached by trucks with a certain capacity. We 
denote this as the route weight limits. Due to industry operating hours, time 
windows for unloading wood must be considered. Time windows also occur 
at the truck starting points since truck drivers are only on duty at certain 
times. Additionally, we have to observe tour length constraints and capacity 
constraints. According to the given transportation orders, the objective is to 
minimize empty truck movements. 

In Figure 1, we present a small example to illustrate the planning 
problem. Two log-trucks have to perform eight transportation orders  
(1, …, 8). The log-trucks are situated at the home-locations A and B, 
respectively. Wood is provided at six different wood storage locations  
(P1, …, P6) and must be transported to three industrial sites (I1, …, I3). The 
number of rectangles and triangles provides the number of visits at the 
respective location. I1 receives three loads: two from P1 and one from P2. 
Figure 1a) shows the required transports and demonstrates the problem of 
linking these transports in a cost-efficient manner, taking into account the 
above-mentioned constraints. Figure 1b) shows the cost-optimal solution for 
this problem. A1 is the first trip taken from the log-truck situated at A, A2 is 
the second one, etc.; the same is true for B1 to B11. Altogether, we have 
scheduled 8 transports and 10 empty truck movements. 
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Figure 4-1. Conceptual formulation and solution for a TTVRP 

The TTVRP is a special application of the full truckload vehicle routing 
problem (Gronalt et al., 2003). Murphy (2003) presents an approach that 
attempts to reduce the number of log-trucks that are used to perform 
transports of round timber. He developed a MIP model that minimizes the 
total transport costs. His approach does not take into account, however, time 
windows at industrial sites, availability times of the drivers, or route weight 
limits. He uses standard solver software to solve his problems but he only 
provides the best found solution after a certain computing time and not the 
global optimal solution. The approach of Palmgren et al. (2003) unites 
tactical and operational planning in wood transport. They provide a model 
formulation for the Log Truck Scheduling Problem (LTSP) and present a 
column generation based solution approach. 

According to the established notation on VRPs, the TTVRP is related to 
the Multi Depot Vehicle Routing Problem with Pickup and Delivery, and 
Time Windows (MDVRPPDTW); supplementarily, one has to deal with 
specific route weight limits and full truckloads. An overview of the Vehicle 
Routing Problems can be found for example in Toth and Vigo (2002). The 
transport activities of the TTVRP have a similar structure to the Stacker 
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Crane Problem (SCP) (see Righini et al., 1999). Coja-Oghlan et al. (2004) 
provide an example of a SCP, which describes the scheduling of a delivery 
truck. Glover and Laguna (1997) provide a general introduction to the Tabu 
Search metaheuristic. For solving the TTVRP the Unified Tabu Search 
(Cordeau et al., 2001) is adapted and modified. 

This present paper is organized in the following way: In Section 2, we 
present a model formulation of the TTVRP. The heuristic solution approach 
is outlined in the third section. We have developed three variants of the Tabu 
Search in order to obtain solutions for the TTVRP. Section 4 describes our 
numerical studies and the generation of test data. The results of the 
numerical experiments are provided in Section 5. We use different parameter 
sets for our heuristics and compare the three variants of the Tabu Search 
with each other and the best found feasible solution obtained with solver 
software. Finally, our conclusions are drawn in Section 6, in which an 
outlook on our future research is also provided. 

2. MODEL FORMULATION 

The transportation orders are predefined and can therefore be considered 
as tasks that must be fulfilled in order to obtain a feasible solution. A 
feasible solution must include all of the tasks that are represented by arcs. 
Figure 2 demonstrates the same problem as Figure 1, which is transformed 
into a special case of the SCP. We have two kinds of tasks, so-called 
artificial tasks (A’, B’) and transport tasks (1, …, 8). The artificial tasks are 
introduced in order to connect the starting point and endpoint of a cycle. The 
direct connection between two vertices is always the shortest one. It is 
impossible to transport directly from one wood storage location to another or 
from one industrial site to another. This is because we have to deal with full 
truckloads. In Figure 2a) the tasks and vertices are displayed. Figure 2b) 
shows the corresponding optimal solution, using the same notation as in 
Figure 1b). 

Log-truck scheduling with a tabu search strategy 
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Figure 4-2. Example shown as special case of the SCP 

In order to facilitate a further description the following notations are 
used: 
 n-element set of transport tasks W, 
 m-element set of artificial tasks V, 
 and m-element set of trucks R. 

The notation of the elements in V and R is identical. Truck r  R has a 
maximum capacity Qr and a duration limit Tr. The availability time of a 
truck driver starts at er and ends at lr. A specific route of a truck is named 
after this truck r. 

Each transport task i  W has the following attributes: 
 loading time ai at the wood storage location, 
 route weight limit ki given in units of weight, 
 order quantity qi, 
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 unloading time si at the industrial site, 
 time window [ei, li] at the industrial site, 
 and traveling time ui. 

Each truck is allowed to arrive at an industrial site at a time 0  bi  li; if 
the truck arrives at a time bi < ei it must wait for the period wi = ei - bi. 
tij represents the time that is needed to move from the endpoint of task i to 
the starting point of task j; this is the time needed for the empty truck 
movement. 

The following binary decision variables are defined: 
 xijr = 1, if task j is visited directly after task i with truck r; 0 otherwise. 
 yir = 1, if task i is visited with truck r; 0 otherwise. 

The set presented in (1) includes all of the tasks. 

VWW~  (1)

The objective function (2) of the model minimizes the duration of empty 
truck movements. 

min
~ ~Rr Wi Wj

ijrij xt
 

(2)

The following constraints have to be fulfilled: 
 

,~0
~~

RrWhxx hjr

WjWi

ihr

 
(3)

~1
~

Wix
Rr Wj

ijr

 
(4)

)(,1 riRrVixx iir
Wj

ijr

 
(5)

)(,1 rjRrVjxx
Wi

jjrijr

 
(6)

,~
~

RrWixy
Wj

ijrir

 
(7)

, RrWiQyq riri  (8)

RrWikyQ iirr ,   (9)

~ ~
RrTyuxt

Wi Wj Wi
ririijrij

 
(10)

,,~)1( RrWjWibxMuatswb jijrjjijiii  (11)

Log-truck scheduling with a tabu search strategy 



72 Chapter 4
 

~Wiewb iii  (12)

~Wilb ii  (13)

)(,,~)1( rjRrVjWilxMtswb rijrijiii
 

(14)

RrWjWixijr ,~,~}1,0{  (15)

RrWiyir ,~}1,0{  (16)

     Wiwi
~0  (17)

  Wibi
~0  (18)

Constraints (3) guarantee a tour, (4) to (6) define the predecessor and 
successor relationships, and (7) links the binary variables. Constraints (8) to 
(10) guarantee the observance of the truck capacity, route weight limits, and 
maximum travel times. (11) to (14) deal with the time windows at the 
industrial sites and truck starting points. (15) and (16) define the binary 
variables. (17) and (18) are non-negativity constraints. We validated our 
model for small instances, using Xpress-MP software. For real-life 
problems, it is necessary to develop a customized heuristic. 

3. SOLUTION APPROACH 

The solution approach consists of the following steps: 
1. Restrict the solution space. 
2. Find an initial solution with a greedy heuristic. 
3. Find an improved solution by applying one of the following Tabu Search 

procedures: 
  a. Standard Tabu Search 
  b. Tabu Search with a limited neighborhood 
  c. Tabu Search with an alternating strategy 

4. Apply a post-optimization heuristic based on 2opt. 
 

The Unified Tabu Search heuristic served as a starting point for our 
solution procedures. Three variants that differ with respect to the size of their 
solution space in each iteration step are developed and subsequently 
discussed. 
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3.1 Tabu Search 

3.1.1 Solution space and initial solution 

The overall heuristic commences with a reduction of the solution space. 
Looking at the problem characteristic, we see that some transport tasks can 
only be executed by certain truck types. On the one hand, this is because it is 
impossible to split transport tasks; therefore a truck r with capacity Qr cannot 
perform a transport task with an order quantity qi if Qr < qi. On the other 
hand, we have wood storage locations that cannot be reached by each truck 
type because of the route weight limits. A truck r with capacity Qr cannot 
perform a transport task with a route weight limit ki if Qr > ki. In the first 
step, it is guaranteed that a truck r is only assigned to a task that can be 
handled by this truck with respect to the truck capacity and the route weight 
limit. 

To construct an initial solution we use a regret-heuristic. The gained 
solution may violate the duration- and time window constraints. The regret-
heuristic works in the following way: 
 Initialization: 

– For every artificial task i  V: find the closest transport task j and the 
second-closest transport task z. 

– Calculate a regret-value REGi = tiz - tij. 
– Sort the regret-values in descending order. 
– Allocate the closest transport tasks to the artificial tasks according to 

this order; if a transport task is the closest to two or more artificial 
tasks, it is assigned to the one with the highest regret value. 

 Continue with the same procedure until all of the transport tasks are 
assigned to a tour. Always find the closest and second-closest transport 
task to the last included task. 

3.1.2 Parameter setup 

Based on the initial solution a rank indicator Bir with i  W and r  R is 
defined. If Bir = 0 this means that transport task i is not on tour (of truck) r. If 
for example Bir = 3 this means that transport task i is ranked third on tour r. 
While traversing the solution space we apply different notations for marking 
the solutions: current solution s, a neighbor solution s°, the best neighbor 
solution s’, and the best found feasible solution s*. The costs associated with 
a solution are given by c(s) and are equal to the total travel time of the empty 
trucks. The Tabu Search permits infeasible intermediate solutions. The total 
violation of tour duration constraints and time windows is denoted by d(s) 

Log-truck scheduling with a tabu search strategy 
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and h(s), respectively. The variables  and  are used to weight the total 
violation of constraints. Their values are updated in each iteration step with 
the help of a parameter .  and  are used in order to guide the search 
process. If we are gaining feasible solutions for a number of iterations, these 
variables encourage the search process to move to areas with infeasible 
solutions. If the search process stays in an area with infeasible solutions for a 
longer time, the search process is driven to areas with feasible solutions. The 
parameter  is used to weight the penalizing factor for deteriorating neighbor 
solutions. 

The array ir is used to store how often a transport task i was part of a 
tour r in a solution s. The tabu status is stored in the array ir. We save the 
information up to which iteration step a task i may not be part of a tour r. An 
aspiration criterion is used to permit the bypassing of the tabu status. We use 
fixed tabu durations that are dependent on the number of log-trucks and 
transport tasks, in which the tabu duration is given by . The array ir saves 
the value of the best found feasible solution, in which transport task i was 
part of tour r. The parameter  gives the number of iteration steps. The 
function f(s) is equal to the cost function c(s) plus the weighted violations of 
constraints. The decision function g(s) is used to determine which neighbor 
solution is chosen; it is equal to f(s) plus a possible penalty function p(s). 

3.1.3 Search procedure 

The Tabu Search algorithm works as follows: 
 Initialization 

– If the initial solution s is feasible set s* := s and c(s*) := c(s); else set 
s* := { }and c(s*) := . 

– Initialize  and . 
– For all attributes (i,r): 

 Set ir := 0 and ir := 0. 
 If the initial solution s is feasible and Bir > 0 then set ir := c(s); else 

set ir := . 
– Set the parameters  and . We use the following values for these 

parameters: 
   [0.1, 0.9] 
   [0.010, 0.025] 

 For  = 1 To  do 
– Determine all neighbor solutions s° of s and their costs c(s°). A 

neighbor solution s° is generated by moving a transport task i from a 
tour r to a tour o (move-operator). 
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 Each transport task i is taken out of its current tour r and tentatively 
inserted into all of the other tours that fulfill the capacity- and route 
weight limits. 

 If a transport task i is eliminated in a tour r, the direct predecessor 
and direct successor of i are connected. In its new tour o transport 
task i is inserted at the position with the least additional costs. 

 For each attribute (i,r) that is part of a neighbor solution s°, but was 
not part of solution s, the procedure checks if ir is smaller than . 
This means that the attribute is checked as to whether it is tabu or 
not. If the attribute (i,r) is tabu the algorithm checks if s° is a 
feasible solution and c(s°) < ir. In this case, the aspiration criterion 
is fulfilled, in which it is permitted to use this neighbor solution s° 
despite its tabu status. If the tabu status remains, the value of the 
decision function to choose a neighbor solution must be set to 
g(s°) := . 

 For all neighbor solutions s° that are not tabu or meet the aspiration 
criterion, the algorithm computes f(s°) and g(s°). If f(s°) < f(s), then 
set g(s°) := f(s°); otherwise set g(s°) := f(s°) + p(s°). Equation (19) 
shows the calculation of f(s°); (20) shows the computation of the 
penalty function p(s°). 
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The penalty function p(s°) penalizes the neighbor solutions s° for 
having the same or a higher function value f(s°) as the current 
solution s. The parameter  is predefined; n is the number of 
transport tasks and m the number of log-trucks. The sums over ir 
count how often attributes (i,r) that are element of s° were part of a 
solution s. 

 The neighbor solution s° that has the lowest value of g(s°) is chosen 
and called s’. 

– After having found the best neighbor solution s’ the algorithm 
continues with the following steps: 
 For each attribute (i,r), which was part of solution s but is not part 

of s’ set ir :=  + . The tabu duration  is calculated with Equation 
(21). 

   
4))²(log( mn

 
(21)
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We obtained this formula after a number of parameterization 
approaches for . The value of  is dependent on the size of the 
problem according to this formula. 

 For each attribute (i,r) that is part of the best neighbor solution s’ set 
ir := ir + 1. 

 If s’ is a feasible solution and c(s’) < c(s*) set s* := s’ and 
c(s*) := c(s’); otherwise, leave the values of c(s*) and s* 
unchanged. 

 If s’ is a feasible solution do: for each attribute (i,r) which is part of 
s’ set ir := min{ ir, c(s’)}. 

 Adjustment of  and : 
 If d(s’) > 0 set  :=  · (1 + ), else set  :=  / (1 + ). 
 If h(s’) > 0 set  :=  · (1 + ), else set  :=  / (1 + ). 

– Set  :=  + 1 and s := s’. 
 End For 

3.1.4 Post-optimization heuristic 

A 2-opt based heuristic is applied as a post-optimization procedure after 
each iteration step of the Tabu Search algorithm. The algorithm attempts to 
improve single tours by changing the position of two transport tasks. If 
improvement is attained, the tour is rebuilt accordingly and the same 
procedure restarts until no further improvement can be found. Per definition, 
an improvement of a solution is only tolerated if the solution is feasible. The 
post-optimization procedure does not influence the Tabu Search algorithm; 
the input data for the next Tabu Search iteration step remains unchanged 
even if improvement is attained. Only s* and c(s*) are updated if the costs 
c(s’) of the post-optimized solution s’ are lower than the current best found 
costs c(s*). 

3.2 New search strategies 

The Tabu Search strategy described in Section 3.1.3 implies a search of 
the entire neighborhood of a solution in each iteration step. We call this 
strategy hereafter a Standard Tabu Search. This is a very time-consuming 
procedure since there are no rules to restrict the search space. Therefore, we 
developed a search strategy that concentrates on the elimination of bad 
connections between tasks. Toth and Vigo (2003) proposed the Granular 
Tabu Search in order to restrict the neighborhood of solutions drastically and 
reduce computing times. They attempt to limit moves that insert “long” arcs 
in the current solution. Our approach concentrates on a certain fraction of 
empty truck movements in the current solution s; only these links are to be 
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removed in neighbor solutions. Other links can only be modified if a task 
from a removed link is inserted between their starting and ending points. 

The procedure functions in the following way: The links are first sorted 
according to their duration in descending order. Then, a predefined number 
of links is chosen starting from the one with the longest duration. The 
number of used links is calculated as a fraction of all the existing empty 
truck movements; the divider D is set as a parameter. If D = 4 this means 
that one fourth of all the links of a solution s is taken away for being 
removed in neighborhood solutions. 

We call this strategy a Tabu Search with a limited neighborhood. This 
strategy seems to be myopic since “shorter” links are unaffected directly. To 
overcome this we merge the Standard Tabu Search and Tabu Search with a 
limited neighborhood in a new algorithm called a Tabu Search with an 
alternating strategy. After a predefined number of iteration steps with a 
restricted neighborhood, an iteration step with a full neighborhood search is 
set. The parameter A is used to define which iteration steps will be computed 
with a full neighborhood search. For example, a setting of A = 8 means that 
in every eighth iteration step a full neighborhood search is performed. These 
new strategies lead to drastic reductions of the computing time. As shown in 
Section 5, there are also no, or only minimal, losses in the solution quality if 
the Tabu Search with an alternating strategy is used. 

4. NUMERICAL EXPERIMENTS 

The small introductory example with eight transport tasks and two trucks 
can be solved with standard solver software within seconds. Unfortunately, 
real-life problems have far more trucks and trips to consider. We have 
observed that regional forest enterprises have to perform approximately 30 
transport tasks per day and on average, they operate 10 log-trucks. In the 
course of a year up to 600 pick-up locations are visited to supply five 
industrial sites. A large wood processing company in the area operates four 
sites. In order to ensure a smooth wood supply, up to 250 transport tasks and 
80 trucks per day are on order. We estimate their overall yearly number of 
pick-up locations as 2,500. Murphy (2003) presents a case study with an 
average of 9 trucks and 35 transport tasks per day for a company situated on 
the Southern Island of New Zealand. Palmgren et al. (2003) present two case 
studies for Sweden: one with six trucks and 39 transport tasks, and one with 
28 trucks and approximately 85 transport tasks. 

In order to test the algorithmic approach for real-life sized problem 
instances we have developed a random problem generator. Two sets of 
problem instances have been generated. Each set consists of 20 instances 
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with 30 transport tasks and 10 trucks. The first set of instances has weaker 
constraints than the second one in terms of the average task duration and the 
traveling times between the tasks. In the first instance set, the same 10 truck 
starting points are used for all of the instances. There are three different 
industrial sites and 560 possible wood storage locations. In the second 
instance set, the same 10 truck starting points are also used for all of the 
instances; but they are different from those of instance set 1. In instance set 2 
there are four different industrial sites and 560 possible wood storage 
locations. In instance set 1, we chose the three industrial sites with the lowest 
average distance to the 560 wood storage locations out of a set of nine 
industrial sites; whereas in instance set 2 we use four industrial sites out of 
this set, which belong to one company and are situated less centrally. This is 
the reason why we have longer distances in instance set 2. 

The model formulation was implemented with the software Xpress-MP. 
The heuristic solution approach was programmed with Visual Basic 6. We 
tested the algorithm in the following variants: Standard Tabu Search, Tabu 
Search with a limited neighborhood, and Tabu Search with an alternating 
strategy. The post-optimization strategy is only applied in some test runs. 

All of the computers used are equipped with a Pentium IV processor with 
2.52 GHz and 512 MB RAM; their operating system is Windows XP. 

The values of the following parameters were varied in the test runs: 
 weighting factor  for the penalty function p(s), 
 parameter  to update  and , 
 number of iteration steps , 
 divider D, 
 and parameter A. 

The variables  and  are initialized with the value 1. We use the best 
found solutions and lower bounds computed with Xpress-MP after a certain 
computing time as a benchmark for the heuristic solutions. It is also 
necessary to compare the different variants of Tabu Search with respect to 
computing times and solution quality. Section 5 shows the results of the 
numerical studies. 

5. RESULTS 

The optimal solution for the introductory example with two log-trucks 
and eight transport tasks can be found within a few iteration steps for all of 
the variants of the heuristic. The numerical studies were started with a 
Standard Tabu Search variant, which forbids log-trucks to stay at home 
and uses no post-optimization strategy. The first test case of each ins-
tance set was taken to find the best  values for the parameters  
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  [0.010, 0.025] and   [0.1, 0.9]. The resulting values were taken for 

further computations. Tables 1 and 2 show the deviation from the best found 
solution for different parameter values. The algorithm is executed for 10,000 
iteration steps. In total, we tested 36 parameter variants. In Table 1 and 2, the 
first row shows the different values for  and the first column shows the 
different values for . The highest deviation is written in cursive; the shaded 
cell marks the best found parameterization. 

0.5234%0.6967%0.6442%0.5460%0.9

0.1325%0.6638%0.7416%0.5422%0.8

0.0310%0.3761%0.4139%0.3701%0.7

0.0000%0.3965%0.1269%0.3338%0.6

0.0627%0.1325%0.1269%0.0744%0.5

0.2609%0.1341%0.1371%0.1896%0.4

0.2492%0.1688%0.2175%0.2492%0.3

0.1371%0.1269%0.1578%0.0744%0.2

0.0744%0.0952%0.1269%0.1616%0.1

0.0250.0200.0150.010

0.5234%0.6967%0.6442%0.5460%0.9

0.1325%0.6638%0.7416%0.5422%0.8

0.0310%0.3761%0.4139%0.3701%0.7

0.0000%0.3965%0.1269%0.3338%0.6

0.0627%0.1325%0.1269%0.0744%0.5

0.2609%0.1341%0.1371%0.1896%0.4

0.2492%0.1688%0.2175%0.2492%0.3

0.1371%0.1269%0.1578%0.0744%0.2

0.0744%0.0952%0.1269%0.1616%0.1

0.0250.0200.0150.010

 

Table 4-1. Deviation from the best found solution for test case 1 of instance set 1 

0.6251%0.1054%0.9748%0.3205%0.9

0.0941%0.1424%0.1518%0.5824%0.8

0.1424%0.4143%0.2822%0.3606%0.7

0.0481%0.3205%0.5159%0.1518%0.6

0.2440%0.2339%0.2695%0.2973%0.5

0.0500%0.0554%0.2220%0.1411%0.4

0.0462%0.0914%0.2799%0.0000%0.3

0.1781%0.2245%0.1332%0.2042%0.2

0.2281%0.2440%0.2979%0.0554%0.1

0.0250.0200.0150.010

0.6251%0.1054%0.9748%0.3205%0.9

0.0941%0.1424%0.1518%0.5824%0.8

0.1424%0.4143%0.2822%0.3606%0.7

0.0481%0.3205%0.5159%0.1518%0.6

0.2440%0.2339%0.2695%0.2973%0.5

0.0500%0.0554%0.2220%0.1411%0.4

0.0462%0.0914%0.2799%0.0000%0.3

0.1781%0.2245%0.1332%0.2042%0.2

0.2281%0.2440%0.2979%0.0554%0.1

0.0250.0200.0150.010

 

Table 4-2. Deviation from the best found solution for test case 1 of instance set 2 

Table 3 shows the deviation from the best found solution for all test cases 
of instance set 1 depending on the number of iteration steps. The best found 
solution is obtained after 1,000,000 iteration steps. If there is no deviation 
from the best found solution, the cell is shaded. We have adopted the best 
found parameter values for test instance 1 with  = 0.025 and  = 0.6. Table 
3 provides insight into the speed of convergence. The first row shows the 
number of iteration steps and the first column shows the different test 
instances. 
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0.0000%0.0000%0.4012%0.4012%no sol.T20

0.0464%0.1807%0.2550%0.2550%no sol.T19

0.1476%0.2782%0.9737%1.6211%no sol.T18

0.1484%0.2933%0.3748%0.3748%no sol.T17

0.1499%0.1911%0.1911%0.5266%no sol.T16

0.0000%0.1770%0.1770%0.1770%no sol.T15

0.0868%0.0868%0.2859%0.2859%no sol.T14

0.0000%0.2127%0.2896%1.0375%no sol.T13

0.0546%0.2614%0.8338%0.8338%no sol.T12

0.0210%0.4182%0.4182%0.4182%no sol.T11

0.1605%0.4733%0.6192%0.6192%no sol.T10

0.0127%0.3448%0.5149%0.5149%no sol.T9

0.0000%0.2374%0.8319%1.1864%no sol.T8

0.2204%0.5607%0.7752%3.5075%no sol.T7

0.0000%0.0000%0.4273%0.4273%no sol.T6

0.1573%0.2793%0.7436%1.1163%no sol.T5

0.0147%0.0474%0.5808%0.5808%no sol.T4

0.1570%0.1570%0.6693%0.6693%no sol.T3

0.0000%0.0838%0.4799%0.4799%no sol.T2

0.0000%0.0000%0.4928%1.5116%no sol.T1

100,00010,0001,00010010

0.0000%0.0000%0.4012%0.4012%no sol.T20

0.0464%0.1807%0.2550%0.2550%no sol.T19

0.1476%0.2782%0.9737%1.6211%no sol.T18

0.1484%0.2933%0.3748%0.3748%no sol.T17

0.1499%0.1911%0.1911%0.5266%no sol.T16

0.0000%0.1770%0.1770%0.1770%no sol.T15

0.0868%0.0868%0.2859%0.2859%no sol.T14

0.0000%0.2127%0.2896%1.0375%no sol.T13

0.0546%0.2614%0.8338%0.8338%no sol.T12

0.0210%0.4182%0.4182%0.4182%no sol.T11

0.1605%0.4733%0.6192%0.6192%no sol.T10

0.0127%0.3448%0.5149%0.5149%no sol.T9

0.0000%0.2374%0.8319%1.1864%no sol.T8

0.2204%0.5607%0.7752%3.5075%no sol.T7

0.0000%0.0000%0.4273%0.4273%no sol.T6

0.1573%0.2793%0.7436%1.1163%no sol.T5

0.0147%0.0474%0.5808%0.5808%no sol.T4

0.1570%0.1570%0.6693%0.6693%no sol.T3

0.0000%0.0838%0.4799%0.4799%no sol.T2

0.0000%0.0000%0.4928%1.5116%no sol.T1

100,00010,0001,00010010

 

Table 4-3. Deviation from the best found solution after 1,000,000 iteration steps depending on 
the number of performed iteration steps for instance set 1 

With 1,000 iteration steps the solution values of all test instances of set 1 
are less than 1% worse than the best found solution. It takes approximately 
150 seconds to perform 1,000 iteration steps with the Standard Tabu Search. 
Since we can estimate a linear relationship between computing times and the 
number of iteration steps we only need about a tenth part of the computing 
time for 10,000 iteration steps. 

Table 4 shows the same data as Table 3 for all of the test instances of 
instance set 2 depending on the number of iteration steps. We also used the 
best found parameterization for test instance 1 with  = 0.010 and  = 0.3. 
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0.0223%0.1743%0.7800%1.5204%no sol.T20

0.0589%0.1164%0.7194%3.1343%no sol.T19

0.0285%1.2930%2.5321%6.1360%no sol.T18

0.0000%1.1039%1.3800%1.3800%no sol.T17

0.2714%1.6086%2.5547%9.7840%no sol.T16

0.0113%0.9137%0.9137%3.1242%no sol.T15

0.0270%0.8963%1.3224%2.4080%no sol.T14

0.1400%0.1400%1.4113%1.7042%no sol.T13

0.2803%0.2803%1.2256%1.3593%no sol.T12

0.1801%0.4553%0.8382%0.8382%no sol.T11

0.0000%0.8509%1.0430%1.0430%no sol.T10

0.0002%0.8786%0.9153%3.4008%no sol.T9

0.1944%0.1990%0.1990%0.1990%no sol.T8

0.0000%0.0000%0.0000%5.5435%no sol.T7

0.5272%1.2378%2.1683%5.4487%no sol.T6

0.0000%0.1037%0.9880%2.6279%no sol.T5

0.0000%0.0438%0.0548%3.2998%no sol.T4

0.0000%0.1172%2.5884%5.9537%no sol.T3

0.8177%1.8074%1.8074%1.8074%no sol.T2

0.0000%0.0000%0.4010%2.2515%no sol.T1

100,00010,0001,00010010

0.0223%0.1743%0.7800%1.5204%no sol.T20

0.0589%0.1164%0.7194%3.1343%no sol.T19

0.0285%1.2930%2.5321%6.1360%no sol.T18

0.0000%1.1039%1.3800%1.3800%no sol.T17

0.2714%1.6086%2.5547%9.7840%no sol.T16

0.0113%0.9137%0.9137%3.1242%no sol.T15

0.0270%0.8963%1.3224%2.4080%no sol.T14

0.1400%0.1400%1.4113%1.7042%no sol.T13

0.2803%0.2803%1.2256%1.3593%no sol.T12

0.1801%0.4553%0.8382%0.8382%no sol.T11

0.0000%0.8509%1.0430%1.0430%no sol.T10

0.0002%0.8786%0.9153%3.4008%no sol.T9

0.1944%0.1990%0.1990%0.1990%no sol.T8

0.0000%0.0000%0.0000%5.5435%no sol.T7

0.5272%1.2378%2.1683%5.4487%no sol.T6

0.0000%0.1037%0.9880%2.6279%no sol.T5

0.0000%0.0438%0.0548%3.2998%no sol.T4

0.0000%0.1172%2.5884%5.9537%no sol.T3

0.8177%1.8074%1.8074%1.8074%no sol.T2

0.0000%0.0000%0.4010%2.2515%no sol.T1

100,00010,0001,00010010

 

Table 4-4. Deviation from the best found solution after 1,000,000 iteration steps depending on 
the number of performed iteration steps for instance set 2 

Table 5 compares the average deviation from the best found solution for 
all test cases of instance set 1 and 2 in the range of 100 to 100,000 iteration 
steps. It summarizes the results of Table 3 and Table 4. One can observe that 
it is possible to find solutions of good quality in less computing time, for 
instance set 1. We assume that the tighter constraints of instance set 2 make 
it more difficult to find feasible and good quality solutions. 

0.1280%0.6110%1.1921%3.1482%instance set 2

0.0689%0.2141%0.5168%0.8272%instance set 1

100,00010,0001,000100

0.1280%0.6110%1.1921%3.1482%instance set 2

0.0689%0.2141%0.5168%0.8272%instance set 1

100,00010,0001,000100

 

Table 4-5. Average deviation from the best found solution after 1,000,000 iteration steps 
depending on the number of performed iteration steps for instance sets 1 and 2 

Furthermore, we compared the different variants of Tabu Search with 
respect to computing times and solution quality. For performing this, we 
used test case 1 of instance set 1 to compute 10,000 iteration steps with the 
different Tabu Search variants. In all of the Tabu Search variants, we did not 
permit unemployed log-trucks. We also applied different parameter values of 
the divider D and varied the sequence of full neighborhood search iteration 
steps. The parameter  was set to 0.025;  was set to 0.6. Table 6 shows in its 
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first column the used Tabu Search variant and the respective 
parameterization, in the second, the time deviation from the lowest 
computing time, and in the third, the deviation of the solution value from the 
best found solution value is displayed. All Tabu Search variants in Table 6 
are computed without a post-optimization strategy. We also applied the post-
optimization heuristic to the Tabu Search with an alternating strategy. It 
turned out that the post-optimization was able to improve the best found 
solution within the first iteration steps, but after 10,000 iteration steps we 
obtained the same results as when not using it. The additional computing 
time for the post-optimization can only be determined empirically for each 
test instance; roughly spoken, one can expect an increase of approximately 
10%. 

The following abbreviations are used for the Tabu Search variants in the 
below-mentioned text: Standard Tabu Search (TS), Tabu Search with a 
limited neighborhood (TSLN), and Tabu Search with an alternating strategy 
(TSAS). 

One can observe that the TS has the highest computing time of all the 
variants and offers a solution quality that is close to the best found solution. 
We tested four parameterizations of the TSLN. The divider D determines 
which portion of the connections between the transport tasks is removed in 
neighboring solutions. The results show that the lowest computing time (203 
seconds) is reached with a TSLN and a divider D = 8. However, this method 
also offers the worst solution quality, which is in turn unacceptable. When 
the TSLN is used with D = 2, a quite good solution quality is obtained in 
reasonable computing time. Nevertheless, the TSLN is a myopic strategy. 
Some parts of the neighborhood are excluded permanently. The TSAS seems 
to be a good way to overcome this problem. A look at the results shows that 
it is able to reduce computing times drastically with little or no loss in 
solution quality. As the results show, it is sufficient to search the full 
neighborhood in every eighth iteration step.  
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0.00%78.82%TSAS D = 8 A = 8

0.06%110.84%TSAS D = 6 A = 8

0.00%159.11%TSAS D = 4 A = 8

0.05%287.68%TSAS D = 2 A = 8

0.03%326.11%TSAS D = 8 A = 2

0.08%348.77%TSAS D = 6 A = 2

0.00%373.89%TSAS D = 4 A = 2

0.29%444.33%TSAS D = 2 A = 2

7.69%0.00% (203 s)TSLN D = 8

7.31%33.00%TSLN D = 6

2.09%90.64%TSLN D = 4

0.27%227.59%TSLN D = 2

0.18%673.40%TS

Solution value deviationTime deviationMethod

0.00%78.82%TSAS D = 8 A = 8

0.06%110.84%TSAS D = 6 A = 8

0.00%159.11%TSAS D = 4 A = 8

0.05%287.68%TSAS D = 2 A = 8

0.03%326.11%TSAS D = 8 A = 2

0.08%348.77%TSAS D = 6 A = 2

0.00%373.89%TSAS D = 4 A = 2

0.29%444.33%TSAS D = 2 A = 2

7.69%0.00% (203 s)TSLN D = 8

7.31%33.00%TSLN D = 6

2.09%90.64%TSLN D = 4

0.27%227.59%TSLN D = 2

0.18%673.40%TS

Solution value deviationTime deviationMethod

 

Table 4-6. Comparison of the different Tabu Search variants for test case 1 of instance set 1 
for 10,000 iteration steps 

We also compared the results of the different Tabu Search variants after a 
fixed computing time. Table 7 shows the results for the same Tabu Search 
variants and parameterizations as Table 6. The running time was chosen as 
the average of the running times of the different Tabu Search variants for 
10,000 iteration steps (696 seconds). The second column of Table 7 shows 
the number of iteration steps in this time, and the third, the deviation from 
the best found solution. The best found solution has the same value in both 
comparisons. 

0.00%19,161TSAS D = 8 A = 8

0.06%16,251TSAS D = 6 A = 8

0.00%13,223TSAS D = 4 A = 8

0.05%8,838TSAS D = 2 A = 8

0.03%8,041TSAS D = 8 A = 2

0.08%7,635TSAS D = 6 A = 2

0.15%7,230TSAS D = 4 A = 2
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Table 4-7. Comparison of the different Tabu Search variants for test case 1 of instance set 1 
after 696 seconds running time 
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In the following the mean solution value of three arbitrary test cases 
namely 1, 10, and 20 of instance set 1 for 10 to 1,000,000 iteration steps is 
displayed. We forbade unemployed log-trucks and applied no post-
optimization. In Figure 3, the abscissa represents the number of iteration 
steps; the ordinate shows the deviation from the best found solution; if the 
deviation is equal to 10%, this means that no feasible solution was found for 
one or more test cases up to this iteration step. The solution quality does not 
improve significantly for the TSLN with a divider D equal to 6 and 8 if more 
than 100 iteration steps are computed; the same is true with more than 
10,000 iteration steps for a divider D equal to 2 and 4. With the TSAS and 
the TS solutions of good quality can be obtained. Even with a very fast Tabu 
Search variant (TSAS with D = 8, full neighborhood search in every eighth 
iteration step) the deviations from the best found solution are far less than 
1% after 1,000 iteration steps. The bars in figures 3 and 4 are ordered in the 
same way as the sequence of the legend. 

Figure 4-3. Average deviation from the best found solution for test cases 1, 10, and 20 of 
instance set 1 

Figure 4 shows the average deviation from the best found solution for test 
cases 1, 10, and 20 of instance set 2. Since instance set 2 has tighter 
constraints, it is more difficult to find feasible solutions. Even after 
1,000,000 iteration steps with a TSLN no feasible solution for the dividers  
D = 4, D = 6, and D = 8 can be obtained. The TSLN achieves a solution of 
good quality only for a divider D = 2. The TS and the TSAS are able to find 
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solutions that are equal to the best found solution with one exception; the 
TSAS with a divider D = 8 and a full neighborhood search in every eighth 
iteration step seems to be improper for solving problems with tight 
constraints. However, if the divider is reduced it is also possible to improve 
the solution quality in this case. 

Figure 4- 4. Average deviation from the best found solution for test cases 1, 10, and 20 of 
instance set 2 

Due to the computational complexity of the TTVRP, it is clear that 
standard solver software is unsuitable for these problems. However, to 
benchmark the heuristics, we compared in Tables 8 and 9 their best found 
solutions after 10,000 iteration steps with the best found solution obtained 
with the solver software Xpress-MP for the same computing time. In this 
comparison, we permitted log-trucks to stay at home and applied a post-
optimization heuristic to the Tabu Search variants. Table 8 shows the results 
for test case 1 of instance set 1. In Table 8 for example the TSAS with D = 8 
and a full neighborhood search in every second iteration needs 825 seconds 
for 10,000 iteration steps. This provides a solution value of 2,603.52. For the 
same timeframe, the Xpress solver provides a value of 2,640.13. Even after a 
computing time of 24 hours, the solver software obtains a solution value 
(2,603.12) that is worse than most heuristic solution values. The lower 
bound after 24 hours is equal to 2,593.37; but this solution may represent an 
infeasible solution to the problem. 
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no solutionno solution2,602.79328TSAS D = 8 A = 8

6.0520%2,767.192,599.72413TSAS D = 6 A = 8

3.8578%2,702.592,598.33503TSAS D = 4 A = 8

1.3867%2,640.132,603.52825TSAS D = 8 A = 2

0.7125%2,616.162,597.521,447TS

Deviationsol. val. Xpress Solversol. val.Time [sec]Method
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Table 4-8. Comparison of solution values after certain computing times for test case 1 of 
instance set 1 

Table 9 shows the results for test case 1 of instance set 2. The best found 
parameter values of Tabu Search variants that allow log-trucks to stay at 
home and variants that do not permit this differ in instance set 2. Therefore 
the parameter  was set to 0.015;  was set to 0.6. Since there are tighter 
constraints, the solver software could not find feasible solutions within the 
computing times needed by heuristics. Even after a computing time of 24 
hours, the solver software obtains only one feasible solution with a value of 
5,617.76 that is much worse than the heuristic solutions. The lower bound 
after 24 hours is equal to 3,786.93. 
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Table 4-9. Comparison of solution values after certain computing times for test case 1 of 
instance set 2 

Additional comparisons were made for other test cases also. It turned out 
that all of the heuristic solutions were better than the best found solutions 
obtained with Xpress-MP after the same computing time.  

6. CONCLUSION 

In this paper, we presented a formal description of the TTVRP, which 
was only described verbally in the literature up to now. We have also 
developed a heuristic solution approach based on a Tabu Search with 
different neighborhood structures. The numerical studies show that the 
proposed heuristics are able to solve real-life problem instances in 
reasonable computing times with good solution quality. The heuristics 
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perform rather well if they are compared to the best found solutions of solver 
software as a benchmark. 

The TSAS is a good method to reduce computing times and keep the 
solution quality nearly constant. This approach can also be enhanced with a 
dynamic component; instead of fixing the iteration steps with a full 
neighborhood search, one can also make the neighborhood structure 
dependent on the solution quality. If the solution quality does not improve 
for a certain number of iteration steps with a limited neighborhood (this 
number could be a function of the total number of iteration steps) one can set 
an iteration step with a full neighborhood search. The development of further 
variants of the TSAS could also bring forth benefits for other research areas 
that use a Tabu Search as a solution method. The TS is recommendable if 
there are tight constraints, in which feasible solutions are difficult to find; 
but it is also worth attempting to use the TSAS with frequent iteration steps 
with a full neighborhood search for such problem instances. Even though the 
TSLN offers a reduction in computing times compared to the TS, it is not 
recommendable since it is myopic, and therefore, the search process is 
locked very often in local optima for a large number of iteration steps. 

We can also observe that the improvements in solution quality have not 
been significantly compared to the additional computing times after 10,000 
iteration steps. We can conclude that the heuristic solution approaches 
quickly converge to solutions with good quality. This fast speed of 
convergence may be an indication for being locked in local optima; but if we 
look at the intermediate solutions, we can notice that this is not the case, and 
the diversification strategy of the Tabu Search heuristics is working well. 

Future research will concentrate on an extension of the planning horizon 
of this scheduling problem. The current method is able to optimize the 
routing of log-trucks during a given timeframe, which is generally one day. 
When the planning horizon is extended to one week, an evenly distributed 
workload among the days of that week cannot be assured. Since this is an 
important factor for industrial sites in the wood industry, it is necessary to 
introduce a model formulation that first performs an optimal allocation of the 
transport tasks to single days of the week. Subsequently, the current method 
can be reused. As the results show, it also makes sense to put forth additional 
effort toward the enhancement of the TSAS. 
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SOLVING THE CAPACITATED
MULTI-FACILITY WEBER PROBLEM
BY SIMULATED ANNEALING, THRESHOLD
ACCEPTING AND GENETIC ALGORITHMS
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†Dept. of Industrial Engineering
Boğaziçi University
34342, İstanbul, Turkey

Abstract In this paper we focus on the capacitated multi-facility Weber problem
with rectilinear, Euclidean, squared Euclidean and �p distances. This
problem deals with locating m capacitated facilities in the Euclidean
plane so as to satisfy the demand of n customers at the minimum total
transportation cost. The location and the demand of each customer
is known a priori and the transportation cost is proportional to the
distance and the amount of flow between customers and facilities. We
present three new heuristic methods each of which is based on one of
the three well-known metaheuristic approaches: simulated annealing,
threshold accepting, and genetic algorithms. Computational results on
benchmark instances indicate that the heuristics perform well in terms
of the quality of solutions they generate. Furthermore, the simulated
annealing-based heuristic implemented with the two-variable exchange
neighborhood structure outperforms the other heuristics considered in
the paper.

Keywords: Location-allocation problems; simulated annealing; threshold accepting;
genetic algorithms.

1. Introduction
Deterministic location-allocation problems are concerned with locat-

ing a set of facilities and allocating their capacity to satisfy the demand of
a set of customers with known locations so that the total transportation
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cost is minimized. Supply centers such as plants and warehouses may
constitute the facilities while retailers and dealers may be considered as
customers. When the facility locations have to be selected from a given
set of candidate locations, the corresponding location-allocation problem
(LAP) becomes a discrete optimization problem. A continuous LAP is
obtained when the facilities can be located anywhere in the Euclidean
plane. The latter problem is also known as the multi-facility Weber
problem (MFWP) (Wesolowsky, 1993). It is referred to as the single-
facility Weber problem if the objective is the determination of an optimal
location for a single facility. In some situations, facilities can have capac-
ity constraints, which gives rise to the capacitated multi-facility Weber
problem (CMFWP). As can be easily observed, in an optimal solution
to the uncapacitated problem each customer is served from the nearest
facility, which is not true for the more restricted CMFWP because of
the capacity constraints. In the CMFWP formulations, the transporta-
tion cost is usually assumed to be proportional to the amount shipped
as well as the distance between facilities and customers. The most fre-
quently used distance functions in location theory are the Euclidean,
the squared Euclidean, the rectilinear and �p distances. The �p distance
between two points u and v in the two-dimensional Euclidean space is
defined as dp(u,v) = (|u1 − v1|p + |u2 − v2|p)1/p. In fact, the Euclidean
and rectilinear distances are its special cases when p = 2 and p = 1, re-
spectively. The mathematical programming formulation of the CMFWP
can be stated as:

min
m∑
i=1

n∑
j=1

cijwijd (xi,aj) (5.1)

s.t.
m∑
i=1

wij = qj j = 1, ..., n (5.2)

n∑
j=1

wij = si i = 1, ...,m (5.3)

wij ≥ 0 i = 1, ...,m; j = 1, ..., n (5.4)

Here, n is the number of customers and m is the number of facilities to
be located. qj and aj = (aj1, aj2)T represent, respectively, the demand
and coordinates of customer j. The capacity of facility i is given by
si and xi = (xi1, xi2)T denotes its unknown coordinates. d (xi,aj) is
the distance between facility i and customer j. The allocations wij are
also unknown and represent the amount to be shipped from facility i to
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customer j with the unit shipment cost per unit distance being cij . This
formulation assumes that the problem is balanced, i.e., the total supply
is equal to the total demand. If the total supply is larger than the total
demand, the problem can be balanced by adding a dummy customer
with zero unit shipment cost. In case the total supply is less than the
total demand, there exists no feasible solution. From this formulation
it is clear that the demand of a customer can be satisfied from different
facilities. In other words, the CMFWP is a multi-source problem. When,
due to some additional considerations, each customer has to be served
by a single facility, the problem is formulated as a single-source CMFWP
by making use of additional binary variables that keep track of which
customer is assigned to which facility.

Note that when allocations wij are known, the CMFWP reduces to
a pure location problem that is separable into m single-facility loca-
tion problems, each of which can be solved by Weiszfeld’s algorithm
(Weiszfeld, 1937) and its generalizations (Brimberg and Love, 1993). On
the other hand, when the locations of the facilities are given, the CM-
FWP becomes the classical transportation problem. As a consequence,
an optimal solution to the CMFWP always occurs at an extreme point
of the transportation polyhedron (5.2)–(5.4), independent of the type
of the distance function used. This characteristic of the CMFWP was
shown by Cooper (1972). Although pure location and transportation
subproblems are easy to solve, the CMFWP belongs to a difficult class
of problems. Sherali and Nordai (1988) have shown that the CMFWP
with the Euclidean distance is NP-hard even if all the customers are
located on a straight-line.

For the last two decades metaheuristics have successfully been applied
to the solution of various combinatorial optimization problems. To the
best of our knowledge, apart from the strategy of Cooper (1976) that can
be seen as a kind of variable neighborhood search, there is no published
work on the application of a metaheuristic strategy to the CMFWP.
Motivated by this fact, we propose three heuristics which are based
on simulated annealing, threshold accepting, and genetic algorithms. In
Section 2 we provide a literature review on the existing solution methods
of the problem. The new heuristics are described in Section 3. Section 4
contains the computational results that are obtained on a set of bench-
mark instances. Concluding remarks and directions for future research
are given in Section 4.
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2. Literature Review
In his seminal work, Cooper (1972) considered the Euclidean distance

CMFWP (ECMFWP) and proposed an exact solution method based
on the complete enumeration of all the extreme points of the trans-
portation polyhedron. Since the number of extreme points can be very
large, this method is useful only for very small instances. For larger
instances, he suggested the alternating transportation-location heuristic
that is based on the idea of decomposing the ECMFWP into location
and transportation (allocation) subproblems. When the locations of the
facilities are fixed, the resulting transportation problem is solved to de-
termine the corresponding optimal capacity allocations. Then, using
these allocations new optimal locations are determined for the facilities.
The location and transportation problems are alternately solved until
no improvement is possible. It is important to note that the solution
method of the single-facility location problems depends on the type of
the distance function. The median location method (Francis et al., 1992)
can be employed to solve the rectilinear distance single-facility location
problems in the case of the rectilinear CMFWP (RCMFWP). It has been
shown that Weiszfeld’s algorithm solves the �p distance single-facility lo-
cation problem to optimality for 1 ≤ p ≤ 2 (Brimberg and Love, 1993).
As a result, Cooper’s alternating two-phase idea can also be used to pro-
vide approximate solutions to the CMFWP with the �p distance function
(LpCMFWP) for 1 ≤ p ≤ 2.

Later, Cooper (1976) proposed a more efficient heuristic for the ECM-
FWP, which performs a local search in the space of the set of extreme
points of the transportation polyhedron. This is done in the neighbor-
hood of a given basic feasible solution where the neighbor solutions are
generated by moving to extreme points which are one, two or three steps
away from the current one. In other words, when one of the nonbasic
variables is exchanged with a basic variable (i.e., a simplex iteration is
carried out), an adjacent extreme point is reached. When two nonba-
sic variables are inserted into the basis simultaneously, then an extreme
point adjacent to the immediate neighbor of the current extreme point is
obtained. This heuristic can be regarded as an early implementation of
the variable neighborhood search idea (Hansen and Mladenović, 2001).

To the best of our knowledge, apart from Cooper’s complete enumera-
tion algorithm (Cooper, 1972), there are two exact methods to solve the
ECMFWP. The first one is a biconvex cutting plane procedure and can
be found in Selim’s unpublished dissertation (Selim, 1979). Although
it is more efficient than Cooper’s complete enumeration, this procedure
can effectively solve only very small instances. The second exact method
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appears in the recent work by Sherali et al. (2002), in which the authors
design a global optimization procedure for the ECMFWP. This is a
branch-and-bound algorithm based on partitioning the allocation space,
which finitely converges to a global optimum within a specified percent-
age tolerance. To derive lower bounds on the subproblems obtained at
the nodes of the branch-and-bound tree, the authors use two approaches.
The first approach involves computing a lower bound via a projected
location space subproblem. In the second approach, a specialized vari-
ant of the Reformulation Linearization Technique (RLT) (Sherali and
Adams, 1999) is applied to transform an equivalent representation of the
original nonconvex problem into a higher dimensional linear program-
ming relaxation. They have shown that the latter approach provides
much better lower bounds than the former one. Upper bounds are ob-
tained by using Cooper’s alternating transportation-location heuristic.
The generalization of this exact method to the solution of the LpCM-
FWP is also provided.

The application of the RLT in the solution of location and allocation
problems is not new. Sherali and Tunçbilek (1992) apply this approach
to solve the squared Euclidean distance CMFWP (SECMFWP). As a
more recent application, Sherali et al. (1994) consider a mixed-integer
nonlinear programming formulation of the RCMFWP and use the RLT
to linearize it. This formulation is based on a useful property of the
two dimensional rectilinear distance location problem. Namely, optimal
locations always occur within the convex hull of the customer locations
and at the intersection points of the vertical and horizontal lines drawn
through them (Hansen et al., 1980).

The disadvantage of the exact solution methods mentioned above is
that they become computationally intensive as the number of variables is
increased throughout the procedure. Therefore, efficient heuristic meth-
ods are required to solve large-sized instances accurately.

3. New Heuristics for the CMFWP
We mentioned previously that an optimal solution to the CMFWP

occurs at an extreme point of the convex feasible region determined by
the constraints (2)–(4). Hence, any heuristic designed on this feature of
the problem should perform a search in the space of extreme points that
correspond to feasible solutions. Note, however, that each extreme point
specifies only values for the allocation variables wij. In order to compute
the objective value of an extreme point solution, it is also necessary to
determine the values for the location variables xi. This can be done
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by solving as many single-facility location problems as the number of
facilities once the values of wij are fixed.

Heuristic based on simulated annealing
The origin of the Simulated Annealing (SA) algorithm is in statisti-

cal mechanics. The idea of using the annealing method in optimization
problems is due to Kirkpatrick et al. (1983). Since then, SA and its vari-
ants are applied to numerous combinatorial and continuous optimization
problems.

Given a combinatorial optimization problem with a finite set of so-
lutions and an objective function, the SA algorithm is characterized by
a rule to randomly generate a new solution in the neighborhood of the
current solution. The new solution is accepted if min

{
1, e−Δ/T

} ≥ p
where p is a uniform random number in the interval (0, 1), and Δ =
f (sn) − f (sc) is the difference between the objective values of the new
solution sn and the current solution sc. Note that if Δ is negative,
i.e., then min

{
1, e−Δ/T

}
= 1, which means that the new solution is al-

ways accepted. A certain number of iterations L are performed at fixed
temperature T and the temperature is reduced according to a cooling
schedule. This implies that for a minimization problem, the probability
of accepting uphill moves is high at the beginning of the search leading
to the exploration of the search space. Then it decreases slowly so that
SA becomes a simple iterative improvement algorithm.

As the search must be performed in the space of extreme points,
we have to identify a neighborhood structure to move from the cur-
rent extreme point (current solution) to another one (new solution) in
the vicinity of the former. It can easily be seen that the constraints of
the CMFWP are the same as those of the well-known transportation
problem. An important result in linear programming states that each
extreme point can be characterized by m + n − 1 basic variables and
mn− (m+ n− 1) nonbasic variables when the number of constraints is
m+n. As a matter of fact, each iteration of the transportation simplex
method involves moving from the current extreme point to an adjacent
one that results in the largest improvement in the objective value. This
is achieved by determining an entering variable among the nonbasic vari-
ables and a leaving variable among the basic variables. We refer to this
operation as the one-variable exchange. The main components of the
simulated annealing heuristic is explained below.

To start the SA algorithm we need to have an initial solution. This
corresponds to generating an initial extreme point in our problem. We
do this by applying the Northwest corner rule (Bazaraa et al., 1990).
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The objective value of the initial solution is found by solving a single-
facility location problem for each facility. An important consideration
is to set the initial value of the temperature T0. This parameter is
instance-dependent and it is not appropriate to always use the same
value. Therefore we implement the idea suggested in Ohlmann and
Thomas (2006). First we generate n (random) solutions sequentially by
starting with the initial solution and applying the one-variable exchange
n times. We also calculate the absolute differences between the objective
values of consecutive solutions. Lastly, we obtain the average of these n
differences and assign it to Δ̄, which is ultimately used in determining
the value of T0. The idea is to set a value to T0 such that the probability
of accepting an average bad move early in the algorithm is equal to p0.
Algebraically, p0 = e−Δ̄/T0 which implies that T0 = Δ̄/ ln p0.

In the SA-based heuristic we use two different neighborhood struc-
tures. The first one implements the one-variable exchange while the
other one implements the two-variable exchange. In one-variable ex-
change we randomly select one of the nonbasic variables in the current
solution and make it the entering variable. The leaving variable is deter-
mined by the stepping stone method (Bazaraa et al., 1990). The neigh-
borhood size is NS1 = mn − (m + n − 1) because this equation gives
the number of nonbasic variables in a basic feasible solution. Figure
5.1 demonstrates the network representation of a one-variable exchange.
The edges between nodes i and j mean that the corresponding allocation
variable wij between facility i and customer j is positive.

Figure 5.1. One-variable exchange for SA heuristic.

The two-variable exchange is the application of the one-variable ex-
change twice. Hence, it corresponds to moving from the current extreme
point to a nonadjacent extreme point by performing the one-variable
exchange twice. In Figure 5.2 we illustrate the application of the two-
variable exchange. First, nonbasic variable w11 is added to the basis,
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which leads to the removal of the basic variable w21. The one-variable
exchange is applied once more by selecting nonbasic variable w23 as the
entering variable and determining basic variable w32 as the leaving one.
It is important to emphasize that the neighborhood size defined by the
two variable exchange is larger than that of the one-variable exchange
and is given as NS2 =

(NS1

2

)
. In each run of the SA-based heuristic, we

use either the one-variable exchange or the two-variable exchange as the
neighborhood structure. It should be pointed out, however, that it is
also possible to define the neighborhood structure as a mixture of both
exchange methods.

As mentioned before, to compute the objective value corresponding to
a solution we have to solve m single-facility location problems. In case
of the SECMFWP each location subproblem can be solved analytically
by computing the flow-weighted centroid of customer locations. For
the RCMFWP we use the median location method. The ECMFWP is
solved via the Weiszfeld procedure, while we apply a generalization of
the Weiszfeld procedure (Brimberg and Love, 1993) for the LpCMFWP.
If the new solution is accepted, then it becomes the current solution.
Furthermore, we label it as the best solution if its objective value is
lower than that of the best solution found so far.

Figure 5.2. Two-variable exchange for SA-based heuristic.

Cooling schedule and the number of iterations to be performed at
each temperature (referred to as a cycle) are two important issues in
designing a simulated annealing based heuristic. In our implementation
the number of iterations Lk performed at temperature Tk is defined as
Lk = r · NSi where r is a parameter that should be tailored to the
problem instance and NSi is the size of the neighborhood with respect
to the one-variable exchange (i = 1) and two-variable exchange (i =
2). After Lk iterations are carried out in each cycle, the value of the
temperature is decreased in a geometric manner given as Tk+1 = α · Tk
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where α ∈ (0, 1) is called the cooling rate. If the value of α is close to
one, cooling occurs slower, which implies that a larger portion of the
search space of extreme points is explored.

When the ratio of accepted solutions to all the solutions generated at
constant temperature T is less than a threshold value for K consecutive
cycles, then the algorithm is terminated. A pseudocode of the SA-based
heuristic is given next.

0. Generate an initial solution s0 by Northwest corner rule and calculate f
(
s0
)
.

Let sbest = s0, fbest = f
(
s0
)
, T0 = Δ̄/ ln p0, k = 0, sc = s0

1. iter = 0
While iter ≤ Lk Do

Generate a solution sn in the neighborhood of sc and calculate f (sn)
Calculate Δ = f (sn)− f (sc).

If min
{

1, e−Δ/Tk

}
≥ U (0, 1), then sc = sn

If f (sn) < fbest, then sbest = sn and fbest = f (sn)
iter ← iter + 1

2. Tk+1 = αTk, k ← k + 1
If termination criterion is not satisfied go to Step 1

Heuristic based on threshold accepting
Threshold accepting (TA) was first introduced by Dueck and Scheuer

(1990) as a deterministic version of the SA algorithm. The difference
is in the acceptance rule of inferior solutions. In TA, a new solution is
accepted if the difference between the objective values of the new and
current solutions is not greater than a threshold term θ. This implies
that better solutions are always accepted while worse solutions are also
accepted if their objective value is within a certain threshold from the
current objective value. In general, θ is gradually decreased to zero as
the heuristic proceeds.

In our implementation we adopt the approach used by Yan and Luo
(1999) in which the threshold θ is represented as a fraction of the cur-
rent objective value f (sc), i.e., θ = μf (sc) where μ ∈ (0, 1). Hence the
condition for the acceptance of a new solution is that f (sn) − f (sc) =
Δ ≤ μf (sc). The value of parameter μ is decreased geometrically by
multiplying it by coefficient α every Lk iterations, i.e., μk+1 = αμk.
The initial value of μ, μ0, is set by a similar procedure used in the SA-
based heuristic for setting the initial value T0 of the temperature. First,
we generate n random solutions sequentially by starting with the ini-
tial solution that is obtained by the Northwest corner rule and applying
the one-variable exchange n times. For each move we compute the cor-
responding value of μ using the expression μ = |Δ| /f (sc) that follows
from the definition of the acceptance rule. Using the mean and standard
deviation of μ values we determine μ0 = μ̄+ 2σμ̄.
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In the TA-based heuristic we employ the same neighborhood struc-
tures that were used in the SA-based heuristic, i.e., the one-variable
exchange and two-variable exchange. The steps of the TA-based heuris-
tic are given below.

0. Generate an initial solution s0 by Northwest corner rule and calculate f
(
s0
)
.

Let sbest = s0, fbest = f
(
s0
)
, k = 0, sc = s0

1. iter = 0
While iter ≤ Lk Do

Generate a solution sn in the neighborhood sc and calculate f (sn)
Calculate Δ = f (sn)− f (sc).
If Δ ≤ μkf (sc), then sc = sn

If f (sn) < fbest, then sbest = sn and fbest = f (sn)
iter ← iter + 1

2. μk+1 = αμk, k ← k + 1
If termination criterion is not satisfied go to Step 1

Heuristic based on genetic algorithms
Genetic algorithms mimic the genetic evolution of a species. The

main difference with the SA and TA algorithms is that GAs do not ex-
plore the neighborhood of a single solution but perform a search in the
neighborhood of a population of solutions. Throughout the algorithm,
solutions that are also called individuals or chromosomes take part in a
reproductive process in which they interact, mix together and produce
offspring that retain the good characteristics of their parents. The re-
productive process which involves the creation of new solutions is based
on the selection, crossover, and mutation operators. Depending on the
optimization problem at hand, there is a need to encode the solutions
as strings so that the three genetic operators can be applied.

There are earlier works that propose GA-based heuristics to solve the
fixed charge transportation problem (FCTP) which takes into account
not only the linear costs as in the case of the classical transportation
problem but also fixed costs. From our perspective it is important that
the FCTP has the same constraints as the CMFWP. Different represen-
tations were applied to the FCTP such as the Prüfer number represen-
tation (Li et al., 1998), matrix representation (Gottlieb and Paulmann,
1998; Gottlieb and Eckert, 2000), permutation representation (Gottlieb
and Paulmann, 1998) and direct or edge-based representation (Eckert
and Gottlieb, 2002). Eckert and Gottlieb (2002) show that the edge-
based representation not only outperforms the others in terms of solu-
tion quality but also exhibits superior performance with respect to the
locality and heritability properties (Gottlieb et al., 2001). On the basis
of these results we opt for using this representation for our GA-based
heuristic.
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The starting point of the edge-based representation is that an extreme
point with m+n−1 basic variables corresponds to a spanning tree with
m+n−1 edges in the underlying transportation graph. This means that
each extreme point can be represented by a chromosome that consists of
the set of edges of the corresponding spanning tree and the associated
values of the allocation (flow) variables. For example, the chromosome
consisting of edges {(1, 1), (1, 2), (2, 2), (2, 3)} would encode the extreme
point which has w11, w12, w22, w23 as the basic variables.

The fitness function is taken the same as the objective function of the
CMFWP. Hence, the fitness of each chromosome can be calculated by
first solving the location subproblems and computing the objective value,
as was the case in the SA-based and TA-based heuristics. The main
components of the GA-based heuristic are explained in detail below.

After the population size is fixed, the first generation of solutions is
created by applying the one-variable exchange successively to the solu-
tion found by the Northwest corner rule. During this phase, if a newly
generated chromosome encodes an already existing solution, it is dis-
carded to eliminate duplicate solutions within the population. For each
parent, we calculate the fitness function by solving the location sub-
problems. Parents that will take part in the reproduction process are
determined using the binary tournament selection, where two solutions
are randomly picked from the population and the better solution is se-
lected.

The crossover operator is based on the idea that the offspring should
be formed from the edges of the parents and it has to be roughly at the
same distance from both parents. Given parents P1 and P2, about half
of the edges of parent P2 that do not exist in P1 are selected. These
edges are then inserted into the chromosome of P1 one by one. At each
step a selected edge of P2 is inserted into P1 while one of the edges
creating a cycle in the transportation tree of P1 is deleted. The edge to
be removed corresponds to the leaving basic variable that is determined
by the stepping stone method that was also applied during the one-
variable exchange in SA and TA-based heuristics. The main advantage
of this method is that we always get a basic feasible solution after one
move. The crossover operator is illustrated in Figure 5.3 where the set
of edges from P2 that do not exist in P1 is given as E(P2) \ E(P1) =
{(1, 1), (2, 3), (3, 1)}. Two of them, i.e., edges (1,1) and (2,3) depicted in
bold lines in the figure, are selected randomly and inserted sequentially
into the first parent. Edges (2,1) and (3,2) shown in dashed lines are
removed from the first parent in order to obtain a feasible solution.

The mutation operator applied to the offspring created by the cross-
over operator is defined as follows. A new edge is selected randomly from
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Figure 5.3. Crossover operator.

the set of edges that do not exist in the offspring and added to it. As this
addition creates a cycle in the transportation tree, we apply again the
stepping stone method to determine the edge that should be deleted to
form a new tree. As soon as an offspring (an extreme point in the space
of allocation variables w) is generated using the crossover and mutation
operators, we solve the location subproblems to find the coordinates of
the facilities and consequently the corresponding fitness value. We use a
steady-state replacement scheme where the offspring replaces the worst
individual in the population if the following two conditions are satisfied.
First, the fitness of the offspring (i.e., its cost) should be lower than that
of the worst individual. Second, the offspring should not have duplicates
in the population. Hence the population in the next generation differs
from the current one in at most one solution.

When the number of generations reaches a certain value, we terminate
the algorithm and the individual with the best fitness value is reported
as the solution of the GA-based heuristic. In general, a larger number
of generations results in a better solution at the expense of increased
computation time.

4. Computational Results
In this section we assess the performance of the new heuristics both in

terms of solution quality and running time efficiency on a number of test
instances. The instances are classified in five different groups and they
are referred to by the same labels as used in the original papers. The first
group consists of RCMFWP instances. Instances R8, R9 and R15 are
from Sherali et al. (2002) while instances R16, R23, R26, R29, R30 are
from Sherali et al. (1994). The second group includes small ECMFWP
instances (instances E2–E8) while the third group contains larger-sized
ECMFWP instances (instances E9–E20). These instances are given in
Al-Loughani (1997) and in Sherali et al. (2002). The fourth group
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consists of three SECMFWP instances given in Sherali and Tunçbilek
(1992). Finally, three LpCMFWP instances with p = 1.25, p = 1.50,
and p = 1.75 obtained from Sherali et al. (2002) form the last group.

Table 5.1 displays all the instances, where prefixes “R”, “E”, “SE”,
and “Lp” denote respectively the rectilinear, Euclidean, squared Eu-
clidean, and �p distances. For each instance we provide the number of
facilities to be located (m), the number of customers (n), the best objec-
tive value and the CPU time required to find this value. It is important
to note that the CPU times are measured in different hardware con-
figurations. R16, R23, R26, R29, R30 and SECMFWP instances were
solved on an IBM 3090 (Sherali et al., 1994; Sherali and Tunçbilek, 1992)
whereas the experiments for R8, R9 and R15 as well as all ECMFWP
and LpCMFWP instances were conducted on a Sun Ultra 1 worksta-
tion having 256 Megabytes of RAM (Sherali et al., 2002). We therefore
convert the original CPU times into equivalent CPU seconds that would
be required if all these experiments were carried out on our hardware
configuration. To this end, we use the performance measures given in
Mflops/s units provided in Dongarra (2006) and report the converted
CPU times in the last column of Table 5.1.

The new heuristics are coded in Microsoft Visual Basic 6.0 and run on
a notebook computer with 1.7 GHz Pentium Centrino processor and 256
Megabytes of RAM. Each subsection below is dedicated to the results
obtained by running one of the new heuristics 10 times. For each instance
we present the results in terms of the best, average, and worst percent
deviation from the best known objective value as well as the CPU time
needed for all 10 runs.

SA-based heuristic
We mentioned previously that in the implementation of the SA-based

heuristic the number of iterations performed at a fixed temperature is
determined as a constant times the neighborhood size, i.e., Lk = r ·NSi.
We set r = 4 for the one-variable exchange and r = 1 for the two-
variable exchange. The value of the cooling rate α is taken equal to 0.9.
The algorithm is terminated when the percentage of accepted solutions
is less than 5% for five consecutive cycles. The results are presented in
Table 5.2.

The results clearly indicate that if the two-variable exchange is used
as the neighborhood structure, much better solutions can be obtained
in comparison with the one-variable exchange. However, the computa-
tional effort is also higher for the two-variable exchange. Clearly there is
a compromise between the solution quality and CPU time with respect
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Table 5.1. Test instances.
Instance (m,n) Best known CPU time Converted

CPU time

R8 (4,8) 793 107.30 sec 53.65 sec
R9 (5,15) 9619 419.13 sec 209.57 sec
R15 (5,10) 3427 158.00 sec 79.00 sec
R16 (4,10) 259 28.43 sec 7.11 sec
R23 (5,8) 238 26.34 sec 6.59 sec
R26 (5,12) 284 203.08 sec 50.77 sec
R29 (5,15) 729 310.28 sec 77.57 sec
R30 (5,20) 745 35.02 sec 8.76 sec

Avg. 61.63 sec

E2 (2,4) 247.28 0.20 sec 0.10 sec
E3 (2,4) 214.34 0.90 sec 0.45 sec
E4 (3,5) 24.00 2.30 sec 1.15 sec
E5 (3,5) 73.96 2.00 sec 1.00 sec
E6 (3,9) 221.40 66.40 sec 33.20 sec
E7 (3,9) 871.62 42.20 sec 21.10 sec
E8 (4,8) 609.23 6 min 3 min

Avg. 33.86 sec

E9 (5,15) 8169.79 23 min 11.50 min
E10 (5,20) 12846.87 134 min 67 min
E11 (5,20) 1107.18 73 min 36.50 min
E15 (5,10) 2595.47 8 min 4 min
E16 (6,10) 7797.21 9 min 4.50 min
E17 (7,10) 6967.90 315 min 157.50 min
E18 (8,10) 1564.46 468 min 234 min
E19 (9,10) 3250.68 12 min 6 min
E20 (10,10) 7719.00 462 min 231 min

Avg. 83.56 min

SE9 (4,8) 875.34 227.09 sec 56.77 sec
SE16 (4,15) 3591.53 14.75 sec 3.69 sec
SE21 (4,24) 6805.43 98.02 sec 24.51 sec

Avg. 28.32 sec

Lp8, p=1.25 (4,8) 710.20 114.49 sec 57.25 sec
Lp8, p=1.50 (4,8) 661.90 126.71 sec 63.36 sec
Lp8, p=1.75 (4,8) 630.72 141.94 sec 70.97 sec
Lp9, p=1.25 (5,15) 8998.93 998.44 sec 499.22 sec
Lp9, p=1.50 (5,15) 8609.12 588.50 sec 294.25 sec
Lp9, p=1.75 (5,15) 8350.95 806.43 sec 403.22 sec
Lp5, p=1.25 (5,10) 3046.07 254.37 sec 127.19 sec
Lp15, p=1.50 (5,10) 2827.55 294.39 sec 147.29 sec
Lp15, p=1.75 (5,10) 2689.12 215.42 sec 107.71 sec

Avg. 196.72 sec
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Table 5.2. Results obtained by the SA-based heuristic.

One-variable exchange Two-variable exchange

Best Avg. Worst CPU time Best Avg. Worst CPU time
Instance %Dev. %Dev. %Dev. (sec) %Dev. %Dev. %Dev. (sec)

R8 0.00 0.21 2.14 6 0.00 0.21 2.14 21
R9 0.00 0.05 0.16 31 0.00 0.00 0.02 257
R15 0.00 3.87 4.61 18 0.00 1.74 4.26 114
R16 0.00 8.26 35.52 10 0.00 1.24 9.27 43
R23 0.00 0.00 0.00 10 0.00 0.00 0.00 46
R26 1.41 10.00 26.06 19 0.00 2.54 7.75 135
R29 0.96 6.30 11.52 27 0.00 1.04 3.43 270
R30 0.94 2.64 4.02 48 0.67 2.02 3.75 605

Avg. 0.41 3.92 10.50 21 0.08 1.10 3.83 186

E2 0.00 0.00 0.00 1 0.00 0.00 0.00 1
E3 0.00 0.00 0.00 2 0.01 0.01 0.00 1
E4 0.00 0.00 0.00 8 0.00 0.01 0.06 10
E5 0.00 0.00 0.00 11 0.00 0.00 0.00 13
E6 0.00 0.01 0.06 16 0.00 0.00 0.00 95
E7 0.00 0.00 0.00 23 0.00 0.00 0.00 81
E8 0.00 1.98 8.15 51 0.00 0.21 1.34 163

Avg. 0.00 0.28 1.17 16 0.00 0.03 0.20 52

E9 0.00 0.58 3.39 525 0.00 0.00 0.99 3823
E10 0.00 0.05 0.09 413 0.00 0.00 0.60 5479
E11 0.00 20.31 41.19 605 0.00 4.01 25.37 8217
E15 0.00 8.17 24.32 110 0.00 0.24 1.22 647
E16 0.00 5.56 9.41 153 0.00 4.04 11.07 1147
E17 3.61 10.18 15.39 184 0.00 2.47 4.22 1782
E18 2.45 38.83 89.60 408 0.00 3.38 9.24 3287
E19 11.55 20.11 43.59 451 0.00 8.08 15.35 4778
E20 0.01 3.65 14.55 724 0.01 0.01 0.01 10087

Avg. 1.96 11.94 26.84 397 0.00 2.47 7.56 4361

SE9 0.00 1.75 15.03 8 0.00 0.00 0.00 26
SE16 0.00 0.69 6.34 24 0.00 0.16 0.92 164
SE21 0.00 11.13 21.31 55 4.72 8.14 10.74 590

Avg. 0.00 4.52 14.23 29 1.57 2.77 3.89 260

Lp8,p=1.25 0.00 3.84 7.41 127 0.00 0.48 2.52 493
Lp8,p=1.50 0.00 2.16 7.36 133 0.00 0.00 0.01 412
Lp8,p=1.75 0.00 1.46 8.85 111 0.00 0.12 1.15 335
Lp9,p=1.25 0.01 0.17 0.73 1933 0.01 0.01 0.03 15771
Lp9,p=1.50 0.00 0.23 1.45 1721 0.00 0.00 0.40 11171
Lp9,p=1.75 0.00 0.09 0.42 1382 0.00 0.00 0.01 11300
Lp15,p=1.25 0.00 4.58 6.69 260 0.00 1.77 11.00 1634
Lp15,p=1.50 0.00 7.05 8.61 288 0.00 1.77 15.30 1768
Lp15,p=1.75 1.21 8.72 10.68 251 0.00 1.22 9.78 1799

Avg. 0.14 3.14 5.80 690 0.00 0.60 4.47 4965
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to the two neighborhood structures. The best and average percent devi-
ations remain respectively within 1.96% and 11.94% for the one-variable
exchange and within 1.57% and 2.77% for the two-variable exchange. It
is possible to obtain the best solution with the two-variable exchange
neighborhood structure for all instances except instance R30 and SE21.

TA-based heuristic
In the TA-based heuristic parameters r and α are assigned the same

values as those used in the SA-based heuristic. The termination criterion
is also the same. Table 5.3 summarizes the results.

We can observe that the results are in parallel to those obtained in
the previous section in the sense that the two-variable exchange neigh-
borhood provides better solutions than the one-variable exchange at the
expense of more computation time. When we compare the TA-based
heuristic with the SA-based heuristic with respect to the solution qual-
ity, we can observe that the former one yields slightly inferior solutions.

In order to have a better understanding of the trade-off between the
solution quality and computation time with respect to the neighbor-
hood structures, we carried out additional experiments by running the
heuristics with the one-variable exchange for an amount of time that is
required by the SA-based heuristic with the two-variable exchange. Al-
though there have been some improvements in the solutions, i.e., smaller
best, average, and worst percent deviations are obtained, the results are
still inferior to those given by the two-variable neighborhood structure.

GA-based heuristic
In the implementation of the GA-based heuristic, the population size

is taken as the minimum of 100 and the lower bound on the number
of extreme points given as n!/ (n−m+ 1)! in Cooper (1976). As men-
tioned before, the parent selection is performed with binary tournament
method and crossover as well as mutation operators are applied with
probability one. A steady-state replacement scheme is employed where
the offspring replaces the worst individual in the population provided
that its fitness value is lower and there is no duplicate of the offspring
in the population.

An important point here is that in order to have a better compari-
son between the GA-based heuristic and the SA-based heuristic which
appears to be slightly better than the TA-based heuristic, we limit the
running time of the GA-based heuristic by the CPU time of the SA-
based heuristic with the two-variable exchange. Therefore, a different
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Table 5.3. Results obtained by the TA-based heuristic.

One-variable exchange Two-variable exchange

Best Avg. Worst CPU time Best Avg. Worst CPU time
Instance %Dev. %Dev. %Dev. (sec) %Dev. %Dev. %Dev. (sec)

R8 0.00 3.33 14.00 11 0.00 0.00 0.00 26
R9 0.00 0.08 0.31 79 0.00 0.00 0.00 306
R15 0.00 4.29 9.69 27 0.00 2.45 4.26 93
R16 0.00 11.97 33.98 13 0.00 4.32 17.76 42
R23 0.00 0.25 2.52 35 0.00 0.00 0.00 122
R26 0.00 19.51 28.52 60 0.00 3.17 17.61 285
R29 0.00 4.09 11.52 84 0.00 1.18 4.25 482
R30 0.00 1.91 2.68 145 0.00 2.11 4.56 1240

Avg. 0.00 5.68 12.90 57 0.00 1.65 6.06 325

E2 0.00 0.00 0.00 1 0.00 0.00 0.00 1
E3 0.00 0.00 0.00 1 0.00 0.02 0.21 1
E4 0.00 0.00 0.00 15 0.00 0.00 0.00 17
E5 0.00 0.00 0.00 10 0.00 0.00 0.00 12
E6 0.00 0.01 0.08 12 0.00 0.00 0.00 94
E7 0.00 4.98 13.75 32 0.00 0.00 0.00 80
E8 0.00 5.44 31.72 49 0.00 0.14 1.4 141

Avg. 0.00 1.49 6.51 17 0.00 0.02 0.23 49

E9 0.00 3.66 34.31 566 0.00 0.06 0.56 3611
E10 0.00 0.06 0.09 179 0.00 0.00 0.00 2657
E11 0.00 29.41 62.08 423 0.00 7.62 25.37 5310
E15 0.00 14.12 23.53 100 0.00 0.28 1.22 561
E16 0.00 5.98 15.43 119 3.09 4.59 6.33 1001
E17 0.00 1.75 6.80 227 0.00 2.39 10.66 1865
E18 0.00 6.27 30.99 350 0.00 2.91 19.01 2897
E19 11.7 20.62 54.51 511 0.00 3.8 13.3 5415
E20 0.01 5.25 33.30 1372 0.01 0.07 0.61 15121

Avg. 1.30 9.68 29.00 427 0.34 2.41 8.56 4271

SE9 0.00 9.93 34.61 20 0.00 0.00 0.00 66
SE16 0.00 10.93 64.63 71 0.00 1.27 6.33 390
SE21 3.04 13.98 16.64 126 0.00 7.01 15.55 1170

Avg. 1.01 11.61 38.63 72 0.00 2.76 7.29 542

Lp8,p=1.25 0.00 0.31 3.03 94 0.00 0.44 2.23 298
Lp8,p=1.50 0.00 3.42 9.69 112 0.00 0.00 0.03 277
Lp8,p=1.75 0.00 4.23 21.48 90 0.00 0.41 4.06 199
Lp9,p=1.25 0.01 0.10 0.91 1580 0.01 0.01 0.03 11821
Lp9,p=1.50 0.00 0.22 0.44 1926 0.00 0.04 0.44 8504
Lp9,p=1.75 0.00 7.54 37.19 1266 0.00 0.00 0.01 8356
Lp15,p=1.25 0.00 8.55 11.05 176 0.00 3.54 11.05 730
Lp15,p=1.50 0.00 6.73 16.26 189 0.00 1.60 15.95 845
Lp15,p=1.75 0.00 13.61 20.33 169 0.00 0.47 2.29 955

Avg 0.00 4.97 13.38 622 0.00 0.72 4.01 3554
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value is reported in Table 5.4 for the number of generations associated
with each problem instance.

The best, average, and worst percent deviations provided by the GA-
based heuristic are within 1.89%, 9.16%, and 16.90%, respectively. These
results are approximately the same as those obtained by the SA-based
heuristic with the one-variable exchange when it is run for a time limit
identical to SA with two-variable exchange. Hence, we can conclude that
all the three heuristics yield solutions of more or less the same quality
when they are allowed the same amount of time to run.

When the two-variable exchange is used as the mutation operator,
the results are not changed for most of the problem instances while in-
significant improvements are obtained for others. Most probably, this
is related to the steady-state replacement scheme adopted in this study.
As a result, we can say that when implemented with the two-variable
exchange as the mutation operator, the GA-based heuristic is outper-
formed by the SA-based heuristic for which the best, average, and worst
percent deviations are 1.57%, 2.77%, and 7.56%, respectively.

5. Conclusions
In this paper we develop three heuristics based on simulated anneal-

ing, threshold accepting, and genetic algorithms for the solution of the
NP-hard CMFWP with rectilinear, Euclidean, squared Euclidean and
�p distances. All the heuristics we propose are based on the charac-
teristic of the CMFWP that an optimal solution always occurs at an
extreme point of the feasible region defined by constraints of the prob-
lem. Since each extreme point corresponds to a set of feasible values for
the allocation variables and the CMFWP reduces to single-facility loca-
tion problems when the values of the allocation variables are fixed, all
the heuristics are designed to perform a search in the space of extreme
points. The objective value corresponding to an extreme point can be
calculated by solving the single-facility location problems by a suitable
method depending on the distance function used.

The SA-based, TA-based, and GA-based heuristics are tested in terms
of both their solution quality and computation time on benchmark in-
stances available in the literature. The results are very accurate for the
SA-based and TA-based heuristics with the two-variable exchange neigh-
borhood structure. We also observe that when the one-variable exchange
is adopted as the neighborhood structure in the TA-based and SA-based
heuristics and as the mutation operator in the GA-based heuristic, there
is no clear-cut difference among the three heuristics. Moreover, the GA-
based heuristic does not benefit from the two-variable exchange used
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Table 5.4. Results obtained by the GA-based heuristic.

Best Average Worst No. of
Instance % Dev. % Dev. % Dev. Generations

R8 0.00 0.00 0.00 3658
R9 0.00 0.05 0.16 25383
R15 0.00 2.98 4.26 15200
R16 0.00 7.80 18.53 6880
R23 0.00 0.00 0.00 8000
R26 0.00 4.08 22.89 16615
R29 0.00 4.80 11.25 25414
R30 2.01 3.07 11.41 42461

Avg 0.25 2.85 8.56 17951

E2 0.00 0.00 0.00 531
E3 0.00 0.00 0.00 263
E4 0.00 19.35 29.68 1709
E5 0.00 0.00 0.00 2152
E6 0.00 0.01 0.07 5315
E7 0.00 0.00 0.00 9971
E8 0.00 1.56 7.11 8936

Avg 0.00 2.99 5.27 4125

E9 0.00 0.00 0.00 82217
E10 0.00 0.03 0.08 148591
E11 16.96 28.63 42.79 261901
E15 0.00 8.47 23.53 43850
E16 0.00 4.82 10.70 48809
E17 0.00 4.64 15.39 69881
E18 0.00 19.64 33.93 119525
E19 0.07 14.33 16.34 142629
E20 0.01 1.90 9.30 286132

Avg. 1.89 9.16 16.90 133726

SE9 0.00 0.00 0.00 4960
SE16 0.00 1.90 6.34 18480
SE21 2.36 13.21 21.24 42910

Avg. 0.79 5.04 9.19 22117

Lp8,p=1.25 0.00 0.00 0.01 14880
Lp8,p=1.50 0.00 0.00 0.01 16913
Lp8,p=1.75 0.00 0.83 8.26 17385
Lp9,p=1.25 0.02 0.09 0.34 1005
Lp9,p=1.50 0.00 0.00 0.00 1517
Lp9,p=1.75 0.00 0.14 1.05 1221
Lp15,p=1.25 0.00 7.62 11.05 2169
Lp15,p=1.50 0.00 11.38 16.26 1891
Lp15,p=1.75 0.00 12.20 20.33 1828

Avg. 0.00 3.58 6.37 6534
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as the mutation operator. It produces worse results than the SA-based
heuristic employed with the two-variable exchange.

In fact, there is another alternative way to design heuristics for the
CMFWP. Instead of performing the search in the discrete space of ex-
treme points and solving single-facility location problems, one can opt for
making the search in the continuous space of location variables. When
the location variables are assigned a set of values, i.e., the locations of
the facilities are given, the optimum values of the allocation variables
and the corresponding objective value can be found by solving a classical
transportation problem. The preliminary results obtained by a genetic
algorithm which directly encodes the facility locations by their coordi-
nates are not very satisfactory.
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Abstract In this work we modelled and solved the assignment problem appearing
in MIC’s paper review process using metaheuristic methods. Each given
paper has to be reviewed by several different reviewers before being
accepted for the conference. We implemented a memetic algorithm to
solve that assignment problem and evaluated different model variants
against their real world performance, using valuable feedback from many
reviewers. While solutions generated by the solver alone already led
to remarkable results compared to random solutions, making use of
more expert knowledge throughout the solving process further improved
solution quality. One way to achieve this was to fixate, prohibit or
change solution parts manually and thus to iteratively build up a tuned
solution.

Keywords: Assignment Problem, Memetic Algorithm

1. Introduction
Most scientific conferences, such as the Metaheuristics International

Conference 2005 (MIC 2005), apply a refereeing process in order to se-
lect the papers for presentation. The papers are submitted in advance
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and have to be reviewed by a board of experts. Usually, these refer-
ees are members of the program committee. Each paper is assigned to
usually three referees, and based on their evaluations the decision upon
acceptance or rejection is made.
For the assignment of papers to referees, one should observe that each
paper should be handled by the referees most competent for that paper.
On the other hand, referees should get papers that lie in their area of
interest, otherwise they would not be willing or able to review them.
Finally, one should have a fair allocation of workload, i.e. all referees
should receive approximately the same number of papers. Also, coau-
thors, the paper authors’ close friends or enemies, and maybe even their
colleagues from the same institution or country should not be selected
as referees. It is not straightforward how to capture all these aspects in
a mathematical model.
This assignment is usually done manually, based on the organizer’s or
the conference chair’s tacit knowledge of the areas of interest and com-
petence of the program committee members.
For some conferences, attempts have been reported to do these assign-
ments partially automatically (see the Paperdyne Conference Manage-
ment System, for example1). However, there are no publications avail-
able that deal with the assignment problem of papers and referees in
detail. Note that strong advantages arise from streamlining and opti-
mizing this process. Each expert work hour saved here can be used
valuably in the programme committee’s or conference chair’s main fields
of work - the conference organization and the peer review process.
The purpose of this contribution is to

present general modeling approaches for this particular assignment
problem

compare the solutions obtained by standard MIP solvers and meta-
heuristics

provide a case study for the MIC 2005 as well as the former con-
ferences MIC 2003 and MIC 2001

evaluate modeling approaches using feedback of program commit-
tee members on various solutions.

The related well-known generalized assignment problem (GAP) seeks
a minimum cost or maximum profit assignment of n jobs to m agents
subject to a resource constraint for each agent. In a GAP, each job is

1http://www.paperdyne.com/
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assigned to exactly one agent. Existing literature covering the GAP is
discussed below. Our problem can be viewed as an extension of the GAP
with additional constraints. The task is to assign a defined number (in
our case, 3) of best fitting reviewers to each paper while keeping the
workload distribution fair, i.e. balanced.
The GAP is a widely known NP-hard problem and has been treated
extensively in the literature. Exact approaches can be found in Savels-
bergh’s branch-and-price algorithm (1997) and, being one of the best
performing in the field, Nauss (2003).
Various heuristic and metaheuristic approaches have been proposed. A
combination of a greedy method and local search was used by Martello
and Toth (1981), and set partitioning heuristic was proposed by Cat-
trysse, Salomon, and Van Wassenhove (1994). Amini and Racer devel-
oped a variable depth search (1995). Further approaches are a tabu
search by Laguna, Kelly, González-Velarde, and Glover (1995), a tabu
search and simulated annealing by Osman (1995), and a genetic algo-
rithm by Chu and Beasley (1997). Yagiura, Yamaguchi, and Ibaraki
tackled the problem with a variable depth search algorithm (1999). More
recent publications are a grasp and ant system by Lourenço and Serra
(2002), a well-performing tabu search approach with ejection chains by
Yagiura, Ibaraki, and Glover (2004), and a recent follow-up publication
by the same authors using a path-relinking approach with ejection chains
(2006).
Our modeling approach is based on a property matching scheme. Papers
shall be assigned to those reviewers who fit the topic and key properties
of the paper best. In order to reflect this within the model, a fine-grained
utility measure to assess paper-reviewer assignments is defined. The ob-
jective is to maximize the resulting total utility value.
Model variants and solution approaches using an exact IP model and
a memetic algorithm are developed. The performance of the model is
evaluated, based on results of a survey among reviewers.

2. Modeling Paper-Reviewer Matching and
Assignment Fairness

The first important issue is the extraction of significant indicators
whether and how good a paper matches a reviewer in terms of content.
This matching can be done ad-hoc via expert knowledge, but it is im-
practical to do this for a high number of paper-reviewer combinations.
Instead, we model the utility of a given pairing based on a weighted
property matching strategy. Each paper and reviewer are characterized
by a set of congruent properties making up a content or expertise profile.



116 Chapter 6

The property set is defined according to the conference topic and should
depict each relevant subtopic or area of interest. For the MIC, the prop-
erty set includes 51 properties, categorized into “Methodology” (Guided
Local Search, Iterated LS, Large Neighborhood Search, Simulated An-
nealing, Tabu Search, Variable Neigborhood Search, Distribution Esti-
mation Algorithms, Evolution Strategies, Evolutionary Programming,
Genetic Algorithms, Genetic Programming, Memetic Algorithms, Ant
Colony Optimization, Cross Entropy Method, GRASP, Artificial Neural
Nets, Constraint Satisfaction, Constraint Programming, Corridor
Method, Hybridisation with Exact Methods, Hyperheuristics, Local
Branching, Path Relinking, Pilot Method, Scatter Search), “Problem
Type” (Arc Routing Problems, Telecommunications (Network Routing),
TSPs, Vehicle Routing Problems, Activity Scheduling, Machine Schedul-
ing, Project Scheduling, Staff Scheduling, Timetabling, Unit
Commitment, Assignment Problems, Location Problems, Knapsack
Problems, Portfolio Selection, Bioinformatics, Cutting and Packing, Par-
titioning Problems, Search based SW Eng., Set Covering), and other
problem characteristics (Dynamic Problem, Multi Objective, Parallel
Computing, SW Eng., Statistical Testing, Stochastic Problem, Theoret-
ical Foundation).
Note that this choice of properties and their categorization fully depends
on the area of research treated by the conference. The MICs put em-
phasis on the methodological areas, while for other conferences a sub-
stantially different property set might be chosen. Deriving utility from
property sets significantly reduces overall data acquisition effort and
expert judgement effort for real-world problem sizes (hundreds of
papers and reviewers).

Discrete Matching Approach
In our initial approach, the property values are discrete and can be

assigned the values “no”, “neutral” or “yes” (1,2,3, respectively). The
property values for papers and reviewers are

π(p, i) ∈ {1, 2, 3} ∀p ∈ P, i ∈ Π (1)
ϑ(r, i) ∈ {1, 2, 3} ∀r ∈ R, i ∈ Π, (2)

where Π is the set of defined properties, and π(p, i) and ϑ(r, i) contain
the i-th property values of paper p or reviewer r, respectively.
Below, this approach is referred to as the “discrete approach”. The util-
ity value uD of a paper-reviewer combination with paper p and reviewer
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r for the j-th assignment of a reviewer to that paper can be defined as

uD (p, r, j) =
∑
i∈Π

w(i, j) · nπ(p,i),ϑ(r,i) (3)

where w(i, j) can be used to weight properties differently for e.g. the
first, second and third assigned reviewer. The idea is to guarantee an
appropriate reviewer in each category. A paper dealing with stochastic
vehicle routing using tabu search should get assigned an expert in TS,
one in vehicle routing and one being an expert in stochastic aspects.
Hence, in uD(p, r, j), the matching values for “methodological” proper-
ties are multiplied with a higher weight than the other properties for
the first assigned reviewer j = 1. The same is done for “application
area” properties for j = 2, and “other aspects” properties for j = 3.
This way, reviewer 1 generates higher weighted utility if the match-
ing is particularly strong in the methodological properties, likewise for
the other reviewers and categories. Thus we drive the solution towards
assignments in which each of these property groups have at least one
appropriate referee per paper.
The 3× 3-matrix N = (nkl) reflects how much each property value pair
is desired or undesired, respectively. An exemplary choice of N is shown
in Eqn. (4), retrieved from interpreting each property value combination
and estimating a utility value. This setting was used in our calculations.

N = (nkl) =

⎛
⎝

0 0 0
0 1 2
−1 2 3

⎞
⎠ (4)

Typically the highest utility for property i will be obtained, if both
reviewer r (indexing columns) and paper p (indexing rows) have the
highest property values ϑ(r, i) = 3 and π(p, i) = 3. Thus, the n33 element
will be the largest. If paper p does not have property i at all (ϑ(p, i) = 1),
it does not matter whether the referee has this property, i.e., n11 = n12 =
n13 = 0. Finally, the most undesired matching is given when paper p
has the highest property value (ϑ(p, i) = 3), whereas reviewer r has the
lowest one (π(r, i) = 1). Hence, element n31 is set to a negative value
in order to penalize such assignments. The remaining elements can be
interpolated or set specifically, according to further interpretations of
property combinations.

Continous Matching Approach
In an alternative modeling approach, we use continuous property val-

ues. They can now be any positive real numbers which enables the model
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to resolve properties better and in more detail. A major advantage is
the possibility to “boost” certain properties which gives way for human-
guided tuning of the properties (in order to facilitate the exploit of tacit
knowledge at the property level). This approach is called “continuous
approach” in the following. Now,

π(p, i) ∈ R, π(p, i) ≥ 0 ∀p ∈ P, i ∈ Π (5)
ϑ(r, i) ∈ R, ϑ(r, i) ≥ 0 ∀r ∈ R, i ∈ Π (6)

The utility function (3) must now be defined for all non-negative real
values of the properties. For this, the lookup matrix N = (nkl) can be
interpolated by any appropriate smooth function. However, using the
possibility to boost the utility of an assignment has to be reflected in
that function as well, so large property values have to yield large utility
values.
A straightforward choice which fulfills the desired behavior is the multi-
plication operation, i.e.

uC (p, r, j) =
∑
i∈Π

w(i, j) · π(p, i) · ϑ(r, i) (7)

Aggregating the matching utility values of all assignments that consti-
tute a solution yields the overall matching utility that shall be maxi-
mized.
Defining a powerful matching strategy and seeking high input data qual-
ity turned out to be of great importance in order to gain solution quality
in terms of applicability and reviewer satisfaction.

Modeling Assignment Fairness by Measuring
Imbalance

Seeking only maximal paper-reviewer matching utility can result in an
unfair assignment in the sense of imbalanced workload distribution. It
lies in the interest of both the programme committee and the conference
chair to balance the workload distribution across all reviewers. Even if
this is not directly visible for the referees, it can be seen as an act of
organizational fairness and might positively affect the conference’s repu-
tation in the long run. In order to drive the solution towards a balanced
workload, a solution imbalance function acts as fitness penalization. We
define the review effort of paper p as ep, which is assumed the same for
each reviewer. However, the effort depends on the paper, since these
can be very different in structure and complexity. The paper effort ep
can be estimated out of characteristic quantities of the papers, such as
page count, number of sub-problems treated and number of optimization
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methods in discussion. This data can be entered directly by the paper
authors at submission, or extracted out of the papers, with reasonably
low effort. In our approach, the paper effort is a linear combination of
the mentioned quantitites.
A straightforward (linearizable) imbalance measure is the absolute value
deviation of a reviewer’s assigned workload from a target, or average,
workload per reviewer, aggregated over all reviewers. With lr as the
aggregated workload of referee r of all his/her assigned papers, and l∗r
as his/her target workload, the imbalance penalty term yields

η =
∑
r∈R
|lr − l∗r | (8)

In our approach, as shown in (9), the target workload was set to the
average workload per reviewer. An ideally, uniformly balanced solution
would have the least possible imbalance penalty value.

l∗r := l̄∗ =
k

|R| ·
∑
p∈P

ep, (9)

where k denotes the number of referee assignments per paper.

3. IP Formulation
Using the above building blocks, the assignment problem can be mod-

eled as an Integer Programming (IP) program. The binary decision vari-
ables xprj are introduced to represent a solution. We set xprj = 1 if the
assignment of paper p to reviewer r is done as the j-th assignment, and
xprj = 0 otherwise. The objective function is made up of the utility
term α · U and the imbalance penalty term β · η:

zMIP = α · U − β · η (10)

zMIP = α ·
∑
r∈R
p∈P

j=1,...,k

xprj · u (p, r, j) − β ·
∑
r∈R

∣∣∣∣∣∣∣∣

∑
p∈P

j=1,...,k

xprj · ep − l∗r

∣∣∣∣∣∣∣∣
(11)

with the precalculated u(p, r, j) = uD(p, r, j) in the discrete and
u(p, r, j) = uC(p, r, j) in the continous case. The factor α > 0 is the
utility weight, and β > 0 stands for the imbalance weight, two free con-
trol parameters that enable us to freely shape the solution structure.
The problem formulation could also be tackled as a multi-objective prob-
lem when defining the matching utility as well as solution balance as
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partial objectives. However, viewed from the conference organizer’s per-
spective, matching is the main goal to reach, while the imbalance pe-
nalization is seen as a safety net against an unwanted, unfair workload
distribution. For that reason, we do not follow a multiobjective approach
in the current model, but this might be an option for the future.
The following constraints have to be fulfilled:

∑
r∈R

xprj = 1 ∀p ∈ P, j ∈ {1, . . . , k} (12)

k∑
j=1

xprj ≤ 1 ∀p ∈ P, r ∈ R (13)

xprj = 0 ∀(p, r, j) ∈ E (14)
xprj = 1 ∀(p, r, j) ∈ I (15)

and ∀p ∈ P, r ∈ R, j ∈ {1, . . . , k}:
xprj ∈ {0, 1} (16)

In equation (12) it is ensured that each paper and each slot have exactly
one reviewer assigned. Equation (13) makes sure that the same reviewer
is not assigned more than one time to the same paper. Using a freely
definable “exclusion list” E, specific assignments can be prohibited (in
(14)). The set E contains triples (p, r, j) denoting that paper number p
must not be assigned to reviewer r as j-th reviewer. By using k entries in
E, a referee can be completely prohibited for a given paper. This allows
preprocessing of fine-grained constraints, for example that papers cannot
be reviewed by their authors or affiliated people. Likewise, assignments
can be prescribed using an “inclusion list” I containing triples (p, r, j) (in
(15)) that have to be part of a feasible solution. Prohibited and fixed
assignments are important to enable iterative problem solving: well-
fitting solution parts can be fixed, and seemingly bad-fitting parts can
be prohibited for subsequent iterations. Clearly, the sets E and I have
to be disjoint, and only valid assignments are allowed in the inclusion
list. Finally, (16) requires the decision variables to be binary.

Comparison to the Minimum Cost Flow Problem
The model presented above can be transformed into the minimum

cost flow (MCF) problem, if all paper efforts are the same (i.e., if ep ≡
1 ∀p ∈ P ). This problem is polynomially solvable, Edmonds and Karp
(1972) showed an early scaling algorithm, and many later approaches
build up on it (e.g. Orlin (1993), and Goldfarb and Jin (1999)). Korte
and Vygen (2006) list a number of polynomially performing approaches.
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It is possible to transform the entire model with all constraints into an
equivalent minimum cost flow problem, but we only sketch the main
part of the transformation and use them to accelerate the MIP solving
process.
Figure 1 shows the MCF graph which is built up in three main layers.
Starting from the source node S with a supply of the total workload,
now being |P | · k, we introduce nodes Ppj for each paper p and slot
j, and connect all of them to the source by edges with capacity 1 and
cost 0. Then, we introduce nodes Qpr, collecting all respective flows
from Pp1,. . . ,Ppk with unit-capacity edges and the negative utility values
−α · u(p, r, j) as costs. In order to impose constraint (13), these nodes
Qpr are connected to nodes Rr with unit-capacity, zero-cost edges from
all Q1r,. . . ,Q|P |r. Finally, each reviewer workload node Rr is connected
to the sink T with 3 edges, as seen in Figure 2. Their capacities are
�l∗r�, 1 and unlimited, respectively, and their costs are set to −β, β ·
(	l∗r
+ �l∗r� − 2 · l∗r) and β. These edges efficiently bound the solution
space for the MIP solver. Figure 3 illustrates the costs imposed by a
certain assigned workload, and valid solutions can either only lie on the
first or third line segment, or their intersections with the middle segment.
The lines’ slopes are the edge costs in Figure 2. The fitness value of the
reduced minimum cost flow problem (MCF) is connected to the original
objective function value through zMCF + |R| · β · l∗r = −zMIP .
We implemented the imbalance function as in the MCF and as shown
in Figure 3, whereas the middle line segment is omitted in the general
(variable-paper-effort) case.

4. Memetic Algorithm
We developed a memetic algorithm (MA), based on the ideas of

Moscato and Cotta (2003), in order to improve solution quality and
optimization speed. It proved to perform better than the IP approach
in the general case with variable paper efforts and desired parameter
settings. Moreover, the MA is able to quickly construct very good solu-
tions, which the IP approach cannot accomplish in the same time. This
is particularly important in our iterative solution approach, where the
use of tacit knowledge is facilitated and which requires short solving
times between the iterations.
Memetic algorithms make use of all available domain knowledge to ex-
tend and improve the plain genetic evolutionary search approach. This
includes not only problem-specific construction and search operators,
but can also extend to the problem representation itself. Using problem
representations that exploit features of the problem domain can aid the
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algorithm in finding or improving solutions faster.
We use an assignment matrix (ypj) to represent a solution. The element
ypj holds the index of the j-th reviewer assigned to paper p. An element
ypj will be called “paper slot” in the following. Using reviewer indexes
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cuts down variable count per solution from |R| × |P | × k to |P | × k.
Constraint (12) is now implicitely fulfilled, so solution calculation and
validation requires less computational effort. A pseudo code listing of
the MA is given below, in Figure 4.

Figure 4. Pseudo Code - Memetic Algorithm

Input: Problem Data: u(p, r) and solver parameters
Output: Optimized Solution xbest

initialization();
Population Pop← createStartSolutions();
sort(Pop by fitness);
xbest ← xmax from Pop;
For all iterations
S ← select(Pop);
For all x in Pop except elite solutions

With probability pcrossover
Do x← recombine(s1, s2 ∈ S); (randomly chosen)
Else x← s ∈ S; (randomly chosen)

End-With
Pop← x;

End-For
For all x in Pop
x← mutate(x);
With probability pnew Do x← createStartSolution();
With probability plSearch Do x← localSearch(x);
Pop← x;

End-For
sort(Pop by fitness);
If xmax ∈ Pop > xbest Then xbest ← xmax;

End-For

Initialization
The memetic algorithm initializes its population with solutions con-

structed by a greedy-randomized heuristic. First, inclusion list entries
have to be considered (prescribed assignments). Then, for each remain-
ing paper slot ypj, one of the 1 ≤ kinit ≤ |R| best matching and –in
this context– valid reviewers is chosen randomly. The idea stems from
“Greedy Randomized Adaptive Search Procedures” (GRASP) that rep-
resent a large field of metaheuristics (see Resende and Ribeiro (2003)).
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Maintaining solution feasibility is accomplished by adding only valid re-
viewers to the partial solutions. A reviewer choice is valid if the chosen
reviewer r has not yet been chosen for the same paper and it is not pro-
hibited by the exclusion list. Additionally, the robustness of this method
can be increased by adapting kinit. If no valid reviewers can be found
within several tries and if kinit < |R|, the choice interval size kinit is
increased.
Finally, the initial solutions are locally optimized. The applied local
search operation is described below in detail, since it is identically used
in the memetic search step.

Selection Step
The population size is kept constant at all times. We select a fixed

number of good solutions from the total population for reproduction.
This “selection set” serves as genetic pool for the next generation. A
small number of elite solutions is kept, while all other solutions in the
population are replaced by offspring solutions - generated with a given
recombination probability -, or by surviving solutions, i.e. selection set
members.
A fixed number of solutions are probabilistically selected and copied into
the selection set S. We apply a fitness-proportional selection method
called “stochastic universal sampling” (SUS). The SUS is an O(n) - im-
plementation of the well-known roulette-wheel method, with n = |S|
being the number of items to select and under the assumption that the
fitness evaluation and comparison can be done in constant time.
A pseudo code of the sampling algorithm is given below in Figure 5. In
order to select solutions stochastically based on their fitness, all solu-
tions of the population are evaluated and the fitness values are linearly
normalized and scaled, so that the scaled total fitness sum of the pop-
ulation becomes 1. Similar to the roulette wheel method, the solutions’
lined up scaled fitness values define intervals in the [0; 1]-interval. The
SUS method starts at a random position u in the [0; 1

|S|) interval and
takes |S| samples with equal distances of 1

|S| . Solutions corresponding
to the sample values are selected. This method is computationally fast
and can be proven to be equivalent to an all-random sampling such as
the standard roulette-wheel method (see Baker (1987)).

Recombination and Mutation Steps
We implemented recombination operators that use a “paper-wise”

crossover strategy to produce offspring solutions. All j = 1, . . . , k slots
ypj of a paper p of two parent solutions s1, s2 ∈ S are inherited at once,
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Figure 5. Pseudo Code - Stochastic Universal Sampling

Input: Population Pop of solutions
Output: Selection Set S of given size

FitnessScaling(Pop)
Set u := random(0,1)

|S|
Set step := 1

|S|
Set i := 0 (solution index)
Set sum := ScaledFitness(Pop(i))
For all solutions in S

While sum < u
Set i := i+ 1
Set sum := sum+ ScaledFitness(Pop(i))

End-While
S ← S ∪ Pop(i)
u := u+ step

End-For

for each paper. The choice of which paper slot set to inherit depends
on the matching utility sum of the existing assignments. The advantage
of this approach is its speed, since the in-paper constraints (Equation
(13)) remain valid and need not be checked during crossover. When
the decision of which parent to inherit from is done probabilistically,
biased towards the better matching paper slot set, the selection pres-
sure is effectively increased. This leads to a faster improvement of the
population as compared to random inheritance. Our observations show
that a greedy approach (always taking the better performing paper slot
set) introduces even more effective selection pressure and can cut down
genetic variety in the solution pool too much. However, leveraged by
an increased mutation rate, that operator yields the best results for real
data sets.
Following the recombination, each solution of the population is subject
to mutation. A random set of assignments is chosen to be replaced by
different random, but valid reviewer assignments. The mutation of an
assignment is only realized if the new, mutated assignment gives a valid
solution (i.e., all constraints are still fulfilled). Due to that, the mu-
tation operation is a problem-aware shaking step rather than random
mutation, a concept which complies to the memetic algorithm idea as a
whole.
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Figure 6. Pseudo Code - Paper-Wise Recombination Operator

Input: 2 randomly chosen solutions s1, s2 ∈ S
Output: 1 child solution c, made up of s1 and s2

For all papers p ∈ P
choose parent sx ∈ {s1, s2} to take p from
inherit reviewer assignments of p from sx to c

End-For
evaluate solution c

Random Restart and Local Search
A number of additional solution improvement algorithms were devel-

oped. With little probability pnew (as seen in the MA pseudo code in
Figure 4), new genetic material is introduced into the population by
replacing solutions in the population by randomized start solutions. Fi-
nally, a local search in a move-neighborhood with “first-improvement”
policy and limited iteration depth is applied to the solutions. A move
in that neighborhood is defined by reassigning another, valid reviewer
to a paper slot. One local search iteration is completed when all paper
slots have been tested for the first improving move. This is accelerated
by trying the reviewers in descending order of utility.

5. Computational Results
In this section, the solver implemenations and their performance are

evaluated. Benchmarks of the IP modeling approach and the memetic
algorithm are reported and compared, using randomly generated test
data as well as test data derived from real data of MIC 2001, MIC 2003
and MIC 2005.
The second part of the result section evaluates the modeling approaches
themselves. Based on MIC 2005 real data, a survey among all current
reviewers was carried out. Their feedback is used to estimate the effects
of different model parameter choices.

Implementation Details
We used XpressMP optimizer version 16.01.08 as IP solver2. The

memetic algorithm produced good solutions early in the optimization
process, so all real-data results were retrieved using the memetic

2http://www.dashoptimization.com/



Reviewer Assignment using Memetic Algorithms 127

algorithm. The significant advantage of the MA over the IP is its ability
to provide good solutions very quickly, a critical issue in an iterative
solution approach.
The MA’s engine was implemented in C++, combined with a JavaTM

front-end for data management, pre and post processing3. The static
problem structure was exploited, using pre-calculated utility values and
incremental calculation steps wherever possible. The fitness changes for
local search moves can be evaluated in constant time. However, due to
accumulating rounding errors, the entire solution has to be reevaluated
between the local search steps. This effect is observed especially in the
continous matching approach (due to the larger dynamic range of the
values) and can be reduced by using high-precision floating-point arith-
metics. It it typically of the order of 10−6 of the fitness value, or less,
and thus does not affect search behavior.
The MA implementation is object-oriented and kept flexible to ease fu-
ture reuse and maintainbility. The solver core is designed to have a
low memory footprint. The problem data is stored efficiently, so very
large populations can be maintained. The memory usage is of the order
O(|P |·|Pop|, |P |·|R|), for MIC 2005 - sized problems and a typical popu-
lation size |Pop| = 100 about 1 MByte RAM is used. When considering
very large instances (e.g. |P | = 3000, |R| = 1000 and |Pop| = 100),
which might arise with large conferences such as the INFORMS annual
meeting, a desktop workstation with 512 MByte of RAM can still cope
with that problem.

Solver Benchmark Results
The performance of the memetic algorithm was benchmarked against

the IP model. For one series of benchmarks, randomly generated test
data was used, the other benchmark was based on real MIC papers and
reviewers (see Table 1 for results of the weighted, i.e. paper specific ef-
fort approach). In an earlier approach, we solved unweighted instances
(i.e., with unit paper efforts). The MA performed significantly better
than the original IP implementation. Using the clipping trick however
(see Figure 3), the IP approach could solve these instances quickly to
optimality. In the following, instances with paper specific effort are used.
For the real data instances the paper weights were determined by count-
ing the papers’ pages and the number of treated problems and methods.
Solution quality and computation times are reported for both the ex-
act approach using XPressTM, as well as our MA implementation. The

3http://java.sun.com/
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computation times are taken on an IntelR© PentiumR© 4 HT / 2.4GHz
desktop PC, whereas both algorithms were single-threaded and thus
used 50% CPU load. The times tCPU show when the best solutions
were found, total time given was 45min for both approaches. If not
stated otherwise, all gaps refer to the best LP-relaxation bounds found
for that instance.
Three different random data sets were used. Their sizes ranged from the
original MIC 2005 problem size up to 1000 papers and 200 reviewers.
It is observed that the memetic algorithm can exploit its constructive
strength especially in difficult parameter settings (e.g., with high imbal-
ance weights), see the lines with high values of Beta in Table 1. In the
simple case of imbalance weight 0 both approaches find optimal match-
ing instantly. At low imbalance penalization, the IP approach achieves a
smaller gap, but at high imbalance weight, the MA outperforms the IP
approach. It is also observed that MA solutions are more balanced than
their IP counterparts, at the same data and parameter settings. This
indicates differently shaped search regions of both solution approaches.
Three real data instances, based on MIC 2001, MIC 2003, and MIC 2005
data were created. The performance characteristics of the memetic al-
gorithm is similar to the previous benchmark. Since these problems are
significantly smaller, computation times are generally shorter.

Solving the MIC 2005 Assignment Problem
Instance

The MIC 2005 problem instance consisted of |P | = 169 papers and
|R| = 66 reviewers. Each paper had to be assigned to kp = 3 different
reviewers, and |Π| = 51 properties were defined for each paper as well
as each reviewer. The properties were originally set by the papers’ au-
thors and the reviewers themselves and were afterwards fine-tuned using
model and expert knowledge. This instance was calculated with unit pa-
per efforts.
For most cases, the solution quality was sufficient after 100 iterations
with a population size of 50 solutions. The MA runtime primarily de-
pends on the depth of the local search step (which typically accounts for
more than 90% of total computation time).
For the real data runs, the problem was solved in several iterations to
introduce as much expert knowledge as possible: After an optimized so-
lution was retrieved, well fitting parts of the solution as well as good as-
signments found by expert knowledge were made compulsory by adding
them to the inclusion list. Likewise, undesirable assignments were added
to the exclusion list, and the next iteration was run. For the published
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Table 1. Solver Benchmarks with Test Data

Data Set Beta IP Solver Gap MA Solver Gap Imbalance4

tCPU total/util tCPU total/util (avg., IP/MA)

random,
|P | = 1000,
|R| = 200

0 6’ -/-5 2′ 0.0%/0.0% 200.0%/21.9%
1 17′ 0.1%/0.1% 32′ 0.2%/0.2% 0.8%/0.5%
10 24′ 0.2%/0.1% 30′ 0.4%/0.6% 0.7%/0.3%
100 11′ 0.6%/0.4% 41′ 0.2%/1.6% 1.3%/0.2%
1000 11′ 0.7%/0.4% 28′ 0.1%/3.4% 1.3%/0.2%
10000 10′ 0.7%/0.4% 26′ 0.1%/3.5% 1.3%/0.2%

random,
|P | = 500,
|R| = 100

0 < 1′ -/-5 < 1′ 0.0%/0.0% 200.0%/20.6%
1 9′ 0.1%/0.1% 2′ 0.2%/0.2% 0.9%/0.6%
10 3′ 0.2%/0.2% < 1′ 0.5%/0.9% 0.6%/0.3%
100 3′ 0.3%/0.2% 18′ 0.3%/2.3% 0.6%/0.2%
1000 3′ 0.3%/0.2% 13′ 0.1%/3.8% 0.6%/0.2%
10000 3′ 0.3%/0.2% 3′ 0.1%/5.2% 0.6%/0.1%

random,
|P | = 169,
|R| = 66

0 < 1′ -/-5 < 1′ 0.0%/0.0% 200.0%/33.0%
1 < 1′ 0.2%/0.2% 6′ 0.2%/0.3% 3.5%/2.3%
10 < 1′ 0.6%/0.5% 4′ 0.9%/1.7% 1.6%/0.6%
100 41′ 0.7%/3.2% 2′ 0.6%/3.2% 0.9%/0.6%
1000 27′ 0.6%/5.8% 4′ 0.3%/8.1% 1.0%/0.4%
10000 42′ 0.4%/4.1% 7′ 0.2%/13.2% 0.8%/0.4%

MIC 2001,
|P | = 137,
|R| = 62

0 < 1′ -/-5 < 1′ 0.0%/0.0% 200.0%/119.5%
1 < 1′ -/-5 2′ 0.0%/0.0% 112.7%/112.7%
10 29′ 0.0%/2.4% 3′ 0.1%/2.2% 71.8%/74.4%
100 33′ 1.3%/24.6% 3′ 2.4%/27.7% 5.2%/5.2%
1000 4′ 1.3%/27.2% 43′ 1.2%/41.1% 3.5%/2.0%
10000 10′ 0.7%/39.1% 18′ 0.6%/42.5% 2.2%/2.0%

MIC 2003,
|P | = 90,
|R| = 67

0 < 1′ -/-5 < 1′ 0.0%/0.0% 200.0%/117.3%
1 < 1′ -/-5 < 1′ 0.0%/0.0% 116.4%/116.0%
10 40′ 0.0%/3.6% < 1′ 0.1%/3.7% 71.8%/72.0%
100 < 1′ 2.2%/26.4% 6′ 3.6%/33.3% 5.2%/3.9%
1000 3′ 2.0%/29.1% 7′ 1.8%/39.1% 4.4%/3.1%
10000 4′ 1.9%/35.6% < 1′ 1.5%/41.6% 4.2%/3.4%

MIC 2005,
|P | = 169,
|R| = 66

0 < 1′ -/-5 < 1′ 0.0%/0.0% 200.0%/121.9%
1 < 1′ -/-5 < 1′ 0.0%/0.0% 116.3%/116.3%
10 30′ 0.1%/3.4% 10′ 0.2%/3.4% 64.9%/65.5%
100 37′ 1.5%/24.1% 11′ 2.9%/30.1% 5.2%/3.8%
1000 5′ 1.5%/26.3% 10′ 1.2%/39.8% 3.6%/1.9%
10000 14′ 0.9%/39.4% 3′ 0.7%/44.0% 2.2%/1.8%

4100% means |lr − l∗r | = l∗r
5Optimal solution, gaps w.r.t. optimum
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assignment set (i.e. for the actually realized solution), a total number
of 14 iterations were performed.

Evaluation of Model Performance using Reviewer
Feedback

In order to judge the overall quality of the solutions and to identify
significant model parameters, a range of different solutions was created
and sent out to reviewers. They should evaluate how good the given
paper assignments would fit to them in terms of content. We received
a strong response (about 50% of the questionnaires were returned), and
the reviewers’ marks show that the taken design decisions and parameter
settings improved real-world solution quality.
The feedback data shows that the optimized solutions fit considerably
better than a randomly generated reference solution. Further investiga-
tions show the positive effects of the second (continuous) matching cal-
culation approach. Likewise, a relaxed exclusion list enabled the solver
to find better matching assignments. Using manual tuning incorporated
additional expert knowledge.

The evaluation results of selected solutions are reported in Table 2 and in
Figure 7 and Figure 8. Solution “Random” represents a randomly gener-
ated reference solution. Solution “D-auto” was generated automatically
without manual tuning using the discrete matching calculation approach,
and solution “D-m14” is the published solution that was manually tuned
for 14 iterations, starting from “D-auto”. Likewise, we created solution
“C-auto” and “C-m3” (3 manual iterations) using the continous match-
ing approach. In the automatic solutions, only self-assignments (of a
reviewer to papers that he/she is author of) were excluded. The other
solutions’ (initial) exclusion lists also prohibited all assignments of re-
viewers to papers where one of the paper’s authors comes from the same
country the reviewer comes from.
The degree to which the solution assignments fit the reviewers was eval-
uated by themselves. A grading scheme ranging from 1 to 5 (1 as worst
and 5 as best mark) was applied. The average evaluation mark of each
solution can be used to measure the solution quality in terms of overall
reviewer satisfaction. As seen in Figure 7, the “Random” solution per-
forms much worse than the optimized solutions. The manually improved
solutions “D-m14” and “C-m3” perform best in terms of “real world
performance”, from the reviewers’ point of view. The automatically
generated solutions “D-auto” and “C-auto” are at about 80% relative
performance (between the best performing “D-m14” and the “Random”
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solution), and it can be observed that the continous approach can in-
crease solution quality compared to the discrete approach.
Figure 8 depicts the distribution of the given marks. While the ran-
dom solution curve has a completely different shape, the other solutions’
graphs are of an optimized shape: the mark distribution is maximized
in the “good” region of marks ≥ 3.
It turns out that the detailed matching approach depicts the prob-
lem well enough to automatically generate solutions that are almost
as good as manually tuned solutions, at significantly lower human post-
processing effort. Moreover, these solutions assign a uniform workload
to all reviewers.

6. Conclusion
In this work, a modeling strategy is proposed to find the optimal as-

signments of papers to review and referees, in terms of content matching.
Therefore, property matching strategies are outlined and the mathemat-
ical optimization problem formulation is given. The problem is then
solved with an IP and a memetic algorithm approach, where the latter
proves to be better in difficult parameter settings. The results for ran-
dom data as well as real data are given, backed by survey results for
the MIC 2005. They validate the modeling approaches and show that
automatic optimization leads to high-quality results, which can further
be improved by introducing expert knowledge in an iterative solution
process.

Table 2. Solution Performance

Solution Avg. Mark Exclusion Matching Generation

D-m14 3,48 full discrete 14× manually tuned
C-m3 3,41 relaxed continuous 3× manually tuned
C-auto 3,32 relaxed continuous automatically
D-auto 3,19 full discrete automatically
Random 2,56 full – randomly
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Figure 7. Average Mark of Selected
Solutions

Figure 8. Solution Mark Distribution
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GRASP WITH PATH-RELINKING FOR THE TSP
 

Elizabeth F. Gouvêa Goldbarg, Marco C. Goldbarg and João P. F. Farias 
Department of Informatics and Applied Mathematics, Federal University of Rio Grande do
Norte, Campus Universitário Lagoa Nova, Natal, Brazil 

Abstract:  This paper presents a new GRASP for the TSP. Two versions utilizing two 
distinct implementations of the LK neighborhood are introduced. Those 
heuristics are hybridized with a path-relinking procedure. A distance metric, 
previously proposed to fitness analysis landscape is utilized to decide whether 
to apply path-relinking between a pair of solutions. A computational 
experiment is reported to support conclusions about efficiency of the proposed 
approach.    

Key words: GRASP, path-relinking, traveling salesman problem, Lin-Kernighan 
neighborhood   

1. INTRODUCTION 

The Traveling Salesman is a classical NP-hard combinatorial problem 
that has been an important test ground for most algorithms. Given a graph 
G = (N,E), where N = {1,...,n} is the set of nodes and E = {1,...,m} is the set 
of edges of G, and costs, cij, associated with each edge linking vertices i and 
j, the problem consists on finding the minimal total length Hamiltonian 
cycle. The length is calculated by the summation of the costs of the edges in 
a cycle.  If for all pairs of nodes {i, j}, the costs cij and cji are equal then the 
problem is said to be symmetric, otherwise it is said to be asymmetric.  

The main importance of TSP regarding applicability is due to its 
variations, nevertheless some applications of the basic problem in real world 
problems are reported for different areas such as VLSI chip fabrication 
(Korte, 1989), X-ray crystallography (Bland and Shalcross, 1989), genome 
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map (Guyon et al., 2003), DNA sequence (Gonnet et al., 2000) and 
broadcast schedule (Yajima et al., 2001), among others. 

The most effective exact algorithm for the TSP is based on a branch and 
cut strategy presented by Applegate et al. (1999). Currently, the largest TSP 
instance exactly solved has 24978 cities and represents the shortest tour 
among Swedish cities. 

Once to exactly solve the TSP is a hard and time consuming task, a 
number of heuristic algorithms were presented in the last decades to find 
good sub-optimal solutions for the problem. Burkard (2002) divides the 
approaches for constructing heuristic algorithms for the TSP in three classes: 
construction methods, improvement methods and metaheuristics. 
Construction methods build a tour iteratively and are based on some greedy 
criterion. A well known constructive method for the TSP is the nearest 
neighbor algorithm presented by Bellmore and Nemhauser (1968). As 
pointed out by Burkard (2002), although it is very easy to generate instances 
where the nearest neighbor algorithm performs arbitrarily bad, this is a well 
suited procedure to generate solutions to be processed by an improvement 
method. A randomized adaptive version of the nearest neighbor is utilized in 
this work in the constructive phase of the GRASP algorithms. 

Local search algorithms constitute the class of improvement methods. 
Given a neighborhood structure defined over a search space, a local search 
procedure begins with a solution and search the neighborhood of the current 
solution for an improvement. Some well known neighborhood structures for 
the TSP are: 2-opt (Flood, 1956), 3-opt and Lin-Kernighan (Lin and 
Kernighan, 1973). 

Finally, the metaheuristics are general frameworks to design heuristic 
algorithms. A number of techniques based on several metaheuristic 
approaches were proposed to solve the TSP, such as: Simulated Annealing, 
Neural Networks, Tabu Search, Genetic and Memetic Algorithms, Ant 
System, Scatter Search and Variable Search Neighborhood. A survey of the 
TSP and the solution methods utilized to solve it is presented by Gutin and 
Punnen (2002).  

Although metaheuristic approaches are widely used to solve the TSP, 
only recently a GRASP was proposed for this problem (Marinakis et al., 
2005). 

GRASP is a multi-start search procedure. First introduced by Feo and 
Resende (1989), it consists on a method that repeatedly applies local search 
from different starting solutions of a search space. Initial solutions are built 
with a greedy randomized adaptive procedure, that is, a construction method 
adapted to incorporate randomness and to be adaptive. In this first phase, a 
solution is constructed iteratively by the addition of elements that are 
randomly chosen from a restricted candidate list. The restricted candidate list 
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is built according to a greedy criterion that evaluates the attractiveness of 
each element for the solution. One element of this list is randomly chosen, in 
general, with a uniform probability distribution. The addition of a new 
element to the solution modifies the attractiveness of the remaining elements 
out of the solution (this incorporates the adaptive character to the algorithm). 
Once a solution is built, the algorithm proceeds to an improvement phase. In 
this second phase, a local search method is utilized to improve the solution 
built on the first phase. In general, the stop criterion is a given number of 
iterations (construction/local search). The fundamentals of GRASP, 
enhancements, hybridization with other methods and several applications to 
combinatorial problems are surveyed in the work of Resende and 
Ribeiro(2003a). 

Path-relinking is an intensification technique which ideas were originally 
proposed by Glover (1963) in the context of scheduling methods to obtain 
improved local decision rules for job shop scheduling problems (Glover, 
Laguna and Marti, 2000). The strategy consists on generating a path between 
two solutions creating new solutions. Given an origin, xs, and a target 
solution, xt, a path from xs to xt leads to a sequence xs, xs(1), xs(2), …, xs(r) = 
xt, where xs(i+1) is obtained from xs(i) by a move that introduces in xs(i+1) 
an attribute that reduces the distance between attributes of the origin and 
target solutions. The roles of origin and target can be interchangeable. 
Resende and Ribeiro (2003b) identify some strategies for considering such 
roles: 
 forward: the worst among xs and xt is the origin and the other is the target 

solution; 
 backward: the best among xs and xt is the origin and the other is the target 

solution; 
 back and forward: two different trajectories are explored, the first using 

the best among xs and xt as the initial solution and the second using the 
other in this role; 

 mixed: two paths are simultaneously explored, the first starting at the best 
and the second starting at the worst among xs and xt, until they meet at an 
intermediary solution equidistant from xs and xt. 
The hybridization of GRASP and path relinking is very promising and 

has been investigated in a number of papers with applications to several 
problems such as the 2-layer straight line crossing minimization (Laguna and 
Marti, 1999), the three index assignment (Aiex et al., 2005), the prize 
collector Steiner tree (Canuto et al., 2001), the channel assignment in mobile 
phone networks (Gomes et al., 2001), the job shop scheduling (Aiex et al., 
2003), the capacitated minimum spanning tree (Souza et al 2003), the 
railway planning (Delorme et al., 2004), the matrix bandwith minimization 
(Piñana et al., 2004), the rural road network development (Scaparra and 
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Church, 2005), the weighted maximum satisfiability (Festa et al., 2005), the 
single machine total tardiness scheduling (Gupta and Smith, 2005) and the 
uncapacitated facility location (Resende and Werneck, 2005). 

As far as the authors' knowledge is concerned, no work reports an 
application of GRASP with path-relinking for the TSP. In this paper, a 
hybrid heuristic with those approaches is proposed. The GRASP algorithm 
utilizes a LK neighborhood (Lin and Kernighan, 1973). Two distinct 
implementations of the LK define two algorithm’s versions. In the hybrid 
approach, path-relinking operations are done with the best solutions found 
by GRASP in a given number of iterations. 

 Computational experiments compare the algorithms proposed in this 
paper with other efficient heuristics proposed for the same problem. A 
comparison of the results found by the GRASP algorithms with the recent 
GRASP proposed by Marinakis et al. (2005) is also presented. The 
experiments show that the proposed algorithms find high quality tours. 

The paper is organized as follows. The proposed algorithm is described 
in Section 2. The results of the computational experiments are reported in 
Section 3. Finally, some concluding remarks are drawn in Section 4. 

2. THE ALGORITHMS 

The initial solutions of the GRASP procedure are constructed with an 
adaptive randomized version of the nearest neighbor algorithm. The main 
difference between the original algorithm and the one proposed in this work 
for the constructive phase of GRASP is that elements are randomly chosen 
from a restricted candidate list to build a solution. The restricted candidate 
list is built with the cities closest to the last element that entered in a 
solution. The size of the restricted candidate list was set to 0.05n for all the 
instances of the experiment. 

The algorithm of Lin-Kernighan (1973), LK, is a recognized efficient 
improvement method for the TSP. The basic LK algorithm has a number of 
decisions to be made and depending on the strategies adopted by 
programmers distinct implementations of this algorithm may result on 
different performances. The literature contains reports of many LK 
implementations with widely varying behavior (Johnson and McGeoh, 
2002). In this work two distinct implementations of LK are utilized as local 
search procedures to generate two versions of the proposed GRASP 
algorithm: LK-ABCC (Applegate et al., 1999) and LK-H (Helsgaun, 2000). 
The former is the implementation utilized in the Concorde solver 
(http://www.tsp.gatech.edu/concorde.html). It produces good tour qualities 
and low runtimes. The latter is a very effective LK implementation where 2-
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opt moves are extended to sequential 5-opt moves. A briefly description of 
each technique and the main differences among them are presented by 
Johnson and McGeoh (2002). The DIMACS TSP Challenge web page 
(http://www.research.att.com/~dsj/chtsp/)) presents a comparison of those 
heuristics regarding tour quality and processing times.  Figures 1 and 2, 
extracted from that site, summarize graphically the relative behavior of LK-
ABCC and LK-H for TSPLIB instances with n  1000. 

Figure 1 shows the percent difference among the tour lengths found by 
those heuristics. The LK-H heuristic is referenced as “Helsgaun” on the top 
horizontal legend. The points show the percent difference regarding tour 
lengths between the solutions found by the two investigated heuristics. The 
points over line “0.0” show the percent differences for instances where the 
LK-H presents the best tours. Similarly, the point under line “0.0” shows the 
percent difference of the unique instance where the LK-ABCC presents a 
better solution than LK-H.  

The chart of figure 2 shows the comparison of processing times. Points 
under line “1.0” indicate the instances where LK-ABCC presented better 
processing times than LK-H, and points over that line should indicate the 
contrary, but there are none. LK-ABCC presents lower runtimes than LK-H 
for all the investigated instances, however the differences are very small.  

In this work the algorithms utilized the LK implementations made 
available by their authors in the internet. 

 

 

Figure 7-1. Solution quality comparison between LK-ABCC and LK-H  
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Figure 7-2. Runtime comparison for LK-ABCC and LK-H 

The path-relinking phase utilizes a pool with p GRASP solutions. The 
pool is formed with the p best solutions among p iterations and the best 
current solution. Preliminary experiments showed that the best strategy for 
the case investigated in this work was the back and forward relinking. A 
high level pseudo-code of the heuristic approach proposed in this paper is 
given in Table 1. During the exploration of a given path, if a new solution 
improves the origin and target solutions, then the LK procedure is applied to 
the new generated solution. 

Table 7-1. High level pseudo-code of the proposed algorithm 
Algorithm:  GRASP with path-relinking 

j  0 
best_solution  Grasp( ) 
Repeat 
   For i  1 to p do 
      S[i]  Grasp( ) 
      j  j + 1 
   x  Path_relink(S,best_solution ) 
   if (f (x) < f (best_solution) then 
      best_solution  x 

until ( j = #grasp_iterations) 
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In function Path_relink(S,best_solution), path-relinking operations are 
done between pairs of solutions of a pool defined on set S and the best 
current solution, best_solution. This function returns the best solution found 
in the path-relinking operations. In this function, distances are calculated 
between all pairs of solutions, and the closest pair is chosen for the path-
relinking operation. Given a sequence xs, xs(1), xs(2), …, xs(r) = xt, the best 
solution of the sequence replaces the origin and the target solutions. If a pool 
has p solutions, this method leads to O(p) path-relinking operations. 

Two metrics were investigated for calculating the distance between a pair 
of solutions. The first is presented in Aiex and Resende (2005) and defines 
the difference between two permutations s and s’ as the set 
(s,s’) = {i| s(i)  s’(i)}. The distance is given by d(xs, xt) = | (xs, xt)|. The 

second metric was introduced by Boese (1995) who investigated the fitness 
landscape of TSP instances. Given two solutions xs and xt, the distance 
d(xs,xt) is n minus the number of edges contained both in xs and xt. 
Experimental analysis showed that the latter metric yielded, in average, 
better results than the former. Thus, the results presented in the 
computational experiments were obtained with the implementations that 
used Boese’s metric. 

The relinking operator utilized in this work is illustrated in figure 3. The 
operator swaps one element with its right (left) neighbor. The steps of a 
path-relinking procedure that explores solutions in the path between the 
origin solution (1 2 3 4 5) and the target solution (3 5 1 2 4) are shown. At 
first, the element 3 is moved to the first position by swapping it with 
elements 2 (Figure 3(a)) and 1 (Figure 3(b)). At this point, element 5 has to 
be moved to the second position. It is swapped with element 4 (Figure 3(c)), 
element 2 (Figure 3(d)) and, finally, it is swapped with element 1, when the 
target solution is reached. The swap operators lead to O(n2) procedures.  

The stop criterion adopted in the experiments was a given number of 
GRASP iterations. 

1 2 3 4 5

3 5 1 2 4

1 3 2 4 5 3 1 2 4 5

3 1 2 5 43 1 5 2 4

xs

xt

(a) (b)

(d) (c)

swap-left swap-leftt

1 2 3 4 5

3 5 1 2 4

1 3 2 4 5 3 1 2 4 5

3 1 2 5 43 1 5 2 4
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xt

(a) (b)

(d) (c)

swap-left swap-leftt

1 2 3 4 5

3 5 1 2 4

1 3 2 4 5 3 1 2 4 5

3 1 2 5 43 1 5 2 4

xs

xt

(a) (b)

(d) (c)

swap-left swap-leftt

 

Figure 7-3. Swap-left operator for path-relinking 
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Table 2 summarizes the versions and abbreviations of the proposed 
algorithms that are utilized in the computational experiment reported in the 
next section. 

Table 7-2. Versions of the proposed algorithm 
Algorithm  Description 

GRASP-ABCC GRASP with local search LK-ABCC 
GRASP-H GRASP with local search LK-H 
GRASP_PR-ABCC GRASP-ABCC with path-relinking  
GRASP_PR-H GRASP-H with path-relinking  

3. COMPUTATIONAL EXPERIMENTS 

The algorithms were implemented in C++ on a Pentium IV (3.0 GHz and 
512 Mb of RAM) running Linux. The algorithm was applied to symmetric 
instances of the benchmark TSPLIB (TSPLIB; http://www.iwr.uni-
heidelberg.de/iwr/comopt/software/TSPLIB95/) with sizes ranging from 51 
to 7397. The stop criterion was 80 GRASP iterations for instances with 
n < 1000 and 20 GRASP iterations for the remaining instances. The length 
of the RCL was 0.05n. 

Table 7-3. Improvement of GRASP in LK procedures 
Instance n LK-ABCC GRASP-ABCC LK-H GRASP-H 

dsj1000 1000 0.2973 0.0002 0.0290 0 
pr1002 1002 0.1318 0 0.0001 0 
u1060 1060 0.1786 0.0038 0.0002 0 
vm1084 1084 0.0669 0.0005 0.0103 0 
pcb1173 1173 0.1814 0 0.0022 0 
d1291 1291 0.4333 0.0006 0.0251 0 
rl1304 1304 0.3984 0.0001 0.0512 0.0069 
rl1323 1323 0.2300 0.0008 0.0169 0.0010 
nrw1379 1379 0.1354 0.0116 0.0026 0.0001 
fl1400 1400 0.1215 0 0.1950 0.1838 
fl1577 1577 2.2974 0.0424 0.0146 0 
vm1748 1748 0.1311 0.0002 0.0139 0.0012 
u1817 1817 0.5938 0.0680 0.0900 0.0254 
rl1889 1889 0.3844 0.0059 0.0149 0 
d2103 2103 0.3085 0.0213 0.0259 0.0088 
u2152 2152 0.5548 0.0549 0.0403 0 
pr2392 2392 0.3904 0.0411 0 0 
pcb3038 3038 0.2568 0.0526 0.0056 0 
fl3795 3795 1.0920 0.0065 0.1577 0.0134 
fnl4461 4461 0.1717 0.0757 0.0019 0 
rl5915 5915 0.5343 0.0993 0.0265 0.0084 
rl5934 5934 0.4761 0.0820 0.0768 0.0307 
pla7397 7397 0.2912 0.0025 0.0052 0 



145

Table 7-4. Comparison of GRASP algorithms for the TSP 
Instance n GRASP_M GRASP-ABCC GRASP-H 
eil101 101 0 0 0 
lin105 105 0 0 0 
pr107 107 0 0 0 
pr124 124 0 0 0 
bier127 127 0.03 0 0 
ch130 130 0 0 0 
pr136 136 0 0 0 
pr144 144 0 0 0 
ch150 150 0 0 0 
kroA150 150 0 0 0 
pr152 152 0 0 0 
rat195 195 0.34 0 0 
d198 198 0.05 0 0 
kroA200 200 0.04 0 0 
kroB200 200 0.15 0 0 
ts225 225 0 0 0 
pr226 226 0.05 0 0 
gil262 262 0.29 0 0 
pr264 264 0 0 0 
a280 280 0.38 0 0 
pr299 299 0.09 0 0 
rd400 400 0.68 0 0 
fl417 417 0.28 0 0 
pr439 439 0.17 0 0 
pcb442 442 0.33 0 0 
d493 493 0.71 0 0 
rat575 575 1.32 0 0 
p654 654 0.18 0 0 
d657 657 1.26 0.002 0 
rat783 783 1.03 0 0 
pr1002 1002 1.16 0 0 
pcb1173 1173 1.37 0 0 
d1291 1291 1.60 0 0 
rl1304 1304 0.88 0 0 
rl1323 1323 1.07 0 0 
fl1400 1400 0.90 0 0.1838 
fl1577 1577 0.80 0.0315 0 
rl1889 1889 0.85 0.0022 0 
d2103 2103 1.07 0 0 
pr2392 2392 2.11 0.0090 0 

 
 
A first experiment investigated the improvement of the GRASP (without 

path-relinking) approach for the LK procedures. Table 3 shows the results 
for 23 symmetric TSPLIB instances with n from 1000 to 7397. The first two 
columns of table 3 show the names and the actual sizes of the TSPLIB 
instances, the remaining four columns show the average percent deviation 
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from the optimal solution given by (vheur – vopt)×100/ vopt , where vopt is the 
value of the optimal solution and vheur is the average of the best solutions 
obtained on 20 independent runs of each algorithm. The stop criterion for the 
two versions of GRASP was 20 iterations. 

Table 3 shows that all solutions are improved when the LK-ABCC is 
utilized within the GRASP and, except for instance pr2392, the same occurs 
for the LK-H. 

Marinakis et al (2005) applied their GRASP to 51 symmetric TSP 
instantances. Table 4 shows the best deviations from the optimal solutions 
reported in their paper for instances with n > 100 in column GRASP_M. The 
other two columns show the best solutions (percent deviation from the 
optimum) found by the two GRASP versions presented in this work. 

Among the 40 instances summarized in table 4, the three GRASP 
algorithms find the same tour quality for 16 instances. The versions GRASP-
ABCC and GRASP-H find the optimal solution of 36 and 39 instances, 
respectively. The averages of the columns corresponding to each algorithm 
are: 0.4798 (GRASP_M), 0.0011 (GRASP-ABCC) and 0.0046 (GRASP-H). 

Table 7-5. Comparison of the results of GRASP-ABCC with and without path-relinking 
GRASP-ABCC GRASP_PR-ABCC Instance n Min Average Min Average 

dsj1000 1000 0 0.0002 0 0 
pr1002 1002 0 0 0 0 
u1060 1060 0 0.0038 0 0 
vm1084 1084 0 0.0005 0 0 
pcb1173 1173 0 0 0 0 
d1291 1291 0 0.0006 0 0 
rl1304 1304 0 0.0001 0 0 
rl1323 1323 0 0.0008 0 0 
nrw1379 1379 0 0.0116 0 0 
fl1400 1400 0 0 0 0 
fl1577 1577 0.0315 0.0424 0 0 
vm1748 1748 0 0.0002 0 0 
u1817 1817 0 0.0680 0 0.0130 
rl1889 1889 0.0022 0.0059 0 0.0012 
d2103 2103 0 0.0213 0 0.0011 
u2152 2152 0.0187 0.0549 0 0 
pr2392 2392 0.0090 0.0411 0 0.0096 
pcb3038 3038 0.0334 0.0526 0.0029 0.0129 
fl3795 3795 0 0.0065 0 0 
fnl4461 4461 0.0668 0.0757 0.0197 0.0303 
rl5915 5915 0.0752 0.0993 0.0074 0.0235 
rl5934 5934 0.0611 0.0820 0.0050 0.0117 
pla7397 7397 0 0.0025 0 0.0011 
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Another experiment was conducted in order to conclude about the 
amount of improvement obtained with the inclusion of the path-relinking in 
the GRASP algorithms. Tables 5 and 6 show the results of the computational 
experiment that compared the proposed algorithms with and without the 
path-relinking procedures for 23 symmetric instances with n ranging from 
1000 to 7397. The columns of both tables show the minimum and average 
percent difference from the optimum of the proposed algorithms without and 
with the path-relinking procedure. 

Table 7-6. Comparison of the results of GRASP-H with and without path-relinking 
GRASP-H GRASP_PR-H Instance n Min Average Min Average 

dsj1000 1000 0 0 0 0 
pr1002 1002 0 0 0 0 
u1060 1060 0 0 0 0 
vm1084 1084 0 0 0 0 
pcb1173 1173 0 0 0 0 
d1291 1291 0 0 0 0 
rl1304 1304 0 0.0069 0 0 
rl1323 1323 0 0.0010 0 0.0005 
nrw1379 1379 0 0.0001 0 0 
fl1400 1400 0.1838 0.1838 0.1838 0.1838 
fl1577 1577 0 0 0 0 
vm1748 1748 0 0.0020 0 0 
u1817 1817 0 0.0254 0 0.0179 
rl1889 1889 0 0 0 0 
d2103 2103 0 0.0088 0 0.0031 
u2152 2152 0 0 0 0 
pr2392 2392 0 0 0 0 
pcb3038 3038 0 0 0 0 
fl3795 3795 0 0.01338 0 0 
fnl4461 4461 0 0 0 0 
rl5915 5915 0.0041 0.0084 0 0.0054 
rl5934 5934 0 0.0307 0 0.0003 
pla7397 7397 0 0 0 0 
 
Among the 23 instances of table 5 GRASP-ABCC finds the optimal 

solution of 15 instances. An increasing of 4 new optimal solutions is 
obtained when the path-relinking is added to GRASP-ABCC. The best 
solutions found by the algorithm for the remaining 4 instances are also 
improved. The improvement is, in average, 86%. Except for three instances 
that already had average deviation zero, the version of the algorithm with 
path-relinking improves all the average solutions. The mean improvement of 
the average solutions is 82%. 

Among the 23 instances of table 6, GRASP-H finds the optimal solution 
of 21 instances. The inclusion of path-relinking does not modify the results 
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found for instance fl1400, but improves the best solution of instance rl5915. 
GRASP-H also finds percent deviation zero for 13 of the 23 instances. All 
the remaining average results are improved with the inclusion of path-
relinking. 

Table 7-7. Comparison of heuristics for the TSP 
GRASP_PR-

ABCC GRASP_PR-H Tourmerge ILKJM 
Nb10 Instance  n 

Min Av Min Av Min Av Min 
dsj1000 1000 0 0 0 0 0.0027 0.0478 0.0063 
pr1002 1002 0 0 0 0 0 0.0197 0.1482 
u1060 1060 0 0 0 0 0 0.0049 0.0210 
vm1084 1084 0 0 0 0 0 0.0013 0.0217 
pcb1173 1173 0 0 0 0 0 0.0018 0.0088 
d1291 1291 0 0 0 0 0 0.0492 0 
rl1304 1304 0 0 0 0 0 0.1150 0 
rl1323 1323 0 0 0 0.0005 0.0100 0.0411 0 
nrw1379 1379 0 0 0 0 0 0.0071 0.0018 
fl1400 1400 0 0 0.1838 0.1838 0 0 0 
fl1577 1577 0 0 0 0 0 0.0225 0 
vm1748 1748 0 0 0 0 0 0 0 
u1817 1817 0 0.0130 0 0.0179 0.0332 0.0804 0.2657 
rl1889 1889 0 0.0012 0 0 0.0082 0.0682 0.0041 
d2103 2103 0 0.0011 0 0.0031 0.0199 0.3170 0 
u2152 2152 0 0 0 0 0 0.0794 0.1743 
pr2392 2392 0 0.0096 0 0 0 0.0019 0.1495 
pcb3038 3038 0.0029 0.0129 0 0 0.0036 0.0327 0.1213 
fl3795 3795 0 0 0 0 0 0.0556 0.0104 
fnl4461 4461 0.0197 0.0303 0 0 --- --- 0.1358 
rl5915 5915 0.0074 0.0235 0 0.0054 0.0057 0.0237 0.0168 
rl5934 5934 0.0050 0.0117 0 0.0003 0.0023 0.0104 0.1723 
pla7397 7397 0 0.0011 0 0 --- --- 0.0497 

 
Table 7 shows a comparison of the results obtained by the proposed 

algorithms and two effective heuristics: Tourmerge (Cook and Seymour, 
2003) and JM iterated Lin-Kernighan variant (Johnson and McGeoh, 2002). 
The results of those heuristics were obtained in the DIMACS Challenge page 
(http://www.research.att.com/~dsj/chtsp/ results.html). The columns related 
to GRASP with path-relinking show the best and average tours found in 20 
independent runs. The columns related to the Tourmerge algorithm show the 
best and average tours obtained in five independent runs. Results are not 
reported for instances fnl446 and pla7397. The column related to JM iterated 
Lin-Kernighan variant (ILKJM Nb10) shows the best tours obtained in ten n 
iterations runs. 

From the 21 instances for which Tourmerge presented results, 
GRASP_PR-ABCC finds 6 best minimal results, Tourmerge finds 2 best 
minimal results and both algorithms find the same quality tours for 13 
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instances. Comparing Tourmerge and GRASP_PR-H, the latter algorithm 
finds the best tours of 8 instances, there are 7 ties and the former algorithm 
finds the best solution of 1 instance. 

The JM iterated Lin-Kernighan variant finds only one better result than 
GRASP_PR-H and no better result than the GRASP_PR-ABCC.    

Regarding average results, GRASP_PR-ABCC and GRASP_PR-H find, 
respectively, 17 and 19 better results than Tourmerge on 21 instances. 

The averages of the “Min” and “Average” columns for the twenty-one 
instances where the two proposed algorithm’s versions and the Tourmerge 
were applied are 0.0007 and 0.0035 for GRASP_PR-ABCC, 0.0088 and 
0.0100 for GRASP_PR-H, and 0.0041 and 0.0467 for Tourmerge. These 
results show that the proposed algorithms present a better performance than 
the Tourmerge, although the latter presents a better average regarding the 
“Min” column than GRASP_PR-H. The higher value presented by 
GRASP_PR-H is due to instance fl1400 which results indicate that there is a 
strong attractor for the LK-H neighborhood not overcome by the path-
relinking procedure. 

Table 7-8. Comparison of processing times between GRASP_PR-H and LK-H 
GRASP_PR-H LK-H Instance n 

Min Average Min Average 
dsj1000 1000 23.2 32.4 26.9 38.6 
pr1002 1002 2.2 2.5 2.7 3.3 
u1060 1060 25.2 35.2 33.3 47.2 
vm1084 1084 9.1 27.9 11.2 20.4 
pcb1173 1173 7.4 10.2 8.8 12.7 
d1291 1291 24.2 39.8 28.1 45.1 
rl1304 1304 7.9 20.1 8.0 12.1 
rl1323 1323 14.4 99.2 8.7 16.4 
nrw1379 1379 12.9 38.4 17.1 24.0 
fl1400 1400 2941.4 3783.9 152.3 230.3 
fl1577 1577 265.3 575.5 309.4 446.6 
vm1748 1748 30.9 75.1 29.1 45.8 
u1817 1817 78.6 1099.0 60.8 74.0 
rl1889 1889 27.8 55.3 33.1 52.1 
d2103 2103 1721.9 9671.2 242.0 436.0 
u2152 2152 95.0 278.1 105.3 133.9 
pr2392 2392 88.0 96.3 109.3 122.6 
pcb3038 3038 237.4 427.1 272.5 349.0 
fl3795 3795 1929.2 9360.8 2103.7 3128.3 
fnl4461 4461 438.4 754.7 367.2 409.2 
rl5915 5915 16284.0 35156.4 569.5 827.2 
rl5934 5934 1171.4 19301.3 738.7 1233.8 
pla7397 7397 4913.3 10561.2 7954.4 10001.2 
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Table 8 summarizes the minimal and average runtimes in seconds of 
GRASP_PR-H and LK-H for the instances with n  1000, where it is 
showed that the processing times are comparable. The relative results of 
GRASP_PR-ABCC and LK-ABCC are similar. 

An analysis of the time spent on different parts of the search showed that 
the processing time spent with the path-relinking procedure of GRASP_PR-
ABCC, increased with n. The instances were divided into 4 classes: with 
n < 000, with n between 1000 and 2000, with n between 2000 and 4000, 
with n > 4000. In average, the percentages of processing time spent with 
path-relinking for the instances of those classes are 20%, 58%, 75% and 
90%, respectively. The same behavior was not observed for GRASP_PR-H. 
Among the instances were the path-relinking procedure improved the results 
obtained by the version of GRASP that utilized the LK-H, in average, 1.7% 
of the processing time was spent with the path-relinking procedure. 

4. CONCLUSION 

This paper presented a hybrid approach with GRASP and path-relinking 
to solve the TSP. Two versions of a GRASP algorithm were introduced, 
utilizing, each of them, a distinct implementation of the LK neighborhood as 
the local search procedure. 

Experiments were conducted to conclude about the improvement the 
GRASP approach brought to the LK neighborhood. The results showed that 
improvements of 76% and 65% were obtained with GRASP-ABCC and 
GRASP-H regarding the algorithms LK-ABCC and LK-H, respectively. 

A comparison with the results obtained in 40 instances with n>100 by 
Marinakis et al. (2005) was also showed, where the two versions of the 
proposed GRASP algorithm reached, in average, solutions more than 90% 
better than the former algorithm. 

Another experiment investigated whether the inclusion of a path-
relinking procedure was able or not to improve the GRASP results. The 
results showed that both versions of GRASP were improved, with significant 
better average values. 

Finally, a comparison with two effective heuristics reported in the 
literature for the TSP was done, where it was showed that the proposed 
algorithms are able to obtain best tour qualities on the majority of the 
instances of the experiment. 
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Abstract: The course timetabling problem deals with the assignment of a set of courses 
to specific timeslots and rooms within a working week subject to a variety of 
hard and soft constraints. Solutions which satisfy the hard constraints are 
called feasible. The goal is to satisfy as many of the soft constraints as possible 
whilst constructing a feasible schedule. In this paper, we present a composite 
neighbourhood structure with a randomised iterative improvement algorithm. 
This algorithm always accepts an improved solution and a worse solution is 
accepted with a certain probability. The algorithm is tested over eleven 
benchmark datasets (representing one large, five medium and five small 
problems). The results demonstrate that our approach is able to produce 
solutions that have lower penalty on all the small problems and two of the 
medium problems when compared against other techniques from the literature. 
However, in the case of the medium problems, this is at the expense of 
significantly increased computational time.  

1. INTRODUCTION 

In this paper, a randomised iterative improvement algorithm with 
composite neighbourhood structures for university course timetabling is 
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presented. The approach is tested over eleven benchmark datasets that were 
introduced by Socha et al. (2002). The results demonstrate that our approach 
is capable of producing high quality solutions against others that appear in 
the literature. An extended abstract that describes this work was published in 
Abdullah et al. (2005b). The paper is organised as follows. The next section 
describes the university course timetabling problem in general and very 
briefly discusses the relevant timetabling literature. Section 3 presents a 
discussion of the literature on composite neighbourhood structures with a 
particular emphasis upon the employment of such structures in a variety of 
applications. Section 4 describes, in some detail, our randomised iterative 
improvement algorithm. The pseudo code of the implemented algorithm is 
also presented in this section. Experiments and results to evaluate the 
performance of the heuristic are discussed in Section 5. Section 6 presents a 
brief summary of the paper.  

2. THE UNIVERSITY COURSE TIMETABLING 
PROBLEM 

Carter and Laporte (1998) defined course timetabling as: 

“a multi-dimensional assignment problem in 
which students, teachers (or faculty members) 

are assigned to courses, course sections or 
classes; events (individual meetings between 

students and teachers) are assigned to 
classrooms and times” 

In university course timetabling, a set of courses is scheduled into a given 
number of rooms and timeslots within a week and, at the same time, students 
and teachers are assigned to courses so that the meetings can take place.  

The course timetabling problem is subject to a variety of hard and soft 
constraints. Hard constraints need to be satisfied in order to produce a 
feasible solution. In this paper, we test our approach on the problem 
instances introduced by Socha et al. (2002) who present the following hard 
constraints: 

 No student can be assigned to more than one course at the same 
time. 

 The room should satisfy the features required by the course. 
 The number of students attending the course should be less than or 

equal to the capacity of the room. 
 No more than one course is allowed to be assigned to a timeslot in 

each room. 
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Socha et al. also present the following soft constraints that are equally 
penalised: 

 A student has a course scheduled in the last timeslot of the day. 
 A student has more than 2 consecutive courses. 
 A student has a single course on a day. 

The problem has 
 A set of N courses, e = {e1,…,eN}. 
 45 timeslots. 
 A set of R rooms. 
 A set of F room features. 
 A set of M students. 

The objective of this problem is to satisfy the hard constraints and to 
minimise the violation of the soft constraints.  

In the last few years, several university course timetabling papers have 
appeared in the literature. Socha et al. (2002) presented a local search 
technique and an ant based methodology. They tested their approach on 
eleven test problems. These eleven problems were produced by Paechter’s1 
course timetabling test instance generator and are the instances used to 
evaluate the method described in this paper. Since then, several papers have 
appeared which have tested their results on the same instances. Burke et al. 
(2003a) introduced a tabu-search hyperheuristic where a set of low level 
heuristics compete with each other. The goal was to raise the level of 
generality of search systems and the method was tested on a nurse rostering 
problem in addition to course timetabling. A graph hyper-heuristic was 
presented by Burke et al. (2006) where, within a generic hyper-heuristic 
framework, a tabu search approach is employed to search for permutations 
of constructive heuristics (graph colouring heuristics). Abdullah et al. 
(2005a) employed a variable neighbourhood search with a fixed tabu list 
which is used to penalise the unperformed neighbourhood structures. Other 
papers which test against these instances can be seen in Socha et al. (2003) 
who discuss ant algorithm methodologies at length and Rossi-Doria et al. 
(2003) who compare several metaheuristic methods. 

In addition to the problem instances introduced by Socha et al (2002), 
Paechter’s generator was also used to produce the problem sets for a 
timetabling competition held in 2002 (see http://www.idsia.ch/Files/ 
ttcomp2002). They generated twenty instances for the competition itself and 
another three unseen instances to further check the performance of the 
algorithms. Some papers have recently appeared which test their 
methodologies on these competition problems. Kostuch (2005) presented a 
three phase approach which employs Simulated Annealing. This approach 
won the competition mentioned above and had 13 best results of the 20 

 
1 http://www.dcs.napier.ac.uk/~benp/ 
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instances in the competition. Burke et al. (2003b) employed a Great Deluge 
method which generated 7 best results out of the 20 competition problems 
mentioned above. This method also produced some poor results on some 
problems which is why it came 3rd in the competition (because the 
competition used an average measure). The hybrid local search methodology 
which came 4th in the competition is described in Di Gaspero and Schaerf 
(2006). Arntzen and Løkketangen (2004) developed a tabu search method 
which came 5th in the competition. Lewis and Paechter (2004) designed 
several crossover operators and tested them against the competition datasets. 
They concluded that their results were not “state of the art”. A hybrid 
metaheurstic approach has recently appeared in the literature which is tested 
on these competition problems and which produces improved results to those 
generated by the competition (Chiarandini et al. 2006).  Also, Kostuch and 
Socha (2004) investigated the possibility of using a statistical model to 
predict the difficulty of timetabling problems and they employed the 
competition instances. 

In 2005, Lewis and Paechter used the same instance generator to create 
another sixty “hard” test instances (Lewis and Paechter 2005). They tested 
their grouping genetic algorithm on these sixty instances but were concerned 
only with feasibility. 

In addition to the university course timetabling papers which have used 
problems produced by Paechter’s generator, several other articles have 
recently appeared which represent case studies on real university timetabling 
instances. Examples include Avella and Vasil’Ev (2005), Daskalaki et al. 
(2004), Dimopoulou and Miliotis (2004) and Santiago-Mozos et al. (2005).  

Other aspects of university course timetabling have been widely 
discussed in the literature over the last thirty years or so. A survey of 
practical approaches to the problem, up to 1998, can be seen in Carter and 
Laporte (1998). The following papers represent a comprehensive list of 
surveys and overviews of educational timetabling (which include issues 
related to University course timetabling) i.e. Bardadym (1996), Burke et al. 
(1997), Burke and Petrovic (2002), Burke et al. (2004), Carter (2001), 
Petrovic and Burke (2004), Schaerf (1999), de Werra (1985) and Wren 
(1996). 

3. COMPOSITE NEIGHBOURHOOD 
STRUCTURES: RESEARCH AND 
DEVELOPMENTS 

 A composite neighbourhood structure subsumes two or more 
neighbourhood structures. The advantage of combining several 
neighbourhood structures is that it helps to compensate against the 
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ineffectiveness of using each type of structure in isolation (Grabowski and 
Pempera, 2000 and Liaw 2003). For example, a solution space that is easily 
accessible by insertion moves may be difficult to reach using swap moves. 
Some examples of composite neighbourhood structures that are available in 
the literature are discussed here. 
 Grabowski and Pempera (2000) applied a composite neighbourhood 
structure for sequencing jobs in a production system that consists of 
exchanges and the insertion of elements. Gopalakrishnan et al. (2001) used 
three moves (swap, add and drop) in a tabu search heuristic for preventive 
maintenance scheduling. The decision on which move to use depends on the 
current state of the search. The interaction of the moves makes it possible to 
carry out a strategic search. The computational results show that the 
approach can improve the solution quality when compared to the local 
heuristics employed by Gopalakrishnan et al. (1997). 

Liaw (2003) also used a composite neighbourhood structure in the tabu 
search approach for the two-machine preemptive open shop scheduling 
problem. The tabu search switches to the other neighbourhood structures 
(between an insertion move that shifts one job from its current position to a 
new position and a swap move that exchanges the position of two jobs) after 
a number of iterations without any improvements. Computational 
experiments have shown that this scheme significantly improves the 
performance of tabu search in terms of solution quality. The neighbourhood 
used in Ouelhadj (2003) has a composite structure where the tabu search 
approach, applied to the dynamic scheduling of a hot strip mill agent, 
employed three neighbourhood schemes (swap, shift and inversion) 
alternately. Computational experiments showed that the composite structure 
improves the solution quality compared with tabu search using a single 
neighbourhood. Another example of a composite neighbourhood structure 
was presented by Landa Silva (2003). He employed several neighbourhood 
structures (relocate, swap and interchange) in different metaheuristics 
(iterative improvement, simulated annealing and tabu search) and applied 
this to a space allocation problem in an academic institution. 

Bilge et al. (2004) used a “hybrid” neighbourhood structure in a tabu 
search algorithm for the parallel machine total tardiness problem. The 
“hybrid” structure consists of the complete “insert neighbourhood” with the 
addition of a partial “swap neighbourhood”. In an insert move operation, two 
jobs are identified and the first job is placed in the location that precedes the 
location of the second job. Then, a swap move places each job in the location 
that was previously occupied by the other job.  

University Course Timetabling Problem                                            
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4. THE RANDOMISED ITERATIVE 

IMPROVEMENT ALGORITHM 

This algorithm presented here always accepts an improved solution and 
a worse solution is accepted with a certain probability. 

4.1 The Neighbourhood Structures 

The different neighbourhood structures and their explanation can be 
outlined as follows: 
N1: Select two courses at random and swap timeslots. 

N2: Choose a single course at random and move to a new random 
feasible timeslot. 

N3: Select two timeslots at random and simply swap all the courses in 
one timeslot with all the courses in the other timeslot. 

N4: Take 2 timeslots (selected at random), say ti and tj (where j>i) where 
the timeslots are ordered t1, t2, …, t45. Take all the exams in ti and 
allocate them to tj. Now take the exams that were in tj and allocate 
them to tj-1. Then allocate those that were in tj-1 to tj-2 and so on until 
we allocate those that were in ti+1 to ti and terminate the process.   

N5: Move the highest penalty course from a random 10% selection of the 
courses to a random feasible timeslot. 

N6: Carry out the same process as in N5 but with 20% of the courses.  
N7: Move the highest penalty course from a random 10% selection of the 

courses to a new feasible timeslot which can generate the lowest 
penalty cost. 

N8: Carry out the same process as in N7 but with 20% of the courses.  

N9: Select one course at random, select a timeslot at random (distinct 
from the one that was assigned to the selected course) and then 
apply the kempe chain from Thompson and Dowsland (1996).  

N10: This is the same as N9 except the highest penalty course from 5% 
selection of the courses is selected at random. 

N11: Carry out the same process as in N9 but with 20% of the courses.  

4.2 The Algorithm 

In the approach presented in this paper, a set of the neighbourhood 
structures outlined in subsection 4.1 is applied. The hard constraints are 
never violated during the timetabling process.  
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The pseudo code for the algorithm implemented in this paper is given in 
Figure 1. The algorithm starts with a feasible initial solution which is 
generated by a constructive heuristic as discussed in Abdullah et al. (2005a). 
Let K be the total number of neighbourhood structures to be used in the 
search (K is set to be 11 in this implementation) and f(Sol) is the quality 
measure of the solution Sol. At the start, the best solution, Solbest  is set to be 
Sol. In a do-while loop, each neighbourhood i where i  {1,…,K} is applied 
to Sol to obtain TempSoli. The best solution among TempSoli is identified, 
and is set to be the new solution Sol*. If Sol* is better than the best solution 
in hand, Solbest, then Sol* is accepted. Otherwise, the exponential Monte 
Carlo acceptance criterion is applied. This accepts a worse solution with a 
certain probability. The criterion is discussed in Ayob and Kendall (2003). 
The new solution Sol* is accepted if the generated random number in [0,1], 
RandNum, is less than the probability which is computed by e-  where  is 
the difference between the cost of the old and new solutions (i.e.  = f(Sol*) 
– f(Sol)). The Monte Carlo method will exponentially increase the 
acceptance probability if  is small. The process is repeated and stops when 
the termination criteria is met (in this work the termination criteria is set as 
the number of evaluations i.e. 200000 evaluations or when the penalty cost is 
zero). 

 
Set the initial solution Sol by employing a constructive 
heuristic; 
Calculate initial cost function f(Sol); 
Set best solution Solbest  Sol; 
do while (not termination criteria) 

for i = 1 to K where K is the total number of neighbourhood 
structures 

Apply neighbourhood structure i on Sol, TempSoli; 
Calculate cost function f(TempSoli); 

end for 
Find the best solution among TempSoli where i  {1,…,K} 
call new solution Sol*; 

 if (f(Sol*) < f(Solbest)) 
Sol  Sol*; 
Solbest  Sol*; 

else 
Apply an exponential Monte Carlo where: 
 = f(Sol*) -  f(Sol)); 
Generate RandNum, a random number in [0,1]; 
if (RandNum < e-  ) 

Sol  Sol*; 
end if 

end do 

Figure 1. The pseudo code for the randomised iterative improvement algorithm 

University Course Timetabling Problem                                            
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5. EXPERIMENTS AND RESULTS 

The approaches are coded in Microsoft Visual C++ version 6 under 
Windows. All experiments were run on an Athlon machine with a 1.2GHz 
processor and 256 MB RAM running under Microsoft Windows 2000 
version 5. We evaluate our results on the instances taken from Socha et al 
(2002) and which are available at http://iridia.ulb.ac.be/~msampels/tt.data/. 
We employed the same initial solutions as in Abdullah et al. (2005a).  The 
experiments were run for 200000 iterations which takes approximately eight 
hours for each of the medium datasets and at most 50 seconds for the small 
datasets. Note that course timetabling is a problem that is usually tackled 
several months before the schedule is required. An eight hours run for course 
timetabling is perfectly acceptable in a real world environment. This is a 
scheduling problem where the time taken to solve the problem is not critical. 
The emphasis in this paper is on generating good quality solutions and the 
price to pay for this can be taken as being a large amount of computational 
time. 

The experiments for the course timetabling problem discussed in this 
paper were tested on the benchmark course timetabling problems proposed 
by the Metaheuristics Network that need to schedule 100-400 courses into a 
timetable with 45 timeslots corresponding to 5 days of 9 hours each, whilst 
satisfying room features and room capacity constraints. They are divided 
into three categories: small, medium and large. We deal with 11 instances: 5 
small, 5 medium and 1 large. The parameter values defining the categories 
are given in Table 1. 

 
Table 1. The parameter values for the course timetabling problem categories 

Category Small Medium Large
Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400
Maximum courses per student 20 20 20
Maximum student per courses 20 50 100
Approximation features per room 3 3 5
Percentage feature use 70 80 90

 
The best results out of 5 runs obtained are presented. Table 2 shows the 

comparison of the approach in this paper with other available approaches in 
the literature on the five small problems. Table 3 illustrates our comparison 
on the medium/large problems.  The term “x%Inf.” in Table 3 indicates a 
percentage of runs that failed to obtain feasible solutions.  

 The best results are presented in bold in both tables. Note that the only 
methods that were able to obtain feasible solutions for the large problem 
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were the ant method (Socha et al, 2002) and the graph based hyper-heuristic 
(Burke et al, 2006) with the ant method being better. 

It can be seen that the randomised iterative improvement algorithm has 
better results than Abdullah et al. (2005a) on all five medium datasets with 
the same (best result) penalty cost for the small instances. Our approach has 
better results than the local search method (Socha et al, 2002) on three of the 
medium instances and on all five of the small datasets.  Our method has 
higher quality results when compared against the ant approach (Socha et al, 
2002) on four of the small problems, with both approaches being able to 
obtain zero penalty on the other.  Our algorithm gets better results than the 
ant technique on two of the medium instances.  The iterative improvement 
approach is has better penalty values than the tabu search hyper-heuristic 
(Burke et al. 2003a) on three of the small datasets and both methods get zero 
penalty on the other two.  It was better values on just two of the medium 
sets. The iterative approach obtained better results than the graph based 
hyper-heuristic (Burke et al. 2006) on all datasets except the large one.  

Note that our approach has the very best results across seven of the 
eleven datsets (although it does perform very poorly on the large one). It is 
particularly effective on the small problems, taking approximately 50 
seconds to obtain zero penalties as opposed to, for example, the algorithms 
of (Socha et al) which take 90 seconds.  It is quite effective on the medium 
problems but at the expense of a high level of computational time. It takes 
our algorithm about 8 hours to produce these solutions for the medium 
problems whereas, for example, it takes the (Socha et al, 2002) methods 900 
seconds (15 minutes).  The need for the long run time is probably due to 
some neighbourhood structures in our method being less effective on this 
type of problem.  

 
Table 2. Comparison of results on the small datasets 

Randomised 
Iterative 

Improvement 
Algorithm 

Data 
Set 

Initial 
Sollution Best Median 

VNS 
with 
tabu  

(Abdull
ah et al. 
2005a) 
(Best) 

Local 
search 
(Socha  
et al. 
2002) 

 
 (Median) 

Ant 
Algorithm 

(Socha 
et al. 
2002) 

 
(Median) 

Tabu-
based 
hyper- 

heuristic 
(Burke et al.

(Best) 

Graph 
hyper-

heuristic 
(Burke 
et al. 
2006) 
(Best) 

s1 261 0 0 0 8 1 1 6
s2 245 0 0 0 11 3 2 7
s3 232 0 0 0 8 1 0 3
s4 158 0 0 0 7 1 1 3
s5 421 0 0 0 5 0 0 4

 

2003a) 
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Table 3. Comparison of results on the medium/large datasets 
Randomised 

Iterative 
Improvement 

Algorithm 

Data 
Set 

Initial 
Sollution Best Median 

VNS 
with 
tabu  

(Abdull
ah et al. 
2005a) 
(Best) 

Local 
search 
(Socha  
et al. 
2002) 

 
 (Median) 

Ant 
Algorithm 

(Socha 
et al. 
2002) 

 
(Median) 

Tabu-
based 
hyper- 

heuristic 
(Burke et al.

2003a) 
(Best) 

Graph 
hyper-

heuristic 
(Burke 
et al. 
2006) 
(Best) 

s1 261 0 0 0 8 1 1 6
m1 914 2 24 31 199 195 146 372
m2 878 1 16 31 202.5 184 173 419
m3 941 2 26 35 77.5 248 267 359
m4 865 1 18 24 177.5 164.5 169 348
m5 780 1 15 29 100% 219.5 303 171
l 100% - - 10 100% 851.5 80% 1068
Data Set Key:  l = large, m1 = medium1, m2 = medium 2 and so on.

 
 Figures 2 and 3 show the behaviour of the randomised iterative 

improvement algorithm applied to the small1 and medium5 datasets, 
respectively. In all the figures, the x-axis represents the number of 
evaluations whilst the y-axis represents the penalty cost. The graphs 
illustrate the exploration of the search space. The curves move up and down 
because worse solutions are accepted with a certain probability in order to 
escape from local optima. The penalty cost can be quickly reduced at the 
beginning of the search where there is (possibly) a lot of room for 
improvement. It is believed that better solutions can be obtained in these 
experiments (particularly on the smaller problems) because the composite 
neighbourhood structures offer flexibility for the search algorithm to explore 
different regions of the solution space. The graphs for the small datasets 
show that our algorithm is able to obtain zero penalties in less than 1500 
evaluations which is an improvement upon Burke et al. (2003a) which set 
the number of evaluations at 12000 for small datasets.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2. The behaviour of the randomised iterative improvement algorithm on the 
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Figure 3. The behaviour of the randomised iterative improvement algorithm on the 

medium5 dataset 

Figures 4 and 5 show the frequency charts of the neighbourhood 
structures that have been selected to be used by the randomised iterative 
improvement algorithm for the small and medium datasets, respectively. The 
x-axis represents the datasets while the y-axis represents the frequency of the 
neighbourhood structures being employed throughout the search. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Frequency of the neighbourhood structures used for the small datasets 

It can be seen, from Figure 4, that the neighbourhood structures “N1”, 
“N2”, “N7” and “N8” are the most popular structures used in the algorithm 
for small datasets. The popular structures for the medium datasets are “N1”, 
“N2”, “N5”, “N6”, “N7” and “N8” as shown in Figure 5. 

This illustrates that the most popular neighbourhood structures that are 
being supplied to the randomised iterative improvement algorithm are almost 
the same between the small and medium datasets (i.e. “N1”, “N2”, “N7” and 
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Figure 5. Frequency of the neighbourhood structures used for the medium 
datasets 

 “N8”). However, as the problem gets larger, there may be fewer and more 
sparsely distributed solution points (feasible solutions) in the solution space 
since too many courses are conflicting with each other. Thus, the approach 
may need extra neighbourhood structures (i.e. “N5” and “N6” in this case) to 
force the search algorithm to diversify its exploration of the solution space 
by moving from one neighbourhood structure to another. Further 
investigation was carried out to support the claim that the composite 
neighbourhood structure performs better than the single neighbourhood 
structure by employing selected neighbourhood structures separately i.e. 
“N1”, “N2”, “N5”, “N6”,  N7” and “N8” (which are the most popular 
neighbourhood structures used for the small and medium datasets). The small 
datasets are able to obtain zero penalty in less than 1500 evaluations.  Thus, 
for the experiments carried out here, the number of evaluations for the small 
datasets is set as equal to the number of evaluations where the best solutions 
are obtained (i.e. 873, 707, 413, 1012 and 1329 evaluations for small1, 
small2, small3, small4 and small5, respectively). The number of evaluations 
for the medium datasets remains the same. Table 4 gives the comparison of 
the performance of variants of the randomised iterative improvement 
algorithm in terms of penalty cost (objective function value). The results 
demonstrate that the algorithm with composite neighbourhood structures is 
uniformly the best in terms of penalty cost compared to other randomised 
iterative improvement algorithm variants.  
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Table 4. Comparison of the performance of the randomised iterative 
improvement algorithm on single and composite neighbourhood structures 

Randomised iterative improvement algorithm 
neighbourhoods  

Dataset 
Initial 

solution N1 N2 N5 N6 N7 N8 Composite 
small1 261 7 2 2 5 5 8 0 
small2 245 6 2 4 5 9 6 0 
small3 232 6 4 6 3 6 1 0 
small4 158 6 3 4 1 5 9 0 
small5 421 1 3 4 6 7 1 0 
medium 914 3 3 5 7 5 7 242 
medium 878 3 3 5 6 5 6 161 
medium 941 4 4 7 7 7 7 265 
medium 865 3 3 5 6 5 6 181 
medium 780 4 3 6 6 7 6 151 
large 100%Inf - - - - - - - 

 
 
Figures 6 and 7 illustrate the behaviour of the randomised iterative 

improvement algorithm using a single neighbourhood structure compared to 
the composite neighbourhood structure applied on the small1 and medium5 
datasets, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The behaviour of the randomised iterative improvement algorithm 
using single and composite neighbourhood structures applied on the small1 dataset 
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Figure 7. The behaviour of the randomised iterative improvement algorithm 
using single and composite neighbourhood structures applied on the medium5 

dataset 
 
The diagrams show the convergence of the penalty cost of the algorithm 

for small1 and medium5 for a number of evaluations for which the best 
solution is found. It can be seen that the randomised iterative improvement 
algorithm with the composite neighbourhood is significantly better than 
other variants with single neighbourhood in terms of solution quality given 
the same number of evaluations. All the other problems of the family have 
the same behaviour as in Figures 6 and 7. 

6. CONCLUSION AND FUTURE WORK 

This paper has focused on investigating a composite neighbourhood 
structure with a randomised iterative improvement algorithm for the 
university course timetabling problem. Preliminary comparisons indicate 
that this algorithm is competitive with other approaches in the literature. 
Indeed, it produced seven solutions that were better than or equal to the 
published penalty values on these eleven instances although it did require 
significant computational time for the medium/large problems. It is an 
approach that is particularly effective on smaller problems. Further 
experiments were carried out to demonstrate that it is more effective to 
employ composite neighbourhood structures rather than a single 
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neighbourhood structure because of the different ways of search that are 
represented by various neighbourhood structures.  

Future research will be aimed at exploring how the algorithm could 
intelligently select the most suitable neighbourhood structures according to 
the characteristics of the problems. Another direction of future research will 
investigate the integration of a population-based approach with a local 
search method. 
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Abstract This paper presents a new method for the probabilistic logic satisfiability
problem, based on the variable neighborhood search metaheuristic. The
solution space consists of 0-1 variables, while the associated probabilities
are found by our fast approximate variable neighborhood descent pro-
cedure combined with the Nelder-Mead nonlinear optimization method.
Computational experience shows that, with our approach, problem in-
stances with up to 200 propositional letters can be solved successfully.
They are, to the best of our knowledge, the largest solved instances of
the PSAT problem that appeared in the literature.

Keywords: Probabilistic Logic, Probabilistic Satisfiability, Variable Neighborhood
Search

Introduction
In the field of artificial intelligence researchers have studied uncertain

reasoning using different tools. Some of the formalisms for represent-
ing and reasoning with uncertain knowledge are based on probabilis-
tic logic [Fagin et al., 1990, Nilsson, 1986, Ognjanović and Rašković,
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2000, Rašković, 1993] (See also [Ognjanović et al., 2005] for a more com-
plete list of references). This logic extends the classical propositional
language with expressions that speak about probability, while truth val-
ues of formulas remain true or false. Probabilistic logic allows inferences
to be made in a general framework, without any special assumptions
about the underlying probability distributions.

Given a set of linear constraints on probabilities of classical proposi-
tional formulas, the probabilistic satisfiability problem (PSAT for short,
also called the problem of satisfying conditions of possible experience in
[Boole, 1854], the problem of coherence assessment in [de Finetti, 1974],
the probabilistic entailment in [Nilsson, 1986], and the decision form of
probabilistic satisfiability in [Hansen and Jaumard, 2001]) corresponds
to checking consistency of these constraints. Possible applications of
PSAT concern knowledge-based systems, reliability checking, game the-
ory and economics, where it is important to take care about players’
beliefs, etc. For example, one can use procedures for solving PSAT to
check the consistency of rules with associated uncertainty factors, and
the corresponding techniques designed to handle uncertain knowledge
in expert systems. PSAT is NP-complete [Fagin et al., 1990]. PSAT
can be reduced to a linear programming problem. However, solving it
by any standard linear system solving procedure is unsuitable in prac-
tice. This is due to the exponential growth of the number of variables
in the linear system obtained by such a reduction (as expected from
NP-completeness). Nevertheless, it is still possible to use more efficient
numerical methods, e.g., the column generation procedure of linear pro-
gramming [Jaumard et al., 1991]. Nilsson [Nilsson, 1986] proposed a
heuristic approach for solving large PSAT problem instances. In more
recent articles [Ognjanović et al., 2001, Ognjanović et al., 2004] we pre-
sented Genetic algorithms (GA) for PSAT.

Variable neighborhood search (VNS) [Mladenović and Hansen, 1997,
Hansen and Mladenović, 2001] is a simple, yet very effective metaheuris-
tic that has shown to be very robust on a variety of practical NP-hard
problems (for the recent survey on VNS see also [Hansen and Mladen-
ović, 2003]). Among other applications, VNS has already been used for
solving the weighted satisfiability problem (WSAT) problem [Hansen
et al., 2000]. Also, VNS has been used as a subproblem solver within
the column generation framework in [Hansen and Perron, 2004], but for
a slightly different version of the PSAT problem. Here we present a
new heuristic for PSAT based on VNS metaheuristic rules. Our method
alternates solutions in Boolean variables with solutions in continuous
variables (probabilities), both obtained by VNS.
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The rest of the paper is organized as follows. In Section 1 a brief
description of probabilistic logic and the PSAT problem we are dealing
with is outlined. In Section 2 our implementation of VNS rules for
solving PSAT is described, followed by some experimental results in
Section 3. Concluding remarks and directions for further research are
given in Section 4.

1. Probabilistic Logic and PSAT
In this section we introduce the PSAT problem formally (for a more

detailed description see [Ognjanović and Rašković, 2000]). Let L =
{x, y, z, . . .} be the set of propositional letters (primitive propositions,
logical variables). From this set we construct classical propositional
formulas in the usual way, using the standard Boolean connectives ¬, ∧,
∨ and →.

Let α be a classical propositional formula and {x1, x2, . . . , xk} be the
set of all propositional letters that appear in α. An atom of α (also
called possible world in [Jaumard et al., 1991, Nilsson, 1986]) is defined
as formula at = ±x1 ∧ . . . ∧ ±xk, where ±xi ∈ {xi,¬xi}. There are 2k

different atoms of a formula containing k primitive propositions. Let
At(α) denote the set {at1, . . . , at2k} containing all different atoms of α.
We say that atom at ∈ At(α) satisfies α (denoted by at � α) iff any
propositional interpretation I that satisfies the atom at also satisfies
α, i.e. I(at) = � ⇒ I(α) = � for all I. Further, we define [α] =
{at ∈ At(α) : at � α}, that is, [α] denotes the set of all atoms that
satisfy α.

We extend the basic propositional language with expressions of the
form w(α). The intended meaning of w(α) is the probability of α being
true. A weight term is an expression of the form a1w(α1)+. . .+anw(αn),
where ai’s are rational numbers, and αi’s are classical propositional for-
mulas with propositional letters from L.

A basic weight formula has the form t ≥ b, where t is a weight term,
and b is a rational number. We use t < b to denote ¬(t ≥ b). A weight
literal is an expression of the form t ≥ b or t < b. The set of all weight
formulas is the minimal set that contains all basic weight formulas, and
it is closed under Boolean operations. Similarly as above, we use At(f)
to denote the set of all atoms which contain propositional letters from
the weight formula f .

A weight formula is in the weight conjunctive form (WCF) if it is a
conjunction of weight literals. As every weight formula f is a Boolean
combination of basic weight formulas, it can be transformed to a
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disjunctive normal form (each ρi,j is either < or ≥)

DNF(f) =
m∨
j=1

Lj∧
i=1

(
ai,j1 w(αi,j1 ) + . . .+ ai,jni,jw(αi,jni,j ) ρi,j bi,j

)
,

where each disjuncts of DNF(f) is a formula in WCF. Since a disjunction
is satisfiable iff at least one disjunct is satisfiable, we will consider WCF
formulas only.

Semantics of a probabilistic formula f is defined with respect to a
probability function μ defined on the set At(f) (probabilities on the
possible worlds). Therefore, μ : At(f) → [0, 1], and additionally the
probabilities μ(at) over all atoms from At(f) sum up to 1.

The truth value of f with respect to μ is defined inductively, with the
base case being the basic weight formulas of f .

Let a1w(α1) + . . .+anw(αn) ≥ b be a basic weight formula of f . For
each classical propositional formula αi, μ(αi) is defined to be the sum of
probabilities of the atoms from f that satisfy αi, i.e.,

μ(αi) =
∑
at∈[αi]

μ(at) .

Having this, μ satisfies the basic weight formula above iff a1μ(α1)+ . . .+
anμ(αn) ≥ b. Further, μ satisfies a weight literal ¬(t ≥ b) iff it does
not satisfy t ≥ b. Finally, μ satisfies WCF formula f iff it satisfies every
weight literal from f .

Definition 9.1 (PSAT Problem) Given a WCF formula f , is there
a probability function μ defined on At(f) which satisfies f?

In other words, is there a probability function μ defined on the set At(f)
such that for every weight literal ai1w(αi1) + . . .+ ainiw(αini) ρi bi from f

ai1
∑

at∈[αi1]

μ(at) + . . . + aini

∑
at∈[αini ]

μ(at) ρi bi, (9.1)

with μ(at) ≥ 0, for every atom at ∈ At(f), and
∑

at∈At(f) μ(at) = 1.
The system (9.1) contains a row for each weight literal of f , and

columns that correspond to atoms at ∈ At(f) that belong to [α] for at
least one propositional formula α from f .

Example 9.2 Consider the formula f = w(p→ q)+w(p) ≥ 1.7∧w(q) ≥
0.6. The set of atoms of f is

At(f) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} .
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The classical formulas from f are p → q, p, and q, while the sets of
atoms satisfying them are:

α p→ q p q

[α] p ∧ q,¬p ∧ q,¬p ∧ ¬q p ∧ q, p ∧ ¬q p ∧ q,¬p ∧ q

Having the corresponding satisfying sets, the satisfiability of the formula
reduces to finding a probability assignment μ over At(f) that satisfies
the system

μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) + 2μ(p ∧ q) ≥ 1.7,
μ(p ∧ q) + μ(¬p ∧ q) ≥ 0.6,

and at the same time satisfies the probability constraints:

μ(p ∧ q) + μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) = 1,
μ(p ∧ q) ≥ 0, μ(p ∧ ¬q) ≥ 0, μ(¬p ∧ q) ≥ 0, μ(¬p ∧ ¬q) ≥ 0 .

We can achieve this using the following assignment μ

at p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q
μ(at) 0.8 0.2 0 0

hence the formula is satisfiable. �

NP-completeness of PSAT follows from the statement that a system of
L linear (in)equalities has a nonnegative solution iff it has a nonnegative
solution with at most L entries positive such that the sizes of entries are
bounded by a polynomial function of the size of the longest coefficient
from the system [Fagin et al., 1990, Georgakopoulos et al., 1988].

2. VNS for the PSAT
VNS is a recent metaheuristic for solving combinatorial and global

optimization problems (e.g, see [Mladenović and Hansen, 1997, Hansen
and Mladenović, 2001, Hansen and Mladenović, 2003]). It is a simple,
yet very effective metaheuristic that has shown to be very robust on a
variety of practical NP-hard problems. The basic idea behind VNS is
change of neighborhood structures in the search for a better solution.

In the initialization phase, a set of kmax (a parameter) neighborhoods
is preselected (Ni, i = 1, . . . , kmax), a stopping condition determined and
an initial local solution found. Then the main loop of the method has
the steps described in Figure 9.1. To construct different neighborhood
structures one needs to supply a metric (or quasi-metric) to the solution
space and then induce neighborhoods from it. In the next sections we
answer this problem-specific question for the PSAT problem.
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Repeat the following steps until the stopping condition is met:

1 Set k ← 1;
2 Until k = kmax, repeat the following steps:

(a) Shaking. Generate a point x′ at random from the kth neigh-
borhood of x (x′ ∈ Nk(x));

(b) Local Search. Apply some local search method with x′ as
initial solution; denote with x′′ the so obtained local optimum;

(c) Move or not. If this optimum is better than the the incum-
bent, move there (x ← x′′), and continue the search with
N1(k ← 1); otherwise, set k ← k + 1;

Figure 9.1. Main steps of the basic VNS metaheuristic

Contrary to other metaheuristics, VNS does not follow a trajectory
but explores increasingly distant neighborhoods of the current incum-
bent solution, and jumps from this solution to a new one if and only if
an improvement has been made. In this way often favorable character-
istics of the incumbent solution, e.g., that many variables are already at
their optimal value, will be kept and used to obtain promising neighbor-
ing solutions. Moreover, a local search routine is applied repeatedly to
get from these neighboring solutions to the local optima.

2.1 The Solution Space
As the PSAT problem reduces to a linear program over probabilities,

the number of atoms with nonzero probabilities necessary to guarantee
a solution, if one exists, is equal to L+ 1. Here L denotes the number of
weight literals in the WCF formula. The solution is therefore an array
of L + 1 atoms

x = [A1, A2, . . . , AL+1],

where Ai, i = 1, . . . , L + 1 are atoms from At(f), with assigned proba-
bilities

p = [p1, p2, . . . , pL+1] .

Probabilities of atoms not in x are taken to be 0.
Atoms are represented as bit strings, with the ith bit of the string

equal to 1 iff the ith variable is positive in the atom. A solution (an
array of atoms) is the bit string obtained by concatenation of its atom
bit strings. Observe that if the solution variable x = [A1, A2, . . . , AL+1]
is known, the probabilities of atoms that are not in x are 0, and system
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(9.1) can be rewritten compactly as

L+1∑
j=1

cijpj ρi bi, i = 1, . . . , L (9.2)

The coefficients cij above are the coefficients from (9.1) grouped by atom
probabilities, i.e.

cij =
∑

k:Aj∈[αik]

aik

Solving (9.2) gives us a vector of probabilities p.

2.2 Initial Solution
Initial solution is obtained as follows. First, 10×(L+1) atoms are ran-

domly generated. They are all assigned equal probabilities, i.e. 1/(L+1),
and assigned grades. From these atoms the L + 1 atoms with the best
grades are selected to form the initial solution.

The grade of an atom is computed as the sum of this atom’s contri-
bution to satisfiability of the conjuncts in the WCF formula (i.e. rows
of (9.2)). An atom A (with assigned probability p) corresponds to a
column c = [c1, c2, . . . , cn]T of the linear system (9.2). If a coefficient ci
from the column is positive, and located in a row with ≥ as the relational
symbol, it can be used to push toward the satisfiability of this row. In
such a case we add its value, multiplied with p, to the grade. The < case
is not in favor of satisfying the row, so we subtract the coefficient from
the grade. Similar reasoning is applied when the coefficient is negative.
Thus, we compute the grade of an atom A as

grade(A) = p

L∑
i=1

ci · sgn(i),

with sgn(i) being the sign of the ith conjunct from the formula

sgn(i) =

{
1 if ρi is ≥ ,
−1 if ρi is < .

2.3 Neighborhood Structures (Shaking)
The neighborhood structures are those induced by the Hamming dis-

tance on the solution bit strings. The distance between two solutions is
the number of corresponding bits that differ in their bit string represen-
tations.
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With this selection of neighborhood structures a shake in the kth

neighborhood of a solution is obtained by inverting k bits in the solu-
tion’s bit string. The grading procedure for atoms, described above, is
also used to direct the shake on a solution so it would modify the current
solution in the most favorable way. According to the grades of the atoms
the bits to be inverted in a shake are selected in such a way that the bits
in a atom with a lower grade have greater probability of being inverted.

2.4 Local Search
The local search part of the algorithm scans through the first neigh-

borhood of a solution in pursue of a solution better than the current best.
Note that, since the N1 neighborhood is huge, it would be very inefficient
to recompute the probabilities at every point. Therefore, throughout the
local search, the probabilities are fixed. Solutions are compared only by
the value of the objective function z (given in (9.3) below). This value is
kept for the solutions that are in use. As for the newly generated solu-
tions, the objective value z is computed using the current probabilities
assignment, but since only one bit of one atom is changed, the updating
of probabilities computed is in O(L).

2.5 Finding Probabilities by VND
As local search is performed only on atoms, when the local optimum

is obtained, there might exist a better probabilities assignment corre-
sponding to the new atom set in the solution, i.e., one that is closer
to satisfying the PSAT problem. At this point, we suggest three pro-
cedures within Variable neighborhood descent (VND) framework: two
fast heuristics and Nelder-Mead nonlinear programming method.

2.5.1 Nonlinear Optimization Approach. To find a possi-
bly better probabilities assignment a nonlinear program is defined with
the objective function being the distance of the left hand side from the
right hand side of the linear system (9.2). Let x be the current solution,
we define an unconstrained objective function z to be

z(p) =
L∑
i=1

di(p) + g(p), (9.3)

where di is the distance of the left and the corresponding right hand side
of the ith row defined as

di(p) =
{

(
∑L+1

j=1 cijpj − bi)2 if the ith row is not satisfied,
0 otherwise,
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and g(p) is the penalty function

g(p) = M

⎡
⎣(
∑
pi<0

p2
i ) + (1−

L+1∑
i=1

pi)2

⎤
⎦

with penalty parameter M . The penalty function is used to transform
the constrained nonlinear problem to the unconstrained one.

The value of the objective function is nonnegative and our goal is
to make it zero, or as close to zero as possible, under the probability
constraints (pi’s are nonnegative and they sum up to 1). If zero is
found, the solution has been found. Otherwise, the value of z is used
as a measure of quality when comparing solutions in the local search
procedure.

The function z(p) is not only non-convex (the difference between two
convex function is non convex) but also non differentiable (the functions
di(p) are ”cut off at zero”). Therefore, a minimization method that does
not use derivatives is needed. At first we applied the Powell’s method
[Powell, 1964] but, as it performed poor (in terms of computing time),
we switched to the downhill simplex method of Nelder and Mead [Nelder
and Mead, 1965]. It performed considerably better. However, in order
to speed-up the search, this optimization procedure is used only when
the VNS algorithm reaches kmax.

In order to improve stability and achieve the required precision (as it
is usual in exterior penalty nonlinear programming methods), Nelder-
Mead method is run four times. For the parameter M we use values
Mk = 102+k, k = 1, 2, 3, 4, where k is the iteration number.

2.5.2 Heuristic Approach. Nonlinear optimization has shown
to be too time demanding, so we resorted to a heuristic approach that
is used for the majority of the probability optimizations. The heuristic
optimization consists of the following two independent heuristics. They
try to solve the huge system of linear inequalities heuristically.

H-1: Worst Unsatisfied Projection. With this heuristic we
concentrate on the rows of the system (9.2) that are the most unsatis-
fied. Five of the rows with the largest values di(p) are selected (the most
unsatisfied). The equations of these rows define the corresponding hyper-
planes that border the solution space. In an attempt to reach the solu-
tion space, consecutive projections of the probabilities vector on these
hyper-planes are performed. After each projections the probabilities are
normalized. Note that the projection of a point p′ = [p′1, p′2, . . . , p′L+1
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onto a hyperplane that defines the ith row

L+1∑
j=1

cijpj = bi

is obtained by the formula

p′′j = p′j −
∑L+1

k=1 cikp
′
k∑L+1

k=1 (cik)2
.

Using projection formula above, the probabilities are changed towards
satisfiability of each worst row in the fastest possible manner, i.e. in
the direction normal to that hyper-plane. This procedure is repeated
at most 10 times, until no improvement has been achieved, every time
selecting the current 5 worst rows.

H-2: Greedy Giveaway. With some statistical analysis of the
systems that the method works with during the computation, it can be
noticed that the systems are very sparse, i.e. very high percentage (more
than 80%) of the system coefficients are zeroes. This led to the idea that
we can try to improve the system’s value by solving it ”by hand”.

Again, the worst unsatisfied row is selected (the ith), but also the best
satisfied row is selected (the jth). Nonzero coefficients are then found in
these two rows, but only those that have zero coefficients at the same
position in the other row. For example if k1 and k2 is one pair of such
coefficient positions then the selected rows look like

. . . + ci,k1 · pk1 + . . . + 0 · pk2 + . . . ρi bi

. . . + 0 · pk1 + . . . + cj,k2 · pk2 + . . . ρj bj .

Now the probability pk1 can be changed with the ith (the most unsat-
isfied) row moving towards satisfiability, and pk2 can be changed the
opposite way (maintaining the probability constraints), reducing the
satisfiability of the most satisfied row. This probabilities giveaway is
repeated for all pairs of the coefficient positions from the two selected
rows. Since the system is very sparse, the change of probabilities doesn’t
affect much the satisfiability of other rows.

Ordering within VND. These two heuristics combined together
(first one, then the other) yield a great improvement of the objective
function value (9.3). Improvements obtained by heuristics are compa-
rable to those obtained by nonlinear optimization, but the computation
is much faster. If the nonlinear optimization is performed first, these
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heuristics do not achieve a notable improvement. Conversely, if heuris-
tic optimization is applied first, and nonlinear optimization afterwards,
nonlinear optimization only gives a slight improvement in objective func-
tion value. This is why we decided to use the heuristics for the majority
of the optimizations, and use the computationally demanding nonlin-
ear optimization only after the Nkmax neighborhood is unsuccessfully
explored (step 12 in the Algorithm 1 below).

Heuristic optimization procedures H-1 and H-2 are also used to im-
prove the probabilities of the initial solution. For small size problem
instances this has shown to be very efficient: solutions are found even
without entering the main VNS loop.

2.6 VNS pseudo-code
Our heuristic may be seen as an alternate procedure:

for fixed probabilities, we use VNS to find better 0-1 variables, and

for a given 0-1 variables, we propose a VND heuristic, as well as
non-smooth optimization to find probabilities.

This approach allows us to solve large problem instances more effectively
and more efficiently than our recent GA based heuristic. The pseudo-
code of the VNS method we used is stated in Algorithm 1.

Algorithm 1 VNS for PSAT
1: x← initialSolution(); improve(x, heuristic)
2: while (not done()) do
3: k ← 1
4: while (k ≤ kmax) do
5: x′ ← shake(x, k); improve(x′, heuristic); x′′ ← localSearch(x′)
6: if (x′′ better than x) then
7: x← x′′; improve(x, heuristic); k ← 1
8: else
9: k ← k + 1

10: end if
11: end while
12: improve(x, nelder-mead)
13: end while

The meaning of subroutines above are as follows:

initialSolution() finds an initial solution of PSAT, as explained
in subsection 2.2;
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improve(x, heuristic) improves the probabilities by using the
two fast heuristics as given in 2.5.2;

shake(x, k) perturbs the incumbent solution (see 2.3);

localSearch(x) performs local search as explained in 2.4;

improve(x, nelder-mead) improves the probabilities using the
Nelder-Mead non-linear programming method described in 2.5.1.

3. Computational Results
For testing purposes a set of 24 random satisfiable WCF-formulas has

been generated. Maximal number of summands in weight terms (S),
and the maximal number of disjuncts (D) in the DNFs of propositional
formulas has been set to 5. We use N and L to denote the number
of propositional letters, and the number of weight literals in a WCF-
formula, respectively. Three problem instances were generated for each
of the following (N , L) pairs: (50, 100), (50, 250), (100, 100), (100, 200),
(100, 500), (200, 200), (200, 400), (200, 1000).

We are not aware of any larger PSAT problem instances reported
in the literature. For example, N = 50, L = 70 in [Kavvadias and
Papadimitriou, 1990], N = 140, L = 300 in [Jaumard et al., 1991], L
is up to 500 in [Hansen and Jaumard, 2001], and N = 200, L = 800 in
[Hansen and Perron, 2004]. The instances considered in the mentioned
papers have a simpler form than the ones used here, with S - the maximal
number of summands in weight terms, and D - the maximal number of
disjuncts in DNFs of classical formulas, set to 1 and 4 (or 3) respectively
(we used S = D = 5). Also, classical propositional formulas in their
tests are clauses (disjunctions of propositional letters and their negations
- propositional literals). In other words, they use weight terms that
contain the probability of only one clause with up to 4 propositional
literals.

For comparative purposes we include the results of a previous ap-
proach using GAs as well. In the GA-approach [Ognjanović et al., 2004],
each individual (chromosome) from the population consists of L+1 pairs
of the form (atom, probability). Similarly as in the subsection 2.1, the
atom is represented as a bit string of length N . The probability of that
atom is given as a floating point number. Then, GA applies the genetic
operators to population, in order to find the global optima. Crossing-
over between 0-1 and continuous variables, taken from the two solutions
(chromosomes) in population, is not allowed.

The VNS algorithm was run with kmax set to 30, and we exit if a
feasible solution is found or the method doesn’t advance in 10 consecu-
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Table 9.1. Computational results of the VNS method compared to the previous GA
approach. The time column is the average time of the successful runs, N is the
number of propositional variables, L is the number of conjuncts in the WCF-formula.

VNS GA

N, L, instance solved cpu time solved cpu time

50, 100, 1 26/30 29.46 23/30 188.07
50, 100, 2 30/30 0.23 27/30 21.98
50, 100, 3 29/30 17.72 13/30 194.04

50, 250, 1 30/30 32.60 25/30 504.58
50, 250, 2 15/30 14.60 25/30 2515.88
50, 250, 3 30/30 11.37 25/30 664.7

100, 100, 1 30/30 0.03 30/30 6.19
100, 100, 2 30/30 0.13 30/30 13.28
100, 100, 3 30/30 0.03 30/30 66.85

100, 200, 1 30/30 4.23 27/30 858.85
100, 200, 2 27/30 79.07 10/30 1395.62
100, 200, 3 25/30 77.04 10/30 1235.31

100, 500, 1 30/30 230.97 21/30 11369.29
100, 500, 2 23/30 1930.52 19/30 18932.76
100, 500, 3 2/30 30460.00 12/30 17907.2

200, 200, 1 0/30 – 0/30 –
200, 200, 2 30/30 2.30 27/30 253.82
200, 200, 3 30/30 0.27 28/30 48.36

200, 400, 1 30/30 9.73 28/30 524.63
200, 400, 2 12/30 6082.67 16/30 12167.64
200, 400, 3 2/30 5531.50 15/30 11938.51

200, 1000, 1 30/30 966.47 22/30 68437.78
200, 1000, 2 0/30 – 0/30 –
200, 1000, 3 30/30 1942.93 21/30 56081.48

tive iterations. The solver program was run 30 times on each problem
instance. The results obtained by both VNS and GA are summarized
in Table 9.1. Columns 2 and 4 in the Table 9.1 (i.e., VNS-solved and
GA-solved) report the number of solved instances (out of 30) obtained
by VNS and GA respectively.

It appears that VNS outperforms the GA solver in most of the test
instances, with increase in the solving success rate and decrease of the
execution time; in four instances (i.e., instances (50, 250, 2), (100, 500, 3),
(200, 400, 2) and (200, 400, 3)) GA had a better success rate. The possi-
ble explanation of the different behavior of VNS and GA could be the
fact that VNS uses a reduced solution search space: most of the time
such reduction pays-off. Moreover, heuristics within VND for finding
probabilities appear to be very efficient.
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4. Conclusion
In this paper we suggest a VNS based heuristic for solving the PSAT

problem. Although it has a linear programming formulation, the ex-
ponential growth of variables with the number of propositional letters
suggests the use of a heuristic approach. VNS has already been ap-
plied for solving similar problems, i.e., for WSAT and a slightly different
version of PSAT, but not in the way we do in this paper. As usual,
the neighborhood structures are induced from the Hamming metric in
all VNS applications. But, for solving the PSAT, beside logical or 0-1
variables, one has to find probabilities, and then check if the formula is
satisfied. Our heuristic may be seen as an alternate procedure: (i) for
fixed probabilities, we use VNS to find better 0-1 variables; (ii) given
0-1 variables, we propose a VND heuristic, as well as non-smooth op-
timization to find probabilities. This approach allows us to solve large
problem instances more effectively and more efficiently than our recent
GA based heuristic.

There are many directions for further research:

(i) improve efficiency of our VNS based heuristic by reducing the large
neighborhoods, or by introducing new ones to be used within local
search;

(ii) apply our approach to the so-called interval PSAT [Hansen and
Jaumard, 2001] in which weight terms belong to intervals of prob-
abilities (the basic weight formulas are of the form c1 ≤ t ≤ c2);

(iii) consider how our approach to PSAT can be extended to fit a more
expressible version of probabilistic logic that allows iteration of
probabilistic operators [Fagin and Halpern, 1994, Ognjanović and
Rašković, 2000] in which PSAT is PSPACE-complete, or for the
framework of conditional probabilities;

(iv) similar to the phase transition phenomenon for SAT [Cheeseman
et al., 1991], we are still not able to conjecture any relation between
the parameters and the hardness of the PSAT problem instance.
Thus, an exhaustive empirical study should give better insight into
this phenomenon.
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Abstract The paper introduces ACO/F-Race, an algorithm for tackling combina-
torial optimization problems under uncertainty. The algorithm is based
on ant colony optimization and on F-Race. The latter is a general method
for the comparison of a number of candidates and for the selection of
the best one according to a given criterion. Some experimental results
on the probabilistic traveling salesman problem are presented.

Keywords: Ant colony optimization, combinatorial optimization under uncertainty

1. Introduction
In a large number of real-world combinatorial optimization problems,

the objective function is affected by uncertainty. In order to tackle
these problems, it is customary to resort to a probabilistic model of the
value of each feasible solution. In other words, a setting is considered
in which the cost of each solution is a random variable, and the goal is
to find the solution that minimizes some statistics of the latter. For a
number of practical and theoretical reasons, it is customary to optimize
with respect to the expectation. This reflects a risk-neutral attitude of
the decision maker. Theoretically, for a given probabilistic model, the
expectation can always be computed but this typically involves partic-
ularly complex analytical manipulations and computationally expensive
procedures. Two alternatives have been discussed in the literature: an-
alytical approximation and empirical estimation. While the former ex-
plicitly relies on the underlying probabilistic model for approximating
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the expectation, the latter estimates the expectation through sampling
or simulation.

In this paper we introduce ACO/F-Race, an ant colony optimization
algorithm [8] for tackling combinatorial optimization problems under
uncertainty with the empirical estimation approach. F-Race [6, 5] is
an algorithm for the comparison of a number of candidates and for the
selection of the best one. It has been specially developed for tuning
metaheuristics.1 In the present paper, F-Race is used in an original way
as a component of an ant colony optimization algorithm. More precisely,
it is adopted for selecting the best-so-far ant, that is, the ant that is
appointed for updating the pheromone matrix.

The main advantage of the estimation approach over the one based on
approximation is generality: Indeed, a sample estimate of the expected
cost of a given solution can be simply obtained by averaging a number of
realizations of the cost itself. Conversely, computing a profitable approx-
imation is a problem-specific issue and requires a deep understanding of
the underlying probabilistic model. Since ACO/F-Race is based on the
empirical estimation approach, it is straightforward to apply it to a large
class of combinatorial optimization problems under uncertainty. For def-
initeness, in this paper we consider an application of ACO/F-Race to the
probabilistic traveling salesman problem, more precisely to its
homogeneous variant [11]. An instance of the probabilistic travel-
ing salesman problem (PTSP) is defined as an instance of the well
known traveling salesman problem (TSP), with the difference that
in PTSP each city has a given probability of requiring being visited. In
this paper we consider the homogeneous variant, in which the probabil-
ity that a city must be visited is the same for all cities. PTSP is here
tackled in the a priori optimization sense [1]: The goal is to find an a
priori tour visiting all the cities, which minimizes the expected length
of the associated a posteriori tour. The a priori tour must be found
prior to knowing which cities indeed require being visited. The asso-
ciated a posteriori tour is computed after knowing which cities need
being visited, and is obtained by visiting them in the order in which
they appear in the a priori tour. The cities that do not require being
visited are simply skipped. This problem was selected as the first prob-
lem for testing the ACO/F-Race algorithm for two main reasons: First,
PTSP is particularly simple to describe and to handle. In particular,
the homogeneous variant is rather convenient since a single parameter,

1A public domain implementation of F-Race for R is available for download [4]. R is a
language and environment for statistical computing that is freely available under the GNU
GPL license.
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that is, the probability that each city requires being visited, defines the
“stochastic character” of an instance: When the probability is one, we
fall into the deterministic case; as it decreases, the normalized standard
deviation of the cost of a given solution increases steadily. We can in-
formally conclude that an instance of the homogeneous PTSP becomes
more and more stochastic as the probability that cities require being
visited decreases. This feature is particularly convenient in the analy-
sis and visualization of experimental results. Second, some variants of
ant colony optimization have been already applied to PTSP: Bianchi et
al. [3, 2] proposed pACS, a variant of ant colony system in which an ap-
proximation of the expected length of the a posteriori tour is optimized;
Gutjahr [9, 10] proposed S-ACO, in which an estimation of the expected
length of the a posteriori tour is optimized. ACO/F-Race is similar to
S-ACO. The main difference lies in the way solutions are compared and
selected.

The rest of the paper is organized as follows: Section 2 discusses the
problem of estimating, on the basis of a sample, the cost of a solution
in a combinatorial optimization problem under uncertainty. Section 3
introduces the ACO/F-Race algorithm. Section 4 reports some results
obtained by ACO/F-Race on PTSP. Section 5 concludes the paper and
highlights future research directions.

2. The empirical estimation of stochastic costs
For a formal definition of the class of problems that can be tackled by

ACO/F-Race, we follow [10]:

Minimize F (x) = E
[
f(x, ω)

]
, subject to x ∈ S, (10.1)

where x is a solution, S is the set of feasible solutions, the operator E
denotes the mathematical expectation, and f is the cost function which
depends on x and also on a random (possibly multivariate) variable ω.
The presence of the latter makes the cost f(x, ω) of a given solution x a
random variable.

In the empirical estimation approach to stochastic combinatorial op-
timization, the expectation F (x) of the cost f(x, ω) for a given solution
x is estimated on the basis of a sample f(x, ω1), f(x, ω2), . . . , f(x, ωM ),
obtained from M independently-extracted realizations of the random
variable ω:

F̂M (x) =
1
M

M∑
i=1

f(x, ωi). (10.2)

Clearly, F̂M (x) is an unbiased estimator of F (x).
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In the case of PTSP, the elements of the general definition of a stochas-
tic combinatorial optimization problem given above take the following
meaning: A feasible solution x is an a priori tour visiting once and only
once all cities. If cities are numbered from 1 to N , x is a permutation
of 1, 2, . . . , N . The random variable ω is extracted from an N -variate
Bernoulli distribution and prescribes which cities need being visited. In
the homogeneous variant of PTSP, each element in ω is independently
extracted from a same univariate Bernoulli distribution with probability
p, where p is a parameter defining the instance. The cost f(x, ω) is the
length of an a posteriori tour visiting the cities indicated in ω, in the
order in which they appear in x.

3. The ACO/F-Race algorithm
It is straightforward to extend an ant colony optimization algorithm for

the solution, in the empirical estimation sense, of a combinatorial opti-
mization problem under uncertainty. Indeed, it is sufficient to consider
one single realization of the random influence ω, say ω′, and optimize
the function F̂1(x) = f(x, ω′). Indeed, F̂1(x) is an unbiased estimator of
F (x). The risk we run by following this strategy is that we might sam-
ple a particularly atypical ω′ which provides a misleading estimation of
F (x). A safer choice consists in considering a different realization of ω
at each iteration of the ant colony optimization algorithm. The rationale
behind this choice is that unfortunate modifications to the pheromone
matrix that can be caused by sampling an atypical value of ω at a given
iteration, will not have a large impact on the overall result and will be
corrected in following iterations. In this paper we call ACO-1 an ant
colony optimization algorithm for stochastic problems in which the ob-
jective function is estimated on the basis of one single realization of ω
which is sampled anew at each iteration of the algorithm.

A more refined approach has been proposed by Gutjahr [9, 10] and
consists in using a large number of realizations for estimating the value of
F (x). In Gutjahr’s S-ACO [9], the solutions produced at a given iteration
are compared on the basis of a single realization. The iteration-best
is then compared with the best-so-far solution on the basis of a large
number of realizations. The size Nm of the sample is defined by the
following equation:

Nm = 50 + (0.0001 · n2) · k (10.3)

where n and k denote the size of the instance and the iteration index,
respectively.

A variant of S-ACO called S-ACOa has been introduced by Gutjahr
in [10] in which the size of the sample is determined dynamically on the
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basis of a parametric statistical test: Further realizations are consid-
ered till when either a maximum amount of computation is performed,
or when the difference between the sample means for the two solutions
being compared is larger than 3 times their estimated standard devia-
tion. The selected solution is stored as the new best-so-far for future
comparisons and is used for updating the pheromone matrix.

The ACO/F-Race algorithm we propose in this paper is inspired by
S-ACOa and similarly to the latter it considers, at each iteration, a num-
ber of realizations for comparing candidate solutions and for selecting the
best one which is eventually used for updating the pheromone matrix.
The significant difference lies in the algorithm used at each iteration for
selecting the best candidate solution. ACO/F-Race adopts F-Race, an
algorithm originally developed for tuning metaheuristics [6, 5]. F-Race
is itself inspired by a class of racing algorithms proposed in the machine
learning literature for tackling the model selection problem [13, 14].

A detailed description of the algorithm and its empirical analysis are
given in Birattari [5].

Solution methodology
The ACO/F-Race algorithm presents many similarities with S-ACO

and even more with S-ACOa [10]. Similarly to S-ACOa, at each iteration
it considers a number of realizations for comparing candidates solutions
and for selecting the best one, which is used for updating the pheromone
matrix. The sole difference between the two algorithms lies in the specific
technique used to select the best candidate solution at each iteration.

In S-ACOa, the solutions produced at a given iteration are compared
on the basis of a single realization ω to select the iteration-best solu-
tion. On the basis of a large sample of realizations, the size of which is
computed dynamically, the iteration-best solution is then compared with
the best-so-far solution. For PTSP, the solution with shorter expected a
posteriori tour length between the two solutions is selected and stored as
the new best-so-far solution for the subsequent iterations. This solution
is used to update the pheromone matrix. In a nutshell, S-ACOa exploits
sampling techniques and a parametric test.

ACO/F-Race employs F-Race, an algorithm based on a nonparametric
test that was originally developed for tuning metaheuristics. In the con-
text of ACO/F-Race, the racing procedure consists in a series of steps at
each of which a new realization of ω is considered and is used for evaluat-
ing the solutions that are still in the race. At each step, a Friedman test
is performed and solutions that are statistically dominated by at least
another one are discarded from the race. The solution that wins the
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Algorithm 1 ACO/F-Race Algorithm
input: an instance C of a PTSP problem
τij ← 1, ∀(i, j)
for iteration k = 1, 2, . . . do

for ant z = 1, 2, . . . ,m do
sz ← a priori tour of ant z

end for
if (k = 1) then
sbest ← F-Race(s1, s2, . . . , sm)

else
sbest ← F-Race(s1, s2, . . . , sm, sbest)

end if
τij ← (1− ρ)τij , ∀(i, j) # evaporation

τij ← τij + c, ∀(i, j) ∈ sbest # best-so-far pheromone update

end for

race is used for updating the pheromone and is stored as the best-so-far.
The race terminates when either one single candidate remains, or when
a maximum amount of computation time is reached.

The pseudo-code of ACO/F-Race is presented in Algorithm 1. The al-
gorithm starts by initializing to 1 the pheromone on each arc (i, j) of the
PTSP. At each iteration of ACO/F-Race, m ants, where m is a param-
eter, construct a solution as it is customary in ant colony optimization.
In particular, we have adopted here the random proportional rule [8] as
shown in Equation 10.4: Ant z, when in city i, moves to city j with a
probability given by Equation 10.4, where N z

i is the set of all cities yet
to be visited by ant z.

pzij =
ταij · ηβij∑
l∈Nz

i
ταil · ηβil

, if j ∈ N z
i (10.4)

The m solutions generated by the ants, together with the best-so-far
solution, are evaluated and compared via F-Race.

4. Experimental analysis
In the experimental analysis proposed here, we compare ACO/F-Race

with ACO-1, S-ACO and S-ACOa. For convenience of the reader, we
summarize here the main characteristics of the algorithms considered in
this study.

ACO-1: Solutions produced at a given iteration are compared on the
basis of single realization ω to select the iteration-best solution.
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Again, on the basis of the same realization, the iteration-best so-
lution is then compared with the best-so-far solution to select the
new best-so-far solution.

S-ACO: Solutions produced at a given iteration are compared on the
basis of a single realization ω to select the iteration-best solution.
On the basis of a large sample of realizations, whose size is given
by the equation 10.3, the iteration-best solution is then compared
with the best-so-far solution.

S-ACOa: Solutions produced at a given iteration are compared on the
basis of a single realization ω to select the iteration-best solution.
On the basis of a large sample of realizations, the size of which
is computed dynamically on the basis of a parametric statistical
test, the iteration-best solution is then compared with the best-so-
far solution.

ACO/F-Race: Solutions produced at a given iteration, together with the
best-so-far solution, are evaluated and compared using the F-Race
algorithm.

These four algorithms differ only for what concerns the technique used
for comparing solutions and for selecting the best-so-far solution which
is used for updating the pheromone. The implementations used in the
experiments are all based on [15]. The problems considered are homo-
geneous PTSP instances obtained from TSP instances generated by the
DIMACS generator [12]. We present the results of two experiments. In
the first, cities are uniformly distributed, in the second they are clustered.
For each of the two experiments, we consider 100 TSP instances of 300
cities. Out of each TSP instance we obtain 21 PTSP instances by letting
the probability range in [0, 1] with a step size of 0.05. computation time
has been chosen as the stopping criterion: Each algorithm is allowed to
run for 60 seconds on an AMD OpteronTM 244. These four algorithms
were not fine-tuned. The parameters adopted are those suggested in [10]
for S-ACO and are given in Table 10.1. This might possibly introduce
a bias in favor of S-ACO. Also note that S-ACOa was not previously
applied to PTSP. Furthermore, for PTSP, the expected cost of the ob-
jective function can be easily computed using an explicit formula given
in [1]. Using this mathematical formula, the solutions selected by each
algorithm on each instance were then evaluated.

In the plots given in Figures 10.1 and 10.2, the probability that cities
require being visited is represented on the x-axis. The y-axis represents
the expected length of the a posteriori tour obtained by ACO/F-Race,
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Table 10.1. Value of the parameters adopted in the experimental analysis.

Parameter Notation Value

Number of ants m 50
Pheromone exponent α 1.0
Heuristic exponent β 2.0
Pheromone evaporation factor ρ 0.01
Best-so-far update constant c 0.04

S-ACO and S-ACOa normalized by the expected length of the a posteriori
tour obtained by ACO-1, which is taken here as a reference algorithm.

For each of the two classes of instances and for the probability values
of 0.25, 0.50, 0.75, and 1.00, we study the significance of the observed
differences in performance. We use the Pairwise Wilcoxon rank sum test
[7] with p-values adjusted through Holm’s method [17]. In our analysis,
we consider a significance level of α = 0.01. In Tables 10.2 and 10.3,
the p-value reported at the crossing between row A and column B refers
to the comparison between the algorithms A and B, where the null
hypothesis is A = B, that is, the two algorithms produce equivalent
results, and the alternative one is A < B, that is, A is better than B: A
number smaller than α = 0.01 in position (A,B) means that algorithm A
is better than algorithm B, with confidence at least equal to 1−α = 0.99.

From the plots, we can observe that the solution quality of ACO-1
is better than S-ACO, S-ACOa and ACO/F-Race for probabilities larger
than approximately 0.4, that is, when the variance of the a posteri-
ori tour length is small. Under such conditions, an algorithm designed
to solve TSP is better than one specifically developed for PTSP. This
confirms the results obtained by Rossi and Gavioli [18]. This is easily
explained: Using a large number of realizations for selecting the best-so-
far solution is simply a waste of time when the variance of the objective
function is very small.

On the other hand, for probabilities smaller than approximately 0.4,
the problem becomes “more stochastic”: Selecting the best-so-far solu-
tion on the basis of a large sample of realizations plays a significant role.
The risk we run by following a single sample strategy, as in ACO-1, is
that we might sample a particularly atypical realization which provides
a misleading evaluation of solution. S-ACO, S-ACOa and ACO/F-Race
by considering a large sample of realizations obtain better results than
ACO-1.

Another important observation concerns the relative performance of
S-ACO, S-ACOa and ACO/F-Race. Throughout the whole range of
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Figure 10.1. Experimental results on the uniformly distributed homogeneous PTSP.
The plot represents the expected length of the a posteriori tour obtained by
ACO/F-Race, S-ACO, and S-ACOa normalized by the one obtained by ACO-1 for
the computation time of 60 seconds.
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Figure 10.2. Experimental results on the clustered homogeneous PTSP. The plot
represents the expected length of the a posteriori tour obtained by ACO/F-Race,
S-ACO, and S-ACOa normalized by the one obtained by ACO-1 for the computation
time of 60 seconds.
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probabilities, the solution quality obtained by ACO/F-Race is signifi-
cantly better than the one obtained by S-ACO and S-ACOa. We can
conclude that ACO/F-Race, with its nonparametric evaluation method,
is more effective than S-ACOa, which uses parametric method, and than
S-ACO, which adopts a linearly increasing sample size for selecting the
best-so-far solution at each iteration.

In Figures 10.3 and 10.4, the average number of solutions explored
by ACO-1, S-ACO, S-ACOa and ACO/F-Race is given. Since ACO-1 uses
a single realization to select the best solution, the average number of
solutions explored by ACO-1 is always larger than the those explored by
S-ACO, S-ACOa and ACO/F-Race. Apparently a trade-off exists. The
number of realizations considered should be large enough for providing
a reliable estimate of the cost of solutions but at the same time it should
not be too large otherwise too much time is wasted. The appropriate
number of realizations depends on the stochastic character of the in-
stance at hand. The larger the probability that a city is to be visited,
the less stochastic an instance is. In this case, the algorithms that obtain
the best results are those that consider a reduced number of realizations
and therefore explore more solutions in the unit of time. On the other
hand, when the probability that a city is to be visited is small, the in-
stance at hand is highly stochastic. In this case, it pays off to reduce
the total number of solutions explored and to consider a larger number
of realizations for obtaining more accurate estimates.

In Figures 10.1 and 10.2, it should be observed that when the prob-
ability tends to 1 the curve of ACO/F-Race approaches 1 and therefore
ACO/F-Race performs almost as well as ACO-1. This is due to the na-
ture of the Friedman test adopted within ACO/F-Race. Indeed, in the
deterministic case the Friedman test is particularly efficient and with a
minimum number of realizations it is able to select the best solution.
The computational overhead with respect to ACO-1 is therefore rela-
tively reduced. On the other hand, both S-ACO and S-ACOa adopt a
number of realizations that is too large and therefore are able to explore
only a limited number of solutions: In S-ACO the size of the sample
does not depend on the probability and in S-ACOa the statistical test
adopted is apparently less efficient than the Friedman test in detecting
that the instance is deterministic and that a large sample is not needed.
This can be observed on the far right hand side of Figures 10.1 and 10.2.
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Figure 10.3. Experimental results on the uniformly distributed homogeneous PTSP.
The plot represents the average number of solutions explored by ACO-1, S-ACO,
S-ACOa and ACO/F-Race for the computation time of 60 seconds.
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Figure 10.4. Experimental results on the clustered homogeneous PTSP. The plot
represents the average number of solutions explored by ACO-1, S-ACO, S-ACOa and
ACO/F-Race for the computation time of 60 seconds.



200 Chapter 10

Table 10.2. The p-values of the paired Wilcoxon tests on uniformly distributed ho-
mogeneous PTSP instances. The quantities under analysis are the expected length
of the a posteriori tour obtained by ACO/F-Race, S-ACO, S-ACOa and ACO-1.

Probability=0.25 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – 1 < 2.2e− 16
S-ACOa 1 < 2.2e− 16 - < 2.2e− 16
ACO-1 1 1 1 –

Probability=0.5 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=0.75 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=1.0 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Table 10.3. The p-values of the paired Wilcoxon tests on clustered homogeneous
PTSP instances. The quantities under analysis are the expected length of the a
posteriori tour obtained by ACO/F-Race, S-ACO, S-ACOa and ACO-1.

Probability=0.25 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – 0.6845 < 2.2e− 16
S-ACOa 1 < 0.3155 – < 2.2e− 16
ACO-1 1 1 1 –

Probability=0.5 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 < 2.2e− 16
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 1 < 2.2e− 16 < 2.2e− 16 –

Probability=0.75 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – < 2.2e− 16 1
S-ACOa 1 1 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –

Probability=1.0 ACO/F-Race S-ACO S-ACOa ACO-1
ACO/F-Race – < 2.2e− 16 < 2.2e− 16 1
S-ACO 1 – 1 1
S-ACOa 1 < 2.2e− 16 – 1
ACO-1 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 –
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5. Conclusions and future work
The preliminary experimental results proposed in Section 4 confirm

the generality of the approach proposed by Gutjahr [9, 10], and show
that the F-Race algorithm can be profitably adopted for comparing so-
lutions in the framework of the application of ant colony optimization to
combinatorial optimization problems under uncertainty.

Further research is needed for properly assessing the quality of the
proposed ACO/F-Race. We are currently developing an estimation-based
local search for PTSP. We plan to study the behavior of ACO/F-Race en-
riched by this local search on homogeneous and non-homogeneous prob-
lems.

In the experimental analysis proposed in Section 4, the goal was to
compare the evaluation procedure based on F-Race with the one pro-
posed in [10] and with the trivial one based on a single realization. For
this reason, solution construction and pheromone update were imple-
mented as described in [9, 10]. We plan to explore other possibilities,
such as construction and update as defined in MAX–MIN ant system
[16]. Applications to other problems, in particular of the vehicle rout-
ing class, will be considered too.
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Abstract The idea of using diversity to guide evolutionary algorithms is gaining
interest. However, it is mainly used in static problems or in dynamic
continuous optimization problems. In this paper, we investigate the idea
on dynamic combinatorial problems.

The paper uses a measure for population diversity based on distance
from the population-best individual rather than distance between all
possible pairs in the population. The measured diversity is used to
adjust the mutation rate and the selection probability in a standard
genetic algorithm whenever the diversity is found to be excessively low
or excessively high.

This adaptive scheme aims to retain the algorithm ability to search
the solution space even after the population converges prematurely
around some suboptimal solution. This scheme also enables the al-
gorithm to persevere after converging around solutions that become
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obsolete due to environmental changes. Tests on several benchmarks of
dynamic travelling salesman problem show that the scheme is promising.

Keywords: Genetic algorithms, local search, adaptation, dynamic environments,
combinatorial problems, TSP

Introduction
In recent years, there has been a growing interest in the use of evo-

lutionary algorithms (EAs) in non-stationary (time-varying) environ-
ments, where the information is revealed progressively with time to the
decision maker. However, most available work basically targets contin-
uous optimization, while little work is directed to discrete optimization,
although many real-world problems are both discrete and time-varying.

One promising subject of research is to hybridize schemes used for
dynamic continuous optimization problems with techniques that proved
successful on static combinatorial optimization problems (COPs). The
goal of such hybrids is to develop EAs capable of tackling COPs in non-
stationary environments. This paper introduces an adaptive scheme
to enhance the performance of the standard Genetic Algorithm (GA)
in dynamic environments by using population diversity as a guide to
control mutation rate and selection probability.

The idea of using diversity to guide the evolutionary algorithms is
adopted by several researchers in many recent publications: Zhu [22]
presents an adaptive GA for vehicle routing problems. The population
diversity is maintained at pre-defined levels by adapting rates of GA
operators to the problem dynamics. Zhu and Liu [23] present an em-
pirical study of population diversity measures and adaptive control of
population diversity for a permutation-based genetic algorithm. Burke
et al. [2] examine several measures of diversity in genetic programming.
Ursem [17] measures population diversity as the sum of the distance to
average point and uses it to guide the search process. Riget and Vester-
strom [15] use an approach similar to [17] but on particle swarm opti-
mization. Sorensen and Sevaux [16] present a memetic algorithm with
population management to control population diversity. They use edit
distance between individuals in the population to measure its diversity.

These publications have targeted either static problems or dynamic
continuous optimization problems—none for dynamic COPs. Further-
more, measuring diversity as the sum of the distances between each
individual and the rest of the individuals in the population is compu-
tationally expensive. Computational cost can be reduced by limiting
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the population size to a few individuals [16], but this is not a sufficient
reason for limiting the population size.

Another possibility is to use a single aggregation point as a repre-
sentative of the whole population, and thus reducing computation re-
quirements of the diversity by a factor of n, where n is the population
size [15, 17]. Since it is often hard to define an “average” point for
the population in COPs, the adaptive GA in this paper uses a diversity
measure based on distance from the population-best rather than the
population-average. The idea is to directly regulate the genetic param-
eters in response both to environmental changes and to the measured
diversity. The regulated parameters will in turn alter the population
diversity through the genetic operators.

This scheme is tested on dynamic Travelling Salesman Problem (TSP)
in which edge lengths and number of cities change over time. The used
benchmarks are similar to those given in [4, 7, 20, 21].

The paper is organized as follows. Section 1 highlights the grave con-
sequences of diversity loss both for static and dynamic problems. Section
2 presents a linear model where the control parameters change abruptly
in response to environmental changes then change linearly with time.
Section 3 enhances the linear model by regulating the control parame-
ters according to population diversity. Section 4 outlines the algorithm
and its main components. Section 5 presents some selected results from
the experimentation carried out on the two models of adaptation. Fi-
nally, Section 6 concludes the paper with some comments on how the
models performed and possible future work.

1. Undesirable Population Convergence
Promoting population diversity is a central issue both in static and in

dynamic optimization problems. In static optimization, loss of diversity
is blamed for premature convergence, which leads to suboptimal solu-
tions; in dynamic optimization, it is blamed for the algorithm’s inability
to further track the shifting optima. We refer to the latter situation as
obsolete convergence, which can be defined as the convergence of a pop-
ulation around an optimal or suboptimal solution of an instance that is
replaced by a newer one due to some change in the environment.

It is important to note that real-world problems seldom change com-
pletely at once, hence some of the information gathered from the past
is re-usable in present and future instances. Therefore, for a GA to
be successful in a dynamic environment, it should—without discard-
ing information—be able to persevere after obsolete convergence and at
the same time overcome premature convergence. The next sections of
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the paper introduce two models for tackling dynamic problems. Both
models react to environmental changes by immediately increasing the
explorative forces of the search. Once the environment becomes static
again, the first model reduces the explorative forces gradually with time,
while the second model regulates by monitoring population diversity.

2. Linear Model
The idea of the linear model (LM) model is to increase population

diversity when an environmental change is detected in order to diversify
the search for newer optima, and to progressively reduce diversity during
quiescent phases in order to fine-tune the search in new regions. A simple
way to achieve this is by linearly changing the mutation rate repeatedly:
When the environment changes (say at t = tm), a cycle begins and the
mutation rate μ(t) is set to an upper limit μ. Subsequently, it is reduced
with time until, after a period ρ, it reaches a base value μ. The current
cycle terminates at the next environmental change (at t = tm+1), and a
new cycle begins. The following formula gives the variation of mutation
rate in the cycle between two consecutive environmental changes (i.e.
tm ≤ t < tm+1).

μ(t) =

⎧⎨
⎩
μ− μ− μ

ρ
(t− tm), tm ≤ t < tm + ρ

μ, tm + ρ ≤ t < tm+1

(11.1)

In addition to changing the mutation rate, the LM model changes the
probability of selection in a similar way. Tournament selection is often
modified by injecting it with some degree of randomness that would
lead to the selection of a less-fit individual from time to time (instead
of selecting the fitter individual all the time). In the modified scheme,
the fitter individual is selected at a fixed probability s in the range
between 0.5 and 1.0. Thus, selection pressure and consequently the rate
of population convergence can be controlled by changing the probability
s. The proposed LM model takes advantage of this fact and explicitly
changes the probability s(t) in order to control diversity, in a manner
analogous to that of μ(t).

3. Adaptive Diversity Model
The problem with the LM model is that it addresses obsolete conver-

gence but ignores premature convergence. In other words, the scheme
is inflexible during the static phase that separates any two consecutive
environmental changes.
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One promising possibility is to make the search process adapt to
changes in the population diversity. That is the population diversity is
used to direct the search towards more exploration of new (unexplored)
regions of the search space or towards partially tested areas that have
shown promising results.

The proposed adaptive diversity model (ADM) adapts during the
static phase by measuring the population diversity d relative to two fixed
reference values dl and dh and then using the measured diversity to com-
pute the GA parameters. This scheme is combined with the LM model
in order to keep diversity under control all the time. In this scheme
diversity is measured as the sum of the genotypic distances dist(xi, x∗)
between individuals xi in the population and the best found solution x∗.
For the TSP problem considered in this paper, the genotypic distance
dist(xi, x∗) is taken to be the number of edges that are part of xi and
not in x∗. The decision to use the population best solution as a reference
point for measuring diversity is based on two reasons: First, the use of
a single aggregation point to represent the population greatly reduces
costs of computing diversity without imposing unnecessary limitations
on the population size. Second, as GAs are designed to converge around
the population-best, it is reasonable to measure the population diversity
in terms of distances from the population best solution. Furthermore,
we demonstrate the validity of the population-best based diversity mea-
sure by comparing it with the more commonly used population based
diversity. The evolution of both measures is shown in Figure 11.1 for
TSP instance kroA100 from [14]. The six subplots shown in the figure
are the results of using three combinations of GA parameters for each
diversity measure. Each subplot uses ten GA runs. The three parameter
combinations are labelled L, M and H. The L combination uses a muta-
tion rate of 0.001, a crossover rate of 0.0, and a selection probability of
1.0. The corresponding values for the M combination are 0.005, 0.3, and
0.55; for the H combination they are 0.1, 1.0, and 0.55. The parameter
values were selected so that a wide range of diversity is considered. The
figure clearly shows that diversity diminishes as the GA progresses, and
that both measures of diversity give similar inferences on the behavior
of the population.

Therefore, the proposed ADM model uses the population-best based
diversity measure d to control the rate of mutation. Two corrections
factors Zl and Zh are computed in proportion to the deviation of the
measured diversity from the lower and the upper reference points dl
and dh. These corrections are applied to the current rate of mutation
to produce a new rate that brings the population diversity of the next
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Figure 11.1. Evolution of genotypic measures of diversity

generation within an unbiased range D. Formally, the ADM model can
be expressed as follows:

μ(t) =

⎧⎪⎪⎨
⎪⎪⎩

μ, t = tm
Zl · (μ− μ(t− 1)) + μ(t− 1), t �= tm , d < dl
μ(t− 1)− Zh · (μ(t− 1)− μ), t �= tm , d > dh
μ(t− 1), t �= tm , dl ≤ d ≤ dh

(11.2)

whereZl = min

{
dl − d
D

, 1
}
, Zh = min

{
d− dh
D

, 1
}
,

d =
popsize∑

i

dist(xi, x∗) , D = dh − dl and m = 1, 2, · · ·
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The above ADM is extended to included adaptive selection probability
as well, with similar formula for controlling the selection probability in
response to measured diversity. Figure 11.2 illustrates how the adaptive
model works on either parameter (mutation rate or selection probabil-
ity).
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Figure 11.2. The horizontal arcs represent the adaptation forces (exploitation and
exploration) initiated by the diversity measure. These forces are exerted on the ge-
netic parameters and consequently on the entire evolutionary process. When diversity
is above the upper reference point, it will map into an exploitative value of the ge-
netic parameter. Similarly, very low diversity forces encourage explorative search.
The farther the diversity from the unbiased range, the more is the adaptation re-
sponse. Diversity values within the unbiased range tend to leave the search state
unchanged since the genetic parameters will not be altered. The effect of size of the
unbiased ranges is readily seen by comparing the two parts of the figure; reducing the
unbiased range makes the search oscillate more frequently and more severely between
exploitation and exploration.

4. Algorithm Structure
The two earlier models are used to convert a standard genetic algo-

rithm into a dynamic solver shown in Figure 11.3. Chromosome rep-
resentation in this algorithm is a straight forward path representation,
where values of the genes are the city numbers, and the relative position
of the genes reflect their order in the tour.
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DyndamicGA

Generate pop[0];
t = 1;
WHILE not terminating criteria

ApplyDynamicStrategy;

WHILE quiescent environment
pop[t] = Select(pop[t-1]);
pop[t] = Cross(pop[t]);
pop[t] = Mutate(pop[t]);
pop[t] = LocalSearch(pop[t]);
parameters[t+1] = Adapt(parameters[t], diversity[t]);
t = t+1;

ENDWHILE

ENDWHILE

Figure 11.3. Pseudocode for a GA-based dynamic solver

The algorithm is generational; that is, the whole population is re-
placed by the new offspring at every generation. The used tournament
selection works in a manner very similar to ranking selection, which
avoids the pitfalls of roulette wheel [12] and at the same time is easier
to implement and less time consuming than ranking. The tournament
selection used in this paper selects the better of any two competing
candidates if a random number is less than a user defined selection pa-
rameter and selects the worst of the two solutions otherwise as shown
in Figure 11.4. Selection pressure can thus be increased or decreased by
changing the selection parameter.

Edge crossover [19] is employed to recombine solutions in the pop-
ulation. This operator has the advantage of preserving most edges of
the parent solutions without producing infeasible child solutions. The
mutation operator is a pairwise node swap. It sweeps down the list of
bits in the chromosome, swapping each with a randomly selected bit
if a probability test is passed. That is, for a problem of size l and a
mutation rate of μ the expected number of swaps on an individual is
μl. This operator produces little change in the individual, since no more
than four edges are replaced in each swap. Nevertheless, more drastic
changes can be applied by simply increasing the rate of mutation. The
evaluation of individuals is integrated with the genetic operators so that
newly created individuals are evaluated as soon as they are created.

The genetic algorithm is also hybridized with a local search heuristic.
We employ the well-known 2-opt heuristic, which eliminates two edges
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from the tour and reconnects the two resulting paths in a different way
to obtain a new tour. Some researchers [10, 11] reported very good re-
sults with exhaustive local search; that is when local search is continued
till reaching local optima for all individuals in the population. However,
this practice can be too time consuming especially for large problem in-
stances, and it can also lead to a profound loss of diversity [9]. Therefore,
although exhaustive local search might be acceptable in solving static
problems, it is certainly unsuitable for dynamic problems, where both
time and diversity are of utmost importance. For these reasons, we al-
low only a fraction of the population to undergo local search and do not
require local optimality to terminate local search. Two input parame-
ters LsRate and LsNeighbours are employed to respectively control the
fraction of population undergoing local search and the fraction of the
neighborhood tested during each application of local search.

5. Experimentation
This section describes experiments carried out to test the two models

of adaptation presented in the paper. The section describes the setting
of the test problems, the used genetic algorithm, the criterion of perfor-
mance measure and the results obtained from the experimentations.

Test Problems
Developing suitable benchmark problems is one of the central issues

in dynamic optimization. A dynamic test problem has to be addressed

Select(pop[t])

i = 0;
WHILE i < PopulationSize

sequentially select indivA from pop[t-1];
randomly select indivB from pop[t-1];

IF rand(0,1) ≤ SelectionProbability;
insert best(indivA, indivB) in pop[t+1];

ELSE
insert worst(indivA, indivB) in pop[t+1];

ENDIF

i = i+1;
ENDWHILE

Figure 11.4. Pseudocode for tournament selection
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on three levels: the base static instance, changes added to create the
sequence of instances, and the problem dynamics. In continuous opti-
mization, the base instance is usually a multi-modal function created
from multiple Gaussian peaks [6]. In discrete optimization, base test
problems can be borrowed from the available libraries of established
COP benchmarks. In this paper, the base static problem is a 100-city
problem, kroA100 from the TSP library [14]. Changes are introduced
in three ways (modes): an edge change mode (ECM), an insert/delete
mode (IDM) and a city swap mode (CSM). Problem dynamics are con-
trolled by two parameters: frequency and severity. The frequency of
change determines the number of generations between succeeding envi-
ronmental changes, and the severity of change determines the number of
elementary steps applied at every environmental change. An elementary
step is the smallest possible change in the problem that causes the new
instance to have different optimal solution from the previous one.

In the ECM mode, distance between cities is viewed as a time period or
cost that may increase or decrease with time; hence the introduction and
the removal of a traffic jam can be simulated respectively by the increase
or decrease in the distance between cities [4]. The problem is changed
by increasing the length of an edge randomly selected from the best
found tour, or decreasing the length of an edge randomly selected but
not from the best found tour. This scheme ensures that environmental
changes affect optimal solutions. The elementary step of the change is
the change in the cost of a single edge.

In IDM, environmental changes are imposed by adding new cities to
the problem or by removing some of the existing cities. IDM reflects the
addition of new assignments to the problem or the deletion of existing
assignments [7]. The elementary step of the change in this mode is the
addition (or the deletion) of a single city. This mode might prove to be
the most difficult since it entails variable representation to reflect the
changing number of cities.

In CSM, the labels of two randomly selected cities are interchanged
in the mapping function that maps the chromosome into solutions. Al-
though this mode does not reflect direct real-world scenarios, it is an
efficient method to create dynamic problems with known optima with-
out the need of re-optimization. A more detailed description of these
benchmark modes is given in [21].

In the current experimentation, each benchmark problem includes 200
successive changes to the base problem; that is, there is a sequence of
200 static problems for each of the three modes of environmental shifts.
Each sequence of static problems is translated into nine dynamic test
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problems by combining three degrees of severity (1, 10, 100 steps per
shifts) and three periods of change (10,100, 1000 generations between
shifts). In short, there are 27 dynamic test problems each made up from
200 static instances.

Algorithm Settings
The dynamic test problems are used to compare the performance the

ADM and LM models of this paper against three well known models:
FM, Restart, and Rim. FM is a fixed model that uses a standard GA with
fixed operator rates. The Restart model utilizes a fixed model strategy
but re-initiates the population whenever the environment changes. Rim
is a random immigrant model which can be viewed as a partial restart
model, since only a fraction of the population (20% in this paper) is
replaced with random individual at every environmental change. All
tested models use a generational GA with tournament selection and a
two-point order crossover. Pairwise interchange is used as a mutation
operator.

A population size of 50 and crossover rate of 0.3 are used throughout.
Finally, since the five models depend in part on the underlying mutation
rate, experiments are repeated for three values of the base mutation
rate (0.0025,0.025 and 0.25). These rates are also the upper bounds for
mutation in the LM and ADM models; the lower bound on mutation is
0.0025 for both models.

A rate of 0.1 is used for local search, and the number of neighbors
tested at each local search iteration is limited to 10% of the problem
size.

Results
The criterion of comparisons in this paper is based on the offline

performance metric originally presented by De Jong [3]. The measure
is a running average of the best solutions found in order to reflect the
ultimate goal of the optimization process. In other words, it dynamically
abstracts the search evolution in one value that at any time assesses
the algorithm’s performance up to that point. However, this measure
is meaningless in dynamic environments, since the value of previously
found solutions is irrelevant after an environmental change. Hence, many
researchers use current-best performance [18], which is defined as the
generation best fitness averaged over several runs. However, this measure
is not suitable for comparing several algorithms nor for complex dynamic
problems (in which the optimal solution is not necessarily monotonically
changing). The resulting plots would be intermingled, prohibiting the
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determination of which of the competing algorithms is performing best
overall (remember that because the problem is dynamic, we may need
to consider as many solutions as the number of environmental changes).
Branke [1] suggested a modified offline performance measure to overcome
this shortcoming by resetting the computed best-so-far value at every
environmental change. Nevertheless, the modified OFP is sensitive to
extreme solution values, and instances with large optimal values will
dominate others.

This shortcoming can be avoided by normalizing the evaluations by
dividing them by their corresponding optimal solution values, which
are usually known in advance in the case of test problems. Younes et
al. [20] used a measure that takes into account changes in the optimal
solutions and also averages the results over the considered runs. We
present a normalized modified offline performance at a time step t and
for a number of R runs considered (ten runs in this paper) as follows:

NormModOFP (t, R) =
1

R · t
R∑
r=1

t∑
τ=1

(
εrτ
f∗τ

)
(11.3)

where εrτ = min
{
erθ, e

r
θ+1, . . . , e

r
τ

}
, θ is the time step of the last environ-

mental change occurred prior to τ , erθ is the value of the evaluation at
time step θ and run r, and f∗τ is the value of the optimal solution (or of
the best known solution) to the problem instance at time step τ .

In a TSP, NormModOFP is based on the cost of solution rather
than on the fitness, thus, the lesser is NormModOFP the better is the
performance. Moreover, since NormModOFP is measured relative to
the value of the best solutions found during benchmark construction,
it will in general exceed unity. Less than unity values if encountered
will indicate high performance of the relevant model—so high that it is
exceeding expectation.

Such a measure was used by Younes et al. [20] NormModOFP ab-
stracts dynamics, runs, evaluations, variations in the value of optimal
solution. Thus, it allows convenient evaluation of an EA and guarantees
fair comparisons. We also limit the number of evaluations (i.e. time)
between succeeding environmental changes. This will indirectly assess
the ability of the algorithm to recover from influence of changes in envi-
ronment.

Figure 11.5 shows the results of experiments when the period of chan-
ges is 1000 generations/shift. This is the longest of the three periods
considered in this paper. Offline performance is plotted against the base
mutation rate for several ranges of severity of environmental changes for
the three modes of benchmarking (ECM, IDM, and CSM). The values
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shown in the figure are averaged from ten runs using different random
initial populations. In every run, the environment is kept quiescent for
the first 10000 generations, then allowed to change according to the
specified severity and period of change. The initial static phase gives
the GA sufficient time to reach initial convergence and thus make later
performance less dependent on the initial population.

Although Figure 11.5 represents the longest of the three periods of
environmental changes and thus the best case for the Restart model,
the inferior performance of the Restart model is quite evident. Indeed,
Restart results are so large that they do not show in some slides of the
figure. Nevertheless, the Restart model does produce results compara-
tive to other models when environmental changes are large. The results,
in general, are in favor of schemes that can exploit knowledge from past
solutions while retaining the diversity needed to track shifting optima.

The FM model shows relatively good behavior in slides (a) and (b)
corresponding to the ECM mode. This seemingly unexpected perfor-
mance is the result of dynamically insignificant changes associated with
this mode [21]. Reducing the length of an edge on the optimal tour (or
increasing the length of an edge not on the optimal tour) will not alter
the optimal solution. Furthermore, increasing the length of an edge on
the optimal tour (or reducing the length of an edge not on the optimal
tour) will not alter the optimal solution unless the changes are suffi-
ciently large. Such changes do not alter the optimal solution and hence
do not necessarily induce any adaptation from the optimizing algorithm.
However when more changes are added to the problem, newer instances
become considerably different from previous ones, and the performance
of the FM model starts to deteriorate, as shown in slide (c) of the same
figure.

In ADM, the base rate of mutation is not as critical as in other models.
The reason for this behavior is that base rate in ADM acts as an upper
bound on the mutation rate, while the actual rate is controlled by diver-
sity. This suggests that ADM can be used to reduce the number of GA
parameters to tune. That is the user will be spared the time-consuming
tuning process of the GA parameters.

Statistical Analysis
Statistical t-tests that are used to compare the means of two samples

can be used to compare the performance of two algorithms. The typical
t-test is performed to build a confidence interval that is used to either
accept or reject a null hypothesis that both sample means are equal.
In applying this test to compare the performance of two algorithms,
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Figure 11.5. Modified offline performance against base mutation rate. Note that
some results of the Restart model are too large to appear on the same slide with
other results.

the measures of performance are treated as sample means, the required
replicates of each sample mean are obtained by performing several inde-
pendent runs of each algorithm, and the null hypothesis is that there is
no significant difference in the performance of both algorithms.



Adaptive Control of Genetic Parameters 219

However, when more than two samples are compared, the probability
of multiple t-tests incorrectly finding a significant difference between a
pair of samples increases with the number of comparisons [8]. Analysis
of variance (ANOVA) overcomes this problem by testing the samples as
a whole for significant differences. Therefore, ANOVA is performed to
test the hypothesis that measures of performance of all the evolutionary
models under considerations are equal. Then, a multiple post ANOVA
comparison test, known as Tukey’s test, is carried out to produce con-
fidence intervals for the difference in the performance of each pair of
models.

Statistical analysis reported in this section are obtained using a signifi-
cance level of 5% to construct 95% confidence intervals on the difference
in offline performance. Table 11.1, 11.2, and 11.3 show the results of
multiple post ANOVA comparison test for the three modes of change
(respectively, ECM, IDM, and CSM). Each table covers nine combina-
tions of problem dynamics (three periods of change and three levels of
severity of change). For the FM, Restart and Rim20 models, which use
fixed rates of mutation, a mutation rate of 1

100∗4 = 0.0025 is used. This
value corresponds to the commonly used rate of mutation [5, 12, 13]
(inverse of the chromosome length in a 100 city chromosome) and to the
number of edges (four) replaced in each swap. For the LM and ADM
models, the lower bound on mutation is 0.0025 and the upper bound
is twice that value. The entries in the table are interpreted as follows.
An entry of 1 signifies that the confidence interval for the difference in
performance measures of the corresponding pair consists entirely of pos-
itive values, which indicates that the first model is inferior to the second
model. Conversely, an entry of −1 signifies that the confidence interval
for the corresponding pair consists entirely of negative values, which in-
dicates that the first model is superior to the second one. An entry of 0
indicates that there is no significant difference between both models.

As can be seen in the three tables, there are significant differences
between the performance of the ADM model and the others. The ADM
outperforms other models in all cases except the K100-IDM problem
with small severity of change (1 step/shift) and larger period of change
(1000 generations/shift), where its performance is comparable to that of
the LM model but still better than other models. We note here that these
results are obtained using a “conventional” rate of mutation without
attempting to fine tuning this parameter. Thus, an extended version
of the ADM model that takes into account other input parameters may
prove to be useful in reducing the usual cumbersome efforts of parameter
tuning.
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Table 11.1. Multiple comparison test (K100-ECM problem)

period → 10 100 1000

severity → 1 5 25 1 5 25 1 5 25

FM vs Restart -1 -1 -1 0 0 -1 0 0 0
FM vs Rim20 0 0 0 0 0 0 0 0 0

FM vs LM 1 1 1 1 1 1 1 1 1
FM vs ADM 1 1 1 1 1 1 1 1 1

Restart vs Rim20 1 1 1 0 0 0 0 0 0
Restart vs LM 1 1 1 1 1 1 1 1 1

Restart vs ADM 1 1 1 1 1 1 1 1 1
Rim20 vs LM 1 1 1 1 1 1 1 1 1

Rim20 vs ADM 1 1 1 1 1 1 1 1 1
LM vs ADM 1 1 1 1 1 1 1 1 1

Table 11.2. Multiple comparison test (K100-IDM problem)

period → 10 100 1000

severity → 1 5 25 1 5 25 1 5 25

FM vs Restart 0 -1 0 0 0 0 1 0 0
FM vs Rim20 0 0 0 0 0 0 1 0 0

FM vs LM 1 1 0 1 1 1 1 1 1
FM vs ADM 1 1 1 1 1 1 1 1 1

Restart vs Rim20 0 1 0 0 0 0 0 0 0
Restart vs LM 1 1 0 1 1 1 1 1 1

Restart vs ADM 1 1 1 1 1 1 1 1 1
Rim20 vs LM 1 1 0 1 1 1 1 1 1

Rim20 vs ADM 1 1 1 1 1 1 1 1 1
LM vs ADM 1 1 1 1 1 1 0 1 1

Table 11.3. Multiple comparison test (K100-CSM problem)

period → 10 100 1000

severity → 1 5 25 1 5 25 1 5 25

FM vs Restart -1 -1 0 -1 -1 0 -1 -1 -1
FM vs Rim20 0 0 0 0 0 0 0 0 0

FM vs LM 1 1 0 1 1 1 1 1 1
FM vs ADM 1 1 1 1 1 1 1 1 1

Restart vs Rim20 1 1 0 1 1 0 0 1 1
Restart vs LM 1 1 0 1 1 1 1 1 1

Restart vs ADM 1 1 1 1 1 1 1 1 1
Rim20 vs LM 1 1 0 1 1 1 1 1 1

Rim20 vs ADM 1 1 1 1 1 1 1 1 1
LM vs ADM 1 1 1 1 1 1 1 1 1
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6. Conclusions
This paper introduces a GA model that controls diversity throughout

the search process in a dynamic environment. The idea is to maximize
diversity when the environment changes and to control it during sub-
sequent generations by changing the GA parameters in response to the
diversity of the current population. In other words, diversity control
in a dynamic problem is treated as an extension to that in the static
problem.

Results and statistical analysis show that the idea is promising as it
produces good results compared with other models. Currently, we are
developing an enhanced ADM model that uses variable diversity limits
instead of the fixed limits used in this paper.

Future work should investigate the use of ADM to manipulate cross-
over rate, local search rate, and fraction of the neighborhood tested
during each application of local search. The model should also be tested
on more complex dynamic COPs, such as job shop scheduling.

The ability of the ADM model to retain good performance over a wide
range of mutation rate encourages investigating the use of this model as
a substitute for parameter tuning for static problems as well.
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Abstract: In this paper a memetic algorithm integrating genetic procedures and local 
search, able to solve capacitated and uncapacitated dynamic location 
problems, is described. These problems are characterized by explicitly 
considering the possibility of a facility being opened, closed and reopened 
more than once during the planning horizon. It is also possible to explicitly 
consider different open and reopen fixed costs. The problems can be of single 
or multi-level nature. The computational results obtained show that the 
algorithm is capable of finding good quality solutions, but at the cost of large 
computational times, when compared with dedicated primal-dual heuristics 
and even with a general solver. Some changes are proposed to tackle this 
disadvantage.  

Key words: location problems, genetic algorithms, local search

1. INTRODUCTION 

When faced with a hard combinatorial optimization problem, the first 
obvious question that has to be answered is which algorithm(s) should be 
used to find the optimal solution. The use of exact methods becomes, most 
of the times, impracticable (in spite of the increase in computing power and 
hence speed of calculation). Heuristic methods try to calculate good 
solutions, without guaranteeing their optimality, but offering good 
compromises between solution quality, computational time and storage. 
Metaheuristics have shown their capability for calculating high quality 
solutions to complex problems. Genetic algorithms, for instance, have been 
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widely used in solving combinatorial problems in general and location 
problems in particular. Hosage and Goodchild, 1986, study the possibilities 
of applying genetic algorithms to location problems. Houck et al., 1996, 
study large location-allocation problems, where each possible location is a 
bidimensional point in a continuous space, and use genetic algorithms. 
Beasley and Chu, 1996, apply genetic algorithms to a covering problem, 
developing specific operators that guarantee the feasibility of the individuals. 
Kratica, 1999 and Kratica et al., 2001, use genetic algorithms for the simple 
plant location problem, and propose hybridization with an ADD heuristic (at 
each iteration only the facility that contributes to the maximum reduction of 
the overall cost is open). Filipovic et al., 2000, introduce the grained 
tournament selection operator. Lorena and Lopes, 1997, apply genetic 
algorithms to computationally hard covering problems. Abdinnour-Helm, 
1998, describes a hybrid heuristic which includes genetic algorithms and 
tabu search, applying it to the uncapacitated hubs problem. Jaramillo et al., 
2002, study genetic algorithms as an alternative way of calculating good 
quality solutions to location problems, and conclude that these algorithms 
should not be used for capacitated location problems with fixed costs. 
Shimizu, 1999, mingles genetic algorithms and mathematical programming, 
solving the sanitary landfill for hazardous materials location problem, in a 
multi-objective environment. Correa et al., 2001, apply genetic algorithms to 
a real problem that can be formulated as a p–median problem. Cheung et al., 
2001, describe a genetic algorithm, partially implemented in a parallel 
architecture, which is applied to several location and location-allocation 
problems in the oil industry. Cortinhal and Captivo, 2003, describe genetic 
algorithms applied to the capacitated location problem with total assignment. 
Salhi and Gamal, 2003, consider the problem of finding p facilities in the 
plane to serve n clients, minimizing the total transportation costs, using 
genetic algorithms with a real number representation. Domínguez-Marín 

, 2005, solve location problems (p-centre and p-median) using genetic 
algorithms and variable neighborhood search.  

In the present paper, we will describe an algorithm that hybridizes 
genetic algorithms and local search, and that is able to solve dynamic 
capacitated and uncapacitated location problems, with opening, closing and 
reopening of facilities. The authors have already studied this problem and 
developed several efficient primal-dual heuristics (Dias et al., 2005a, b, 
2006). The primal-dual heuristics developed calculate good quality solutions 
as well as lower bounds on the optimal objective function value. 
Nevertheless, their structure makes it difficult and time consuming to adapt 
these heuristics to even minor changes in the problem formulation. This 
paper is organized as follows: in the next section we present the problem, in 
section 3 the main characteristics of our algorithm are described, in section 4 

et al.



A Memetic Algorithm for Dynamic Location Problems 227
 
some computational results are reported and, finally, in section 5 we point 
out some conclusions and possible future work.  

2. THE DYNAMIC LOCATION PROBLEM 

Consider that there are n clients, m facilities’ possible locations, and T 
time periods considered in the planning horizon. A facility can be opened, 
closed and reopened more than once during the planning horizon. We 
develop a general model considering two different types of facilities: 1- 
uncapacitated facilities; 2- facilities with maximum and/or minimum 
capacity restrictions. The objective function considers the minimization of 
all fixed costs and transportation costs. The fixed costs account for the 
opening, closure and fixed operating costs during the operating time periods. 
The model assures that each client’s demand in each time period has to be 
satisfied; each client can only be assigned to operating facilities. A facility 
can only be reopened at the beginning of period t if it has been opened 
earlier and can only be opened once during the planning horizon. Only one 
facility can be open at each location, in each time period. It is possible to 
extend this problem to the multi-level case, where a client has to be assigned 
to a path of facilities, instead of only one facility. A path of facilities can be 
constituted of, at most, k facilities (where k represents the maximum number 
of levels considered), and, at most, one facility of each level. Problems’ 
formulations as Mixed Integer Linear Programming Problems can be found 
in Dias et al., 2005a,b, 2006. Depending on the type of facilities present, 
after fixing a set of feasible values for the location variables, it is rather 
simple to calculate the optimal allocation variables in each time period: 1) if 
all facilities are uncapacitated, then each client is assigned to exactly one 
facility (or path of facilities), the cheapest one; 2) if there is at least one 
facility of type two, then it is necessary to solve a transportation (or a 
transshipment) problem. 

Defining J = {1,..., j, …, n}  as the set of indices corresponding to the 
clients’ locations and I = {1,..., i,…, m} as the set of indices corresponding 
to facilities’ possible locations, the decision variables considered in the 
model are: 

1   if facility  is opened at the beginning of period  
  and stays  open until the end of period 

0   otherwise
it

i t
a  
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1    if facility  is reopened at the beginning of period 
     and stays  open until the end of period 
0   otherwise

it

i t
r  

If the problem is of multi-level nature, variables t
pjx  are considered, 

where p is a path of facilities, with at most one facility of each level. 
Otherwise variables t

ijx  are used. 
t
pjx fraction of customer j demand assigned to path p during period t. 
t
ijx fraction of customer j demand served by facility i during 

period t. 
The objective functions’ coefficients can be defined as follows: 

 or t t
pj ijc c = cost of fully assigning client j to path p, or facility i, in period 

t; 

itFA  = fixed cost of opening a facility i at the beginning of period t, and 
closing it at the end of period  (the facility will be in operation from the 
beginning of t to the end of ); 

itFR  = fixed cost of reopening a facility i at the beginning of period t, 
and closing it at the end of period  (the facility will be in operation from the 
beginning of t to the end of ); 

The location problems considered are generalizations of the simple 
location problem, so they are NP-hard. 

3. THE MEMETIC ALGORITHM 

Our first experiences began with a simple genetic algorithm, without 
local search, but the results were far from being satisfactory, so a memetic 
algorithm was developed (Moscato and Cotta, 2003). According to Osman 
and Kelly, 1996, an evolutionary algorithm is composed of five basic 
components: a genetic representation of solutions; a way to create an initial 
population; an evaluation function and a selection operator; genetic operators 
that alter the genetic composition of children during reproduction and values 
for the parameters. In the following subsections, all these components will 
be described for our particular case. Algorithm 1 and Algorithm 2 describe 
the algorithm’s functioning scheme. 
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xbest – represents the best individual in the preceding generation; flag(x) – is equal to true if x has already 
passed through the local search procedure, false otherwise; Pcurrent – the current population; f(xj) – fitness 
of individual xj; npop – number of individuals in the population. 

1. x1  xbest; xbest  x1; j  2; Newpop x1 . 
2. If  j > npop then Pcurrent  Newpop, else continue. 
3. Select parents xA and xB using binary tournament selection. 
4. Crossover to generate two children: xj and xj+1. flag(xj)  false; 

flag(xj+1)  false. 
5. Apply the mutation operator to xj. 
6. If xj = xA then flag(xj)  flag(xA); if xj = xB then flag(xj)  flag(xB);1 
7. Calculate the fitness of xj: f(xj). If f(xj) = + , then apply the repair 

procedure to xj. If f(xj)<f(xbest) then xbest xj. 
8. Apply the change openings procedure to xj. 
9. If not flag(xj) then apply the local search procedure. 
10. If (j+1)  npop then repeat steps 5 to 9 with child xj+1. 
11. Newpop  Newpop xj . If (j+1)  npop then Newpop  Newpop 

xj+1 . j  j + 2. Go to 2. 
 
Algorithm 2: global memetic algorithm 
Pcurrent – the current population; xbest – represents the best individual in the current population; nimp - 
maximum number of generations without improving the best objective function value found; Nger - Total 
maximum number of generations;  - Percentage of increase in the number of individuals. 
1. Initialize Pcurrent. 
2. Initialize xbest, best  f(xbest), ngen  1, count   0. 
3. If ngen > Nger or count > nimp then stop. Else continue. 
4. ngen  ngen + 1. Call procedure generation. 
5. If f(xbest)  best then count  count + 1. Else count  0. 
6. If count < nimp then ngen  ngen +1, then go to 3. 
7. If Nmaxpop,npopmin 1 >npop, then  npop 

Nmaxpop,npopmin 1 , initialize randomly the new 
individuals and count 0. Go to 3. 

3.1 Representation and Evaluation of Solutions 

Each individual is represented using two chromosomes, composed of 
genes that can only take values 0 or 1. Gene in position (t-1)m+i of the L-
chromosome is equal to 1 if facility i is open during time period t, and equal 
to 0 otherwise. This information is not sufficient to build an admissible 
solution for the problem, because it is necessary to determine the open and 
reopen periods: a facility i can be operating from  to  but have been closed 
at the end of period  and reopened at the beginning of +1, with   .  
1 xj is considered equal to xA if all the L-chromosome’s genes are equal. 

Algorithm 1: Generation 

A Memetic Algorithm for Dynamic Location Problems 
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The other chromosome (F-chromosome) will give this information. Gene in 
position (t-1)m+i will be equal to 1 if facility i is reopened at the beginning 
of period t, and 0 otherwise. The F-chromosomes complement the 
information provided by L-chromosomes. Their genes’ values will only be 
taken into account when strictly needed. Consider the following example, 
with five possible locations and three time periods (a matrix notation is used 
for ease of understanding): 

 
Chromosome L  Chromosome F 

      i 
t 1 2 3 4 5       i 

t 1 2 3 4 5 

1 1 0 0 1 1  1 1 1 0 0 1 
2 1 1 0 0 0  2 0 0 0 1 1 
3 1 1 0 1 0  3 1 0 1 0 1 

Figure 1: An individual’s representation 
 

In terms of location variables, these two chromosomes would be 

interpreted as all variables equal to zero except 2
11a , 3

13r , 3
22a , 1

41a , 3
43r , 

1
51a . The three F-chromosome genes represented in bold italic are the only 

genes (from this chromosome) that really matter for building the solution. 
This representation is redundant (Rothlauf and Goldberg, 2002): the 

number of genotypes exceeds the number of phenotypes2. The capacity 
restrictions are the only ones that can be violated. The fitness of each 
individual is given by the objective function value of the corresponding 
solution in the phenotype space. An unfeasible individual has fitness equal to 

, but it is not deleted from the current population, to increase diversity. 
Definition 1: Consider two individuals that differ only in one 

L(F)-chromosome gene. If the solutions they represent in the phenotype 
space are different, then the L(F)-chromosome gene is called determinant, 
otherwise it is called non-determinant. 

Proposition 1: All L-chromosome genes are determinant. 
Proposition 2: The only F-chromosome genes that are determinant are 

genes in position (t-1)mix, for some i and t>1, such that the L-chromosome 
genes (t-1)m+i and  (t-2)m+i are equal to one. 

Proposition 3: It is possible to represent each and every admissible 
solution to the location problem using a pair of F and L-chromosomes. 

 
2 If there are p determinant genes within the F-chromosome, there can be 2(Tm-p) different 

individuals codifying exactly the same solution. 
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3.2 Genetic Operators 

The genetic algorithm uses selection, crossover and mutation. Selection 
is based on the binary tournament selection with sharing (Oei et al., 1991, 
Deb, 2001). In each generation, individuals i and j are randomly selected. A 
sharing value sh(i,j) is calculated. For each i, all values sh(i,j)3 (considering 
all individuals j belonging to the new population) are summed up. If, at the 
moment of the selection, there are num individuals in the new population, 
then nci=num–nci. The individual’s fitness value is divided by nci, and the 
resulting value (f(i)) is used in the binary tournament selection. In the 
presence of two randomly chosen individuals x1 and x2, if 21 xfxf  then 
individual x1 wins the binary tournament with a given probability pbt (usually 
closer to one).  

1,    if the gene in the -chromosome is different in and 

0,   otherwise
ij

L i j
d ,

1

mT

ij ijd d

 belongs to the new population
,i

j
nc sh i j , 

1 ,   if 
,

0,                        otherwise

ij share ij shared d
sh i j  

The crossover operator is an adaptation of the one-point crossover: two 
parent solutions are recombined yielding two children. A value 1 T is 
randomly chosen. The first child will have L and F-chromosome genes 
(t-1)m+i, with t< , equal to the first parent, and all the others equal to the 
second parent. The opposite happens with the second child. The children of 
two admissible parents are not guaranteed to be admissible. Two special 
operators were developed: a repair and a change openings procedure. An 
individual represents an unfeasible solution if it violates any maximum or 
minimum capacity restrictions, due to L–chromosome genes, that are 
changed, in a random but guided manner, by the repair procedure. If, for 
instance, maximum capacity restrictions are violated at period t, it randomly 
opens more facilities. If minimum capacity restrictions are violated, it 
randomly closes facilities. All changes are performed in a random manner4, 
so a maximum number of tries had to be imposed. The change openings 
procedure studies the effect on fixed (re)open costs of changes in some of 
the determinant F-chromosome genes. It identifies situations such that a 
facility i is open from time period  to time period , , and is reopened 
during that interval (in a time period t ). The F-chromosome gene in 

 
3 The share value is calculated as described in Deb, 2001, and  is considered equal to one. 
4 To avoid the introduction of bias in the search (Coello Coello, 2002). 
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position (t-1)m+i (equal to one) is changed to zero. If the total fixed costs 
diminish, then the gene’s value is changed, else retains its original value.  

3.3 Local Search 

Local search plays a very important role in the algorithm developed5. 
Every individual in the new population is a potential starting solution for the 
local search procedure, ran with a given probability pls

6. The procedure 
searches k-neighborhoods, from k=1 to k=T, where an individual x’ is said to 
be in the k-neighborhood of individual x if and only if x’ differs from x by 
the insertion or removal of at most k continuous operating time periods to a 
single facility i. Whenever the fitness function is improved, the genotype is 
changed, and the search continues from this new starting point. Algorithm 3 
describes the local search procedure. This procedure is very time consuming 
(responsible for 95% or more of the algorithm’s total computational time), 
so its performance has to be improved. If in presence of capacitated 
facilities, a sensitivity analysis based on the dual optimal solution of the 
assignment problems, helps to estimate if the present neighbor is or is not 
better than the current individual, decreasing the total computational time by 
20% or more without a significant decrease in the final solution’s quality. 

 
Algorithm 3: Local Search Procedure 
x – starting solution;  f(x) – fitness of individual x.  

1. k  1. 
2. If k > T then stop. Else count  0. 
3. flag(i)  false, i. 
4. If flag(i) = true, i or count > z then k  k + 1 and go to 2. Else choose 

randomly a facility i such that flag(i) = false. 
5.  flag(i)  true; t  1; 
6. If t > T  k + 1 or count > z then go to 4, else continue. 
7. If facility i is operating during periods t to t + k  1, then study 

k-neighbor x’ obtained from x by the removal of operating periods t to t + 
k  1 and go to 9. Else continue. 

8. If facility i is not operating during periods t to t + k  1, then study 
k-neighbor x’ obtained from x by the insertion of operating periods t to t 
+ k  1 and go to 9. Else t  t + 1 and go to 6. 

9. If f(x) > f(x’) then x  x’ and count  0, else count  count + 1. t  t + 
1 and go to 6. 

 
5 Examples of genetic algorithms hybridized with local search can also be found in Huntley 

and Brown, 1996; Murata et al., 1998; Reeves and Höhn, 1996; Yagiura and Ibaraki, 1996. 
6 If a child is equal to one of the parents that, in turn, resulted from local search, this 

probability is equal to zero. 



233
 
3.4 Population 

Our initial population is constituted by individuals randomly created that 
are modified by the repair, change openings and local search procedures 
(clones are allowed). We chose to work with small populations. As there is a 
risk of premature convergence to a poor quality solution, we overcame this 
disadvantage by changing on-line the total number of individuals in the 
current population. This number is increased whenever nimp generations are 
run without improving the best objective function value, until the maximum 
number of individuals in the population is reached (this is also the stopping 
criteria for the algorithm). The new individuals are randomly initialized. The 
population is initialized with npop individuals calculated as described in 

Reeves, 1993: it is the minimum value such that 11 1 2 0.99
lnpop 7, 

where l is the number of genes of each individual.  Each individual has two 
chromosomes, each with mT genes, so l should be equal to 2mT. As the 
F-chromosome has very few determinant genes, we chose to consider l equal 
to mT for the calculation of the initial value of npop, and equal to 2mT for 
the calculation of the maximum value npop can take. The child population 
replaces the parents population completely, with the exception of the best 
solution that passes from one generation to the next unchanged. 

3.5 Parameters’ Values 

This algorithm has many parameters whose values have to be fixed and 
that can influence the algorithm’s behavior. Aside from the number of 
individuals in the population, that can change during the execution, all other 
parameters are fixed before the run and do not change. Table 1 presents a list 
of all parameters, and the way in which they can influence its behavior. 

4. COMPUTATIONAL TESTS 

The memetic algorithm was tested with a set of randomly generated 
problems. For each combination of (T, m, n), 5 problems were generated. 
Both uncapacitated and capacitated, single and multi-level location problems 
were solved. The test problems were generated as described in Dias et al., 
2005b. For multi-level problems, it is considered that the number of possible 
locations for facilities at level l is half the number at level l 1. All possible 
paths between clients and facilities are considered. 

 
7 The value 0.99 represents the probability of at least one allele being present at each locus in 

the initial population. 
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Table 12-1. Algorithm's parameters 
Parameter Description Influence on the algorithm’s behavior and 

Recommended Values8 

Nger Total maximum 
number of generations 

It can be used to terminate the algorithm. If it is 
completely blind to the algorithm’s performance, it can be 
responsible for premature terminations as well as for 
unnecessary generation runs. In our algorithm this 
parameter is not important, because it uses other 
termination rules. 

nimp 

Maximum number of 
generations without 
improving the best 
objective function 
value found 

It indicates that the algorithm is converging. The number 
of individuals in the population is increased whenever 
there are no improvements in the objective function during 
nimp generations, as a way of increasing the genetic 
diversity, and to avoid getting trapped in local minima. If 
the current number of individuals is equal to Nmaxpop, 
then the algorithm is terminated after nimp generations 
without improving the objective function. It is fixed to 5. 

 
Percentage of increase 
in the number of 
individuals 

It controls, along with Nmaxpop, the number of times the 
population is increased. It is hard to predict how it will 
influence the quality of the solution or the total 
computational time: greater values will correspond to 
fewer generations but with longer computational times per 
generation. In our algorithm this value is equal to 25%. 

pbt 

Probability of 
choosing the most 
fitted individual in the 
binary tournament 
selection 

The greater the probability, the more difficult it is for less 
fit individuals to be passed on to the next generation. It can 
be used to influence the diversity of the population. If 
controlled on line, it could be increased as the number of 
generations increases, to ensure diversity in the beginning 
and convergence in the end. In our algorithm this value is 
fixed at 0.9. 

npop 
Number of individuals 
in the current 
population 

It influences the computational time and the quality of the 
final solution: populations with more individuals will take 
longer to generate their children but are genetically more 
powerful. Small populations run the risk of under-covering 
the solution space (Reeves, 1993). The initial population is 
calculated as described in 3.4, and this value is increased 
whenever there are nimp generations without improvement 
on the best objective function value. 

Nmaxpop 
Maximum number of 
individuals in the 
current population 

This parameter influences the total execution time, and can 
influence the quality of the best solution found. It is 
calculated as described in 3.4. 

 
8 These “recommended values” are indicated according to the computational experiments 

made so far. These computational tests were executed using different instances of different 
location problems, both single and multi-level problems, of different sizes. They allowed us 
to assess, in a non-systematic way, the behavior of the algorithm due to changes in its 
parameters. The values indicated were the ones that presented better compromises 
throughout the preliminary tests. 



235
 

pls 

Probability of 
executing the local 
search procedure for 
each individual 

It influences both the computational time and the quality 
of the best solution found. With values near 1, the 
algorithm will converge quicker and with good quality 
solutions. It is difficult to estimate how this parameter 
influences computational time because with smaller values 
each generation is executed in less computational time but 
the convergence towards a good solution is slower, so the 
total algorithm’s computational time can increase. It is 
advised that pls should be equal to 1 at least in the last 
generation. In our algorithm this value is fixed to 1. 

Z 

Maximum number of 
k-neighbors visited 
without improving the 
individual’s fitness 

It influences the algorithm’s behavior in a way similar to 
the previous one. It should consider the total number of 
neighbors of a given solution which is hard to compute. In 
our algorithm we consider z equal to 10000.  

pv 

Probability of visiting 
a neighbor expected to 
improve the 
individual’s fitness 

It influences the algorithm’s behavior in a way similar to 
the two previous parameters. This probability should be 
always a value near to 1. In our algorithm it is fixed to one. 

pnv 

Probability of visiting 
a neighbor not 
expected to improve 
the individual’s fitness 

It influences the computational time and also the quality of 
the final solution. To obtain a good compromise value, we 
recommend it should be fixed to a value between 0 and 
0.1. 

P  
Probability of 
changing one gene in 
the mutation operator 

It can influence the diversity of the population. If 
controlled on-line, it could be decreased as the number of 
generations increases, or increased when the best fitness 
value does not improve in a given number of generations. 
In our algorithm this parameter is fixed at 0.002. 

Experiments were carried out in a Pentium 4, 1.80 GHz, running under 
Windows 2000 operating system, with a maximum of 2000 MB of virtual 
memory and 260Mb of Ram. 

The quality of the solutions calculated, as well as computational times, is 
compared with the results obtained with primal-dual heuristics and CPLEX 
(version 7.0 for the single-level problems and version 9.0 for the multi-level 
problems). Primal-dual heuristics and the memetic algorithm were 
programmed using C-language. CPLEX terminates without calculating the 
optimal solution whenever more than 2 100 000 000 nodes of the branch and 
bound tree are explored, or when the number of simplex iterations in a node 
exceeds 2 100 000 000, or when there is not enough memory to read the 
problem or when the execution times exceeds 200 000 seconds. After the 
execution of the primal-dual heuristic, a local search procedure was executed 
(Dias et al., 2005b). Tables 2 to 9 present mean values (average and 

-standard deviation) of our computational results. Tables 2, 4, 7, and 8 
present the quality of the best primal solution found and tables 3, 5, 6 and 9 
present the computational time spent by the different approaches. For multi-
level problems, mk represents the number of services in the last level, and N 
represents the number of levels. The quality of the primal solution is 
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calculated as (Z-ZLB) ZLB, where Z is the objective function value of the 
final primal solution found and ZLB is the value of the best lower bound 
known. For memetic algorithms the computational time spent until the best 
solution is calculated is also shown. As can be seen, the memetic algorithm 
is capable of finding good quality solutions to the location problems solved, 
but at the expense of huge computational times, especially when compared 
with the primal-dual heuristics. The results for uncapacitated problems are 
better than the results for the capacitated ones, both for single and multi-
level case. This can be justified by the increased complexity of the 
corresponding assignment problems. 

 
Table 12-2. Quality of the primal solution (in percentage) – uncapacitated single level 
location problem 

   
Primal-dual 

heuristic 
Memetic 
algorithm    

Primal-dual 
heuristic 

Memetic 
algorithm 

T m n Average  Average  T m n Average  Average  
5 5 25 0.0 0.0 0.0 0.0 20 5 50 0.3 0.5 0.0 0.0 
5 5 50 0.0 0.0 0.0 0.0 20 5 100 0.2 0.4 0.6 0.5 
5 5 100 0.0 0.0 0.0 0.0 20 5 200 0.0 0.0 1.1 1.5 
5 5 200 0.0 0.0 0.0 0.0 20 5 500 0.0 0.0 0.1 0.2 
5 5 500 0.0 0.0 0.0 0.0 20 5 1000 0.0 0.0 0.0 0.0 
5 5 1000 0.0 0.0 0.0 0.0 20 10 25 0.0 0.0 0.2 0.4 
5 10 25 0.0 0.0 0.0 0.0 20 10 50 0.2 0.3 0.4 0.4 
5 10 50 0.0 0.0 0.0 0.0 20 10 100 0.0 0.0 0.7 0.4 
5 10 100 0.0 0.0 0.0 0.0 20 10 200 0.0 0.0 0.6 0.3 
5 10 200 0.0 0.0 0.0 0.0 20 10 500 0.0 0.0 0.2 0.2 
5 10 500 0.0 0.0 0.0 0.0 20 10 1000 0.0 0.0 0.0 0.0 
5 10 1000 0.0 0.0 0.0 0.0 20 50 25 0.0 0.0 9.3 3.7 
5 50 25 0.1 0.1 0.1 0.1 20 50 50 1.1 1.1 8.8 5.8 
5 50 50 0.4 0.7 0.0 0.0 20 50 100 0.3 0.5 7.8 0.8 
5 50 100 0.2 0.2 0.1 0.2 50 5 25 2.7 3.1 3.1 4.1 
5 50 200 0.0 0.0 0.1 0.1 50 5 50 1.5 1.8 2.7 2.5 
5 50 500 0.1 0.1 0.1 0.1 50 5 100 1.1 1.6 5.2 3.7 
5 50 1000 0.1 0.1 0.0 0.0 50 5 200 0.4 0.4 1.5 0.8 
5 100 25 0.5 1.1 0.4 0.8 50 5 500 0.6 0.7 0.7 0.3 
5 100 50 0.4 0.6 0.0 0.0 50 5 1000 0.5 0.5 0.5 0.3 
5 100 100 0.4 0.5 0.8 0.6 50 10 25 1.7 0.6 6.6 3.9 
5 100 200 0.3 0.4 0.4 0.6 50 10 50 0.7 0.6 7.1 5.1 
5 100 500 1.0 0.9 0.8 1.1 50 10 100 1.1 0.9 4.9 2.2 
5 100 1000 2.2 0.4 2.0 0.2 50 10 200 2.2 1.6 3.5 2.2 

20 5 25 0.0 0.0 0.0 0.1 50 10 500 0.6 0.8 2.3 0.6 
       50 10 1000 0.9 1.1 0.9 0.3 
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Table 12-3. Computational times (in seconds) – uncapacitated single level location problem 

   
Primal-dual 

heuristic CPLEX Memetic Algorithm
Memetic Algorithm – 

best solution 
T m n Average  Average  Average  Average  
5 5 25 0.0 0.0 0.0 0.0 2.2 0.2 0.16 0.1
5 5 50 0.0 0.0 0.2 0.3 3.5 0.8 0.22 0.1
5 5 100 0.0 0.0 0.1 0.0 7.3 0.9 0.38 0.1
5 5 200 0.0 0.0 4.5 8.3 35.1 3.5 4.50 2.1
5 5 500 0.0 0.0 1.1 0.0 88.3 11.5 9.85 4.1
5 5 1000 0.0 0.0 2.9 0.1 170.2 13.2 12.34 2.4
5 10 25 0.0 0.0 0.1 0.0 11.3 0.8 0.67 0.0
5 10 50 0.0 0.0 0.4 0.5 22.1 2.0 1.41 0.2
5 10 100 0.0 0.0 1.1 1.6 65.2 7.1 3.98 0.9
5 10 200 0.0 0.0 2.5 3.4 184.8 5.4 48.18 28.7
5 10 500 0.1 0.0 28.4 30.8 493.7 33.8 48.94 21.6
5 10 1000 0.1 0.0 7.4 0.6 967.5 69.9 412.38 266.2
5 50 25 0.0 0.0 0.4 0.0 590.4 25.8 67.06 16.2
5 50 50 0.0 0.0 0.7 0.0 1511.6 57.5 184.89 70.8
5 50 100 0.0 0.0 110.5 170.4 3717.0 472.3 1099.40 910.7
5 50 200 0.2 0.0 146.1 217.7 7717.4 1476.1 3724.68 2733.0
5 50 500 1.2 0.2 2463.1 2256.0 16910.3 1296.4 6372.27 4333.8
5 50 1000 3.8 0.5 37328.2 58013.4 33957.0 4163.6 11978.96 10181.2
5 100 25 0.0 0.0 2.9 3.9 3479.2 379.8 1030.52 998.1
5 100 50 0.0 0.0 6.7 10.3 7737.8 600.4 1559.78 790.3
5 100 100 0.1 0.0 103.5 82.6 17925.6 2344.7 11200.10 3487.9
5 100 200 0.8 0.1 1128.5 1408.4 33449.2 2404.7 21422.60 4479.8
5 100 500 4.3 0.7 170075.4 156371.0 76531.5 8971.1 31624.03 24274.9
5 100 1000 11.7 1.8 --- --- 147134.0 10427.1 58450.72 18559.0

20 5 25 0.0 0.0 1.2 0.1 95.1 20.6 15.77 14.6
20 5 50 0.1 0.0 2.3 0.0 237.0 21.7 46.21 33.1
20 5 100 0.2 0.1 28.7 47.2 605.1 38.6 216.80 95.6
20 5 200 0.3 0.1 15.7 3.6 1000.7 15.7 189.47 122.5
20 5 500 1.0 0.3 563.6 115.3 3589.9 1011.2 1284.81 1142.8
20 5 1000 2.1 0.6 7821.6 347.9 9014.2 1797.0 4276.58 3402.5
20 10 25 0.0 0.0 2.9 0.5 820.1 144.8 490.09 268.2
20 10 50 0.2 0.1 6.0 0.1 1843.2 203.1 835.54 497.0
20 10 100 0.6 0.1 14.2 0.4 4525.0 508.3 2163.48 736.1
20 10 200 1.3 0.2 271.3 140.0 9470.3 1777.7 4311.96 3051.7
20 10 500 3.4 0.6 9379.2 218.2 23506.7 2064.4 11443.03 4535.0
20 10 1000 8.0 1.8 --- --- 30114.9 2475.7 11855.76 4360.1
20 50 25 0.9 0.2 118.2 114.1 19609.9 425.4 2748.19 781.1
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20 50 50 5.0 0.5 1881.2 1094.0 42472.7 4313.7 7044.99 9003.2
20 50 100 15.5 0.4 9657.4 282.5 83202.3 2610.9 6581.03 1815.0
50 5 25 0.5 0.1 152.9 22.8 196.9 46.1 82.83 43.1
50 5 50 1.4 0.0 3994.2 465.7 533.9 53.2 207.49 92.1
50 5 100 2.6 0.1 --- --- 931.2 166.3 322.54 226.0
50 5 200 5.8 0.8 --- --- 2574.6 409.7 494.59 372.8
50 5 500 14.9 3.5 --- --- 6270.2 1192.9 2056.53 1627.3
50 5 1000 33.6 2.2 --- --- 13617.9 1520.4 2530.93 1606.0
50 10 25 2.2 0.2 4070.8 127.5 2841.4 242.0 1162.50 757.0
50 10 50 5.1 0.6 --- --- 6983.3 1693.8 3948.66 2190.3
50 10 100 10.7 0.7 --- --- 11666.1 1648.8 3925.25 2470.7
50 10 200 24.8 0.7 --- --- 27557.8 4473.6 3857.47 1607.6
50 10 500 62.3 2.6 --- --- 65213.5 10713.7 21151.65 24420.8
50 10 1000 126.6 12.1 --- --- 149904.8 11332.1 55343.04 38990.3

 

Table 12-4. Quality of the primal solution (in percentage) - single-level capacitated location 
problem 

   
Primal-dual 

heuristic 
Memetic 

algorithm    
Primal-dual 

heuristic 
Memetic 

algorithm 
T m n Average  Average  T m n Average  Average  
5 25 5 0.1 0.1 0.0 0.0 5 500 10 1.2 1.2 0.7 1.3 
5 25 10 1.8 2.2 0.8 1.4 5 500 20 0.8 0.3 4.1 1.5 
5 25 20 1.7 0.8 2.6 1.3 10 25 5 2.4 1.5 0.0 0.0 
5 50 5 0.1 0.1 0.0 0.0 10 25 10 0.6 0.7 0.0 0.1 
5 50 10 0.9 1.0 0.0 0.1 10 25 20 2.6 1.9 1.1 0.5 
5 50 20 3.3 1.4 2.7 1.5 10 50 5 1.3 1.8 0.0 0.0 
5 100 5 0.6 1.1 0.0 0.0 10 50 10 1.9 0.8 0.1 0.2 
5 100 10 1.0 1.2 0.5 1.1 10 50 20 1.5 0.5 1.8 0.8 
5 100 20 1.7 1.2 2.6 0.5 10 100 5 1.5 1.8 0.0 0.0 
5 100 50 1.4 1.1 6.2 1.1 10 100 10 0.2 0.4 0.2 0.2 
5 200 5 0.3 0.5 0.0 0.1 10 100 20 3.5 1.3 1.5 1.2 
5 200 10 0.6 0.9 1.7 1.0 10 100 50 1.3 0.4 3.6 0.8 
5 200 20 1.9 1.0 2.4 1.0 10 200 5 0.9 0.5 0.0 0.0 
5 200 50 2.1 0.6 5.9 1.3 10 200 10 1.3 1.1 0.3 0.3 
5 500 5 0.6 1.1 1.1 1.7 10 200 20 1.3 1.0 0.6 0.5 

 
 

In the uncapacitated multi-level case, the memetic algorithm is capable of 
finding better solutions than the primal-dual heuristic. The consideration of 
more than one level does not deteriorate the performance of the memetic 
algorithm, because the assignment problems are, in the case, very simple to 
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solve. However, the primal-dual heuristic is much more complex in the multi 
than in the single-level case. It can also be seen that the memetic algorithm is 
wasting too much time on unfruitful generations, after finding the best 
solution.  

 

Table 12-5. Computational times (in seconds) - single-level capacitated location problem 

   
Primal-dual 

heuristic CPLEX Memetic Algorithm 
Memetic Algorithm 

– best solution 
T m n Average  Average  Average  Average  
5 25 5 0.0 0.0 0.2 0.1 25.7 5.8 0.7 0.3
5 25 10 0.1 0.0 1.1 0.8 147.2 46.0 16.0 13.9
5 25 20 0.4 0.3 4.1 2.2 552.5 97.4 312.2 121.2
5 50 5 0.1 0.0 1.2 1.2 48.3 21.4 1.5 0.2
5 50 10 0.2 0.1 25.9 37.4 323.0 72.9 68.9 51.6
5 50 20 0.7 0.1 10.9 9.7 1647.5 457.5 901.6 492.3
5 100 5 0.2 0.1 2.2 2.3 163.9 52.0 5.6 3.6
5 100 10 0.5 0.2 16.2 10.7 902.5 202.7 366.0 247.0
5 100 20 3.6 2.6 112.6 65.4 4072.5 649.1 1973.9 1037.6
5 100 50 26.0 18.9 360.0 130.1 25394.0 1672.4 15109.8 1271.7
5 200 5 0.3 0.3 7.4 6.6 416.1 171.3 45.2 71.5
5 200 10 1.8 1.2 113.5 120.8 1851.0 357.6 452.9 313.4
5 200 20 11.4 5.1 296.2 171.0 12640.7 2612.8 6124.6 4339.2
5 200 50 124.8 118.6 28346.6 36332.1 121565.0 23962.4 76304.3 33241.2
5 500 5 1.9 0.8 58.4 50.7 1277.0 528.9 58.5 35.5
5 500 10 5.1 2.3 228.3 231.9 9392.7 4832.1 3070.7 3666.5
5 500 20 70.5 30.7 7135.6 7897.5 53807.7 17463.3 25216.9 17827.1

10 25 5 0.2 0.1 2.4 1.9 95.0 17.0 3.7 3.1
10 25 10 0.5 0.2 6.1 4.4 926.6 265.8 111.7 69.8
10 25 20 2.2 1.3 119.1 120.1 3603.1 1266.7 2140.9 1439.1
10 50 5 0.5 0.2 2.7 1.9 292.1 87.6 57.2 57.2
10 50 10 2.1 0.7 19.1 14.2 1671.1 469.6 656.0 497.8
10 50 20 5.7 1.0 201.0 164.0 8257.6 2757.0 5130.2 2430.7
10 100 5 1.9 0.2 12.0 4.9 672.9 226.2 62.2 67.7
10 100 10 5.6 1.2 70.8 92.8 3802.3 371.5 1484.7 866.4
10 100 20 20.4 4.5 1681.9 1196.8 31651.2 7415.1 20313.1 9073.6
10 100 50 545.3 139.2 121381.2 96307.0 150728.3 37868.0 72466.1 46691.3
10 200 5 4.8 1.8 104.5 77.2 2426.0 785.2 635.6 753.7
10 200 10 17.0 3.1 278.0 157.3 13266.1 5280.5 5868.5 5953.2
10 200 20 96.9 26.2 14902.7 25460.5 76893.0 22831.8 26761.6 24415.7
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Table 12-6. Computational time (in seconds) - multi-level uncapacitated location problem 

    
Primal-dual 

heuristic CPLEX Memetic Algorithm
Memetic Algorithm – 

best solution 
T m n mk Average  Average  Average  Average  
5 2 25 2 0.0 0.0 0.1 0.1 1.0 0.1 0.0 0.0
5 2 25 5 0.0 0.0 0.2 0.0 13.3 1.1 0.3 0.1
5 2 50 2 0.0 0.0 0.1 0.0 1.8 0.1 0.0 0.0
5 2 50 5 0.1 0.0 0.5 0.0 27.5 1.4 0.7 0.0
5 2 50 10 0.2 0.1 11.9 20.4 255.5 16.6 12.5 15.9
5 2 100 2 0.0 0.0 0.2 0.0 3.0 0.2 0.1 0.0
5 2 100 5 0.1 0.0 1.2 0.3 60.9 2.3 1.7 0.7
5 2 100 10 0.6 0.3 33.1 57.6 550.8 21.6 14.8 6.7
5 3 25 2 0.1 0.0 0.3 0.0 20.8 0.6 0.4 0.1
5 3 25 5 4.4 3.4 11.5 9.4 895.9 44.1 64.3 40.5
5 3 50 2 0.1 0.1 0.7 0.0 41.8 1.3 0.8 0.3
5 3 50 5 2.5 1.6 17.8 7.2 1626.5 96.2 35.4 13.4
5 3 100 2 0.2 0.2 1.4 0.1 20225.8 40254.1 282.5 561.7
5 3 100 5 4.8 3.0 117.2 20.8 3615.7 219.3 303.4 287.7

10 2 25 2 0.0 0.0 0.3 0.1 8.6 2.3 1.9 3.4
10 2 25 5 0.1 0.1 1.0 0.4 92.5 5.1 6.8 4.9
10 2 50 2 0.0 0.0 0.4 0.0 13.6 0.6 0.4 0.2
10 2 50 5 0.8 1.0 5.6 6.5 203.3 3.9 13.5 7.9
10 2 50 10 1.1 0.2 6.2 1.8 1922.6 336.9 515.5 578.9
10 2 100 2 0.1 0.0 0.9 0.0 26.6 1.9 2.0 1.8
10 2 100 5 0.7 0.2 7.3 4.9 470.3 34.3 49.4 50.0
10 2 100 10 5.9 5.5 49.6 45.5 3801.2 875.3 1187.1 1354.9
10 3 25 2 0.2 0.1 0.9 0.0 153.1 2.8 4.6 1.4

5. CONCLUSIONS 

For this kind of problems, genetic algorithms have to be hybridized with 
local search procedures, otherwise they will have a weak performance. The 
computational results show that the memetic algorithm needs much longer 
computational times than primal-dual heuristics, and sometimes reaches 
better solutions. Nevertheless, the primal-dual heuristics present a better 
compromise between solution quality and computational time needed. The 
main advantage of the memetic algorithm relies on the fact that a single 
algorithm can solve several different problems, whereas a primal-dual 
heuristic has to be dedicated to a particular location problem. This is 
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especially important if, in a given problem, there is a set of facilities to 
locate with different characteristics. 

Table 12-7. Quality of the primal solution (in percentage) - multi-level capacitated location 
problem 

    
Primal-dual 

heuristic 
Memetic 

Algorithm     
Primal-dual 

heuristic 
Memetic 

Algorithm 
T m n mk Average  Average  T m n mk Average  Average  
5 2 25 2 0.0 0.0 0.3 0.4 5 3 50 2 0.4 0.8 1.7 0.9
5 2 25 5 1.7 2.2 1.7 0.9 5 3 100 2 1.2 1.7 2.4 0.7
5 2 50 2 0.0 0.0 1.0 0.7 10 2 25 2 0.4 0.5 2.4 1.1
5 2 50 5 0.3 0.3 0.9 0.7 10 2 25 5 1.5 1.0 4.5 2.8
5 2 50 10 3.1 1.3 4.4 1.8 10 2 50 2 0.5 0.7 1.4 0.7
5 2 100 2 0.2 0.3 0.9 1.2 10 2 50 5 1.1 0.7 4.1 0.7
5 2 100 5 1.9 1.8 2.0 2.5 10 2 50 10 3.6 0.5 8.2 0.8
5 2 100 10 4.5 2.0 6.1 1.9 10 2 100 2 1.0 1.6 1.1 0.5
5 3 25 2 1.1 1.5 2.1 1.8 10 2 100 5 1.8 0.6 3.4 1.8

 

Table 12-8. Computational Times (in seconds) - multi-level capacitated location problem 

    
Primal-dual 

heuristic CPLEX Memetic Algorithm

Memetic 
Algorithm – best 

solution 
T m n mk Average  Average  Average  Average  
5 2 25 2 0.2 0.1 0.3 0.3 4.9 2.4 0.7 0.5
5 2 25 5 1.2 0.2 38.1 14.0 137.6 88.2 100.4 73.6
5 2 50 2 0.4 0.0 1.3 0.5 33.7 21.5 12.8 16.6
5 2 50 5 2.7 0.6 517.8 355.1 301.4 113.0 205.6 83.4
5 2 50 10 22.6 2.8 206468.8 12932.7 1614.1 385.4 829.5 490.8
5 2 100 2 0.8 0.1 10.5 8.0 54.4 43.7 22.1 25.0
5 2 100 5 6.6 1.5 618.9 462.1 948.9 207.8 628.8 167.9
5 2 100 10 70.1 4.0 184026.7 31963.0 6139.6 1964.6 4543.9 1856.1
5 3 25 2 1.3 0.2 11.0 6.6 72.4 43.6 46.9 32.8
5 3 25 5 159.6 18.9 30412.0 11380.6 1413.1 2826.1 344.7 689.3
5 3 50 2 3.6 1.4 109.2 78.1 104.4 69.9 56.6 42.4
5 3 100 2 15.9 4.4 385.4 111.4 182.4 54.0 125.3 53.6

10 2 25 2 0.6 0.1 3.9 3.3 57.4 53.5 23.5 14.5
10 2 25 5 4.5 1.2 1571.0 2613.3 870.2 539.4 475.4 375.8
10 2 50 2 1.1 0.2 13.1 10.5 146.3 163.4 103.4 116.8
10 2 50 5 6.0 1.8 3152.9 4061.9 3434.8 2218.4 2568.3 2077.1
10 2 50 10 57.9 10.4 120585.3 59943.9 11647.2 3484.6 7119.0 3266.5
10 2 100 2 2.9 0.5 29.5 25.1 510.2 460.3 260.0 299.3
10 2 100 5 18.7 4.0 16433.4 15863.2 14402.6 9964.6 3835.1 2368.4
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Several things can be done to improve the performance of the memetic 
algorithm. It is possible to explore different definitions of neighborhoods to 
use during local search, improving the procedure that is responsible for most 
of the computational time spent. The repair procedure presently relies only 
on randomness. However, the algorithm could incorporate some of the 
primal procedures developed for primal-dual heuristics. The use of solutions 
calculated using the primal-dual heuristics in the initialization of the 
population can also decrease the importance of the local search procedure, 
decreasing the total computational time (if the local search procedure needs 
to be executed fewer times). The crossover operator could also be changed, 
so that children can be generated in a different way. With the present 
operator, children have the pattern of opened and closed facilities in each 
time period equal to one of their parents. If an adaptation of the three point 
crossover is considered instead, then each matrix will be divided into four 
sub-matrixes. There will be more degrees of freedom to create children, 
increasing the population’s diversity and helping the algorithm to converge 
to a good quality solution more quickly. Some kind of tournament between 
all the generated children could be considered. This kind of crossover can 
also be used to increase the number of individuals in the population, instead 
of randomly generating all of them. Last, but not least, we should look 
carefully to the codification of solutions. If, at a first glance, the option of 
not codifying the assignment variables seems to be a good approach, and 
does not seem to have any disadvantage (apart from the fact that we need to 
solve an assignment problem for each individual), when additional 
restrictions are introduced, things are not that simple. It is necessary to 
continue studying possibilities of different representations for solutions, or 
choose to work simultaneously with two different populations. The results 
obtained thus far encourage us to follow this line of work and extend the use 
of this memetic algorithm to multi-objective dynamic facility location 
problems, as well as to situations with several decision makers. 
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Abstract In order to solve a Non-Stationary Optimization Problem (NSOP) it
is necessary that the used algorithms have a set of suitable properties
for being able to dynamically adapt the search to the changing fitness
landscape. Our aim in this work is to improve our knowledge of ex-
isting canonical algorithms (steady-state, generational, and structured
–cellular– genetic algorithms) in such a scenario. We study the behavior
of these algorithms in a basic Dynamic Knapsack Problem, and utilize
quantitative metrics for analyzing the results. In this work, we analyze
the role of the mutation operator in the three algorithms and the im-
pact of the frequency of dynamic changes in the resulting difficulty of
the problem. Our conclusions outline that the steady-state GA is the
best in fast adapting its search to a new problem definition, while the
cellular GA is the best in preserving diversity to finally get accurate
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solutions. The generational GA is a tradeoff algorithm showing perfor-
mances in between the other two.

Keywords: Non-Stationary Problem, Dynamic Knapsack Problem, Cellular GA.

Introduction
In recent years we have seen an increasing number of applications

of Evolutionary Algorithms to Non-Stationary Optimization Problems
(NSOPs) [Branke, 2001]. Many systems can be modeled as a changing
search landscape, such as the optimization of the car traffic flow by
optimally synchronizing red light controllers, or the optimal service of
a multielevator system to minimize the waiting time of passengers in a
building. However, we feel that much work has been put into developing
new algorithms while maybe it should be first necessary to know more on
the comparative advantages of existing solvers for this kind of problems.

We will proceed in this study by analyzing evolutionary algorithms
(EAs) [Bäck et al., 1997] including panmictic as well as structured ones.
This article is an extension of [Alba and Saucedo, 2005] which now pro-
vides a more thorough analysis of the dynamic scenarios for the problem
under study.

Defining and using quantitative metrics becomes also important with
NSOPs to avoid extracting conclusions by simple visual inspection, and
since most existing metrics are devoted to static optimization. We will
also include a statistical significance study since we are dealing with non
deterministic algorithms.

Our contributions will allow to rank three kinds of EAs according to
the used metrics to guide further research. We also study the impact of
the mutation rate and several features of the dynamic problem to solve
(e.g., the period of change and the severity of change).

The work is structured as follows: Section 1 introduces the NSOP
concept, and a (very) brief state of the art on the Dynamic Knapsack
Problem. In Section 2 we describe our algorithms. Section 3 contains a
discussion of the metrics used and the details of the different configura-
tions of our approaches used in the experimentation section. We perform
an experimental analysis and explain the results in Section 4. Finally,
Section 5 summarizes the main conclusions and draws some future re-
search lines.

1. Dynamic Knapsack Problem (DKP)
A non-stationary optimization problem is known to change over time

the optimized function, the problem instance, and/or the restrictions.
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There is a wide variety of possible types of environmental dynamics,
therefore, a formal description for such problems is necessary. A mathe-
matical definition was given by K. Weicker in [Weicker, 2000] but because
it is too general and we want to study the basic behavior of the standard
GAs (a subclass of EAs), we now delimit the used NSOP subclass.

In our case, the non-stationary function shifts in a regular (cyclic)
manner among different versions of the same basic problem. In conse-
quence, we can state this function as a shifting among n subfunctions
(Equation 13.1), in our case n = 2, 3, or 8, with a certain period of
change of p generations. As a consequence, the optimization process be-
comes a process of learning several optima. The technique showing the
highest velocity of adaptation with the lower distance to the optimum
between each period of change is usually determined as the best.

f (�x, ti) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1 (�x) , for i mod n = 0
f2 (�x) , for i mod n = 1
...

...
fn (�x) , for i mod n = (n− 1)

(13.1)

The Dynamic Knapsack Problem (DKP) falls in this class of problems.
DKP is a variant of the well-known knapsack problem which consists in
maximizing the total value of a subset of objects (selected from a set of N
possible objects) that are placed into a knapsack which has a maximum
weight constraint. Each object has an associated value vi and weight wi.
Therefore, the objective is

max
N∑
i=1

vixi subject to
N∑
i=1

wixi ≤W

where W is the weight limit, which in this study changes in time. Here,
the xi variables take on the values 1 or 0 to indicate that the object is
in or out of the knapsack, respectively.

One of the first works using this problem can be found in [Gold-
berg and Smith, 1987]. They used a knapsack problem with 17-objects
whose values, weights, and optimal solutions are shown in Table 13.1.
Therefore, their problem encodes the xi values contiguously to form a 17-
bit string. The constraint inequality is managed as an external penalty
method, where weight violations are squared and multiplied by a penalty
coefficient (λ = 20). The resulting fitness function for unfeasible solu-
tions can be defined as

f(x) =
N∑
i=1

vixi − λ
(

N∑
i=1

wixi −W
)2

(13.2)
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Table 13.1. The 17-Object, 0-1 knapsack problem plus its two optimal solutions

Object
Number

i

Object
Value
vi

Object
Weight
wi

Optimum= 71
(W1 = 60)

Optimum= 87
(W2 = 104)

1 2 12 0 0
2 3 5 1 1
3 9 20 0 1
4 2 1 1 1
5 4 5 1 1
6 4 3 1 1
7 2 10 0 0
8 7 6 1 1
9 8 8 1 1
10 10 7 1 1
11 3 4 1 1
12 6 12 1 1
13 5 3 1 1
14 5 3 1 1
15 7 20 0 1
16 8 1 1 1
17 6 2 1 1

Total: 91 122 13 Objects 15 Objects

In [Goldberg and Smith, 1987], the non-stationary effect is produced
by the change on the maximum capacity from W1 to W2, and vice versa.
When the weight value changes from W2 = 104 to W1 = 60 the current
solutions also change their fitness evaluation, due to some feasible solu-
tions for W2 can become unfeasible with the new weight, and therefore
their fitness value will be penalized according to Equation 13.2. The
previous solutions must be usually removed in some manner, and the
algorithm is forced to search anew. In our case, we are going to use
the same parameters as Goldberg and Smith but we change the weight
limit between more than two weights, and we make a wider study by
analyzing different periods of change.

This problem has been widely used in the literature [Goldberg and
Smith, 1987; Dasgupta and McGregor, 1992]. Sometimes it has been
used in order to compare the Diploid/Dominance mechanism, [Goldberg
and Smith, 1987; Ryan, 1997]. In [Lewis et al., 1998], the authors used
also a knapsack problem with 14-objects and random periods of change.

Besides, this problem has been useful for comparing algorithms, e.g.,
steady state genetic algorithm with aging of individuals in [Ghosh et al.,
1998], the feedback thermodynamical GA in [Mori et al., 1998] the re-
placement strategies in steady state GA in [Smith and Vavak, 1999],
several approaches for maintaining diversity in [Andrews and Tuson,
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2003], and so on. Recently, the Dynamic Knapsack Problem has been
labeled as a “Suitable Benchmark Problem” in [Branke, 2001].

2. The Algorithms
The canonical algorithms whose behavior we analyze in this article

are: (1) a steady-state GA (ssGA), (2) a generational GA (genGA), and
(3) a cellular GA (cGA). There exist partial studies with similar goals in
the literature [Vavak and Fogarty, 1996; Smith and Vavak, 1999; Salomon
and Eggenberger, 1998]. In particular, in [Vavak and Fogarty, 1996] the
authors compare ssGA versus genGA for a single non-stationary bit-
matching instance. However, the cellular GA is not considered at all,
and the scope of the study is very narrow (no quantitative measures,
which have appeared more recently). The well known high capacity of
cellular EAs for maintaining diversity is the main reason for including
them in a study on non-stationary problems. One (isolated) leading
work on comparing a cellular GA versus more traditional ones can be
found in [Sarma and De Jong, 1999]; again, the same narrow scope can
be imputed to this interesting study, since measures are not used, nor
different classes of panmictic EAs are considered. In order to unam-
biguously report the algorithms, we proceed to a detailed (but brief)
description of them.

In steady-state algorithms [Syswerda, 1991] only a few individuals are
created and replaced in each iteration (one individual in our case). With
ssGA, the least fit individual is replaced by the offspring resulting from
crossover and mutation of the selected individuals, as presented in the
pseudocode reported in Figure 13.1.

The pseudocode of a genGA [Whitley, 1989] can also be seen in Figure
13.1. Note that, at each iteration, the new population consists entirely
of offspring computed after parents in the previous generation. The
basic step creates a whole new population that replaces the old one (the
best individual is preserved –elitism–). This algorithm is expected to
maintain diversity for a larger number of generations.

The ssGA is expected to have a fast convergence to an optimum with
respect to genGA. The question is whether this is a good feature for a
given non-stationary problem or not.

Finally, a cGA replaces the population at each iteration (like genGA).
However, the genetic operators are always applied inside neighborhoods
of 5 individuals. Each individual is iteratively considered as the central
point of the neighborhood composed by it plus its north-south-east-
west neighboring individuals. This means that an individual may only
interact with its nearby neighbors in the breeding loop.
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ssGA genGA

proc Reproductive Cycle(ga):
for s = 1 to MAX STEPS do

parent1=Select(ga.pop);
parent2=Select(ga.pop);
Crossover(ga.Pc,

parent1, parent2, ind aux.chrom);
Mutate(ga.Pm, ind aux.chrom);
ind aux.fitness=

ga.Evaluate(Decode(ind aux.chrom));
Insert New Ind(ga,

ind aux, [if better | worst]);
end for;

end proc Reproductive Cycle;

proc Reproductive Cycle(ga):
for s = 1 to MAX STEPS do

p list = Select(ga.pop);
for i = 1 to POP SIZE / 2 do

Crossover(ga.Pc, p list[i],
p list[POP SIZE/2 + i], ind aux.chrom);

Mutate(ga.Pm, ind aux.chrom);
ind aux.fitness=

ga.Evaluate(Decode(ind aux.chrom));
Insert New Ind(pop aux, ind aux);

end for;
ga.pop=pop aux; [elitist | non elitist]

end for;
end proc Reproductive Cycle;

cGA
proc Reproductive Cycle(ga):

for s = 1 to MAX STEPS do
for x = 1 to WIDTH do

for y = 1 to HEIGHT do
n list= Calculate neigbors(ga , position (x,y));
parent1=Select(n list);
parent2=Select(n list);
Crossover(ga.Pc, n list[parent1], n list[parent2], ind aux.chrom);
Mutate(ga.Pm, ind aux.chrom);
ind aux.fitness=ga.Evaluate(Decode(ind aux.chrom));
Insert New Ind(position(x,y),ind aux,[if better | always], ga, pop aux);

end for;
end for;
ga.pop=pop aux;

end for;
end proc Reproductive Cycle;

Figure 13.1. Pseudocode of the Algorithms.

The new offspring replaces the central individual of the neighborhood
only if it has a higher fitness (assuming maximization). The basic algo-
rithm is synchronous: the computed new population is stored in a tem-
porary population that replaces the old one at the end of each step. This
algorithm is similar to that of [Sarma and De Jong, 1996] and is described
in Figure 13.1. Its population is structured in a toroidal 2D grid. More
details can be found in [Manderick and Spiessens, 1989; Alba and Troya,
2000]. Since an individual belongs to several neighborhoods at the same
time, any change in its contents affects its neighbors in a smooth man-
ner, being a good tradeoff between convergence and exploration of the
search space. In fact, one outstanding feature of cGAs is that they can
be easily tuned to match any desired exploration/exploitation tradeoff
as shown in [Alba and Troya, 2000].

All our algorithms implement a fitness proportionate sampling mech-
anism for parents selection. Also, they use one point crossover yielding
only one child: the one having the largest portion of the best parent.
The applied mutation is a standard bit-flip operation.
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3. Experimental Setup
In the NSOP literature, the algorithms are usually compared by means

of human observation of the graphs containing the average/best fitness
curves along the time, which is too subjective. We use here quantitative
values by adhering to a metric and the graphs are just used as summary
of objective data. Let us begin by pointing out the ideas developed in
[Branke, 2001; Weicker, 2002; Morrison, 2003] for comparing the perfor-
mance of the algorithms in NSOPs. As stated in [Weicker, 2002]

“The goal of an evolutionary search process in a dynamic environment
is not only to find an optimum within a given number of generations but
rather a perpetual adjustment to changing environmental conditions”.

So, we will consider, here, his three metrics (1) accuracy, (2) stability,
and (3) ε−reactivity (see [Weicker, 2002] for more details).

In order to measure the degree of accuracy, we have used Equation
13.3. The stability (Equation 13.4) measures the change in the accu-
racy values at time t (best value is 0). The reactivity (Equation 13.5)
measures the time in which accuracy is similar to that of time t, and its
optimum value is 1. Our summaries show the mean over all generations.

accuracy(t) =
f (best, t)

Optimum(t)
(13.3)

stability(t) = max {0, accuracy(t)− accuracy(t− 1)} (13.4)

ε− reactivity(t) = min {D ∪maxgenerations− t} (13.5)

D =
{
t′ − t/accuracy(t′)

accuracy(t)
≥ (1− ε), t < t′ ≤ maxgenerations; t, t′ ∈

}

Because of the fact that we use numeric metrics, we can include dif-
ferent periods of change in order to study how well the three algorithms
adapt their search depending of the frequency of problem changes. In
each one, we use several mutation rates to find general conclusions, from

1
5∗L to 5

L , where L = 17 is the length of binary string. The parameters
used in each algorithm are summarized in Table 13.2.

Table 13.2. Parameters of the algorithms.

Popsize
String
Length

Parent’s Selection Crossover
Bit Mutation

Reference
Replacement

225(
15× 15
for cGA

)
17

Roulette Wheel
+

Roulette Wheel

SPX,
pc = 1.0

pm = 1/L
= 0.0588235

Rep Least Fit

Firstly, we compare the algorithms using the same parameters as in
[Goldberg and Smith, 1987]. Then, we do a comparison of the algorithms
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using the DKP with the same parameters but with different periods of
change. We shift the period of change from 1 to 31 generations in steps
of 2 (in [Goldberg and Smith, 1987], a single period of 15 generations
are used). As the Hamming distance between two optima, which is 2, is
low, we include a third change which is more disruptive. We use a new
weight limit, W = 30, whose associated optimum is 50. This optimum
has a Hamming distance of 4 with respect to optimum 71 (W2 = 60)
and 6 from optimum 87 (W1 = 104). Finally, we study a progressive
change among 8 optima (i.e., the optimum value is smoothly increased
from W1 to W8, and then a drastic change occurs between W8 and W1,
and so on), where the Hamming distance changes in the sequence shown
in Table 13.3.

Table 13.3. Weight Limit and Hamming Distance for the problem with eight optima.

Weight Limit

W1 W2 W3 W4 W5 W6 W7 W8

104 91 79 67 60 54 42 30

Hamming Distance between two consecutive optimal solutions

W1-W2 W2-W3 W3-W4 W4-W5 W5-W6 W6-W7 W7-W8 W8-W1

3 4 1 3 2 1 3 7

We always perform 100 independent runs of the problem for each
experiment, and compute the mean of each of the three metrics in every
case. In order to compare these means, we first check if data are normally
distributed using the Kolmogorov-Smirnov test, and if so, we carry out
an ANOVA test in order to compare the means. If data are not normally
distributed then we do a Kruskal-Wallis test in order to compare the
medians. We perform a multiple comparison test in order to determine
which means (or medians) are significantly different. All these tests use
a level of confidence of 95%.

4. Computational Experiments and Analysis
In this section we describe and discuss the results after running our

three approaches over the dynamic problem. We will proceed in four
phases. First, we analyze the problem as in [Goldberg and Smith, 1987].
In the second phase, we study the impact of the period. Later, we extend
this scenario by considering three optima. The last phase, we examine
the effect of a progressive change of optima over the behavior of our
algorithms.
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Comparing to Golberg and Smith
We begin the experimental part by using the same parameter as in

[Goldberg and Smith, 1987] to compare the three basic algorithms.
We show the impact of the mutation rate over the behavior of the

algorithms in Figure 13.2. For low values of mutation rate we can dis-
tinguish two different behaviors: generational algorithms (genGA and
cGA) achieve their best accuracy value while ssGA is not able to gen-
erate diversity enough to adapt the dynamic problem and it obtains a
very poor results. For high values of mutation rate all the algorithms
have a similar performance; as this parameter is increased, a smooth
loss of accuracy is provoked. This is due to algorithms maintain a high
diversity but they are not able to explote the good regions of the search
space found.

As a first result (Figure 13.2), ssGA (with mutation rate 8
5∗L ) and

genGA ( 2
5∗L) are the most accurate algorithms (0.991 for both). Al-

though cGA is not so accurate (0.987), its behavior is quite stable for
any value of mutation rate, and in fact, cGA obtains the best mean accu-
racy out of all the algorithms (Table 13.4). Also, its interquartile range
(IQR, i.e. the difference between the 25th and the 75th percentiles of the
data) is the lowest, indicating the mean is a very representative value
of the global behavior of the method. Therefore, cGA appears as the
most robust algorithm, while ssGA and genGA are the most accurate
but only for one concrete mutation rate.

Table 13.4. Mean accuracy values and IQR for all the mutation rates and algorithms.

(for all mutation rates) ssGA genGA cGA

Mean Accuracy Values 0.9506 0.9527 0.9711
IQR 0.0307 0.0370 0.0221

If we concentrate in other metrics (only using the optimal mutation
rates found), then ssGA ( 8

5∗L ), and genGA ( 2
5∗L ) with mean stab =

0.004 and mean stab = 0.003 respectively (which are not significantly
different each other (p value > 0.05)), are more stable than cGA ( 1

L )
with mean stab = 0.006. The ssGA is also the one reacting fastest
(ε − reactivity = 1.058) whereas there are not significant differences
between genGA and cGA (1.086, 1.081 respectively). So, while stability
seems to be a meaningful characteristic, reactivity does not seem to have
influence on accuracy which is the main characteristic. This is the reason
why in the next analysis, we mainly pay attention to the accuracy and
the stability metrics.



254 Chapter 13

Figure 13.2. Results for DKP with same parameters as in [Goldberg and Smith,
1987].

Summarizing, in this case, for concrete mutation rates the ssGA and
genGA are the best, but the most robust algorithm is cGA, indepen-
dently of the mutation rate used.

Impact of the period of change
Now, we analyze the effect of the period of change over the behavior of

the algorithms. For sake of clarity, we only show the accuracy for three
(representative) mutation rates (Figure 13.3). In general, we can observe
that for periods of change very low, the algorithms are not able to achieve
good accuracy, since the objective changes very frequently. Using higher
values of period, all the algorithms improve their performance, due to
they have time enough to adapt the search to the new optimum.

As we stated in the previous section, mutation rate plays an impor-
tant role in the behavior of ssGA and genGA (cGA is quite robust with
respect to this parameter). For a very low rate ( 2

5∗L ) and a period of
change is close to 7 generations (Figure 13.3), ssGA has a poor accuracy
(0.745), while genGA obtains the best accuracy values (0.995). On con-
trary, for high values of mutation, the behavior of this two algorithms is
the opposite, i.e., ssGA is the best one, and genGA is the worst method.

For a wide range of periods of dynamism, we can notice that cGA is
the algorithm which has the smallest variation in the accuracy value, and
therefore, it is again the most robust algorithm out of the three studied.
However, using a concrete mutation (the optimal value found for each
algorithm), we can observe that ssGA is the most accurate in general (left
graphic of Figure 13.5). The genGA is the least accurate algorithm when
the period of change is low (the objective function changes frequently),
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Mutation Rate 2
5∗L Mutation Rate 1

L
Mutation Rate 5

L

Figure 13.3. Results for DKP with several periods of change (two optima).

and there are not significant differences among the algorithms when the
period of change is high.

Extension to three optima
In order to observe the behavior of the algorithm when the change in

the environment is drastic. Now, the optima of two contiguous periods
are far each other with regard to Hamming distance, we include a third
optimum (Figure 13.4). Similarly to the previous case, mutation rate
plays an important role since it is the standard form of algorithms of
introducing diversity. This is confirmed in the actual results: with low
mutation rates ( 2

5∗L ), the algorithms have low accuracy (lower than 0.9),
whereas with high mutation rates ( 5

L ), they are more accurate. Again,
ssGA for low mutation rates has a loss of accuracy when the period of
change is close to 8 generations (this fact should need further study in
the future). As in the previous experiments, genGA is more accurate
than ssGA for low mutation rates, while ssGA outperforms genGA for
high values of mutation rate. The genGA is the most robust algorithm
in spite of in several concrete configurations it is outperformed by our
other methods.

If we only concentrate in the best accuracy values of all mutation rates
for each period of change (Figure 13.5) then we can observe that ssGA
and genGA have a similar behavior if period of change is high. However,
when the change is produced in few generations then ssGA is the most
accurate. The cellular genetic algorithm is the least accurate in general.

Summarizing, genGA is the most accurate for the best rate and it
also is the most robust. This is because the abrupt change between
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Mutation Rate 2
5∗L Mutation Rate 1

L
Mutation Rate 5

L

Figure 13.4. Results for DKP with several periods of change (three optima).

Accuracy measure for the best mutation rate
(Two optima) (Three optima) (Eight optima)

Figure 13.5. Results for DKP with the optimal mutation rates.

two consecutive optima makes the algorithms need a larger speed of
convergence and more diversity, characteristics that can be found in
genGA.

Progressive change (8 optima)
Finally, we study the problem with eight optima with a progressive

change. In this case, the first observation is that the accuracy values of
all the algorithms are very high (Figure 13.6). This fact can be due to the
progressive change between two optima, that makes easy the adaptation
of the algorithms.

In this case, the behavior is similar to the problems with two optima.
So, ssGA, is less accurate for low mutation rates and genGA is less
accurate for high mutation rates. cellular GA is the most accurate in
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general, exceeding in most cases an accuracy of 0.95. Observing the
algorithms analyzed at their best mutation rates (right graphic of Figure
13.5), ssGA is the best when the period of change is less than 15 due
to it is very fast exploiting the search space. While cGA is the most
accurate algorithm when the period of change is more than or equal
to 15, because it is able to maintain a high diversity during a large
number of generations. So, when the change happens between two or
three optima, or the Hamming distance between optima is high then the
algorithm needs to be fast in order to adapt to the change, and the ssGA
is the best, and if the change is progressive then population needs more
diversity, and the cGA is the best.

Mutation Rate 2
5∗L Mutation Rate 1

L
Mutation Rate 5

L

Figure 13.6. Results for DKP with several periods of change (eight optima).

5. Conclusions
The main purpose of this paper is to compare canonical versions of

panmitic GAs (steady-state and generational models) and structured
GAs (cellular model) in order to know their suitability for an important
class of non-stationary problems showing different dynamics. In this
way, we have used the latest advances in metrics (Weicker’s measures),
and a rigorous statistical significance study in order to have quantitative
conclusions. In this full analysis, we have considered the mutation rate,
the period of change, and the severity of change.

Our conclusions are that the accuracy of the algorithms depend on
the severity of change (in this paper, severity of change is the Ham-
ming distance between optima) and the mutation rate chosen. So, if we
choose an appropriate mutation rate for each case then ssGA is the best
choice when the problem needs fast adaptation, but, on the contrary,
this algorithm is very dependent on the choice of mutation rate. On
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the one hand, we notice that genGA obtains accurate results in NSOPs,
maybe better than what could have been expected after some works on
static problems [Alba and Troya, 2002]. While cGA is the most robust,
almost as accurate as the best algorithm in each case, and it is the clear
best when the problem needs actual diversity in the adaptation. With
regard to the mutation rate, genGA has a constant behavior for all the
problems with its best mutation rate close to 1/L, being L the length
of the individual. However, for ssGA, the optimal mutation rate is very
dependent on the difficulty of the problem. The summary conclusion
for the case of having very different optima in two consecutive periods
(intense change in the seeked solution) is that a higher mutation rate
would be needed for the three algorithms.

Important future research lines include using specific problems gener-
ators and proposing a new cellular model for NSOPs.
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Abstract For many practical optimization problems, the evaluation of a solution
is subject to noise, and optimization heuristics capable of handling such
noise are needed. In this paper we examine the influence of noise on
particle swarm optimization and demonstrate that the resulting stagna-
tion can not be removed by parameter optimization alone, but requires
a reduction of noise through averaging over multiple samples. In order
to reduce the number of required samples, we propose a combination of
particle swarm optimization and a statistical sequential selection pro-
cedure, called optimal computing budget allocation, which attempts to
distribute a given number of samples in the most effective way. Exper-
imental results show that this new algorithm indeed outperforms the
other alternatives.

Keywords: Particle Swarm Optimization, Noise, Sequential Sampling



262 Chapter 14

Introduction
In many real-world optimization problems, solution qualities can only

be estimated but not determined precisely. Falsely calibrated measure-
ment instruments, inexact scales, scale reading errors, etc. are typical
sources for measurement errors. If the function of interest is the output
from stochastic simulations, then the measurements may be exact, but
some of the model output variables are random variables. The term
“noise” will be used in the remainder of this article to subsume these
phenomena.

This article discusses the performance of particle swarm optimiza-
tion (PSO) algorithms on functions disturbed by Gaussian noise. It
extends previous analyses by also examining the influence of algorithm
parameters, considering a wider spectrum of noise levels, and analyzing
different types of noise (multiplicative and additive). Furthermore, we
integrated a recently developed sequential sampling technique into the
particle swarm optimization method. Similar techniques have been inte-
grated into other metaheuristics like evolutionary algorithms, but their
application to the PSO algorithm is new.

The paper is structured as follows. First, we briefly introduce PSO in
Section 1. Then, the effects of noise and sequential sampling techniques
are discussed in Section 2. A sequential selection procedure is introduced
in Section 3. Section 4 presents several experimental results, including
the effect of parameter tuning, some algorithmic variants with perfect
local and global knowledge, and the integration of sequential sampling.
The paper concludes with a summary and an outlook.

1. Particle swarm optimization
PSO uses a population (swarm) of particles to explore the search

space. Each particle represents a candidate solution of an optimization
problem and has an associated position, velocity, and memory vector.
The main part of the PSO algorithm can be described formally as follows:
Let S ⊆ Rn be the n-dimensional search space of a (fitness) function f :
S → R to be optimized. Without loss of generality, throughout the rest
of this article, optimization problems will be formulated as minimization
problems. Assume a swarm of s particles. The ith particle consists
of three components. The first one, xi, is its position in the search
space, the second component, vi, describes the velocity, and the third
component, p∗i , is its memory, storing the best position encountered
so far. This vector is often referred to as personal best in the PSO
literature. Finally, the term p∗g denotes the best position found so far
by the whole swarm, and is generally referred to as global best. Let t
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denote the current generation. Velocities and positions are updated for
each dimension 1 ≤ d ≤ n as follows:

vi(t+ 1) = wvi(t)︸ ︷︷ ︸
momentum

+ c1u1i {p∗i (t)− xi(t)}︸ ︷︷ ︸
local information

+ c2u2i

{
p∗g(t)− xi(t)

}
︸ ︷︷ ︸

global information

,

(14.1)

xi(t+ 1) = xi(t) + vi(t + 1).

Before optimization can be started, several parameters or factors have to
be specified. These so-called exogenous factors will be analyzed in more
detail below. Parameters that are used inside the algorithm are referred
to as endogenous. The endogenous factors u1i and u2i are realizations of
uniformly distributed random variables U1i and U2i in the range [0, 1].
The exogenous factors c1 and c2 are weights that regulate the influence
of the local and the global information. The factor w in the momentum
term of Eq. 14.1 is called inertia weight. It was introduced in (Shi and
Eberhart, 1998) to balance global and local search abilities.

2. The effect of noise
Noise makes it difficult to compare different solutions and select the

better ones. In PSO, noise affects two operations: In every iteration (i)
each particle has to compare the new solution to its previous best and
retain the better one and (ii) the overall best solution found so far has
to be determined. Wrong decisions can cause a stagnation of the search
process: Over-valuated candidates—solutions that are only seemingly
better—build a barrier around the optimum and prevent convergence.
The function value at this barrier will be referred to as the stagnation
level. Or, even worse, the search process can be misguided: The selection
of seemingly good candidates moves the search away from the optimum.
This phenomenon occurs if the noise level is high and the probability of
a correct selection is very small.

There is very little research on how strongly the noise affects the over-
all performance of PSO, and what measures are suitable to make PSO
more robust against noise. (Parsopoulos and Vrahatis, 2001) were prob-
ably the first to present some results regarding the behavior of the PSO
algorithm in noisy and continuously changing environments. In (Par-
sopoulos and Vrahatis, 2002), they focused on noise alone and concluded
that “. . . in the presence of noise the PSO method is very stable and ef-
ficient.” In both papers, fitness proportional noise models were used.
(Krink et al., 2004) compared differential evolution, evolutionary algo-
rithms, and PSO on noisy fitness functions. The noise was independent
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of the solution’s fitness. To reduce the effect of the noise, they suggested
to average over a number of samples. Finally, in (Liu et al., 2005), PSO is
combined with local simulated annealing and a hypothesis test to tackle
flow shop problems with noisy processing times. Thereby, the hypoth-
esis tests are used to decide whether the new solution should replace a
particle’s personal best position.

The influence of noise on evolutionary algorithms (EAs) has received
much more attention. EAs have been shown to work quite well in the
presence of noise. Also, it has been proven analytically that under cer-
tain conditions, increasing the population size may help an evolution
strategy to cope even better with the noise (Beyer, 2001). Several papers
report on the successful integration of statistical tests or selection pro-
cedures into evolutionary algorithms, see, e.g., (Rudolph, 1997; Bartz-
Beielstein and Markon, 2004; Branke and Schmidt, 2004; Buchholz and
Thümmler, 2005; Schmidt et al., 2006). A comprehensive overview on
the topic of evolutionary algorithms in the presence of noise is given
in (Jin and Branke, 2005). Based on the good performance of evolu-
tion strategies in noisy environments, one might hope that also PSO
can somehow cope with the noise, and that it is sufficient to adjust its
parameters.

Alternatively, one may attempt to reduce the effect of noise explicitly.
The simplest way to do so is to sample a solution’s function value n
times, and use the average as estimate for the true expected function
value. While this reduces the standard deviation of the mean by a factor
of
√
n, it also increases the running time by a factor of n, which is often

not acceptable.

3. Optimal computing budget allocation
We consider statistical selection procedures that use only a small num-

ber of samples to identify the best out of a set of solutions with a high
probability. There is a multitude of selection procedures in the litera-
ture. (Bechhofer et al., 1995) give a comprehensive introduction into
statistical selection methods. Two-stage procedures use the samples of
a first stage to estimate means and variances. In the second stage, an
additional amount of samples is drawn for each candidate solution, each
amount depending on the variance and the overall required probabil-
ity of correct selection. Sequential procedures allow even more than two
stages. Such methods use either an elimination mechanism to reduce
the number of alternatives considered for sampling, or they assign addi-
tional samples only to the most promising alternatives. The intuition is
to use all available information as soon as possible to adjust the further
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process in a promising way. The most sophisticated sampling approaches
include the information about variances and the desired probability of a
correct selection and adjust the overall number of samples accordingly.
A comparison of three state-of-the-art selection procedures can be found
in (Branke et al., 2005).

In this paper, we use a procedure that assigns a fixed total number
of samples to candidate solutions, but sequentially decides how to allo-
cate the samples to different candidate solutions. A recently suggested
sequential approach that falls into this category is the optimal comput-
ing budget allocation (OCBA) (Chen et al., 2000). OCBA is based on
Bayesian statistics and aims at maximizing the Approximate Probability
of Correct Selection (APCS), i.e., a lower bound for the probability of
correct selection P (CS). It is defined as

APCS = 1−
k∑

i=1,i�=b
P [X̄b > X̄i] ≤ P (CS),

where k is the number of solutions considered and b denotes the solution
with the smallest sample mean performance, and X̄i denotes the sample
mean for solution i.

(Chen et al., 2000) show that for a fixed total number of samples
T =

∑k
i=1Ni, the APCS can be asymptotically maximized if

Ni

Nj
=
σi/(X̄i − X̄b)
σi/(X̄j − X̄b)

, i, j ∈ 1, 2, . . . , k, and i �= j �= b (14.2)

and

Nb = σb

√√√√
k∑

i=1,i�=b

Ni
2

σi2
(14.3)

with σi being the standard deviation of the samples for solution i.
Based on these propositions, OCBA draws samples iteratively until

the computational budget is exhausted.

1 Initialization: Draw n0 initial samples for each solution. Set l =
0, N l

1 = N l
2 = · · · = N l

k = n0, and T = T − kn0

2 WHILE T > 0 DO

(a) Set l = l + 1. Increase the computing budget by Δl (i.e.,
number of additional simulations in this iteration) and com-
pute the new budget allocation to approximate Eq. 14.2 and
Eq. 14.3.
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(b) Draw additional max(0, N l
i −N l−1

i ) samples for each solution
i, i = 1, 2, . . . , k

(c) T = T −Δl.

3 Return the index b of the system with the lowest mean X̄b, where
X̄b = min1≤i≤k X̄i.

For a more detailed description of OCBA, the reader is referred to
(Chen et al., 2000).

4. Experiments on the noisy sphere

Experimental setup
Sequential parameter optimization (SPO) is an algorithmical proce-

dure to adjust the exogenous parameters of an algorithm, the so-called
algorithm design, and to determine good tuned parameter settings for
optimization algorithms (Bartz-Beielstein, 2006). It combines methods
from computational statistics, design and analysis of computer experi-
ments (DACE), and exploratory data analysis to improve the algorithm’s
performance and to understand why an algorithm performs poorly or
well. SPO provides a means for reasonably fair comparisons between
algorithms, allowing each algorithm the same effort and mechanism to
tune parameters. Table 14.1 presents an algorithm design for PSO al-
gorithms. The seven parameters were tuned during the SPO proce-
dure. Details of this tuning procedure are presented in (Blum, 2005)
and (Bartz-Beielstein, 2006).

In our experiments, we use the 10-dimensional sphere (min y =
∑10

i x2
i )

as test problem, because in this unimodal environment, the algorithm
can easily find the optimum, and if it does not, this can be directly at-
tributed to the noise. We consider additive (ỹ = y + ε) and

Table 14.1. Algorithm design of the PSO algorithm. Similar designs were used in (Shi
and Eberhart, 1999) to optimize well-known benchmark functions.

Symbol Parameter Range Default
s Swarm size N 40
c1 Cognitive parameter R+ 2
c2 Social parameter R+ 2
wmax Starting value of the inertia weight w R+ 0.9
wscale Final value of w in percentage of wmax R+ 0.4
witerScale Percent iterations with reduced wmax R+ 1.0
vmax Max. value of the step size (velocity) R+ 100
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multiplicative (ỹ = y(1 + ε)) noise, where ε denotes a normally dis-
tributed random variable with mean zero and standard deviation σ. A
broad range of noise levels σ was used to analyze the behavior of the
algorithms and to detect the highest noise level PSO was able to cope
with. For example, the experiments with additive noise used σ values
from the interval [10−4, 102]. All particle positions were initialized to
xi = 10 in all dimensions.

Unless specified otherwise, the best function value found after 10,000
function evaluations was used as a performance measure, because (i)
a fixed number of evaluations is a quite fair and comparable criterion,
as it does not depend on programming skills, hardware, etc., and (ii)
many real-world optimization problems require simulation runs that are
computationally expensive compared to the computational effort of the
optimization algorithm itself.

Performance in noisy environments
For the experiments in this subsection we used the following fixed pa-

rameter settings which have proven reasonable in preliminary tests and
have also been used, e.g., in (Shi and Eberhart, 1999): s = 20, c1 = c2 =
2, wmax = 0.9, wscale = 4/9, vmax = 100. Figure 14.1 shows the con-
vergence curves (fitness over time) of the standard PSO algorithm for
different levels of additive noise. As can be seen, while the PSO without
noise keeps improving, the algorithm stagnates in noisy environments,
with the fitness level reached depending on the noise level. It is interest-
ing to note that the performance of PSO before reaching the stagnation
level is almost unaffected by the noise, indicating that a certain noise
level is tolerated before the system breaks down.

While for the case of additive noise, the influence of the noise on the
performance was quite regular, the effect of multiplicative noise was quite
different. Figure 14.2 shows the final solution quality obtained depend-
ing on the noise level. For low levels of noise, the algorithm is basically
unaffected, as the noise scales with the fitness values and most decisions
can be made correctly throughout the run. This confirms the observa-
tions made in (Parsopoulos and Vrahatis, 2002) regarding the robustness
of PSO with respect to proportional noise. On the other hand, if the
noise exceeds a certain threshold, the algorithm may actually diverge
and end up with solutions worse than the initial solutions. This may
happen if the worse solutions have a much higher noise, making it likely
that the worse fitness is accidentally compensated by an overvaluation.

When comparing the performance of PSO to a simple (1+1)-evolution
strategy (ES), we observed a much faster progress of the ((1+1)-ES) on
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Figure 14.1. Convergence curves for the standard PSO for different levels of additive
noise (from top to bottom, σ = 100, 10, 1, 0.1, 10−2, 10−3, 10−4, 0).

Figure 14.2. Fitness after 10,000 evaluations for various noise levels. Horizontal line
indicates initial fitness.
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the Sphere function during the first phase of the optimization. However,
the algorithm encountered the same problem as the PSO: the stagnation
on a certain level. Having tuned the parameters of both algorithms using
SPO, we observed that the (1+1)-ES stagnated on a higher fitness level
than the PSO, possibly due to an inherent advantage of population-based
approaches in noisy environments.

Global versus local certainty
As described above, noise can affect PSO in two steps: when each

particle chooses its local best, and when the global best is determined. In
order to find out which of the two steps is more critical for the algorithm’s
performance, we tested two special variants of the PSO algorithm.

Variant PSOpc was given the correct information whenever a particle
decided between its new position and the old personal best. This variant
was able to find significantly better results than the variant PSOdefault.
Moreover, it did not stagnate at certain fitness levels and showed a
progress during the whole optimization process. Similar results were
observed for multiplicative noise. The search was not misguided by the
noise and for all noise levels the solutions obtained were better than the
initial point.

Variant PSOgc was provided with the information which of the parti-
cles’ presumed best was the true best, i.e., it could correctly select the
global best from all the presumed local best. In the presence of additive
noise the variant could find better solutions than the PSOdefault, but the
optimization stagnated and could not converge to the minimum. Exper-
iments with multiplicative noise also showed an improvement compared
to PSOdefault, but again the basic problem remained: the search was
misled.

Overall, in our experiments with additive and multiplicative noise
models, PSOpc showed clearly superior performance compared to the
PSOgc variant. However, we have to keep in mind that variant PSOpc

received in each iteration the knowledge for a number of decisions, which
was equal to the swarm size. In contrast, variant PSOgc could decide
once per iteration correctly. Furthermore, PSOgc could potentially loose
the true global best, namely when the decision on the first level was
wrong. This could not happen with PSOpc.

Parameter tuning vs. multiple evaluations
Next, we examined whether parameter tuning is sufficient for PSO

to cope with the noise, or whether multiple evaluations are necessary.
Results are summarized in Table 14.2. Thereby, the PSOrep variant uses
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a fixed number of repeated function evaluations (5 in the default setting,
and this parameter is optimized by SPO as well). While parameter
tuning improves the final solution quality for the single-evaluation and
multiple-evaluation case, better results can be obtained when allowing
multiple evaluations rather than only optimizing parameters and letting
the algorithm cope with noise.

Integrating OCBA into PSO
Now we examine how PSO can benefit from integrating a sequential

sampling procedure like OCBA (see Section 2). The variant PSOOCBA

uses the OCBA procedure to search for the swarm’s global best among
the set of positions considered in the iteration (i.e., all new and all lo-
cal best positions). With the design of the PSOOCBA algorithm, we
aim at two objectives: (i) an increased probability to select the swarm’s
global best correctly, (ii) an increased probability to select the particles’
personal bests correctly (as a byproduct of the repeated function evalua-
tions of candidate positions by the OCBA method). In accordance with
the OCBA technique, the position with the resulting lowest mean of the
function values is selected as the swarm’s global best. The new personal
bests of the particles result from the comparison of the function value
means of their old personal best and new positions. Function values
from previous generations were stored for re-use in the next generation.

The results in Table 14.2 indicate that variant PSOOCBA with an im-
proved algorithm design generated by SPO significantly outperformed
the other algorithm variants optimizing the Sphere function disturbed
by additive noise. OCBA enables the algorithm to distinguish smaller
function value differences than the other variants. This seems obvious
with respect to PSOdefault, as it has no noise reduction mechanism, but
it also reaches a lower stagnation level than PSOrep. OCBA’s flexible as-
signment of samples seemed to be an advantage in the selection process.
Furthermore, as OCBA allocates more samples to promising solutions,
which are more likely to survive, the total number of function evalua-
tions used for decisions in one iteration (new and preserved) is higher for
the OCBA variant than if each position had received the same amount
of function evaluations. In fact, in our experiments we observed this
number to be about twice as high, allowing more accurate decisions.

5. Summary and outlook
We have examined the influence of noise on the performance of PSO,

and compared several algorithmic variants with default and tuned pa-
rameters. Based on our results, we make the following conclusions:
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Table 14.2. Comparison of the standard algorithm (standard), a variant with mul-
tiple evaluations (rep) and the new variant with integrated OCBA (OCBA). Each
variant has been tested with default (default) and optimized (SPO) parameter set-
tings. Results ± standard error for the sphere with additive noise (σ = 10). Varying
the noise level σ led to similar results that are reported in (Blum, 2005). Smaller
values are better.

Parameter settings

Algorithm Default SPO

PSOstandard 9.08 ± 0.43 6.94 ± 0.30

PSOrep 7.59 ± 0.35 4.99 ± 0.27

PSOOCBA 6.81 ± 0.67 1.98 ± 0.11

Additive noise leads to a stagnation of the optimization process,
multiplicative noise can even lead to divergence.

Parameter tuning alone cannot eliminate the influence of noise.

Sequential selection procedures such as OCBA can significantly
improve the performance of particle swarm optimization in noisy
environments. Local information plays an important role in this
selection process and cannot be omitted.

Why did sequential selection methods improve the algorithm’s per-
formance? First, the selection of the swarm’s best of one iteration was
correct with a higher probability compared to reevaluation approaches.
Second, as more samples were drawn for promising positions, positions
that remained and reached the next iteration were likely to have re-
ceived more samples than the average. Samples accumulated and led to
a greater sample base for each iteration’s decisions. These two advan-
tages might be transferable to other population-based search heuristics,
in which individuals can survive several generations. Summarizing, we
can conclude that it was not sufficient to only tune the algorithm design
(e.g., applying SPO), or to only integrate an advanced sequential se-
lection procedure (e.g., OCBA). The highest performance improvement
was caused by the combination of SPO and OCBA.

However, our experiments were restricted to artificial test functions
only. The application of the PSOOCBA variant to real-world problems
will be the next step. In such problems, the noise might not be nor-
mally distributed. First experiments, which analyzed the applicability
of OCBA to an elevator group control problem proposed in (Markon
et al., 2006) produced promising results. Noise-dependent, variable
swarm sizes as proposed in (Bartz-Beielstein and Markon, 2004) for
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evolution strategies, might improve the convergence velocity. Further-
more, it might be interesting to replace the current OCBA by sampling
techniques with variable stopping rules, where the number of samples
allocated per generation is not fix but depends on the confidence in the
decisions.
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Abstract
The Chained Lin-Kernighan algorithm (CLK) is one of the best heuristics

to solve Traveling Salesman Problems (TSP). In this paper a distributed algo-
rithm is proposed, where nodes in a network locally optimize TSP instances by
using the CLK algorithm. Within an Evolutionary Algorithm (EA) network-
based framework the resulting tours are modified and exchanged with neigh-
boring nodes. We show that the distributed variant finds better tours compared
to the original CLK given the same amount of computation time. For instance
fl3795, the original CLK got stuck in local optima in each of 10 runs, whereas
the distributed algorithm found optimal tours in each run requiring less than 10
CPU minutes per node on average in an 8 node setup. For instance sw24978,
the distributed algorithm had an average solution quality of 0.050% above the
optimum, compared to CLK’s average solution of 0.119% above the optimum
given the same total CPU time (104 seconds). Considering the best tours of both
variants for this instance, the distributed algorithm is 0.033% above the optimum
and the CLK algorithm 0.099%.

Keywords: Traveling salesman problem, combinatorial optimization, distributed algorithm,
evolutionary algorithm
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1. Introduction
The Traveling Salesman Problem (TSP) is one of the best-known combi-

natorial optimization problems. Given a number of cities (or customers), a
salesman has to find a cost-minimal route visiting each city exactly once. The
problem can be represented by a fully connected graph G = (V,E) and a func-
tion di, j denoting the distance between two vertices vi,v j ∈V . For symmetric
TSPs (STSP) di, j = dj,i holds for all i and j. For asymmetric TSPs (ATSP)
di, j �= dj,i holds for at least one pair (vi,v j). An optimal solution for a problem
instance, which is a Hamiltonian cycle of minimal length on G, is a permuta-
tion π of its cities that has a minimum value for the cost function C(π):

C(π) =
n−1

∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (15.1)

For an instance with n cities (n = |V |), there are (n−1)!
2 different tours. Al-

though having a simple setup, the TSP is a NP-hard problem [Cook, 1971,
Garey and Johnson, 1979].

To solve TSP instances, different types of algorithms have been developed
[Applegate et al., 1999]. Exact algorithms enumerate implicitly each pos-
sible solution and find a provable optimal solution (see e.g. [Dantzig et al.,
1954, Lawler and Wood, 1966, Applegate et al., 1995]). Approximation al-
gorithms construct a valid tour providing a guarantee for the worst-case time
complexity and the expected tour length (see e.g. [Christofides, 1976, Arora,
1998]). Heuristic algorithms perform a non-complete search in the solution
space and do not guarantee to find an optimal solution. Their main advantage
is that they can find a good sub-optimal solution in much shorter time than ex-
act algorithms. Heuristic algorithms performing a local search usually exploit
neighborhood relations between nodes. One example is the k-opt neighbor-
hood [Flood, 1956, Lin, 1965], where two tours are called neighbors if one
tour can be transformed to the other by exchanging k edges. A tour is called
k-optimal (k-opt) if the tour cannot be improved any further by exchanging k
edges. Increasing k and performing an exhaustive search for possible exchange
moves increases the tour quality, but also requires a fast growing amount of
computation time. So, for most applications k is limited to k ≤ 3.

Lin and Kernighan [Lin and Kernighan, 1973] approached the problem of
finding a trade-off between tour quality and computation cost by introducing
an algorithm (LK) where k is variable. Here, a complex move is built by a
sequence of simple edge removal and insertion moves. Initially, the tour is
transformed into a 1-tree by removing one edge and inserting one new, shorter
edge, which introduces a sub-cycle into the tour. In each iteration, the algo-
rithm removes one edge from the current sub-cycle and has to choose whether
to repair the tour by connecting both cities with degree 1 or to continue search-
ing by adding a new edge creating a new sub-cycle. The search may terminate
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(a) Original Tour (b) Perturbed Tour

Figure 15.1. Double-bridge move

if the repair step results in a better tour than the original one. Alternatively,
the algorithm may backtrack and explore different edges for removal and in-
sertion. The LK algorithm can be improved utilizing nearest neighbor lists,
don’t look bits or sophisticated data structures. Furthermore, it can be embed-
ded into a meta-heuristic such as the Chained Lin-Kernighan algorithm (CLK)
introduced by Martin, Otto and Felten [Martin et al., 1991]. Instead of itera-
tively restarting a LK search to get better tours, Martin et al. suggested to kick
the current tour before applying the LK algorithm again.

They proposed to use the double-bridge move (DBM, Figure 15.1), which is
a cheap way to perform 4-exchange move and is quite unlikely reversible by the
LK. In a double-bridge move, four edges are removed from the tour and four
new edges are inserted to connect the four sub-tours again. Depending on the
graphical representation, the new edges shape the form of two crossing bridges.
By applying this move, the current tour leaves the local optimum allowing the
LK algorithm to continue exploring the search space, while maintaining most
properties of the previous solution.

In the search for optimal solutions the most recent achievement was the
proof of optimality for a tour of instance sw24978 in May 2004. Here, 96 dual
processor machines needed a total of over 80 CPU years to prove optimality
with an exact algorithm. For heuristic algorithms, in contrast, distributed com-
putation has not yet become very common. This might be due to the fact that
heuristic algorithms require less computation time and therefore there is no ex-
igent need for distributed computation compared to exact algorithms. To solve
large TSP instances with today’s heuristic algorithms, however, it is inevitable
from our point of view to distribute computation.

In this paper we present a distributed algorithm for solving Traveling Sales-
man Problems. This algorithm utilizes the existing CLK implementation from
Applegate et al. [Cook, a, Applegate et al., 1999] and embeds it into an evo-
lutionary algorithm that is running distributed over several nodes in a net-
work. Therefore, it resembles memetic algorithms (MA) [Merz and Freisleben,
2001], which combine evolutionary algorithms with local search techniques.
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With the approach presented here, our algorithm finds both better tours given
a computation time limit and it converges faster towards an optimal solution
compared to the original CLK algorithm.

Previously, other distributed algorithms have been proposed of which some
will be presented in the remainder of this section.

Baraglia et al. introduce a genetic algorithm (GA) [Baraglia et al., 2001]
using an island model [Grosso, 1985], where each node represents an island
with a sub-population. Here, the tours are encoded in a compact form [Harik
et al., 1999] storing only the probability values in a k× k triangular matrix P
(k is the number of cities). The matrix element pi, j represents the probability
that the edge (i, j) is part of an individual’s tour. In each generation a tour
L is constructed using the probability values. This tour L is refined to tour
W by the CLK algorithm. The matrix elements’ values are increased if the
corresponding edge occurs only in W , but not in L, decreased in the opposite
case and remain unchanged if the edge occurs in both or none of the tours.
Although the paper’s conclusions are meager with respect to numerical data,
the supplied plots show that the more processes cooperate the less generations
are required for each one to find the optimal solution for an instance. The
instance sizes analyzed in this paper range from 532 to 1002.

Nguyen et al. describe a GA-based algorithm [Hung, 2004], which uses their
LK implementation (applying a 5-opt basic move) for local tour improvement.
This algorithm can be parallelized by settling sub-populations on cluster ma-
chines. The GA algorithm performs in each generation a mutation or crossover
operation on one member of each sub-population. For mutation, a selected tour
is mutated by a Random-walk kick and optimized by the LK algorithms for a
number of iterations (thus reproducing an Iterated LK). The best intermediate
tour will replace the original tour if it was better than the original one. For the
crossover operation (MPX3), two parents are selected from the sub-population
and merged. Common sub-tours from both parents are fixed for the LK algo-
rithm to follow. The resulting tour will replace the worst parent if better. The
GA will terminate, if no improvement has been found for a number of itera-
tions. Nguyen et al.’s algorithm can compete with Helsgaun’s LK regarding the
tour quality, but requires significantly less time for larger instances. E.g. for
instance d18512, the GA-based algorithm requires about 5000 seconds in a
10 node setup for an average tour quality of 645323.8, whereas LKH requires
over 100000 seconds for a worse tour (645332.2) in on a single computing
node.

2. Architecture & Algorithm
The system is a structured network of eight computing nodes arranged in a

hypercube topology. Each node in the distributed system consists of an evo-
lutionary algorithm (EA) that uses a network module to communicate with
other nodes and a CLK module for solving problem instances locally. The
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CLK module taken from the Concorde package (031219) [Cook, a, Applegate
et al., 1995] is well-known in the TSP community and is used by a variety of
researchers (e.g. Walshaw in [Walshaw, 2000]).

Figure 15.2. Architecture
of the network

During an initial setup phase the nodes connect
to a dedicated bootstrapping node B (called “hub”)
which constructs the structure (see Figure 15.2) by
supplying neighborhood lists to each node. Initially,
the nodes know only how to connect to B, which is
contacted for a list of neighbors. The hub determines
the node’s position within the hypercube and assem-
bles the node’s neighbor list based on nodes that are
already known to the hub. As the first nodes will
receive a sparse list of neighbors, to build the con-
nected hypercube a node contacts each neighbor af-
ter receiving the list. If the contacting node is un-
known to the contacted node, the contacting node is
added to the contacted node’s neighbor list.

As the nodes communicate directly, the hub is the only central component
in the network and is only used during initialization. For systems with a small
network size, this approach appears to be feasible. In this work, however,
we focus on the effects of distributed (population-based) optimization which
is independent of the utilization of centralized or decentralized protocols for
network setup.

Simplified, the main algorithm is structured as follows. In each iteration the
node’s only tour is perturbed by one or several random double-bridge moves.
This perturbed tour is optimized by the Chained Lin-Kernighan algorithm. In
the next step the new tour is compared with all the tours received meanwhile
from other nodes. The best tour is stored as the node’s new tour. If this tour
was the result of the local CLK optimization it is multicasted to all neighboring
nodes. The pseudo-code for this algorithm is shown in Figure 15.3.

The strength of the perturbation has to be chosen carefully. A perturbation
that is too weak might not be able to leave the current local optimum, while a
too strong perturbation might damage the tour heavily causing a loss of quality.
Therefore the used strategy begins with a weak perturbation and increases its
strength if no better tours are found.

Whenever the CLK function does not find a better tour than the previous best
tour, a dedicated counter is increased. This counter gets reset when a better tour
has been found or received from another node. The counter’s value determines
the number of random double-bridge moves applied to a tour; a higher number
of perturbation moves leads to stronger perturbation. Eventually, perturbation
moves will modify the tour in a way that it will leave the current local optimum.
When the number of iterations without improvements reaches the value of a
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function DISTRIBUTEDALGORITHM

s := INITIATETOUR();
sbest := CHAINEDLINKERNIGHAN(s);
sprev := s;
while not TERMINATIONDETECTED do

if NumNoImprovements > cr then
NumNoImprovements := 0;
s := INITIATETOUR();

else
NumPerturbations :=

⌊NumNoImprovements
cv

⌋
+ 1;

s := PERTURBETOUR(s,NumPerturbations);
end if
s := CHAINEDLINKERNIGHAN(s);
Sreceived := ALLRECEIVEDTOURS;
sbest := SELECTBESTTOUR(Sreceived ∪{s}∪{sprev});
if LENGTH(sbest) = LENGTH(sprev) then

NumNoImprovements + +;
else

NumNoImprovements := 0;
end if
if sbest = s then

MULTICASTTONEIGHBORS(sbest);
end if
sprev := sbest ;

end while

Figure 15.3. Pseudo-code for the distributed algorithm.

parameter cr, the current tour is discarded and a new tour is constructed (the
ILK is restarted thereby).

The termination criterion as represented by the function TERMINATION-
DETECTED (not shown) is triggered when a node’s solution quality equals an
already known optimum (if available) or when a given time bound is hit. The
notification on the occurrence of an optimal solution is propagated through the
network terminating all nodes.

3. Experimental Setup
For our analysis a set of instances from well-known sources have been se-

lected. From Reinelt’s TSPLIB [Reinelt, 1991] the instances fl1577, pr2392,
pcb3038, fl3795, fnl4461, usa13509, pla33810 and pla85900 were used,
from the collection of national TSPs [Cook, b] instances fi10639 and
sw24978 and from the 8th DIMACS challenge [Johnson, ] the random in-
stances C1k.1 (randomly clustered city distribution) and E1k.1 (randomly
uniform city distribution). See Table 15.1 for details.

Each simulation setup was performed 10 times, from which the average val-
ues were used. The number of runs was limited due to time constraints. The
program linkern that is part of the concorde package [Cook, a] has been
used as CLK engine. As the Random-walk kicking strategy performed good
for most instances in initial tests and is the default kicking strategy in linkern,
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Instance Size Held-Karp Bound Optimal Tour Length

C1k.1 1000 11330836 11376735
E1k.1 1000 22839568 22985695
fl1577 1577 21886 22249
pr2392 2392 373490 378032
pcb3038 3038 136588 137694
fl3795 3795 28477 28772
fnl4461 4461 181569 182566
fi10639 10639 520527 520 383�

usa13509 13509 19851464 19982859
sw24978 24978 855528 855597
pla33810 33810 66050535 66 005 185�

pla85900 85900 142383704 142 307 500�

Table 15.1. Testbed Instances. Instances marked with a star are not solved to optimum yet,
the values represent the length of the best known tour. The Held-Karp Bound is a lower bound
estimation for optimal tour lengths (see [Held and Karp, 1970, Held and Karp, 1971]).

simulations were performed primarily with this kicking strategy. For this strat-
egy, the first of four relevant cities for the double-bridge move is chosen ran-
domly. Starting there, three independent random walks terminate at the other
three cities.

For the first part of the analysis, instances were solved by the original CLK
code. The number of iterations (termination criterion of the algorithm) was set
to a very high value to make time bounds the primary termination criterion.
The time limit was set to 104 CPU seconds for instances with less than 104

cities and 105 CPU seconds for larger instances. The resulting values were
used for comparison with later results from the distributed algorithm. The
distributed algorithm itself was tested with different setup values. The number
of CLK calls (termination criterion of the algorithm) has been set to infinity to
make time bounds the only termination criterion here, too. The time limit was
set to 103 CPU seconds per node for instances with less than 104 cities and 104

CPU seconds per node for larger instances, which is a tenth of the values for
the original CLK. As for the distributed algorithm eight nodes were working
in parallel, this is more than fair for CLK. The number of iterations per CLK
call within the distributed algorithm was set to the number of cities (default for
the original CLK).

The parameters were set to cv=64 and cr=256. Other parameters have been
changed in different simulations to observe effects of different values. Primary
simulations were performed using a hypercube topology with 8 nodes. Ad-
ditionally, setups with only 1 node were performed to check the influence of
parallelization.

The cluster used for this analysis consisted of eight identical computer nodes
with one 3.0 GHz SMT processor (Pentium 4) and 512 MB RAM each running
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Instance CLK DistCLK

C1k.1 9/10 10/10
E1k.1 3/10 10/10
fl1577 0/10 8/10
pr2392 4/10 10/10

pcb3038 0/10 7/10
fl3795 0/10 10/10

fnl4461 0/10 1/10

Table 15.2. Number of CLK and Dist-
CLK runs that known the optimum within
a given time bound. For CLK, the limit
was set to 104 seconds and to 103 seconds
per node for the distributed variant with 8
nodes solving in parallel. Larger instances
were omitted as both algorithms did not
find optimal solutions for them.

Linux (Kernel 2.6). The nodes were connected by a switched Gigabit Ethernet
network.

4. Experimental Results
The default setup in the following discussion was a distributed algorithm

variant running on 8 nodes and using the double-bridge move for perturbation
as described before. For comparison, several instances were analyzed using
a distributed algorithm that was (1) restricted on one single node, (2) running
without variable strength perturbation or (3) running with both restrictions.

As shown in Table 15.2, for instances with a size above 3000 cities CLK
could not find an optimum at all in any run. The distributed algorithm (abbre-
viated “DistCLK”) finds the optimal solution for most instances up to fnl4461
in at least one run. In cases where not all runs were successful within 1000
CPU seconds, the results were already close to the optimum. The distributed
algorithm can handle instances like fl3795 very well (successful in each run),
which the standard CLK fails to solve every time within its time bound.

The approximation towards the optimum is faster with the distributed algo-
rithm compared with the original algorithm. As shown for instances fl1577
and sw24978, the distributed version is better than CLK for these instances.
For the instance fl1577, CLK gets stuck after about 150 seconds in local op-
tima (9 runs in 22 395, 1 run in 22 256) that are not left within the time bound.
The distributed variant, however, finds the optimum in 8 out of 10 runs in less
than 300 CPU seconds per node, the other two runs need about 2000 CPU
seconds (Figure 15.4).

For instance sw24978 (see Figure 15.5) the distributed algorithm has an
average tour quality of 0.050% over the optimum after reaching its time bound
(best is 0.033%), whereas CLK has an average tour quality of 0.088% (best
is 0.064%). The CLK algorithm’s final average tour length is already reached
after 2377.6 CPU seconds per node by the distributed algorithm. Considering
that 8 nodes were cooperating on that problem, the original CLK algorithm
requires 5 times more total CPU time to reach this tour quality compared to
the distributed variant.
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Figure 15.4. Relation between tour length and CPU time for the Distributed Chained Lin-
Kernighan algorithm (DistCLK) compared with the the original CLK for instance fl1577
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Figure 15.5. Relation between tour length and CPU time for the Distributed Chained Lin-
Kernighan algorithm (DistCLK) compared with the the original CLK for instance sw24978
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Figure 15.6. Time scale of the occurrence of improvements and perturbations during two
example runs.

The perturbation and restarting strategy can effectively help the CLK to
leave local optima. The following two example runs are selected out of ten
simulation runs with instance fi10639 (see also Figure 15.6).

For run A, only a weak perturbation was required to find better tours. During
the first 4952 CPU seconds 51 improving tours were found by the nodes. As
after about 6600 seconds no new improvements were made, within a small
time frame all eight nodes increased NumPerturbations to 2. Before requiring
any further increase, a better tour was found (7858 seconds) by a node. As
this tour was multicasted in the net and improved the local best tours, the local
NumNoImprovements variables were reset, too. After about 9500 seconds
NumPerturbations increased again as no new tour was found in the meantime.
Finally the best tour’s length was 520627, which is 0.047% above the Held-
Karp bound.

Run B showed that strong perturbations can be necessary. For the first
3396 CPU seconds, 45 improving tours were found by the nodes. Hereafter
NumPerturbations was increased sequentially: After about 5020 seconds to
level 2, after about 6700 seconds to level 3 and after 8370 seconds to level
4. A better tour was found by a node after 9337 seconds preventing a fur-
ther increase of NumPerturbations. This tour was improved four more times
resulting in a final tour of length 520584 (0.039% above Held-Karp bound).

Tour qualities of all runs with the same parameters were between 520563
(0.035%) and 521002 (0.119%).

To compare the effects of parallelization a subset of the instances was run in
setups with both 1 and 8 nodes, while keeping other setup parameters constant.
Between two local CLK search steps the already described variable strength
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Algorithm CLK DistCLK
Instance 100 sec 104 sec 10 sec 103 sec

E1k.1 0.005% 0.002% OPT OPT

C1k.1 0.024% 0.016% � OPT

fl1577 0.670% 0.594% � 0.006%
pr2392 0.237% 0.093% 0.152% OPT

pcb3038 0.103% 0.060% � 0.004%
fl3795 0.643% 0.524% � OPT

fnl4461 0.098% 0.041% � 0.013%
fi10639 0.217% 0.106% � 0.116%
usa13509 0.204% 0.112% � 0.062%
sw24978 0.307% 0.122% � 0.116%
pla33810 0.519% 0.287% � 0.126%
pla85900 0.334% 0.160% � 0.182%

Table 15.3. Distance of the average tour length compared to known optimum (Held-Karp
bound if not available) after 100 and 104 (for CLK) and 10 and 1000 CPU seconds per node
(for DistCLK), respectively. For cells marks with �, there is no data available as the algorithm
did not return any tour at this point of time.

double-bridge move perturbation was performed. In case of the 8 node vari-
ant the locally improved tours were exchanged between neighboring nodes.
Simulation results show that the distributed algorithm can scale well with the
number of nodes.

For the following discussion, “speed-up factor” (Equation 15.2) is the rela-
tion between the original CLK algorithm and the distributed algorithm regard-
ing the total CPU time summed over all CPU nodes. For a setup with eight
nodes, a speed-up factor of more than 8 means that the distributed algorithm
required less total CPU time than the original CLK algorithm.

fspeed-up =
t 1-node

t 8-nodes
(15.2)

In a comparison of instance pr2392 (see Figure 15.7) between the original
CLK algorithm and the distributed algorithm running on 1 or 8 nodes, respec-
tively, the variant with 8 nodes is more than twice as fast as expected from
parallelization (regarding median values). It reaches a tour quality level of
0.1% above the optimum after 10.7 CPU seconds per node compared to 246.2
seconds for the distributed algorithm’s single node variant (speed-up factor
23.01). The original CLK algorithm reaches this level after 8510.7 CPU sec-
onds. For the quality level of 0.05% above the optimum the 8 node variant
is still two times faster than the single node variant (speed-up factor 17.4), in
respect to CPU seconds. Here, CLK does not reach this level as well as the
optimum within the given 104 second time limit. The parallel variant with 8
nodes requires about a quarter of the time of the single node variant (speed-up
factor 3.57) to find an optimal solution. This behavior is caused by three runs
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Figure 15.7. Effects of parallelization running the distributed algorithms on a different num-
ber of nodes and optional variable strength perturbation (VSP) for instance pr2392.

Distance CPU time per node [sec] Speed-up
to Optimum CLK 1 node 8 nodes Factor

Instance pr2392
0.10% 8510.7 246.2 10.7 23.01
0.05% – 421.1 24.2 17.40
0.00% – 937.1 262.2 3.57

Instance fl3795
0.50% – 336.9 78.4 4.30
0.25% – 1153.3 199.8 5.77
0.00% – 4223.7 569.0 7.42

Instance fi10639
0.12% 3912.6 1183.4 188.8 6.27
0.10% 15183.3 2671.7 350.6 7.62
0.08% – 6960.5 723.0 9.63

Table 15.4. Speed-up with several instance. Average over 10 runs each.

in the parallel variant, that need between 110 and 260 seconds, while the other
seven runs require less than 43 seconds to find the optimum. Thereby the me-
dians over the optimum finding times for both variants are 71.2 seconds versus
596.5 seconds (factor 8.38) which suits the expectations from parallelization.

The required time to find a tour for instance fl3795 that is 0.5% above the
optimum the single node variant requires 337 CPU seconds, whereas the par-
allel variant requires 78 CPU seconds. Here, the speed-up factor is only about
4 for using 8 nodes. The speed-up factor gets better the closer the tour quali-
ties get to the optimum. For a quality level of 0.25% above the optimum, the
required CPU seconds are 1153 versus 200 (factor 5.77). To reach the opti-
mal solution, the single node variant requires 4224 CPU seconds on average.
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Figure 15.8. Effects of parallelization running the distributed algorithms on a different num-
ber of nodes and optional variable strength perturbation (VSP) for instance fi10639.

Having again a good speed-up factor of 7.42, the parallel variant requires 569
seconds per node.

As for instance fi10639 (Figure 15.8) no optimal solution is known, the
Held-Karp bound was used to measure tour qualities. The first distance level
of 0.12% above the Held-Karp bound for this instance was reached after 1183
CPU seconds in the one node variant, compared to the eight node variant re-
quiring 189 seconds. This is a speed-up of 6.27, which is improved subse-
quently. The tour quality of 0.10% is reached on average after 2672 seconds
versus 351 seconds (speed-up factor 7.62). Finally, the quality level of 0.08%
required a computation time of 6961 seconds for the single node variant and
723 seconds for the parallel variant resulting in a speed-up factor of 9.63. As
shown parallelization works for this distributed algorithm when comparing sin-
gle versus multiple node variants. Especially for larger instances with long
running times the speed-up factor may be optimal regarding used CPU time.

The variable strength perturbation (VSP) in the distributed algorithm may
be seen redundant, as the Chained Lin-Kernighan algorithm already applies
DBMs on the tours. However, as shown here with instances pr2392 (Figure
15.7, not discussed below) and fi10639 (Figure 15.8), this VSP actually im-
proves the results of the distributed algorithm. In a setup where the distributed
algorithm runs on only one node and no VSP gets applied, this algorithm ob-
tains the same performance as the original CLK algorithm. In Figure 15.8 the
performance of both simulations is represented by the two lines labeled with
“DistCLK (no VSP, 1 node)” and “CLK”. For comparison, the distributed al-
gorithm was executed with VSP (labeled “DistCLK (VSP, 1 node)”) in a third
setup. Right from the start, this setup performs clearly better than both the
original CLK and the distributed algorithm without VSP. After 104 CPU sec-
onds the third setup is only 0.073% away from the Held-Karp lower bound.
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Helsgaun LK
Instance Distance LKH DistCLK

C1k.1 0.12% 8.89 < 944.43
E1k.1 0.08% 9.78 < 9059.94
pr2392 0.24% 34.87 < 205.37
fl3795 6.73% 74.06 < 914.73
fnl4461 0.07% 129.23 978.12
usa13509 0.21% 1133.81 < 2272.18
pla33810 0.96% 7982.09 < 2785.89
pla85900 1.25% 48173.84 < 9350.55

Johnson&McGeoch ILK
Instance Distance ILK-JM DistCLK

C1k.1 0.00% 1292.40 944.43
E1k.1 0.05% 65.14 < 9059.94
pr2392 0.05% 220.54 681.95
fl3795 0.00% 20597.78 16402.12
fnl4461 0.11% 722.42 674.93
usa13509 0.11% 8640.36 5418.11
pla33810 0.68% 47599.30 10662.38
pla85900

Best of 10 runs
Instance Distance DistCLK

C1k.1 0.000% 198.29
E1k.1 0.000% 65.07
pr2392 0.000% 575.90
fl3795 0.000% 4283.36
fnl4461 0.000% 14536.58
usa13509 0.008% 179213.99
pla33810 0.561% 171839.09
pla85900 0.468% 189023.53

Table 15.5. Normalized computation time compared with other algorithms. “Distance” is the
distance to the optimum or Held-Karp Lower Bound (for instances pla33810 and pla85900)
as listed for the corresponding instance in the DIMACS challenge [Johnson, ]. The two columns
next to the distance are the CPU times for the two algorithms mention in the columns’ header.
For cells marked with “<”, the distributed algorithm’s intermediate results included only tours
of better quality, so the value given is the point of time when an average value was available for
the first time.
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In contrast, the distributed algorithm without VSP is 0.110% above this bound
and the original CLK 0.106% above. The variant with VSP required only about
1700 CPU seconds to reach this quality level. Finally, the distributed algorithm
was run with two 8 node setups with VSP (labeled “DistCLK (VSP, 8 nodes)”)
and without a VSP (labeled “DistCLK (no VSP, 8 nodes)”). Soon it turns out
that the VSP variant performs better in approximating the optimal solution.
The final tour lengths after 104 CPU seconds per node are 0.080% for the vari-
ant without VSP and 0.050% above the Held-Karp bound for the VSP variant.
The latter required only 753.4 CPU seconds per node on average to reach the
first variant’s final tour quality.

For comparison with other TSP solvers, the running times of selected in-
stances have been normalized to a 500 MHz Alpha processor as standardized
for the 8th DIMACS Implementation Challenge for the TSP [Johnson and Mc-
Geoch, 2002, Johnson, ], which generated by running a greedy algorithm on a
testbed of random Euclidean instances. The normalization factor is calculated
by comparing running times for the testbed instances to the known values for
the Alpha machine. The computational data for the following presentation and
comparison of other TSP solvers has been taken from the same source. Differ-
ent distance values are due to the fact that for each algorithm different pairs of
tour quality and CPU times were available.

Helsgaun’s LK LKH by Helsgaun [Helsgaun, 2000] is a LK-based algorithm
modifying the original LK algorithm. LKH uses a sequential 5-exchange
step operating on neighborhood restricted on 5 members and is based on
a α-nearness. The α-values are calculated by using one-trees on a mod-
ified weight matrix (π-values). Johnson and McGeoch report [Johnson
and McGeoch, 2002] that LKH finds better tours than their own LK
implementation (LK-JM) for most instances in their testbed, but LKH
requires significantly more time to reach these tour qualities.

Johnson & McGeoch’s ILK In their comparison of ILK algorithms in [John-
son and McGeoch, 2002] the authors use their own algorithm [Johnson
and McGeoch, 1997] as reference. Here, the data of a variant with 10N
iterations, 20 quadrant neighbors, don’t-look-bits and maximum depth
of 50 is compared to the results of the distributed algorithm. This vari-
ant from the DIMACS challenge [Johnson, ] is the one with the longest
running time and the best tour qualities over all ILK variants by Johnson
and McGeoch.

For most of the compared instances, the distributed algorithm has on av-
erage better tours compared to the final tour quality levels of Helsgaun’s LK
(LKH) already after the first iteration, which is due to the underlying CLK
algorithm. The current tour quality of a distributed algorithm is the best sin-
gle node tour quality within the network. But for this initial tour quality, the
distributed algorithm requires significantly more time than LKH to reach its
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final tour quality level for smaller instances (up to usa13509). For the two
largest instances, however, less time is required. The ratio between the com-
putation times for both algorithms shifts towards the distributed algorithm for
increasing instances size: It grows from 0.13 for instance fnl4461 and 0.50
for usa13509 to 2.87 (instance pla33810) and 4.46 for instance pla85900.

Compared to Johnson & McGeoch’s Iterated LK the distributed algorithm
performs better for most instances. Except for instances pr2392 and E1k.1
the distributed algorithm requires significantly less time, up to the factor of 4.5
for instance pla33810.

Finally, the last block of Table 15.5 contains the distributed algorithm’s best
results out of 10 runs and the normalized CPU time until the first occurrence
of this result.

5. Conclusion
The proposed distributed algorithm improves the quality and performance

of the original CLK algorithm in different ways. By exchanging tours between
nodes, nodes with worse tours can leave their neighborhood to enter more
promising areas of the search space. To increase the effectiveness of the dis-
tributed algorithm even further, a perturbation move with variable strength was
introduced. Our approach therefore converges faster towards good solutions
and finds better tours within a time bound summed over all nodes compared
to the original CLK algorithm. In our experiments, the distributed algorithm
finds optimal solutions for instances pr2392 and fl3795, where the plain CLK
algorithm fails to find optimal solutions. The comparison with other heuristic
TSP solvers indicates that the distributed variant is best suited for large in-
stances. Due to the fact that 8 machines were running in parallel the absolute
time to find a good solution makes the distributed algorithm competitive to
existing heuristics for real-world applications.

There are different aspects of the distributed algorithm that are subject for
improvements. A peer-to-peer (P2P) network will be used for communication
between nodes. Here, nodes will be organized in a Chord-like ring using an
Epidemic Algorithm for information propagation (see [Merz and Gorunova,
2005]). The CLK implementation will be replaced by a pure Java implemen-
tation allowing both better customization and portability in heterogeneous sys-
tems. The Evolutionary Algorithm will be substituted by a more sophisticated
variant integrating recombination of different tours and supporting larger pop-
ulations. Large TSP problems (10000 cities and more) will be processed by
applying various problem reduction operators.
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Abstract Metaheuristics are general high-level procedures that coordinate simple
heuristics and rules to find good approximate solutions to computation-
ally difficult combinatorial optimization problems. Parallel implementa-
tions of metaheuristics appear quite naturally as an effective approach to
speedup the search for approximate solutions. Besides the accelerations
obtained, parallelization also allows solving larger problems or finding
better solutions. We present in this work four slightly differing strate-
gies for the parallelization of an extended GRASP with ILS heuristic for
the mirrored traveling tournament problem, with the objective of har-
nessing the benefits of grid computing. Computational experiments on
a dedicated cluster illustrate the effectiveness and the scalability of the
proposed strategies. In particular, we show that the parallel strategy
implementing cooperation through a pool of elite solutions scales better
than the others and is able to find solutions that cannot be reached by
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the others. Computational grids are distributed high latency environ-
ments which offer significantly more computing power than traditional
clusters. The best parallel strategy was also implemented and tested
using a true grid platform. We report original results from pioneer
computational experiments on a shared computational grid formed by
82 machines distributed over four clusters in three cities, illustrating
the potential of the application of computational grids in the fields of
metaheuristics and combinatorial optimization.

Keywords: Parallel metaheuristics, grid computing, computational grids, traveling
tournament problem, GRASP, iterated local search

1. Introduction
The organization and management of sporting events and champi-

onships is a worldwide multi-billion dollar industry. Schedules with
minimum traveling times and offering similar costs and conditions to
all teams taking part in a competition are of major interest to teams,
leagues, sponsors, fans, and the media. In the case of the Brazilian na-
tional soccer championship, a single trip from Porto Alegre to Belém
takes almost a full day’s journey, with numerous connections due to the
absence of direct flights, to cover a distance of approximately 4,000 kilo-
meters. The total distance traveled becomes a key issue to be minimized,
so as to reduce costs and to give the players more time to train and time
off along the season that lasts for approximately eight months.

Several authors in different contexts (see e.g. [4, 5, 8, 20, 27, 35–37,
40, 41]) have tackled the problem of tournament scheduling for a vari-
ety of leagues and sports including soccer, basketball, hockey, baseball,
rugby and cricket, using different techniques such as integer program-
ming, tabu search, genetic algorithms, simulated annealing, and con-
straint programming.

The Traveling Tournament Problem is an inter-mural championship
timetabling problem that abstracts certain characteristics of scheduling
problems in sports [11]. It combines tight feasibility constraints with a
difficult objective function to be optimized. The objective is to minimize
the total distance traveled by the teams, subject to the constraint that
no team can play more than three consecutive games at home or away.
Since the total distance traveled is a major issue for every team taking
part in the tournament, solving a traveling tournament problem may
be a starting point for the solution of real timetabling applications in
sports, in general.

Metaheuristics are general high-level procedures that coordinate sim-
ple heuristics and rules to find good approximate (often optimal)
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solutions to computationally difficult combinatorial optimization prob-
lems. Among them, we find simulated annealing, tabu search, Greedy
Randomized Adaptive Search Procedure (GRASP), genetic algorithms,
scatter search, Variable Neighborhood Search, ant colonies, and others.
They are based on distinct paradigms and offer different mechanisms
to escape from locally optimal solutions. Metaheuristics are among
the most effective strategies for solving hard combinatorial optimiza-
tion problems. The customization (or instantiation) of a metaheuristic
to a given problem yields a heuristic for that problem.

Recent years have witnessed huge advances in computer technology
and communication networks. Cung et al. [9] noted that parallel imple-
mentations of metaheuristics not only appear as quite natural alterna-
tives to speed up the search for good approximate solutions, but also
facilitate solving larger problems and finding improved solutions, with
respect to their sequential counterparts, due to the partitioning of the
search space and to the increased possibilities for search intensification
and diversification. As a consequence, parallelism can improve the effec-
tiveness and robustness of metaheuristic-based algorithms. The latter
are less dependent on sophisticated parameter tuning and their success
is not limited to a few or small classes of problems.

The growing computational power requirements of large scale applica-
tions and the high costs of developing and maintaining supercomputers
has fuelled the drive for cheaper high performance computing environ-
ments. With the considerable increase in commodity computers and
network performance, cluster computing and, more recently, grid com-
puting [15, 16] have emerged as a real alternatives to traditional super-
computing environments for executing parallel applications that require
significant amounts of computing power.

A computing cluster generally consists of a fixed number of homo-
geneous resources, interconnected on a single administrative network,
which together execute one parallel application at a time. Grids in some
sense are just the opposite, aiming to harness sufficient computing power
from a diverse pool of resources, available on the internet, to execute a
number of applications simultaneously. Grids aggregate geographically
distributed collections (or sites) of resources which typically belong to
different owners and thus are shared between multiple users. Each of
these sites could consist of one or more uni-processor machines, a sym-
metric multiprocessor cluster, a distributed memory multicomputer sys-
tem, or a massively parallel supercomputer. Clearly, the physical nature
of the resources and the computing power available are both heteroge-
neous. Unlike local area network environments, grids are more suscep-
tible to resource and network failures. Additionally, since the resources
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and network are being shared, the computational power available and
communication costs fluctuate. These issues require careful consider-
ation when developing grid enabled applications. The fact that these
resources are distributed, heterogeneous and non-dedicated, make writ-
ing parallel grid-aware applications much more challenging [14]. While
in theory optimization problems should easily benefit from grid com-
puting, in practice appropriate design, careful tuning and thorough re-
evaluation of parallel implementations are necessary. Most of all, this
requires a thorough understanding of how metaheuristics behave in such
environments.

This work aims to investigate the practical benefits that large scale
parallel processing can bring to metaheuristics for combinatorial opti-
mization problems. In particular, this paper describes four simple but
efficient strategies for the parallelization in grid environments to improve
the extended GRASP with ILS heuristic for the mirrored traveling tour-
nament problem proposed in [34]. The sequential strategy substitutes
the local search phase of a GRASP heuristic by an ILS procedure, ob-
taining high-quality solutions that are among the best known in the
literature for benchmark instances of this problem [38].

The remainder of the paper is organized as follows. The following
section reviews the formulation of the mirrored traveling tournament
problem. Section 3 summarizes the extended GRASP with ILS sequen-
tial heuristic. In Section 4, some important issues concerning the paral-
lel implementation of metaheuristics are reviewed. Section 5 describes
the four parallel implementations for the mirrored traveling tournament
problem. Section 6 presents and compares experimental results obtained
with the proposed strategies. Results on a computational grid employing
82 resources from sites in three different cities are reported in Section 7.
Concluding remarks are made in the last section.

2. The mirrored traveling tournament problem
We consider a tournament played by n teams, where n is an even um-

ber. In a simple round-robin (SRR) tournament, each team plays every
other exactly once in n−1 prescheduled rounds. In a double round-robin
(DRR) tournament, each team plays every other twice, once at home
and once away. A mirrored double round-robin (MDRR) tournament is
a simple round-robin tournament in the first n − 1 rounds, followed by
the same tournament with reversed venues in the last n− 1 rounds. We
assume that each team in the tournament has a stadium in its home city
and that the distances between the home cities are known. Each team is
located at its home city at the beginning of the tournament, to where it
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returns at the end after playing the last away game. Whenever a team
plays two consecutive away games, it goes directly from the city of the
first opponent to the other, without returning to its own home city.

The Traveling Tournament Problem (TTP) was first established by
Easton et al. [11]. Given n teams and the distances between their home
cities, the TTP consists in finding a DRR tournament such that every
team does not play more than three consecutive home or away games,
no repeaters (i.e., two consecutive games between the same two teams
at different venues) occur, and the sum of the distances traveled by the
teams is minimized. Benchmark instances are available in [38]. To date,
even small benchmark instances of the TTP with n = 10 teams cannot
be solved exactly. The largest instance for which the optimal solution
is known (n = 8 teams) took four days of processing time using twenty
processors in parallel [10]. We also refer to this problem as the non-
mirrored TTP, for which both mirrored and non-mirrored solutions are
feasible.

The mirrored Traveling Tournament Problem (mTTP) has an addi-
tional constraint: the games played in round k are exactly the same
played in round k + (n − 1) for k = 1, . . . , n − 1, with reversed venues.
Repeaters do not occur in mirrored schedules. Mirrored tournaments
are a common tournament structure in Latin America.

The TTP has raised significant interest in recent years especially af-
ter challenge instances were proposed in [38]. Easton, Nemhauser and
Trick [11] applied an Integer Linear Programming approach to the TTP.
They modified their three-phase approach [27] previously used to sched-
ule the Atlantic Coast Conference (ACC) basketball league, generating
new high-quality solutions. Some of the results were later improved upon
by Benoist et al. through the combination of Lagrangian relaxation and
constraint programming [6]. Anagnostopoulos et al. [4] proposed a sim-
ulated annealing algorithm for the TTP to explore a large neighborhood
with complex moves. The algorithm included a strategic oscillation tech-
nique and applied re-heat to both balance the exploration of feasible and
infeasible regions and to escape from local minima at very low tempera-
tures. Lim et al. [22] used a two-stage approach consisting of simulated
annealing and hill-climbing techniques were able to improve even further
some of the results obtained by [4]. Recently, Rasmussen and Trick [28]
also considered Benders decomposition approaches to the TTP. Gaspero
and Schaerf [17] explored a composite-neighborhood tabu search ap-
proach. It is important to point out that these works provide solutions
for the non-mirrored Traveling Tournament Problem, while our work
focus on the mirrored version. As far as we know, there is no parallel
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metaheuristic solutions for the mTTP (nor TTP), which is the focus of
the work proposed here.

3. Extended GRASP with ILS heuristic
The GRASP (Greedy Randomized Adaptive Search Procedure) meta-

heuristic [29] is a multi-start or iterative process, in which each iteration
consists of two phases: construction and local search. The construc-
tion phase builds a feasible solution, whose neighborhood is investigated
during the local search phase until a local minimum is found. The best
overall solution is kept as the result.

The construction and local search phases are problem-dependent and
should be customized for each problem. GRASP has experienced con-
tinued development and has been applied in a wide range of areas [13].
Resende and Ribeiro [29, 30] described successful implementation tech-
niques and parameter tuning strategies, as well as enhancements, exten-
sions, and hybridizations of the original algorithms.

The ILS (Iterated Local Search) metaheuristic [23] starts from a lo-
cally optimal feasible solution. A random perturbation is applied to the
current solution, which is then followed by a local search. If the local
optimum obtained after these steps satisfies some acceptance criterion,
then it is accepted as the new current solution, otherwise the latter does
not change. The best solution is, if necessary, updated and the above
steps are repeated until some stopping criterion is met.

A hybridization of the GRASP and ILS metaheuristics into an effec-
tive hybrid heuristic for the mTTP was proposed in [34]. Basically, the
authors substituted the local search phase of GRASP by an ILS proce-
dure. The pseudo-code in Algorithm 16.1 summarizes the main steps
of the GRILS-mTTP heuristic for finding approximate solutions for the
mirrored traveling tournament problem.

The outer while loop in Algorithm 16.1 executes a GRASP construc-
tion phase followed by an ILS local search phase, until a stopping crite-
rion is met. Typically, the algorithm continues executing until a solution
is found with a cost that is as good as or better than a given target value,
or until a given period of time has elapsed.

During the GRASP phase of each iteration, an initial solution S is
constructed to which a local search algorithm is then applied, returning
a new current solution S. This solution is also used to initialize the best
solution S in the current iteration.

The ILS phase of the iteration is the inner repeat loop which ap-
plies a perturbation to the current solution S obtaining a new solution
S′. A local search algorithm is applied to S′, where four neighborhood
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Procedure GRILS-mTTP();
1. while .NOT.StoppingCriterion do
2. S ← BuildGreedyRandomizedSolution();
3. S, S ← LocalSearch(S);
4. repeat
5. S′ ← Perturbation(S);
6. S′ ← LocalSearch(S′);
7. S ← AcceptanceCriterion(S, S′);
8. S∗ ← UpdateGlobalBestSolution(S, S∗);
9. S ← UpdateIterationBestSolution(S, S);
10. until ReinitializationCriterion;
11. end;
12. return S∗;

Figure 16.1. Pseudo-code of the GRASP with ILS heuristic for the mTTP.

structures are used. The first three are simple exchanges in which TS
(team swap), HAS (home-away swap) and PRS (partial round swap)
neighborhoods are explored by local searches. The GR (game rotation)
ejection chain neighborhood, explored only as a diversification move, is
performed less frequently by the heuristic as a perturbation [34].

A first-improving strategy similar to the VND (Variable Neighbor-
hood Descent) procedure [19] was used to implement the local search
algorithm. Once a local optimum with respect to the TS neighborhood
is found, a quick local search using the HAS neighborhood is performed.
Next, the PRS neighborhood is investigated, followed again by a local
search using the HAS neighborhood. This scheme is repeated until a
local optimum with respect to these three neighborhoods is found.

In this context, the new solution S′ is accepted or not as the new
current solution, depending on an acceptance criterion. The best overall
solution S∗ and the best solution in the current GRASP iteration are
updated, if necessary, and a new cycle starts with the perturbation of
the current solution, until a re-initialization criterion is met.

A new GRASP iteration starts if 50 consecutive deteriorating moves
to neighbor solutions have been accepted since the last time S (the best
solution found in this GRASP iteration) was updated. Re-initialization
occurs if too many perturbations followed by local search are performed
without improving the best solution in the current GRASP iteration. It
is important to notice that a GRASP iteration is not interrupted if the
current solution S is still being improved.
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The parallelization of this algorithm does not only aim to reduce the
total running time, but also to improve its effectiveness and robustness.
The use of several processors concurrently to explore different search
trajectories, as described in Section 5, may lead to a more thorough
investigation of the neighborhoods.

4. Parallel implementation of metaheuristics
Programming paradigms commonly used to develop low communica-

tion parallel programs on distributed clusters include the master-slave
(also often referred to as task farming) and the client-server models [14].
These approaches are especially attractive, since they can generally be
applied to take advantage of all available resources in a grid environment.

Cung et al. [9] reviewed some major issues on parallel implementations
of metaheuristics, such as the types of parallelism as well as appropriate
parallel programming models and parallelization strategies for this class
of heuristics. With respect to parallelization strategies [9, 39], two main
approaches are used: single-walk and multiple-walk. Each iteration of a
metaheuristic generally starts with the construction of an initial solution,
followed by a search to improve the solution. New neighboring solutions
are evaluated by making a series of minor alterations to a given solution.
The sequence of solutions evaluated is known as a walk or trajectory . In
the case of a single-walk parallelization, one unique search trajectory is
traversed in the solution space and the search for the best neighbor at
each iteration is performed in parallel. The neighborhood search is per-
formed faster in parallel, but the search trajectory is the same as the one
followed in the corresponding sequential implementation. On the other
hand, a multiple-walk parallelization strategy is characterized by the in-
vestigation in parallel of multiple trajectories, each of them performed
by a different processor. A search “thread” is a process running in each
processor traversing a walk in the solution space. These processes can
be either independent (where no information is exchanged among pro-
cesses) or cooperative (the information collected along a trajectory is
disseminated and used by other processes to improve or to speed up the
search).

Cooperative strategies are the most general and promising, but of-
ten incur in additional costs in terms of communication and storage.
However, if cooperation is well explored and implemented, it can glob-
ally lead to better solutions in smaller computation times even if each
individual iteration may take longer, see e.g. [32].

Developing and tuning efficient parallel implementations of meta-
heuristics require a thorough programming effort and keen implemen-
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tation skills. In the context of grid computing, where communication is
at a premium, one of the most difficult aspects to be determined is the
nature of the information to be shared, in order to improve the search
without taking too much additional memory or time to be collected, as
well as the frequency at which this information is exchanged. The infor-
mation shared by the search threads can be implemented either as global
variables stored in a shared memory, or as a pool in the local memory
of a dedicated central processor. In the case of the latter, information is
exchanged with the other processors via message passing.

5. Parallel strategies for the extended GRASP
with ILS heuristic

This section presents four simple, but efficient, strategies for the par-
allelization of the best known algorithm (the hybrid heuristic GRILS-
mTTP [34] summarized in Section 3) for solving the mTTP. Besides ob-
taining speedups in execution times, improvements in solution quality
are also sought. All four versions are based on the master-worker pro-
gramming paradigm and adopt a multiple-walk search strategy. This
work aims to investigate how degrees of cooperation and increased di-
versity (in terms of number of trajectories investigated and the amount
of information being shared) affect the GRILS-mTTP heuristic.

Initially, the master process generates and distributes distinct seeds to
be used by the pseudo-random number generator of each worker process.
As the number of workers increases, this will foster greater diversity. In
order to reduce the chance that processes search the same neighborhood
(i.e., evaluate the same solutions), each process uses a different sequence
of pseudo-random numbers. The Mersenne Twister random number
generator of Matsumoto and Nishimura [24] was chosen based on the
recommendation in [33].

5.1 Parallel strategy with independent processes
This version, denoted by PAR-I, is representative of executing the

sequential algorithm simultaneously on multiple machines independently
of each other (e.g. as a parameter sweep application).

After receiving their seeds, each worker starts a cycle in which it gen-
erates a new solution during a GRASP construction phase and then
executes an ILS local search phase until the re-initialization criterion is
met. This cycle is repeated until a solution with a cost equal to or bet-
ter than a given target value (used as a stopping criterion) is found. Al-
though no communication takes place between the independent searches,
once the stopping criterion has been met, a controller process (master)
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receives and records the solution found and responds by broadcasting a
halt message to each worker to terminate their execution.

5.2 Parallel strategy with one-off cooperation
This version, PAR-O, is identical to the previous one, with the excep-

tion of the first iteration of the main loop. After each worker executes
the GRASP phase, the best initial solution encountered by each of them
is sent to the master, which in turn selects and broadcasts back to all
the workers the best overall solution. Therefore, all workers will execute
the ILS local search phase of the first iteration using the same initial
solution. The following iterations are executed independently. This is
called one-off cooperation because this exchange only occurs during the
first iteration.

5.3 Parallel strategy with one elite solution
One of the possible shortcomings of the previous versions is the lack

of continuous cooperation between the workers during their execution,
i.e., each worker process does not learn from searches carried out in
parallel (or from solutions found) in previous iterations by other work-
ers. In the earlier strategies, the current best solution is not available
to all workers. Information gathered from good solutions should be
used to implement more effective strategies [12, 31]. Typically, in these
history-based parallel cooperative strategies, the master manages the
exchange of information collected along the trajectories investigated by
each worker.

In this version, PAR-1P, the master keeps the best (or elite) solution
received from any worker. Each time the best solution is improved, the
master broadcasts the solution’s cost to all workers to avoid unnecessary
communication from them. The intuition is to use this information
not only to converge faster to a target solution, but also to find better
solutions than the independent search strategies.

In PAR-1P, there is no one-off cooperation during the first iteration.
Instead, each time a worker completes the ILS local search phase, it will
compare the cost of the solution found with that of the best solution
held by the master. If it is lower, the worker sends its solution to the
master, otherwise the solution is discarded. After this, two outcomes
are possible. Either, the worker requests the best solution held by the
master to repeat the ILS local search phase with this solution, or the
worker continues with the next iteration (i.e. re-initialization causes a
new initial solution during the GRASP construction phase to be created
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and proceeds with the next steps of the sequential heuristic) as in the
previous versions.

The probability of each outcome is denoted by Q and 1−Q, respec-
tively. Q was fixed at 10% in all experiments reported in Section 6. In
this way, workers indirectly exchange elite solutions found along their
search trajectories. This parallel cooperative strategy promotes a more
thorough search of the space around good solutions, characteristic of
single-walk parallelization approaches.

5.4 Parallel strategy with a pool of elite
solutions

In this cooperative strategy, PAR-MP, the master is dedicated to
managing a centralized pool of elite solutions (and their costs), includ-
ing collecting and distributing them upon request. As in the previous
version, workers start their searches from different initial solutions and
can exchange and share elite solutions found along their search trajec-
tories.

In PAR-MP, the master will update the elite solution pool with a
newly received solution according to given criteria which are based on
the quality of the solutions already in the pool (as described below).
When a worker completes an iteration, it can either request an elite
solution from the pool or construct a new initial solution randomly,
again with probabilities of Q and 1 − Q, respectively. Q was fixed at
10% in all experiments reported in Section 6.

The goal to be achieved by cooperation through the pool of elite so-
lutions is to exchange meaningful information in a timely manner, so
as that the parallel search finds better solutions than the simple con-
catenation of the results of the individual methods. Developments in
metaheuristics have proved to be particularly successful when their basic
concepts are combined with cooperative methods. These hybrid cooper-
ative approaches maintain a reference set of high quality solutions which
are repeatedly used during the search to guarantee a fruitful balance be-
tween diversification and intensification [18].

Pool management A very important aspect of this strategy is the
management of the pool of elite solutions. However, maintaining such a
pool is not trivial. The main issue consists in finding a balance between
the attempt to collect a number of high quality solutions, which often
share similar properties, and the need to guarantee a certain degree
of diversity in the pool. Empirically, previous research (see e.g. [12])
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observed that history-based heuristics are less likely to be successful if
the recorded solutions are very similar.

The pool consists of a limited number M of positions, which are ini-
tialized with null solutions. The pool manager supports two essential
operations: the insertion of a new solution into its appropriate position
in the pool and the selection of a solution from the pool from which a
worker will initiate a new search.

To guarantee the diversity within the pool, the insertion of a new
solution depends on the state of the pool and on how the solution was
generated. When the new candidate solution has been derived from an
elite solution in the pool, the cost of the new solution must be better
than the cost of the elite solution from which it was generated. If true,
the new solution will obligatorily take the place of that elite solution.
On the other hand, if the solution was derived from a solution produced
by the GRASP construction phase, the solution can be inserted directly
into any vacant position. In the case where the pool is full, the solution
is inserted only if it is as good as the worst elite solution already in the
pool (thus replacing the latter).

When a worker process requests an elite solution from the master, a
solution is selected at random from the pool and sent back to worker
process.

6. Experimental results
The four parallel algorithms PAR-I, PAR-O, PAR-1P, and PAR-MP,

described in Section 5, were implemented using C++ and version 7.0.6
of the LAM grid-enabled implementation [21] of the message passing
interface standard MPI [25]. For evaluation purposes, the experiments
reported in this section were executed in isolation on a dedicated cluster
(of 1.7 GHz Pentium 4 processors, each of which with 256 Mbytes of
RAM memory, interconnected by a Fast Ethernet network) to avoid
external influences in performance. Each processor has a local copy of
the executable code and the problem data.

Two sets of benchmark instances have been proposed for the traveling
tournament problem[11]. The first is made up of circle instances, artifi-
cially generated to represent easier instances. The name circn is used to
denote a circle instance with 4 ≤ n ≤ 20 teams. Each circle instance is
built from a graph, generated as follows. Nodes are placed at equal unit
distances along a circumference and labeled 0, 1, . . . , n − 1. There are
edges only between nodes i and i + 1 mod n, for i = 0, 1, . . . , n − 1. In
the corresponding circle instance, the distance between the home cities
of teams i and j (with i > j) is given by the length of the shortest
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path between them in the graph and is equal to the smaller of i − j
and j − i+n. The second set are realistic instances generated using the
distances between the home cities of a subset of teams playing in the Na-
tional League of the MLB (Major League Baseball) in the United States.
These national league instances are denoted by nln, with 4 ≤ n ≤ 16.
We did not consider the smaller instances with n = 4 and n = 6, for
which optimal solutions have already been found. Furthermore, an ad-
ditional real-life instance has been created by Ribeiro and Urrutia [34],
named br24. This instance is made up of the home cities of the 24 teams
playing in the first division of the 2003 edition of the Brazilian soccer
championship. All instances and their best known solutions are available
from [38].

The experiments aim to investigate how parallel computing can be
used to harness cooperation and diversity, improving solution quality
and convergence when executing the GRILS-mTTP heuristic in distributed
computing environments. The parameter M was set to P , where P is
the number of worker processes used in the parallel execution. The
probability, Q, of choosing a solution from the pool was fixed at 10%.

Table 16.1 displays, for each instance, the cost of the best known so-
lution at the time of writing obtained by the sequential implementation
of the GRILS-mTTP heuristic after five days of processing time [38]. These
are compared with the cost of the best solutions found during the follow-
ing experiments by the four parallel implementations of the GRILS-mTTP
heuristic. The execution time required varies with the number of proces-
sors used and these details are described in the following experiments.
Notice that PAR-I, PAR-O, and PAR-1P found the same cost solutions
for each of the benchmark instances, while the PAR-MP implementa-
tion was able to improve the best solution found by the three others in
the case of three instances. The last column gives the relative improve-
ment obtained by PAR-MP over the cost of the best known sequential
solution.

In the experiments reported next, the costs of the best solutions found
by the sequential heuristic, as reported in Table 16.1, are referred to as
the easy targets. The costs of the solutions obtained by the PAR-I,
PAR-O, and PAR-1P implementations are referred to as the medium
targets, for the instances for which the best solution obtained by these
versions improved the easy targets (instances circ10, circ16, circ18, nl16,
and br24). The PAR-MP implementation further improved the best
known solutions for three of these instances, and these best solution
costs are referred to as the hard targets (for instances circ16, circ18,
and nl16).
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Table 16.1. Solutions found by the sequential and parallel implementations.

Instance Sequential PAR-I/O/1P PAR-MP Improvement (%)

circ8 140 140 140 -
circ10 276 272 272 1.45
circ12 456 456 456 -
circ14 714 714 714 -
circ16 1004 984 978 2.59
circ18 1364 1308 1306 4.25
circ20 1882 1882 1882 -
nl8 41928 41928 41928 -
nl10 63832 63832 63832 -
nl12 120655 120655 120655 -
nl14 208086 208086 208086 -
nl16 285614 280174 279618 2.09
br24 506433 503158 503158 0.65

The scalability of the parallel strategies was evaluated to study the
benefits of searching an increasing number of multiple trajectories. Ex-
ecuting with more processes offers a greater diversity due to the use of
multiple distinct initial seeds and solutions. Table 16.2 (resp. Table 16.3)
shows the average execution times over five runs with different seeds for
the sequential and the PAR-I and PAR-O (resp. PAR-1P and PAR-MP)
parallel versions. These tables present the time in seconds required to
find a solution whose cost is at least as good as the corresponding easy
target, using one processor for the sequential implementation and eight,
16, and 24 processors for each parallel version.

The parallel versions converged faster than the sequential one for all
instances. As the number of processors used increases, all parallel ver-
sions were able to find the corresponding easy targets faster, as reflected
by the speedups presented in Tables 16.4 and 16.5. The speedups of the
PAR-MP parallel version were greater than those of the other implemen-
tations. For example, the average speedups of the four algorithms on
24 processors were 12.51 for PAR-I, 12.62 for PAR-O, 13.19 for PAR-1P
and 13.41 for PAR-MP.

The following experiment considers the computation times taken by
the parallel versions to find solutions at least as good as the medium tar-
gets (exclusively for the instances for which the latter are smaller than
the corresponding easy targets), addressing the benefits of exchanging
information between the workers instead of letting them execute inde-
pendently. The average processing times in seconds, based on five exe-
cutions, on 24 processors are reported in Table 16.6. Results show that
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Table 16.2. Average computation times in seconds to find the easy targets on eight,
16, and 24 processors (PAR-I and PAR-O parallel versions).

Sequential PAR-I PAR-O
Instance P = 1 P = 8 P = 16 P = 24 P = 8 P = 16 P = 24

circ8 0.87 0.27 0.15 0.14 0.26 0.15 0.14
circ10 197.64 26.32 18.32 15.98 26.31 18.32 15.97
circ12 4.48 1.33 1.11 0.55 1.32 1.11 0.54
circ14 3.46 0.87 0.82 0.73 0.86 0.73 0.71
circ16 413.73 56.54 33.93 24.78 56.58 33.97 24.77
circ18 175.14 43.19 30.06 13.62 43.24 29.99 13.62
circ20 800.94 177.28 82.99 43.47 176.67 83.05 43.47
nl8 0.79 0.23 0.08 0.07 0.22 0.08 0.06
nl10 453.54 113.22 39.03 19.52 113.22 39.03 19.51
nl12 22.13 4.23 1.83 1.34 4.23 1.83 1.33
nl14 33.23 5.32 4.80 4.34 5.32 4.80 4.35
nl16 1433.05 474.12 243.14 73.62 474.26 243.11 73.58
br24 156.32 40.87 33.83 29.08 40.54 33.70 28.97

Table 16.3. Average computation times in seconds to find the easy targets on eight,
16, and 24 processors (PAR-1P and PAR-MP parallel versions).

Sequential PAR-1P PAR-MP
Instance P = 1 P = 8 P = 16 P = 24 P = 8 P = 16 P = 24

circ8 0.87 0.19 0.16 0.12 0.19 0.15 0.11
circ10 197.64 26.31 17.04 15.97 26.31 17.04 15.96
circ12 4.48 1.33 0.39 0.35 1.33 0.38 0.34
circ14 3.46 0.65 0.53 0.52 0.65 0.53 0.51
circ16 413.73 55.30 33.93 24.45 55.31 33.94 24.50
circ18 175.14 24.73 21.96 13.60 24.70 23.96 13.62
circ20 800.94 106.34 70.50 43.47 106.30 70.47 43.46
nl8 0.79 0.17 0.10 0.08 0.16 0.08 0.07
nl10 453.54 113.21 39.01 19.52 125.43 39.05 19.51
nl12 22.13 3.91 1.61 1.33 3.91 1.64 1.33
nl14 33.23 5.85 4.80 4.35 5.84 4.80 4.34
nl16 1433.05 323.33 236.36 73.59 322.27 223.61 73.54
br24 156.32 33.99 25.29 20.23 30.77 23.71 16.55

PAR-MP presents the smallest computation time in most cases. Note
that this version makes use of a cooperative strategy based on a pool of
M elite solutions (M = 24). Although PAR-1P also shares information,
it only records one elite solution. Therefore, the degree of diversity is
smaller than in PAR-MP, possibly leading the workers to search the
same region and, consequently, taking longer to converge to the target.
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Table 16.4. Speedups on eight, 16, and 24 processors (PAR-I and PAR-O parallel
versions).

PAR-I PAR-O
Instance P = 8 P = 16 P = 24 P = 8 P = 16 P = 24

circ8 3.23 5.69 5.87 3.28 5.70 6.21
circ10 7.50 10.79 12.37 7.51 10.79 12.38
circ12 3.37 4.02 8.21 3.39 4.03 8.21
circ14 3.99 4.21 4.74 4.00 4.72 4.74
circ16 7.32 12.20 16.70 7.31 12.18 16.71
circ18 4.06 5.83 12.87 4.05 5.84 12.86
circ20 4.52 9.65 18.42 4.53 9.64 18.43
nl8 3.51 9.36 11.15 3.61 9.38 12.34
nl10 4.00 11.62 23.24 4.01 11.62 23.25
nl12 5.23 12.09 16.56 5.23 12.12 16.63
nl14 6.25 6.93 7.65 6.24 6.93 7.64
nl16 3.02 5.89 19.47 3.02 5.89 19.48
br24 3.83 4.62 5.38 3.86 4.64 5.40

average 4.60 7.91 12.51 4.62 7.96 12.62

Table 16.5. Speedups on eight, 16, and 24 processors (PAR-1P and PAR-MP parallel
versions).

PAR-1P PAR-MP
Instance P = 8 P = 16 P = 24 P = 8 P = 16 P = 24

circ8 4.42 5.40 7.23 4.57 5.65 7.51
circ10 7.51 11.60 12.37 7.51 11.60 12.39
circ12 3.36 11.23 12.67 3.35 11.58 13.07
circ14 5.30 6.50 6.69 5.29 6.54 6.78
circ16 7.48 12.19 16.92 7.48 12.19 16.89
circ18 7.08 7.98 12.87 7.09 7.31 12.86
circ20 7.53 11.36 18.42 7.53 11.37 18.43
nl8 4.80 7.24 9.58 4.99 9.90 9.95
nl10 4.01 11.63 23.24 3.62 11.62 23.25
nl12 5.66 13.75 16.59 5.67 13.50 16.64
nl14 5.68 6.92 7.64 5.68 6.92 7.66
nl16 4.43 6.06 19.47 4.45 6.40 19.49
br24 4.60 6.18 7.72 5.08 6.59 9.45

average 5.53 9.08 13.19 5.56 9.32 13.41

Results in Table 16.1 have shown that the PAR-MP implementation
found better solutions than those obtained by the three other parallel
implementations for three instances. Table 16.7 summarizes the results
obtained by PAR-MP and gives the average overall computation times
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Table 16.6. Computation times in seconds to find solutions at least as good as the
medium targets.

Instance Target PAR-I PAR-O PAR-1P PAR-MP

circ10 272 5,768.81 4,650.31 7,209.82 3,725.68
circ16 984 5,366.12 735.73 3,881.09 959.24
circ18 1308 9,323.88 8,565.20 13,972.76 10,620.86
nl16 280174 12,207.18 11,488.44 7,058.52 3,171.40
br24 503158 4,322.45 4,268.41 5,046.40 2,220.69

(based on five executions), in seconds, required to find the new solutions
using 24 processors and the relative improvement with respect to the best
solutions found by the other parallel implementations (i.e. the medium
targets). We notice that the solution obtained by PAR-MP for instance
circ18 is also the best known solution for the corresponding instance
of the non-mirrored version of the TTP. Nevertheless, PAR-MP still
requires just under six hours on average to find the solution.

Table 16.7. New best solutions obtained by the parallel version PAR-MP.

Instance New best solution cost Improvement (%) Time (s)

circ16 978 0.61 4,690.83
circ18 1306 0.15 20,883.81
nl16 279618 0.20 14,586.73

The following experiment addresses the robustness of the parallel
implementations from another point of view. Compared to the times
needed by version PAR-MP to find the hard targets, we investigate
whether PAR-I, PAR-O, and PAR-1P can also manage the same feat.
Given the time taken by PAR-MP to find the best known solutions re-
ported in the Table 16.7, the other parallel versions PAR-I, PAR-O, and
PAR-1P were allowed to run for approximately twice this time, again
using 24 processors. The values of the best solutions found by each ver-
sion for each instance are presented in Table 16.8. These results show
that the other parallel implementations were not able to find solutions as
good as those obtained by PAR-MP, even if significantly more process-
ing time is given, illustrating the effectiveness of the cooperation scheme
implemented in the latter.

We used time-to-target solution value plots [1, 2] for the measured
computation times to further evaluate and compare the behavior of the
four parallel versions running on different numbers of processors. This
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Table 16.8. Solutions found by PAR-I, PAR-O, and PAR-1P when executed for twice
the time taken by PAR-MP.

Instance Time (s) Target PAR-I PAR-O PAR-1P

circ16 10,000 978 984 984 984
circ18 40,000 1306 1308 1308 1308
nl16 30,000 279618 280174 280174 280174

approach is based on plots showing empirical distributions of the random
variable time-to-target solution value. To plot the empirical distribution,
we first fix a given problem instance and a target solution value. Next,
each algorithm is executed N times, recording the running time to find
the first solution as least as good as the target value. For each algorithm,
we associated with the i-th sorted running time ti a probability pi =
(i− 1

2)/N and plot the points zi = (ti, pi), for i = 1, . . . , N .
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Figure 16.2. Empirical distributions of the random variable time-to-target solution
value for the parallel versions PAR-I, PAR-O, PAR-1P, and PAR-MP using 8 proces-
sors on instance nl16.

Figure 16.2 displays the empirical distributions of the time-to-target
solution value for the four parallel versions associated with the instance
nl16 and the target cost of 284000 (a value between the easy and medium
target), obtained from N = 200 independent runs of each version on



Exploring Grid Implementations of Parallel Cooperative Metaheuristics 315

P = 8 processors. Version PAR-MP behaves better than the other ver-
sions, finding the target value in less than 1,400 seconds with probability
95% compared to 2,445 seconds with the same probability for the next
fastest amongst the others (PAR-1P). PAR-MP took at most approxi-
mately 1,500 seconds in the slowest run, while PAR-1P took more than
4,300 seconds in the worst run. The behavior depicted in this plot is
common to different instances and target values. The plot of the empir-
ical distribution associated with the PAR-MP strategy is clearly to the
left of those of the other versions, illustrating that the former is more
robust since it is able to find with higher probabilities the same solutions
found by the others in the same computation time.
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Figure 16.3. Empirical distributions of the random variable time-to-target solution
value for the parallel version PAR-MP using 4, 8, 16, and 24 processors for the
instance br24.

The plot in Figure 16.3 further illustrates the scalability of the parallel
version PAR-MP, as already shown in Tables 16.2 and 16.3. This plot
depicts the empirical distributions for four, eight, 16, and 24 processors,
obtained from N = 200 runs on instance br24 using the easy target.

7. Grid implementation and experiments
Numerous scientists and engineers, from diverse scientific and tech-

nological fields, are showing interest in exploiting the potential of grid
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computing. This section briefly highlights a number of observations
with respect to executing metaheuristics on a computational grid. For
performance evaluation purposes, the experiments presented earlier in
Section 6 were necessarily obtained with exclusive access to a dedicated
cluster of processors, since grids are inherently shared computing envi-
ronments. This sharing, together with the fact that grid resources are
heterogeneous, means that the computing power available from resources
is neither identical nor constant.

As computational environments scale to hundreds of individual com-
putational resources, failures are more likely to occur especially during
the execution of long-running applications. Users naturally want their
programs to adapt to both faults and changes in available performance
in order to continue executing efficiently. While the current implementa-
tions of MPI are suitable for use in the static environments like comput-
ing clusters, in practice they are not robust enough for computational
grids. For example, grid enabled implementations of MPI do not provide
support for dynamic rescheduling of processes. Furthermore, a single
process failure will cause the whole application to abort.

In an effort to hide the intricacies of grid environments, grid engineers
have been developing grid middleware (an intermediate layer of software)
to provide tools which insulate users from the underlying complexities,
and management systems, that automatically and efficiently adapt grid-
enabled applications to the dynamically changing characteristics of the
grid.

The EasyGrid AMS middleware [7] provides for a robust and efficient
execution of programs in grid environments. Parallel MPI applications
are transformed automatically into system-aware versions by incorporat-
ing grid middleware into the user’s application without modification to
the latter. These system-aware applications or Smart G-Apps are adap-
tive, robust to resource failure (fault tolerant), self-scheduling programs
capable of reacting to changes which occur in shared, dynamic, unstable
distributed environments like computational grids.

This approach aims to relieve programmers and users of the task of
enabling (existing) applications to execute efficiently in grid environ-
ments. Turning aspects related to the grid transparent to the program-
mer avoids the need to develop one version of the application for a local
cluster computing platform and another for the grid. The methodology
is based on application-centric middleware which provides services (e.g.
static and dynamic scheduling, and integrated fault tolerance strategies)
specifically tuned to the needs of each individual application [26].

Given that the PAR-MP implementation produced the best results
for the mTTP when compared to the other parallel strategies, a grid
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enabled version of PAR-MP based on the EasyGrid AMS was evaluated
in a real grid environment. Grid Sinergiacomputational grid is an initia-
tive to create and operate a research oriented, production level compu-
tational grid across three states (Rio de Janeiro, São Paulo, and Esṕırito
Santo) in the south east of Brazil. The objectives include providing re-
searchers with a realistic and practical environment for distributed com-
puting research and offering system administrators practical experience
in management and operation of grid computing environments. Grid
Sinergia currently employs the Globus Toolkit middleware [3] across the
participating sites which are interconnected by the Brazilian National
Research Network’s experimental high speed (10Gbit) optical network
Rede Giga.

An initial experiment was carried out employing 82 resources from
the following three sites of Grid Sinergia, located in three different cities
within the state of Rio de Janeiro: (a) two clusters in the city of Rio de
Janeiro, one with 30 Linux PCs (Pentium II 400 MHz) and the other
with 24 Linux PCs (Pentium IV 1.7GHz), each of them connected by a
fast ethernet network; (b) in Niterói (a distance of 40 Km from cluster
(a)), a cluster of 26 Linux PCs (Pentium IV 2.6 GHz) interconnected
via Gigabit switches; (c) and in Petrópolis (approximate 100 Km from
both clusters (a) and (b)) two Linux PCs (Pentium IV 3.2 GHz).

Table 16.9 displays the average processing times (measured over five
runs) in seconds required to find a solution whose cost is at least as
good as the corresponding medium target, on the shared resources of
the computational grid during the day (i.e. normal working hours) and
during the night (after working hours, the resources tend to be utilized
less). We notice that, although the resources were being shared with
other users, the practical benefits obtained with the computational grid
were outstanding. For example, in the case of instance circ18, for the
medium target, an almost four fold improvement was achieved by the
grid with respect to the dedicated 24-processor cluster.

Table 16.9. Average processing times of the parallel cooperative strategy PAR-MP
when executed in 82 resources from three sites of Grid Sinergia.

Time (seconds)

Instance Dedicated cluster Shared grid Shared grid
(24 CPUs) (82 CPUs, working hours) (82 CPUs, after hours)

circ10 3,725.68 1,077.38 333.48
circ16 959.24 747.94 513.63
circ18 10,620.86 2,376.76 2,313.73
data16 3,171.40 1,044.31 908.95
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8. Concluding remarks
Metaheuristics have found their way into the standard toolkit of com-

binatorial optimization methods. Parallel implementations of meta-
heuristics can be applied to hard combinatorial optimization problems,
often allowing reductions in computation times. Although independent
strategies can already obtain good computational results, paralleliza-
tions based on cooperative search strategies lead to more robust imple-
mentations.

The computational results reported in this paper show that the se-
quential heuristic for the mirrored traveling tournament problem benefits
from low communication parallel implementations, which are capable of
finding better solutions with respect to their sequential counterpart. In
particular, the use of a pool of elite solutions offers a diversity of high
quality solutions from which workers can restart their searches for better
solutions. The pool also provides a mean to implement cooperation and
to achieve faster convergence.

Consistent speedups were obtained on experiments performed on a
dedicated cluster with up to 24 processors. The cooperative implemen-
tation PAR-MP obtained average results systematically better than the
others. In particular, it was able to improve the hard targets to several
instances and to disclose previously unknown solutions.

This parallel strategy was also implemented and tested using a true
grid platform. We reported original results from pioneer computational
experiments on a shared computational grid formed by 82 machines dis-
tributed over four clusters in three cities, illustrating the potential of
the application of computational grids in the fields of metaheuristics
and combinatorial optimization.

Given the above favorable results and the enormous potential of com-
putational grids, a broader investigation is underway, exploring the use
of a significantly larger number of processors and investigating new pro-
gramming challenges.
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Abstract Stochastic Local Search (SLS) algorithms can be seen as being composed of
several algorithmic components, each playing some specific role with respect to
overall performance. This article explores the application of experimental design
techniques to analyze the effect of components of SLS algorithms for Multiob-
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1. Introduction
Stochastic Local Search (SLS) algorithms [14] for Multiobjective Combi-

natorial Optimization Problems (MCOPs) typically involve the selection and
parameterization of many algorithmic components whose role with respect to
the overall performance and relation to certain instance features is often not
clear. This problem is even further increased by the recent trend towards hy-
brid approaches [7].

In this article, we take a modular perspective to the design and analysis
of SLS algorithms for MCOPs that are solved with respect to the notion of
Pareto optimality. An SLS algorithm is understood as a combination of SLS
components that can be coupled and that can result in different behaviors. The
effect of these components on the overall performance can then be analyzed by
means of experimental design techniques. Roughly speaking, each component
is considered a factor, that is, an abstract characteristic of an SLS algorithm
that can affect random variables such as solution quality and computation time;
each factor has associated levels that are possible instantiations of the SLS
component.

Given the stochasticity of the algorithms under study, we apply a sound
empirical methodology for evaluating the solution quality reached by the al-
gorithms. We base our analysis on the better relation [13, 31] and attainment
functions [11]; the latter allows the application of statistical hypothesis tests on
the performance of two or more SLS algorithms [21]. Finally, an exploratory
data analysis tool is used to illustrate the effects of the SLS components and
their parameter settings in the objective space in order to derive more fine-
grained conclusions.

This analysis shows that different choices for these components can affect
the SLS algorithm in several different ways, and that the same choices can lead
to different behaviors in dependence of certain instance features. We illustrate
these results for SLS algorithms applied to the Biobjective Quadratic Assign-
ment Problem (BQAP). The BQAP is defined as follows: given n facilities and
n locations, one n× n matrix A where aij is the distance between locations i
and j, and two n× n matrices B1 and B2 where b1rs is the first flow and b2rs is
the second flow between facilities r and s, the objective function in the BQAP
is stated as:

min
φ∈Φ

⎧⎨
⎩

∑n
i=1

∑n
j=1 aφiφjb

1
ij

∑n
i=1

∑n
j=1 aφiφjb

2
ij

, (17.1)

where Φ is the set of all permutations of {1, 2, . . . , n}, φi gives the location
assigned to facility i in the solution φ ∈ Φ, and “min” refers to the notion
of Pareto optimality. This analysis is based on straightforward extensions of
simple SLS algorithms for the single-objective QAP, which are applied to solve
several scalarizations of the objective function vector for instances of different
size, structure of the input data, and correlations between the flow matrices.
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Algorithm 1 Algorithm framework

for all weight vectors �λ do
s = Choose solution
s′ = SLS(s,�λ)
Add s′ to Archive

Filter Archive
return Archive

2. SLS Algorithms and SLS Components
One large class of SLS approaches for MCOPs is based on solving several

scalarizations of the objective function vector [23]. In a biobjective problem
such as the BQAP, the objective function vector is scalarized according to
a weight vector �λ = (λ1, λ2) with non-negative components. The type of
scalarization chosen is the well-known weighted sum formulation given by

f(s) = λ1f1(s) + λ2f2(s) .

It is known that the efficacy of approaches based on weighted sum depends
strongly on the number of efficient solutions that are non-supported, that is,
those solutions that do not lie in the convex-hull of the efficient set in the ob-
jective space. Non-supported solutions are not optimal for any weight vector
and, therefore, their large number can affect negatively the performance of
such SLS algorithms. Despite this pitfall, the usage of scalarizations has been
shown to be a very successful strategy [3][8][13][16][22][30]. Moreover, a
strong advantage of this approach is that for tackling multi-objective problems,
the SLS algorithms developed for the single-objective counterpart are directly
applicable. The necessary adaptation for handling MCOP s mainly lies on the
strategy for changing the weight vectors at run-time in order to return a set of
solutions that is well spread in the objective space.

Algorithm 1 presents the pseudo-code of the algorithmic framework, where
the procedure SLS corresponds to the SLS algorithm for solving each scalariza-
tion and Archive is a data structure that maintains the solutions that are found
at the end of each scalarization. The choice for the underlying SLS algorithm
is obviously crucial for tackling an MCOP; typically, it will be advisable to
apply the state-of-the-art algorithms for the single-objective case, if available.
The procedure Filter removes dominated solutions from the Archive. Note that
in this framework the weight vectors are given a priori and the generation of
the initial solution is left open. The simplicity of this framework allows an easy
identification and parameterization of different SLS components. In particular,
the following four components were considered:

Dispersion policy. An usual requirement on the set of solutions re-
turned by SLS algorithms for MCOPs is that they are spread in the objec-
tive space. For this reason, we applied SLS algorithms that use maximally
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Algorithm 2 Restart search strategy

for all weight vectors �λ do
s is a randomly generated solution
s′ = SLS(s,�λ)
Add s′ to Archive

Filter Archive
return Archive

dispersed weight vectors [25]: given Q objectives and
(z+Q−1
Q−1

)
distinct weight

vectors, each �λ = (λ1, . . . , λQ) is normalized such that
∑Q

q=1 λq = 1 and its
components can take values from {0, 1

z ,
2
z , . . . , 1}. In the biobjective case, z

corresponds to the number of scalarizations. The main parameter for the dis-
persion policy is the number of scalarizations. In principle, it can be expected
that for an increased number of scalarizations also an increased number of so-
lutions is returned. However, the growth rate of the number of solutions with
the number of scalarizations is unknown in advance and it possibly depends on
the number of non-supported solutions.

Search strategy. We consider two search strategies: Restart and
2phase, shown in Algorithms 2 and 3, respectively. The Restart strategy
starts the underlying SLS algorithm for each scalarization from a randomly
generated solution. The 2phase strategy consists of the following two phases.
Firstly, it obtains a high quality solution for one objective. Next, in the second
phase, a sequence of scalarized problems is solved. The starting solution for
each scalarization is the best solution found for the previous scalarization, ex-
cept for the first iteration, where the starting point is the solution returned in
the first phase. The change of the weights in the second phase is performed
as follows [22]: given two objectives, the weight vector in the first and last
position in the sequence of weight vectors are (1, 0) and (0, 1), respectively;
then, two successive weight vectors differ by only ±1

z in any two components.
This approach for generating the weight vectors can easily be extended to an
arbitrary number of objectives using an algorithm to generate all compositions
of z in Q parts in a combinatorial Gray code order [17]. Note that different
strategies for changing the weights, for example, allowing steps larger than
size ±1

z , may result in different behavior. However, such a study is beyond the
scope of this article.

Intensification mechanism. Besides spread, also the quality of the
individual solutions is important, since it affects the quality of the returned set.
Improved solution quality for each scalarization can be obtained, for example,
by simply increasing the number of iterations of the underlying SLS algorithm.
This can be seen as an intensification of the search process, whereas the dis-
persion policy introduces diversification.
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Algorithm 3 2phase search strategy
s is a randomly generated solution
s′ = SLS1(s) /* First phase */
for all weight vectors �λ do
s = s′
s′ = SLS2(s,�λ) /* Second phase */
Add s′ to Archive

Filter Archive
return Archive

Component-wise step. Since the number of solutions is bounded
by the number of scalarizations, a further step is to accept non-dominated so-
lutions in the neighborhood of each solution returned by each scalarization.
This is done by a procedure we call component-wise step. Similar ideas to this
component-wise step have been proposed earlier [1][9][12][22][29].

As said, our goal is to analyze the contribution of each of these four SLS
components on overall performance. This type of experimental analysis is
studied under the topic of Experimental Design, which consists of a set of
techniques that allows the planning of experiments with the purpose of com-
paring the effects of different factors at different treatment levels on a given
number of experimental units [4]. A factor is any feature of the experimental
conditions that might affect the output of an experiment, and, thus, each of the
four SLS components presented above is considered as a factor.

3. BQAP Instances
One goal of this experimental analysis is to investigate the influence of

instance features on SLS performance. Since certain instance features may
affect algorithm performance in different ways, three features of this prob-
lem are taken into account: structure of the input data, correlation between
flow matrices, and instance size. The instances were generated by two in-
stance generators proposed by Knowles and Corne [18] that are available at
http://dbkweb.ch.umist.ac.uk/knowles/mQAP. These genera-
tors allow to obtain BQAP instances for different combinations of parameters
for the features mentioned above. The features and parameters for the two
generators are as follows.

Structure of input data. One generator yields unstructured in-
stances, where each entry of the distance matrix and the flow matrices is ran-
domly generated according to a uniform distribution within a given range.
The second instance generator gives instances with some underlying structure,
where the distribution of the flows is clearly non-uniform and a significant part
of the flows is zero. The parameter values for generating the instances were
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defined as for the single-objective unstructured instances in the class Taixxa
and the structured ones in the class Taixxb [28].

Correlation between flow matrices. Little is known on how the
correlation between objectives could affect the performance of SLS algorithms.
Therefore, we also considered different degrees of correlation between objec-
tives by generating different correlations between the flow matrices. Given a
value from a flow matrix and a parameter ρ, the corresponding matrix entry of
the second or further flow matrices is generated by influencing the probability
of accepting a value taken from a random distribution. For the purpose of this
analysis, the values considered were {−0.75, 0.0, 0.75}.

Instance size. Another aspect investigated is the understanding of how
the performance of the SLS algorithms scales with instance size. In the BQAP
case, the number of locations corresponds to the instance size n. We generated
instances of sizes 25, 50 and 75, which are named here as small, medium, and
large, respectively. Note that a QAP instance with more than 30 locations
cannot, in practice, be solved to optimality by exact algorithms.

All instances are symmetric, that is, aij = aji and bkl = blk and only two
objectives were considered. For each combination of the instance parameters 3
instances were generated, resulting in a total of 54 instances, which are avail-
able at w3.ualg.pt/˜lpaquete/qap/bQAP.tar.gz.

4. Performance Assessment Methodology
The performance assessment of algorithms for MCOPs is more complex

than for the single-objective case and fundamental criticisms have been raised
against the use of unary quality indicators [31]. We avoid these known draw-
backs by using methodologies to which these criticisms do not apply; these
are the better relation [13, 31], which provides the most basic assertion of per-
formance, and attainment functions [11], which allow to test hypotheses with
respect to the distribution of the solution quality over multiple runs and to de-
tect large differences of performance in the objective space.

Better relation. Following Zitzler et al. [31], we consider a set of points
A to be better than a set of points B if, and only if, A �= B and every point in
B is weakly dominated by, at least, a point inA. This relation is also one of the
outperformance relations introduced by Hansen and Jaszkiewicz [13]. Thus,
as a first step, we count how many times each outcome associated to each level
of a component is better than the outcomes from another level of the same
component is counted. However, we restrict the comparison of outcomes to
those that were produced within the same levels of other components, in order
to reduce variability. This allows to detect if some level is clearly responsible
for a good or bad performance. On the other hand, if no clear-cut answer is
obtained from this first analysis, one can intuitively conclude that the outcomes
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are mostly incomparable. However, it is not known to which degree they really
differ and further analysis must be carried out by the attainment functions.

Attainment functions. Fonseca and Fleming [5] associate the perfor-
mance of an SLS algorithm for multiobjective problems to the probability of
attaining an arbitrary point in the objective space in one single run. This func-
tion is called attainment function [11] and it can be seen as a generalization
of the distribution function of the solution cost [14] to the multiobjective case.
From the outcomes obtained in several runs of an SLS algorithm, these prob-
abilities can be empirically estimated to construct the empirical attainment
function (EAF). Hence, using the outcomes of several algorithms for a certain
problem instance, allows hypothesis testing on the equality of the correspond-
ing EAFs. The applied statistical tests are based on the maximum absolute
distance between two EAFs for the two-sample case and the maximum abso-
lute distance between k EAFs, for the k-sample case [2]. In this latter case,
if the hypothesis of equality is rejected, pairwise comparisons between the
k EAFs must be performed and the returned p-values must be corrected by
Holm’s procedure [15]. Due to the nature of these tests, permutation tests [10]
are required and the permutation procedure has to be specified according to the
chosen experimental design [24, 21].

Location of differences. If the null hypothesis on the equality of EAFs
should be rejected, a visual inspection of the largest differences of performance
can be obtained by plotting the points in the objective space where the absolute
difference of the corresponding EAFs is higher than a certain value. We assume
that differences below 20% are negligible. Finally, the sign of the differences
indicates which level or configuration presented better performance in which
points in the objective space.

Figure 17.1 gives an example. The two plots in the top, (a) and (b), show
the EAFs associated to two algorithms, where the darker the color, the higher
is the probability of attaining these points. At each plot in the top, the bottom-
left dark line corresponds to the attainment surface associated to the solutions
found by the algorithm with the minimum probability. The white line in the
top right corresponds to the attainment surface associated to the solutions dom-
inated with probability one by the corresponding algorithm. The two plots in
the bottom, (c) and (d), indicate the location of the positive differences in favor
of the two algorithms, where the darker the color, the higher is the difference.
(In the plots given in Section 5, we occasionally suppress one of the two plots,
if no differences in favor of one of the two algorithms were found.) The line
in the bottom-left corresponds now to the attainment surface associated to the
solutions found by both algorithms with minimum probability, while the line in
the top-right corresponds to the attainment surface associated to the solutions
found by both algorithms with probability one. Hence, any difference would
be located within these two lines. This visual inspection allows to see that the
algorithm associated to the left plots has a much higher probability of attaining
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Figure 17.1. Attainment functions (top) and location of differences (bottom).

the region towards the minimization of the second objective, whereas the other
algorithm is able to attain a wider region of the trade-off curve towards the
center and towards the minimization of the first objective.

4.1 CPU time
In the experimental set-up, also the CPU time taken by each algorithm was

measured as a response variable. Hence, in dependence of the particular pa-
rameters of components, the CPU time may vary significantly. Note that, dif-
ferently from solution quality, the CPU time taken from several runs is de-
scribed by a univariate distribution and it can be analyzed by parametric statis-
tics, if the assumptions of independence of error terms, equal variance and
normality are met [4].
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5. Experimental Setup and Results
As the underlying SLS algorithm, the Robust Tabu Search (RoTS) proposed

by Taillard [27]. RoTS is a rather standard Tabu Search algorithm based on the
2-swap neighborhood and it is one of the best known and best performing SLS
algorithms for the QAP. RoTS starts from a random solution and at each it-
eration the best non-tabu neighboring solution is chosen (even if it is worse
than the current one). A neighboring solution that assigns facilities i and j
to locations r and s, respectively, is tabu if in the last tl iterations this same
assignment occurred. The variable tl is a parameter of the algorithm and is
called tabu list length or tabu tenure. The tabu status of an assignment can
be overridden by the aspiration criterion, that is, if the tabu neighboring so-
lution is the best solution found so far. Taillard considered a further rule: if
a facility i has not been assigned to a location r during the last u iterations,
any neighboring solution that does not consider that assignment is forbidden.
Here, the same parameters as provided by Taillard [27, 28] were used, that
is, the tabu list length is chosen randomly every 2.2n iterations from the in-
terval [0.9n, 1.1n], while u = 3n2. Our implementation also applies the fast
evaluation of neighboring solutions described by Taillard [27].

For the experimental analysis, we considered a full factorial design, that is,
we ran all algorithms that resulted from all possible combinations of parame-
ters of the four SLS components described in Section 2. The two search strate-
gies we tested were Restart and 2phase; the second phase of 2phase
starts from the solution returned by the first phase, whose length was fixed to
10n2 tabu iterations. The number of scalarizations were defined in dependence
of the instance size as n, 5n and 10n. Similarly, for the intensification mech-
anism, 50n and 100n tabu iterations of the underlying RoTS algorithm were
considered, as well as an iterative improvement algorithm based on the 2-swap
neighborhood (II). Finally, the effect of the component-wise step was also
considered in the experimental setup. This resulted in a total of 36 configura-
tions that were ran 5 times on each instance on an Intel(R) Xeon(TM) 2.4 GHz
CPU with 512 KB of cache under Debian GNU/Linux.

In the following, we describe and discuss the experimental results of this
analysis with respect to the solution quality associated to each of the four SLS
components under study using the methodology outlined in the previous sec-
tions. The results for the better relation were computed as percentage of all
pairwise comparisons, averaged over the three instances of the same type, size
and correlation. Each permutation test for the hypothesis test with respect to
the equality of the EAFs consisted of 10 000 permutations and the significance
level was set to 0.05.

5.1 Search Strategy
Better relation. Only for medium and large unstructured instances
with positively correlated flow matrices, we observed some evidence that the
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2phase strategy performs better than the Restart strategy. All the remain-
ing results were inconclusive.

Attainment functions. The null hypothesis of the equality of the
attainment functions was always rejected. Hence, the 2phase and Restart
search strategies produce statistically different outcomes on all instances
tested.

Location of differences. Figure 17.2 shows the location of the dif-
ferences above 20% on few unstructured and structured instances. Differences
higher than 20% associated to both search strategies occur, which means that
the Restart and 2phase strategies perform better in different regions of the
objective space. Common to all plots with differences in favor of the 2phase
strategy is the fact that these differences occur towards the improvement of the
objective where the second phase of the 2phase strategy starts (objective 2).
In addition, the correlation seems to have a strong influence on the shape of the
approximation to the efficient set on unstructured instances. Furthermore, on
these instances, we observed that differences in favor of the Restart strat-
egy cover a wider region for instances with negatively correlated flow matri-
ces than for positively correlated ones. Finally, large differences between the
search strategies were observed on the structured instances; the differences in
favor of the Restart strategy cover a wider region than the differences in
favor of the 2phase strategy.

5.2 Number of Scalarizations
Better relation. The increase on the number of scalarizations does
not generally correspond to a noticeable better performance with respect to the
better relation. Only for unstructured instances with positively correlated flow
matrices some exceptions are found.

Attainment functions. The null hypothesis of equal performance
is mostly rejected, except when comparing 5n against 10n scalarizations on
large, structured instances; this observation seems to be independent of the
correlation between the flow matrices. This result indicates the existence of
some limiting behavior above 5n scalarizations.

Location of differences. Figure 17.3 gives the location of the differ-
ences above 20% for an unstructured and a structured instance, respectively.
Given are the differences between n and 5n scalarizations in favor of the latter
and between 5n and 10n scalarizations in favor of the latter (differences in fa-
vor of n scalarizations, in the first case, and 10n scalarizations, in the second
case, were below 20%). The differences between n and 10n scalarizations are
not shown since they are slightly larger than the two cases above. It can be
seen that the increase of the number of scalarizations corresponds to a slight
improvement of the solution quality.
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Figure 17.2. Location of differences between the search strategies; examples are given for
an unstructured instance with ρ = −0.75 in favor of Restart (top-left) and 2phase (top-
right) and for two structured instances with ρ = 0.75 in favor of Restart (center-left) and
2phase (center-right) and with ρ = −0.75 in favor of Restart (bottom-left) and 2phase
(bottom-right); all instances have size 50.
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Figure 17.3. Location of differences between the different number of scalarizations (plots,
where no points are in favor of one parameter setting, are not given); examples are given for an
unstructured instance with ρ = −0.75 between n and 5n scalarizations in favor of the latter
(top-left) and between 5n and 10n scalarizations in favor of the latter (top-right); below are
the results for a structured instance with ρ = 0.0 between n and 5n scalarizations in favor
of the latter (bottom-left) and another structured instance with ρ = −0.75 between n and 5n
scalarizations in favor of the latter (bottom-right). All instances have size 50.

5.3 Tabu iterations
Better relation. For this SLS component, the analysis of the better re-
lation provides the clear result that the RoTS approach (any of 50n and 100n
tabu iterations) is preferable to using only an iterative improvement algorithm
(II) for all unstructured instances, while only little differences could be found
between 50n and 100n tabu iterations. The latter observation indicates some
limiting performance after 50n tabu iterations. However, for structured in-
stances no strong conclusion can be taken since almost every pair of outcomes
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is incomparable. In addition, size and correlation seems not to interfere with
these observations in both, structured and unstructured instances.

Attainment functions. Most statistical tests suggested a rejection of
the null hypothesis on unstructured instances; the few exceptions occur when
comparing 50n with 100n tabu iterations. The null hypothesis was also fre-
quently rejected when comparing the outcomes on structured instances of size
25, while this was not the case for the larger instances. Different correlations
of the flow matrices do not influence these observations.

Location of differences. Figure 17.4 gives the location of large dif-
ferences in terms of EAFs for an unstructured and a small structured instance,
respectively. They show the differences between II and 50n tabu iterations in
favor of the latter (left plots), and between 50n and 100n iterations in favor of
the latter (right plots). The differences in favor of II, in the first case, and 50n,
in the second case, were below 20%. The search intensification has a different
effect for unstructured and structured instances; while the largest differences
for the former are found between II and 50n tabu iterations, for the structured
instances these occur between 50n and 100n tabu iterations. In addition, the
difference between II and RoTS seems to be higher for unstructured instances
(see magnitude of the differences in the top-left plot of Figure 17.4).

5.4 Component-wise Step
Better relation. The comparison between the use or not of the
component-wise step with respect to the better relation was inconclusive, since
every pairwise comparison resulted in an incomparable case.

Attainment functions. In most cases, the null hypothesis was re-
jected. The null hypothesis was not rejected only for two unstructured in-
stances of size 25 and for all unstructured instances of size 50 and 75 with
positively correlated flow matrices.

Location of differences. Figure 17.5 gives the location of the dif-
ferences above 20% in unstructured (top plots) and structured (bottom plots)
instances. Only the differences in favor of the use of this step are shown, since
all the differences above 20% were in its favor. The top-left plot of Figure
17.5 shows their location for an unstructured instance with size 25 and with
positively correlated flow matrices. These differences are almost impercep-
tible and are confined to a very small part of the trade-off. However, as the
correlation of the flow matrices decreases in unstructured instances, the benefit
of using this component-wise step becomes more relevant. The same result
applies for structured instances, although the relation between the correlation
of flow matrices and the performance of this component is less evident as for
the unstructured instances.
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Figure 17.4. Location of differences between II and 50n tabu iterations in favor of the latter
(left) and between 50n and 100n tabu iterations in favor of the latter (right) for an unstructured
instance with n = 50 (top) and a structured instance with size 25 (bottom), each with ρ = 0.0.
(Plots, where no points are in favor of one parameter setting, are not given.)

5.5 Summary
The strength of the underlying SLS algorithm for the scalarized problem,

here represented by the number of tabu iterations, has a strong effect on the
overall performance in unstructured instances. On the other hand, this fact
seems to be irrelevant on medium size and large structured instances. The ad-
dition of the component-wise step and the increase from n to 5n scalarizations
corresponds, in general, to an increase of the solution quality; the only excep-
tion occurs in unstructured instances with positively correlated flow matrices,
where no significant improvement was found. Finally, the increase from 5n
to 10n scalarizations did not correspond to a clear increase of performance,
indicating some limiting behavior above these values.
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Figure 17.5. Location of differences for the use of the component-wise step for unstructured
(top) and structured (bottom) instances with size 25 and ρ = 0.75 (left) and ρ = −0.75 (right);
all differences are in favor of the use of component-wise step (plots in favor of not using the
component-wise step are suppressed).

The statistical difference observed between search strategies on all the in-
stances indicates that the Restart and 2phase strategies are far from pro-
ducing similar outcomes. A noticeable difference is found on structured in-
stances, which indicates a better performance of the Restart strategy. This
behavior is actually very different from the one found for the TSP [20], where
2phase outperforms very clearly Restart. However, the 2phase strategy
performed reasonably well for unstructured instances with positive correlation,
although this is mainly due to the longer first phase of this search strategy.

Finally, the instance structure and the correlation between flow matrices
have a strong effect on the performance of the SLS algorithms tested here.
The differences observed between search strategies seem to be strongly related
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to the underlying structure of the input data. In addition, different correlations
between flow matrices on unstructured instances are also influential on the
choice for the component-wise step. Interestingly, the instance size has little
effect on performance. A summary of the analysis is also given in Table 17.1,
which gives the main findings classified according to correlation and instance
class (structured vs. unstructured).

Table 17.1. Summary of the results of the experimental analysis.

Unstructured Structured

0.75

• 2phase is better than Restart
on larger instances;

• addition of component-wise step is
not significant;

• high no. of tabu iterations is better
but few differences above 5n;

• high no. of scalarizations is better.

• Restart covers wider region
than 2phase;

• addition of component-wise step is
better;

• high no. of tabu iterations is better
on small instances;

• tabu iterations not significant on
medium and large instances;

• high no. of scalarizations is better
on small instances;

• no. of scalarizations not significant
on medium and large instances.

0.0

• addition of component-wise step is
better;

• high no. of tabu iterations is better
but few differences above 5n;

• high no. of scalarizations is better.

• as above.

−0.75

• Restart covers wider region
than 2phase;

• addition of component-wise step is
better;

• high no. of tabu iterations is better
but few differences above 5n;

• high no. of scalarizations is better.

• as above.

5.6 Computation time
Our experimental design uses different settings for the levels of several algo-

rithm components and the computation time is a variable whose value depends
on the particular configuration. There is also one more specific reason of leav-
ing the computation time variable: when fixing computation time without an
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exact cost model for the dependence between computation time and parameter
settings, it is very difficult to choose the algorithm components and parameter
settings in such a way as to guarantee the termination of the algorithm within
the given time limits and to still have a balanced experimental design.

When analyzing the computation time, it is obvious that, all other parame-
ters being equal, the computation time clearly increases, for example, with an
increasing number of tabu search iterations. While some of these trade-offs are
obvious, a more fine-grained examination is of interest in this article; examples
are the analysis of the interactions between the four components with respect
to computation time or more particular questions like whether the component-
wise step incurs a significant overhead in computation time.

These questions are answered by performing an ANOVA with respect to
computation time. In order to meet the required assumptions for the ANOVA
analysis, the computation times recorded were divided according the presence
or lack of structure in the instance. Furthermore, instance size and the correla-
tion of the flow matrices were defined as crossed blocks [4].

The analysis indicated the presence of the following two interactions in both
structured and unstructured instances: tabu iterations × scalarizations × size
and tabu iterations × scalarizations × search strategy. The first interaction
means that, since the instance size affects the size of the neighborhood, this is
reflected in the computation time resulting by changes in the number of tabu
iterations or the number of scalarizations. The second interaction means that
search strategies behave differently with the change of tabu iterations and the
number of scalarizations. Rather obviously, as also indicated by ANOVA, the
number of iterations and scalarizations have the largest effect on the computa-
tion times, while interestingly the component-wise step has very little effect.

Two more observations are noteworthy. The first is that Restart is faster
than 2phase under these experimental conditions. The reason is mainly due
to the long first phase of 2phase. The second is that there are no statistically
significant differences between the 2phase search strategies with an increas-
ing number of scalarizations when using II as the underlying algorithm, due
to the long time taken by the first phase. (More in detail, this is true between n
and 5n on unstructured instances, and among all scalarizations tested here on
structured instances).

6. Conclusions
This article presented an extensive and sound experimental analysis of SLS

algorithms for the BQAP and tested the effect of different choices for algorith-
mic components of these SLS algorithms. This analysis was based on the use
of the better relation and attainment functions as well as an exploratory data
analysis technique that provided a clear location of the largest differences be-
tween outcomes in the objective space. This performance assessment method-
ology avoids the known pitfalls of most of the measures of performance of
SLS algorithms for multiobjective problems [31]. A further extension of this
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analysis is to use second-order attainment functions [6] to analyze the pairwise
relationship between solutions.

One interesting outcome of this analysis was to verify that the use of the
component-wise step often results in a significantly improved performance and
that this step requires only a very small additional computation time. Similar
results hold for the biobjective TSP [22] and it is therefore to be expected
that the component-wise step is also effective for many other MCOPs. From
a wider perspective, the analysis also emphasized the strong dependency be-
tween SLS algorithm performance and instance features like the structure and
the correlation of the input data. Hence, these dependencies need to be taken
into account when designing and implementing SLS algorithms for MCOPs.

Finally, some of the algorithms tested in this experimental analysis pre-
sented already, under the same experimental conditions, a comparable per-
formance to a much more complex but high-performing SLS algorithm for
unstructured instances of the BQAP [19]. For structured instances, taking into
account the known better performance of Iterated Local Search algorithms over
RoTS [26], much improved performance was obtained by some straightfor-
ward modifications of the 2phase search strategy presented here [20]. There-
fore, besides clarifying the effect of several components of an SLS algorithm
on performance, a careful experimental analysis like in this study can be used
for designing high-performance, yet conceptually simple SLS algorithms.
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Science, Poznań University of Technology, Poznań, Poland, 1998.
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[26] T. Stützle. Iterated local search for the quadratic assignment problem.
European Journal of Operational Research, 2006. In press.
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Abstract The way a metaheuristic algorithm is adapted to a given problem is a
central issue, as it may considerably influence the efficiency of the re-
sulting algorithm. Certain schemes of such adaptation rely on statistical
analyses of the fitness landscape of instances of the problem, e.g. on the
fitness-distance analysis. This kind of analysis requires that distance
measures for solutions of the problem are defined.

The paper presents the fitness-distance analysis of the Capacitated
Vehicle Routing Problem (CVRP). Certain distance metrics are defined,
experiments with these metrics and other measures on well-known in-
stances of the CVRP described, and results of the analysis provided.
These results reveal traces of some structure (’big valley’) in fitness
landscapes of more than half of the considered instances, which may
provide plausible explanation for efficiency of a well-known metaheuris-
tic algorithm for the problem. They also confirm that fitness-distance
analysis could become a tool used by designers of metaheuristics to guide
and justify their design choices.

Keywords: fitness-distance analysis, fitness landscape, distance measures, design of
metaheuristics, capacitated vehicle routing problem
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1. Introduction
Metaheuristics, usually inspired by nature, define schemes of algo-

rithms which have to be further adapted to a given problem in order
to be useful (e.g. neighbourhood operators have to be chosen for local
search, crossover operators have to be chosen or designed for an evolu-
tionary algorithm).

One of the conclusions which may be derived from the No Free Lunch
theorem [16] is that there is no algorithm which performs better than
any other on all possible optimisation problems. Thus, an algorithm
may be efficient only on a certain subclass of all problems, while in other
cases it will perform worse than others, even random search or complete
enumeration of solutions. This conclusion applies to metaheuristics as
well. In this context the process of adaptation of a metaheuristic may be
viewed as a means of moving the ’efficient’ (for this algorithm) subclass
of problems in the space of all possible problems.

This process of adaptation, the choice or design of components of a
metaheuristic, may profoundly influence the efficiency of an algorithm.
For a class of metaheuristics, namely evolutionary algorithms, this phe-
nomenon was even observed experimentally [9]. Thus, the adaptation of
a metaheuristic to a problem is a crucial operation which should be well
justified and carefully performed.

In many cases, however, this adaptation is done by a designer based
on his or her intuition and experience. It may result, of course, in an
efficient algorithm for the problem, which is quite often the case, but the
design process may also result in a poorly performing algorithm, which
happens not so rarely. What is more important, this way of adaptation
provides neither justification for the choices made by the designer, nor
gives knowledge which might be useful for others in the future.

A different way of adaptation of a metaheuristic algorithm to a given
problem has received some attention recently. It is based on statistical
analyses of the search space (fitness landscape) of instances of the prob-
lem. Such analyses, e.g. fitness-distance analysis [2, 3, 6, 8], random-
walk correlation measurement [8], estimation of the size of atractor of
local optima [8], provide objective information about certain properties
of the fitness landscape and may justify the design or choice of com-
ponents for a metaheuristic algorithm. One example of such design
technique is the construction of so-called distance preserving crossover
operators (DPX) based on results of fitness-distance analysis [3, 6, 8];
these operators create an offspring which is not further from its parents
than these parents are from each other with respect to a distance mea-
sure. Such operators are deemed useful in evolutionary optimisation if
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the ’big valley’ structure exists in the fitness landscape of the considered
problem, i.e. when good solutions of the problem are close (similar) to
each other [3, 6, 8].

Therefore, the first goal of this paper is to present results of statistical
analysis, namely the fitness-distance analysis, of some instances of the
Capacitated Vehicle Routing Problem (CVRP) taken from literature. As
Boese stated in his paper [2] about the analysis of a fitness landscape:
’understanding this cost [(fitness)] surface can help both to explain the
success of previous heuristics (e.g. simulated annealing) and to motivate
new, more effective heuristics’.

The second goal of this work is to present some new distance metrics
for solutions of the CVRP and compare their properties with other mea-
sures developed earlier [13] or at the same time [14] in order to provide
some guidelines on their proper use.

Additionally, in the author’s opinion many publications about algo-
rithms for combinatorial optimisation problems describe fitness land-
scapes using the notion of distance without actually providing its defi-
nition: moves in the landscape are told to be near of far jumps, search
strategies are said to intensify the search in a promising region of the
search space or to diversify the search by identifying new regions with
good solutions. However, accurate, objective, quantitative information
about what is near or what is a region is rarely provided, with few ex-
ceptions [11, 13, 14, 17]. Thus, this paper demonstrates that also in the
case of combinatorial structures distance may be defined strictly and
become a useful tool for verification of research intuition.

2. The Capacitated Vehicle Routing Problem
The CVRP [1, 12, 15] is a very basic formulation of a problem which

a transportation company may face in its everyday operations. The goal
is to find the shortest-possible set of routes for the company’s vehicles
in order to satisfy demands of customers for certain goods. Each of
identical vehicles starts and finishes its route at the company’s depot,
and must not carry more goods than its capacity specifies. All customers
have to be serviced, each exactly once by one vehicle. Distances between
the depot and customers are given.

The version of CVRP considered here does not fix the number of
vehicles (it is a decision variable); also the distance to be travelled by
a vehicle is not constrained. Names of instances used in this study are
provided in table 18.1, in section 5.0.

In order to describe distance metrics properly in the next section, some
basic definitions related to solutions of the CVRP have to be given. A
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solution s of the CVRP is a set of T (s) routes:

s = {t1, t2, . . . , tT (s)}.

A route is a sequence of customers (nodes) starting with the depot, v0,
and has the form:

ti = (v0, vi,1, vi,2, . . . , vi,n(ti)) for i = 1, . . . , T (s),

where n(ti) is the number of customers on route ti.
Some additional specific constraints should also be satisfied by a fea-

sible solution, but they are not provided here. Refer to [1, 12, 15] for
more information about the CVRP.

3. New distance metrics for solutions of the
CVRP

The distance metrics presented in this section correspond to certain
structural properties of solutions of the CVRP which are deemed im-
portant for their quality: existence of certain edges (or even paths) or
specific ways of partitioning of the set of customers into routes (clusters).
Although these metrics might seem simple at first sight, their strength
lies in the fact that they are linked directly to the mentioned properties
of CVRP solutions, not to any specific solution representation.

Distance in terms of edges: de
The idea of this metric is based on a very similar concept formulated

for the travelling salesman problem (TSP): the number of common edges
in TSP tours [2]. In the cited research it was found that good solutions
of the TSP have many common edges and are, thus, very close to each
other. Due to similarity between solutions of the TSP (one tour) and
the CVRP (a set of disjoint tours/routes) the idea of common edges may
be easily adapted to the latter.

In order to introduce the distance metric some definitions are required:

E(ti) =
{
{v0, vi,1}

}
∪
( n(ti)−1⋃

j=1

{
{vi,j , vi,j+1}

})
∪
{
{vi,n(ti), v0}

}

E(s) =
⋃
ti∈s

E(ti)

E(ti) is a multiset of undirected edges appearing in route ti. E(s) is
a multiset of edges in solution s. The notion of a multiset is required
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here, because routes in some solutions of the CVRP may include certain
edges twice.

Using the general concept of distance between subsets of the same
universal set, as defined by Marczewski and Steinhaus [7] (cited after
[5]), the distance de between two solutions s1, s2 of the same CVRP
instance may be defined as:

de(s1, s2) =
|E(s1) ∪ E(s2)| − |E(s1) ∩ E(s2)|

|E(s1) ∪ E(s2)|
Due to the fact that de is only a special case of the Marczewski-

Steinhaus distance, it inherits all its properties of a metric; its values
are also normalized to the interval [0,1].

This distance metric perceives solutions of the CVRP as multisets
of edges: solutions close to each other will have many common edges;
distant solutions will have few common ones. However, closer investiga-
tion of the metric reveals that it is not intuitively ’linear’ (although it
is ’monotonic’), e.g. de = 0.5 does not mean that exactly half of each
E(si) is common; 50% of common edges implies de ≈ 2/3.

Distance in terms of partitions of customers: dpc
The concept behind the second distance metric is based on the ’clus-

ter first – route second’ heuristic approach to the CVRP [1, 15]: first
find a good partition of customers into clusters and then try to find
routes (solve TSPs) within these clusters, separately. According to this
idea the distance metric should identify dissimilarities between solutions
perceived as partitions of the set of customers.

An example of a distance metric for partitions of a given set may be
found in [5] (it is even more generally defined there, for hypergraphs
or binary trees). This example is easily adaptable to solutions of the
CVRP. Let us define:

C(s) = {c1(s), c2(s), . . . , cT (s)(s)}
ci(s) = {vi,1, vi,2, . . . , vi,n(ti)}

σ(ci(s1), cj(s2)) =
|ci(s1) ∪ cj(s2)| − |ci(s1) ∩ cj(s2)|

|ci(s1) ∪ cj(s2)|
C(s) is a partition of the set of customers into clusters; one cluster,
ci(s), holds customers from route ti of s; σ(·) is the distance between
two clusters.

According to [5], the distance between solutions may be defined as:

dpc(s1, s2) = 1/2
{ T (s1)

max
i=1

T (s2)

min
j=1

σ(ci(s1), cj(s2))+
T (s2)
max
i=1

T (s1)

min
j=1

σ(ci(s1), cj(s2))
}
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This function is a distance metric for partitions; it is also normal-
ized. It is not exactly a metric for solutions of the CVRP, because
dpc(s1, s2) = 0 does not imply s1 = s2 (the number of solutions which
are not discriminated by dpc may be exponentially large).

The formula for dpc has the following sense: firstly, the best-possible
assignment (matching) of clusters from C(s1) to clusters from C(s2)
is made (the one which minimizes σ(·)), and vice versa; that is the
idea behind internal min operators. Secondly, two worst assignments
are chosen among those pairs (the max operators), and distances in
those two assignments are averaged to form the overall distance between
partitions. Thus, it may be concluded that dpc is somehow ’pessimistic’
in the choice of ’optimistic’ matches of clusters.

This mixture of max and min operators in dpc makes interpretation of
its values difficult. Certainly, values near to 0 indicate great similarity
of solutions. However, larger values do not necessarily indicate very
dissimilar partitions; it is sufficient that there are ’outliers’ in partitions,
which can hardly be well assigned to clusters in the other solution, and
the max operator will result in large values, implying distant solutions.

Distance in terms of pairs of nodes: dpn
The third distance metric, dpn, is based on the same idea as dpc: dis-

tance between solutions viewed as partitions of the set of customers.
However, this idea has a different, more straightforward mathematical
formulation in dpn. Here, the Marczewski-Steinhaus [7] concept of dis-
tance is applied to sets of pairs of nodes (customers).

Lets define:

PN(ti) =
n(ti)−1⋃
j=1

n(ti)⋃
k=j+1

{
{vi,j , vi,k}

}

PN(s) =
⋃
ti∈s

PN(ti)

PN(ti) is the set of undirected pairs of nodes (customers) which are
assigned to the same route ti (it is a complete graph defined over the set
of customers in route ti). PN(s) is the set of all such pairs in solution
s.

The distance dpn between solutions is defined as:

dpn(s1, s2) =
|PN(s1) ∪ PN(s2)| − |PN(s1) ∩ PN(s2)|

|PN(s1) ∪ PN(s2)|
Similarly to dpc, this function is not exactly a metric for solutions of the
CVRP, but for partitions implied by those solutions.
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The formula for dpn has more straighforward sense than the one for
dpc; here, the value of distance roughly indicates how large are parts of
sets of pairs which are not shared by two compared solutions. If dpn = 0
then two solutions imply identical partitions; dpn = 1 implies completely
different partitions (not even one pair of nodes is assigned to a route in
the same way in s1 and s2).

4. Distance measures defined in the literature
In recent years some more distance measures and metrics for solutions

of the CVRP have been described in the literature. These are:

the edit distance [13],

the add-remove edit distance for Prins’ split representation [14],

the stop-centric and route-centric distance measures [17].

The author managed to analyse and implement the two first measures,
so they are described in the sections below. He did not manage, however,
to implement the measures developed at the same time by Woodruff and
Lokketangen [17], so these distances are not considered here. Neverthe-
less, it is important to remember that such measures exist and should
also be, in the near future, compared to those described in this work.

It is not the purpose of this paper to provide detailed definitions of
all existing distance measures for solutions of the CVRP. Therefore, in
the sections below the measures are only shortly described and their
properties discussed. For the detailed definitions, implementation issues
and examples the interested reader is referred to the cited publications.

Edit distance for CVRP solutions: deu
Sorensen [13] defined a distance measure for solutions of the CVRP

based on the concept of the edit distance between strings. An edit op-
eration on a string is a modification of one its character by means of
an elementary operation: insertion, deletion or substitution. Sorensen
describes how to define an edit distance on permutations. Further, he
extends this distance to the case of permutations with reversal indepen-
dence (or undirected permutations, like single routes in the CVRP) and
to the case of sets of such permutations (like solutions of the CVRP).
The sets of permutations (routes) of two CVRP solutions are matched
in this process (in an optimal way) by solving the minimal-cost assign-
ment problem. Therefore, it is possible to determine which routes in one
solution correspond to which routes in the other solution. This distance
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measure will be called deu in this paper (the edit distance for undirected
routes).

Although the edit distance for strings and undirected permutations
is a metric, it is not clear whether deu is a metric for solutions of the
CVRP; this matter is not clarified in [13] (although it is not the most
important property of a measure and is not required here). This measure
is not normalized, as well.

The value of this distance is the minimal number of elementary edit
operations required to transform one set of permutations (a CVRP so-
lution) into another set. Thus, deu = 0 implies that compared solutions
are identical (there is no edit operation required).

This measure focuses on the same order of customers in the matched
routes; if this order is disturbed somehow, then some edit operations
are required to perform the necessary transformation. In this sense, the
function deu is similar to de, which also stresses the aspect of order (by
inspecting edges and paths). For this edit distance, however, it is also
important that long identical subpaths are in the same places of (abso-
lute positions in) routes in two solutions. Even if such long subpaths
exist in matched routes, a difference in their positions in these routes
may incur some additional edit cost. In consequence, this property of
deu makes it different from de, which disregards positions of customers
in routes and only takes edges into account.

Since the order of customers in routes is important for deu, it means
that the same suites of vertices in routes of two solutions (the same
clusters) are not enough for this measure to make these solutions close.
This fact should make it different from metrics which concentrate on
clusters only: dpc and dpn.

It is also worth noting that the distance deu is inflated when numbers
of routes in two compared solutions differ. This is due to the fact that
the assignment problem involved in the distance computation has to
match some routes of one solution to artificially added empty routes in
the other one; it implies performing additional insertions or deletions.

Add-remove edit distance for split representation:
dear

In their work on a path relinking procedure for the CVRP, Sorensen et
al. [14] proposed another kind of distance measure for CVRP solutions,
which is also based on the concept of edit operations. This measure,
however, compares solutions encoded in the split representation (pro-
posed earlier by Prins in [10]), which consists of only one permutation
of customers and is decoded into a CVRP solution by an optimisation
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algorithm. The distance between such permutations defined in [14] is
the edit distance wihtout the operation of substitution; only insertions
and deletions are considered. The authors call it the ’add-remove edit
distance’, so it will be denoted dear hereafter. The cost of one such edit
operation is set to 1/2 in [14], but here it is assumed to be equal to 1.

This measure is not normalized, but this might be amended easily
by introducing in its formula a factor being the reciprocal of twice the
number of customers. This measure is a metric for permutations, but
is not exactly a metric for CVRP solutions, because not every solution
of the problem may be encoded in the split representation and decoded
back without changes. Nevertheless, it seems not to be a great disad-
vantage of this distance function if one imagines an algorithm working
only on solutions encoded in this representation. However, in case any
two CVRP solutions had to be compared by a distance measure, this
distance would not be directly useful, unless all solutions were encoded
as permutations (perhaps with some loss of information on the actual
routes). In order to have the possibility of comparison of measures, this
approach is applied in this paper.

It is harder to provide interpretation of values of this measure than in
the previous case. This value is, of course, the minimal number of edit
operations required to transform one permutation into another one, but
it is not clear how an edit operation influences the underlying CVRP
solution. Due to the nature of the split representation it is unknown
which edges actually exist in a solution, and where each route starts
and finishes. Thus, an edit operation on a permutation may imply in
the decoded solutions additional modifications of vertices which are not
directly involved in the edit operation itself. This phenomenon is visible
in the example provided by the authors in [14] (page 844, 3 last move
operations). It seems that this property of dear might decrease its utility.

5. Fitness-distance analysis of the CVRP

Random solutions vs. local optima
The first stage of the fitness-distance analysis focuses on possible dif-

ferences between sets of local optima and random solutions of a given
instance in terms of distance in these sets.

In order to check these differences in case of the CVRP, large random
samples of 2000 different solutions of each type were generated:

a random solution: first, a random sequence of customers was
drawn (each permutation having the same probability of being
chosen); then, this permutation was split into a number of routes,
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with this number drawn from the binomial distribution; each in-
feasible solution was abandoned and a new one created;

a local optimum: a random solution was subject to a greedy local
search with a neighbourhood of 3 joined operators: 2-opt, exchange
of 2 customers, joining of 2 routes [6].

Finally, statistics on values of distance in these samples were com-
puted, as shown in table 18.1 and figure 18.1. It may be seen in the table
and the figure that average values of each type of distance in samples of
local optima are usually much lower than the corresponding averages for
random solutions. The highest difference is visible, quite surprisingly,
for dear. The next one is dpn, and deu and de follow. The smallest dif-
ferences appear for distance dpc, perhaps due to its ’pessimistic’ nature
mentioned earlier.

During inspection of plots of fitness versus distance de for the sets of
random solutions an interesting observation was made: there were visible
trends in these sets, indicating that better random solutions actually tend
to be further from each other than worse ones. The author’s guess is that
this phenomenon was observed because worse random solutions usually
have more routes than better ones. In consequence, solutions with low
quality usually shared many edges which start at the depot node, so the
average values of de between random solutions were artificially decreased.
Thus, these average values given in table 18.1 are biased.

From this experiment it may be concluded that local optima are clus-
tered together in some parts of the fitness landscapes rather than scat-
tered all over it, like solutions generated at random. This also means
that they usually share many common properties: the same assignments
of customers to routes or the same edges/subpaths.
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Figure 18.1. Average values of distance in sets of random solutions and local optima.

Trends in sets of local optima
The second stage of the fitness-distance analysis is an attempt to find

trends in the sets of local optima themselves and verify the ’big valley’
hypothesis: if better solutions tend to be closer (more similar) to each
other [2, 3, 6, 8, 11]. Such trends are usually revealed by means of the
fitness-distance correlation coefficient (FDC). In case of this study posi-
tive values of correlation would indicate a ’big valley’ structure: solutions
with lower cost would be closer to each other in search space.

In order to verify this hypothesis and compute the values of FDC for
instances of the problem the following experiment was conducted:

1 In all sets of local optima (the same as in the previous experiment)
and for each pair of solutions two values of the objective function
were computed (f(s1), f(s2)); also values of all distance measures
were evaluated (d(s1, s2)). Consequently, one pair of solutions con-
stituted a single, 3 dimensional observation.

2 In each set of local optima two values of correlation were com-
puted for each distance: r(f(s1), d(s1, s2)) and r(f(s2), d(s1, s2));
the value of the linear determination coefficient was computed as:

r2 = r2(f(s1), d(s1, s2)) + r2(f(s2), d(s1, s2)).

3 Plots of fitness versus distance were generated and inspected for
existence of the described trends.
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The computed values of the determination coefficient should not be
biased because no correlation between f(s1) and f(s2) was observed.
Therefore, values of r2(f(s1), d(s1, s2)) and r2(f(s2), d(s1, s2)) could be
added. These values are presented in table 18.2.

A comment on this FDA method should be given. This way of com-
puting FDC (its square, actually) is different from those proposed earlier,
e.g. in [2–4, 6, 8, 11] and others. It is based on a 3 dimensional model
of a fitness landscape, where pairs of solutions (s1, s2) are subject to
measurement of values: f(s1), f(s2), d(s1, s2). This way of analysis does
not require the knowledge about global optima, as it is in the case of the
approaches cited above, so it may be used for problems for which such
solutions remain unknown.

Table 18.2. Values of the linear determination coefficient r2 between fitness and each
distance measure for all considered instances of the CVRP.

Instance name Linear determination coefficient

r2
e r2

pn r2
pc r2

eu r2
ear

c100 0.1971 0.1255 0.0622 0.1156 0.0037
c100b 0.3469 0.4684 0.2110 0.4140 0.0266
c120 0.0200 0.1524 0.0905 0.0654 0.0140
c150 0.2959 0.2320 0.0150 0.2073 0.0246
c199 0.2371 0.2415 0.0136 0.2044 0.0077
c50 0.1665 0.1729 0.0687 0.1496 0.0158
c75 0.1123 0.1119 0.0107 0.0792 0.0011
f134 0.1597 0.0447 0.0993 0.0833 0.0099
f71 0.2369 0.3782 0.0457 0.3263 0.0099
tai100a 0.0789 0.1099 0.0342 0.1144 0.0196
tai100b 0.2382 0.2333 0.0321 0.2120 0.0084
tai100c 0.2458 0.3797 0.0363 0.2897 0.0312
tai100d 0.1779 0.2717 0.0820 0.1982 0.0172
tai150a 0.0086 0.0003 0.0033 0.0019 0.0013
tai150b 0.0716 0.2234 0.0350 0.1264 0.0210
tai150c 0.1896 0.2174 0.0462 0.2158 0.0376
tai150d 0.0420 0.0573 0.0111 0.0438 0.0096
tai385 0.1225 0.1577 0.0473 0.1059 0.0013
tai75a 0.1654 0.1561 0.0207 0.1634 0.0172
tai75b 0.0246 0.0750 0.0262 0.0703 0.0077
tai75c 0.1874 0.2576 0.0338 0.2002 0.0164
tai75d 0.2440 0.2775 0.0587 0.1993 0.0057

Avg. 0.1622 0.1975 0.0493 0.1630 0.0140
Std. dev. 0.0931 0.1161 0.0448 0.0975 0.0099
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The values of r2 emphasized in boldface in table 18.2 are those greater
than 0.18. One such value corresponds to two independent values of cor-
relations r2(f(s1), d(s1, s2)) and r2(f(s2), d(s1, s2)) being at least 0.3.
Although these values are not large, the author thinks they are signif-
icant as indicators of fitness-distance correlation. According to one of
the first pieces of work on FDC [4], even single values of correlation as
large as 0.15 might be indicators of a ’big valley’.

All cases with r2 ∈ [0.15, 0.18) are typeset in italic. These are values
which are deemed ’borderline cases’; perhaps there exists a ’big valley’,
but there is more doubt about it.

First general observation based on the values in table 18.2 is that dear
is not correlated with fitness at all. Thus, it seems that this type of
distance does not reveal any ’big valley’ in the CVRP. A very similar
conclusion might be derived from values of r2

pc: dpc does not correlate
with fitness except for one instance, c100b.

Conclusions are different in case of the three other measures. Firstly,
de reveals fitness-distance correlation for 10–14 instances out of 22. Sig-
nificant values of FDC indicate that in these cases better solutions tend
to contain more common edges.

Secondly, when dpn is taken into account, it appears as though there
are ’big valleys’ in 11–15 cases (mostly the same as for de). It means
that for these instances good local optima usually contain similar clusters
(assignments of customers to routes).

Finally, deu reveals fitness-distance correlation in 10-11 cases (again,
usually the same as for de). This result suggests that good solutions of
the CVRP are closely related in terms of edit operations on routes.

Looking at table 18.2 from the point of view of instances, one can see
that 9 instances out of 22 reveal ’big valleys’ for 3 distance measures:
de, dpn, and deu. This result suggests that in good solutions of these in-
stances it is important to preserve contents of routes (clusters) and the
order of customers in routes (edges/paths/sequences). Consequently,
these instances should be easy for algorithms which preserve these prop-
erties of solutions. The easiest instance should be c100b, which reveals
the largest values of r2.

There are also 5 instances which do not reveal fitness-distance cor-
relation with respect to any distance measure used here: c75, tai100a,
tai150a, tai150d, tai75b. Values of FDC for each of them are very small.
Therefore, these instances should be hard for optimisation by means of
algorithms preserving clusters or edges.

The other instances listed in table 18.2 are intermediate cases: there
is some indication of ’big valley’ with respect to one measure, but not
when others are taken into account.
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The conclusions derived from values of FDC may be further verified
through inspection of fitness-distance plots. In this study, 2 dimensional
FD plots are constructed based on the mentioned 3 dimensional obser-
vations: pairs of solutions with approximately the same fitness (max.
5% difference) are selected and plotted against distance. In figures 18.2
and 18.3 one can see samples of such plots for all distance measures. In-
spection of these plots confirms the conclusions derived from the values
of FDC. As expected, the strongest trends (not very strong, though) are
revealed for de, dpn and deu, while for dpc and dear solutions are more
evenly distributed with respect to distance, or form a curious shape with
several horizontal levels in case of instance f71.
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Figure 18.2. Fitness-distance plots with local optima for instance f71 and all types
of distance, together with lines of regression.
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6. Relationships between distance measures
The relationships between distance measures are another interesting

issue. Because it is difficult to track such relationships analytically, the
author attempted to reveal them through a sampling experiment. In
order to achieve this goal, values of the correlation coefficient for each
pair of distances were computed for each problem instance, using the
sets of local optima generated earlier. These values, averaged over all
instances, are shown in table 18.3.

This table reveals that measures dpn and deu are highly correlated
(r ≈ 0.8). This value suggests that the edit distance is focused on
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Table 18.3. Values of correlations between distance measures.

de dpn dpc deu dear

de 1.0000 0.5686 0.2954 0.6663 0.1483
dpn — 1.0000 0.3845 0.8046 0.2051
dpc — — 1.0000 0.3696 0.0745
deu — — — 1.0000 0.2040
dear — — — — 1.0000

existence of the same clusters (assignments of customers to routes). On
the other hand, the correlation between de and deu is weaker (r ≈ 0.67)
implying that common edges are not as important for the edit distance
as clusters are. Given the observation made earlier about properties of
deu this is not surprising: many common edges are not enough to make
solutions close to each other in the sense of edit distance; they have to
come in sequences in order to be useful for edit operations.

Distances dpn and de are correlated on the intermediate level (r ≈
0.57), which is also not surprising: if a common edge exists in two com-
pared solutions, then the end vertices of this edge form a common pair
of nodes. Therefore, low values of de imply low values of dpn (but the
opposite is not true).

Much lower correlation exists between dpc and other measures. The
highest, r ≈ 0.38, is between dpc and dpn, which is understandable when
their common background is accounted for. Even lower correlations
exist between dear and other measures. In the author’s opinion, these
observations suggest that dpc and dear are measuring distance between
CVRP solutions in some manner which is difficult to explain in terms of
edges or clusters of customers.

7. Conclusions
This study revealed that local optima of the considered instances of

the CVRP are closer to each other than random solutions. This fact may
explain why efficient algorithms for this problem should include local
search components; it simply reduces the size of space to be searched for
good solutions.

Moreover, the experiments described here unveiled traces of the ’big
valley’ structure in more than half of the instances and with respect
to 3 distance measures. This discovery indicates that metaheuristics
which preserve the properties of solutions correlated with fitness
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(clusters, edges or subpaths) could be very efficient for the CVRP, at
least in case of these instances.

The correlations of fitness and distance might also explain why the
intensification technique presented in [12], which has been extremely
conservative in changing ’good’ edges or routes, has been so successful.

Given these results it may be concluded that fitness-distance analy-
sis could become a tool widely used by designers of metaheuristic algo-
rithms, because once the notion of distance is clearly and unambiguously
defined, the analysis provides objective information about properties
of solutions which are important to the overall fitness. Research intu-
ition might be, therefore, confirmed or rejected by this kind of analysis
[3, 6, 8].

Additionally, this paper examined relationships between distance
measures themselves. The author deems that the most sensible mea-
sures among those described here are dpn, de and deu: each of them
is correlated with fitness to some extent; the first two have also very
straightforward interpretations. The other measures, dpc and dear, are
less valuable, being uncorrelated with fitness and rather difficult to un-
derstand.

Continuation of this work should firstly focus on the examination of
efficiency of the optimisation techniques which rely on fitness-distance
correlation (e.g. distance preserving crossovers [3, 6, 8]). Such work
should verify the impact of FDC on the process of optimisation.

Another important direction of research would be a comparative study
of distance measures described here and by Woodruff and Lokketangen
[17]. Such a study could ultimately answer the question which measures
are sensible and useful in the case of the CVRP.

Yet another interesting matter seems to be the issue of convergence of
metaheuristic algorithms. Since there are distance measures and metrics
for solutions of the CVRP available, such an analysis could focus on
convergence in the space of solutions rather than in the space of fitness
values.

These lines of research, which unfold with this and similar studies,
may, hopefully, lead to development of practical guidelines for designers
of future metaheuristic algorithms.
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Abstract: While designing working metaheuristics can be straightforward, tuning them to 
solve the underlying combinatorial optimization problem well can be tricky. 
Several tuning methods have been proposed but they do not address the new 
aspect of our proposed classification of the metaheuristic tuning problem: tuning 
search strategies. We propose a tuning methodology based on Visual Diagnosis 
and a generic tool called Visualizer for Metaheuristics Development Framework 
(V-MDF) to address specifically the problem of tuning search (particularly Tabu 
Search) strategies. Under V-MDF, we propose the use of a Distance Radar 
visualizer where the human and computer can collaborate to diagnose the 
occurrence of negative incidents along the search trajectory on a set of training 
instances, and to perform remedial actions on the fly. Through capturing and 
observing the outcomes of actions in a Rule-Base, the user can then decide how 
to tune the search strategy effectively for subsequent use.  

Key words:  Metaheuristics, Software Framework, Tuning Problem, Visualization  

1. INTRODUCTION 

Metaheuristics have been used extensively to solve hard combinatorial 
optimization problems, often with significant success. Given that 
metaheuristics do not guarantee optimality in general, the challenge is not so 
much to design a working algorithm but to tune it so as to obtain the best 
possible result. One way to measure the goodness of a metaheuristic 
algorithm is by checking its result against a set of benchmark problem 
instances. 

Since different problems or even instances of the same problem may 
require the metaheuristic algorithm to be configured with different search 
parameters, components and/or strategies in order to work optimally, some 
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resort to trial-and-error tuning through extensive experiments. Others use 
their past knowledge or experiences to tune the algorithm. From the industry 
standpoint, this process is unproductive especially against a backdrop of 
tight development schedules. 

Alternatively, human 1  intelligence and machines can collaborate to 
shorten development time through the use of a well-designed visualization 
and interaction tool. The human-plus-computer collaboration has obtained 
considerable success in solving complex tasks, e.g. CAD/CAM. With the 
help of a well-designed visual diagnostic tool, an algorithm designer is able 
to examine search trajectories more systematically, steer the search, and 
readily see the impact of his action. We argue that this significantly reduces 
the time to design good search strategies which in turn speed up the overall 
development time. 

Using visualization to assist optimization has been proposed in the 
seminal work of (Jones, 1996). In this paper, we propose a visualization 
scheme that determines quickly a set of rules that are helpful to the 
underlying metaheuristic algorithm. Unlike works due to (Klau et al., 2002) 
and others which focused on problem-specific visualization, we emphasize 
the design of a generic problem-independent tool called Visualizer for 
Metaheuristics Development Framework (V-MDF). This work is an 
extension of MDF proposed in (Lau et al., 2004b, 2006).  

Instead of relying on specific problem domain information, V-MDF 
seeks to capture a pictorial view of the search trajectories and reports any 
anomalies to the human user. By visual inspection of these anomalies, the 
user can determine with higher accuracy the problems encountered during 
search, and apply remedial actions (such as tuning the parameters, adjusting 
the components of metaheuristics, or deriving better adaptive search 
strategies). With V-MDF, the algorithm designer begins with a metaheuristic 
on some defined search strategies, observes the search run-time dynamics, 
and dynamically improves the search strategies. 

V-MDF differs from existing approaches for tuning metaheuristic which 
focused on the design of an efficient method for automatically choosing the 
best parameter values and/or metaheuristic components in black-box fashion 
(Adenso-Diaz and Laguna, 2006; Birattari, 2004). Instead, we extend the 
idea of visualizing the search process by (Kadluczka et al., 2004) and that of 
analyzing the search landscape by (Fonlupt et al., 1999; Merz, 2000; Hoos 
and Stuetzle, 2005), to help the users in designing better metaheuristics. This 
feature makes V-MDF especially useful for designing metaheuristics for new 
combinatorial optimization problems where search strategies have not been 
well-defined. 

 
1 The terms human, user, or algorithm designer are used interchangeably to refer to those 

who specialize in the development of metaheuristic algorithms. 
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This paper proceeds as follows: In Section 2, we discuss metaheuristic 
tuning problem in a broader sense. In Section 3, we review several tuning 
methods in the literature and classify them appropriately. In Section 4, a 
Visual Diagnosis Tuning methodology is proposed, followed by a discussion 
of V-MDF, the tool to support this methodology, in Section 5. A case study 
of the usage of V-MDF is given in Section 6. Section 7 gives the conclusions 
and future directions. 

2. THE METAHEURISTICS TUNING PROBLEM 

Recently, there is a growing interest in addressing the metaheuristics tuning 
problem. There are on-going discussions in the literature about the proper 
definition and scope of the tuning problem, e.g. (Birattari, 2004), as well as 
various proposals of tuning methods. However, several aspects are often 
overlooked. In this section, we propose a new classification to put into 
perspective our broader view of the metaheuristic tuning problem, especially 
in tuning search strategies. 

2.1 Different Types of Tuning Problem 

The term ‘tuning’ is often too broad. In the context of metaheuristics, we 
classify tuning problem into three types. 

2.1.1 Type-1: Calibrating Parameter Values 

In this ‘easiest’ type of tuning problem, the metaheuristic algorithm has been 
completely defined; and all the designer needs to do is to set the appropriate 
parameter values, e.g. setting the tabu tenure, setting the size of candidate 
list, etc. Different parameter values may influence the overall metaheuristic 
performance. Seemingly easy as it sounds, the challenge is that varying the 
value of one parameter may affect the optimal setting of the other parameter 
values, since the parameters are often correlated. Furthermore, in many 
practical situations, the range of parameter values is too large for the 
algorithm designer to determine their values through trial-and-error. 

2.1.2 Type-2: Choosing Best Components 

In this type of tuning problem, the algorithm designer needs to choose 
several components that will be used in a particular metaheuristic algorithm, 
e.g. choosing neighborhood (2/3/k-Opt), tabu list (tabu move/attribute), etc. 
Typically, each choice of metaheuristic component has its own strengths and 
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weaknesses. (Charon and Hudry, 1995) show that different components have 
different effects to the performance of metaheuristics. Finding the optimal 
mix of components of the metaheuristic is often a challenging task as one 
needs to try a large number of combinations. This type of tuning problem is 
considered to be more complex than type-1, because once a good 
configuration is found, one may still need to properly set the parameter 
values of the components in the chosen configuration.  

2.1.3 Type-3: Tuning Search Strategies 

In this type of tuning problem, the algorithm designer needs to design good 
search strategies to optimize the run-time dynamics of the algorithm. In 
general, a good search behavior has the following characteristics: intensify 
the search on a good region to yield better solutions and diversify when the 
region is depleted of its potential, e.g. the adaptive/reactive strategies of 
Reactive Tabu Search (Battiti and Tecchiolli, 1994). 

Unfortunately, search strategies are often problem-specific and deriving 
them is tricky. The effectiveness of search strategies is strongly dependent 
on the correct timings in which they are applied, which in turn introduce 
more parameters and rules. Recently, more complex intensifying and 
diversifying strategies have been proposed in the form of hybridization, in 
which one metaheuristic is hybridized with other metaheuristics and/or with 
other techniques such as linear programming and branch & bound. While 
such hybridization can further exploit the beneficial effect of intensification 
or diversification, it also adds another dimension of complexity in tuning the 
strategies. 

Finding the effective search strategies to enhance the performance of the 
search algorithm is challenging because the number of possible search 
strategies can only be limited by one’s own imagination. Moreover, due to 
several circumstances, a search strategy does not always perform what it is 
intended to perform as illustrated in various ‘failure modes’ (Watson, 2005). 
Thus, the need to explore a lot of strategies and then verify its correctness 
and effectiveness has made this type of tuning problem a tedious task. 

2.2 The Need for a Good Solution 

Tuning problem is a serious issue. Comments from experts highlight both 
the importance and the difficulty of addressing this tuning problem: 
 
 “The selection of parameter values that drive heuristics is itself a 

scientific endeavor, and deserves more attention than it has received in 
the Operations Research literature…”, (Barr et al., 1995). 
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 “The design of a good metaheuristic remains an art…”, (Osman and 

Kelly, 1996). 
 “For obtaining a fully functioning algorithm, a metaheuristic needs to be 

configured: typically some modules need to be instantiated (Type-2) and 
some parameters (Type-1) need to be tuned.”, (Birattari, 2004). 

 “There is anecdotal evidence that about 10% of the total time dedicated 
to designing and testing of a new heuristic or metaheuristic is spent on 
development, and the remaining 90% is consumed (by) fine-tuning (its) 
parameters”, (Adenso-Diaz and Laguna, 2006). 

 “…Optimization of an Iterated Local Search may require more than the 
optimization of the individual components…” and “…There is no a priori 
single best size for the perturbation. This motivates the possibility of 
modifying the perturbation strength and adapting it during the run.”, 
Stuetzle in (Glover and Kochenberger, 2003). 
 

Any metaheuristic algorithm designer will face this tuning problem and they 
must find the solution: metaheuristic that is optimally configured to solve the 
underlying combinatorial optimization problem under its current context. 

Formerly, due to the difficulty of tuning problem, algorithm designers 
choose to deal with the type-1 and type-2 problems only. Unfortunately, this 
effort does not guarantee good performance. One may have a good set of 
components of the metaheuristic algorithm and has all its parameters 
properly set. But, if the metaheuristic does not exploit adaptive memory and 
conducting intelligent exploration of the search space, it will often be 
outperformed by a dynamic, adaptive, self-correcting, and more intelligent 
counterpart. A simple example has been shown by Reactive-Tabu Search 
(Battiti and Tecchiolli, 1994), where a good search strategy which is able to 
adaptively adjusts the tabu tenure can outperform the performance of the 
original, static Tabu Search, on the set of unknown future instances --- even 
if the tabu tenure setting of the static Tabu Search is the best over the set of 
training instances. 

The new classification that we propose put this type-3 tuning problem to 
be equally important with the other types. Ideally, we believe that to obtain 
the best solution for the metaheuristic tuning problem, all types of tuning 
problem must be addressed properly. 

In this paper, we propose a new approach for addressing the tuning 
problem, especially in tuning search strategies. 

Tuning Tabu Search Strategies via Visual Diagnosis 
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3. LITERATURE REVIEW 

There are several proposals to address the metaheuristic tuning problem. We 
classify these tuning methods into two major types: Black-Box versus 
White-Box tuning methods. The details of the classification are shown in the 
Table 19-1. 
 
Table 19-1. Black-Box versus White-Box Tuning Methods 
 Black-Box Tuning Methods White-Box Tuning Methods 
Definition  Treat metaheuristics as ‘black-box’. 

Usually in form of automated tools 
that systematically search for the best 
parameter values or combination of 
metaheuristic components. 

 Open up the ‘box’ to allow the 
algorithm designer to inspect the 
inner-working of the algorithm and to 
assist in designing a better algorithm. 

 Require collaboration with human. 
Strengths  Can relieve the burden of addressing 

type-1 and type-2 tuning problem 
from human. 

 Can address type-1, type-2, and 
especially type-3 tuning problem. 

 Allow for possible human creativity, 
innovation or invention. 

Weaknesses  Do not allow for human creativity, 
innovation, or invention. 

 Have difficulty in handling type-3 
tuning problem. 

 Often try too many configurations, 
thus in tight development time, they 
can only run/test each configuration 
in a relatively short period of time. 

 Do not relieve the burden of tuning 
from human. 

 The human must understand the 
behavior of the metaheuristic. 

 Tuning results are inconsistent as 
different users do tuning differently. 

 The time required to conduct tuning 
is also a variable as it depends on the 
expertise of the user. 

3.1 Black-Box Tuning Methods 

CALIBRA.   (Adenso-Diaz and Laguna, 2006) proposed a tool to 
automatically calibrate parameter values when given pre-defined ranges. It 
works by iteratively calling the target algorithm with various set of 
parameter values and then uses the objective value feedbacks to determine 
which set of parameter values should be used in the next iteration. 
CALIBRA uses Taguchi’s fractional factorial design to keep the number of 
parameter values being tried to be within acceptable limit. Iteratively, 
CALIBRA can narrow down the range of the algorithm parameters until the 
values converge. After the maximum number of iterations elapsed, 
CALIBRA will return the best set of parameters found so far. This way, it 
manages to solve the type-1 tuning problem quite effectively. 

CALIBRA has limitations. The current version can only tune up to 5 
parameters, the other parameters must be fixed to ‘appropriate values’. The 
need to supply initial range is also problematic when one does not know a 
good starting range for certain parameters. Furthermore, CALIBRA is not 
designed to address type-2 and type-3 tuning problem. 
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F-RACE.   (Birattari, 2004) proposed the racing algorithm, a method that was 
previously known in the machine learning community. The racing algorithm 
(F-Race), paraphrasing from his work, can be summarized as follows: First, 
feed F-Race with a (possibly large) set of candidate configurations. F-Race 
will estimate the expected performance of the candidate configurations in an 
incremental way and discard the worst ones as soon as sufficient statistical 
evidence is gathered against them. This allows a better allocation of 
computing power because rather than wasting time in the evaluation of low-
performance configurations; the algorithm focuses on the assessment of the 
better ones. As a result, more data is gathered concerning the configurations 
that are deemed yielding better results, and eventually a more informed and 
sharper selection is performed among them. Finally, the last configuration is 
declared as the winner (best) configuration. This process is very much 
analogous with the real life racing. 

The number of possible configurations to test can be very large, thus by 
not trying every possible configuration blindly, F-Race is much better than 
systematic brute force try-all approach. F-Race is classified as type-1 and 
type-2 tuning problem solver as it can be used to find good parameter values 
and proper combination of components of the algorithm simultaneously. 

However, F-Race also has several inherent limitations, which arise from 
the fact that it is a black-box tuning method. Similar to CALIBRA, F-Race is 
unable to help the algorithm designer to give solution beyond the best 
configuration found in the set of possible configurations initially supplied to 
the tuning algorithm. One should also be aware of the ‘combinatorial 
explosion’ of the number of configurations to be tried, as it will require 
enormous computation time that may possibly exceeding the maximum 
allowed development time. Hence, to keep the size of initial set of 
configurations small, the algorithm designer must intelligently decide which 
should be included in the set, a process that preferably not be done blindly. 

3.2 White-Box Tuning Methods 

STATISTICAL ANALYSIS.   The search space (a.k.a. fitness landscape) of 
combinatorial optimization problems can be enormously large. Even if one is 
unlikely to explore the entire search space, one may gather crucial statistical 
properties of the search space, such as the structure of the search space, the 
distribution of local optima, the existence of ‘big valleys’, etc. The result of 
such analysis, if interpreted and reasoned correctly, may yield interesting 
discoveries that can be exploited to improve the design of the metaheuristic 
algorithms. 

Tuning Tabu Search Strategies via Visual Diagnosis 
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Some of the widely used methods for statistical analysis are Fitness 
Distance Correlation (FDC) and Run Time Distribution (RTD) analysis. The 
works by (Fonlupt et al., 1999; Merz, 2000; Hoos and Stuetzle, 2005), are 
typical works that utilize statistical methods in metaheuristics design. 

Statistical methods for metaheuristics design can be used to address all 
types of tuning problem. However, this process is not straightforward. 
Knowing the statistical information about the fitness landscape of a 
combinatorial optimization problem is a necessary but not sufficient 
condition to design a good metaheuristic for that problem. A significant 
amount of human effort is still required to reason on the facts found using 
statistical analysis before a good solution for tuning problem can be 
produced. In the context of tuning problem, this lengthy process is 
undesirable due to tight development time. We argue that without a proper 
computer-aided tool, it is difficult if not impossible to generate the required 
solution within tight development time, with merely statistical data. 

 
HUMAN-GUIDED SEARCH.   As shown in many experiments, human is 
known to have advantages in visual perception and intelligence over today’s 
computer. Human-guided search tries to utilize these advantages by 
providing the user with a good visualization and interaction tool to view the 
problem-specific visualization of the current solution (e.g. TSP tours, etc) 
and to control the search, respectively. In general, human know the 
ingredients of good solutions of the combinatorial optimization problem, 
thus human guidance may be able to assist the algorithm to obtain good 
results quicker. 

Research on interactive man-machine optimization can be found in as 
early as (Michie et al., 1968) and (Krolak et al., 1971). Recently, this line of 
work is re-surfaced in (Klau et al., 2002). 

Human-guided search is an indirect form of white-box tuning method, 
where one can add the strategies that were adopted when manually guiding 
the search into the underlying search algorithm. However, guiding the search 
for a prolonged period of time is tedious in practice as its effectiveness will 
be limited by the stamina and patience of the human user. 
 
VISUALIZATION OF SEARCH ALGORITHM BEHAVIOR.   Rather than 
visualizing problem-specific information as in human-guided search above, 
the generic attributes of the search algorithm can also be visualized. By 
monitoring them, one can gauge the algorithm’s performance and can use 
the information to tune the search algorithm accordingly. 

(Kadluczka et al., 2004) proposed a generic visualizer to visualize the 
search coverage. The authors proposed a mapping for N-dimensional objects 
to 2-D space which can be displayed on the screen. By plotting the positions 
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of the N-dimensional solutions in 2-D space, one can approximately identify 
which search space has/has not been explored by the metaheuristic search 
algorithm. This information can be used as a guidance to tune the algorithm. 
The limitation of this approach is that the huge gap in size between of the 
exponential search space and the polynomial screen space renders such 
visualization inappropriate for larger values of N. Furthermore, the static 
visualization adopted in this work does not convey the dynamic run-time 
behavior of metaheuristic search well. 

3.3 Remarks 

Each tuning method has its own strengths and weaknesses. However, their 
effectiveness can only be compared relatively --- not only since they are 
customized to address different types of tuning problems, but also many 
subjective issues are involved, especially the tuning methods with human 
intervention. In Table 19-2, we provide our subjective view of the 
differences of each tuning methods with respect to V-MDF as the basis of 
comparison. In general, most tuning methods have difficulty in handling the 
type-3 tuning problem. We also observe that most of the works (other than 
statistical methods) have yet to release their tools for public use (CALIBRA 
is available on the web2). 

There are few other works around tuning problem, e.g. agent based 
approach +CARPS (Monett-Diaz, 2004); self adaptive algorithms (Battiti 
and Tecchiolli, 1994); metaheuristic to tune other metaheuristic: meta-
evolution (Pilat and White, 2002); visualization of 2-variables problem 
(Syrjakow and Szczerbicka, 1999). All of them belong to either black-box or 
white-box tuning method depending on whether these methods treat the 
metaheuristic algorithm being tuned as black-box or not. 

Table 19-2. Comparison of several factors between existing tuning methods: 
Tuning Methods A B C D E F 

Type of Method Black Black White White White White 
Can address type-1? Easy Easy Hard Hard Hard Average 
Can address type-2? N/A Easy Hard Hard Hard Average 
Can address type-3? N/A N/A Hard Average Average Easy 
Ease of Usage Easy Easy Hard Average Average Average 

Legends: A (CALIBRA), B (F-Race), C (Statistical Methods), D (Human Guided Search), 
E (Visualization of Search), F (V-MDF) 

 
2 The current version is available at http://coruxa.epsig.uniovi.es/~adenso/file_d.html 

Tuning Tabu Search Strategies via Visual Diagnosis 
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4. VISUAL DIAGNOSIS TUNING METHODOLOGY 

4.1 Background 

The goal of visual diagnosis tuning is to enable the user to address the tuning 
problem, especially in finding good search strategies quickly, through visual 
interaction with the search process. 

In the past, visualization has been applied for understanding information, 
e.g. data can be visualized via graphical charts. Good visualization, see 
(Tufte, 1983, 1990, 1997), conveys information about underlying data or 
processes and it plays a crucial enabling role in our ability to comprehend 
large and complex data, to be aware of the situation (Situation Awareness 
theory (Endsley, 2000)). Via such visualization, human can gain insights of 
the data and possibly, create innovations --- something that is hard to be 
done by today’s computer.  

An interaction tool channels the human’s idea back to the machine. This 
cycle of {… – visualization – interaction – visualization – ...} forms the 
interactive optimization concept as discussed in (Jones, 1996; Scott et al., 
2002), and in human guided search that was discussed previously (Michie 

, 1968; Krolak et al., 1971; Klau et al., 2002). 
In the context of tuning metaheuristics, if the user is given the proper 

visualization of the inner-workings of a metaheuristic algorithm, the user 
may be able to discover interesting properties that are hard for the machine 
to identify automatically. Such visualization can be used to help answering 
the ‘why’ question on the run-time dynamics (i.e. type-3 tuning) of the 
metaheuristic algorithm, which is the first necessary step to create effective 
search strategies. As an illustration, suppose that the current results produced 
by a Tabu Search algorithm are very poor. If presented with the visualization 
of the inner-workings of Tabu Search plus prior knowledge of the desired 
Tabu Search behavior, the algorithm designer may become aware of the 
situation that may be the source of the problem (e.g. the search is trapped in 
solution cycling) and subsequently, the algorithm designer may find possible 
treatments to rectify the improper behavior (e.g. increase the tabu tenure). 

Visual diagnosis tuning is tied to the metaheuristic algorithm being used 
and not to the combinatorial optimization problem itself, and thus it inherits 
the generic characteristic of metaheuristic. Hence, such visual diagnosis 
tuning can be applied to virtually any combinatorial optimization problem as 
long as a metaheuristic algorithm exists to solve it. For illustrative purpose, 
our focus in this paper will be for Tabu Search (TS) only. 

et al.
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4.2 {Cause-Action-Outcome} Rules 

A search trajectory is stated as the path taken by the algorithm from the start 
until the end of the search. Along this trajectory, the search may encounter 
basic events (e.g. arrive in local optima, an uphill/downhill move, etc). 

We define a more generic term incidents as the occurrence of a basic 
event or a sequence/combination of basic events. These incidents can be 
diagnosed visually to portray the current state of the search trajectory. We 
define positive incidents as incidents that shows the search is along a good 
trajectory (e.g. new best solution found) and negative incidents as incidents 
that shows the search is along a bad trajectory (e.g. solution cycling). 

In response to negative incidents (or cause), the user might decide to 
perform a remedial action – such as adjusting search parameter(s), changing 
component(s) of the algorithm, or applying intensification/diversification 
strateg(ies). The hope is that this action will result in a positive, user-defined 
desired incident (or outcome) within a reasonable time. This {cause-action-
outcome} sequence is defined and captured as a rule. 

To measure the effectiveness of a rule, we compute its success score. The 
range of success score is (0..1]. In this paper, it is measured by the 
exponential function: e- iteration/C where iteration is the number of iterations 
between the first execution of the action until the observation of the desired 
outcome. C is a constant and is used to adjust the rate of diminishing success 
score. We set C to be 30 in this paper. Intuitively, this function dictates that 
the success score diminishes slowly over time. Observe that the success 
score = 1 when iteration = 0 (the desired outcome is immediately 
observed) and it tends to 0 when it takes a very long time (or perhaps never) 
before the desired outcome is observed. 

Once a rule is performed, its total execution counter is incremented by 1, 
its success score is updated, and the search state is monitored for the next 
application of the rule. Typically, some action needs several iterations or 
even re-applied several times before the desired outcome is observable. Thus 
to avoid excessive re-applications of the action of the same rule, the next 
check of the search state is done using probability (1-success score), that is, 
the action of an effective rule is less likely to be repeated. 

The success scores of each rule throughout the search run are then 
normalized with the total execution to obtain the normalized success score 
(NSS), see Figure 19-1. This process is repeated over several training 
instances3 to avoid the danger of ‘over-fitting’. If the averaged-normalized 
success score (ANSS) of a rule over several training instances is high, the 
rule is regarded as successful in bringing the search trajectory into a better 
one. Otherwise, the rule is regarded as less successful and the user might 

 
3 Training instances should have different characteristics, e.g. different problem size. 
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decide to further adjust his search strategy (action) or to refine the definition 
of his desired outcome. 

By visually diagnosing the transformation from the cause incident to the 
outcome incident and monitoring the averaged-normalized success score, the 
user can determine the effectiveness of his search strategy. 

For example, the high averaged-normalized success score of: 
{Non_Improving – Greedy_Random_Restart – At_Good_Region} 

signifies the potential effectiveness of this greedy random restart strategy 
to steer the search from bad region to area with good quality solutions; 
whereas the almost zero averaged-normalized success score of: 

{Solution_Cycling – Decrease_Tabu_Tenure – No_Solution_Cycling} 
shows the ineffectiveness of decreasing the tabu tenure during solution 
cycling, and: 

{Solution_Cycling – ‘Magic_Strategy’ – Reach_Optimal_Solution} 
illustrates an almost impossible scenario where only a ‘magic strategy’ 
can achieve the overly optimistic desired outcome. 

We argue in this work that high averaged-normalized success score is a 
strong measure of the effectiveness of a remedial action, as high score 
implies that the action frequently steers the search trajectory from negative 
incidents to desired (positive) outcomes, at least over the several training 
instances. This argument carries weight if we assume further that future 
instances have similar characteristics with training instances. 

Success Score of two rules plotted against time (iterations)

0
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0.8
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1 31 61 91 121 151 181

Rule 1, score: 0.2

Rule 2, score: 0.6

Rule 1, score: 0.1

 

Figure 19-1. This is an example of the success scores of the execution of two rules. The  
sign along the X-axis marks re-applications of the action of the rule before the search 
manages to arrive at the desired outcome. Here, Rule 1 is executed twice. The scores of 0.1 
and 0.2, which is normalized over two executions to obtain NSS of 0.15, imply that either the 
strategy or the formulation of desired outcome adopted in Rule 1 has problem; whereas the 
high NSS of 0.6 of Rule 2 implies the potential effectiveness of the strategy used in Rule 2. 
These rules will then be applied to other training instances to obtain ANSS. 
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5. VISUALIZER FOR MDF (V-MDF) 

V-MDF is a white-box tuning tool that utilizes the visual diagnosis tuning 
methodology to address the type-3 tuning problem. In this section, we 
present the two main components of V-MDF: Distance Radar and Rule-
Base, followed by a discussion on how V-MDF is used for visual diagnosis 
tuning. 

5.1 Distance Radar 

The Distance Radar is the underlying graphical user interface for visualizing 
incidents in the search trajectory. The function of the Distance Radar in this 
paper is to display incidents that occur along a Tabu Search trajectory. These 
incidents either indicate the necessity for a remedial action or to display the 
outcome of an applied strategy. From these incidents, the user can derive 
rules in form of {cause-action-outcome} discussed above. 

Essentially, Distance Radar graphically plots generic properties of 
distance4, fitness (objective value), and recency information of the elite 
solutions with respect to the current solution. In the trajectory based search, 
the current solution can be seen as the ‘current position’ in the search space 
and the elite solutions, which were found and recorded along the search 
trajectory traversed so far, can be seen as the signposts or anchor points in 
the search space. By measuring the distance of current solution (current 
position) to these ‘anchor points’, coupled with the other two generic 
properties: fitness and recency information, one can gain information of the 
relative movement of the search along its trajectory with respect to these 
‘anchor points’. This new search trajectory tracking concept enables the user 
to visualize the previously infeasible search trajectory visualization. This is 
because the size of the set of recorded elite solutions/anchor points is fixed 
and much smaller than the exponential size of the search space. 

The Distance Radar consists of dual 2D graphs: Radar A (with Recency 
graph) and Radar B (with Fitness graph). Each of the radar is used to 
exhibit distance information from different perspective. In both radars, the 
X-axes represent the anchor points and Y-axes show the distance between 
current solution with each of the anchor point. The Y-axes is drawn in 
logarithmic scale to emphasize the importance of anchor points within short 
distances with respect to the current solution. Points in the radars are 
connected with lines to help the user in diagnosing the trend. 

 
4 Discussions about various distance functions can be found in (Sevaux and Soerensen, 2005; 

Ronald, 1997,1998; Fonlupt et al., 1997), etc. For example, the user can use ‘bond 
distance’ and ‘hamming distance’ to measure the distance of two Traveling Salesman 
Problem (TSP) and two Military Transport Planning (MTP) solutions, respectively. 

Tuning Tabu Search Strategies via Visual Diagnosis 
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Radar A displays the sorted anchor points by their fitness values. The 
recency values of these anchor points are plotted in the complementary 
Recency graph. Radar A displays only a visually manageable number of 
anchor points (a small but adjustable fraction with respect to the problem 
size) and any better elite solution found will replace the poorest recorded 
anchor point. The effect of Radar A is to approximate the ‘goodness’ of the 
region currently being searched. Generally, if Radar A shows a trend that is 
gradually moving upward (distance to current solution increases) from some 
anchor points, it indicates that the search is diversifying from the region of 
these anchor points. On the other hand, if the trend is moving downward, the 
search is intensifying onto region near these anchor points. 

Radar B displays the sorted anchor points by their recency. The fitness 
of these anchor points is plotted in the complementary Fitness graph. 
Typically the number of recent solutions being recorded is set to be the same 
as the tabu tenure. Radar B can be seen as a long-term memory mechanism 
that complements the tabu list (short term memory). As cycling usually 
occurs around these recently visited solutions (especially local optima), 
Radar B can detect cycling in them quickly. 

All the graphs: Radar A, Recency graph, Radar B, and Fitness graph 
complements each other to help a user in detecting various incidents. Figure 
19-2 illustrates some incidents observeable using these graphs, e.g. solution 
cycling, plateau effect, non-improving, etc. 

Figure 19-3 illustrates an example of how the observation of the incidents 
via Distance Radar can assist the selection of a remedial action. In this 
example, three elite solutions/anchor points have been found along the 
search trajectory of a minimizing problem and recorded as Local Optima 1, 
2, 3. Now, suppose from the 3rd local optima to current solution, the search 
experienced a series of non-improving solutions (drawn as dotted lines from 
Local Optima 3 to current solution). The situation (cause) triggered the need 
for a remedial action. At this point, the algorithm designer may attempt to 
improve the search by applying a search strategy Z (action). Let one of 
either Solution X or Y be the solutions (outcome) reached after applying the 
strategy Z. 

For Solution X, Radar A shows that the search is heading towards the 
current best local optima solution and Radar B shows that the nearest local 
optima solution is the one that is 2nd most recently found. Both radars have 
shown the algorithm designer that after applying strategy Z, the search is 
heading towards good recently found local optima. Hence, if strategy Z is 
intended to perform intensification, the observation from the Radar plots 
shows that it is indeed on the right track; otherwise it is considered as 
ineffective (as moving towards Solution X is not its intended purpose). 
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For Solution Y, Radar A and B shows an upward moving horizontal line. 
This indicates that the current solution is moving away from all known local 
optima solutions, which is the ‘correct’ outcome if the purpose of strategy Z 
is to conduct diversification. 

 

Figure 19-2. Examples and interpretations of several incidents: negative (above) and positive 
(below). 
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Figure 19-3. This is a visualization of the search trajectory of a minimizing problem. Without 
the aid of Distance Radar, it is hard to see the search behavior. On the other hand, one can 
understand the run-time dynamics of the Tabu Search algorithm by observing the plots shown 
in Distance Radar (moving to X is intensification to region around solution 2 and moving to Y 
is diversification). 

5.2 Rule-Base 

The {cause-action-outcome} rules that are derived while observing the 
incidents using Distance Radar are stored in a repository called the Rule-
Base (RB), which maintains the normalized success scores of the rules. 

Upon completing visual diagnosis tuning, the user may examine the RB 
to decide whether to discard statistically inferior rules. The rules that survive 
eventually will form the basis for the solution of the tuning problem, in the 
sense that these rules can be either left as search strategies (triggered as 
needed/type-3) or merged into the metaheuristic algorithm (by modifying the 
parameters/type-1 or components of the algorithm/type-2). 

The {cause-action-outcome} rules are implemented by the event-driven 
mechanism of MDF (Lau et al., 2004b, 2006), as follows. 

First, the user implements a V-MDF’s EVENT class that describes an 
incident and links it with the desired HANDLER class. The user can refine the 
implementation of these EVENT classes to adjust the accuracy of the sensing 
of those incidents. The examples of the pseudo-code of V-MDF EVENT 
classes that describe two negative incidents (which were shown previously 
in Figure 19-2) are listed in Table 19-3a. 

Next, the user needs to define a remedial action: the necessary steps 
required to alter the search trajectory, in form of the HANDLER class. When 
V-MDF senses an EVENT (cause) for the first time, it will trigger the 
associated HANDLER (action), register the ID of the desired outcome in the 
V-MDF desired_event table, and increment the total execution of the 
associated rule. However, subsequent re-applications of the action of the 
same rule will be done using (1-success score) probability. The example of 
the pseudo-code of V-MDF HANDLER classes is shown in Table 19-3b. 

Finally, V-MDF will automatically check the search state after the 
execution of the HANDLERs with another EVENT (desired outcome). These 
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events have no associated HANDLERs. If this EVENT is expected to occur (by 
checking the IDs listed in desired_event table), then the success score of the 
associated rule is computed using the formula explained in Section 4.2. The 
desired outcomes that occur after a long time will obtain a very low score. 
The example of the pseudo-code of V-MDF EVENT classes for checking 
desired outcome is shown in Table 19-3c. 

Table 19-3. Examples of cause (EVENT), action (HANDLER), & outcome (EVENT) in pseudo-
code. 
Non_Improving : Event { 
  return true if there is no new entry to 
  Radar A after a long period, return false 
  otherwise; 
} 

Set Handler: ‘Greedy_Random_Restart’ 
Add total execution of this rule by 1. 

Solution_Cycling : Event { 
  return true if the distance to one or more 
  recent elite solutions in Radar B is short, 
  return false otherwise; 
} 

Set Handler: ‘Increase_Tabu_Tenure’
Add total execution of this rule by 1.

A
. C

A
U

SE 

Greedy _Random_Restart : Handler { 
  pick TS current best solution, perturb it in 
  greedy fashion, and set TS to resume from 
  the newly created solution; 
} 

Add ‘At_Good_Region’ 
in desired_event table. 

Increase_Tabu_Tenure : Handler { 
  get TS current tabu tenure, 
  increase it a bit, 
  set current tabu tenure to the new value; 
} 

Add ‘No_Solution_Cycling’
in desired_event table

B
. A

C
T

IO
N 

At_Good_Region : Event { 
  return true if the fitness difference 
  between the current and best found local 
  optima is low;  return false otherwise; 
} 

Add the success score of the 
associated rule if this event’s ID 
is found in desired_event table. 

No_Solution_Cycling : Event { 
  return true if the distance to all recent 
  elite solutions in Radar B are far enough, 
  return false otherwise; 
} 

Add the success score of the
associated rule if this event’s ID
is found in desired_event table.

C
. O

U
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O
M

E 

Table 19-4. Overall Workflow of V-MDF 
A. Implementation Phase 
 Implement the metaheuristic algorithm in MDF framework (Lau et al., 2004b, 2006) 

B. Visual Diagnosis Tuning Phase 
 Using V-MDF’s Distance Radar, diagnose the run-time dynamics of the metaheuristic 

algorithm when applied to several representative training instances. 
 For each negative incident that requires an action, 

Write the appropriate {cause (EVENT), action (HANDLER), outcome (EVENT)} rule. 
The success score and total execution of rules will be monitored by Rule-Base. 

 Human can further diagnose (visually), add new rules, modify or delete existing rules. 
C. Rules Selection Phase 
 Turn off V-MDF’s Distance Radar. 
 User can discard rules with low ANSS success score. (e.g. instance-specific rules). 
 Surviving rules in Rule-Base form the elements of the final metaheuristic algorithm. 

1. Leave the rules as search strategies, or 
2. Merge the rules into the algorithm (i.e. the rules become native to the algorithm). 

D. Testing Phase 

Tuning Tabu Search Strategies via Visual Diagnosis 
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 Test the metaheuristic algorithm with good rules to the whole test instances. 

5.3 Putting It All Together 

The workflow for implementing and tuning a metaheuristic to solve a 
combinatorial optimization problem using V-MDF is outlined in Table 19-4. 

6. EXPERIMENTAL RESULTS 

In this section, we report the experimental results. The real-life and 
artificially generated test instances, plus several executables of V-MDF are 
available at http://www.comp.nus.edu.sg/~stevenha/v-mdf. 
 

6.1 Test Problem: Military Transport Planning (MTP) 

We applied V-MDF to tune a Tabu Search implementation for solving an 
NP-hard combinatorial optimization problem: Military Transport Planning 
(MTP) which was defined in (Lau et al., 2004a): 

Given service level q and a set of n requests from military units in tuple: 
{number_of_vehicle_required, start_time, end_time}, choose q out of n 
requests such that the total number of vehicles required to serve all q 
requests is minimized. number_of_vehicle_required  1 and [start_time .. 
end_time] lies within the range of a predetermined planning horizon. 

Besides experimenting with several real life instances of this problem, we 
artificially created larger test instances with known optimal values as 
follows. First, create x random requests and then compute in polynomial 
time, the minimum number of vehicles z that is required to satisfy all |x| 
requests. Finally, insert y pairs of dummy requests such that q = |x| + |y| and 
n = |x| + 2 * |y|. In this pair of dummy requests (y,y’), every attempt to 
include y will not increase z while for y’, it will always increase the number 
of vehicles required. The optimal solution is only one: first x requests plus 
all y requests, ignoring the entire y’ requests. The value z will be the optimal 
value for this artificial test instance. 

6.2 Experimental Methodology 

The purpose of our experiment is to demonstrate the capability of V-MDF in 
dealing with the tuning problem that arises during the implementation of a 
Tabu Search algorithm for MTP. All experiments are conducted using an 
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Athlon XP 2500+ machine with the following specifications: 1.8 GHz, 512 
MB RAM, Windows XP. All codes are developed using VC++ .NET 2003. 
The experimental methodology is as follows: 
1. Prepare a set of real-life and artificially generated test instances. 
2. Start with a quick-and-dirty implementation (see Table 19-5). 
3. Record the results for all test instances. Tabu Search runs for 1000 

iterations for each test instance (see Table 19-7, column ‘Before’). 
4. Tune Tabu Search algorithm with V-MDF using two training instances 

(T4 and T7). The tuning time taken for the first author to conduct the 
tuning for the first attempt is approximately 10 man hours. 

5. Verify rules in Rule-Base (see Table 19-6) in terms of their effectiveness. 
6. Record the results of the tuned algorithm for all test instances again, 

using the same 1000 iterations limit (see Table 19-7, column ‘After’). 
7. Compare the results. 

6.3 Initial Results 

Without proper insights on what happens within the search itself, one can 
only guess which part of the algorithm that needs to be tuned. The only 
observable fact without using the tool like V-MDF is the trend that the 
performance of this Tabu Search implementation deteriorates when problem 
size gets larger (See Table 19-7, column ‘Before’). With V-MDF and its 
Distance Radar, one can detect the possible problems and tune the Tabu 
Search accordingly. 

Table 19-5. Quick-and-dirty TS implementation for MTP using MDF software framework 
Component Remark 

Solution The solution representation is simply a bit string b of size n. 
b[i] = 0 when request i is not satisfied and 1 otherwise.  

Initial Solution Randomly select q requests (the seed is fixed for all the experiments) 
Local Move and 
Neighborhood 

Bit-flip move that will transform solution b to b’ with 1 bit changed. 
(dhamming_distance(b,b’) = 1). Thus we have a maximum of O(n) possible 
neighbors per iteration. Infeasible neighbors are penalized by adding a 
constant penalty of 1000. 

Objective Function For each satisfied request, add its vehicle requirement to the histogram. 
The objective value is the maximum value in the resulting histogram. 

Tabu List Same bit flip move can’t be applied for the next tabu_tenure iterations. 
Tabu Tenure tabu_tenure is initially set as 0.1 * n. 
Search Strategies None. 

6.4 Tuning Phase 

The first problem visually observed is the so-called ‘Plateau_Effect’. This 
phenomenon can be easily explained: The objective values of MTP solutions 
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are discrete and their range is small, thus logically, there will be many MTP 
solutions that have similar objective value. ‘Plateau_Effect’ can severely 
reduce the effectiveness of neighborhood based search. We try several 
methods and arrive with a penalty function that penalizes very infeasible 
solutions more than slightly infeasible solutions and also penalizes solutions 
that are too far from good solutions found so far. These two modifications 
help reducing the plateau effect. 

The second visual observation reveals ‘Solution_Cycling’ incidents. We 
apply V-MDF to observe the behavior of the algorithm while we adjust the 
tabu tenure, emulating Reactive-TS strategy. We then add a greedy random 
restart strategy where we perturb the best found solution by randomly pick 
requests with small number_of_vehicle_required. This acts as a diversifier to 
enhance the search when it encounters ‘Non_Improving’ incidents. 

All the rules found during the tuning process and their success rates 
against the training instance are listed in Rule-Base (see Table 19-6). Based 
on the statistical data, we discard the ineffective rules; merge some of the 
effective rules into the final algorithm; while the remaining rules are left as 
search strategies. The results of the algorithm are recorded in Table 19-7. 

6.5 Results after Tuning 

We observe in Table 19-7 that the result improves substantially compared to 
the initial results after a relatively short tuning phase. We like to point out 
that the result per se does not matter much, but rather it is the manner that V-
MDF has helped the algorithm designer to identify negative incidents in a 
timely fashion that is essentially helpful to the tuning of the algorithm. This 
simple experiment has shown that by understanding the problems 
encountered by the search algorithm on-the-fly, albeit imperfectly, one can 
provide better remedies for such problems much faster, compared to blind 
trial-and-error. 

7. CONCLUSIONS AND FUTURE WORKS 

In this paper, we studied the issue of tuning metaheuristics through 
visualization. An extensive review of the existing tuning methods reveals 
that works in the literature are scarce in handling the type-3 tuning problem. 
We proposed a new visual diagnosis tuning methodology to address this 
tuning problem. We presented a generic visualizer tool V-MDF to support 
this methodology. V-MDF is currently designed for tuning Tabu Search 
strategies. 
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Table 19-6. This is the content of the Rule-Base after conducting visual 
diagnosis tuning using T4 and T7. Observe the column ANSS of a rule over 
multiple (two) training instances. The closer the value to 1.0, the better that 
rule is. Statistically inferior rules are discarded; good rules are either merged 
into the final metaheuristic algorithm or left as search strategies. 

NSS ANSS 
Cause Action Desired Outcome 

Over T4 Over T7  
Effective rules, merged into the original algorithm 
Plateau_Effect Apply_Penalty_Function No_Plateau_Effect - - - 
Effective rules, left as search strategies 
Solution_Cycling Increase_Tabu_Tenure No_Solution_Cycling 4.4/5: 0.87 8.1/10: 0.81 0.84 
Passive_Search Decrease_Tabu_Tenure Aggressive_Search 2.6/4: 0.66 3.9/6: 0.66 0.66 
Non_Improving Greedy_Random_Restart At_Good_Region 2.9/4: 0.71 5.9/7: 0.84 0.77 
Discarded rules (purposely listed here as illustration) 
Solution_Cycling Decrease_Tabu_Tenure No_Solution_Cycling 0.76/2: 0.38 6.6/11: 0.60 0.49 

Table 19-7. Table of experimental results: before and after tuning. Test instances are divided 
into two categories and ordered by problem size. T4 and T7 are used as the training instance 
(shaded) and should not be considered for the evaluation of the final algorithm performance. 
Observe the improvement of the tuned over the non-tuned algorithm as well as the gap to 
optimal (for artificially generated test instances). 

Vehicles Required Gap to Optimal MTP Test Instances Before After Optimal Before After 
Real-life test instances 
T1 n: 39 q: 31 (80%) 6 5 - - - 
T2 n: 249 q: 186 (75%) 61 35 - - - 
T3 n: 283 q: 240 (85%) 84 84 - - - 
T4 n: 302 q: 250 (83%) 277 140 - - - 
Randomly generated test instances with known optimal 
T5 n: 50 q: 40 (80%) 33 18 16 17 (106%)  2 (13%) 
T6 n: 100 q: 85 (85%) 37 37 35  2 (06%)  2 (06%) 
T7 n: 200 q: 180 (90%) 54 33 31 23 (74%)  2 (07%) 
T8 n: 300 q: 250 (83%) 45 32 24 21 (88%)  8 (33%) 
T9 n: 400 q: 300 (75%) 147 87 75 72 (96%) 12 (16%) 
 
Our experience shows that V-MDF is effective in helping the user discover 
and rectifying negative incidents through proper remedial actions. We 
believe it is possible to develop a better way for visualizing Tabu Search or 
other metaheuristic search strategies via statistical methods such as fitness 
distance correlation plots. We hope to enhance V-MDF by providing 
decision support for the user to detect negative incidents, to choose better 
remedial actions, and to measure the performance of the rules. Collaboration 
between V-MDF and automated methods is also another possible future 
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work. Finally, we see the prospect of using V-MDF as a research tool to 
invent search strategies not yet known at present. 

The progress in metaheuristics research is rapid, but the end-users still 
require down-to-earth, ready-to-use tools for tuning their metaheuristic 
algorithms. Currently, research involving metaheuristics tuning problem is 
still preliminary and there are not many good tools available for public 
usage. However, we anticipate that several of the tuning methods that are 
theoretical concepts today will become widely used tools for metaheuristic 
algorithm design in the near future. 

POSTSCRIPT 

We have since expanded Distance Radar into a more generic, off-line 
visualization tool called Viz (see Halim et al., 2006). 
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Abstract: The objective of this paper is mainly to answer one question: “Why use a 
toolkit such as iOpt to solve a combinatorial optimization problem rather than 
hard-coding a solution from scratch?” To answer this question, we consider a 
well studied problem: the Vehicle Routing Problem. We explain in details how 
to make use of the modeling and solving facilities available in iOpt to tackle 
this problem. At each step of this building process, we discuss the benefits of 
using iOpt rather than starting building a solution from scratch. Then we 
exhibit some experiments comparing the results obtained using the best 
algorithm built using iOpt and the best known in the literature. The overall 
conclusion of this work is our toolkit allows the user to maximize reuse of his 
code, significantly reduce his development time, focus his attention on the 
design rather than the coding, and exchange problem models or algorithms in a 
very easy and simple way using XML files within his community. At last, 
algorithms built using iOpt appear to be very competitive compared to the best 
hard-wired algorithms found in the literature.  

Keywords:  iOpt, iSchedule, Metaheuristics, Artificial Intelligence, VRP, Software library 

1. INTRODUCTION 

The Intelligent Optimization Toolkit (iOpt) can be seen as an advanced 
software library with additional tools for rapidly designing, building and 
deploying solutions to combinatorial optimization problems. iOpt’s problem 
modeling facility is based on a technology known as invariants (these act 
like “one-way” constraints allowing efficient updating of the overall problem 
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model1). The solving facility of iOpt is mainly based on heuristic search 
techniques (Local Search, Genetic Algorithms, Hybrid Algorithms, etc.) 
where we make use of the fact that these methods share common points 
allowing breaking any of them down into algorithmic parts namely “search 
components”. In iOpt, any heuristic search algorithm simply becomes a 
composition of a subset of those components allowing rapid development of 
existing and new algorithms. A set of visual tools is also provided in the 
toolkit to view the problem model, algorithm structure and optimization 
progress along with a 4th generation tool, the Heuristic Search Builder 
allowing the user to build complete algorithms by dragging-and-dropping 
algorithmic components on screen [3]. For more information on iOpt, the 
reader can refer to the following papers [4, 15]2.  

iOpt has been successfully used to develop solutions for several real 
world applications within British Telecom (BT). These successes were 
mainly due to the high flexibility of iOpt that allows users to easily handle 
the complexity of customers' requirements (different types of constraints, 
very specific objective function, …) and rapidly build prototype algorithms 
adapted to the customer’s needs. For these algorithms, we could not evaluate 
their efficiency as no other algorithm outside iOpt was available to compare 
them against. Therefore, in order to make a more informed comparison of 
iOpt’s problem solving power, it was important to compare our solutions to 
the best-in-class algorithms for a given optimization problem. The choice of 
vehicle routing (VRP) was justified because many academic benchmarks are 
available where very specific and efficient hard-wired algorithms have been 
designed which can evaluate thousands of potential solutions per second. 
Therefore VRP became relevant to us to find out whether iOpt can compete 
with these benchmark-specific  hard-wired solutions or not. Moreover if we 
can demonstrate that using iOpt is a good approach for solving VRPs, then 
we can consider that a similar approach is likely to be relevant to tackle 
other well-known scheduling problems.     

2. ISCHEDULE 

iOpt is a sound and complete framework that can be easily extended to 
address a specific application domain. The iSchedule framework is an 

 
1 The idea of using one-way constraints to model a problem to be used by heuristic search 

techniques was initially proposed by Michel and Van Hentenryck (2000) for their system 
Localizer [10]. 

2 Other toolkits or libraries dedicated to solving combinatorial optimisation problems using 
metaheuristics are available in the literature such as Templar, HotFrame, Easylocal++, 
OptQuest, Local Search Toolkit of Ilog Solver, etc. [18]. 
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extension that has been developed to assist non-expert users in addressing 
scheduling applications. iSchedule implements the basic concepts and 
business rules that are commonly encountered in scheduling problems. It has 
all the facilities for representing scheduling problems with unary capacity 
resources, i.e. resources can only perform one activity at a time (e.g. Vehicle 
Routing, Job Shop Scheduling, Workforce Scheduling …). The classes of 
the framework hide the complexity of the invariant-based problem model 
from the user who has to deal only with entities from his application domain 
(e.g. Activity, Resource and Break). With regard to visualization, iSchedule 
provides a set of customizable views of various aspects of a schedule (Gantt 
chart, tasks table, resources table, resource’s timetable, etc.). 

 
Problem model 
The modeling facility of iSchedule known as the Scheduling Modeling 
Framework (SMF) contains all the core components available to the user to 
state his scheduling problem. Each of these components can be extended and 
specialized to meet the particular requirements of a problem. Most classes 
can be sub-classed to include additional information. Further, the 
computational model itself, which is based on invariants, can be modified 
through the Problem Modeling Framework of iOpt. The main concepts 
found in SMF are Resources, Activities, Constraints on/between each 
activity and/or resource, and an objective or cost Function.  

 
Problem solving 
Per se, SMF does not make any scheduling decision. This is the role of 
external processes such as heuristic search algorithms. The modeling 
framework simply provides the necessary interface to support schedule 
modifications. This interface consists of two operations: an insertion 
operation which inserts a task before/after a specified activity in the 
schedule, and a swap operation which swaps a task with another specified 
task in the schedule. These two operations suffice to implement any complex 
move operator/neighborhood.  

Of course, search algorithms require more than simple schedule 
modification operations: e.g. checking consistency, costing schedules, 
providing access to feasibility and cost information, saving the best solution 
encountered, resetting/swapping solutions, etc. These requirements are not 
specific to the scheduling domain but arise in all optimization problems, 
which is why they are provided at the level of the Problem Modeling 
Framework and the Heuristic Search Framework of iOpt. The Scheduling 
Framework like any other domain framework in iOpt uses the Problem 
Modeling Framework internally to store and manage the computational 
model associated with schedule objects. Thus, the PMF automatically 
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updates the computational model whenever any modification is made to the 
problem or the current schedule through the Scheduling Framework. This 
process is completely transparent for the user reducing the need to develop 
tedious code each time a new (customer) requirement (constraint, cost, etc.) 
must be added to the problem model.   

3. VRP MODEL WITH ISCHEDULE 

In common with the academic version of a vehicle routing problem, we 
need to allocate a number of customer visits to a number of vehicles/drivers, 
working from one common depot. Each driver has start and end times within 
which they can carry out customer visits and their vehicle a maximum 
capacity which must not be exceeded. Each visit has a time window (an 
earliest and latest start times) specifying when the visit can start, a duration, 
a location and a demand (amount of a vehicle’s capacity which will be used 
up). In the VRP instances considered in this paper, the objective is threefold 
given by order of importance: 1) allocate a maximum number of visits whilst 
satisfying the time window and capacity constraints 2) minimize the number 
of vehicles used 3) minimize the total travel incurred for all vehicles. 

This is straightforward to model using iOpt/iSchedule. The Schedule 
class is extended to represent a VRP problem. We ask iSchedule to 
automatically generate a decision model for Unallocated Task Cost (to 
reduce the number of unallocated tasks; cost value set to 1,000,000 per 
unallocated task), Resource Allocation Cost (to reduce the number of 
vehicles used; cost value set to 10,000 per vehicle) and Setup Variable Cost 
(to reduce travel time; cost value equals to travel time in minutes). As you 
can see these values are carefully chosen to ensure the priority of each sub-
objective: the cost of one unallocated task corresponds to the utilization of 
100 vehicles, and the cost of using one vehicle corresponds to a drive time 
greater than 150 hours. Finally, we define the schedule horizon and a 
capacity timeline to specify the capacity constraint of the vehicles (cf. source 
code next page).  
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/** Creates a new VRP problem. 
 *   @param depot: the depot for the vehicles 
 *   @param capacity: the capacity of the vehicles */ 
public VRP(Depot depot, int capacity) { 

super(Schedule.SETUP_VAR_CST|Schedule.TASK_UNALLOC_CST|Schedule.RES_A
LLOC_CST); 
this.depot = depot;  
this.capacity = capacity; 
new CapacityTimeline(this, 0, capacity); 
setSetupModel(new VRPSetupModel()); 
setServiceModel(new VRPServiceModel()); 
beginValueChanges(); 
setSetupVariableCostsWeight(1.0); 
setFixedCostsWeight(1.0); 
this.setUnallocatedCostsWeight(1.0); 
this.setHorizonStart(depot.getReadyTime()); 
this.setHorizonEnd(depot.getDueDate()); 
endValueChanges(); 

} 
The Resource class of iSchedule is extended to represent a Vehicle where 

start/end locations are specified along with a specific cost for using a 
resource.  

 
/** Creates a resource Vehicle for the specified vehicle routing problem. 
 * @param vrp: a vehicle routing problem */ 
public Vehicle(VRP vrp) { 

super(vrp); 
new VehicleStart(this, vrp.getDepot()); 
new VehicleEnd(this, vrp.getDepot()); 
setFixedCost(10000.0);      // fixed cost to discourage use of vehicles 
setSetupUnitCost(1.0);  // travel related costs. 
setName( Vehicle-  + (getIndex() + 1)); 

} 
To represent a customer visit, we extend the Task class where the 

location, capacity demand, time window and visit duration are set. 
 

/** Creates a new visit and adds it to the problem. 
 * @param vrp: the VRP problem 
 * @param id: the ID of the visit 
 * @param location: the location for the visit 
 * @param demand: the capacity demand for the visit 
 * @param readyTime: the time from when the visit can be applied /started 

“

“

Solving Vehicle Routing using iOpt 



394 Chapter 20
 
 * @param dueDate: the time when the visit has to be completed 
 * @param serviceTime: the time required by the resource to complete the visit */ 
public Visit(VRP vrp, int id, FieldLocation location, int demand, int readyTime, int dueDate, 
int serviceTime) { 

super(vrp); 
this.id = id;  
this.location = location;  
this.demand = demand; 
this.readyTime = readyTime;  
this.dueDate = dueDate;  
this.serviceTime = serviceTime; 
this.startsBetween((double) readyTime, (double) dueDate); 
this.setQuantity(vrp.getCapacityTimeline(0), (double) demand); 
this.setName( Visit-  + id); 
this.setUnallocatedCost(1000000.0); // to discourage unallocated activities 

} 
The overall code for modeling a VRP using iSchedule requires only 8 

classes and around 100 lines of code. For more information on how to model 
a problem using iSchedule the reader can refer to the following paper [2]. 

4. VRP SOLVING IN ISCHEDULE 

The Heuristic Search Framework (HSF) of iOpt is composed of a library 
of algorithmic parts. Each category of components represents a well-known 
concept that can be encountered in the literature for single solution based 
algorithm (Simulated Annealing, Tabu Search, Guided Local Search, etc.) 
and population-based algorithms (Evolutionary computation, Genetic 
Algorithms, Hybrid algorithms). As an example, HSF holds the following 
non-exhaustive list of categories: starting point or initial solution generation, 
local search, neighborhood search, neighborhood, tabu mechanism, mutation 
(any local search technique can be added as a mutation), crossover, 
selection, etc.). In addition, HSF being framework-oriented, it automatically 
provides the interaction between those components making it totally 
transparent for the user. Thus a user willing to implement a new algorithm 
using HSF will look at the available algorithmic parts in the library and if 
any is missing or very specific to his problem, he can focus all his attention 
only on this component and easily add it to HSF by extending one of the 
existing categories. For example, one may want to create a new tabu search 
for his specific problem; most of the components of such an algorithm are 
generic and therefore already provided by HSF except maybe a specific tabu 
mechanism to decide the potential neighbors to set tabu each time a move is 
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performed. In such a case, the user adds this component to the library by 
following the guidelines provided by the framework for each category 
(similar to the Java Swing library: what are the functions to be extended and 
when and how they will be called) then plugs it into a meta-tree of search 
components for a tabu search. An immediate result is this new component is 
now available to all the other users of iOpt.  

With regard to VRP and more generally to any well-studied optimization 
problem, we can easily make use of HSF and build a set of advanced 
algorithmic parts trying to be representative of all the most efficient 
techniques available in the literature which allows the user to re-create these 
techniques and even to build new ones based on similar principles. 

During 2004, we have implemented over 15 new search components for 
Vehicle Routing Problems. We list most of them in the following 
paragraphs, sorted by category along with some experiments when available. 

4.1 Neighborhood components 

In this section, we describe the new neighborhoods added to iOpt, mainly 
aimed at improving the solution quality produced by iSchedule for Vehicle 
Routing, but also applicable to other scheduling problems in some cases. For 
a survey of local search methods and metaheuristics for Vehicle Routing, the 
reader can refer to both papers from Bräysy O. and Gendreau M. [5].  

Table 20-1. Time complexities of searching whole neighborhoods (n = number of sequence 
elements, m = number of sequences) 

Neighborhood Name in the 
literature 

Complexity 

SwapMoveNeighborhood Exchange O(n2) 
InsertMoveNeighborhood Relocate O(n2) 
RecombineSequencesNeighborhood 2-opt* O(n2) 
ReverseSegmentNeighborhood 2-opt O(n2/ m) 
RelocateSegmentNeighborhood OR-opt O(n3 / m) 
ExchangeSegmentNeighborhood CROSS O(n4/ m2) 

 
Relocate Segment Neighborhood: This class implements the Relocate 
Segment neighborhood known as OR-opt in the literature [10]. This 
neighborhood allows the relocation of a segment (from 1 element to the 
whole sequence) from one sequence to another sequence or disjoint 
segments within the same sequence. It is important to note here that each 
time we add a new component to HSF nothing prevents us to see if this 
component can be generalized to a larger family of problems than 
scheduling. This is typically the case here where this component actually 
proposes to move a segment of objects within a solution representation of a 
type list of sequences. The interpretation made in a VRP context is 
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something specific to the problem unrelated to the operator itself therefore in 
iOpt a relocate segment operator is now available to any scheduling problem 
and even more problems as long as such a move remains meaningful. This 
shows a good example of the benefit of generalization when adding new 
components to iOpt. This allows a faster transfer of solving techniques 
across families of optimization problems. 

     
Exchange Segment Neighborhood: This class implements the Exchange 
Segment neighborhood, known as CROSS-exchange in the literature by 
Taillard E. et al. 1997 [15]. It allows the exchange of a segment of sequence 
elements with another disjoint segment of sequence elements within the 
same sequence or with a segment in another sequence.  
 
Recombine Sequences Neighborhood: This class implements the 
Recombine Segment neighborhood, known as 2-opt* in the literature by 
Potvin J-Y. and Rousseau, J.M. 1995 [11] allowing the recombination of two 
sequences by taking the end of one sequence and connecting it to the 
beginning of another sequence and vice versa. 
  
Reverse Segment Neighborhood: This class implements the reverse 
segment neighborhood, known in the literature as 2-opt by Lin, S. 1965 [7]. 
This reverses a segment of sequence elements. It operates only within 
individual sequences.  

 
As above a generalization of these neighborhoods has been added to iOpt 

allowing users to easily apply similar techniques to other problems. 

4.2 Performance analysis of Neighborhoods  

In this section we give a quick performance analysis of the new 
neighborhoods described above. We ran each individual neighborhood with 
First Improvement and Fast Local Search (FLS) from a random starting 
point generated by the RandomGeneration3 class. FLS is a heuristic defined 
by Voudouris, C. [16] that helps the search to focus only on parts of the 
search space that have been affected by the latest move. For the VRP, each 
time a task is considered by the neighborhood but leads to no improvement 
then the task is ”deactivated” and will not be considered at the next iteration 
of the neighborhood. On the other hand, each time a move is performed, all 
the tasks affected by this move (i.e. visits allocated to one of the newly 
modified tours of the vehicles) will be “reactivated”. We reach a local 

 
3 This is a search component already provided in iOpt generating a random starting point 

satisfying all the problem constraints. 
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optimum when all the tasks are deactivated. Each algorithm is run 10 times 
using different random seeds thus generating 10 different random starting 
points for each neighborhood and the iterative process is stopped when we 
reach the first local optimum4. In addition, each new neighborhood is tried 
with the Insert and Swap move neighborhoods to see how it performs when 
combined with a basic set of neighborhood operators. These neighborhoods 
are combined using a Probabilistic Composite Neighborhood (PCN); a built-
in component of iOpt that selects at each iteration the neighborhood to get 
the next move from using specified probabilities. For example, given three 
neighborhoods with respective probabilities 20%, 50% and 30%, at each 
iteration a random number is generated in [0..1] and if this random number 
belongs to [0..0.2], we will get the next move from neighborhood1 and so on 
for the other neighborhoods (i.e. if the value belongs to [0.2..0.7] or [0.7..1]). 
Here we used the same probability for each neighborhood and when a 
neighborhood runs out of neighbors, PCN carries on with the remaining non-
empty neighborhoods. The idea here is to balance the search effort over 
several neighborhoods considering more often the most promising 
neighborhoods (with higher probabilities). We performed the experiments on 
each of the problems R105, RC206, R202 from benchmark problems of 
Solomon (1987) [13]. Results for the solution quality of local minima 
produced are shown in Table 2.  

Table 20-2. Solution quality produced by neighborhoods using first improvement and FLS 
with first improvement to first local minimum (average of 10 runs) 

 R105  rc206  r202  
Algorithm Vehicles Distance Vehicles Distance Vehicles Distance 
Insert 18.6 1616.0 5.3 1400.3 5.2 1295.8 
Swap 20.0 1672.3 5.3 1580.1 5.3 1402.8 
Reverse 20.0 1841.7 5.3 1685.5 5.3 1465.3 
Recombine 20.0 1580.7 5.3 1466.4 5.3 1308.4 
Relocate 17.7 1590.4 5.2 1245.0 5.3 1236.6 
Exchange 20.0 1527.9 5.3 1199.9 5.3 1173.5 
InsertSwap(IS) 18.3 1547.1 5.3 1403.8 5.2 1266.9 
IS+Reverse 17.8 1528.3 5.3 1349.2 5.2 1281.3 
IS+Recombine 17.7 1475.3 5.2 1193.9 5.3 1161.7 
IS+Relocate 17.9 1531.5 5.2 1248.8 5.2 1251.8 

 
In terms of solution quality, IS+Recombine in general produces results 

sensibly better than the other neighborhood combinations. But what is more 
relevant here is how easy any combination of local search iterative processes 
can be built and fairly compared. In this table, we could easily replace a first 
improvement strategy by any other strategy: best improvement, best move 

 
4 Note in the case of a Composite Neighborhood, a local optimum is reached if all its sub-

neighborhoods reach a local optimum during the same iteration. 
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with tabu, threshold strategy (simulated annealing) and connect them to any 
combination of 1 up to 5 different neighborhoods. More importantly, iOpt 
provides a fairer comparison between techniques as it is based on the same 
implementation (invariant library, PMF and HSF). As a researcher, it is well 
known in the meta-heuristic community that it is very often difficult to 
compare different algorithms because each algorithm performance may vary 
depending on the random choice generators used, internal data structures, 
programming language used, machine processing power and very specific 
tricks or implementation details that the author of the research paper could 
not mention. Using a toolkit like iOpt allows the user to analyze the actual 
benefit of a technique independently of its implementation5. In addition, 
because any algorithmic component, algorithm and problem model can be 
saved in Java or XML files, they can be very easily exchanged between iOpt 
users allowing them to run any new technique on their own machine.   

Table 20-3. Moves per second: performed and evaluated by neighborhoods to first local 
minimum (average of 10 runs) 
Moves per 
second 

r105  rc206  r202  

Algorithm Performed Evaluated Performed Evaluated Performed Evaluated 
Insert 6.04 11912 3.3 5556 2.8 5332 
Swap 10.3 11788 3.6 7083 3.8 5817 
Reverse 0 5374 6.7 1806 6.1 1562 
Recombine 3.5 3224 0.7 1004 0.8 1039 
Relocate 1.1 6101 0.2 2054 0.2 2119 
Exchange 1.1 3503 0 1334 0 1385 
InsertSwap(IS) 3.92 9678 1.7 4980 2.1 5461 
IS+Reverse 3.35 9167 1.3 3726 1.4 4428 
IS+Recombine 1.82 4704 0.5 1762 0.8 2056 
IS+Relocate 1.8 6270 0.6 2434 0.6 3097 

 
Table 3 provides the number of moves performed and evaluated per 

second to the first local minima. iOpt automatically provides to the user a list 
of statistics during the search process such as the number of moves 
evaluated, performed, filtered (cf. section on move filtering below), etc.  

Furthermore, since any stopping condition can be set on any of those 
parameters, a better comparison between techniques based on a criterion 
other than real time can be easily defined. For example, one may want to 
compare a set of techniques based on a maximum number of moves 
performed instead of the first local optimum found to identify if the 
technique makes a good use of the information collected during move 
evaluations.   

 
5 Even if obviously the fact of using an invariant model has some impact on algorithm 

performance and behavior, a survey of algorithms is based on a similar ground. 
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4.3 Start point generator components 

In this section, we report the new start point generators added to 
iOpt/iSchedule for specific Scheduling problems. 

 
Seed and Fill Generation: This class implements a generalization of 
Solomon’s I1 heuristic [13] using the actual cost of insertion rather than 
Solomon's C1 & C2  functions (in this class, c1 & c2 functions are defined 

to be the change in objective function resulting from the insertion). The idea 
is to choose a seed visit which is far away from the depot and then pack as 
many visits into that vehicle’s route as possible. As an option, the user may 
also choose to seed a vehicle for the visit with the earliest start time, or the 
narrowest time window. The idea is to consider the hardest to schedule first. 
 
Solomon’s Insertion Heuristic Generation: This class extends the 
SeedAndFillGeneration class by overriding the Solomon’s C1 and C2 
functions for choosing visits to allocate to vehicles. 
 
Re-optimize after Route Generation: This class extends Solomon’s 
Insertion Heuristic by attempting to re-optimize the current set of routes after 
each new route is created, by applying Fast Local Search with Insert and 
Swap moves to the currently allocated vehicles visits only (only activating 
parts of the sub-neighborhood after a task is added to the Schedule). Bräysy 
(2001) [1] applies a similar technique re-optimizing individual routes using 
OR-opt moves. 

 
With regard to start point generators, we can note again that some of 

those components have been made more generic than the original version 
with in some case the possibility to make use of iOpt component architecture 
where a technique like “re-optimize after route generation” initially designed 
to be used with OR-opt moves becomes a technique that can be now 
combined with any iOpt neighborhood leading to new possibilities. 

4.4 Guided Local Search components 

Guided Local Search (Voudouris, 1997 [16]) is known in the literature to 
provide good results on VRP instances. In this section, we describe search 
components based on Guided Local Search added to iSchedule for solving 
Vehicle Routing Problems. 

 
GLS Route Edge: This component implements a Guided Local Search for 
minimizing the set-up time (travel time) of the sequences of tasks (vehicle 

“ ”
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routes). Features are associated with each pair of visits and the initial cost for 
each feature is the travel time between these two visits. The route edge is 
present in the current solution if the two visits appear to be next to each other 
in a vehicle route. 
 
GLS Route Removal: The idea of this search component is to periodically 
penalize individual sequences of tasks (routes of vehicles), in the hope of 
completely removing a sequence (route), and thus reducing the number of 
resources (vehicles) required. Only one route at a time is penalized, and it is 
done in such a way that as tasks are removed from the route, the penalty on 
the route is reduced, thus encouraging tasks to be gradually reallocated 
elsewhere. This is done by multiplying the penalty on a route by the number 
of visits in that route. Unallocated routes have a penalty imposed on them, 
such that if a task is added to them, they will increase the objective value, to 
prevent the shuffling of tasks from one resource to an unallocated resource. 
 
GLS Unallocated Tasks: The idea of this search component is to increase 
the cost of unallocated tasks to encourage them to be allocated, even if this 
means increasing the “original” objective function. In this way, a task may 
be swapped with another task, and a sequence of such swaps may lead to a 
point where the number of unallocated tasks can be reduced. 
 
GLS Aspiration: This component covers the case where GLS penalties 
prevent a move from being made which improves the original objective 
function, thus missing a potential new best solution. This component forces 
such a move to be made. 

4.5 Tabu Search components 

Many algorithms fall under the umbrella of Tabu Search. Any heuristic 
search method which uses some kind of memory can be cast into the Tabu 
Search framework. In this section we describe a memory based algorithm, 
which is particularly good for solving Vehicle Routing Problems, but may 
also be applicable to other scheduling problems due to its generic 
implementation. 

 
Resource Allocation List Memory: This method is specific to Scheduling 
problems. It may be particularly useful for problems where any resource can 
be used for a particular task (this is a generalization of the Vehicle Routing 
technique of Taillard et al. 1997 [14]). It works by storing sets of tasks 
allocated per resource in previous solutions in memory and selecting a 
compatible subset of these sets of tasks to generate a new starting point, then 



401

applying a local search to the starting point. The improved solution is then 
broken down into resource allocation lists and placed into memory. 
Specifically the algorithm works as described in Table 4: 

Table 20-4. Resource Allocation List Memory (generalization of Taillard’s algorithm) 
1. Generate N solutions using start point generator + local search and store each resource 

list of allocated tasks in R (where the number of tasks is greater than 1). 
2. Generate a new solution: 

T = R 
While (tasks remain unallocated and resource allocation lists exist in T) 

 Select and add a resource allocation list to the current solution, r from T 
probabilistically weighted according to the best objective value of the 
solution(s) it has been previously present in. 

 Remove all resource allocation lists from T having tasks in r 
 End while 

3. Apply the local search to new solution 
4. Add all generated resource allocation lists in the new solution to the set R of resource 

allocation lists 
5. Go back to step 2 until stopping condition is satisfied 

 
Position Tabu: The component set moving (Inserting, Swapping or a 
Composite Move involving either of the previous) a position tabu for a 
number of iterations after it has been moved. For VRP problems, this means 
preventing a task from being moved again for a certain number of iterations. 
 
Adjacent Visit Tabu: This component makes edges, which have been 
removed or added to a vehicle’s tour, tabu for a certain number of iterations. 

4.6 Move filtering components 

When a filter component is added to an algorithm, it is called by HSF 
before a move is evaluated to check whether this move is worth being 
evaluated via invariant propagation or not. This technique is particularly 
efficient on benchmark instances where the number of constraint types is 
limited and facilitates the development of such components. 

 
VRP Move Filter: This component executes a quick test to check if a move 
generated by a neighborhood is worth considering by the neighborhood 
search. In the case of VRP, this component will check compatibilities 
between the tasks to be moved and the resources (quick time windows 
checking or if each task is allowed to be allocated to the destination 
resource) as well as estimate the impact on travel distances to avoid using 
invariant propagation for obvious non-improving moves (i.e. a move leading 
to a travel time increase will be discarded). 
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4.7 Evolutionary algorithms components 

Although pure genetic algorithms may be poor for solving combinatorial 
optimization problems such as scheduling, combining a Genetic Algorithm 
with a local search or a more complex metaheuristic such as tabu search, 
may produce a good way of diversifying the search. For this reason, we have 
added some basic Crossover components for iSchedule to combine 
scheduling solutions. 

4.7.1 Crossover components 

Schedule Uniform Resource Crossover: This operator executes a uniform 
resource based crossover combining two parent schedule sequences 
solutions to generate a child scheduling solution. It generates a child solution 
that gets the complete route of a particular resource from parent 1 (minus 
any task which is already allocated) if the probability test is satisfied6, 
otherwise it takes the allocated tasks for that resource from parent 2 (minus 
any task which is already allocated). Any tasks left unallocated at the end, 
are allocated greedily, picking the best insertion point for each task (if it is 
possible to allocate the task). The idea with this operator is that some good 
resource-task list pairings will be combined into a child that might lead to a 
better solution. 

 
Schedule Uniform Task Crossover: This operator executes a uniform 
crossover combining two parent schedule sequences solutions to generate 
one child schedule sequences solution. This operator goes through one 
resource at a time, allocating a task from either parent1 (with probability 0.5) 
or parent2 to the same resource in the child solution. Any unallocated tasks 
left over at the end are allocated (if possible) greedily, inserting them at the 
best (according to the objective function) point. The idea is to merge 
characteristics of good resource-task lists hopefully leading to a better 
combination. 

 
Route Crossover: This operator executes a route based crossover combining 
2 parent schedule sequences solutions to generate a child solution. This is 
done by making a list of routes in both parent solutions and picking N routes 
(the maximum number of routes in the parents) at random, allocating them to 
the child solution (excluding any visits already allocated in previous routes). 

 
6 A probability test is performed by randomly generating a real number within [0..1[ (using 

the random function of package java.util.Math for example) and comparing this value with 
the acceptance probability. Given an acceptance probability equals to 0.5 if the generated 
value is smaller than 0.5 then the test is positive otherwise it is negative. 



403

Any tasks left unallocated at the end, are allocated greedily, picking the best 
insertion point for each task. The idea with this operator is that some good 
routes will be preserved from the parent solution and combined into the child 
solution. 

4.8 Algorithms for vehicle routing 

Due to the amount of time required to run a whole metaheuristic solver on a 
problem in order to gain meaningful results in comparison to so called 
“hard-coded” algorithms for VRP, we chose to run our preliminary 
experiments on a small subset of Solomon’s benchmark problems. These 
problems were: r105, rc101, rc206, r202, c103 and c204. The first two 
algorithms we ran are described in the next subsections. 

4.8.1 FLS for VRP 

After the experiments on the neighborhoods, we have identified a good 
local search component (subtree of search components) that we use with 
both algorithms. It is based on FLS combined with a first improvement 
neighborhood search for searching the neighborhoods. The single 
neighborhoods are combined using a Probabilistic Composite Neighborhood 
(see section 4.2) and these single neighborhoods are: 

 InsertMoveNeighborhood 
 SwapMoveNeighborhood 
 RecombineSequencesNeighborhood 
 ReverseSegmentNeighborhood 
 RelocateSegmentNeighborhood with maximum segment size = 3. 

4.8.2 GLSFLS for VRP 

The first algorithm we ran was a version of GLS (GLS has previously 
been applied by Kilby et al., (GreenTrip project 1999) [6], although our 
version is enhanced by the RouteRemovalGLS component) combined with 
FLS. Start points were generated using the ReoptimizeAfterRouteGeneration 
component. GLS was built using components combined using the following 
components: 

 RouteEdgeGLS: penalizing route edges 
 RouteRemovalGLS: penalizing a route to try reducing the number 

of routes in the solution 
 GLS Aspiration: used to ignore penalties if a move was found 

which improved the best solution so far (even if that move 
increased the augmented objective function, due to the penalties). 
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4.8.3 RouteMemoryFLS for VRP 

The motivation for selecting the second algorithm is because it uses a 
disruptive idea of storing routes as described in the Resource Allocation List 
Memory component (cf. Section 4.5). This algorithm generates 20 starting 
solutions using RandomGeneration component. Each of these start points is 
then improved using FLS (as described above). The algorithm then generates 
new solutions by selecting a non-intersecting (in terms of tasks) subset of the 
routes stored in memory and then greedily inserting any other tasks 
remaining unallocated. This new solution is then improved using FLS and its 
routes stored in memory (similar to Taillard et al. 1997 [14]). The maximum 
number of routes stored in memory is limited to a maximum of 300 (keeping 
the best 300 without repetitions, using the best objective value of solutions 
that each route has appeared in). 

4.8.4 Results 

In the tables below we list the best solution costs per problem found after 
allowing each algorithm to run for 3 hours on a PC with the following 
specifications: Pentium4 1.8Ghz, 768M and Windows XP Pro. Our objective 
here is to identify if the RouteMemory based technique has some positive 
impact on the results (within the iOpt environment obviously). It is 
important to note these results have been generated without the use of any 
move filtering technique.  

Table 20-5. Preliminary results for complete algorithms GLSFLS and RouteMemoryFLS after 
3 hours running time without move filtering 

 GLSFLS RouteMemoryFLS Best known results 
Problem Vehicles Distance Vehicles Distance Vehicles Distance 
r105 14 1441.28 17 1455.471 14 1377.11 
rc101 15 1675.508 18 1720.773 14 1696.94 
rc206 3 1219.055 4 1119.519 3 1146.32 
r202 4 1112.785 5 1083.968 3 1191.7 
c103 10 828.9369 11 895.4877 10 828.06 
c204 3 694.8435 3 618.5498 3 590.6 

 
These results are encouraging, since we gain some good quality solutions 

near to the best known solutions found by hard-wired heuristics in some 
cases (e.g. c103). However, these results should be treated with caution as 
we have only run the algorithms on a limited subset of Solomon’s problems. 
We really need to run on all problems in order to evaluate the algorithms 
properly, and also if we are to compare with hard-wired algorithms, we need 
to make our algorithm faster (this we do by using our move filtering 
mechanism), so we can be competitive with them. In any case, we have 
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shown that the new neighborhoods can significantly improve the quality of 
solution produced by the iSchedule framework on problems such as Vehicle 
Routing. Combined with the new start point generators and meta-heuristics, 
this has made a significant improvement to the quality of solutions which 
can be found within a reasonable time period. 

5. VRP EXPERIMENTS 

In this section, we give a short analysis of the performance of iOpt and 
iSchedule on the Vehicle Routing Problem. We ran our best algorithm 
GLSFLS (see Fig. 1 as viewed in the iOpt Tool Suite) with the move 
filtering described above allowing 3 hours maximum run time on Solomon’s 
benchmarks. It is important to note that the speed of our GLSFLS has been 
significantly increased by our move filtering component up to 10 times faster 
allowing a speed greater than 100,000 moves evaluated per second for 
GLSFLS. In the literature similar component are very common and usually 
allow a hard-wired algorithm to run at a speed of at least 250,000 evaluated 
moves. FLSGLS speed becomes therefore more competitive for a toolkit 
such as iOpt written in 100% pure Java software. 

 

Figure 20-1. Tree of search components for GLSFLS 
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In the table below, we show the results of these algorithms in comparison 
to those published for GreenTrip GLS (another GLS based algorithm 
developed during the Green Trip project which later formed the basis of the 
ILOG dispatcher product in [6]) and the current best known results in the 
literature [5]). 

Table 20-6. Comparison of results between iOpt, GreenTrip [6] and the best known results 
Algorithm iOpt/iSchedule GLSFLS GreenTrip GLS Best known results 
Problem 

Class 
Mean 
#Vehicles 

Mean 
#Distance 

Mean 
#Vehicles 

Mean 
#Distance 

Mean 
#Vehicles 

Mean 
#Distance 

C1 10.00 828.84 10.00 830.75 10.00 828.38 
R1 12.08 1242.69 12.67 1200.33 11.92 1209.89 
RC1 11.88 1403.99 12.12 1388.15 11.50 1384.16 
C2 3.00 591.31 3.00 592.24 3.00 589.86 
R2 2.91 968.63 3.00 966.56 2.73 951.91 
RC2 3.38 1144.99 3.38 1133.42 3.25 1119.35 
Average 7.21 1030.07 7.36 1018.58 7.07 1013.92 

 
From the results shown in Table 5, we can see that our best 

iOpt/iSchedule algorithm (GLSFLS) for vehicle routing is really competitive 
with the best in the literature. It should also be noted, that our algorithm on 
average performs significantly better with regard to the number of vehicles 
(7.21 as opposed to 7.36) used and distances (which is a lesser objective) 
compared to GreenTrip GLS. In addition, the GreenTrip GLS initially starts 
with a given number of vehicles (determined using instances knowledge) 
and reduces this number while a solution with all the tasks allocated is found 
whereas FLSGLS specifically tries to reduce the number of vehicles used 
during the search as well as minimizing travel distance. This makes it a more 
robust solution with no need to identify an initial maximum number of 
vehicles.  

Overall, according to the survey from Gendreau M. and Bräysy O. (2003) 
[5]7, our GLSFLS is ranked 12th out of the best 21 systems listed in their 
paper and more impressively would have obtained the best results out of the 
systems published before 2001. This definitively confirms that a solution 
built using a toolkit like iOpt can be really competitive to hard-wired 
solutions. 

 
7 It is important to note that since our experiments, some new techniques have been developed 

providing better results on some VRP instances but as far as we know not on those 
Solomon’s instances (Mester, D., and Bräysy, O. (2004) [11] and Prins, C. (2004)[15]). 
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6. CONCLUSION 

In this paper, we have shown that solving a combinatorial optimization 
problem such as VRP using iOpt\iSchedule has many benefits. First of all, 
the modeling facility of iOpt\iSchedule allows the user to quickly state his 
VRP problem with resources, tasks, constraints and an objective function. 
This model uses underneath an invariant (one-way constraint) network that 
can efficiently propagate the value changes of decision variables to 
constraints and objective function. As iOpt is using only value propagation 
in contrast to domain propagation currently used in constraint programming 
(as in toolkits like Ilog Solver and Chip), modeling any user-specific relation 
is therefore more straightforward to implement. For this reason, the problem 
modeling facility of iOpt is flexible, easy to enrich with new relations and 
avoids the need for the user to implement a tedious code to maintain the 
consistency of his network of relations. In the case of a hard-wired solution, 
the user can only develop a solution for his particular problem without any 
guarantee that he will be able to easily include any future requirement. 
Another consequence is nobody except the author will be able to use it 
making it unavailable to other solving techniques. As iOpt keeps problem 
models and algorithms separated, modeling a problem can be done 
independently of the algorithms.   

Secondly and more importantly, the Heuristic Search Framework of iOpt 
proposes a methodology for designing metaheuristics that proposes to break 
down any heuristic search into algorithmic components that can then be 
exchanged between algorithms. In this paper, by breaking down the best-in-
class solving techniques for VRP (this has also been done for other 
problems, although for reasons of space we do not report this here), we have 
shown how the most advanced techniques can be compared more fairly 
leading to better understanding of the techniques themselves. In addition, by 
doing this decomposition, new combinations of these efficient techniques are 
immediately available and can now be investigated. Once this work has been 
done, it is more likely that nobody else will have to do it again as iOpt 
allows us to maximize the reuse of the work done by previous 
researchers/users. Furthermore, iOpt offers even the capability to include any 
new heuristic technique or operator discovered in the future into HSF 
opening up more possibilities by immediately being able to create new 
combinations with existing techniques and/or operators. 

To conclude, we believe that the use of a toolkit such as iOpt within a 
community of users will have a significant impact on real world applications 
where the latest heuristic techniques coming from the research community 
will be able to reach the industrial world much faster. On the other hand, the 
use of iOpt in a community of researchers will help the community focus on 
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the key issues of the techniques without sacrificing too much performance as 
shown in the case of the VRP problem where our GLSFLS algorithm 
competes with the best existing hard-wired algorithms. 
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