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Preface

Courses in circuit theory may have many goals. The introductory courses usually develop basic
concepts which are applied throughout all subsequent studies of electrical engineering. The later
undergraduate courses are usually set up to provide the student with an insight into specific circuits
and devices. A common factor in all this education, perhaps not always realized by the student, is that
the training he receives in circuits provides him with a foundation of knowledge which is applicable
to many disciplines. This is perhaps one of the most worthwhile results that can occur from a study of
any subject.

It is the purpose of this book to add to the undergraduate knowledge of circuits possessed by a
senior or first-year graduate student in such a way as to broaden his foundation of knowledge, not
only with respect to circuits, but with respect to other areas of study as well. Among its specific
purposes are the following:

First, to encourage the student to think in terms which are as general as possible. Thus, we
introduce the subject of matrix algebra, which provides a general means of formulation for the details
of a linear system.

Second, to select a broad and versatile framework on which to base his observations of electrical
circuits and system phenomena. Thus, we present the basic theory of n-dimensional spaces and show
how this can be applied to linear systems.

Third, to teach the student to differentiate between models useful because they approximate
physical devices and models useful because they are theoretically powerful or analytically simple.
Thus, we present such modern circuit elements as the ideal transformer, the negative-immittance
converter, and the gyrator and show how these may be used in the synthesis and analysis of electric
circuits.

Finally, to aid the student in preparing for his own explorations into the literature of current
journals and publications.

There are two dominant premises which have been followed in the organization of the material.
First, it was desired to have the book as completely self-contained as possible, in that all the required
concepts of matrix algebra and linear vector spaces would be developed as an integral part of the
book. In the presentation of this mathematical material, a middle course has been chosen, avoiding the
extremes of mathematical rigor in favor of emphasizing the concepts which are important from the
viewpoint of application. Second, it was felt that comprehension of the mathematical material would
be gained only as a result of thorough application. Thus, each chapter devoted to a mathematical
presentation is immediately followed by a chapter in which that material is used as fully as possible.

There are several main divisions of the material. Chapter 1 briefly reviews some introductory
ideas pertinent to later material. In Chapter 2, the mathematics of matrix algebra and determinants is
developed. Special emphasis is placed on the techniques of partitioning and matrix equations, both of
which are used in later sections of the book. Chapter 3 applies matrix techniques to a general
discussion of circuits. The differences between port notation and terminal notation are presented. The
properties and uses of indefinite-admittance matrices are developed. The various types of network
parameters are discussed. The effects of dependent and independent sources on the matrix formulation



are described. In Chapter 4, the properties of active and passive two-port devices such as the ideal
transformer, the negative-immittance converter, and the gyrator are discussed. Synthesis methods for
voltage transfer functions and for non-p-r driving-point functions using RC elements and active
devices are developed. A section on n-port synthesis is included. Chapter 5 presents the basic theory
of linear vector spaces with special emphasis on the representation of a vector in an n-dimensional
space. This material is applied to a discussion of the natural frequencies of a network in Chapter 6.
Formulations are made in the time domain and the frequency domain for the RC network, the LC
network, and the RLC network. The effect of driving sources is included. Appendices are used to
present somewhat more sophisticated topics in the areas covered by Chapters 3, 4, and 6.
Specifically, they cover the indefinite-transfer matrix, gyrators with complex gyration admittance, and
network transformations.

Depending on the background of the students and the approach favored by the instructor, the book
may be used in several ways. For example, a one-semester course for senior students of all
engineering disciplines might include the material of Chapters 2, 5, and 6, with some of the material
of Chapter 3. In this case, the material of Chapter 6 might be augmented by some examples of
mechanical systems. A one-semester course for graduate electrical-engineering students might omit
Chapter 2 and cover Chapters 3 to 6, with collateral reading assignments on the material in Chapter 4.

I would like to express my thanks and appreciation to the following: Prof. D. O. Pederson of the
University of California, whose enthusiasm as a teacher first awakened my interest in circuits; Prof.
M. E. Van Valkenberg of the University of Illinois, for his encouragement during the months of
writing; Prof. A. Gill of the University of California, for his helpful criticism of the manuscript; and
my students, whose searching questions have led to much revision of my original thoughts.

L. P. Huelsman
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Chapter 1 Introduction

1.1 Circuits and circuit elements
There are several classifications under which circuits, as they are studied today, may be grouped.
Some of these classifications are determined by the properties of the circuit elements, and some of
them are the result of the manner in which these elements are interconnected. In this chapter we shall
present some of the basic ideas concerning the classification of circuits and circuit elements
according to their properties. This material will serve to introduce some of the terms that will
frequently appear in later sections of the book. It will also serve to review some of the basic ideas of
circuit theory. Additional information on the topics of this chapter can be found in the references
listed in the final section of the chapter.

1.2 Classifications of circuit elements
In a consideration of the elements of which a circuit is composed, a first distinction must be made as
to the number of terminals that such elements possess. Since a one-terminal element is without
physical significance, let us begin by considering elements with two terminals. These elements can, in
general, be grouped according to the following divisions: linear or non-linear, lumped or distributed,
passive or active. Let us consider each of these classifications and discuss its principal
characteristics.

A linear element can be defined in terms of the requirements of superposition and homogeneity.
Superposition requires that, if two inputs are simultaneously applied to an element, the result be the
sum of the results obtained from separate application of those same inputs. Thus, if the result of
applying a d-c voltage of 1 volt to a given element is a d-c current of 1 amp through the element, and
the result of applying an a-c voltage, sin 2t, to the element is a current 2 sin 2t, superposition requires
that, if an input voltage 1 + sin 2t is applied to the element, a current 1 + 2 sin 2t results. The
principle of homogeneity may be explained as follows: If a given input produces a certain result, then
multiplying the magnitude of the input by a constant will multiply the value of the result by the same
constant. A linear circuit element is one which satisfies the requirements of superposition and
homogeneity. No physical device is actually linear; however, it is convenient to approximate such
devices by models which are idealized in the sense that they are defined as being linear.

A lumped element is one whose properties can be considered as concentrated in space. From
another viewpoint, it is one in which the time of propagation of electrical phenomena through the
element is zero. A transmission line is an example of a nonlumped element, i.e., a distributed device.
Actually, all physical devices can be considered as being distributed, since they have nonzero
dimensions. It is convenient, however, to approximate physical devices by models which are
considered as lumped. Thus, we shall treat our circuit elements as lumped and linear.

Three of the basic circuit elements which we shall consider are the positive-valued resistor, the
positive-valued inductor, and the positive-valued capacitor. These are the elements that relate
voltage and current, voltage and the derivative of current, and voltage and the integral of current,



respectively. They will be treated as lumped linear elements. They are considered as passive
elements in that they approximate physical devices which do not require a source of energy to achieve
their specified properties. We shall see that elements which can be described as negative-valued
resistors, inductors, and capacitors can also be considered in our circuit studies. The physical
devices which these elements approximate, in general, require external power sources to sustain their
operation. Thus, these elements will be referred to as active elements.

Two other elements which we shall use in our discussion of circuits are the voltage source and the
current source. These are both models which may or may not approximate physical devices,
depending on the inclusion of parasitic elements of resistance, capacitance, and inductance. The
voltage source has zero internal impedance, i.e., the voltage existing at its terminals is independent of
the current flowing through the element. If its output voltage is a function of some other voltage or
current in the circuit, it is said to be a dependent source. If it has an output which is not a function of
any of the circuit variables (it may still, of course, be a function of time), it is said to be an
independent source. Similarly, the current source has infinite internal impedance, i.e., its output
current is independent of the potential difference existing across its terminals. It may be a dependent
source, in which case its output will be a function of some other voltage or current in the circuit, or an
independent source.

Figure 1.1 Symbols for circuit elements.

The usual symbols for the lumped linear passive and active circuit elements discussed above are
shown in Fig. 1.1. In addition to these two-terminal elements, there are also some fundamental three-
terminal and four-terminal circuit elements. These are the ideal transformer, the negative-immittance
converter, and the gyrator. These are all linear elements. A more detailed discussion of them will be
given in Chap. 4.

1.3 Classifications of circuits
Classifications similar to those made for the circuit elements described in the preceding section can
be made for circuits comprised of such elements. There are, however, some interesting special cases.
For example, we can consider a linear circuit as one comprised of linear elements, and thus we
expect that the requirements of superposition and homogeneity will apply. An exception occurs when
independent sources are present in the network. For example, consider the network shown in Fig. 1.2.
If a voltage v of 5 volts is applied to this circuit, the current i is zero. Similarly, if a voltage v of 10
volts is applied, the current i is 1 amp. However, a voltage of 15 volts, which represents the
simultaneous application of both the above inputs, causes a current of 2 amps to flow, in clear
violation of the properties of linearity. Despite such discrepancies, it is convenient, in a broad sense,
to consider as linear circuits those which are comprised of linear elements. It is easy to see that the
usual techniques of linear circuits are adequate to treat such cases. In general, circuits which contain
linear elements and dependent sources satisfy the definition of linearity.



Figure 1.2 A circuit with an independent source.

In a similar fashion, special cases may occur when we seek to define the criteria under which a
circuit may be considered as active or passive. For example, the series connection of a positive-
valued 3-ohm resistor and a negative-valued 1-ohm resistor will act as a positive-valued 2-ohm
resistor. Thus we see that a circuit which contains active (in this case negative-valued) elements, can
still act as a passive circuit. Despite this, however, it is convenient to define an active circuit as one
which contains at least one active element. This definition will be used in the chapters that follow.

A classification that is made for circuits but which is not applicable to circuit elements is the
division into reciprocal and nonreciprocal circuits. If, in a given circuit, when the points of excitation
and observation of response are interchanged, the relationship between these two quantities remains
the same, the circuit is said to be reciprocal. The interchange must not, of course, change the network.
For a given circuit to be reciprocal, the above property must be true for any choice of the points of
excitation and observation of response. A further discussion of the properties of reciprocal networks
is given in Chap. 3. We shall point out at this time, however, that circuits composed entirely of linear
R, L, and C elements, both negative- and positive-valued, are always reciprocal. Circuits which
contain dependent sources may or may not be reciprocal. Nonreciprocal circuits usually fall into two
categories. First, they may be unilateral, in the sense that when some points of excitation and
observation of response are interchanged, no response is observed. Second, they may provide
different relations between excitation and response when these quantities are interchanged. As
examples, consider the networks shown in Figs. 1.3 to 1.5. The network shown in Fig. 1.3 is
reciprocal; i.e., if a current is applied from terminal 1 to terminal 2, the resulting voltage, measured
between terminals 3 and 4, will be the same as if the current had been applied from terminal 3 to
terminal 4 and the voltage measured between terminals 1 and 2. The network shown in Fig. 1.4 is
unilateral in the sense that a voltage or current excitation applied at terminals 1 and 2 will produce an
observable effect at terminals 3 and 4, but the converse is not true. In the network shown in Fig. 1.5,
an excitation applied at terminals 1 and 2 will produce an observable effect at terminals 3 and 4, and
vice versa; however, the relation between excitation and response in these two cases will be
different. Thus we see that the networks shown in Figs. 1.4 and 1.5 are nonreciprocal.

Figure 1.3 A reciprocal circuit.



Figure 1.4 A nonreciprocal unilateral circuit.

Figure 1.5 A nonreciprocal circuit.

1.4 Network functions
The actual variables of voltage, current, charge, etc., which are associated with a given circuit or
with its elements are, of course, functions of time. The equations that relate these variables are linear
differential equations, and if the values of the elements are constant, the coefficients of these
equations are also constant. Thus we speak of time-invariant circuit elements and circuits. Some of
the developments which will be made in future chapters will deal directly with these variables. Thus
we will refer to an analysis as being made in the time domain. Other developments will deal with
variables obtained by applying the one-sided Laplace transform to the original variables. Variables
developed by the transformation are considered as functions of a complex frequency variable. Thus
we have a frequency domain. The defining relation is1

where ai(t) is any variable such as voltage, current, or charge. The functional notations (t) and (p)
will be used where necessary for emphasis. Where feasible, the original quantities which are
functions of time will be indicated by lowercase type, and the transformed quantities by uppercase
type, as indicated in (1).

The properties of networks may be described by using functions of the complex frequency variable.
These functions are usually predicated on the assumption that the initial conditions in the network are
treated separately. The functions that will occur most frequently are driving-point functions and
transfer functions. A driving-point function is a relation in the complex frequency variable p between
the voltage and current at a given pair of terminals when the network is excited at these terminals. The
ratio of I(p)/V(p), i.e., the ratio of the transform of the current to the transform of the voltage, is
referred to as a driving-point admittance function. The inverse ratio is referred to as a driving-point
impedance function. Both relationships, collectively, are referred to as driving-point immittance



functions.
Transfer functions relate transformed voltage and/or current variables at one point of a network to

transformed voltage and/or current variables at some other point of the network. There are several
combinations. For example, we can have transfer-voltage ratios, transfer-current ratios, and
transfer immittances, depending on the quantities of interest. If the elements of the circuit are
restricted to the lumped linear case, the functions will be ratios of polynomials in the variable p with
real coefficients. In this case they are frequently referred to as rational functions.

1.5 The use of examples
The reader will find that Chaps. 2 and 5 are used to develop the basic mathematical concepts of
matrices and linear vector spaces. Chapters 3, 4, and 6 cover the application of these concepts to
general relationships in circuit analysis and synthesis. These applications are illustrated by examples
which form an integral part of the presentation of the material. The reader is strongly urged to follow
these examples through in detail and to complete any omitted steps. This procedure provides a
powerful means of strengthening one’s grasp of the basic concepts. It is an excellent self-test to make
certain that new principles have been correctly assimilated. For convenience, the element values in
the actual circuit examples have been chosen with a view toward simplifying the resulting
computations. For example, liberal use has been made of 1-farad capacitors without regard for the
availability of such elements. It should be realized, however, that these element values can be viewed
as derived from frequency and impedance normalizations on the circuit. Thus, appropriate frequency
and/or impedance denormalizations can always be made on these example networks to change them to
more practical situations. Specifically, we may define a frequency-denormalization constant fn and an
impedance-denormalization constant rn. The relations between the given normalized network element
values R, L, and C and the element values after denormalization R', L', and C' are

Figure 1.6 A simple network.

where rn and fn are real numbers. The frequency-denormalization constant will transform the
frequency characteristics of the given network by the relation

where p is the complex value of any point in the frequency plane characterizing the original



normalized network, and p' is the complex value of the corresponding point in the frequency plane
characterizing the denormalized network. A frequency denormalization leaves the impedance level of
the network unchanged. Similarly, an impedance denormalization leaves the frequency characteristics
of the network unchanged. As an example, consider the network shown in Fig. 1.6. The driving-point
impedance z and the pole and zero locations on the p plane for this network are shown in the figure.
Note that z(0) = 1; i.e., the impedance of the network at zero frequency is unity. Now let us apply a
frequency denormalization. Let fn = 3. The network after frequency denormalization is shown in Fig.
1.7, together with its driving-point impedance and its pole and zero locations. It is easy to see that the
complex values of the pole and zero locations have been shifted according to (2), but that z(0) = 1 as
before. Now let us apply an impedance denormalization rn = 2 to the network of Fig. 1.7. The result
is shown in Fig. 1.8. Note that there are no changes in the pole and zero locations, but that the
impedance z(0) = 2. Similar observations, of course, apply to the impedance at any other value of
complex frequency, as may easily be verified by the reader.

Figure 1.7 The result of frequency denormalization (fn = 3).

Figure 1.8 The result of impedance denormalization (rn = 2).

1.6 References for review
Additional information on the topics of this chapter may be found in the texts referenced below. They
are well equipped with problems which the reader may use for review. Due to the extensive quantity
of material in this field, the compilation of a complete list has not been attempted. The entries listed
should suffice to answer most questions.
Balabanian, N.: “Fundamentals of Circuit Theory,” Allyn and Bacon, Inc., Englewood Cliffs, N.J.,

1961. A clear and readable introductory treatment.
Friedland, B., O. Wing, and R. Ash: “Principles of Linear Networks,” McGraw-Hill Book Company,

Inc., New York, 1961. Notable for its conciseness. An excellent review text.
Stewart, J. L.: “Circuit Theory and Design,” John Wiley & Sons, Inc., New York, 1956. Especially



good for its treatment and practical emphasis of pole-zero concepts and normalizations.
Van Valkenburg, M. E.: “Network Analysis,” Prentice-Hall, Inc., Englewood Cliffs, N.J., 1955. One

of the first texts with a modern treatment of its subject. Very well written.

1 The letter s is used in many texts for the complex frequency variable. The use of p is preferable, however, since s is also widely
used to denote elastance (reciprocal capacitance).



Chapter 2 Matrices and determinants

2.1 Introduction
In the last chapter, a review of some of the properties of various types of circuits was made. It was
pointed out that we are restricting ourselves to circuits containing lumped linear time-invariant
elements. In describing such circuits, frequent use is made of a linear equation or a set of linear
equations. The latter is sometimes referred to as a set of simultaneous equations. In later chapters
we shall see that there are several ways in which such equations can be developed. In this chapter,
however, we are concerned with a study of the set of equations itself. An example of such a set can be
made by writing the nodal equations for the circuit shown in Fig. 2.1. The equations are:

The quantities I1 and I2 may be considered as “known” quantities or independent variables. Similarly
V1 and V2 are referred to as “unknowns” or dependent variables. Ya, Yb, and Yc are admittances. All
the above quantities are functions of the complex frequency variable p.

For more complicated networks we can generalize (1) by considering an n-node network (n + 1
nodes if the reference node is counted). For this network a set of n equations will result. These will
have the form

A simplification of nomenclature has been achieved by the use of the quantity Yij. The i subscript
refers to the number of the equation (from 1 at the top to n at the bottom). This is also the number of
the row in which the equation is located. The quantities YijVj may be thought of as occurring in
vertical columns (separated by addition symbols). Thus, the second subscript, j, refers to the column
(numbered from 1 at the left to n at the right) in which the quantity Yij is located. Physically, the
quantities Yij (i = j) represent the totality of admittance connected to the ith node (or the jth node since
i = j). Similarly the quantities Yij (i ≠ j) represent the mutual admittance between nodes i and j.1



Figure 2.1 A network with two nodal voltage variables.

A set of equations similar in their general form to (2) could be written on a loop (or mesh) basis. In
this case the positions of all the voltage and current variables would be interchanged. Other sets of
equations are possible if only part of the voltages and currents of (2) are interchanged. To achieve a
maximum of generality we shall consider a set of equations of the form

If equations (3) are being used to describe a circuit, the quantities Ui will usually represent voltages
and currents (as will the quantities Xi). The quantities aij will, in general, be restricted such that they
are not functions of Xi or Ui and do not vary with time. Thus we shall restrict our interest to a linear
set of equations with time-invariant coefficients. The set of equations (3) applies not only to linear
circuits, but to any linear systems, e.g., mechanical, hydraulic, and economic. The purpose of this
chapter is to discuss the properties of such a set of equations and to present methods for their
manipulation which are of use in circuit and system theory.

2.2 Matrices
In the set of equations (3) in Sec. 2.1 let us “erase” the following quantities: the “plus” signs, the
“equals” signs, the quantities Ui and Xi. What remains is an array of the elements aij:

This array is referred to as a matrix, and it is usually enclosed in brackets to emphasize its existence
as a unique entity. We can make the following definition: A matrix is a rectangular array of elements
arranged in horizontal lines (called rows) and vertical lines (called columns).

The elements referred to in the definition, in general, will be numbers (real or complex) or
functions. Functions of the complex frequency variable form an especially important class of
elements.

Several examples of matrices follow:

A first method of characterizing matrices is by the numbers of rows and columns they contain. In
general, we refer to a specific array as an m × n matrix if it has m rows and n columns. If m = n the
array is called a square matrix. If m = 1 and n > 1, i.e., if there is only one row, the array is called a
row matrix. If m > 1 and n = 1, the array is called a column matrix. Row and column matrices are
frequently shown with a slightly different arrangement of the brackets. Thus, the matrices shown in (2)



are, respectively,

One of the uses of matrices will be a simplification of notation where sets of equations are to be
considered. Thus it will be convenient to express the matrix (1) in a system of notation whereby a
single symbol represents the entire array. There are two convenient symbols frequently used for this
purpose. We may define

Note that the symbol [A] or the symbol [aij] can only represent the matrix, it cannot yield the
information contained in the array. As a compact representation, however, it is a useful one.
Frequently we shall omit the brackets and simply refer to the array by the letter alone, i.e., by A.
Sometimes, however, for emphasis, it will be helpful to use the containing brackets to indicate that the
matrix is square; thus we may write [A]. Similarly, a single bracket may be used to indicate a column
matrix, as B]. A horizontal bracket may be used where it is necessary to emphasize that the matrix is a
row matrix, as  Boldface type will be used whenever a symbol such as A is used to refer to an array
of elements without regard to the size of the array. The distinction should be clearly made at this time
by the student that a symbol such as A is a label for the matrix, while aij is a typical element of the
matrix, common to row i and column j. This typical element will usually be written as the lowercase
of the letter chosen for the label.

2.3 Determinants
In studying real or complex variables, considerable attention is given to functions of these variables.
In the study of the properties of a matrix, there are also functions to be studied. Of particular interest
at this point is a function of the array (more specifically of the elements of the array) called a
determinant. To emphasize this point: the matrix is the array, the determinant is a function of the
elements of the array. This function only applies to square arrays, i.e., to square matrices, and may be
defined by the following steps:

Step 1. Form all possible combinations of products of the elements of the array such that each
combination contains only one element from each row and each column. For an n × n array there will
be n! of these combinations.

Step 2. In each combination arrange the elements according to ascending order of the first
subscript.

Step 3. Interchange elements in each combination in such a manner that they are now arranged
according to the ascending order of the second subscript.

Step 4. Count the number of interchanges required in step 3. If the number is even, prefix a plus



sign to the combination. If the number is odd, prefix a minus sign.
Step 5. Sum the combinations of products of the elements using the signs determined in step 4. The

result is the determinant of the array. Since the determinant is unique, it follows that the parity
determined by the interchanges in step 4 will also be unique, although the number of interchanges may
be varied by different approaches to step 3.

As an example consider the following 2×2 array:

Step 1. a11a22 and a12a21 are the only possible combinations.
Step 2. The combinations arranged according to the ascending order of the first subscript are:

Step 3. The combinations arranged according to the ascending order of the second subscript (with
the necessary interchanges of elements from step 2 indicated by arrows) are:

Step 4. In going from step 2 to step 3, zero interchanges (an even number) are necessary in the first
combination; one interchange (an odd number) is necessary in the second combination. The
combinations with their proper signs are +a11a22 and −a12a21.

Step 5. Summing the above, we obtain as the value of the determinant. Thus, as a numerical
example, we see that

As another example consider the following 3×3 array:

Steps 1 and 2. The combinations grouped according to the ascending order of the first subscript
are:

Step 3. The combinations grouped according to the ascending order of the second subscript (with
the necessary interchanges of elements from step 2 indicated by arrows) are:



Steps 4 and 5. Summing the above terms with the proper signs, we obtain

as the value of the determinant.
It should be noted that for a 1×1 array, i.e., an array consisting of a single element, it is convenient

to define the determinant as being equal to the element itself. This definition is consistent with the
steps defined above. Thus,

It will be convenient to adopt a symbolic means of referring to the determinant of an array. This
will be parallel vertical lines on each side of the array. The determinant of a matrix A will also be
indicated by “det A.” Thus, we have

Although the steps given above serve to define a determinant, in general, they do not provide the
most convenient way for evaluating this function. Therefore, in the next section we shall introduce
some easier methods of finding the determinant of a given array.

2.4 Evaluating the determinant
If, from an n × n array of elements, a row and a column are deleted, the elements that remain (after
rearrangement to eliminate the empty spaces) form an (n − 1) × (n − 1) array of elements. For
example, deletion of the second row and the third column of a 4×4 array may be performed as
follows:

Thus a 3×3 array of elements is formed. The determinant of the 3×3 array of elements is called a
minor of the 4×4 array of elements.1 If we multiply the minor by (− 1)i+j, where i is the number of the
row deleted and j is the number of the column deleted, the resulting function is called a cofactor and
is indicated by the symbol Aij. The cofactor is frequently referred to as a “signed” minor. Thus, in the
above example,



Similarly, for a 3×3 array,

the cofactors for the elements in the first row are

It should be clear that there are n2 cofactors for an n × n array.
One of the ways in which a determinant may be evaluated is by expanding the array in terms of the

elements of a given row or column and the cofactors corresponding to these elements. For an
expansion along the ith row of an n × n array [aij], we may write

This says that we form a sum of the products of each of the elements in the ith row and the cofactor
formed by deleting the ith row and the column in which the element is located. For example, for a 3×3
array, expanding along the first row (i.e., for i = 1),

From (1) we may write

Similarly, for a 2×2 matrix, expanding along the first row yields

The cofactors are found as follows:

The determinant for a 2×2 array is now seen to be

We may apply this result to the 2×2 determinants which occur in the expression for the value of the
determinant of a 3×3 array given in (3). This expression becomes



The results of (4) and (5) for a 2×2 and a 3×3 array, respectively, may easily be seen to be identical
with the results of the examples of Sec. 2.3.

If we expand the determinant along any column, e.g., the jth column, we get

The steps of the process are similar to those illustrated for the row expansions above.
By means of the expansion formulas (2) and (6), therefore, we may calculate the determinant of an

n × n array in terms of determinants of (n − 1) × (n − 1) arrays. These determinants are called minors.
These in turn may be expressed in terms of determinants of (n − 2) × (n − 2) arrays. The process may
be continued until we finally arrive at determinants of 1×1 arrays which, as we have noted, are the
elements themselves. Thus the equations (2) and (6) provide the means to evaluate a determinant of an
array of any size by a systematic procedure. The equations are special cases of a more general
method of evaluating a determinant known as Laplace's expansion.

When a 2×2 determinant is to be evaluated, an easily remembered procedure is as follows:
Multiply elements along the diagonals and affix positive and negative signs as indicated below:

For a 3×3 matrix we may use a similar procedure. The first and second columns have been repeated
for convenience:

It is easily seen that these results are the same as those previously determined.



2.5 Properties of determinants
Several of the most fundamental properties of a determinant may be developed by means of the
Laplace expansion:

Property 1 The value of a determinant is multiplied by a constant k if all the elements of any row or
column are multiplied by the constant k.
This is easily seen, since, if we expand about the row or column which has been so multiplied, each
element of the expansion is multiplied by the same constant. For example,

If we multiply the first row of the above array by k, we obtain

Property 2 The value of the determinant is zero if all the elements of any row or any column are zero.
In Property 1, we need only choose zero as the specific value of the multiplying constant to prove
this.

Property 3 The value of the determinant is multiplied by −1 if any two rows or any two columns of
the array are interchanged.
First let us consider the interchange of two adjacent rows. Let A be the original array, and let B be the
array in which the kth and the (k + 1)th rows are interchanged. Expanding det A along the kth row and
det B along the (k + 1)th row gives

It is easily seen that aki = bk+1, i for all i. Further, the elements of the cofactors Aki and Bk+1, i are the
same. The signs of the cofactors, however, are opposite, since (−1)k+i = − (−1) k+1+i. Therefore, Aki =
−Bk+1,i for all i. Thus, det A = − det B. This is illustrated below for a 3×3 array with the first and
second rows interchanged:



It is easy to see that an identical proof holds true when adjacent columns are interchanged, since the
expansions may be made equally well along columns.

Any interchange of two nonadjacent rows or columns can be accomplished by successive
interchanges of adjacent rows or columns. Thus to interchange rows 1 and 3 below:

It may be shown that when k rows intervene between the rows being interchanged, exactly 2k + 1
interchanges of adjacent rows will suffice. Since each interchange of adjacent rows multiplies the
determinant by −1, and since 2k + 1 is always odd, the result of the interchange of any two rows is to
multiply the determinant by −1. The same is clearly true for any two columns.

Property 4 If a determinant has two identical rows or two identical columns, its value is zero.

By Property 3 above, if we interchange the two identical rows or columns we get the negative of the
value of the determinant. After the interchange, however, the array is the same as before. Therefore,
the value of the determinant must be the same. The only number that is equal to its negative is zero;
therefore this is the value of the determinant.

Note that this property also applies when any row is a fixed multiple of another row or any column
is a fixed multiple of another column. For example, if one row is k times another, then, by Property 1,
we may divide this row by k and multiply the determinant by k, leaving its value unchanged. Since we
now have two identical rows, however, by the above reasoning the value of the determinant is zero.
Obviously the same holds true for columns.

Property 5 An expansion formed from the elements of one row and the cofactors of the corresponding
elements of any other row has a value of zero. The same is true with respect to columns.

Assume that an expansion is made by using the elements of the first row associated with the
cofactors of the elements of the second row of a given array. The elements of the second row do not
appear in the expansion. In fact, the expansion is exactly that which would occur if the elements of the
first and the second rows were identical. Therefore, by Property 4, the value of the determinant, i.e.,
the result of such an expansion, must be zero. For example, for the array



an expansion in terms of the elements of the first row and the cofactors of the elements of the second
row yields

It is easily seen that this is exactly the expansion that would result from expanding the array

along its second row. A similar proof applies to columns.

Property 6 To any row of an array of elements can be added a multiple of any other row without
changing the value of the determinant of the array. The same is true with respect to columns.

For example, consider the ith row of an array of elements. The determinant may be found by
expanding along this row as follows:

If we add the k-multiplied mth row to the ith row, we may write the new expansion along the ith row
as

This can be written as the sum of two summations:

The second summation above, however, is an expansion of the elements of one row with the cofactors
of the corresponding elements of another row. By Property 5, this is equal to zero. Thus, the value of
the determinant is unchanged. A similar proof holds with respect to modifying the elements of any
column.

Property 7 The determinant of a triangular array is equal to the product of the diagonal elements.
We may define a triangular array as one in which all the elements below the main diagonal (the main
diagonal of an array is the diagonal from the upper left-hand corner element of the array to the lower
right-hand corner element) are equal to zero. Thus, if we expand along the first column, we obtain
only the element a11 times its cofactor. To find the cofactor we take the new array of elements (formed
by deleting the first row and column of the original array) and expand down its first column. The



result is again the upper left-hand corner term times its cofactor. Continuing this process yields the
product of the diagonal terms. The process is illustrated below:

Property 8 Any matrix can be reduced to triangular form without changing the value of the
determinant.

This may be done in steps as follows:
Step 1. Multiply the first row of the array by −a21/a11 and add this row to the second row.

Similarly, multiply the first row by −a31/a11 and add it to the third row. Continue, finally adding the
first row, multiplied by −an1/a11, to the nth row. By Property 6, the value of the determinant is not
changed by these steps. The array now appears as follows:1

where

Step 2. Multiply the second row of (1) by −b32/b22 and add the result to the third row. Continue in
this manner until the second row of (1) is multiplied by −bn2/b22 and added to the nth row. The
resulting array, still with the same determinant, is

where



This process can be repeated as many times as necessary, each repetition creating a column of
zeros below the main diagonal. After a maximum of n − 1 repetitions, the resulting array will be
triangular but will have the same determinant as the original array. Since, by Property 7, the
determinant of the array can now be found by a simple multiplication of the diagonal elements, this
procedure provides a useful means of evaluating a determinant. Note, however, that even though the
triangular array has the same determinant as the original array, the two arrays are not equal, for,
obviously, their corresponding elements are not equal.

2.6 Using determinants to solve a set of simultaneous equations
We may apply the properties of determinants which were developed in the last section to solve a set
of equations of the form

The process of solving these equations may be described as finding the values of the variables Xi
under the conditions that the terms Ui and aij are specified. In other words, we would like to
determine the coefficients bij in a set of equations

In equations (2), it should be clear that if the bij terms are known, then, when the Ui are specified, the
values of the Xi are determined. The set of equations (1) and the set of equations (2) are usually
referred to as sets of simultaneous equations. It is desired, not only to “solve” these equations by
finding one set when the other is given, but it is also desirable to be able to state the conditions under
which a solution is possible. This we shall now do.

Let us multiply the first equation of the set (1) by the cofactor A11 the second by the cofactor A21 the
third by A31, and so forth. We obtain

Adding the above equations together gives



In this equation the term (a11A11 + a21A21 + … + an1An1) which multiplies Xi is simply the expansion
of the array of elements aij along the first column of the array. As such it is equal to det A. The term
(a12A11 + a22A21 + … + an2An1) which multiplies X2 is the expansion of the array in terms of the
elements of the second column and the cofactors of the elements of the first column. As such, by
Property 5 of the preceding section, it is equal to zero. Similarly, the terms multiplying X3, . . ., Xn are
all zero. Thus (4) becomes

This may also be written

We may perform an operation on the set of equations (1) similar to the above by multiplying the first
equation of the set by the cofactor A12, the second by the cofactor A22, the third by the cofactor A32,
etc. Adding the resulting equations yields

By following the above argument, we see that all the terms on the right side of the equation are zero
except the term modifying X2. This term is an expansion along the second column of the elements in
the array and as such is equal to det A. Thus, after dividing both sides of the equation by det A, we
may write

This procedure may be repeated to produce equations for X3, X4, . . ., Xn. The final result is the set of
equations



Comparing these equations with the set (2), we see that for the coefficients bij we may write1

In each of the terms bij as defined above, the quantity det A appears in the denominator. Thus, the
condition that must be satisfied for a solution of (1) to exist is that det A be nonzero.

As an example of the above procedure, consider the set of equations

Suppose that it is desired to solve these equations, i.e., to express the variables Xi in terms of the
variables Ui. Since a11 = 2, a12 = 1, a21 = 2, and a22 = 3,

Thus, we may compute the bij as follows:

the set of equations corresponding to (2) is

The procedure is clearly applicable to more involved sets of equations.
A special case of interest occurs when all the Ui in (1) are zero. The resulting set of equations

involving the elements aij and Xi is referred to as a homogeneous set of equations. Similarly, the
original set of equations (1) in which the Ui are not all zero may be referred to as a nonhomogeneous
set of equations.

Certain problems arise in the application of (6) in determining the values of Xi, i.e., in solving a



homogeneous set of simultaneous equations. We shall consider two cases:

Case 1: det A ≠ 0 In this case, every element on the right side of equations (6) is zero; therefore, we
conclude that a solution to the original equations is given by Xi = 0. Substituting these values into (1)
for Ui = 0 clearly satisfies the equations. This solution is frequently spoken of as the trivial solution.
It may be shown that this is also the only solution.1

Case 2: det A = 0 In this case, the elements on the right side of equations (6) are indeterminate; i.e.,
they are of the form 0/0. In this form we cannot find a solution for any particular Xi; however, it may
be shown that an infinite number of solutions exist.1 We can establish an intuitive feeling for this case
by assuming for the moment that only one of the Ui is nonzero, and that det A is also nonzero. If we
divide the first equation of (6) by the second, we obtain

This result is independent of both Ui and det A; therefore it should be valid for the case in which Ui
and det A are zero. Thus, the choice of either of these variables determines the other. In considering
both the above cases we conclude that a homogeneous set of equations has non-trivial solutions if and
only if the determinant is equal to zero.

2.7 Matrix algebra
In Sec. 2.2 a definition of a matrix is given. In this section the algebraic operations which can be
performed on matrices will be introduced.

Equality Two matrices are equal if and only if each of their corresponding elements are equal. That
is, A = B only if aij = bij for all i and j. As a consequence of this definition, we see that only matrices
having the same number of rows and columns can be equal. As an example, if

and if A = B, then

Addition The sum of two matrices is equal to a third matrix if and only if the sum of corresponding
elements in the two matrices is equal to the value of the element in the corresponding position in the
third matrix. Thus, A + B = C only if aij + bij = cij for all values of i and j. The operation of addition
is defined only for matrices which have the same number of rows and columns. As an example,



Multiplication by a scalar Multiplying a matrix by a scalar multiplies each element of the matrix by
the scalar. Thus, if k is a scalar, and A is a matrix with elements aij the elements of the matrix kA are
kaij. We shall consider the term scalar as including real numbers, complex numbers, and functions of
the complex frequency variable. Note the difference between this case and the corresponding
operation in a determinant (see Property 1, Sec. 2.5), where multiplying the determinant by a constant
was the equivalent of multiplying the elements of a single row or a single column by the constant. As
an example of multiplying a matrix by a scalar, consider the following:

Subtraction Subtraction can be defined in terms of multiplication by a scalar (− 1) and addition.
Thus A − B = A + (− 1)B.

Multiplication of two matrices We define this operation as follows: A × B = C (this will also
frequently be written AB = C) implies that

The following properties of this operation should be noted:

Property 1 The summation index that must be used for each term cij appears as the second subscript,
i.e., the column subscript, of the aik term, but it appears as the first subscript, i.e., the row subscript,
of the bkj term. Thus, we conclude that the number of columns of the first matrix that enters into the
product operation must be the same as the number of rows of the second matrix. Otherwise we are not
able to run the summation index over its full range, and we say that multiplication is not defined in
this case.

Property 2 Every value of the subscript i, i.e., the row subscript, that the element aij can have, as
determined by the number of rows of the A matrix, determines a corresponding subscript (a row
subscript) in the resulting element cij. Similarly, every value of the subscript j (the column subscript)
that the element bij can have determines a corresponding subscript (the column subscript) in the
element cij. Thus, the resulting C matrix has the same number of rows as the A matrix (the first one
entering into matrix multiplication) and the same number of columns as the B matrix (the second one
entering into the matrix multiplication).

Property 3 From a study of the first two properties, it should be clear that, in general, matrix
multiplication is not commutative; i.e., AB ≠ BA.

Property 4 It is easily shown that matrix multiplication is associative, i.e., (AB)C = A(BC), and
distributive, i.e., A(B + C) = AB + AC and (A + B)C = AC + BC.

As an example of matrix multiplication, consider the following:



Figure 2.2 Matrix multiplication.

It should be noted that the first matrix has three columns and the second matrix has three rows. Thus,
by Property 1, multiplication is possible. Since the first matrix has two rows and the second matrix
has two columns, by Property 2 the resulting matrix will have two rows and two columns. The
elements of the C matrix may be found as follows:

It may be helpful to indicate here that we can perform the summation indicated by (1) more easily if
we visualize the appropriate column (the jth column) from the second matrix as removed from that
matrix and associated with the appropriate row (the ith row) of the first matrix. The operations of
multiplication and summation can then be performed directly. Practice in visualization may be
achieved by performing a few examples as illustrated in Fig. 2.2 for c11. The figure illustrates the
removal of the first column from B and its placement above the first row of A. The elements of the
two matrices which are in line vertically are then multiplied. The resulting products are summed
horizontally. The result is the element c11.

The set of equations (1) in Sec. 2.6 may be used as another example of matrix multiplication. They
may also be written U = AX. In expanded form this is



2.8 Types of matrices and properties of matrices

Identity matrix The identity matrix (also referred to as the unity matrix) with symbol 1 is defined as
follows:

A property of the identity matrix is that any matrix premultiplied or post-multiplied by the identity
matrix is equal to itself (we assume that multiplication is defined, i.e., that the identity matrix is of the
correct size in all cases). Thus, we may write A1 = 1A = A. If A is not a square matrix, then two
different-sized identity matrices will be required in the last equation. The identity matrix itself is
always a square matrix.

Inverse matrix For a given matrix A there may exist a matrix A−1 defined by the relationship A−1A =
1. This, of course, also implies a commutative law of multiplication; i.e., AA−1 = 1. The inverse
matrix has the useful property of providing a solution to a set of equations. To see this, consider the
equation

Premultiplying both sides of this equation by A−1, we obtain

Comparing this with (2) of Sec. 2.6, we see that the elements of the A−1 matrix are the elements bij

defined by (2) of Sec. 2.6. Thus, the condition for a matrix A−1 to exist is the same as the condition
for the inverse set of equations (2) of Sec. 2.6 to exist, namely that det A ≠ 0. This condition also
requires that A be a square matrix, and thus that A−1 be a square matrix. A matrix that has an inverse
is said to be a nonsingular matrix.
For example, for a 2×2 array,

Thus, as a numerical example,



As another example, a 3×3 array may have its inverse expressed in terms of its cofactors; thus

Transpose matrix If we interchange the rows and columns of a given matrix, we form the transpose
of that matrix. This operation may be performed on a matrix of any size. For example, the transpose of
a row matrix is a column matrix. The symbol for the transpose of the matrix A is At. For B = At it
follows that bij = aij. As examples, consider the following:

Conjugate matrix If we replace every element in a matrix A by its complex conjugate, the resulting
matrix is the conjugate matrix, denoted by the symbol A*. If B = A*, it follows that bij = aij*.1

Symmetric matrix If the elements of a given matrix are symmetric with respect to the main diagonal
(the main diagonal of the matrix A consists of the elements aii), the matrix is said to be symmetric.
Thus, A is symmetric if aij = aji. Only a square matrix can be symmetric. We may indicate this
property by the superscript (S). An example of a symmetric matrix is the following:

Skew-symmetric matrix A skew-symmetric matrix A is defined by the relation aij = − aji. Since the
only element that can equal its negative is zero, we conclude that the diagonal elements (i.e., i = j) of
a skew-symmetric matrix are all zero. Only a square matrix can be skew symmetric. We will use the
superscript (SS) to indicate this property of a matrix. An example of a skew-symmetric matrix is the
following:

Hermitian matrix A matrix is said to be hermitian if the elements which are symmetrically located
with respect to the main diagonal are complex conjugates. Thus, if A is a hermitian matrix, indicated
by a superscript (H), it follows that aij = aji*. The elements on the diagonal must, therefore, be real,
since they are defined equal to their own complex conjugates. It should be clear that only a square
matrix can be hermitian. An example of a hermitian matrix is the following:



Skew-hermitian matrix If the elements of a matrix A are defined by the relationship aij = −aji*, the
matrix is said to be skew hermitian. This property applies only to square matrices. It is indicated by
the superscript letters (SH). Since the diagonal elements must be their own negative complex
conjugates, they can only be imaginary or zero. An example of a skew-hermitian matrix is the
following:

Dominant matrix A symmetric matrix whose elements are real is said to be dominant if each of the
elements on the main diagonal is not less in value than the sum of the absolute values of all the other
elements in the same row (or, since the matrix is symmetric, in the same column). In other words, if A
is a dominant matrix, indicated by a superscript (D), with diagonal elements aii, these diagonal
elements satisfy the restriction

for all values of i. An example of a dominant matrix is the following:

2.9 Theorems on matrices
The following are presented as a collection of useful theorems on matrices. Many of these theorems
will be used in later sections of the text. A discussion or a proof of these theorems is included only
where this is pertinent to later theory. Several references with excellent proofs are available and are
listed at the end of this chapter.

Theorem 1 The inverse of the product of two square matrices is equal to the product of the inverses
taken in the opposite order.
Thus

Theorem 2 The transpose of the product of two matrices is equal to the product of the transposes
taken in the opposite order; the transpose of the sum of two matrices is equal to the sum of the
transposes.



Thus,

Theorem 3 If a square matrix is equal to its transpose, it is symmetric. Similarly, a symmetric matrix
is equal to its transpose.

Theorem 4 If a square matrix is equal to the negative of its transpose, the matrix is skew symmetric.
Similarly, a skew-symmetric matrix is equal to the negative of its transpose.

Theorem 5 Any square matrix A with all real elements may be expressed as the sum of a symmetric
matrix and a skew-symmetric matrix. The same is true of a matrix all of whose elements are functions
of the complex frequency variable.
To see this, let

Then, by Theorems 3 and 4,

Adding and subtracting the above equations gives, respectively,

It is easy to see that A1
(S) and A2

(SS) have the desired properties and that their sum is equal to A.
Theorem 6 If a square matrix is equal to the conjugate of its transpose, the matrix is hermitian.
Similarly, a hermitian matrix is equal to the conjugate of its transpose.

Theorem 7 If a square matrix is equal to the negative of the conjugate of its transpose, the matrix is
skew hermitian. Similarly, a skew-hermitian matrix is equal to the negative of the conjugate of its
transpose.

Theorem 8 Any square matrix A with real and complex elements may be expressed as the sum of a
hermitian and a skew-hermitian matrix. To see this, let

Then, by Theorems 6 and 7,

Adding and subtracting the above equations gives, respectively,

It is easy to see that A1
(H) and A2

(SH) have the necessary properties.



Theorem 9 The inverse and the transpose of a matrix A may be taken in any order.
Thus,

It is assumed, of course, that A has an inverse.

2.10 Matrix partitioning
When it is necessary to manipulate a matrix equation containing large matrices, it is frequently
convenient to separate these matrices into smaller submatrices and perform the necessary operations
on the sub-matrices rather than on the original matrices. The submatrices are considered to be the
result of partitioning the original matrices. Matrix partitioning does not usually reduce the number of
manipulations that are required, but it may simplify the procedure considerably and make it easier to
prove general results. The partitioning procedures are applicable to matrices of all sizes. In forming
the submatrices, certain rules must be followed so that the algebraic operations of the original matrix
equation can still be performed. An example of partitioning is given in matrix A below. The 3×6
matrix has been partitioned into submatrices A1, A2, . . ., A6. Dashed lines are used to indicate the
bounds of the submatrices.

Now let us examine some of the algebraic matrix operations to see what restrictions they place on
partitioning.

Addition If A + B = C, then, for addition to be defined, we know that each matrix must have the same
number of rows and columns. Similarly, if the A matrix is partitioned into submatrices Ai, and if
identical partitionings are made for B and C into submatrices Bi and Ci, then we may write Ai + Bi =
Ci for all values of i. For example, let

If B and C are identically partitioned and labeled then A1 + B1 = C1 and A2 + B2 = C2; that is

and



as is evident from the original matrix equation.

Multiplication The restrictions on partitioning which are required so that matrix multiplication may
be carried out follow directly from the properties of matrix multiplication given in Sec. 2.7. As a
result of the first property, any vertical partitioning of the first matrix must be accompanied by a
corresponding horizontal partitioning of the second. Otherwise matrix multiplication of the
corresponding submatrices would not be possible. Similarly, as a result of the second property, the
horizontal partitioning of the first matrix determines the horizontal partitioning of the resulting matrix.
The vertical partitioning of the second matrix determines the vertical partitioning of the resulting
matrix. These ideas are illustrated below. The superscript numbers in parentheses are used to indicate
the numbers of rows and columns in the particular submatrix.

The same information is shown in three forms in the above equations. First, the original matrices are
shown with a partitioning chosen so as to make multiplication of the submatrices possible. Next, the
matrix equation in terms of the submatrices defined by the above partitioning is shown. The equations,
now in terms of submatrices, are given as an additional form. The reader should check the individual
submatrix products to ascertain that they obey the rules of matrix multiplication and that the indicated
matrix addition is possible.

2.11 Matrix equations
When a real or a complex variable is defined, the next mathematical step of interest is usually to
explore functions of such a variable. Similarly, having defined and specified a matrix A, we can
specify the matrix product AA, which can also be written as A2, or the matrix product A × A × A × …
× A using n terms, which may be written as An. The matrix A must, of course, be a square matrix.
Since multiplication of a matrix by a scalar is possible, we may define operations which appear in
the form of polynomials with the matrix as the variable element. For example, we might write A3 +
3A2 + 7A. The rules of matrix equality require that, when a matrix equation is set equal to a constant
(including zero), this constant be multiplied by the identity matrix. Thus, rather than writing

we shall write



The matrix 51 is sometimes referred to as a scalar matrix. Note that all its elements are zero except
those on the main diagonal, and that these latter are equal to each other.

The solutions to a matrix equation exemplify the fact that there are differences between scalar
algebra and matrix algebra. For example, consider the equation x2 − 1 = 0, where x is a real variable.
The solutions of this equation are x = 1 and x = −1. If we write the matrix equation A2 − 1 = 0, where
0 is the null matrix, it is easy to see that solutions to this equation are A = 1 and A = −1. Unlike the
scalar-algebra case, however, there may be additional solutions. For example, if the matrix A is a
2×2 matrix, to satisfy the above matrix equation it is necessary that the following relations hold
among the matrix elements a11, a12, a21 and a22:

One set of coefficients that satisfies these relations and thus provides a solution to the matrix equation
is a11 = 2, a12 = 1, a21 = −3, and a22 = −2. It is easily verified that the following matrix equation is
true:

Just as we may form infinite series of real or complex variables, so we may form infinite series of
matrices. If we remember that a matrix equation is merely a representation for a certain number of
ordinary equations, we may define the “convergence” of a series of matrices in terms of the
convergence of the individual equations by well-known techniques.1 As an example of an infinite
series of matrices, consider the following:

If, for example, we choose

then

The series (1) becomes



This matrix series simply represents the two convergent series of constants

and

Thus we may say that the series of matrices “converges” in the sense that the individual series of
which it is composed converge.

We may use the series (1) to define the term exp A, in light of its similarity to the expansion of exp
x, where x is a real or complex variable. Similarly, we may define exp tA, where t is a real variable
and A is a matrix, by the following:

Now we may define differentiation of exp tA with respect to t as the following:

This definition may be justified by differentiating both sides of (2).
As an application of the definition of exp tA and its derivatives, consider a set of n functions yi(t),

where t is a real variable. Suppose that we have available n first-order differential equations relating
these functions. These equations may be written in matrix form as

The actual matrices will be

If we have available a set of n initial conditions yi(0) which are the elements of a column matrix
Y(0), then the solution to (3) is given explicitly
by

This may also be written



In a purely formal manner we have been able to arrive at a solution for an arbitrarily complex set of
first-order differential equations by an exceedingly simple technique. Needless to say, a considerable
amount of actual labor may yet be required in actually obtaining the numerical solution for a specific
problem. The salient point here, however, is that we have been able to complete all steps of the
solution except the laborious details, and we have done this for a very general class of problems
unrestricted in its number of variables. This example is typical of the powerful generality of matrix
methods. It is this generality which makes matrix algebra so useful as an analytic tool in many system
and circuit applications.

2.12 Further reading
The topics which have been presented in this chapter may also be found in a formidable number of
other texts. Some of these are referenced in the list below. The entries have been chosen so as to
include as wide as possible a range of level of presentation.
Hohn, F. E.: “Elementary Matrix Algebra,” The Macmillan Company, New York, 1958. This is a

clearly written and complete mathematical treatment. The material in Chaps. 1 to 3 is especially
applicable.

Kemeny, J. G., H. Mirkil, J. L. Snell, and G. L. Thompson: “Finite Mathematical Structures,”
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1959. Chapter 4 presents a treatment that is
noteworthy for its wide scope of application to nonengineering fields; introductory in level.

Korn, G. A., and T. M. Korn: “Mathematical Handbook for Scientists and Engineers,” McGraw-Hill
Book Company, Inc., New York, 1961. A summary tabulation is given in Chap. 13. Excellent for
review purposes.

Schwartz, J. T.: “Introduction to Matrices and Vectors,” McGraw-Hill Book Company, Inc., New
York, 1961. A clearly written introductory treatment with many examples of the mathematical
operations.

Sokolnikoff, I. S., and R. M. Redheffer: “Mathematics of Physics and Modern Engineering,”
McGraw-Hill Book Company, Inc., New York, 1958. A concise presentation of the basic
principles is given in Sec. 16, Chap. 4.

PROBLEMS

2.1 The determinants which follow are to be evaluated in two ways: (1) by expanding along a row or
column and (2) by reducing the array to a triangular form.

2.2 Is the determinant of the sum of two matrices equal to the sum of the determinants? Illustrate your
answer with an example.



2.3 Prove that if the rows of an array of elements are interchanged with the columns, the value of the
determinant is unchanged; i.e., prove that det A = det At.

2.4 If A is an n × n array of elements and k is a scalar, prove that

2.5 Make up a simple example which illustrates the fact that the determinant of the product of two
square matrices is equal to the product of the determinants of the respective matrices.

2.6 Use the fact given in Prob. 2.5 to prove that det A = 1/(det A−1).

2.7 If a matrix A may be written in terms of the component square matrices Ai and 0 as shown below
(the 0 matrices have all elements zero), find an expression for the determinant of the matrix in terms
of the determinants of the component square matrices.

2.8 Show that the equation det (A − λ1) = 0, where A is an n × n square matrix with real coefficients,
forms an algebraic equation of degree n in the variable λ.

2.9 Solve the following set of equations:

2.10 Solve for x, y, and z in the following equations:

2.11 Perform the following matrix multiplications:

2.12 Show by a simple example that the distributive law of matrix multiplication applies, i.e., that
A(B + C) = AB + AC.

2.13 Perform the following matrix multiplications:



2.14 Express the following matrix as the sum of a symmetric matrix and a skew-symmetric matrix:

2.15 Express the following matrix as the sum of a hermitian matrix and a skew-hermitian matrix:

2.16 For the following matrices show that (AB)−1 = A−1A−1:

2.17 For the matrices given in Prob. 2.16 show that (AB)t = BtAt.

2.18 If A and B are diagonal matrices, show that multiplication is commutative, i.e., that AB = BA.

2.19 Given an arbitrary square matrix A, find a matrix B such that (A + B) is commutative when
multiplied by another arbitrary square matrix C.
2.20 Find the inverse of each of the following sets of equations:

2.21 Given an n × n matrix, form an (n + 1) × (n + 1) matrix such that the sum of the elements in any
row or any column is zero.

2.22 Find the conditions under which it is possible to interchange the variables Ai and Bj in the
following matrix equation:

2.23 Assume that A is a skew-symmetric matrix, all of whose elements are real. What properties will
the diagonal elements of A2 have?



2.24 The elements of the matrices A and B given below are assumed to be real. If A and B are both
symmetric, will the product AB be symmetric? If not, find the conditions on the elements of A and B
such that AB will be symmetric.

2.25 If A, 1, and 0 are all n × n square matrices, find the total number of diagonal matrices which are
solutions to the matrix equation A2 + 1 = 0.

2.26 If the matrices of Prob. 2.25 are 2×2 matrices, find a solution which is not a diagonal matrix.

2.27 Find all diagonal 2×2 matrices which satisfy the following matrix equation:

2.28 Assume that A and P are square matrices and that P−1 exists. Let the matrix B = PAP−1. Find an
expression for Bk.

2.29 In the following matrix equation A is an n × n square matrix and the ki are scalars:

Show that if B = PAP−1 then f(B) = 0.
2.30 Use the partitioning indicated by the dashed lines to compute the following matrix product:

2.31 Use the partitioning indicated by the dashed lines to compute the square of the following matrix:

2.32 Given a matrix A partitioned into submatrices Aij as indicated below, find an expression for A−1

in terms of the submatrices of A. Is it necessary that the Aij submatrices be square?

2.33 Show that the following matrix equation is equivalent to the set of equations (1) of Sec. 2.6.



where

2.34 Show that for an arbitrary row (column) matrix there exists a column (row) matrix with the
property that when it is used to premultiply (postmultiply) the original matrix, the scalar 1 results.

2.35 Use Theorems 1 and 2 of Sec. 2.9 to prove Theorem 9.

2.36 Prove Theorem 1 of Sec. 2.9.

2.37 For the matrices of Prob. 2.16 show that Theorem 9 of Sec. 2.9 is true.

2.38 If AB = CB, can it be concluded that A = C? Give examples to show when this will not be true.

2.39 Given the matrix equation

show that it is possible to develop the equation

NOTE: Since X is a row matrix, it does not have an inverse; therefore it is not acceptable to simply
postmultiply both sides of the first equation by X−1.

2.40 What restrictions must be placed on A so that A* will be hermitian?

2.41 The matrix shown below is partitioned into four square sub-matrices. If the 1 submatrices are
identity matrices, the 0 submatrix is a null matrix (all the elements are zero), and the D submatrix has
only diagonal elements, all of which are equal, find a general formula for the matrix raised to the nth
power.

2.42 If A is a diagonal matrix with the properties aij = 0, i ≠ j and aij ≠ 0, i = j, show that it is always
possible to specify a diagonal matrix B such that BtAB = 1, where 1 is the identity matrix.

2.43 Under what conditions will det (BtAB) = det A?

2.44 If det A = 0, under what conditions will det (CtAC) = 0?

2.45 Assume a series of n matrix equations CAi = λiBAi (i = 1,2, ..., n) are satisfied where C and B
are n × n square matrices, the Ai are n × 1 column matrices, and the λi are scalars. Let A be an n × n
matrix such that its columns are the Ai, and let D be a diagonal matrix such that di, = λi. Write all the
individual matrix equations simultaneously as a single matrix equation.



2.46 Is (A + B)2 ever equal to A2 + 2AB + B2? If so, when?

1 The value of the mutual admittance will be multiplied by +1 or −1, depending on the reference polarities of the nodal voltages.
1 This is frequently termed a first-order minor determinant of the array. Higher-order minors are formed by simultaneously deleting

more than one row and column.
1 If a11 = 0, then the rows or columns of the array should be rearranged so that the element in the first row and the first column is not

zero. This can be done without changing the value of the determinant if appropriate sign corrections are made (see Property 3). The
same comment applies to the following steps.

1 This is known as Cramer’s rule.
1 F. E. Hohn, “Elementary Matrix Algebra,” chap. 5, The Macmillan Company, New York, 1958.
1 The superscript asterisk (*) will be used throughout this text to indicate the complex conjugate.
1 See, for example, I. S. Sokolnikoff and R. M. Redheffer, “Mathematics of Physics and Modern Engineering,” McGraw-Hill Book

Company, Inc., New York, 1958.



Chapter 3 Circuit-theory applications of matrices

3.1 Introduction
In this chapter we shall illustrate some of the basic applications of matrices to circuit theory. These
applications will serve as useful tools in the study of the properties of active and passive networks
which will fill later parts of this book.

In Chap. 2 we saw that one of the major uses of matrices was to provide a compact means of
writing certain sets of equations. In investigating the applications of matrices to circuit theory, then, it
seems reasonable to inquire as to the manner in which equations can be written in terms of the voltage
and current variables of a given network. Several major categories of equations are of interest. For
example, we may be interested in a given network solely from the viewpoint of its “appearance” at
sets of external terminals. That is, we may be interested in the immittance between a pair of these
terminals. This is called a driving-point immittance. We may also be interested in how a signal
observed at some pair of terminals is related to an exciting or driving signal at some other pair of
terminals. The ratio of these signals is called a transfer function. It may be a transfer immittance, a
transfer voltage ratio, or a transfer current ratio. This “black-box” approach leaves us completely
unconcerned with the internal structure of the network just so long as we can specify its external
terminal behavior. If, in addition, we can also restrict ourselves to a situation in which the external
terminals can be treated in pairs, such that the current into one terminal of the pair is equal to the
current out of the other terminal of the pair, then we can reduce the number of equations required.
How can we make such a restriction on an arbitrary network? Simply by specifying the type of device
that is connected to these pairs of terminals. For example, a resistor, a voltage source, or a current
source clearly requires that the currents follow this type of behavior. This is illustrated in Fig. 3.1. To
define this case, that is, to specify the condition that the current into one terminal is equal to the
current out of another terminal, we use the word port. We may define a port of a given network as a
pair of terminals connected to the network. The restriction on these terminals is that the current
flowing into either of them must be equal to the current flowing out of the other.



Figure 3.1 A five-port network.

Note that the use of the term “port” in referring to a pair of terminals is not a restriction on the form
of the network to which those terminals belong, but a restriction on the type of circuitry which is
externally connected to the terminals. Figure 3.2 gives an additional example of a case in which the
port identification of a network may be used. For network A, terminals 1 and 2 certainly form a port.
Since we may apply Kirchhoff's law to all the currents entering and leaving the various terminals of
the network, the current into terminal 3 must be equal to the current flowing out of terminal 4. Thus,
these two terminals also form a port. This logic may also be applied to the networks that follow in the
cascade, justifying the use of the port notation for them.

Figure 3.2 Three networks which may be treated as two-port networks.

Figure 3.3 Two networks interconnected in such a manner that the port designation cannot be used.

In Fig. 3.3 is shown a situation in which the port notation cannot be used. There is no way in which
we can designate the terminals 1 through 4 of networks A and B such that we can always guarantee
that the current into any one of them equals the current out of any other. Thus, for a situation of this
type, we must look for some other means of specifying the terminal properties of the two networks
which are to be interconnected. Despite its limitations, much of the literature of active and passive
network theory is developed with the network characteristics defined on a port basis. We shall make
this our first topic of investigation in this chapter.



The second application of matrices to circuit theory will be an investigation of how we can
characterize a network from the basis of its terminal properties when the port designation cannot be
used. This will lead us to a study of the indefinite-admittance and indefinite-transfer matrices. Finally,
we shall investigate the ways in which the internal network, that is, the actual configuration of active
and passive elements connected to the terminals, can be characterized and represented in matrix
notation.

It should be noted that, in all the discussion which follows, our goal is to arrive at a compact
matrix notation for a network. This is the unifying theme of this chapter. However, as we have
indicated above, the meaning of this matrix notation may differ considerably, depending on whether it
represents the network from the viewpoint of its terminal properties or from the viewpoint of its
internal configuration, and whether or not restrictions are placed on other networks which are to be
connected to the given one.

3.2 The n-port network
In Fig. 3.4 we show an n-port network. The 2n terminals of this network have been grouped in pairs
and labeled as the n ports. By reason of the designation of port, defined in Sec. 3.1, we have not
limited the network, but we have placed restrictions on the type of networks that may be connected to
it. For the network illustrated, as many as n of the terminals shown may be connected to each other.
For example, it frequently occurs that one terminal of each of the ports is “grounded,” that is, that
there are really only n + 1 distinct terminals. In this case, however, it is convenient to repeat the
common terminals as illustrated in the figure. The n ports require the definition of 2n variables Vi and
Ii. These are usually considered to be functions of the complex frequency variable p. The 2n
variables may be expressed as a pair of column matrices, each with n rows. The two column matrices
may then be related by an n × n square matrix. There are many ways in which the grouping of the
variables may be made. For example,

Figure 3.4 An n-port network with its voltage and current variables.

This matrix equation may also be written V = ZI. It represents a set of n linear equations of the type



The elements of the square n × n matrix obviously have the dimensions of impedance. This was the
reason for the choice of the symbol zij to represent the elements of the matrix.

For a given network, the elements of the matrix can easily be found by applying testing conditions.
For example, from (2), if all the currents except I1 are made to equal 0, then z11 is simply the ratio of
V1 to I1. Thus,

Figure 3.5 Finding Z11 for an n-port network.

Figure 3.6 Finding z23 for an n-port network.

Note that the condition that all the currents except I1 be zero is easily established by simply “testing”
the network with all ports except port 1 open-circuited. A test current is applied to port 1 and the
voltage across its terminals is measured. The ratio of voltage to current thus establishes Z11. This
procedure is illustrated in Fig. 3.5. Similar tests may be made to establish the values of the terms zij

for all values of i and j for any network for which these parameters are defined. Thus,1

For example, if we apply this relationship to an n-port network to find z23, we simply require a
testing arrangement as shown in Fig. 3.6. In this figure a current is applied at port 3, and the resulting
voltage is measured at port 2.



Figure 3.7 Finding the open-circuit driving-point impedance z11 at port 1.

The terms zij are functions of the complex frequency variable p and are usually referred to as
network parameters. They have the dimensions of impedance and are thus also called impedance
network parameters or, more simply, z parameters. When a given network is tested to determine these
parameters, all the ports are open-circuited (the impedance of the current generator is infinite, so we
can also describe the port that the current generator is connected to as being open-circuited), so these
terms may also be referred to as the open-circuit parameters. Specifically, any zij where i = j may be
referred to as the open-circuit driving-point impedance at the ith port. Similarly, any zij where i ≠ j
may be referred to as the open-circuit transfer impedance from the jth port to the ith port.

Figure 3.8 Finding the open-circuit transfer impedance z12 from port 2 to port 1.

Figure 3.9 Finding the open-circuit transfer impedance z21 from port 1 to port 2.

As an example of how these parameters are determined, consider the two-port network shown in
Figs. 3.7 to 3.10, in which are shown the conditions under which z11, z12,z21, and z22, respectively, can
be found. In Fig. 3.11, the same network is considered as a four-port network by the addition of two
more pairs of terminals. The open-circuit parameters given in the figure are found in the same manner



as those of Figs. 3.7 to 3.10.
If we interchange the two column matrices containing the voltage and current variables of (1), we

may write I = YV, where Y = Z−1. The matrix equation is

We may use a testing procedure similar to that used for the zij terms to

Figure 3.10 Finding the open-circuit driving-point impedance z22 at port 2.

Figure 3.11 A four-port network and its z parameters.

determine the terms yij. For example, for y12 we may write

This requires placing a voltage source at port 2. The voltages at the other ports may be set equal to
zero by short-circuiting these ports. Then we need only measure the current in the short circuit at port
1. The test is shown schematically in Fig. 3.12. In general, we may define



Figure 3.12 Finding y12 for an n-port network.

That is, to find yij we place a voltage source at the jth port, short circuit all other ports, and measure
the current in the short circuit at the ith port. The yij elements are frequently referred to as the short-
circuit admittance parameters or the y parameters of the network. Specifically, yij where i = j is
called the short-circuit driving-point admittance at the ith port of the network, and yij where i ≠ j is
called the short-circuit transfer admittance from the jth port to the ith port.

The property of reciprocity as applied to linear networks tells us that if an excitation is applied at
one pair of terminals in a given network, and a response is measured at some second pair of terminals
in the network, then the ratio of response to excitation will be the same as if the excitation had been
applied at the second pair of terminals and the response measured at the first. In other words, in a
reciprocal network, interchanging the points of excitation and response does not change the ratio
between these quantities. The network, of course, must itself not be changed by the interchange of the
excitation and response. Thus a voltage source being used to excite a given network may be
interchanged with a short circuit in which the response current is being observed, and the ratio of
these quantities will remain the same. In both cases, the network has zero-impedance elements
connected to the terminal pairs. On the other hand, if a voltage source is being used to excite a
network, and a voltage between two terminals is being measured as the response, then interchanging
the response and the excitation will not yield the same result, since the network is changed by this
operation.

In Figs. 3.8 and 3.9 the determination of z12 and z21 provides an example of a situation in which, if
the network is reciprocal, the ratio of response to excitation is unchanged when the points of
application and measurement are interchanged. More generally, this is the situation that occurs in the
determination of zij and zji where i ≠ j in any network. Similarly, it is the situation that occurs in the
determination of yij and yji in any network. Therefore we may conclude that, if a given network is
reciprocal, then zij = zji and yij = yji, i.e., that the z-parameter matrix and the y-parameter matrix are
both symmetric. This provides a simplifying step in the determination of these parameters for such
networks, since we need only find the elements on the main diagonal of the matrix and the elements
above (or below) it. The remaining elements are determined by the fact that the matrix is symmetric.

It is important to realize the significance of the voltage and current variables as response or
excitation for a given testing situation. Thus, in (1) the voltages are the quantities that result from the
application of the various currents. To emphasize this, we may define the z parameters as



Similarly, in (4) the currents are the quantities that result from the application of various voltages, and
thus we may define the y parameters as

Note that where i ≠ j, the port at which the response is to be determined may always be identified as
the one at which some terminating condition is established. Thus, in the case of the z parameters, this
port is open-circuited; in the case of the y parameters, this port is short-circuited. The other port then
automatically becomes the one at which the excitation is applied. This distinction will be helpful
when the transmission parameters for two-port networks are discussed, since these parameters are
defined as a ratio of excitation to response, rather than the ratio of response to excitation indicated in
(6) and (7).

The above two sets of parameters, the z and the y parameters, may be collectively referred to as the
immittance parameters. Another very important set of parameters are the hybrid parameters. These
are defined by the matrix equation A = CB, i.e.,

For the elements cij to be hybrid parameters, we require that the Ai be neither all voltage nor all
current variables.

There are two types of hybrid parameters. The first type is determined by the condition that the Ai
include one variable (either voltage or current) from each port. For example, for a three-port
network, one possibility is

The second type of hybrid parameters is determined by the condition that the Ai include both
variables (voltage and current) from at least one of the ports. For example, for a three-port network,
one possibility is

The first type of hybrid parameters poses no new problems. For example, we may find c11 of (9) by
the following equation:



Figure 3.13 Determining c11 of equation (9) of Sec. 3.2.

Thus, our testing conditions simply require that port 2 be short-circuited and that port 3 be open-
circuited. The situation is illustrated in Fig. 3.13.

For the second type of hybrid parameters, however, a new problem arises. For example, if in (10)
we try to define d11, we see that

The conditions here cannot be satisfied; that is, we cannot simultaneously require both the voltage and
the current at a given port to be zero. Therefore, we must find some other means of determining the
elements dij. We present the following theorem:
Theorem If the elements cij of (8) are known, the necessary and sufficient condition that we may form
a new matrix equation with the variables Ai and Bj interchanged is that cij ≠ 0.1

As an example of the use of this theorem, consider the elements cij of (9), which we shall assume are
known. Since we can form (10) by interchanging V3 and V2, the necessary and sufficient condition that
the elements dij can be found is that c32 ≠ 0. The elements can be found by matrix manipulation.
As another example consider the four-port network shown in Fig. 3.11. The impedance parameters
are given by the matrix equation shown in the figure. Since the matrix element at the intersection of the
second row and the third column is zero, the theorem tells us that we cannot form a hybrid set of
parameters with the variables V2 and I3 interchanged. In other words, the elements of the square
matrix in the equation

do not exist. The other zeros in the matrix shown in Fig. 3.11 tell us that we cannot interchange
variables V3 and I2, V3 and I4, or V4 and I3. Any other pairs of variables may be interchanged, and a
new set of parameters may be found.

Let us now consider the effect of dependent and independent internal sources on the matrix
formulation for n-port networks. We shall define dependent sources as voltage or current generators



whose outputs depend on the voltage and current variables associated with the various ports. We
shall define independent sources as voltage or current generators whose outputs are independent of
the voltage and current variables associated with the various ports. Note that there are four possible
dependent sources: (1) a voltage-controlled voltage source; (2) a current-controlled voltage source;
(3) a current-controlled current source; and (4) a voltage-controlled current source. If dependent
sources are present in the network, and if testing conditions are applied as previously described, the
resulting matrix elements will include the effects of these dependent sources. This will be true
whether the sources are directly dependent on the actual voltages and currents which are the port
variables or whether they are dependent on internal voltages and currents. In this latter case, the
internal voltages and currents themselves can be considered as functions of the port voltage and
current variables, and thus the same criteria apply. This will be true for z, y, or hybrid parameters. As
an example, consider the circuit shown in Fig. 3.14. The z-parameter matrix is easily found to be

Figure 3.14 A two-port network with a dependent source.

Figure 3.15 A two-port network with an independent source.

Let us now consider independent sources. If we are preparing to determine the z-parameter matrix
for a given network, the presence of independent internal sources may be indicated by the fact that
some of the voltages at the ports are nonzero even though all the currents are set equal to zero, i.e.,
even though all the ports are open-circuited.1 Thus, the equations (1) become



where the Voi are the open-circuit voltages measured at the various ports when all the port currents
are zero. The property of linearity easily establishes the validity of the superposition of the effects of
independent sources and externally applied currents as indicated in the above equation.

A similar equation may be written for y parameters or for hybrid parameters. For example, for the
network shown in Fig. 3.15, we can easily find the following matrix equation:

Note that an independent source need not have a d-c output. The equations associated with the n-port
network deal with transformed quantities; hence any transformable d-c or time-varying output from an
independent current or voltage generator may be expressed as the pertinent function of the complex
frequency variable p. It is perhaps not amiss to remind the student at this point that the Laplace
transform of a d-c source of k volts applied at t = 0 is k/p, not just k.

It is easy to show by combination theory that if we have 2n variables (the voltages and currents at n
ports), and if these are to be arranged as the elements of two column matrices, each with n rows,
there are c ways of arranging these elements, where

This, of course, only takes account of the combinations, not the permutations, of the variables once
they have been selected. In other words, there are c sets of different network parameters, although we
may, of course, reposition the elements of a given array by permuting the variables. For example, for
a two-port network, there are 6 sets of parameters; for a three-port network, 20 sets; for a four-port
network, 70 sets, and so on, with the number rising very rapidly for networks with large numbers of
ports.1 Because of the frequency with which two-port networks occur, we shall treat the six possible
sets of two-port network parameters in detail in the next section.

3.3 Two-port-network parameters
The various sets of two-port-network parameters are itemized below, together with their commonly
accepted designations.2 The appropriate testing conditions and the descriptions of the individual
parameters are given in Table 3.1.



Table 3.1 Two-port-network parameters





Figure 3.16 Two two-port networks connected in series.

It is easily seen that the z-parameter matrix is the inverse of the y-parameter matrix, the h-
parameter matrix is the inverse of the g-parameter matrix, and the transmission-parameter (or ABCD-
parameter) matrix is the inverse (with an additional sign change) of the inverse-transmission-



parameter matrix. The theorem of the preceding section may be applied to easily establish whether or
not it is possible to determine any set of the parameters once a given set is known. For example, if the
z parameters are known, interchanging V2 and I2 yields the h parameters; therefore it is necessary and
sufficient that z22 ≠ 0 for the h parameters to exist. It is easy to establish the interrelations given in
Table 3.2 between the various sets of parameters by substituting in the pertinent equations.1 The
validity of the theorem is seen in the appearance of the critical element in the denominator of the new
set of parameters. Thus, corresponding to the above example, when the h parameters are expressed in
terms of the z parameters, the term z22 appears in the denominator of each element.

The various sets of network parameters have several direct applications in terms of certain
network configurations. For example, consider the two-port networks A and B connected as shown in
Fig. 3.16. We shall refer to this connection as a series connection. For the two original networks we
may write

Table 3.2 Relations among two-port parameters

may write

where

For the new two-port network formed by the series combination of the two original networks and
indicated by the dashed lines in Fig. 3.16, we may write

where



Since the voltages at the ports of networks A and B add to produce the voltages of the new two-port
network, and since the input and output currents for the new two-port network flow in series through
the original networks,1

Therefore, we may write

If we compare the right side of (6) with (3), we conclude that

The conclusion of (7) is the following: When 2 two-port networks are connected in series as shown
in Fig. 3.16, the z-parameter matrix of the resulting two-port network is equal to the sum of the z-
parameter matrices of the original 2 two-port networks.



Figure 3.17 A series connection of n two-port networks.

The generality of matrix methods may now be called upon to extend this conclusion to n two-port
networks connected in series as shown in Fig. 3.17. The only change in the development of the
preceding equations is that there will be n defining equations of the type of (1) and there will be n
terms inside the parentheses in (6). All other steps of the development and the resulting conclusion
are exactly the same.

As an example of the above procedure, consider the networks and their z parameters shown in Fig.
3.18. It is readily established that the network resulting from the series connection of these networks
has the z-parameter matrix formed by the addition of the two z-parameter matrices. Physically, if we
consider the first network as a small-signal model of a vacuum tube, then the resulting network
represents that same device with an unbypassed cathode resistor.

A case sometimes arises in which the conclusions of (7) are not applicable. As an illustration
consider the series connection of the 2 two-port networks shown in Fig. 3.19. The z-parameter
matrices are shown with the networks to which they refer. Clearly, the sum of the individual z-
parameter matrices is not equal to the z-parameter matrix of the series connection of the networks. To
see why this is so, consider part d of the figure. This illustrates the testing conditions appropriate for
finding z11 or z21 of the over-all network. The definition of a port is violated for both network A and
network B, since the currents at the terminals which form port 1 for either of these networks are not
equal. Since we have violated the conditions under which the original z parameters of each network
were defined, we cannot expect to be able to add the original z-parameter matrices to find a resultant
z-parameter matrix.



Figure 3.18 Adding the z parameters of networks connected in series.



Figure 3.19 A series connection of two-port networks in which the z parameters do not add.

It is useful to be able to test an interconnection of networks to establish whether or not this problem
will occur. Consider Fig. 3.19d. If we place an open circuit between terminals 4 and 7 (rather than
the short circuit shown), then the currents at the terminals 1, 2, 5, and 6 of the network will be such
that the port designation applies. We now simply must decide whether or not a current will flow
between terminals 4 and 7 if the short circuit is reestablished. The criterion for the answer to this
question is simply whether or not a voltage exists between terminals 4 and 7. If there is no voltage
(while I1 is flowing), then no current will flow when the short circuit is reestablished. In the circuit
shown here, it is easy to see that there will be a voltage. A similar test can be made with a testing
current I2 applied between terminals 3 and 8 (with terminals 4 and 7 shorted) by measuring the
voltage between terminals 2 and 5 when an open circuit exists between them.

The tests described are easily seen to apply to the general case. This is illustrated in Fig. 3.20a and
b. We may conclude, with reference to these figures, that if Va is zero for all values of I1, and if Vb is
zero for all values of I2, then the series connection will give the results of (7). If either of the above
tests fails, there is one other recourse left to us. We may modify either of the networks by connecting
an ideal transformer1 to one of its ports, as shown in Fig. 3.20c and d. An inspection of these figures
will show that Va and Vb will always be zero. Thus this modification of the networks ensures that the



z parameters of the individual networks may be added to find the z parameters of the resulting
network. The above tests may be generalized to the case of n two-port networks connected in series.
It is easily shown that n − 1 isolating transformers will always make it possible to add the z-
parameter matrices of the original networks to produce the z-parameter matrix of the network formed
by the series connection of the original networks.

If n two-port networks are connected as shown in Fig. 3.21, we can describe the resulting two-port
network shown by the dashed lines as the parallel connection of the original networks. If the original
networks are defined by their y parameters, we may write

where

Figure 3.20 The use of an ideal transformer to ensure that the z parameters add.

For the over-all two-port network we may write

where



Since all the input voltages are in parallel, they are equal. Similarly, the output voltages are equal.
The individual network input and output currents add to form the input and output currents for the
over-all network. Therefore, we may write

For the over-all two-port network we may write

Since the column matrices of voltages are all equal, we may write the above as

From (8) we conclude that

Thus we see that the y-parameter matrix of a two-port network formed by the parallel connection of a
set of n two-port networks may be found by adding the individual y-parameter matrices. As in the
case for the series-connected networks, interconnections of some networks may not follow (9). In
general, this can be avoided by the use of isolating transformers as shown in Fig. 3.22.

Methods of interconnecting two-port networks such that their g-parameter matrices or their h-
parameter matrices add to form the parameter matrix for the resulting two-port network are easily
arrived at. These are left as exercises. Of more interest is the case shown in Fig. 3.23. The
interconnection of two-port networks illustrated here will be referred to as a cascade connection. For
the individual networks, in terms of their transmission parameters, we may write

Figure 3.21 The parallel connection of n two-port networks.



Figure 3.22 The use of ideal transformers to ensure that the y parameters add.

Figure 3.23 The cascade connection of n two-port networks.

For the over-all two-port network as indicated by the dashed lines,

Several matrix equalities exist, as may be seen from Fig. 3.23. For example,

Thus we may write

The process may be continued until we have



Comparing this with (10), we see that

Therefore, we conclude that the transmission-parameter matrix of a cascade of two-port networks is
equal to the matrix product of the transmission-parameter matrices of the two-port networks forming
the cascade. Since matrix multiplication is, in general, noncommutative, the order of the transmission
matrices in the multiplication must be the same as the order of the related networks in the cascade. As
an example, consider the “T” configuration of 1-ohm resistors shown in Fig. 3.24. The transmission-
parameter matrix is easily shown to be

Figure 3.24 A “T” network of 1-ohm resistors.

Figure 3.25 Two “T” networks connected in cascade.

For the cascade of two of these networks as shown in Fig. 3.25, the transmission-parameter matrix
may be found as follows:

Transmission parameters provide a convenient method for finding the transfer functions of ladder
networks. The method considers the ladder network as a cascade of simple series impedances and
shunt admittances. The transmission parameters of such elements are given in Fig. 3.26. Since the
elements of the transmission-parameter matrices are quite simple, the multiplication of several of
them together is usually fairly easy. As an example, consider the network shown in Fig. 3.27. The



transmission parameters of this network may be found by performing the matrix multiplication

Figure 3.26 Simple series and shunt ladder elements and their transmission parameters.

Figure 3.27 A simple ladder network.

The result is

The student should compare the effort involved in obtaining any one of these parameters (the
reciprocal short-circuit transfer impedance B, for example) by the above method and by any of the
more conventional methods to appreciate the straightforwardness of this procedure.

3.4 The n-terminal network
We have seen that there are network situations in which the “port method” of describing a network
cannot be used. This situation occurs whenever an unspecified multiterminal termination is connected
to the network. An example was given in Fig. 3.3. Cases of this type may be considered by defining
the properties of the network on a terminal basis rather than on a port basis. We shall have to make
some different definitions of the voltage and current variables to do this. Consider the (n + 1)-
terminal network shown in Fig. 3.28. We may define n current variables Ii as the input currents at the
various terminals. Similarly, we may define n voltage variables Vi as the voltages at the various
terminals, all taken with respect to the (n + 1)th terminal. Suppose that we specify certain numerical
values for the current variables. For example, as shown in Fig. 3.29a, we might have d-c input and



output currents whose magnitudes at the first three terminals at a given instant of time are 3, 1, and 2
amps, with the indicated directions. It should be noted that Kirchhoff's law is satisfied, i.e., that the
net total current into the network is zero. Since the impedance of the current sources is infinite, the
potential of the connection common to the three current sources is unspecified.

If the network is linear, i.e., one which is defined on the principle of superposition, then we may
treat the three currents shown in Fig. 3.29a as follows: (1) a current of 3 amps applied between
terminals 1 and n + 1; (2) a current of 1 amp, applied in the direction shown between terminals 2 and
n + 1; and (3) a current of 2 amps, applied between terminals 3 and n + 1. The voltages that will
result at terminals 1, 2, and 3, as well as at all the other terminals, will simply be the sum of the
voltages produced by each of the currents separately. This is just another way of stating the principle
of superposition. Note this significant point: Each of the currents shown in Fig. 3.29b satisfies the
conditions used to define a port, that is, that the current into one terminal must equal the current out of
the other terminal. Thus, terminals 1 and n + 1 may be considered as forming a port; similarly,
terminals 2 and n + 1 form a port; etc. The terminal voltages are correctly defined as the port voltages
in this respect. Therefore, we conclude that an (n + 1)-terminal network may be treated as an n-port
network by defining a reference terminal and measuring the terminal voltage variables with respect to
it.

Figure 3.28 An (n + 1)-terminal network with its voltage and current variables.



Figure 3.29 The use of superposition in considering the current variables.

At this point the reader should note one other important distinction between the two types of
characterization, i.e., the terminal characterization and the port characterization of a given network. If
the network is to be used in such a manner that we may apply port terminology to it, then a 2n-
terminal network may be characterized by n equations involving n current variables and n voltage
variables. In other words, we may characterize the network by an n × n square matrix. By different
groupings of the voltage and current variables, different matrix representations are possible, as was
shown in the last section. By comparison, if the network is to be used in such a manner that the
terminal designation has to be used, then a 2n-terminal network requires 2n − 1 equations and 2n − 1
voltage variables, 2n − 1 current variables, and a (2n − 1) × (2n − 1) matrix to represent it. To
summarize this point, the use of the port designation for a given network requires approximately half
the number of equations and variables (for large n). This seems to be an advantage in favor of the port
designation; however, there is also a disadvantage. Since the port voltages are defined with respect to
the potential difference existing between two terminals, no account is taken of the potential of either
of these terminals with respect to any ground or reference potential. Thus we might expect that a
network will have the same network parameters as defined on a port basis, independently of any
potential differences that exist between the ports, if the interconnection between any of the ports
reduces to a single branch at any point. The definition of the port on the basis of current flow makes it
impossible for any current to flow along this single branch. To clarify the difference between the port
designation and the terminal designation, careful study of Figs. 3.30 through 3.32 is essential at this
point. For each figure the circuit is drawn twice. The a portions of the figures indicate the circuit with
voltage and current variables defined on a port basis. The b portions of the figures indicate the same
circuit with a designation of the voltages and currents on a terminal basis.

From these figures we may make certain quite general conclusions about the two types of
representations. The extension of the logic to the general case will be quite apparent.



Figure 3.30 A network considered as (a) a two-port network; (b) a four-terminal network.

Figure 3.31 A network considered as (a) a two-port network; (b) a three-terminal network.

1. When any of the circuitry connected to any of the terminals of a network is isolated from any
other terminal, a terminal-impedance representation is not possible, although a port-impedance
representation may be used. As an example, see Fig. 3.30.

2. An n-port network, in which all the ports have a common terminal, can be represented by an (n +
1)-terminal network. Furthermore, the matrix representation and the physical significance of the
variables will be identical. As an example, see Fig. 3.31.

3. When only a single branch links the circuitry connected to different ports, the port representation
is unaffected by the elements of this branch; indeed, it is the same whether the branch is an open
circuit (Fig. 3.30) or a short circuit (Fig. 3.31) or has passive elements (Fig. 3.32). The terminal
representation, however, definitely indicates the presence of this branch, as can be seen by studying
the three figures.



Figure 3.32 A network considered as (a) a two-port network; (b) a four-terminal network.

3.5 The indefinite-admittance matrix
Consider an n-terminal network and an additional isolated node which we shall use as a reference
node. If, as shown in Fig. 3.33, voltage sources are connected between the reference node and the n
terminals, we may write a series of equations for the network as follows:

In matrix form (1) may be written

The matrix elements yij may be found by applying the testing conditions of (5) of Sec. 3.2 as they
were used for the n-port network or the n-terminal network described in preceding sections. Suppose
that now we set all the voltage sources except the first equal to zero. That is, let Vi = 0



Figure 3.33 The voltage and current variables for the indefinite-admittance matrix for an n-terminal network.

for all i except i = 1. The equations (1) become

If we sum the above equations we see that

This may be written in the form

The left side of this equation represents the summation of the currents flowing out of the reference
node. Kirchhoff's law requires that this be zero. Therefore, the right side of the equation must also be
zero. Since we have specifically chosen V1 as not equal to zero, we conclude that the summation of
the admittances must be zero.1

If the above procedure is followed in the more general case in which we require all the voltage
sources except the ith one (i.e., Vi) to be zero, then summing the resulting equations gives

Since the summation of the Ik, and therefore the left side of (3), is zero without regard for the choice
of i,

We have now established that the summation of the elements in any column of the matrix Y of (2) is
zero.



A similar procedure may be used to establish the fact that the summation of the elements in any row
of the matrix Y of (2) is zero. To see this, remove all the voltage sources except one (the jth one) in
Fig. 3.33, leaving all the terminals except the jth one open-circuited. This will, of course, make all
the currents at these terminals equal to zero. The current at the jth terminal will also be zero (by
Kirchhoff's law). Since no current flows in the circuit, all the voltages are equal to the voltage
impressed at the jth terminal.1 The equations (1) become

These may be written in the form

Since all the Ii are zero, and since Vj is not zero, we conclude that the summation of the elements in
any row of the Y matrix of (2) is equal to zero, i.e., that

The Y matrix of (2) is called the indefinite-admittance matrix.2 Obviously, it may be used to
characterize a network from the standpoint of its external behavior, just as the “port” designation and
the “terminal” designation that have been treated previously. The indefinite matrix, however, has
certain properties which make its use advantageous in many situations. For example, suppose that the
indefinite-admittance matrix of a given network is known. In addition, suppose that it is decided to
ground the jth terminal of this network, i.e., to connect the jth terminal directly to the reference node.
There are two effects: (1) Vj becomes identically zero; therefore, the elements in the jth column of the
matrix are each multiplied by zero, and thus these elements and Vj may be excluded from the
equations; (2) Ij is now simply the negative of the summation of all the other currents. As such, it need
no longer be retained as a variable, since it is clearly not independent of the other current variables.
Thus, we may delete the jth row of the matrix (and thus the variable Ij) from our matrix equation. In
summary, if the jth terminal of an n-terminal network is grounded, the resulting network description is
that of an (n − 1)-terminal network, and it is found by deleting the jth row and column from the
indefinite-admittance matrix which describes the network.

The above property also allows us to find easily the indefinite-admittance matrix for a given
network. We need merely ground any arbitrary terminal, find the appropriate admittance matrix for the
network on a terminal basis, and then add a row and a column to the matrix such that the summation of
elements in the rows and the columns is zero. The process may be illustrated by the following
example:

Consider the simple resistive network shown in Fig. 3.34. The values of the elements are given in
mhos. In terms of the voltage and current variables defined in the figure, we may write the admittance
matrix for the network, considering it as a three-terminal network, as follows:



The indefinite-admittance matrix may now be formed by adding a third row and column to the
admittance matrix. Thus, we obtain

The network and the definition of the voltage and current variables are shown in Fig. 3.35. Note that
this is just Fig. 3.34 with terminal 3 “ungrounded,” i.e., separated from the reference or ground
terminal. If terminal 2 of the network is now grounded, as shown in Fig. 3.36, it is easily seen that the
admittance matrix for the three-terminal network is defined by the equation

Note that the admittance matrix is simply the indefinite-admittance matrix of (7) with the second row
and column deleted. Similarly, if terminal 1 of the network is grounded, as shown in Fig. 3.37, the
admittance matrix for the resulting three-terminal network is defined by the equation

Figure 3.34 A simple three-terminal network.

Figure 3.35 The voltage and current variables for the indefinite-admittance matrix.



Figure 3.36 The voltage and current variables with terminal 2 grounded.

Figure 3.37 The voltage and current variables with terminal 1 grounded.

A second example of the flexibility of the indefinite-admittance matrix may be seen by considering
the effects of shorting together two terminals of a network. In Fig. 3.38, an n-terminal network is
shown with terminals 1 and 2 shorted together, but with the voltages and currents as originally
defined in Fig. 3.33. We now have the additional constraint that V1 = V2. The network equations given
in (1) may now be rewritten by letting Va = V1 = V2. Thus, we obtain the following set of equations:

If the first two equations of (10) are added, and if we let Ia = I1 + I2, then we obtain the following:



Thus, we have developed an indefinite-admittance matrix for an (n − 1)-terminal network, formed by
shorting terminals 1 and 2 of the original network, simply by adding the related rows and columns
(the first and second) of the original indefinite-admittance matrix. The variables and the (n − 1)-
terminal network are shown in Fig. 3.39. It is easy to see that, by the same proof, connecting any
terminals together in a given network will yield a new network whose indefinite-admittance matrix
may be formed by adding the appropriate rows and columns of the indefinite-admittance matrix of the
original network.

Figure 3.38 An n-terminal network with terminals 1 and 2 shorted together.

Figure 3.39 The modified voltage and current variables for the indefinite-admittance matrix of an (n − 1)-terminal network.

Another property of the indefinite-admittance matrix is the following: When networks are
connected in parallel, the indefinite-admittance matrix of the resulting network is formed by adding
the indefinite-admittance matrices of the original networks. For example, in Fig. 3.40, consider the n-
terminal network A and the m-terminal network B, where n > m. The reference terminals a and b may



be connected together without altering conditions in the two networks. The network equations on an
indefinite basis are

and

If we add the m equations of network B to the n equations of network A, preserving the numbering
among the first m of these equations and setting

Figure 3.40 The voltage and current variables for the indefinite-admittance matrices of an n-terminal network and an m-
terminal network.

This represents the interconnection of the networks as shown in Fig. 3.41, which may be described as
the parallel connection of the two networks. It also represents the addition of the two indefinite-
admittance matrices, assuming that we add appropriate zeros to the smaller matrix so that the
conditions for matrix addition are satisfied.



One other useful property of the indefinite-admittance matrix is the ease with which a given
terminal may be “suppressed.” In Fig. 3.33 an n-terminal network is shown. Suppose that it is desired
to “suppress” the nth terminal. This means that we would like to eliminate the variables of voltage
and current connected with this terminal from our indefinite-admittance matrix. In effect, we desire to
leave this terminal open-circuited and eliminate it from consideration. Thus, In, the current associated
with this terminal, will always be zero. Note that this is a dual situation to the case in which the nth
terminal was grounded, since in that case the voltage was always zero. When the nth terminal is
suppressed, (1) becomes

Figure 3.41 An interconnection of two networks such that their indefinite-admittance matrices add.

The last equation of (11) may be solved for Vn, where

Substituting this relation into (11) eliminates the variable Vn from the equations. The final result for
the indefinite-admittance matrix for n − 1 current variables and n − 1 voltage variables is most easily
expressed in matrix form:

The matrix within the braces above defines the new indefinite-admittance matrix. The format of (12)
may be emphasized if we define Y(n) as the original indefinite-admittance matrix for the n-terminal



network. Y(n) may also be defined in terms of the submatrices Yij formed by the partitioning indicated
in the following equation:

If we define Y(n−1) as the indefinite-admittance matrix for the (n − 1)-terminal network formed by
suppressing the nth terminal, it may be specified in terms of the above submatrices as

The reader should compare this with (12). Actually, the formulation of (13) may be considered as a
general expression for the suppression of any number of terminals with the appropriate redefinitions
of the submatrices. The proof is left to the reader as an exercise.

As a final property of the indefinite-admittance matrix we present the following: The effect of
connecting an admittance Y between any two terminals of a network is to add or subtract Y to the
elements at the intersections of the corresponding rows and columns of the indefinite-admittance
matrix. It is added to the elements on the main diagonal and subtracted from the other elements. The
proof is left to the reader as an exercise.

In the next section some examples of the application of the indefinite-admittance matrix to network
problems are presented. The reader who is interested in an additional “indefinite” formulation is
referred to Appendix A, where the properties of the indefinite-transmission matrix are discussed.
This latter does not have as wide application as the indefinite-admittance matrix, although it does
provide a means whereby the parameters of multiterminal networks connected in cascade may be
found.

3.6 Some applications of the indefinite-admittance matrix
In this section we shall present two examples of the application of the indefinite-admittance matrix to
network situations. These examples will illustrate some of the properties discussed in the last section.

As a first example, consider the small-signal model for a transistor shown in Fig. 3.42. If we
consider this as a three-terminal network, we may write its admittance matrix on a terminal basis as

The indefinite-admittance matrix may now be formed by adding a third row and column to the
admittance matrix of (1). Thus, we obtain



The circuit and the definitions of the voltage and current variables are shown in Fig. 3.43. Note that
this is just Fig. 3.42 with the emitter terminal “ungrounded,” i.e., separated from the reference or
ground terminal. Since the terminals correspond with the terminals of the transistor, as indicated in
the figures, we may also consider the original circuit as the small-signal equivalent circuit for the
transistor in a grounded-emitter configuration, as shown in Fig. 3.42. At this point, the versatility of
the indefinite-admittance matrix is readily evident. Suppose that it is desired to find the admittance
matrix for a transistor in a grounded-collector configuration. We need only delete the row and column
of the matrix in (2) associated with the collector terminal. These are clearly the second row and
column. The resulting model for the grounded-collector transistor considered as a three-terminal
network is shown in Fig. 3.44. The equations for the network are

Figure 3.42 A small-signal equivalent circuit for a transistor.

Figure 3.43 The voltage and current variables for the indefinite-admittance matrix of the small-signal equivalent circuit for a
transistor.

Similarly, we may develop the admittance matrix for a grounded-base transistor by deleting the first
row and column of the indefinite-admittance matrix of (2). The circuit is shown in Fig. 3.45. The



equations for the network are

Figure 3.44 An equivalent circuit for a grounded-collector transistor.

Figure 3.45 An equivalent circuit for a grounded-base transistor.

Figure 3.46 A connection of two pentodes and a simple equivalent circuit.

The reader should develop the relations given in (3) and (4) directly from the circuits shown in Figs.
3.44 and 3.45, respectively, to compare the ease with which the indefinite-admittance-matrix method
produces these relationships.

As another example of the application of the indefinite-admittance matrix, let us investigate a
situation in which it is desired to suppress a terminal of a given network. Consider a network formed



by connecting the cathodes of two pentodes.1 The network and a simple small-signal equivalent
circuit are shown in Fig. 3.46. The indefinite-admittance matrix may be found by first considering the
admittance parameters for the four-terminal network formed by grounding terminal 5. For this
network, the admittance matrix is

The indefinite-admittance matrix for the network is easily seen to be

To suppress terminal 5, we proceed as in (13) of Sec. 3.5. Thus, for our new indefinite-admittance
matrix, we have

After manipulation, the indefinite-admittance matrix for the four-terminal network is

where

We shall make further use of this circuit and its indefinite-admittance matrix (with the suppressed
terminal) in Sec. 4.7.

3.7 The scattering matrix
In the network descriptions presented in the previous sections of this chapter, various matrix
representations have been discussed. We have seen that, in addition to the possibilities of choosing
all the port currents or all the port voltages as the independent variables of the network equations,
thus leading to immittance representations, it is possible to choose the voltage variables from some
ports and the current variables from others, thus leading to hybrid representations for the network.
There is one other choice of variables which is quite different in concept from the preceding ones.
This is the choice of a linear combination of the voltages and the currents as a variable. Thus, at each



port we might define one variable which is proportional to the sum of the voltage and the current at
that port. As a second variable we might define one which is proportional to the difference between
the voltage and current variables. In addition, we shall see that it is convenient to provide a
normalization constant so that the actual impedances may be compared to some reference impedance.
The representation that results from such a choice of variables is called the scattering matrix. The
elements of the matrix are called the scattering parameters. The variables are called the scattering
variables. In this section we shall briefly discuss this type of representation.

Let us begin by considering a one-port network with the variables V and I, both of which are
functions of the complex frequency variable. These are shown together with their reference directions
in Fig. 3.47. The impedance of the network is z. We shall now introduce a normalization constant ro

and use it to define new voltage and current variables V (n) and I (n). These latter will be referred to
as the normalized voltage and current variables. The defining relations between the original
variables and the normalized variables are

We may also define a normalized impedance z(n), where

It is easy to see that

Figure 3.47 The voltage and current variables for a one-port network.

Figure 3.48 The normalized voltage and current variables for a one-port network.

Actually, the normalized variables may be thought of as the variables that result if an ideal
transformer of turns ratio 1: ro

½ is connected to the one-port network as shown in Fig. 3.48. It is
easily seen that the relations (1) and (2) are satisfied in this case.

We may now define the variables that we shall use with our scattering parameters as Vi and Vr (i is
not used as a summation index here), where



Thus we see that Vi is a variable which is proportional to the sum of the normalized voltage and
current associated with the one-port network. Similarly, Vr is a variable which is proportional to the
difference between the normalized variables. We shall refer to Vi and Vr as the scattering variables. It
is easily shown that the normalized voltage and current variables can be expressed in terms of the
scattering variables as

The variables Vi and Vr are sometimes referred to as the incident and reflected components of the
voltage. This terminology stems from their original association with the voltages on a distributed-
parameter transmission line. A development parallel to the above could be made using incident and
reflected components of the current as the scattering variables. Similar results are obtained.

We may now define a scattering parameter s11 (there will be only one parameter since this is a one-
port network) as

Note that s11 is a function of the complex frequency variable. From (5) we may express the
normalized impedance z(n) in terms of s11 as

If we let the normalization constant ro equal unity (this is sometimes referred to as choosing a 1-ohm
reference impedance), then the normalized impedance z(n) will be equal to the actual impedance z.
For this value of ro, some simple examples of one-port scattering parameters are

A similar procedure may be followed to define the scattering parameters for an n-port network. If
we consider the network shown in Fig. 3.49, with variables Vj and Ij (j = 1, 2, . . ., n) as indicated,
we may define a normalized set of variables Vj

(n) and Ij
(n) which are related to the original variables

by the constants roj
½. The normalization relations are

If we define a diagonal matrix Ro whose elements are roj
½, then



where V(n) is the column matrix whose elements are the voltages Vj
(n), etc. This normalization is

equivalent to connecting an ideal transformer to each of the ports of the network as shown in Fig.
3.50. The voltage and current variables are related by the z-parameter matrix Z as follows:

We may also define a matrix Z(n) by the relation

It is easily seen that

The column matrices Vi and Vr whose elements are the scattering variables Vij and Vrj (j = 1, 2, . . .,
n) for the various ports may be defined in terms of the normalized voltage and current variables as

Figure 3.49 The voltage and current variables for an n-port network.

Figure 3.50 The normalized voltage and current variables for an n-port network.



Figure 3.51 The normalized variables for a driving source and a one-port network.

We may now define the scattering matrix S by the relation

From the above equations we see that

As an example of the significance and usefulness of the scattering parameters, let us again consider
the one-port case. We will assume that a network with normalized variables V (n) and I (n) is driven
by a source with normalized internal voltage Vg

(n) and normalized internal impedance rg
(n) as shown

in Fig. 3.51. From (3), we may solve for Vi by the relation

If we set ro equal to the source impedance rg, then rg
(n) equals unity, and the above expression

reduces to

Now let us consider these voltages and currents in the time domain under conditions of sinusoidal
excitation. Specifically, let the normalized excitation to our network be vg

(n)(t), which may be defined
as1

where a is a complex constant. With this excitation, the normalized voltage and current at the
terminals of the network will be of the form

where b and c are complex constants. The power delivered by the source to the network may be
expressed in terms of the actual voltage and current or the normalized voltage and current. Thus,



where Re means “the real part of.” We may define scattering variables in the time domain as well as
in the frequency domain; thus, (4) becomes

The power may now be expressed in terms of the scattering variables as

For the assumed exponential form of the voltage and current variables we may write (5) as

Thus, (17) may be written

Thus, we see that the maximum power that may be delivered by the source is

From the above two equations, we see that

We see from this last equation that, for a passive network under conditions of sinusoidal excitation, it
is not possible for the magnitude of the scattering parameter to be greater than unity, since it is not
possible for a source to transfer negative power, i.e., to receive power, from the passive network.
Thus we may visualize the scattering parameter as giving an indication of the existing deviation from
maximum power-transfer conditions. For example, a normalized load impedance of unity, and thus a
scattering parameter of zero, indicates maximum power transfer.

It is interesting to note that the scattering parameters will exist even when the z or y parameters for
a given network do not exist. Thus, the scattering parameters are useful for describing networks such
as multiport-transformer networks. Their application is well covered in the literature, to which the
interested reader is referred.1

3.8 Network descriptions
The preceding sections of this chapter have described means by which a network may be
characterized. The characterization has been in terms of the properties of the network as viewed from
its external terminals. These descriptions leave considerable freedom in the choice of elements as
well as in the configuration of these elements inside the network. For example, from external circuit
measurements, a 1-ohm resistor appears the same as the parallel connection of two 2-ohm resistors.
The internal circuits, however, are certainly different. Our final goal in this chapter is the application
of matrix methods to the description of networks in terms of their internal configurations. In effect, we
wish to penetrate inside the “black box” and view its secrets.



The basic principles of circuit analysis, together with topological considerations, may always be
applied to a given network to produce a set of independent loop currents, which may then be used as
the basis for writing a set of loop equations for the network.2 Each of these loops may be divided into
sections chosen such that each section contains the same loop currents. In other words, as we follow
along a certain loop, we start a new section whenever some other loop current joins or leaves the
loop we are following. In the most general case each of these sections may have resistance,
inductance, elastance (reciprocal capacitance), and voltage sources associated with it.

As an example, consider the ladder network shown in Fig. 3.52. If we define



Figure 3.52 A three-loop network and its loop currents.

where p is the complex frequency variable, then we may write the loop equations as

Now let us define V1,V2, and V3 as the totals of the voltages appearing in the first, second, and third
loops, respectively. The definition may be made by the following matrix equation:

We may now write the equations (2) in matrix form as follows:



At this point let us make and emphasize some observations about the elements of (4). The terms Vi
(i = 1, 2, 3) as defined by the matrix equation (3) represent the totality of voltage sources in the ith
loop. The terms zij as defined by (1) may be separated into two categories. Where i = j, these
elements give the total impedance in the ith loop. Where i ≠ j, these elements give the impedance
which is mutual to the ith and the jth loops, with negative or positive sign depending on whether the
currents aid or oppose. Finally, the terms Ii represent the loop currents. All these elements and terms
are functions of the complex frequency variable. The terms from the transformation which represent
initial conditions have been ignored, since these may be represented by independent sources, which
will be discussed later.

The above example was for a three-loop ladder network. It is easy to extend this method of
development to a more general network. First, we may define

The matrix equation for the more general network is

We may, of course, write this equation in matrix notation as V = ZI. The elements Vi, zij, and Ii of (6)
have exactly the same significance as they did in the simpler case of the ladder network. The matrix
used in (3) to define the Vi will, of course, be different for different networks.

The elements of the matrix Z above may be replaced by their defining relations as given in (5).
Thus, we may write

where r11 is the total amount of resistance in the first loop, etc. The first matrix in (7) is appropriately
referred to as the Z matrix or the impedance matrix, the second as the R matrix or the resistance
matrix, the third as the L matrix or the inductance matrix, and the fourth as the S matrix or the
elastance matrix. We may now write a general matrix equation to represent the interior configuration
on a mesh basis of a general network. The equation is

The above equation is valid for networks containing passive elements and independent voltage
sources. Other cases are easily treated. For example, if independent current sources are present, it is



possible, by means of wye-delta transformations of some of the passive elements and the use of
Thevenin equivalent circuits, to convert these to voltage generators in series with passive elements,
thus producing sections of loops which are amenable to the above treatment. Other techniques, such
as letting the current generator determine a specific loop current, are familiar artifices of network
analysis, and the reader is referred to any of the many excellent texts on this subject.1 If the network
contains dependent current-controlled sources, they may easily be absorbed into the general matrix
equation. For example, in Fig. 3.52 we might have Vb = kI3. The first and second equations of (2)
would then appear as

The general matrix equation for the network then becomes

where, in this case,

and the Vi elements forming the V matrix of (10) are redefined to include only the independent voltage
sources. If the network contains voltage-controlled dependent voltage sources, the controlling
voltage may usually be specified in terms of one or more of the current variables and the appropriate
entries made in the D (we may consider “D” as standing for dependent source) matrix. In this case, of
course, we may have functions of p appearing as elements of the D matrix. Dependent current
sources, whether voltage or current controlled, may be treated by a combination of the techniques for
independent current sources and dependent voltage sources. There are several variations, and these
are left for the reader to explore.

The above procedure treats a general network defined on the basis of its loop equations. A similar
procedure may be followed if we choose to describe a network on a node basis rather than on a loop
basis. In this case, we shall be dealing with a Y matrix whose elements are defined as

The gij terms are conductances, the cij are capacitances, and the γij are values of reciprocal
inductance. It is easy to see that yij for i = j represents the total admittance of all elements connected
to the ith node, while yij for i ≠ j represents the total admittance of all the elements connected between
the ith and the jth nodes with appropriate plus or minus signs. If we have independent current sources
Ii (i = a, b, …) connected to the various nodes, we may define variables Ii (i = 1, 2, …) as being the
total currents entering the ith node. Similarly, we may treat dependent voltage-controlled or current-
controlled current sources readily by techniques dual to the above. The over-all result of our efforts
will be to produce a general matrix equation which will suffice to describe the internal configurations
of an arbitrary linear network when its describing equations are written on a nodal basis. This will be
of the form



where the Y matrix has been resolved into separate G (conductance), C (capacitance), and Γ
(reciprocal inductance) matrices, and the matrix D has been added to include the effect of dependent
sources.

It is, of course, possible to write a set of independent equations for a given network by choosing
both loop currents and nodal voltages as the independent variables. An example of this will be given
in Chap. 6. However, the matrix formulation of such a case is of only limited interest and will not be
discussed at this point.

PROBLEMS
3.1 Find all possible sets of network parameters for the networks shown in Fig. P3.1.

Figure P3.1



 

3.2 Divide each of the networks shown in Fig. P3.2 into subnetworks in such a manner that the
parameters of the original network may be found by combining the parameters of the subnetworks.

Figure P3.2



 

3.3 Find the z and y parameters (where possible) of the three-port networks shown in Fig. P3.3.

Figure P3.3

3.4 Find a set of network parameters which will describe the network shown in Fig. P3.4.

Figure P3.4

3.5 How many of the 20 possible sets of three-port parameters may be used to describe each of the
networks shown in Fig. P3.3?
3.6 Show an interconnection of two n-port networks such that their z parameters will add to produce
the z parameters of the resulting network.
3.7 Show an interconnection of two n-port networks such that their y parameters will add to produce
the y parameters of the resulting network.
3.8 If a matrix Y represents the short-circuit admittance parameters (on a port basis) for an n-port
network, find an expression for the matrix Y' which will represent the same network with impedances



Zi (i = 1, 2, …, n) connected in series with the individual ports.
3.9 A matrix Y with elements yij represents the short-circuit admittance parameters for an n-port
network. Find an expression for the input admittance at the ith port if all other ports are open-
circuited.
3.10 If a matrix Y represents the short-circuit admittance parameters for an n-port network, find the
input admittance at port 1 if all other ports are terminated in admittances Yi (i = 1, 2, …, n).
3.11 Let Y' be the short-circuit admittance matrix of an (n + r)-port network. Let Y be the short-
circuit admittance matrix for a network comprised of the first n of these ports. The elements of both
matrices are rational functions. If the last r ports of the network are terminated in 1-ohm resistors,
show that

where P is a diagonal matrix whose even and odd parts are Pe and Po, respectively, and N is an n × r
matrix.
3.12 Verify the z-parameter matrix (12) of Sec. 3.2 for the network shown in Fig. 3.14.
3.13 Verify the z-parameter matrix (14) of Sec. 3.2 for the network shown in Fig. 3.15.
3.14 Find the z-parameter matrix for the network shown in Fig. P3.14.

Figure P3.14

3.15 Find the z-parameter matrix for the network shown in Fig. P3.15.

Figure P3.15

3.16 For the two-port network shown in Fig. 3.15, write separate matrix equations for the voltage and



current variables such that they include: (a) a y-parameter matrix; (b) a g-parameter matrix; (c) an h-
parameter matrix; (d) an ABCD-parameter matrix; (e) an -parameter matrix.
3.17 For the three-port network shown in Fig. P3.14, assume that the voltage generator is independent
of I1 and, instead, has an output Vo sin 2t. Write the matrix equation for the network in such a manner
that it includes a z-parameter matrix.
3.18 Prove the theorem in Sec. 3.2. (HINT: Rearrange the variables so that Ai and Bj are at the bottom
of their respective column matrices.)
3.19 Determine the appropriate interconnections for a set of n two-port networks such that their g
parameters add. What precautions must be observed when the interconnections are made?
3.20 Determine the appropriate interconnections for a set of n two-port networks such that their h
parameters add. What precautions must be observed when the interconnections are made?
3.21 Find an example which illustrates how the g and h parameters of two-port networks can be
added to produce the g and h parameters of an over-all network.
3.22 Find an expression for the open-circuit (i.e., with I2 = 0) voltage gain V2/V1 of a two-port
network in terms of (a) its y parameters; (b) its z parameters.
3.23 Find an expression for the short-circuit (i.e., with V2 = 0) current gain I2/I1 of a two-port
network in terms of (a) its y parameters; (b) its z parameters.
3.24 Find a set of testing conditions which may be applied to any two-port networks which are to be
connected in parallel to determine whether (9) of Sec. 3.3 will apply to them.
3.25 Find a set of parameters for the over-all network shown in Fig. P3.25a such that it may be
expressed as the sum of the parameters of the two networks shown in Fig. P3.25b and c. Is an
isolating transformer necessary in this case? Why or why not?

Figure P3.25

3.26 Determine whether or not the g-parameter matrices of the networks shown in Fig. P3.26a and b
may be added to produce the g-parameter matrix of a resulting network. Assume that the networks are
interconnected in such a manner that the matrices should add. If the port conditions are violated, add
an isolating transformer to the circuit in such a manner that the parameter matrices will add.



Figure P3.26

3.27 In Sec. 3.2 it is noted that the z-parameter matrix and the y-parameter matrix for a reciprocal
network will be symmetric. Use this fact to find the relation that exists among the ABCD parameters
for a reciprocal two-port network.
3.28 Find the open-circuit input impedance of the network shown in Fig. P3.28 by finding the
transmission parameters of one section and then of the cascade of sections and converting to z
parameters.

Figure P3.28

3.29 Find the properties of the hybrid parameters that exist for reciprocal two-port networks.
3.30 What relation must be satisfied by the inverse transmission parameters of a reciprocal two-port
network?
3.31 If two-port networks are interconnected so that their transmission parameters multiply, is it ever
necessary to use isolating transformers as must sometimes be done when networks are interconnected
so that their z, y, g, or h parameters add? Explain.
3.32 If, for a two-port network, y12 or y21 is zero, show that y11 = 1/z11.
3.33 The network shown in Fig. P3.1j is to be considered as a four-terminal network. If the lower
left-hand terminal is taken as a reference, find the z and y parameters for the network.
3.34 Find the y parameters on a terminal basis of the networks shown in Figs. P3.3d and e.
3.35 Find the indefinite-admittance matrices for the networks shown in Fig. P3.1.
3.36 Find the indefinite-admittance matrix for the network shown in Fig. P3.3e.
3.37 Prove that by appropriate respecification of the partitioning of the submatrices, the expression
(13) of Sec. 3.5 can be applied to the case in which more than one node of the network is suppressed.
3.38 Show that the suppression of terminal 4 of the network shown in Fig. P3.38a in the indefinite-
admittance matrix for that network leads to the indefinite-admittance matrix for the network shown in
Fig. P3.38b.



Figure P3.38

3.39 Show that the effect of connecting an admittance Y between any two terminals of a network is to
add or subtract Y to the corresponding elements at the intersections of the rows and columns in the
indefinite-admittance matrix. Specifically, Y is added to the diagonal elements and subtracted from the
off-diagonal elements.
3.40 Find the indefinite-admittance matrix of the network shown in Fig. P3.40b by proceeding as
follows: (1) Find the indefinite-admittance matrix of the network shown in Fig. P3.40a; (2) add an
admittance Y3 between terminals 2 and 4 by the method of Prob. 3.39; and (3) suppress terminal 3.

Figure P3.40

3.41 Formulate an indefinite-impedance matrix by following the general form of the development of
the indefinite-admittance matrix.
3.42 Show how the indefinite-admittance matrix for a given network may be modified to take into
account the grounding of one terminal of the network through an impedance Z.
3.43 Find an expression for the short-circuit current gain between any two terminals of a network in
terms of the elements of the indefinite-admittance matrix for that network. The output terminal should



be considered as short-circuited, i.e., grounded.
3.44 The following open-circuit parameters were measured as the small-signal parameters for a
transistor in a grounded-base configuration:

(a) Find the indefinite-admittance matrix; (b) which terminal of the transistor should be grounded to
produce the highest input impedance when the output is grounded?
3.45 Find the scattering parameters for the networks shown in Fig. P3.1.
3.46 Show that the scattering matrix may be expressed as S = 1 − 2Ya, where Ya is an augmented
admittance matrix formed by adding 1-ohm resistors in series with each of the ports of an n-port
network.
3.47 Derive equation (13) of Sec. 3.7.
3.48 Define appropriate current variables and find the R, L, and S matrices defined in Sec. 3.8 for the
networks shown in Fig. P3.48. Define appropriate voltage variables and find the G, Γ, and C matrices
for these networks.

Figure P3.48

3.49 Write the matrix equation on a nodal basis for the network shown in Fig. P3.49. The various



matrices should be grouped separately as shown in (12) of Sec. 3.8.

Figure P3.49

1 The parameter zij is sometimes referred to as the voltage that will result at the ith port if a current Ij = 1 is applied at the jth port.
Thus, in (3), if Ij = 1, zij = Vi. Since Vi and Ij are transformed variables, this process represents the application of an impulse of current
to the network.

1 L. P. Huelsman, Transmission and Hybrid Parameters for n-Port Networks, Proc. Natl. Electronics Conf., vol. 15, pp. 920–927,
1959.

1 Actually, there may still be independent sources present in the network even if the open-circuit port voltages are zero. Such sources,
however, will not affect the relations among the voltage and current variables at the ports.

1 Actually, we may also consider new variables formed by combinations of the voltage and current variables. An example of this is the
scattering parameters discussed in Sec. 3.7.

2 The term four-pole is also occasionally used in the literature to refer to a two-port network.
1 An even more extensive tabulation is given in E. F. Bolinder, Note on the Matrix Representation of Linear Two-port Networks, IRE

Trans. on Circuit Theory, vol. CT-4, pp. 337–339, December, 1957.
1 The variables at port 1 will frequently be referred to as the “input” variables; similarly, those at port 2 will be called the “output”

variables.
1 The ideal transformer will be discussed in Sec. 4.2.
1 It is assumed that none of the other terminals is common to terminal 1.
1 It is assumed that none of the terminals is completely isolated from the jth terminal.
2 Many of the properties of the indefinite-admittance matrix presented in this section can be found in J. Shekel, Matrix Analysis of

Multi-terminal Transducers, Proc. IRE, vol. 42, no. 5, pp. 840–847, May, 1954. Another excellent reference is L. A. Zadeh, Multi-pole
Analysis of Active Networks, IRE Trans. on Circuit Theory, vol. CT-4, no. 3, pp. 97– 105, September, 1957.

1 G. E. Sharpe, The Pentode Gyrator, IRE Trans. on Circuit Theory, vol. CT-4, no. 4, pp. 322–323, December, 1957.
1 It is, of course, not possible for a physical voltage to be complex; however, this representation is a useful form that includes sinusoids

of all phases and simplifies the transition between the time domain and the frequency domain.
1 See H. J. Carlin, The Scattering Matrix in Network Theory, IRE Trans. on Circuit Theory, vol. CT-3, no. 2, pp. 88–97, June, 1956.

This issue of the transactions has several other articles on the scattering matrix and its application.
2 See E. A. Guillemin, “Introductory Circuit Theory,” John Wiley & Sons, Inc., New York, 1953.
1 See, for example, M. E. Van Valkenburg, “Network Analysis,” Prentice-Hall, Inc., Englewood Cliffs, N.J., 1955.



Chapter 4 Two-port devices

4.1 Introduction
Suppose we had no knowledge of the devices that we might expect to find in electrical networks, but
only a knowledge of basic mathematics and the electrical quantities of voltage and current. The
knowledge of the latter might have been developed from basic concepts of charge as known from the
principles of physics. We might expect that devices would exist whose characteristics would be
specified by relations between voltage and current. If we restricted ourselves to linear algebraic
relationships, we could investigate the equations

The use of the lowercase letter for the quantities v and i indicates that these are functions of time. The
positive constants ki are assumed to be real and time-invariant. Other basic relationships that we
might explore would be those involving first-order derivatives with respect to time. Four possible
combinations are

The constants ki in (1) are considered as positive, real, and time-invariant. The above relationships,
of course, actually define the familiar concepts of positive-valued resistance (k1), inductance (k3),
and capacitance (k5), and the not-so-familiar concepts of negative-valued resistance (− k2),
inductance (− k4), and capacitance (− k6).

The positive-valued quantities define the commonly accepted passive network elements. We know,
of course, that elements defined by these

Figure 4.1 A two-port network with its voltage and current variables.

relationships are considered ideal; that is, they serve as models for actual physical devices which,
over certain ranges of voltages, currents, and frequencies, and under certain other operating
conditions, more or less closely approach the characteristics predicated by the model. The negative-
valued quantities define network elements which might be considered as active in that they, in
general, require power sources for their operation. How this type of element is produced and used



will be the subject of much of the material which follows.
If we were satisfied that the above exploration had exhausted the possibilities for two-terminal

(i.e., one-port) network elements, we might next turn our attention to two-port devices. We may define
two voltage variables v1(t) and v2(t) and two current variables i1(t) and i2(t). These have the Laplace
transforms V1, V2, I1, and I2, as shown in Fig. 4.1. The reference directions are, of course, arbitrary
and are chosen to agree with the usual conventions. There are many possibilities of interrelations
between these variables. Let us explore only the relations that are (1) linear, (2) algebraic, and (3)
expressible by a set of two equations in which each equation contains only one variable from each of
the ports. Two basic types of relationships are permitted under the above restrictions. These are:

and

If we consider the constants a and b as positive, then we may treat four different possibilities for each
of the above sets of equations. For (2) we have

Similarly, for (3), we have

Actually, all the above equations may be expressed in terms of the transmission-parameter matrix
which was defined for the two-port case in Sec. 3.3. In this form, the equations (4) become

Similarly, for (5),



The matrix notation of the above equations emphasizes the similarities and differences between the
various combinations. The rest of this chapter will be devoted to studying these various sets of
transmission parameters. We shall see how they lead to the definitions of such basic two-port network
devices as ideal transformers, gyrators, and negative-immittance converters.

Each of the eight sets of transmission parameters given in (6) and (7) defines a specific two-port
network in terms of its behavior as a “black box.” The internal workings of the network, however, as
is always the case in “port” descriptions, are not unique. As an example of this non-uniqueness, any
of these networks may be realized through the use of controlled sources, i.e., voltage and current
generators whose outputs are proportional to some other voltages or currents. To illustrate this,
consider the general equations for a two-port network as specified by the transmission parameters.
These are

The second equation may also be written

Figure 4.2 A controlled-source representation of the transmission parameters for a two-port network.

The controlled-source representation of these equations is shown in Fig. 4.2. Any of the eight
equations specified in (6) or (7) may be represented in this fashion. For example, (6a) is shown in
Fig. 4.3. The unfortunate part of this representation may be seen from the fact that the transmission
parameters of (6a), when a = b = 1, also specify a simple pair of wires as shown in Fig. 4.4. In other
words, the two representations shown in Figs. 4.3 and 4.4 have exactly the same transmission
parameters when a = b = 1. The amount of introspection necessary to deduce this conclusion from
Fig. 4.3 is considerable. For example, try to explain the effect of a voltage applied at port 1 in
producing a voltage at port 2, or try explaining the effect of a current applied at port 2 in producing a



current through an arbitrary impedance connected to port 1.
In general, the controlled-source representation will not be used for the two-port devices to be

discussed in this section. When we discuss the actual implementation of some of these devices,
however, we will use models of active devices such as vacuum tubes or transistors, and these models
will in general have controlled sources in them.

Figure 4.3 A controlled-source representation for the transmission parameters of (6a) of Sec. 4.1.

Figure 4.4 A realization for the transmission parameters of (6a) of Sec. 4.1 when a = b = 1.

4.2 The ideal transformer
The transmission-parameter matrix

was shown in the last section to represent a direct connection of the two ports when a = b = 1. It may
also be considered as representing an ideal transformer of unity turns ratio as defined by the relations
V1 = V2 and I1 = − I2. In defining the ideal transformer, if the turns ratio is not unity, we have the usual
relations V1 = nV2 and I1 = − (1/n)I2. Thus, we need only make the restriction that b = 1/a = 1/n in (1)
to specify an ideal transformer of turns ratio n:1. The symbol for this transformer with its identifying
polarity dots is shown in Fig. 4.5. The quantity n is assumed real and positive. Note that the
transmission matrix requires the transmission of d-c signals as well as a-c signals. The circuit symbol
of Fig. 4.5, however, indicates that the circuits connected to port 1 are isolated from those connected
to port 2. This is entirely consistent with the conclusions of Sec. 3.3, regarding the use of ideal
transformers for isolation, and the remarks of Sec. 3.4, where it was emphasized that the port notation
does not recognize differences of potential between circuits which are connected together. Thus, any
d-c potential difference which is established between the two terminals of port 1 will appear (after



having been multiplied by the pertinent turns ratio) at port 2. On the other hand, any raising or
lowering of the potential at both terminals of port 1 will not affect the voltages at port 2. In view of
the remarks in Sec. 3.3 and Figs. 3.30 through 3.32, it should be clear that a representation for an
ideal transformer is not possible on a terminal basis.

The transmission matrix of (6b) of Sec. 4.1 may be written in equation form as V1 = −aV2 and I1 =
bI2. If we set a = 1/b = n, then V1 = − nV2 and Ii = (1/n) I2, the equations for an ideal transformer with
one of its windings reversed. This is indicated by the polarity dots being

Figure 4.5 An ideal transformer and its transmission-parameter matrix.

Figure 4.6 An ideal transformer with a reversed winding and its transmission-parameter matrix.

Figure 4.7 A simple two-port network and its transmission-parameter matrix.



placed at opposite ends of the respective windings, as shown in Fig. 4.6. For the case in which a = b
= 1, i.e., for an ideal transformer of unity turns ratio so connected as to invert the polarity, the two-
port parameters are exactly the same as those of a pair of crossed wires, as shown in Fig. 4.7.
Needless to say, there are many situations in which a pair of crossed wires cannot be used to replace
a unity-turns-ratio ideal transformer; however, on a port basis, it should be recognized that the
networks of Figs. 4.6 and 4.7 have the same network parameters when a = b = 1.

It is interesting to compare the ideal transformer with its physical counterpart. A practical
transformer may be represented in its basic form by a pair of coupled coils whose self-inductances
are L1 and L2 with a mutual inductance of M. This latter quantity may be positive or negative. The
arrangement of the coils and the voltage and current variables is shown in Fig. 4.8. In the time
domain, we may write the following equations:

Figure 4.8 A pair of coupled coils.

For these coils we may define a coefficient of coupling k, where

If k is equal to unity (the coils are then said to be perfectly coupled),

In this case we may write (2) as

Setting the above equations equal, we see that



Now let the values of L1, L2, and M go to infinity while the ratio M/L1 is kept constant. From (4) we
see that, in the limit,

Thus, we see that

If we define L1/M = n, then (5) and (7) are the equations of the ideal transformer in the time domain.
Thus we see that we may define an ideal transformer in terms of a pair of coupled coils with infinite
self and mutual inductance and with unity coefficient of coupling.

We have now covered the two-port devices represented by the first two transmission-parameter
matrices of equations (6) of Sec. 4.1. The properties and representations of these devices are
summarized in Table 4.1 on pages 120 and 121. The reader is referred to this table in following the
progress of this chapter through other fundamental two-port devices.

4.3 The negative-immittance converter
The transmission matrix of (6c) of Sec. 4.1 represents the equations

If we divide corresponding members of these equations, we obtain

The ratio V2/ − I2, however, is just the impedance of a load connected to port 2 as shown in Fig. 4.9.
Thus, if we have a two-port device whose transmission parameters are those of (6c) of Sec. 4.1, the
input impedance to this device at port 1 (i.e., the ratio V1/I1) is − (a/b) Z2, where Z2 is the impedance
connected to port 2. If the ratio a/b is equal to unity, then we may say that the input impedance is the
negative of the impedance connected to the output. Obviously this statement is true on an impedance
or an admittance basis. We see, therefore, that the action of this device is such that it may be
described as a negative-immittance converter. It is interesting to note how this “negative” action
comes about. From (1) we see that the device, in effect, monitors the current flowing out of the upper
terminal of port 2 and requires that the same current (times a constant multiplier) flow out of the
upper terminal of port 1. Normally, we would expect that if a current flowed out of port 2, a current
would have to flow into port 1. Thus the action of the device has been to reverse the normal flow of
current by some means. To emphasize this fact, we shall call this device a current negative-
immittance converter, or an INIC for short.

We shall investigate the properties of the INIC in more detail shortly, but first let us consider the
transmission matrix of (6d) of Sec. 4.1, which represents the equations



Figure 4.9 Producing a negative impedance.

Table 4.1 Two-port devices

If we divide corresponding members of these equations, we obtain

Once more, we have the situation represented in Fig. 4.9, i.e., if a/b = 1, the input immittance to port



1 of our device is the negative of the immittance connected to port 2. If we examine the equations (2),
however, we see that there is an important difference in how the “negative” action has come about as
compared with how it is produced by the INIC described above. In (2) we see that the current
flowing out of the two-port device is matched by current flowing into it. The voltage, however, has
been inverted in polarity and multiplied by a constant. Thus, the action of this type of device depends
on inverting the voltage. It is thus called a voltage negative-immittance converter and it will be
referred to as a VNIC. In general, we shall only be interested in negative-immittance converters in
which a/b = 1. Before we can continue our discussion of the properties of the two types of NICs
(negative-immittance converters), it is necessary to set up some criteria to permit us to determine
when a two-port device is an NIC. In short, we would like to develop a set of necessary and
sufficient conditions which may be applied to an arbitrary two-port network which will guarantee that
it perform in such a manner that the input immittance seen at one set of terminals is exactly the
negative of the immittance connected at the other set of terminals. To establish these conditions,
consider a network described in terms of its g parameters. The equations are

Terminating the two-port network in an impedance Z2 adds the additional relationship V2 = Z2 (− I2)
to the above. We may now solve the equations for the ratio V1/I1, i.e., for the input impedance of the
device. The input impedance is

Thus we see that it is both necessary and sufficient that

for the input immittance to be the negative of the terminating immittance, i.e., for the device to act as
an NIC.1

There are several ways in which the product g12g21 (we assume that these are real constants) may
be set equal to unity as required by (5). The only criteria required of g12 and g21 are (1) that they be
of the same sign and (2) that |g12 | = |1/g21|- For example, if both are positive, then (3) becomes

With the appropriate changes in the variable from I2 to − I2 and the identification of g12 = b and g21 =
1/a, these are the same equations as (1), and we see that requiring g12g21 = 1 is the same as requiring
a/b = 1. We conclude that if both g12 and g21 are positive, the device is an INIC. Similarly, if both g12
and g21 are negative (we may consider the symbols as positive and prefix negative signs), then
equations (3) become



We may make identifications similar to the above and compare these with (2), thus establishing that if
the g12 and g21 parameters are negative, the device is a VNIC. In later sections we shall illustrate
some applications which depend entirely on the choice of either an INIC or a VNIC as the active
element. At this time, however, we will develop more of the properties of the NIC without regard to
its type.

For the first property, consider Fig. 4.10, where a two-port network is terminated in an impedance
Z1 at port 1. This establishes the relationship V1 = Z1 (–I1) between the variables V1 and I1. If we
substitute this relation in (3) and solve for the ratio V2/I2, i.e., the input impedance seen looking into
the terminals of port 2, we obtain

The conditions of (5) therefore also require that the input immittance seen looking into port 2 is the
negative of the immittance connected to port 1. We conclude that the negative-immittance conversion
operation takes place equally well in either direction.

Figure 4.10 A two-port network terminated at port 1.

Figure 4.11 A nonideal NIC with g11 ≠ 0.

For the second property, let us consider the case in which g11 (the open-circuit input admittance at
port 1) is not equal to zero. Specifically, let g11 = Ya. This situation is shown in Fig. 4.11, where an
ideal NIC which satisfies the conditions of (5) has an admittance Ya connected in shunt with port 1.
The resulting g parameters for the nonideal NIC (including Ya) are



The nonidealness of this NIC may easily be compensated for by an external admittance Yb connected
as shown in Fig. 4.12. We may consider this as part of the load impedance Z2 in (4). That equation
becomes

If we make Yb equal to Ya, we see from the above that we again have ideal NIC action. In a similar
manner we may compensate an NIC if it is non-ideal in the sense that g22 ≠ 0. The process is
illustrated in Fig. 4.13. In this figure, Za is g22, i.e., the short-circuit impedance at port 2, of the

Figure 4.12 Compensating the NIC when g11 ≠ 0.

Figure 4.13 Compensating the NIC when g22 ≠ 0.

non-ideal NIC. The Z1 of Fig. 4.10 is now the series sum of the load impedance Z′1 and the
compensating impedance Zb. If we substitute in (8), we obtain

If we make Zb equal to Za, ideal NIC action is once more obtained; i.e., the parameters of the over-all



NIC, including its inherent imperfection of a nonzero g22 and its compensating impedance Zb, again
satisfy the conditions (5). The above development leads to the following conclusion: If an NIC is
nonideal in the sense that either g11 or g22 is not equal to zero, it may be compensated by an external
immittance in such a manner that the resulting device is an ideal NIC. Clearly, this property of an NIC
to be amenable to compensation for its own nonidealness is a most unusual and important property.

A third property of the NIC may be seen if we establish the conditions on a two-port network that
g11 = g22 = 0 and that g12g21 = k2, where k is an arbitrary positive number. Under these conditions the
input impedance of this device when terminated in an impedance Z2 at port 2 may be found from (4)
as

Similarly, the input impedance at port 2 when the device is terminated in Z1 at port 1 may be found
from (8) as

The device defined by the g parameters, as specified above, thus provides a “negative” action in both
directions, as well as a transformation ratio. It represents an ideal transformer of turns ratio 1/k in
cascade with an NIC.

4.4 NIC circuits
In theory, the implementation of NIC action is quite simple. First let us consider some simple circuits,
and later in this section we shall proceed to the analysis of some more complex (and more practical)
circuits. As an example of a simple NIC, consider first the ideal unilateral current amplifier shown in
Fig. 4.14. If this is connected into a circuit as shown in Fig. 4.15, we may easily calculate the g-
parameter matrix of the resulting device as

In order that the product g12g21 be equal to unity, it is only necessary to require that k = − 2. Since the
g11 and g22 parameters already satisfy the conditions (5) of Sec. 4.3, this circuit is an NIC. With the
value of k specified above, both g12 and g21 are positive; therefore, the circuit is an INIC. The
configuration shown in Fig. 4.15 is redrawn in Fig. 4.16 to illustrate the INIC action more clearly.

In a similar fashion, we may use the ideal voltage amplifier shown in



Figure 4.14 An ideal current amplifier.

Figure 4.15 Connecting the ideal current amplifier as an INIC.

Figure 4.16 A simplified representation of the INIC of Fig. 4.15

Figure 4.17 An ideal voltage amplifier.

Fig. 4.17 as the nucleus of the circuit shown in Fig. 4.18a. The g-parameter matrix of this device is



In order that the product g12g21 be equal to unity, it is only necessary that k = 2. Since g12 and g21 are
both negative, we conclude that this device is a VNIC. Its circuit is redrawn in Fig. 4.18b to indicate
the VNIC action more clearly.

Owing to difficulties in grounding, locating the controlling parameter, and other problems, the
circuits indicated above do not provide a practical means of obtaining NIC action. A further
deficiency of these circuits (as if one were needed) is that their operation is very sensitive to changes
in the parameters of the active element, i.e., the ideal voltage or current generator. We shall analyze
two additional circuits which are considerably more practical. One of these is an INIC circuit, the
other a VNIC circuit.

Figure 4.18 The use of an ideal voltage amplifier as a VNIC.

Figure 4.19 A practical INIC circuit.

A practical INIC circuit is shown in Fig. 4.19.1 A simple small-signal equivalent circuit is shown
in Fig. 4.20. In both figures, the biasing networks have been eliminated to emphasize the basic action
of the circuit. For simplicity, we shall assume that the transistors are identical, i.e., αa = αb = α. If we
calculate the g parameters for the circuit of Fig. 4.20, we obtain, after some simplification,

Thus we see that when R1 = R2, the conditions (5) of Sec. 4.3 are satisfied. Since the parameters g12
and g21 are both positive, the device is clearly an INIC. More accurate determinations of the g
parameters can, of course, be obtained by using a more complicated model for the active devices;
however, these would add little to the general theory that we are developing here, and they will be
left as exercises.



Figure 4.20 An equivalent circuit for the INIC of Fig. 4.19.

Figure 4.21 A practical VNIC circuit.

A practical VNIC circuit is shown in Fig. 4.21.1 A simple small-signal equivalent circuit is shown
in Fig. 4.22. The g parameters for the circuit are

As α approaches unity, the g parameters approach the following values:

Again we see that the product g12g21 is unity if the ratio R1/R2 is unity. Since g12 and g21 are negative,
the device is a VNIC. As in the previous



Figure 4.22 The equivalent circuit for the VNIC of Fig. 4.21

example, more detailed expressions for the g parameters may be derived if a more accurate model is
selected for the active device. A practical aspect of the above circuits is the ease with which the
value of the product g12g21 may be adjusted. Changing the value of R1 or R2 in either of the above
circuits changes the value of k in (9) and (10) of Sec. 4.3. This k is sometimes referred to as the
“gain” of the NIC, since it defines the amount of immittance multiplication that takes place in addition
to the negative-conversion process.

4.5 Synthesis of transfer functions with an NIC
One important application of NICs is in synthesizing transfer functions of two-port networks.
Specifically, let us consider the synthesis of voltage transfer functions.1 We shall start with an
arbitrary function defined as the ratio of two polynomials in the complex frequency variable p, and
we shall require that the coefficients be real. We may write

If we specify that the output current of our two-port network is zero, then we may define the voltage
transfer function in terms of the y parameters of the two-port network as

Let us now divide both N(p) and D(p) by a polynomial Q(p), having only negative real roots, of one
degree lower order than the degree of N(p) or D(p) (whichever is the highest). Then

If we now consider the network shown in Fig. 4.23, we may easily find the quantities y21 and y22 and
substitute these in (3). Thus,

Clearly, we can associate N/Q and (D − N)/Q with the terms (Ya − Y′a)



Figure 4.23 Using an INIC to synthesize voltage transfer functions.

and (Yb–Y′b), respectively. In addition, we may make partial-fraction expansions for N/Q and for (D –
N)/Q as follows:1

In these expressions, the various ki will be real and either positive or negative, depending on the
choice of the zeros of Q(p) and on the actual form of N(p) and D(p). If we associate the terms having
positive ki with Ya and Yb and the terms having negative ki with – Y'a and – Y'b, our network
realization is guaranteed, since the individual terms may be realized in the form shown in Fig. 4.24.

Figure 4.24 Driving-point admittances of simple RC networks.

Note that there are no restrictions on the form of N(p) and D(p), but that the network realizations
require only resistors and capacitors. Thus, we can realize complex-conjugate poles (which are
normally only associated with combinations of resistance, capacitance, and inductance) by using
only resistance and capacitance and an INIC. We could also have made our network realizations such
that only resistance and inductance were required by specifying a slightly different form of partial-
fraction expansion. This form of network, however, is usually of less interest. There are several
advantages to eliminating inductors from network realizations. In general, they pose problems in
weight, nonlinearity, presence of incidental dissipation, etc. These disadvantages are more acute at
the lower frequencies. By comparison, the typical capacitor comes considerably closer to being the
“ideal” element which we predicate in the models used in circuit realizations. Consequently, the use
of resistance, capacitance, and active elements to achieve network realization is of considerable
importance. This is referred to as active RC synthesis.



As an example of the above procedure, consider the transfer function

Several quite sophisticated techniques are available to guide one in choosing the location of the zeros
of Q(p). For cases in which N(p) and D(p) each have a single pair of complex-conjugate zeros, as a
rule of thumb, we may choose the magnitude of σ1 such that it is approximately equal to the magnitude
of the natural frequency, i.e., the length of a vector from the origin of the complex frequency plane to a
zero of D(p). In this case, σi = 10 provides a reasonable approximation. The partial-fraction
expansions are easily found to be

Figure 4.25 A network realization using an INIC.

The network realization is shown in Fig. 4.25. The component admittances have been found from Fig.
4.24. Naturally, any desired frequency or impedance normalization could be performed on this
network to match desired specifications and to change the elements to more reasonable values.

Several other techniques are available which use NICs to accomplish various network realizations,
including that of nonpositive-real driving-point functions. It is interesting to note that, although the
technique of this section may, in theory, be applied to a transfer function with component polynomials
of an arbitrarily high degree, in practice it is customary to limit the realization to polynomials of
second degree. This limitation is due to sensitivity considerations.

4.6 Synthesis of driving-point functions with NICs
Let us now investigate some elementary properties of driving-point immittances. Consider the
networks that can be formed from passive (i.e., positive-valued) resistors, capacitors, and inductors,
and let us restrict ourselves to lumped linear finite elements.1 It is well known that the driving-point
immittances of such elements can only have poles and zeros in the left half of the complex frequency



plane. This is easily seen from considerations of the natural frequencies that result when the network
is excited by either a voltage source or a current source. The network, since it is passive, can only
have natural frequencies associated with response terms which decay with time. Thus, the poles and
zeros are restricted to the left half plane.

Considerations of stability, however, do not preclude the presence of right-half-plane zeros in a
driving-point function, even though this type of function cannot be realized by passive elements. For
example, a network whose driving-point impedance is

is stable as long as it is excited by a current source. Excitation by a voltage source, however, gives us

and the resulting current exhibits the unstable characteristics of the network; i.e., it rises
exponentially. We might describe a network with this driving-point immittance as being open-circuit
stable (or short-circuit unstable), since excitation from an ideal current source of zero internal
admittance corresponds with placing an open circuit across the input port of the network. In this
section we shall see that we may synthesize driving-point functions which need have only the
numerator or the denominator with left-half-plane zeros. The zeros of the other polynomial may be in
the right half plane, the left half plane, or both. We shall, of course, require the coefficients of the
component polynomials to be real so as to guarantee that their zeros are real or occur in complex-
conjugate pairs. In addition, we shall require that the degree of the numerator polynomial be not more
than one greater than the degree of the denominator polynomial. This requirement also follows from
stability considerations. This type of driving-point function is frequently spoken of as being
“nonpositive real.”1 Since the positive-real criterion is necessary and sufficient to guarantee
realization of the function as a driving-point immittance using only passive elements, we shall see that
the techniques of this section will allow us to realize driving-point functions that cannot be realized
by using passive components alone. To do this we shall only require the use of resistors, capacitors,
and NICs.

Let us consider a rational function Y(p) as the ratio of current to voltage at the terminals of a one-
port network. Let

The polynomials N(p) and D(p) must have real coefficients, and the zeros of D(p) must lie in the left
half plane. The degree of N(p) can be no more than one greater than the degree of D(p). It is easily
shown that any arbitrary polynomial may be split into the difference of two polynomials such that
each of these component polynomials has zeros only on the negative real axis or at the origin. To see
this, consider what will happen if we assume that N(p) is the arbitrary polynomial and we divide it
by a polynomial Q(p) which is one degree more than N(p) and has only negative real zeros. We may
write



where the σi are positive real numbers. It is easy to see that we can express the function N(p)/Q(p) as
a partial-fraction expansion. Thus,

In the above equation all the kr and kj are positive real constants. In effect, we have gathered all the
negative residues of N(p)/Q(p) in one group and all the positive residues in another group.1 The final
step in this process is to put the right side of the above equation over a common denominator. When
this is done, we shall have N(p) expressed as the difference of two polynomials, both of which have
only negative real zeros. Although this technique is quite general, some sophistication may be
observed in the choice of the zeros of Q(p).2

Let us assume that this splitting procedure has been applied to the numerator polynomial of (1).
Thus we shall let N(p) = N1(p) − N2(p), where the polynomials N1(p) and N2(p) have only negative
real zeros, i.e., zeros that lie on the negative real axis or at the origin. The zeros of N(p)
may lie anywhere on the complex frequency plane. Equation (1) becomes

We may now assume that the original one-port network is divided into two subnetworks with
admittances Y1(p) and Y2(p) and which are connected in parallel. We may define

On an impedance basis, we may define

Since both N1(p) and N2(p) have only negative real zeros, the driving-point impedances Z1(p) and
Z2(p) may be expressed as

The above expressions are simply partial-fraction expansions for Z1(p) and Z2(p) in terms of the
residues at their poles and at infinity. The various k's given in the equation are all positive, but we
have admitted the possibility of both positive and negative residues by the use of two parenthetical
terms for both Z1(p) and Z2(p). Each of the parenthetical terms (without regard for the sign that
precedes it) is realizable as a passive driving-point impedance. The forms of the various elements



are shown in Fig. 4.26 (the reader should note the similarities and differences between these
networks and those shown in Fig. 4.24). To affix the negative sign to the second parenthetical term of
each of the equations (4) simply requires the use of an NIC. Thus, Z1(p) and Z2(p) will each consist of
two networks in series, with an NIC connected in cascade with one of them. Thus, the original
driving-point function can be realized with four component RC networks and two NICs. The general
form of the realization is shown in Fig. 4.27. The designations A, B, C, and D on the component
networks refer to the superscripts a, b, c, and d, respectively, in the four parenthetical terms in (4).

Figure 4.26 Driving-point impedances of simple RC networks.

As an example of the technique, let us consider a case in which N(p) and D(p) of (1) are second-
order polynomials. Specifically, let

It is easy to show that for a polynomial N(p) consisting of a pair of complex-conjugate zeros, the
zeros of N1(p) and N2(p), where



Figure 4.27 Using NICs to synthesize driving-point functions.

Figure 4.28 Finding the zeros of the component polynomials.

will have the relative positions shown in Fig. 4.28. Furthermore, if the zeros of N(p) are located at p
= pj and p = pj*, as shown in the figure, then the angles indicated as ϕ1 and ϕ2 in the figure are equal.1

A reduction in the total number of elements used in the network realization may be achieved by
choosing one of the zeros of N2(p) at the origin. If we make this choice and select the zeros of N1(p) at
and −1, then the location of the other zero of N2(p) is fixed by the angle criterion indicated above. The
location of this zero is easily found to be −2. Thus the N(p) given in (5) may be split as follows:

Figure 4.29 A driving-point-function realization.

The partial-fraction expansions of (6) for this example are



The final network realization is given in Fig. 4.29.
The procedure for realizing driving-point functions described in the above paragraphs is both

straightforward and independent of the complexity of the polynomials which comprise the function.
The mathematical techniques are simple, and the synthesis of the component networks follows easily.
The realization, however, requires two NICs. Several techniques have been described in the
literature for synthesizing arbitrary driving-point functions using a single NIC, and the interested
reader is referred to them.1 In general, the application of these techniques is very difficult. In
addition, the network realizations that result may require more passive elements than the two-NIC
realization. Thus, there may actually be a net increase in network complexity.

Two practical problems which occur in the actual use of NICs and RC elements in realizing
network functions of any type are worth noting. These are (1) sensitivity considerations and (2)
accuracy of elements. It is easy to see that in practically all procedures of this type a given function is
realized as the difference between two other functions. The negative-component function is then, in
general, realized as a positive function, the negative sign being provided by an NIC. As the
conversion ratio or “gain” of the NIC changes even by a small amount, the resulting function may
change by much more, i.e., the resulting function is sensitive to the NIC gain. It is possible to select
the component functions so that the sensitivity of the result to the changes in NIC gain is minimized,2
but even with this minimization, sensitivity remains a problem. The requirements for accuracy in the
values of the passive elements also result from the fact that the fundamental mechanism in RC-NIC
realizations is one of subtraction. The components in actual networks are frequently adjusted to four-
figure accuracy, and the circuit is quite intolerant of changes in their values. Despite these objections,
however, considerable interest is being shown in active RC synthesis techniques.

4.7 The gyrator
In preceding sections we have seen how the matrix equations (6a) and (6b) of Sec. 4.1 could be
considered as the representations of ideal transformers when suitable restrictions were made on the
coefficients a and b. We also found that the transmission parameters defined by (6c) and (6d) of Sec.
4.1 gave us the two types of negative-immittance converters. We shall now explore the
representations of (7) of Sec. 4.1 to see what devices have the behavior defined by these equations.

First consider (7a) of Sec. 4.1. This matrix equation represents the equations

If we divide equations (1), we obtain

Thus we see that the input impedance at port 1 of the two-port network represented by (1) is a/b times
the reciprocal of the impedance connected to port 2. Similarly, we may write



This says that the input impedance at port 2 of the network is a/b times the reciprocal of the
impedance connected to port 1. The action of this device is to “invert” the immittance connected to it.
If a = 1/b, the device is called a gyrator.1

If we define an arbitrary two-port network by means of its y parameters and terminate it at port 2 in
an admittance YL as shown in Fig. 4.30, we find that the input impedance at port 1 is given by the
relation

Thus, the necessary and sufficient conditions that

where Zl = 1/YL, or, in other words, that the two-port device act as a gyrator, are

The dimensions of the quantities in (5) make it convenient to define a gyration conductance such that
y12 = G and y21 = −G. Thus, the defining equations for a gyrator become

If G is real, i.e., not a function of the complex frequency variable, we may write a set of equations in
the time domain corresponding to (7). These are

From these equations we see that v1i1 + v2i2 = 0, i.e., that the gyrator is a lossless device. As such, it
is usually considered as a passive device, although its physical realization, in general, requires
external power supplies.

The equations (7) are the same as (1) if we define b = 1/a = G. The circuit symbol for a gyrator,
together with the indicated direction of gyration, is shown in Fig. 4.31. In Appendix B it is shown that
it is possible for a gyrator to have a gyration admittance which is a function of the complex frequency
variable. Normally, however, G is considered as a constant.

Let us now consider the gyrator as a three-terminal device, as shown in Fig. 4.32. When terminal 3
is grounded, this device has the same y parameters



Figure 4.30 A two-port network terminated at port 2.

Figure 4.31 A gyrator.

as the device shown in Fig. 4.31. The indefinite-admittance matrix can be found by the method of Sec.
3.5. For the voltages and currents defined in Fig. 4.32, the indefinite-admittance matrix is

From this we see that the y-parameter matrix of the resulting two-port network when terminal 1 is
grounded is

Similarly, when terminal 2 is grounded, the y-parameter matrix is

Figure 4.32 The voltage and current variables for the indefinite-admittance matrix of a gyrator.



Figure 4.33 Two gyrator connections which have the same y-parameter matrix.

In Fig. 4.33a the original three-terminal gyrator is shown with terminal 1 grounded. An examination
of the y-parameter matrix of (9) for this situation shows that this new device also has the properties of
a gyrator. Therefore we may represent it as shown in Fig. 4.33b, i.e., as a gyrator in the usual
position. Similarly, when terminal 2 is grounded, as shown in Fig. 4.34a (note the downward
direction of the arrow), the y-parameter

Figure 4.34 Two gyrator connections which have the same y-parameter matrix.

Figure 4.35 A three-terminal gyrator.



matrix of (10) indicates that we may represent this device as a gyrator with the gyration direction
from right to left. This is shown in Fig. 4.34b. From this discussion, we may conclude that a positive
gyration conductance exists from terminal 1 to terminal 2 when terminal 3 is grounded. A positive
gyration conductance also exists from terminal 2 to terminal 3 when terminal 1 is grounded. Finally, a
positive gyration conductance exists from terminal 3 to terminal 1 when terminal 2 is grounded. In
other words the device acts as a gyrator no matter which terminal is grounded. This is indicated by
the symbol in Fig. 4.35, frequently used to represent the gyrator, which indicates the correct polarity
or direction for the gyration conductance between all terminals.1

The material of the previous section, with its discussion of NICs, has opened the possibility of
using negative immittances in a network realization. This additional flexibility makes possible a
general procedure for developing circuit configurations for gyrators. Consider a two-port network as
defined by its y parameters. In Sec. 2.9 it was shown that any square matrix may be written as the sum
of a symmetric matrix and a skew-symmetric matrix. Thus, our y-parameter matrix may be written

The first matrix on the right side of (11) defines a reciprocal network. This may always be realized
by means of passive components and the NICs of the preceding section. The second matrix defines a
gyrator whose gyration admittance is given by the elements of the matrix. Thus, the network, as
specified by its y parameters, may be realized as shown in Fig. 4.36, where the three admittances Ya,
Yb, and Yc may include both positive and negative elements, depending on the original set of y
parameters. This figure represents a nonideal gyrator, since it has unwanted elements associated

Figure 4.36 A nonideal gyrator.

with it. If we desire to synthesize an ideal gyrator with gyration admittance Yg, then these elements
may be eliminated by shunting them with other elements of the opposite sign, as indicated in Fig. 4.37.

For example, consider an ideal voltage-controlled current generator. The y-parameter matrix for
such a device, and the separation of this matrix into the sum of a symmetric matrix and a skew-
symmetric matrix, is



Figure 4.37 Compensating the nonideal gyrator.

Figure 4.38 Two networks which have the same y-parameter matrix.

The nonideal gyrator equivalent to this controlled source is shown in Fig. 4.38. Both circuits shown
in this figure have the y-parameter matrix given in (12). Therefore they are equivalent networks. The
compensation necessary to produce an ideal gyrator is easily seen from this figure. The resulting ideal
gyrator is shown in Fig. 4.39, together with the values of admittance required for compensation. Both
circuits in this figure have the same y-parameter matrix; i.e., they will perform as ideal gyrators. The
same terminal numbering has been preserved between the two figures to aid in the identification of
the results. The important conclusion of this development is that an ideal gyrator may always be
realized if we have available a nonreciprocal device and positive and negative immittances. The
gyrator may also be considered as a four-terminal device. If we adopt the numbering of terminals as
shown in Fig. 4.40, the indefinite-



Figure 4.39 Compensating an ideal controlled source to produce an ideal gyrator.

Figure 4.40 A four-terminal gyrator.

admittance matrix is

In the example of Fig. 3.46, the indefinite-admittance matrix for a pair of pentodes connected together
at their cathodes was derived. The indefinite-admittance matrices for two cases of this connection are
given in Fig. 4.41.



Figure 4.41 Two pentode connections and their indefinite-admittance matrices.

Figure 4.42 An interconnection of pentodes to produce a gyrator.

The circuits of this figure are slightly different from each other (as well as different from Fig. 3.46) in
that a different numbering of the terminals has been used. The summation of the two indefinite-
admittance matrices shown in Fig. 4.41 yields the indefinite-admittance matrix (13) if g = G. This, of
course, requires matched pairs of pentodes. Since this matrix represents the four-terminal gyrator, we
conclude that we may realize an ideal gyrator (if we use ideal pentodes) by the parallel connection of
the two pentode pairs formed by connecting like-numbered terminals in Fig. 4.41.1 The connection is
redrawn in Fig. 4.42 for clarity.



4. 8 Synthesis of n-port networks
In this section we shall present some methods of synthesizing an n-port network for which the y-
parameter matrix is specified. We shall indicate how some of the restrictions which must apply if the
network is to be realized by passive elements may be relaxed if negative-valued elements and
gyrators are allowed.

First let us consider the synthesis of networks containing only one kind of element, i.e., containing
only resistors, only capacitors, or only inductors. For this case, the y-parameter matrix will have one
of the three following forms:

where the aij are real. Let us consider the y-parameter matrix of (1a). The realization of this will
require only resistive elements. If we restrict ourselves to the passive case and specify that all our
ports have one common terminal [the network in this case can be considered as an (n + 1)-terminal
network], then all the diagonal elements will be positive, and all the off-diagonal elements will be
negative (this assumes that we have defined all the port voltages as positive with respect to the
common terminal). Since the total admittance at any port must be equal to or greater than the sum of
the mutual admittances, we see that

This is the condition which defines a dominant matrix (see Sec. 2.8). Therefore we see that for a
symmetric y-parameter matrix with real positive diagonal elements and real negative off-diagonal
elements to be realized by an (n + 1)-terminal network consisting of positive-valued resistors, it is
necessary and sufficient that the y-parameter matrix be dominant. An example of such a y-parameter
matrix and the resulting network realization is shown in Fig. 4.43. The same conditions apply to the
matrices (1b) and (1c), with the obvious difference that the elements will be capacitors or inductors,
rather than resistors.

The restriction that the off-diagonal elements of the y-parameter matrix be negative may be
removed if we permit the n-port network to have 2n terminals, i.e., if we do not require that all the
ports have a common terminal. In this case, the off-diagonal elements may be either positive or
negative, while the diagonal elements must, of course, be positive. Then dominance is a sufficient, but
not necessary, condition for realization.1 To see the sufficiency, consider the network shown in Fig.
4.44.



Figure 4.43 A four-terminal resistance-network realization.

This shows the resistors that will appear between the ith and jth ports of a given network when it is
realized from a dominant y-parameter matrix. The values of the components are given by the
relationships

where the aij are the elements of the y-parameter matrix. G1 and G2 will have different values among
the different ports. Gi and Gj are specified as the total required shunt admittance at the ith and jth
ports. If the off-diagonal elements aij are negative, the cross arms in Fig. 4.44 will be absent. If the
off-diagonal elements aij are positive, the horizontal series arms will be absent. All the elements are
specified on an admittance basis. A y-parameter matrix with all positive elements and its realization
is shown

Figure 4.44 The inter-port resistance network.



Figure 4.45 A three-port resistance-network realization.

in Fig. 4.45. The magnitudes of the elements in this matrix are the same as those of the matrix which
was realized in Fig. 4.43. Identical realization techniques may be applied to the y-parameter matrices
representing purely capacitive and purely inductive networks.

If a nondominant symmetric matrix with all real elements is to be realized as an (n + 1)-terminal
resistive network, negative-valued resistors must be used. These can, of course, be realized by means
of NICs. Similarly, since a nonsymmetric matrix with all real elements can be written as the sum of a
symmetric matrix and a skew-symmetric matrix, both of which have real elements, a nonsymmetric
matrix may also be realized as an (n + 1)-terminal network. It will consist of the parallel connection
of the realization of the symmetric matrix and the realization of the skew-symmetric matrix. The
skew-symmetric matrix may be realized by means of gyrators, and the symmetric matrix by positive-
or negative-valued elements, depending on its form. Thus, by means of the concepts of negative-
valued components and gyrators, we can remove many of the restrictions from passive synthesis.

As an example, consider the following y-parameter matrix and its symmetric and skew-symmetric
components:



Figure 4.46 A realization for a nondominant nonsymmetric y-parameter matrix.

We see that a gyrator will be required between ports 1 and 3, and a negative resistance (due to the
nondominance of the third row and column of the symmetric matrix) will be required at port 3. The (n
+ 1)-terminal realization is shown in Fig. 4.46.

A similar treatment can be made for networks which are realizable as two-type-element networks:
RC, RL, or LC networks. In these cases, each element of the y-parameter matrix can be expressed as a
partial-fraction expansion. The matrix can then be expressed as a sum of residue matrices. For
example, for an RC realization, we may write

The one-type-element treatment described in the above paragraphs may

Figure 4.47 The driving-point admittance of an RC network.



Figure. 4.48 An RC-network realization.

be applied to the last two matrices in (4). The elements of the residue matrices in the summation may
be realized by the configuration shown in Fig. 4.47. The same criterion may be applied to the residue
matrices as was applied to the matrices of the one-type-element networks to determine if these are
realizable by passive components. As an example, consider the following y-parameter matrix and its
residue matrices:

The realization is shown in Fig. 4.48. Similarly, for an RL realization we may write

Figure 4.49 The driving-point admittance of an RL network.

The matrices in the summation may be realized by the network configuration shown in Fig. 4.49.
Finally, for an LC network realization we may write



The matrices in the summation may be realized by the network configuration shown in Fig. 4.50. It
should be noted that if the residue matrices are nonsymmetric, we may, in theory, postulate gyrators
with complex gyration admittances to provide the necessary realization. The details are given in
Appendix B.

In this section we have illustrated some of the methods and the criteria that may be applied to the
realization of one-type-element and two-type-element networks. It has been shown that some of the
conditions for realization may be relaxed if negative-valued elements and gyrators are permitted. It
should be pointed out, however, that although in theory these operations are permitted, the actual
construction of circuits with large numbers of devices such as gyrators and NICs is usually avoided.
Such “paper” realizations, however, have a very important purpose in that they serve to emphasize
some of the significant characteristics of a given network, and thus aid the designer in gaining a
greater over-all perspective of his problem and its possible solutions.

Figure 4.50 The driving-point admittance of an LC network.

4.9. Other two-port networks
Three other sets of transmission parameters listed in (6) and (7) of Sec. 4.1 have not been discussed.
The first of these is (7b) of Sec. 4.1. The equations to be considered are

If we define b = 1/a = G and compare the result with (7) of Sec. 4.7, we see that this case is simply
the gyrator of Fig. 4.31 with a negative gyration conductance, i.e., with a gyration conductance in the
direction opposite that indicated.

The second case still undiscussed is that of (7c) of Sec. 4.1. The transmission matrix of this
equation may be expressed as a product:

If we define b = 1/a = G, we may consider this case as the cascade connection of a gyrator of gyration
conductance G and an INIC of unity gain. There are, of course, other possible representations. This



case, however, seems to imply no new basic properties and will not be discussed further.
The third and final case (7d) of Sec. 4.1 may be viewed as a similar cascade. Since

this may be considered as the cascade connection of a gyrator and a VNIC of unity gain. Again, other
representations are possible, but the case is of little fundamental interest.

A summary of the representations of various two-port devices is given in Table 4.1. A careful study
of the table is recommended at this time.

 

PROBLEMS
4.1 Find all possible sets of network parameters for the following two-port networks: (a) an ideal
transformer with turns ratio 1:n; (b) an INIC; (c) a VNIC; (d) a gyrator.
4.2 Express the condition that a two-port device act as an NIC in terms of the elements of the
following matrices: (a) the h-parameter matrix; (b) the ABCD-parameter matrix; (c) the parameter
matrix. Distinguish between an INIC and a VNIC in each case.
4.3 Is it possible to compensate an NIC which is nonideal in the sense that both g11 and g22 are not
equal to zero? Explain.
4.4 Find networks which are equivalent to the following cascade connections of two-port networks:
(a) two INICs; (b) two VNICs; (c) two gyrators; (d) a VNIC and an INIC.
4.5 Find the z parameters of the network resulting if a given network (described by its z parameters)
has the following connected to port 2: (a) an INIC; (b) a VNIC; (c) a gyrator.
4.6 Find the y parameters of the network resulting if a given network (described by its y parameters)
has the following connected to port 2: (a) an INIC; (b) a VNIC; (c) a gyrator.
4.7 Find the g parameters for the circuit shown in Fig. 4.20.
4.8 Find the g parameters for the circuit shown in Fig. 4.22.
4.9 Find the compensating circuit necessary to convert the device shown in Fig. P4.9 to an ideal
gyrator.

Figure P4.9

4.10 Derive the indefinite-admittance matrix (13) of Sec. 4.7 for the circuit shown in Fig. 4.40.
4.11 An arbitrary reciprocal network with four ports is made into a two-port network by connecting
an NIC between ports 3 and 4. Show that the driving-point admittances y11 and y22 of the resulting
two-port network are independent of the type of NIC that is used.
4.12 An arbitrary reciprocal four-port network is made into a two-port network by connecting an NIC



between ports 3 and 4. Show that the transfer admittances of the resulting two-port network will be
interchanged if the type of NIC is changed.
4.13 Develop a method of voltage transfer-function realization similar to that of Sec. 4.5, but based
on z parameters rather than y parameters.
4.14 Find a realization for a 1-henry inductor using only positive and/or negative resistors and
capacitors.
4.15 Show that the effect of connecting an admittance Y in series with one terminal of a three-terminal
gyrator of gyration conductance G is the same as connecting an admittance G2/Y between the other
two terminals of the gyrator.
4.16 Find an expression for the input impedance of the circuit shown in Fig. P4.16. Under what
conditions will it function as an NIC? Is it a VNIC or an INIC?

Figure P4.16

4.17 If a passive reciprocal three-port network has an NIC connected between two of its ports, find
the input immittance at the third port for the case of (a) an INIC; (b) a VNIC.
4.18 Find a network realization for the following bandpass voltage transfer function. Use only
positive-valued resistors and capacitors and an INIC.

4.19 Find a network realization for the low-pass voltage transfer function given below. Use only
positive-valued resistors and capacitors and an INIC.

4.20 Find a network realization for the voltage transfer function given below. Use only positive-



valued resistors and capacitors and an INIC.

4.21 Develop a general method of voltage transfer-function realization which requires the use of a
VNIC and positive-valued resistors and capacitors.
4.22 Find an active RC realization for the following driving-point function:

4.23 Find an active RC network realization for the following driving-point function:

4.24 By a method dual to the one given in Sec. 4.6, formulate an active RC synthesis method for
driving-point functions.
4.25 Apply the method of Prob. 4.24 to the function given in Prob. 4.22.
4.26 Apply the method of Prob. 4.24 to the function given in Prob. 4.23.
4.27 Find the g parameters for the circuit given in Fig. 4.20 if the transistor gain parameters are not
equal. Let the one on the left be αa, and the one on the right be αb.
4.28 Find the g parameters for the circuit given in Fig. 4.22 if the transistor gain parameters are not
equal. Let αa be the value for the upper one, and αb be the value for the lower one.
4.29 Show that a voltage transfer function may be realized (within a constant multiplier) by realizing
an appropriate driving-point immittance function. Thus we may use the techniques of Sec. 4.6 to
realize voltage transfer functions.
4.30 With port 2 open-circuited, the input impedance and the voltage transfer function of a given two-
port network are specified as

If it is also desired to have short-circuit transfer admittances with the values

find a realization for the network using only positive- and negative-valued resistors and capacitors
and gyrators.
4.31 Find a network realization for the following y-parameter matrix. The realization should be in the
form of a four-terminal network using positive- and negative-valued R and C elements.



1 This circuit was presented by Larky in the paper previously referred to.
1 J. G. Linvill, Transistor Negative-impedance Converters, Proc. IRE, vol. 41, pp. 725–729, June, 1953.
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To obtain the form of (5), we can obtain the partial-fraction expansion of A(p)/pB(p). We obtain

If both sides of the above equation are multiplied by p, we see that

This is equivalent to (5) if we let σo = 0.

1 The abbreviation LLFPB is frequently used; the letters stand for “Lumped,” “Linear,” “Finite,” “Passive,” and “Bilateral.”
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Guillemin, “Synthesis of Passive Networks,” John Wiley & Sons, Inc., New York, 1957.
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1 G. E. Sharpe, The Pentode Gyrator, IRE Trans. on Circuit Theory, vol. CT-4, no. 4, pp. 322–323, December, 1957.
1 For a discussion of this and other network situations see P. Slepian and L. Weinberg, Synthesis Applications of Paramount and

Dominant Matrices, Proc. Natl. Electronics Conf., vol. 14, pp. 611–630, 1958.



Chapter 5 Linear vector spaces

5.1 Introduction
The network studies made in previous chapters in terms of matrix notation can be given a powerful
additional significance through the use of the concepts of linear vector spaces. In plane geometry, we
think of a vector as a line of a certain magnitude having a specified orientation or direction. This
viewpoint is helpful in studies of functions of two real variables, such as complex-variable theory,
where, in addition to defining a number by the magnitude of its real and imaginary portions, we also
find it convenient to visualize it as a vector starting from the origin of a two-dimensional geometrical
structure: a plane. Similarly, a point located in a three-dimensional coordinate system can be
represented by a vector from the origin of that system to the point in question. Thus, we can work with
a set of three real variables whose values specify a unique point in a three-dimensional space. In the
actual physical world that we deal with, there are many quite general situations which cannot
conveniently be subjected to the limitation that they be expressed only by a maximum of three real
variables (or three complex variables, for that matter). For example, we might consider a resistance
network excited by fixed d-c potentials. Suppose that there are three nodes in the network, as shown
in Fig. 5.1. If we define one of these as the reference node, then there are two nodal voltages which
enter into the equations for the network. Suppose that we set up a two-dimensional cartesian-
coordinate system as shown in Fig. 5.2. If we label the rectangular axes with units of v1 and v2, then a
single vector on the plane serves to completely specify the state of the network in terms of its nodal
voltages at a given instant of time. If there were n + 1 nodes in this network, then the specification of
n nodal voltages would serve to completely define the condition of the network. If we extend the
geometrical concept, we can then speak of a “vector” in an “n-dimensional space” as defining the
state of the system with respect to its nodal voltages at a given instant of time. Actually, all we are
saying is that if the n nodal voltages are specified, then everything is known about some quantity
which we might call the over-all voltage vector of the network. We can also take the opposite
viewpoint and say that a single vector in an n-dimensional space specifies the n nodal voltages of the
network. The most difficult aspect of this concept is ridding oneself of the geometrical limitations so
carefully acquired through many years. We live in a three-dimensional world, and n dimensions are
difficult to visualize. Nevertheless, we shall find that all the usual geometrical ideas of a two- or
three-dimensional coordinate system, e.g., length and scalar products, can be extended to n
dimensions. Thus, we find that we can adopt the concept of a “vector in an n-dimensional space.” The
usefulness of this concept will become readily apparent in the material which follows.



Figure 5.1 A network with two nodal voltages.

Figure 5.2 The two-dimensional representation of two voltages.

5.2 Linear vector spaces
In mathematical language we may use the word space to define a collection or assembly of objects.
These may be numbers, functions, etc. In the case of a linear vector space (frequently referred to
simply as a vector space), the objects of interest are vectors, which can be considered as possessing
both magnitude (or length) and direction. To refer to these objects, we shall use lightface lowercase
roman letters with a single subscript. Thus, quantities such as ai, bi, . . ., xi will be considered
vectors. Frequently it will be necessary to write sets of equations involving vectors. To do this we
shall use matrix notation. Boldface lowercase roman letters without subscripts will be used for
column matrices whose elements are vectors. Thus, will represent the column matrices whose
elements are, respectively, the vectors ai, bi, . . ., xi. Similarly, at, bt, . . ., xt will represent the row
matrices whose elements are, respectively, the vectors ai, bi, . . ., xi.

In addition to the vectors, we shall also discuss scalars. These may be thought of as real or
complex numbers which obey the usual algebraic rules for real and complex numbers. We shall find it
convenient to represent them in two ways. One of the representations will be by lowercase lightface
Greek letters with a single subscript. Thus, αi, βi, . . ., ζi will represent scalars. Boldface lowercase
Greek letters without subscript such as α, β, . . ., ζ will be used for column matrices whose elements
are the scalars αi, βi, . . ., ζi. The second representation for scalars will be light-face lowercase
roman letters with a double subscript. Thus, quantities such as aij, bij, . . .,fij, etc., will be considered
as scalars. These elements may be arranged in the form of column matrices or square matrices. A



group of elements aij (i = 1, 2, . . ., n), arranged as the elements of a column matrix, will be referred
to by the matrix notation Aj, i.e., by a boldface uppercase roman letter with a single subscript. A
group of scalars aij, arranged as the elements of a square matrix, will be referred to by the matrix
notation A, i.e., by a boldface uppercase roman letter with no subscript. Several examples of vector
and scalar notation are given in Table 5.1.

We may now define a linear vector space in terms of two fundamental operations on the objects of
which it is composed. These objects are, of course, the vectors of the collection. The first of these
operations is the addition of two vectors; the second is the multiplication of a vector by a scalar. The
description of these operations follows:

Addition of two vectors If a1 and a2 are two vectors belonging to the collection, then there exists a
unique operation called addition which may be applied to these vectors. The object produced by this
operation is also a vector belonging to the collection. If we call this resulting vector a3, the operation
may be indicated by the symbolism a1 + a2 = a3. The properties of the operation are:

1. It is commutative; i.e.,

2. It is associative; i.e.,

3. A unique vector 0 exists with the property

Multiplication of a vector by a scalar If a1 is a vector belonging to the collection, and α1 is a
scalar, then there exists a unique operation called multiplication which may be applied to these
objects. The result is a vector belonging to the collection. If we call this resulting vector a2, the
operation may be indicated by the symbolism α1a1= a2. If we also consider a second scalar α2, then



the properties of the operation are:
1. It is commutative with respect to the scalars; i.e.,

2. It is associative with respect to the scalars; i.e.,

3. It is distributive with respect to addition; i.e.,

4. A unique scalar 1 exists with the property 1a1 = a1,

Figure 5.3 A one-dimensional linear vector space.

The above operations define a linear vector space in terms of the properties of the objects of which
it is comprised. Some examples of specific linear vector spaces are given in the following
paragraphs.
A one-dimensional linear vector space Consider the set of all collinear vectors as shown in Fig.
5.3. The addition of any two vectors such as a1 and a2 produces a third vector a3 which is certainly a
member of the one-dimensional space. Similarly, multiplication of any vector by a scalar produces a
vector which is a member of the one-dimensional space. Since the defining operations are satisfied,
the result is a linear vector space. It is important to note two things concerning this space:

1. If we define a reference vector of a certain magnitude, then any vector in the space may be
defined in terms of this reference vector. For example, if we let a1 in Fig. 5.3 be the reference vector,
we may express any other vector as α1a1 by giving an appropriate value to the scalar α1.

2. If there exist any two vectors a1 and a2 in this one-dimensional vector space, then there exist
nonzero constants α1 and α2 such that we may write

For example, if a1 is a vector six units in length in the positive direction, and a2 is a vector three units
in length in the positive direction, we need only choose the ratio α2/α1 as −2 to satisfy (1).



A two-dimensional linear vector space Consider the set of all coplanar vectors of the type shown in
Fig. 5.4a. It is easy to show that the operations of addition and multiplication by a scalar are satisfied
by the vectors in this space; therefore we may designate it as a two-dimensional linear vector space.
The same points that we noted with respect to the first example may be repeated here:

1. Any vector in the space may be expressed as the vector sum of two arbitrary vectors, as long as
these vectors are not collinear. This may be done by multiplying the arbitrary vectors by appropriate
scalars. Thus, in Fig. 5.4b, the vector b1 is represented as 3a1 + 2a2, where the vectors a1 and a2 are
not collinear. Consider for a moment what would happen if a1 and a2 were collinear. Then we could
find constants α1 and α2 such that α1a1 + α2a2 = 0. Obviously, this is a condition to be avoided if α1
and a2 are to form a means by which all other vectors in the two-dimensional linear vector space can
be represented. Note also that there are an infinite number of ways of choosing a1 and a2. The only
restriction is that they are not collinear. Thus, in Fig. 5.4c, the same vector b1 can be represented by
−5a3 + 2a4.

2. If there exist any three vectors a1, a2, and a3 in this two-dimensional space, then there exist
constants α1, α2, and α3, all of which are not zero, such that

Figure 5.4 A two-dimensional linear vector space.

To see this, consider that either a1 and a2 are collinear, or they are not collinear. If they are, then we
may choose α3 = 0 and choose the appropriate values of α1 and a2 to express the collinearity. This



satisfies the conditions of (2). On the other hand, if a1 and a2 are not collinear, then by point 1 above,
we may express a3 as a linear combination of the two. Let this combination be a3 = −ß1a1 − ß2b2.
Then (2) becomes

and, if ß1 and ß2 are specified, we need only choose α1 = α3ß1 and α2= α3ß2 to satisfy (2).
At this point, let us define certain ideas which have been indicated by the above examples: If a set

of vectors ai are such that a set of constants αi-may be found, not all of which are zero, such that the
relation

is satisfied, these vectors will be said to be linearly dependent. For example, in Fig. 5.3 the vectors
a1 and a2 are linearly dependent. Equation (1) expresses the relation (4) for this case. Similarly, the
vectors a1, a2, and b1 as shown in Fig. 5.4b are linearly dependent, for we can write the equation 3a1
+ 2a2 − b1 = 0. Note that the concept of linear dependence carries with it the factual result that at least
one of the set of vectors ai can be expressed as a linear combination of some of the remaining ones.
On the other hand, if we cannot find a set of constants such that (4) is satisfied, we say that the set of
vectors is linearly independent.

From the above examples, we can see that in a one-dimensional space every set of two vectors is
linearly dependent. In a two-dimensional space, every set of three vectors must be linearly dependent.
In this latter space we have shown that any vector may be defined in terms of two non-collinear
vectors. The property of noncollinearity, as assigned to two vectors, may be restated as the fact that
these two vectors are linearly independent. Thus, in a two-dimensional space we may conclude that
any vector may be defined in terms of any two linearly independent vectors in the space. We say that
these two vectors form a basis for the space.

A three-dimensional linear vector space Consider the set of all spatial vectors. The basic
properties of addition of vectors and multiplication by a scalar are certainly satisfied, and therefore
the set of all spatial vectors forms a three-dimensional linear vector space. The conclusions formed
for the previous two examples can be extended as follows:

1. Any vector in the space may be expressed as a linear combination of any three linearly
independent vectors in the space. We could also word this as follows: Any set of three linearly
independent vectors in a three-dimensional space forms a basis for the space.

2. Any four vectors in this three-dimensional space are linearly dependent; i.e., we may always
find scalars αi, not all of which are zero, such that

where the ai are any four vectors in the space.
An n-dimensional linear vector space Suppose a set of n “vectors” exists such that no nonzero
scalars can be found satisfying (4). These vectors then form a basis for an n-dimensional space since,
by definition, they are linearly independent. In this space, it must always be true that any set of n + 1
vectors is linearly dependent. As long as the operations of addition of vectors and multiplication by a



scalar are defined, we may apply all the techniques which are applicable to any linear vector space
to this one, despite its n-dimensionality. The only “operation” that is to be avoided is the attempt to
geometrically visualize the space!

Because of the fundamental importance of the above concepts, at this point let us review the above
material and define the salient terms:

Linear vector space A collection of vectors such that operations of addition of vectors and
multiplication by a scalar produce only members of the collection.

Linear dependence A set of vectors ai are linearly dependent if scalars ai exist, all of which are
not zero, satisfying (4).

Linear independence A set of vectors ai are linearly independent if no set of scalars αi (not all
zero) exists such that (4) is satisfied.

Basis A set of vectors forms a basis for a linear vector space if the vectors are linearly
independent and if every vector in the space can be expressed in terms of the set.

Properties of an n-dimensional space (1) Any set of n linearly independent vectors forms a basis
for the space; (2) any set of n + 1 vectors is linearly dependent; (3) any vector in the space may be
expressed as a linear combination of the basis vectors.

5.3 Orthonormal bases
In a one-dimensional vector space, it is frequently convenient to take a vector of unit length as the

basis vector. If we call this vector xi, then any arbitrary vector a1 may be expressed as a1 = α1x1,
where α1 is, of course, a scalar. Frequently, α1 is also referred to as a measure number, since it
indicates the number of unit lengths of x1 of which a1 consists. We can also easily compute the length
of the arbitrary vector a1. It is simply the magnitude of α1. A convenient way of writing this is to use a
pair of vertical lines to indicate magnitude; thus,

(for the case in which a1 = α1x1, and x1 is of unit length).
In two-dimensional and higher-order spaces, it is frequently important to define a scalar product.

This is a function of two vectors which produces a scalar. Functions of this general type are
frequently referred to as functionals. They will be discussed in more detail in Sec. 5.7. The scalar
product of two vectors a1 and a2 in a two-dimensional space is defined by the relation

where a1 · a2 is the usual symbolism for the scalar product, and ϕ is the angle between the vectors.
Another definition of the scalar product is the following: Let the vector a1 be replaced by the sum of
two vectors b1 and b2, where b2 is parallel to a2, and b1 is perpendicular to a2. Then, if a2 and b2 are
in the same direction, a1 · a2 = |b2| |a2|. This is illustrated in Fig. 5.5. If a2 and b2 are in opposite
directions, then a1 · a2 = −|b2||a2|. The scalar product is also sometimes referred to as a dot product.
The following properties of the scalar product are easily established:



It is desirable to formulate a general method of expressing the scalar product which is applicable
to spaces of higher dimension. This is most easily done by specifying all vectors in terms of measure
numbers referred to an orthonormal basis. We may define two vectors x1 and x2 as forming an
orthonormal basis for a two-dimensional vector space by the following relations:

Figure 5.5 The scalar product a 1 · a2.

Figure 5.6 The scalar product defined on an orthonormal basis.

The first of the above relations expresses the property of orthogonality. We may define two vectors
as orthogonal to each other if their scalar product is zero. The other relations above indicate
normalizations, i.e., the fact that the length of the basis vectors is taken as unity. Since the two vectors
are not collinear, they are linearly independent, and thus they form a basis for the space. We may
summarize all the above by saying that x1 and x2 form an orthonormal basis for the two-dimensional
space. In this space, we may use a geometrical interpretation of orthogonality to point out that x1 and



x2 are simply a pair of vectors of unit length at right angles to each other. For convenience these are
frequently drawn as the horizontal and vertical axes of a two-dimensional rectangular or cartesian
coordinate system.

Let us now express a pair of arbitrary vectors a1 and b1 in terms of their measure numbers as
referred to an orthonormal basis. This is shown in Fig. 5.6. We may express the measure numbers as
αi and βi; thus, our vectors may be written

The scalar product a1 · b1 may now be expressed in terms of the scalar products of the component
vectors as

Substituting from the relations (3) in the above scalar product, we see that

Note that this definition makes it easy to compute the square of the length of a single vector:

This relation simply expresses the familiar theorem of Pythagoras concerning the lengths of the sides
of a right triangle.

If we are given any two linearly independent vectors in a two-dimensional space, we may easily
construct an orthonormal basis from them. Suppose, for example, that two vectors a1 and a2 are
linearly independent and not necessarily of unit length. We will take a normalized version of a1 as the
first vector of our orthonormal basis. We define

Clearly, x1 is of unit length. We may now construct a vector w2 (not necessarily of unit length)
orthogonal to x1 as follows:

To prove that w2 is orthogonal to x1, take the scalar product of the two vectors:

But a2 · x1 is a scalar; therefore we may rewrite the above as

Since x1 is of unit length, its scalar product with itself is unity; thus the above scalar product of x1 and
w2 is zero, and the vectors are orthogonal. The final step is to normalize the length of w2. To do this
we define x2 as follows:



The vectors x1 and x2 as produced by the above process form an orthonormal basis for the two-
dimensional space.

It may be helpful to illustrate this process. In Fig. 5.7a we have shown two vectors a1 and a2. The
magnitude of a1 is 2, and thus, by normalization, we produce x1 (of unit length) as indicated. The
scalar product a2 · x1 is easily seen to be 3. In Fig. 5.7b, the relation (7) has been applied to illustrate
w2= a2 − 3x1. Since the magnitude of w2 is 3, we simply divide this vector by 3 to produce x2.
Clearly, the resulting x1 and x2 form an orthonormal basis for the two-dimensional space.

Figure 5.7 Constructing an orthonormal basis.

Let us now consider a three-dimensional vector space. Three linearly independent vectors are
needed to form a basis for the space. If the vectors x1, x2, x3 are to form an orthonormal basis, they
must satisfy the following relationships:

The relations in the left-hand column may be thought of as taking care of the orthogonality
relationship, while those in the right-hand column are the conditions for normalization. We may
summarize the above conditions in a single mathematical statement by the use of the Kronecker delta 
ij. We define this symbol as follows:

The relations of (8) may now be expressed as

Just as in the two-dimensional case, we may construct an orthonormal set of basis vectors starting
with any set of linearly independent vectors ai (i = 1,2,3). Let the desired orthonormal basis vectors
be xi (i = 1,2,3). Then we may choose



Proceeding as in the two-dimensional case, let

As was shown, this is clearly orthogonal to x1 and may be normalized by defining

To find the third vector, consider

It is easily established that this vector is orthogonal to x1, since

In exactly the same manner it may be shown that

Thus, w3 is also orthogonal to x2. If we define

then we have produced a set of three vectors xi which are all of unit length, and which are mutually
orthogonal.

If two arbitrary vectors a1 and b1 in a three-dimensional vector space are defined on an
orthonormal basis with vectors xi, the same advantages accrue as did in the two-dimensional case.
Let us define the vectors as

The scalar product a1 · b1 may be found in the same manner as (5) was found for the two-
dimensional case. Thus we see that for the three-dimensional case,

Similarly, we can determine the square of the length of an arbitrary vector a1 as

The extension of the concept of an orthonormal set of basis vectors to spaces with a dimensionality
greater than three is very straightforward from a mathematical viewpoint. In the two-dimensional case
we started with an arbitrary vector, normalized its length to unity, and then established a process by
which a second vector was created at right angles to the first. We finished the process with a final
normalization. In the three-dimensional case we followed the same procedure to establish two
orthonormal vectors, then created a vector which was perpendicular to the plane formed by the other



two. Again, the final step was normalization. In higher-dimensional spaces (for example, a four-
dimensional space), we may conceive of the three orthonormal vectors as creating a hyperplane, and
thus we are required to find a vector “perpendicular” to this hyper-plane. The concept in terms of
geometrical thinking is naturally somewhat vague, but the mathematics follows easily.

Let us consider an n-dimensional space. We shall assume that we have a set of linearly independent
basis vectors ai (i = 1, 2, . . ., n) and we desire to find a set of orthonormal basis vectors xi. The
procedure of the preceding paragraphs is clearly satisfactory to find the first three of these xi. For x4
we first find a vector w4 which may be defined as

Then we normalize this vector to produce x4, where

This process may be continued by a fairly obvious extension to find the other desired vectors. In
general, we may write

These relations provide the means for finding the ith orthonormal basis vector of a set of n such
vectors. We must, of course, find the vectors in numerical order to use relation (14).

The use of an orthonormal basis for an n-dimensional vector space provides a simple formulation
for the scalar product of two vectors in the space, which is merely an extension of the two- and three-
dimensional cases. If we define two vectors a1 and b1 on such a basis,

then we may define the scalar product of these two vectors as

Similarly, the formula for the square of the length of a given vector a1 is

5.4 Transformations of basis vectors
Suppose we have a set of n linearly independent vectors ui which forms a basis for an n-dimensional
linear vector space. We shall not restrict ourselves to the case in which this basis is orthonormal, or



even orthogonal. Suppose we are also interested in some other set of linearly independent vectors wi
which also forms a basis for the space. Since the original ui vectors form a basis, each of the new
vectors wi may be expressed as a linear combination of the original basis vectors. For example, we
may write

Clearly, the above relation may be expressed in matrix form; i.e.,

where

Thus we see that the relations between any two sets of vectors, both of which form bases for an n-
dimensional linear vector space, may be expressed by means of an n × n matrix.

Let us now assume that a vector a1 is defined in the n-dimensional space. In terms of the basis
vectors ui we may write

This may also be expressed by the matrix equation

In the above equations the superscript (u) indicates that the quantities αi
(u) are measure numbers

referred to the basis vectors ui. The matrix α(u) is defined as

If we desire to express the vector a1 in terms of some other basis vectors wi we must find the relation
between the αi

(u) as defined above and another set of scalars αi
(w) defined by the relation

where

This is easily done if we have a relation between the ui and the wi such as (1). We may proceed as



follows:

from which it follows that

The conclusion of the above is that if F is the matrix relating the basis vectors ui and wi, i.e., if w =
Fu, then the components of an arbitrary vector defined on the two bases are related by the expression
α(w) = (Ft)−1α(u), where the αi

(w) are the measure numbers defined on the new wi basis, and the αi
(u)

are the measure numbers defined on the original ui basis.
As an example of the above procedure, consider a two-dimensional space. Let xi be an

orthonormal basis, and let the wi be defined as follows:

These two bases are shown in Fig. 5.8. The inverse of the transpose of the square matrix relating the
two sets of basis vectors is

Now let us consider the vector a1 = 2x1 + 0x1. In other words, a1 is a vector collinear with the x1
basis vector. The components of a1 in terms of the

Figure 5.8 The bases xi and wi.

wi basis are easily found from (6) to be

Thus, we may write a1 = 1w1 + 0w2. The vector is shown in Fig. 5.9. In Fig. 5.9 we have also
indicated a second example, the vector

If we apply (6), we see that



In other words, b1 may also be expressed as
So far, in this section, we have discussed the manner in which an arbitrary vector may be

expressed in terms of different bases and the relations that exist between the measure numbers for the
same vector in the two different reference systems. Now, let us consider the relations that must exist
between two vectors, both of which are defined on the same basis. As before, we shall not require
that the basis be orthonormal. Let the vectors

Figure 5.9 The vectors a1 and b1 defined on the wi basis.

be a1 and b1, and let the basis vectors be ui. We may write

We may view the vector b1 as being derived from the vector a1 by means of a linear transformation.
By this we mean that each of the measure numbers ßi

(u) is related to some or all of the measure
numbers αi

(u) and that the relation is linear; i.e., it does not involve higher-order powers of the αi
(u)

terms. Thus, we may write

This is clearly a set of simultaneous equations which may be expressed in the form of a matrix
equation as

where G(u) is an n × n square matrix. G(u) is frequently referred to as a linear operator or a linear
transformation.

As an example of this type of transformation, consider a two-dimensional space. If we choose
orthonormal basis vectors x1 and x2, and if we desire to rotate a vector a1 through a counterclockwise
angle ϕ to produce a vector b1, then, in terms of the angles shown in Fig. 5.10, we may write



Figure 5.10 An example of a linear transformation.

the equations for the measure numbers ßi as

Similarly, for the αi we have

Substituting in (9) leads to the following expression for the relations between the measure numbers of
the two vectors:

A most important problem in the study of vector spaces is determining what happens to a
transformation such as (8) when we change to some new basis. For example, if we redefine the
vectors a1 and b1 in terms of some new basis vectors wi, such that

and if the two bases are related by (2), i.e., w = Fu, we desire to know what the form of the original
transformation is, i.e., we desire to know the relation between the αi

(w) and the ßi
(w) of (12). From (6)

we see that

If these results are substituted into (8), we see that



Thus we may define a matrix G(w), where

Thus the matrix G(w) specifies the relation between the vectors a1 and b1 as defined on the wi basis. In
other words, the relation between the measure numbers of the two vectors previously expressed by
the matrix G(u) is now expressed by the matrix G(w) defined by (15).

As an example of the above development, consider the vectors a1 and b1 which were used in the
previous example and which are shown in Fig. 5.9. If we use the xi vectors shown in Fig. 5.8 as a
basis, then (11) (where ϕ is the angle between the two vectors a1 and b1) becomes the matrix G(x).
Thus,

This 2×2 matrix specifies the relation between the measure numbers of the two vectors as they are
defined on the xi basis. The F matrix relating the basis xi and the basis wi has already been found in
(7). Therefore we may substitute directly in (15) as follows:

In this section two very important ideas have been presented. They are: (1) the relations among the
various components of a particular vector when this vector is expressed in terms of different bases
and (2) the relations between the measure numbers of two vectors when the basis on which this
relation is specified is changed to some other basis. To emphasize these concepts, Table 5.2, on page
180, presents the general relations derived in this section. Table 5.3 follows the general format of
Table 5.2, but gives the specific numbers relating to the examples and the illustrations of Figs. 5.8 and
5.9. A careful study of the tables is strongly recommended at this point, since future sections of this
chapter will build heavily on this material.

5.5 Linear transformations
In the last section we introduced the concept of a linear transformation. We pointed out that this may
be viewed as an operation in which an arbitrary vector, defined by means of its measure numbers on a
certain set of basis vectors, is transformed into some other vector. In addition, we noted that this type
of operation, which can be expressed by a set of simultaneous equations, can be represented by a
matrix. In general, we will be mainly concerned with nonsingular transformations, i.e.,
transformations whose matrices are nonsingular.



It is easily shown that a linear transformation which is characterized by a nonsingular matrix is
unique; i.e., if a vector a1 is transformed by the matrix F into a vector g1, then there is no possibility
of g1 being the result of the transform F operating on any vector other than a1. To see this, let

where α is the column matrix whose elements are the measure numbers αi of the vector a1 and γ is the
column matrix whose elements are the measure numbers γi of the vector g1. The transformation may
be written

Assume that a vector b1 with measure numbers βi is also transformed by the matrix F into the vector
g1. If this is true we may write

Then, by subtraction,

This matrix equation simply represents a set of homogeneous equations, and Sec. 2.6 tells us that if
the matrix equation is to be satisfied, either the vector whose measure numbers are (γ − β) must equal
zero, or det F must equal zero. Since F is nonsingular, det F ≠ 0; therefore we conclude that b1 can
only be equal to a1, and thus the transformation must be unique. In the remainder of this section we
shall discuss some specific types of linear transformations and their properties.

Of special interest in the theory of linear transformations is a matrix H whose elements are real,
and which is defined by the relation

A matrix of this type, i.e., one whose transpose is equal to its inverse, is called an orthogonal matrix.
Similarly, a transformation represented by such a matrix is called an orthogonal transformation. Let
us investigate some properties of the orthogonal matrix and of the transformation characterized by it.
First of all, H must be square and must possess an inverse; i.e., it must be nonsingular. If we write H
in terms of the elements in its various columns, i.e., if we let Hi be the column matrix whose elements
are those in the ith column of H, then



The matrix Ht can now be represented in terms of the row matrices Hi
t, whose elements are those of

the ith row of Ht. Thus, we can write

Form the matrix product HtH; from the defined property (1), this is the same as forming the matrix
product H−1H = 1. Therefore, from (2) and (3), we see that

In terms of the partitioning indicated in (4), we may write the matrix product HtH, indicating the
separate row and column matrices Hi

t and Hi, respectively. Thus, (4) becomes



From the above we see that the products of the row and column matrices on the main diagonal equal
1, while the off-diagonal products of the row and column matrices equal zero. We may write

This is exactly the relation for a set of orthonormal basis vectors as given by (10) in Sec. 5.3. Thus
we see that an orthogonal matrix has the property that its columns may be thought of as defining the
measure numbers of a set of orthonormal vectors. The same statement may be made with respect to
the rows of an orthogonal matrix. It should be noted here that if the row and column matrices of (6)
are considered to consist of measure numbers, it is necessary that these measure numbers be defined
with respect to an orthonormal basis, since it is only for an orthonormal basis that the matrix product
of (6) represents the scalar product, and it is by means of the scalar product that orthonormal vectors
are defined. The property described above actually forms the necessary and sufficient condition that a
matrix be orthogonal. Thus, we may say that, for a given square matrix composed of real elements to
be orthogonal, it is necessary and sufficient that the elements of the rows (or of the columns) be the
measure numbers of a set of orthonormal vectors.

In Prob. 2.5, it was pointed out that the determinant of the product of two matrices is equal to the
product of the determinants of the individual matrices. In Prob. 2.3, it was shown that the determinant
of a transposed matrix is equal to the determinant of the matrix itself. Since, if H is an orthogonal
transformation, HtH = 1, we conclude that

Since det H must be real, there are only two possible choices for it, namely, +1 or −1. If H is
orthogonal, and if det H = +1, H is called a proper orthogonal transformation (H is sometimes
spoken of as being unimodular). Similarly, if det H = −1, H is referred to as an improper orthogonal
transformation.

An important property of orthogonal transformations concerns the scalar product. Suppose two
vectors a1 and b1 are defined on an orthonormal basis so that a1 is defined by its measure numbers
αi

(1), and b1 is defined by its measure numbers βi
(1). The scalar product a1 · b1 is defined as

If each of the vectors a1 and b1 is now subjected to an orthogonal transformation H, then we may
define

The αi
(2) and the βi

(2) are the measure numbers of the transformed vectors a2 and b2, respectively.
These measure numbers are still defined on the original orthonormal basis. Since, from (7),

it is easy to see that we may write



Thus we see that the scalar product of two vectors is invariant under an orthogonal transformation. As
a special case of this, we may take b1 = a1. Then the scalar product simply gives the square of the
length of the vector a1. Thus we see that the length of a vector is invariant under an orthogonal
transformation. Another special case is of interest: If a1 and b1 are two orthonormal vectors, then
their scalar product is zero, and they are of unit length. Clearly, by the above properties, the vectors
a2 and b2 which result from an orthogonal transformation are also orthonormal. Thus we may say that
an orthogonal transformation transforms a set of orthonormal vectors into another set of orthonormal
vectors.

As an example of an orthogonal transformation, consider the matrix

If the first column is defined on the orthonormal basis xi in Fig. 5.11, these measure numbers define
the vector h1 as indicated. Similarly, the measure numbers of the second column define the vector h2.
Clearly, these vectors are orthonormal. This is a proper orthogonal transformation, since det H = 1. It
is easily established that the length of any vector remains invariant under the transformation and that
the scalar product of any two vectors is unchanged.

The above example illustrates a geometrical significance which can be connected with an
orthogonal transformation. It indicates that this type of transformation is simply the rotation of a
vector around the origin of the coordinate system by an angle ϕ. This is indicated more clearly in the
example of Sec. 5.4, shown in Fig. 5.10, where the vector a1 is transformed into the vector b1 by a
rotation through an angle ϕ. A similar geometrical interpretation is possible in three dimensions, and
the same concept minus the geometrical interpretation applies to the n-dimensional case. In the next
section we shall discuss a more pertinent application of the orthogonal transformation.



Figure 5.11 An example of an orthogonal transformation.

In preceding paragraphs, the properties of an orthogonal transformation have been discussed. It
was pointed out that such a transformation is represented by a matrix with real elements and that, if H
is this matrix, then HtH = 1. In some applications it is desirable not to restrict the matrix to real
elements, but to include the case in which the elements may be complex quantities. We may now
define a matrix M with the property that

In other words, this matrix has the property that

Such a matrix is described as a unitary matrix, and a transformation involving such a matrix is
referred to as a unitary transformation. It is easily shown, following the general procedure used for
the orthogonal transformation, that the necessary and sufficient condition for a matrix to be unitary is
that its columns (or its rows) form a set of orthonormal vectors. The test for orthonormality is, of
course, defined in terms of the scalar product. The definition given for the scalar product of two
vectors defined with real measure numbers must be extended to include the case in which the
elements of the pertinent matrices are complex numbers. For two vectors a1 and b1 where a1 is
defined in terms of some complex measure numbers αi, and b1 is defined in terms of some complex
measure numbers ßi, both specified with respect to an orthonormal basis, we define

It should be noted that, in general, for complex measure numbers, a1 · b1 ≠ b1 · a1. The properties
discussed above for the orthogonal transformation can be easily modified for the unitary case. First,
we may show that the magnitude of det M is unity; that is,

Second, it may be shown that the scalar product of two vectors is invariant under a unitary
transformation. Third, any vectors which are orthonormal before a unitary transformation is applied
will be orthonormal after they have been transformed. For convenience, a comparison between
orthogonal and unitary transformations is given in Table 5.4.

Table 5.4 Orthogonal and unitary transformations



5.6 Eigenvalues and eigenvectors
The preceding sections introduced the concept of linear transformations. We saw how an×n
nonsingular matrix can be considered as a transformation which will transform any vector in an n-
dimensional space into another vector in that space. We also discussed the effect of changing the basis
on which the vectors are defined, and we saw that changing the basis changes the values of the
elements in the matrix, even though the transformation of the vectors themselves is unchanged. The
idea of being able to change the matrix elements while still preserving the exact nature of the
transformation is a challenging one. For example, it would be very useful to be able to choose a basis
in such a way that as many elements of the transformation matrix as possible become zero. This
would yield considerable simplification to the transformation and to the steps actually required in the
process of transforming.

In this section we shall consider a preliminary step in this search for simplification. Let F be an n
× n matrix. Let us define a set of basis vectors xi. Any vector defined on this basis will be
transformed by F into some other vector. Let us see if we can find a very special vector for F to
transform. Specifically, let us see if we can find a vector of such a nature that, after transformation by
F, it becomes a vector whose orientation is the same, but whose magnitude may be different. In other
words, we desire to find a vector that is transformed into itself, or at least into a scalar multiple of
itself, under the transformation F. This may be expressed by an equation. Let a1 be the desired vector.
Its measure numbers, defined on a set of basis vectors xi, will be considered as the quantities ai1. We



shall define A1 as the column matrix whose elements are the ai1. Thus, we may write

If λ is the scalar multiple mentioned above, the desired criterion is

This may be written in the form

The matrix equation (3) represents a set of homogeneous equations. This situation was discussed in
Sec. 2.6, where it was pointed out that a solution will exist only under the conditions

This may be written in terms of the elements of F as

The equation in λ represented by (5) is termed the characteristic equation of F. If we designate the
roots of the characteristic equation by λi, then we may also write (5) as

As an example of finding the characteristic equation, consider the case in which F is a 2×2 matrix.
The characteristic equation is

If F is a higher-order matrix, similar results are easily obtained. We may conclude that, in general, if
F is an n × n matrix, equation (4) produces a polynomial in λ; the degree of this polynomial is n. Thus
we may expect that there are n roots of the polynomial, and thus n values of λ which satisfy (4). For
the present we shall assume that all these values of λ are distinct, i.e., that there are no repeated roots
in the characteristic equation. The values of λ which satisfy (4) are termed the eigenvalues of F.1

As an example of finding the eigenvalues, consider

Then det (F − λ1) = (2 − λ)(2 − λ)− 1 =λ2− 4λ + 3 = 0
Thus we have the eigenvalues λ = 1 and λ = 3.

When the eigenvalues have been determined, it is easy to find a vector a1 which satisfies (2). To do
this, we need only substitute any of the eigenvalues in (3) and solve for the components of a1. In
general, there will be a different solution for each different eigenvalue. Thus, if we characterize F as



an n × n matrix and assume that there are n distinct eigenvalues λi, there will be n vectors ai which
may be found by inserting the various values of λi into (3). The vectors ai are called the eigenvectors
of F.2 In general, the process described above will yield the orientations, but not the magnitudes, of
the ai. Thus, once the vectors have been found, we are free to normalize them to any convenient
lengths. It is usually convenient to normalize the vectors to unit length.

As an example, consider the transformation of (8). Let λ1 = 1, and let the components of a1 be a11
and a21. From (3),

This matrix equation may be written as the two identical equations

Clearly, there are an infinite number of solutions to this equation. For example, we might choose a11 =
1, a21 = −1 as the components of the eigenvector a1 corresponding with the eigenvalue λ1 = 1.
Similarly, for λ2 = 3, if we let the components of a2 be a12 and a22, we see that

This has the solution a12 = a22. Thus we might choose a12 = 1, a22 = 1 as the components of the
eigenvector a2. The above choices for a1 and a2 would not, of course, give us eigenvectors of unit
length; however, if the ai are defined on an orthonormal basis, the magnitude of each of the above
vectors is clearly 2½, and we can easily normalize by dividing each component of the vectors by this
magnitude to produce vectors of unit length.

Let us now derive some properties of the eigenvalues and their corresponding eigenvectors. For
example, let us consider the conditions under which an eigenvalue might be zero. In this case, we
have

Here we see that we have a set of homogeneous equations. Thus, a matrix F can have an eigenvalue
of value zero if and only if F is singular.

Let us now assume that λ is an eigenvalue of a matrix F, and that a1 is an eigenvector with the
column matrix of measure numbers represented by A1. If we premultiply both sides of (2) by F−1, we
see that

From this we see that

Thus we conclude that the eigenvectors of F−l are the same as the eigenvectors of F, but that the



eigenvalues of F−1 are the reciprocals of the eigenvalues of F.
Now suppose that F is a real symmetric matrix with eigenvalues λi and eigenvectors ai, the latter

defined on an orthonormal basis. Let us assume further that the ai have been normalized; i.e., they are
of unit length. We may write

Suppose, for the moment, that we permit the elements of Ai to be complex. If we premultiply both
sides of the above by (Ai*)t, we obtain

Here we have taken advantage of the fact that (Ai*)t Ai = |ai|2 = 1. Since F is real and symmetric,
(F*)t = F. Thus, we may apply Theorem 2 of Sec. 2.9 to show that

If we compare (10) and (11), we see that λi is equal to its own complex conjugate. Clearly, this can
only be true if λi is real. We conclude that the eigenvalues of a real symmetric matrix are real. The
same proof may be applied to the case in which F is a hermitian matrix. Again we conclude that the
eigenvalues of a hermitian matrix are real. The proof is left as an exercise for the reader.

Let us now reconsider (9) for the case in which F is real and symmetric. Since all the λi are real,
the equation can clearly be satisfied if the measure numbers of the ai are restricted to real numbers. In
general, when discussing the eigenvectors of a real symmetric matrix, we will restrict ourselves to
the case in which this is true.

A most important property of eigenvectors of certain types of matrices is orthogonality. For
example, consider a real symmetric matrix F. Let λ1 and λ2 be any two eigenvalues, where λ1 ≠ λ2.
Let a1 and a2 be the associated eigenvectors. In addition, let these vectors be defined on an
orthonormal basis, and let A1 and A2 be the column matrices whose elements are the measure
numbers. We may write

If we premultiply the left equation by A2t and the right equation by A1twe obtain

If we take the transpose of the left equation, we see that

If we compare (12) and (13), we see that

Since the two eigenvalues λ1 and λ2 were specifically chosen unequal, we conclude that A1
tA2 = 0,

i.e., that the eigenvectors are orthogonal. A similar proof may be used to show that the eigenvectors of
a hermitian matrix are orthogonal. The proof is left to the reader as an exercise.



One other case that will be of interest in future work concerns the eigenvalues and eigenvectors of
a nonsymmetric matrix, all of whose elements are real. If F is such a matrix, the characteristic
equation det (F − λ1) = 0 is an equation involving various powers of λ and real coefficients. As a
result of the real property of these coefficients, we know that the values of λ which are the solutions
to this equation will occur in complex-conjugate pairs or will be real. Let us consider two complex-
conjugate eigenvalues λ1 and λ2, where λ2 = λ1*. We may now define two eigenvectors a1 and a2
whose measure numbers are the elements of the column matrices A1 and A2, respectively. These must
satisfy the equations

If we premultiply the equation on the left above by (A2*)t, and the equation on the right by (A1*)t, we
obtain

The terms on the right in each of the above equations include the complex scalar product of the
vectors a1 and a2. It is easily seen that

We may now take the complex conjugates of both sides of the equation on the right in (14). We obtain

Comparing this result with the left equation in (14), we see that

This will only be true if A2 = A1*. We conclude that if F is a real nonsymmetric matrix, the
eigenvalues are real or occur in complex-conjugate pairs. The eigenvectors associated with complex-
conjugate eigenvalues are composed of complex measure numbers which are also complex
conjugates.

At the beginning of this section it was pointed out that transformations of bases might be used to
simplify the form of a given linear transformation. Let us comment briefly on what is meant by the
word “simplification.” We would like to make as many as possible of the elements of the
transformation matrix equal zero. If our original matrix was nonsingular, however, the new matrix
must also remain nonsingular. Therefore the optimum that we can achieve in simplification is to have
one nonzero element in each row and each column, and at the same time to have all the other elements
equal to zero. It will be especially convenient if we place the nonzero elements so that they form the
main diagonal of the matrix. Thus we may say that a nonsingular transformation matrix is in its
simplest form when all its elements are zero except those on the main diagonal; these latter must all
be nonzero. Let us see how eigenvectors may be used to provide this simplification.

In the above paragraphs we have seen that the eigenvectors of a real symmetric matrix form an
orthogonal set of vectors. Thus, they can be used as a basis for the space. This basis has the property
that the matrix of transformation becomes a diagonal matrix. In other words, it has just the property of
simplification that we have been looking for. To see this, consider an arbitrary vector b1 with measure
numbers bi1 defined on an orthonormal basis xi. If B1 is a column matrix whose elements are the



measure numbers bi1, we may write

Now consider a transformation matrix F with eigenvectors ai. Let ßi be the measure numbers of the
vector b1 expressed on the ai basis, and let β be a column matrix whose elements are these measure
numbers. We may write

If the ai are specified by their measure numbers on the original xi basis, and if these are arranged as
elements of the column matrices Ai, then

and

where a is a column matrix whose elements are the vectors ai, and A is an n × n matrix whose
columns are the Ai. We may now equate (15) and (16) and substitute from (18) to obtain

Thus, we see that

If we take the transposes of both sides of the above, we obtain

This may also be written in the summation form:

The latter equation is more easily compared with (20) if it is written in the expanded form:

If two vectors b1 and b2 are related by a transformation matrix F, and if the column matrices of
measure numbers for these vectors are B1 and B2, respectively, then we may write

In the last step in (22), we have taken advantage of the fact that the Ai are the measure numbers of
eigenvectors; thus, applying the transformation F to them has the same effect as multiplying the
measure numbers by the eigenvalues associated with the specific eigenvectors. We may use a matrix
D to remove the summation in (22) by defining this matrix as a diagonal matrix whose elements are
the eigenvalues. Thus,



and (22) becomes

The above will only be true if

Since A is an orthogonal matrix, At = A−1. Thus we may premultiply both sides of (25) by At to obtain

We have now obtained in (26) an additional, very significant result from our study of eigenvectors
and eigenvalues. We see that a real symmetric matrix with distinct eigenvalues (i.e., there are no
repeated roots in the characteristic equation) may be diagonalized by the process indicated in (26).
The diagonalizing matrix simply consists of the normalized eigenvectors. The diagonal matrix that
results consists of the various eigenvalues. This is a most important result.

As an example, consider the matrix F in (8). The normalized eigenvectors a1 and a2 corresponding
with the eigenvalues λ1 = 1 and λ2 = 3 are

We may form the matrix product AtFA directly from these values of A1 and A2. Thus,

We see that the resulting diagonal matrix is composed of the eigenvalues of the original matrix, as
predicted. Note that this method can be used as a check to make certain that the eigenvalues and
eigenvectors of a given real symmetric matrix have been correctly determined. Conclusions similar to
the above apply to the case in which F is a hermitian matrix. In this situation, the matrix A will be
unitary, rather than orthogonal (see Table 5.4).

As we conclude this section, we may note one other interesting property of matrices which
involves the characteristic equation.1 If we consider the characteristic equation for a given matrix
(which, as we have seen, involves an nth-degree polynomial in λ) and replace λ by the matrix itself,
thus producing a matrix equation of the type discussed in Sec. 2.11, the equation is satisfied. In other
words, a matrix satisfies its own characteristic equation. This is clearly a most unusual property. As
an example, consider the matrix F of (8). The characteristic equation for this matrix is λ2 − 4λ + 3 =
0. It is easily verified that



Thus we see that F2 − 4F + 3(1) = 0.

5.7 Quadratic forms
Given a vector a1, defined on an arbitrary basis, with measure numbers αi, we have seen that we may
consider α as a column matrix whose elements are these measure numbers. In addition, we have seen
that the matrix product αtα yields a matrix with only a single element, which we may consider as a
scalar c. Actually, in equation form, this scalar is expressed in terms of the measure numbers as

If the basis vectors are orthonormal, the scalar c of (1) gives the magnitude squared of the vector a1.
In this section, however, we shall not be concerned with the length of a vector, but with some more
general properties of this type of a transformation; therefore we shall not restrict ourselves to the
case in which the basis is orthonormal.

A relation similar to that of (1) can be written, which also involves a square matrix F. Thus we
may define a scalar k by the relation

From the above development, we see that we can also define the resulting scalar k by using
summation notation. There will be n2 terms in the summation. We may write

where, by the double-summation subscript, we simply mean that we let i and j take on all possible
combinations of values between 1 and n. The expressions (2) and (3) are called quadratic forms. A
quadratic form is a special case of a general class of functions which produce scalars as a result of
matrix multiplication. The scalar product which was discussed in Sec. 5.3 is another example of this
type of function. The terms bilinear form and linear functional are also applied to operations similar
to this.1

As an example of a quadratic form, consider the case in which F is a 2×2 matrix. Then



This may be written in the form

Since it is only the sum of the elements f12 and f21 that appears in the formula for the quadratic form,
the original matrix F, where f12 ≠ f21, may be replaced by a symmetric matrix F′, whose elements f′ij
are defined as

without changing the value of the quadratic form. This will also be true for quadratic forms that
involve matrices of higher order. We shall assume, therefore, in future developments, that all square
matrices which define a quadratic form have been first made symmetric. From the above discussion it
should be clear that this can always be done and that it will not change the value of the quadratic
form.

Quadratic forms have considerable physical significance in circuit theory and in systems theory.
For example, if we consider the matrix formulation for the network equations given in (8) of Sec. 3.8,
we may define

Clearly, these are quadratic forms. The one given as (4a) is the instantaneous power dissipated by a
circuit with resistance matrix R and loop currents ij (the currents are, of course, functions of time) the
elements of i. The quadratic form (4b) is the instantaneous value of the energy stored in the inductors
(actually, in the magnetic field associated with the inductors) of a circuit with inductance matrix L
and loop currents ij. The quadratic form (4c) is the instantaneous value of the energy stored in the
capacitors (actually, in the electric field associated with the capacitors) of a circuit with elastance
matrix S and loop currents ij. Similar quadratic forms may be written for a circuit in terms of its
nodal voltages and the G, C, and Γ matrices of equation (12) of Sec. 3.8.1 The reader should note the
similarity of the terms of the quadratic forms (4) with the conventional expressions for the energy
stored in the fields of a single inductor or capacitor.

If we change the basis on which a quadratic form is defined, the representation for the quadratic
form may be considerably simplified. For example, consider the quadratic form

The αi may be considered as measure numbers referred to a set of basis vectors ai. If we now
consider a set of basis vectors bi and measure numbers ßi referred to these basis vectors, then we may
relate the αi and the ßi by a nonsingular transformation M, where



Our quadratic form of (5) may now be expressed as

Thus we see that, with respect to the new basis, the matrix of the quadratic form is now MtFM. This
implies that if we choose our new basis vectors bi correctly, and thus specify the proper matrix M,
we may be able to take a matrix of a quadratic form such as F in (5) and produce a simplified matrix
of a quadratic form MtFM. The “simplification” that we would hope to achieve would be setting as
many as possible of the elements of the matrix MtFM equal to zero. The optimum simplification that
we could attain without making MtFM singular would be to make all the elements zero except the
elements on the main diagonal. Clearly, this is just the process that was described in the last section.
In other words, since the matrix of a quadratic form can always be put in symmetrical form, if the
eigenvalues of this matrix are distinct, the matrix M is simply one whose columns are the normalized
eigenvectors, and the resulting quadratic form will have the simplified representation

This is frequently referred to as the canonical form of the quadratic form.
If the matrix of the quadratic form is real and nonsingular (we have already seen that it can always

be made symmetric), there are special cases of interest. One of these is the case in which the
quadratic form will always be greater than zero, regardless of the choice of the vector involved in the
quadratic form. For example, we would expect that this would be the case for (4a), since this
quadratic form represents the instantaneous power dissipated in the resistances of a given network. If
we permit only positive-valued resistors, and if some resistance is present in each loop, then this
power, and thus the quadratic form, will always be a positive quantity. This type of quadratic form is
called a positive-definite quadratic form. The key to the qualities of the matrix of such a quadratic
form is given in (8). In this expression, we see that for any positive or negative values of the measure
numbers ßi of an arbitrary vector b, the quadratic form will always be positive (as long as we
exclude the trivial case in which all the ßi are zero) if the eigenvalues of the matrix are all positive.
Thus we conclude that a real symmetric matrix with positive distinct eigenvalues is the matrix of a
positive-definite quadratic form. We frequently simply say that the matrix is positive definite. An
example is the matrix of (8) of Sec. 5.6. Once we have established this property, since the quadratic
form remains invariant under the transformation indicated in (6), it is obviously always positive, no
matter what basis is used to describe the vectors.

Frequently, in practical applications, we find situations in which some of the eigenvalues are zero.
In this case, the canonical representation of the quadratic form as given in (8) will be either zero or
positive (assuming the remaining eigenvalues are positive) for any nontrivial vector b1. Then we say
that the quadratic form is positive semidefinite. Similarly, we say that the matrix of the quadratic form
is positive semidefinite. Of some-what less interest is the case in which all the eigenvalues are
negative (the quadratic form is then said to be negative definite) and the case in which the
eigenvalues are either negative or zero (the quadratic form is then said to be negative semidefinite).1

5.8 Simultaneous diagonalization of two matrices



In Sec. 5.6 we showed that it was possible to diagonalize a transformation matrix by the proper
choice of the basis on which that transformation was defined. We showed that this could always be
done for a real, symmetric matrix. In this section we shall consider the more interesting and more
important problem of simultaneously diagonalizing two matrices, both of which are real and
symmetric. In addition, we shall see that it is necessary to require that one of these matrices be
positive definite.

As a means of attacking this problem, let us follow the general procedure of Sec. 5.6, where, given
a matrix F, we searched for a vector a1 and a scalar λ such that FA1 = λA1 was satisfied. In this
section we shall consider two matrices C and G and look for vectors ui and scalars λi such that the
effect of applying the transformation G to the vector u1 is the same as applying the transformation C to
the vector u1 multiplied by the scalar λ1. In other words, given G and C, we desire to find u1 and λ
such that

We may write (1) as

We now have a set of homogeneous equations, a situation which was discussed in Sec. 2.6. A solution
will exist only under the conditions

We could, of course, compute a characteristic equation and solve directly for the eigenvalues. Instead,
let us take a different approach. Let us assume that both C and G are real and symmetric, and that in
addition, C is positive definite. We may now, for the moment, concentrate our attention on the
diagonalization of the matrix C. Since it is real and symmetric, we know that there exists an
orthogonal matrix F whose columns contain the measure numbers of the various normalized
eigenvectors of C such that FtCF = M, where M is a diagonal matrix whose elements are the
eigenvalues of C. In addition, since C is positive definite, all these eigenvalues will be positive. Let
these eigenvalues be λi; thus, m11 = λ1, m22 = λ2, etc.
We may write

Let us now define a matrix B, a diagonal matrix with real elements defined by the relationship 
. We may write



It is easy to see that Bt = B, and thus that BtMB = 1. The reason for requiring C to be positive definite
should now be apparent. If the eigenvalues of C were negative, it would be necessary for the elements
of B to be imaginary. The steps in the transformation of C from a real symmetric positive-definite
matrix to the identity matrix may be summarized as follows:

Clearly, since F is nonsingular and B is diagonal, FB will be nonsingular; therefore det FB is not
equal to zero. Since the determinant of a product of matrices is equal to the product of the
determinants, and since, from (3), the determinant of the matrix (G − λC) is zero, we may write

This may also be written in the form

Since G is real and symmetric, BtFtGFB will also be real and symmetric. Thus the situation shown in
(8) is exactly the same as that shown in (4) of Sec. 5.6. We may emphasize this by rewriting (8) as

where H = BtFtGFB. Since H is real and symmetric, we may find eigenvectors and eigenvalues for
this equation. The eigenvalues will be real, and the normalized eigenvectors will form an orthogonal
matrix. Let the normalized eigenvectors be ri, and let the matrix R consist of the measure numbers of
these eigenvectors arranged in column matrices Ri. Then,

If we let A = FBR, we may summarize the above as

Now let us take stock of what we have accomplished. By applying successive transformations to the
two matrices C and G in (1), both of which were real and symmetric, we have reduced one of the
matrices (i.e., C, the one that was positive definite) to the identity matrix, and we have reduced the
other matrix, G, to a diagonal matrix whose elements are the eigenvalues of the matrix H. Thus we
see that, starting with the matrices C and G, we have found a matrix A that simultaneously
diagonalizes G and reduces C to the identity matrix. The steps of the procedure are illustrated in Fig.
5.12.



As an example, consider the two real symmetric matrices

If we first consider C, we find that its eigenvalues µ1 and µ2 are given by the equation (µ − 1.6) (µ −
3.4) − 1.44 = µ2 − 5µ + 4 = 0. Thus µ1 = 1, and µ2 = 4. Since the eigenvalues are both positive, we
see that C is positive definite. It is easy to find the normalized eigenvectors corresponding to these
eigenvalues. They are, respectively, f1 and f2, with measure numbers which are the elements of the
column matrices F1 and F2. Thus,

We may now follow the development of (4) by forming a matrix F using the eigenvectors as columns.
Thus, (4) becomes

The matrix B of (5) is easily found from the eigenvalues µ1 and µ2. It is



Figure 5.12 The simultaneous diagonalization of two matrices.

The final step in transforming C to an identity matrix is to form the product BtMB. As in (6) we see
that

Now let us turn our attention to the matrix G. Since all the preceding transformations are applied to it
as well as to C, we must “catch up” by forming the matrix product BtFtGFB. This is

The matrix on the right above is the H matrix of (9). Solving for the eigenvalues of this matrix, we
have λ1 = −1 and λ2 = 2. The normalized eigenvectors associated with these eigenvalues are r1 and
r2, respectively. Their measure numbers form the column matrices R1 and R2, where



Thus, we may form a matrix R with the measure numbers of the eigenvectors r1 and r2 as columns. We
may now follow the step indicated as (10) in our development; i.e., we may show that RtHR = D.
Using the above values, we may write

We have now found a matrix A which simultaneously diagonalizes the matrix G and reduces C to
the identity matrix. Specifically, A = FBR, and substituting from the above relations we see that

It is easy to show that AtCA = 1 and that AtGA = D. Since the eigenvalues λ1 and λ2 are known, we
can find the eigenvectors of the original equation (1). In other words, associated with each eigenvalue
λi, we can find an eigenvector ui such that the effect of transforming the vector by G is the same as
transforming the vector by C and multiplying by the constant λi. From (2) we may write

When the eigenvalues λ1 = −1 and λ2 = 2 are substituted in the above expression, we find that the two
eigenvectors u1 and u2 may be expressed by the column matrices U1 and U2, where

where c and k are real numbers. It should be noted here that we could have developed the same
knowledge of the eigenvalues and eigenvectors by using (3) to generate an expression in λ. Thus, for
the matrices C and G used in this example, we might have evaluated

The characteristic equation is

Thus we see that the eigenvalues are the same as those previously determined; we may also find the
eigenvectors by this method.

It is important to note that there are both differences and similarities in the results as found by these
two procedures. When we go through the steps which determine the matrix A, where A can
simultaneously be used to diagonalize one matrix (i.e., the real symmetric matrix G) and transform
another into an identity matrix (i.e., the real symmetric positive-definite matrix C), we have in effect
defined a new basis for our n-dimensional space. In terms of this basis, the transformations C and G



become exceedingly simple, and thus any vectors defined in terms of this basis will have extremely
simple relationships existing among their measure numbers. The matrix A can also be viewed as
determining a set of quite special eigenvectors which have been normalized, not to unit length, but to
another quite different normalization. Specifically, if we consider the elements of the columns of A as
being the measure numbers (referred, as usual, to an orthonormal basis), of a set of eigenvectors ai,
then, since AtCA = 1, we see that we have set up orthogonality conditions which require

where the Ai are the column matrices of the matrix A, It is only in the sense indicated by the above
equation that the eigenvectors are orthonormal, since they do not satisfy the formal condition of
orthonormality, i.e.,

It is precisely the information on this normalization that is not provided when we solve directly for
the eigenvalues and eigenvectors. This is readily apparent from a consideration of the two
eigenvectors u1 and u2 of (12). If we specify the magnitudes of these vectors by letting c = 5/40½ and
k = 2/101/2, then these eigenvectors are identical with the ai vectors referred to above. In other words,
they satisfy the normalization requirements of (13). Naturally, any other values of c and k will also
satisfy (1). This procedure actually provides an easy way to find the matrix A or to check a result
found by the other method.

In conclusion, in this section we have seen that it is possible simultaneously to reduce any two real
symmetric matrices, one of which is positive definite. The positive-definite matrix is reduced to the
identity matrix, and the other matrix is reduced to a diagonal matrix whose elements are the
eigenvalues of the matrix equation (1).

5.9 Reciprocal bases
In preceding sections we have introduced some of the more fundamental concepts of linear vector
spaces. Among these, the concept of a basis is quite important, as the basis provides the directional
signposts by means of which we can orient ourselves in an otherwise meaningless n-dimensional
world. Since any set of linearly independent vectors will form a basis (assuming that we have a
sufficient number of them to span the dimensions of the space), there can be several different types of
bases. For example, we have discussed an orthonormal basis, i.e., one characterized by the
relationship

where the xi are the basis vectors. We have seen that there are operations, such as the scalar product,
which are considerably simplified by the use of an orthonormal basis. As another example of a basis,
in Sec. 5.6 it was shown that the eigenvectors of a specific transformation matrix may be used as a
basis for the space. These eigenvectors may or may not be orthogonal, depending on the nature of the
transformation from which they were derived. They will, however, be linearly independent (if the
eigenvalues are distinct), and thus they may be used as a basis. In this section we shall present
another type of basis, the reciprocal basis.



To introduce the concept of a reciprocal basis, let us assume that we already have a set of basis
vectors for our space. We shall not require that these be orthogonal. Let us, however, assume that the
vectors have been normalized to unit length. If we call these vectors ai, then our normalization
requirement is realized by the relation

We may now define a new set of vectors, which we shall call bi, by the relationship

This definition requires that each of the vectors bi will be orthogonal to n − 1 of the ai vectors. For
example, b1 is defined by the relationships

Thus, b1 is orthogonal to the vectors a2, a3, . . ., an, and its scalar product with the vector a1 is unity.
We can think of the vectors a2, a3, . . ., an as forming a hyperplane. The vector b1 will thus be
“perpendicular” to this hyperplane. Note that b1 need not be collinear with a1. Thus, in general, we
may expect to find that the vector b1 will not be of unit length, in order that its scalar product with a1
will be unity.

The relationships given by (4) not only serve to define b1, but they also provide a means of
determining this vector. Let the measure numbers of the vector ai be aki (k = 1, 2, . . ., n). Thus the
measure numbers of the vector a1 will be a11, . . ., an1; the measure numbers of the vector a2 will be
a12, . . ., an2, etc. If these measure numbers are referred to an orthonormal basis, then the relations of
(4) may be written

where the measure numbers of b1 have been taken as b11, b21, . . ., bn1. The above relationships may
be written in matrix form as

Thus we see that we have a set of simultaneous equations which may be solved for the coefficients
bi1. The square matrix of (6) must be nonsingular, since it is formed of the measure numbers of a set of
linearly independent vectors (see Prob. 5.14). Therefore we know that a solution does exist, and thus
that the vector b1 can always be found. The coefficients of the square matrix in (6) are arranged so
that this matrix may be referred to as At; similarly, the column matrix with elements bi1 may be



designated B1.
Thus we may write this equation as

In the same manner, we may solve for the measure numbers of all the other vectors bi in terms of their
measure numbers bki (k = 1, 2, . . ., n) and column matrices Bi. For example, for b2 we need only
solve the matrix equation

The measure numbers of all the vectors bi as defined above will form a matrix B. Thus we see that all
the information on the relations between the vectors ai and bi may be summarized by the matrix
equation

Thus the elements of the B matrix are seen to be the elements of (At)−1, and all the measure numbers
of the bi vectors may be found by computing (At)−1

The vectors bi form a set of linearly independent vectors, since the matrix of their measure numbers
is nonsingular. Thus, they may be used as a basis for the space. They are referred to as the reciprocal
basis. Note that a basis can only be reciprocal with respect to some other basis which is already
defined. In other words, first we must have a basis, then we can find another basis reciprocal to it.

As an example, consider the basis consisting of the vectors a1 and a2 shown in Fig. 5.13. The
measure numbers of these vectors (referred to the orthonormal basis vectors xi) form the columns of
the matrix A. Thus,

From (9) we may find the matrix B. The columns of this matrix are the measure numbers of the
reciprocal basis vectors bi. We see that

The vectors bi are shown in Fig. 5.14. It is easily seen that b1 is orthogonal to a2, and that a1 · b1 = 1.
Similarly, b2 is orthogonal to a1 and a2 · b2 = 1.



Figure 5.13 A set of basis vectors a1.

Figure 5.14 The reciprocal basis vectors bi.

Thus the relations (3) are satisfied, and the vectors bi form a reciprocal basis. We shall use the
reciprocal basis in one of our studies of networks in the next chapter.

5.10 Further reading
Most of the texts listed in Sec. 2.12 have sections on linear vector spaces. The following list gives
some additional references on this subject:
Birkhoff, G., and S. MacLane: “A Survey of Modern Algebra,” The Macmillan Company, New York,

1953.
Gantmacher, F. R.: “The Theory of Matrices,” vol. 1, Chelsea Publishing Company, New York, 1959.
Halmos, P. R.: “Finite-dimensional Vector Spaces,” D. Van Nostrand Company, Inc., Princeton, N.J.,

1958.
Shilov, G. E.: “An Introduction to the Theory of Linear Spaces,” Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1961.

PROBLEMS



5.1 Does the set of all real numbers form a linear vector space? The set of all complex numbers?
What definitions of addition and multiplication are possible if these are vector spaces?
5.2 If the basis vectors for a two-dimensional space are of unit length but at an angle ϕ to each other
(where ϕ λ 90 degrees), find the scalar product of two arbitrary vectors a1 and b1 in terms of their
measure numbers on the indicated basis. Show that the scalar product will be zero when a1 and b1 are
orthogonal.
5.3 If x1 and x2 are a pair of orthonormal basis vectors for a two-dimensional space, construct a new
orthonormal basis from the vectors a1 = 2x1 + x2 and a2 = −x1 − x2. Compute all steps by the formulas
of Sec. 5.3. Draw the resulting orthonormal basis vectors.
5.4 If the vectors xi (i = 1,2,3) form an orthonormal basis for a three-dimensional space, and the
vectors ai have measure numbers defined with respect to this basis, where a1 = (1,1,1), a2 = (1,0,1),
and a3 = (1,1,0), use these vectors to form a new orthonormal basis for the space.
5.5 If the vectors xi (i = 1,2,3) form an orthonormal basis for a three-dimensional space, and the
vectors a1 = (1,1,0), a2 = (1,0,0), and a3 = (0,0,1) are to be used as a basis, find the scalar product of
two arbitrary vectors b1 and c1 in terms of their measure numbers defined on the ai basis.
5.6 If the vectors xi (i = 1,2,3) form an orthonormal basis for a three-dimensional space, find a
transformation which will rotate any vector in the plane formed by vectors x1 and x2 by ϕ degrees, but
will leave a vector collinear with x3 invariant.
5.7 If the vectors ai of Prob. 5.5 are used as a basis for a three-dimensional space, find a
transformation which will rotate any vector in the plane formed by a1 and a2 by 45 degrees, but will
leave a vector at right angles to this plane invariant.
5.8 A transformation defined on the xi basis of Prob. 5.5 is given below. Find the same transformation
defined on the ai basis as given in that problem.

5.9 Show by example that the transformation given below is not unique; i.e., there exists more than
one vector a1 which may be transformed into some specific vector b1. The αi are the measure numbers
of a1, and the ßi are the measure numbers of b1.

5.10 Find the transformation in the two-dimensional space which will rotate a given vector by a
clockwise angle of ϕ degrees. Is this an orthogonal transformation? If so, is it a proper or an improper
one?
5.11 If the vectors a1 and b1 are defined on an orthonormal basis such that a1 = (1,2,3) and b1 =
(0,1,1), find the scalar product a1 · b1. If the measure numbers of each of the vectors are subjected to
the following transformation, find the scalar product of the transformed vectors:



5.12 If the vectors a1, b1, c1, and d1 are defined in terms of their measure numbers on an orthonormal
basis as

prove that any three of these vectors are linearly independent, but that the set of all four of them is
linearly dependent.
5.13 The vectors a1, b1, and c1 are defined in terms of their measure numbers referred to an
orthonormal basis as

For what values of the scalar k will these vectors form a basis for the three-dimensional space?
5.14 Show that a set of n vectors in an n-dimensional space may be tested for linear dependence by
considering the determinant of the matrix formed by their measure numbers. Specifically, show that
the vectors are linearly dependent if and only if the determinant is zero.
5.15 Find the eigenvalues and eigenvectors of the following transformation and show that the
eigenvectors are orthogonal:

5.16 Find the eigenvalues and eigenvectors of the following transformation and show that the
eigenvectors are orthogonal:

5.17 Find the inverse of the transformation given in Prob. 5.15 and show that the eigenvectors of the
inverse matrix are the same as those of the original matrix.
5.18 Find the inverse of the transformation given in Prob. 5.16 and show that the eigenvectors of the
inverse matrix are the same as those of the original matrix.
5.19 Find a transformation S such that StGS is a diagonal matrix, where

5.20 Show that the matrix of Prob. 5.15 satisfies its own characteristic equation.
5.21 Show that the matrix of Prob. 5.16 satisfies its own characteristic equation.



5.22 Find the quadratic form for the instantaneous power dissipated in the resistive network shown in
Fig. P5.22.

Figure P5.22

5.23 Prove that the quadratic form of Prob. 5.22 is positive definite.
5.24 Determine whether the following matrices are positive definite, positive semidefinite, negative
definite, etc.:

5.25 Find a 3×3 nonsymmetric negative-definite matrix.
5.26 Prove that any nonsingular transformation will transform a set of linearly independent vectors
into another set of vectors which will also be linearly independent.
5.27 Find the transformation in a two-dimensional space that transforms the vector a1 = (1,2) into the
vector b1 = (3,1) and also transforms the vector a2 = (1,−1) into the vector b2 = ( ,4)
5.28 Find a transformation which will transform the vector a1 = (1,1,1) into the vector b1 = (0,1,0)
and the vector a2 = (2,−1,0) into the vector b2 = (0,0,1) in a three-dimensional space.
5.29 Is it possible to find a nonsingular transformation that will transform the vectors a1 = (1,0,0), a2
= (0,1,0), and a3 = (0,0,1) into the vectors b1 = (1,2,1), b2 = (0,1,3), and b3 = (2,5,5)? If so, find it. If
not, why not?
5.30 In a three-dimensional space, the vectors a1 = (j,1,0) and a2 = (0,1,j) are defined on an
orthonormal basis and are both orthogonal to a third vector. Find the third vector.
5.31 Prove that the coefficient of λn−1 in (6) of Sec. 5.6 is equal to the sum of the diagonal elements of
the matrix F in (4) of the same section. This sum is called the trace of the matrix.
5.32 Show that, if A is real and nonsingular, the quadratic form Xt(AtA)X is positive definite, where
X is a column matrix.
5.33 Find a transformation that will transform one of the following matrices to the identity matrix and
the other to a diagonal matrix:



5.34 Find a transformation that will transform one of the following matrices to the identity matrix and
the other to a diagonal matrix:

5.35 Find a basis which is reciprocal to the basis vectors a1 = 2x1 + 3x2 and a2= x1 − x2, where x1
and x2 are orthonormal basis vectors.
5.36 Find a basis which is reciprocal to the basis vectors ai, where these latter are defined on an
orthonormal basis in a three-dimensional space and a1 = (1,1,1), a2 = (1,0,1), and a3 = (1,1,0).

1 The terms characteristic values and characteristic roots are also used.
2 The term characteristic vector is also used.
1 This property is stated in a theorem called the Cayley-Hamilton theorem.

1 Actually, the bilinear form is given as αtFβ, and thus we see that it involves the measure numbers of two vectors a1 and b1 (with
measure numbers αi and ßi, respectively), while the quadratic form involves only a single vector. A linear functional, on the other hand,
uses a specific vector b1, defined in terms of its measure numbers ßi, to generate a scalar function of an arbitrary vector a1. The

mechanism by which this scalar function is generated is simply the scalar product; thus we may write f(a1) = βtα, where f(a1) is a linear
functional. See F. E. Hohn, “Elementary Matrix Algebra,” pp. 234-238, The Macmillan Company, New York, 1960; B. Friedman,
“Principles and Techniques of Applied Mathematics,” pp. 19-20, John Wiley & Sons, Inc., New York, 1956.

1 See D. F. Tuttle, Jr., “Network Synthesis,” vol. I, chap. 4, John Wiley & Sons, Inc., New York, 1958.
1 Some additional information on positive-definite matrices may be found in the appendix of L. Weinberg and P. Slepian, Realizability

Conditions on n-port Networks, IRE Trans. on Circuit Theory, vol. CT-5, no. 3, pp. 220-221, September, 1958.



Chapter 6 Circuit-theory applications of linear vector spaces

6.1 Introduction
In the last chapter, the concept of linear vector spaces was introduced, and a number of the properties
of these spaces were developed. Let us consider once more the example which was given in Sec. 5.1.
It was pointed out there that we could use the values of a set of variables associated with a given
network to determine a point in a linear vector space. In the example network shown in Fig. 5.1, there
were two such variables, the two nodal voltages. Thus, a two-dimensional space was necessary for
the representation of these variables. If we had selected an example network with n nodal voltages,
then an n-dimensional space would have been necessary for the representation. Note that the
variables of the network are, in general, functions of time. The exact time dependence, of course, will
depend on the network components as well as on the values of the currents which might be fed into
the nodes from external current generators. The space formed by the set of n such time-varying
quantities is sometimes referred to as a configuration space. The concept of such a space is well
known in many fields, for example, in the field of classical mechanics.1

The network of Fig. 5.1 might have been made more complicated. For example, it might have
included capacitors as well as resistors. In this case, specifying only the nodal voltages would not
completely formulate the conditions existing in the network at a given instant of time. It would be
necessary to specify not only the voltage variables, but, in addition, their first derivatives. Thus, if we
were considering a network with n nodes, it would be necessary to specify n voltages and n
derivatives of these voltages. Then the representation of the given network would require a space
whose dimensionality was twice as great, namely, 2n. Such a space, i.e., one formed by a set of n
time-varying quantities and the n first derivatives of these quantities, is sometimes referred to as a
phase space.

At this point it would seem that a further extension of our network could be made so that we might
be concerned not only with the variables and their first derivatives, but also with the integrals of the
variables. This would be the case if we were dealing with a network composed of resistors,
capacitors, and inductors. If we differentiated all the variables to eliminate the integrals, then it
would appear as if we might have to consider a third type of space, namely, one involving variables,
their first derivatives, and their second derivatives. Actually, we shall see in a later part of this
chapter that such a situation can be avoided by an appropriate redefinition of the variables, and thus
we shall only concern ourselves with spaces which involve variables and their first derivatives,
namely, phase spaces.

In this chapter we shall discuss the representation of various types of networks in linear vector
spaces. To emphasize the concepts, we shall first restrict our attention to networks consisting of only
two types of elements. Thus we shall study separately the RC network, the RL network, and the LC
network. Finally, we shall discuss the more difficult concept of a network which contains all three
types of elements.

6.2 RC-network analysis



As a simple example of the application of the concepts of linear vector spaces to network theory, let
us consider a network composed only of resistors and capacitors. We shall restrict ourselves to the
case in which all the elements are passive, i.e., positive-valued. We may assume that the network is
of arbitrary complexity, i.e., that it has n nodes. The nodal equations may be written as1

In these equations gij for i = j is the total conductance connected to the ith node, and gij for i ≠ j is the
mutual conductance between nodes i and j with an appropriate positive or negative sign. Similar
statements hold for the cij elements. These elements are all real constants. The vi(t) are the voltage
variables, and the v'i(t) are the derivatives of these voltage variables. We have assumed that all the
driving sources are zero, as is evidenced by the zeros on the right sides of the equations. This set of
equations may also, of course, be written in matrix form as

If we now define the initial conditions of the voltage variables, i.e., if we define the vi(0), all
conditions on the network are specified, and we should be able to find the behavior of the vi(t). Since
the excitation to the network has been assumed zero, the behavior of the vi(t) in this case is frequently
referred to as the free oscillation or the natural behavior of the circuit. We assume, of course, that not
all the vi(0) are zero. It is also appropriate to consider the resulting vi(t) as the transient response of
the network, since the establishment of the initial conditions at t = 0 may be considered as the
excitation of the network by means of impulses of current at the various nodes.

Let us now investigate (2) from the viewpoint of linear vector spaces. We shall begin by defining
an orthonormal set of basis vectors xi. With respect to each of these basis vectors, we shall assign a
measure number vi. Note that here we diverge slightly from our convention of using lowercase roman
letters with a single subscript as vectors. For the remainder of this section, the vi will be considered
as scalars. These measure numbers are the values of the voltages at the various nodes of the network.
Since these voltages are functions of time, we may more appropriately describe the measure numbers
as vi(t). For simplicity of representation, however, we shall not always include the functional
notation, i.e., the “(t)” in our discussion.

In the n-dimensional space, we may now consider an n-dimensional vector  which represents the
totality of information concerning the n nodal voltages at any given instant of time. Obviously,  is
also a function of time, i.e., we may refer to it as (t). If we define

and repeat for emphasis that the xi are vectors and the vi(t) are the scalar nodal voltages which are
functions of time, then we may write

If we follow the development of Sec. 5.8, we know that there exists a matrix, which we shall



designate as A, such that

In addition, we know that the measure numbers of the columns of A, referred to the basis vectors xi on
which the matrices C and G are defined, determine the eigenvectors of (2). To clarify the future
development, it is very important to note here that there are two ways in which we may refer to these
eigenvectors. We may consider that the matrix A is composed of individual column matrices which
we shall refer to as the Ai.
Thus,

and

In other words, the Ai contain the measure numbers, referred to the xi basis, that determine the ith
eigenvector. Thus, the Ai serve to locate the eigenvectors once we know the details of the xi basis. A
different viewpoint will also be useful, i.e., referring to the eigenvectors by a literal symbol, rather
than by a group of measure numbers. For this we shall use lowercase letters with a single subscript
such as ai. The relation between the ai and the Ai is given by the equations

Thus we may write

We may now express our vector in terms of the new basis vectors ai by using a new set of measure
numbers θi. Since the vector  may change with time, these real numbers are functions of time, just as
the scalars vi are functions of time. The vector  may be written

where

If we substitute (8) in (9), we obtain



When this equation is compared with (4), we see that

This may also be written

Since the elements vi and θi are functions of time, while the measure numbers of A are constants, we
may differentiate both sides of the above equation to obtain

Now let us substitute (13) and (14) in (2). We obtain

If we premultiply both sides of the above by At, we obtain

This may be simplified, by the relations (5), to

Thus we see that, in terms of the θi measure numbers, i.e., those that relate to the eigenvector basis,
our system of differential equations given in (1) becomes a collection of quite straightforward
differential equations which may be written individually as

We need now only find the initial conditions associated with the various variables θi(t), i.e., we need
only find the values of the various θi(0). We may solve for these in the form of a column matrix,
assuming that the initial values of the various nodal voltages, i.e., the vi(0), are known. From (13) we
have

Since we have assumed that v(0) is known, we would like to solve (19) for θ(0). This can be done
very simply by first premultiplying both sides by C. This yields

Now premultiply both sides of the above equation by At. Since AtCA = 1, we obtain

This points out the interesting fact that

This is a clear reminder of the fact that A is not orthogonal, as was pointed out in Sec. 5.8.
The final step in our development in this section will make use of a result from Sec. 2.11. We



showed there that we can solve a matrix differential equation of the type

by defining an exponential to a matrix power. Thus, in terms of the initial conditions θ(0), our solution
was

This is precisely the situation that applies to the development of this section. From (17) we have

In terms of the initial conditions θ(0), our solution is

Since D is a diagonal matrix, the matrix equation above simply represents a collection of individual
equations, i.e., we may also write (22) as

Thus, in terms of the measure numbers of our eigenvectors, we have found the solution for the time
behavior of an n-node passive RC network. We would, of course, like this answer to be expressed in
terms of the nodal voltages and their time variation. To do this, we need only convert the θi(t) of (23)
back to the measure numbers vi(t) by means of (13).

It seems almost impossible to overemphasize the fundamental importance of the ideas and concepts
of this section. The most significant conclusion lies in the equations (23). Since each of the time
functions θi(t) is a measure of the significance of a specific eigenvector ai in determining all the nodal
voltages in the network (and thus determining the vector ), and since each θi(t) has a specific
exponential behavior determined by the eigenvalue λi associated with that eigenvector, we see that the
eigenvalues are the natural frequencies of the network; i.e., they have the dimensions of reciprocal
time. Any oscillation of a given RC network as it responds to an arbitrary set of initial conditions can
consist only of these natural frequencies and no others. Many powerful concepts and much fruitful
interpretation of network behavior is based explicitly on this fundamental concept. In the next section,
we shall present a simple example to illustrate the ideas and techniques developed in this section.

6.3 An example of RC-network analysis
In this section we shall go through the procedure explained in the last section for a simple RC
network. The reader is encouraged (and exhorted) to try the example himself, without additional
reference to the material in this section, by following the steps in the last section. In this way, he may
check his progress by comparing his results at each step with those in the text. The experience and
confidence built up by this type of study are invaluable, and the techniques we are covering here are
easily of enough importance to merit the additional labor.

The network we shall analyze is shown in Fig. 6.1. The nodal voltages v1 and v2 of the figure are
measured as positive with respect to the indicated ground, and the values of the elements are given in



mhos and farads. The nodal equations in the time domain are

These may be written in matrix form as

Since the network of Fig. 6.1 has two nodal voltages, we may represent it in a two-dimensional space
such as that shown in Fig. 6.2. The choice of an example with such a small number of nodes will
permit us to follow closely the geometrical significance of the various steps of the development. This
is quite essential for a physical understanding of the process we are following. Once the student has
developed familiarity and confidence with these techniques, he will find that their extension to higher
dimensions follows quite easily.

In Fig. 6.2 we have indicated an orthonormal basis with vectors x1 and x2. The measure numbers
v1(t) and v2(t) referred to these basis vectors thus define a point in the plane. For example, if we have
a network condition at t = 0 such that v1(0) = 2 and v2(0) = 1, then, in accordance with the notation of
the previous section, we have defined a voltage vector (0), where

Figure 6.1 An RC network with two voltage variables.

Figure 6.2 The orthonormal basis vectors xi.



The vector (0) is shown in Fig. 6.3.
Now let us return to a consideration of the matrices of (2). The C matrix is already in diagonal

form. It may be reduced to the identity matrix by the transformation

Figure 6.3 The voltage vector representing the initial conditions of the network in Fig. 6.1.

The same transformation may be applied to the G matrix to produce

The eigenvalues may now be found from the equation

If we substitute from (4) in the above, we obtain

The characteristic equation is easily found to be

Thus we may define λ1 = 5 and λ2 = 2. Let us also define Ri as a column matrix composed of the
measure numbers which represent an eigenvector of the matrix BtGB. For λ1 = 5, we have

Thus R1 must have its elements satisfy the relation r11 = –½r21. If we normalize this vector to unit
length, we have

Similarly, for the eigenvector λ2 = 2 we have



Thus R2 must have its elements satisfy the relation r12 = (½)½r22 If we normalize this vector to unit
length, we have

Note that the vectors R1 and R2 are orthogonal. Since they are the eigenvectors of the real symmetric
matrix BtGB, this is as it should be.

The matrix A which simultaneously diagonalizes G and converts C to the unity matrix may now be
computed. We see that A = BR.

Figure 6.4 The eigenvector basis ai for the network in Fig. 6.1.

Thus we have found two eigenvectors defined by column matrices of measure numbers A1 and A2,
defined in terms of their measure numbers on the xi basis, where

These eigenvectors will be referred to as a1 and a2, following the discussion of the previous section.
It should be noted that they are neither of unit length nor orthogonal. However, they are linearly
independent, and thus they do provide a basis for our two-dimensional space. They are shown in Fig.
6.4.

Since the ai provide a basis for the space, any arbitrary vector such as  may be written in terms of
them. Thus we may express the nodal voltages in terms of the vectors ai, using measure numbers θi for
this purpose. These measure numbers are functions of time and have the solution given in (23) of Sec.
6.2. Suppose, for example, our initial conditions on the network are v1(0) = 2, v2(0) = 1, as shown in
Fig. 6.3. Thus we define a column matrix v(0), where



The θi(0) are easily found from (20) of Sec. 6.2, i.e., θ(0) = AtCv(0).

Figure 6.5 The initial condition voltage vector represented on the eigenvector basis.

In Fig. 6.5 we have indicated how −0.578 units of vector a1 and 1.632 units of vector a2 add to give
the vector (0). This latter vector may also be expressed as 2 units of x1 and 1 unit of x2. Thus we are
able to express our initial conditions for the network in terms of either basis. Now let us see what
happens to those initial conditions as time progresses.

At this point we illustrate the most important concept of our whole example. θ1(t) is a measure
number referred to eigenvector a1. Therefore, since λ1 is the eigenvalue for the eigenvector a1, the
time behavior of θ1(t) is determined only by this eigenvalue [and, of course, by the value of θ1(0)],
and by no other factor. Similar statements apply to θ2(t) with reference to λ2. Thus, for this example,
the relations (23) of Sec. 6.2 become

In Fig. 6.6, we have plotted various values of θ1(t) and θ2(t) along the coordinate system formed by
vectors a1 and a2. In addition, we have combined the information from these two time functions to
indicate the position of (t) for these same values of time. The values of vi(t) and v2(t) may easily be
visualized from the projections of (t) on x1 and x2. They may also be computed directly from (13) of



Sec. 6.2, which tells us that v = Aθ. Thus we see that

Figure 6.6 The voltage vector as a function of time.

After multiplication, we obtain

An examination of the equations (16) and (17) further illustrates how a consideration of the
eigenvectors separates the natural frequencies of a network and allows us to associate a specific
vector with a specific natural frequency.

From a consideration of Fig. 6.6, we can gain considerable knowledge about the behavior of the
simple circuit with which we started this example. We might notice, for example, that the vector 
which describes the over-all state of the network has a tendency to line itself up with the eigenvector
a2 as the initial charges placed on the network are dissipated. It should be clear that, since the time
constant associated with this eigenvector is larger than the one associated with the other eigenvector,
this will normally be the case. Thus we might be led to call this natural frequency the dominant one.
There is considerable interest in the study of networks and systems in terms of their dominant
behavior. Note, however, that considerations based upon the dominance of one or the other time
constant might be considerably in error if the initial conditions were such as to have (t) initially
positioned almost entirely in the direction of the eigenvector a1. In this case, the effect of the
nondominant time constant could easily be the most significant one. The figure also shows us how
easy it might be to excite only one of the natural frequencies of the circuit. For example, any



distribution of initial voltages at the two nodes such that v1(0) were equal to v2(0) would place (0)
directly in line with the eigenvector a2. Thus θ1(0) would be zero, and only the eigenvalue associated
with a2 would enter into the resulting time solution for v1(t) and v2(t). Many other interesting
observations can be made with respect to this circuit. For example, we might be interested in
determining how we could most rapidly introduce a certain amount of charge into the circuit. The
conclusion, of course, would be to apportion this charge between the two nodes in such a manner that
only the eigenvector whose eigenvalue had the shortest time constant was excited. The ratio of
voltages that must be maintained at the two nodes in order to do this is readily apparent from the
figure.

The purpose of this section has been to illustrate to the student the tremendous amount of physical
introspection that can be gained concerning a network through the use of the concepts of linear vector
spaces. A very simple example has been worked through at a somewhat leisurely pace to ensure that
the reader has the opportunity to fix the steps and their implications firmly in his mind. At this time,
further study of Sec. 6.2 is heartily suggested. A repetition of the general treatment given there, now
that a numerical example has been seen, will greatly aid the student in assimilating the concepts that
have been presented. Needless to say, this will smooth his way through the sections that follow.

6.4 LC-network analysis
This section will follow a procedure quite similar to that of Sec. 6.2. The network we shall explore
here, however, will be the lossless network composed only of ideal inductors and capacitors.
Actually, we might also have devoted a section to a discussion of the RL network. The development
for that type of network, however (if we use loop equations), follows identically the procedure used
for the RC case, the only exception being that the variables are the loop currents rather than the nodal
voltages of Sec. 6.2.

In treating the LC network, it is convenient to pick a variable that enters into the equation only in
the form of derivatives. Obviously, this is not possible if we choose our variable with the dimensions
of either voltage or current, since the LC elements will require the integrals of one of these variables,
as well as the derivatives. To avoid this, we shall choose charge as our variable and write our
equations on a loop basis. Thus, the typical loop, rather than involving terms such as li' + s∫i dt
(where s is the elastance or reciprocal capacitance), will involve terms such as lq" + sq. For an n-
loop network without driving sources, we will have a series of equations

The lij represent the various total- and mutual-inductance values, and the sij represent the various
total- and mutual-elastance values. The qi(t) are the integrals of current in the various loops, and the
qi"(t) are the second derivatives of the qi with respect to time. In matrix form we may write

Just as in Sec. 6.2, we may consider the qi as measure numbers referred to an orthonormal set of basis
vectors xi. If we define (t) as a vector representing the values of all the charges at a given instant of



time, then

From Sec. 5.8, we know that it is possible to find a matrix A such that

If we partition A into column matrices, we may call these submatrices Ai. Each of these column
matrices then contains the measure numbers of an eigenvector ai, and we may express the
relationships between the ai and the xi by the matrix equation

Since our vector  may now be expressed in terms of the eigenvectors ai using measure numbers θi(t),
we may write

From the above equations it is easy to see that

The elements of the matrix A are real and constant; therefore

We may substitute (7) and (8) into our original matrix equation (2) to obtain

If we premultiply both sides of (9) by At, we obtain

The relations (4) allow us to simplify this to

Thus we see that, in terms of the θi measure numbers, i.e., the ones that relate to the eigenvector basis,
our original system of differential equations becomes a quite straightforward collection of second-
order differential equations. These may be written

Two sets of initial conditions are required for the solution of these, namely, the conditions θi(0) and
the conditions θi'(0). We shall assume that the qi(0) and the qi'(0) are known. Then it is easy to see
from (4) and (7) that



Since the matrices L and S are positive definite, real, and symmetric, the eigenvalues λi will be real
and positive. If we define

then the ωi are real, and the solutions of equations (12) are easily found to be

From the above, we see that with each eigenvector ai we have associated a certain sinusoidal
behavior of the related measure number θi. This measure number has one and only one frequency
component associated with it. In addition to the frequency, there is, of course, a phase angle
determined by the relative magnitudes of θi(0) and θi'(0)/wi. By way of contrast, the measure numbers
qi and the mesh currents that are related to them will have, in general, all the frequencies
simultaneously present in their time behavior.

As an example, consider the two-loop network shown in Fig. 6.7. The loop currents i1 and i2 have
been chosen in such a direction that the off-diagonal elements in the L and S matrices are positive. No
voltage sources are shown, since these have been assumed equal to zero. Thus all the excitation of the
network comes from the initial conditions of charge on the capacitors and the derivative of charge,
i.e., current, flowing in the inductors. In terms of the qi variables, we may write the matrix equation
Lq” + Sq = 0 for this circuit as

We may use the techniques of Sec. 5.8 to find a matrix A such that the relations of (4) are satisfied.
We see that

The eigenvalues are found from AtSA = D. We see that

Thus our eigenvalues are λ1 = , and λ2 = 1. The sinusoidal solutions for the measure number θ1 will
thus have only a sinusoidal component with a frequency of ( )½ radians per second, and the measure
number θ2 will have only a sinusoidal component with a frequency of 1 radian per second; i.e., we
may write



Figure 6.7 A two-loop LC network.

The initial conditions of the θi may be found from (13). Suppose, for example, that there was an initial
charge of 1 coulomb in each loop, i.e., 1 amp had flowed for 1 second in each loop. The column
matrix q(0) would then be

If we assume that the qi'(0) are zero, i.e., that there is no initial current flowing in the inductors, then
θ(0) is

and θ'(0) is zero. The values of θi(t) may be found from (18).

As a final step, we may apply (7) to find our original variables, the qi. We see that

Therefore our solution to the circuit of Fig. 6.7 with the stated initial conditions is

Just as in the case of our RC analysis, we can easily excite any one of the natural frequencies of our
LC network by simply choosing the initial conditions correctly. Thus, if it is desired to excite only the
natural frequency which is the square root of the first eigenvalue, we need only establish initial
conditions on the qi(0) and the qi'(0) so that θ1(0) and/or θ1'(0) are not zero, but that all the other θi(0)
and θi'(0) are zero. In the case of our example, from (7) we see that



and

are conditions which will excite only the sinusoidal frequency of 1/3½radians per second. This will
be true for all values of the real constants k1 = ( )½ and k2 = 0. For example, we might choose and
From (24) and (25), this requires the placing of initial loop charges q1(0) = 1 and q2(0) = —½. Since
the capacitances are of unit value, these represent the total initial voltages placed on the capacitors in
the first and second loops, respectively.

In this section we have adopted the same general procedure as that which was followed in Sec.
6.2. In the earlier section, we analyzed an RC network from the viewpoint of the eigenvectors of a
linear vector space. In this section we analyzed an LC network from the viewpoint of its eigenvalues.
Actually, in this section, we have not applied the formalism of the matrix solution of differential
equations which was introduced in Sec. 2.11. In a following section, we shall see how a more general
specification of the problem may be adopted which will treat not only the RC and LC cases, but also
the RLC case.

6.5 Analysis in the frequency domain
In the preceding sections of this chapter we studied the behavior of RC and LC networks from a
consideration of their eigenvalues and eigenvectors. The analysis was made in the time domain, i.e.,
we dealt with variables which were functions of time. It is easy to see that this analysis could also
have been made in the complex frequency domain. This section will discuss the analysis of general
RC and LC networks in the frequency domain.

First let us consider the RC network. The basic analysis of Sec. 6.2 showed that if the network
equations were written on a node basis, they would form a set of equations which could be written in
matrix form as

The column matrix v represents the scalar nodal voltages which are functions of time. The column
matrix v' represents the time derivatives of these quantities. The equation assumes that all the
excitation of the network comes from initial conditions alone. These initial conditions may also be
represented as the column matrix v(0). If we take the Laplace transform of the voltage variables, each
of the elements in the column matrices v and v' is transformed; therefore, we can write a new column
matrix which we shall denote as V. The elements of this matrix will be functions of the complex
frequency variable p. It should be clear that

where the arrow indicates transformation by means of the Laplace transform. The relations of (1) may



now be written in their transformed form as the matrix equation

We may now consider the various Vi(p), i.e., the elements of the column matrix V, as measure
numbers defined with respect to a set of orthonormal basis vectors xi. Thus, we have defined a vector

(p) such that

We may now follow the procedure of Sec. 6.2 to find a matrix A that will simultaneously reduce C to
the identity matrix and diagonalize G. Since the matrices C and G have not been changed by the
Laplace transformation, the matrix A will have the same elements as it did in Sec. 6.2. We thus have
the relationships

If we now define eigenvectors whose measure numbers are the elements of the columns of the matrix
A, we may call these eigenvectors the ai and use them to form a new basis for our space. The measure
numbers that relate to these eigenvectors may be considered as θi(t), with transforms i(p). Thus we
may define our vector (p) as

where  is the column matrix whose elements are the i(p). Since the ai are related to the xi by the
matrix A, i.e., since

and since, in the time domain,

we see that the initial-condition matrix v(0) in the time domain is related to θ(0) by the expression

Similarly, we may relate the Vi(p) and the i(p) in the frequency domain by

If these relations are substituted in (3), we obtain

If we premultiply both sides of the above equation by At, we obtain

Substituting the relations (5), we obtain



Thus we have a set of equations for the i(p) in the frequency domain; they are:

The inverse transforms of these are easily seen to be the results of (23) of Sec. 6.2. These solutions
may, of course, be recombined in either the time or the frequency domain, using (7) or (9), to find
either the column matrix v(t) or the column matrix V(p), thus specifying the behavior of the nodal
voltages. The student should work out a physical example of the details of this analysis using the
circuit given in Fig. 6.1.

A similar procedure may be followed for the LC network. The reader should review Sec. 6.4 and
the development given there for the LC network. We may begin with the matrix equation for the case
in which there are no external sources connected to the network. For this case, we have

The variables qi''(t) and qi(t) are given in matrix form as q" and q, respectively. If we apply the
Laplace transform to these quantities, we obtain

The relations of (13) may now be written in terms of the transformed variables as

The Qi(p) may be considered as measure numbers defined with respect to a set of orthonormal basis
vectors xi. Thus, we have defined a vector (p) such that

A matrix A may be found that satisfies the relationships

The columns of A with their measure numbers may be referred to as the Ai, and, on the xi basis, they
define the eigenvectors ai. We may define the vector (p) by means of measure numbers Θi(p) with
respect to the eigenvectors ai. Thus we have

Since



it is easy to see that

If these relations are substituted in (15), we obtain

If we premultiply both sides of (21) by At, we obtain

The relations of (17) may be substituted in (22) to obtain

Thus, instead of solving a set of equations, each containing the n variables Qi(p), we need only solve
a set of equations, each of which contains a single variable Θi(p). The solutions are

The natural frequencies of the network are the poles of the above expressions. The actual time
behavior of the loop charges may be found either by recombining the above terms to find the Qi(p)
and then taking the inverse transform, or by taking the inverse transform of the Θi(p) and recombining
the time functions θi(t) to find the qi(t). The student should follow through the steps of the example of
Sec. 6.4 in the frequency domain to illustrate this procedure.

In this section we have shown that the development of the RC and LC networks (the same
statements also apply to the RL case) may be considered in the frequency domain as well as in the
time domain. The analysis of the networks in terms of their eigenvectors places the natural
frequencies clearly in evidence in both cases, and the same conclusions may be drawn with respect to
network performance in either domain.

6.6 Driving functions
In the last section it was shown that the eigenvalue approach to the solution of two-type-element
networks could be applied in the frequency domain as well as in the time domain. The frequency-
domain approach is especially easy to extend to the more practical case in which we may be
concerned, not only with initial conditions in the network, but also with the effects of various inputs
to the nodes or the loops of the network. In this section we shall discuss this extension, i.e., the effect
of external driving functions applied to the network.

Let us first consider the RC network. In the time domain we may write the nodal equations for this
network, in the form of a matrix equation, as



The nodal voltages vi(t) have been listed as the elements of the column matrix v, and their time
derivatives as the elements of the column matrix v'. The input currents ii(t) to the various nodes have
been listed as the elements of the column matrix i. The G and C matrices are the same as those
discussed in Secs. 6.2 and 6.3 and are composed of time-invariant elements.

We may apply the usual Laplace-transformation techniques to the variables vi(t) and ii(t),
generating the variables Vi(p) and Ii(p). Note that the column matrix whose elements are the Ii(p) will
be referred to as I. The symbol 1 will be used for the identity matrix. The transform of the matrix
equation (1) is

We may now find a matrix A which satisfies the relations

If we change the basis on which the vector (p) of (4) of Sec. 6.5 is defined, we may define the
column matrices Θ(p) and θ(0) by the relations

Equation (2) now becomes

Premultiplying both sides of (5) by At, we obtain

The relations of (3) may be substituted into this equation to simplify it to the form

We may now define a set of excitations ßi(p), the elements of a column matrix β defined by the
relation

The solution of (7) may now be expressed as

This is simply a set of equations in the individual variables Θi(p). These equations are



The form of (10) tells us that each of the variables Θi(p) is the result of some initial condition θi(0)
(in the time domain) and some forcing function ßi(p). The latter will usually be a rational function
with numerator and denominator polynomials with real coefficients. Thus, Θi(p) will not only have a
pole resulting from the natural frequency at −λi associated with its role as an eigenvector, but it will
also have poles which are the result of the specific form of the forcing function. In addition, a forcing
function of any given time behavior can be used to excite only a single natural frequency of the
network by proper apportionment of the magnitude of this excitation among the various nodes of the
network. The proper apportionment is determined by (8), which may be rewritten as

From (3) we see that A−1 = AtC; therefore, the above equation may be written as

Another insight into the behavior of the network may be found by considering the inverse
transformation of the equations (10), which become

The initial conditions thus have the effect of impulse functions and produce the first right-hand term in
each of the above expressions. The inverse transformation of the second right-hand term will, in
general, have the time behavior represented, not only by the inverse transformation of the poles of
ßi(p), but by the natural frequency of the particular eigenvector as well.

It is important to realize here that an arbitrary excitation of almost any time variation applied at any
of the nodes of a network will, in general, excite all the natural frequencies of the network. The
resulting time variation of the nodal voltages will thus be a function of all the natural frequencies of
the network, as well as the time variation of the input. Equations (10), however, tell us that it is
possible to apply an excitation of arbitrary time variation to a network and still excite only a single
natural frequency of the network itself. Thus, the resulting time variation of the nodal voltages in this
case will be a function of the excitation and only one of the natural frequencies of the network. We
may summarize all this by simply saying that regardless of our method of excitation, whether it be
impulse functions (i.e., initial conditions) or driving functions, we may still exert complete control
over the number of natural frequencies of the network which are excited.

As an example of the use of driving functions in the excitation of networks, let us consider the RC
network which was used as an example in Sec. 6.3. It is shown in Fig. 6.8. Driving sources in the
form of current generators have been added at each of the nodes of this network. The transformed
network equations corresponding with (2) are



Figure 6.8 An RC network with driving sources.

The matrix A of (3) was found in (11) in Sec. 6.3 for this network. It is

The relations between I(p) and β(p) may be found from (8) and (12). We see that

and

The eigenvalues associated with the eigenvectors whose measure numbers are the columns of A are 5
and 2. Thus, the set of equations (10) becomes, for this case,

Suppose it is desired to excite only the first natural frequency of the network by applying step inputs
of current at the two nodes. We shall assume that the network is initially at rest, i.e., that θ1(0) and
θ2(0) are both zero. To excite the first natural frequency only, we must have ß1(p) = k/p and ß2(p) = 0.
The nodal currents can be found from (15):

If we let k = 3½, then the required currents are I1(p) = −1/p and I2(p) = 1/p. The solutions for the
Θi(p) are



Therefore,

where u(t) is the unit step function, i.e., u(t) = 0, t 0; u(t) = 1, t > 0.

Figure 6.9 The voltage vector as a function of time.

The actual nodal voltages are easily found from the relation v = Aθ; thus

It is easily seen from the above that the vector (t), describing the nodal voltages of the network,
starts at the origin, i.e., (0) = 0x1 + 0x2, and proceeds outward along the a1 eigenvector of Fig. 6.4.
The position of the vector (t) as a function of time is shown in Fig. 6.9.

The procedure illustrated above may be easily followed to show that a set of nodal currents I1(p) =
1/p and I2(p) = 2/p will result in only the second natural frequency being excited. The vector (t)
will again start at the origin, but in this case it will follow along the vector a2 of Fig. 6.4, finally
coming to rest at a position corresponding with vi = 1 and v2. = 1. This is the steady-state condition.
Thus we may write (∞) = 1x1 + 1x2.

Although the discussion and example of this section have been given for an RC network, the same
formalism applies directly to driving functions in the form of voltage sources applied in the loops of
an RL network, and, with minor variations, the same technique may be applied to the LC case. We
shall leave the illustration of these to the student as an exercise. It is perhaps not amiss, however, to
point out here that the basic principle which has been applied in this section is superposition. Thus,
(10) predicates the solution to the network equations as the superposition of the effects produced by
the initial conditions onto the effects produced by the driving forces connected to the network.

6.7 A more general method of analysis
In the preceding sections on RC and LC networks, a difference in the procedure occurred in the final
steps of the analysis. Specifically, in the RC case we were able to retain our matrix formalism through



all the steps, including the solutions of the differential equations for the eigenvalue measure numbers;
in the LC case, even though all the preliminary steps were the same, we did not use this matrix
formalism in the actual achievement of solutions for these same measure numbers. In this section we
shall discuss a method of approach to the LC case which allows us to retain the matrix formalism
through all the steps. This method is quite general, and in the next section we shall see that such an
approach is also applicable to the RLC case.

Let us begin our analysis by again considering the general matrix equation for the LC network in
terms of the charge variables. Thus, as before, we have

The qi are, of course, the measure numbers referred to an orthonormal set of basis vectors xi. Now let
us define a new set of variables ρi by the relations

In matrix form, we may write

Our original equation (1) may now be written

Finally, we may combine the information in (3) and (4) in a single matrix equation:

where

Equation (5) contains all the information that was originally in (1), but in a different form. In the first
place, we have been able to replace a second-order differential equation by a first-order differential
equation, thus achieving some simplicity of representation. Of course, we have paid a price for this
simplicity, since we have doubled the number of variables that we have to deal with, i.e., we have
gone from n variables to 2n variables. There might also be some question as to whether or not the
square matrix of (5) always exists, since it involves the inverse of the L matrix, and at this point we
have no assurance that L has an inverse. Let us bypass this problem by assuming that if L−1 does not
exist, small incremental inductors may be added to the circuit in such a manner as to provide L with
an inverse. We shall now simplify our representation by defining the matrices η, η′, and B, where



Equation (5) may now be written in the simple form

At this point, it should be clear to the reader that η represents a column matrix of measure numbers
which we shall call ηi. These measure numbers are functions of time, i.e., they may be written ηi(t),
and they are defined with respect to an orthonormal set of basis vectors xi. Physically, some of these
measure numbers represent the loop charges qi, and some of them represent the loop currents qi'(or
ii). The elements of the matrix B are real scalars which are functions of the specific circuit
configuration. For the time-invariant networks we have been studying, these scalars will, of course,
be time invariant. The measure numbers ηi(t) and the basis vectors xi to which they are referred serve
to define a vector in a phase space. If we call this vector , we may employ our usual representation
to write

We may now proceed to find the eigenvalues and eigenvectors of the matrix B. However, these will
be significantly different from the eigenvalues and eigenvectors of the cases previously discussed.
Since the matrix B is not symmetric, in general, the eigenvalues will be complex, and the measure
numbers of the related eigenvectors will also be complex. Actually, we shall see that for the LC case
under discussion, the eigenvalues will be purely imaginary. One other restriction will be found to be
true in the general case. That is, the eigenvalues will always occur in complex-conjugate pairs, and
the measure numbers of the related eigenvectors will also be complex conjugates.

Let us refer to the eigenvectors as ai, and let the column matrices of measure numbers which define
these eigenvectors on the xi basis be Ai. We may write

The relation between the eigenvector basis and the original basis may now be expressed as

where A is the matrix whose columns are Ai. The vector  may now be defined in phase space by a
set of measure numbers αi(t) referred to the ai basis vectors. Thus we may write

From a consideration of the above equations and the time derivatives of these equations, we see that
we may write

If the first two relations of (12) are substituted into the original equation (8), we obtain

Since the columns of A, i.e., the Ai, are the eigenvectors, we see that



Therefore we may write

where D is the diagonal matrix consisting of the eigenvalues λi of the matrix B. Substituting this result
into (13) gives us

If we premultiply both sides of the above equation by A−1, we obtain

Thus we have a separate set of equations in the variables αi(t), which may be written

The solutions of these equations are easily seen to be

Just as the eigenvalues and the measure numbers which define the eigenvectors occur in complex-
conjugate sets, the constants αi(0) will also occur as complex conjugates, and thus the quantities αi(t)
will be complex conjugates. For example, if λ2 = λ1*, α2(0) will equal α1*(0). Thus we can conclude
that α2(t) will be the complex conjugate of α1(t). These complex-conjugate properties are exactly the
conditions which are required to ensure that the quantities ηi(t) will be real, i.e., that they will not be
complex. Since the ηi(t) are physical quantities, i.e., charges and currents, this is necessary. To see
this, consider the following result from the first of equations (12):

The quantities α1(t), α2(t), a11, and a12 are all complex quantities; however, if α2(t) = α1*(t), and a12
= a11*, then

and clearly η1(t) is real.
The conclusions that were previously made for the LC case are easily applicable to our results

here. We can now excite any given combination of the natural frequencies of a network, just as we
could before. Only one precaution is necessary: when one of the eigenvalues is excited, its complex-
conjugate companion must also be excited. In effect, we are simply saying that if a network has a pair
of complex-conjugate poles, it is not possible to excite only one of these poles; they must both be
excited simultaneously.

The above concepts may be best illustrated by an example. Let us use the same example which was
presented in Sec. 6.4. The network is shown in Fig. 6.7. The L and S matrices are



The matrix −L−lS is easily found to be

The matrix equation involving the B matrix of (7) now becomes

The η matrix is composed of the charge and current variables for the network. Thus we may write

The usual techniques may be applied to the B matrix to find its eigenvalues and eigenvectors. Thus,
we obtain

It is important to remember here that the usual property of eigenvectors still holds, i.e., they may be
multiplied by an arbitrary constant without impairing their function as eigenvectors. In this case, since
they are composed of measure numbers which are complex, they may even be multiplied by complex
constants without changing their function. Thus, many similar forms for the given eigenvectors are
possible.

We may now form the A matrix and specify the relation between the measure numbers ηi on the xi
basis and the measure numbers αi on the ai basis. From (12) we see that the A matrix is the square
matrix of the equation

The solutions for the measure numbers αi(t) are quite straightforward and may be found from (18) as



If it is desired to excite only the first natural frequency of the network, i.e., to excite only the first two
eigenvalues, then we need only select α1(0), and thus α2(0), as nonzero (they must, however, be
complex conjugates), and α3(0) and α4(0) as zero. For example, if we pick α1(0) = jkb, then α2(0)
will equal −jkb. From (20) we find that this makes q1(0) = −2(3)½kb and q2(0) = 3½kb, while i1(0)
and i2(0) are zero. If we choose kb = −1/2(3)½, then q1(0) = 1, and q2(0) = −½. This is exactly the
situation that was discussed in connection with (24) and (25) in Sec. 6.4, and the choice of the
constants k1 = ( ) and k2 = 0 in that section. On the other hand, if we pick α1(0) = α2(0) = ka and
α3(0) = α4(0) = 0, then from (20) we see that q1(0) = q2(0) = 0, i1(0) = 2ka, and i2(0) = −ka. This
would correspond to the situation in Sec. 6.4 in which k1 = 0 but k2 ≠ 0. In general, then, we may
write

The constant ka will specify the placing of initial currents in the loops of the network, and the constant
kb will specify the placing of initial charges in the network. The effect of any of these initial currents
or charges or any combination of them, however, will still be to excite only the first natural frequency.
From (20), if α3(0) = α4(0) = 0, we can solve for the charge variables. We see that

A similar series of steps can be carried out to show the effect of the real and imaginary parts of α3(0)
and α4(0) in specifying the initial values of current and charge, respectively, that are required to
excite the natural frequency associated with λ3 and λ4, i.e., the second natural frequency of the
network. It should be pointed out that the association of the real part of the constants α1(0) and α2(0)
with initial currents was a direct result of the specific measure numbers selected for the eigenvectors
a1 and a2. Some other choice of the measure numbers of these eigenvectors would have resulted in a
different effect of the real and imaginary parts of these constants. Thus, we might have chosen our
eigenvectors so that the real parts of the constants would correspond with equal magnitudes of both
charge and current in the initial conditions of the network, etc. There are infinitely many other
possibilities.

In this section we have shown that a second-order matrix differential equation may be rewritten as
a first-order differential equation, and the eigenvalues and eigenvectors of the resulting matrix may be
used to place in evidence the natural frequencies of the given network. In addition, all the other
concepts of the linear-vector-space approach, such as the conditions that must be impressed on the
network in order to excite only a single one of its natural frequencies, may be applied to this situation.
It should be pointed out, however, that for the LC case it is usually easier to approach the situation by
the method of Sec. 6.4 than by the method of this section. This eliminates the need for dealing with the
complex quantities that resulted from the latter approach. However, the real value of the techniques
developed in this section is that they apply directly to the more general network in which all three
types of elements are considered. This will be discussed in the next section.



6.8 The RLC network
In the previous sections of this chapter we have investigated two-type-element networks in terms of
their representation in a linear vector space. We have used the concept of eigenvectors to simplify the
differential equations describing the networks, and we have shown the direct correspondence
between the eigenvalues and the natural frequencies. Thus, it was shown that the natural frequencies
of the RC network correspond with real exponential behavior in the time domain; i.e., the poles of the
network are on the real axis of the complex frequency plane. It was pointed out that the RL case could
be treated in exactly the same manner as the RC case, with similar results in the time and frequency
domains. Similarly, the natural frequencies of the LC network correspond with imaginary
exponentials occurring in conjugate pairs and representing sinusoidal time behavior; i.e., the poles of
the network are on the imaginary axis of the complex frequency plane. Thus, we have covered all the
possibilities for passive networks which involve only two kinds of elements. In this section we shall
extend our analysis to networks which include all three types of elements, i.e., RLC networks. Our
treatment of this topic will follow the method introduced in the last section.

We may begin our analysis by considering the form that the mesh equations will have for an RLC
network. In general, they will involve terms such as

As in the LC case, however, we shall use charge as our variable rather than current. Thus we shall
make the substitution q'j'(t) = i'j(t) in the above expression. The terms from our mesh analysis will
then have the form

We may now write the general equations for all the mesh variables qi(t) in matrix form. We shall
assume that there are no external sources connected to the network. Our general matrix equation is

At this point we see that our procedure must diverge somewhat from that of Secs. 6.2 and 6.4. The
techniques which we developed for the simultaneous diagonalization of two square matrices are not
applicable in this case, since there are three square matrices in the problem under consideration. To
treat this situation, we shall apply the method of the last section, whereby the matrix differential
equation of second order given in (3) may be reduced to a first-order matrix differential equation. It is
interesting to note that this technique might also be applied to the solution of differential equations of
higher order.

We may start this procedure by considering the variables ii(t), where

Thus, in matrix form, we may write

and



If (5) and (6) are substituted in (3), the matrix equation for our general RLC network becomes

Let us assume that L has an inverse; then we may premultiply (7) by L−1 to obtain

We may now combine the information of equations (5) and (8) in a single matrix equation which may
be written

If we define

then (9) may be written

Equation (10) is in the form of the general first-order differential equation whose solution was
discussed in the last section. Thus we see that we have again changed our problem from the solution
of a second-order differential equation involving the n variables qi(t) to the solution of a first-order
differential equation involving 2n variables, namely, the n variables qi(t) and the n variables ii(t).
Frequently it is possible to reduce the size of the matrix B by a different choice of the circuit
variables of voltage, current, charge, etc.1 An example of this procedure will be given later in this
section.
When the equations for the RLC network have been put in the form of (10), we may follow the
procedure of the last section to analyze the given network according to its natural frequencies. In
other words we will look for the eigenvectors ai of the matrix B, then use these eigenvectors as a
basis for our phase space, and finally describe the network behavior by a set of measure numbers
αi(t) referred to the eigenvector basis and related to the ηi(t) measure numbers which in turn refer to
the original basis vectors xi. The steps from (13) to (17) of Sec. 6.7 then apply directly, and we shall
be able to express the time variation of the measure numbers for the RLC network as

The eigenvalues for the RLC case will either be real or they will be complex and occur in conjugate
pairs. Similarly, the related eigenvectors will have measure numbers which are complex conjugates;
thus our functions αi(t) will also occur in complex-conjugate pairs, and these pairs will yield
expressions for the physical variables of the circuit, the ηi(t), which are real. The only significant
difference between this case and the case discussed in the last section is in the fact that the
eigenvalues will, in general, have both real and imaginary components. Thus, each complex-conjugate



pair of the natural frequencies of the network will represent real-time behavior which has both a real
and an imaginary exponential component, i.e., has a behavior represented by an exponentially damped
sinusoid.

As an example, consider the network shown in Fig. 6.10. We shall also use this example to
illustrate a simplification that can frequently be made in the formulation of the matrix equation for the
network. Thus, rather than finding the R, L, and S matrices for this network and proceeding to
develop the square matrix of (9), we may work directly with the circuit variables (along with their
derivatives) that are encountered in the network equations. These may be rearranged to give a
representation of the type shown in (10), and the solution may be carried out as before. For the
example network we may select as variables the voltages across the capacitors and the current which
flows through the inductor. These are indicated as v1(t), v2(t), and i3(t), respectively, in Fig. 6.10. The
network equations can be expressed by writing the nodal equations at each of the two nodes and the
expression for the voltage drop across the inductor. These equations are

Figure 6.10 An RLC network with two voltage variables and one current variable.

The above equations may be written in the form of (10) as

It is easy to show that the eigenvalues and a related set of eigenvectors for the network are

Thus the relations between the capacitor voltages and the inductor current and the measure numbers
αi(t) which refer to the eigenvector basis are given by the matrix equation

All the observations which were made for the LC case in the last section also apply to this case. For



example, any choice of α2(0) as an initial condition requires selecting an α3(0) which is its complex
conjugate. If such initial conditions are selected, and if, in addition, α1(0) is set equal to zero, then
only the natural frequency which has a damped exponential sinusoidal time behavior will be excited.
Similarly, if α2(0) and α3(0) are set equal to zero, the choice of any real number for α1(0) will excite
only the natural frequency which has a real exponential as its time behavior. Similar observations
may be made as to the effects of choosing α2(0) and α3(0) as real or imaginary quantities on the
voltages and currents resulting in the network. These are left to the reader as an exercise.

6.9 Representation using a reciprocal basis
In Sec. 5.9 the concept of a reciprocal basis was developed. There we showed that, given a set of
basis vectors ai, we could develop a set of basis vectors ui such that the relations

were satisfied. The basis consisting of the vectors ui was called the reciprocal basis. In this section
we shall see how the reciprocal basis can be applied to obtain a solution of a matrix differential
equation, i.e., an equation which involves a set of variables and their derivatives. The result will be
expressed in terms of the natural frequencies of the system. The material presented in this section will
reach the same conclusions reached in the earlier sections of this chapter. It will, however, reach
them by a different route. The process should help to strengthen the reader's understanding of the
fundamental concepts involved.

Let us begin by considering a system described by the matrix differential equation

The elements of the column matrix η are the variables ηi(t) of the network or system under
consideration. The elements of the matrix B are real, although the matrix need not be symmetric. We
have seen that it is always possible to put our circuit equations in this form. Now let us consider a
vector (t) describing the state of the system. We may express this vector either in terms of the ηi(t)
measure numbers which refer to the orthonormal basis or in terms of a new set of measure numbers
αi(t) which refer to the eigenvectors of the matrix B. Let these eigenvectors be expressed by the
column matrices Ai. The relation between the two sets of measure numbers has been shown (see Sec.
6.7) to be

where A is the square matrix composed of the column matrices Ai. The above expression may be
written in a form which is more suitable for our discussion here as

Note that the above is a matrix equation which gives the same information as (3) but retains the
individual eigenvectors as separate elements of the summation. Since the elements of the Ai are time
invariant, we may write



Thus, our original differential equation (2) may be written

The matrix B may be moved inside the summation to give

The Ai, however, are eigenvectors, so the effect on them of the original transformation matrix B may
be written

If we substitute this relation in (7), our original differential equation (2) becomes

Now let us define a basis with vectors ui whose measure numbers are given by the column matrices
Ui. We will select this basis so that it is reciprocal to the eigenvector basis. In terms of the column
matrices of measure numbers which define these vectors, we may write the defining scalar-product
relations for the reciprocal basis as

If we premultiply both sides of (9) by U1
t and apply the above relationship, we obtain

This process may be continued with the other Uj
t row matrices to obtain other equations, each of

which involves only one of the αi(t) variables and its first derivative. Thus, we now have a set of
equations

The only additional information needed for the solution of the equations (12) is the initial values of
the variables. Since (4) is valid for all values of the variable t, it is valid for t = 0. Thus, we may
write

If we premultiply both sides of this equation by U1
t, from (10) we obtain

Similarly, the value of any αj(0) may be found by premultiplying both sides of (13) by Uj
t. Our initial



conditions may now be written

where the Ui are the column matrices of measure numbers of the reciprocal basis vectors. We now
have achieved the solution for the quantities αi(t). These are

The solutions for our actual network variables, the ηi(t), may now be written directly by substituting
(16) in (4). Thus, we obtain

This is the solution of our original differential equation (2).
As an example of this technique, consider the network which was discussed in Sec. 6.3 and is

shown in Fig. 6.11. The network equations are

These equations may be written in matrix form as

Figure 6.11 An RC network with two voltage variables.

where, for convenience, the upper equation has been multiplied by 2. The eigenvalues and normalized
eigenvectors are easily found by the usual techniques. They are

We may solve for the reciprocal basis vectors by finding the matrix U = (At)−1 as was done in Sec.
5.9. The A matrix, of course, is composed of the column matrices of eigenvector measure numbers Ai.
We see that



The reciprocal basis vectors have the measure numbers given in the columns of the U matrix. Thus,
we see that

where U1 gives the measure numbers of the reciprocal basis vector u1, and U2 gives the measure
numbers of the reciprocal basis vector u2. The eigenvectors ai and the reciprocal basis vectors ui,
together with the orthonormal basis vectors xi (with respect to which the numbers of the eigenvectors
and the reciprocal basis vectors are defined), are shown in Fig. 6.12. The reader should verify that
the relationships (10) are satisfied.

We may now write the solution for our network variables in the form of (17) as

Figure 6.12 The eigenvector basis ai and the reciprocal basis ui.

If we assume initial conditions v1(0) = 2 and v2(0) = 1, the solution for our nodal voltages is

The reader should compare the steps of this development with the one given in Sec. 6.3, where the
same initial conditions were chosen.

If we apply the above procedure to the RLC-network case, we find that the same steps may be
followed. The reciprocal basis vectors in this case may have complex measure numbers. If they do,



they will occur in conjugate pairs. Graphical representations for the variables are also possible in
this case. The details may be found in the literature to which the interested reader is referred.1

In this section we have presented a second method of applying the concepts of linear vector spaces
to the general network situation. The notation is somewhat different from the notation used in the
earlier sections of this chapter; however, the reciprocal basis is frequently used in the literature, and
the reader should be aware of the techniques and the notation involved. These techniques may also be
applied to the frequency domain and to the use of forcing functions. The procedure follows quite
closely that used in Secs. 6.5 and 6.6, and the details are left to the reader as an exercise.

PROBLEMS

6.1 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.1 by solving the equations
in the time domain.

Figure P6.1

6.2 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.1 by solving the equations
in the frequency domain.
6.3 What initial conditions must be established to excite each of the natural frequencies of the
network shown in Fig. P6.1?
6.4 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.4 by solving the equations
in the time domain.

Figure P6.4

6.5 Find the eigenvalues and eigenvectors of the network shown in Fig. P6.4 by solving the equations
in the frequency domain.
6.6 What are the initial conditions that must be established to excite each of the natural frequencies of



the network shown in Fig. P6.4?
6.7 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.7 by solving the equations
in the time domain. Use the method of Sec. 6.4.

Figure P6.7

6.8 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.7 by solving the equations
in the frequency domain.
6.9 Find a set of initial voltages for the capacitors of the network shown in Fig. P6.7 such that only
one of the natural frequencies will be excited.
6.10 Find a set of initial currents for the inductors of the network shown in Fig. P6.7 such that only
one of the natural frequencies of the network will be excited.
6.11 Find the nodal voltages in the network of Fig. P6.1 if a unit step of current is applied at the left
node.
6.12 It is desired to apply a current i(t) = cos t to the left node of the network shown in Fig. P6.1.
What excitation must be simultaneously applied to the right node if only one of the natural frequencies
of the network is to be excited?
6.13 If a voltage source whose output is a unit step is inserted in the center leg of the network shown
in Fig. P6.4, find the mesh currents that result.
6.14 If voltage sources are inserted in the outside legs of the network shown in Fig. P6.4, what
voltages must be applied so that only one of the natural frequencies of the network is excited?
6.15 It is desired to excite the network shown in Fig. P6.7 with a sinusoidal frequency which is the
same as one of the natural frequencies of the network. Is it possible to obtain stable loop currents if
this excitation is applied by means of a voltage source in the center leg of the network? Why or why
not?
6.16 If voltage sources are placed in each of the outer legs of the network shown in Fig. P6.7, and if
the output of these sources is a sinusoid whose frequency is the same as the lower natural frequency
of the network, find the magnitude of the excitation such that the network currents will be stable.
6.17 In the matrix equation

y is a column matrix consisting of n elements yi(t). A, B, and C are non-singular n × n square matrices
with real, time-invariant elements. The equation involves the first, second, and third derivatives of



the yi. Rewrite this equation as a first-order differential equation with a single 3n × 3n matrix relating
the variables and their derivatives.
6.18 Find the eigenvalues and eigenvectors of the network shown in Fig. P6.7 by the method of Sec.
6.7.
6.19 Verify the effects of the real and imaginary components of the constants α3(0) and α4(0) in
specifying the initial values of charge and current, respectively, in the example of Sec. 6.7.
6.20 Select a different set of eigenvectors for the example given in Sec. 6.7, so that the effects of the
real and the imaginary components of the constants α1(0) and α2(0) are interchanged.
6.21 Find the eigenvectors and eigenvalues of the network shown in Fig. P6.21.

Figure P6.21

6.22 Show that the same natural frequencies will result if the example given in Sec. 6.8 is set up as a
4 × 4 matrix according to the method given in the section.
6.23 Use the method of Sec. 6.9 to solve for the nodal voltages of the circuit in Fig. P6.1. Assume
initial conditions of 1 volt on each of the capacitors.
6.24 Develop an analysis, parallel to the one given in Sec. 6.9, for the frequency domain. Include the
effect of external excitations.

1 The parallelism between the electrical situation and its mechanical counterpart, especially with respect to the eigenvectors, was
pointed out in an early paper, E. A. Guillemin, Making Normal Coordinates Coincide with the Meshes of an Electrical Network, Proc.
IRE, vol. 15, pp. 935–945, November, 1927.

1 Throughout this chapter the prime symbol will be used to indicate differentiation with respect to time. Thus, v' − dv/dt.
1 See T. R. Bashkow, The A Matrix, New Network Description, IRE Trans. on Circuit Theory, vol. CT-4, no. 3, pp. 117-119,

September, 1957.
1 See C. A. Desoer, Modes in Linear Circuits, IRE Trans. on Circuit Theory, vol. CT-7, pp. 211–223, September, 1960.



Appendix A The indefinite-transfer matrix

Just as the indefinite-admittance matrix of Sec. 3.5 provides a means of determining the properties of
networks formed by the parallel connection of multiterminal networks, so we may define a procedure
whereby we may compute the over-all properties of multiterminal networks connected in cascade.
The matrix we shall use to accomplish this is called the indefinite-transfer matrix.1

Consider the 2n-terminal network shown in Fig. A.1. As the figure indicates, we shall consider the
first n of the terminals and their associated voltage and current variables as input terminals, and the
other n terminals with their voltage and current variables as output terminals. The input and output
variables may be arranged in a form quite similar to that of the two-port transmission parameters
discussed in Sec. 3.3. Thus, we may

Figure A.1 The voltage and current variables for the indefinites-transfer matrix of a 2n-terminal network.

write

The 2n × 2n matrix is termed the indefinite-transmission matrix. Equation (1) may be written (with
the indicated partitioning) in terms of sub-matrices as

where



It is convenient to make the following restrictions on the network shown in Fig. A.1:
Restriction 1. The sum of all the input currents Ii (i = 1, 2, . . ., n) is zero.
Restriction 2. The sum of all the output currents Ii (i − n + 1, n + 2, . . ., 2n) is zero (actually, this

follows from Restriction 1 and Kirchhoff's law).
Restriction 3. If an arbitrary voltage is added to all the input voltages (or to all the output

voltages), the currents at the various terminals remain unchanged.
Restriction 3 simply indicates that the behavior of the network is determined by the differences of

voltages among its various input (or output) terminals, not on their absolute potentials.
As a result of these restrictions, we may specify some properties of the submatrices A, B, C, and D

which compose the indefinite-transmission matrix. We shall not prove these properties here. A
procedure similar to that followed for the indefinite-admittance matrix in Sec. 3.5 may be used to
establish their validity. The properties are:
Property 1 If the elements in any row or column of the submatrix C are summed, the result is zero
(note that this matrix is, in effect, an indefinite-admittance matrix).
Property 2 The sum of all the elements in any row of the submatrix A is the same as the sum of all the
elements in any other row of A (this sum will not necessarily be equal to zero).
Property 3 The sum of all the elements in any column of the submatrix D is the same as the sum of all
the elements in any other column of D (again, this sum will not necessarily be equal to zero).

In a manner analogous to that in which we proceeded with the indefinite-admittance matrix, it is
now desired to select a certain terminal from among the input terminals and a terminal from among the
output terminals and use them as reference or ground terminals. For convenience we will ground
terminals n and 2n. To do this, it is necessary to define two matrices P and Q. P is an n × (n − 1)
matrix consisting of an (n − 1) × (n − 1) identity submatrix and a 1 × (n − 1) zero submatrix.
Specifically, we may define

The matrix Q is defined as an n × (n − 1) matrix consisting of an (n − 1) × (n − 1) identity submatrix
and a 1 × (n − 1) submatrix, all of whose elements are − 1. Specifically, we may define

The effect of the above matrices will be to eliminate the variables Vn, In, V2n, and I2n from our matrix
equations. Thus, we may express a new set of relations



where

The definite-transfer matrix composed of submatrices A′, B′, C′, and D′ may be found as

By rearranging the variables Va, Vb, and Ib in (2), it is easy to develop a relation between the
indefinite-transfer matrix and the indefinite-admittance matrix. We may define a partitioning of the
indefinite-admittance matrix as follows:

where Ia, Ib, Va, and Vb are defined in (2), and where

We may now express the indefinite-transfer matrix as

The details are left to the student as an exercise. It should be noted that frequently this provides an
easy way to determine the indefinite-transfer matrix. The result of (7) should be compared with the
relation between the ABCD parameters and the y parameters given in Table 3.1 for a two-port
network. When the submatrices Yij become single elements, the relations are identical.
 

1 J. Shekel, Matrix Analysis of Multi-terminal Transducers, Proc. IRE, vol. 42, no. 5, pp. 840–847, May, 1954.



Appendix B Gyrators and gyration admittance

In Sec. 4.7, the concept of a gyrator was introduced. The gyration constant G was treated as a real
number, and because of its dimensions we referred to it as a gyration conductance. In this section we
shall see that it is also possible to specify a gyrator in terms of a function of the complex frequency
variable p. In this case, we refer to a gyration admittance. As an interesting result of this concept,
we shall see that it is possible to realize transformers with complex turns ratios.

Let us first consider the ideal three-terminal gyrator shown in Fig. B.1a. We shall assume that it has
a gyration conductance of G, where G is a real number. In Fig. B.1b, the admittances Y1 and Y2 have
been added in series to two of the terminals of the ideal gyrator. The result can be considered as a
five-terminal device, with the terminals numbered as shown. We may apply the concepts of Sec. 3.5
to find the indefinite-admittance matrix for this network. It is

Figure B.1 A three-terminal gyrator with series admittances.

Now let us suppress terminals 4 and 5 of the network of Fig. B.1b so that we again have a three-
terminal device. From (13) in Sec. 3.5 we see that the indefinite-admittance matrix for the resulting
three-terminal network is given by

After simplification, we have

If we now ground terminal 3, we need only delete the third row and column of the above indefinite-
admittance matrix, which yields



The matrix in (3) can be considered as the y-parameter matrix for the three-terminal network. It may
also be written as the sum of two matrices, thus representing the parallel connection of a pair of
three-terminal networks. Thus (3) may be written as

The first matrix of (4) represents a network consisting of two admittances Ya and Yb connected as
shown in Fig. B.2a, where

Figure B.2 A three-terminal gyrator with shunt admittances.

If we compare the second matrix of (4) with the equations (7) of Sec. 4.7 defining a gyrator, we see
that this matrix represents a gyrator with gyration admittance Yg, where

The over-all network represented by (3) is shown in Fig. B.2b. This network does not represent an
ideal gyrator, since it has admittances shunting the input and output ports. It may be made ideal,
however, by shunting these admittances with negative admittances of the same value. Thus we can
produce an ideal gyrator with a complex gyration admittance.

As an example of this procedure, suppose it is desired to produce a gyrator with gyration
admittance Yg = p/(p + 1). From (6) we see that

Let us assume that our original ideal gyrator has a gyration conductance of unity, i.e., that G = 1.
Substituting in (7) yields the result Y1Y2 = p. This is easily satisfied by letting Y1 − p and Y2 = 1. In
Fig. B.3a are shown the original ideal gyrator with G = 1 and the appropriate compensating networks
Y1 and Y2. This circuit is equivalent to the circuit shown in Fig. B.3b; i.e., it is equivalent to a gyrator
with gyration admittance p/(p + 1), shunted with the networks shown. In Fig. B.4a compensating
networks have been added to the original network of Fig. B.3a to produce an ideal gyrator with a
gyration admittance p/(p + 1), as shown in Fig. B.4b. Thus the two networks shown in Fig. B.4 are
equivalent. The reader should study these figures to make certain he understands all the steps in their



development.

Figure B.3 Two networks, one with an ideal gyrator G = 1, the other with an ideal gyrator Yg = p/(p + 1), both of which have the
same y-parameter matrix.

Figure B.4 Two networks with the same y-parameter matrix.

Gyrators which have gyration admittances which are functions of the complex frequency variable p
provide an interesting addition to our collection of network devices. As an example, consider the
case in which a gyrator with gyration admittance Yg(p) is cascaded with a gyrator with a real gyration
conductance G. The transmission parameters of the cascade are found by multiplying the individual
transmission-parameter matrices. We see that

The transmission-parameter matrix that results, however, is that of an ideal transformer with a turns
ratio G/Yg(p). This is illustrated schematically in Fig. B.5. Thus we can now consider the use of ideal
transformers with turns ratios which are functions of the complex frequency variable as elements to
be used in the synthesis of networks.



Figure B.5 An ideal transformer with a complex turns ratio.



Appendix C Network realization by transformation methods

In the various sections of Chap. 6, we showed how the network variables voltage, charge, and current
could be redefined so as to simplify the solution of the network equations. Specifically, we chose
new variables which were linear combinations of the original ones. Thus, if the Vi(t) were our
original network variables, we selected a set of variables θi(t), where the relation between the
variables is given in matrix form as v = Aθ. The A matrix which was used for this redefinition of
variables was the matrix which would simultaneously transform one matrix to the identity matrix and
a second matrix to a diagonal matrix. As an example, see (5) of Sec. 6.2, where the C and G matrices
are so transformed. The A matrix, of course, is the matrix specified by the eigenvectors of the given
network. Here we shall see that another connotation may be given the matrix A, in that this matrix may
be used as part of a synthesis procedure to realize the element values of an actual network
configuration. There are certain limitations to this method of approach; they will be pointed out as the
material is developed.

First let us consider the passive RC network. Let the Vi(p) be the Laplace transforms of the nodal
voltages, and the Ii(p) be the transforms of the currents applied to the various nodes of the network.
The column matrices composed of these variables are V and I, respectively. If the initial conditions
are assumed to be zero, the network equations can be written in the frequency domain as

where Y is the admittance matrix which was introduced in Sec. 3.8. For the case of an RC network, Y
will be equal to the sum of a conductance matrix G and a capacitance matrix C. Thus

A matrix A which will simultaneously diagonalize C and G may be found by the techniques of Sec.
5.8. By using this matrix, we can define a diagonal matrix Y′, where

The Y′ matrix places the natural frequencies of the network clearly in evidence. They are −σ1, − σ2,
…, − σn. Since the C and G matrices are real, symmetric, and positive definite,1 the various σi will
all be real and positive. Now let us take the inverse of both sides of (3). We obtain

The impedance matrix Z for our network is defined as Y−1. From (4) we see that



Thus, we see that

and, in general,

where the aij are the elements of the A matrix. The above expressions are simply the partial-fraction
expansions for the various zij terms associated with the given network. Thus we see that we may
write definite relations between the elements of the A matrix and the residues of the various zij terms
at the poles of the network.2 For example, (6) indicates that the first row of the A matrix specifies the
residues of the z11 term. Similarly, from (7) we see that the residues of the z12 term are specified by
the product of the elements in the first and second rows of the A matrix, and so on.
We may now take the opposite viewpoint and start with a matrix (Y′)−1specifying the natural
frequencies it is desired to have in a given network. We may then specify the extent to which each of
these natural frequencies is present in a given term of the impedance matrix by specifying the
elements of the A matrix. Since the A matrix will also satisfy the relations

we can find the C and G matrices directly from the A and D matrices as

Thus, specifying the A matrix according to the desired residues also specifies the conductance matrix
and the capacitance matrix, and thus specifies the configuration and the element values of the network.
The procedure is basically simple, but there are some limitations. For example, it is not possible, in
general, to specify all the parameters of the network simultaneously. Thus, specific choices for all the
residues of all the zij terms for i = j would completely determine the elements of the A matrix. In this
case, no specification of the residues for the mutual terms zij for i ≠ j could be made. Another
limitation is the form that the C and G matrices must have if the network is to be realized with passive
components. This result also places a limitation on the elements of the A matrix. In simple cases, the
above limitations may be seen directly. This is best illustrated by an example:

Suppose it is desired to realize a network which has the following open-circuit driving-point
impedance:



The Y′ matrix must then consist of elements corresponding to the desired natural frequencies. Thus,

The first row of the A matrix is specified by the square roots of the desired residues, but the other
elements are free to be chosen. We see that

where a and b are still to be determined. We may now compute our C and G matrices. From (10) we
obtain

For simplicity, let us choose a = 0; then our C and G matrices become

For these to be realizable, the matrices must be dominant (see Sec. 4.8). Thus, the conditions on b
sufficient for the network to be realizable with passive components are

If we choose b = 2.5, we obtain

The network realization is shown in Fig. C.1. Note that this realization actually has one more element
than a realization made directly from the equations of Fig. 4.26 would have. The significant point of
this realization, however, is that the G and C matrices, and thus the network configuration, have been
directly specified. It should be apparent that the same technique can be applied to cases in which the
network has more natural frequencies, and thus greater complexity. The realization conditions which
will have to be solved in these cases will, of course, be more complicated, and it may be necessary
to use computation facilities to achieve a solution. If, however, we do not restrict ourselves to
passive components in our solution, but permit the use of negative- as well as positive-valued
elements, then the solution will always be readily apparent for any choice of the zij residues.



Figure C.1 A network realization with a specified driving-point impedance.

Let us now consider a somewhat different interpretation of the formalism which we have followed
in this section. Instead of considering the matrix A as a means by which two matrices are
simultaneously diagonalized, let us consider it as a means of defining new current and voltage
variables. Let these transformed variables be V′i(p) and I′i(p), and let V′ and I′ be the column
matrices composed of these variables. Thus, we can define a matrix Y′, where

If the definition of Yr from (3) is substituted in the above, and if the terms are rearranged, we see that

Comparing this with (1), we see that

or that

In terms of the above equations we can describe the procedure that has been presented in this
appendix in a new way. We can say that the original network, as defined by the Y matrix, has been
treated in terms of redefined voltage and current variables (denoted by the prime notation) which
consist of appropriate linear combinations of the original voltage and current variables. This concept
can be extended. For example, it is possible to consider cases in which only linear combinations of
the voltage or of the current variables are treated. Thus, we might consider the case in which the
behavior of a network is to be described by the equations

If we compare this with the original equation I = YV, we see that we may either say that the
performance of our original network as defined by the matrix Y is being evaluated in terms of the
linear combinations V′i(p) of the actual voltages Vi(p), where V′ = B−1V, or we may say that the
original network has been replaced with one whose elements are specified by the matrix Y′, where Y′
− YB, and that this network has nodal voltages V′i(p).



Figure C.2 A cascade of n − 1 unilateral networks.

An interesting example of the application of such logic may be seen by the following example:1

Consider a ladder network composed of a cascade of n − 1 unilateral stages, each consisting of a
current generator and a shunt admittance, as shown in Fig. C.2. The ladder is terminated in an
admittance Yn. The Y matrix for this network is

Let us now consider a transformation matrix B which has two diagonal lines of elements and whose
other elements are zero. This will have the form

The Y′ matrix, where Y′ = YB, will have three diagonal lines of elements, and its other elements will
be zero. Thus,

Figure C.3 A cascade of n − 1 networks with transmission in both directions.

The network represented by the Y′ matrix will be composed of a cascade of n − 1 stages, each
consisting of two current generators and a shunt admittance, as shown in Fig. C.3. The cascade will
be terminated in an admittance y′nn. The elements of the B matrix may be chosen so as to make the



elements y′ij (i ≠ j) of the Y′ matrix real numbers. These may be realized as dependent current
sources. If the element bnn is real, then we see that since V = BV′, we may write Vn = bnnV′n. Thus
Vn(p) and V′n(p) are related by a simple constant, and if the networks shown in Figs. C.2 and C.3 are
driven by a single current source at the first node, they will have the same transfer impedance (within
a constant multiplier). In other words, if we specify the transfer function of a network in which
unilateral active devices are present (this is relatively easy, owing to the isolation between stages that
is provided by the unilateral elements), we can find a network which will have the same transfer
function even though it is comprised of devices with transmission in both directions. This may be
done by transforming the admittance matrix of the original network. In effect we can thus design
transistor amplifier stages in terms of related vacuum-tube amplifier stages.

As a numerical example, suppose it is desired to realize the transfer function

The transfer function for the network shown in Fig. C.4 is

Figure C.4 A unilateral network with shunt admittances.

Figure C.5 A network realization for the transfer impedance 2p/[(p + 1) (p + 2)].

If we assume that the available active unilateral device has a transconductance of − 2, then g = − 2.
We may choose

The Y matrix for this circuit is thus



The network realization for this transfer function is shown in Fig. C.5.
Now let us consider an active device of the type shown in Fig. C.6. If we assume that this device

has a forward transconductance of 3 mhos and a reverse transconductance of 1 mho, then g1 = − 3, g2
= −1, and the matrix Y′ for this network is

The Y′ matrix, however, may be realized from the matrix product YB, which is

A comparison of the matrix Y′ and the matrix product YB shows that if

Figure C.6 A network with transmission in both directions.

Y′ = YB, then

If we choose b22 as unity, then the voltages V2 and V′2 are the same, and the Y′ matrix is

The network realization is shown in Fig. C.7. This network uses a specified device with transmission
in two directions, but it has exactly the same transfer function as the network shown in Fig. C.5. In
other words, we have synthesized a specified transfer function through the use of a given element,
with the necessary networks realized on the basis of a transformation of the admittance matrix of a
network which uses a unilateral element.

The techniques illustrated in this appendix are not completely general. There are many cases in
which solutions for the elements of the transformation matrix cannot be found. They are, however,
illustrative of the potential of a relatively unexplored area of network theory. Many answers remain to
be found in the application of these techniques to actual network situations. If the student finds himself
stimulated by the material which has been presented, and if he chooses to pursue these topics further,
then this presentation will have been well worth while.



Figure C.7 A network realization for the transfer impedance 2p/[(p + 1) (p + 2)].

 

1 Actually, these matrices can also be positive semidefinite; however, we shall restrict ourselves to the positive-definite case.

2 E. A. Guillemin, An Approach to the Synthesis of Linear Networks Through Use of Normal Coordinate Transformations Leading to
More General Topological Configurations, IRE Trans. on Circuit Theory, vol. CT-7, Special Supplement, pp. 40–48, August, 1960.

1 E. A. Guillemin, Transformation Theory Applied to Linear Active and/or Nonbilateral Networks, IRE Trans. on Circuit Theory, vol.
CT-4, pp. 106–110, September, 1957.
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Orthogonal transformation, 181–184, 186

considered as rotation, 184
improper, 183
proper, 183
properties of, 186
scalar-product invariance under, 183

Orthogonality, of eigenvectors, 190
of vectors, 169–173

Orthonormal basis, 169–173
Orthonormal vectors as elements, of orthogonal matrix, 182

of unitary matrix, 185

Parallel connection of two-port networks, 67
Partial-fraction expansions, 131, 135–136
Partitioned matrices, addition of, 34

multiplication of, 34–35
Passive circuit elements, definition of, 2
Phase space, 213, 239
Polarity markings for transformers, 116–117
Polynomial decomposition, 135

angle criterion for, 138
Port, definition of, 45

differences between port and terminal notation, 75–78
Positive definite and semidefinite, definition of, 197
Positive-valued circuit elements, 2, 112
Proper orthogonal transformation, 183

Quadratic forms, canonical form of, 197
under change of bases, 196–197
expressions for, 194–195
positive-definite, 197
for power and energy, 196

Rational functions, 6
RC networks, driving functions for, 233–235

driving-point immittances, 132, 137
exponential behavior of variables of, 217, 244
natural frequencies of, 217

Reciprocal basis, 204–206
hyperplane in, 205
use of, in network representation, 248–250

to solve set of differential equations, 248–250
Reciprocal circuits, definition of, 4

z and y parameter representations, 52
Reciprocal inductance matrix, 101
Redheffer, R. M., 36
Residue, 135–136
Resistance matrix, 100
Response, 52–53
RL networks, driving-point immittances, 154
RLC networks, eigenvalues for, 246

excitation of single natural frequency, 247
Row matrix, 11
Row subscript for elements of array, 10



Scalar matrix, 36
Scalar product, for complex measure numbers, 185

definition of, 168
as functional, 168
invariance of, under orthogonal transformation, 183
in n-dimensional space, 174

Scalars, definition of, 162
symbols for, 162–163, 214

Scattering matrix, definition of, 92
reference impedance for, 93

Scattering parameters, normalization constant for, 93–94
normalized variables for, 92–94
use of, in defining maximum power, 96

Self-inductance of coupled coils, 117
Sensitivity, 133

in active RC realizations, 139–140
Series connection of two-port networks, 61
Sharpe, G. E., 90, 148
Shekel, J., 80, 144, 257
Short-circuit parameters, 52
Simultaneous equations, 9

homogeneous set of, 25
solution by determinants, 22–26

Singular matrix, 29
Sinusoidal behavior of LC-network variables, 227, 244
Sipress, J. M., 139
Skew-hermitian matrix, 31
Skew-symmetric matrix, 30–31

realization with gyrators, 151
Slepian, F., 149, 198
Sokolnikoff, I. S., 36
Sources, dependent and independent, network parameters with, 55

internal, superposition of, and external excitations, 56
types of, 2
voltage, 2, 127
(See also Controlled source; Current source; Dependent source; Independent sources)

Space, configuration, 212
definition of, 161
n-dimensional, 161, 167
(See also Linear vector space)

Spatial vectors, 166
Square matrix, 11
Stability, 134
Submatrices, 33
Superposition, 1

of driving functions and initial conditions, 237
of internal sources and external excitations, 56

Symbols, for complex conjugate, 30
for matrices, 12, 162–163
for scalars, 162–163, 214
for vectors, 162–163

Symmetric matrix, 30
eigenvalues and eigenvectors of, 189–190

Tellegen, B. D. H., 140
Testing conditions to find network parameters, 47–54
Thomas, R. E., 135



Time domain, 5
Transfer function, 6
Transformations, between bilateral and unilateral networks, 269–271

definition of, 177, 181
under different basis vectors, 178–180
orthogonal, 181–184, 186
relating two vectors, 176–177, 180
unimodular, 183
uniqueness of, 181
unitary, 185–186

Transformer (see Ideal transformer)
Transient response, 214
Transmission parameters, definition as excitation/response, 53

of ideal transformer, 116
for networks connected in cascade, 69–73
for two-port networks, 57–60, 69–73

Transpose matrix, 30
Triangular array, 21
Tuttle, D. F., Jr., 196
Two-port devices, possible relations for, 113
Two-port-network parameters, definition of, 57

description of, 58–60
relations among, 62–63

Unimodular transformation, 183
Unitary transformation, properties of, 186
Unitary matrix, 29

Van Valkenburg, M. E., 100
Vector space (see Linear vector space)
Vectors, addition of, 162, 163

basis, 166
charge, for LC network, 225, 231–232
collinear, 164–166
coplanar, 164
linearly dependent and independent, 166
multiplication of, by scalar, 163
in n-dimensional space, 161
normalization of, 168, 203
notation for, 163
orthogonality of, 169–173
orthonormal, 182, 185
spatial, 166
symbol for, 162–163
voltage (see Voltage vector for RC network)

VNIC (voltage negative-immittance converter), 122, 129
Voltage source, 2

use in VNIC realization, 127
Voltage vector for RC network, in frequency domain, 229–230

representation of initial conditions, 219
in time domain, 214

Weinberg, L., 149, 198

y-parameter matrix (see y parameters)



y-parameters, 52
for networks connected in parallel, 67–69
for two-port networks, 57–58, 67–69

Yanagisawa, T., 130

z-parameter matrix (see z parameters)
z parameters, 49

for networks connected in series, 61–67
for two-port networks, 57–67

Zadeh, L. A., 80
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