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Preface

For decades, statisticians have enjoyed the use of “statistical packages” which
read in a (potentially) large data set, process the observations, and print
out anything from histograms to sample variances, to p-values, to multi-
dimensional plots. But pity the poor probabilist, who through all those
decades had only paper and pencil for symbolic calculations. The purpose
of this monograph is to address the plight of the probabilist by providing al-
gorithms to perform calculations associated with univariate random variables.
We refer to a collection of data structures and algorithms that automate prob-
ability calculations as “computational probability.” The data structures and
algorithms introduced here have been implemented in a language known as
APPL (A Probability Programming Language). Several illustrations of prob-
lems from the mathematical sciences that can be solved by implementing these
algorithms in a computer algebra system are presented in the final chapters
of this monograph.

The algorithms for manipulating random variables (e.g., adding, multi-
plying, transforming, ordering) symbolically result in an entire class of new
problems that can now be addressed. The implementation of these algorithms
in Maple-based APPL is available without charge for non-commercial use at
www.applsoftware.com. APPL is able to perform exact probability calcula-
tions for problems that would otherwise be deemed intractable. The work is
quite distinct from traditional probability analysis in that a computer algebra
system, in this case Maple, is used as a computing platform.

The use of a computer algebra system to solve problems in operations re-
search and probability is increasing. Other researchers also sense the benefits
of incorporating a computer algebra system into fields with probabilistic ap-
plications, for example, Parlar’s Interactive Operations Research with Maple
[69], Karian and Tanis’s 2nd edition of Probability and Statistics: Explorations
with Maple [42], Rose and Smith’s Mathematical Statistics and Mathematica
[74], and Hasting’s 2nd edition of Introduction to the Mathematics of Opera-
tions Research with Mathematica [33].
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This monograph significantly differs from the four titles listed above in two
ways. First, the four titles listed above are all textbooks, rather than research
monographs. They contain exercises and examples geared toward students,
rather than researchers. Second, the emphasis in most of these texts is much
broader than the emphasis being proposed here. For example, Parlar and
Hasting consider all of OR/MS, rather than the probabilistic side of OR/MS
proposed here in much more depth. Also, Karian and Tanis emphasize Monte
Carlo solutions to probability and statistics problems, as opposed to the exact
solutions given in APPL.

The monograph begins with an introductory chapter, then in Chapter 2 re-
views the Maple data structures and functions necessary to implement APPL.
This is followed by a discussion of the development of the algorithms (Chapters
3–5 for continuous random variables and Chapters 6–8 for discrete random
variables), and by a sampling of various applications in the mathematical
sciences (Chapters 9–11). The two most likely audiences for the monograph
are researchers in the mathematical sciences with an interest in applied prob-
ability and instructors using the monograph for a special topics course in
computational probability taught in a mathematics, statistics, operations re-
search, management science, or industrial engineering department. The in-
tended audience for this monograph includes researchers, MS students, PhD
students, and advanced practitioners in stochastic operations research, man-
agement science, and applied probability.

An indication of the proven utility of APPL is that the research efforts of
the authors and other colleagues have produced many related refereed journal
publications, many conference presentations, the ICS Computing Prize with
INFORMS, a government patent, and multiple improvements to pedagogical
methods in numerous colleges and universities around the world. We believe
that the potential of this field of computational probability in research and
education is unlimited. It is our hope that this monograph encourages people
to join us in attaining future accomplishments in this field.

We are grateful to Camille Price and Gary Folven from Springer for their
support of this project. We also thank Professor Ludolf Meester from TU Delft
for class-testing and debugging portions of the APPL code. We thank our co-
authors Matt Duggan, Kerry Connell, Jeff Mallozzi, and Bruce Schmeiser
for their collaboration on the applications given in Chapter 11. We also
thank the editors, anonymous referees, and colleagues who have been help-
ful in the presentation of the material, including John Backes, Donald Barr,
Barbara Boyer, Don Campbell, Jacques Carette, Gianfranco Ciardo, Mike
Crawford, Mark Eaton, Jerry Ellis, Bob Foote, Greg Gruver, Matt Hanson,
Carl Harris, Billy Kaczynski, Rex Kincaid, Hank Krieger, Marina Kondra-
tovitch, Sid Lawrence, Lee McDaniel, Lauren Merrill, David Nicol, Raghu
Pasupathy, Steve Roberts, Evan Saltzman, Jim Scott, Bob Shumaker, Paul
Stockmeyer, Bill Treadwell, Michael Trosset, Erik Vargo, Mark Vinson, and
Marianna Williamson. We thank techie Robert Marmorstein for his LATEX
support. The authors gratefully acknowledge support from the Clare Boothe
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Luce Foundation, the National Science Foundation (for providing funding for
an Educational Innovation Grant CDA9712718 “Undergraduate Modeling and
Simulation Analysis” and for scholarship funds provided under the CSEMS
Grant 0123022 “Effective Transitions Through Academe to Industry for Com-
puter Scientists and Mathematicians”), and the College of William & Mary
for research leave to support this endeavor.

Williamsburg, VA John Drew
Terre Haute, IN Diane Evans
West Point, NY Andy Glen
Williamsburg, VA Larry Leemis



NOTE

The authors and publisher of this book have made their best effort in prepar-
ing this book and the associated software. The authors and publisher of this
book make no warranty of any kind, expressed or implied, with respect to the
software or the associated documentation described in this book. Neither the
authors nor the publisher shall be liable in any event for incidental or conse-
quential damages in connection with, or arising out of, the furnishing, perfor-
mance, or use of these programs or the associated documentation described
in this book.
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1

Computational Probability

The purpose of this chapter is to get you to read the rest of the monograph.
We present four examples of probability questions that would be unpleas-
ant to solve by hand, but are solvable with computational probability using
A Probability Programming Language (APPL). We define the field of compu-
tational probability as the development of data structures and algorithms to
automate the derivation of existing and new results in probability and statis-
tics. Section 10.3, for example, contains the derivation of the distribution of
a well-known test statistic that requires 99500 carefully crafted integrations.

1.1 Four Simple Examples of the Use of APPL

The first example is one that a probability student would solve approximately
by using the central limit theorem or Monte Carlo simulation. We show that
APPL can compute the desired result exactly.

Example 1.1. Let X1, X2, . . . , X10 be independent and identically dis-
tributed (iid) random variables that are uniformly distributed between
0 and 1. Find the probability that their sum lies between 4 and 6, i.e.,

Pr

(
4 <

10∑
i=1

Xi < 6

)
.

The central limit theorem yields only one digit of accuracy for this
particular problem. Monte Carlo requires custom programming and
the result is typically stated as an interval around the true value.
Also, the number of replications required is a quadratic function of
the desired accuracy: each additional digit of accuracy requires a 100-
fold increase in the number of Monte Carlo replications. On the other
hand, the APPL statements to solve this problem are
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> X := UniformRV(0, 1);
> Y := ConvolutionIID(X, 10);
> CDF(Y, 6) - CDF(Y, 4);

which yields

Pr

(
4 <

10∑
i=1

Xi < 6

)
=

655177
907200

∼= 0.7222.

The first line of APPL code defines X as a U(0, 1) random variable.
The second line defines the random variable Y as the sum of 10 iid
random variables, each having the same distribution as X. Finally,
the last line evaluates the cumulative distribution function (CDF) of
Y at 6 less the CDF of Y at 4, yielding the exact result as the fraction
shown above.

The second example concerns finding the probability density function (PDF)
of the product of two triangular random variables.

Example 1.2. Let X and Y be independent random variables with
triangular distributions with parameters (1, 2, 4) and (1, 2, 3), respec-
tively. (The three parameters are the minimum, mode, and maximum,
respectively.) Find and plot the PDF of V = XY .

The APPL code to solve this problem is:

> X := TriangularRV(1, 2, 4);
> Y := TriangularRV(1, 2, 3);
> V := Product(X, Y);
> PlotDist(V);

which returns the PDF of V as

fV (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 4
3v + 2

3 ln v + 2v
3 ln v + 4

3 1 < v ≤ 2
−8 + 14

3 ln 2 + 7v
3 ln 2 + 10

3 v

−4 ln v − 5v
3 ln v 2 < v ≤ 3

−4 + 14
3 ln 2 + 7v

3 ln 2 + 2v
−2 ln v − v ln v − 2 ln 3 − 2v

3 ln 3 3 < v ≤ 4
44
3 − 14 ln 2 − 7v

3 ln 2 − 8
3v

−2 ln 3 + 22
3 ln v − 2v

3 ln 3 + 4v
3 ln v 4 < v ≤ 6

8
3 − 8 ln 2 − 4v

3 ln 2 − 2
3v

+ 4
3 ln v + v

3 ln v + 4 ln 3 + v
3 ln 3 6 < v ≤ 8

−8 + 8 ln 2 + 2v
3 ln 2 + 2

3v

+4 ln 3 − 4 ln v + v
3 ln 3 − v

3 ln v 8 < v < 12.
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2
x

0.3

1286
0

4

0.4

10

0.2

PDF

0.1

Fig. 1.1. PDF of V = XY .

The first two APPL statements define X and Y as triangular random
variables. The third statement uses the APPL Product procedure to
compute the PDF of the product. The last statement plots the PDF
of V , which is shown in Figure 1.1.

The first two examples are complex enough to require about an hour to work
out by hand, assuming that no mathematical or calculation errors occur. In
both examples, the result was available with just a few lines of code and a
few seconds of computer time. We next turn to a problem involving discrete
random variables.

Example 1.3. A bag contains 15 billiard balls, numbered 1 to 15. If 7
balls are drawn from the bag at random, find the probability that the
median number drawn is 5 when (a) sampling is performed without
replacement; (b) sampling is performed with replacement.

In both of the solutions given below, the discrete random variable Y
denotes the median number drawn in the sample of size 7. In part (a),
the support of Y is 4, 5, . . . , 12 due to the sampling without replace-
ment, but in part (b), the support of Y is 1, 2, . . . , 15 due to the fact
that each ball drawn is placed back into the bag after being sampled.

(a) The APPL code in the sampling without replacement case is

> X := UniformDiscreteRV(1, 15);
> Y := OrderStat(X, 7, 4, "wo");
> PDF(Y, 5);
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which returns the probability that the median is 5 as

Pr(Y = 5) =
32
429

∼= 0.07459.

The first APPL statement establishes that the distribution X has
the uniform discrete distribution (or rectangular distribution), which
implies that each of the balls in the bag is equally likely to be drawn.
The second statement makes a call to the APPL procedure OrderStat
with four arguments: the population distribution, the number of draws
from the population, the order statistic of interest, and the optional
"wo" argument to indicate that sampling is without replacement (the
default is with replacement). Finally, the third statement evaluates
the PDF of Y at 5, giving the desired result.

(b) The APPL code in the sampling with replacement case is

> X := UniformDiscreteRV(1, 15);
> Y := OrderStat(X, 7, 4);
> PDF(Y, 5);

which returns the probability that the median is 5 as

Pr(Y = 5) =
2949971
34171875

∼= 0.08633.

The APPL code is identical to the without replacement case except
that the optional fourth argument in OrderStat has been defaulted.

Although these two quantities of interest could have been calculated
by hand, the calculations would have been much more tedious if some
of the billiard balls were more likely to be drawn than others. Such a
change, however, would not pose a difficulty for APPL. Also, although
it has not been exploited in the two calls to OrderStat, the procedure
has computed the entire distribution of Y , so expected values and
other subsequent computations on Y could be performed.

The three examples given thus far have concerned well-known distributions
(i.e., triangular, uniform) parameterized by constants. The fourth and final
example, drawn from a popular mathematical statistics text, highlights a non-
standard distribution with symbolic parameters. Unlike most of the earlier
examples, this example can be worked by hand, then the solution can be
checked using APPL. Furthermore, a student can change any of the arguments
in the problem (e.g., the sample size or critical value) to see if the results of
the change match his or her intuition.

Example 1.4. Let X1 and X2 be iid observations drawn from a popu-
lation with PDF

f(x) = θxθ−1 0 < x < 1,
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where θ > 0. Test H0: θ = 1 versus H1: θ > 1 using the test statistic
X1X2 and the critical region C = {(X1, X2) |X1X2 ≥ 3/4}. Find the
power function and significance level α for the test (Hogg, et al. [37,
page 270]).

The APPL code to compute the power function is

> n := 2;
> c := 3 / 4;
> assume(theta > 0);
> X := [[x -> theta * x ^ (theta - 1)], [0, 1],

["Continuous", "PDF"]];
> T := ProductIID(X, n);
> power := SF(T, c);

which yields

Pr(rejecting H0 | θ) = 1 − (3/4)θ + θ(3/4)θ ln(3/4)

for θ > 0. The sample size n is defined in the first APPL statement.
The critical value c is defined next. The Maple assume procedure de-
fines the parameter space θ > 0. The fact that the population distri-
bution is non-standard requires the random variable X to be defined
using the “list-of-sublists” data structure used in APPL (described
subsequently in Chapters 3 and 6). The first sublist gives the func-
tional form of the PDF, the second sublist gives the support, and
the third sublist indicates that the random variable being defined is
continuous and that the function in the first sublist is a PDF. The
ProductIID procedure computes the product of the two iid random
variables having the distribution of X and creates the random variable
T . Finally, the power function is defined using the survivor function
(SF) procedure to compute Pr(T ≥ c = 3/4) for various values of
θ > 0.

To compute the significance level of the test, the additional Maple
statement

> alpha := subs(theta = 1, power);

is required, yielding

α = 1/4 + (3/4) ln(3/4) ∼= 0.0342.

Plotting the power function requires the additional Maple statement

> plot(power, theta = 0 .. 20);

The power function is shown in Figure 1.2. Obviously, this example
can be generalized for different sample sizes, population distributions,
and critical values with only minor modifications.
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0.8

0.6

0.4

0.2

0

theta~
20151050

Fig. 1.2. The power function.

The careful reader has probably noted the distinction between APPL state-
ments and Maple statements from the previous example. If APPL is to be a
serious research tool, then it is necessary to learn certain aspects of Maple,
such as the subs and plot procedures used in the fourth example. A brief
review of those aspects of Maple that are germane to APPL are given in
Chapter 2.

The next section shows that there is a non-traditional way of thinking that
is required in order to mix probability and computing.

1.2 A Different Way of Thinking

A few weeks into the introductory calculus-based probability class, the prop-
erties associated with the PDF of a continuous random variable∫ ∞

−∞
f(x) dx = 1 and f(x) ≥ 0,−∞ < x < ∞

are introduced. Probability definitions and problems often need to be recast
in order to make them amenable to processing by a computer algebra system.
The first property is fairly easy to verify in a computer algebra system [if f(x)
can be integrated symbolically, do so and show that the area under the curve
is 1, else, integrate numerically and show that the area under the curve is
within epsilon of 1]. The second property, however, is quite difficult to show.
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One might imagine checking the PDF on a very fine grid over the support of
the random variable, but this is unappealing for two reasons. First, the grid
should be very fine, resulting in considerable CPU time. Second, and more
importantly, if f(x) drops below the x-axis between grid points, a PDF will
be accepted with f(x) < 0.

A better way to verify the PDF properties is to recast them as the equiv-
alent pair∫ ∞

−∞
f(x) dx = 1 and

∫ ∞

−∞
|f(x)| dx = 1,

which can be easily verified in a computer algebra system. An APPL proce-
dure named VerifyPDF verifies this latter pair of properties for a continuous
random variable rather than the more intuitive pair typically introduced in
an introductory probability class.

As a second example of a more algorithmic approach to thinking about
probability, consider the following problem. If X ∼ U(0, 1), find the distribu-
tion of Y = g(X) = X2. The “transformation technique” is commonly used
to find the distribution of Y when g(X) is a 1–1 transformation from the
support of X, which we call A, to the support of Y , which we call B. The
general formula for the PDF of Y is

fY (y) = fX

(
g−1(y)

) ∣∣∣∣dg−1(y)
dy

∣∣∣∣ y ∈ B.

Since the PDF of X is fX(x) = 1 for 0 < x < 1 and the inverse transformation
is g−1(y) =

√
y, the PDF of Y is

fY (y) = fX(
√

y)
∣∣∣∣ 1
2
√

y

∣∣∣∣ 0 < y < 1

or
fY (y) =

1
2
√

y
0 < y < 1.

This is exactly the way that the transformation technique should be imple-
mented in an algorithm. In fact, the APPL code to find the distribution of Y is

> X := UniformRV(0, 1);
> g := [[x -> x ^ 2], [0, 1]];
> Y := Transform(X, g);

which returns the PDF of Y as

fY (y) =
1

2
√

y
0 < y < 1

as expected. Unfortunately, the algorithm behind the Transform procedure is
not quite as simple as this example would suggest. For example, when Maple
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finds the inverse function g−1(y) it returns not the single inverse suggested
above, but rather two inverses:

g−1
1 (y) = +

√
y and g−1

2 (y) = −√
y.

How do we determine which one is the correct inverse? Here is the thinking:
First we determine the midpoint of the support of X, which we denote by
x0. In the current example, x0 = 1/2. Next we calculate the value of the
transformation at x0, which is g(x0) = 1/4. Finally, we loop through all
of the inverses that are returned by the computer algebra system inserting
g(x0) as an argument, and determine which of the inverses returns x0. In this
case, g−1

1

(
g(x0)

)
= x0, so the first inverse is the right one and the second

inverse should be discarded. Adjustments in this procedure must be made for
distributions with infinite support, such as the exponential distribution and
the normal distribution.

Likewise, what if the distribution of X is defined in a piecewise fashion,
e.g., the triangular distribution? In this case an outside loop must be added
to the Transform procedure in order to do the appropriate bookkeeping so
that all of the density gets transformed from the distribution of X to the
distribution of Y appropriately.

Furthermore, how does the Transform procedure handle portions of the
transformation that are 2–1, or, more generally, k–1? The algorithm behind
the Transform procedure tracks each piecewise segment and determines the
associated mapping onto the support of Y .

These two examples provide a window into the thinking that is required
to develop algorithms for performing probability calculations. APPL requires
many conditions [e.g., if g−1

1

(
g(x0)

)
= x0, then choose the right inverse] and

loops [e.g., loop through all inverses] to perform various manipulations of
random variables. Automating probability calculations in this manner is pre-
cisely the vision we have for computational probability. APPL and similar
languages can be used to explore new probability theory or calculate known
but mathematically intractable probability measures.

1.3 Overview

We end this chapter with an overview of the organization of the monograph.
As mentioned earlier, Chapter 2 contains a brief review of Maple syntax, data
structures, and programming constructs used to write the procedures that
comprise APPL. We survey only a small portion of the Maple language.

The second part of the monograph, Chapters 3–5, considers continuous
random variables. The data structure used for defining a continuous ran-
dom variable is defined in Chapter 3. Chapters 4 and 5 contain examples of
algorithms devised for manipulating continuous random variables. Chapter 4
considers transformations of continuous random variables and Chapter 5 con-
siders products of continuous random variables.
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The third part of the monograph, Chapters 6–8, considers discrete ran-
dom variables. The data structure that we have used for defining a discrete
random variable is defined in Chapter 6. Chapters 7 and 8 contain examples
of algorithms for manipulating discrete random variables. Chapter 7 considers
sums of discrete random variables and Chapter 8 considers the distribution of
order statistics drawn from discrete distributions.

The fourth part of the monograph, Chapters 9–11, considers applications
of APPL in computational probability. Chapter 9 contains applications in
reliability and survival analysis problems, including system design, lower con-
fidence bounds on system reliability, and bootstrapping. Chapter 10 contains
APPL applications in discrete-event simulation, including random number
testing, input modeling, and goodness-of-fit testing. Finally, Chapter 11 con-
tains miscellaneous applications, such as determining the exact distribution
of the time to complete a stochastic activity network, probabilistic analysis of
Benford’s law, and the generation of values in statistical tables.
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Maple for APPL

Maple is a computer algebra system and programming language that can be
used for numerical computations, solving equations, manipulating symbolic
expressions, plotting, and programming, just to name a few of the basics.
APPL is, simply, a set of supplementary Maple commands and procedures
that augments the existing computer algebra system. In effect, APPL takes
the capabilities of Maple and turns it into a computer algebra system for
computational probability. This chapter contains guidelines for using Maple,
and it discusses the Maple commands that are used in APPL programming.
Upon reading this chapter, an APPL user gains the knowledge necessary to
modify the APPL code to meet his or her particular needs. We will start with
a discussion of basic numeric computation, then advance to defining variables,
symbolic computations, functions, data types, solving equations, calculus and
graphing. Then we will discuss the programming features of Maple that facil-
itate building the APPL language: loops, conditions and procedures.

2.1 Numerical Computations

Numerical computations in Maple give it the functionality of a hand-held
calculator. To execute an arithmetic expression in Maple, the expression must
be terminated with a semicolon or colon. The # symbol is used for commenting
in a Maple worksheet. Below are several examples of numerical computations
with their corresponding outputs.

> 2 + 2;

4

> 1 + 1 / 2;

3
2



14 2 Maple for APPL

> 1 + 0.5;

1.5

> sqrt(2); # sqrt() takes the square root
√

2

> Pi;

π

> evalf(Pi);

3.141592654

> 2 * 2.5:
> % + 1 / 2;

5.500000000

From these few examples, it is important to note the following:

• Spaces between symbols are optional, so 2 + 2; and 2+2; are equivalent.
We include spaces between operators for readability, consistent with good
programming practice.

• Maple performs exact calculations with rational numbers and approximate
calculations with decimals. To Maple, the rational number 3/2 and the
floating-point approximation 1.5 are different objects. Using both decimals
and rational numbers in a statement produces a decimal output.

• Maple interprets irrational numbers as exact quantities. Maple also recog-
nizes standard mathematical constants, such as π and e, and works with
them as exact quantities.

• The evalf command converts an exact numerical expression to a floating-
point number. By default, Maple calculates the result using ten digits of
accuracy, but any number of digits can be specified. The optional second
argument of evalf controls the number of floating-point digits for that
particular calculation.

• For particularly precise numerical expressions, a call to evalhf evaluates
an expression to a numerical value using the hardware floating-point preci-
sion of the underlying system. The evaluation is done in double precision.
The evalhf function computes only with real floating-point arguments.

• If a statement ends with a colon, instead of a semicolon, then Maple
suppresses the output, although it will store the result (if assigned to a
variable) internally.

• The ditto operator % refers to your last calculated result, even if that
result is not on the line preceding the %.
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2.2 Variables

It is convenient to assign variable names to expressions that are referred to one
or more times in a Maple session. Maple’s syntax for assigning a variable name
is name := expression. Almost any expression, including numbers, equations,
sets, lists, and plots, can be given a name, but it is indeed helpful to choose
a name that describes the expression. The restart command makes Maple
act (almost) as if it has just been started, and it clears the values of all Maple
variables. Some guidelines for variable names are:

• Maple is case sensitive, so the names X and x denote unique variables.
• A variable name can contain alphanumeric characters and underscores,

but it cannot start with a number.
• Once a variable is assigned to an expression, it remains that expression

until changed or cleared.
• A variable name can be cleared by assigning variable := ’variable’;

or executing the statement unassign(’variable’);
• Maple has some predefined and reserved names, such as Sum, sqrt, and
length, that are not available for variable assignment. Maple will not
allow an expression to be assigned to a predefined variable name.

• When you close a Maple session, variable names assigned during that
session will be forgotten. When a Maple worksheet is re-opened, variable
names must be reactivated.

• The restart command at the top of the worksheet, followed by the
sequence of keystrokes Alt, e, e, w restarts the memory of the vari-
ables and then executes the entire worksheet in order. Often one will be
in the middle of a series of commands, fix an error and need to re-execute
all commands in order once again.

Below are several examples of defining variable names.

> restart:
> EventA := 0.3:
> EventB := 0.3:
> EventC := 0.4:
> S := EventA + EventB + EventC;

S := 1.0

> Sum := EventA + EventB;
Error, attempting to assign to ‘Sum‘ which is protected

> prob := p * (1 - p) ^ 2:
> p := 1 / 4:
> prob;

9
64
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> unassign(’p’): # You could also write p := ’p’
> newprob := 3 * p ^ 2 * (1 - p);

newprob := 3p2(1 − p)

Once a Maple expression is given a name, it can be evaluated at different
values using subs() or eval(). The command subs(p = 1 / 2, newprob)
or eval(newprob, p = 1 / 2) yields the value 3

8 . Since newprob is a variable,
and not a function, Maple does not understand the notation newprob(1/3),
which the user may incorrectly try to use to determine the value of newprob
for p = 1/3. If an expression is intended to actually define a function, then the
function must be formally defined, and two techniques for doing so appear in
Section 2.4.

Sometimes assumptions must be made on variables in order to set variable
properties or relationships. A common use of the assume function is to assume
a constant is positive, i.e., assume(p > 0). Making such assumptions allow
Maple routines to use this information to simplify expressions, for example,√

p2. When an assumption is made about a variable, thereafter the variable
is displayed with an appended tilde ~ to indicate that it carries assumptions.
The additionally function adds additional assumptions without removing
previous assumptions. For example, we could further restrict p to be less than
one with the command additionally(p < 1).

2.3 Symbolic Computations

One of Maple’s main strengths is its ability to manipulate symbolic expres-
sions. Symbols can be treated in the same way that numbers were in the
previous section and can do much more. Entering a constant or variable fol-
lowed by a variable, e.g., 2x or ab, does not imply multiplication in Maple. In
fact, ab would be treated as a new two-letter variable instead of the product of
two single-letter variables. You may not omit the multiplication symbol (∗) in
expressions with more than one factor. Below are a few examples of Maple’s
symbolic abilities using three commands, combine, expand, and simplify,
that appear in the APPL code.

> exp(-t ^ 2) * exp(-s ^ 2);

e(−t2)e(−s2)

> combine(%);

e(−t2−s2)

> mgf_1 := (1 / 3) * exp(t) + (2 / 3) * exp(2 * t):
> mgf_2 := (1 / 4) + (3 / 4) * exp(-t):
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> mgf_1 * mgf_2; (
1
3
et +

2
3
e(2t)

)(
1
4

+
3
4
e−t

)

> expand(%);

7
12

et +
1
4

+
1
6
(et)2

> mgf_1 / mgf_2;

1
3
et +

2
3
e(2t)

1
4

+
3
4
e(−t)

> simplify(%);

4
3

e(2t) (1 + 2et)
et + 3

2.4 Functions

Functions are defined in Maple by using the arrow notation -> or the
unapply() command. The assignment operator := associates a function name
with a function definition. Two equivalent ways of defining a function f are

> f := x -> exp(-2) * 2 ^ x / x!:
> f := unapply(exp(-2) * 2 ^ x / x!, x);

f := x → e(−2)2x

x!

This notation allows a function to be evaluated in the “usual” way, i.e., f(0),
when it appears in Maple expressions. Such functions are an integral part of
APPL, and are used to create PDFs, CDFs, and transformations of random
variables. Unassigning a function is done in the same way that a variable is
unassigned to a value, f := ’f’. As shown in the examples below, piecewise
functions may also be defined in Maple, and we certainly take advantage of
this in APPL, e.g., the triangular distribution.

> g := unapply(exp(-lambda) * lambda ^ x / x!, lambda, x);

g := (λ, x) → e(−λ)λx

x!

> g(2, 0);

e(−2)
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> h := x -> piecewise(x <= 1, 0, x > 1, 2):
> h(x); {

0 x ≤ 1
2 x > 1

In addition to facilitating the creation of custom functions, Maple has
built-in mathematical functions, e.g., trigonometric functions such as tan,
inverse trigonometric functions such as arccos, absolute value (abs), the expo-
nential function (exp), the gamma function (GAMMA), and binomial coefficients
(binomial). As illustrated earlier in the chapter, the exponential function in
Maple is written as exp(x). In order to compute e3, enter exp(3), not e ^ 3.
The binomial function binomial(n, x) determines binomial coefficients for
selecting x items from n items without replacement. Examples of the functions
used frequently in the APPL code are below.

> abs(ln(0.4) + arcsin(0.65));

0.2087062952

> binomial(4, 2);

6

> GAMMA(5);

24

> evalf(exp(2));

0.9953222650

Maple has packages of functions available with specialized commands
to perform tasks from an extensive variety of disciplines. The commands
in a package can be activated using the with command. For example,
with(networks) adds the networks package, which supplies tools for
constructing, drawing, and analyzing combinatorial networks. Likewise,
with(plots) enables more options with plotting functions.

When a package’s functions are accessed using the with command, oc-
casionally a previous definition or a function, either built-in or defined by
the user, will be overridden. For example, trace is by default defined to be
the program-tracing function. However, after invoking with(linalg), trace
is redefined to mean the trace of a matrix. The with function prints out a
warning message whenever it overrides a previous definition or function.

2.5 Data Types

This section examines some basic types of Maple objects, including lists, sets,
arrays, and strings.

A Maple list can be created by enclosing any number of expressions (sep-
arated by commas) in brackets. Maple preserves the order and repetition in
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a list. Thus, [a,b,c] and [b,c,a] are different lists. The nops command
determines the total number of elements within a list. The membership of an
element in a list can be checked with member(), which returns a true or false
boolean statement.

> probs := [0.3, 0.5, 0.2]:
> nops(probs);

3

> member(0.3, probs);

true

Because order is preserved in a list, a particular element can be extracted
from a list without searching for it. Use L[i] to access the ith element of a list
L. The op command applied to a list removes the brackets of the list, and sort
preserves the list structure while sorting the elements into ascending order.

> probs := [0.3, 0.5, 0.2]:
> op(probs);

0.3, 0.5, 0.2

> sort(probs);

[0.2, 0.3, 0.5]

In APPL, we utilize the functionality of Maple’s list structure to represent
a random variable as a “list-of-sublists.” A list-of-sublists is just a list, each of
whose elements is itself a list. For example, we create a random variable as a
list of three sublists, where the first sublist contains the functional form of the
distribution, the second sublist contains its support, and the third sublist uses
strings to describe the type of the random variable, i.e., continuous or discrete,
and the type of function, e.g., the PDF, CDF or HF. When APPL receives a
random variable for manipulation, it first checks the type of the random vari-
able before continuing; that is, is the random variable continuous or discrete?
Depending on the answer, APPL treats that random variable accordingly, for
example, integrating to determine expected value versus summing. Additional
information about APPL’s list-of-sublists data structure for random variables
is contained in Chapters 3 and 6. Elements in a list-of-sublists can be extracted
using indices. For example,

> x := [[1, 2, 3], [4, 5, 6], [7, 8]];

sets x to a list of three elements, each of which is a list. Sublists or individual
elements can be extracted as follows:

> x[2];

[4, 5, 6]
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> x[2, 1];

4

> x[2][1];

4

A Maple set is constructed by enclosing any number of Maple objects (sep-
arated by commas) in braces. The braces identify the object as a set. Maple
does not preserve order or repetition in a set. Thus the sets {a,b,c}, {b,c,a},
and {c,c,b,a} are identical. The member command validates membership in
a set, and to choose an item from a set, the subscript notation [i] is used,
where i identifies the position of the desired element in the set. Also, the nops
function counts the number of elements in a set.

The seq command is used to generate sequences, which can be contained
in a list or a set if desired. For example, a sequence of binomial coefficients
can be obtained by using seq as follows:

> seq(binomial(4, i), i = 0 .. 4);

1, 4, 6, 4, 1

The Maple array data structure is an extension of the Maple list data
structure. Each element is still associated with an index (which can be negative
or zero), but an array is not restricted to one dimension.

A string is a Maple object created by enclosing a sequence of characters
in double quotes. We use strings in APPL in the third sublist of the list-of-
sublists that define a random variable to help identify its functional form,
such as "Continuous", "Discrete", "PDF", "CDF", etc.

2.6 Solving Equations

Maple can find analytic solutions for a large class of algebraic equations.
The solve command is a general-purpose equation solver. It takes a set
of one or more equations and attempts to solve it exactly for the specified
set of unknowns. The fsolve command is the numeric equivalent of solve;
fsolve calculates the solution(s) to equations using a variation on Newton’s
method, producing approximate (floating-point) solutions. For a general equa-
tion, fsolve searches for a single root and often returns the first root it finds,
which may not be the desired root. For a polynomial, it looks for all real
roots. Fortunately, there is a way to make fsolve look for a specific solution
by specifying an interval over which fsolve may search, as illustrated in the
examples to follow. Some special notes about solving equations are

• If the variable(s) being solved for are not specified, Maple solves for all
variables.
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• If no right-hand side to an equation is given (for example, solve(2 * x -
8)), the right-hand side is assumed to be 0.

• The fsolve command often only returns one real solution.
• If there are multiple solutions to an equation, they can be extracted by

setting the solution set to a variable, then using subscripts [1], [2], etc.

Here are several examples of solving one or more equations at a time.

> solve(x ^ 3 = 2 * x, x);

0,
√

2,−√
2

> fsolve(x ^ 3 = 2 * x, x);

−1.414213562, 0., 1.414213562

> eqns := {x + 2 * y = 3, y + 1 / x = 1}:
> solns := solve(eqns, {x, y});

solns := {y = 2, x = −1} ,

{
x = 2, y =

1
2

}

> solns[2]; {
x = 2, y =

1
2

}

> solve(cos(x) - x = 0);

RootOf( Z − cos( Z ))

> fsolve(cos(x) - x = 0);

0.7390851332

> express1 := (1 / x) + (1 / x ^ 2) - (3 / x ^ 3):
> solve(express1);

−1
2

+
√

13
2

, −1
2
−

√
13
2

> fsolve(express1);

1.30277563

> fsolve(express1, x = -3 .. 0);

−2.302775638

Maple occasionally returns solutions in terms of the RootOf function,
which is a place holder for representing all the roots of an equation in one
variable. The prefix Z on the variable in a RootOf solution indicates that it
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has integer values. The fsolve command is able to approximate these roots
(at most one at a time for non-polynomial equations, and a specific root if a
search interval is specified). Below is also an indication of the range of a vari-
able using two periods in a row. The range delimiter “..” denotes endpoints
of intervals in plots, integrations, and other situations.

Two other commands of interest for obtaining either the left-hand side
or right-hand side of an expression are lhs and rhs, respectively. Especially
useful to APPL is the ability of these commands to extract the first and last
term of a sequence. This functionality allows APPL to read off the bounds on
the support of a probability function, which is displayed in the second sublist
for a random variable. Both uses of lhs and rhs are displayed below.

> eqn1 := x + y = z + 3:
> lhs(eqn1);

x + y

> rhs(eqn1);

z + 3

> support := 1 .. infinity:
> lhs(support);

1

> rhs(support);

∞

2.7 Graphing

Another capability of Maple is graphing. The explicit function y = f(x) and
its domain must be specified for a Maple plot. Plotting the standard normal
distribution on the interval −3 ≤ x ≤ 3, for example, can be done with the
Maple statements shown below. We will use the function form -> to define the
PDF of the standard normal distribution. The plot is displayed in Figure 2.1.

> f := x -> 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):
> plot(f(x), x = -3 .. 3);

In order to plot more than one function on a single graph, the functions
must be contained in brackets or braces. The use of brackets means that
order is important and Maple should graph them in the given order; the use
of braces means that order is not important and Maple may graph them in
any order. Also, it is sometimes useful to specify the range of the y-values in
order to display important features of a graph. Figure 2.2 contains a plot of
two normal PDFs. The functions are defined with two different variables, but
used as arguments in plot with a third variable, as one would expect.
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Fig. 2.1. Plot of a standard normal PDF between x = −3 and x = 3.
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Fig. 2.2. Plot of a standard normal PDF and a normal PDF with mean µ = 1 and
standard deviation σ = 2 between x = −7 and x = 9.

> f1 := t -> 1 / sqrt(2 * Pi) * exp(-t ^ 2 / 2):
> f2 := z -> 1 / (2 * sqrt(2 * Pi)) * exp(-(z - 1) ^ 2 / 8):
> plot({f1(x), f2(x)}, x = -7 .. 9, color = [red, blue]);
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2.8 Calculus

Maple provides many powerful tools for solving problems in calculus. This
section describes Maple’s ability to determine limits, symbolically compute
derivatives and definite integrals, and determine summations. The need for
calculus operations in APPL is great because many probability theorems rely
on calculus to create new distribution functions. A few comments about de-
termining limits, derivatives, and definite integrals in Maple follow:

• Maple will compute both two-sided limits, e.g., limx→5

(
x+2
x−1

)
, and one-

sided limits, e.g., limx↑1
(

x+2
x−1

)
, with the limit procedure.

• Maple can determine limits at ∞, such as the limit of an exponential CDF
at infinity.

Examples of the limit command are

> limit((3 ^ (x + h) - 3 ^ x) / h, h = 0);

3x ln(3)

> assume(lambda > 0):
> limit(1 - exp(-lambda * x), x = infinity);

1

The diff procedure computes the derivative of an expression. Maple dif-
ferentiates with respect to the variable placed in the second argument of the
diff() procedure. Clearly, diff is used often in APPL for changing from one
functional form of a continuous random variable’s distribution to another,
e.g., deriving a PDF from a CDF. One such example of the diff() command
follows; however it is important to note that APPL will do such conversions
in a more automated manner. Also note the use of the unapply command to
turn the final expression into a function.

> F := x -> 1 - exp(-2 * x);

F := x → 1 − e(−2x)

> f := unapply(diff(F(x), x), x);

f := x → 2 e(−2x)

The capabilities of Maple include a robust set of integration operations.
Symbolic integrals (often used in APPL) can be calculated as in the following
example:

> f := y -> 2 * exp(-2 * y):
> F := unapply(int(f(y), y = 0 .. x), x);
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F := x → 1 − e(−2x)

Maple’s ability to integrate also includes the numerical evaluation of inte-
grals for which no closed-form solution is available, such as the case with the
standard normal random variable:

> g := 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):
> int(g, x = -infinity .. 1.96);

0.9750021049

However, if we integrate the standard normal PDF over exact values, rather
than floating point values, Maple responds with erf. For example, integrating
a standard normal PDF from x = −1 to 1 yields the following:

> int(g, x = -1 .. 1);

erf

(√
2

2

)

The function erf(x) is the error function and it is defined for real and complex
x by erf(x) = 2

π

∫ x

0
e−t2dt. Maple can numerically evaluate an erf(x) output

with the evalf command.

> evalf(int(g, x = -1 .. 1));

0.6826894920

Maple also can compute finite sums and infinite series, which are necessary
capabilities for working with discrete random variables. The next few exam-
ples demonstrate the use of sum. The first example verifies that a geometric
distribution has a valid PDF.

> geometric := (1 / 4) * (3 / 4) ^ (x - 1);

geometric :=

(
3
4

)(x−1)

4
> sum(geometric, x = 1 .. infinity);

1

The second example determines the expected value of a binomial distribution
with parameters n and p.

> assume(p > 0):
> additionally(p < 1):
> pdf := binomial(n, x) * p ^ x * (1 - p) ^ (n - x):
> simplify(sum(pdf * x, x = 0 .. n));

np∼
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2.9 Loops and Conditions

Like all programming languages, loops in Maple allow the user to execute a
sequence of statements repeatedly, either for a prescribed number of times or
until a condition is satisfied (or not satisfied). This is a useful tool in APPL
when working with random variables. Loops are used in APPL to do many
things: cycle through segments of PDFs, verify inverse transformations, and
error-checking, to name a few. For example, if a discrete random variable’s
PDF consists of a finite number of numeric probabilities in the first sublist
in a list-of-sublists, we require these probabilities to be non-negative. Using a
for loop allows APPL to cycle through the items in this sublist (from item
one to nops(sublist)) until the list is complete or a negative value is iden-
tified. Similarly, if numeric probabilities in the first sublist are supposed to
be equally-likely probabilities, then APPL can repeatedly check each proba-
bility value while the probability values remain the same. The expression in
the while clause is a Boolean expression which must evaluate to true or false
upon each cycle.

Conditional statements in APPL have a variety of purposes including error
checking, branching in logic, and conditional plotting. If an APPL procedure
requires input arguments from the user, then an if statement can be used to
verify that the input is valid. If a procedure does not receive the correct type
of arguments, e.g., lists, an error message is sent back to the APPL user. Also,
in the third sublist is the “form” of the random variable. The first element
of the third sublist tells APPL whether the random variable is continuous or
discrete. If the random variable is continuous, then continuous mathematics
(e.g., integration) is used to verify the validity of its PDF or compute its
mean, for example. If discrete random variables are indicated by the field,
then discrete mathematical techniques (e.g., summation) are used.

Boolean expressions in the conditional statement are most often formed
by using <, <=, >, >=, =, <>, or, and, or not. For example, if the “form” of
the random variable is not one of the approved formats (e.g., PDF, CDF, SF,
HF, CHF, IDF), then an error message is reported to the user.

A few examples of small loops and conditionals are presented here to
amplify the above explanations:

> probs := [0.1, 0.05, 0.2, 0.25, 0.15, 0.10, 0.15]:
> totprob := 0:
> for i from 1 to nops(probs) do
> totprob := totprob + probs[i]:
> end do; # ’od’ can also be used to end a ’do’ loop

totprob := 0.1
totprob := 0.15
totprob := 0.35
totprob := 0.60
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totprob := 0.75
totprob := 0.85
totprob := 1.00

> die := rand(1 .. 6): # random integer from 1 to 6
> Roll1 := die():
> Roll2 := die():
> if (Roll1 >= Roll2) then
> print("Roll 1 is greater than or equal to Roll 2");
> else
> print("Roll 1 is less than Roll 2");
> end if; # ’fi’ can also be used to end an ’if’ conditional

To conclude this section, a while loop is created in which the user is encour-
aged to experiment with various values for the probability prob.

> i := 1:
> totprob := 0:
> prob := 1 / 2:
> while (totprob <= 1) and (i <= 1000) do
> totprob := prob + totprob:
> prob := prob ^ 2 + 0.001:
> i := i + 1:
> print(i):
> print(totprob):
> end do:

When a break statement is used in a procedure, a break is executed and
the result is to exit from the innermost repetition (for/while/do) statement
within which it occurs.

2.10 Procedures

The capability to create new procedures in Maple is a key element to enabling
APPL programming. In fact, APPL is a text file of new Maple procedures that
is imported into a worksheet session with the read command. When a file is
read into Maple, each line in the file is treated as if it had been typed in
order. The APPL procedures are available during the Maple session, but the
commands are not displayed on the Maple worksheet. When the user reads
in the APPL commands, it’s as if they used the with command to add extra
capability. The syntax for reading APPL into Maple from the ASCII source
code file named APPL.txt is read(‘APPL.txt‘).

The syntax for creating a procedure in Maple is

proc(〈argseq〉) [local 〈nseq〉 ; global 〈nseq〉 ; ]
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〈statement sequence〉
end;

where [ ] indicates optional parameters. Then

• 〈argseq〉 is a sequence of variable names, separated by commas. These
variables are the arguments to the procedure.

• 〈nseq〉 is a sequence of variable names, separated by commas.
• local 〈nseq〉 is a list of variables local to the procedure. Any assignments

of these variables will only have a scope of the procedure. The values of
these variables will be unassigned when the procedure starts, regardless
of the value of the variable outside the procedure.

• global 〈nseq〉 is a list of global variables used by the procedure. Any as-
signments made in the procedure will be global in scope and the initial
values of the variables will be as they are in the existing Maple session.

• 〈statement sequence〉 is the body of the procedure and may consist of any
valid sequence of Maple statements.

The proc command is usually used in conjunction with the RETURN key-
word. The syntax is

RETURN (expression) ;

This command will terminate the execution of the procedure and return the
value of expression.

Since APPL’s random variables often have quite a few arguments, it’s
helpful that Maple provides an easy way to do data typing in procedures. The
arguments passed to a procedure may be given a specific data type. If any of
these variables is then assigned an incorrect type, Maple generates an error
message. The syntax for declaring a variable to be of a given data type is the
declaration is

variable name :: data type

where Maple accepts a wide range of data types. The types most frequently
encountered in APPL are list and listlist (because of the list-of-sublists
structure of APPL random variables), constant, posint, int, and array.
Another type used frequently in APPL is symbol. Infinity (∞) is of type
symbol, and this is important information for APPL procedures to know
when evaluating random variables over supports that are not finite. The type
of an expression can be determined in Maple with the command type. The
syntax is

type (expression, type)

which returns a boolean value, either true or false.
Another useful error-checking command that can used with procedures

is nargs, which is the number of arguments passed to a procedure. We use
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if statements in APPL to determine if optional arguments are passed to a
procedure and how the procedure should proceed given this number of argu-
ments. For example, the OrderStat procedure in APPL will perform differ-
ently based on whether or not it is given an optional fourth argument that
specifies whether sampling is done without replacement.

To summarize the last few sections on programming in Maple, the follow-
ing excerpt from the APPL source code is noteworthy. The procedure is called
ReduceList and it is a small sub-procedure in APPL that looks for redundant
support entries in a random variable list-of-sublist’s second sublist. One sees
how the proc command begins the procedure as well as some argument check-
ing, local variable declarations, a for loop and some conditional branching.
The RETURN and end commands end the procedure.

#

# ReduceList is a procedure that eliminates floating point

# redundancies (e.g., 3 vs. 3.0) from a sorted Maple list.

#

ReduceList := proc(LST :: list)

local i, size, delt, deltamin, ListIn:

deltamin := 0.0000001:

ListIn := LST:

size := nops(ListIn):

for i from (size - 1) by -1 to 1 do

if (ListIn[i] <> -infinity and ListIn[i + 1] <> infinity) then

delt := evalf(ListIn[i + 1]) - evalf(ListIn[i]):

if (delt < deltamin) then

if (whattype(ListIn[i]) <> float) then

ListIn := subsop((i + 1) = NULL, ListIn):

else

ListIn := subsop(i = NULL, ListIn):

fi:

fi:

fi:

od:

RETURN(ListIn):

end:

This concludes our brief introduction to the Maple computer algebra sys-
tem. Additional help on a specific Maple topic can be accessed from the Maple
worksheet by entering ?topic or help(topic) at the prompt. Also, help can
be obtained directly by going to the “Help” menu in Maple, scrolling down to
“Topic Search,” and entering the topic of interest in the “Topic” line. We now
turn to the main topic of the monograph, defining random variables in APPL
and the associated algorithms to manipulate them. We begin with continuous
random variables.
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Data Structures and Simple Algorithms

This chapter and the two that follow it are concerned with continuous random
variables. We have chosen to present continuous random variables first because
they are defined with a somewhat simpler data structure than that for discrete
random variables. The development described here gives a probabilist the
ability to automate the instantiation and processing of continuous random
variables—key elements of computational probability.

3.1 Data Structures

There are dozens of ways that one could represent the distribution of a random
variable in Maple. Whatever choice is made, the syntax associated with the
data structure should be succinct, intuitive, and easily manipulated. This
implies there should be a single data structure that allows a user to define the

• probability density function (PDF) fX(x)

• cumulative distribution function (CDF) FX(x) =
∫ x

−∞ fX(s) ds,

• survivor function (SF) SX(x) = 1 − FX(x)

• hazard function (HF) hX(x) = fX(x)/SX(x)

• cumulative hazard function (CHF) HX(x) =
∫ x

−∞ hX(s) ds, and
• inverse distribution function (IDF) F−1

X (u)

for a continuous random variable X. It should also provide a seamless tran-
sition from one representation to another. The common data structure that
we used in the development of the APPL software package is referred to as
the “list-of-sublists.” Specifically, any functional representation of a random
variable is presented in a list that contains three sublists, each with a spe-
cific purpose. The first sublist contains the ordered functions that define the
functional forms of the distribution. The PDF representation of the triangular
distribution, for example, would have the two linear functions that comprise
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the two segments of its PDF for its first sublist. The second sublist is an
ordered list of real numbers that delineate the end points of the intervals for
the functions in the first sublist. The end point of each interval is assumed to
be the starting point of the succeeding interval. The third sublist has two ele-
ments. The first element of the third sublist is either the string "Continuous"
for continuous distributions or "Discrete" for discrete distributions. The sec-
ond element of the third sublist shows which of the six functional forms listed
above is used in the first sublist. The string "PDF", for example, indicates that
the first sublist denotes a PDF.

Example 3.1. The following seven random variables give a variety of
ways continuous random variables can be defined in APPL.

• The following APPL statement assigns a list-of-sublists that rep-
resents the PDF of a U(0, 1) random variable to the list X:

> X := [[x -> 1], [0, 1], ["Continuous", "PDF"]];

• The triangular distribution has a PDF with two segments to its
distribution. The following statement defines a triangular(0, 1, 2)
random variable named X with a minimum of 0, mode of 1, and
maximum of 2, as a list-of-sublists:

> X := [[x -> x, x -> 2 - x], [0, 1, 2],
["Continuous", "PDF"]];

• An exponential random variable X with a mean of 1/3 can be
defined in terms of its hazard function with the APPL statement

> X := [[x -> 3], [0, infinity], ["Continuous", "HF"]];

• The three random variables defined above all have numeric para-
meters. APPL is also able to accommodate symbolic parameters.
A N(θ, 1) random variable X can be defined with the statement

> X := [[x -> exp(-(x - theta) ^ 2 / 2) / sqrt(2 * Pi)],
[-infinity, infinity], ["Continuous", "PDF"]];

• The parameter space can be specified by using the Maple assume
function. Consider the random variable T with HF

hT (t) =
{

λ 0 < t < 1
λt t ≥ 1

for λ > 0. The random variable T can be defined by the statements

> assume(lambda > 0);
> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity], ["Continuous", "HF"]];
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• The syntax allows the endpoints of intervals associated with the
support of a random variable to be specified symbolically. A U(a, b)
random variable X is defined by

> assume(a < b);
> X := [[x -> 1 / (b - a)], [a, b],

["Continuous", "PDF"]];

• There is no error checking to ensure that the distribution associ-
ated with a random variable is legitimately represented by a par-
ticular list-of-sublists. This means that the statement shown below
will create a list-of-sublists that is not a legitimate PDF.

> X := [[x -> 17], [0, 49], ["Continuous", "PDF"]];

An APPL procedure named VerifyPDF will be introduced that
can be used to verify the PDF properties for a random variable.

After repeatedly typing the list-of-sublists for common continuous distri-
butions, we soon realized that the list-of-sublists format could be automated
for certain common (e.g., normal, exponential) distributions. We appended
the letters RV onto these procedure names so as to avoid any conflicts with
existing Maple procedures. The following continuous distributions have a
procedure that creates the appropriate list-of-sublists in PDF form for use
in APPL: ArcSin, ArcTan, Beta, Cauchy, Chi, ChiSquare, Erlang, Error,
Exponential, ExponentialPower, ExtremeValue, F, Gamma, Generalized-
Pareto, Gompertz, HyperbolicSecant, HyperExponential, HypoExponential,
IDB, InverseGaussian, InvertedGamma, KS, LaPlace, LogGamma, Logistic,
LogLogistic, LogNormal, Lomax, Makeham, Muth, Normal, Pareto, Rayleigh,
StandardCauchy, StandardNormal, StandardTriangular, StandardUniform,
T, Triangular, Uniform, and Weibull. This list of distributions, along with
their parameters, is displayed every time the APPL code is read into Maple.
A chi square random variable with six degrees of freedom, denoted by X, for
example, can be defined by the APPL statement

> X := ChiSquareRV(6);

This is much more compact than the standard list-of-sublists approach:

> X := [[x -> x ^ 2 * exp(-x / 2) / 16], [0, infinity],
["Continuous", "PDF"]];

The ChiSquareRV procedure (or function, to use the more standard parlance)
relieves the user of typing the list-of-sublists every time a chi square ran-
dom variable is required. The APPL source code that defines a chi square
random variable with n degrees of freedom, complete with error trapping, is
given by:
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> ChiSquareRV := proc(n :: {posint, symbol})
> local ListOfLists, x:
> global n1:
> n1 := n:
> if (nargs <> 1) then
> print(‘ERROR: This procedure requires 1 argument‘):
> RETURN():
> fi:
> if type(n1, infinity) then
> print(‘ERROR: The shape parameter must be finite‘):
> RETURN():
> fi:
> if type(n1, symbol) then
> assume(n1, posint):
> about(n1):
> fi:
> ListOfLists := [[unapply(x ^ (n1 / 2 - 1) * exp(-x / 2) /

(2 ^ (n1 / 2) * GAMMA(n1 / 2)), x)],
[0, infinity], ["Continuous", "PDF"]]:

> RETURN(ListOfLists):
> end:

We use Maple’s :: in the procedure call just after the argument for Maple
error checking to ensure that the argument is either a positive integer or a
symbol. If the argument is a symbol, Maple appends a tilde (∼) to the symbol
as a reminder to the user that an assumption (in this case that it is a positive
integer) will be placed on the symbol. The introduction of global variables for
parameters allows any assumptions about the parameters to be passed from
APPL code to the worksheet one is using. For example, the APPL statement

> X := ChiSquareRV(6);

returns a list-of-sublists with 6 substituted for n1 in the PDF. On the other
hand, the APPL statement

> X := ChiSquareRV(m);

returns a list of lists with m∼ substituted for n1 in the PDF. This allows for
certain symbolic operations to be done subsequently on X, such as verifying
(symbolically) that the area under the PDF is one. The first two if statements
in ChiSquareRV check that there is just one argument passed to the procedure
and that the number of degrees of freedom is not passed as infinity. The
third if statement places an assumption on the parameter if it is passed
as a symbol and the Maple about procedure prints information about the
assumption to the screen. Finally, the Maple unapply procedure transforms
the expression for the PDF into the x -> format consistent with the earlier
examples, and the PDF is returned as a list-of-sublists. The PDF for the chi
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square distribution contains the gamma function, which accounts for the use
of the Maple GAMMA procedure.

This concludes our description of the data structure that is used to rep-
resent a continuous random variable. We now briefly outline some simple
algorithms that can be applied to this data structure.

3.2 Simple Algorithms

The algorithms described in this section conduct the following elementary
operations on data structures that represent continuous random variables:

• convert any functional representation (PDF, CDF, SF, HF, CHF, and
IDF) of a random variable into another functional representation using
the common data structure,

• plot any of the six functional forms of any fully-specified distribution, e.g.,
the CDF,

• determine common summary characteristics of random variables, such as
the mean and variance, and

• calculate the PDF of the rth order statistic from a sample of n iid random
variables.

Changing Functional Forms of a Random Variable. The functional
form of a distribution can be converted to and from any of its six well-known
forms, the PDF, CDF, SF, HF, CHF, and IDF. The routines return functional
forms when they are called with a single argument and scalars when a second
optional argument is included. The names of the conversion procedures are
PDF, CDF, SF, HF, CHF, and IDF, and can be applied to both discrete and
continuous random variables. The first example finds a CDF from a PDF for
a continuous random variable.

Example 3.2. Let X ∼ U(0, 4). Find the CDF of X.

The APPL code required to define the distribution of X (which will
be in PDF form) and determine the CDF is

> X := UniformRV(0, 4);
> CDF(X);

which returns the list-of-sublists

[[x → x/4] , [0, 4], [“Continuous”, “CDF”]]

as expected.

Since APPL uses Maple’s symbolic processing capability, it will typically
return the appropriate function without error whenever the function can
be expressed analytically. As the next example shows, however, there are
many elementary examples where Maple is not able to integrate functions
analytically.
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Example 3.3. Let Z ∼ N(0, 1). Find the CDF of Z and P (Z < 1.96).

Analogous to the last example, the APPL statements required to de-
fine the distribution of Z and determine its CDF are

> Z := NormalRV(0, 1);
> CDF(Z);

Since the CDF for a standard normal random variable is not closed
form, APPL returns[[

x → 1
2

erf
(

1
2

x
√

2
)

+
1
2

]
, [−∞, ∞], [“Continuous”, “CDF”]

]

where erf is the Maple error function defined by erf(x) = 2
π

∫ x

0
e−t2dt.

To find P (Z < 1.96) requires an additional APPL statement which
uses the second optional argument in the call to CDF:

> prob := evalf(CDF(Z, 1.96));

which sets the Maple variable prob to 0.9750021048. The Maple evalf
function evaluates the value of CDF(Z, 1.96) as a floating-point (dec-
imal) value. A second optional argument can be included in the evalf
function to control the number of digits displayed.

The previous examples have considered numeric parameters. The six con-
version procedures work on distributions with symbolic parameters as well.

Example 3.4. Find the survivor function (SF) of a Weibull(λ, κ) ran-
dom variable and find the 99th percentile of a Weibull random variable
with λ = 2 and κ = 3.

For the case of symbolic parameters, the following statements define
a Weibull random variable in PDF form and convert it to a Weibull
random variable in SF form:

> X := WeibullRV(lambda, kappa);
> X := SF(X);

which sets X to the list-of-sublists format shown below:[[
x → e(−xκ˜ λ˜κ˜)

]
, [0, ∞] , [“Continuous”, “SF”]

]
As indicated earlier, the tildes after the parameters indicate that
assumptions have been made concerning the parameters (i.e., λ > 0
and κ > 0) in the WeibullRV procedure. Finding a percentile of
a distribution requires the IDF procedure. The 0.99 percentile of a
Weibull(2, 3) distribution can be found with the APPL statement

> IDF(WeibullRV(2, 3), 0.99);
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which returns 0.8318631745. If 0.99 is replaced by a random number, a
Weibull(2, 3) random variate is generated. Maple automatically senses
that 0.99 is floating point. The nearly-identical APPL statement

> IDF(WeibullRV(2, 3), 99 / 100);

returns the expression 2−2/3
(
ln(10)

)1/3, rather than the floating point
approximation, for the 99th percentile.

The conversion procedures handle distributions defined in a piecewise fash-
ion in the same way as those defined over a single interval.

Example 3.5. Find the SF for the random variable T with hazard
function

hT (t) =
{

λ 0 < t < 1
λt t ≥ 1

for λ > 0.

The following APPL statements are used to find the survivor function:

> assume(lambda > 0);
> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity], ["Continuous", "HF"]];
> SF(T);

which returns

ST (t) =
{

e−λt 0 < t < 1
e−λ(t2+1)/2 t ≥ 1

as expected.

The conversion procedures can be nested; for example, the APPL state-
ments

> X := ExponentialRV(1);
> X := PDF(CDF(HF(SF(CHF(IDF(X))))));

do absolutely nothing to the list-of-sublists representation for X because all
transformations can be performed analytically.

Most of the code for the six conversion routines consists of error checking,
for example, to assure that

• there are one or two arguments passed,
• the distribution of interest is in the list-of-sublists format and there are

three sublists, and
• the list-of-sublists corresponds to one of the six forms.

Once the appropriate if statements have concluded that we are converting,
for example, from a CDF to a PDF, which is done by simply differentiating,
the real “work” in the PDF procedure consists of just a single loop shown in
the code segment
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> for i from 1 to nsegments do
> ffx := unapply(diff(X[1][i](x), x), x):
> fX := [op(fX), op([unapply(simplify(ffx(x)), x)])]:
> od:

The Maple variable nsegments is a count of the number of piecewise segments
associated with a PDF (e.g., nsegments is 2 for a triangular distribution). The
first statement in the loop differentiates the ith piecewise function in the CDF,
then uses the Maple unapply procedure to place it in the x -> format for the
list-of-sublists. The second statement in the loop simplifies the segment of the
PDF using the Maple simplify procedure, then concatenates the function
into the list named fX, which is eventually returned as the first sublist in a
list-of-sublists containing the PDF.

Plotting Distributions. APPL contains the PlotDist procedure that plots
any distribution represented in the list-of-sublists format.

Example 3.6. The statements used to plot the PDF for the triangu-
lar(1, 2, 4) distribution are:

> X := TriangularRV(1, 2, 4);
> PlotDist(X);

The Maple plot drawn by the APPL PlotDist procedure is shown in
Figure 3.1.
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Fig. 3.1. Triangular PDF plot.
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APPL is not able to plot “generic” distributions with symbolic parameters.
Attempting such a plot will produce an “empty plot” error message.

Calculating Expected Values. Expected values can be calculated with
the ExpectedValue procedure. The procedures Mean, Variance, Skewness,
Kurtosis, MGF, and CF all produce these special cases of expectation by in-
voking the ExpectedValue procedure.

Example 3.7. Find the expected value, kurtosis, and moment generat-
ing function of a normal random variable X.

The second argument in the NormalRV procedure is σ, unlike the cus-
tomary notation for a normal random variable. The APPL code to
compute the mean, kurtosis, and moment generating function is

> X := NormalRV(mu, sigma);
> Mean(X);
> Kurtosis(X);
> MGF(X);

which returns µ for the mean, 3 for the kurtosis, and

MX(t) = eµt+σ2t2/2 −∞ < t < ∞

for the moment generating function.

The ExpectedValue procedure can be used to find the expected value of
a function of a random variable.

Example 3.8. Find the expected value of the square root of Y , where
Y ∼ exponential(λ).

In this case, the APPL procedure ExpectedValue is used with a sec-
ond argument that defines the function of the random variable of
interest. The APPL statements

> Y := ExponentialRV(lambda);
> ExpectedValue(Y, y -> sqrt(y));

return
√

π/
(
2
√

λ
)
.

The ExpectedValue procedure calculates the expected value of a func-
tion of a random variable by calculating the appropriate integrals over each
segment of the support of the distribution, then summing the results.

Example 3.9. To find the mean of a triangular(a, b, c) random variable
X, the APPL statements

> Y := TriangularRV(a, b, c);
> Mean(Y);
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return
a + b + c

3
,

which is computed as a sum of the integrals over the two segments of
the distribution as

E[X] =
∫ b

a

x
2(x − a)

(c − a)(b − a)
dx +

∫ c

b

x
2(c − x)

(c − a)(c − b)
dx.

As Example 3.9 illustrates, the essence of the computation associated with
finding the expected value of any continuous random variable is to initialize
the desired expected value to zero and run a loop over the number of seg-
ments, incrementing (or decrementing) the expected value by the appropriate
integral.

Computing the Distribution of Order Statistics. The OrderStat proce-
dure returns the PDF of the rth of n order statistics drawn from a population
having the same distribution as the random variable X. For a random variable
X having support on a < x < b with PDF f(x), CDF F (x), and SF S(x), the
PDF of the rth of n order statistics drawn from this distribution is given by
Hogg et al. [37, page 240] as

fr(x(r)) =
n!

(r − 1)!(n − r)!
F (x(r))r−1f(x(r))S(x(r))n−r a < x(r) < b.

This well-known result has been implemented in an APPL procedure named
OrderStat(X, n, r), where X is a list-of-sublists containing the population
distribution, n is the sample size, and r is the order statistic of interest.

Example 3.10. Find the distribution of the minimum of eight iid
exponential(1) random variables.

The distribution of the minimum is found with the following APPL
statements:

> X := ExponentialRV(1);
> Y := OrderStat(X, 8, 1);

Not surprisingly, these statements place the exponential distribution
with a rate of eight into the variable Y. The list-of-sublists for Y is

[ [x → 8 e−8x ], [ 0,∞ ], [ “Continuous”, “PDF” ] ]

For many distributions, the OrderStat procedure can accommodate dis-
tributions with symbolic parameters.

Example 3.11. Find the distribution of the median of a sample of size
n = 3 drawn from an exponential(λ) population.

In this example, an exponential distribution with a symbolic argument
is entered as an argument for OrderStat.
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> X := ExponentialRV(lambda);
> OrderStat(X, 3, 2);

The result is the symbolic PDF of the sample median:

[ [x → 6λ˜(1 − e−λ˜ x ) e−2 λ˜ x ], [ 0,∞ ], [ “Continuous”, “PDF” ] ]

All of the standard programming constructs available in Maple, such as
loops and conditions, can be used alongside APPL statements, as illustrated
in the next example.

Example 3.12. To plot a progression of the five PDFs of the order
statistics for a sample of n = 5 observations drawn from an exponen-
tial(1) population, use the APPL code

> X := ExponentialRV(1);
> n := 5;
> for i from 1 to n do
> PlotDist(OrderStat(X, n, i), 0, 6);
> od;

The result is five PDFs plotted sequentially. The optional second and
third arguments to PlotDist define the lower and upper plotting limit.
This sequence could be of use to an instructor explaining the progres-
sive nature of order statistics to first-year probability students. The
last of the five plots is given in Figure 3.2.

1

0.1

0
0

0.3

x
65432

PDF

0.4

0.2

Fig. 3.2. PDF of the largest of five unit exponential random variables.
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This chapter has presented data structures for representing continuous
random variables and illustrated some of the simpler procedures compris-
ing the core of APPL. The procedures shown in the APPL tree diagram in
Figure 3.3 provide a roadmap for the rest of the monograph. The next two
chapters describe two of APPL’s nontrivial procedures that can be applied
to continuous random variables: the Transform procedure, which finds the
distribution of a transformation of a given random variable, and the Product
procedure, which finds the distribution of the product of two given random
variables.
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Fig. 3.3. The APPL tree.
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Transformations of Random Variables

This chapter presents a generalized version of the univariate change-of-variable
technique for transforming continuous random variables. Extending a theorem
from Casella and Berger [12] for many–to–1 transformations, we consider more
general univariate transformations. Specifically, the transformation can range
from 1–to–1 to many–to–1 on various subsets of the support of the random
variable of interest. We also present an implementation of the theorem in
APPL and present four examples.

In its simplest application, the change-of-variable technique is used to
determine the distribution of a continuous random variable Y given the dis-
tribution of a continuous random variable X and a 1–to–1 transformation
from the support of X to the support of Y . As the conditions on the trans-
formation Y = g(X) become more general, the technique requires more detail
in its description and is less likely to appear in introductory probability and
statistics texts. Casella and Berger [12, page 53] discuss transforming random
variables using the change-of-variable technique when the entire transforma-
tion is many–to–1, except for a finite number of points, i.e., the cardinality
of the set g−1(y) is the same for almost all y in the support of Y . Hogg,
et al. [37, pages 128–129] extend this many–to–1 technique to n-dimensional
random variables. We are concerned with a more general univariate case in
which the transformations are “piecewise many–to–1,” where “many” may
vary based on the subinterval of the support of Y under consideration. We
state and prove a theorem for this case and present APPL code to implement
the result. Although our theorem is a straightforward generalization of Casella
and Berger’s theorem, there are a number of details that have to be addressed
in order to produce an algorithm for finding the PDF of Y .

Consider the following simple example. Let

fX(x) =
1
3

− 1 < x < 2,

be the PDF for the random variable X. Consider the transformation Y =
g(X) = X2. This transformation is a 2–to–1 transformation on the interval



46 4 Transformations of Random Variables

X ∈ (−1, 1) (except at X = 0) and it is 1–to–1 on the interval X ∈ [1, 2);
see Figure 4.1 in Section 4.3. Some introductory probability texts use this as
an example (e.g., Larsen and Marx [46, page 174]), but fail to state a general
theorem that treats such piecewise many–to–1 transformations. The difficulty
lies in identifying an appropriate partition of the support of X and a corre-
sponding partition for the support of Y, and then determining which of these
subsets of the support of X correspond to each of the subsets of the support
of Y . A further complication is encountered when the transformation itself
is either discontinuous or non-differentiable at certain points. For example,
consider the random variable X, where fX(x) = (x + 1)/18 for −1 < x < 5,
and the transformation (see Figure 4.3 in Section 4.3)

Y = g(X) =

{
X2 −1 < X < 3

2

X 3
2 < X < 5.

In this example, the transformation is discontinuous as well as “piecewise
many–to–1.” Our theorem and resulting APPL implementation will determine
the PDF of Y for such transformations.

In Section 4.1, we will present our transformation theorem, modeled af-
ter Casella and Berger’s Theorem 2.1.8 [12, page 53]. Our theorem has been
presented more generally in earlier textbooks. Barr and Zehna [7, page 225]
consider multivariate many–to–one transformations. Rohatgi [73, pages 73–
74] and Port [71, page 462] consider the piecewise many–to–one case in the
univariate and multivariate settings, respectively. Our theorem is strictly uni-
variate, but permits implementation in APPL. It determines the distribution
of Y = g(X) for any univariate random variable X of the continuous type with
few restrictions on the transformation g(X). Our theorem will be stated in a
somewhat elaborate form for the purpose of facilitating its implementation.

4.1 Theorem

Before we present the theorem, we overview the rationale for the notation.
We assume that the support of X, denoted by X , consists of a finite union
of open intervals. The points x1 < x2 < · · · < xn+1 generate n consecutive
subintervals and are determined as follows. The first subinterval of X begins
with x1 and the last subinterval of X ends with xn+1. The remaining xi’s
correspond to other endpoints of the intervals of X or to the locations in X
where the function g is discontinuous or non-differentiable, or g′ is zero. Let
gi(x) denote the restriction of g(x) to (xi, xi+1); by design, gi is monotone
and therefore invertible. Let X� = {x1, x2, . . . , xn+1}; note that since X is
continuous, P (X ∈ X�) = 0.

We introduce Y �, a set of points on the y-axis, to partition the support
of Y into subintervals. The range of each gi, denoted by (mi,Mi), either con-
tains or is disjoint from each Y subinterval. The set Y � is designed so that the
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final PDF of Y may be specified by designating its value on each Y subinter-
val. The set Y � is defined using one-sided limits because the transformations
g1, g2, . . . , gn are not necessarily defined at the points in X�. The set Ij con-
sists of integers i with the property that the range of gi is either equal to
or properly contains the jth Y subinterval. The PDF for each Y subinterval
depends on the PDF of X and the associated transformations gi.

Theorem 4.1. Let X be a random variable of the continuous type with
PDF fX(x) and with support X , where X consists of a finite union of open
intervals. Let g(x) be a real-valued function whose domain includes X . Let
−∞≤x1 <x2 < · · ·<xn <xn+1≤+∞ be a sequence of extended real numbers
which satisfy the following conditions:

1. The sequence includes the endpoints of the intervals whose union is X .
2. The PDF fX(x) is continuous on each open interval Ai = (xi, xi+1) for

i = 1, 2, . . . , n.
3. If fX(x) is not identically zero on Ai, then the function gi(x), which is the

restriction of g(x) to Ai, is monotone on Ai and has a nonzero derivative
at each point in Ai, for i = 1, 2, . . . , n.

Let X� = {x1, x2, . . . , xn+1}.
Let α = {i | fX(x) is not identically zero on Ai}.
Let mi = min

{
lim
x↓xi

g(x), lim
x↑xi+1

g(x)
}

for i = 1, 2, . . . , n.

Let Mi = max
{

lim
x↓xi

g(x), lim
x↑xi+1

g(x)
}

for i = 1, 2, . . . , n.

Let Y � = ∪i∈α {mi,Mi}.
Let m =‖Y � ‖ − 1, where ‖·‖ denotes cardinality.
Order the elements yj of Y � so that y1 < y2 < · · · < ym+1.
Let Ij = {i |mi ≤ yj and yj+1 ≤ Mi}, for j = 1, 2, . . . , m.
Then for y ∈ (yj , yj+1),

fY (y) =
∑
i∈Ij

fX

(
g−1

i (y)
) ∣∣∣∣dg−1

i (y)
dy

∣∣∣∣
for j = 1, 2, . . . , m.

Proof. Without loss of generality, consider the jth Y subinterval (yj , yj+1).
Also suppose that a and b are any points that lie inside (yj , yj+1) such that a <
b. Furthermore, let Mi = max{g−1

i (a), g−1
i (b)} and mi = min{g−1

i (a), g−1
i (b)}

for i ∈ Ij . Then Y ∈ (a, b) if and only if X lies in (mi,Mi) for some i in Ij ,
which implies that

P (a < Y < b) =
∑
i∈Ij

P

(
mi < X < Mi

)
.
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Since Y is a continuous random variable,

P (a < Y < b) =
∑
i∈Ij

∫ Mi

mi

fX(x) dx

=
∑
i∈Ij

∫ b

a

fX

(
g−1

i (y)
) ∣∣∣∣dg−1

i (y)
dy

∣∣∣∣ dy

=
∫ b

a

∑
i∈Ij

fX

(
g−1

i (y)
) ∣∣∣∣dg−1

i (y)
dy

∣∣∣∣ dy

where we performed the change-of-variable y = gi(x), or equivalently x =
g−1

i (y), and have used the absolute value to treat both increasing and de-
creasing transformations (see Miller and Miller’s proof of their Theorem 7.1
[62, pages 240–242]). Referring to their theorem, we see that the integrand

∑
i∈Ij

fX

(
g−1

i (y)
) ∣∣∣∣dg−1

i (y)
dy

∣∣∣∣
is the PDF for Y on the subinterval (yj , yj+1). �

The theorem could have been stated more compactly. It is given in the
form presented here in order to facilitate data structures and algorithms that
will be implemented in the APPL Transform procedure.

4.2 Implementation in APPL

It could be quite tedious to implement this theorem by hand for large m
and n. Since transformations of random variables are commonplace in applied
probability, we wanted to include an implementation of the theorem in APPL’s
suite of procedures. Two significant implementation issues emerged. First,
Maple may produce several candidates for g−1

i , e.g., when gi(x) = x2. As
alluded to earlier, Maple returns g−1

i (y) = −√
y and g−1

i (y) =
√

y. The correct
inverse is selected by requiring that g−1

i (gi(ci)) = ci, where ci is any point in
the ith X subinterval. When the ith X subinterval has finite endpoints, ci can
be chosen to be the midpoint of the subinterval. In the cases where x1 = −∞
or xn+1 = ∞ [e.g., X ∼ N(µ, σ2)], ci must be selected more carefully. The
algorithm for determining ci is:

1. If xi = −∞ and xi+1 = +∞, then ci = 0.
2. If xi = −∞ and xi+1 = +∞, then ci = xi+1 − 1.
3. If xi = −∞ and xi+1 = +∞, then ci = xi + 1.

4. For all other cases (i.e., xi and xi+1 both finite), ci =
xi + xi+1

2
.
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The second implementation issue involves redundancies in lists. Maple
doesn’t recognize that the integer 3 and the floating-point value 3.0, for
example, are redundant in a list. The ReduceList procedure finds all adjacent
points that differ by a small prescribed threshold δ and discards redundant
floating-point type elements.

The Transform(X, g) procedure has two arguments: X and g. The first
argument is a random variable in the list-of-sublists format described in
Chapter 3. The data structure for g is a “list-of-two-sublists” that is simi-
lar in nature to the first two sublists of X. Here we characterize g by listing
its monotone components and the endpoints of the corresponding domains.

The following are some additional minor implementation issues that arose
during the coding of the algorithm:

• The user must supply x1, x2, . . . , xn+1. This ordered list consists of the
endpoints of the open intervals that constitute X and all locations in
X where g(x) is discontinuous or non-differentiable, or g′(x) is zero. A
preprocessor to determine elements of X� corresponding to g′(x) = 0
could be added to the algorithm if desired. Thus if the support of X is
(−1, 2), and Y = g(X) = X2, this preprocessor would include x = 0 in
X� yielding X� = {−1, 0, 2}.

• The partition points x1, x2, . . . , xn+1 must be chosen so that fX(x) is
not defined in a piecewise fashion on any X subinterval (e.g., if X has a
triangular distribution, the mode must be a partition point).

• Adding extra x-values in X to X� that are not maxima, minima, or sad-
dle points of g(x) or discontinuities of fX(x) or g(x) will not affect the
correctness of the algorithm’s implementation of the theorem, although
the implementation will be slower.

• Many transformations such as g(x) = x + ex do not have an inverse that
can be expressed in a closed-form. Numerical methods could be used in
conjunction with the algorithm to find individual values of fY (y). We have
not implemented this in our code. If g(x) = x + ex, for example, then∣∣∣∣dg−1(y)

dy

∣∣∣∣ = 1
1 + ex

∣∣∣∣
x=g−1(y)

.

• Periodic transformations can pose a problem in the implementation of the
theorem. Maple uses the usual principal inverses for sinx, cos x, and tanx,
but the restricted ranges of these principal inverses are often inappropri-
ate. When the algorithm tries to identify which inverse is appropriate,
it is only given one choice, the principal inverse, but the domain of X
might not coincide with the range of the principal inverse. Example 4.4
illustrates this problem and a circumvention.

• No error-trapping has been done to insure that fX(x) is a legitimate PDF.
Also, there is limited error-trapping on g(x) in that the procedure gives
an error message when the inverse cannot be found.

• Symbolic parameters are allowed in fX(x) but not in g(x).
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4.3 Examples

This section contains some illustrative examples of using the algorithm
described in the previous section to determine the distribution of Y = g(X).
Before using the program, we tested its performance on several common trans-
formations. Given X ∼ N(0, 1) and Y = g(X) = X2, the program correctly
returned the PDF for a chi square random variable with one degree of freedom.
Given X ∼ N(µ, σ2) and Y = g(X) = (X − µ)/σ, the program correctly re-
turned the PDF for a standard normal random variable. Now we will consider
more complex examples that illustrate the theorem’s implementation.

Example 4.1. Consider the first example introduced earlier: given the
random variable X ∼ U(−1, 2), find the PDF of Y = g(X) = X2.

Given X�, the algorithm determines the relevant partitions of the sup-
ports of X and Y . Then it determines which X subintervals map onto
which Y subintervals. The subintervals are apparent in Figure 4.1.
Note the set X� is displayed on the horizontal axis, Y � on the vertical
axis, both marked with the × symbol. The transformation is par-
titioned into monotone segments (with identical or disjoint ranges)
delineated by •. The assignment of data structures for f and g and
the call to Transform are as follows:

> X := UniformRV(-1, 2);

> g := [[x -> x ^ 2, x -> x ^ 2], [-infinity, 0, infinity]];

> Y := Transform(X, g);

−1 0 1 2

0

1

2

3

4

•

•

•

X X XX

X

X

X

g(X)

Fig. 4.1. The transformation Y = g(X) = X2 for −1 < X < 2.
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The Transform procedure determines that the transformation is
2–to–1 on −1 < x < 1 (excluding x = 0) and 1–to–1 on 1 ≤ x < 2.
Since Y = X2 has two inverses, the procedure determines which
inverse to apply to which X subinterval. The resulting PDF for Y is

fY (y) =
{

1/(3
√

y) 0 < y < 1
1/(6

√
y) 1 < y < 4.

The corresponding returned value of Y is a list-of-sublists that specifies
the PDF of Y :[[

y → 1
3
√

y
, y → 1

6
√

y

]
, [0, 1, 4], [“Continuous”, “PDF”]

]

The previous example could have been completely automated by letting
Maple determine the extreme point, as opposed to specifying g separately
on each of its monotone segments. The next example will use a nondifferen-
tiable function to indicate why we allow the user to break a function into its
monotone segments.

Example 4.2. Consider the random variable X ∼ U(0, 7). Find the
PDF of Y = g(X) =

∣∣|X − 3| − 1
∣∣.

A graphical representation of this transformation is shown in
Figure 4.2, with X�, Y �, and the monotone segments of g marked
as before. This transformation is more complex than Example 4.1 in
that it is 4–to–1 for 0 < y < 1, 2–to–1 for 1 < y < 2, and 1–to–1 for
2 < y < 3. The APPL code

0 1 2 3 4 5 6 7

0

1

2

3

•

•

•

•

•

XXXXX
X

X

X

X

X

g(X)

Fig. 4.2. The transformation Y = g(X) =
∣∣|X − 3| − 1

∣∣ for 0 < X < 7.
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> X := UniformRV(0, 7);
> g := [[x -> 2 - x, x -> x - 2, x -> 4 - x, x -> x - 4],

[0, 2, 3, 4, 7]];
> Y := Transform(X, g);

yields the correct PDF for Y :

fY (y) =

⎧⎨
⎩

4/7 0 < y < 1
2/7 1 < y < 2
1/7 2 < y < 3.

Example 4.3. Consider the second example from beginning of the
chapter: if the random variable X has PDF

fX(x) = (x + 1)/18 − 1 < x < 5,

find the distribution of

Y = g(X) =

{
X2 −1 < X < 3

2

X 3
2 < X < 5.

The appropriate partition for the transformation with n = 3 and
m = 4 is depicted in Figure 4.3. The APPL code for calculating the
distribution of Y is

0

−1 0 1 2 3 4 5

1

2

3

4

5

•

•

•

•

•

X XXX
X

X

X

X

X

X

g(X)

Fig. 4.3. The transformation Y = g(X) has a discontinuity and is variously 2–to–1
and 1–to–1 on different subintervals.
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> X := [[x -> (x + 1) / 18], [-1, 5],
["Continuous", "PDF"]];

> g := [[x -> x ^ 2, x -> x ^ 2, x -> x],
[-1, 0, 3 / 2, 5]];

> Y := Transform(X, g);

The Transform procedure returns the following PDF for Y as a list-
of-sublists:

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
18

√
y 0 < y < 1

√
y+1

36
√

y 1 < y < 3/2

(2y+3)
√

y+1

36
√

y 3/2 < y < 9/4
y+1
18 9/4 < y < 5.

Example 4.4. As a final example, we will consider the problem that
Casella and Berger [12] discussed, without providing fY (y), as a pre-
lude to their transformation theorem. Letting X be a uniform random
variable on (0, 2π), find the distribution of Y = g(X) = sin2(X).

As Figure 4.4 shows, this transformation is 4–to–1 for the single
subinterval for Y , which is (0, 1). Furthermore, since n = 4, X� =
{0, π

2 , π, 3π
2 , 2π}. The PDF of Y is

fY (y) =
1

π
√

y − y2
0 < y < 1,

0.0

0 1 2 3 4 5 6

0.5

1.0

•

•

•

•

•X X X X X
X

X

X

g(X)

Fig. 4.4. The transformation Y = g(X) = sin2(X) for 0 < X < 2π.
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which is commonly known as the arcsin distribution (Johnson, et al.
[40, pages 253–255]). To overcome the principal inverse difficulty al-
luded to in the previous section, we devised the following equivalent
problem: let the random variable X ∼ U(−π

2 , π
2 ) and let Y = g(X) =

sin2(X). In this case the domain of X will be the same as the range
of g−1 which results from using the standard arcsin function. This
solution yielded a random variable with a notable feature. The distri-
bution’s HF, hY (y) = fY (y)/SY (y), might be of interest to a reliability
engineer. For this distribution,

hY (y) =
2√

y − y2
[
π − 2 arcsin(2y − 1)

] 0 < y < 1.

By plotting this HF, we see it has the rare property of a closed-form,
“bathtub”-shaped HF. Furthermore, we can now apply the transfor-
mation W = g(Y ) = λY in order to derive a random variable W that is
a one-parameter random variable with a closed-form, bathtub-shaped
HF. To our knowledge, although the arcsin distribution has been dis-
cussed in the literature, we have yet to find mention of the fact that
it has a bathtub-shaped HF. Most distributions with bathtub-shaped
HFs must be analyzed numerically because their HFs are not closed
form. One of the useful features of the Transform procedure is that it
can help the practitioner gain insight into what transformations could
result in a useful model. In this example, it becomes apparent that the
transformation “crowds” the uniformly distributed X random variable
into a distribution for Y that is “heavy” on either end of its support.
The result is a random variable with a bathtub-shaped HF. The pro-
gram enables the model designer to confirm, or gain insight into the
univariate transformations that could result in a useful model.

The Transform procedure (Glen, et al. [28]) is one of the fundamental
building blocks for APPL. Although the presentation in this chapter has
been solely for continuous random variables, Transform is also able to find
the distribution of a function of a discrete random variable. Applications of
Transform will be postponed to the later chapters of this monograph.
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Products of Random Variables

This chapter describes an algorithm for computing the PDF of the product
of two independent continuous random variables. This algorithm has been
implemented in the Product procedure in APPL. The algorithm behind the
Transform procedure from the previous chapter differs fundamentally from
the algorithm behind the Product procedure in that the former concerns
the transformation of just one random variable and the latter concerns the
product of two random variables. Some examples demonstrate the algorithm’s
application.

Rohatgi’s well-known result [73, page 141] for determining the distribu-
tion of the product of two random variables is straightforward to derive, but
difficult to implement: If X and Y are continuous random variables with joint
PDF fX,Y (x, y), then the PDF of V = XY is

fV (v) =
∫ ∞

−∞
fX,Y

(
x,

v

x

) 1
|x| dx.

Larsen and Marx [47, page 225] state the formula for the special case in which
X and Y are independent. The implementation of this easily-stated result,
however, is not straightforward for general X and Y . Springer [77] presents
a chapter on finding distributions of products of random variables, relying
mostly on Laplace and Mellin transformation techniques, as implementation
of Rohatgi’s result is often too cumbersome. Difficulties occur as a result of
both the myriad variations to the limits of integration and the propensity of
the PDF of V to be defined in a piecewise manner. In this chapter, we consider
the cases when X and Y are independent and may have PDFs defined in a
piecewise fashion. This simplification implies that the joint PDF of X and Y
will be defined on a rectangular product space (Hogg, et al. [37, page 109]),
which can be treated by considering special cases based on geometry.
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5.1 Theorem

Considering a special case of Rohatgi’s result will illustrate some of the issues
associated with a general algorithm for determining the PDF of the product
of two independent random variables. For completeness, the theorem below is
proven from first principles (using the transformation technique) even though
it could be stated as a special case of Rohatgi’s result. Assume that the random
variable X has support on the positive interval (a, b) and the random variable
Y has support on the positive interval (c, d). Also, the product space of the two
random variables is assumed to fall entirely in the first quadrant. Theorems
and proofs for other rectangular support regions are similar. The algorithm
described in Section 5.3 includes all possible scenarios.

Theorem 5.1. Let X be a random variable of the continuous type with PDF
fX(x) that is defined and positive on the interval (a, b), where 0 < a < b < ∞.
Similarly, let Y be a random variable of the continuous type with PDF fY (y)
which is defined and positive on the interval (c, d), where 0 < c < d < ∞. The
PDF of V = XY is

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c

a
fY

(
v
x

)
fX(x) 1

x dx ac < v < ad∫ v/c

v/d
fY

(
v
x

)
fX(x) 1

x dx ad < v < bc∫ b

v/d
fY

(
v
x

)
fX(x) 1

x dx bc < v < bd

when ad < bc,

fV (v) =

⎧⎨
⎩
∫ v/c

a
fY

(
v
x

)
fX(x) 1

x dx ac < v < ad∫ b

v/d
fY

(
v
x

)
fX(x) 1

x dx ad < v < bd

when ad = bc, and

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c

a
fY

(
v
x

)
fX(x) 1

x dx ac < v < bc∫ b

a
fY

(
v
x

)
fX(x) 1

x dx bc < v < ad∫ b

v/d
fY

(
v
x

)
fX(x) 1

x dx ad < v < bd

when ad > bc.

Proof. Only the case of ad < bc is considered. The other cases are proven
analogously. Using the transformation technique (Hogg et al. [37, page 87]),
the transformation Z = X and V = XY constitutes a 1–1 mapping from
A = {(x, y)|a < x < b, c < y < d} to B = {(z, v)|a < z < b, cz < v <
dz}. Let u denote the transformation and w the inverse transformation. The
transformation, inverse, and Jacobian are

z = u1(x, y) = x x = w1(z, v) = z
v = u2(x, y) = xy y = w2(z, v) = v/z
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J =
∣∣∣∣ 1 0
−v/z2 1/z

∣∣∣∣ = 1/z.

The joint PDF of Z and V is

fZ,V (z, v) = fX(w1(z, v))fY (w2(z, v)) |J | , (z, v) ∈ B,

or, equivalently,

fZ,V (z, v) = fX(z)fY (v/z)
1
|z| , (z, v) ∈ B.

Integrating with respect to z over the appropriate intervals and replacing z
with x in the final result yields the marginal PDF of V ,

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c

a
fY

(
v
x

)
fX(x) 1

x dx ac < v < ad∫ v/c

v/d
fY

(
v
x

)
fX(x) 1

x dx ad < v < bc∫ b

v/d
fY

(
v
x

)
fX(x) 1

x dx bc < v < bd,

as desired. �

The geometry associated with the transformation for the case ad < bc
considered in the proof is shown in Figures 5.1 and 5.2. The transforma-
tion maps Ai onto Bi for i = 1, 2, 3. Although the transformation tech-
nique has been used to prove this theorem, the CDF technique could also
have been used. The theorem also follows directly from Rohatgi’s result since

xy = ac

xy = ad

xy = bc

xy = bd

A1
A2

A3

a b

c

d

x

y

Fig. 5.1. The support of X and Y when ad < bc.
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B1

B2

B3

a

ac

ad

bc

bd

z

v

b

Fig. 5.2. The mapping of Z = X and V = XY when ad < bc.

fX,Y (x, v/x) = fX(x)fY (v/x), which is nonzero only when a < x < b and
c < v/x < d. Thus max {a, v/d} < x < min {b, v/c}, which yields the limits
of integration displayed in the theorem. The geometry of the case ad < bc is
shown in Figure 5.1 in which the regions A1, A2, and A3 correspond to the
three different integrals for that case. Each Ai corresponds to a different inter-
val of v for the family of hyperbolas given by xy = v. Given v, the interval of
integration consists of those values of x for which the curve xy = v intersects
the rectangle {(x, y) : a < x < b, c < y < d}.

5.2 Implementation in APPL

The theorem in the previous section illustrates the importance of considering
the magnitudes of the product of the coordinates of the southeast and north-
west corners of the product space [i.e., (b, c) and (a, d)] when it lies entirely in
the first quadrant. In order to apply the theorem to any continuous random
variables X and Y , three generalizations need to be addressed:

1. Analogous theorems must be written for the cases when the product space
defined by (a, b) and (c, d) lies wholly in one of the other three quadrants.
Rectangles that lie in more than one quadrant can be split into parts.

2. Instead of having PDFs that are specified by a single standard function
over their entire support, the random variables X and Y may be defined
in a piecewise manner over several intervals, forming many segments of
the PDF (e.g., the triangular distribution).

3. The cases when 0 and/or ±∞ belong to the endpoints of the intervals
which constitute the support of X and Y must be considered (e.g., the
normal distribution, see Example 5.4).
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These generalizations result in 24 (6 for each quadrant) primary cases that
must be considered in order to correctly compute the limits of integration of
the theorem. Further, some of these 24 cases must be broken into as many as
three subcases, as illustrated in the theorem. In the first quadrant (i.e., a ≥ 0
and c ≥ 0), for example, we must consider the six primary cases:

1. c = 0 and d = ∞ (Scenario A, see the algorithm in Section 5.4),
2. c = 0 and d < ∞ (Scenario B),
3. c > 0 and d = ∞ (Scenario C),
4. c > 0 and d < ∞ (Scenario D, with Case I: ad < bc),
5. c > 0 and d < ∞ (Scenario D, with Case II: ad = bc), and
6. c > 0 and d < ∞ (Scenario D, with Case III: ad > bc).

The paragraphs below provide more details. For quadrants II, III and IV, the
limits of integration must also be set based on the appropriate geometry, as
in Figure 5.1.

For random variables that are defined in a piecewise fashion over various
intervals, let n be the number of intervals for X and let m be the number
of intervals for Y . There are mn rectangular product subspaces and the con-
tribution of each to the value of the PDF of V = XY must be computed.
Furthermore, each product subspace can contribute differently to the PDF
of V on up to three segments of the support of V (see Theorem 5.1). As a
result, the PDF of V tends to become complicated very quickly, with an up-
per limit of 3mn segments to its PDF. Furthermore, each of these segments
fits into one of the 24 cases of the integration mentioned above. For example,
the product of two U(0, 1) random variables (Scenario B from the list above)
yields a random variable V with only one segment (see Example 5.1). But
slightly changing X and Y to X ∼ U(1, 2) and Y ∼ U(3, 4) yields a V = XY
defined differently on three segments (see Example 5.2).

The case where the support of X or Y contains 0 [e.g., U(−1, 2)] poses
special difficulty because some of the rectangular product spaces will not lie
wholly in any one quadrant and cannot be handled by the previously devel-
oped techniques. Our solution to this difficulty is to artificially add 0 as one
of the endpoints of the intervals for X and Y whenever this case occurs, pro-
ducing redundant segments, i.e., a segment on each side of zero with the same
formula for the PDF. This method allows for implementation when the sup-
port area intersects more than one quadrant. Example 5.4 gives an application
of this special case, where the area of interest intersects all four quadrants.
The algorithm subdivides the total area into four components, each entirely
in one quadrant, and calculates the relevant portion of the new PDF for each
quadrant.

The algorithm consists of a set-up portion, followed by nested loops that
determine the contribution to the PDF of V = XY separately for each of
the four quadrants. Section 5.5 contains the set-up portion and the algorithm
associated with the first quadrant. The algorithm for the other quadrants is
similar.
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The set-up phase begins by setting n and m to the number of intervals
that form the support of X and Y . Next, 0 is added as an interval delimiter
for X and/or Y if the random variable can assume both positive and negative
values, and 0 is not already an interval delimiter. Finally, the endpoints of the
intervals that form the support of V are determined by taking all products of
the endpoints of the X intervals times the endpoints of the Y intervals.

A nested set of loops follows that treats all pairings of X and Y inter-
vals. As shown in Figure 5.1, the coordinates (a, c) are assigned to the south-
west corner of the current rectangle of interest, and the coordinates (b, d) are
assigned to the northeast corner of the current rectangle of interest. A test
to determine which quadrant contains the current rectangle is made at this
point. Adding 0 as an interval delimiter in the set-up phase assures that the
current rectangle will be completely contained in just one of the quadrants.
Once the quadrant is determined, tests on c and d determine which integrals
should be computed and the appropriate limits of integration. Finally, the
insertion of 0 sometimes leads to a PDF for V with the same formula on both
sides of 0. If this occurs, the program simplifies the PDF by removing 0 as an
interval endpoint if the function is defined at 0.

When this algorithm is implemented in APPL, Maple occasionally returns
a PDF in a less than optimal form. The expression ln(−v)− Iπ, for example,
may occur as part of a PDF. Since ln(−1) = Iπ, the expression is equal to
ln v. Also the PDF may involve a complicated integral, which Maple fails to
recognize is equal to a much simpler standard form (see Example 5.5). We
anticipate that future generations of computer algebra systems will overcome
these difficulties.

There are three classes of resultant distributions that come from products
via this algorithm. Class A is the set of resultant distributions that are com-
pletely tractable, such as the product of two U(0, 1) random variables (see
Example 5.1). Here the PDF is in closed form, the CDF is calculable, quan-
tiles can be calculated, and plots of distributions are easily produced. The
second set, Class B, is the set of resultant distributions that are not in closed
form, but are in forms that Maple can still evaluate, such as PDFs that rely
on the erf function or the BesselK functions of Maple. Example 5.4 illus-
trates one such case, where the non-closed form PDF is expressed in terms
of the BesselK function. In Class B, it is often possible to plot the PDF and
calculate quantiles. Finding a usable form for the CDF, however, might not
be possible. The final class of problems, Class C, is the set that only appears
as un-evaluated integrals. The convolution of three Weibull random variables
is one such example. Here the resulting PDF has little use, as Maple cannot
plot the function, and cannot evaluate critical points very effectively.

5.3 Examples

This section contains examples of applying the APPL procedure Product,
which is our implementation of the algorithm described in the previous section.
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Example 5.1. Consider the independent random variables X ∼ U(0, 1)
and Y ∼ U(0, 1). Find the distribution of V = XY .

This is a simple application of the algorithm. The following APPL
code defines the distribution of the random variables X and Y and
returns the PDF of their product:

> X := UniformRV(0, 1);
> Y := UniformRV(0, 1);
> V := Product(X, Y);

The resulting PDF for V = XY is

fV (v) = − ln v 0 < v < 1,

which can be readily verified by hand as follows: The CDF of V is

FV (v) = Pr(V ≤ v)
= 1 − Pr(V > v)
= 1 − Pr(XY > v)

= 1 −
∫ 1

v

∫ 1

v/x

1 dy dx

= v − v ln v 0 < v < 1.

Differentiating with respect to v yields the same PDF returned by
APPL.

Example 5.1 illustrates the simplest case, where the PDF of V is defined
on a single segment. The next example has a rectangular support for X and
Y , which results in a piecewise PDF of V .

Example 5.2. Consider the independent random variables X ∼ U(1, 2)
and Y ∼ U(3, 4). Find the distribution of V = XY .

The following APPL code defines the random variables X and Y and
returns the PDF of their product.

> X := UniformRV(1, 2);
> Y := UniformRV(3, 4);
> V := Product(X, Y);

These statements yield the following PDF for V = XY :

fV (v) =

⎧⎨
⎩

ln v − ln 3 3 < v < 4
ln 4 − ln 3 4 < v < 6
3 ln 2 − ln v 6 < v < 8.

Note that while the PDF of both X and Y are defined on single
segments that have positive interval limits, the PDF of V is defined
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on three segments. All of the other APPL procedures described earlier
can be applied to the random variable V . For instance, the first four
moments of V can be calculated via the additional APPL statements

> Mean(V);
> Variance(V);
> Skewness(V);
> Kurtosis(V);

which return

21
4

175
144

54
√

7
875

1647621
765625

.

Examples 5.1 and 5.2 have defined X and Y using numeric parameters,
with the joint support of X and Y being a bounded product space. The next
example considers the distribution of the product of two random variables
with symbolic parameters whose joint support is the entire first quadrant.

Example 5.3. Consider the independent random variables X∼
lognormal(µ1, σ1) and Y ∼ lognormal(µ2, σ2). Show that the prod-
uct of X and Y is also lognormal.

The APPL code to find the distribution of the product is

> X := LogNormalRV(mu1, sigma1);
> Y := LogNormalRV(mu2, sigma2);
> V := Product(X, Y);

Maple does not return the PDF of V in a form that can be directly
identified as a lognormal PDF. But using the Transform procedure
with transformation g(V ) = ln(V ) on the random variable V yields
a random variable that is N

(
µ1 + µ2, σ

2
1 + σ2

2

)
. Because of the rela-

tionship between the lognormal and the normal distributions, we know
that V is lognormal with PDF

fV (v) =
exp
(− (ln v − µ1 − µ2)2/2(σ2

1 + σ2
2)
)

v
√

2π(σ2
1 + σ2

2)
0 < v < ∞.

This can be identified as a lognormal
(
µ1 + µ2,

√
σ2

1 + σ2
2

)
random

variable. Hence the product of two independent lognormal random
variables is itself lognormal.

We now move outside the first quadrant to a distribution with a much less
tractable distribution for V = XY .

Example 5.4. Consider the independent random variables X ∼ N(0, 1)
and Y ∼ N(0, 1). Find the PDF of V = XY .

This example illustrates the case of 0 in the support of X and Y and
also the case where the support of X and Y includes the endpoints
±∞. The APPL code to find the distribution of the product is
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Fig. 5.3. The PDF of V = XY for X ∼ N(0, 1) and Y ∼ N(0, 1).

> X := NormalRV(0, 1);
> Y := NormalRV(0, 1);
> V := Product(X, Y);

The Product procedure yields the following PDF for V :

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

BesselK(0, −v)
π

−∞ < v < 0

BesselK(0, v)
π

0 < v < ∞

which relies on Maple’s BesselK function. An APPL plot of this func-
tion is given in Figure 5.3.

The following final, more complicated example involves checking the
validity of a well-known random variate generation algorithm.

Example 5.5. Consider the independent random variables U1 ∼ U(0, 1)
and U2 ∼ U(0, 1). The Box–Muller algorithm for generating a single
standard normal deviate V can be coded in one line (see Devroye
[16]) as

V ←
√
−2 ln U1 cos(2πU2),
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where U1 and U2 are independent random numbers. Use the
Transform and Product procedures together to determine the PDF
of V .

Due to the principle inverse difficulty with trigonometric functions
(see Example 4.4 for an illustration), the transformation must be
rewritten as

V ←
√
−2 ln U1 cos(πU2)

before using Transform. The APPL code to compute the distribution
of V is

> U1 := UniformRV(0, 1);
> U2 := UniformRV(0, Pi);
> T1 := Transform(U1, [[x -> sqrt(-2 * ln(x))],[0, 1]]);
> T2 := Transform(U2, [[x -> cos(x)], [0, Pi]]);
> V := Product(T1, T2);

This APPL code yields the following PDF for V :

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−v

xe− x2/2

π
√

x2 − v2
dx −∞ < v < 0∫ ∞

v

xe− x2/2

π
√

x2 − v2
dx 0 < v < ∞.

While this form in not easily recognizable as the PDF for the normal
distribution, it is mathematically equivalent to the more standard

fV (v) =
1√
2π

e−v2/2 −∞ < v < ∞.

5.4 Extensions

We consider two extensions to the Product procedure: (a) adapting the al-
gorithm to automate finding the distribution of sums of random variables by
using the Product and Transform procedures together, and (b) placing a loop
around the Product code to compute the distribution of the product of several
iid random variables.

First, by combining the algorithm from Chapter 4 for automating the
transformations of random variables, it is possible to create an algorithm
for finding the distribution of the sum of independent, univariate random
variables. Note that the relationship W = ln(eXeY ) is equivalent to W =
X + Y , when X and Y are independent random variables. This equivalence
allows us to find the distributions of eX and eY , then find the distribution
of the product of the two, then find the distribution of the natural logarithm
of this product to yield the distribution of the sum of X and Y . So APPL
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includes the Convolution procedure, which is used to find the distribution
of the sum of X and Y . Likewise, there is an ancillary APPL procedure
Difference that uses Transform and Product to find the distribution of
X − Y . Additionally, Transform and Product can be used together to find
the distribution of X/Y . For example, the single line of APPL code

> Convolution(UniformRV(0, 1), UniformRV(0, 1));

calculates the distribution of the sum of two independent U(0, 1) random
variables in the fashion described above.

Second, applications might arise when it is of interest to find the distrib-
ution of the product of several iid random variables. For instance, if W is the
product of eight U(0, 1) random variables, the distribution of W can be found
using the following APPL code:

> X := UniformRV(0, 1);
> Y := Product(X, X);
> Z := Product(Y, Y);
> W := Product(Z, Z);

The program is clearer, and more easily generalized if a Maple for loop is
used:

> X := UniformRV(0, 1);
> W := Product(X, X);
> for i from 3 to 8 do
> W := Product(W, X);
> od;

APPL contains a procedure named ProductIID which automates this process,
giving a more readable code segment than the two above:

> X := UniformRV(0, 1);
> W := ProductIID(X, 8);

or, equivalently, but more succinctly,

> W := ProductIID(UniformRV(0, 1), 8);

Since the Product procedure is fairly short, we end this chapter by pre-
senting the Product algorithm in pseudocode.

5.5 Algorithm

This section gives the details associated with the Product algorithm, which
computes the PDF of the product of two continuous, independent random
variables. Cardinality is denoted by ‖·‖ and the empty list is denoted by
[ ]. Indentation is used to indicate loops and conditions. Comments are set
flushright. To allow subscripting, the PDFs fX(x), fY (y), and fV (v) are re-
placed by f(x), g(y), and h(v). The conditions prior to the calculation of the
integrals are imposed to prevent calculating integrals unnecessarily.



66 5 Products of Random Variables

Procedure Product: Find the PDF of the product of X and Y .

Input: The distribution of the random variable X and the distribution of
the random variable Y , where X and Y are independent, univariate, con-
tinuous random variables. The PDFs are in the list-of-sublists format, i.e.,
the random variable X is represented by the data structure [f̃(x), x�,
["Continuous", "PDF"]], and the random variable Y is represented by the
data structure [g̃(y), y�, ["Continuous", "PDF"]]. The first sublist for X is
a list of the piecewise f(x) functions, that is, f̃(x) =[f1(x), f2(x), . . . , fn(x)].
The second sublist for X is a list of the endpoints of the support of X,
that is, x� =[x�

1, x
�
2, . . . , x

�
n+1], where f(x) = fi(x) for x�

i < x < x�
i+1,

i = 1, 2, . . . , n.

Output: The PDF of V = XY , h(v), in the same list-of-sublists format as
the input. The list h̃(v) =[h1(v), h2(v), . . . , hl(v)] contains the piecewise ele-
ments of the PDF of V and v� =[v�

1 , v�
2 , . . . , v�

l+1] contains the corresponding
breakpoints of the support of V . The PDF is determined by a special case of
Rohatgi’s result for two independent random variables:

h(v) =
∫ ∞

−∞
f(x) · g

( v

x

) 1
|x| dx.

Algorithm:
n ← ‖x�‖ − 1 n is the number of segments of the PDF of X
m ← ‖y�‖ − 1 m is the number of segments of the PDF of Y
if (x�

1 < 0 and x�
n+1 > 0 and 0 /∈ x�) then insert 0 into x� if necessary

for i ← 1 to n
if (x�

i < 0 and x�
i+1 > 0) then

insert 0 between positions x�
i and x�

i+1

insert fi(x) after element i in the list f̃(x)
n ← n + 1
break

if (y�
1 < 0 and y�

m+1 > 0 and 0 /∈ y�) then insert 0 into y� if necessary
for i ← 1 to m

if (y�
i < 0 and y�

i+1 > 0) then
insert 0 between positions y�

i and y�
i+1

insert gi(y) after element i in the list g̃(y)
m ← m + 1
break

v� ← [ ] initialize the support list for V
for i ← 1 to n + 1 build the support list v�

for j ← 1 to m + 1
v� ← v�

⋃(
x�

i · y�
j

)
v� ← sort(v�) order the endpoints of the support of V
l ← ‖v�‖ − 1 l is the number of segments of the PDF of V
for i ← 1 to l initialize PDF segments of V
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hi(v) ← 0
for i ← 1 to n loop through each piecewise segment of X

for j ← 1 to m loop through each piecewise segment of Y
a ← x�

i define corners of the rectangular region
b ← x�

i+1

c ← y�
j

d ← y�
j+1

if (a ≥ 0 and c ≥ 0) then the region is in the first quadrant
p(v) ← ∫ b

a
fi(x) · gj( v

x ) · 1
x dx compute required integrals

if (d < ∞) then q(v) ← ∫ b

v/d
fi(x) · gj( v

x ) · 1
x dx

if (c > 0) then r(v) ← ∫ v/c

a
fi(x) · gj( v

x ) · 1
x dx

if (c > 0 and d < ∞ and ad < bc) then
s(v) ← ∫ v/c

v/d
fi(x) · gj( v

x ) · 1
x dx

if (c = 0 and d = ∞) then Scenario A from Section 5.2
for k ← 1 to l

if (v�
k ≥ 0) then hk(v) ← hk(v) + p(v)

if (c = 0 and d < ∞) then Scenario B from Section 5.2
for k ← 1 to l

if (v�
k ≥ 0 and v�

k+1 ≤ ad) then hk(v) ← hk(v) + p(v)
if (v�

k ≥ ad and v�
k+1 ≤ bd) then hk(v) ← hk(v) + q(v)

if (c > 0 and d = ∞) then Scenario C from Section 5.2
for k ← 1 to l

if (v�
k ≥ bc) then hk(v) ← hk(v) + p(v)

if (v�
k ≥ ac and v�

k+1 ≤ bc) then hk(v) ← hk(v) + r(v)
if (c > 0 and d < ∞) then Scenario D from Section 5.2

if (ad < bc) then Case I
for k ← 1 to l

if (v�
k ≥ ac and v�

k+1 ≤ ad) then hk(v) ← hk(v) + r(v)
if (v�

k ≥ ad and v�
k+1 ≤ bc) then hk(v) ← hk(v) + s(v)

if (v�
k ≥ bc and v�

k+1 ≤ bd) then hk(v) ← hk(v) + q(v)
if (ad = bc) then Case II

for k ← 1 to l
if (v�

k ≥ ac and v�
k+1 ≤ ad) then hk(v) ← hk(v) + r(v)

if (v�
k ≥ bc and v�

k+1 ≤ bd) then hk(v) ← hk(v) + q(v)
if (ad > bc) then Case III

for k ← 1 to l
if (v�

k ≥ ac and v�
k+1 ≤ bc) then hk(v) ← hk(v) + r(v)

if (v�
k ≥ bc and v�

k+1 ≤ ad) then hk(v) ← hk(v) + p(v)
if (v�

k ≥ ad and v�
k+1 ≤ bd) then hk(v) ← hk(v) + q(v)

analogous steps for rectangles in quadrants II, III, and IV
remove any redundancies in fV (v) due to 0 in the support list
return([h̃(v), v∗, ["Continuous", "PDF"]])
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In conclusion, an algorithm for calculating the PDF of the product of two
independent random variables X and Y , as detailed in Glen et al. [30], has
been developed and implemented. Special care has been taken to allow for
random variables that are defined in a piecewise manner or have 0 as a part
of their support. The algorithm can be extended to calculate the PDF of
sums of independent random variables and to products of iid random vari-
ables. Although its presentation in this chapter has been solely for continuous
random variables, the algorithm is also able to find the distribution of the
product of two discrete random variables. This concludes our introduction to
continuous random variables. The next three chapters are devoted to discrete
random variables.
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Data Structures and Simple Algorithms

This chapter introduces the data structures necessary to define a discrete
random variable in APPL and surveys some simple algorithms associated
with discrete random variables. The first section will show that the nature of
the support of discrete random variables makes the data structures required
much more complicated than for continuous random variables.

6.1 Data Structures

Recall from Chapter 3 that the format for describing a continuous random
variable is a Maple list consisting of three sublists:

[[f(x)], [support ], ["Continuous", "XXX"]]

where XXX is PDF, CDF, SF, HF, CHF, or IDF. It might seem like a trivial matter
to simply modify the list-of-sublists to

[[f(x)], [support ], ["Discrete", "XXX"]]

but there is a complication. The problem lies in the second sublist—the sup-
port. For example, let X denote the number of heads in two tosses of a fair
coin. The binomial distribution with n = 2 and p = 1/2 is an appropriate
probability model for X. The APPL statement

> X := [[1 / 4, 1 / 2, 1 / 4],[0, 1, 2],["Discrete", "PDF"]];

defines X using the above format for a discrete random variable. But what
if n = 1000? Keying 1001 support values into the second sublist is imprac-
tical. The data structure must provide a way to automate the input when
the support contains many values. Furthermore, what if we are interested
in finding the distribution of Y = X2 by using the Transform procedure?
There also needs to be a mechanism available for easily encoding the support
1, 4, 9, . . . , n2.
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The acronyms that identify the functional form that defines the distribu-
tion of a discrete random variable X in the second element of the third sublist
are the same as in the continuous case:

• probability density function (PDF) fX(x) = Pr(X = x),
• cumulative distribution function (CDF) FX(x) =

∑
s≤x fX(s),

• survivor function (SF) SX(x) =
∑

s≥x fX(s),
• hazard function (HF) hX(x) = fX(x)/SX(x),
• cumulative hazard function (CHF) HX(x) = −log(SX(x)), and
• inverse distribution function (IDF) F−1

X (x).

The probability density function is also commonly referred to as the probability
mass function.

The common data structure used in APPL is again referred to as a “list-
of-sublists.” Each APPL random variable is input as a list that contains three
sublists, each with a specific purpose. The first sublist contains either a func-
tion or a numeric list that defines one of the six functional forms that describe
the distribution. For example, the PDF form of the Poisson distribution with
mean λ and support x = 0, 1, 2, . . . has as its first sublist[

x → λxe−λ

x!

]

The CDF form of the geometric(1/4) distribution with support x = 1, 2, . . . ,
has as its first sublist [

x → 1 −
(

3
4

)x ]
The SF form (in a numeric Maple list) of the probability of obtaining an x or
higher, where x = 1, 2, . . . , 6, on a single roll of a fair 6-sided die is[

1,
5
6
,
2
3
,
1
2
,
1
3
,
1
6

]

The second sublist contains the random variable’s support. Recall from
Chapter 3 that for a continuous random variable, this second sublist contains
an ordered list of real numbers that delineate the end points of the intervals for
the functions in the first sublist. The end point of each interval is automatically
the starting point of the subsequent interval. A discrete random variable’s
support, on the other hand, can be input in one of several different formats.
This variation in formats presents greater difficulty than in the continuous case
for determining a structure for the second sublist. For example, the Poisson
distribution with PDF

f(x) =
λxe−λ

x!
x = 0, 1, 2, . . .

has as its support the nonnegative integers. This support has a pattern to it;
the first value of x at which the PDF is defined is zero and the rest of the
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support consists of subsequent integers. Many discrete random variables do
not have a patterned support. When designing the second sublist structure
for discrete random variables, we first had to distinguish between random
variables that had some type of pattern to their support versus those that
did not. For example, let X be a binomial random variable with parameters
n = 5 and p = 0.2, and associated PDF

f(x) =
(

5
x

)
(0.2)x (0.8)5−x x = 0, 1, . . . , 5.

The support of the random variable X consists of consecutive integers. For
such random variables, only the first and last values of the support are needed
to generate the entire support list. We call this support case the Dot case,
since we can write the support in Maple’s range (also called type ‘..’) format:
min{Ω} .. max{Ω}, where Ω is the support. Thus, the second sublist for the
random variable X is input as [0 .. 5].

Switching to the NoDot case, consider the random variable Y with PDF

f(y) =

⎧⎨
⎩

0.2 y = 1
0.5 y = 7/2
0.3 y = 11.

Random variables with supports that display no pattern, such as the support
of Y , must be entered as a Maple list, where the list elements are separated
by commas. We call this support case the NoDot case. The support values
listed in sublist two correspond to the distribution’s function values in the
first sublist. We input the first and second sublists of Y as [0.2, 0.5, 0.3] and
[1, 7 / 2, 11], respectively.

After distinguishing between the Dot and NoDot support cases, there are
subcases of these two general cases to consider. First, in the NoDot case, the
function in the first sublist can be written as a formula or a list of numeric ele-
ments. The random variable Y with PDF values [0.2, 0.5, 0.3] is a Maple list
of numeric elements (separated by commas). On the other hand, the random
variable X with PDF

f(x) =
x

27
x = 1, 3, 7, 16,

is a valid discrete probability mass function whose PDF can be written as
a formula in Maple’s function notation as x → x/27. Its first two sublists
are input in Maple as [x -> x / 27] and [1, 3, 7, 16]. APPL allows the user
to enter a discrete random variable represented in the NoDot case in either
format, numeric or formulaic. Converting the first sublist from the formulaic
NoDot format to a “standard” NoDot format (where the first sublist is not
written as a formula) is handled in a procedure called Convert. If we enter
X as displayed above and apply the Convert procedure to X with the APPL
statements
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> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];
> X := Convert(X);

the random variable X is returned as the list[[
1
27

,
1
9
,

7
27

,
16
27

]
, [1, 3, 7, 16], [“Discrete”, “PDF”]

]

More examples of the Convert procedure are given subsequently.
The Dot case also has two subcases: either the random variable has finite

or infinite support. Let Ω represent the support of a random variable X. The
“standard” Dot format for defining the support has the general form

[min{Ω} .. max{Ω}, k, x → g(x) ]

where the default value of the support increment k (if not entered) is 1 and
the default value of support transformation function g(x) (if not entered) is
the identity function.

To introduce the different variations in format, let X1 ∼ geometric(1/4)
with PDF

fX1(x) =
1
4

(
3
4

)x−1

x = 1, 2, . . . .

Let X2 = 2Y , where Y ∼ binomial(5, 0.2). The PDF of X2 is

fX2(x) =
(

5
x/2

)
(0.2)x/2 (0.8)5−x/2 x = 0, 2, 4, . . . , 10.

Let X3 be a discrete random variable with PDF

fX3(x) =
x + 6
54

x = 1, 4, 9, 16.

Let X4 be a discrete random variable with PDF

fX4(x) =
√

x

15
x = 9, 25, 49.

The support of each of these random variables has a pattern that can be ac-
counted for in the Dot data structure. X1’s support is incremented by ones,
while X2’s support is incremented by twos. The support of X3 is not only
incremented by ones, but is also transformed by the function g(x) = x2. Go-
ing a step further, X4’s support is incremented by twos starting with x = 3
and then transformed by g(x) = x2. In each of these cases, the minimum and
maximum values of the support, the increment of the support, and the type of
transformation applied to the support is pertinent information. Thus, in the
Dot case, the second sublist will consist of either 1, 2, or 3 elements separated
by commas containing this information. This general capability has been in-
cluded in the data structure to accommodate discrete algorithmic procedures,
such as Transform.
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The supports of the random variables X1, X2, X3, and X4 are input in
the second sublist in the APPL list-of-sublists as

X1 : [1 .. ∞]
X2 : [0 .. 10, 2]
X3 : [1 .. 4, x → x2]
X4 : [3 .. 7, 2, x → x2]

In summary, if the random variable X is discrete, its support will match
one of the cases displayed in Table 6.1. An example of the APPL list-of-sublists
format of a random variable from each of these cases is given in the outline
that immediately follows Table 6.1.

1. NoDot support format: The random variable’s support Ω is a Maple
numeric list of elements.

a) Numeric PDF: The random variable’s PDF is a Maple numeric list
of elements.

Example 6.1. Let X be the random variable with PDF

f(x) =

⎧⎨
⎩

0.6 x = 2.5
0.3 x = 3
0.1 x = 15.

Table 6.1. Discrete random variable support categories for various types of support,
support increments k, and support transformation functions g(x).

Support Ω Cases Subcases Examples

NoDot Numeric PDF 6.1

Ω = [x1, x2, . . . , xn] Formulaic PDF
—

6.2

g(x) = x 6.3
k = 1

g(x) = x 6.4
Finite Support

g(x) = x 6.5

Dot
k = 1

g(x) = x 6.6

g(x) = x 6.7Ω = [min{Ω} ..max{Ω},
k = 1

g(x) = x 6.8k, x → g(x)]
Infinite Support

g(x) = x 6.9
k = 1

g(x) = x 6.10
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This random variable X is input in APPL as

> X := [[0.6, 0.3, 0.1], [2.5, 3, 15],
["Discrete", "PDF"]];

b) Formulaic PDF: The random variable’s PDF is formulaic.

Example 6.2. Let X be the random variable with PDF

f(x) = x/8 x = 1, 3, 4.

This random variable X is input in APPL as

> X := [[x -> x / 8], [1, 3, 4], ["Discrete", "PDF"]];

2. Dot support format: The random variable’s support Ω is of Maple type
“..”, i.e., min{Ω} .. max{Ω}.
a) Finite support: The random variable’s support is finite.

i. The random variable’s support is incremented by k = 1 and trans-
formed by the identity function, i.e., g(x) = x for all x.

Example 6.3. Let X be a Benford random variable (Benford [8])
with PDF

f(x) = log10 (1 + 1/x) x = 1, 2, . . . , 9.

The Benford random variable is input in APPL as

> X := [[x -> log[10](1 + 1 / x)], [1 .. 9],
["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k = 1 and
transformed by a function other than the identity function, i.e.,
g(x) = x for some or all x.

Example 6.4. Let X be a random variable with PDF

f(x) = x/224 x = 8, 27, 64, 125.

This random variable is input in APPL as

> X := [[x -> x / 224], [2 .. 5, x -> x ^ 3],
["Discrete", "PDF"]];

iii. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 6.5. Let Y ∼ binomial(5, p), and let X = 2Y . This ran-
dom variable X is input in APPL as



6.1 Data Structures 77

> X := [[x -> 120 * p ^ (x / 2) *
(1 - p) ^ (5 - x / 2) /
((5 - x / 2)! * (x / 2)!)],

[0 .. 10, 2], ["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 6.6. Let X be a random variable with PDF

f(x) = 1600/489x x = 4, 25, 64.

This random variable is input in APPL as

> X := [[x -> 1600 / (489 * x)],
[2 .. 8, 3, x -> x ^ 2],
["Discrete", "PDF"]];

b) Infinite support: The random variable’s support is infinite.

i. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 6.7. Let X be a negative binomial random variable with
parameters r = 3 and p = 1/3. The simplified PDF of X is

f(x) =
(x − 2)(x − 1)

16

(
2
3

)x

x = 3, 4, . . . .

This random variable is input in APPL as

> X := [[x ->(((x - 2)*(x - 1)) / 16)*(2 / 3) ^ x],
[3 .. infinity], ["Discrete", "PDF"]];

ii. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 6.8. Let X be the square of a geometric
(

1
2

)
random vari-

able; i.e.,
f(x) = 1/2

√
x x = 1, 4, 9, . . . .

This random variable is input in APPL as

> X := [[x -> 2 ^ (-sqrt(x))],
[1 .. infinity, x -> x ^ 2],
["Discrete", "PDF"]];

iii. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.
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Example 6.9. Let Y ∼ geometric
(

1
2

)
. Let X = 2Y , which has PDF

f(x) =
(

1
2

)(x/2)

x = 2, 4, 6, . . . .

This random variable is input in APPL as

> X := [[x -> (1 / 2) ^ (x / 2)],[2 .. infinity, 2],
["Discrete", "PDF"]];

iv. The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 6.10. Let Y ∼ geometric
(

1
2

)
and X = 4Y 2. The PDF of

X is

f(x) =
(

1
2

)√
x/2

x = 4, 16, 36, . . . .

This random variable is input in APPL as

> X := [[x -> (1 / 2) ^ (sqrt(x) / 2)],
[2 .. infinity, 2, x -> x ^ 2],
["Discrete", "PDF"]];

Whenever an APPL procedure is invoked to perform an operation on a
discrete random variable, the random variable is first converted to its standard
format within the procedure. As discussed in the preceding section, there is
a standard discrete data structure format for both the NoDot and Dot cases.
The conversion is necessary so that the main body of each procedure can avoid
the complexity resulting from multiple formats.

Let X, for example, be the random variable discussed earlier in this chapter
with PDF

f(x) =
x

27
x = 1, 3, 7, 16.

Suppose the random variable X is input in APPL as

> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];

When an APPL procedure, such as Mean, receives the random variable X as
an argument, it first determines if X has a Dot or NoDot support format.
Since the support Ω = [1, 3, 7, 16] has a NoDot support format, the proce-
dure’s formula for computing the mean expects that it is receiving the random
variable X in its converted format, which is[[

1
27

,
1
9
,

7
27

,
16
27

]
, [1, 3, 7, 16], [“Discrete”, “PDF”]

]

In this format, the mean of a random variable with support values x1, x2, . . .
with a NoDot support format is computed as
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E[X] =
|Ω|∑
i=1

xi · f(xi)

=
4∑

i=1

X[2][i] · X[1][i]

= 1 · 1
27

+ 3 · 1
9

+ 7 · 7
27

+ 16 · 16
27

=
35
3

.

where X[2][i] is the ith element in sublist two (X’s support) and X[1][i]
is the ith element in sublist one (X’s probability values).

Again, each APPL procedure operates on random variables only in the
standard NoDot and Dot formats. Each APPL procedure internally converts
arguments to one of the two pre-defined formats, which allows algorithms to
be developed that exploit these formats. Without these standard formats, an
APPL procedure would be forced to discern the exact form of each random
variable it encountered. The computations required in the procedure would
then depend on the unique structure of each random variable, and as indi-
cated in Table 6.1, there are ten acceptable formats for a discrete random
variable in APPL. The Convert procedure provides each APPL procedure
with a standard structural format for a discrete random variable.

Some random variables with finite support, such as the random variable
Y with PDF

f(y) =
y

15
y = 3, 5, 7,

can be input in APPL in several different formats, which include both a NoDot
and Dot format. The APPL statements

> Y := [[1 / 5, 1 / 3, 7 / 15], [3, 5, 7],["Discrete", "PDF"]];
> Y := [[y -> y / 15], [3, 5, 7], ["Discrete", "PDF"]];
> Y := [[y -> y / 15], [3 .. 7, 2], ["Discrete", "PDF"]];

define the same random variable Y in APPL. The first two lines define Y in
its NoDot formats, while the third line displays Y in one possible Dot format.
Although Y may be defined by using any of the several different formats, any
algorithm or formula applied to Y will have the same outcome. Conversely,
a discrete random variable with countably infinite support can only be input
using a Dot support format. Since it is impossible to physically list every
element of a countably infinite set, the NoDot support format for this type
of random variable cannot be used.

The Convert procedure acts on discrete random variables in both the Dot
and NoDot cases. It converts a discrete random variable X with a

• Dot support format to the standard APPL Dot support format. If Ω is
the support of X, then the standard Dot second sublist support format is
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[min{Ω} .. max{Ω}, k, x → g(x)]

where k is the support increment and g(x) is the support transformation
function.

• NoDot support format to the standard APPL NoDot support format
with corresponding PDF. If f(x) is the PDF and the support is x =
x1, x2, . . . , xn, then the PDF first sublist and the standard NoDot second
sublist support format are

[f(x1), f(x2), . . . , f(xn)], [x1, x2, . . . , xn]

Two examples of the Convert procedure for the NoDot and Dot formats
are included for further clarification.

Example 6.11. Use the APPL Convert procedure to convert a Zipf
random variable (Ross [75, page 182]) with parameter α = 1 to the
standard Dot format.

The APPL statements below define X as the desired Zipf random
variable and convert it to its standard Dot format.

> X := [[x -> 6 / (Pi * x) ^ 2], [1 .. infinity],
["Discrete", "PDF"]];

> Convert(X);

The converted Zipf random variable in the standard APPL Dot format
is [[

x → 6
(πx)2

]
, [1 ..∞, 1, x → x], [“Discrete”, “PDF”]

]

Example 6.12. Use the APPL Convert procedure to convert a Benford
random variable (see Example 6.3) to the standard NoDot format.

The APPL statements below define X as a Benford random variable
and convert it to its standard NoDot format.

> X := [[x -> log[10](1 + 1 / x)],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
["Discrete", "PDF"]];

> Convert(X);

The converted Benford random variable in the standard APPL NoDot
format is

[[
ln(2)

ln(10)
,

ln( 3
2
)

ln(10)
,

ln( 4
3
)

ln(10)
,

ln( 5
4
)

ln(10)
,

ln( 6
5
)

ln(10)
,

ln( 7
6
)

ln(10)
,

ln( 8
7
)

ln(10)
,

ln( 9
8
)

ln(10)
,
ln( 10

9
)

ln(10)

]
,

[1, 2, 3, 4, 5, 6, 7, 8, 9], [“Discrete”, “PDF”]
]
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As in the case of continuous random variables, there are several commonly-
used random variables that are pre-defined and automated for input into
APPL: BenfordRV, BernoulliRV, BingoCoverRV, BinomialRV, BirthdayRV,
GeometricRV, HypergeometricRV, NegativeBinomialRV, PoissonRV, Uni-
formDiscreteRV, and ZipfRV. This list of distributions, along with their
parameters, is displayed every time APPL is entered. A binomial random
variable X with n = 3 and p = 1/2, for example, can be defined by the APPL
statement

> X := BinomialRV(3, 1 / 2);

which is much more compact than the standard list-of-sublists approach:

> X := [[1 / 8, 3 / 8, 3 / 8, 1 / 8], [0, 1, 2, 3],
["Discrete", "PDF"]];

6.2 Simple Algorithms

Now that the data structure for representing discrete random variables in
APPL has been established, we present some elementary algorithms that can
be applied to these random variables. Specifically, the algorithms described in
this section conduct the following elementary operations:

• convert any of the six functional forms of a random variable (PDF, CDF,
SF, HF, CHF, or IDF) into another functional form,

• plot any of the six functions for any fully-specified distribution, e.g., the
CDF,

• determine common summary characteristics of a random variable, such as
the mean and variance, and

• verify the validity of a particular PDF functional form.

Changing the Functional Form of a Random Variable. The functional
form of a distribution can be converted to and from its six well-known forms,
the PDF, CDF, SF, HF, CHF, and IDF. As in the case of continuous random
variables, the procedures return functional forms when they are called with
a single argument and scalars when an optional second argument is included.
The names of the conversion procedures are PDF, CDF, SF, HF, CHF, and IDF,
and the procedures can be applied to both discrete and continuous random
variables.

The matrix in Table 6.2 shows how the PDF, CDF, SF, HF, and CHF
distribution forms (given in the columns) can be found if one of the forms
(given by the rows) is known. For example, if the CDF of a distribution is
given, then its CHF can be determined for xi ∈ Ω by

H(xi) = − log
(
S(xi)

)
= − log

(
1 − F (xi−1)

)
,
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Table 6.2. A 5 × 5 transition matrix for determining f(xi), F (xi), S(xi), h(xi), or
H(xi) from any of the others for discrete distributions, where F (x0) ≡ 0, h(x0) ≡ 0,
and when |Ω| is finite, S(x|Ω|+1) ≡ 0 and H(x|Ω|+1) ≡ 0.

f(xi) F (xi) S(xi) h(xi) H(xi)

f(x) •
∑

j|xj≤xi

f(xj)

∑
j|xj≥xi

f(xj)
f(xi)∑

j|xj≥xi
f(xj)

−log

⎛
⎝ ∑

j|xj≥xi

f(xj)

⎞
⎠

F (x) F (xi) − F (xi−1) • 1 − F (xi−1)
F (xi) − F (xi−1)

1 − F (xi−1)
− log

(
1 − F (xi−1)

)

S(x) S(xi) − S(xi+1) 1 − S(xi+1) • S(xi) − S(xi+1)

S(xi)
− log S(xi)

h(x) h(xi)

∏
j|xj<xi

[
1 − h(xj)

]
1−
∏

j|xj≤xi

[
1 − h(xj)

] ∏
j|xj<xi

[
1 − h(xj)

]
• −

∑
j|xj<xi

log

(
1−h(xj)

)

H(x) e−H(xi) − e
−H(xi+1)

1 − e
−H(xi+1)

e−H(xi)
e−H(xi)−e

−H(xi+1)

e−H(xi)
•

where log is the natural logarithm (log base e) and F (x0) ≡ 0. Some facts
used to compute the entries in the matrix for xi ∈ Ω are given in Leemis [50,
pages 56–57, 73]:

• h(xi) = f(xi)/S(xi),

• H(xi) = − log S(xi),

• S(xi) =
∏

j|xj<xi

(
1 − h(xj)

)
, and

• H(xi) = −
∑

j|xj<xi

log
(
1 − h(xj)

)
.
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An example of how to find one distribution form when another is known
using the 5 × 5 matrix in Table 6.2 is given next.

Example 6.13. Given the hazard function

h(x) = 1/4 x = 1, 2, . . . ,

find f(xi) for xi = 1, 2, 3, . . . .

Using the
(
h(x), f(xi)

)
matrix element in Table 6.2,

f(xi) = h(xi)
∏

j|xj<xi

[1 − h(xj)] =
1
4

xi−1∏
j=1

[
1 − 1

4

]
=

1
4

(
3
4

)xi−1

for xi = 1, 2, 3, . . . , which is a geometric distribution with p = 1/4.
The geometric distribution is the only discrete distribution having
both a constant hazard function and the memoryless property. This
calculation is made in APPL with the statements

> X := [[x -> 1 / 4], [1 .. infinity], ["Discrete", "HF"]];
> PDF(X);

The algorithms for the PDF, CDF, SF, HF, and CHF procedures are similar
and utilize the formulas in Table 6.2. When changing the “current form” of
a random variable to a “new form,” the algorithm uses the Table 6.2 matrix
element (“current form”, “new form”).

We now delve into some detail on how the PDF procedure works.

The PDF of the discrete random variable X is defined as f(x) = Pr(X = x)
for all x ∈ Ω. The PDF(X, [x]) procedure returns either

1. the PDF of the random variable X in its APPL list-of-sublists format if
only one argument is provided in the procedure call; i.e., PDF(X), or

2. the probability value Pr(X = x) if both arguments are provided in the
procedure call; i.e., PDF(X, x).

Example 6.14. In order to illustrate many of the conversion operations,
we use a discrete random variable X with PDF

f(x) =
x

6
x = 1, 2, 3.

The formulas for its CDF, SF, HF, CHF, and IDF are:

F (x) =
x2 + x

12
x = 1, 2, 3

S(x) =
−x2 + x + 12

12
x = 1, 2, 3
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h(x) =
2x

−x2 + x + 12
x = 1, 2, 3

H(x) = − log
(−x2 + x + 12

12

)
x = 1, 2, 3

F−1(x) =
⌈
−1

2
+

1
2
√

1 + 48x
⌉

x = 1/6, 1/2, 1.

If we assign the variable X to the CDF of X using the Dot format, then
the statement PDF(X) returns the PDF of X in it APPL list-of-sublists
format:

> X := [[x -> (x ^ 2 + x) / 12], [1 .. 3],
["Discrete", "CDF"]];

> PDF(X);

yielding the PDF[[
x → x

6

]
, [1 .. 3], [“Discrete”, “PDF”]

]
Alternatively, the statements

> X := [[x -> (x ^ 2 + x) / 12], [1 .. 3],
["Discrete", "CDF"]];

> PDF(X, 2);

compute Pr(X = 2), which is 1/3.

The algorithm in the PDF procedure first checks a discrete random vari-
able X to determine if it has a Dot or NoDot support format. Although
two distinct branches in the algorithm have been constructed to process ran-
dom variables of each format separately, the basic functional relationships
displayed in Table 6.2 are used in each branch. Whether X has a Dot or
NoDot support format, one of the following bullets will be executed depend-
ing on X’s distribution form (and support format in the case of IDF). We
assume Ω = {x1, x2, . . . }, where x1 < x2 < · · · .
• If X has a PDF form, do nothing to X.
• If X has a CDF form, determine the PDF of X with the

(
F (x), f(xi)

)
matrix element in Table 6.2:

f(xi) = F (xi) − F (xi−1) xi ∈ Ω,

where i = 1, 2, . . . and F (x0) ≡ 0.
• If X has a SF form, determine the PDF of X with the

(
S(x), f(xi)

)
matrix

element in Table 6.2:

f(xi) = S(xi) − S(xi+1) xi ∈ Ω,

where i = 1, 2, . . . and S(x|Ω|+1) ≡ 0 when |Ω| is finite.
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• If X has a HF form, determine the PDF of X with the
(
h(x), f(xi)

)
matrix

element in Table 6.2:

f(xi) = h(xi)
∏

j|xj<xi

[
1 − h(xj)

]
xi ∈ Ω,

where i = 1, 2, . . . and h(x0) ≡ 0.
• If X has a CHF form, determine the PDF of X with the

(
H(x), f(xi)

)
matrix element in Table 6.2:

f(xi) = e−H(xi) − e−H(xi+1) xi ∈ Ω,

where i = 1, 2, . . . and H(x|Ω|+1) ≡ 0 when |Ω| is finite.
• If X has an IDF form with Dot support, then

1. If there is a ceiling term as part of the inverse function, extract the
expression under the ceiling in order to solve F−1(x) = y. Referring
back to X with PDF f(x) = x/6 for x = 1, 2, 3, the IDF of X (from
Example 6.14) is

F−1(x) =
⌈
−1

2
+

1
2
√

1 + 48x

⌉
,

for x = 1/6, 1/2, 1. Rewrite F−1(x) as

F−1(x) = −1
2

+
1
2
√

1 + 48x.

This removal of the ceiling function can be done using the Maple eval
procedure.

2. Solve the equation
F−1(x) = y

for x, yielding F (y). For our particular X, solving − 1
2+ 1

2

√
1 + 48x = y

for x yields F (x) = x2+x
12 , replacing y with x.

3. Find the appropriate inverse. If there is more than one solution to the
equation F−1(x) = y, determine the correct inverse by testing which
solution F (x) correctly calculates F

(
F−1(s)

)
= s for s equal to one of

the following. The choices for s are considered in the bulleted order.

• if min{Ω} = −∞ and max{Ω} = ∞, then s = 1.

• if max{Ω} = ∞, then s = max{Ω}.
• if min{Ω} = −∞, then s = min{Ω}.
• otherwise, s =

min{Ω} + max{Ω}
2

.

See the beginning of Section 4.2 for the continuous analog of these
conditions.



86 6 Data Structures and Simple Algorithms

4. Convert the CDF of X to its PDF form by the using the
(
F (x), f(xi)

)
matrix element in Table 6.2.

5. Determine the range of the PDF of X. The minimum support value is
F−1(x1) (where x1 is the minimum support value of the IDF here) and
the maximum support value is F−1(1). Since the minimum support
value of the IDF for the example random variable X is x1 = 1/6, then
F−1(1/6) = 1. Also, F−1(1) = 3.

• If X has an IDF form and a NoDot support, then the second sublist of the
APPL list-of-sublists contains the CDF values of X and the first sublist
contains the CDF support values. To compute the PDF of X, the first
and second sublists of the IDF are swapped to form the CDF, and then
the PDF is computed using the (F (x), f(xi)) matrix element in Table 6.2.
The IDF of our example random variable X is

F−1(x) =

⎧⎪⎨
⎪⎩

1 x = 1
6

2 x = 1
2

3 x = 1.

The APPL list-of-sublists is[
[1, 2, 3],

[
1
6
,
1
2
, 1
]

, [“Discrete”, “IDF”]
]

The CDF is found by swapping the first two sublists:[[
1
6
,
1
2
, 1
]

, [1, 2, 3], [“Discrete”, “CDF”]
]

Finally, the PDF is

f(1) = 1
6

f(2) = F (2) − F (1) = 1
3

f(3) = F (3) − F (2) = 1
2 .

After the PDF has been computed, the algorithm checks whether one or
two arguments were entered. If only one argument, X, is provided, i.e., PDF(X),
then the PDF of X is returned in its list-of-sublists format. Otherwise, if two
arguments, X and x, are provided, then the probability value Pr(X = x)
is computed. The algorithm distinguishes between the two support formats
when determining this probability value:

• If X has the Dot support format, then
1. If xi ∈ Ω, then compute and return the probability value f(xi)

using the PDF formula already determined in the earlier part of the
procedure.

2. If the value xi /∈ Ω, then return Pr(X = xi) = 0.
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• If X has the NoDot support format, then
1. Loop through the support values of the PDF searching for the value xi

in the second sublist. If xi is found in position j, then its corresponding
probability value is in position j of the first sublist. Return the jth
element in the first sublist.

2. If the value xi is not found in the second sublist, then return Pr(X =
xi) = 0.

Example 6.15. (Adapted from Hogg, et al. [37, page 44]) Cast a die two
independent times and let X equal the absolute value of the difference
of the two resulting values. The CDF of X is

F (x) =

⎧⎪⎨
⎪⎩

1
6

x = 0

11x − x2 + 6
36

x = 1, 2, . . . , 5.

Determine the PDF of X.

Define the APPL NoDot format of F (x) as the random variable X.
Then use the PDF procedure to determine X’s numeric PDF.

> X := [[1 / 6, 4 / 9, 2 / 3, 5 / 6, 17 / 18, 1],
[0, 1, 2, 3, 4, 5], ["Discrete", "CDF"]];

> PDF(X);

The APPL NoDot format of f(x) is[[
1
6
,

5
18

,
2
9
,
1
6
,
1
9
,

1
18

]
, [0, 1, 2, 3, 4, 5], [“Discrete”, “PDF”]

]

which can be converted by hand to the formulaic PDF:

f(x) =

⎧⎪⎨
⎪⎩

1
6

x = 0

6 − x

18
x = 1, 2, . . . , 5.

Plotting Distributions. Especially for newcomers to probability theory,
plots of the various functional forms of a random variable can provide in-
sight into the distribution of that random variable. The PlotDist procedure
requires only one argument, a random variable X, but two additional optional
arguments can be provided to indicate the plotting range, low and high. The
procedure can plot a random variable in any of its six functional forms. The al-
gorithm employed by the PlotDist procedure utilizes the list-of-sublists data
structure to glean the necessary information for a plot. For discrete random
variables, graphs for CDFs, SFs, CHFs, and IDFs, for instance, are plots of
step functions with jumps at the support values specified in sublist two. Open
and closed circles at the ends of the steps indicate exclusion and inclusion,
respectively, of support values.



88 6 Data Structures and Simple Algorithms
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Fig. 6.1. CDF for f(x) = (5 − x)/10 for x = 1, 2, 3, 4.

Example 6.16. (Karian and Tanis [42, page 40]) Let

f(x) = (5 − x)/10 x = 1, 2, 3, 4

be a PDF of the discrete random variable X. Use PlotDist to depict
the CDF of X.

Instead of first converting X’s PDF form into a CDF form by hand,
one can directly define the PDF and compose the CDF conversion
with PlotDist. This leaves the conversion work to APPL. The plot
of the desired CDF can be executed with the statements

> X := [[x -> (5 - x) / 10],[1 .. 4],["Discrete", "PDF"]];
> PlotDist(CDF(X));

The corresponding plot is displayed in Figure 6.1.

Calculating Expected Values. If X is a discrete random variable with
support Ω = {x1, x2, . . . } and PDF f(x), then the mean (or expected value)
of X is defined by

E[X] = µ =
∑

all xi ∈Ω

xi · f(xi).

More generally, if g(X) is any function of X, such as g(X) = X2, then

E
[
g(X)

]
=

∑
all xi ∈Ω

g(xi) · f(xi).
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The ExpectedValue procedure requires one argument, a random variable
X, and can be given an additional argument, the function g(X). When
only one argument is provided for the ExpectedValue procedure, i.e.,
ExpectedValue(X), the mean of the random variable X is returned. When
g(x) is also given, the ExpectedValue procedure calculates the mean of g(X).
By default, the procedure assumes g(X) = X when no second argument is
given. The Mean, Variance, Kurtosis, and Skewness procedures all make
use of the ExpectedValue procedure. This is efficient since variance, the
coefficient of skewness, γ1, and the coefficient of kurtosis, γ2, for a random
variable X can be calculated as

Var(X) = E
[
(X − µ)2

]
= E

[
X2
]− µ2,

γ1 = E

[(
X − µ

σ

)3
]

=
E
[
X3
]− 3µE

[
X2
]
+ 2µ3

[Var(X)]3/2
, and

γ2 = E

[(
X − µ

σ

)4
]

=
E
[
X4
]− 4µE

[
X3
]
+ 6µ2E

[
X2
]− 3µ4

[Var(X)]2
.

Example 6.17. (Ross [75, page 178]) Find the expected value and the
variance of the number of times one must throw a die until the outcome
one has occurred four times.

Since the random variable of interest is a negative binomial with
parameters r = 4 and p = 1/6, the statements

> r := 4;
> p := 1 / 6;
> X := NegativeBinomialRV(r, p);
> ExpectedValue(X);
> Variance(X);

yield the correct results: E[X] = 24 and Var(X) = 120.

Example 6.18. (Ross [75, page 198]) Let X be a binomial random
variable with parameters n and p. Show that

E

[
1

X + 1

]
=

1 − (1 − p)n+1

(n + 1)p
.

Since we want to compute E
[

1
X+1

]
, let g(X) = 1/(X +1). The APPL

statements

> unassign(’p’);
> X := BinomialRV(n, p);
> ExpectedValue(X, x -> 1 / (x + 1));

produce the desired expected value.
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Verifying the Validity of a PDF. Let X be a discrete random variable
defined on the support Ω = {x1, x2, . . . }. A discrete probability PDF must
satisfy the following two conditions:∑
all xi ∈Ω

Pr(X = xi) = 1 and Pr(X = xi) > 0 for each xi ∈ Ω.

The APPL VerifyPDF procedure has one argument, a random variable X,
and the procedure’s purpose is to verify that X satisfies these two conditions.
When procedure call VerifyPDF(X) is made, either a message is returned
stating that X has a valid PDF or that it does not. The following example
illustrates the use of this procedure.

Example 6.19. (Karian and Tanis [42, page 62]) Verify that the prob-
abilities of a geometric random variable with parameter p sum to 1.

The random variable X can defined as a geometric random vari-
able with parameter p using the pre-defined APPL random variable
GeometricRV(p). When the GeometricRV procedure receives a sym-
bolic argument (parameter), it uses the Maple assume command to
correctly assume that the symbolic parameter is inclusively between
0 and 1. Thus, the statements

> X := GeometricRV(p);
> VerifyPDF(X);

generate a message to the screen indicating that X has a valid PDF.

This concludes our introduction of the data structure and some simple
algorithms for discrete random variables. The next two chapters introduce
nontrivial algorithms for two important operations on discrete random vari-
ables: finding the distribution of sums and finding the distribution of order
statistics.
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Sums of Independent Random Variables

This chapter presents an algorithm for computing the PDF of the sum of two
independent discrete random variables, along with an implementation of the
algorithm in APPL. Some examples illustrate the utility of this algorithm.

7.1 Preliminary Examples

An important operation in probability theory and statistical inference is to
calculate the distribution of the sum of two independent random variables X
and Y . Applications of sums of random variables appear in many areas of
mathematics, probability theory, physics, and engineering. Most texts devote
the majority of their attention to sums of continuous random variables, rather
than discrete random variables. We focus here on the case in which X and Y
are discrete random variables with integer-valued supports that are bounded
below.

There are several approaches for computing the PDF of Z = X +Y in the
discrete case. The event {X+Y = z}, z ∈ ZZ, can be written as the union of the
disjoint events {X = ζ, Y = z − ζ}, {X = ζ + 1, Y = z − (ζ + 1)}, . . . , {X =
z − ζ, Y = ζ}, where ζ is the minimum of the union of the support values of
X and Y . The PDF fZ(z) of the convolution of the PDFs of the independent
random variables X and Y (with integer supports) can be computed as

Pr(Z = z) = Pr(X + Y = z)

=
z−ζ∑
k=ζ

Pr(X = k, Y = z − k)

=
z−ζ∑
k=ζ

Pr(X = k)Pr(Y = z − k).

The following example illustrates the use of this discrete convolution formula.
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Example 7.1. (Ross [75, page 287]) If X and Y are independent
Poisson random variables with respective parameters λ1 and λ2,
compute the PDF of Z = X + Y .

The PDF of a Poisson random variable X with parameter λ is

fX(x) =
λx e−λ

x!
x = 0, 1, 2, . . . .

Since ζ = min{0, 1, 2, . . .} = 0,

Pr(Z = z) = Pr(X + Y = z)

=
z∑

k=0

Pr(X = k, Y = z − k)

=
z∑

k=0

Pr(X = k) · Pr(Y = z − k)

=
z∑

k=0

e−λ1λk
1

k!
· e−λ2λ2

z−k

(z − k)!

= e−(λ1+λ2)
z∑

k=0

λ1
kλ2

z−k

k! (z − k)!

=
e−(λ1+λ2)

z!

z∑
k=0

z!
k! (z − k)!

λ1
kλ2

z−k

=
(λ1 + λ2)

z
e−(λ1+λ2)

z!
z = 0, 1, 2, . . . .

So Z = X + Y has a Poisson distribution with parameter λ1 + λ2.
As will be seen subsequently, the APPL procedure Convolution
automates this process.

If one wants to sum more than two iid random variables, then the distri-
bution function for Z can be determined by induction (Grinstead and Snell
[31, page 286]). Let Zn = X1 + X2 + · · · + Xn be the sum of n independent
random variables with common PDF fX(x) defined on the integers. Then the
PDF of Z1 is fX(x). We can write

Zi = Zi−1 + Xi,

for i = 2, 3, . . . , n. Thus, since we know the distribution of Xi is fX(x), for
i = 1, 2, . . . , n, we can find the distribution function of Zn by induction.
When summing more than two iid random variables, the APPL procedure
ConvolutionIID uses this inductive process to compute the PDF of the sum.

For example, let X1, X2, and X3 have PDFs fX(x) = 1/6 for x =
1, 2, . . . , 6. If Z2 = X1 + X2, then the PDF fZ2(z) is
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fZ2(z) =

⎧⎪⎨
⎪⎩

z − 1
36

z = 2, 3, . . . , 7

13 − z

36
z = 8, 9, . . . , 12.

The PDF of Z3 = X1 +X2 +X3 is the convolution of the PDFs of Z2 and X3.
For example, Pr(Z3 = 4) = Pr(Z2 = 3) · Pr(X3 = 1) + Pr(Z2 = 2) · Pr(X3 =
2) = 2

36 · 1
6 + 1

36 · 1
6 = 1

72 .
Due to the mathematical intractability in implementing the discrete con-

volution formula,
∑z−ζ

k=ζ Pr(X = k, Y = z− k), for certain non-identically dis-
tributed random variables [e.g., X ∼ Poisson(λ), Y ∼ geometric(p)] and the
inefficiency in making computations with this formula for random variables
with arbitrary supports (e.g., X with support {−216,−57, 23, 81} and Y with
support {−1002,−15, 2, 62, 211}), only certain convolutions can or should be
computed using this formula. For random variables with arbitrary supports,
the discrete convolution formula can be used, but it is often inefficient because
one or both of the random variables have support values ranging over a large
domain of non-adjacent integer values. The following example displays the
inefficiency that can be encountered by using this formula, even for random
variables with only a small number of support values.

Example 7.2. Suppose X and Y are independent discrete random
variables with PDFs:

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Compute the PDF of Z = X + Y .

The support values for Z are

{−5,−3,−2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16}.

We use the discrete convolution formula Pr(Z = z) =
∑z−ζ

k=ζ Pr(X = k,
Y = z − k), where ζ = −3, to compute Pr(Z = 4):

Pr(Z = 4) =
7∑

k=−3

Pr(X = k, Y = 4 − k)

= Pr(X = −3) · Pr(Y = 7) + Pr(X = −2) · Pr(Y = 6) +
Pr(X = −1) · Pr(Y = 5) + Pr(X = 0) · Pr(Y = 4) +
Pr(X = 1) · Pr(Y = 3) + Pr(X = 2) · Pr(Y = 2) +
Pr(X = 3) · Pr(Y = 1) + Pr(X = 4) · Pr(Y = 0) +
Pr(X = 5) · Pr(Y = −1) + Pr(X = 6) · Pr(Y = −2) +
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Pr(X = 7) · Pr(Y = −3)
= 0.15 · 0 + 0 · 0 + 0.25 · 0.3 + 0 · 0 + 0 · 0 + 0.1 · 0 +

0 · 0.1 + 0 · 0 + 0 · 0 + 0.3 · 0.2 + 0 · 0
= 0 + 0 + 0.075 + 0 + 0 + 0 + 0 + 0 + 0 + 0.06 + 0
= 0.135.

The probabilities for the other support values of Z are computed in a
similar fashion. Because of the tedious calculations needed to compute
the PDF of Z by the discrete convolution formula, we compute it fully
in the next example using moment generating functions (MGFs).

Unlike the discrete convolution formula, the moment generating function
technique avoids computing sums that have zero probability of occuring, as
illustrated below.

Example 7.3. Suppose X and Y are the discrete random variables
defined in Example 7.2 and Z = X +Y . Find the PDF of Z using the
moment generating function technique [37].

Since X and Y are independent, the MGF of Z is

MZ(t) = E
(
et(X+Y )

)
= E

(
etXetY

)
= E

(
etX)E(etY

)
= MX(t)MY (t).

The MGFs of X and Y , respectively, are

MX(t) = E
(
etX
)

= 0.15e−3t + 0.25e−t + 0.1e2t + 0.3e6t + 0.2e8t

and
MY (t) = E

(
etY
)

= 0.2e−2t + 0.1et + 0.3e5t + 0.4e8t

for −∞ < t < ∞. Thus, the MGF of Z is

MZ(t) = 0.03e−5t + 0.05e−3t + 0.015e−2t + 0.045 + 0.045e2t +
0.01e3t + 0.135e4t + 0.06e5t + 0.04e6t + 0.16e7t + 0.02e9t +
0.04e10t + 0.09e11t + 0.06e13t + 0.12e14t + 0.08e16t

for −∞ < t < ∞. Then, the PDF of Z is found by matching the coef-
ficients (mass values) with the associated coefficients in the exponents
(support values):

Z = z −5 −3 −2 0 2 3 4 5 6 7 9 10 11 13 14 16

fZ(z) .03 .05 .015 .045 .045 .01 .135 .06 .04 .16 .02 .04 .09 .06 .12 .08
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In complicated examples, especially those involving continuous random
variables, using the moment generating function technique to obtain convo-
lution functions can be more efficient than direct summation or integration.
Along the same lines as the moment generating function technique, the prob-
ability generating function technique can be used for determining the PDF of
the sum of discrete random variables with non-negative integer-valued sup-
ports. Unfortunately, implementing either of these techniques in a computer
algebra system like Maple has drawbacks when the supports of the random
variables X and/or Y are not integer-valued. These implementation issues are
discussed in Section 7.4.

Besides the integration/summation and generating function methods al-
ready described, the characteristic functions of independent random variables
can be used to compute convolutions (see Parzen [70, page 395]). In order to
use this method, though, one must know the inversion formula of the PDF
of a random variable in terms of its characteristic function. The complexity
of the inversion makes this method unappealing for complicated or arbitrary
distributions.

The purpose of this chapter is to present an algorithm for determining
the distributions of sums of discrete random variables, especially those with
finite arbitrary supports. Like the algorithm presented in Woodward [82],
our algorithm handles well-known distributions, such as the binomial and
Poisson. But, our algorithm was primarily written for arbitrary random vari-
ables whose supports have moderate cardinality. Computer algebra systems
make it feasible to determine the distribution of a sum of these types of random
variables.

Section 7.2 describes the algorithm for determining the PDF of a sum of
two discrete random variables in conceptual terms. The algorithm that was
constructed to compute the convolution appears in Section 7.3; implementa-
tion issues that arose when the algorithm was coded in APPL are given in
Section 7.4. Section 7.5 provides a collection of examples that can be solved
with the convolution algorithm.

7.2 Conceptual Algorithm Development

One way to compute the convolution of the PDFs of two independent discrete
random variables is by what we call the “brute force method.” Let X have
support x1, x2, . . . , xn and Y have support y1, y2, . . . , ym. This method does
just what the name implies—it computes all possible sums between the sup-
port of X and the support of Y by brute force, e.g., x1 +y1, x1 +y2, . . . , x1 +
ym, x2 + y1, x2 + y2, . . . , xn + ym−1, xn + ym. The sums are placed in a one-
dimensional array, called s, of length n · m. The corresponding probabilities
for each of these sums, fX(x1) · fY (y1), fX(x1) · fY (y2), . . . , fX(xn) · fY (ym),
are stored in an one-dimensional array called Probs, also of length n · m.
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The probability in position Probsi corresponds to the sum in position si,
i = 1, 2, . . . , n · m.

For example, let X and Y be the random variables introduced in
Example 7.2. The arrays s and Probs for the random variables X and
Y are

s = [−5, −2, 2, 5, −3, 0, 4, 7, 0, 3, 7, 10, 4, 7, 11, 14, 6, 9, 13, 16 ]

Probs = [0.03, 0.015, 0.045, 0.06, 0.05, 0.025, 0.075, 0.1, 0.02, 0.01,

0.03, 0.04, 0.06, 0.03, 0.09, 0.12, 0.04, 0.02, 0.06, 0.08]

We assume that s is initially unsorted and may contain repeated values, such
as 0, 4, and 7 in this particular example. The array s is then sorted and the
elements in the array Probs are rearranged in a corresponding way. After
sorting, the arrays s and Probs are

s = [−5, −3, −2, 0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 7, 9, 10, 11, 13, 14, 16 ]

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08 ]

Finally, the redundancies in s are removed and the appropriate probabili-
ties corresponding to those redundancies are combined in Probs. The final
arrays are

s = [−5, −3, −2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16]

Probs = [0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16,

0.02, 0.04, 0.09, 0.06, 0.12, 0.08]

One algorithm we employ to sort the array s is insertion sort [81]. When
n · m is small, the simplicity of insertion sort makes it an appropriate choice.
Unfortunately, for random variables X and Y with larger support sizes n and
m, such as n = m = 10, insertion sort becomes inefficient. Since insertion
sort is an O(N2) algorithm, where N = n · m in our setting, it is not an
appropriate method for sorting lists containing more than one hundred or so
elements. For this reason, another sorting algorithm, heapsort [81], is used to
sort larger arrays. Heapsort uses a heap, which is a binary tree with special
properties, to sort the array s. Heapsort is an O

(
N · log(N)

)
algorithm [11].

Heapsort builds the array s as a maximum heap data structure. It then
swaps the maximum element (the root) of the heap with the element in the
last array position sn·m. The heap is rebuilt with the remaining unsorted
elements in array positions s1 through sn·m−1. The maximum element of the
new heap is then swapped with the element in the second to last position of
the array s, which is position sn·m−1. Now the last two positions in s are sorted
in ascending order. The heap structure is again restored with the remaining



7.2 Conceptual Algorithm Development 97

unsorted elements in array positions s1 through sn·m−2. This swap and rebuild
process repeats itself until all elements are removed from the unsorted region
of the heap and placed in ascending order from the front to the back of the
heap. Heapsort proved more efficient than insertion sort for large values of N .

Shellsort , an improved insertion sort, is the algorithm employed by the
mathematical software package Maple to sort polynomials. Since Shellsort’s
“performance is quite acceptable in practice, even for N [the number of ele-
ments] in the tens of thousands” (Weiss [81, page 260]), we take advantage of
Maple’s sorting algorithm for polynomials (when possible) by using the mo-
ment generating function technique to compute the sum of discrete random
variables. The MGFs for X and Y , denoted by MX(t) and MY (t) respectively,
are first computed. Next, the product of the MGFs, MZ(t), is computed. We
manipulate the terms of the MGF with Maple’s expand procedure so that
they are written in a fashion that Maple interprets as polynomials terms. For
example, if the MGF is MZ(t) = 1

3e3t + 1
6e2t + 1

2e5t, then expand(MZ(t))
returns MZ(t) as 1

3 (et)3 + 1
6 (et)2 + 1

2 (et)5. The terms of the resulting ex-
panded MGF are then sorted in descending order by the constant appearing
in the exponent of each et term. Sorting the example expression MZ(t) returns
1
2 (et)5 + 1

3 (et)3 + 1
6 (et)2. The probability and support values are extracted

from the terms of the expression MZ(t), and the PDF of the sum is formed.
The PDF for the example expression MZ(t) is

fZ(z) =

⎧⎪⎨
⎪⎩

1
6 z = 2
1
3 z = 3
1
2 z = 5.

Although in theory this is an ideal method, Maple recognizes that expressions
with non-integer valued constants in the exponents, such as 1

3e3.1t + 1
6e2.5t +

1
2e5.4t, are not truly polynomials and will incorrectly sort such expressions.
Since the MGF MZ(t) may not always have integer constants in its expo-
nents, the moment generating function technique for computing the PDF of
a sum is only reasonable to use for integer supports. Using probability gener-
ating functions to compute the PDF of a sum of random variables results in
the same complications. Further implementation issues faced by moment and
probability generating functions are discussed in Section 7.4.

As suggested by Nicol [64], the sum array s can be constructed in such a
way that the next largest sum element is placed in s as it is being built. Instead
of constructing the array s first and then sorting it, our algorithm constructs s
by sequentially appending the next ordered element. We refer to this method
as the “moving heap method,” and it involves building, deleting, and inserting
sums into a minimum heap data structure. A minimum heap contains its
smallest element in the root, rather than its largest as in a maximum heap
data structure.

The idea behind this sorting algorithm is the construction of a two-
dimensional “conceptual” array A, which has m + 1 rows and n + 1
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columns. The array A is not instantiated to save on memory, but serves
as a bookkeeping device to help explain the nature of the algorithm. As
illustrated in Example 7.4, A is displayed in an unusual manner in order to
resemble the axes in the Cartesian coordinate system. Without loss of gen-
erality, we assume that the supports of X and Y are arranged in increasing
order; i.e., x1 < x2 < · · · < xn and y1 < y2 < · · · < ym. The array cell (i, j)
contains the sum Ai, j = yi + xj for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The
cells in row m + 1 of A hold a 0 or 1 for each column j = 1, 2, . . . , n to
indicate whether the cell in column j is “active,” which means its entry is in
the heap H, consisting of the candidates for the next element to be appended
to s. Thus Am+1, j = 0 or 1 for j = 1, 2, . . . , n. Likewise, the cells in column
n + 1 of A also hold a 0 or 1 for each row i = 1, 2, . . . , m to indicate whether
the cell in row i is “active,” so Ai, n+1 = 0 or 1 for i = 1, 2, . . . , m. The cell
(m + 1, n + 1) is not used in the algorithm. Example 7.4 illustrates what
is meant by an “active” cell. Occasionally, it will be convenient to have a
notation for the matrix A with row m + 1 and column n + 1 deleted. This
m × n matrix will be denoted by Â.

Since xj < xj+1 for j = 1, 2, . . . , n−1 and yi < yi+1 for i = 1, 2, . . . , m−1,
the entry in cell (i, j) is always guaranteed to be less than both the entries in
cells (i+1, j) and (i, j +1); i.e. Ai, j < Ai+1, j and Ai, j < Ai, j+1. This result
allows the algorithm to repeatedly move the smallest number of candidate
entries for the next largest sum from the array A to the current heap H.
Thus this algorithm moves from the southwest cell to the northeast cell of the
array Â repeatedly placing the next largest sum into s after choosing it as the
minimum element in the current heap H.

Theorem 7.1. Let x1 < x2 < · · · < xn and y1 < y2 < · · · < ym be finite
real numbers. Let the m× n array Â be arranged as shown in Figure 7.1 and
have entries Âi, j = yi +xj , i = 1, 2, . . . , m and j = 1, 2, . . . , n. Let the set C
contain all (i, j) pairs such that xi + yj ≤ c, where c > y1 + x1 is a fixed real
number. Let P be the path from the northwest corner of Â to the southeast
corner of Â that separates C from its complement C ′. The smallest element in
C ′ must occur immediately northeast of a point at which the path P changes
direction from southward to eastward.

Proof. Suppose the smallest element in C ′ occurs in the cell (r, s). Since
Ar−1,s < Ar,s and Ar,s−1 < Ar,s, cells (r − 1, s) and (r, s − 1) are both
in C. Thus the path P must pass between cell (r, s) and cells (r, s − 1) and
(r − 1, s), changing direction from southward to eastward as it does. �

Theorem 7.1 not only identifies the candidates for the next element to
append to s, but it also shows how the list of candidates should be modified
when its smallest element is removed. If Ap,q is appended to s, then the path
P corresponding to c = Ap,q passes along the upper edge and right edge of
cell (p, q), implying that P may change direction just southwest of Ap+1,q

and Ap,q+1.
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...
...

...

x1 x2 xn

y2

y1 y1 + x2y1 + x1

y2 + x1 y2 + x2

ym ym + x2ym + x1 . . .

. . .

. . .

ym + xn

y2 + xn

y1 + xn

. . .

Fig. 7.1. Array Â where x1 < x2 < · · · < xn and y1 < y2 < · · · < ym.
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Fig. 7.2. Array Â corresponding to Example 7.2. The thickened path P
from the northwest corner to the southeast corner of Â delimits the set
C = {(i, j) | yi + xj ≤ 3} from its complement C′. The circled entries lie just to
the northeast of points where the path turns from southward to eastward. These
three entries are candidates for the smallest entry in the cells of C′ for c = 3.

As an example, Figure 7.2 displays the array Â associated with
Example 7.2 with c = 3.

Since this process and its intricacies are best explained by an example,
we’ll reintroduce the discrete random variable X and Y which were first
encountered in Example 7.2.
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Fig. 7.3. Array A with active cell (1, 1), which contains the entry A1, 1 = −5.

Example 7.4. Let X and Y have PDFs

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Use the “moving heap method” to determine the PDF of Z = X +Y .

Construct the 5 × 6 array A. Set Ai, n+1 = Ai, 6 = 0 for i = 1, 2, 3, 4
and Am+1, j = A5, j = 0 for j = 1, 2, 3, 4, 5. The smallest value in A is
positioned in cell (1, 1) and is A1, 1 = y1 + x1 = −5. The algorithm
designates the cell (1, 1) as an “active” cell in A by setting Am+1, 1 =
A5, 1 = 1 and A1, n+1 = A1, 6 = 1. The zeros in the other cells of
row five and column six remain. Figure 7.3 displays this initial array.
The entries of A increase in value as one moves up, to the right, or a
combination of both (as in the Cartesian coordinate system).

As in the brute force method, let the one-dimensional array s of length
n ·m hold the sums of the supports of the random variables X and Y .
The corresponding probabilities for each of these sums will again be
stored in the one-dimensional array called Probs, also of length n ·m.
Clearly, the first (smallest) sum to be placed in the first position of
array s is A1, 1. Accordingly, fX(x1) · fY (y1) = 0.03 is placed in the
Probs array in its first position, Probs1. After setting s1 = A1, 1 = −5
and Probs1 = Pr(Z = A1, 1) = fX(x1) · fY (y1) = 0.03, the cell (1, 1)
becomes inactive. In order to reflect the absence of an active cell in
the first row and first column, reset Am+1, 1 = A5, 1 = 0 and A1, n+1 =
A1, 6 = 0. The next two cells to become “active” (i.e., cells that may
contain the next largest sum) in the array A are (1, 2) and (2, 1), with
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Fig. 7.4. Array A after A1, 1 has been processed and added to the one-dimensional
sum array s. The cells (1, 2) and (2, 1) are active, as indicated by the ones in cells
(1, 6), (5, 2), (2, 6), and (5, 1).

A1, 2 = y1 +x2 = −3 and A2, 1 = y2 +x1 = −2. Since cell (1, 2) in A is
now active, reset A1, 6 = 1 and set A5, 2 = 1. Similarly, since cell (2, 1)
is active, set A2, 6 = 1 and reset A5, 1 = 1. The purpose of these ones
and zeros along the boundary of the A array is to assure that there
is no more than one active cell in each row and column. Figure 7.4
contains the current state of array A.

The values A1, 2 and A2, 1 now form the minimum heap H, resulting in
H = {A1,2, A2,1} = {−3,−2}. Informally, a heap is a complete binary
tree with a special ordering property of its nodes. A complete binary
tree is a tree that is completely filled with the possible exception of
the bottom level, which is filled from left to right. Figure 7.5 contains
illustrations of structures which are and are not complete binary trees.
Each node of the tree has one parent, except the root of the tree, which
has no parent. In a minimum heap, the smallest element of the heap is
contained in its root. In the upper-right tree in Figure 7.5, a is the root
of the tree. Nodes b and c are a’s children, where b is the left child
and c is the right child . (According to the definition of a complete
binary tree, when a node above the bottom level of the tree has only
one child, it must be a left child.) Node b is the parent to nodes d and
e. The height of a tree is the number of nodes from the root to a node
at the bottom level of the tree. For example, the heights of the top
trees in Figure 7.5 are three, three, and four, respectively.

Thus, a minimum heap is a complete binary tree with the special
ordering property that each parent node contains a value less than or
equal to the values in its children’s nodes. Because of this ordering
property, the smallest value in a minimum heap will always be at the
root.
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a

c

f

b

d e g

h i

Fig. 7.5. Six binary trees. The top three trees are complete binary trees and the
bottom three are not.

−2

−3

Fig. 7.6. Heap H containing entries A1, 2 = −3 and A2, 1 = −2.

The binary heap H formed with the values A1, 2 and A2, 1 is in
Figure 7.6. The next sum to be entered into s in position s2 is the
root of the heap, i.e., the smallest element in H. Since A1, 2 = −3 is
the root, it is removed from the heap H and placed in s2, while its
corresponding probability is placed in Probs2. Because the entry A1, 2

is removed from the array A, reset A1, 6 = 0 and A5, 2 = 0 to indicate
that row one and column two no longer contain an active cell. After
these changes, array A is displayed in Figure 7.7.

After setting cell (1, 2) to inactive, the two cells that are candidates
to become active (if the corresponding row and column do not already
contain an active cell) are cells (3, 1) and (2, 2). Since row two contains
the active cell (2, 1), and by design A2, 1 < A2, 2, entry A2, 2 is not
activated. However, cell (1, 3) does become active, and its entry is
A1, 3 = y1 + x3 = 0. Hence, A1, 6 = 1 and A5, 3 = 1. After these
changes, array A is displayed in Figure 7.8.
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Fig. 7.7. Array A after A1, 2 = −3 is processed and appended to s. Cell (2, 1) is the
only active cell. Candidates to become active are cells (1, 3) and (2, 2). Cell (2, 2)
cannot become active since row two already contains an active cell.
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Fig. 7.8. Array A with active cells (1, 3) and (2, 1).

The entry A1, 3 is inserted into the heap H, resulting in H =
{A2, 1, A1, 3} = {−2, 0}. After the addition of A1, 3, the heap H is
displayed in Figure 7.9. The minimum element, A2, 1, is removed from
the root of the heap and placed in the sum array s in position s3. Its
corresponding probability is placed in Probs3.

The two cells that may enter the array A after the removal of the
A2, 1 entry are in cells (2, 2) and (3, 1), as indicated by the arrows
in Figure 7.10. Both cells (2, 2) and (3, 1) become active, and their
values are A2, 2 = y2+x2 = 0 and A3, 1 = y3+x1 = 2. Hence, A2, 6 = 1,
A5, 2 = 1, A3, 6 = 1, and A5, 1 = 1, as displayed in Figure 7.11. Entries
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−2

0

Fig. 7.9. Heap H containing entries A2, 2 = −2 and A1, 3 = 0.
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Fig. 7.10. Array A after A2, 2 = −2 is removed. Cell (3, 1) is the only active cell.
Candidates to become active are cells (2, 2) and (3, 1).
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Fig. 7.11. Array A with active cells (1, 3), (2, 2), and (3, 3).
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Fig. 7.12. Heap H with entries A1, 3 = 0, A2, 2 = 0 and A1, 3 = 2.
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Fig. 7.13. Array A with its seventeenth active cell (3, 4).

A2, 2 and A3, 1 are inserted into the heap H, and H is again rebuilt
as H = {A1, 3, A2, 2, A3, 1} = {0, 0, 2}. Its structure is displayed in
Figure 7.12.

Moving ahead to the seventeenth pass through the construction of the
array A, its appearance is displayed in Figure 7.13. A3, 4 = 11 is placed
in s17, and values A3, 5 = 13 and A4, 4 = 14 are activated in the array
A and inserted into the heap H. Since A3, 5 is the root of the heap,
it is deleted and placed in s18. No new element is allowed to enter H,
so the root element of the heap is now A4, 4 = 14, and it is removed
and placed in s19. The last entry to be activated is A4, 5 = 16, and it
is placed in position s20 of the sum array s.

Thus, after twenty iterations of this process, s and Probs arrays are

s = [−5, −3, −2, 0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 7, 9, 10, 11, 13, 14, 16 ]

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08 ]

which are the same arrays encountered by using the moment gener-
ating function technique. The redundancies are removed from s and
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the appropriate probabilities are combined in Probs to complete the
algorithm. (This could have been embedded into the iterative steps of
the algorithm to save memory.) Thus, the PDF of Z = X + Y is the
same as determined in Example 7.3.

7.3 Algorithm

The algorithm for the procedure Convolution(X, Y) returns the convolution
of the PDFs of the random variables X and Y . A brief description of the
algorithm for discrete random variables follows.

If X and Y are discrete, their supports, finite or infinite, dictate which
of the methods described in Section 7.2 is used to compute the convolution.
The convolution of the PDFs of X and Y with finite support is computed
either using the BruteForceMethod or MovingHeapMethod procedures, whose
algorithms appear in the appendices of Evans and Leemis [23]. The PDF
of the sum of Z is stored and returned in the usual list-of-sublists format.
The list of elements f(z1), f(z2), . . . , f(zn·m) are the probability values of Z,
while z1, z2, . . . , zn·m are its support values. The one-dimensional array s is
created to contain the unique sums extracted from the array A. Similarly,
the one-dimensional array Probs is created to hold the probability values
corresponding to the sums in s.

The zeros (if any) at the end of the Probs array do not represent probabil-
ity values; they correspond to the zeros in the Probs array that are not support
values. These extra zeros indicate that there are redundant values in the sup-
port of Z. The non-zero probability values are removed from Probs and placed
in the array FinalProbs. The support values that correspond to the removed
probability values are removed and placed in the array FinalSupport.

If the supports of the random variables X and Y are infinite, either the
discrete convolution formula is used to compute the convolution or the APPL
procedure MGF is used to determine the product of the MGFs of X and Y .

If either X or Y has infinite support, while the other has finite support,
the product of their MGFs is returned. If both X and Y have infinite sup-
port and the discrete convolution formula formed with their PDFs results
in an intractable sum, then the product of their MGFs is returned. Other-
wise, the discrete convolution formula is used to determine the convolution of
their PDFs.

Unless the MGF of Z or the PDF of the sum of X and Y (with n = 1 and
m = 1) has already been returned, the PDF fZ(z) is returned.

Procedure Convolution: Computes the PDF of the sum two independent
random variables (indentation indicates nesting).

Input: The random variables X and Y in the usual APPL list-of-sublists
format. Assume the random variables X and Y are input in their PDF forms.
The support of X is ΩX and the support of Y is ΩY .
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Output: The PDF of Z = X + Y .

Algorithm:
if X and Y are continuous

fZ(z) ← ∫∞
−∞ fX(z − y) fY (y) dy

else if X and Y are discrete
if X and Y have finite support

n ← |ΩX |
m ← |ΩY |
if n · m ≤ 100

Z ← BruteForceMethod(X, Y )
else

Z ← MovingHeapMethod(X, Y )
if (n = 1 and m = 1) i.e. fZ(z) = 1 for z = c ∈ IR

return(fZ(z))
dimension s[n · m] create the sums array s
dimension Probs[n · m] create the probability array Probs
for i ← 1 to n · m

si ← 0
Probsi ← 0

s1 ← z1

s2 ← z2

Probs1 ← f(z1)
k ← 2
j ← 2
while (k < n · m) do

Probsj ← Probsj + f(zk)
if zk = zk+1 then eliminate redundant support values

j ← j + 1
sj ← zk+1

k ← k + 1
Probsj ← Probsj + f(zk)
NumZeros ← 0
for i ← n · m to 1 by −1 while Probsi = 0

NumZeros ← NumZeros + 1
dimension FinalProbs[1, n · m − NumZeros]
dimension FinalSupport[1, n · m − NumZeros]
for i ← 1 to (n · m − NumZeros)

FinalProbsi ← Probsi

FinalSupporti ← si

fZ(z) ← [FinalSupport, F inalProbs]
else if (X or Y has infinite support or X and Y have infinite support

with intractable discrete convolution sum)
mgfx ← MGF(X)
mgfy ← MGF(Y )
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mgfprod ← mgfx · mgfy
return(mgfprod)

else discrete convolution formula
fZ(z) ←∑z

k=0

(
fX(z)

) · (fY (z − k)
)

else
print(“ERROR: X and Y must both be continuous or discrete”)
return

return
(
fZ(z)

)

7.4 Implementation Issues

The algorithm for Convolution has been implemented and included in
APPL’s suite of procedures. One portion of the algorithm for the Convolution
procedure involves computing every possible sum between the support of the
random variables X and Y . At the same time, the probabilities for those sums
are calculated. Earlier we have referred to this as the “brute force method.”
The list of sums are ordered and redundancies combined. The corresponding
probability values are repositioned to match their corresponding sums. One
important reason for sorting the sums is that all other APPL procedures as-
sume that discrete distributions, written in their list-of-sublists form, have
supports listed in increasing order without repeated values. To be consistent
with the APPL language and textbooks, the sums are sorted. Also, placing
the values of the support into a list in sorted order means that tied yi + xj

values can be combined dynamically as the algorithm proceeds.
The first sorting method used to sort the list of sums was insertion sort.

It was chosen because of its straightforward code and efficiency in comput-
ing convolutions when the support sizes of the random variables are small.
Unfortunately, as the supports of random variables grow larger [e.g., random
variables with 50 random numbers chosen on the interval (−1, 1) as a support],
the time used to compute the PDF of the sum becomes unreasonably long. A
faster sorting method for larger list sizes is heapsort. Heapsort is employed in
the Convolution procedure for sorting the list of sums created by the “brute
force method.”

Maple uses Shellsort to sort polynomials. In order to use the Shellsort
procedure in Maple, the MGFs of X and Y need to be computed. The product
of the MGFs of X and Y is an expression composed of exponential terms
ekt, where k ∈ IR, t > 0. Letting u = et, the MGF of the product can
be rewritten as a polynomial-type expression. For example, if u = et, then
MZ(t) = 1

3e3t + 1
6e2t + 1

2e5t for −∞ < t < ∞ can be rewritten MZ(t) =
1
3u3 + 1

6u2 + 1
2u5 for u > 0. The Shellsort procedure sorts the polynomial-like

expression, and the PDF of the convolution of X and Y is retrieved from this
expression. Instead of MGFs, probability generating functions (PGFs) can be
used in the process. MGFs were chosen over PGFs since PGFs can only be
formed when the discrete distribution has non-negative integer support.
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The method of computing convolutions via their MGFs was abandoned af-
ter realizing that Maple can only sort “true” polynomial expressions in which
variables are raised to non-negative integer powers. Thus using MGFs would
be too restrictive for a Maple implementation. Maple is unable to sort an
expression that has non-integers in the powers of the polynomial terms. For
example, Maple cannot sort the expression 1

3 (et)3/2 + 1
6 (et)1/2 + 1

2 (et)5.5.
Since the Convolution procedure was intended to be used on arbitrary
distributions, which could indeed have negative, non-integer supports, the
MGF method was removed from the procedure Convolution. The extra
time involved in checking for appropriate values also affected the algorithm’s
efficiency.

Unfortunately, for random variables with large finite support sizes, heap-
sort was also inefficient. Nicol [64] suggested constructing a heap dynamically
and sorting the list of sums sequentially, instead of waiting until the list of
sums is built and then sorting it. The heap will always contain min{m, n} or
fewer entries. After constructing the algorithm for this method, which is called
MovingHeapMethod, the Convolution procedure was tested on random vari-
ables with large supports by using the BruteForceMethod with insertion sort,
the BruteForceMethod with heapsort, and the MovingHeapMethod. A brief
comparison analysis of the three methods suggested that MovingHeapMethod
yielded the best times for computing sums of random variables with large
supports. Test cases of random variables with increasing support sizes were
performed to confirm this claim.

The test involved generating random numbers between −1 and 1 and mak-
ing them the support values for the random variables X and Y . The random
numbers were sorted and placed into the second sublist in the list-of-sublists
format for the random variables that conforms to the system of the APPL lan-
guage. The probabilities, which had no effect on the efficiency of the different
algorithms, were assigned to be equal for all support values; i.e., if X’s support
consisted of 50 values, then each support value’s probability was 1/50. The
times for determining the PDF of the sum of random variables of increasing
support sizes appears in [23].

When either one or both random variables’ supports are infinite, either the
convolution of their PDFs is computed via the discrete convolution formula or
the product of their MGFs is determined. If one of the random variables has
infinite support, while the other has finite support, the product of their MGFs
is returned. At this time, APPL does not contain a procedure to convert the
MGF of a random variable to its PDF form.

Having two random variables with infinite support does not guarantee that
the PDF of their sum can be determined by the discrete convolution formula.
Only tractable summations, such as the convolution formula for two Pois-
son random variables as in Example 7.1, can be computed. This means that
instead of determining the PDF for the convolution of the PDFs of some ran-
dom variables, such as a Poisson with parameter λ = 5 and a geometric with



110 7 Sums of Independent Random Variables

parameter p = 0.3, the Convolution procedure only computes the product of
their MGFs.

7.5 Examples

The following examples use the algorithm described in Section 7.3 to deter-
mine the PDF of the sum of independent random variables. Examples for a
variety of random variables are provided to illustrate the utility of the algo-
rithm. Returning first to Examples 7.1 and 7.2 introduced in Section 7.1, we
can use the Convolution procedure to determine the PDF of Z = X + Y .

Example 7.5. If X and Y are independent Poisson random variables
with respective parameters λ1 and λ2, compute the PDF of Z = X+Y .

In APPL, define X as a Poisson random variable with parameter
lambda1 and Y as a Poisson random variable with parameter lambda2.
The Poisson random variable is also predefined in APPL. The PDF
of Z = X + Y is found with the statements

> X := PoissonRV(lambda1);
> Y := PoissonRV(lambda2);
> Z := Convolution(X, Y);

which returns the PDF of Z as[[
z → (z + 1) e−λ1−λ2 (λ2 + λ1)

z

(z + 1)!

]
, [0 ..∞] , [“Discrete”, “PDF”]

]

Using the Maple simplify procedure, the resulting PDF after simpli-
fication is

f(z) =
(λ2 + λ1)

z
e−λ1−λ2

Γ (z + 1)
z = 0, 1, . . . ,

which is easy to recognize in its standard form as

f(z) =
(λ1 + λ2)

z
e−λ1−λ2

z!
z = 0, 1, . . . .

We are fortunate in this example that Maple can compute the PDF by the
discrete convolution formula by simplifying the sum

∑x
k=0

λ1
ke−λ1λ2

x−ke−λ2

k! (x−k)! .
Unfortunately, Maple can only simplify certain expressions, so in some in-
stances we cannot compute the PDF by the discrete convolution formula.

Example 7.6. X and Y are independent discrete random variables with
PDFs defined as



7.5 Examples 111

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Find the PDF of Z.

Define the random variables X and Y in APPL’s list-of-sublists format.
Compute the PDF of Z = X + Y with the statements

> X := [[0.15, 0.25, 0.1, 0.3, 0.2], [-3, -1, 2, 6, 8],
["Discrete", "PDF"]];

> Y := [[0.2, 0.1, 0.3, 0.4], [-2, 1, 5, 8],
["Discrete", "PDF"]];

> Z := Convolution(X, Y);

which return the PDF of Z as

[[0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16, 0.02, 0.04,

0.09, 0.06, 0.12, 0.08 ],
[−5,−3,−2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16], [“Discrete”, “PDF”]]

Example 7.7. Let X and Y be independent random variables; X as-
sumes three possible values 0, 1, 3 with probabilities 1/2, 3/8, and
1/8, and Y assumes two possible values 0 and 1 with probabilities
1/3 and 2/3. Find the PDF of the random variable Z = X + Y [10,
page 136].

By hand, we can compute the PDF of Z with probability generating
functions. The PGFs GX(t) and GY (t) of X and Y , respectively, are

GX(t) =
1
8

t3 +
3
8

t +
1
2

−∞ < t < ∞,

GY (t) =
2
3

t +
1
3

−∞ < t < ∞.

Thus, the PGF of Z = X + Y is the product of GX(t) and GY (t):

GZ(t) =
1
12

t4 +
1
24

t3 +
1
4

t2 +
11
24

t +
1
6

−∞ < t < ∞,

and hence the PDF of Z is

fZ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 z = 0
11
24 z = 1
1
4 z = 2
1
24 z = 3
1
12 z = 4.
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In APPL, defining X and Y as lists-of-sublists and then applying the
Convolution procedure achieves the same result.

> X := [[1 / 2, 3 / 8, 1 / 8], [0, 1, 3],
["Discrete", "PDF"]];

> Y := [[1 / 3, 2 / 3], [0, 1], ["Discrete", "PDF"]];
> Z := Convolution(X, Y);

Other measures of a distribution, such as the mean and variance, can be
found with the use of additional APPL procedures, as illustrated in the next
example.

Example 7.8. Let X1 and X2 be observations of a random sample of
size n = 2 drawn from a distribution with PDF f(x) = x

6 , x = 1, 2, 3.
Find the PDF of Y = X1 +X2, and determine the mean and variance
of the sum [38, page 297].

The PGF of X1 and X2 is

GX1(t) = GX2(t) =
1
2

t3 +
1
3

t2 +
1
6

t −∞ < t < ∞.

Thus, GY (t) is

GY (t) =
1
4

t6 +
1
3

t5 +
5
18

t4 +
1
9

t3 +
1
36

t2 −∞ < t < ∞,

and fY (y) is

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
36 y = 2
1
9 y = 3
5
18 y = 4
1
3 y = 5
1
4 y = 6.

The mean and the variance of Y , respectively, are

E[Y ] = G′
Y (t)

∣∣∣∣
t=1

=
[
3
2

t5 +
5
3

t4 +
10
9

t3 +
1
3

t2 +
1
18

t

]
t=1

=
14
3

and
G′′

Y (1) + G′
Y (1) − [G′

Y (1)
]2 =

10
9

.

In APPL, the mean and variance of Y are computed with the state-
ments

> X := [[x -> x / 6], [1 .. 3], ["Discrete", "PDF"]];
> Y := Convolution(X, X);
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> Mean(Y);
> Variance(Y);

which return the mean and variance computed by hand.

Example 7.9. Find the probability of obtaining a total of 14 in a single
toss of four dice [36, page 230].

Let X be the PDF fX(x) = 1
6 , x = 1, 2, . . . , 6. The PGF G of X is

GX(t) =
1
6

t6 +
1
6

t5 +
1
6

t4 +
1
6

t3 +
1
6

t2 +
1
6

t −∞ < t < ∞.

The PDF of Z = X1 + X2 + X3 + X4 can be found by computing[
GX(t)

]4, which is

[
GX(t)

]4 =
1

1296
t24 +

1
324

t23 +
5

648
t22 +

5
324

t21 +
35

1296
t20 +

7
162

t19 +
5
81

t18 +
13
162

t17 +
125
1296

t16 +
35
324

t15 +

73
648

t14 +
35
324

t13 +
125
1296

t12 +
13
162

t11 +
5
81

t10 +

7
162

t9 +
35

1296
t8

5
324

t7 +
5

648
t6 +

1
324

t5 +
1

1296
t4

for −∞ < t < ∞. Thus, Pr(Z = 14) = 73/648. In APPL, define
X as a uniform discrete random variable (predefined in APPL) with
parameter 1/6. The procedure ConvolutionIID(X, n) computes the
PDF of the convolution of n iid random variables X. This procedure
contains a Maple for loop which calls Convolution n times.

> X := UniformDiscreteRV(1, 6);
> Z := ConvolutionIID(X, 4);
> PDF(Z, 14);

The APPL procedure PDF computes the probability that Z is 14
correctly as 73/648.

Examples 7.10 through 7.12 are from the article “Getting Normal Proba-
bility Approximations without Using Normal Tables” by Thompson [79]. His
article discusses an alternate approach to approximating probabilities involv-
ing sums of discrete random variables using the PDF for the normal distrib-
ution. He lets S denote the sum of n independent discrete random variables,
and assumes that S can take on consecutive integer values. Letting µ = E(S)
and σ2 = Var(S), he argues that for sufficiently large values of n, S is ap-
proximately normally distributed. Using the standard continuity correction,
Thompson uses the approximation

Pr(S = s) ∼= Pr
(
s − 0.5 < N(µ, σ2) < s + 0.5

)
.
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Calculating a midpoint approximation using a single subinterval, the normal
PDF approximation is obtained, which is

Pr(S = s) ∼= 1√
2πσ

e−(s−µ)2/2σ2
.

Instead of settling for approximations of the probabilities, we will show
how APPL procedures, including Convolution, can retrieve exact solutions,
while still giving the same insight into the problem.

Example 7.10. Suppose that X1, X2, . . . , X20 are independent and
that Xi ∼ Bernoulli

(
pi = 29+2i

100

)
, i = 1, 2, . . . , 20. Let S =

∑20
i=1Xi.

(Here S denotes the total number of successes obtained in a series of
independent trials where the probability of success varies from trial to
trial.) Give an exact probability table for S for s = 2, 3, . . . , 10 [79,
page 53].

Using Thompson’s notation, µ = 10 and σ2 = 2367/500, and so
Pr(S = s) ∼= 1√

2π
√

2367/500
e−(s−10)2/(2367/250), s = 0, 1, . . . , 20.

Using APPL, we obtain the exact distribution of the random variable
S by calling Convolution inside a Maple for loop:

> p := (29 + 2 * 1) / 100;
> S := BernoulliRV(p);
> for i from 2 to 20 do
> p := (29 + 2 * i) / 100:
> X := BernoulliRV(p):
> S := Convolution(S, X):
> od:
> S;

Table 7.1 contains the exact probabilities found with APPL and the
normal PDF approximations for s = 2, 3, . . . , 10.

Example 7.11. There are 20 girls and 30 boys in Group 1, 25 girls
and 25 boys in Group 2, and 10 girls and 10 boys in Group 3. If
10 children are randomly chosen from each group and S denotes the
total number of girls chosen, give an exact probability table for S for
s = 7, 8, . . . , 21 [12, pages 53–54].

Let X1, X2, and X3 be the three independent hypergeometric random
variables, and let S = X1 + X2 + X3. The mean and variance of S
are µ = E[S] = E[X1] + E[X2] + E[X3] = 14 and σ2 = Var(S) =
Var(X1) + Var(X2) + Var(X3) = 101/19 (since X1, X2, and X3 are
independent). Table 7.2 shows the normal PDF approximation values
Pr(S = s) ∼= 1√

2π
√

101/19
e−(s−14)2/(202/19) for s = 7, 8, . . . , 20.
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Table 7.1. Exact probabilities and normal PDF approximations of Pr(S = s) for
s = 2, 3, . . . , 10.

s True Pr(S = s) Approximation of Normal PDF
from APPL true Pr(S = s) approximation

2 204658765144989225788930713729011
1600000000000000000000000000000000000 0.0001 0.0002

3 670581044381861117271962962043967
800000000000000000000000000000000000 0.0008 0.0010

4 12306309890051216090420607156481161
3200000000000000000000000000000000000 0.0038 0.0041

5 13130118961411820609429234497062639
1000000000000000000000000000000000000 0.0131 0.0131

6 13845545992556016094922419904605161
400000000000000000000000000000000000 0.0346 0.0338

7 14429186684261724023997491367619439
200000000000000000000000000000000000 0.0721 0.0709

8 193196528593089153025093245904930293
1600000000000000000000000000000000000 0.1207 0.1202

9 65549414450257125600014354447607969
400000000000000000000000000000000000 0.1639 0.1650

10 725313008476889512417635294011302541
4000000000000000000000000000000000000 0.1813 0.1834

Using the APPL Convolution procedure, we can readily produce the
PDF of S with the statements

> X1 := HypergeometricRV(50, 20, 10);
> X2 := HypergeometricRV(50, 25, 10);
> X3 := HypergeometricRV(20, 10, 10);
> Y := Convolution(X3, Convolution(X1, X2));

The exact values for s = 7, 8, . . . , 21 are shown in Table 7.2.

In the next example, APPL is able to find the distribution of the sum of
a large number (150) of random variables. While not impossible, computing
the actual distribution by hand is tremendously tedious and time-consuming.

Example 7.12. Consider the discrete random variable S = X1 + X2 +
· · ·+X150, where the Xi’s are independent, Pr(Xi = −1) = Pr(Xi = 0)
= Pr(Xi = 1) = 1/3, i = 1, 2, . . . , 150. Find a normal approximation
to Pr(S = 5) [12, page 54].

Since the mean and variance of S are µ = 0 and σ2 = 100, using the
normal PDF approximation we obtain 1

20

√
2e−1/8√

π
∼= 0.03521.
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Table 7.2. The exact probabilities and normal PDF approximations for Pr(S = s)
for s = 7, 8, . . . , 21.

s True Pr(S = s) Approximation of Normal PDF
from APPL true Pr(S = s) approximation

7 4641594894759547665
3082276280132202064912 0.0015 0.0017

8 97479371530863990
17512933409842057187 0.0056 0.0059

9 12613791756912076515
770569070033050516228 0.0164 0.0165

10 74849525260411094591
1926422675082626290570 0.0389 0.0384

11 57967137494173367365
770569070033050516228 0.0752 0.0742

12 2096975232909133615
17512933409842057187 0.1197 0.1188

13 22076335771392253895
140103467278736457496 0.1576 0.1575

14 317244095646532855
1843466674720216546 0.1721 0.1730

15 9955623438355053449
63683394217607480680 0.1563 0.1575

16 217921905682010165
1843466674720216546 0.1182 0.1188

17 1894259194489549345
25473357687042992272 0.0744 0.0742

18 71588441634588035
1843466674720216546 0.0388 0.0384

19 10756216836381565
641205799902684016 0.0168 0.0165

20 1208983087163529637
202781334219223820060 0.0060 0.0059

21 280730797358534065
162225067375379056048 0.0017 0.0017

The APPL code

> X := [[1 / 3, 1 / 3, 1 / 3], [-1, 0, 1],
["Discrete", "PDF"]];

> S := ConvolutionIID(X, 150);
> PDF(S, 5);

yields the exact PDF for S. The statement PDF(S, 5) returns

Pr(S = 5) =
160709987007649212790999852367465829596098558279031212787052332840770

4567759074507740406477787437675267212178680251724974985372646979033929
,

which is approximately 0.03518. Since the support values of the parent
population are −1, 0, and 1, Pr(S = 5) can be computed using a
combinatorics approach:
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Pr(S = 5) =
∑∑

{(p,q,r)|p+q+r=150,
0≤p≤150,
0≤q≤150,
0≤r≤150,
r−p=5}

∑ (
150

p, q, r

)(
1
3

)p(1
3

)q (1
3

)r

or equivalently

Pr(S = 5) =
72∑

p=0

(
150

p, 145 − 2p, 5 + p

)(
1
3

)150

,

yielding the same result as the APPL code. The true power of APPL
is not demonstrated in this particular example because of the special
nature of the parent populations. The APPL approach allows for un-
equal mass values and more general support values. Also, more than
three support values can be used in the APPL approach. Although a
combinatorics method may still be used on these types of examples,
the resulting expressions will not be as easy to derive or to evaluate
as the expression obtained in the sum above.

The Convolution algorithm that was constructed (with heaps) to compute
the PDF of the sum was extended to determine the PDF of the product also.
Because of negative and positive support values for random variables X and
Y , the product algorithm must split the array Â into four quadrants before
forming heaps. The quadrants are split based on X’s and Y ’s negative and
non-negative support values using the support from Example 7.2. Figure 7.14
illustrates the evolution of the algorithm in the most general case when both
X and Y have negative and positive support values. The product algorithm
works from the corners of quadrants two and four toward the center where the
quadrants meet, and then works outward from the center through quadrants
one and three. For the product algorithm, the heap can receive values from two

−3 −1 2 6 8

−2

1

5

8

Quadrant 1

Quadrant 4

Quadrant 2

Quadrant 3

Fig. 7.14. Array A split into four quadrants for the Product procedure.
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competing quadrants at a time. The Product procedure has been implemented
for discrete random variables and is a part of APPL.

This concludes our discussion concerning the algorithm to calculate the
distribution of the sum of two discrete random variables. The next chapter
considers another non-trivial algorithm associated with discrete random vari-
ables, one which determines the distribution of order statistics drawn from
discrete populations.



8

Order Statistics

This chapter presents an algorithm for computing the PDF of order statistics
drawn from discrete parent populations, along with an implementation of the
algorithm in APPL. Several examples illustrate the utility of this algorithm.

8.1 Notation and Taxonomy

Over a thousand references cited in the survey text on order statistics by
David and Nagaraja [15] reflect the interest in the theory and application of
order statistics. Many popular mathematical statistics texts, such as Hogg,
et al. [37], Casella and Berger [12], and Rice [72], address only distributions of
order statistics for iid random variables drawn from continuous populations
due to the mathematical tractability of their theoretical formulas.

Results for order statistics drawn from discrete parent populations
are sparse and usually specialized to fit one particular discrete popula-
tion (e.g., Young [83], Srivastava [78], Ciardo et al. [13]). Arnold et al. [4]
devote a chapter to discrete order statistics. We present an algorithm for
determining distributions of order statistics drawn from a general discrete
parent population. The algorithm presented in this chapter handles dis-
crete parent populations with finite or infinite support, and sampling with
or without replacement. Application areas, bootstrapping in particular, are
postponed until Chapter 9.

Let X1, X2, . . . , Xn be iid discrete random variables defined on support
Ω, each with CDF FX(x) and PDF fX(x). Let X(1) ≤ X(2) ≤ · · · ≤ X(n)

denote these random variables rearranged in weakly increasing order. Thus,
X(r) is the rth smallest number in the sample, r = 1, 2, . . . , n, which is known
as the rth “order statistic.” Because order statistics are random variables, it
is possible to compute probabilities associated with values in their support.
Since X1, X2, . . . , Xn is a random sample from a discrete population, the PDF
of the rth order statistic cannot always be expressed as a single formula, as
in the continuous case (see Section 3.2). When working with discrete random
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Fig. 8.1. Categorization of discrete order statistics by sampling convention, support,
and probability distribution.

variables, the computation of the PDF of the rth order statistic will fall into
one of several categories, depending on the sampling convention (with or with-
out replacement), the random variable’s support (finite or infinite), and the
random variable’s distribution (equally likely or nonequally likely probabili-
ties). A taxonomy of these categories appears in Figure 8.1.

The APPL procedure OrderStat(X, n, r, ["wo"]) has three required
arguments: a random variable X, the number of items n randomly drawn from
the population with PDF fX(x), and the index r of the desired order statis-
tic. An optional fourth argument "wo" can be specified to indicate that the
items are drawn from the population without replacement. OrderStat can be
used for continuous and discrete populations; the algorithm associated with
discrete populations is detailed in this chapter. The implementation steps of
the OrderStat algorithm are explained in detail in the following two sections
(“Without Replacement” and “With Replacement”) and further details and
applications are given in Evans et al. [24]. In both cases, the output of the
algorithm is fX(r)(x), the PDF of the rth order statistic, where n items have
been sampled either with or without replacement from a population with
PDF fX(x). Each of the five branches displayed in the tree in Figure 8.1 is
discussed, followed by an example illustrating the particular sampling conven-
tion, support, and population PDF combinations. The particular branch from
Figure 8.1 being illustrated in each example is given in italics at the beginning
of the example.
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8.2 Sampling Without Replacement

Providing the string "wo" as the fourth argument to the OrderStat procedure
indicates that items are drawn from the discrete population without replace-
ment. Random variables with finite or infinite support are handled by two
separate techniques.

If the population distribution has finite support, the population size is
denoted by N . To specify this support in a compact form, it is temporarily
assumed to be (without loss of generality) the ordered set {1, 2, . . . , N}. For
example, if

fX(x) =

⎧⎨
⎩

0.5 x = 7
0.2 x = 11
0.3 x = 15,

then N = 3, and the support of X is temporarily assumed to be {1, 2, 3}, in-
stead of {7, 11, 15}. The original support is reinstated after the order-statistic
probabilities are computed.

If the population with PDF fX(x) has equally likely probability values,
e.g., rolling a fair die, then by combinatorial analysis the PDF of the rth order
statistic when n items are sampled is (Arnold et al. [4, page 54])

fX(r)(x) =

(
x−1
r−1

)(
N−x
n−r

)
(
N
n

) x = r, r + 1, . . . , r + N − n.

Example 8.1. (Sampling without replacement; finite support; equally
likely probabilities) Draw 15 cards at random and without replacement
from a deck of 25 cards numbered 1, 2, . . . , 25. Find the probability
that the card numbered 10 is the median of the cards selected (Hogg
and Craig [36, page 231]).

Let fX(x) = 1
25 for x = 1, 2, . . . , 25. The population size is N = 25, the

size of the sample is n = 15, and the sample median X(8) corresponds
to r = 8. The probability that the sample median equals 10 is given
by the above formula as

Pr(X(8) = 10) =

(
9
7

)(
15
7

)
(
25
15

)
=

1053
14858

∼= 0.0709.

In addition to just computing one probability value as obtained by
hand above, the OrderStat algorithm returns the PDF of the 8th
order statistic (when n = 15 items are sampled from the population
without replacement), which is
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fX(8)(x) =
1

3268760

(
x − 1

7

)(
25 − x

7

)
x = 8, 9, . . . , 18.

The APPL code to compute the PDF of the sample median and the
probability that the median equals 10 is

> X := UniformDiscreteRV(1, 25);
> Y := OrderStat(X, 15, 8, "wo");
> PDF(Y, 10);

If X has finite support N and nonequally likely probabilities, there are
three cases to consider when computing the PDF of the rth order statistic:

1. One item is sampled: n = 1. The PDF of the rth order statistic is the
same as the population PDF; i.e., fX(1)(x) = fX(x) for x = 1, 2, . . . , N .

2. The entire population is sampled: n = N . The PDF of the rth order
statistic is fX(r)(x) = 1 for x = r.

3. More than one item, but not the entire population, is sampled: n =
2, 3, . . . , N −1. In this nontrivial case, an n×N array, ProbStorage, is de-
fined that eventually contains the probabilities fX(r)(x) for x = 1, 2, . . . , N
and r = 1, 2, . . . , n. The value of fX(r)(x) is found in row r and col-
umn x of the array. For example, if X ∼ binomial

(
5, 1

4

)
and n = 3

items are sampled (without replacement) from this population, then the
ProbStorage array is 3 × 6 and has the form displayed in Table 8.1. The
algorithm’s implementation requires use of two APPL combinatorial pro-
cedures, NextCombination and NextPermutation, which were specifically
created for use in the OrderStat algorithm. Following is a brief description
of the algorithm for the without-replacement/finite support/nonequally-
likely-probabilities case for n = 2, 3, . . . , N − 1.

(a) The first lexicographical combination of n items sampled from the
sequence of integers 1 to N is formed; it is {1, 2, . . . , n}. For X ∼
binomial

(
5, 1

4

)
, the first lexicographical combination of n = 3 items

from {1, 2, . . . , 6} is {1, 2, 3}.

Table 8.1. Initial form of ProbStorage array for X ∼ binomial
(
5, 1

4

)
, where n = 3

items are sampled without replacement. Bullets denote positive probability values;
zeros denote impossible situations.

r
�

�
�

�
x 1 2 3 4 5 6

1 • • • • 0 0
2 0 • • • • 0
3 0 0 • • • •
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(b) Given a combination consisting of n distinct integers, the algorithm
generates all possible permutations of that combination and their cor-
responding probabilities. For the example X ∼ binomial(5, 1

4 ), the
first combination is {1, 2, 3} and its permutations are [1, 2, 3], [1, 3, 2],
[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]. The probabilities obtained for each
of these permutations, respectively, are 13286025

150351872 , 13286025
204334592 , 13286025

119164928 ,
13286025
110607872 , 13286025

197270528 , and 13286025
134730752 . As an example, the probability of

obtaining the permutation [3, 1, 2] is computed as

fX(3) · fX(1)
1 − fX(3)

· fX(2)
1 − (fX(3) + fX(1)

)
or

135
512

·
243
1024

1 − 135
512

·
405
1024

1 − ( 135
512 + 243

1024

) =
13286025
197270528

.

(c) After the probability of each permutation generated in step (b) is
computed, each permutation is “rewritten” lexicographically to de-
termine the corresponding order-statistic probabilities. The permuta-
tion [3, 1, 2], for example, is rewritten as [1, 2, 3]. The algorithm then
adds the probability of obtaining that particular permutation to the
appropriate three cells in the ProbStorage array, which is denoted by∑

(r, x) + q in Table 8.2. The (r, x) cell accumulates the probabilities
of the various permutations for which the rth order statistic has the
value x. For example, the final value in the (1, 1) cell represents the
probability that the first order statistic assumes the value one. In the
binomial(5, 1

4 ) example, the probability of obtaining the permutation
[3, 1, 2], q = 13286025

197270528 , is added to the ProbStorage cells (1, 1), (2, 2),
and (3, 3), as illustrated in Table 8.2.

(d) After all n! permutations of a given combination are exhausted, the
procedure NextCombination determines the next lexicographical com-
bination. Given this new combination, the algorithm repeats steps (b)

Table 8.2. Computation of ProbStorage array for X ∼ binomial
(
5, 1

4

)
, where n = 3

items are sampled without replacement. Given the permutation [3, 1, 2], its proba-
bility q = 13286025

197270528
is added to the current probability sums

∑
(r, x) in cells (1, 1),

(2, 2), and (3, 3). Zeros denote impossible situations.

r
�

�
�

�
x 1 2 3 4 5 6

1
∑

(1, 1) + q
∑

(1, 2)
∑

(1, 3)
∑

(1, 4) 0 0
2 0

∑
(2, 2) + q

∑
(2, 3)

∑
(2, 4)

∑
(2, 5) 0

3 0 0
∑

(3, 3) + q
∑

(3, 4)
∑

(3, 5)
∑

(3, 6)
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and (c). This process iterates through the
(
N
n

)
combinations of size n

chosen from a population of size N .

Example 8.2. (Sampling without replacement; finite support; non-
equally likely probabilities) Let X be a random variable with PDF

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

p1 x = 1
p2 x = 10
p3 x = 100
p4 x = 1000,

where p1 + p2 + p3 + p4 = 1 and pi > 0, i = 1, 2, 3, 4. Find the
distribution of the median when n = 3 items are sampled without
replacement from the population.

Since sampling is without replacement, the median can only assume
the values x = 10 and x = 100. The APPL code to compute the
distribution of the median is

> X := [[p1, p2, p3, p4], [1, 10, 100, 1000],
["Discrete", "PDF"]];

> OrderStat(X, 3, 2, "wo");

which returns the PDF

fX(2)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p4 p2 p1

(1 − p4) (1 − p2 − p4)
+

p4 p2 p1

(1 − p4) (1 − p1 − p4)
+

p4 p2 p1

(1 − p2) (1 − p2 − p4)
+

p4 p2 p1

(1 − p2) (1 − p1 − p2)
+

p4 p2 p1

(1 − p1) (1 − p1 − p4)
+

p4 p2 p1

(1 − p1) (1 − p1 − p2)
+

p3 p2 p1

(1 − p3) (1 − p2 − p3)
+

p3 p2 p1

(1 − p3) (1 − p1 − p3)
+

p3 p2 p1

(1 − p2) (1 − p2 − p3)
+

p3 p2 p1

(1 − p2) (1 − p1 − p2)
+

p3 p2 p1

(1 − p1) (1 − p1 − p3)
+

p3 p2 p1

(1 − p1) (1 − p1 − p2)
x = 10

p4 p3 p2

(1 − p4) (1 − p4 − p3)
+

p4 p3 p2

(1 − p4) (1 − p2 − p4)
+

p4 p3 p2

(1 − p3) (1 − p4 − p3)
+

p4 p3 p2

(1 − p3) (1 − p2 − p3)
+

p4 p3 p2

(1 − p2) (1 − p2 − p4)
+

p4 p3 p2

(1 − p2) (1 − p2 − p3)
+

p4 p3 p1

(1 − p4) (1 − p4 − p3)
+

p4 p3 p1

(1 − p4) (1 − p1 − p4)
+

p4 p3 p1

(1 − p3) (1 − p4 − p3)
+

p4 p3 p1

(1 − p3) (1 − p1 − p3)
+

p4 p3 p1

(1 − p1) (1 − p1 − p4)
+

p4 p3 p1

(1 − p1) (1 − p1 − p3)
x = 100.
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If the population distribution from which the sample is drawn has a count-
ably infinite support, e.g., {1, 2, . . . }, then the pattern established for finding
the PDF of the rth order statistic in the finite-support case will not work.
At this time, beyond the trivial case when n = 1 item is sampled, where
fX(r)(x) = fX(x) for r = 1, 2, . . . , N , the OrderStat algorithm computes the
PDF of the minimum order statistic when at most n = 2 items are sampled
without replacement from a discrete population with infinite support. The
n = 2 case is considered in the following paragraph. Work on the OrderStat
algorithm to incorporate the pattern for values of n ≥ 3 is an open research
question.

When n = 2 items are sampled without replacement, the probability that
the minimum order statistic has value x, for x = 1, 2, . . . , is given by

Pr(X(1) = x) = Pr(X1 = x) Pr(X2 ≥ x + 1 |X1 = x) +
∞∑

y=x+1

Pr(X1 = y) Pr(X2 = x |X1 = y).

Thus, the PDF of X(1) when n = 2 items are sampled is

fX(1)(x) = fX(x)

[
SX(x + 1)
1 − fX(x)

+
∞∑

y=x+1

fX(y)
1 − fX(y)

]
x = 1, 2, . . . ,

where SX(x) is the survivor function defined by SX(x) = Pr(X ≥ x).

Example 8.3. (Sampling without replacement; infinite support) Let
X ∼ geometric( 1

2 ). Find the probability that the minimum order sta-
tistic is five when n = 2 items are sampled without replacement from
the population.

The PDF of the minimum order statistic as calculated using the
OrderStat algorithm is

fX(1)(x) =

(
1
4

)x
1 − ( 1

2

)x +
1
2

(
1
2

)x−1 ∞∑
y=x+1

1
2

(
1
2

)y−1

1 − 1
2

(
1
2

)y−1

for x = 1, 2, . . . . By substitution, it can easily be determined that
Pr(X(1) = 5) ∼= 0.0020. The PDF of the first order statistic and the
probability that it assumes the value of five can be computed in APPL
with the following statements:

> X := GeometricRV(1 / 2);
> Y := OrderStat(X, 2, 1, "wo");
> evalf(PDF(Y, 5));
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8.3 Sampling With Replacement

If the optional fourth argument "wo" is not provided to the OrderStat pro-
cedure, the items are assumed to be sampled from the discrete population
with replacement. When sampling with replacement, the PDF fX(x), CDF
FX(x), and SF SX(x) are needed to determine the distribution of the rth
order statistic.

If the random variable X has finite support Ω, then without loss of gener-
ality we can assume that Ω = {1, 2, . . . , N}. The PDF of X(r) when n items
are sampled with replacement from this finite population is given by

fX(r)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−r∑
w=0

(
n

w

)[
fX(1)

]n−w[
SX(2)

]w
x = 1

r−1∑
u=0

n−r∑
w=0

(
n

u, n − u − w, w

)[
FX(x − 1)

]u[
fX(x)

]n−u−w[
SX(x + 1)

]w
x = 2, 3, . . . , N − 1

r−1∑
u=0

(
n

u

)[
FX(N − 1)

]u[
fX(N)

]n−u
x = N.

This formula is not valid in the special case when the discrete population
consists of only one item, that is, when N = 1. The PDF of the rth order
statistic in this case is simply fX(r)(1) = 1.

The formula for the PDF of X(r) is a direct result of the following ob-
servation. For the rth order statistic to equal x, there must be u values less
than or equal to x − 1 and w values greater than or equal to x + 1, where
u = 0, 1, . . . , r − 1 and w = 0, 1, . . . , n − r. The other n − u − w values
must be equal to x. The CDF procedure is used to determine the probability
of obtaining a value less than or equal to x − 1, the SF procedure is used to
determine the probability of obtaining a value greater than or equal to x + 1,
and the PDF procedure is used to determine the probability of obtaining the
value x. The multinomial coefficient expresses the number of combinations
resulting from a specific choice of u and w.

Taking an example from Arnold et al. [4, page 43], let X be a discrete
uniform random variable with PDF fX(x) = 1

4 , x = 1, 2, 3, 4. Then the CDF
and SF of X, respectively, are

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < 1
�x�
4

1 ≤ x < 4

1 x ≥ 4

SX(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x ≤ 1

1 − �x�
4

1 < x ≤ 4

0 x > 4.

Suppose n = 5 values are sampled with replacement from this population. To
calculate fX(2)(3), i.e., the probability that the second order statistic is x = 3,
evaluate the sum
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fX(2)(3) =
1∑

u=0

3∑
w=0

(
5

u, 5 − u − w,w

)[
FX(2)

]u[
fX(3)

]5−u−w[
SX(4)

]w
.

The first term in the summation is the probability of drawing all threes. The
second term, in which u = 0 and w = 1, is the probability of drawing four
threes and a value greater than or equal to four (which can only be the value
four in this example). This collection of four threes and one four can be drawn
five different ways. The subsequent terms in the sum have similar meanings.

Example 8.4. (Sampling with replacement; finite support) A fair die
is cast eight independent times. Find the PDF of the smallest of the
eight numbers obtained, X(1) (Hogg and Craig [36, page 230]).

To compute the numeric PDF by hand,

fX(1)(x) =
7∑

w=0

(
8
w

)(
1
6

)8−w (
1 − x

6

)w

is calculated for x = 1, 2, . . . , 6. For example, the probability that the
first order statistic is x = 4 is

fX(1)(4) =
7∑

w=0

(
8
w

)(
1
6

)8−w (1
3

)w

=
1

1679616
+

1
104976

+
7

104976
+

7
26244

+
35

52488
+

7
6561

+
7

6561
+

4
6561

=
6305

1679616
∼= 0.0038.

Similar calculations for x = 1, 2, . . . , 6 yield the PDF of the first order
statistic as

fX(1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1288991
1679616

x = 1

36121
186624

x = 2

58975
1679616

x = 3

6305
1679616

x = 4

85
559872

x = 5

1
1679616

x = 6.
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The APPL code required to generate this PDF is

> X := UniformDiscreteRV(1, 6);
> OrderStat(X, 8, 1);

The OrderStat algorithm yields the same results, but in addition
returns the PDF of the minimum order statistic as a polynomial:

fX(1)(x) = − 1
209952

x7 +
91

419904
x6 − 889

209952
x5 +

38675
839808

x4

− 63217
209952

x3 +
496951
419904

x2 − 543607
209952

x +
4085185
1679616

for x = 1, 2, . . . , 6.

If the support of X is countably infinite, i.e., Ω = {1, 2, . . . }, then the
calculation of the PDF of X(r) is similar to the finite-support case. The main
difference is that the formula used in the finite-support case is now used for
values of x that are unbounded:

fX(r)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−r∑
w=0

(
n

w

)[
fX(1)

]n−w[
SX(2)

]w
x = 1

r−1∑
u=0

n−r∑
w=0

(
n

u, n − u − w, w

)[
FX(x − 1)

]u[
fX(x)

]n−u−w[
SX(x + 1)

]w
x = 2, 3, . . . .

Because the formula assumes that the support of X is {1, 2, . . . }, the algorithm
only works for distributions with infinite right-hand tails.

Since it is physically impossible to execute the formula for infinitely many
values of x, a general expression for fX(r)(x) in terms of x is obtained by
taking advantage of Maple’s ability to sum and simplify complicated symbolic
expressions. Maple computes (in symbolic terms) the double summation of a
multinomial coefficient multiplied by the product of the CDF, PDF, and SF
raised to various powers.

Example 8.5. (Sampling with replacement; infinite support) Define a
geometric random variable X with parameter p (0 < p < 1) to be the
trial number of the first success in repeated independent Bernoulli(p)
trials. The PDF of X is fX(x) = p qx−1, for x = 1, 2, . . . , where
q = 1 − p. Margolin and Winokur [57] tabulated values for the mean
and variance of the rth order statistic of a geometric distribution
for samples of size n = 1, 5 (5) 20 for r = 1 (1) 5 (5) 20, where r =
1, 2, . . . , n and q = 0.25 (0.25) 0.75. The values are calculated to two
decimal places.
Margolin and Winokur’s treatment of order statistics for the geometric
distribution is based on the use of recurrence relations. The formulas
they use to compute the first and second moments of the rth order
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statistic of a geometric distribution (with parameter p = 1 − q) when
n items are sampled (with replacement) are

E
[
X(r)

]
= n

(
n − 1
r − 1

) r−1∑
j=0

(−1)j (r−1
j

)
(n − r + j + 1) (1 − qn−r+j+1)

and

E
[
X2

(r)

]
= n

(
n − 1
r − 1

) r−1∑
j=0

(−1)j (r−1
j

) (
1 + qn−r+j+1

)
(n − r + j + 1) (1 − qn−r+j+1)2

.

The OrderStat algorithm can easily produce the exact value of any
of the rounded figures given in their tables. If X ∼ geometric( 1

4 ), for
example, then the exact values of the mean and variance of the third
order statistic when n = 5 items are sampled can be found with the
following APPL code:

> X := GeometricRV(1 / 4);
> Y := OrderStat(X, 5, 3);
> Mean(Y);
> Variance(Y);

yielding

E
[
X(3)

]
=

3257984
1011395

∼= 3.22

and

Var
[
X(3)

]
=

13665723739776
5114599230125

∼= 2.67.

As shown in Example 8.5, the OrderStat procedure can be combined with
the Mean and Variance procedures to compute the mean and variance for a
much larger range of arguments. APPL might be used in this context to elim-
inate the need for many of the tables in the statistical literature. In addition,
Maple can compute results using symbolic parameters. If Y ∼ geometric(p),
for example, then the variance of the minimum order statistic when n = 6
items are sampled with replacement can be computed with the APPL state-
ments

> X := GeometricRV(p);
> Y := OrderStat(X, 6, 1);
> Variance(Y);

which yield

Var
[
Y(1)

]
=

p6 − 6p5 + 15p4 − 20p3 + 15p2 − 6p + 1
p7 − 6p6 + 15p5 − 20p4 + 15p3 − 6p2

.
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8.4 Extension

One natural extension to the OrderStat algorithm is a RangeStat algorithm,
which finds the PDF of the range of a sample of n items drawn from a discrete
population, either with or without replacement.

Let X be a discrete random variable with PDF fX(x) and CDF FX(x),
and let Y be a random variable representing the range of X. We can assume
(without loss of generality) that the support of X is {1, 2, . . . , N}, where N is a
positive integer or infinity. If we are sampling with replacement (which implies
that the n draws are independent), then the probability that Y assumes the
value y, where y = 0, 1, . . . , N − 1, is given by Burr [10]:

Pr(Y = y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
x=1

[fX(x)]n y = 0

N−y∑
x=1

{[Pr(x ≤ X ≤ x + y)]n − [Pr(x + 1 ≤ X ≤ x + y)]n

−[Pr(x ≤ X ≤ x + y − 1)]n + [Pr(x + 1 ≤ X ≤ x + y − 1)]n} =

N−y∑
x=1

{[FX(x + y) − FX(x − 1)]n − [FX(x + y) − FX(x)]n

−[FX(x + y − 1) − FX(x − 1)]n + [FX(x + y − 1) − FX(x)]n}
y = 1, 2, . . . , N − 1.

Of the four terms being summed in the y = 1, 2, . . . , N −1 case, the first term
is the probability that all sampled elements lie between x and x+ y inclusive.
The second term removes the probability that these elements do not include
x, because this would result in a range that is less than y. The third term
removes the probability that these elements do not include x+y, because this
would also result in a range that is less than y. The fourth term adds back the
probabilities of those elements that include neither x nor x + y, which were
removed by both the second and third terms.

In the without-replacement case, the RangeStat algorithm basically fol-
lows the same steps as the OrderStat algorithm, including use of the pro-
cedures NextCombination and NextPermutation. In the trivial case when
the entire population is sampled, the PDF of the range Y is fY (y) = 1 for
y = N − 1. If n = 2, 3, . . . , N , where N is a positive integer less than or
equal to n, then a single-dimensional array of length N − n + 1 is defined
that will eventually contain the values of fY (y) for y = n − 1, n, . . . , N − 1.
As in the OrderStat algorithm, the first lexicographical combination of n
items sampled from the sequence of integers 1 to N is formed. Given such a
combination, the algorithm generates all possible permutations of that com-
bination. The probability for each permutation is calculated (as described in
Section 8.1), and then the maximum and minimum values of that permutation
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are determined. The permutation’s range, which is the difference between its
maximum and minimum values, is computed and then the appropriate array
cell is incremented by that permutation’s probability.

This concludes our survey of data structures and selected algorithms in
APPL. The remaining portion of the monograph concerns the application of
the language to problems in computational probability.
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Reliability and Survival Analysis

The remaining chapters contain dozens of computational probability applica-
tions using APPL. The applications range in complexity from brief examples
to results and algorithms requiring long derivations. This chapter surveys some
applications in reliability and the closely-related field of survival analysis.

Section 9.1 presents four brief examples concerning the probabilistic analy-
sis of systems of components: (1) analyzing a k-out-of-n system; (2) determin-
ing the mean time to failure of a parallel system with symbolic parameters;
(3) determining the conditional survivor function for a system with a piecewise
survival distribution; and (4) determining the probability of mission success
for a unit and two cold standby units. Section 9.2 contains an algorithm for
determining a lower confidence bound on the system reliability from binary
failure data collected on each of the independent components in a coherent
system via bootstrapping. Section 9.3 uses APPL to avoid the use of resam-
pling in performing a bootstrap analysis in a survival analysis setting.

9.1 Systems Analysis

Reliability engineers often compare competing system designs by the use of
probabilistic analysis. This section considers a series of four short examples
that use APPL procedures to manipulate random variables associated with
component lifetimes in order to compute measures of performance associated
with the system, such as the mean time to failure or the system reliability.
We begin with the analysis of a k-out-of-n system.

Example 9.1. Consider a 4-out-of-6 system that operates when four
or more of its six components are functioning. Let the six component
lifetimes be iid Weibull random variables with SF

S(t) = e−(5t)2 t ≥ 0.

Use APPL to find
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(a) the hazard function of the time to system failure,
(b) the mean time to system failure,
(c) the variance of the time to system failure,
(d) the probability that the system survives to time 0.1.

Let X denote the component lifetimes and T denote the system life-
time. The APPL code to calculate the four quantities of interest is

> X := WeibullRV(5, 2);
> T := OrderStat(X, 6, 3);
> HF(T);
> Mean(T);
> Variance(T);
> SF(T, 1 / 10);

The first statement defines the random variable X, which is associ-
ated with the lifetimes of the components, each with a Weibull time
to failure with scale parameter 5 and shape parameter 2. Since this
system has six components, the system failure occurs upon the third
failure. Therefore, the system lifetime is the third order statistic of six
independent Weibull random variables, denoted by T . The HF proce-
dure returns the hazard function of the system time to failure, which
is

hT (t) =
3000t

(
1 − e−25 t2

)2
10 e−50 t2 − 24 e−25 t2 + 15

t ≥ 0.

The next statement computes the mean of the system time to failure,
which is

E[T ] = −12
√

5π

25
+

√
6π

6
+

3
√

π

4
∼= 0.1505.

The next statement computes the variance of the system time to fail-
ure, which is

Var[T ] =
37

1500
− 11287π

6000
+

4π
√

30
25

+
18π

√
5

25
− π

√
6

4
∼= 0.002003.

Finally, the probability that the system survives to time 0.1 is deter-
mined by the SF procedure, which yields

ST (0.1) = 10 e−3/2 − 24 e−5/4 + 15 e−1 ∼= 0.8734.

Following each of the final three APPL statements with the Maple
statement evalf(%); computes the floating-point approximations
associated with the exact values.

All of the parameters in Example 9.1 were numeric, which resulted, for
example, in numeric values for the system mean time to failure and probability
of system survival to time 0.1. A similar analysis can be applied to achieve a
more general solution for a system with symbolic parameters, as illustrated
in Example 9.2.
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Example 9.2. Find the expected time to system failure of a paral-
lel system, where each of the n components has an independent
exponential(λ) lifetime.

As in the previous example, let X denote the component lifetimes
and T denote the system lifetime. Since the reliability function of a
parallel system of n identical components, each with reliability p, is

r(p) = 1 − (1 − p)n

and the survivor function of an exponential random variable with
failure rate λ is

SX(t) = e−λt t > 0,

the system survivor function is

ST (t) = 1 − (1 − e−λt
)n

t > 0.

The mean time to system failure is given by the expression

E[T ] =
∫ ∞

0

(
1 − (1 − e−λt

)n)
dt.

This quantity can be calculated, for instance when n = 8, with the
APPL statements

> X := ExponentialRV(lambda);
> T := MaximumIID(X, 8);
> Mean(T);

which return a mean time to system failure of E[T ] = 761/(280λ).
The MaximumIID(X, 8) procedure call is equivalent to OrderStat(X,
8, 8). This solution did not require that the user know the func-
tional form of the reliability function of a parallel system. If, on the
other hand, the modeler did know the functional form of the reliability
function, the solution can be checked using entirely Maple statements:

> assume(lambda > 0);
> s := 1 - (1 - exp(-lambda * t)) ^ 8;
> int(s, t = 0 .. infinity);

which also return a mean time to system failure of E[T ] = 761/(280λ).
The advantage afforded by APPL is that the mathematical details
associated with the derivation can be bypassed.

Examples 9.1 and 9.2 have considered components and systems with life-
times characterized by having positive support values. Situations occasionally
arise where the component lifetimes have varying support, perhaps due to a
warranty or burn-in program. The next example considers a system which
has varying supports, making the bookkeeping tedious. APPL relieves the
modeler of the tedium of keeping track of the varying supports.
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1

2 3

Fig. 9.1. Three-component system.

Example 9.3. Consider a three-component system with component 1
in parallel with the series arrangement of components 2 and 3, as
shown in the block diagram in Figure 9.1. Let T1, T2, and T3 be the
independent lifetimes of the three components, where

T1 ∼ U(2, 10) T2 ∼ U(4, 14) T3 ∼ U(6, 18).

Find the 90th percentile of the distribution of the failure time of such
a system that has survived to time 8.

Although this particular problem is conceptually straightforward,
keeping track of the various supports for the components is tedious.
Let T = max {T1,min {T2, T3}} denote the system failure time and let
Tc denote system failure time conditioned on survival to time t = 8.
The APPL code to solve this problem is given below.

> T1 := UniformRV(2, 10);
> T2 := UniformRV(4, 14);
> T3 := UniformRV(6, 18);
> T := Maximum(T1, Minimum(T2, T3));
> TC := Truncate(T, 8, infinity);
> IDF(TC, 0.90);

This code returns the 90th percentile of the conditional distribution
of the system lifetime as

32 −√
46

2
∼= 12.6088.

This code illustrates three new APPL procedures that have not yet
been introduced. The first three statements define the distribution of
T1, T2, and T3. The next statement calculates the PDF of T using the
Minimum and Maximum procedures, which each take on two indepen-
dent, but not necessarily identically distributed, random variables as
arguments. The next statement uses the Truncate procedure to calcu-
late the conditional distribution given survival to time 8. Finally, the
IDF procedure is used to calculate the 90th percentile of Tc. The entire
distribution of Tc has been computed in case one wants to perform
further operations.
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The APPL code given above is the ideal way to solve this particular
problem. If one were uneasy about the correctness of the solution, it
could be verified by Monte Carlo simulation. This Monte Carlo simula-
tion is possible in APPL and Maple, although it is not computationally
efficient in either language since Maple is an interpreted language. The
Maple code below generates 10000 system lifetimes and estimates the
quantity of interest. Surprisingly, Maple does not contain a random
number generator for producing pseudorandom numbers. Instead, we
use Maple’s rand function, which generates a random 12-digit integer.

> _seed := 17:
> variates := []:
> for i from 1 to 10000 do
> t1 := IDF(UniformRV(2, 10), rand() / 10 ^ 12):
> t2 := IDF(UniformRV(4, 14), rand() / 10 ^ 12):
> t3 := IDF(UniformRV(6, 18), rand() / 10 ^ 12):
> t := max(t1, min(t2, t3)):
> if (t > 8) then
> variates := [op(variates), t]:
> fi:
> od:
> variates := sort(variates):
> n := nops(variates):
> print(evalf(variates[floor(0.90 * n)]));

The first statement initializes the random number generator seed. The
second statement initializes variates to an empty list. The for loop
cycles through the 10000 replications of the simulation. The random
variates T1 ∼ U(2, 10), T2 ∼ U(4, 14), and T3 ∼ U(6, 18) are generated
in the first three lines of code within the for loop using the IDF
procedure. This is followed by the calculation of the (unconditional)
system failure time T = max {T1,min {T2, T3}}. If the value of T
exceeds 8, then it is concatenated onto the right of the list variates.
Outside of the for loop, the elements in variates are sorted using the
Maple sort command. The nops function is used to find n, the number
of elements in variates. Finally, the estimated 90th percentile of the
conditional system lifetime is printed. When this code was executed
five times (with seed fixed prior to the first execution) the following
five estimates for the conditional failure time were produced:

12.57 12.62 12.63 12.57 12.58.

The output of these five runs of Monte Carlo simulation hovers around
the theoretical value of 12.61, which is the analytic solution provided
by APPL. A more careful statistical analysis would involve calculating
a confidence interval from the five estimates.
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The three previous examples all considered systems with “warm” standby
units, i.e., all components are on-line until failure. Some systems have cold
standby units, as illustrated in the next example.

Example 9.4. Let T1, T2, T3 be independent gamma random variables
that represent the lifetime of a unit (T1) and the lifetimes of two
backup cold standby units (T2 and T3) taken on a mission of du-
ration 10. If T1 ∼ gamma(1/2, 3), T2 ∼ gamma(1/4, 5), and T3 ∼
gamma(1/6, 7), find the probability that the mission is successful.

The APPL code required to solve this problem is

> T1 := GammaRV(1 / 2, 3);
> T2 := GammaRV(1 / 4, 5);
> T3 := GammaRV(1 / 6, 7);
> T := Convolution(T1, T2, T3);
> SF(T, 10);

If there were more components with distributions following the same
pattern and a Maple for loop was preferable, the following equivalent
APPL code could be used, replacing the upper limit of the for by the
number of components.

> T := GammaRV(1 / 2, 3);
> for i from 2 to 3 do
> T := Convolution(T, GammaRV(1 / (2 * i), 2 * i + 1)):
> od:
> SF(T, 10);

In either case, the probability of a successful mission is returned as

−57415240
3

e−5/2 +
2129286487

256
e−5/3 +

739
256

e−5 ∼= 0.9995.

If this probability of mission success is not high enough, more cold
standby units could be added to the system.

9.2 Lower Confidence Bound on System Reliability

The examples to this point in the monograph have been drawn mainly from
applied probability. This section takes up a problem of a statistical nature.

We consider the problem of determining a (1 − α)100% lower confidence
bound pL on the system reliability for a coherent system of k components with
independent lifetimes. Components of type i are subjected to a life test, i =
1, 2, . . . , k. The failure data is (yi, ni), where yi is the number of components
of type i that pass the test and ni is the number of components of type
i being tested, i = 1, 2, . . . , k. We assume throughout that the components



9.2 Lower Confidence Bound on System Reliability 141

1 2 3

Fig. 9.2. Three-component series system.

Table 9.1. Failure data for a three-component series system example.

Component number i = 1 i = 2 i = 3
Number passing (yi) 21 27 82
Number on test (ni) 23 28 84

fail independently, e.g., no common-cause failures. Bootstrapping is used to
estimate a lower confidence bound on the system reliability.

A three-component (k = 3) series system is used as an example throughout
this section, although the techniques described here apply to any coherent
system of k independent components. A block diagram for the series system
is given in Figure 9.2.

Binary data is collected on each component in the system. The number of
components tested and the number of passes for each type of component for
the example problem are given in Table 9.1.

The point estimate for the system reliability is

21
23

· 27
28

· 82
84

=
1107
1288

∼= 0.8595.

There is no known exact confidence interval for this system reliability. We will
consider only a lower confidence bound on the system reliability here, because
this is typically the quantity of interest to a reliability engineer when assessing
risk. The bootstrapping technique proposed by Efron and Tibshirani [19] can
be used to calculate a lower 95% confidence interval bound. Other authors,
such as Martin [60] and Padgett and Tomlinson [67], have proposed the use
of bootstrapping for determining confidence limits. The approach used here
differs conceptually from the standard application of bootstrapping, where
the standard error of a single unknown distribution is estimated by resam-
pling iid data. In our setting, there are k different distributions—one for each
component—and we resample component reliabilities and combine using the
reliability function to yield the system reliability.

Bootstrapping resamples some fixed number B of the systems, calculates
the system reliability, then calculates the αBth ordered system reliability.
More specifically, for the three-component system of interest, the bootstrap-
ping algorithm follows the following steps:

• For the first component, the data set (21 ones and 2 zeros) is sampled
with replacement 23 times.

• These values are summed and divided by 23 yielding a reliability estimate
for the first component.
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Table 9.2. Bootstrap algorithm for calculating a (1 − α)100% lower confidence
bound for the reliability of a k-component series system.

for j ← 1 to B resampling loop
for i ← 1 to k loop through components

p̃i ← binomial(ni, yi/ni)/ni component i reliability
zj ←∏k

i=1 p̃i calculate system reliability
sort z sort the system reliability values
return zαB return the estimate for the lower bound

• The previous two steps are repeated for components 2 and 3.
• The product of the reliability estimates for the three components are mul-

tiplied (because the components are arranged in series and their failures
are independent) to give a system reliability estimate.

The four steps listed above are repeated B times. The B system reliability es-
timates are then sorted. Finally, the αBth ordered system reliability is output,
which is used as a lower bound on the system reliability.

The algorithm for estimating the (1 − α)100% lower confidence interval
bound is given in Table 9.2, where p̃i is a bootstrap estimate for the reliabil-
ity of component i and zj is a bootstrap estimate of the system reliability.
Indentation is used to indicate begin–end blocks in the pseudocode. Generat-
ing a binomial random variate is appropriate because the resampling from the
data set is performed with replacement. The returned value zαB is the order
statistic associated with the zj ’s generated in the outside loop. See Law [48]
for handling the case when αB is not an integer.

This algorithm has been implemented in S-Plus as a function named
seriessystemboot, which is given below.

> seriessystemboot <- function(n, y, alpha) {
> k <- length(n)
> b <- 10000
> z <- rep(1, b)
>
> point <- prod(y) / prod(n)
>
> for (j in 1:b) {
> for (i in 1:k) {
> z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]
> }
> }
> z <- sort(z)
> pl <- z[floor(alpha * b)]
> c(point, pl)
> }
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The first two arguments, n and y, are vectors of length k, and the third
argument, alpha, is a real number between 0 and 1. Thus the S-Plus function
call

> seriessystemboot(c(23, 28, 84), c(21, 27, 82), 0.05)

prints a point estimate and a 95% lower confidence interval bound on the
system reliability for the three-component series system considered in this
section. After a call to set.seed(3) to initialize the random number seed,
five calls to seriessystemboot yielded the following estimates for pL:

0.7426057 0.7482993 0.7456744 0.7486690 0.7453416.

The dispersion associated with these five estimates is due to the finite choice
of B, i.e., B = 10000. Based on these results, the third digit after the dec-
imal point can’t be reported with certainty. A modeler would be uncertain
how many digits to report on the estimate. Clearly a major drawback of this
approach is our inability to determine the size of the resampling error as a
function of the size of B.

Resampling error can be eliminated using APPL. The APPL statements
given below utilize the Product and Transform procedures.

> X1 := BinomialRV(23, 21 / 23);
> X1 := Transform(X1, [[x -> x / 23], [0, infinity]]);
> X2 := BinomialRV(28, 27 / 28);
> X2 := Transform(X2, [[x -> x / 28], [0, infinity]]);
> X3 := BinomialRV(84, 82 / 84);
> X3 := Transform(X3, [[x -> x / 84], [0, infinity]]);
> T := Product(X1, X2, X3);

This alternative approach to determining a lower 95% bootstrap confidence
interval bound for the system reliability is equivalent to using an infinite
value for B. This is equivalent to deriving the entire PDF of the bootstrap
estimate of the system reliability. Since p̃i can assume any one of ni + 1
values, there are a possible 24 · 29 · 85 = 59160 potential mass values for the
random variable T determined by the two calls to the Product procedure.
Of these, only 6633 are distinct because the Product procedure combines
repeated values. Since the random variable T from the APPL code plays an
analogous role to the vector z from the bootstrap algorithm in Table 9.2,
the lower 95% bootstrap confidence interval bound is the 0.05 fractile of the
distribution of T, which is pL = 6723/9016 ∼= 0.746. This result using APPL
is consistent with the standard resampling approach for finding the lower
confidence interval limit based on the five results presented earlier (one equals
6723/9016 exactly, two are above 6723/9016, and two are below 6723/9016).

Bootstrapping worked well in this example, but will encounter problems
when systems with perfect test results on one or more components are encoun-
tered. The problem that arises when component i has perfect test results (i.e.,
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yi = ni) is that the sample size ni becomes irrelevant. A test in which two
components out of two pass the test is equivalent to one in which 100 com-
ponents out of 100 pass the test from the perspective of the bootstrapping
algorithm. Efforts to overcome the problem associated with perfect compo-
nent test results by placing a beta conjugate prior distribution on component
reliabilities are outlined in Leemis [51].

9.3 Survival Analysis

Survival analysis is a branch of statistics that concerns “time-to-event” data.
For biological organisms, the interest might be in the time to death or the
remission time of a cancer. In reliability, the interest might be in the time to
failure or the time to repair for a system. In actuarial science, the interest
might be in the time to death of the insured or the time to first claim on the
insurance of a structure. In sociology, the interest might be in the duration
of a strike or the time to commit another crime after release from prison
in a recidivism study. In economics, survival analysis is known as duration
analysis or duration modeling. The key element in a survival analysis study
is a nonnegative random variable (typically the time to some event) with
significant dispersion and oftentimes with an associated vector of covariates.
Two popular textbooks in survival analysis are Lawless [49] and Kalbfleisch
and Prentice [41].

In this section, we investigate bootstrapping in survival analysis. More
specifically, we consider the simple question of comparing some aspect of two
populations. Using Efron and Tibshirani’s [19] notation, this section again
considers eliminating the generation of B bootstrap samples when performing
a bootstrap analysis by calculating the exact distribution of the statistic of
interest via APPL. There are several reasons for considering this approach:

• Although bootstrap methods are relatively easy to apply, determining
the number of bootstrap repetitions, B, to employ is a common problem
facing practitioners (Andrews and Buchinsky [3]). A practitioner needs to
be concerned about problem-specific requirements for B, e.g., “B in the
range of 50 to 200 usually makes ŝeboot a good standard error estimator,
even for estimators like the median” (Efron and Tibshirani [19, page 14])
or “B should be ≥ 500 or 1000 in order to make the variability of [the
estimated 95th percentile] acceptably low” for estimating 95th percentiles
(Efron and Tibshirani [19, page 275]). In fact, “one can obtain a ‘different
answer’ from the same data merely by using different simulation draws if
B is too small, but computational costs can be great if B is chosen to be
extremely large” (Andrews and Buchinsky [2, page 23]). Because of this,
Andrews and Buchinsky [2] introduced a three-step method to determine
B to attain a specified level of accuracy.
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• Exact values are always preferred to approximations. There is no point in
adding resampling error to the already-existing sampling error unneces-
sarily.

• A bootstrapping novice can easily confuse the sample size n and number
of bootstrap samples B. Eliminating the resampling of the data set B
times simplifies the conceptualization of the bootstrap process.

• In many situations, computer time is saved using the exact approach.

By way of example, this section shows how the OrderStat and RangeStat
procedures, along with other APPL procedures, can be used to perform ex-
act bootstrap analysis. The use of these algorithms eliminates the resampling
variability that is present in the usual bootstrap procedure. Exact results in
the bootstrapping literature are limited: “The only exact solutions that are
available for the bootstrap variance of an L-statistic (e.g., mean, trimmed
mean, median, quick estimators of location and scale, upper and lower quar-
tiles) are for the specific cases of the sample mean and sample median (when
the sample size is odd)” (Hutson and Ernst [39, page 89]). The application
areas that will be presented here are the estimation of standard errors for the
median, mean, and range, and interval estimation for the range.

Estimation of Standard Errors. The standard error of the sample mean,
s/
√

n, is useful when comparing means, but standard errors for comparing
other quantities (e.g., fractiles) are often intractable. The following examples
consider the estimation of standard errors associated with the rat-survival
data given in Table 9.3 from Efron and Tibshirani [19, page 11]. Seven rats
are given a treatment and their survival times, given in days, are shown in
the first row of the table. Nine other rats constitute a control group, and their
survival times are shown in the second row of the table.

In the first example, we compare the medians of the two populations using
bootstrapping.

Example 9.5. Consider first the estimation of the standard error of
the difference between the medians of the two samples. The standard
bootstrap approach to estimating the standard error of the median for
the treatment group is to generate B bootstrap samples, each of which
consists of seven samples drawn with replacement from 16, 23, 38, 94,
99, 141, and 197. The sample standard deviation of the medians of
these B bootstrap samples is an estimate of the standard error of the
median. Using the S-Plus commands

Table 9.3. Rat-survival data.

Group Data n Median Mean Range
Treatment 16, 23, 38, 94, 99, 141, 197 7 94 86.86 181
Control 10, 27, 30, 40, 46, 51, 52, 104, 146 9 46 56.22 136
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Table 9.4. Bootstrap estimates of the standard error of the median.

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 41.18 37.63 36.88 37.90 38.98 37.83
Control 20.30 12.68 9.538 13.10 13.82 13.08

> set.seed(1)
> tr <- c(16, 23, 38, 94, 99, 141, 197)
> medn <- function(x){quantile(x, 0.50)}
> bootstrap(tr, medn, B = 50)

yielded an estimated standard error of 41.18 for the treatment data
with B = 50 bootstrap replicates. With the set.seed function used
to call a stream number corresponding to the associated column,
Table 9.4 shows the estimated standard errors for several B values.
There is considerable resampling error introduced for smaller values
of B. The B = +∞ column of Table 9.4 corresponds to the ideal boot-
strap estimate of the standard error of θ̂, or seF̂ (θ̂∗) = limB→+∞ ŝeB ,
to use the terminology and notation in Efron and Tibshirani [19, page
46].

We now consider the possibility of avoiding resampling altogether us-
ing APPL. An additional APPL procedure was constructed, namely
BootstrapRV(data) (henceforth referred to as BootstrapRV), whose
only argument is a list of n data values named data. The BootstrapRV
procedure creates a discrete random variable X that can assume the
provided data values, each with probability 1

n . If we put the treat-
ment data values 16, 23, 38, 94, 99, 141, and 197 in a list and provide
this list to the BootstrapRV procedure, it creates a discrete random
variable X that can assume these data values each with probability 1

7 .
The following APPL code calculates the bootstrap standard deviation
of the median:

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
> Y := OrderStat(X, 7, 4);
> sqrt(Variance(Y));

The random variable X has a discrete uniform distribution with sup-
port values equal to the data values from the treatment data set. The
random variable Y is the fourth order statistic (the median) in seven
draws with replacement from the treatment group of the rat-survival
data set. Since the median in a resampling experiment must take on
one of the seven data values, the support of Y contains seven elements.
APPL returns the distribution of the random variable Y as
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fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8359
823543

y = 16

80809
823543

y = 23

196519
823543

y = 38

252169
823543

y = 94

196519
823543

y = 99

80809
823543

y = 141

8359
823543

y = 197.

The last APPL statement takes the square root of the variance of Y ,
yielding the standard error as 2

823543

√
242712738519382 ∼= 37.8347.

This is the upper-right-hand entry in Table 9.4. In a similar fashion,
the ideal bootstrap estimate of the standard error of the median can be
calculated in the control case giving the lower-right-hand entry in Ta-
ble 9.4 as 1

387420489

√
25662937134123797402 ∼= 13.0759. Finally, note

that the seemingly large difference between the two sample medians
(94−46 = 48) is only 48/

√
37.832 + 13.082 ∼= 1.19 standard-deviation

units away from zero, indicating that the observed difference in the
medians is not statistically significant. Had the standard bootstrap
procedure been applied with B = 50 bootstrap replications, Table 9.4
indicates that the number of standard-deviation units would have been
estimated to be 48/

√
41.182 + 20.302 ∼= 1.05. Although the conclusion

in this case is the same, the difference between using B = 50 and
B = +∞ could potentially result in different conclusions for the same
data set.

Unlike the sample median, the standard error of the mean happens to
be tractable. In spite of this fact, we continue with the previous analysis
and attempt to compare the sample means to illustrate how other APPL
procedures can be used for comparing means.

Example 9.6. In a similar fashion to the previous example involving
medians, the following S-Plus code uses B = 50 bootstrap replications
to estimate the standard error of the mean for the treatment group.

> set.seed(1)
> x <- c(16, 23, 38, 94, 99, 141, 197)
> bootstrap(x, mean, B = 50)

(The mean function is built into S-Plus.) This code returned 23.89,
which is the upper-left-hand entry in Table 9.5. When this code is
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Table 9.5. Bootstrap estimates of the standard error of the mean.

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 23.89 24.29 23.16 24.36 23.75 23.36
Control 17.07 13.83 13.40 13.13 13.55 13.35

executed for other values of B and for the control group, we see
the usual pattern of nonmonotonic convergence as B increases in
Table 9.5, which is consistent with stochastic simulation.

We again consider the use of APPL to avoid resampling. The support
of the distribution of the mean is much larger than the previous exam-
ple because there are 77 = 823543 different samples with replacement
that could be drawn, resulting in hundreds (762, to be exact) of pos-
sible sample means. The APPL code to calculate the exact value of
the standard error of the mean for the treatment group is

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
> W := ConvolutionIID(X, 7);
> g := [[x -> x / 7], [-infinity, infinity]];
> Y := Transform(W, g);
> sqrt(Variance(Y));

After the bootstrap random variable X is created as in the previ-
ous example, the APPL procedure ConvolutionIID sums n = 7 of
these iid X’s to create a random variable W . The APPL procedure
Transform transforms the random variable W using the transforma-
tion Y = W/n to calculate the PDF of the sample mean, which is

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/77 = 1/823543 y = 16(
7
1

)/
77 = 1/117649 y = 17

(
7
2

)/
77 = 3/117649 y = 18

(
7
3

)/
77 = 5/117649 y = 19

(
7
1

)/
77 = 1/117649 y = 134/7

(
7
4

)/
77 = 5/117649 y = 20

...
...

1/77 = 1/823543 y = 197,
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Table 9.6. Bootstrap estimates of the standard error of the range.

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 39.57 35.46 34.70 35.50 33.81 35.46
Control 36.70 29.84 30.95 30.07 30.14 31.48

and the standard error 2
49

√
327649 ∼= 23.3635. This, of course, is equal

to
√

n−1
n

s√
n

=
√

6
7

s√
7
, where s is the standard deviation of the treat-

ment survival times. This fact is the fortunate consequence of the
mathematical tractability of the standard error for means. Other, less
fortunate situations can be handled in a similar manner.

Similar APPL code for the treatment case yielded an estimated stan-
dard error in the B = +∞ case of 1

27

√
129902 ∼= 13.3489. The dif-

ference between the treatment and control group means, which is
86.86 − 56.22 = 30.64, is not statistically significant since it is only
30.64/

√
23.362 + 13.352 ∼= 1.14 standard deviations away from zero.

The previous two examples have estimated the standard errors of measures
of central tendency (the median and mean). Estimation of the standard error
of a measure of dispersion, the sample range R, for the rat survival data will
now be considered.

Example 9.7. Once again, the S-Plus code given below creates a boot-
strap estimate of the standard error of the range in the treatment case
with B = 50.

> set.seed(1)
> x <- c(16, 23, 38, 94, 99, 141, 197)
> bootstrap(x, range, B = 50)

Table 9.6 contains the standard error estimates for other values of B
and for the control group.

To determine whether there is a statistically significant difference be-
tween the sample ranges for the treatment and control groups in the
rat-survival data, we again use the APPL code below for estimating
the standard error of the range for the treatment group.

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
> Y := RangeStat(X, 7);
> sqrt(Variance(Y));

The bootstrap estimate of the standard error of the range R for the
treatment case corresponding to B = +∞ is 2

16807

√
88781509983 ∼=

35.4569. The distribution of the sample range Y from bootstrapping
returned by APPL is
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fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/117649 y = 0
18/117649 y = 5
18/117649 y = 7
18/117649 y = 15
276/117649 y = 22
18/117649 y = 42
276/117649 y = 47
36/117649 y = 56
276/117649 y = 61
276/117649 y = 71
1734/117649 y = 76
1734/117649 y = 78
6792/117649 y = 83
276/117649 y = 98
3468/117649 y = 103
6792/117649 y = 118
20010/117649 y = 125
6792/117649 y = 159
20010/117649 y = 174
48828/117649 y = 181.

Similar APPL statements for the control case yielded an estimated
standard error for the range as 2

4782969

√
5666287777334555 ∼= 31.4762.

The observed difference in the ranges between the treatment and con-
trol groups (181 − 136 = 45) is not statistically significant since it is
only 45/

√
35.462 + 31.482 ∼= 0.95 standard deviations away from zero.

Confidence Intervals. A final example is presented here to show how one
of the shortcomings of the standard bootstrap approach can be overcome by
using the parametric bootstrap method. APPL is used in both settings to
eliminate resampling error.

The previous three examples estimated the standard errors of measures of
central tendency and a measure of dispersion. This example constructs two
confidence intervals for the sample range of the rat-treatment group.

Example 9.8. Let R be the range of the n = 7 observations in the
treatment group from Table 9.3. The APPL statements

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
> Y := RangeStat(X, 7);
> IDF(Y, 0.025);
> IDF(Y, 0.975);

yield a 95% confidence interval of 76 < R < 181. This confidence
interval has the unappealing property that the point estimator, R̂ =
181, is also the upper limit of the confidence interval.
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Trosset [80] suggested an alternative method for computing a confi-
dence interval for the range R, which involves parametric bootstrap-
ping. First, an exponential distribution with mean 1/θ is fit to the
control data using the APPL MLE (maximum likelihood estimator)
procedure. The procedure identifies the parameter estimate for the
distribution as θ̂ = 7/608. The (continuous) distribution of the sam-
ple range of n = 7 observations drawn from an exponential population
with parameter θ̂ = 7/608 is then computed. The confidence interval is
determined with the CDF procedure. The following APPL statements
yield a 95% confidence interval for the range R for n = 7 samples as
68 < R < 475.

> treatment := [16, 23, 38, 94, 99, 141, 197];
> X := ExponentialRV(theta);
> thetahat := op(MLE(X, treatment, [theta]));
> Y := ExponentialRV(thetahat);
> Z := RangeStat(Y, 7);
> IDF(Z, 0.025);
> IDF(Z, 0.975);

This section has considered the use of bootstrapping for simple compar-
isons between two populations. In conclusion, for moderate sample sizes and
test statistics that are tractable for APPL, the exact approach to bootstrap-
ping can eliminate resampling error and oftentimes reduce computation time.

This completes our initial chapter on APPL applications to reliability and
survival analysis. The next chapter concerns applications of APPL in stochas-
tic simulation.
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Stochastic Simulation

This chapter considers applications from stochastic simulation. Section 10.1
considers tests of randomness. Section 10.2 investigates the use of computa-
tional probability in input modeling. Section 10.3 contains a development of
an algorithm to find the distribution of the Kolmogorov–Smirnov goodness-
of-fit test statistic in the all-parameters-known case.

10.1 Tests of Randomness

Since random numbers play a pivotal role in Monte Carlo simulation, discrete-
event simulation, and bootstrapping, having random number generators with
good statistical properties is essential. Some of the most common types of ran-
dom number generators are in the class of Lehmer generators. These genera-
tors are based on Lehmer’s algorithm [54] which defines an iterative equation
that can be used to produce a stream of random numbers. A Lehmer genera-
tor requires three input parameters: m, a, and z0. The modulus parameter m
is a fixed large prime integer. The multiplier parameter a is a fixed positive
integer less than m. The initial seed z0 can be any positive integer less than
m and can vary from experiment to experiment. Lehmer’s algorithm produces
integers in the range [1,m − 1] via the iterative equation zi+1 = azi mod m
for i = 0, 1, . . . . For proper choices of a and m (see Banks et al. [6], Fishman
[26], or Law [48]), the period length of the generator is m− 1. To convert the
zi’s into U(0, 1) pseudo-random variates, referred to here as simply “random
numbers,” each is divided by the modulus m, xi = zi/m, yielding a rational
number in the set { 1

m , 2
m , . . . , m−1

m }.
It is known that the numbers produced by a Lehmer generator are not

truly random, but with carefully chosen m and a it is possible to generate
output that will be “random enough” from a statistical point of view. Lehmer
generators are also considered “good” generators because their output can be
replicated, they’re portable, efficient, and thoroughly documented. However,
a disturbing amount of regularity inherent in the output of these generators
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was discovered by Marsaglia [58]. He observed a lattice structure when con-
secutive random numbers were plotted as overlapping ordered n-tuples [i.e,
(x0, x1, . . . , xn−1), (x1, x2, . . . , xn), . . .]. We consider two types of testing for
random numbers in this section. The first is the more traditional Kolmogorov–
Smirnov goodness-of-fit test and the second is based on the distance between
consecutive random number pairs.

Kolmogorov–Smirnov Goodness-of-Fit Test. Consider the use of the
Kolmogorov–Smirnov test for assessing model adequacy (goodness of fit) for
a Lehmer generator. Assume that m = 231−1 = 2147483647, a = 75 = 16807,
and z0 = 987654321, which is a popular random number generator described
in Park and Miller [68]. The first five random numbers generated are

1605065384
2147483647

1791818921
2147483647

937423366
2147483647

1334477970
2147483647

252032522
2147483647

or, approximately

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five data values are being evaluated for their uniformity, there
should be a reasonable match between their empirical CDF and the CDF
for a U(0, 1) random variable. If we let the Maple list Sample contain the five
random numbers generated above, then the APPL statements required to plot
these two functions over the interval (0, 1), shown in Figure 10.1, are

> n := 5;
> a := 7 ^ 5;
> seed := 987654321;
> m := 2 ^ 31 - 1;
> Sample := [];
> for j from 1 to n do
> seed := a * seed mod m:
> Sample := [op(Sample), seed / m]:
> od;
> U := UniformRV(0, 1);
> PlotEmpVsFittedCDF(U, Sample, [], 0, 1);

The five parameters that are required by the APPL plotting procedure
PlotEmpVsFittedCDF are the random variable whose CDF is to be plotted,
the data values [held in a list], the parameters associated with the random
variable [empty in this case of U(0, 1) random variable], and the optional lower
and upper plotting limits.
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Fig. 10.1. The empirical CDF of Sample and the theoretical U(0, 1) CDF.

Let F (x) be the hypothesized CDF and F5(x) be the empirical CDF. To
determine the Kolmogorov–Smirnov test statistic,

D5 = sup
x

|F (x) − F5(x)| ,

which measures the largest vertical distance between the two CDFs, requires
the following additional command:

> TestStat := KSTest(U, Sample, []);

The approximate value of the test statistic for the five random numbers is
0.2365, which occurs just to the left of the random number 0.4365.

Since large values of the test statistic indicate a poor fit, and the CDF
FD5(x) of the test statistic is (see Section 10.3)

FD5(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y < 1
10

24
625 (10x − 1)5 1

10 ≤ y < 1
5

−288x4 + 240x3 − 1464
25 x2 + 672

125 x − 96
625

1
5 ≤ y < 3

10

160x5 − 240x4 + 424
5 x3 + 12x2 − 168

25 x + 336
625

3
10 ≤ y < 2

5

−20x5 + 74x4 − 456
5 x3 + 224

5 x2 − 728
125 x 2

5 ≤ y < 1
2

12x5 − 6x4 − 56
5 x3 + 24

5 x2 + 522
125 x − 1 1

2 ≤ y < 3
5

−20 y6 + 32 y5 − 185
9 y3 + 175

36 y2 + 3371
648 y − 1 1

2 ≤ y < 3
5

−8x5 + 22x4 − 92
5 x3 + 12

25 x2 + 738
125 x − 1 3

5 ≤ y < 4
5

2x5 − 10x4 + 20x3 − 20x2 + 10x − 1 4
5 ≤ y < 1

1 y ≥ 1,
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Fig. 10.2. Empirical CDF of 1000 Kolmogorov–Smirnov test statistics and the
theoretical Kolmogorov–Smirnov CDF for n = 5.

the p-value for this particular test can be found with the additional APPL
statement

> p := SF(KSRV(5), TestStat);

which yields p ∼= 0.8838.
If this process is repeated for a total of 1000 groups of nonoverlapping

consecutive sets of five random number pairs, the empirical CDF of the
Kolmogorov–Smirnov statistics should be close to the theoretical from APPL
if the random number generator is valid. Figure 10.2 is a plot of the em-
pirical CDF of the 1000 Kolmogorov–Smirnov statistics versus the theoretical
Kolmogorov–Smirnov CDF with n = 5. The empirical CDF lies slightly above
the theoretical. If this experiment were performed repeatedly, the empirical
CDFs should fluctuate around the theoretical CDF for a good random number
generator.

Distance Between Consecutive Random Number Pairs. While it is
true that the lattice structure discovered by Marsaglia [58] does not appear to
be random at all, it may be the case that there is still a degree of randomness
embedded within it. This randomness is not to be found in the structure of
the lattice, however, but in the order in which the points are generated. More
specifically, the empirical distribution of the distance between consecutive
random number pairs should be close to the theoretical distance between con-
secutive random number pairs for a good random number generator. Duggan
et al. [18] have developed a test of randomness based on the distance between
consecutive random number pairs. We consider only the use of APPL to find
the distribution of the distance between two of these pairs here. The deriva-
tions and analysis are an extension of the work by L’Ecuyer et al. [44] who test
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for excessive clustering or repulsion of random points in space, where points
Xi are non-overlapping k-dimensional vectors of successive output values of a
random number generator. They consider the Lp-distances between all pairs of
points generated Xi and Xj , whereas we only consider distances between con-
secutively generated points Xi and Xi+1, but treat both the overlapping and
non-overlapping cases. Knuth [43] discusses specific tests that have tradition-
ally been used to check the randomness of sequences, but all differ from our
method. An ideal random number generator will have a close match between
the empirical and theoretical distribution of the distance between consecutive
random number pairs.

A random number generator should produce a stream of numbers that ap-
pears to be random despite the fact that they are generated by a deterministic
function. Even though Marsaglia discovered that a plot of the n-tuples con-
structed from consecutive random numbers results in a lattice structure, the
order in which the points are generated will affect the generator’s statistical
properties. That is, we hope to observe that points generally are not gener-
ated in order along a hyperplane nor is there necessarily a regular pattern
of jumping between hyperplanes. With this in mind, we compare the distri-
bution of the distances between consecutive points (ordered pairs) and the
distribution of the distances between truly random points on the unit square.
The assumption being made is that generators that yield a distribution of
distances similar to the purely random points will be better random number
generators.

When considering the distance between consecutive pairs of random
numbers, the first question that must be addressed is whether to consider
overlapping or non-overlapping ordered pairs. We choose the simpler case
here, the non-overlapping ordered pairs (xi, xi+1) and (xi+2, xi+3), because
APPL can be used to find the theoretical distance between the points in
2-dimensional space. When working with non-overlapping pairs, it must be
noted that analysis is only performed on half of the possible ordered pairs at
a time and then merged together at the end. The two sets of ordered pairs
that are examined are

{(x0, x1), (x2, x3), (x4, x5), . . . , (xm−3, xm−2)}

and
{(x1, x2), (x3, x4), (x5, x6), . . . , (xm−2, xm−1)},

where the first set consists of all ordered pairs with the first coordinate having
an even index and the second set consists of all ordered pairs with the first
coordinate having an odd index. The distances are calculated between consec-
utive points in the same set and then combined to form a single distribution.

Under the assumption that the pairs contain non-overlapping coordinates,
the calculation of the theoretical distribution of the distances between
consecutive pairs of randomly generated numbers is straightforward. If we
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assume that X1, X2, X3, and X4 are iid U(0, 1) random variables, then
we must simply find the distribution of the distance between (X1, X2) and
(X3, X4) given by

D =
√

(X1 − X3)2 + (X2 − X4)2.

Since D represents a distance between two points, it is obvious that D > 0
(the inequality is strict because the Lehmer algorithm cannot generate two
identical pairs unless m = 3). Furthermore, since the longest distance possible
is across the diagonal of the unit square, D <

√
2 (the inequality is also strict

because the Lehmer algorithm cannot generate the numbers 0 or 1).
APPL provides an easy way to find the distribution of D which is a rather

cumbersome hand calculation. The APPL code below calculates the PDF
of D.

> U1 := UniformRV(0,1);
> U2 := UniformRV(0,1);
> V1 := Difference(U1, U2);
> g1 := [[x -> x ^ 2, x -> x ^ 2], [-infinity, 0, infinity]];
> V2 := Transform(V1, g1);
> V3 := Convolution(V2, V2);
> g2 := [[x -> sqrt(x)], [0, 2]];
> V4 := Transform(V3, g2);

The theoretical PDF of D is returned as

f(x) =

⎧⎨
⎩

2x(x2 − 4x + π) 0 < x ≤ 1
−2x

(
2
√

x2−1+4−4x2+2
√

x2−1 arcsin

(
x2−2

x2

)
+x2√x2−1

)
√

x2−1
1 < x <

√
2,

which is a continuous function since limx↑1 f(x) = limx↓1 f(x) = 2(π−3). The
graph in Figure 10.3 is a plot of the PDF.

The corresponding CDF can be found with the additional CDF(V4); state-
ment, yielding

F (x)=

⎧⎨
⎩

1
2x4− 8

3x3+πx2 0 < x ≤ 1
√

x2−1

(
2−12x2 arcsin

(
x2−2

x2

)
−3x4−12x2

)
+24x2−24+16(x2−1)2

6
√

x2−1
1<x<

√
2.

The distribution of D can then be used in the following fashion. Generate
many non-overlapping pairs of random numbers, then calculate and store
the distance between consecutive pairs. Perform a goodness-of-fit test to see
if the distances provide a reasonable fit to the data values. If so, then the
random number generator can be considered adequate. Details are given in
Duggan et al. [18].
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Fig. 10.3. The PDF of D.

10.2 Input Modeling

Stochastic simulation models have stochastic elements that mimic the proba-
bilistic nature of the system under consideration. A close match between the
input model and the true underlying probabilistic mechanism associated with
the system is required for successful “input modeling.” The general question
considered by input modeling is how best to model an element (e.g., arrival
process, service times) in a discrete-event simulation given a data set collected
on the element of interest. Oftentimes this involves fitting standard univariate
parametric probability distributions to data sets. For brevity, it is assumed
that data is available on the aspect of the simulation of interest. It is also
assumed that raw data is available, as opposed to censored data, grouped
data, or summary statistics. This example-driven section examines some ap-
plications of APPL for input modeling. Most simulation texts (e.g., Law [48])
have a broader treatment of input modeling than presented here. Nelson and
Yamnitsky [63] survey advanced techniques.

Input modeling is typically performed using an input modeling package.
These packages fit several distributions to a data set, then determine the dis-
tribution with the best fit by comparing goodness-of-fit statistics. But what
if an appropriate input model is not included in one of these packages? The
modeler must resort to deriving the appropriate estimators by hand for the
appropriate input model. The purpose of this section is to investigate the
use of APPL for input modeling. APPL allows an analyst to specify a stan-
dard or non-standard distribution for an input model, and have the deriva-
tions performed automatically. Input modeling serves as an excellent arena
for illustrating the applicability and usefulness of APPL. Besides including
pre-defined distributions for over 45 different types of continuous and discrete
random variables and over 30 procedures for manipulating random variables
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(e.g., Convolution, Transform), APPL contains input modeling procedures
for parameter estimation, plotting empirical and fitted CDFs, and perform-
ing goodness-of-fit tests. Using examples, we illustrate its utility for input
modeling.

Both APPL and Maple can be adapted for use in input modeling. This
section gives several examples from Evans and Leemis [22] of cases where a
symbolic language is of use in analyzing a data set.

Example 10.1. One of the tools for selecting a suitable input model is
a plot of the coefficient of variation (γ = σ/µ) versus the skewness

γ3 = E

[(
X − µ

σ

)3
]

for several popular input distributions. After constructing this plot,
the sample coefficient of variation and the sample skewness can be
plotted for a particular data set or data sets to determine an appropri-
ate distribution for modeling the data. The Maple code that produces
the plot in Figure 10.4 for the Weibull, gamma, log normal, and log
logistic distributions uses the additional APPL procedures CoefOfVar
and Skewness. The statements necessary to plot the gamma distrib-
ution’s coefficient of variation versus skewness are shown below. The
plots for the other distributions are calculated similarly. The Maple
statement used to display all four plots in one graphic is also provided.

> unassign(’kappa’);
> lambda := 1;

–1

0

1

2

3

skew

0.2 0.4 0.6 0.8 1 1.2 1.4
cv

Fig. 10.4. Coefficient of variation γ vs. skewness γ3 for the gamma, Weibull, log
normal, and log logistic distributions.
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> X := GammaRV(lambda, kappa);
> c := CoefOfVar(X);
> s := Skewness(X);
> GammaPlot := plot([c, s, kappa = 0 .. 750],

labels = [gamma, gamma_3]):
.
.
.

> plots[display]({GammaPlot, WeibullPlot,
LogNormalPlot, LogLogisticPlot},
scaling = unconstrained);

The Maple unassign command is used to treat κ as a symbolic para-
meter.

Example 10.2. The following n = 23 ball bearing failure times (in
millions of revolutions) are collected to determine an input model in
a stochastic simulation:

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

The original source for this data set is Lieblein and Zelen [56]. First,
consider fitting an exponential distribution to this data set using max-
imum likelihood. The data set for the service times, BallBearing, is a
pre-defined list in APPL. The APPL MLE procedure returns the max-
imum likelihood estimators as a list. Its arguments are the model, the
data, and the parameters to be estimated. The APPL statements

> unassign(’lambda’);
> X := ExponentialRV(lambda);
> lamhat := MLE(X, BallBearing, [lambda]);

return λ̂ ∼= 0.0138 as the maximum likelihood estimator. The addi-
tional APPL command

> PlotEmpVsFittedCDF(X, BallBearing,
[lambda = lamhat[1]], 0, 180);

produces a plot of the empirical and fitted CDFs on one set of axes,
as seen in Figure 10.5.

In order to assess the model adequacy, either a formal goodness-of-fit
test can be performed, or goodness-of-fit statistics can be compared
for competing models. The Kolmogorov–Smirnov test statistic, for
example, can be computed with the additional APPL statement

> KSTest(X, BallBearing, [lambda = lamhat[1]]);

which returns 0.3068, indicating a rather poor fit.
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Fig. 10.5. Empirical and fitted exponential CDFs for the ball bearing data set.

As an alternative, one might consider fitting the reciprocal of an exponen-
tial random variable to the service times, as in the following example.

Example 10.3. Fit the reciprocal of an exponential random variable to
the service times in the previous example.

The APPL statements required to find the distribution of the recip-
rocal of an exponential random variable and find the MLE for the
unknown parameter are

> unassign(’lambda’);
> X := ExponentialRV(lambda);
> g := [[x -> 1 / x], [0, infinity]];
> Y := Transform(X, g);
> lamhat := MLE(Y, BallBearing, [lambda]);

which derive the PDF of Y to be

fY (y) =
λ

y2
e−λ/y y > 0

and calculate the MLE λ̂ ∼= 55.06. The function g is used to find
the distribution of Y = g(X) = 1/X. As can be seen in Figure 10.6,
the reciprocal of the exponential also provides a poor fit to the ball
bearing data.

Neither the exponential model nor its reciprocal are appropriate for mod-
eling the service times. It might be appropriate to consider two-parameter
distributions as potential models, as shown in the next example.
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Fig. 10.6. Empirical and reciprocal exponential fitted CDFs for the ball bearing
data set.

Example 10.4. Fit the inverse Gaussian and Weibull distributions to
the data sets. Again using the APPL procedures MLE and KSTest,

> unassign(’lambda’);
> X := InverseGaussianRV(lambda, mu);
> hat := MLE(X, BallBearing, [lambda, mu]);
> KSValue := KSTest(X, BallBearing,

[lambda = hat[1], mu = hat[2]]);

yields an improved fit with λ̂ ∼= 231.67, µ̂ ∼= 72.22, and a Kolmogorov–
Smirnov test statistic of 0.088. The MLE procedure is able to return
the appropriate values because the maximum likelihood estimators
can be expressed in closed form for this particular distribution.
Unfortunately, the statements

> unassign(’lambda’); unassign(’kappa’);
> Y := WeibullRV(lambda, kappa);
> hat := MLE(Y, BallBearing, [lambda, kappa]);

fail to return the MLEs in APPL. The Maple numerical equation
solving procedure fsolve is not clever enough to exploit some of the
structure in the score vector that is necessary to find the MLEs. There-
fore a special routine, MLEWeibull, has been written that computes
MLEs for the Weibull distribution.

To summarize the ball bearing data set examples, Table 10.1 contains the
Kolmogorov–Smirnov test statistic values for various distributions that were
fit to the data via maximum likelihood estimation.
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Table 10.1. Kolmogorov–Smirnov test statistics for various distributions.

Model Test statistic
Exponential 0.307

Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123

Arctangent 0.093
Log normal 0.090

Inverse Gaussian 0.088

Another difficulty that can present itself in input modeling is the presence
of censoring. A right-censored data set, for example, often occurs in reliability
and biostatistical applications. Examples likely to arise in discrete-event input
modeling situations include machine failure times (when some machines have
not yet failed) and the analysis of rare events.

Example 10.5. Consider the problem of determining an input model
for the remission time for the treatment group in the study concerning
the drug 6–MP given by Gehan [27]. Letting an asterisk denote a right-
censored observation, the remission times (in weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*.

Both MP6 and MP6Censor are pre-defined lists in APPL. MP6 is simply
the 21 data values given above, and MP6Censor is the list

[1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

where 0 represents a right-censored observation and 1 represents an
uncensored observation. The statements used to determine the MLE
for an exponential distribution are

> unassign(’lambda’);
> X := ExponentialRV(lambda);
> hat := MLE(X, MP6, [lambda], MP6Censor);

The code yields the MLE for the failure rate as λ̂ = 9/359 remissions
per week. Similarly, the statements

> unassign(’lambda’); unassign(’kappa’);
> Y := WeibullRV(lambda, kappa);
> hat := MLEWeibull(MP6, MP6Censor);

yield the MLE estimates λ̂ ∼= 0.03 and κ̂ ∼= 1.35 for the Weibull
distribution. The Kaplan–Meier product–limit survivor function
estimate for the MP6 data set, along with the fitted Weibull survivor
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Fig. 10.7. Product–limit survivor function estimate and fitted Weibull survivor
function for the 6–MP treatment group.

function are plotted in Figure 10.7 using the additional APPL
statement

> PlotEmpVsFittedSF(Y, MP6,
[lambda = hat[1], kappa = hat[2]],
MP6Censor, 0, 23);

The downward steps in the estimated survivor function occur only
at observed remission times. The six arguments required by the
PlotEmpVsFitted procedure are the random variable whose SF is to
be plotted, the data values in a list, the parameters associated with
the random variable, the right-censoring vector in a list, and the lower
and upper plotting limits. Note that the product–limit estimator cuts
off after the largest observed remission time per the convention given
in Lawless [49].

All of the input modeling examples thus far have been limited to contin-
uous data. The next example fits the geometric distribution as a model for
daily demand at a vending machine.

Example 10.6. A vending machine has capacity for 24 cans of “Pur-
ple Passion” grape drink. The machine is restocked to capacity every
day at noon. Restocking time is negligible. The last five days have
produced the following Purple Passion sales:

14 24 18 20 24.
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The demand for Purple Passion at this particular vending machine
can be estimated from the data by treating the 24-can sales figures
as right-censored demand observations. If demand has the geometric
distribution, with probability function

f(t) = p(1 − p)t t = 0, 1, 2, . . . ,

find the MLE p̂.

As discussed earlier, many procedures, like MLE, are able to handle
discrete distributions. Since the pre-defined geometric distribution in
APPL is parameterized for t = 1, 2, . . . , we need to define a geometric
random variable with the different parameterization (used above) in
the list-of-sublists data structure. The statements

> X := [[x -> p * (1 - p) ^ x],
[0 .. infinity],
["Discrete", "PDF"]];

> PurplePass := [14, 24, 18, 20, 24];
> PurplePassCensor := [1, 0, 1, 1, 0];
> MLE(X, PurplePass, [p], PurplePassCensor);

yield p̂ = 3/103. Model adequacy is not considered for this particular
example.

All previous examples have considered time-independent observations.
There are occasions when a series of event times may be time dependent,
and a more complicated input model may be appropriate.

Example 10.7. Ignoring preventive maintenance, ten odometer read-
ings (from a certain model of car) associated with failures appearing
over the first 100000 miles are, reading row-wise,

12942 17256 23254 28489 45561
85603 88143 94078 98231 99900.

Consider fitting a nonhomogeneous Poisson process to the above data
set, where the ending time of the observation interval is assumed
to be 100000 miles. The data can be approximated by a power law
process (i.e., the intensity function has the same parametric form as
the hazard function for a Weibull random variable). The following
APPL statements, including the additional procedure MLENHPP, re-
turn λ̂ ∼= 0.000058 and κ̂ ∼= 1.30.

> unassign(’lambda’); unassign(’kappa’);
> CarFailures := [12942, 17256, 23254, 28489, 45561,

85603, 88143, 94078, 98231, 99900];
> X := WeibullRV(lambda, kappa);
> hat := MLENHPP(X, CarFailures, [lambda, kappa]);
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Every example considered thus far has used maximum likelihood to esti-
mate the unknown parameters. APPL includes the procedure MOM for com-
puting the method of moments estimators.

Example 10.8. Hurricanes typically strike the eastern and southern
coastal regions of the United States, although they occasionally sweep
inland before completely dissipating. The U.S. Weather Bureau re-
ported that during the period from 1900 to 1969 a total of 36 hur-
ricanes moved as far as the Appalachian Mountains. The maximum
24-hour precipitation levels (measured in inches) recorded from those
36 storms during the time they were over the mountains are (Larsen
and Marx [47, pages 319–322])

31.00 2.82 3.98 4.02 9.50 4.50
11.40 10.71 6.31 4.95 5.64 5.51
13.40 9.72 6.47 10.16 4.21 11.60
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

A histogram of the data, which can be plotted in Maple, suggests that
the random variable X, which is the maximum 24-hour precipitation,
might be well approximated by the gamma distribution. The following
APPL code finds the method of moments estimates for the parameters
λ and κ, where Hurricane is the above data set pre-defined in APPL:

> X := GammaRV(lambda, kappa);
> hat := MOM(X, Hurricane, [lambda, kappa]);

The resulting estimates for the parameters are λ̂ = 954000
4252153

∼= 0.224
and κ̂ = 6952275

4252153
∼= 1.64.

10.3 Kolmogorov–Smirnov Goodness-of-Fit Test

In this final section, we present an algorithm for computing the CDF of
the Kolmogorov–Smirnov test statistic Dn in the all-parameters-known case.
Birnbaum [9] gives an n-fold integral for the CDF of the test statistic which
yields a function defined in a piecewise fashion, where each piece is a poly-
nomial of degree n. Unfortunately, it is difficult to determine the appropriate
limits of integration for computing these polynomials. Our algorithm per-
forms the required integrations in a manner that avoids calculating the same
integrals repeatedly, resulting in shorter computation time. It can be used to
compute the entire CDF or just a portion of the CDF, which is more efficient
for finding a critical value or a p-value associated with a hypothesis test. To
date, critical tables have been approximated by various techniques including
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asymptotic approximations, recursive formulas, and Monte Carlo simulation.
Our approach yields exact critical values and significance levels. The algorithm
has been implemented in APPL.

The Kolmogorov–Smirnov (KS) test statistic Dn is defined by

Dn = sup
x

|F (x) − Fn(x)| ,

where n is the sample size, F (x) is a hypothesized CDF with fixed para-
meters, and Fn(x), also called the empirical distribution function, is a step-
function that increases by 1/n at each data value. This statistic has been
used for goodness-of-fit testing for continuous populations for decades. The
KS test’s appeal is its straightforward computation of the test statistic and
the distribution-free characteristic of Dn. Its drawback is that its CDF under
the null hypothesis is difficult to determine, leaving one to calculate critical
values with various approximation methods.

Birnbaum [9] gives the CDF of Dn − 1
2n as

Pr
(

Dn <
1
2n

+ v

)
= n!

∫ 1
2n +v

1
2n−v

∫ 3
2n +v

3
2n−v

. . .

∫ 2n−1
2n +v

2n−1
2n −v

g(u1, u2, . . . , un)

dun . . . du2 du1

for 0 ≤ v ≤ 2n−1
2n , where

g(u1, u2, . . . , un) = 1

for 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1, and is 0 otherwise. Equivalently,

Pr
(

Dn <
1
2n

+ v

)
= n!

∫ min(1, 1
2n +v)

max(0, 1
2n−v)

∫ min(1, 3
2n +v)

max(u1, 3
2n−v)

. . .

∫ min(1, 2n−1
2n +v)

max(un−1, 2n−1
2n −v)

1

dun . . . du2 du1.

Birnbaum’s rather harmless-looking integral is tedious to compute by hand,
even for small values of n, due to the complexity of the region where g is
nonzero. Evaluating his expression requires calculating many n-fold integrals
whose limits are determined by considering a carefully chosen partition of the
support of Dn. The difficult part of the process is setting the appropriate
limits on these integrals. The final expression for the KS CDF is a piecewise
polynomial function in which each polynomial has degree n.

The literature available on the KS statistic is extensive. Stephens’ article
(Chapter 4 of D’Agostino and Stephens [14]) contains comprehensive coverage
on the use of the KS statistic, as well as other statistics based on the empirical
distribution function. He calculates the power of these goodness-of-fit tests.
Johnson, Kotz, and Balakrishnan [40, page 460] consider this source to be so
complete that they have deleted KS discussions in their second edition and
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refer the reader to that compendium instead. For computing critical points of
the KS distribution, we find five-digit accuracy as early as 1956 in Miller [61].
Miller relies on asymptotic results that converge fairly quickly to produce these
estimates. Birnbaum’s article [9] also explains how various sets of recursive
formulas can be used to calculate certain critical points to reasonable levels
of accuracy. Law [48, pages 346–351] has a well-written introduction to the
KS test and indicates that critical points can only be calculated via computer
techniques. There appears to be no source that produces exact distribution
functions for any distribution where n > 3 in the literature. Birnbaum [9,
page 144] gives the CDF of Dn − 1

2n for n = 2 and n = 3. Knuth [43]
provides a functional form for the CDFs for the two statistics D+

n and D−
n ,

but does not provide the CDF for Dn = max{D+
n , D−

n }, a harder problem
given the dependence between the two random variables. As a consequence of
the apparent complexity of the required integration and lack of literature on
exact distributions, we believed early on that a computational algebra system,
such as Maple, would be necessary to compute the polynomials needed for the
distribution of the KS test statistic.

Computing the Distribution of Dn . When 0 < v < 1
2n , Birnbaum’s

integral is easy to compute since none of the intervals of integration overlap.
Additionally, these intervals are all wholly contained within the interval from
0 to 1. For example, u1 varies over the interval from 1

2n − v to 1
2n + v, and u2

varies over the interval from 3
2n −v to 3

2n +v. The interval for u1 begins to the
right of 0 and ends before the interval for u2 begins. Thus when 0 < v < 1

2n ,
the limits of integration of Birnbaum’s integral guarantee that 0 ≤ u1 ≤ u2 ≤
· · · ≤ un ≤ 1. Because the ui’s are constrained in this way, we may replace
Birnbaum’s integrand g(u1, u2, . . . , un) with 1, and our computation of the
KS CDF requires only a single n-fold integral:

Pr
(

Dn <
1
2n

+ v

)
= n!

∫ 1
2n +v

1
2n−v

∫ 3
2n +v

3
2n−v

. . .

∫ 2n−1
2n +v

2n−1
2n −v

1 dun . . . du2 du1

= n!(2v)n 0 < v <
1
2n

.

When v has a fixed value greater than 1
2n , it is also desirable to replace

Birnbaum’s integrand by 1. In order to permit this replacement, we must only
allow integration over that region of n-dimensional space for which 0 ≤ u1 ≤
u2 ≤ · · · ≤ un ≤ 1. Since the intervals of integration specified in Birnbaum’s
integral for different ui’s can overlap, the smallest allowable value for any ui

is influenced by all uj ’s with subscripts less than i that can take on values in
ui’s interval of integration. This overlapping requires partitioning the interval
from 1

2n − v to 2n−1
2n + v into subintervals (which we will henceforth refer

to as u-subintervals), with the first u-subinterval starting at 1
2n − v and a

new u-subinterval beginning whenever the left endpoint of one of Birnbaum’s
intervals of integration is encountered. When any ui lies in a u-subinterval
that consists entirely of negative values, Birnbaum’s integrand is zero. For
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this reason, only u-subintervals having a positive right endpoint contribute to
the KS CDF.

Of course, the number of u-subintervals having a positive right endpoint
depends on the value of v. For small values of v (i.e., 0 < v < 1

2n ), n + 1
u-subintervals have a positive right endpoint since all n of Birnbaum’s lower
limits of integration are positive. For large values of v (i.e., 2n−3

2n < v < 2n−1
2n ),

only two u-subintervals have a positive right endpoint since only un’s lower
limit of integration is positive. Intermediate values of v produce all possibilities
from 2 to n + 1 u-subintervals having a positive right endpoint.

Because different values of v can yield different numbers of u-subintervals
having a positive right endpoint, the interval 0 < v < 2n−1

2n must be subdivided
at the following values of v: 1

2n , 3
2n , 5

2n , . . . , 2n−3
2n . When the values of v remain

within one of the resulting subintervals for v, the number of u-subintervals
having a positive right endpoint will remain fixed.

Another complication arises because it is necessary to know, for a fixed
value of v and for the u-subintervals produced by this value, which variables
of integration ui can take on values in each of the u-subintervals of [0, 1]. The
previous subdivision of the values of v is not fine enough to allow unambiguous
specification of the range for each ui. When i < j, ui and uj have overlapping
intervals of integration if the upper integration limit for ui exceeds the lower
integration limit for uj , i.e., 2i−1

2n + v ≥ 2j−1
2n − v. As a result, as v increases

from 0 to 2n−1
2n , new overlaps take place when v equals 1

2n , 2
2n , 3

2n , . . . , n−1
2n .

The interval 0 < v < 2n−1
2n must be divided into subintervals at these values

of v as well as at the values of v listed previously. We will henceforth refer to
the resulting subintervals as v-subintervals.

Indicator matrices will be used to summarize the interrelationships be-
tween the possible values for the variables of integration u1, u2, . . . , un. For a
fixed n and for values of v in the kth v-subinterval of

(
0, 2n−1

2n

)
, the indicator

matrix Ak will show, by the presence of a 1 or a 0 in row i and column j,
whether or not ui can take on values in the jth u-subinterval. Finally, by defin-
ing paths through these indicator matrices, we will produce a complete set of
n-fold integrals which satisfy the requirement 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1,
and which produce the KS CDF when summed.

The algorithm for computing the CDF of Dn is divided into four phases.
In Phase 1, an appropriate partition of the support of Dn − 1

2n is determined.
In Phase 2, we define matrices Ak that are instrumental in determining the
limits of integration in the n-fold integrals. In Phase 3, these integrals and their
associated limits are computed. To take advantage of the similarities in the
limits of integration of these n-fold integrals, they are grouped for efficiency
and all evaluated to the same level of integration before proceeding to the
next level. Finally, Phase 4 consists of translating the support of Dn − 1

2n to
the support of Dn. Thus the input to the algorithm is a positive integer n and
the output is the piecewise CDF of Dn.
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Phase 1: Partition the Support of Dn − 1
2n . The endpoints of the seg-

ments that define the support of the KS test statistic can be determined from
the limits of integration given by Birnbaum. Using Birnbaum’s formula, the
baseline lower and upper limits of integration associated with v = 0 are{

1
2n

,
3
2n

,
5
2n

, . . . ,
2n − 1

2n

}
.

As v increases, the support of Dn − 1
2n is broken into disjoint v-subintervals.

The endpoints of these support v-subintervals consist of v = 0 and the values
of v for which the endpoints of the n intervals of integration either:

• equal 0 or 1, or
• coincide.

The 0 or 1 cases occur at v values in the set{
1
2n

,
3
2n

,
5
2n

, . . . ,
2n − 1

2n

}
.

The set of values of v for which the endpoints of different intervals of integra-
tion coincide are {

1
2n

,
2
2n

,
3
2n

, . . . ,
n − 1
2n

}
.

Thus the union of these two sets and 0 comprise the endpoints of the
v-subintervals of the support of Dn − 1

2n .
The first phase of the algorithm given at the end of this section com-

putes the above endpoints v0 = 0, v1, v2, . . . , vm, where m is the number of
v-subintervals on which the CDF of Dn − 1

2n is defined. For any n,

m =
⌈3n

2

⌉
− 1.

Phase 2: Define the A Matrices. At this point in the algorithm,
v0, v1, . . . , vm are the endpoints of the m v-subintervals on which the CDF of
Dn − 1

2n is defined.
Two book-keeping steps are needed in this phase of the algorithm. They

are:

1. Define c1, c2, . . . , cm as the midpoints of the v-subintervals of support for
Dn − 1

2n .
2. Define x1, x2, . . . , xn as the midpoints of the intervals of integration for

u1, u2, . . . , un in Birnbaum’s n-fold integral. Thus

xi =
2i − 1

2n
i = 1, 2, . . . , n.
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Part of the algorithm involves defining the n × n indicator matrices
A1, A2, . . . , Am corresponding to the v-subintervals which form the support
of Dn − 1

2n . The rows of an A matrix refer to the variables of integration
u1, u2, . . . , un. The columns of an A matrix refer to the u-subintervals, with
the jth column corresponding to the interval from xj − v to xj+1 − v, except
for the nth column, which corresponds to the interval from xn − v to xn + v.
If the (i, j) element of an A matrix equals 1, then the range of ui includes at
least part of the jth u-subinterval.

Since the (n, n) element of each A matrix is the only element in the nth
row that is 1, the integrals that need to be computed for each segment of
support of Dn − 1

2n can be visualized as a path in A, consisting of a sequence
of moves from the (n, n) position of A to a nonzero element in the first row of
A. All moves in the A matrix from row i to row i− 1 (for i = n, n− 1, . . . , 2)
require that the following conditions are met:

1. The move must be from one of the 1’s in row i to one of the 1’s in row
i − 1.

2. The move is either directly vertical or vertical and one or more spaces to
the left.

That is, if the move begins at a 1 element in column j of row i, it must end
at a 1 element in column 1 through j of row i − 1.

Example 10.9. For n = 3 and k = 3, the CDF is defined on the
v-subinterval 2

6 < v < 3
6 and has the following A3 matrix:

A3 =

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ .

There are five different paths from the (3, 3) element to the top row
of the matrix. In the five matrices below, these five paths to the top
row of the A matrix are displayed by using boldface type on the path.
Next to each matrix is the corresponding triple integral that the path
represents.⎡

⎣1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 3

6−v

0

∫ 5
6−v

3
6−v

∫ 1

5
6−v

1 du3 du2 du1

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ ∫ 5

6−v

3
6−v

∫ 5
6−v

u1

∫ 1

5
6−v

1 du3 du2 du1

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ ∫ 3

6−v

0

∫ 3
6+v

5
6−v

∫ 1

u2

1 du3 du2 du1
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⎣1 1 1

0 1 1
0 0 1

⎤
⎦ ∫ 5

6−v

3
6−v

∫ 3
6+v

5
6−v

∫ 1

u2

1 du3 du2 du1

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ ∫ 1

6+v

5
6−v

∫ 3
6+v

u1

∫ 1

u2

1 du3 du2 du1

When these five integrals are summed, Birnbaum’s expression reduces
to

Pr
(

D3 <
1
6

+ v

)
= −4v3 +

11
3

v − 11
27

2
6

< v <
3
6
.

Note that the innermost integral∫ 1

u2

1 du3

on the third, fourth, and fifth triple integrals are identical. The num-
ber of identical integrals of this type grows rapidly as n increases.
The algorithm we have developed avoids recalculation of duplicate in-
tegrals. Continuing in this fashion for the other A matrices (i.e., A1,
A2, and A4), yields the CDF

Pr
(

D3 <
1
6

+ v

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

48v3 0 < v < 1
6

−12v3 + 8v2 + v − 1
9

1
6 < v < 2

6

−4v3 + 11
3 v − 11

27
2
6 < v < 3

6

2v3 − 5v2 + 25
6 v − 17

108
3
6 < v < 5

6 .

Note that Birnbaum [9] contains a sign error in the fourth v-
subinterval of support.

Table 10.2 shows how rapidly the number of n-fold integrations required to
compute the CDF of Dn− 1

2n grows with n. Note that the five triple integrals in

Table 10.2. Computational requirements for computing the Dn CDF for small n.

Number of n-fold Total number Total number
n m integrals required for of n-fold integrals of single integrals

each v-subinterval required required
1 1 1 1 1
2 2 1, 2 3 6
3 4 1, 4, 5, 3 13 39
4 5 1, 8, 13, 9, 4 35 140
5 7 1, 16, 34, 27, 28, 14, 5 125 625
6 8 1, 32, 89, 81, 89, 48, 20, 6 366 2196
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the previous example corresponds to n = 3 and the third v-subinterval (k = 3),
shown in boldface in the table. Note that the fifth column in Table 10.2 is the
product of the first and fourth columns.

Example 10.10. The method for determining the integers in the third
column of the Table 10.2 is somewhat analogous to determining the
entries in a row of Pascal’s triangle by using the entries of the previous
row. Beginning at each nonzero A matrix element in rows 2 through
n, there are a certain number of paths whose moves to the top row
of the matrix satisfy the two conditions stated previously. We will
assign such elements a number p (for paths) that denotes the number
of paths from that element to the top of the matrix. Thus if p2,2 = 2
(as is the case for the (2, 2) element of the A3 matrix for n = 3 and
k = 3 in Example 10.9), then no matter how we reached this element
of the A matrix, there are only two possible paths remaining to the
top. The pi,j values are assigned as follows. Only A matrix elements
with value 1 are assigned a pi,j value. If the jth entry in the first row
of A is nonzero, assign p1,j = 1. For the second and subsequent rows
(i = 2, 3, . . . , n), pi,j =

∑j
q=1 pi−1,q. Upon completion, pn,n represents

the total number of paths from the lower right corner of the matrix
to the top row of the matrix. Consider, for example, the case of n = 5
and k = 4. The A4 matrix with superscripts denoting the pi,j values is

A4 =

⎡
⎢⎢⎢⎢⎣

0 11 11 11 0
0 11 12 13 13

0 0 13 16 19

0 0 0 19 118

0 0 0 0 127

⎤
⎥⎥⎥⎥⎦ .

Here we see that p5,5 = 27, meaning there are 27 possible paths to
the top row of A4, consistent with the n = 5 and k = 4 element in
Table 10.2.

Phase 3: Set Limits on the Appropriate Integrals. The indicator matrix
A shows, by the presence of a 1 in row i and column j, for j < n, that ui

can assume values from the maximum of xj − v and 0 to the minimum of
xj+1 − v and xi + v. The presence of a 1 in row i and column n, means that
ui assumes values from xn − v to the minimum of xi + v and 1. Each path
in A represents a set of allowable intervals of integration for the variables
u1 to un in a particular n-fold integral. For a particular path, the limits of
integration for each ui are those given above that correspond to entry ai,j of
A in row i that lies on the path, with one exception: if both ai,j and ai−1,j

are on the same path, the lower limit of integration for ui must be ui−1. This
exception occurs because the path allows ui and ui−1 to assume values in the
same u-subinterval. In such a case, the lower limit of integration for ui must
be ui−1 in order to reflect the requirement ui−1 ≤ ui.
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For each path through the matrix A, and for each nonzero entry ai,j on
that path, a single integration with respect to ui must be performed. If ai−1,j

is on the same path as ai,j , then the lower limit of integration will be the
variable ui−1. If ai−1,j is not on the same path as ai,j , then the lower limit of
integration will be a fixed number: the maximum of xj − v and 0. Thus for
each path which passes through ai,j , either a variable or fixed lower limit of
integration might be appropriate.

Example 10.11. Consider again the case of n = 5 and the fourth
v-subinterval (k = 4). The A4 matrix shown below has its 1’s re-
placed with F , V, or B, indicating whether a fixed-limit integral, a
variable-limit integral, or both need to be computed for each entry.

A4 =

⎡
⎢⎢⎢⎢⎣

0 F F F 0
0 V B B F
0 0 B B B
0 0 0 B B
0 0 0 0 B

⎤
⎥⎥⎥⎥⎦ .

In general, when the A matrix contains a zero, neither the fixed nor variable
lower limits need to be computed. Now consider the elements of the A matrix
that contain a 1. The positions associated with the first 1 in each column of
A require only a fixed lower limit to be calculated. The positions below the
first 1 in the first nonzero column require only a variable lower limit to be
calculated. All other positions in the A matrix associated with 1 elements
require both a fixed and a variable lower limit to be calculated. Table 10.3
shows the computational efficiency of performing the integrations for various
values of n by using the algorithm.

Table 10.3. Computational efficiency associated with using the F and V arrays.

Total number Total number
n m of single integrals of single integrals

required (Table 10.2) required (algorithm)
1 1 1 0
2 2 6 4
3 4 39 23
4 5 140 48
5 7 625 108
6 8 2196 170
10 14 442540 800
15 22 318612735 2793
20 29 232093052440 6400
30 44 136617382366486800 21550
50 74 61056379955994182386843138150 99500
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The number of single integrals calculated by the algorithm for any n is no
more than

n(n + 1)
2

· 2 ·
(⌈3n

2

⌉
− 2
)

∼= 3
2
n3,

where the first factor corresponds to the maximum number of 1’s in any
A matrix, the second factor accounts for computing both the fixed and vari-
able matrices (described subsequently), and the last factor is one less than
m since no integration is required for the first v-subinterval. Due to savings
associated with 0 elements in the A matrix and the fact that both fixed and
variable matrix elements do not need to be calculated in all cases, this order
n3 expression is closely approximated by 0.80n3 for n = 20, 30, and 50.

Table 10.4 lists the coefficients of the polynomials that define the CDF of
Dn − 1

2n as computed by the APPL procedure KSRV whose algorithm is given
at the end of this section, for n = 1, 2, . . . , 6. The ability to store fractions
exactly is of particular benefit for these calculations.

Rather than detail every aspect of the logic of Phase 3 of the algorithm,
we illustrate the evolution of the n × n matrices F (for fixed limits) and V
(for variable limits) in a row-by-row fashion for a particular combination of n
and k.

Example 10.12. Consider again the case of n = 3 and k = 3, which
corresponds to the v-subinterval 2

6 < v < 3
6 . The xi values associated

with n = 3 are

x1 =
1
6

x2 =
3
6

x3 =
5
6
.

The vi values associated with n = 3 are v0 = 0,

v1 =
1
6

v2 =
2
6

v3 =
3
6

v4 =
5
6
.

The centers of the v-subintervals are

c1 =
1
12

c2 =
3
12

c3 =
5
12

c4 =
8
12

.

The A3 matrix is

A3 =

⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ .

The F and V matrices are computed simultaneously, row by row,
starting with the last row and ending with the first. Thus all of the
elements of the third row of F and of V are computed before com-
puting the elements of the second row is begun. In general, integrals
that are calculated in a particular row become integrand candidates
for the integration to be carried out in the row immediately above.
The F and V matrices are designed to store the intermediate results
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Table 10.4. CDFs of Dn − 1
2n

for n = 1, 2, . . . , 6.

n m k Coefficients of CDF polynomials Subinterval
1 1 1 2, 0 0 < v < 1

2

2 2 1 8, 0, 0 0 < v < 1
4

2 −2, 3,− 1
8

1
4 < v < 3

4

3 4 1 48, 0, 0, 0 0 < v < 1
6

2 −12, 8, 1,− 1
9

1
6 < v < 2

6

3 −4, 0, 11
3 ,− 11

27
2
6 < v < 3

6

4 2,−5, 25
6 ,− 17

108
3
6 < v < 5

6

4 5 1 384, 0, 0, 0, 0 0 < v < 1
8

2 −48, 0, 15,− 9
8 , 3

256
1
8 < v < 2

8

3 16,−40, 21,− 5
8 ,− 29

256
2
8 < v < 3

8

4 6,−7,− 27
16 , 293

64 ,− 853
2048

3
8 < v < 5

8

5 −2, 7,− 147
16 , 343

64 ,− 353
2048

5
8 < v < 7

8

5 7 1 3840, 0, 0, 0, 0, 0 0 < v < 1
10

2 0,−288, 624
5 ,− 96

25 ,− 36
125 , 6

625
1
10 < v < 2

10

3 160,−160, 24
5 , 616

25 ,− 332
125 , 6

125
2
10 < v < 3

10

4 −20, 64,− 318
5 , 542

25 , 343
500 ,− 273

1250
3
10 < v < 4

10

5 12, 0,− 62
5 , 6

5 , 2391
500 ,− 3413

6250
4
10 < v < 5

10

6 −8, 18,− 52
5 ,− 19

5 , 1838
250 ,− 10527

25000
5
10 < v < 7

10

7 2,−9, 81
5 ,− 729

50 , 6561
1000 ,− 9049

50000
7
10 < v < 9

10

6 8 1 46080, 0, 0, 0, 0, 0, 0 0 < v < 1
12

2 2880,−3360, 660, 60,− 95
12 , 5

24 ,− 5
5184

1
12 < v < 2

12

3 320, 480,−700, 5620
27 ,− 125

36 ,− 275
216 , 2195

46656
2
12 < v < 3

12

4 −280, 420,− 335
2 ,− 1675

54 , 26005
864 ,− 3125

1728 ,− 20645
373248

3
12 < v < 4

12

5 104,−188, 1235
6 ,− 7435

54 , 36245
864 ,− 7327

5184 ,− 69797
373248

4
12 < v < 5

12

6 −20, 22, 45
4 ,− 2005

108 ,− 185
1728 , 57971

10368 ,− 406469
746496

5
12 < v < 7

12

7 10,−33, 925
24 ,− 3065

216 ,− 22175
3456 , 134807

20736 ,− 632863
1492992

7
12 < v < 9

12

8 −2, 11,− 605
24 , 6655

216 ,− 73205
3456 , 161051

20736 ,− 278569
1492992

9
12 < v < 11

12

of integration of the n-fold integrals so that the necessary inner inte-
gration operations are performed only once. Entries in the ith rows of
F and V each result from n+1− i single integrations, one integration
corresponding to the ith row and one integration for every lower row.
The F matrix stores the results of all integration in which the last
integral had a fixed lower limit and the V matrix stores the results of
all integration in which the last integral had a variable lower limit. In
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this example, for the inner-most integration variable u3, there is only
one possible fixed integration to compute and one possible variable in-
tegration to compute on the third u-subinterval. These computations
are seen in the (3, 3) element of the respective matrices:

F =

⎡
⎢⎢⎣

F1,1 F1,2 F1,3

0 F2,2 F2,3

0 0
∫ 1

5
6−v

1du3

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

V1,1 V1,2 V1,3

0 V2,2 V2,3

0 0
∫ 1

u2
1du3

⎤
⎥⎥⎦ .

The second variable, u2, has four possible combinations of limits and
integrands. Thus there are four storage elements for u2, found in the
second rows of the F and V matrices. Elements (2, 2) and (2, 3) of
the F matrix store integration results that have all fixed lower-limits
of integration, but the integrands are fixed and variable, respectively.
Similarly, elements (2, 2) and (2, 3) of the V matrix are for the cases
when the lower-limit of integration contains the u1 variable, while the
integrands are fixed and variable, respectively. F2,2 is computed to
cover the case in which u2 varies over the second u-subinterval and u3

varies over the third u-subinterval. F2,3 covers the case in which both
u2 and u3 vary over the third u-subinterval, so u3 must have u2 as its
variable lower limit; hence the integrand is V3,3, not F3,3. Similar cases
are covered by V2,2 and V2,3, except that variable lower limits are used
in anticipation of the fact that u1 and u2 can both vary over the same
u-subinterval, making it necessary to have u1 as the (variable) lower
limit for u2. The integrations in the second row of each matrix are
shown below (note, the integration for the (3, 3) element, previously
discussed, has been carried out):

F =

⎡
⎢⎢⎣

F1,1 F1,2 F1,3

0
∫ 5

6−v
1
2−v

F3,3 du2

∫ 1
2+v
5
6−v

V3,3 du2

0 0 1
6 + v

⎤
⎥⎥⎦ ,

V =

⎡
⎢⎢⎣

V1,1 V1,2 V1,3

0
∫ 5

6−v

u1
F3,3 du2

∫ 1
2+v

u1
V3,3 du2

0 0 1 − u2

⎤
⎥⎥⎦ .

For the third and last variable, u1, only fixed-limit integration takes
place so only the F matrix gets updated. The (1, 1) element covers the
case in which u1 varies over the first u-subinterval and u2 varies over
the second and third u-subinterval. The (1, 2) element covers the case
in which u1 varies over the second u-subinterval and u2 varies over
the second and third u-subinterval. The (1, 3) element allows both u1

and u2 to vary over the third u-subinterval. The integrals in this first
row are shown below (note again, all previously discussed integration
has been carried out in the second and third rows of F and V ):
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F =

⎡
⎢⎢⎣
∫ 1

2−v

0
(F2,2 + F2,3) du1

∫ 5
6−v
1
2−v

(V2,2 + F2,3) du1

∫ 1
6+v
5
6−v

V2,3 du1

0 1
3v + 1

18 − 1
9 + 2

3v

0 0 1
6 + v

⎤
⎥⎥⎦ ,

V =

⎡
⎢⎣

V1,1 V1,2 V1,3

0 −v2 + 2
3v + 5

36 − vu1 − 1
6u1

1
2v2 + 1

2v + 3
8 + 1

2u2
1 − u1

0 0 1 − u2

⎤
⎥⎦ .

The completely evaluated F matrix is given by

F =

⎡
⎢⎢⎣
−v2 + 5

9v − 1
36 − 1

36 + 5
18v − 2

3v3 + v2 − 2
9v − 1

81

0 1
3v + 1

18 − 1
9 + 2

3v

0 0 1
6 + v

⎤
⎥⎥⎦ .

Finally, the CDF on the 3rd v-subinterval is the sum of the elements
in the first row of the F matrix, all multiplied by 3! = 6.

Phase 4: Shift the Distribution. At this point, the CDF is computed in
the form Pr(Dn < v + 1

2n ). Now we convert the distribution into the more
usable form Pr(Dn < y) = FDn

(y) by making the substitution y = v + 1
2n in

both the polynomials and the v-subintervals of the CDF. Specifically, we add
1
2n to each endpoint of the v-subintervals and we substitute (y − 1

2n ) for v in
the CDF polynomials. We then take these two lists of numbers and polyno-
mials respectively, simplify them (using Maple’s simplify() command), and
create the CDF representation in the usual list-of-sublists representation for
distributions. Specifically, we can now verify critical values for the distribu-
tion, but more importantly, we can calculate exact significance levels of any
given statistic. An example of the shifted distribution for n = 6 is

F (y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y < 1
12

46080 y6 − 23040 y5 + 4800 y4 − 1600
3

y3 + 100
3

y2 − 10
9

y + 5
324

1
12

≤ y < 1
6

2880 y6 − 4800 y5 + 2360 y4 − 1280
3

y3 + 235
9

y2 + 10
27

y − 5
81

1
6
≤ y < 1

4

320 y6 + 320 y5 − 2600
3

y4 + 4240
9

y3 − 785
9

y2 + 145
27

y − 35
1296

1
4
≤ y < 1

3

−280 y6 + 560 y5 − 1115
3

y4 + 515
9

y3 + 1525
54

y2 − 565
81

y + 5
16

1
3
≤ y < 5

12

104 y6 − 240 y5 + 295 y4 − 1985
9

y3 + 775
9

y2 − 7645
648

y + 5
16

5
12

≤ y < 1
2

−20 y6 + 32 y5 − 185
9

y3 + 175
36

y2 + 3371
648

y − 1 1
2
≤ y < 2

3

10 y6 − 38 y5 + 160
3

y4 − 265
9

y3 − 115
108

y2 + 4651
648

y − 1 2
3
≤ y < 5

6

−2 y6 + 12 y5 − 30 y4 + 40 y3 − 30 y2 + 12 y − 1 5
6
≤ y < 1

1 y ≥ 1.

The CDF and PDF of D6 are shown in Figures 10.8 and 10.9. The APPL
commands used to produce these plots are

> Y := KSRV(6);
> PlotDist(CDF(Y));
> PlotDist(PDF(Y));
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Fig. 10.8. The CDF of the D6 random variable.
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Fig. 10.9. The PDF of the D6 random variable. Note the discontinuity at y = 1/6.

We have noted that there is a discontinuity in the PDF at y = 1
6 , and more

generally, at y = 1
n . This corresponds to the value v = 1

2n in Birnbaum’s
original integral. This is the smallest value of v for which the n-dimensional
hypercube centered at

(
1
2n , 3

2n , . . . , 2n−1
2n

)
makes contact with the boundary

of the region in n-space that satisfies 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1.
Critical values associated with the distribution of Dn are determined with

the APPL IDF procedure. Arbitrary accuracy can be achieved by using the
Maple Digits command to define the precision. We have verified critical
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values by comparing them with those given in Owen [66] for α = 0.1, 0.05,
and 0.01 and for n = 1, 2, . . . , 10 and those values match ours exactly, except
that ours are not limited to five decimal places.

In summary, we have developed and implemented an algorithm for
computing the CDF of the KS test statistic in the all-parameters-known case
for a positive integer parameter n. Computing the CDF provides a challenging
calculus problem, even for small values of n. The CDF can be constructed
from a set of piecewise degree-n polynomials. The algorithm can be used
to plot the entire CDF or to just find particular fractiles or probabilities
associated with the distribution. Further details are given in Drew et al. [17].
An extension to the parameters-estimated-from-data case for sampling from
an exponential population and a small sample size is given in Evans et al.
[21]. We conclude this section by presenting the algorithm for KSRV, which
returns the CDF of the KS test statistic Dn in the all-parameters-known case.

Procedure KSRV: Compute the CDF of the Kolmogorov–Smirnov test statistic.

Input: A positive integer n, the sample size associated with the KS test sta-
tistic when all parameters are known.

Output: The CDF of the KS test statistic when all parameters are known is
returned. The random variable will be in the usual list-of-sublists format.

Algorithm:

Phase 1: Determine the endpoints of the segments that define the support
of the KS test statistic.

Dimension v
[
0..
⌈

3n
2

⌉
− 1
]

v holds the partition values for the support of Dn

m ← 0
vm ← 0
g ← 1

2n g is the gap between adjacent integration limits when v = 0
For i ← 1 to n − 1 by 1

m ← m + 1
vm ← i · g

For j ← 2 · �n
2 � + 1 to 2n − 1 by 2 lower limit is n or n + 1, whichever is odd

m ← m + 1
vm ← j · g

Phase 2: This phase of the algorithm has three parts to it.

1. Define c1, c2, . . . , cm as the midpoints of the support intervals
2. Define x1, x2, . . . , xn as the limits of integration when v = 0
3. Define the n × n indicator matrices A1, A2, . . . , Am.

Dimension c[m] define vector c of midpoints of the support subintervals
For k ← 1 to m

ck ← (vk−1 + vk)/2
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Dimension x[n] define vector x of centers of integration limits
For i ← 1 to n

xi ← (2i − 1) · g

Dimension A[n, n]

For i ← 2 to n
For j ← 1 to i − 1

Aij ← 0 zero out lower triangle of A

For k ← 1 to m loop through all subintervals of support
For i ← 1 to n

For j ← i to n
Aij ← 0 zero out upper triangle of A

z ← max{�nck − 1
2�, 0} z ≡ number of leading zero columns in A

l ← min {�2nck�, n} l ≡ number of u-subint. intersecting
(

1
2n

− v, 1
2n

+ v
)

For i ← 1 to n
For j ← max{i, z + 1} to min{n, i + l − 1}

Aij ← 1 place 1’s in A

Phase 3: Compute the fixed and variable limit matrices F and V and com-
bine to give the piecewise polynomial CDF.

Dimension P [m] nth order polynomials for CDF segments param. by v
Dimension F [n, n] array of fixed integrals parameterized by v
Dimension V [n, n] array of variable integrals parameterized by v
Real S(v) a function of v, used as a running sum S(v) is the sum of

all F elements one row down, starting one element to the right

P1(v) ← n!(2v)n
[
P1(v) ← n!

∫ x1+v

x1−v

∫ x2+v

x2−v
. . .
∫ xn+v

xn−v
1 dun . . . du2 du1

]
For k ← 2 to m loop through all subintervals of support

z ← max{�nck − 1
2�, 0}

l ← min {�2nck�, n}
Fn,n(v) ← ∫ 1

xn−v
1 dun

Vn,n(v) ← ∫ 1

un−1
1 dun

For i ← n − 1 to 2 by −1
If i + l > n then

S(v) ← 0
else

S(v) ← Fi+1,i+l(v)
If i + l > n + 1 then

Fi,n(v) ← ∫ �xi+ck�+(xi+v)(1−�xi+ck�)
xn−v

Vi+1,n(v) dui

Vi,n(v) ← ∫ �xi+ck�+(xi+v)(1−�xi+ck�)
ui−1

Vi+1,n(v) dui
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If i + l = n + 1 then
Fi,n(v) ← ∫ xi+v

xn−v
Vi+1,n(v) dui

If i + l < n + 1 then
Fi,i+l−1(v) ← ∫ xi+v

xi+l−1−v
{Vi+1,i+l−1(v) + S(v)} dui

S(v) ← S(v) + Fi+1,min{i+l−1,n}(v)
For j ← min{n − 1, i + l − 2} to max{i + 1, z + 2} by −1

Fi,j(v) ← ∫ xj+1−v

xj−v
{Vi+1,j(v) + S(v)} dui

Vi,j(v) ← ∫ xj+1−v

ui−1
{Vi+1,j(v) + S(v)} dui

S(v) ← S(v) + Fi+1,j(v)
If z + 1 ≤ i then

Vi,i(v) ← ∫ xi+1−v

ui−1
S(v) dui

If z + 1 > i then
Vi,z+1(v) ← ∫ xz+2−v

ui−1
{Vi+1,z+1(v) + S(v)} dui

If z + 1 < i then
Fi,i(v) ← ∫ xi+1−v

xi−v
S(v) dui

If l = n then rows 2, 3, . . . , n of A matrix completed at this point
S(v) ← 0
F1,n(v) ← ∫ x1+v

xn−v
V2,n(v) du1

else
S(v) ← F2,l+1(v)

If l < n then
F1,l(v) ← ∫ x1+v

xl−v
{V2,l(v) + S(v)} du1

S(v) ← S(v) + F2,l(v)
For j ← min{n − 1, l − 1} to max{2, z + 1} by −1

F1,j(v) ← ∫ xj+1−v

(xj−v)xj−ck� {V2,j(v) + S(v)} du1

S(v) ← S(v) + F2,j(v)
If z = 0 then

F1,1(v) ← ∫ x2−v

0
S(v) du1

Pk(v) ← 0
For j ← z + 1 to l

Pk(v) ← Pk(v) + F1,j(v)
Pk(v) ← n!Pk(v)

Phase 4: Shift the distribution to the form of Pr(Dn < y) by substituting
y = v + 1

2n .

y0 ← v0 + 1
2n

For k ← 1 to m loop through all subintervals of support
yi ← vk + 1

2n
Fk(y) ← Pk(y − 1

2n )

Return: y0, y1, . . . , ym and F1(y), F2(y), . . . , Fm(y).
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Other Applications

This chapter contains miscellaneous computational probability applications.
Section 11.1 concerns algorithms for calculating the probability distribution
of the longest path of a series–parallel stochastic activity network with con-
tinuous activity durations. Section 11.2 concerns the use of APPL in deter-
mining whether a continuous random variable obeys Benford’s law. Finally,
Section 11.3 contains miscellaneous computational probability applications
that are not covered elsewhere in the monograph.

11.1 Stochastic Activity Networks

Project planning is typically aided by the use of activity networks, which
show precedence relationships between the various activities that constitute
the project [1]. An activity network is a special case of a directed graph in
which the nodes (or vertices) represent points in time and the arcs (or edges)
represent activities with time values modeling activity durations. Figure 11.1
shows an example of a stochastic activity network, where the positive random
variable Yij denotes the time to complete the activity associated with the arc
from node i to node j. The Yij ’s are assumed to be mutually independent.
Common-cause delays, e.g., rain delays on an outdoor project, are not consid-
ered here. Activity start times are constrained in that no activity emanating
from a given node can start until all activities that enter that node have been
completed.

Notation and Assumptions. Activity networks have n nodes and m arcs,
with a single source node (labeled node 1), a single terminal node (labeled
node n), and no loops. Nodes are labeled 1, 2, . . . , n in topological order as
defined by Laplante [45] so that if there is an arc aij from node i to node j,
then i is less than j. Thus the nodes along each path occur in ascending order.

For each node j, the “backward” set B(j) is the set of all nodes that are
immediately before node j on some path, that is, B(j) is the set of all nodes i
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Fig. 11.1. A six-node, nine-arc stochastic activity network.

for which there is an arc from i to j. Similarly, for each node j, the “forward”
set A(j) is the set of all nodes that are immediately after node j on some
path, that is, A(j) is the set of all nodes k for which there is an arc from
j to k.

For each arc aij , there is a continuous random activity duration Yij with
positive support. The distribution of Yij is represented by its CDF FYij

(t) or
its PDF fYij

(t). For each node j there is a random time value Tj , which is the
time of completion of all activities entering node j. The quantity Tn is there-
fore the time of completion of the entire network. Shier [76, pages 122–123]
gives an example of an activity network with discrete activity durations.

For each network, there will typically be several paths leading from node 1
to node n. Let M be the set of all paths, with the paths labeled π1, π2, . . . , πr,
where r = |M | is the number of paths. A path may be viewed as an ordered
set of arcs leading in succession from node 1 to node n. The length of path
πk, denoted Lk, is the sum of all Yij corresponding to the arcs aij ∈ πk.

For each realization of a stochastic network, the critical path πc is the
path with the greatest length, Lc = max{L1, L2, . . . , Lr}. The length of
the critical path determines the time to complete the entire network. For
a stochastic network, a path in M is the critical path with some probability
p(πk) = Pr(Lk = Lc), k = 1, 2, . . . , r. Some arcs may be along more than one
path. The probability that arc aij is along the critical path, also called the
arc’s criticality , denoted by ρij , is the sum of all p(πk) where aij ∈ πk. The
criticality of arc aij can be calculated by

ρij =
r∑

k=1

p(πk)δk
ij ,

where δk
ij is 1 if aij ∈ πk and 0 otherwise.

Matrix Representation of a Network. The first step in building a model
is defining a mathematical representation of a network. Matrices are well
suited for this task because (a) each node and arc in the network can be
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designated by using the rows and columns of a matrix, and (b) matrices are
easily instantiated in most computer languages. A node–arc incidence matrix
was chosen due to its suitability for the algorithms developed here.

The node–arc incidence matrix associated with a network is an n × m
matrix N , where each row represents a node and each column represents an
arc. Let

N [i, k] =

⎧⎨
⎩

1 if arc k leaves node i
−1 if arc k enters node i
0 otherwise.

A node–arc incidence matrix that describes the network in Figure 11.1 is

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0

0 −1 0 0 −1 1 1 0 0
0 0 −1 0 0 0 −1 0 1
0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The only limitation of this representation is that it cannot show an arc that
leaves and enters the same node. This ability will not be necessary since
feedback is not allowed by our definition of a stochastic activity network.

Series–Parallel Networks. The traditional approach to analyzing stochas-
tic activity networks is simulation. While straightforward to apply, simulation
has a distinct drawback. Each additional digit of accuracy in the estimate of
E[Tn], for example, requires approximately a 100-fold increase in replications
due to the square root in the denominator of the confidence interval formulas
for E[Tn]. We now derive the various performance measures analytically—
eliminating the need for simulation—for a special case of a stochastic activity
network known as a series–parallel network .

A series–parallel activity network is a special case of an activity network
that can be simplified by a sequence of reductions to a simple network con-
sisting of just two nodes and one arc. Reductions consist of taking two arcs,
either in series or in parallel, and replacing them with a single arc that has
a random duration whose distribution is calculated in the algorithm. This is
a good match for APPL’s symbolic capabilities because each reduction can
be preformed using either the Maximum or Convolution procedures. Once the
network is completely reduced, the distribution of the single remaining arc is
the distribution of the time Tn to complete the original network. The recur-
sive algorithm then reconstructs the network to determine the critical path
probabilities and arc criticalities. Our algorithm will use these operations to
simplify a series–parallel network, and then, by determining the distribution
of Tn and reconstructing the network, determine the critical path probabilities
and the criticalities. The earliest work on the exact analysis of series–parallel
networks is Martin [59]. The next paragraphs describe the parallel and series
reductions and reconstructions.
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Parallel Reduction. The algorithm described subsequently is capable of
processing two arcs in parallel, as illustrated in Figure 11.2. A parallel reduc-
tion is the process of combining these two arcs into a single arc. Let Xij and
Yij denote the random arc durations. Without loss of generality, if Ti = 0,
then Tj = max{Xij , Yij}. So

FTj
(t) = Pr[Tj ≤ t] = Pr[Xij ≤ t and Yij ≤ t] = FXij

(t)FYij
(t)

on the support of Tj . The portion of the algorithm prior to the second recursive
call uses this formula to reduce two arcs in parallel to a single arc.

Parallel Reconstruction. Consider the single arc aij resulting from a par-
allel reduction. If the probability ρij that this arc is on the critical path is
known, then this probability can be allocated to the two original parallel arcs
x and y based on each arc’s activity duration CDF:

ρx = Pr[Xij > Yij ] · ρij = Pr[Xij − Yij > 0] · ρij

and
ρy = ρij − ρx.

This calculation involves determining the distribution of the difference be-
tween the two random variables, which can be calculated using the APPL
Difference procedure. The portion of the algorithm after the second recur-
sive call calculates the distribution of Xij − Yij and the probability that this
random variable is positive.

Series Reduction. The algorithm finds the CDF of the time to complete
two arcs in series, as illustrated in Figure 11.3. Let Yij and Yjk denote the
durations of the two arcs with CDFs FYij

(t) and FYjk
(t). Without loss of

generality, if Ti = 0, then Tk = Yij + Yjk. The CDF of Tk is [12, page 215]

FTk
(t) = Pr[Tk ≤ t] =

∫ t

0

FYij
(t − yjk)fYjk

(yjk) dyjk.

i j

Xij

Yij

Fig. 11.2. Two arcs in parallel.

i j
Yij Yjk

k

Fig. 11.3. Two arcs in series.



11.1 Stochastic Activity Networks 189

Series Reconstruction. Consider the single arc aik resulting from a series
reduction. For any two arcs aij and ajk that have been reduced into a single
arc aik, ρij = ρjk = ρik. If two arcs in series are along the critical path, then
so is the respective arc resulting from the reduction.

Algorithm. Two arcs in series are detected by searching the rows of the
node–arc incidence matrix N for the first row containing exactly two nonzero
elements whose sum is 0. Such a row represents a single arc entering and a
single arc exiting the given node. To reduce a series of two arcs to a single
arc, the algorithm

• zeros out the row of N corresponding to the deleted middle node,
• links the first node of the series directly to the last node of the series, and
• computes the distribution of the sum of the durations of the two arcs.

Two arcs in parallel are identified by two identical nonzero columns of N ,
which represent two arcs linking the same two nodes. The algorithm iterates
through each column and if parallel arcs are found, the algorithm

• computes the distribution of the maximum of the two arc durations, and
• zeros out the column of N corresponding to the eliminated arc.

The following recursive algorithm reduces a series–parallel network, where
N is the node–arc incidence matrix of the network. The PDFs for the activity
durations of each arc are stored in a vector f (indexed in the same way
that the arcs are indexed to correspond to the columns of the matrix N),
and the criticalities of each arc are stored in a vector C. This algorithm
recursively performs one arc reduction at a time, arbitrarily giving priority
to series reductions over parallel reductions, until the network consists of just
two nodes connected by a single arc. At this point, the value of C for that
one arc is set to one and then the network is reconstructed on the return calls
in reverse order, determining values of C for each pair of series or parallel
arcs based on the value of C for the reduced arc. The algorithm returns the
distribution of the time to complete the network and the final value of C,
which contains ρij for each arc aij in the network.

Procedure GetCriticalities: Find the distribution of the time to complete
a stochastic activity network and the arc criticalities.

Input: The n × m node–arc incidence matrix N , the PDFs of m activity
durations Yij stored in the vector f , the number of nodes n, the number of
arcs m, the number of arcs to be reduced arcsremaining (initialized to m).

Output: Criticalities C[m]

Algorithm:
local C, i, j, rowsum, absrowsum, negidx, posidx, c, d, l, k, empty, numdiff
if (arcsremaining = 1) if network reduced to one arc
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for i ← 1 to n loop through rows of N
for k ← 1 to m loop through columns of N

if (N [i, k] = 0) if true then arc k is the last existing arc
C[k] ← 1 set criticality to 1
print(CDF(f [k])) print CDF of project completion time
return(C) return criticalities

for i ← 1 to n begin series reduction
rowsum ← 0 initialize rowsum
absrowsum ← 0 initialize sum of absolute values in a row
for k ← 1 to m loop through columns of N

rowsum ← rowsum + N [i, k] sum values in the ith row of N
absrowsum ← absrowsum + |N [i, k]| sum the absolute values
if (N [i, k] = −1) if arc k enters node i

negidx ← k store the index of arc k
if (N [i, k] = 1) if arc k leaves from node i

posidx ← k store the index of arc k
if (rowsum = 0 and absrowsum = 2) only one arc enters & leaves node i

c ← f [negidx] save the PDF of first arc for reconstruction
d ← f [posidx] save the PDF of second arc for reconstruction
f [negidx] ← Convolution(c, d) combine the arcs into a single arc
for j ← 1 to n loop through rows of N

N [j, negidx] ← N [j, negidx] + N [j, posidx] change entering node
N [j, posidx] ← 0 delete middle node

arcsremaining ← arcsremaining − 1 reduce # of arcs in network
C ← GetCriticalities(N, f, n,m, arcsremaining) recursive call
for j ← 1 to n begin series reconstruction

if (N [j, negidx] = −1) if arc negidx enters node j
N [j, negidx] ← 0 delete arc made previously by reduction
N [j, posidx] ← −1 delete arc made previously by reduction

N [i, negidx] ← −1 reconstruct node deleted previously by reduction
N [i, posidx] ← 1 reconstruct node deleted previously by reduction
f [negidx] ← c reconstruct arc duration
f [posidx] ← d reconstruct arc duration
C[posidx] ← C[negidx] reconstruct arc criticality
return(C) return criticalities

for l ← 1 to m begin parallel reduction
for k ← l + 1 m loop through columns of N

empty ← 0 initialize empty
numdiff ← 0 initialize numdiff
for i ← 1 to n loop through rows of N

if (N [i, l] = N [i, k]) if column difference found
numdiff ← 1 set boolean variable numdiff

if (N [i, l] = 0) if a column is not empty
empty ← 1 set boolean variable empty

if (numdiff = 0 and empty = 0) cols l & k identical & nonzero
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c ← f [l] save the PDF of arc l for reconstruction
d ← f [k] save the PDF of arc k for reconstruction
f [l] ← Maximum(c, d) store PDF of the maximum
for i ← 1 n loop through rows of N

N [i, k] ← 0 zero out column of removed arc
arcsremaining ← arcsremaining − 1 reduce # network arcs
C ← GetCriticalities(N , f , n, m, arcsremaining)recursive call

for i ← 1 to n begin parallel reconstruction
N [i, k] ← N [i, l] reinsert arc k by copying column l

f [l] ← c rebuild distribution
f [k] ← d rebuild distribution
C[k] ← CDF(Difference(f [l], f [k]), 0) ·C[l] Pr[Xil − Yil > 0]·ρil

C[l] ← C[l] − C[k] calculate ρy = ρil − ρx

return(C) return criticalities
return(C) return criticalities

This algorithm requires symbolic processing capability in order to calcu-
late the distribution of the maximum of two independent random variables
for parallel reduction and the distribution of the sum of two independent
random variables for series reduction. The APPL procedures Maximum and
Convolution are used for these operations.

Example 11.1. Figure 11.4 shows an example of a series–parallel net-
work from Elmaghraby [20, page 261]. This network can be described
by the node-arc incidence matrix

N =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0 0
−1 0 1 0 0 0

0 −1 0 1 1 0
0 0 0 −1 0 1
0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎥⎦ .

1

3

Y12

Y13

4

5

Y25

Y35

Y45

2

Y34

Fig. 11.4. Series–parallel network from Elmaghraby [20, page 261].
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Fig. 11.5. Reduction and reconstruction of the series–parallel network from
Elmaghraby [20, page 261].

Table 11.1. Paths πk and critical path probabilities p(πk) for exponentially
distributed arc durations with b = 2.

k Node sequence πk p(πk)
1 1 → 2 → 5 {a12, a25} 115/432 ∼= 0.266
2 1 → 3 → 5 {a13, a35} 317/1728 ∼= 0.183
3 1 → 3 → 4 → 5 {a13, a34, a45} 317/576 ∼= 0.550

The network can be reduced and reconstructed as illustrated in the
steps separated by arrows in Figure 11.5. The algorithm has been
applied to this stochastic activity network with the duration of each
arc Yij ∼ exponential(b), where 1/b is the mean activity duration.
The CDF of the time to complete the network (T5) is returned by the
algorithm as

FT5(t) = 1 − 3bte−bt − b2t2

2
e−bt − 3e−2bt +

5b2t2

2
e−2bt +

b3t3

2
e−2bt+

2e−3bt + 3bte−3bt + b2t2e−3bt t > 0.

The r = 3 paths in the network are listed in Table 11.1, along with
the critical path probabilities. Table 11.2 contains the criticalities for
the m = 6 arcs when b = 2. (Fisher, et al. [25] determine criticalities
when activity durations are iid gamma random variables.)

This example has a small number of nodes and arcs along with simple
distributions for the arc durations so as to make the final CDF for
the project duration simple. If, however, the arc durations are each
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Table 11.2. Criticalities ρij for the exponentially distributed arc durations with
b = 2.

Arc Paths ρij

a12 π1 115/432 ∼= 0.266
a13 π2, π3 317/432 ∼= 0.734
a25 π1 115/432 ∼= 0.266
a35 π2 317/1728 ∼= 0.183
a34 π3 317/576 ∼= 0.550
a45 π3 317/576 ∼= 0.550

Table 11.3. Criticalities ρij for triangular(0, 1, 2) arc durations.

Arc Paths ρij

a12 π1 30233/237600 ∼= 0.127
a13 π2, π3 207367/237600 ∼= 0.873
a25 π1 30233/237600 ∼= 0.127
a35 π2 6013643/85536000 ∼= 0.070
a34 π3 68638477/85536000 ∼= 0.802
a45 π3 68638477/85536000 ∼= 0.802

independent triangular(0, 1, 2) random variables, then the problem
of determining the distribution of T5 becomes much more tedious.
The arc criticalities returned by the algorithm for this example with
triangular(0, 1, 2) arc durations are shown in Table 11.3. The CDF of
the project completion time is returned as

FT5(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ 0
1

64512
t12 0 < t ≤ 1

− 1
21504

t12 + 5
4032

t11 − 1357
120960

t10 + 1553
30240

t9

− 2431
17280

t8 + 15389
60480

t7 − 5531
17280

t6 + 1237
4320

t5

− 44039
241920

t4 + 607
7560

t3 − 13
560

t2 + 59
15120

t − 17
60480

1 < t ≤ 2

− 5
21504

t12 + 5
672

t11 − 1813
17280

t10 + 8693
10080

t9

− 556873
120960

t8 + 1018271
60480

t7 − 749309
17280

t6 + 89059
1120

t5

− 8332907
80640

t4 + 156139
1680

t3 − 414913
7560

t2 + 57587
3024

t − 176249
60480

2 < t ≤ 3

− 1
21504

t12 + 25
12096

t11 − 499
12096

t10 + 703
1440

t9

− 556873
120960

t8 + 1018271
60480

t7 − 672253
8640

t6 + 699347
3360

t5

− 2587009
6720

t4 + 197879
420

t3 − 376261
1080

t2 + 94931
756

t − 68353
7560

3 < t ≤ 4
1

144
t6 − 1

5
t5 + 19

8
t4 − 89

6
t3 + 409

8
t2 − 1829

20
t + 7969

120
4 < t ≤ 5

− 1
720

t6 + 1
20

t5 − 3
4

t4 + 6 t3 − 27 t2 + 324
5

t − 319
5

5 < t ≤ 6
1 t > 6.
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Activity networks are useful when modeling a project having distinct activ-
ities that exhibit precedence relationships. When the durations of the activities
are deterministic, it is easy to find the time needed to complete a project by
using a simple longest path algorithm. However, when only random activity
durations are given, the analysis is much more complicated. Monte Carlo sim-
ulation can provide an approximate solution in this case, but the simulation
must be written specifically for the network and could require millions of repli-
cations for a reliable estimate. In some networks, series–parallel reduction can
supply an exact solution analytically, but very few networks can be reduced
in this manner. Leemis et al. [52] give an algorithm that can be applied to a
more general class of networks.

11.2 Benford’s Law

This section states Benford’s law and shows how APPL can be used to check
a probability model for conformity. The traditional analysis of Benford’s law
considers its applicability to data sets , but we consider whether probability
distributions obey Benford’s law. The material in this section is taken from
Leemis et al. [53], where a more thorough treatment of the topic can be found.

Benford’s law was first encountered by astronomer and mathematician
Simon Newcomb, who noticed “how much faster the first pages (of tables
of logarithms) wear out than the last ones” leading to the counter-intuitive
conclusion that the first significant digit in the values in a logarithm table is
not uniformly distributed between 1 and 9. Using a heuristic argument, he
found that ones occur most often (more than 30 percent of the time) and
nines least often (less than 5 percent of the time), and

Pr(X = x) = log10 (1 + 1/x) x = 1, 2, . . . , 9,

where X is a random variable denoting the first significant digit. He pub-
lished this result in 1881 as the “logarithm law” in the American Journal of
Mathematics.

General Electric physicist Frank Benford [8] apparently independently ar-
rived at the same conclusion as Newcomb concerning logarithm tables in 1938.
He proceeded to “collect data from as many fields as possible” to see if natural
and sociological data sets would also obey the logarithm law. He often found
good agreement between the logarithm law for his 20,229 total observations,
including data sets as diverse as the areas of rivers, American League baseball
statistics, atomic weights of elements, death rates, and numbers appearing in
Reader’s Digest . What has become known as “Benford’s law” has found appli-
cations in the distribution of the one-day return on stock market indices [55],
the distribution of the populations of 3141 counties in the 1990 U.S. Census,
and the detection of accounting fraud [65].

A mathematically rigorous proof of Benford’s law has proven elusive. This
is in part due to the fact that certain data sets (e.g., random numbers) do
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not follow Benford’s law. Recent attempts have considered the effect of scale
invariance (e.g., dollars vs. yen), base invariance (e.g., octal vs. base ten), and
mixtures (i.e., sample data drawn from several population distributions that
are selected at random), as indicated in Hill [34, 35].

The purpose of this section is to switch the emphasis from the examination
of data sets that obey Benford’s law to probability distributions that obey
Benford’s law. The emphasis here is on survival distributions (i.e., distrib-
utions with positive support), although more general distributions can be
examined in the same fashion. Hill [34, pages 361–362] states that “An inter-
esting open problem is to determine which common distributions (or mixtures
thereof) satisfy Benford’s law . . . ”. General conditions associated with the dis-
tribution of the random variable T will now be derived in order to determine
when Benford’s law applies.

Conditions for Conformance to Benford’s Law. We refer to a random
variable X with PDF

fX(x) = Pr(X = x) = log10 (1 + 1/x) x = 1, 2, . . . , 9

as a “Benford random variable.” This random variable is pre-defined in APPL
as BenfordRV. The associated CDF is

FX(x) = Pr(X ≤ x) = log10 (1 + x) x = 1, 2, . . . , 9.

Inverting the CDF, a Benford random variate X can be generated by

X ← �10U − 1�,
or, equivalently, saving a subtraction, by

X ← �10U�,
where U ∼ U(0, 1).

Let T be a nonnegative random variable whose first significant digit is of
interest. Let the integer-valued random variable D satisfy

10D ≤ T < 10D+1

(e.g., T = 365 ⇒ D = 2 and T = 1/10 ⇒ D = −1). This definition of D
allows the first significant digit Y of T to be written in terms of T and D as

Y =
⌊
T · 10−D

⌋
=
⌊
10log10 T−D

⌋
(e.g., T = 365 ⇒ Y = �365 · 10−2� = �3.65� = 3).

Referring back to the variate generation algorithm, it is clear that if the
random variable Z = log10 T − D ∼ U(0, 1), which represents the result
from the logarithm table, then the first significant digit Y has the Benford
distribution. Using conditioning, the CDF of Z is given by
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FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr
(
10d≤T < 10d+1

) · Pr
(
log10 T − d ≤ z | 10d ≤ T < 10d+1

)
,

for 0 < z < 1. Thus conformance to Benford’s law implies that the weights (the
first factor in the product) associated with each order of magnitude (indexed
by d) and the distribution of Z = log10 T − D (the second factor in the
product) are such that the infinite sum produces a linear function in z.

Three examples of distributions providing a perfect fit for Benford’s law
are given below.

Example 11.2. Let W ∼ U(0, 2). Let T = 10W . The PDF of T is

fT (t) =
1

2t ln 10
1 < t < 100.

The PDF of D is

fD(0) = Pr(D = 0) = Pr(1 < T < 10) =
∫ 10

1

fT (t)dt =
1
2

and

fD(1) = Pr(D = 1) = Pr(10 < T < 100) =
∫ 100

10

fT (t)dt =
1
2
.

The PDF of the leading digit Y is

fY (y) = Pr(Y = y)
= Pr(y < T < y + 1) + Pr

(
10y < T < 10(y + 1)

)
=
∫ y+1

y

fT (t) dt +
∫ 10(y+1)

10y

fT (t) dt

=
∫ y+1

y

1
2t ln 10

dt +
∫ 10(y+1)

10y

1
2t ln 10

dt

= log10

(
y + 1

y

)
y = 1, 2, . . . , 9.

This PDF matches Benford’s distribution exactly. Alternatively, one
can proceed by determining the distribution of Z = log10 T − D as
follows, where W = log10 T :

FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr
(
10d ≤ T < 10d+1

) · Pr
(
log10 T − d ≤ z | 10d ≤ T < 10d+1

)
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=
1∑

d=0

Pr (d ≤ W < d + 1) · Pr (W − d ≤ z | d ≤ W < d + 1)

= Pr (0 ≤ W < 1) · Pr (W ≤ z | 0 ≤ W < 1) +
Pr (1 ≤ W < 2) · Pr (W − 1 ≤ z | 1 ≤ W < 2)

=
1
2
z +

1
2
z

= z 0 < z < 1.

Since this is the CDF for a U(0, 1) random variable, Benford’s law is
satisfied exactly.

This example can be generalized as follows. Let W ∼ U(a, b), where a and
b are real numbers satisfying a < b. If the interval

(
10a, 10b

)
covers an integer

number of orders of magnitude, then the first significant digit of the random
variable T = 10W satisfies Benford’s law exactly. Equivalently, if b − a is a
positive integer, then the first significant digit of T = 10W satisfies Benford’s
law. Examples include a = −2, b = 1 and a = log10(3/2), b = log10(150), with(
10a, 10b

)
equal to (0.01, 10) and (1.5, 150) respectively.

There is no need for the support of the distribution of T = 10W to span
several orders of magnitude as is the case for many of the data sets that
conform to Benford’s law. A single order of magnitude (e.g., a = 5, b = 6) is
sufficient.

The next example considers a non-uniform distribution for W that satisfies
Benford’s law exactly.

Example 11.3. Let W ∼ triangular(0, 1, 2). The PDF for W is

fW (w) =
{

w 0 < w < 1
2 − w 1 ≤ w < 2.

As before, let T = 10W and Z = W − D. The CDF of Z is

FZ(z) =
1∑

d=0

Pr (d ≤ W < d + 1) · Pr (W − d ≤ z | d ≤ W < d + 1)

=
1
2
z2 +

1
2
(
2z − z2

)
= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly.

This example can also be generalized. Let W ∼ triangular(a, b, c), where
a, b, and c are real numbers satisfying a < b < c. The first significant digit of
the random variable T = 10W satisfies Benford’s law exactly if a, b, and c are
integers. The next example considers a non-symmetric distribution for W .
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Example 11.4. Let W have PDF

fW (w) =
{

1 − w2 −1 < w < 0
(w − 1)2 0 ≤ w < 1.

As before, let T = 10W and Z = W − D. The CDF of Z is

FZ(z) =
0∑

d=−1

Pr (d ≤ W < d + 1) · Pr (W − d ≤ z | d ≤ W < d + 1)

=
2
3

[
−z3

2
+

3z2

2

]
+

1
3

[
1 + (z − 1)3

]
= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly.

This example can be generalized for W with PDF

fW (w) =
{

1 − wn −1 < w < 0
(w − 1)n 0 ≤ w < 1,

where n is a positive, even integer.
In order to test other probability distributions for conformance to

Benford’s law, we automated the process of deriving the distribution of
Z by writing the APPL procedure Benford, whose argument is a random
variable representing W and whose returned value is the distribution of Z.
The algorithm is shown below.

Procedure Benford: Compute the distribution of Z to check conformity to
Benford’s law.

Input: A random variable W formatted in the usual APPL list-of-sublists
format.

Output: The PDF of Z.

Algorithm:

Ω ← Support(W ) the set Ω is the support of the random variable W
Lo ← �Ω� lower loop limit
Hi ← �Ω� − 1 upper loop limit
Dimension W [Hi − Lo + 1] W holds the mixture probabilities
Dimension TranW [Hi − Lo + 1] TranW holds transformed segments of W
For d ← Lo to Hi

W [d] ← FW (d + 1) − FW (d) calculate weights for the mixture
TruncW [d] ←Truncate(W,d, d + 1) truncate W between d and d + 1
TranW [d] ←Transform(TruncW,w − d) shift W by d units

Z ← Mixture(W,TranW ) compute the PDF of the mixture
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The APPL code required to return the distribution of Z for Example 11.2
is

> W := UniformRV(0, 2);
> Z := Benford(W);

The APPL code required to return the distribution of Z for Example 11.3 is

> W := TriangularRV(0, 1, 2);
> Z := Benford(W);

The APPL code required to return the distribution of Z for Example 11.4 is

> W := [[w -> 1 - w ^ 2, w -> (1 - w) ^ 2],
[-1, 0, 1], ["Continuous", "PDF"]];

> Z := Benford(W);

All three code segments return Z ∼ U(0, 1).

11.3 Miscellaneous Applications

This final section contains a series of short examples that are appropriate
for the symbolic capabilities of APPL that were not adequately covered in
previous chapters.

Example 11.5. The central limit theorem can be used to facilitate in-
ference about the population mean. The central limit theorem implies

that X̄ =
1
n

n∑
i=1

Xi is asymptotically normally distributed when the

Xi’s are iid random variables with finite mean and variance. Appli-
cation of the central limit theorem becomes restricted, however, with
small sample sizes, with skewed data, or in the presence of outliers. In
these cases, an alternative method is needed to determine the exact
distribution of X̄. Once the distribution X̄ is found, one can use it
to make statistical inferences about the population mean. Consider
the case of the population associated with Xi ∼ exponential(1). By
the central limit theorem, the distribution of Y = X̄ is approximately
N(1, 1√

n
) for large n. For the case n = 3, one can compute the exact

distribution of Y with the following statements:

> X := ExponentialRV(1);
> n := 3;
> Y := ConvolutionIID(X, n);
> Y := Transform(Y, [[x -> x / n], [0, infinity]]);

The resulting Erlang PDF is

fY (y) =
27
2

y2e−3y y > 0,
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Table 11.4. Fractiles for exact and approximated distributions.

Fractile
Approach Distribution 0.9 0.95 0.975 0.99

Exact X̄ 1.240 1.318 1.388 1.473
Central limit theorem N

(
1, 1√

30

)
1.234 1.300 1.358 1.425

which is predictably non-normal in shape since n is too small for the
normality of the central limit theorem to apply to such a skewed under-
lying distribution. Now consider the case of n = 30, often considered
a sufficiently large sample size for an adequate central limit theorem
approximation. Here a computation of the error associated with the
approximation is provided. To obtain the PDF of X̄, simply change
the second line of code to n := 30; The result is the following Erlang
PDF:

fY (y) =
246315313339233398437500000

10577732774609
y29e−30y y > 0.

Table 11.4 contains selected fractiles for both the exact distribution
of X̄ and its central limit theorem approximation, the N(1, 1√

30
) dis-

tribution. For the selected fractiles, the approximation is only good
to about one digit beyond the decimal point. The additional APPL
statements that generate the central limit theorem values in Table 11.4
are

> Z := NormalRV(1, 1 / sqrt(n));
> alpha := [0.9, 0.95, 0.975, 0.99];
> for i from 1 to 4 do
> evalf(IDF(Z, alpha[i]));
> od;

Example 11.6. As a second application related to the central limit
theorem, consider an old, approximate method of generating random
variates that have a standard normal distribution:

Z∗ = U1 + U2 + · · · + U12 − 6,

where the Ui’s are iid U(0, 1) random variables. The following APPL
statements determine the exact distribution of this 12-fold sum:

> U := UniformRV(0, 1);
> U12 := ConvolutionIID(U, 12);
> Zstar := Transform(U12, [[x -> x - 6], [0, 12]]);

which returns the PDF of Z∗ as
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fZ∗(x) =
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The following additional APPL statements calculate the kurtosis of
Z∗ and the kurtosis of a standard normal random variable Z:

> Z := NormalRV(0, 1);
> Kurtosis(Zstar);
> Kurtosis(Z);
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The distribution of Z∗ is useful because, like the standard normal
distribution, its mean is zero, its variance is one, and its skewness is
zero. However, the fourth moments of Z∗ and Z differ, with

E

⎡
⎣(Z∗ − E [Z∗]√

V [Z∗]

)4
⎤
⎦ = E

[
(Z∗)4

]
= 2.9,

while the kurtosis of Z is 3. An overlaid Maple plot of the standard
normal PDF and fZ∗(x) reveals that this approximation does quite
well. It is apparent that the PDFs match very nicely except around
x = 0 [where fZ(0) = 1√

2π
∼= 0.399 and fZ∗(0) = 655177

1663200
∼= 0.394]

and, of course, in the tails, since the approximate distribution only has
support on (−6, 6). To obtain overlaid plots of these two distributions,
use the PlotDist procedure. First create a plot of the PDF of Z∗ and
store it as Plot1. Next, create a plot of the PDF of Z and store it
as Plot2. Finally, use the plots[display] procedure to combine the
two plots. This is summarized in the statements

> Plot1 := PlotDist(Zstar, -6, 6):
> Plot2 := PlotDist(Z, -6, 6):
> plots[display]({Plot1, Plot2}, scaling = unconstrained);

Dozens of tables of mathematically intractable statistical values have been
published over the years. Some of these constants can be calculated in APPL,
as illustrated in the next example.

Example 11.7. Balakrishnan and Chen’s [5] text is a valuable resource
for comparing various measures associated with probability distribu-
tions. Here we use APPL’s capabilities to produce similar measures.
This book begins with 39 pages of theory and references to the in-
verse Gaussian (IG) distribution and its order statistics, followed by
645 pages of PDF plots, expected value tables, covariance tables, esti-
mation tables, and so forth. APPL is able to create a number of these
figures and tables, and in some cases goes beyond those presented in
the text. Page 50, for example, shows the N(0, 1) and the standardized
IG(0.8) PDFs overlaid in a single plot. The PDF of a standardized IG
random variable X [which is listed as equation (2.14) on page 7 of the
text] is

fX(x) =
1√
2π

(
3

3 + kx

)3/2

e−3x2/(6+2kx) − 3
k

< x < ∞.

The two plots may be overlaid and animated for k increasing from
zero to one as follows:
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Fig. 11.6. Overlaid plots of the standard normal and standard IG(0.8) distributions.

> Z := NormalRV(0, 1);
> X := [[x -> (3 / (3 + k * x)) ^ (3 / 2) *

exp(-3 * x ^ 2 / (6 + 2 * k * x)) /
sqrt(2 * Pi)],
[-3 / k, infinity], ["Continuous", "PDF"]];

> NormalExpr := op(unapply(Z[1](x))(x));
> InvGaussExpr := op(unapply(X[1](x))(x));
> unassign(’k’);
> plots[animate]({NormalExpr, InvGaussExpr},

x = -4 .. 4, k = 0 .. 1);

The plot is shown in Figure 11.6 for k = 0.8. To execute the animation,
first select the plot by clicking on it. Then choose “Play” from the
“Animation” menu. Balakrishnan and Chen use such plots to show
how the two distributions separate as k increases from zero. Clearly
APPL is not limited to plotting the standardized version of the IG
PDF, but can be used to plot IG PDF, CDF, HF, and so on. Their
text also gives a listing of selected means of order statistics for the
standardized IG distribution Z. Using APPL one can calculate, for
example, the mean of the order statistic Z(2) for n = 4 (when k = 0.7,
as on page 74 of their text) as follows:

> k := 0.7;
> Z := [[z -> 1 / sqrt(2 * Pi) * (3 / (3 + k * z)) ^
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(3 / 2) * exp(-3 * z ^ 2 /
(2 * (3 + k * z)))],

[-3 / k, infinity], ["Continuous", "PDF"]];
> Zos := OrderStat(Z, 4, 2);
> avg := Mean(Zos);

which returns the value −0.35202 in agreement with the authors. In
addition to giving the mean, note that the variable Zos above is in
fact the list-of-sublists representation of the distribution of that order
statistic. Thus one might use any number of functions on that vari-
able, in order to find critical points, significance levels, and can use
that distribution in determining other distributions, e.g., by invoking
Product or Convolution.

Another resource, such as Harter and Balakrishnan’s [32] handbook of
tables for the use of order statistics in estimation also gives extensive charts
for various applications of order statistics. APPL can be used in a similar
fashion to duplicate many of their tabled values, and, in some cases, go beyond
the tabled values. See Glen et al. [29] for a specific example.

Example 11.8. Define a geometric random variable X with parameter
p = 1

4 to model the number of trials up to and including the first
success, i.e.,

fX(x) =
1
4
·
(

3
4

)x−1

x = 1, 2, . . . .

Calculate the median of the maximum order statistic when n = 5
items are sampled with replacement from this geometric distribution.
The APPL statements

> X := GeometricRV(1 / 4);
> Y := OrderStat(X, 5, 5);
> IDF(Y, 0.5);

return the median of the distribution as 8. The final statement could
have equivalently been issued as Median(Y);

Example 11.9. A sequence of order statistics drawn from a unit expo-
nential distribution was considered in Example 3.11. Five plots were
generated corresponding to the PDF of each of the order statistics via
the APPL code

> X := ExponentialRV(1);
> n := 5;
> for i from 1 to n do
> PlotDist(OrderStat(X, n, i), 0, 6);
> od;
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Fig. 11.7. Overlaid plots of the PDFs of order statistics drawn from an exponential
population.

But what if one wanted to see all five of the order statistics on a single
graph? This can be done by modifying the code to

> X := ExponentialRV(1);
> n := 5;
> OSgraphs := [];
> for i from 1 to n do
> OSgraphs := [op(OSgraphs),

PlotDist(OrderStat(X, n, i), 0, 6)]:
> od:
> with(plots);
> display(OSgraphs);

This code initializes OSgraphs to an empty list, and concatenates the
various graphs in the loop. The with(plots) command is used to
include additional Maple plotting options. Finally, display is used to
plot multiple graphs on one plot. The graph is shown in Figure 11.7.
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Transform, 9, 44, 48–54, 64, 143, 148,

158, 162, 198–200
TriangularRV, 4, 40, 41, 199
Truncate, 44, 138, 198
unapply, 17, 24
UniformDiscreteRV, 5, 6, 113, 122,

128
UniformRV, 4, 9, 37, 50, 52, 61, 64,

65, 138, 139, 154, 158, 199, 200
Variance, 41, 44, 62, 89, 113, 129,

136, 146, 148
VerifyPDF, 9, 35, 44, 90
WeibullRV, 38, 136, 163
with, 18
with(linalg), 18
with(networks), 18

APPL procedure code
calculating bootstrap standard

deviation of median, 146
calculating PDF of Dn, 158
computation of distribution of

median, 124
distribution of failure time, computa-

tion of, 138
exact value of standard error of mean,

calculation of, 148
moments estimates, 167
PDF, computation of, 122
probability ‘that the mission is

successful’ calculation, 140
required to return distribution of Z,

199
statements, 129

A Probability Programming Language
list-of-sublists data structure,

106–107, 111
uses of, 3–8

Arc’s criticality, 186
Arcsin distribution, 54
Arrays, in Maple, 20
Arrays s and Probs for sums of discrete

random variables, 96

BallBearing, 161
Benford random variable, 80
Benford, 198
BenfordRV, 195

Benford’s law
applications, 199–205
conditions for conformance to,

195–199
Bernoulli trials, 128
BernoulliRV, 114
Beta conjugate distribution, 144
Binary data, 141
Binary trees, 102
BingoCoverRV, 81
BinomialRV, 89, 143
Birnbaum

integrand g, 169
n-fold integral, 171

BirthdayRV, 81
Bootstrapping technique, 119, 141

algorithm for, 142–143
confidence interval, 143

BootstrapRV, 146–150
Brute force method, 95, 100

CDF polynomials, coefficients of, 177
CDF, 4, 37–39, 44, 88, 154, 158, 161, 179,

190, 191
Central limit theorem, 3, 199–200
Change-of-variable technique, 45
CHF, 39, 44
Chi square random variable, 35, 50
Coefficient of variation, 160
Computational probability, definition

of, 3
Computer algebra system, 8–10
Conceptual algorithm development for

sums of random variables, 95–106
Confidence interval estimation, 141,

150–151
Continuous random variable

distributions plotting, 40–41
expected value calculation, 41–42
functional form changing, 37–40
functions, 33
order statistics calculation, 42–43
product of two, 55–68

algorithm, 65–67
extensions, 64–65
generalizations, 58–59
implementation in APPL, 58–60
theorem, 56–58

transformation of, 45–54
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Continuous random variables
and data structures

definition in APPL, using seven
random variables, 34–35

sums, 91
Convert, 73–74
Convolution, 65, 91–118, 140, 158,

190
ConvolutionIID, 4, 44, 102, 113, 116,

148, 199–200
Critical path, 186
Cumulative distribution function

(CDF), 4, 33, 72
Cumulative hazard function (CHF), 33,

72

Data structures and continuous random
variables, 33–37

changing functional form, 37–40
distribution plotting, 40–41
expected value calculation, 41–42
functions, 33
order statistics calculation, 42–43

Data types, in Maple language, 18–20,
28

Difference, 158, 188, 191
Discrete convolution formula, 91
Discrete-event input modeling situa-

tions, 164
Discrete random variables, 5, 91,

119–120
Dot support format, 76–77

Economics and survival analysis, 144
Error checking

conditional statements, 26
conversion routines, 28
in procedures, 28

ExpectedValue, 41, 44, 89
ExponentialRV, 39, 41–43, 137, 151,

161–164, 199, 204, 205

Formulaic PDF, 76
fsolve, 20–21, 163

GammaRV, 140, 161, 167
GeometricRV, 90, 125, 129, 204
GetCriticalities, 189

Hazard function (HF), 33, 72, 85

HF, 39, 44, 136

HypergeometricRV, 81, 115

Identically distributed (iid) random
variables, 3, 7

IDF, 38–39, 44, 138, 139, 150–151, 200,
204

Infinite support, 77

Insertion sort algorithm, 96

Inverse distribution function (IDF), 33,
72

Kaplan–Meier product-limit survivor
function, 164–165

Kolmogorov–Smirnov goodness-of-fit
test

CDF of KS test statistic, 181–183

the distribution Dn, 169–181

KSRV, 156, 176, 179, 181–183

KS test statistic, 169

Kurtosis, 41, 44, 62, 89, 201

Lehmer algorithm, 153, 158

Lehmer generators, 153–154

Lexicographical combination of n items,
sampling of, 122, 130

“List-of-sublists” data structure, 7, 19,
33–34

Logarithm law, 194

LognormalRV, 62

Many-to-1 transformations, 45, 46

Maple language

algebraic equations, 20–22

calculus problems, 24–25

conditional statements, 26

continuous random variables and
data types, 18–20, 28

functions, 17–18

graphing using, 22–23

loops, 26–27

numeric computations, 13–14

procedures, 27–29

symbolic expression manipulation,
16–17

variables, 15–16
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Maple (software)
code, 160
computation, 128–129
error function, 38
eval procedure, 85
implementation, 109
list Sample, 154
for loop, 26, 140
plot, 22
simplify, 16, 25, 40, 110, 179
sorting algorithm for polynomials, 97
unassign command, 161

Maple evalf(%) statement, 136
Maximum, 44, 138, 191
Maximum heap data structure, 96
Mean, 41, 44, 62, 113, 129, 136, 137, 204
MGF, 41, 44, 107
Minimum, 44, 138
Minimum heap, 101
Mixture, 44, 198
MLENHPP, 166
MLE, 44, 151, 161–166
MLEWeibull, 163
MOM, 44, 167
Moment generating functions (MGFs),

94–95
Monte Carlo simulation, 3, 194
Moving heap method, 100
MP6Censor, 164

N × n matrices F, 176
NegativeBinomialRV, 89
NextCombination and

NextPermutation, 122, 130
Node–arc incidence matrix, 187, 189
NoDot case, 73
NoDot support format, 75, 77
Non-overlapping ordered pairs, 157
Normal PDF approximation, 114
NormalRV, 38, 41, 63, 200, 201, 203
Numeric computations, in Maple

language, 13–14
Numeric PDF, 75

One dimensional array Probs, 95–96
OrderStat, 5, 6, 42–44, 120–122,

124–126, 128–130, 136, 146,
204, 206

OrderStat algorithm, 120–122, 125,
128–130

Order statistics

APPL code to compute the PDF, 122

computation of PDF of rth, 122

equally likely probabilities, 121–122

exact value, 129

extension, 130–131

notation and taxonomy, 119–120

sampling with replacement, 126–129

finite support, 126–128

infinite support, 128–129

sampling without replacement,
121–125

finite support, 121–124

infinite support, 125

string "wo", importance, 121

OSgraphs, 205

Pascal’s triangle, 174

PDF, 5, 6, 39, 44, 83–83, 86–87, 90, 113,
116, 122, 125, 179

Periodic transformations, 49

Piecewise many-to-1 transformation,
45, 46

PlotDist, 4, 40, 43, 88, 179, 202, 204,
205

PlotEmpVsFittedCDF, 154, 161, 165

Poisson distribution with PDF, 72, 87

Poisson random variables with
parameters λ1 and λ2, 110

PoissonRV, 110

Power function, 7–8

Pre-defined APPL random variable
GeometricRV(p), 90

Probabilities and normal PDF ap-
proximations for Pr(S = s),
115–116

Probability density function (PDF), 4,
33, 72

by discrete convolution formula, 110

function, of D, 158

independent random variables
convolution, 91

Poisson random variable, 92

of rth order statistic, computation of,
122, 126

Probability mass function, 72

ProbStorage array, 122–125



Index 217

Procedures, in Maple, 27–29
Product, 4, 55–68, 143
ProductIID, 7, 65

Random variables
functional form, 81
sums distribution calculation, 91
support, 78

RangeStat algorithm, 130, 145, 149
ReduceList, 29, 49
Resampling error, 143

Sampling
with replacement, 6–7
without replacement, 5–6

Series-parallel activity networks, 187
Seriessystemboot, 142–143
set.seed function, 146
SF, 7, 38, 39, 44, 135-136, 140, 156
Shellsort insertion sort, 97
Significance level, 7
Skewness, 41, 44, 62, 89, 160–161
Sociology and survival analysis, 144
S-Plus

code, 146–149
function call, 143

Standard continuity correction, 113
Standard errors, estimation of, 145–150
L-Statistic, 145
Stochastic activity network

algorithm, 189–194
matrix representation of a network,

186–187
notations and assumptions, 185–186
parallel reduction, 188
series-parallel activity network, 187
series reconstruction, 189
series reduction, 188

Stochastic simulation
input modeling, 159–167
Kolmogorov–Smirnov goodness-of-fit

test
CDF of KS test statistic, 181–183
computation of the distribution of

Dn, 169–181
tests of randomness

distance between consecutive
random number pairs, 156–158

Kolmogorov–Smirnov goodness-of-
fit test, 154–156

String object, 20
Survivor function (SF), 7, 33, 72
Symbolic expression manipulation, in

Maple language, 16–17
Systems of components

lower confidence bound pL on system
reliability, 140–144

survival analysis, 144–151
system analysis

analysis of k-out-of-n system, 135
determining probability of mission

success, 140
system failure of parallel system,

137–138
system failure time of three-

component system, 138–140
system reliability estimates, 142

Three-component series system, 141
Transform, 9, 44, 45–54, 64, 143, 148,

158, 162, 198–200
Transform algorithm, 45–54
Transformations, 1–to–1, 45
Transformation technique for random

variables, 54–55
Transformation theorem, 46–48
Triangular PDF plot, 40
TriangularRV, 4, 40, 41, 199
Truncate, 44, 138, 198
Two-dimensional conceptual array

construction, 97–98

UniformDiscreteRV, 5, 6, 113, 122, 128
UniformRV, 4, 9, 37, 50, 52, 61, 64, 65,

138, 139, 154, 158, 199, 200
U -subintervals, 170

Variables, in Maple language, 15–16
Variance, 41, 44, 62, 89, 113, 129, 136,

146, 148
VerifyPDF, 9, 35, 44, 90

Weibull survivor function, 164–165
WeibullRV, 38, 136, 163
while loop, in Maple, 27

Zipf random variable, 80
ZipfRV, 81
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